
July-August 1984
AT&T Vol. 63 No.6 Part 2

rBlEL[l ilJi\f80~10~~lE§

T[ECHN~CAl
JOURNAL
i\ JC)URNAL OF THE AT&T COMPANIES

Computing Science and Systems

Computer Performance During Data Entry

Program Transformations for Data Access

Build-A Software Construction Tool

Queueing and Framing Disciplines

Local Area Data Transport

Integrated Circuit Fabrication

EDITORIAL COMMITTEE

M. M. BUCHNER, JR.l

R. P. CLAGETT
2

R. P. CREAN2

B. R. DARNALL 1

B. P. DONOHUE, 111
3

A. A. PENZIAS,l Committee Chairman
R. c. FLETCHER 1

D. HIRSCH
4

S. HORING
1

R. A. KELLEY 1

J. F. MARTlN2

J. S. NOWAK
1

B. B. OLiVER
S

J. W. TIMK03

v. A. VYSSOTSKy 1

1 AT & T Bell Laboratories 2 AT & T Technologies 3 AT & T Information Systems

4 AT & T Consumer Products 5 AT & T Communications

TECHNICAL EDITORIAL BOARD

M. D. MciLROY

Technical Editor
A. V. AHa

D. L. BAYER

EDITORIAL STAFF

W. FICHTNER

L. E. GALLAHER

R. w. GRAVES1

M. G. GRISHAM

1 AT & T Information Systems

B. W. KERNIGHAN

S. G. WASILEW

S. J. YUILL 1

B. G. KING, Editor L. S. GOLLER, Assistant Editor
P. WHEELER, Managing Editor A. M. SHARTS, Assistant Editor

B. G. GRUBER, Circulation

AT&T BELL LABORATORIES TECHNICAL JOURNAL (ISSN0005-8580) is published ten times
each year by AT&T, 550 Madison Avenue, New York, NY 10022; C. L. Brown, Chairman of
the Board; T. O. Davis, Secretary. The Computing Science and Systems section and the special
issues are included as they become available. Subscriptions: United States-1 year $35; 2
years $63; 3 years $84; foreign-1 year $45; 2 years $73; 3 years $94. A subscription to the
Computing Science and Systems section only is $10 ($12 foreign). Single copies of most issues
of the Journal are available at $5 ($6 foreign). Payment for foreign subscriptions or single
copies must be made in United States funds, or by check drawn on a United States bank and
made payable to the Technical Journal and sent to AT & T Bell Laboratories, Circulation Dept.,
Room 1 E335, 101 J. F. Kennedy Pky, Short Hills, NJ 07078.

Single copies of material from this issue of the Journal may be reproduced for personal,
noncommercial use. Permission to make multiple copies must be obtained from the Editor.

Comments on the technical content of any article or brief are welcome. These and other
editorial inquiries should be addressed to the Editor, AT & T Bell Laboratories Technical Journal,
Room 1 H321, 101 J. F. Kennedy Pky, Short Hills, NJ 07078. Comments and inquiries, whether
or not published, shall not be regarded as confidential or otherwise restricted in use and will
become the property of AT & T. Comments selected for publication may be edited for brevity,
subject to author approval.

Printed in U.S.A. Second-class postage paid at Short Hills, NJ 07078 and additional mailing
offices. Postmaster: Send address changes to the AT&T Bell Laboratories Technical Journal,
Room 1 E335, 101 J. F. Kennedy Pky, Short Hills, NJ 07078.

Copyright © 1984 AT&T.

AT&T Bell Laboratories

Technical Journal
VOL. 63 JULY-AUGUST 1984 NO.6, PART 2

Copyright © 1984 AT&T, Printed in U.S.A.

Computer Response Time and User Performance During Data 1007
Entry

T. W. Butler

Program Transformations for Data Access in a Local Distributed 1019
Environment

J. D. DeTrevilie and W. D. Sincoskie

System Sparing for Minicomputer-Based Operations Systems 1029
D. W. Tolleth

Build-A Software Construction Tool 1049
V. B. Erickson and J. F. Pellegrin

Queueing and Framing Disciplines for a Mixture of Data Traffic 1061
Types

A. G. Fraser and S. P. Morgan

Coding for a Write-Once Memory 1089
J. K. Wolf, A. D. Wyner, J. Ziv, and J. Korner

Local A~ea Data Transport Service Overview 1113
M. N. Ransom

AT&T Technologies Implementation of Local Area Data 1135
Transport-Hardware and Software Overview

D. J. Stelte, H. J. Kafka, and W. J. Paule

Optimum Scan-Width Selection Under Containment Constraints 1191
M. R. Garey and R. Y. Pinter

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

Computer Response Time and User Performance
During Data Entry

By T. W. BUTLER*

(Manuscript received October 1, 1982)

In this experiment, subjects entered data at a computer terminal while the
response time of the computer was varied systematically. Long average re
sponse times were found to be associated with significantly longer subject
"think times", as was an increase in the variability of the computer's response
time. Six subjects entered five-character letter groups under ten different
computer response time conditions. The computer response time distributions
used had mean values of 2, 4, 8, 16, and 23 seconds, with two different levels
of variability at each mean value. User error rate and user typing time were
not significantly affected by computer response time, but computer response
time was significantly related to user response time (or think time) with this
task. User response time increased slowly and gradually with increases in
computer response over the range of stimulus values used. Increases in
computer response time variability also increased user response time.

I. INTRODUCTION

Computer system designers face a serious problem when setting
response time requirements for systems that they build. They must
confront the competing pressures of providing the most responsive
user service possible and of providing this service at the lowest possible
cost. Often, cost pressures prevail and the result is a slow, heavily
loaded system. Few data are available regarding the effect computer
response time has on the users of a system.

Everyone who has used an interactive computer terminal knows
that the response time of a system is important for its users. Indeed,

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1007

users may find response time to be a computer system's most salient
general characteristic. Nevertheless, there is no firm empirical basis
for setting standards of acceptable response times for computer sys
tems. The problem is one both of user performance and of user
attitudes and perceptions. The relations of these variables to computer
system response time have not been established.

Many papers have noted the importance of Computer System Re
sponse Time (CSRT) for users/-4 but very few have presented any
solid experimental data relating to the problem. Several issues and
hypotheses have been put forward in this body of literature:

1. User performance may decline at very long (or very short) com
puter response times.

2. Variability of computer response time may be as important for
users as average response time duration.

3. Different user commands have different response time require
ments, depending on the cognitive load that a command imposes on
users.
Most early studies of this problem failed to produce meaningful, useful
results for one of several reasons. Many studies simply surveyed
computer use without systematically manipulating computer response
time.5

,6 Subjects in these studies were in a continuously changing
environment where most of the variables of interest (e.g., mean re
sponse time, response time variability, tasks being performed) were
entirely out of the experimenters' control. Other studies have used
unrealistic stimulus conditions that confound their results and make
their application to this problem unclear. For example, Grignetti and
Miller7 and Johnsson et al.8 used constant computer response times
within each experimental condition, rather than a distribution of
response times around some specified mean value. All this research
can mislead readers who are unaware of the studies' limitations.

The present experiment examined user performance in a simple
data entry task while the mean duration and the variability of com
puter response time was being manipulated. By carefully controlling
these variables over a realistic range of stimulus values, some of the
confusion caused by earlier experiments has been eliminated.

II. METHODS AND APPARATUS

2.1 Task

Subjects were given a typed list of 1000 five-character letter groups
to be used as input stimuli in the experiment.9 All letter groups were
printed in uppercase type. Half of the letter groups in the set were
first-order approximations of English words, and the other half were
zero-order approximations of English, based on the bigram frequency
of the letters they contained. The zero-order and first-order letter

1008 TECHNICAL JOURNAL, JULY-AUGUST 1984

groups were randomly intermixed. Zero-order letter groups appear to
be random sets of characters, and first-order letter groups appear to
be very English -like, 10 though none of the groups used here was a real
word. These stimuli were chosen to approximate the mixture of Eng
lish words and code values entered by data entry clerks in large
operations-support systems. The same set of input stimuli was used
in every data collection session.

Subjects typed these letter groups one group at a time at a video
display terminal (Hewlett-Packard 2621). They were instructed to
work steadily at this task, and to complete as much of the work as
possible within the allotted time. No specific incentives were offered
to encourage them to work quickly. A single transaction proceeded as
follows: The subject, on seeing the prompt character displayed on the
terminal screen, typed the next letter group on the list, and followed
it with a carriage return. This carriage return marked the beginning
of the computer response time interval imposed by the experiment.
When the appropriate amount of time had elapsed, the prompt char
acter was again displayed at the beginning of the next line, signaling
that the computer was ready to accept the next input. Until the
prompt symbol was displayed, the keyboard was locked and it was
impossible for subjects to type anything into the system.

Subjects could correct typing mistakes that they noticed before
striking the carriage return with a "character erase" character "#",
which erased the character immediately preceding it. It was not
possible for subjects to cancel an entry after they struck the carriage
return key, even if they noticed that the entry was incorrect. They
were told to proceed to the next letter group if this occurred.

Subjects worked at each of the ten experimental conditions for 2
hours, or until they completed the list of 1000 letter groups, for a
maximum total of 20 hours of data collection per subject. (Many
subjects completed the list of letter groups in less than 2 hours in the
shortest computer response time conditions.) All data collection ses
sions for individual subjects were separated by at least a full day, and
only one subject took part in the experiment at a time. Each subject
worked through the ten experimental conditions in a different, random
order.

2.2 Computer response times

Within each session, elements from a positively skewed distribution
of response times were randomly presented to the subject. Distribu
tions of real-world computer response time are usually strongly skewed
in the positive direction. The shape of the distribution used here was
approximately that of Chi-squared with 4 degrees of freedom, but its
mean and standard deviation varied from condition to condition in

RESPONSE TIME 1009

Table I-Computer response time distributions

Range of
Standard

Range of x Deviation Range of Lowest Value Highest Value
Condition (in Seconds) (in Seconds) Skew (in Seconds) (in Seconds)

2LO 2.002-2.021 0.264-0.269 0.61-0.65 1.589-1.610 2.720-2.734
2HI 2.000-2.027 0.793-0.803 0.59-0.68 0.786-0.803 4.149-4.164
4LO 4.006-4.020 0.595-0.599 0.62-0.64 3.087-3.106 5.611-5.616
4HI 3.999-4.039 1. 788-1.800 0.62-0.65 1.283-1.292 8.805-8.812
8LO 8.009-8.032 1.329-1.347 0.61-0.63 5.966-5.992 11.568-11.583
8HI 8.020-8.105 4.016-4.072 0.60-0.62 1.912-1.926 18.700-18.716
16LO 15.992-16.035 2.972-3.079 0.58-0.63 11.466-11.481 23.979-23.994
16HI 16.073-16.236 9.046-9.128 0.58-0.63 2.415-2.419 39.928-39.929
32LO 32.059-32.221 6.720-6.881 0.60-0.64 21.874-21.883 49.806-49.829
32HI 31. 792-32.409 20.180-20.704 0.59-0.68 1.619-1.630 85.416-85.437

Note: In the column labeled "Condition", the integer indicates the nominal mean
response time and the "LO" and "HI" suffixes indicate the "low" and "high" variability
conditions, respectively.

the experiment. Five different mean computer response times were
used: 2, 4, 8, 16, and 32 seconds. Two different variability conditions
were imposed on each mean value, for a total of 10 different experi
mental conditions. Table I summarizes the stimuli used in the exper
iment. Stimulus values varied slightly from subject to subject because
of differences in the number of transactions completed in each session
across subjects. However, the ranges of values shown in Table I
encompass the data for all subjects. The range of mean response times
used here was set after meeting with many designers of large operations
systems. Though the response time design goals for such systems are
normally set at about 4 seconds, the range used here is an accurate
reflection of the values encountered by developers during system
performance tests.

Response time variability was calibrated in psychological units
across the different conditions. In the "low" variability condition, one
standard deviation of the computer response time distribution was set
to equal 1.0 jnd (just noticeable difference) of computer response time
at each of the mean values used. In the "high" variability condition,
the standard deviation of each computer response time distribution
was set to equal 3.0 jnd at each mean value. This equated the perceived
variability within each low and high condition across the different
mean values. The ranges of computer response time within each
condition resulting from this scaling are shown in Table I. Just
noticeable differences of computer response time were calculated using
the measurements of Butler et al.ll

2.3 Computer system

A PDP-8* IE laboratory computer controlled the subject's terminal.

* Trademark of Digital Equipment Corporation.

1010 TECHNICAL JOURNAL, JULY-AUGUST 1984

It timed the prescribed computer response time intervals, recorded
these values, and also recorded the subject's response time after the
prompt character was displayed, the subject's typing time, and all
characters typed during each transaction. These data were sent to a
host computer and filed there as they accumulated.

2.4 Subjects

The subjects in this experiment were six experienced word process
ing clerks employed by AT&T Bell Laboratories in Piscataway, New
Jersey. All were proficient in computerized text preparation, and all
had previously used a video display terminal of the same model as the
one used in this study (Hewlett-Packard 2621).

III. RESULTS

Three different measures of user performance were recorded during
each transaction: user response time, user typing time, and user input
errors. For the purposes of this study, user response time is defined as
the time between· the display of the prompt character on the subject's
terminal and the typing of the first character entered by the subject.
User typing time is the interval between the first character typed in
each transaction and the typing of the carriage return that marks the
end of the transaction. User errors were compiled here by calculating
the percentage of incorrect entries made by each subject in a given
session. Entries were judged incorrect if they were misspelled, not
entered in the prescribed sequence, or omitted. Results for each of the
three measures are pres~nted below.

N either mean input error rate nor mean typing time per transaction
was significantly affected by the computer response time variables
studied here. Error rates were quite variable within each condition,
but mean error rate remained approximately constant at about 2 to 4
percent for mean computer response times ranging from 2 to 32
seconds in both the high- and the low-variability conditions. Typing
time was also approximately constant at about 1.25 s/transaction
across all experimental conditions.

The plots of mean user response time as a function of mean
computer response time shown in Fig. 1 are somewhat more interest
ing. While the variability in these data is quite large, a regular
relationship between these two variables appears to be present. User
response time, which is about 1.0 to 1.25 seconds at a mean computer
response time of 2 seconds, increases steadily to about 3.5 to 4.0
seconds at a mean computer response time of 32 seconds. Also, the
high-variability condition regularly incurs user response times about
0.75 second longer than those resulting during the low-variability
condition.

RESPONSE TIME 1011

Logarithmic curves are one way to conveniently represent the data
in the two variability conditions:

low variability: Y = 2.179 log X + 0.075
high variability: Y = 2.518 log X + 0.465

r2 = 0.913
r2 = 0.990,

where Yequals mean user response time and X equals mean computer
response time.

These equations were calculated by transforming the computer
response time variable to a logarithmic scale, and then performing a
linear least-squares regression on the transformed data. The resulting
plot, including the regression lines, is shown in Fig. 2.

A repeated-measures analysis of variance showed that the effect of
computer response time variability was significant (p < 0.05) and that
the effect of mean computer response time was marginally significant
(p = 0.053). Both of these variables accounted for a fairly small
percentage of the total variance in the experimental data, however.
The data were noisy, and between-subjects variability accounted for
about 84 percent of the total variance.

IV. DISCUSSION

In general, the data on errors and typing time gathered in the
present study concur with the results of earlier studies using similar
tasks.12 Because these measures are not affected by different computer
response time conditions, they are of little interest here.

10

9
Vl
0
z 8 0
u
w
Vl 7
~
w

6 ~

i=
w

5 Vl
z
0
a.

4 Vl
W
0:

0: 3 w
Vl
:::l

Z 2
<t:
w
~

0
2 4

T Lr--- HIGH VARIABILITY

0--- LOW VARIABILITY

MEAN COMPUTER RESPONSE TIME IN SECONDS

T
I
I
I

Fig. 1-The average user response time plotted as a function of mean computer
response time. The error bars indicate ±1 standard error.

1012 TECHNICAL JOURNAL, JULY-AUGUST 1984

10~---,

VI
o

9

5 8
u
w
VI 7
~
w
::E 6
~

~ 5
z
o
Bi 4
w
0::

~ 3
VI
::>
z 2
or.:(
w
::E

HIGH VARIA81L1TY: t::r--- Y= 2.518 LOG X + 0.465
,2 = 0.990

LOW VARIABILITY: 0-- Y = 2.179 LOG X + 0.75

~'
1:::.,/
.,6 0

",'

,2 = 0.913

_--------LS:
I:::. _---------

_----·--~--~~~---------------oo-,,,,,S---- --

0~-2~~----~------------1~6------------------------3~2~

MEAN COMPUTER RESPONSE TIME IN SECONDS

Fig. 2-The average user response time plotted as a function of mean computer
response time. The lines drawn through the data points are linear-log least-squares
regression lines.

The effect of different mean computer response times on user
response times is another, more interesting matter. Several studies
have made specific conclusions about the relationship between these
two variables. Some of these conclusions are affirmed by the present
study, and some are not.

One striking finding of several papers has been that user perform
ance is optimal at computer response times of intermediate dura
tion;13-15 usually the values have been found to be in the 4- to 5-second
range. There is no evidence of any decrement in performance at short
computer response times in the data from the present experiment.
Rather, performance (as measured by the user's response time) grad
ually worsens over the range of computer response times used. (This
measure of user performance worsens over the range of average com
puter response times from 4 to 32 seconds. Changes in user perform
ance over the 2- to 4-second range of stimuli are less obvious.) The
important difference between the present study and these earlier
experiments is that all the older papers reporting this finding were
investigating specific problem-solving tasks, while the present study
used a simple data-entry task. It could be that the subjects in these
problem -solving studies required some amount of preparation or
"think time" between transactions; they were planning their next
command. With the data-entry task used in the present study, subjects
needed no think time. They knew what their next command had to be
and merely waited for the opportunity to enter it. The difference found

RESPONSE TIME 1013

here provides confirmation for Miller's speculation (see Ref. 16) that
different commands have different response time requirements for
users, depending on the cognitive load that they impose. It also points
out the importance of considering the task type of a given command
before extrapolating experimental data from other types of tasks to it.

Another widely cited set of data relating computer response time to
user response time originated in a study by Boies and Gould,5 and has
also been reported by BoiesI7 and Doherty and Kelisky.18 This was a
survey-type study in which all usage was monitored in a general
purpose research computer system. Doherty and Kelisky found that
the expected user response time was equal to 15 seconds plus whatever
the computer response time was for that transaction.18 The results of
the present study are clearly different from this, as shown in Figs. 1
and 2. This difference is not surprising, since Doherty and Kelisky
described responses during a heterogeneous mixture of user command
types, and because they correlated user think times with the single
preceding computer response time, rather than with the average re
sponse time of the system.

An important finding of the present study is that users appear to
respond to the computer's average response time, rather than to the
last single response time experienced. One extreme hypothesis is that
a user's response time is determined by the computer response time
that immediately precedes it, and its opposite extreme is that the
user's expectation of what the computer's response time should be,
based on his or her total experience with the system, determines what
his or her response will be. The first of these hypotheses is implicit
when one uses survey data like that cited by Doherty and Kelisky.18
One must assume that the mechanism mediating the user's response
has no memory, and that each transaction is independent of all·others
that have preceded it.

A straightforward test of the two alternatives can be made using
data from the present study. To make this test, all individual trans
actions in the high-variability condition with computer response times
of 3.5 to 4.5 seconds were isolated, and the average user response time
of each individual subject for these transactions was compared across
mean computer response time conditions. The results of the test were
qualitatively similar for all subjects. Data from two of them-the
subject with the largest performance variation across all conditions,
and the subject with the smallest overall performance variation-are
shown in Figs. 3 and 4, respectively. These figures are plots of mean
user response time as a function of mean computer response time. It
is clear from these data that a user's average response time to these
isolated transactions of 3.5- to 4.5-seconds duration is not constant
across conditions, and that the important determinant of the user's

1014 TECHNICAL JOURNAL, JULY-AUGUST 1984

28

26

24

22
en
0
z

20 0
u
UJ
en

~
18

UJ
::;;: 16
i=
UJ
en
z 14
0
CL.
en 12 UJ
a:
a:

10 UJ
en
::>
z 8 «
UJ
::;;:

6

4

0
8 16

SUBJECT: G

tr--- HIGH VARIABILITY,
ALL DATA

0--- HIGH VARIABILITY, ONLY
CSRTs OF 3.5 TO 4.5
SECONDS INCLUDED FROM
EACH CONDITION

32

MEAN COMPUTER RESPONSE TIME IN SECONDS

Fig. 3-Average user response time plotted as a function of average computer response
time for the subject G.

response time here is the mean computer response time within each
session.

4.1 Computer response time variability

Uniformly increasing the variability (in psychological units) of the
computer response time distributions that the subjects experienced
succeeded in uniformly increasing mean user response times by about
0.75 second across all conditions. Unfortunately, it is not possible to
quantify this relationship with only two levels of variability in the
study. This point is probably worth further examination in the future.

4.2 Conclusions

Systematically manipulating the response time characteristics of a
computer system while users performed a simple data-entry task has
shown that increases in the response time of the system cause a slow,
gradual, and not very large degradation in user performance, as indi
cated by the user's response time. Also, increasing the variability of
computer response time significantly degraded user performance, ac-

RESPONSE TIME 1015

6~--~

en 5 l
e
z
o
u
w
en

~ 4-

t:z--- HIGH VARIABILITY, ALL SUBJECT: L

DATA T
0-- HIGH VARIABILITY, ONLY

CSRTs OF 3.5 TO 4.5 I T
SECONDS INCLUDED FROM I I
EACH CONDITION I I

] i
II :
I' IT

~ 3 - :1 1'1
~ T l .,~----___ :,
~ 2 - ~ 1~;~;;:-1--------=-~~~:'
" , -if-I' ~:' II

Ii 11 4 !
o~_~~I __ ~I ____ ~I ____________ ull~ ______________________ .!~

2 4 8 16 32

MEAN COMPUTER RESPONSE TIME IN SECONDS

Fig. 4-Average user response time plotted as a function of average computer response
time for the subject L.

cording to the same measure. There is no reason to believe that these
results can be applied directly to user tasks requiring more cognitive
effort, or to tasks in which the user's response depends on the content
of the preceding computer output. These results should, though, set a
baseline to which user performance with other, presumably more
complex, user tasks can be compared.

The psychological basis for the effects seen here is not obvious. At
first glance, it could be seen as only a problem of attention for the
subjects; the long computer response time intervals could simply be
making their responses more lethargic. Two facts, though, suggest
that this simple hypothesis is not adequate: First, if attention was a
problem, input error rates would probably rise along with each user's
response time. This did not happen in the present experiment. Second,
the high level of variability seen in these data would probably not be
expected if something as simple as attentiveness were mediating
subjects' responses. The subjects in the experiment were a fairly
homogeneous population of experienced computer users, yet the vari
ability of response time between users and even in each user's case
was high. This suggests that some more complex factor or factors are
important to the subjects' responses. Further research is needed before
we will know the basis for the results of this study.

1016 TECHNICAL JOURNAL, JULY-AUGUST 1984

The most striking finding of this study is how little user performance
at this task is influenced by computer response time. Of all the
measures of user performance tested, only one was affected at all by
computer response time, and the performance degradation shown by
this measure as computer response time increased was quite small.
The second important finding of the present study is that computer
users' performance appears to be related to average computer response
time, rather than to the duration of the immediately preceding com
puter response time interval. This finding has important methodolog
ical implications for future studies.

REFERENCES

1. J. C. R. Licklider, "Man-Computer Symbiosis," IEEE Trans. Hum. Factors Elec
tron., HFE-1 (March 1960), pp. 4-11.

2. J. C. R. Licklider, "Man-Computer Partnership," Int. Sci. Technol., 33 (May 1965),
pp.18-26.

3. J. R. Carbonell, J. 1. Elkind, and R. S. Nickerson, "On the Psychological Importance
of Time in a Time Sharing System," Hum. Factors, 10 (April 1968), pp. 135-42.

4. S. E. Engel and R. E. Granda, "Guidelines for Man/Display Interfaces," IBM Tech.
Report TROO.2720, December 19, 1975.

5. S. J. Boies and J. D. Gould, "User Performance in an Interactive Computer System,"
Proc. 5th Annual Princeton Conf. on Info. Sci. and Systems, Princeton, NJ,
March 25-26, 1971.

6. R. E. Barber, "Response Time, Operator Productivity, and Job Satisfaction," Ph.D.
dissertation, NYU Graduate School of Business Administration, 1979.

7. M. C. Grignetti and D. C. Miller, "Modifying Computer Response Characteristics
to Influence Command Choice," Proc. Conf. on Man-Computer Interactions,
Cambridge, UK, September, 1970, pp. 201-5.

8. B. Johnsson, B. Andersson, and S. Wallin, "Man-Computer Communication
Through Alpha Numeric Display Terminals," Int. Conf. on Cybernetics and
Society, Tokyo-Kyoto, Japan, 1978,2-3: pp. 1278-83.

9. K. Hirata and M. P. Bryden, "Tables of Letter Sequences Varying in Order of
Approximation to English," Psychonom. Sci., 25, No. 6 (December 1971), pp.
322-4.

10. C. N. Cofer, "Properties of Verbal Materials and Verbal Learning," Woodworth and
Schlossberg's Experimental Psychology, 3rd ed., ed. J. W. Kling and L. A. Riggs,
New York: Holt, Rinehart, and Winston, 1971, pp. 896-8.

11. K. A. Butler, G. L. Felfoldy, S. E. Simms, and J. S. Swenson, unpublished work.
12. J. D. Williams, J. S. Swenson, J. A. Hegarty, and T. S. Tullis, unpublished work.
13. B. W. Boehm, M. V. Seven, and R. A. Watson, "Interactive Problem-Solving: An

Experimental Study of 'Lockout' Effects," AFIPS Conf. Proc., Atlantic City, NJ,
May 18-20, 1971,38: pp. 205-10.

14. M. A. Morfield, R. A. Wiesen, and M. Grossberg, "Initial Experiments on the Effects
of System Delay on On-line Problem-solving," Lincoln Laboratory, MIT, Lexing
ton, MA, Tech. Report No. ESD-TR-69-158, 1969.

15. M. Grossberg, R. A. Wiesen, and D. B. Yntema, "An Experiment on Problem
Solving With Delayed Computer Responses," IEEE Trans. Syst. Man Cybern.,
SMC-6 (March 1976), pp. 219-22.

16. R. B. Miller, "Response Time in Man-Computer Conversational Transactions,"
AFIPS Conf. Proc., San Francisco, CA, December 9-11,1968,33, pp. 267-77.

17. S. J. Boies, "User Behavior on an Interactive Computer System," IBM Syst. J., 13,
No.1 (1974), pp. 2-18.

18. W. J. Doherty and R. P. Kelisky, "Managing VM/CMS Systems for User Effective
ness," IBM Syst. J. 18, No.1 (1979), pp. 143-63.

AUTHOR

Thomas W. Butler, B.Sc. (Psychology), 1972, Michigan State University;

RESPONSE TIME 1017

Ph.D. (Psychology), 1977, Brown University; University of California at
Berkeley, 1976-1978; AT&T Bell Laboratories, 1978-. At the University of
California Mr. Butler was a member of the Physiology-Anatomy Department.
Since joining AT&T Bell Laboratories, he has worked on methods for the
human estimation of work time, and on the effects of computer response time
on user performance. He is currently a member of the Human Performance
Engineering department, where his work includes a variety of projects related
to the UNIX'''' operating system.

1018 TECHNICAL JOURNAL, JULY-AUGUST 1984

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

Program Transformations for Data Access in a
Local Distributed Environment

By J. D. DETREVILLE* and W. D. SINCOSKIEt

(Manuscript received March 23, 1983)

This paper presents a set of program transformations that are useful in
transforming certain sequential program schemas for use in a local distributed
environment. The environment is considered to be a set of processors con
nected by a local area network with broadcast capability. Examples of trans
formed program schemas are given that implement shared data, maximization,
and abstract queues in a distributed environment.

I. INTRODUCTION

The use of program transformation has been frequently proposed as
an aid to program development and program structuring.1

,2 Transfor
mations that preserve program correctness can be used to convert a
clearly written program that is unfortunately inefficient or otherwise
unsuited to its environment into an equivalent implementation that
is more directly usable. Moreover, if transformations are performed
mechanically (although, as typically proposed, guided by the user), the
developmental relationship between the original program and the
transformed program can be retained explicitly, aiding in later under
standing of the transformed program and simplifying further changes.

1. Typical simple transformations involve operations such as mov
ing invariant computations outside of loops, or eliminating recursion

* AT&T Bell Laboratories. t AT&T Bell Laboratories; present affiliation
Bell Communications Research, Inc.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1019

by the use of explicit stacks; these can achieve greater efficiency at a
cost in simplicity.

2. Another family of transformations involves exploitation of cer
tain dualities to transform a program into its dual. For example, Wall
notes a duality between sites in a distributed environment and the
messages they exchange and proposes that certain classes of programs
(in particular, those programs whose structure is related to the topol
ogy of the network) be written from the point of view of the messages
themselves.3 Useful insights can be gained through the use of this
approach, and since such programs can be mechanically transformed
into programs written from the point of view of the processors sending
the messages, the new process is easier to execute.

This paper presents a set of program transformations that can be
used for programs in a distributed environment to convert references
to local data relations into references to the data over a network. We
first note a duality between certain looping constructs and a particular
distributed communication structure. Programs iterating over a global
data relation stored locally are shown to be equivalent to programs
making explicit requests to external processors for data; programs
written in the first form are easy to understand, but must be converted
to the second form to be executed. We then present a further set of
transformations that can be performed on programs in the second
form to make their communications more efficient.

II. THE DISTRIBUTED ENVIRONMENT

Consider the distributed environment shown in Fig. 1, with some
number of similar sites connected over a local area network. These
sites are loosely coupled architecturally, with all communication
achieved via messages exchanged over the network.

The assumption of a local area network suggests high-speed opera
tion. It also suggests the ability for anyone site to broadcast a message
to all other sites.

Within this architectural model, assume that we wish to provide
some set of shared data, accessible to all the sites and containing
information related to the sites themselves. For example, consider the
case of a distributed telephone system in which each site controls

Fig. I-Distributed environment.

1020 TECHNICAL JOURNAL, JULY-AUGUST 1984

some small number of telephones. A data relation mapping telephone
numbers to site addresses could be used as a directory to determine
which site is associated with a given telephone number. The question
arises of where to store these data. There are at least three distinct
approaches:

1. The data could be redundantly stored at every site, requiring
quadratic total space (linear at any site); reliability would be very
good. Accessing the data would be simple. Updating them could entail
significant complexity and cost. For the telephone example above,
each site would contain a complete directory, which would be bulky
and difficult to update.

2. The data could be stored at some central site, at low cost but
with poor reliability. Service would be lost if the central site were to
fail. Accessing as well as updating the data would involve communi
cation with the central site. For the telephone example, there would
be a central directory server, giving good space efficiency but not
allowing telephone calls to be made if the server were unavailable.

3. The data could be stored across sites, with each site holding the
data pertaining directly to it. Accessing the data would typically
involve broadcast communication with all sites, as could updating the
data. Reliability could be very good, although this approach requires
quadratic total time (linear at any site). For the telephone example,
each site would know only its own telephone numbers and its own site
address. Mapping a telephone number to a site address would involve
a broadcast message to all sites, followed by a reply or replies. If a site
were down, only calls involving it would be affected. For a moderate
number of sites, this approach should be reasonably time-efficient.

This paper assumes that the third case is chosen. Thus, programs
accessing shared data will need to communicate with the various sites
where the data are actually stored.

We show that a program written as though these distributed data
were available locally, as in the first case, can be mechanically trans
formed into one with explicit communication, as in the last case. We
also show that this communication can often be made more efficient
through the use of further transformations. The increases in efficiency
occur with a reduction in the number of messages transmitted. De
pending on the network being used and other particulars, there may
or may not be a significant advantage to doing this.

III. TRANSFORMING SIMPLE LOOPS

The basic transformation presented here transforms looping struc
tures over data relations into a distributed message-passing structure.
The original control structure is a simple iteration over data, while
the network topology is a simple iteration of sites. The transformed

DATA ACCESS 1021

structure is a simple broadcast to the sites, followed by their iterative
replies. We note that, as in Wall's approach, the original control
structure corresponds to the topology of the network and is trans
formed into the communication structure of the resulting program.
Consider the pseudocode program fragment:

loop for tuple in relation do
"perform operation on tuple"

end loop
If the tuples of the data relation are distributed across sites, this can
be transformed into:

broadcast (this_relationjd);
loop until all_replies_received do

receive tuple;
"perform operation on tuple"

end loop
where a separate process at each site performs:

loop do
receive request;
case request. type in

this_relation_id:
loop for tuple in relation_here do

reply tuple
end loop

end case
end loop
Here, an iteration over all tuples in a local relation is transformed

into a broadcast request for all sites (including this one) to transmit
as replies those tuples of that relation that they remotely store (held
in relation_here; the constant this]elation_id names which relation is
being requested), followed by an iteration over the replies. (It is
assumed that the order of iteration is unspecified for the original
looping construct.)

Since all sites receive the broadcast request almost simultaneously,
they could be ready to transmit their replies at about the same time.
On contention networks, such as Ethernet, *4 this could lead to a low
transmission efficiency due to collisions and retransmissions. On such
networks, we could have each site choose an appropriate random delay
time to wait before transmitting its tuples.

This transformation covers most accesses to data stored in relations,

*Trademark of Xerox Corporation.

1022 TECHNICAL JOURNAL, JULY-AUGUST 1984

in which the particular tuple or tuples to be used are not known
beforehand. If they are known and their home site is also known, we
may apply the obvious additional transformations to communicate
directly with that site.

In the simplest case, the access to the tuples is read-only. If a tuple
is to be updated within the loop, an additional message must be
returned to the site from which the tuple was sent.

The problem of synchronization of multiple processes at multiple
sites accessing shared data is not considered here. Algorithms for
mutual exclusion in a distributed environment are presented by Ricart
and Agrawala,5 including certain approaches similar to those later in
this paper.

It may be difficult for the requesting site to determine when all
replies have been received. Although the number of sites may be
known, some of these may currently be inactive and thus may not
send replies. The use of time-outs seems the only workable solution
to this problem within the distributed framework assumed here. Since
the relative speeds and response times of the sites may vary, this time
out might need to be fairly large, possibly limiting the range of
applications of this approach to systems with infrequent accesses to
shared data. In the case of a telephone system such accesses would be
required only during the call setup, which occurs relatively infre
quently and which only needs to proceed at human speeds. We note
again that the failure of sites to reply when they are unavailable can
be viewed as perfectly appropriate if the tuples being accessed relate
to the sites themselves. If a site is down, it can be viewed as nonexistent
and so its data should not be seen. 'Thus, the semantics of the original
programs have been (unavoidably) extended to deal with site or
communications failures.

In certain cases (where, for instance, there is only one tuple per
site), the tuple information may be stored implicitly and regenerated
on each request. If this is done, the nature of a data relation will have
undergone a substantial shift. Where previously it would have been a
data structure in its own right, now it would exist only as an effect of
the control structure of the transformed program.

IV. MOVING FUNCTION EVALUATION TO REMOTE SITES

Consider the program fragment:
loop for tuple in relation do

"perform operation on {(tuple)"
end loop

where { is some side-effect-free function applied to the tuple. The
function can be computed at the remote sites and the value returned
instead of the tuple. The program fragment above becomes:

DATA ACCESS 1023

broadcast (this_relation_id);
loop until all_replies_received do

receive f_oLtuple;
"perform operation on f_oLtuple"

end loop
while the separate process at each site is transformed to:

loop do
receive request;
case request. type in

this_relationjd:
loop for tuple in relation_here do

reply f(tuple)
end loop

end case
end loop
Here, all sites combine the application of f to the tuples in parallel,

which can decrease the total running time of the application by parallel
computation and may reduce the length of messages if f maps a tuple
into less total data. The sites may be heterogeneous and the compu
tation of f may depend on some characteristic of the site to which the
data refer. Having each site compute its own f does not require the
requester to know how to compute f for the data of other sites. Each
site need only know how to compute its own f, which could be useful
in a heterogeneous network.

V. MOVING TESTS TO REMOTE SITES

The transformation of loops over tuples in a relation, turning a
program that accesses data as though it were local into one explicitly
requesting remote data, is the basic transformation considered here.
After this is done, there are further transformations possible that can
make the communication more efficient.

The first additional transformation allows us to perform certain
tests remotely. For example, assume that we have transformed the
program fragment:

loop for tuple in relation do
if tuple.key = value then

"perform operation on tuple"
end if

end loop
into:

broadcast (this_relation_id);
loop untiLreplies_received do

1024 TECHNICAL JOURNAL, JUL V-AUGUST 1984

receive tuple;
if tuple.key = value then

"perform operation on tuple"
end if

end loop
with appropriate remote server processes receiving the broadcast mes
sages and returning their tuples. We can now invoke a further trans
formation of the program fragment into:

broadcast ((this_relation_id, this_tesLid), value);
loop until alLreplies_received do

receive tuple;
"perform operation on tuple"

end loop
with the remote server process transformed to:

loop do
receive request;
case request. type in

(this_relation_id, this_tesLid):
loop for tuple in locaLrelation do

if tuple.key = request.value then
reply tuple

end if
end loop

end case
end loop

Here, we have moved a test on the tuples to the sites where the
tuples are stored. The constant this_tesLid is used to identify which
test the remote sites should perform. Since the remote sites will
transmit a reply only if the test succeeds, this transformation can
sharply reduce the number of messages transmitted. We note that,
since the variable value appears free in the test condition, its value
must be transmitted to the remote sites for their evaluation of the
test.

In the telephone example, we would broadcast a request containing
the telephone number to all sites, and, assuming uniqueness of tele
phone numbers, the site replying would be the one controlling the
telephone with that number.

VI. MOVING LOOP TERMINATION TO REMOTE SITES

Consider the program fragment:
found := false;
loop for tuple in relation do

DATA ACCESS 1025

if tuple.key = value then
found := true;
break;

end if
end loop
U sing the transformation in the previous section, we can move the

test condition to the remote sites. Moreover, we can then make the
loop termination (in this case break) operate remotely by having the
remote servers, while they are waiting to transmit their own replies,
watch the network for any prior reply. If one is seen, the site should
abort its own reply (and if it had more than one reply possible, it
should transmit only one).

Due to race conditions, the requesting site may still receive multiple
replies to its requests. Any late replies should be identified and
discarded. Of course, this was already the case with replies received
after a time-out and can be implemented through the use of serial
numbers on requests and their corresponding replies.

VII. MOVING MAXIMIZATION AND MINIMIZATION TO REMOTE SITES

Just as loop termination can be moved to remote sites, as shown in
the last section, so can certain ongoing loop computations. One im
portant example is maximization (or minimization) of a quantity over
a relation.
Consider the program fragment:

max := negative_infinity;
largesLtuple := nil;
loop for tuple in relation do

if max < tuple.value then
max := tuple.value;
largest-tuple := tuple;

end if
end loop

Applying the transformation to this fragment would give:
max := negativejnfinity;
largesLtuple := nil;
broadcast (this_relation_id);
loop until alLreplies_received do

receive tuple;
if max < tuple.value then

max := tuple.value;
largesLtuple := tuple;

end if
end loop

1026 TECHNICAL JOURNAL, JULY-AUGUST 1984

The remote process would wait for requests and respond with the
maximum-value tuple existing in the remote machine.

This transformation can be improved if one takes advantage of the
broadcast nature of many local networks. The process at the remote
site can delay its reply, while watching the network for other replies
larger than its own. If a larger value is seen, the reply is aborted. In
general, if the sites reply in random order, the expected value of the
number of replies is reduced from N to log2N, since about half of the
sites will drop out on each reply seen. An even greater improvement
can be realized, if the distribution of values is well understood, by
having each remote site's delay be inversely correlated with its value,
letting the sites with the larger values transmit first.

For the telephone example, there are many times when it is neces
sary to maximize or minimize some quantity over a relation. For
example, when calling a hunt group (a set of telephones with the same
number), one wants to find the nonbusy telephone with that number
(a pair of conditionals, which can be distributed) that is the earliest
in the list (the one that has been idle the longest, or that has not rung
for the longest time).

In a distributed computer system, resource allocation is often a
maximization problem. For example, if one site finds itself overloaded,
it could find the site with the maximum available resource, such as
available processor time or main memory, and off-load part of its work
to that site. Independent derivations of this approach have been
reported earlier: Farber and Heinrich applied it as a "bidding" mech
anism for load sharing in a distributed computer system.6

Certain abstract queues can be implemented using maximization. A
site would enter a queue of sites simply by setting an internal flag.
The operation of finding the head of the queue would involve finding
the site that has been in the queue the longest time. Here, as before,
the queue itself has disappeared. Sites are in the queue if and only if
they think they are in the queue; the queue is only an effect of their
control structure. Such a scheme can be quite robust, since if a site in
the queue fails, then it is no longer in the queue (since it will not reply
to queries). Queues of any .objects closely coupled to sites can be
created in a similar fashion.

VIII. CONCLUSION

A number of transformations have been presented that turn some
common sequential program schemas into distributed program sche
mas. These transformations operate by taking a data structure that
exists at a single site and distributing it among a number of sites in a
distributed environment. An effect of the distribution is that the

DATA ACCESS 1027

explicit data structure "disappears" from the program, and thereafter
exists only as an effect of the control structure in the distributed
environment.

The transformations presented here have been applied manually to
implement initially sequential algorithms in certain experimental dis
tributed environments. Useful distributed program schemas included
locating resources in a distributed environment and performing dis
tributed maximization.

REFERENCES

1. R. Balzer, N. Goldman, and D. Wile, "On the Transformational Implementation
Approach to Programming," Proc. Second Int. Conf. Software Eng. (October
1976), pp. 337-44.

2. M. S. Feather, "A System for Assisting Program Transformation," Trans. on
Programming Languages and Systems, 4, No.1 (January 1982), pp. 1-20.

3. D. W. Wall, "Messages as Active Agents," Ninth Annual ACM Symp. on Principles
of Programming Languages (January 1982), pp. 34-9.

4. R. M. Metcalf and D. R. Boggs, "Ethernet: Distributed Packet Switching for Local
Computer Networks," Commun. ACM, 19, No.7 (July 1976), pp. 395-404.

5. G. Ricart and A. K. Agrawala, "An Optimal Algorithm for Mutual Exclusion in
Computer Networks," Commun. ACM, 24, No.1 (January 1981), pp. 9-17.

6. D. J. Farber, and F. R. Heinrich, "The Structure of a Distributed Computer
System-The Distributed File System," Proc. Int. Conf. Computer Commun.
(October 1972), pp. 364-70.

AUTHORS

John D. DeTreville, B.S. (Mathematics), 1970, University of South Caro
lina; S.M. (Computer Science), 1972, Massachusetts Institute of Technology;
Ph.D. (Computer Science), 1978, The Massachusetts Institute of Technology;
AT&T Bell Laboratories, 1978-. Mr. DeTreville's doctoral thesis was in
applied Artificial Intelligence. His first work at AT&T Bell Laboratories was
on 5ESSTM switching equipment; he moved to Murray Hill in 1980, where his
work has incorporated topics in distributed systems and program synthesis.
Member, ACM.

w. David Sincoskie, B.E.E., 1975, M.E.E., 1977; Ph.D. (Electrical Engi
neering), 1980, University of Delaware; AT&T Bell Laboratories, 1980-1983;
present affiliation Bell Communications Research, Inc. While at AT&T Bell
Laboratories, Mr. Sincoskie was performing research in distributed computing,
computer networking, and operating systems. Since 1982, he has been working
with integrating voice and data switching on local area networks. In 1983, Mr.
Sincoskie was appointed District Research Manager, Computer Communica
tions Research, at Bell Communications Research, Inc. Member, Tau Beta Pi,
Eta Kappa Nu, IEEE, ACM.

1028 TECHNICAL JOURNAL, JULY-AUGUST 1984

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

System Sparing for Minicomputer-Based
Operations Systems

By D. W. TOLLETH*

(Manuscript received March 29, 1983)

A queueing model was developed to derive guidelines for deploying system
spares-complete minicomputer systems used as backup for failed minicom
puter-based Operations Systems (OSs). The model is a three-dimensional set
of queueing equations incorporating a time-dependent number of repairers,
and exponential random variables for the time between failures for each
minicomputer system, the time to repair each system, and the time to switch
between failed systems and spares. Guidelines derived from numerical solution
of the model are being used by the Bell Operating Companies and AT&T
Communications to aid planning studies for (1) proving-in system spares, (2)
meeting specific OS availability objectives, and (3) improving minicomputer
maintenance staff utilization.

I. INTRODUCTION

1.1 Background

Development of minicomputer-based Operations Systems (aSs) to
support Bell System operations began in the early 1970s. By the end
of 1983 over 5000 such ass were deployed by the Bell Operating
Companies (BOCs) and AT&T Communications.

System spares are complete minicomputer systems that provide
backup computing when minicomputer-based ass fail. Increasing
dependence on minicomputer systems to perform daily work functions
has led the BOCs and AT&T Communications to deploy system spares

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1029

for OSs clustered in Minicomputer Maintenance and Operations Cen
ters (MMOCs).

This paper presents a comprehensive solution to the system sparing
problem. The BOCs and AT&T Communications are using guidelines
based on this solution for determining optimal system sparing levels
and for meeting specific availability objectives. The analysis includes
transient solutions that examine possible improvements in mainte
nance staff utilization with sparing.

The work presented here has potential applications in system design,
as well as in BOC and AT&T Communications system and staff
planning. OSs with stringent availability objectives have usually been
designed in duplex or triplex arrangements, with one or two active
and one backup processor. For such systems with large deployments
in clustered environments, this work shows how to meet stringent
availability objectives with fewer backup systems.

1.2 Approach

We achieved the desired results in three steps. First, we character
ized the MMOC equipment, staff, and functions pertinent to system
sparing, including staffing levels, system failure rates, and mean times
to repair. Second, we developed a mathematical model of the sparing
process. Third, we obtained system availability data from the model
for a range of parameters representing current BOC and AT&T
Communications MMOC operations.

1.3 Overview

Section II gives an in-depth discussion of the model and the param
eters chosen to characterize the BOC and AT&T Communications
MMOCs. Section III presents the mathematical details of the model,
including the principal equations and state diagrams. Section IV
presents availability data obtained from the model. The presentations
of the data are designed to aid planning studies for proving-in spare
systems, meeting specific availability objectives, and improving main
tenance staff utilization. Section V presents some observations about
system sparing.

II. DESCRIPTION OF THE SYSTEM SPARING MODEL

2.1 Model features

How does system sparing affect BOC and AT&T Communications
minicomputer users and the MMOCs? To answer this question, we
must first characterize the equipment, personnel, and functions in
volved with system sparing. We can then develop a mathematical
model to quantify the effects of sparing.

1030 TECHNICAL JOURNAL, JULY-AUGUST 1984

Minicomputer systems in an MMOC can be located in a single
building or distributed throughout a geographic area, with some sys
tems clustered and some standing alone. Our interest in sparing
suggests that we break the systems into two groups: (1) a cluster of
systems with one or more spares in one location, and (2) the other,
nonspared systems in the MMOC (see Fig. 1). The second group may
be scattered geographically, clustered at another location, or colocated
with the first group. To simplify the model, the second group is sized
so that the total number of minicomputers is fixed and corresponds to
the typical number of systems for which one repairer would be respon
sible in the field. This number of systems, 25, is based on current
maintenance force staffing levels in BOCs doing self-maintenance,
i.e., doing their own hardware maintenance, instead of contracting
with a vendor.

Three personnel groups would be affected by system sparing. First,
the minicomputer operators, who are located at the minicomputer

GROUP 1

USERS

ACTIVE
SYSTEMS

OPERATOR

SPARES

GROUP 2

USERS

OPERATOR

I
MAINTENANCE

FORCE

Fig.l-MMOC systems and personnel.

SYSTEM SPARING 1031

sites, would be required to do the switching from failed systems to
spares and back. Second, the minicomputer maintenance personnel
would feel less pressure to repair a failed system if a spare were
available. Finally, the minicomputer users would see improved system
availability. We will see that availability can improve for all users,
including those whose systems are not equipped with a spare.

Users are generally at locations remote from the minicomputer
systems and communicate with them via private line circuits. These
are the circuits that the operators must switch when moving from a
failed system to a spare. Operators switch the data circuits and load
the database of the failed system onto the spare.

The effects of sparing on maintenance are broader and more subtle
than its effects on operations. When a cluster has a spare, a failed
system does not demand immediate attention; the spare can be
switched. Thus, when multiple failures occur, priority can be given to
the systems for which no spare is available. The effect is more timely
repair of the systems without a spare. Of course, users of systems
equipped with a spare also enjoy improved availability. Both groups
benefit.

In addition to modifying repair priorities, sparing also levels the
work load of the maintenance staff: minicomputers can be queued for
repair instead of maintenance staff being queued for minicomputer
failures. This may allow reduction in the size of the maintenance staff
or elimination of nighttime maintenance. The latter will be possible if
sparing sufficiently reduces the risk of user outage at the beginning of
the morning shift.

For simplicity, the model omits several common practices. First, the
model considers only corrective maintenance activities and ignores
the value of a spare for preventive maintenance and database man
agement activities. Second, the model omits the common practice of
maintenance personnel working overtime at the end of a shift to finish
a repair.

The omission of these two features means that the model underes
timates the benefits of sparing, because both practices increase the
value of sparing. Spare systems can be switched for working systems,
allowing preventive maintenance to be performed during the day or
evening, rather than during the night shift or on weekends; and
overtime at the end of a shift gets systems back on line faster,
improving system availability.

The model also omits the step of "switching back" repaired systems
for spares. This task is usually performed at night or at some other
time when there is little or no demand for a system, so the omission
should have little effect on the results.

The system sparing process was modeled mathematically, as de-

1032 TECHNICAL JOURNAL, JULY-AUGUST 1984

scribed in Section III. The parameters used in the model are discussed
below.

2.2 Model parameters-operating conditions in the MMOC

Data collected by the MMOC planning group at AT&T Bell Labo
ratories indicate that providing 24-hour, 7-day maintenance coverage
in a clustered environment requires one repairer per shift for every 25
"COSMOS-like" systems, i.e., nominal DEC PDP-ll/70*-based sys
tems.

Because a repairer covers 25 systems and we want the number of
repairers to be an integer, we need to model 25 systems, 50 systems,
etc. The minimum set-25 systems, 1 repairer and 1 spare-can be
shown to satisfy the objectives of this study.

When a spare is added, the model assumes no increase in the size
of the maintenance staff. The repairer who was responsible for 25
systems before sparing is thus responsible for 26 after sparing.

Our data show that systems in the field incur about 100 hours of
downtime per year for corrective maintenance. One hundred hours per
year corresponds roughly to a mean time between failures of 22 days
and a mean time to repair of 6 hours. (The mean time to repair
includes both the time to respond to and to fix the trouble.) There is
considerable variation in downtime, due to such factors as the envi
ronment in which a minicomputer is· operated, whether a system is
maintained by on-site BOC personnel or off-site vendor personnel,
and whether downtime measured is user downtime or system down
time. To allow for these variations, the model was run with 50, 100,
and 150 hours of downtime per year.

Switching between a failed system and a spare requires switching
the data lines and moving the database. Moving the database, which
includes removing the disk packs, moving them to the spare system,
and checking the files, is the rate-limiting step, and typically requires
about 15 minutes. The time to move the data lines varies, depending
on the switching method, but it is usually much less than 15 minutes.
The model assumed 15 minutes total for switching.

To permit examination of possible improvements in maintenance
staff utilization, the model allows the number of repairers on a shift
to change. In particular, the model accommodates no, one, or infinite
repairers. No repairers is the case used to model uncovered shifts. One
repairer is the nominal case for 25 systems and 1 spare. Infinite
repairers is the case used as an approximation for the two-repairer
case to examine movement of the night shift personnel to the day

* Trademark of Digital Equipment Corporation.

SYSTEM SPARING 1033

shift. The validity of the infinite repairer approximation is discussed
in Section III.

In summary, the model assumes 25 systems; 1 spare; and 0, 1, or 00

repairers. The time required to switch a spare for a failed system is 15
minutes. Data were produced for systems with 50, 100, and 150 hours
of downtime per year.

III. TIME-DEPENDENT QUEUEING MODEL

System sparing increases system availability and allows improve
ments in maintenance staff efficiency. System availability and the
number of repairers required to maintain the systems are, therefore,
the principal indicators of the effects of sparing.

We want to develop a mathematical model that predicts average
system availabilities with and without sparing, as a function of time.
It must keep track of three groups of systems: (1) systems with access
to spares (group 1), (2) spare systems, and (3) other systems under
the purview of the maintenance staff (group 2). A novel feature of this
grouping is the ability to analyze sparing for differing numbers of
systems per spare while maintaining a constant work load on the
maintenance staff.

The model must account for changes in maintenance force staffing
levels, for example at shift changes. Since the mean time to repair (6
hours) is of the order of a shift (8 hours), steady-state solutions will
not be attained within a shift. So, we must develop a time-dependent
model with a time-dependent number of servers.

We begin by stating assumptions for the model and defining nota
tion. Then, state diagrams and state equations are presented. Finally,
we discuss the numerical methods used and checks made on the model.

3~ 1 Assumptions and notation

We assume that the time between failures for each machine is an
independent and identically distributed (i.i.d.) exponential random
variable. Switching time and response plus repair time are also LLd.
exponential random variables. The random variable for switching time
is probably closer to deterministic. However, an exponential distribu
tion produces more congestion in the model than a deterministic
distribution. So, the model errs on the side of less recovered availabil
ity. Our conclusions, thus, are conservative.

States are described by p(t; nI, S, n2), the probability that at time t,
nl systems are failed in group 1, S spares are failed, and n2 systems are
failed in group 2.

We define failure rates Al and A2 for systems in group 1 and group
2, respectively. Spares are identical to systems in group 1 and have
the same failure rate, ~\1.

1034 TECHNICAL JOURNAL, JULY-AUGUST 1984

The model considers three cases:
1. No repairers-the case to consider for late-night and weekend

shifts.
2. One repairer-the nominal case because, for purposes of analysis,

the total number of systems modeled (group 1 plus group 2) is sized
for one repairer on duty 24 hours per day.

3. Infinite repairers-the case used to approximate the two-repairer
case.

There are three different state diagrams and three sets of state
equations. The time-dependent parameter is the number of repairers,
which can change at 8-hour intervals, corresponding to work shifts. In
all cases the time to repair is assumed to be an i.i.d. exponential
random variable, with mean 1/ f.l, which is the same for all systems.
This time is assumed to include response time. Finally, the time
required for an operator to switch a spare for a failed system is also
an i.i.d. exponential random variable, with mean 1/ f.ls.

To summarize, the model is characterized by the following:

p (t; nI, S, n2)-probability that at time t, nI, s, and n2 systems are
in the failed state from the total pool of NI systems in group 1, 8
spares, and N2 systems in group 2, respectively.

AI-failure rate for group 1 systems and spare systems.
A2-failure rate for group 2 systems.
f.l-repair rate for a system (single repairer rate).
f.ls- rate to switch a spare for a failed system.

3.2 State diagrams and state equations

Consider now the three cases for repair.

Case 1: No repairers-Figure 2 shows the state diagram for a general
state (nI, s, n2) with no repairers. The corresponding state equation
describing the probability at time t + /It of being in state (nI, s, n2) is,
leaving out terms o(llt),

p(t + /It; nI, s, n2) = [1 - (NI - nl)AI/lt - (8 - S)AI/lt

- (N2 - n2)A2/lt - f.ls/lt]p(t; nI, s, n2)

+ (NI - ni + I)AI/lt p(t; ni - 1, s, n2)

+ (8 - S + I)AI/lt p(t; nI, S - 1, n2)

+ (N2 - n2 + I)A2/lt p(t; nI, s, n2 - 1)

+ f.ls/lt p(t; ni + 1, S - 1, n2). (1)

Switching spares for failed systems in group 1 continues until all

SYSTEM SPARING 1035

Fig. 2-State diagram for the general state (nl, S, n2) with no repairers.

spares are failed (s = S). At that point, switching stops. For all states
with s = S, J.1s is set to zero.

There are two observations that should be made at this point. First,
the group 2 part of eq. (1) is completely separable from the part for
group 1 and the spares. As we discussed later, separability was used as
a check on the numerical solution. We can write

(2)

and obtain a closed-form solution for p (t; n2). For ease of programming,
this separation was not made in the model. Second, it is clear that the
steady-state solution for this case is p (00; Nb S, N 2) = 1. That is, with
no repairer all systems are failed in the limit t ~ 00.

Case 2: One repairer-Adding a repairer requires four criteria in the
model that determine which system the repairer will fix for a given
state of the system. First, in the field the repairer probably fixes
systems on a first-in first-out basis. Since all failure, repair, and
switching times are i.i.d. exponential random variables, the state space
is memoryless; it is impossible to determine which minicomputer failed
first. For predicting minicomputer system availability with this model,
the equivalent of a first-in first-out repair strategy is random repair.
The probability that a given system is under repair is defined such
that all failed systems have the same opportunity to be repaired.
Second, the purpose of spares is to replace failed group 1 systems.

1036 TECHNICAL JOURNAL, JULY-AUGUST 1984

Thus, group 1 systems are not repaired if spares are available; they
are switched. Third, spares are not repaired if there are any failed
group 2 systems. Finally, when spares are available for failed group 1
systems, priority is given to repair of failed group 2 systems. In
summary, the decision criteria for repair are:

1. Randomly repair the failed systems in group 1 and group 2 if all
the spares have failed.

2. Never fix group 1 systems if spares are available.
3. Repair spares only when all group 2 systems are working and

there are spares available for any failed group 1 systems.
4. Always fix group 2 systems first unless all the spares have failed.
The parameter x(nI, s, n2) is defined to incorporate these criteria. X

is the probability that either (1) a system in group 1 will be fixed,
when s = S, or (2) one of the failed spares will be fixed, when s < S.
The only exception is that X is the probability that a spare will be
fixed, when s = Sand nl = 0. The probability that a system in group
2 will be fixed is 1 - x. The value of X corresponding to each of the
above criteria is:

nl
1. X (nr, s, n2) = , for s = S, nl + n2 > o.

nl + n2
2. X(nI, 0, 0) = 0, for S > 0.
3. X (nr, s, n2) = 1, for s < S, n2 = 0; or s = S, nl = n2 = o.
4. x(nr, s, n2) = 0, for s < S, n2> o.
Figure 3 shows the state diagram for a general state (nI, s, n2) with

one repairer. The corresponding state equation describing the proba
bility at time t + bt.t of being in state (nr, s, n2) is, leaving out terms
o(.~t),

pet + Llt; nb s, n2) = [1 - (Nl - nl)AlLlt - (8 - s)AlLlt

* Omit when s < s.

- (N2 - n2JA2Llt - /lLlt - /lsLlt]p(t; nr, s, n2)

+ (Nl - nl + l)AlLlt pet; nl - 1, s, n2)

+ (8 - s + l)AlLlt pet; nr, s - 1, n2)

+ (N2 - n2 + 1)A2Llt pet; nb s, n2 - 1)

+ /ls~t pet; nl + 1, s - 1, n2)

+ X(nl + 1, s, n2)/lLlt pet; nl + 1, s, n2)*

+ X(nl, s + 1, n2)/lLlt pet; nr, s + 1, n2)t

+ [1 - x(nr, s, n2 + l)]/l~t pet; nr, s, n2 + 1). (3)

t Omit when s + 1 = S, nl > o.

SYSTEM SPARING 1037

If there are no spares and Al = A2, then there is nothing different
about group 1 systems compared with group 2 systems. The model is
equivalent to one large group of (NI + N 2) minicomputer systems.
While the time dependence makes a solution nontrivial, this is a
standard, finite source, MIMII queue with a well-known steady-state
solution.1 This feature was used to check the model, as discussed later.

Case 3: Infinite repairers-With an infinite number of repairers no
criteria are required to determine which system gets fixed next. But,
in the spirit of a two-repairer approximation, we impose the following
condition on the repair process: Never fix group 1 systems if spares
are available.

Figure 4 shows the state diagram for a general state (nh S, n2) with
infinite repairers. The corresponding state equation describing the
probability at time t + Dot of being in state (nh S, n2) is, leaving out
terms o(L~t),

p(t + ~t; nI, S, n2) = [1 - (N1 - nl)Al~t - (8 - 8)AlDot

- (N2 - n2)A2~t

+ (N1 - nl + l)Al~t p(t; nl - 1, 8, n2)

+ (8 - 8 + l)Al~t p(t; nI, 8 - 1, n2)

+ (N2 - n2 + 1)A2~t p(t; nI, 8, n2 - 1)

+ f.ls~t p(t; nl + 1, 8 - 1, n2)

+ (nl + l)f.l~t p(t; nl + 1, 8, n2)*

+ (8 + l)f.l~t p(t; nh 8 + 1, n2)

+ (n2 + l)f.lDot p(t; nh 8, n2 + 1). (4)

The group 2 part of eq. (4) is separable from the parts for group 1
and the spares, as is the case for no repairers [see eq. (2)]. Again, for
programming ease this separation was not made.

3.3 Numerical methods and checks of the model

With the three state equations in hand we can solve for minicom
puter system availabilities under different sparing and maintenance
strategies.

The standard procedure to arrive at analytic solutions for the state

* Omit when s < s.

1038 TECHNICAL JOURNAL, JULY-AUGUST 1984

*OMIT WHEN 5 < 5.

t OMIT WHEN 5+1 =5, nl > O.

rOMIT WHEN 5<5; OR 5=5, nl =0.

§OMIT WHEN 5 =5, nl > O.

Fig. 3-State diagram for the general state (nt, S, n2) with one repairer.

*OMIT WHEN 5<S.

Fig. 4-State diagram for the general state (nt, S, n2) with infinite repairers.

SYSTEM SPARING 1039

equations is to take the limit as b.t ~ 0 to obtain differential equations
for p (t; nI, S, n2). But analytic solutions of the differential equations
are intractable.

An alternative is to take the numerical approach and integrate the
difference equations (1), (3), and (4). A computer program was written
to perform the numerical integration. The computer program takes
the probability distribution at some initial time, Ti, and integrates in
(Te - T i) / b.t steps to the desired end time, Te. The initial distribution
p(Ti; n}, s, n2) was chosen such that

p(Ti; 0, 0, 0) = 1 (5)

and for all other values of nI, s, and n2

p(Ti; nI, s, n2) = O. (6)

To avoid nonlinear effects b.t must be small. Even so, numerical
roundoff will eventually intrude with the result that

L p (t; nI, s, n2) ::p 1. (7)

To compensate for this, the probability distribution was normalized
periodically, dividing each probability by the sum of the probabilities,
to ensure that the sum remains one.

To escape the influence of the initial conditions, the model must be
run for a time period whose length depends on the conditions being
modeled. For a constant number of repairers the model must run until
the probability distribution becomes constant. For a time-dependent
weekly maintenance schedule, the model must run until the probability
distribution becomes periodic, repeating from week to week.

Availabilities are calculated from the probability distribution at
each hour. The probability that nl systems are failed in group 1 at
time tis

S N2

p(t; nl) = L L p(t; nI, s, n2). (8)
s=O n2=0

The time-dependent, average number of failed group 1 systems is then

Nl

(nl(t» = L 'l-JP(t;-nl).
nl=O·-

(9)

From this the average availability of a system in group 1 is

. (nl (t»
nl aVaIl(t) = 1 -~ . (10)

Similar expressions hold for spares and group 2 systems. These expres
sions produced the data for the figures in this paper.

1040 TECHNICAL JOURNAL, JULY-AUGUST 1984

In addition to availabilities, two parameters were calculated: repairer
occupancy (the probability that a repairer is busy) and the probability
that three or more systems are failed. The first served as a check of
the model. One expects a single repairer's work load to increase by
about 4 percent (1 spare/25 systems) when the spare is added. One
also expects the work load to be independent of the distribution of the
25 systems between group 1 and group 2. Calculated repairer occupan
cies agreed with expected values with greater than 0.1 percent accu
racy.

The second parameter served to verify the infinite repairer approx
imation of two repairers. For all cases examined with the maintenance
schedule used in the figures, the probability that three or more repair
ers were busy was less than 0.065 when the number of repairers was
infinite. That is, for at most 6.5 percent of the time more than two of
the infinite repairers are busy.

Four other checks were made to verify the calculations in the model;
three of these were mentioned earlier. First, for no repairers the time
dependence for the group 2 systems can be checked explicitly. Using
the initial condition that all systems are working at the starting time,
Ti, p (t; n2) from eq. (2) is given by

p(t; n,,) = (;;'2) e-N
",,[e'" - 11"', (11)

which gives

(12)

The numeric solution agreed with this relation with greater than 0.1
percent accuracy. It is one of the best checks of the choice for Dot
(0.005 hour) and the decision to normalize after every Dot interval,
because it checks the time dependence as well as the steady state.

Second, for one repairer the random repair criterion was checked
for the case with no spares and Al = A2. As we mentioned earlier, in
this case the model is equivalent to one large group of Nl + N2
minicomputers and has a well-known steady-state solution: l

N N! (A)n L n -
n=O (N - n)! p,

(n) = ~ N! (~)n.
n=O (N - n)! p,

(13)

If we use N = Nl + N 2, the average number of failed systems should
be the sum of the average numbers for group 1 and group 2 in the
model:

SYSTEM SPARING 1041

(14)

In addition, the average availabilities for systems in group 1 and group
2 should be equal and the same as that of the large group. Agreement
with this relation not only checked the numerical calculation, it also
verified that the random repair criterion is equivalent to first-in first
out, as far as average availabilities are concerned.

Third, for infinite repairers the steady-state solution was checked
for the group 2 systems. Equation (4) separates, as we said, allowing
an explicit solution for p(oo; n2), which agreed with the computer
calculations with greater than 0.1 percent accuracy. The steady-state
solution gives

(15)

Finally, special conditions exist at the boundaries of the state space.
These conditions result, for example, when switching terms drop out
of the state equations for s = S or nl = 0, or when the repair term
drops out for nl = s = n2 = 0. For one repairer the case with the most
complex boundary conditions, an explicit, steady-state solution, was
derived for Nl = S = N2 = 1. This case employs all possible boundary
conditions, including those for the decision parameter, x. The steady
state computer calculation agreed with the explicit solution with
greater than 0.1 percent accuracy.

IV. PLANNING FOR SYSTEM SPARING

To provide tools for studies of system sparing, system availability
data from the model have been arranged to answer three questions
about sparing:

1. What is the minimum number of identical systems needed for
proving-in the cost of sparing?

2. Given a minimum system availability objective for a group of
identical systems, what is the minimum number of spares required to
meet the objective?

3. What are the operational benefits of sparing for the MMOC?

4. 1 Proving-in spares

Figure 5 shows the annual recovered downtime, using one spare for
the systems in group 1, as a function of the number of systems in
group 1, for annual downtimes of 50, 100, and 150 hours per system
without a spare, respectively. For each system,

1042 TECHNICAL JOURNAL, JULY-AUGUST 1984

Downtime = (1 - availability) X 24 hrs/day X 365 days/yr. (16)

The solid curves in the figures show the total downtime recovered for
all group 1 systems. Nonspared systems, those in group 2, also benefit
from sparing, because a repairer can give them higher-priority service
when a spare can be switched for a failed group 1 system. The dashed
curves in the figures include the additional downtime recovered for
group 2 systems.

These curves provide essential data for an economic analysis for
proving-in sparing.

4.2 Meeting an availability objective

Figure 6 shows the availability per system for group 1 systems, as a
function of the number of group 1 systems. The three curves corre
spond to annual downtimes of 50, 100, and 150 hours per system
without a spare. The data assumes 1 repairer, 24 hours per day, and 1
spare.

These data can be used to determine the maximum number of
systems that can be loaded onto one spare and still meet a specified
availability objective. For a given availability objective on the vertical
axis in the figure, read over to the curve corresponding to the average

2500r-------------------------------------,

~ 2000
::I
o
:::c
z
UJ
::2:
i= 1500
z
:::
o
c
c
UJ
a:
UJ
> 1000
o
u
UJ
a:
-' «
::I
z
z 500 «

- - ALL SYSTEMS

-- GROUP 1 SYSTEMS

O~ ____ ~ ______ ~ ______ ~ ______ ~------~
o 5 10 15 25

NUMBER OF GROUP 1 SYSTEMS

Fig. 5-Annual downtime recovered for group 1 systems and for all 25 systems, group
1 plus group 2, with one repairer, 24 hours per day, and one spare. Annual downtime is
(a) 50, (b) 100, and (c) 150 hours per system without a spare.

SYSTEM SPARING 1043

system downtime without a spare. The maximum number of systems
for which the availability objective can be met with one spare is then
read on the horizontal axis.

4.3 Improving maintenance staFF utilization

The solid curves in Figs. 7 and 8 show, for groups 1 and 2, respec
tively, system availabilities with sparing, when night shift mainte
nance personnel are moved to the day shift and weekend maintenance
is done on a call-out basis. Such a maintenance schedule could reduce
maintenance staff attrition (people do not like to work at night) and
would decrease the maintenance staff size by eliminating full-time
weekend coverage. These availability data are compared with system
availabilities for 1 repairer and 24-hour, 7-day coverage, both with a
spare (short-dashed lines in the figures) and without a spare (long
dashed lines). This is one of two potential strategies to improve
maintenance staff utilization with sparing. The second is to increase
the number of systems per repairer when spares are deployed. The
first is recommended for clusters deploying spares. The second can be
shown to be inadvisable since the value of lost system availability due
to maintenance staff reduction outweighs the savings in staff salaries.

4.4 Interpolations, extrapolations, and sensitivities

Planning studies for system sparing will often require availability
data for parameters that differ from those described in Section II. The
differences will probably occur in three areas. First, annual system
downtimes without sparing will generally not be 50, 100, or 150 hours,
but instead will be somewhere within this range. Linear interpolation

w 1.000
a: 0.9943 <1:
0... (50 HRSIYR)
Ul

:c 0.999
I-

~
>- 0.998 I-
::i
aJ
<1: 0.997I
;;:
>
<1:
~ 0.996
0...
::>
0
a:
(,!)

0.995

0.994
0 5 10 15 20 25

NUM8ER OF GROUP 1 SYSTEMS

Fig. 6-System availability for minicomputers with sparing (group 1 in the model)
as a function of the number of group 1 systems. Curves correspond to annual downtimes
in hours per system per year without sparing.

1044 TECHNICAL JOURNAL, JULY-AUGUST 1984

>-
f-
:::i
ai
<I:
....J

<i:
>
<I:

c..
:J
0
a:
(!)

1.000,---------------------,

0.995

0.990

0.985

0.980

0.975 '---_.L..-.._----J'--_---L __ ----L __ ----'-__ --'-__ ~

MON TUE WED THU FRI SAT

REPAIRERS PER SHIFT

MON TUE WED THU FRI SAT SUN

DAY I 2
EVENING 1
NIGHT 0

2
1
o

2
1
o

2
1
o

2
o
o

1
o
o

1
o
1

SUN

Fig. 7-Effect of one spare on system availability of 15 group 1 systems is compared
for two repairers during the day, one in the evening, and weekend repair done on a call
out basis (solid curve); and for 24-hour, 7-day, single-repairer maintenance (long-dashed
line). System availability without sparing is shown for 24-hour, 7-day, single-repairer
maintenance coverage (short-dashed line), corresponding to 100 hours of annual down
time per system.

from the data in Figs. 5 and 6 will provide the desired system availa
bilities.

Second, the number of systems per repairer (group 1 plus group 2)
will vary. Changes in this number have less effect on group 1 systems
than on group 2 systems. For group 1 systems, as the number of
systems per repairer decreases from 25 to 15, recovered downtime
increases by 5.5 percent, and as the number increases from 25 to 35,
recovered downtime decreases by 3.5 percent. Thus, over a broad range
of systems per repairer (15 to 35), the group 1 availability data in Figs.
5 and 6 are accurate to within 5.5 percent. For group 2 systems the
effect is more pronounced. For a constant number of group 1 systems,
the group 2 contribution to recovered downtime (the region between
the solid and dashed curves in Fig. 5) is roughly linearly proportional
to the number of group 2 systems. For example, when the number of
group 2 systems is one third the value used in the figures, the group 2

SYSTEM SPARING 1045

1.00

0.99

>-
t- 0.98 ::i
III
~
...J

~
> 0.97
~
N
a..
=>
0
a:: 0.96 (!)

0.95

0.94
MON TUE WED THU FRI SAT SUN

REPAIRERS PER SHIFT

MON TUE WED THU FRI SAT SUN

DAY I 2 2 2 2 2 1 1
EVENING 1 1 1 1 0 0 0
NIGHT 0 0 0 0 0 0 1

Fig. 8-Effect of one spare on system availability of 10 group 2 systems is compared
for two repairers during the day, one in the evening, and weekend repair done on call
out basis (solid curve); and for 24-hour, 7-day, single-repairer coverage (long-dashed
line). System availability without sparing is shown for 24-hour, 7-day, single-repairer
maintenance (short-dashed line), corresponding to 100 hours of annual downtime per
system.

contribution to recovered downtime is roughly one third the value
shown.

Finally, switching time will not be the same for every cluster. The
availability data are insensitive to this parameter; Changing the
switching time from 15 minutes to 30 minutes produces a negligible
change in recovered availability.

V. OBSERVATIONS

5.1 Networking

Increasing dependence on minicomputer-based OSs has led the
BOCs and AT&T Communications to deploy system spares for OSs
clustered in MMOCs. As networking of systems continues, the impact
of system downtime, and thus the value of sparing, will grow. With
networking, an out-of-service minicomputer system not only fails to
perform its assigned task, it also fails to provide essential data to other
systems on the network.

1046 TECHNICAL JOURNAL, JULY-AUGUST 1984

5.2 Commonality

To be economical, system sparing requires a sufficient number of
clustered OSs with identical hardware. Studies of system sparing may
cause BOCs and AT&T Communications to relocate some systems to
clusters with other like systems, or to purchase new systems with older
model peripherals to achieve the commonality needed to spare a group
of OSs. In anticipation of increasing reliance on high system availa
bility, it is clearly desirable that future OS developments use common
hardware.

REFERENCES

1. L. Kleinrock, Queueing Systems, New York: Wiley, 1975, Vol. 1: Theory, p. 106.

AUTHOR

David W. Tolleth, B.A. (Physics), 1974, University of California, Irvine;
M.S., Ph.D. (Physics), University of California, San Diego, 1976 and 1981,
respectively; AT&T Bell Laboratories, 1981-. At AT&T Bell Laboratories,
Mr. Tolleth has been planning for effective operation and maintenance of
minicomputer-based Operations Systems for the Bell Operating Companies
and AT&T Communications.

SYSTEM SPARING 1047

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

Build-A Software Construction Tool

By V. B. ERICKSON* and J. F. PELLEGRIN*

(Manuscript received August 19, 1983)

The bui ld tool is used as a sophisticated method of generating and
modifying software systems. Bui ld is being used successfully by a number of
UNIX™ software-based projects at AT&T Bell Laboratories. Build is an
extension to the make program that permits several software developers to
independently make a collection of software while sharing the same fully
populated set of directories, with the changed files residing in their own
directories. An important concept in using bui ld is software view, which
represents the selection of a particular version of software for a generation
environment. For example, a developer's view of a software system generally
includes all of the current "official" software perturbed by the developer's
private modifications to the system. A testing team's view may be the current
official software perturbed by changes that a set of developers have made and
have submitted for project system testing. A system user's view is a fully tested
and released version of the software. The function of bu i ld is to simplify the
administration of the different views of the software system. The bui ld tool
is being used by a number of large software development projects as the
primary software generation tool. Bui ld plays a central role in the develop
ment strategies and standards used in these projects.

I. INTRODUCTION

The make tool that is available with the UNlxt operating system
is used as an aid in the construction of software. A specification file,
called a makefile, contains a description of the software targets that

* AT&T Bell Laboratories.
t Trademark of AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1049

are to be built, a list of files that are needed to construct each specific
target (the target's dependency list), and the commands to be executed
to create the target. A set of directory structures populated with source
files and cooperating makefiles may be used for the construction of a
larger collection of software, or for the propagation of changes to the
software. The bui Id tool is an extension to make that permits several
developers to independently make changes to a collection of software
while sharing the same fully populated set of directories, with the
changed files residing in their own directories. Through its use, support
for the testing of individual developer versions of the system can be
provided without the overhead of redundant storage consumption.

A basic need in a project of two or more people is to provide an
environment in which they can work independently on modifications
to an existing system of software. If several people wish to test their
private modifications to the same portion of the system, independent
testing can be achieved by replicating the complete set of populated
directories for each developer and permitting them to make changes
to their own copy. This is workable in a small project, but the space
consumption can rapidly become prohibitive. The desire to share a
single copy of the complete software among many developers, while
still providing for individual developer changes and testing, was the
motivation for the bu i 1 d tool. The remaining sections in this paper
discuss some basic concepts used in bui Id, describe its behavior in
detail, provide a simple example, and describe the use of bui Id in a
particular large software development project.

II. BASIC CONCEPTS

2.1 The make tool

The make tool automates the software generation steps that come
between the editing and testing phases by executing specified com
mands to reprocess any and all files that have been affected by the
editing.1 This eliminates manual effort required to reprocess files,
potential errors caused by forgetting to reprocess files, and overhead
of unnecessarily reprocessing files.

The make tool executes commands to generate target files as spec
ified by the contents of a makefile description file. A makefile contains
a representation of the graph of file dependencies. Each nonleaf file
in the dependency graph is a target file, which may have an associated
set of regeneration commands; its descendants are the files from which
the target file was created. If any of the target file's descendants are
modified, the target file must be regenerated to maintain a consistent
system.

For example, Fig. 1 depicts a populated UNIX operating system

1050 TECHNICAL JOURNAL, JULY-AUGUST 1984

/fs/pgmr

header.h prod1.c
prodl.o
prod2.c
prod2.0
product
makefile

Fig. 1-Fully populated node.

directory structure, including all files necessary to generate the load
module /f s/pgmr /prod/product. Figure 2 shows the graph of file
dependencies for the load module, with file generation commands
shown in brackets. The corresponding make file is shown in Fig. 3.
The file names to the left of the colons are the target files, and
correspond to the nonleaf files in the graph. The files to the right of
the colons are the files that the targets depend on, corresponding to
the nonroot files in the graph. The make tool examines each file in
the graph, checking to see which target files need (re)generating. If a
target file does not exist or is dependent on a file that has a later
modification date, then the target is (re)generated by executing the
generation commands associated with it.

product
fcc prodl.o prod2.0 -0 product]

prodl.o prod2.0
fcc -c -0 prodl.c] [ee -c -0 prod2.e]

.. /hdr/header.h

Fig. 2-File dependency.

In the above example, if a developer modified the file .. /hdr /
header. h and then executed make from within the /f s/pgmr /prod
directory, make would execute the following commands:

BUILD 1051

cc -c -0 prod2 . c

cc prod 1 .0 prod 2.0 -0 product

The modifications to the file .. /hdr /header. h cause the target,
prod2 .0, to be regenerated. The resulting execution of cc causes the
file, prod2 .0, to be updated. This in turn forces the target product
to be rebuilt.

2.2 Individual software views

Individual software views are versions of the software system that
are unique to an individual developer or to a particular set of devel
opers, such as system testers. Different views are formed by combining
different collections of files from the system. These collections are
stored in separate nodes. A node is a set of UNIX operating system
directories, all of which share the same common ancestor directory,
called the root directory of the node. A node for a software project is
defined as a project-standard set of directories that are sufficient to
contain the complete set of project files. Figure 1 is an example of a
node, which is populated with all of the files in the system. The root
of the node is the directory /f s/pgmr. Any file that can be reached
from /f s/pgmr is contained in the node. A file in a node is identified
by the relative file name describing the path from the root of the node
to the file. In Fig. 1, the relative file name hdr /header. h identifies
the file /f s/pgmr /hdr /header. h. Multiple instances of a node
may be established by duplicating the same set of directories, each
below a different root directory. Each instance may contain versions
of some or all of the project files within the directories.

Individual software views for developers are established by having
each developer work in a separate node containing only those files
that the developer needs to change. The developer then accesses all
other project files through a separate project-wide shared node that
contains a complete set of all the project files.

This combining of individual and shared files in separate nodes to
express a particular software view is achieved through the specification
of a viewpath. A viewpath is an ordered list of nodes, each of which
has the same directory structure. The viewpath is used to resolve

product: prodl.o prod2.0
cc prodl.o prod2.0 -0 product

prodl.o: prodl.c
cc -c -0 prodl.c

prod2.0: prod2.c .. /hdr/header.h
cc -c -0 prod2.c

Fig. 3-Makefile contents.

1052 TECHNICAL JOURNAL, JULY-AUGUST 1984

references to files. A file, identified by its relative path name within
the node's directory structure, is located within the viewpath by
searching in its directory within each successive node in the viewpath
until it is located. Any additional versions of the file in subsequent
nodes in the viewpath are ignored. In this way, the viewpath deter
mines which version of each file in the software system is to be used
in a particular software view that consists of a set of populated nodes.

To specify a viewpath, which is needed by bui Id, users define the
viewpath using an environment variable called VPATH or an option
on the bu i 1 d command line. The viewpath specification consists of
a list of directories, representing nodes, separated by colons.
In Fig. 4, three nodes are depicted:

If s/pro j ect-complete project-released software node

If s Ipgmr 1-private node of developer named programmer 1

If s Ipgmr 2 -private node of developer named programmmer 2.

Two different viewpaths for separate developers are indicated by

VPATH=/fs/pgmrl:/fs/project VPATH=/fs/pgmr2:/fs/project

Fig. 4-Independent software views.

BUILD 1053

arrows. /fs/project contains all the files (source, objects, and
intermediate objects) necessary to generate product. The other
viewpath, /f s/pgmr 1 : /f s/pro j ect, is the viewpath for a developer
named programmer 1, who wishes to generate a software view that
includes personal changes in the node / f s /pgmr 1 in addition to the
released software in the shared node /fs/project. The only connec
tion between the nodes is the logical one defined by the viewpath
specification. Similarly, programmer 2 keeps personal changes in the
node /f s/pgmr2 and includes the project node in a different viewpath
specification. This illustrates how viewpaths express individual soft
ware views for two developers. Both programmer 1 and programmer 2
may have private versions of files in their respective nodes and make
changes independently of each other. Each developer will have a copy
of the files that they wish to change, and the file(s) will have the same
relative file name as in the /fs/project node but with a different
full path name. The developer's version of the file will, in effect,
overlay the instance of that file in the project node. Note that one
developer's changes are invisible to all other developers since the
changes appear only in that developer's private node.

III. DESCRIPTION OF BUILD

The bui ld tool makes available the capabilities of make within
the context of a software view. To use build, the desired viewpath
must be declared, either on the command line or using the VPATH

environment variable. Bui ld must be invoked from a directory within
the first node in the viewpath. The bui ld tool uses the viewpath to
resolve all relative file references, both to the description file itself
and to the target and dependency references within the description
file. If bui ld does not find a file in the first node, it looks in the same
directory in successive nodes in the viewpath until the file is found or
the last node in the viewpath is reached. If the viewpath contains only
a single node, bui ld resolves all file references relative only to the
current directory. Hence, a bui ld with a single node viewpath is
equivalent to make.

The make tool rebuilds a target file if the file does not exist or if it
is dependent on a file that has a later modification date. The bu i 1 d
tool rebuilds a target if either of the above criteria holds, or if it is
dependent on a file existing in an earlier node in the viewpath. This
additional criterion is necessary for bui ld to ensure that a correct
version of the product is produced when a target file is put in a node
with a modification date later than the file that is in an earlier node
in the viewpath, upon which it depends.

In preparation for rebuilding targets, files that the target depends
on and that are not in the first node are temporarily added to the first

1054 TECHNICAL JOURNAL, JULY-AUGUST 1984

node. Bui ld does this by using the UNIX link command, In, if the
two nodes involved are in the same UNIX file system; or the copy
command, cp, if they are in different file systems. The generation of
the target files depends on these files being made available in the first
node. Since these files are determined from the dependency lists in
the makefile, the completeness and correctness of makefiles is neces
sary for bu i I d to affect changes to the software. If there are errors
of omission in makefile dependency lists, they reveal themselves during
the building of a target as files that are missing-i.e., not added to the
first node. After the targets are built, all files copied or linked into the
first node are removed by bui ld.

In addition to enabling a number of developers to share a set of files
to achieve individual software views, build can also be useful to the
individual developing a product. A developer often wants to make and
test changes to a program without destroying a previous version of the
program. The bu i I d tool allows the developer to conveniently produce
a new version without having to save the old one or rewrite the
makefile. The developer simply creates a new node, places it in any
modified files, sets the viewpath to look first in the new node followed
by the original node, and then invokes bu i I d •

IV. EXAMPLE

We now return to the nodes shown in Fig. 4, and consider how
bu i I d, using the makefile shown in Fig. 3, handles the particular files
in the nodes. /f s/pro j ect contains all the files (source, objects, and
intermediate objects) necessary to generate product. This means
that at one time bui ld was used to generate product in this node.
Since there would have been only one node in the viewpath, using
bui ld in this situation was identical to using make. Assume that the
viewpath for programmer 1 is /fs/pgmr1 :/fs/project as shown
in Fig. 4.

If programmer 1 changes the file prod2. c and runs build from
within the directory /f s/pgmr 1 /prod, bui ld looks for a description
file named make f i I e and finds /f s/pro j ect/prod/make f i Ie,
since there is none in the node /fs/pgmr 1/prod. As build processes
the makefile, it determines first that product depends upon
prod 1 .0, which in turn depends upon prod 1 . c. Bui ld locates
both:

/fs/project/prod/prod1.0

/fs/project/prod/prod1.c

In /f s/pro j ect/prod, prod 1 .0 is newer than prod 1 . c. Con
sequen tly, no regeneration of pro d 1 . 0 occurs. B u i I d then deter-

BUILD 1055

mines that product depends upon prod2 .0, which in turn depends
upon prod2 . c and .. /hdr /header. h. The bui Id tool locates:

/fs/project/hdr/header.h

/fs/project/prod/prod2.0

/fs/pgmr1/prod/prod2.c

Since /f s/pgmr 1 /prod/prod2 . c is newer (or is in an earlier
node) than /fs/project/prod/prod2. 0, prod2. 0 needs regen
eration. The bui Id tool links or copies any files necessary for regen
eration into the lowest node in the viewpath. In this case, / f s /
project/hdr/header. h is linked to /f s/pgmr 1/hdr/header. h.
Now,

cc -c -0 prod2 . c

is invoked by bui Id, producing prod2. 0 in the developer's private
node. After prod2. 0 is generated, /fs/pgmr 1/hdr/header. h is
unlinked. Because product depends upon prod2. 0, which was just
generated, product is regenerated. Again, any dependents of prod
uct must be in the developer's node. /f s/pro j ect/prod/prod 1 .0
must therefore be linked to /f s/pgmr 1 /prod/prod 1 .0 before the
following command can be executed:

cc prod 1 .0 prod2 . 0 -0 product

This produces the executable object product that is located in /f s/
pgmr 1/prod/product. Bui Id then unlinks /f s/pgmr 1/prod/
prod1. o.

A similar scenario occurs for programmer 2, since that developer
also has a private version of prod2 . c. Each developer is thus able to
generate a private version of product containing only the changes
they wish to test. The only files that each developer retains in their
private node are prod2 . c, prod2 .0, and product, as shown in Fig.
5. Other files that they have not changed remain in the project node
as shared files.

v. SAMPLE PROJECT USE OF BUILD

In the UNIX operating system environment, a system of software
consists of a collection of source, object, and executable object files
placed in some orderly fashion within a collection of directories (di
rectory structure). A set of cooperating makefiles are placed throughout
the directory structure, each specifying the instructions and the files
that are needed to construct a given target file. B u i 1 d is used to
construct the targets for the first time from the original source files

1056 TECHNICAL JOURNAL, JULY-AUGUST 1984

VPATH=/fs/pgmrl:/fs/project VPATH=/fs/pgmr2:/fs/project

Fig. 5-Contents of nodes after executing bu i 1 d.

or to propagate changes made to a subset of the source files within the
context of a complete constructed system.

There are a number of projects at AT&T Bell Laboratories that are
currently using build as the primary construction tool. The AT&T
UNIX Real-Time Reliability (RTR) project has over 100 developers
dealing with more than 8,000 source files, for each of three major
versions of the system.2 The bu i 1 d tool is used throughout all phases
of the software generation.

1. Unit testing. On each machine assigned to developers on the
project, a fully populated, official node of each major version of the
system is provided as a stable base for unit testing individual developer
changes to the system. Using VPATH, developers define their viewpath
to be one or more private nodes followed by the official node.

2. Integration testing. At the project level, changes constructed with
the official node in the viewpath and generated by many developers
are combined by accumulating them in a single test node in order to
provide versions of changed products for official testing. In the case

BUILD 1057

where several developers have made changes to a single source file,
the source administration system used in the project provides a source
file version containing the combined changes.

3. System release generation. Changes to be combined for an incre
mental release of one of the system versions are accumulated in a
single node (as in integration testing). These are built and system
tested with the official node for the previous version of the system in
the viewpath before being released.

The bui ld tool is the only construction tool used in the UNIX
RTR project, and has been extremely successful at minimizing multi
pIe copies of files, something that can easily become a serious problem
in a project of that size. Independent unit testing by developers is
easily accomplished in this environment.

VI. BENEFITS

Bui ld reduces the number of multiple copies of files through the
use of a globally shared node containing a full set of the software, and
supports independent unit testing of changes by individual developers.
An additional and important benefit is that when multiple nodes
participate in building software, the correctness of dependency lists in
the makefiles is enforced, since bu i 1 d is otherwise unable to make
all necessary files available in the first node of the viewpath for target
generation. The completeness of makefiles is similarly tested, since
the components necessary to construct a particular product must be
made available by bui ld to the developer's private node. Confirming
the correctness and completeness of the make file is absolutely neces
sary for a reliable software construction process.

VII. SUMMARY

Bui ld is an extremely useful extension to the UNIX operating
system make tool for constructing and changing software. The build
tool automates the steps between editing and testing within the
framework of individual software views. Individual software views
allow a number of developers to easily make and test changes to a set
of shared files without interfering with each other. Bui ld also pro
vides a check on the completeness and correctness of makefiles used
to specify software construction steps. Many projects at AT&T Bell
Laboratories are currently using bu i 1 d with much success.

REFERENCES

1. S. I. Feldman, "Make-A Program for Maintaining Computer Programs," Soft
ware-Practice and Experience, 9, No.4 (April 1979), pp. 256-65.

2. B. R. Rowland and R. J. Welsch, "Software Development System," B.S.T.J., 62,
No.1, Part 2 (January 1983), pp. 275-89.

1058 TECHNICAL JOURNAL, JULY-AUGUST 1984

AUTHORS

Verlyn B. Erickson, B.A. (Mathematics/Physics), 1968, Augustana College;
M.S. (Computer Science), 1970, University of Wisconsin, Madison; Mathe
matics Research Center, University of Wisconsin, 1969-1972; Engineering
Computing Laboratory, University of Wisconsin, 1970-1977; AT&T Bell
Laboratories, 1977-. Mr. Erickson has worked in various software support
areas, including 1ESS'fM Laboratory Support, AT&T 3B20 DMERT Labora
tory Support, and, most recently, the Software Development environment for
the 3B Processor line.

John F. Pellegrin, B.A. (Mathematics), 1965, Occidental College; M.A.
(Mathematics), 1967, Arizona State University; AC Electronics Defense Re
search Laboratories, Goleta, CA, 1967-69; Ph.D. (Mathematics), 1972, Arizona
State University; AT&T Bell Laboratories, 1972-. Mr. Pellegrin has worked
in various development support areas, including hardware logic simulation,
ESS'fM software development support, software development methodology,
and, currently, Software Development Systems for the AT&T 3B Processor
line.

BUILD 1059

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

Queueing and Framing Disciplines for a Mixture
of Data Traffic Types

By A. G. FRASER* and S. P. MORGAN*

(Manuscript received September 22, 1983)

Packet-switched Qata networks are constructed from switching nodes inter
connected by trunks. Trunk queueing delays for short messages can be reduced
at the expense of long messages by having the trunk server take no more than
a fixed number of bytes from each message before going on to the next
message. We report analysis and simulations of two partial-service disciplines,
namely Round Robin (RR) and Priority first-in first-out followed by Round
Robin (PR + RR), for a mixture of traffic types. The PR + RR discipline
permits short messages to experience finite mean delay at traffic levels where
longer messages see infinite mean delay. Information is transmitted over the
trunk in frames, where a frame may contain parts of several messages. At the
far end of the trunk, the contents of a frame are not transmitted further until
the end of the frame has arrived. We simulate two framing algorithms that
work effectively with the PR + RR queueing discipline to achieve acceptably
low frame overhead together with short delays for short messages. In addition,
queueing plus framing delays for longer messages are substantially reduced,
at a given overall traffic intensity if the access lines run more slowly than the
trunk.

I. INTRODUCTION

Packet-switched data networks are constructed from switching
nodes interconnected by trunks. For long-distance communication,
56-kb/s trunks are used. Traffic enters the network from computers

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1061

and terminals that are connected to the nearest node by access lines
operating at speeds ranging from 75 bls to 1 Mbls or more.

In a network based on the DATAKIT* Virtual Circuit Switch,l
traffic flows from several message sources ~hrough a node and out over
a trunk line, as shown in Fig. 1. Messages generated by each source
are transmitted over the access line character by character at the
speed of the line. At the node the data are stored in one or more first
in first-out queues from which they are eventually taken for transmis
sion over the trunk. The data from each source are transmitted on a
different logical channel of the trunk. However, physical transmission
over the trunk takes place in frames, where each frame may contain
data from several sources in addition to framing information.

It is interesting to know the delay performance of the network under
various operating conditions and with different choices of queue serv
ice discipline and framing discipline. Low delay is particularly critical
for messages from interactive terminals and for the various control
messages used in high-level protocols. Fortunately, messages that
require low delay are usually only a few characters long, and we can
use a queue service discipline that gives preference to short bursts of
transmission. An advantage of using such a discipline is that it allows
a trunk design that is appropriate regardless of user protocol.

Queueing delays for short messages generally can be reduced at the
expense of long messages by using a separate first-in first-out queue
for each channel, and by having the trunk server take no more than a
fixed number of bytes, which we call a packet, from each queue before
going on to the next queue. A short message following a long message
in the same channel is necessarily delayed if we wish to preserve
sequence, but this is not expected to create difficulties in practice.
Two partial-service disciplines, shown in Fig. 2, are studied in this
paper:

1. Round Robin (RR)-When a channel has data to transmit, the
channel number is added to the end of a single list of channel numbers
and works its way to the front, at which time one packet is transmitted
from the given channel. If this does not empty the per-channel queue,
the channel number is returned to the end of the list.

2. Priority first-in first-out followed by Round Robin (PR + RR)
This is a two-list discipline in which arriving channel numbers join a
priority first-in first-out list, and then join a round robin if they
require more than one packet of service. After transmitting each
packet, the server checks to see if there are any channel numbers
waiting in the priority list, and if so it attends to them first.

Successive packets are assembled by the trunk server into frames,

* Trademark of AT&T.

1062 TECHNICAL JOURNAL, JULY-AUGUST 1984

0,--- 11111111111 ~I --

MESSAGE/ (';:\ I
SOURCES~ 01---__ 1_"_�_1�_1_"_1~11---

@ • 1111111111111---
~

(
I

PER-CHANNEL QUEUE

Fig. 1-Message queues at a trunk node.

/

,/ TRUNK SERVER
/

--.... TRUNK

---~-'~"""'~f--I --_a TRUNKSERVER

-

LIST OF NONEMPTY
QUEUES

(a)

1111111111111----
PRIORITY LIST

r~
III11I1111111 •

ROUND ROBIN LIST

(b)

--.... TRUNK SERVER

Fig. 2-Queueing disciplines. (a) Round robin. (b) Priority first-in first-out followed
by round robin.

where a frame may contain data from several different channels. Each
frame also includes a fixed number of framing bytes. A frame is
terminated when it reaches a preset length, or when there are for the
time being no data to send. At the far end of the trunk, the contents
of the frame are held in a buffer until the end of the frame has arrived
and the check bits have been verified. Optimal choice of frame length
requires balancing the increased trunk overhead that is associated
with short frames against the increased delay for short messages that
is associated with waiting for the arrival of the end of long frames.

DATA TRAFFIC 1063

In this paper we are concerned only with the queueing plus framing
delay at a trunk node. We do not include the times required to transmit
the message over the access line and over the trunk; these partially
concurrent times also contribute, of course, to the end-to-end delay of
the network. Furthermore, we assume for simplicity that the access
lines do not run faster than the trunk. The queueing plus framing
delay is defined as the time that elapses between the arrival of the last
character of the message in the per-channel queue (Fig. 1), and the
time when the end of the frame containing the last character disap
pears into the trunk. In the limit of vanishing utilization and the
absence of any packet or frame overhead, the delay so defined would
be zero. A slightly more complicated definition of delay is needed if
the access lines run faster than the trunk.

An analytical recipe for computing mean queueing delays for a
mixture of message types, when the access lines run at the same speed
as the trunk, has been given by W 01ff2 for the RR discipline. A similar
recipe is given for PR + RR in the Appendix of the present paper.
However, the analytical approach gives only mean delays and not the
distribution of delay. Furthermore, it does not include the effects of
framing, and it is not applicable to the practically important case
where the access lines run more slowly than the trunk. Accordingly,
the analysis has been augmented by extensive simulations.

In the numerical examples, we assume that the input traffic is a
mixture of three types of messages, chosen to approximate single
character terminal-to-host transmissions from asynchronous termi
nals (10 percent), time-sharing host-to-terminal responses (40 per
cent), and host-to-host file transfers (50 percent). The assumed mes
sage characteristics are shown in Table I. On a 56-kb/s trunk, one
character time is 0.143 ms.

In Section II we calculate mean trunk queueing delays, in the
absence of framing, as a function of load when access speed is equal
to trunk speed, for each message type. Most of the calculations are for
a single pac~et size and overhead, since the qualitative effects of
different packet sizes and overheads are reasonably easy to foresee.
Three queueing disciplines are compared, namely First-In First-Out
(FIFO), RR, and PR + RR.

Message
Type

1
2
3

Table I-Assumed traffic characteristics

Length Distribution

Constant
Exponential
Exponential

Mean
Length
(bytes)

1
40

512

Relative Ar
rival Rate

1
1/10
1/100

1064 TECHNICAL JOURNAL, JULY-AUGUST 1984

Traffic Frac
tion

0.099
0.395
0.506

In ordinary FIFO or message-at-a-time service, where entire mes
sages are transmitted in order of arrival, all messages see the same
mean first-character waiting time regardless of length. The mean last
character delay is greater for longer messages if there is nonzero
packet overhead. Disciplines that break messages up into smaller parts
typically treat short messages better than long messages. In the case
of PR + RR, sufficiently short messages are served entirely from the
PR list, and they can experience finite mean delay at traffic levels
where the RR is saturated by longer messages. These results appear
both from the analytic solutions and from the simulations.

In Section III we simulate combined queueing and framing delay as
a function of load, assuming the PR + RR discipline with access speed
equal to line speed, and the traffic mix of Table I. For PR + RR, it is
possible to impose a shorter average length on frames that contain
data from the PR list than on frames that do not. We simulate two
framing algorithms that accomplish this in slightly different ways, and
we determine mean and 95th-percentile queueing plus framing delays
for each message type.

Finally, in Section IV we consider the effect of low-speed access
lines on queueing plus framing delays. For a given total load on the
trunk, low-speed access lines smooth out the incoming traffic flow and
reduce the mean last-character delay for long messages in the per
channel queue. We obtain mean queueing plus framing delays for each
message type by simulating the PR + RR queueing discipline with one
of the above-mentioned framing algorithms, for a nominal trunk
utilization of 60 percent excluding overhead, and for various access
speeds assuming that all access lines run at the same speed.

We conclude in Section V that the PR + RR queueing discipline,
followed by either of the two framing disciplines, subjects single
character messages at a 56-kb/s trunk node to mean queueing plus
framing delays of less than 20 milliseconds, together with acceptably
low frame overhead, even when the trunk is heavily loaded with longer
messages; and low-speed access lines reduce substantially the mean
queueing plus framing delays for longer messages by smoothing out
the access traffic. The numerical results are for a particular line speed
and a specific traffic model, since it is notoriously difficult to explore
a multidimensional parameter space by simulation; but the qualitative
conclusions appear to be of much broader applicability.

II. QUEUEING DELAY

In this section we consider pure queueing delay on an unframed
trunk, and assume that the access lines run at the same speed as the
trunk. Then each message may be regarded as ready for transmission
in its entirety as soon as its first character reaches the per-channel

DATA TRAFFIC 1065

queue. If the merged arrival process is Poisson, and if each message
arrives in a separate channel so that it is not delayed behind another
message in the same per-channel queue, then the messages constitute
an M/G/I queue of "customers" subject to whatever discipline the
trunk server imposes.

Under FIFO service, the mean first-character waiting time is inde
pendent of message length and is given by the well-known formula

W = AE(S2)
2(1 - p)'

where A is the merged arrival rate, E(S2) is the second moment of
message length in the merged message stream, and P is the effective
traffic intensity (ratio of mean data plus overhead rate to raw trunk
speed). The effect of per-packet overhead, as shown in the Appendix,
is to increase P and E(S2) above the nominal values that are associated
with the incoming message stream.

Figure 3 shows the mean first-character waiting time for message
at-a-time service on a 56-kb/s trunk, when the traffic mix of Table I
arrives on 56-kb/s access lines. Mean waiting time in milliseconds is
plotted against nominal utilization p', where p I is the ratio of mean
user data rate to raw trunk speed. The three curves correspond,
respectively, to 64-byte packets with no overhead (in which case the
packet size is irrelevant), to packets with 64 bytes of data and 2 bytes
of overhead, and to packets with 16 bytes of data and 2 bytes of
overhead.

The curves of Fig. 3 have the form constant/(1 - p' I Po), where Po is
the nominal utilization at which the sum of mean user data rate plus
overhead rate is equal to the raw trunk speed. Po depends, of course,
on the traffic mix and on the ratio of overhead bytes to data bytes in
a packet. In the absence of overhead, Po = 1. For (64 + 2)-byte packets
and the assumed traffic mix, Po = 0.807; and for (16 + 2)-byte packets,
Po = 0.757. In general, Po will be substantially less than the ratio of
data bytes to total bytes in a full packet, because if there are many
short messages, there will be many packets with fewer than the
maximum number of data bytes. Regardless of the number of data
bytes, each packet contains a fixed number of overhead bytes.

Message-at-a-time service subjects long and short messages to the
same mean first-character waiting time. Mean last-character delays
depend on message length in the presence of per-packet overhead,
since longer messages must wait for more overhead bytes to be trans
mitted; but the maximum difference is 9.3 ms in the numerical ex
amples of Fig. 3, according to Table II of the appendix.

Rudin3 has pointed out that breaking messages up into packets on
the access lines, and then transmitting the access packets out of a

1066 TECHNICAL JOURNAL, JULY-AUGUST 1984

100

I (a)

I I
80 I,

/ ,
60 /1

1/
/f

40 /f
II

Vl
/1

0 20 % z
~ 0

u
w ..I.:
Vl ~
:J
-l

:2: 1.0

~
>- 1000 « , (b) -l
w
0 DATA/OVERHEAD

: I z BYTES « 64/0 w
:2: 800 64/2 '/ 16/2 : ,

600 , I

I,
400 /1

I I
II

200 /f
/~'/

0 --....-:
0.0 0.2 0.4 0.6 0.8 1.0

NOMINAL UTILIZATION

Fig.3-Mean first-character waiting time for message-at-a-time service. (a) Light
utilization. (b) Heavy utilization.

single FIFO, favors short messages to some extent; but in the present
case it does not permit single-character messages to go in a few
milliseconds as they should, while delaying file transfers for several
seconds if necessary. To obtain the desired orders-of-magnitude dis
crimination, one must apparently resort to some such discipline as
RRorPR+ RR.

W 01ff2 has derived an infinite system of linear equations whose
solution yields the mean delay for each message type in an M/G/1

DATA TRAFFIC 1067

queue with RR service. A similar system of equations is derived in the
appendix for an MIGII queue with PR + RR service. In practical
cases an approximate numerical solution may be obtained by truncat
ing the infinite system to a finite system. In the unrealistic case of
zero overhead, it is easy to solve the limiting case of infinitesimal
packet size ("processor sharing"). Unfortunately this limit is of little
interest in the present context, because data packets are not indefi
nitely divisible, and even if they were, the delays would go to infinity
as the information per packet went to zero if the overhead per packet
were a fixed nonzero amount.

Theoretical last-character mean delays are shown in Fig. 4 (dashed
curves) for each message type under RR and PR + RR service,
assuming (64 + 2)-byte packets and the traffic mix of Table I. As we
expected, RR treats short messages better and long messages worse
than ordinary FIFO, but the delays for all message types eventually
saturate at the same point. PR + RR, on the other hand, pushes the
delay curves farther apart; and the single-character delay does not go
to infinity at the same point as the delay for longer messages. Only
the RR saturates at this point, and single-character messages never
see the RR.

Figure 5 shows the theoretical mean delays (dashed curves) for
PR + RR with (16 + 2)-byte packets. Putting fewer data bytes in a
packet with fixed overhead increases the difference in behavior of long
and short messages and decreases the effective capacity of the trunk,
because the average number of overhead bytes per message is in
creased. More generally, with the PR + RR discipline one could take
different packet sizes for channels in different lists. Exploratory
calculations of mean delays have not so far revealed any particular
advantages to doing so, at least for the present traffic mix.

To deal with more complicated issues in the trunking of mixed data
traffic, it appears necessary to simulate the desired disciplines. A
simulator was therefore written to apply a variety of queueing and
framing algorithms to a traffic model somewhat different from the
MIGII queue assumed in the theoretical analysis.

The input to the trunk queueing simulator consists of a specification
of one or more classes of access lines, in which ni lines of class i each
carry independent and identically distributed (i.i.d.) messages of mean
length li separated by i.i.d. gaps of mean length gi at a line speed Si.

The assumed configuration is like that of Fig. 1, so that under heavy
loads a short message has some probability of being delayed behind a
long message in the same channel. The message lengths may be
deterministic (constant) or exponentially distributed; gap lengths are
exponentially distributed. A number of other parameters such as trunk
speed, packet sizes, overhead, q\leueing and framing discipline, and

1068 TECHNICAL JOURNAL, JULY-AUGUST 1984

100 .---------.----~-~

en
o
z
o
U
LU
en
:::i
...J

~
~

(a)

80

~ 100.---------.--------.----(C---,)

o
z
«
~ 80

60

40

20

0.2 0.4 0.6 0.8 1.0

1000 .-----------~-~

800

600

400

200

: I
/1 , ,
I
I
, I
, I
I I

J

(b)

1000 .-----------.--~

800

600

400

200

MEAN MESSAGE
LENGTH

6 512 BYTES
o 40 BYTES
o 1 BYTE

-- SIMULATION
--- THEORY

0.2 0.4 0.6

(d)

0.8 1.0

NOMINAL UTILIZATION

Fig.4-Mean queueing delays for partial service disciplines. (a) Round robin low
utilization. (b) Round robin high utilization. (c) Low utilization for priority first-in
first-out followed by round robin. (d) High utilization for priority first-in first-out
followed by round robin.

simulation time are set by flags or default options. The simulator
starts with no messages in the system, and stops at the first regener
ation (= empty and idle) point4 after the specified simulation time has
elapsed. Simulation outputs used in the present study are the mean
delay for messages ot type i, and the 95th-percentile delay for messages
of type i. The simulator can produce histograms of delay distributions
for messages of each type, but we have not made use of the histograms.

A simulation is a probabilistic experiment. In order to obtain con-

DATA TRAFFIC 1069

(a)

en
Cl
Z
0
U
UJ
en
::::i
....J

~ 0

~
>- 1000 <t:
....J (b) UJ MEAN MESSAGE Cl
z LENGTH
<t: 6 512 BYTES
UJ

~ 800 0 40 BYTES
0 1 BYTE

-- SIMULATION
600 --- THEORY

400

200

1.0

NOMINAL UTILIZATION

Fig.5-Mean queueing delays for priority first-in first-out followed by round robin
service with (16 + 2)-byte packets. (a) Low utilization. (b) High utilization.

fidence intervals, it is useful to divide the simulation time into a
number of shorter simulations and look at the scatter of the results.
We use the fact that the mean delay for a particular message type,
averaged over a sufficiently large number of regeneration epochs, is
asymptotically normally distributed.5 Similarly, any particular quan
tile, such as the 95th percentile, of an arbitrary distribution is asymp
totically normally distributed. Assuming that the mean delays from n
simulations under "identical" conditions (except for the initial seeds
of the random number generator) are normally distributed, we form

1070 TECHNICAL JOURNAL, JULY-AUGUST 1984

from the n sample means and their variance a variable having a t
distribution with n - 1 degrees of freedom. The mean of sample means
is taken as the estimate of the population mean, and a confidence
interval is constructed from the t distribution. An estimate and a
confidence interval for the 95th-percentile delay are calculated in a
similar way.

In the simulations we more or less arbitrarily assumed 100 access
lines for each of the message types of Table I (300 access lines
altogether), and we adjusted the gap lengths to achieve the desired
ratios of arrival rates and the desired nominal trunk utilization. In the
longest runs, simulation times were chosen so that approximately 4000
type 3 messages would arrive (that is, approximately 40 messages on
each type 3 access line) during the course of a single run. Twenty
simulations were done for each set of parameter values, and the mean
of the 20 sample means was taken as the final estimate of the mean
delay (similarly for the 95th-percentile delay). The 90-percent confi
dence interval for this estimate was constructed from the variance of
the sample of 20 means.

Not surprisingly, the delays for type 3 messages have the greatest
uncertainty, with 90-percent confidence intervals as wide as ±5 per
cent (total width 10 percent) of the estimated value when access speed
is equal to trunk speed and the trunk utilization is high. Furthermore,
the absolute width of the confidence interval seems to be more or less
independent of access line speed, so the relative uncertainty is greater
for low-speed access lines.

To put matters in perspective, a single simulation run that includes
about 4000 type 3 message arrivals takes about an hour of time on a
large minicomputer, so the 20 runs necessary to get one point on the
attached curves take about 20 hours and delineating the shape of a
curve with 10 points may require 200 hours. Such a computation
actually produces six curves, including both the mean and the 95th
percentile delays for all three traffic types, but it is still a substantial
undertaking.

Why does it take so long? Basically, because the mean delay is
proportional to the second moment of message length. In our case,
almost the entire contribution to the second moment comes from type
3 messages, which constitute less than 1 percent of the total number
of messages. We have to simulate long enough to see a substantial
number of type 3 messages, while also doing all the bookkeeping for
types 1 and 2 messages. As a check on our results, we have looked at
published formulas4 for confidence intervals in simulations of the
mean delay in an MIGl1 queue, and have found that the predicted
simulation times to achieve specified confidence intervals are quite
comparable to the simulation times required in the present study.

DATA TRAFFIC 1071

Variance-reduction techniques, such as the method of control var
iates,5 should probably be investigated if further simulations of this
type are done.

How should the uncertainty in the results of the simulations be
represented? One way would be to draw broken-line curves between
the simulated points, and to plot the 90-percent confidence interval at
each point. A more esthetic, if less scientific, visual impression is
obtained by plotting the simulated points and using least squares to
fit splines to the simulated points and to the upper and lower endpoints
of the confidence intervals. (In cases where a function is expected to
have a pole, such as queueing delays do at p' = Po, the pole is taken
out and least-squares fitting is applied to the numerator.) It must be
emphasized that the upper and lower curves resulting from this pro
cedure are not curves between which the mean delay has been proved
to lie with 90-percent probability; they are only a qualitative indication
of the uncertainty in the mean delay. "Bounds" are not drawn in most
of the figures because they would essentially coincide with the mean
value.

Results of simulating mean queueing delays, as a function of nominal
utilization, for the RR and PR + RR disciplines on a 56-kb/s trunk
with 56-kb/s access lines, are plotted as solid curves in Figs. 4 and 5.
For those delays that saturate as a function of load, the pole is assumed
to be at the same place as for message-at-a-time service.

Agreement between theory and simulation in Figs. 4 and 5 is good
for light and moderate loads. For high loads, the simulated delays are
less than the theoretical delays, especially for the RR discipline. This
is understood qualitatively as follows: In the theory, the merged arrival
process is assumed to be Poisson. In the simulations, the interarrival
intervals on a single access line, being sums of an exponentially
distributed or deterministic message length and an exponentially
distributed gap, are not themselves exponential. The per-line arrival
process is less bursty (fewer short intervals) than a Poisson process
and would therefore be expected to lead to smaller queueing delays.
The Palm-Khintchine theorem6 states that the superposition of a
sufficiently large number of arbitrary arrival processes approaches a
Poisson process. However, Albin7 has shown that under heavy traffic
loads the Poisson limit may be approached very slowly. Some simu
lations with the same overall traffic divided among 600 access lines
gave results closer to the Poisson values and suggested that we have
encountered such an effect here.

III. FRAMING DELAY

The effect of framing on trunk delay is twofold. Framing overhead
reduces the effective speed of the trunk for data transmission; and in

1072 TECHNICAL JOURNAL, JULY-AUGUST 1984

addition, at the far end of the trunk the last byte of a given message
must wait to be transmitted further until the entire frame has arrived
and the check bits have been verified. If there are a constant number
of framing bytes per frame, the overhead effect is reduced by long
frames and the waiting effect is reduced by short frames. For a given
message length and a given trunk utilization, there is evidently a frame
length that minimizes the combined queueing plus framing delay. The
combined delay for long messages is minimized by long frames, and
the combined delay for short messages is minimized by short frames.
It would be desirable, therefore, to shorten just those frames that
contain short messages.

We cannot recognize short messages per se, but we can achieve
somewhat the same effect by shortening the frames that include data
from the PR list. Two algorithms that accomplish this have been
simulated.

3.1 Mixed frames

In this algorithm, complete packets are transmitted until the number
of transmitted bytes exceeds a preset maximum. The framing bytes
are then added and the frame is closed. The current frame is also
closed if there are no packets ready to send. Different maximum frame
lengths are imposed depending on whether the frame contains any
data from the PR list. Thus a typical frame contains a mixture of PR
and RR packets, but, on the average, frames that contain some PR
packets are shorter than frames that contain only RR packets.

3.2 Sorted frames

In this algorithm, a flag is set whenever a frame contains any PR
packets, and no further RR packets are added to such a frame. Thus
the general form of a frame is a series of packets from the RR list
followed by a series of packets from the PR list. In addition, maximum
frame lengths are imposed, which may differ for frames that contain
some PR packets than for frames that contain only RR packets.

Figure 6 shows the mean queueing plus framing delays for the
PR + RR discipline with (64 + 2)-byte packets, as obtained by
simulating each of the framing algorithms just described, and Fig. 7
shows the 95th-percentile delays. For mixed frames a nominal maxi
mum of 64 bytes is imposed on frames containing any packets from
the PR list, and 256 bytes on frames containing only packets from the
RR list. Note that the actual maximum frame lengths will be greater
than the nominal values because the last packet is not divided, and 5
framing bytes are added at the end. For sorted frames a nominal
maximum of 256 bytes is imposed on both kinds of frame.

To see the effect of frame delay, one may compare Fig. 6 with the

DATA TRAFFIC 1073

300 3000

(a) (b)

250 2500

200 2000

150 1500

100 1000

50 500
>-
<t
...J
W
0
W 0 0
...J

i=
z
~ 300 3000
a:: (c) w (d)
'T MEAN MESSAGE
..c:

LENGTH ~ 250 2500

D,. 512 BYTES
0 40 BYTES
0 1 BYTE

200 2000

150 1500

100 1000

50 500

o~--~--~--~----~--~
0.0 0.2 0.4 0.6 0.8 1.0

NOMINAL UTILIZATION

Fig. 6-Mean queueing plus framing delays. (a) Low utilization for mixed frames. (b)
High utilization for mixed frames. (c) Low utilization for sorted frames. (d) High
utilization for sorted frames.

PR + RR plots in Fig. 4, which show mean queueing delay separately.
The addition of frame delay increases the total delay, most noticeably
for single-character. messages; but single-character messages still do
not saturate at the same point as longer messages. (We do not have a
theoretical value for the vertical asymptote in the presence of frame
delay. Arbitrarily placing the pole at Po = 0.80 for the plots of Figs. 6
and 7 led to attractive curves using least-squares smoothing of the
numerator.) The "sorted" algorithm with 256/256 limits looks about

1074 TECHNICAL JOURNAL, JULY-AUGUST 1984

35
(a)

MEAN MESSAGE

30 LENGTH

£::. 512 BYTES
0 40 BYTES

25 0 1 BYTE

20

15

10

en
Cl
z 5
0
u
w
en
:J 0 ..J

~
~

350 >-« (b)
..J
w
Cl

300 z
«
w
~

250

200

60% UTILIZATION

0.2 0.4 0.6 0.8 1.0

ACCESS SPEED/TRUNK SPEED

Fig. 7-95th-percentile queueing plus framing delays. (a) Low utilization for mixed
frames. (b) High utilization for mixed frames. (c) Low utilization for sorted frames. (d)
High utilization for sorted frames.

the same as the "mixed" algorithm with 64/256 limits for the present
traffic mix. Conceptually, the sorted algorithm may be a little simpler.

IV. LOW-SPEED ACCESS LINES

Up to now we have assumed that access lines run at the same speed
as the trunk. In practice, however, access lines will often be slower
than the trunk, and for a given total load on the trunk the effect of

DATA TRAFFIC 1075

low-speed access lines will be to smooth out the traffic flow and
substantially reduce the delay in the per-channel queue of the last
character of a typical message. However, the end-to-end message delay
generally will be increased, since the access-line transmission time is
increased at the same time that the trunk queueing delay is decreased.
In a sense the access line itself is being used as a buffer for the trunk
queueing module. Rudin3 and Anick, Mitra, and Sondhis have consid
ered the reduction in buffering requirements permitted by low-speed
access lines.

Figure 8 shows simulated mean queueing plus framing delays for
the PR + RR discipline with sorted frames, assuming the traffic mix
of Table I, for various access speeds when all the access lines run at
the same speed. A nominal trunk utilization of 60 percent was assumed
together with (64 + 2)-byte frames. Cubic splines were fitted to the
simulated points by least squares, and "90-percent bounds," as dis
cussed in Section II, are shown for the type 3 delays.

Figure 8 shows that the delay for long messages falls off with
decreasing access line speed. It falls off faster with decreasing access
line speed for utilizations less than 60 percent, and more slowly for
utilizations greater than 60 percent. As Rudin has pointed out, the
curve would be expected to have a knee near the point where the mean
time for transmission of a message over the low-speed access line is
equal to the mean queueing time that would exist at the trunk for full
speed access lines.3

At the same time, the delay for short messages rises, up to a point,
with decreasing access line speed. The reason for this is that if the
access lines run much more slowly than the trunk, the trunk server
generally empties the per-channel queue on each pass and, not recog
nizing that more of the same message is coming, allows the channel
number to reappear in the PR list when it does not deserve to do so.
Thus, nearly everything gets served from the PR list and distinctions
between long and short messages are eroded.

One could discourage the same message from reappearing in the PR
list so often by making each channnel number pass through the RR
list after every service. The trunk server would delete the channel
number from the RR list if there were nothing in the per-channel
queue the next time the server got around to looking at it; and only
then would the channel number be eligible to reappear in the PR list.
This "PR + RR with hysteresis" discipline would treat single-character
messages somewhat better at low access speeds, but it would also cause
all three message types to saturate at the same load, like ordinary RR.
The choice between PR + RR and PR + RR with hysteresis may
ultimately depend on more detailed knowledge of the traffic to which
the trunk nodes will be subjected.

1076 TECHNICAL JOURNAL, JULY-AUGUST 1984

100~--------~----------~

80

60

40

~ 20
z
o
u
w
Ul
::J
..J

~
~

(a)

r 100~------~~----------~
<X:
..J
w
o
z
<X:
~ 80

60

40

20

(c)

o~~~ __ ~ ____ ~ __ ~ __ ~
0.0 0.2 0.4 0.6 0.8 1.0

1000 .---------------~---~
(b)

800

600

400

200

1000 r------------rr------,

800

600

400

200

MEAN MESSAGE
LENGTH

I::. 512 BYTES
o 40 BYTES
o 1 BYTE

(d)

O~~~~~~~~~~ __ ~
0.0 0.2 0.4 1.0

NOMINAL UTILIZATION

Fig. 8-Mean queueing plus framing delays for different access speeds. (a). Low
utilization for sorted frames. (b) High utilization for sorted frames.

V. CONCLUSIONS

Some kind of partial-service discipline is essential if we want to
transmit and receive single-character messages expeditiously in the
presence of longer messages. The PR + RR discipline is particularly
attractive because the RR list saturates before the PR list, so that
single-character messages can still experience finite mean delay while
longer messages see infinite mean delay.

Acceptable framing delays for both long and short messages can be

DATA TRAFFIC 1077

achieved by imposing different maximum lengths on frames that do
and do not contain items from the PR list. For the assumed traffic
mix, the PR + RR queueing discipline with 64-byte packets, together
with the sorted framing algorithm with 256-byte frames, leads to mean
queueing plus framing delays for single-character messages of less
than 20 milliseconds at a 56-kb/s trunk node, even when the trunk is
heavily loaded.

Trunk queueing plus framing delays 'for longer messages are sub
stantially reduced if the access lines run more slowly than the trunk.
At 60-percent nominal utilization, the reduction amounts to a factor
of about 2 if the access speed is 20 percent of the trunk speed. The
relative reduction is greater if the utilization is lower. Furthermore,
increasing the trunk speed while holding the access speed and the
trunk utilization constant reduces the trunk queueing plus framing
delay by a more than proportional factor. In a practical system it
would be advantageous to have the trunks run as fast as possible.

VI. ACKNOWLEDGMENTS

We are especially indebted to G. G. Riddle, who proposed both the
PR + RR and PR + RR with hysteresis disciplines for the DATAKIT
network, and with whom we have had extensive discussions. Thanks
are also due to Ward Whitt for constructive comments on an earlier
draft of this paper, and to a referee for drawing our attention to Ref.
3.

REFERENCES

1. A. G. Fraser, "Towards a Universal Data Transport System," IEEE J. Selected
Areas in Commun., SAC-1, No.5 (November 1983), pp. 803-16.

2. R. W. Wolff, "Time Sharing With Priorities," SIAM J. Appl. Math:, 19, No.3
(November 1970), pp. 566-74.

3. H. Rudin, Jr., "Buffered Packet-Switching: A Queue With Clustered Arrivals," Int.
Switching Symp. Rec., MIT (1972), pp. 259-65.

4. S. S. Lavenberg and D. R. Slutz, "Introduction to Regenerative Simulation," IBM
J. Res. Develop., 19 (September 1975), pp. 458-62.

5. A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, New York:
McGraw-Hill,1982.

6. D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research, Vol. I,
New York: McGraw-Hill, 1982. ,

7. S. L. Albin, "On Poisson Approximations for Superposition Arrival Processes in
Queues," Management Sci., 28, No.2 (February 1982), pp. 126-37.

8. D. Anick, D. Mitra, and M. M. Sondhi, "Stochastic Theory of a Data-Handling
System With Multiple Sources," B.S.T.J., 61, No.8 (October 1982), pp. 1871-94.

9. R. W. Wolff, "Poisson Arrivals See Time Averages," Oper. Res., 30, No.2 (March
April 1982), pp. 223-31.

APPENDIX

Mean Delays for PR + RR Discipline

We shall derive a system of linear equations satisfied by the mean

1078 TECHNICAL JOURNAL, JULY-AUGUST 1984

delays in the PR + RR queueing discipline. The approach is modeled
on Wolff's analysis2 of the RR discipline.

In the mathematical model, jobs arrive in a Poisson stream. There
are two queues served by a single server. Queue A has nonpreemptive
priority over Queue B; the server does not start a job in Queue B if
work is waiting in Queue A. An arriving job joins the end of Queue A,
and when it reaches the server it receives a service quantum of up to
01. If additional service is required, the job joins the end of Queue B,
works up to the server, receives service of at most 02, returns if
necessary to the end of Queue B, on the next pass receives service of
at most 03, and so on. Eventually the job completes service and leaves
the system.

We allow for deterministic overhead at each service by modifying
the service-time distribution of the incoming jobs. Finally, we assume
that the incoming stream is a superposition of K independent Poisson
streams, each with its own service-time distribution, and we write
down expressions for the mean delay experienced by each job stream.
Numerical results for exponential and deterministic distributions ap
pear in Figs. 4 and 5.

A.l Notation

A = the arrival rate of jobs.
S = the service time of a job.
G = the distribution function of S: G(t) = PIS :s;; t}.

GC = the complement of G: GC(t) = 1 - G(t).
j.l = the service rate, i.e., E(S) = I/j.l.
P = AI J.l, where we assume p < l.

Ge = the equilibrium distribution of G: Ge(t) = J.l fb [1 - G(u)]du.
Se = a random variable with distribution Ge(t). Note that E(Se)

= E(S2)/2E(S). Assume E(S2) < 00.

OJ = the amount of time allocated to a job on its jth pass, j = 1,
2, ., ..

I1j = the total time allocated to a job on its first j-passes:
j

I1j = L Oi for j = 1, 2, '" , and 110 = 0-.
i=1

j-job a job that is completed on the jth pass, i.e., a job for which
I1j - 1 < S :s;; I1j •

Pj = the probability that a job is a j-job: Pj = P{l1j-l < S :s;; I1j} =
G(l1j) - G(l1j- 1).

j-pass = a job that is either waiting in queue or in service and has
completed j - 1 passes. Note that a j-job can be a (j - 1)
pass, but it is impossible for a (j - I)-job to be a j-pass.

DATA TRAFFIC 1079

Qj = the expected number of j-passes waiting in queue, in the
time-average sense.

rj = the expected delay (wait in queue) of a j-pass just prior to
making the jth pass.

dj = total expected delay (in queue) of aj-job: dj = L1=1 rio

Vj = the virtual work of a j-pass, meaning the expected amount
of additional time required to complete processing a j-pass
in queue (including, if necessary, time drawn from subse
quent passes). Hence,

100

G'(t)dt
t:.j-l

Vj = -G-C-(-~-d_-l)-' j = 1,2, (1)

Wj = the expected amount of work performed on an Ii: i ~ j}-job
on the jth pass:

Wj = j = 1,2, (2)

A.2 Equations satisfied by mean delays

Consider a particular job (the "tagged" job) arriving at Queue A.
Because Poisson arrivals see time averages,2,9 on arrival the tagged job
encounters the following expected values:

Ql I-passes in Queue A
Qj j-passes in Queue B, where j = 2, 3,

pE(Se) residual service time of the job in service.
The expected delay before the tagged job reaches the server for the
first time is

(3)

where 0, the expected overage, is the expected amount of work that
will remain to be performed on the job in service when it is interrupted.

Consider the job in service at the instant the tagged job arrives ("job
in service" always means this particular job). The job in service is a j
pass for some value of j. The arrival rate of jobs that will complete OJ
of service on the jth pass is AGC(~j). This class of jobs receives a total
of AGC(~j)Oj service per unit time on the jth pass, so the probability
that at a random instant a job is in service that is about to complete
OJ of service on itsjth pass is AGC(~j)Oj. The expected overage for such
a job is Vj+b as defined by (1). Hence the expected overage for the
actual job in service, which can have any value of j, is

1080 TECHNICAL JOURNAL, JULY-AUGUST 1984

o = j~' AG'(flj)Ojvj+1 = A J, OJ L;oo G'(t)dt. (4)

If a j-pass completes its service quantum oj, the probability that it
will reach the kth following pass, for k = 1,2, ... , is GC(I~j+k_1)/Gc(I~j),
and the expected service that it will receive on the kth following pass
is, from (2),

GC(D..j+k_1)Wj+k
GC(D..j)

(5)

Hence the expected service that the job in service will receive on the
kth following pass is

L "AojGC(D..j+k_1)Wj+k.
j=l

(6)

Substituting (4) into (3) gives for the average delay of the tagged
job in Queue A:

r, = Q,w, + pE(S,) - A J, OJ Ljoo G'(t)dt. (7)

Immediately after service in Queue A, the tagged job expects to find

"A(r1 + 01) I-passes in Queue A
Q1 GC (D..1) + Q2 2-passes in Queue B
Qj j-passes in Queue B, where j = 3, 4, ...
Job in service (6) with k = 1 in Queue B.

By the time the tagged job has waited an expected additional time r2
for its first service in Queue B, an expected "Ar2 more I-passes will
have arrived and will have been served in Queue A. It follows that

r2 = "A(r1 + r2 + 01)W1 + [Q1 GC(D..1) + Q2]W2

+ L QjWj + "A L OjGC(D..j)Wj+1. (8)
j=3 j=l

Now let us define

Sj = rj for j # 2,

Q2 = Q1 GC(D..1) + Q2,

Then eqs. (7) and (8) become

QJ = Qj for j # 2. (9)

8, = Qiw, + pE(S,) - A j~' OJ Ljoo G'(t)dt, (10)

DATA TRAFFIC 1081

S2 - Sl = A(S2 + OdWl + L QJ Wj + A L OjGc(f~j)Wj+l' (11)
j=2 j=l

N ow suppose that the tagged job has reached the server in Queue B
for the lth time, where l ~ 2. Ahead of it on this circuit there were
expected to be:

A(SI+l + 01) I-passes in Queue A

and the following in Queue B:

A(SI + OI_l)GC(~l)
A(SI-l + OI_2)GC(~2)

A(82 + Ol)GC(~I-l)
Q2 GC(~I)/GC(~l)
Qa GC(~I+1)/GC(~2)

2-passes
3-passes

l-passes
(l + I)-passes
(l + 2)-passes

(l + n)-passes

Job in service (6) with k = l.
Adding all the expected times together gives, for l ~ 2,

I

SI+1 = A L (SI+2-m + OI+1-m)GC(~m-l)
m=l

(12)

The next step is to express Qj in terms of rj. The arrival rate of
j-passes is AGC(~j_l)' and so by Little's law,

Qj = AGC(~j_l)rj, j = 1, 2, (13)

It follows from (9) and the fact that GC(~o) = 1 that

QJ = AGC(~j_l)Sj, j = 1, 2, (14)

Substituting (14) into (10), (11), and (12), we obtain after some
rearrangement

81 = Alsl + BI,

82 - Sl = A182 + L Ajsj + B 2,
j=2

i

Si = L Ai-j+18j + L A i+j- 28j + Bi for i = 3, 4, 5, "', (15)
j=2 j=2

1082 TECHNICAL JOURNAL, JULY-AUGUST 1984

where

(16)

and

Bl = X 100

tG'(t)dt - X j~l OJ Loo G'(t)dt,

i-I 00

Bi = L o)ti- j + L ojAi+j - b for i = 2, 3, (17)
j=1 j=1

Note that if OJ = 0 for all j,

Bi = 0 j~ Aj = oX 100

G'(t)dt = po, i = 2, 3, (18)

Having solved (15) for the quantities Sj, one obtains the waiting times
fj easily from (9).

A.3 Mean delays for RR discipline

W 0lff2 has given the equations for the ordinary RR; they are

fl = L Ajfj + B 1 ,
j=1

i-I

fi = L Ai-jfj + L A i+j - 1fj + Bi for i = 2, 3, ... , (19)
j=1 j=1

where the A's and B's are given as before by (16) and (17).
Note that one cannot get eqs. (19) by setting 01 = 0 in eqs. (15) and

renumbering. The two disciplines are slightly different even when zero
service is given in Queue A of the two-queue discipline. In PR + RR,
arriving jobs have to queue up in Queue A when a job is in service in
Queue B, and they join Queue B immediately behind the job in service
if it returns to the end of Queue B, even if the jobs that were queued
in Queue A get no service there as a result of their wait. In RR,
arriving jobs join the queue ahead of the job in service in case the
latter has to return to the end of the queue. In practice one would
hardly set up a two-queue discipline with zero service quantum in the
first queue.

A.4 Overhead

Let us suppose now that the jth time the server attends to a
particular job, the job gets up to oj units of service and there are oj'
units of overhead. Define

DATA TRAFFIC 1083

OJ = oj + oJ',

j j

Ilj = Ilj + 1lJ' = L 0[+ L oJ'. (20)
i=l i=l

Suppose that the job brings in the intrinsic service time distribution
FC(t), where FCU) is the probability that the service time S' excluding
overhead exceeds t. If GC(t) is the probability that the effective service
time S, including overhead, exceeds t, a little thought shows that

GC(t) = FC(llj) for Ilj:S;; t :s;; Ilj + OJ~l'

GC(t) = FCU - IlJ~l) for Ilj + OJ~l :s;; t :s;; Ilj+1' (21)

for j = 0, 1, 2,
It is now straightforward to express various quantities that we need

for numerical calculations. For example,

E(S) = 100
G'(t)dt

Similarly,

and

= E(S ') + L OJ~l FC(llj).
j=O

E(S') = 2100
tG'(t)dt

= E(S") + }o [(2~jOJ~1 + ONl)F'(~J)

+ 2~J~1 1;~;H F'(t)dt],

1]00 G'(t)dt = 1;00 F'(t)dt + k 0!~1 F'(M),

1084 TECHNICAL JOURNAL, JULY-AUGUST 1984

(22)

(23)

(24)

These expressions simplify somewhat if oj and oj' are independent
ofj.

A.S Merged job streams

Suppose that the incoming job stream consists of K streams of jobs
arriving according to independent Poisson processes. Suppose that the
arrival rate for the ith class is Ai, and the intrinsic service time
distribution for the ith class is F~ (t). Then the merged arrival rate is

K

A = L Ai,
i=l

and the merged intrinsic service time distribution is

1 K
FC(t) = ~ i~l AiFf(t).

This expression for FC(t) can go into all the previous machinery.

(26)

(27)

Finally, we would like to compute the mean waiting time in queue
for the ith job class. Since the mean waiting time for a j-job is

(28)

the mean waiting time in queue for the ith job class is just

Wi = L dj[Ff(~j-d - Ff(~j)], (29)
j=l

where the expression in square brackets is the probability that a
random job from the ith stream is a j-job.

Note that in the presence of overhead the effective mean service
time E(Si) will not be the same as the intrinsic mean service time
E(S[). Hence the mean delay of the ithjob class due to both queueing
and overhead is

Di = E(Si) - E(S[) + Wi, i = 1,2, ... , K. (30)

A.6 Numerical cases

If we assume any particular form for the intrinsic message-length
distributions Ff(t), it is straightforward to calculate the A/s and the
B/s from (16) and (17). For example, exponential and deterministic
(constant-length) streams with intrinsic mean length 1/ Jlf are given,
respectively, by

Ff(t) = e-Il;t,

Ff(t) = {I, ° : t <, 1/ Jl[, (31)
0, t :;-- 1/ Jli •

DATA TRAFFIC 1085

The relationship between the nominal server utilization p' and the
effective utilization p in the presence of overhead is given by

p' = "AE(S'), p = AE(S), (32)

where E(S') and E(S) are related by (22).
In the numerical calculations we have assumed three message

streams as in Table I, and have taken the nominal utilization p' as
the independent parameter. Trunk packets are 64 bytes or 16 bytes,
and the overhead is 2 bytes. It turns out that for these numbers:

0' = 64, 0" = 2, p' = 0.807p;

0' = 16, 0" = 2, p' = 0.757p. (33)

It is perhaps less surprising that so much of the trunk capacity is
consumed by overhead if we recall that every single-character message
looks like a 3-character message when it is put on the trunk.

The relationship between intrinsic and effective mean message
lengths in the presence of overhead is shown in Table II. Message
lengths are expressed in milliseconds, using the fact that one byte
time = 0.143 milliseconds on a 56-kb/s trunk.

Some words about the numerical solution of eqs. (15) and (19) are
in order. The coefficient matrix of these equations is not sparse in the
technical sense (that is, not mostly zeros); however, the coefficients
do approach zero more or less exponentially with increasing distance
from the main diagonal. Also, the contributions of high -order partial
delays to the average waiting time in eq. (29) fall off exponentially.
This suggests that we truncate the infinite system (15) or (19) to an
n X n system where e-nll~' « 1, assuming that 1//J-K is the longest
average message length.

Not surprisingly, the numerical problem is easy if long messages
typically fit into a few trunk packets (/J-KO' ~ 1), and hard if long
messages require many packets (/J-KO' « 1). Since solving a system of
n linear equations takes time proportional to n3

, halving the packet
size multiples the solution time by 8. In the numerical examples of

Table II-Intrinsic and effective message lengths

Packet Size (bytes) Mean Length (ms)

Data Overhead Message Intrinsic Effective
0' 0" Type E(S[) E(Sj) Difference

64 2 1 0.143 0.429 0.286
2 5.71 6.07 0.36
3 73.1 75.6 2.4

16 2 1 0.143 0.429 0.286
2 5.71 6.58 0.87
3 73.1 82.4 9.3

1086 TECHNICAL JOURNAL, JULY-AUGUST 1984

Figs. 4 and 5, we found that n = 75 was an appropriate number of
equations to solve for 0' = 64, and n = 300 for 0' = 16. Various checks
indicate that the mean waiting times calculated with these truncations
are in error by no more than 0.5 percent. One could solve larger
systems if necessary, but in view of the simplified traffic model that
we are using, there seems little reason to refine the computations any
further.

AUTHORS

A. G. Fraser, B.Sc. (Aeronautical Engineering), 1958, Bristol University;
M.A. (Computing Science), 1966, Cambridge University; Ph.D. (Computing
Science), 1969, Cambridge University; Ferranti, Ltd. (now ICT Ltd.), 1959-
1966; AT&T Bell Laboratories, 1969-. At Cambridge University, Mr. Fraser
wrote the file system for the Atlas 2 computer. Since joining AT&T Bell
Laboratories, his personal research interests have been the architecture of
data communication networks and high-level languages for integrated circuit
design. Since 1982 he has been Director of the Computing Science Research
Center. Member, ACM, IEEE.

Samuel P. Morgan, B.S., 1943, M.S., 1944, Ph.D. (Physics), 1947, California
Institute of Technology; AT&T Bell Laboratories, 1947-. Mr. Morgan is a
member of the Computing Science Research Center. A research mathemati
cian, he was originally concerned with applications of electromagnetic theory
to waveguide and radar problems. From 1959 to 1967 he was Head, Mathe
matical Physics Department, and from 1967 to 1982 he was Director, Com
puting Science Research Center. His current interests include queueing and
congestion theory in computer-communication networks. Member, American
Physical Society, ACM, SIAM.

DATA TRAFFIC 1087

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

Coding for a Write-Once Memory

By J. K. WOLF,* A. D. WYNER,t J. ZIV,* and J. KORNER§

(Manuscript received October 21, 1983)

A write-once memory (WOM) is a binary storage medium in which the
individual bit positions can be changed from the 0 state to the 1 state only
once. Examples of WOMs are paper tapes, punched cards, and, most impor
tantly, optical disks. For the latter storage medium, the 1's are marked by a
laser that burns away a portion of the disk. In a recent paper, Rivest and
Shamir showed that it is possible to update or rewrite a WOM to a surprising
degree, and that the total amount of information which can be stored in an
N-position WOM in many write/read "generations" or "stages" can be much
larger than N.1 In this paper we extend their results in several directions. Let
C (T, N) be the total number of bits of information that can be stored in an
N-position WOM using Twrite/read generations. We consider the four cases
that result when the writer (encoder) and/or reader (decoder) know the state
of the memory at the previous generation. For three of these cases, when
either the encoder and/or decoder knows the previous state, we show that
C(T, N), N log(T + 1), with T held fixed, as N~oo. For the remaining case,
when neither the encoder nor the decoder knows the previous state, we show
that C(T, N) < N -rr2/(6In 2) ~ N (2.37) and that this bound can be approached
arbitrarily closely with T, N sufficiently large.

I. INTRODUCTION

A write-once memory (WOM) is a binary storage medium in which
the individual bit positions can be changed from the 0 state to the 1
state only once. Examples of WOMs are paper tapes, punched cards,

* University of Massachusetts, Amherst, Massachusetts. t AT&T Bell Lab
oratories. :I: Technion-Israel Institute of Technology, Haifa, Israel. § Mathe
matical Institute of the Hungarian Academy of Sciences, Budapest, Hungary.
Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1089

and, most importantly, optical disks. For the latter storage medium,
the l's are marked by a laser that burns away a portion of the disk. In
a recent paper, Rivest and Shamir showed that it is possible to update
or rewrite a WOM to a surprising degree, and that the total amount
of information that can be stored in an N-position WOM in many
write/read "generations" or "stages" can be much larger than N.1 In
this paper we extend their results in several directions. (See Section
II, "Discussion on previous work.")

To fix ideas, consider an N-position WOM which we use successively
for T write/read generations. Assume that N is large. Assume that
initially all memory positions are in the 0 state, and that at the t-th
write/read stage (1 :s t :s T), the writer (encoder) and the reader
(decoder) are aware of the state of the memory after the previous [i.e.,
(t - l)-th] write.

At the first write stage, the encoder writes N independent and
uniformly distributed bits, of which about half (N /2) will be O. At the
second write stage, the encoder writes about N/2 independent uni
formly distributed bits using only the positions that were in the 0 state
after the first write stage. The reader will be able to read the second
generation information since we are assuming that it knows the state
of the memory after the first generation. We continue in this way,
storing N2-(t-l) bits at the t-th generation, for t :s T. Thus, the total
number of bits of information that is stored in T generations is about

N + N + N + N + ... + ~ = 2(1 _ 2-T)N __ 2N
2 22 23 2T- 1 ,

when T is large. Thus, we see that a total of more than N bits can be
stored in the N-bit-position WOM. Actually, we can do somewhat
better.

Let {qtl z:,l, 0 < qt < 1, be arbitrary. At the first generation, write

l's on q,N-bit positions. This can be done in (q~N) ways, so that we

can store

B, = log2 (q~N)
bits at the first generation. (All logarithms in this paper are taken to
the base two.) Prior to the second write stage, there are (1 - ql)N
positions in the 0 state. At the second stage, write on a fraction q2 of
these positions, storing

(
N(l - ql))

B2 = log N(l - ql)q2

bits. Continuing in this way for successive stages-writing on a frac-

1090 TECHNICAL JOURNAL, JULY-AUGUST 1984

tion qt of the (1 - ql)(1 - q2) ... (1 - qt-l)N positions, which are in
the 0 state prior to the t-th write-we can store

= log (::,' ;~~J (Ia)

bits at the t-th generation (1 ::5 t ::5 T), where

1 ::5 t ::5 T. (Ib)

Using the Stirling formula for the factorial, we see that when N is
large, we can store about Nh(pt) IIJ:l Pj bits at the t-th generation,
where h(>") = ->.. log>.. - (1 - >..) log (1 - >..) (0 ::5 >.. ::5 1) is the binary
entropy function, * and IIJ:l Pj = 1 for t = 1.

Suppose that we define the rate R t as 1/ N times the number of bits
which are stored at the t-th generation. Our principal problem is to
find the family of achievable Rb R2 , ••• , R t , for the four situations
that arise when, at the t-th generation, the encoder and/or decoder is,
or is not, informed of the state of the memory after the previous
[(t - I)-th] write generation. (We hold T fixed, and let N~oo.) In
particular we are interested in the total rate

T

CT = L Rt , (2)
t=l

at which information can be stored in the memory after T generations.
For the case considered above (with the encoder and decoder in
formed),

T t-l
CT = L h(pt) II Pj· (3)

t=l j=l

The choice of the {pj}, or alternately the {qj}, which maximizes CT is
given by
Lemma 1: Let 0 ::5 Pt::5 1, for t = 1, 2, ... , T. Then

T t-l
L h(pt) II Pj ::5 log(T + 1), (4a)
t=l j=l

* Take h(O) = h(l) = o. It follows immediately from the Stirling formula that

~~ ~ log (!) = h(A), 0 < A < 1.

WRITE-ONCE MEMORY 1091

with equality when

T - t + 1
Pt = T - t + 2'

Proof: For T = 1, 2, ... , define

1 ::: t ::: T.

T t-I
FT(PI, ... ,PT) = L h(pt) n Ph

t=1 j=1

o :S Pt :S 1, 1 :S t :S T. Observe that
T t-I

FT(Pb ... ,PT) = h(PI) + PI L h(pt) n Pj
t=2 j=2

(4b)

(5)

= h(PI) + PIFT- I (P2, ... ,PT). (6)

We now prove the lemma by induction on T. When T = 1, FI (PI) =
h(pd :S log(2), with equality when PI = 1/2. Assume that the lemma
holds for T = To - 1. We will show (a) FTo ::: 10g(To + 1), and (b) with
{Pt} given by (4b) with T = To, FTo(PI, ... , PTO) = 10g(To + 1).

To show (a), invoke (6) and the induction hypothesis, yielding

FTo(Pb P2, ... ,PTo) ::: h(PI) + PI log To. (7)

Setting the derivative of the right member of (7) (which is a concave
function of PI) with respect to PI equal to zero, we see that the right
member is maximized at PI = To/(To + 1), so that

Fr,(p., ... ,Pr,) S h (ToT; 1) + ToT; 1 log To
= 10g(To + 1),

which is (a).
To show (b) let

(To - 1) - t + 1
At = --'------'----

(To - 1) - t + 2 '
t = 1, 2, ... , To.

The induction hypothesis implies that

FTo-I(Ah ... , ATo-d = log To.

Further, for Pt given by (4b) with T = To, Pt+1 = At. Thus, (6) yields

Fr,(p., ... ,Pr,) = h (ToT; 1) + ToT; 1 log To
= 10g(To + 1),

establishing (b), and the lemma.

1092 TECHNICAL JOURNAL, JULY-AUGUST 1984

Applying Lemma 1 and (3) we see that for the case where the
encoder and decoder are informed, we can achieve CT = log(T + 1).
Thus, we can store a total of about N log(T + 1) bits on an N-position
WOM in T generations (with T held fixed as N~oo). In the sequel we
will show that the simple scheme outlined above is essentially optimal.
Quite surprisingly for two of the other cases-encoder or decoder
informed-we can do just as well, i.e., achieve CT = log(T + 1). For
the fourth case-neither the encoder nor decoder informed-we show
that, as T~oo, the maximum achievable CT is (7r 2j6)log e ~ 2.37, which
is considerably less than log(T + 1) but nevertheless significantly
greater than unity.

II. FORMAL STATEMENT OF THE PROBLEM AND RESULTS

The memory consists of N cells or bit positions that can be in either
the 0 or 1 state. Assume initially that all cells are in the state o. At
time (or generation) t = 1,2, ... , T, data st is stored in the memory.
Assume that {S t} is a set of independent random Kt-vectors, and that
S t is uniformly distributed in binary Kt-space, 1 =s t =s T. Denote
the state of the memory at time t by yt = (Ytl , Y t2 , ... ,YtN), where
Ytn = 0 or 1 and yO = (0,0, ... ,0).

At time t, the encoder inputs into the memory a binary N-vector
X t = (Xtl , ... , X tN) (which is a function of st and perhaps yt-l) and
the state of the memory changes to yt, where

Y = X V Y = {o if X tn = Yt-1,n = 0,
tn tn t-l,n 1 otherwise. (8)

The contents of the memory may now be read, and an estimate st of
the data st obtained. The error rate is

p~ = ~t EdH(St, St), (9)

where E() is expectation and where dH(u, v) is the number of
positions in which the binary N-vectors u and v differ (Hamming
distance). st is a function of yt and perhaps yt-l.

We now consider four cases.
Case 1 (encoder and decoder informed):

x t = Ik(st, yt-l),

st = Ib(yt, yt-l), (10)

1 =s t =s T. The functions Ik and Ib are the encoder and decoder
functions, respectively. In this case both the encoder and the decoder
are informed of the state of the memory at the previous generation.

Case 2 (encoder informed, decoder uninformed):

WRITE-ONCE MEMORY 1093

IstsT.

x t = fk(st, yt-1),

st = fh(yt),

Case 3 (encoder uninformed, decoder informed):

X t = fk(st),

st = fh(yt, yt-1),

1 s t sT.
Case 4 (encoder and decoder uninformed):

1 s t sT.

X t = fk(st),

st = fJj (yt),

(11)

(12)

(13)

For a given Case (1 through 4) and a given T ~ 1, we say that a
(rate-) vector r = (r1, r2, ... , rT) 0 S ri S 1, is achievable if, for
arbitrary E > 0, there exists an encoder/decoder with parameters
T, N, {Kt l1::1 such that, for 1 S t S T,

(14a)

14b)

Similarly, a (total rate) R is achievable if, for arbitrary E > 0, there
exists an encoder/decoder with parameters T, N, {Kt}f such that

1 T

N
L K t ~ R - E,
t=l

(15a)

t=l
-T--S E. (15b)

L K t
t=l

The left member of (15b) is the expected fraction of the total of
'LI Kt bits which are decoded in error. The capacity CT of the WOM
is the supremum of the achievable total rates.

In each Case (1 through 4) we seek to find the family of achievable
rate vectors. We now summarize our results.

Let P = (Ph P2, ... ,PT) be a T vector for which 0 S Pt S 1, 1 S t S

T, and let

(16)

1094 TECHNICAL JOURNAL, JULY-AUGUST 1984

where, as in Section I, h("A) is the binary entropy function. Finally,
define

~= U ~(p). (17)
p

In the sequel, we will establish the following two theorems, which
assert that for Cases 1 through 3 (encoder and/or decoder informed),
~ is the family of achievable rates.
Theorem 1 (direct half): For Cases 1 through 3, let T 2::: 1 be given. If
r E ~, then r is achievable.

Theorem 2 (converse half): For Cases 1 through 3, and any encoder/
decoder with parameters T, N, {KtL and error probabilities {P~}, there·
exists a member r = (rl, r2, ... , rT) of ~ such that

~ ::5 rt + h(P~), 1 ::5 t ::5 T. (18)

It follows from the discussion in Section I that the capacity (for
Cases 1 through 3) is CT = log(T + 1). It is also a consequence of our
proof of Theorem 1 for Case 2, that for the codes constructed, P~ = 0,
1 ::5 t ::5 T.

For Case 4 (encoder and decoder uninformed), we cannot completely
characterize the family of achievable rate vectors. We do, however,
establish the following theorems.

Let p = (PI, P2, ... ,PT) be a T-vector for which 0 ::5 Pt ::5 1 (1 ::5
t::5 T). Let

Qo = 0,

t

Qt = II Ph
j=1

1 ::5 t ::5 T.

Let .9£'T(p) be the set of r = (rl, ... , rT) for which

rt ::5 h(Qt) - pth(Qt-d,

for 1 ::5 t ::5 T. For r E .9£'T(p),
T T

L rt::5 L h(Qt) - Pth (Qt-l)
t=1 t=1

T

= h(QT) + L (1 - pt)h(Qt-l).
t=1

We now state

(19a)

(19b)

(20)

(21)

Theorem 3 (existence): For Case 4, let T 2::: 1 be given. If r E .9£'T(p),
for some p, then r is achievable.

WRITE-ONCE MEMORY 1095

Theorem 4 (partial converse): For Case 4, and any encoder/decoder
with parameters T, N, {Kt }, and error probabilities {P~}, then

~ - h (it~=TIPK~Kt~ \ (i ~) \ \ ~ 7)
T

=== sup L rt
rEU.9t'T(p) t=l

p

= s~p {h(QT) - i (1 - Pt)h(Qt-t)} ~ PT· (22)

It follows from Theorem 4 that if R is an achievable total rate, then
R :::; PT. Furthermore, we show in Section III that

(23a)

and that

(23b)

Discussion of previous work

An information theoretic treatment of coding for memories of this
type was given by Kusnetsov and Tsybatov2 in 1974. They studied
binary memories with defective cells-typically cells that are "stuck
at I". Their work was extended and generalized considerably by
Heegard and EI Gama1.3 Rivest and Shamir1 originated the concept of
rewriting on WOMs. Their problem is similar to that in previous
models with the "stuck at I" state of Ref. 3 and Ref. 2 being the result
of writing on the WOM in previous generations. In the new problem,
the system designer must balance the needs of memory users at all
generations. In a very recent paper, Heegard4 generalized the Rivest
Shamir results in several ways.

The models in all of the above papers correspond to our Case 2, in
that it is always assumed that the encoder can read the memory before
writing, and that the decoder is unaware of the state of the memory
before the present write. Heegard and EI Gamal3 proved a coding
theorem for the memory with "stuck at I" defects which can be adapted
to our rewriting on WOM's problem. Essentially this was done by
Rivest and Shamir, although they apparently were not aware of the
earlier work. Concerning Case 2, our results represent an extension of

1096 TECHNICAL JOURNAL, JULY-AUGUST 1984

previous results in that our converse theorem (Theorem 2, Case 2)
holds for codes with a small error probability, and not a zero error
probability as in Ref. 4 and Ref. 1. Our results for Cases 1, 3, and 4
are new.

III. PROOF OF CONVERSES

In this section we establish the converse Theorems 2 and 4.
Proof of Theorem 2: It suffices to establish Theorem 2 for Case 1 (both
encoder and decoder informed). Let Uk, fb} ~l define an encoder/
decoder for Case 1 [defined by (10)] with parameters T, N, {KtJ and
error probabilities {P~}. Consider the t-th generation. Since st, X t, yt,
st is a Markov chain given yt-\ the data processing theorem yields*

(24a)

Now

J(st; Stlyt-l) = H(Stlyt-l) _ H(StISt, yt-l)

~ H(St) - H(Stl st), (24b)

where the inequality follows from the independence of st and yt-\
which implies H(St I yt-l) = H(St) = Kt, and from the fact that
conditioning decreases entropy. Further, from Fano's inequality,
l/N H(St 1St) :s h(P~), so that (24) yields

~J(xt; ytlyt-l) ~ ~ - h(P~).

Now, writing yt = (Ytl , Y t2 , ••• , Y tN), we have for 0 :s t:s T,

~ J(xt; yt I yt-l) ~ ~ H(yt I yt-l)

(2) 1 ~
:s N n~l H(Y tn I Yt-1,n)

(25)

1 N
~ N n~l H(Y tn I Yt-1,n = O)Pr{ Yt-1,n = O}. (26)

Step 1 is a standard inequality; step 2 follows from the fact that the
entropy of a vector is no greater than the sum of the entropies of its
components, and conditioning decreases entropy; and step 3 follows
from H(Y tn I Yt-1,n = 1) = o. Setting

* Remember yo = (0, 0, ... , 0).

WRITE-ONCE MEMORY 1097

Qtn = Pr{ Y tn = OJ,

1 N

Qt = N n~1 Qtn,

1 :5 n :5 N, 1 :5 t :5 T, we have Qtn ;::: Qt+ I,n and

P {Y = 0 I Y = O} = Pr{ Y tn = 0, Yt-I,n = O}
r tn t-I,n P {Y - O} r t-I,n-

Pr{ Ytn = O}
Pr{ Yt-I,n = O} Qt-I,n·

(

Qtn)
Hence H(Y tn I Yt-I,n = 0) = h Q ' and (26) become

t-I,n

(
1 1 ~ Qtn)

:5 Qt-I h -Q N L.. Qt-I,n-Q
t-I n=1 t-I,n

(27)

The second inequality in (27) follows from the concavity of h(·).
Combining (25) and (27) we have, for 1 :5 t:5 T,

(28)

Now let us define Pt = QQt :5 1, 1 :5 t :5 T. Since Qo = 1, we have
t-I

Qt = TIJ=I Ph so that (28) is

~ s II pjh(p,) + h(P;), (29)

1 :5 t :5 T. Comparison of (29) with (16) yields (18) and Theorem 2.
We now turn our attention to Theorem 4. Let f~)(·) and f~)(·), 1 :5

t:5 T define an encoder/decoder for Case 4 with parameters
T, N, {Kt } ~b and error probabilities {P~} ~I. Then

1098 TECHNICAL JOURNAL, JULY-AUGUST 1984

T T

L K t = L H(St) ~ H(Sl, S2, ... , ST)
t=l t=l

(2) H(SI S2 ... ST yl y2 ... yT) = " , , , , ,

= H(yT) + H(S\ S2, ... , ST, yl ... yT-ll yT)

= H(yT) + UT, (30)

where

Ut = H(S\ ... , st, Y\ ... , yt-11 yt), 1 ::: t ::: T. (31)

Step 1 in eq. (30) follows from the independence of the (st}r, and step
2 from the fact that yt is functionally determined by S\ S2, ... , st,
1 ::: t ::: T. (Take Uo = 0.)

Now, for 1 ::: t ::: T,

(32)

where step 1 follows from the fact that (S\ ... , st-l, Y\ ... , yt-2),
(st, yt) are conditionally independent given yt-\ and step 2 follows
from X t = f1:(St).

Now from Fano's inequality,

and since conditioning decreases entropy,

H(yt-11 st, X t, yt) ::: H(yt-11 X t, yt).

Thus, from (32), for 1 ::: t::: T,

(Ut - Ut- 1) ::: H(yt-11 X t, yt) + Kth(P~).

Summing on t, we obtain (noting that Uo = 0)

T T
UT ::: L H(yt-11 X t, yt) + L Kth(P~).

t=l t=l

Substituting into (30) we have

WRITE-ONCE MEMORY 1099

T T T
L Kt :5 H(yT) + L H(yt- 1

1 Xtyt) + L Kth(P~)
k=l t=l t=l

N N T T

:5 L H(Y Tn) + L L H(Y t- 1,n I X tn Y tn) + L Kth(P~). (33)
n=l n=l t=l t=l

Applying the concavity of h(.) and Jensen's inequality, we have

£ Kth(P~) = (L Kt) L Kth(P~)
t=l t L Kt

::s (L K,)h (L t;2),
so that (33) yields

(il Kt) (1 -h (Lt;2))
::s n~l [H(Y Tn) + ,~ H(Y H,n I X'n Y'n) J. (34)

Now fix n (1 :5 n :5 N) and write X tn = Xt, Y tn = Yt, Y t- 1,n = Yt- 1.
The random variables Xt, Yt, Y t- 1 are binary. Consider, for 2 :5 t:5 T,

H(Yt-ti X t Y t) = H(Y t- 1, Xt, Y t) - H(Xt, Y t)

~ H(Y t- 1, Xt) - H(Xt, Y t)

= H(Yt- 1) + H(Xtl Yt-d - H(Xt) - H(YtIXt)

~ H(Y t- 1) - H(Y t I Xt), (35)

where step 1 follows from Yt = X t V Yt- 1, and step 2 from the
independence of X t and Yt- 1 • Now put back the n dependence. Letting
Ptn = Pr{Xtn = OJ, 1 :5 t:5 T, 1 :5 n:5 N, we have from the independence
of the {Xtn }[:l,

and

and

Pr{ Y tn = O} = Pr{Xln = X 2n = ... = X tn = O}

t

= II Ptn £ Qtn,
j=l

Pr{ Y tn = 0 I X tn = O} = Pr{ Yt- 1,n = O} = Qt-1,n,

1100 TECHNICAL JOURNAL, JULY-AUGUST 1984

Thus (35) is

Pr{Ytn = 0IXtn = II = O.

H(Yt-1,n I X tn Y tn) = h(Qt-l,n) + Ptnh(Qt-l,n)

= (1 - Ptn)h(Qt-l,n),

and the term in brackets in (34) is
T

H(Y Tn) + L H(Yt-1,n I X tn Y tn)
t=l

T

= h(QTn) + L (1 - Ptn)h(Qt-l,n)
t=l

Thus (34) is

[(L P~Kt)] L Kt 1 - h L K
t

:5 N PT,

which is Theorem 4.
Our final task in this section is to establish (23a) and (23b). We

begin by establishing the following:
Proposition 1: Let 0 :5 a < b < 00. Then

Lb

h(e-X)dx 2:: (1 - e-(b-a»)h(e-a).

Proof: Let Y = e-x
, Yl = e-a

, Yo = e-b
• Then 0 :5 Yo < Yl :5 1 and we

must show

Ib lYl h(y) (Y) h(e-X)dx = - dy;::: 1 - ~ h(Yl)
a ~ Y Yl

= (Yl - Yo) h(Yl) .
Yl

But h~) is nonincreasing (! h~) = y-2!og(1 - y) :;; 0), so that

h(y) can be underbounded in the integral by h(Yl)/Yl, establishing the
Y

proposition.
Since PT is nondecreasing in T, we can establish (23a) and (23b) by

showing that

(36)

WRITE-ONCE MEMORY 1101

where the supremum is with respect to sequences (ptl ~=b where 0 :5

Pt:5 1, and Qt = II]=1 Pj. Let (Pt} be given, and consider

-.J; = L (1 - Pt)h(Qt-l). (37)
t=1

For 1 :5 t < 00, let at = -In Pt, so that Pt = e-Ut
, and

t t { t } Qt = n pj = n e-Uj = exp - L (Xj = e-Xt ,
j=1 j=1 j=1

where Xt = L]=1 aj. (Take Xo = 0.) Thus,

and

-.J; = L (1 - pt)h(Qt-l)
t

00

= L (1 - e-(Xt-Xt-l»h(e-Xt-1)

t=1

where the inequality follows from the Proposition 1. Since h(·) ::: 0
and

100 h(e-X)dx = 11 h(y) dy
o 0 Y

11 ((1 - y))
= (lOg2e) 0 -In y - y In(l - y) dy

7r 2

= (lOg2e) 6'

we have shown that

Furthermore, -.J; can be made arbitrarily close to the right member of
(38) by setting Pt = e-o for sufficiently small {) > o. In other words,

00 100

2
-.J; = L (1 - e-O)h(e-tO) ~ h(e-X)dx = (log e) 7r6 '

~1 0

as o~o. This completes the verification of (23a) and (23b).

1102 TECHNICAL JOURNAL, JULY-AUGUST 1984

IV. PROOFS OF (DIRECT) THEOREMS 1 and 3

In this section we give proofs of the "direct" coding theorems
(Theorems 1 and 3). Actually, we need two proofs (for Cases 2 and 3)
for Theorem 1. We give these in Sections 4.1 and 4.3, respectively,
and prove Theorem 3 (for Case 4) in Section 4.4.

4.1 Case 2 {encoder informed, decoder uninformed}

We begin with some definitions. The weight, I u I, of a binary N
vector u is the number of nonzero entries in u. Let BN(w) be the set
of binary N vectors with weight w. We say that binary N-vector u
covers the binary N-vector v, denoted u > v, if u has 0 entries only in
positions in which v has 0 entries. Thus, for example, when N = 4,
(1010) > (1000), but (1010) does not cover (1100).

Now consider the encoder for Case 2 with the parameters
N, T, {Kt } r given. Let M t = 2Kt, 1 ::; t ::; T. We will specify an ad hoc
encoder as follows. Let {Wt}l:o satisfy

o = Wo < WI ... < Wr ::; N.

The encoder will see to it that I yt I = Wt, 1 ::; t ::; T. It does this by
setting X t equal to an N-vector which covers yt-I (so that X t = yt)
and for which I X t I = I yt I = Wt. The encoding is done as follows. For
1 ::; t ::; T, let {A~}, 1 ::; m ::; Mt, be a partition of BN(wt). Thus, for
1 ::; t ::; T,

A~ ~ BN(wt), 1 ::; m ::; Mt ,

A~nA~,=¢, m#m',
M t

L A~ = BN(wt).
m=1

At the t-th write, the encoder observes yt-\ and if st corresponds to
message m, it searches A~ to find a vector that covers yt-I. If it finds
such a vector, y, it sets X t = yt = y. The decoder can recover the
message m by observing that yt E A~. Also I yt I = Wt. An error will
occur if and only if no y which covers yt-I can be found in A~.

For 1 ::; t ::; T, 1 ::; m ::; M t, u E BN(wt-d, let F(u, A~) = 0 or 1
according as A~ contains a vector that covers u. Clearly, we make no
error for 1 ::; t ::; T, 1 ::; m ::; M t , if

F(u, A~) = o. (39)

Now turn to Theorem 2. Let T, f > 0, r E !JlJr be given. We will
show that with N sufficiently large and with {Wt} suitably chosen, and
with KtlN = log M t = rt - f, that there exists a family of partitions

WRITE-ONCE MEMORY 1103

{A~l for which t/; = o. Thus we will have shown that not only is
r E !ffir achievable, but that p~ can be made equal to o. We do this by
choosing the partitions {A~l at random (according to a probability law
which we will specify later) and computing the expectation E1/;. We
will show that E t/;~O as N~oo. Since t/; is integer valued, when E t/; <
1, there must be a family of partitions for which t/; = o.

Here is how the random partitions are chosen: For 1 S t S T, pick
a v E BN(Wt) and place it in class A~ with probability 1/Mt (1 s m S
Mt). Do this independently for each of the members of BN(Wt), and
each t. Under this random experiment, t/; is a random variable and

Et/;=LL E F(u, A~). (40)

For fixed t, m, u E BN(Wt-l),

E F(u, A~) = Pr {fO: a~ ~~E BN(w,) such that v> u,}

(41)

where Vt is the number of vectors v E BN(Wt) which cover u E BN(Wt-d.
Since in choosing v to cover u we must place Wt-l l's in those positions
in which u is 1, and we can put the remaining Wt - Wt-l l's in any of
the remaining N - Wt-l positions, we have

(
N - Wt-l) Vt = .
Wt - Wt-l

We now choose the {Wtl. Since r E !JItT, there must be a vector p =
(Ph· .. ,PT) such that r E !JItT(p). Let

Wt = N - QtN,

where Qt = II]=l Pi (and Qo = 1). Then, as N~oo,

Vt = (Qt-I N) = 2NQt-lh(1-pt)+O(logN) (42)
Qt-l (1 - pt)N .

Substituting (41) and (42) into (40) and using M t S 2N, IBN(Wt) I S 2N
we have

E if; :5 T22N exp {~ 2NQH h(P,)+O(lOgN)} •

Setting Kt/N = liN log M t = rt - f S Qt-1h(pt) - f, we have

E t/; s T exp{-2NE+o(N)1 ~ 0,

which is what we had to prove.

1104 TECHNICAL JOURNAL, JULY-AUGUST 1984

4.2 Random coding

In this section we state the well-known random channel-coding
theorem5 in a form that will enable us to establish our direct theorems
for Cases 3 and 4 with little difficulty. Consider a discrete memoryless
channel with input and output alphabets gz:, q,.; respectively, and
transition probability Pc(Y 1 x), Y E q,.; x E 92:. A code 5fwith param
eters N, M is a subset 51 = {Xl, ... , XM} k geN with cardinality
1 51 1 = M. The maximum-likelihood decoder is a mapping
FD: yN~ {I, 2, ... ,M} for which fD(Y) = the smallest m such that

m'::;fm, (43a)

where
N

p~N)(Ylx) = n Pc(Ynlxn), (43b)
n=l

Y = (Yb ... ,YN) E C]/N, x = (XI, ... ,XN) E geN. Let <pm(Y, 51) = °
or 1 according as fD(y) = m or ::;f m. When each of the M-code vectors
in 51 are used with equal probability, the "word" error probability is

_ J:. ~ ~ (N) (£7

Pe - M m':l YE~N Pc (y 1 xm)<pm(Y, Jb). (44)

Now let Po(x), x E gz:, be a probability distribution on gz:, and let 10
be the mutual information corresponding to the distribution
Po(x)Pc(Ylx) on gex ~ A random-code ensemble is constructed as
follows. Let the M-code vectors Xm in 5fbe drawn independently with
Pr{Xm = (Xl, ... , XN)} = n:i=l Po(xn). The quantity Pe in (44) is now
a random variable which depends on the choice of .1f. Write it as
Pe (51), and write its expectation E Pe (51) = g(N, M). Of course, g(.)
depends on po(·) and Pc(· 1 .) too. We now state the well-known
random -coding theorem.5

Theorem 5: Let Pc(· I·) and Po(·) be given, and let g(N, M) and 10 be
as defined above. Then, with ~ > 0, held fixed,

g(N, 2NR) ~ 0, as N~oo,

provided R < 10 •

We conclude from this theorem that provided N is sufficiently large,
there exists at least one code 5fwith parameters Nand M = 2RN such
that Pe(51) is arbitrarily small.

4.3 Case 3 (encoder uninformed, decoder informed)

For a given N, T and encoder/decoder as defined in Section II, we
can think of the information Krvector S t as an integer in {I, 2, ... ,
M t }, where M t = 2Kt, and set

WRITE-ONCE MEMORY 1105

x~ = fk(m), 1:s; t :s; T, 1:s; m :s; M t • (45)

Thus at the t-th generation, when the message is m, the encoder writes
x~. Let ~ = {X~}~~l be the "code" for the t-th generation, 1 :s; t:s; T.
The proofs for this theorem and the next depend on a random choice
of { .1ft} i=l' Here is a rough and imprecise sketch of the main idea.

Let {Pt} i=l satisfy ° :s; Pt :s; 1, 1 :s; t :s; T. The codes {.1ft} are chosen
randomly and independently, according to the following probability
law. Each of the M t code vectors in ~ is chosen independently, with
the probability that the mth code vector be x = (Xl, ... , XN) E qN
is equal to IT~=l p(t)(xn), where

p(t)(O) = Pt, p(t)(I) = 1 - Pt. (46)

Now let us consider the t-th write/read generation. Prior to the t-th
write, the n-th bit position will be a 0, i.e., Yt-1,n = 0, if it was not
written in each of the (t - 1) previous generations. In some "average"
sense, this happens with probability ITj:l Pt = Qt-l' Since the decoder
at the t-th generation knows Yt-1,n and Y tn , and it is impossible for
Yt-1,n = 1, Y tn = 0, there are essentially three possible "outputs"
(Yt-1,n, Y tn) ~ Ztn. Ztn can take the values: a ~ (0, 0), b ~ (0, 1), c ~
(1, 1). If, for example, the channel input X tn = 0, then

Pr{Ztn = (0, 0) = a I X tn = O} = Pr{ Yt-1,n = O} = Qt-l'

Thus, as far as the t-th generation is concerned, zt is the output of
the memoryless channel with input X, output Z and transition prob
ability given by Fig. 1. The random -coding theorem suggests that, in
the t-th generation, we can have highly reliable transmission provided
that Mt :s; 2N

(lt-
E
), where It is the I(X; Z), which results when the input

X to the channel in Fig. 1 has PrIX = O} = Pt. Thus,

Pr 0

Fig. I-Equivalent channel for Case 3.

1106 TECHNICAL JOURNAL, JULY-AUGUST 1984

It = I(X; Z) = H(Z) - H(Z I X)

= H(V, Z) - H(ZIX),

where V = V(Z) = 1 when Z = a or b, and V = 0 when Z = c. Since
H(V) = h(Qt-l) and H(ZIX) = h(Qt-l), we have

It = H(V) + H(ZI V) - H(ZIX)

= h(Qt-l) + Pr{V = O}H(ZI V = 0)

+ Pr{V = l}H(ZI V = 1) - h(Qt-l)

= Pr{ V = l}H(Z I V = 1) = Qt-lh(Pt). (47)

Thus we are led to conjecture that, for a given T and p, any r E .9£'T(p)
[given by (16)] is achievable for Case 3. We now proceed to a rigorous
proof.

Again, consider an encoder/decoder with parameters N, T, {Kt }.

Consider the t-th write/read generation. Suppose st = m (1 :5 m :5

M t), and consider

Prlyt = yt, yt-l = yt-11 st = m}

= Pr{yt-l = yt-l}f(yt I yt-lX~), (48a)

where f(ytl yt-I, x~) = 1 if

yt = yt-l V x~ (48b)

("V" is bitwise "inclusive or"), and f = 0 otherwise. Now Pr{yt-l =
yt-l} depends on the codes .5&j, 1 :5 j :5 t - 1 (but not on 5ft). Let us
make this dependence explicit and write

Prlyt = yt, yt-l = yt-11 st = m}

= P(yt, yt-11 x~, ~, ... ,5ft-l). (49)

Now, let yt = (Ytl, Yt2, ... , YtN), and note that (Yt-l,n, Yt,n) cannot
take the value (1, 0). Let us define a = (0, 1), b = (1, 0), c = (1, 1), and
let zt = (Ztl, Zt2, ... , Ztn), where

Ztn = (Yt-l,n, Ytn) E {a, b, c} ~ r;;.
Now write (49) as

Prlyt = yt, yt-I = yt-Il st = m} = P(zt I x~, ~, ... ,5ft-I). (50)

Finally, let the vector (PI, P2, ... ,PT) be arbitrary, 0 :5 PT :5 1, 1 :5

t :5 T. Let the codes ~ . .. !£T be chosen independently according to
the presciption given above eq. (46). Then (with x~ held fixed), the
expectation

WRITE-ONCE MEMORY 1107

where P~N)(zt I x~) corresponds to the discrete memoryless channel
with input alphabet !?C= 10, I}, and output alphabet ~= la, b, c} and
transition probability represented by Fig. l.

Now consider the decoder at the t-th read generation. The decoder
examines yt, yt-l. Let us use the following decoding rule. When (yt,
yt-l) = Z E ~N, let /n(z) be the smallest m, 1 ::: m ::: M t , such that

p~N)(zt I x~) 2:: p~N)(zt I x~,), m' ¥= m.

Let 1/;~(zt, .1ft) be 0 or 1 according as /n(zt) = m, /n(zt) ¥= m. Then the
error probability* at the t-th generation (given st = m) is, using (50),

P~m::: L Prlyt-l = yt-I, yt = yt 1S t = m}
yt-l,yt

and the overall error probability is

T M t 1
Pe = L L M P~m

t=l m=l t

T M t 1
= t~l m~l ~ M

t
P(zt I x~, .5&i,1ft_I)'lt~(zt, .1ft). (53)

Taking the expectation of P~m over the random-code ensemble defined
above, and noting that the random codes .5&i, ... , SffT are independent,
we have from (51) and (53)

EPe = i, E [~t 1, ~ p~N)(ztlx~)q,~(t, -'6;)]. (54)

where the expectation in the right number of (53) is taken with respect
to .1ft. Applying Theorem 5, we conclude that for E > 0, this expectation
~O, as N~oo, provided

where It = Qt-Ih(Pt). See (47). Thus for given T, P = (PI, ... ,PT), we
have established that r E Y£>T(P) is achievable. This is Theorem 1 for
Case 3.

4.4 Case 4 (encoder and decoder uninformed)

In this section we establish Theorem 3 for the situation in Case 4
(encoder and decoder uninformed of the state of the memory at the
previous generation). The proof is almost exactly the same as that of

* The right member of (52) is the so-called "word error probability", i.e., the proba
bility that st # st. p~ as defined by (9) :s PrIst # st}.

1108 TECHNICAL JOURNAL, JULY-AUGUST 1984

Theorem 1 for Case 3, which was given in Section 4.3 (where only the
encoder was uninformed).

Let T, p = (P1, . . . ,PT)(0 ~ Pt ~ 1) be given. The codes 151t} [:1 are
defined exactly as in Section 4.3, and we use a random-code ensemble
exactly as above (46). Since the decoder at the t-th generation is
uninformed of yt-\ it must operate on yt instead of zt as in Case 3.
This leads us to define the channel in Fig. 2 to replace the channel in
Fig. 1, to define p~N)(. I .).

The rest of the proof parallels the proof in Section 4.3, but here

It = I(X; Y) = H(y) - H(YIX)

= h(PtQt-1) - PrIX = O}H(YI X = 0)

- PrIX = l}H(YIX = 1)

= h(PtQt-1) - Pth(Qt-1) = h(Qt) - pth(Qt-1).

Referring to (19a) and (19b) and (20) leads us to conclude that any r
= (rl, ... , rT) E 9PT(p) is achievable, which is Theorem 3.

5. SOME AD-HOC RESULTS

Let us look at the family of achievable rates for Cases 1 through 3
when we impose the additional constraint that the rates at each
generation be equal, i.e., that Rt == R, 1 ~ t ~ T. This is the case
studied by Rivest and Shamir.1 There is no closed-form expression for
the maximum achievable R, but we can find it numerically as follows.

We seek a set IPt}, 0 ~ Pt ~ 1, 1 ~ t ~ T, such that
t-1

Rt = h(pt) II Pj == R.
j=l

Thus if PT is chosen, RT- 1 = R implies that

h(PT-1) = PT-1h(PT),

(55)

for which there is exactly one solution for PT-1. Further, 1/2 ~ PT-1 ~ l.
Define a(A), 1/2 ~ A ~ 1, as the unique solution of

Pt 0 cz-------_.---o 0

l-pt 1 o-------__ --~

Fig. 2-Equivalent channel for Case 4.

WRITE-ONCE MEMORY 1109

We see that

h(a) = ah(A).

PT-I = a(PT)

PT-2 = a(a(pT»

(56)

(57)

where a(k)(.) is the kth iterate of a(')' Differentiating (56) with respect
to A yields

da(A) = (dA)-1 = (hI (a) - h(A»)-1 > 0
dA da ah' (A) ,

1/2 ::5 A ::5 1. Thus, a(T-I)(.) is monotonically increasing. Since RI =
h(PI) = R, we maximize R by minimizing PI = a(T-I)(PT). Thus choose
Pt = 1/2.

The iterates a(k)(1/2) can be obtained graphically or numerically in
a straightforward manner. We obtained a(I)(1/2) = 0.77291 ... ,
a(2)(1/2) = 0.83524, a(3)(1/2) = 0.86876, a(4)(1/2) = 0.89021. Thus, under
the constraint R t == R, we have for T = 4, C = Lt R t = 4h(a(4)(1/2» =
1.997 ... , while the unconstrained total capacity is log(4 + 1) =
2.3219

Several ad-hoc coding schemes were investigated for Case 2 where
the encoder is informed of the previous contents of the WOM but the
decoder is uninformed. Only the results for one of these schemes is
repeated here.

The simplest case of the coding scheme to be discussed is to consider
that the WOM is segmented into two equal-sized sub-WOMs, one for
storing data and one for directing the decoder to the newly written
data. In the first generation the encoder writes in the data-storing
sub-WOM and the reader reads from that sub-WOM. For subsequent
generations, the encoder does two write operations. It first copies the
state of the data-storing sub-WOM into the second sub-WOM. It then
writes new data, only in these positions of the data-storing sub-WOM
in which there are zeros. By comparing the information in the two
halves of the sub-WOM, the decoder knows in which positions (of the
data-storing sub-WOM) the new data have been written.

Rather than optimize and analyze this simple case, we do this for a
generalized version of this scheme. We take the N-bit WOM and
subdivide it into [N/K] K-bit bytes. At each generation, if a given byte
is the all-zero sequence, the encoder can use it to convey new data.
However, if it is any other sequence, the encoder nulls it by overwriting

1110 TECHNICAL JOURNAL, JULY-AUGUST 1984

the all-one sequence in that portion of the memory. The decoder treats
any byte other than the all-one byte as carrying new information.

The encoder uses the following scheme to write new information.
On the t-th generation, i = 1, 2, ... , T, it writes the all-zero word
with probability Pt and it writes any of the (2K

- 2) words that are not
all zero or all one with equal probability (1 - pt)/(2K

- 2). It does not
use the all-one word to carry information.

The rate of information for the T generations is as follows:

1 [(1 - Pd] 1
RI = K -Pllog PI - (1 - PI)lOg 2K _ 2 ~ K [k(PI)],

R = PIP2 ... Pt-I k ()
t K Pt , t = 2, 3, ... , T.

The total rate sum for this scheme is then

In a manner similar to that used in Section I, one can prove that for
a fixed K, the maximum CT is obtained for

PT-i =
[(i - 1)(~K - 2) + (2K - 1)]

i (2K
- 2) + (2K

- 1)

resulting in a maximum Ct of

1 .
CT = K log(T(2K

- 2) + 1).

For T = 2 and 3, the largest values of CT are obtained for K = 3, and
for T ~ 4, the largest values of CT are obtained for K = 2.

REFERENCES
1. R. Rivest and A. Shamir, "How to Reuse a Write-Once Memory," Inform. and

Control, 55, No.1 (October 1982), pp. 1-19.
2. A. V. Kusnetsov and B. S. Tsybakov, "Coding in a Memory with Defective Cells,"

translated from Problemy Peredachi, Infromatsii, 10, No.2 (April-June 1974),
pp.52-60.

3. C. Heegard and A. EI Gamal, "On the Capacity of a Computer Memory With
Defects," IEEE Trans Inform. Theory, IT-29, No.5 (September 1983), pp. 731-9.

4. C. Heegard, "On the Capacity of Permanent Memory," 1983 Conf. on Inform.
Sciences and Systems, Johns Hopkins University (March 1983).

5. R. G. Gallager, Information Theory and Reliable Communication, New York: Mc
Graw-Hill, 1968, Theorem 5.6.2, pp. 138.

AUTHORS

Janos Korner, Diploma in Mathematics, 1970, Lonind Eotvos University,
Budapest. In 1970 he joined the Mathematical Institute of the Hungarian
Academy of Sciences. In 1972 Mr. Korner was on leave at CISM, Udine, Italy;
in the spring of 1974 he was a Visiting Professor at Ohio State University;

WRITE-ONCE MEMORY 1111

and in 1980 he was a Visiting Professor at Linkoping University, Sweden.
From 1981-83 he was a visiting member of the Mathematics and Statistics
Research Center of Bell Laboratories. He has co-authored with Imre Csiszar
the book Information Theory: Coding Theorems for Discrete Memoryless Sys
tems (Academic Press, 1982). His current research interests are in information
theory and its interplay with combinatorics. Janos Korner currently is serving
as an Associate Editor for the IEEE Transactions on Information Theory.

Jack K. Wolf, B.S.E.E., 1956, University of Pennsylvania; M.S.E., M.A., and
Ph.D., 1957, 1958, and 1960, respectively, Princeton University; New York
University 1963-65; Polytechnic Institute of Brooklyn, 1965-73; University of
Massachusetts, 1973-. During the academic year, 1968-69, Mr. Wolf was a
member of the Mathematics Research Center, Bell Laboratories. Presently he
is a Professor of Electrical and Computer Engineering at the University of
Massachusetts, Amherst. His research interests are in information theory,
algebraic coding theory, communication systems, and computer networks. He
is also currently International Chairman, Commission C, URSI. Editor Trans
actions on Information Theory, Algebraic Coding, 1969-72. Board of Gover
nors, Information Theory Group 1970-76, 1980-.

Aaron D. Wyner, B.S., 1960, Queens College; B.S.E.E., M.S., Ph.D., 1960,
1961, and 1963, respectively, Columbia University; AT&T Bell Laboratories,
1963-. Mr. Wyner has been doing research in various aspects of information
and communication theory and related mathematical problems. He is presently
Head of the Communications Analysis Research Department. He spent the
year 1969-70 visiting the Department of Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel, and the Faculty of Electrical Engineering,
at Technion, Haifa, Israel, on a Guggenheim Foundation Fellowship. He has
also been a full- and part-time faculty member at Columbia University,
Princeton University, and the Polytechnic Institute of Brooklyn. Chairman
of the Metropolitan New York Chapter of the IEEE Information Theory
Group, Associate Editor of the Group's Transactions, and co-chairperson of
two international symposia. President, IEEE Information Theory Group, 1976.
Fellow, IEEE Member, AAAS, Tau Beta Pi, Eta Kappa Nu, Sigma Xi. Since
September 1983, he has been Editor-in-Chief of the IEEE Transactions on
Information Theory.

Jacob Ziv, B.Sc., Dipl. Eng., and M.Sc., all in Electrical Engineering, from
the Technion-Israel Institute of Technology 1954, 1955, and 1957, respec
tively; D.Sc., 1962, Massachusetts Institute of Technology; Senior Research
Engineer in the Scientific Department, Israel Ministry of Defense, 1955-9;
Applied Science Division of Melpar, 1961-62. In 1962 he returned to the
Scientific Department, Israel Ministry of Defense, as Head of the Communi
cations Division and was also an Adjunct of the Faculty of Electrical Engi
neering, Technion-Israel Institute of Technology. Member of the Technical
Staff of Bell Laboratories, 1968-70. He joined the Technion in 1970 and is a
Herman Gross Professor of Electrical Engineering. Dean of the Faculty of
Electrical Engineering, 1974-76, and Vice President for Academic Affairs,
1978-82. Member Israeli Academy of Science, 1981; fellow, IEEE. From 1977
to 1978, and 1982 to 1983, he was on sabbatical leave at Bell Laboratories.
His research interests include general topics in information theory and statis
tical communication.

1112 TECHNICAL JOURNAL, JULY-AUGUST 1984

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

Local Area Data Transport Service Overview

By M. N. RANSOM*

(Manuscript received October 25, 1983)

A new packet data communication service known as Local Area Data
Transport (LADT) has been recently introduced. Combining new loop elec
tronics technology with packet switching, LADT provides customers with low
cost data communications within local access and transport areas, as well as
access to interexchange data communications networks. This paper describes
the need for LADT, its goals, architecture, and services, and also serves as an
introduction to the following paper on LADT system hardware and software.

I. THE NEED FOR A LOCAL PACKET-SWITCHING NETWORK
1.1 Data communications applications

The communications industry is currently experiencing a large
growth in new data services. Examples are extensive. On-line credit
checking terminals are commonplace. Entrepreneurs have set up spe
cialized information databases providing their subscribers with elec
tronic access to economic forecasts and stock market information.
Home information services, such as videotex, are "beginning on a
national and international scale.1 The trend for corporate communi
cations is to bring more users "on-line" by providing terminals for
immediate access to corporate databases and to automate current
paper-flow processes.2 The current growth in personal computing also
is expected to require data communications for the exchange of elec
tronic mail and the transfer of software.3 Current centrex customers
are demanding new data communications capabilities to handle their
needs more effectively.

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1113

Consider some specific examples of information services already in
place:

1. The Viewtron* service, provided jointly by Knight-Ridder News
papers, Southern Bell, and AT&T Consumer Products. This system
provides videotex services in South Florida.4

2. The Pronto* home banking service, provided by Chemical Bank
in the New York City area.5

3. The Extravision§ service, provided by CBS, AT&T Consumer
Products, and New Jersey Bell, to supply home information services.6

4. The Source'J owned by Reader's Digest, which provides news and
specialized information to its subscribers.

5. Dow Jones News/Retrieval Service,** which provides business
news and financial data to subscribers in an on -line fashion.7

6. The Mead Corporation, which provides bibliographical and on
line text retrieval services.
The exact nature of future applications is uncertain, but what we can
expect are more applications by more information providers and, with
them, a dramatic growth in data communications.8 One common
element these services will share is a need for an effective data
communications network. The characteristics of data traffic are so
significantly different from those of voice that use of the voice switch
ing network is a poor match to this need. On the other hand, the cost
of providing a separate data network for each type of service would be
prohibitive.

Possible solutions to this problem include the use of two-way cable
systems, hybrid cable and telephone systems, and use of other local
distribution systems such as radio. The telephone operating compa
nies, because of their in-place loop plant, have a unique opportunity
to serve this market. LADT takes advantage of this opportunity by
adding data capabilities over existing loop facilities through the addi
tion of new loop technology. LADT is planned as part of the overall
evolution of the telephone network, and is oriented toward interactive,
packet-switching applications.

1.2 Data communications characteristics

As contrasted with voice, data communications has several differ
entiating characteristics:

1. The fundamental information content is digital in nature.

* Service mark of Viewdata Corporation of America Inc.
:j: Service mark of Chemical Bank of New York.
f Service mark of CBS Inc.
~ Service mark of The Source Telecomputing.
** Service mark of Dow Jones & Co., Inc.

1114 TECHNICAL JOURNAL, JULY-AUGUST 1984

2. Data communications is very sensitive to errors in this digital
information.

S. Precisely defined rules and procedures are required in the form
of protocols because of the machine-to-machine nature of the com
munications.

4. A very wide range of data traffic is typical, ranging from message
sizes of a single bit, as in sensor applications, to megabits, as in
facsimile or file transfers. Holding times for these types of calls can
range from less than a second for a meter-reading application, to over
an hour for some business applications.

5. Interactive data applications are usually characterized by bursty
data traffic-long holding time calls with an average data rate a small
fraction of their peak data rate.

1.3 Technical approaches to data communications: status quo

One of the early technical approaches to data communications was
to treat information as if it were voice. This approach led to the
development of modems (e.g., DATAPHONE* II data sets9

). In fact,
this approach has a number of advantages. It produced an immediate,
ubiquitous network for switched- and private-line applications. Data
communications equipment can be placed selectively in the network,
allowing data networks to be built with relatively low start-up costs.
Finally, the technique is transparent to data content and format. This
approach, however, has limitations. Transmission rates are limited to
bit rates that can be reliably transmitted over a voiceband channel.
With current technology, transmission rates are typically up to 1.2
kb/s full duplex over the switched network and up to 9.6 kb/s over
four-wire private lines. Customers who opt for private-line service
have the additional disadvantage of homing a particular terminal to a
single-host computer. Source and destination data equipment must
operate at the same transmission rate. Central computing sites that
must communicate with many remote locations require a proliferation
of computer front-end ports, modems, and lines. Use of a voice line
for data precludes its simultaneous use for voice. This is undesirable
because of the long holding time of data calls and because some
applications (e.g., security) must be able to transmit data at any time.
Finally, and perhaps most importantly to the telephone operating
companies, many applications make inefficient use of the public
switched telephone network because of very long or very short holding
times and because of the long idle periods occurring in interactive data
calls.

* Trademark of AT&T Technologies, Inc.

LADT OVERVIEW 1115

1.4 The local area data networking opportunity

Over the last ten years, a number of specialized value-added net
works have emerged to address this data communications market.1o

,l1

Access to customers of these networks is usually provided through the
local telephone network .. This approach has proven attractive from a
customer cost point of view because telephone operating companies
have typically charged on a flat-rate basis for local calls. As measured
usage is introduced, however, the cost of using this local network for
data will become visible to customers.

The telephone operating companies, because of their extensive
investment in the local-distribution network, are in a good position to
provide effective, low-cost access to these interexchange data net
works. By augmenting local loops with electronics, simultaneous voice
and data service can be provided to subscribers. By combining this
loop technology with packet-switching technology/2 subscribers can
not only be provided access to multiple interexchange data networks,
but can also be provided access to a variety of intra -LATA (Local
Access and Transport Area) data services. Such an arrangement
achieves a more cost-effective way of handling bursty data applica
tions, can eliminate the problems of speed matching the source and
destination, and can provide a multiplexed access to central-site
computing centers. The essential decision is whether to integrate these
functions into existing voice-switching machines or to augment the
existing network with new, separate components. The concept of a
packet overlay network has been chosen to allow the telephone oper
ating companies to initiate new data services independent of the
particular voice switches currently in place. These technologies and
this approach are the basis for LADT.

II. LADT SYSTEM CHARACTERISTICS

2.1 Network architecture

With the basic ingredients of subscriber loop multiplexing and
packet switching, a basic network architectural plan for LADT was
conceived. This architecture is depicted in Fig. 1. Two methods are
provided for accessing LADT: direct access and dial-up access. The
direct-access method allows voice and data service to be provided
simultaneously over a single pair of wires to the subscriber. This pair
of wires terminates on a Local Data Concentrator which demultiplexes
the voice and data. Voice is sent in standard voice frequency format
to the voice switch, while the subscriber's data are sent to a packet
switch. Figure 2 shows the direct-access technique used in LADT in
more detail. Data and voice are multiplexed together at Network
Circuit Terminating Equipment (NCTE) at the customer premises.

1116 TECHNICAL JOURNAL, JULY-AUGUST 1984

LOCAL
DIAL-UP VOICE SWITCH
ACCESS

LOCAL DATA
CONCENTRATOR

NETWORK
CONTROL
CENTER

Fig. l-LADT network architecture.

Full-duplex 4.8-kb/s data are sent above the voice spectrum over the
subscriber's loop. This technique allows use of existing nonloaded loop
plant up to 18 kft in length, achieves cost reductions relative to
use of separate access lines with modems, and allows simultaneous use
of voice and data services.

Dial-up access for low-volume users is also shown in Fig. 1. Such
users access the LADT network through the current telephone net
work. While this results in data traffic being passed through voice
switches, the number of voice switches in the transmission path is
reduced relative to current value-added networks through the deploy
ment of Local Data Concentrators. Nonetheless, customers using dial
up access cannot make normal use of their line at the same time they
are using their line for data and are also limited to 1.2-kb/s service.
Since this method of access may involve a longer path to the LADT
network than for direct access, a more robust modulation technique is
needed. Because of the widespread acceptance of the modulation
technique used in the 212A data set,13 this modem technology is used
for dial-up access.

Two functions performed by the local data concentrator have just
been noted: separating voice and data for direct-access subscribers,

LADT OVERVIEW 1117

..... =
-i
m
n
I
Z
n
> r

o
c
:;:0

z
> .r
""-

C
r
-<
I
>
C
C)
C
CJl
-i

1.0
CO
~

TERMINAL

NCTE

TRANSMIT

TO VOICE
SWITCH

NONLOADED LOOP RECEIVE DATA

TRANSMIT DATA

LOCAL DATA CONCENTRATOR
RECEIVE

Fl, F2: MODULATORS/DEMODULATORS

A(f) L.I-_---_

Fig. 2-Data over voice technique.

DATA FROM
SUBSCRIBER ---I

.A
I
I
I
I

COMMON
EQUIPMENT

TO
~-_.~PACKET

SWITCH

DATA TO
t---SUBSCRIBER L
I
I
I
I

...

and terminating calls from dial-up access subscribers. The local data
concentrator performs a number of other functions. It checks data
received from subscribers for transmission errors and, if necessary,
requests retransmission. To reduce transmission costs, data from
many customers are concentrated by the Local Data Concentrator
onto a 56-kb/s data facility to a packet switch. This greatly reduces
costs relative to providing individual data facilities to the packet switch
for each data call. The local data concentrator also provides a number
of per call administrative functions, such as billing, traffic, and error
measurements, relieving the packet switch of some of these functions.

The packet switch performs a number of important functions for
subscribers and hosts. From the subscriber's point of view, the packet
switch allows data calls to be connected to a large number of hosts.
From a service-provider point of view, the packet switch provides a
second level of subscriber concentration, allowing a single data link to
the host to be accessed from subscribers throughout the LATA. The
multiplexed network interface to the host allows up to 511 active
terminals to be served by a single 56-kb/s DATAPHONE Digital
Service (DDS) channel.14 This eliminates the need for a separate
modem and front-end processor port for each active line. It is expected
that most LA T As will be served by a single packet switch, although
large LAT As may eventually be served by multiple-packet switches.

In addition to direct connection to hosts, LADT will provide con
nections to inter-LATA data networks, thereby allowing subscribers
to access hosts throughout the nation and, eventually, through inter
national data networks.

A Network Control Center (NCC) will provide a centralized point
for monitoring and controlling the operation of LADT throughout the
LATA. It consists of a set of operations, administrative, and mainte
nance functions which are best located centrally in a LATA rather
than distributed to each local data concentrator. In some implemen
tations of LADT, the NCC may be combined into the packet switch .

2.2 Protocol standardization

LADT has been designed to use existing international protocol
standards where available. This allows compatibility with data equip
ment being marketed internationally and allows internetwork and
inter-LATA communications to be easily supported in the future.
Current standardization activities are focused on the Open Systems
Interconnect (OS!) modeP5 written by the International Organization
for Standardization and on the X.25 protocoP6 written by the Inter
national Telegraph and Telephone Consultative Committee (CCITT).
X.25 implements the first three levels of the OSI model. LADT has
chosen to support the X.25 protocol. At the terminal interface, the

LADT OVERVIEW 1119

link level of X.25 is supported with ASCII text call progress messages.
At the host interface, all three levels of X.25 are supported. Details of
the LADT terminal and host interfaces are described in Sections III
and IV, respectively.

2.3 Uniform numbering plan

International standards organizations, in particular the CCITT,
have provided standards for data-network numbering to facilitate
internetwork communications and addressing. The primary goal of
the numbering plan standards is to specify the structure and coding
of the international numbering plans for data networks. To do this,
standard X.121 has been developed.17 This standard specifies a num
bering structure that allows a maximum of 14 digits for data-network
numbering. The first four digits are termed a Data Network Identifi
cation Code (DNIC). DNICs identify the country and data network
within the country. Number assignment of DNICs is administered by
CCITT.

The remaining digits of the data-network number are termed a
Network Terminal Number (NTN). The NTN is required to be
numeric and to be at most 10 digits in length.

The LADT service has been assigned a single DNIC by the U.S.
State DepartmentjCCITT. This means that the structuring of the 10-
digit NTN must allow routing to the appropriate LATA. This has two
primary effects. The first is that the interexchange carriers must be
aware of the NTN structure of LADT to handle inter-LATA calls.
The second is that the individual telephone operating companies must
use a standard NTN structure to support network-wide communica
tions.

The LADT service has been designed to allow data communications
worldwide. A 10-digit LADT numbering plan will be used, similar in
structure to the today's telephone numbering plan, although inde
pendent of it. LADT NTN numbers have the following structure:

NPA-NXX-XXXX,

where NP A denotes the Numbering Plan Area codes used in the public
switched telephone network, N is an digit from 2 to 9, and X any digit
from 0 to 9.

2.4 Performance objectives

A number of performance objectives have been set for LADT,
assuring customers satisfactory service for a wide variety of data
applications. LADT is to provide 24-hour-a-day, 7-day-a-week service
without scheduled downtime. It is to be highly reliable with the service
available to a given subscriber 99.6 percent of the time. The probability

1120 TECHNICAL JOURNAL, JULY-AUGUST 1984

of a subscriber's request for service being denied because of lack of
system resources during the busy hour is to be less than 1 percent
except during the 10 busiest days of the year. The probability of an
error being introduced into customer's data by the network is to be
less than 1 in 108 packets sent. LADT introduces very little delay into
the connection between the subscriber and host. The delay between
the time LADT receives a packet from the subscriber and the time
that packet is placed in the output queue for transmission to the host
is to be less than 200 ms. This delay is defined as the time interval
from the receipt of the last character of information from the source
until the first character of that packet is ready for delivery to the
destination. This definition eliminates from the performance objective
the effects of customer choice of access line speeds and traffic loading
per host X.25 line.

2.5 Administrative capabilities

It is the goal of LADT that the entire network, both local data
concentrators and packet switch, be administered from a single loca
tion. Initially, billing information for dial-in subscribers, dedicated
subscribers, and hosts will be collected through separate mechanisms.
The collection of billing information for dial-in subscribers will not be
done by LADT equipment. Instead, dial-in subscribers are billed
according to the number of calls placed and holding time using
standard automatic message accounting records. Billing information
for direct-access subscribers is collected by the local data concentrators
and sent to the NCC after each call. Billing information for hosts is
collected by the packet switch. The eventual goal of LADT is for this
billing information to be sent by a data link to the operating company
revenue accounting office. In the initial implementation of LADT,
this billing information is transferred by magnetic tape.

Traffic reports generated at the NCC allow operations personnel to
monitor the functioning of the system and to engineer the system for
the prevailing traffic load. Capabilities are also to be provided at the
NCC to allow operations personnel to change such system data as
equipment configuration data, customer profile data, and routing
tables.

III. LADT TERMINAL INTERFACE

The OSI model, referred to in Section 2.2, provides a convenient
and useful model for defining the interface between data equipment.
It defines this interface in seven protocol layers or levels, each built
on the previous level (see Fig. 3). Public networks, such as LADT,
generally implement the first three levels of this model: the physical,

LADT OVERVIEW 1121

APPLICATION
~------------

APPLICATION
LAYER LAYER

PRESENTATION PRESENTATION -------------LAYER LAYER

SESSION SESSION
LAYER ------------- LAYER

TRANSPORT ------------- TRANSPORT
LAYER LAYER

NETWORK ------------- NETWORK
LAYER LAYER

LINK LINK
LAYER ------------- LAYER

PHYSICAL PHYSICAL
LAYER LAYER

SYSTEM A SYSTEM B

Fig. 3-0pen systems interconnect model.

link, and network levels. Both the terminal and host interface to
LADT18 will be described according to this model.

3.1 Physical-level interface

The physical level defines the electrical, mechanical, and procedural
control characteristics of the transmission facilities that provide access
to customers. As we discussed earlier, both direct- and dial-access
interfaces to LADT are provided. Two physical-level protocols are
therefore supported. For direct-access subscribers, the NCTE is pro
vided at the customer premises. This device forms the customer's
interface to the network. The NCTE is depicted in Fig. 4. The NCTE
voice interface is a tip and ring connection. A data interface has been
chosen to be compatible with the DATAPHONE Digital Service and
the circuit switched digital capability. This interface is provided with
an 8-pin connector. The data interface provides full-duplex 4.8-kb/s
synchronous transmission. Of the eight pins provided in the data
connector, four are currently assigned. Two leads provide balanced
transmit data and two leads provide balanced receive data. Baseband
bipolar return-to-zero signaling (50-percent duty cycle) is used for
transmission of data to and from the NCTE and is described by the
following coding rules: A binary 0 is transmitted as 0.0 volt. A binary
1 is transmitted as either a positive or negative pulse, opposite in
polarity to the previous pulse. This is the alternate polarity rule. An
example of bipolar signaling is shown in Fig. 5.

1122 TECHNICAL JOURNAL, JULY-AUGUST 1984

r-»
o
-I

o
< m
;;:0

:5
m
~

......
~
w

CUSTOMER
INTERFACE

TRANSMIT
DATA

RECEIVE
DATA

PLAIN
OLD

TELEPHONE
SERVICE

I I

I
I

I I

I I

I
I ,

I

1 I

I
I

I I

I
I

i
I

.~IIC BANDPASS
BIPOLAR TRANSMITTER FILTER

RECEIVER 28 kHz

~
LOOPBACK SIGNAL LOOP

T

I I
1~IIC

BANDPASS I I BIPOLAR
RECEIVER FILTER I I DRIVER

76 kHz

I I
I I

-- LOW.PASSl
-- FILTER

POWER
SUPPLY

I-J::
GROUND

\

\,
'

AC POWER

Fig. 4-LADT network circuit terminating equipment.

BINARY

VOLTAGE
WAVEFORM

/

o 0

UNK-
LEVEL

HEADER

o

Fig. 5-Bipolar signaling.

FRAME
I

INFORMATION
FIELD

Fig. 6-LAPB frame structure.

o 0

CHECK
CODE

When connected to the direct-access interface, the terminal equip
ment must perform the timing recovery and coding and decoding of
data. Timing recovery is required to enable the terminal equipment to
sample correctly the incoming synchronous data and to clock the
terminal equipment's transmit data to the NCTE. Coding and decod
ing data involve using the bipolar coding rules.

Dial access to LADT is supported via a 2I2A compatible interface.
Full-duplex 1.2-kb/s bit-synchronous transmission is supported. The
dial-access port of LADT automatically answers incoming calls. An
swer tone is provided to notify the user that a port has been connected.

3.2 Link-/network-Ievel interface

The link- and network-level interface protocols supported by LADT
are the same for direct and dial-up subscribers. The link-level protocol
used in LADT is the X.25 Link Access Procedure B (LAPB) protocol.
LAPB provides the subscriber an essentially error-free data channel
through the use of error detection and retransmission. This is impor
tant for applications such as electronic funds transfer. Both informa
tion and control are transferred across the access link in information
units called frames. The link level forms information frames, as shown
in Fig. 6. A header in the frame contains such information as what
type of frame it is (an information frame or a control frame). It also
contains a sequence number so that lost frames can be detected. The
header also contains acknowledgment information for frames received
from the other end. A I6-bit cyclic redundancy code is added to each
frame to detect transmission errors.

The values of the link-level parameters in the network implemen
tation are as follows:

1124 TECHNICAL JOURNAL, JULY-AUGUST 1984

1. The link-level window size, LAPB parameter k, is two frames.
This allows both the network and the terminal to send a second frame
without having to wait for the first one to be acknowledged.

2. The acknowledgment timer, parameter Tl, is 5.0 seconds. This
is how long the network will wait for an acknowledgment before
assuming the frame was lost and initiating recovery action. Timer Tl
is started at the end of the transmission of a frame. Therefore, the
terminal should not delay the response to a frame by more than Tl
minus T2, where T2 is total of the round-trip propagation delay of the
access line plus any processing time required by the network. The
value of T2 for the network will not exceed 0.3 second. In addition,
the network will not delay the response to a received frame by more
than 0.3 second, including round-trip propagation delay for an access
line.

3. The maximum number of attempts to obtain an appropriate
response to a transmitted frame, parameter N2, is 4. After N2 unsuc
cessful attempts, the network will initiate the appropriate link-level
recovery, as specified in X.25. Also, if the link cannot be restored in
N2 attempts, the network will clear the virtual call on the link, if one
exists.

4. The maximum number of bits in an information frame (excluding
flags and 0 bits inserted for transparency), parameter Nl, is 2080 bits
(260 octets). The information field must contain an integral number
of octets. If the terminal transmits an information frame whose
information field exceeds this length, the network will transmit a
frame reject response. If the terminal transmits an information frame
whose information field is not an integral number of octets in length,
the network will discard the frame without acknowledging it.

The LADT network-level access protocol provides the interface
procedures required to set up, maintain (i.e., control the transfer of
data), and clear virtual calls. To reduce the level of complexity of
terminal protocol software, and because X.25 does not currently sup
port dial-up protocols, LADT provides simple network-level messages
in the ASCII code set. A single logical channel is supported to the
subscriber. Data are transferred across this interface using information
frames. Control information is transferred across the interface using
several types of link -level frames.

Network-level signaling consists of signaling from the network to
the terminal using signaling messages and signaling from the terminal
to the network using a destination address. An information frame can
contain one or two signaling messages. All signaling messages and
destination addresses are coded using the ASCII code set complying
with ANSI X3.4.19 The network sets the value of the most significant
(parity) bit to 0 when transmitting a signaling message to the terminal.

LADT OVERVI EW 1125

The terminal may set the value of the most significant (parity) bit to
either 0 or 1 when transmitting the destination address to the network;
the network ignores the parity bit.

Figure 7 shows an example of the signaling message which prompts
for the called number and shows the ASCII coding. An example of
how these signaling messages are used to set up data calls in LADT is
given in Section V.

IV. LADT HOST INTERFACE

As we stated earlier, LADT will support all three levels of the X.25
protocol at the host interface. Reference 20 gives specifications of this
interface.

Host subscribers interface with LADT directly to the packet switch
using one or more channels. The DDS channels are supported at
2.4-, 4.8-, 9.6-, and 56-kb/s transmission speeds. The lower-speed
interfaces may be adequate for situations where only a small number
of simultaneous sessions are required. However, for interactive data
applications such as videotex, the information database is typically
provided on a large processor and the traffic load per active subscriber
is relatively low. Therefore, there may be hundreds or even thousands
of simultaneous sessions per information provider. For this kind of
situation, the high-speed 56-kb/s interface would be used.

LADT supports at the host interface the same balanced LAPB
supported on the terminal interface. Unlike the network-level protocol
at the terminal interface, which provides only a single logical channel,
the network level of X.25 at the host interface allows multiple, inde
pendent logical channels to be provided on a single physical link. This
is illustrated in Fig. 8. This multiple logical channel capability allows
customers to replace many individual front-end processor ports and
modems with a single higher-speed digital channel and interface port

OCTETS

Fig. 7-Signaling message to prompt subscriber for called number.

1126 TECHNICAL JOURNAL, JULY-AUGUST 1984

CUSTOMER
A

CUSTOMER
B

CUSTOMER
C

LOGICAL
,/-CHANNEL

LADT

~ PROCESS I
/ A

f------, /

X.25
INTERFACE

1 PROCESS I - B

f----l " '1 PROgESS I
HOST COMPUTER

Fig. 8-Multiple logical channels on one host link.

to the host. LADT supports up to 511 logical channels over a single
56-kb/s access line.

The X.25 interface allows the customer to use these logical channels
statically as permanent virtual circuits or dynamically as virtual calls.
The permanent virtual-circuit interface is meant to emulate a point
to-point private line for applications that do not require switching.
Virtual calls are used when the user wishes to use logical channels
dynamically. A combination of permanent virtual circuits and virtual
calls may be served over a single physical interface.

The LADT host interface allows customers to choose several packet
level facilities to meet particular application needs. The remainder of
this section describes some of these facilities.

4.1 Hunt groups

Even though LADT allows many data calls to be set up on a single
data link to a host, for very large hosts many data links will be needed
to handle the volume of data traffic. For these situations LADT
provides a hunt-group capability. A data network number is assigned
to the data links making up the hunt group. Incoming calls are assigned
to links by LADT in such a way as to try to have equal numbers of
data calls on each link.

4.2 Conditional removal of data links

There may be times when a host may want to remove a data link
from service but only after all existing data calls have terminated. To
do so, LADT provides a conditional removal capability. When re
quested to conditionally remove a data link from service, LADT will
then allow existing calls to remain on the link but will not allow new
incoming calls to be established.

LADT OVERVIEW 1127

4.3 Packet size selection

Packet-switching services like LADT require network resources on
a per-packet basis. The amount of processing required to switch a
packet is relatively independent of the actual number of bits in the
packet. Thus, users who must send large amounts of data can most
efficiently transfer their data by using large-size packets. LADT allows
users to select a maximum packet size of 128 octets or 256 octets of
user data. Given equal cost per packet, the user with large amounts of
data to send can more effectively use the switch by selecting a 256-
octet maximum.

4.4 Throughput and flow control

Virtual-circuit throughput is an important measure of packet
switching service. Because the switches and trunks are statistically
shared, brief storage of data from a particular virtual circuit is needed.
Thus, packet buffers are allocated for this purpose. However, the
system must protect itself from individual users taking an excessive
share of these packet buffers. LADT does this by requiring that when
an individual virtual circuit has used all of its share of packet buffers,
it is prohibited from sending any additional packets until the desti
nation accepts at least the first in sequence. The LADT X.25 interface
allows users to select packet-level window sizes of two or three packets.
This allows a virtual-circuit throughput of up to 9.6 kb/s.

4.5 Closed user groups

Closed user groups are supported on the X.25 interface to provide
security. By means of this feature, only calls from certain locations
are allowed to terminate on a host.

Closed user groups are implemented with a mechanism similar to a
key and lock. The key, called a closed user group number, is sent with
the call setup packet. If it matches the closed user group set allowed
at the destination, the call setup packet is sent to the destination. If
there is no match, the call is blocked.

4.6 Fast select

The fast-select facility is provided on the X.25 interface. It allows
the customer to transmit data as the call is established or torn down.
This is done by allowing up to 128 octets of user data to be sent along
with a call request packet. Likewise, the called party may send up to
12S-octets of data while issuing a request to clear the call.

4.7 Data connections between host and terminals

U sing the LADT host interface, hosts can set up data calls not only
to terminals, but to other hosts as well. When connected to another

1128 TECHNICAL JOURNAL, JULY-AUGUST 1984

host, all X.25 capabilities that the other host supports can be used.
When connected to terminals, however, certain limitations apply. This
is because LADT supports a simple network-level interface to termi
nals, and not all X.25 capabilities can be transferred across this
interface. For instance, the X.25 qualifier bit loses its significance on
such connections. Reference 21 describes host requirements when
connected to terminals on LADT. These are summarized in Table I.

V. CALL HANDLING

Let us now examine how data calls are handled in LADT. As an
example we will describe a data call from a dial-up LADT subscriber
to a host. This is illustrated in Fig. 9. A call from a subscriber with
direct access occurs in the same manner except that the need for
initially placing a telephone call is eliminated.

The subscriber begins by placing a telephone call to a special
directory number associated with LADT. This will result in the call
being routed to the nearest local data concentrator (quite likely one
in the same central office as the subscriber). Upon detecting ringing,
the local data concentrator answers the call and sends an answer tone
to the subscriber. This tone is recognized by the subscriber's terminal
(or data set), which responds by sending data carrier. This is detected
by the local data concentrator, which then returns data carrier itself
and begins establishing the X.25 LAPB protocol with the terminal.
After this protocol is established, the local data concentrator sends
the message

NUMBER PLEASE:

which IS printed on the screen of the subscriber's terminal. The

Table I-Summary of use of services, facilities, and
subscription items on host interface to provide compatibility

with terminal interface

Service, Facility, or Subscription Item Use

Specify the desired line transmission rate
Specify the desired number of logical channels and the range of logical

channel numbers
Virtual-call Service

Specify
Specify

Flow-control parameter negotiation
Incoming calls barred
Closed user group
Multiple addresses on an access line
Multiple-line hunt group
One-way logical channel outgoing
Outgoing calls barred
Throughput class negotiation
Fast select
Fast select acceptance
Permanent virtual circuit service

Mandatory
Mandatory
Precluded
Precluded
Optional
Optional
Optional
Optional
Optional
Optional
Optional
Optional

LADT OVERVIEW 1129

1 SUBSCRIBER DIALS LADT
2 DSI RETURNS ANSWER TONE

PACKET
SWITCH

3,4 DSI AND TERMINAL EXCHANGE CARRIER
5 DSI PROMPTS FOR CALLING NUMBER
6 CUSTOMER ENTERS CALLING NUMBER
7 DSI INDICATES CALL SETUP IN PROGRESS;
8 TO 11 DATA CALL SETUP TO HOST
12 DSI INDICATES CALL IS NOW SET UP

Fig. 9-Call setup example.

HOST

subscriber responds by entering the data network number of the
desired host. The local data concentrator does preliminary screening
on the number entered to ensure that it appears reasonable (e.g., has
the right number of digits) and sends the message

CALL BEING ATTEMPTED

to the subscriber. At the same time it takes the called number and
formats it into an X.25 call request packet, which it sends to the
packet switch. The packet switch translates the called number and
sends an X.25 incoming call packet to the called host. If the host
decides to accept the call it then sends an X.25 call accepted packet
to packet switch, which responds by sending an X.25 call connected
packet to the local data concentrator. The local data concentrator
responds by sending the message

CALL CONNECTED

to be printed on the subscriber's terminal.
At this point a connection has been established between the sub

scriber's terminal and the host. Thereafter, all information frames
received from the subscriber are sent transparently (without interpre
tation by LADT) to the host. If the call had been refused by the host,
or if the local data concentrator or packet switch detected an error in
the data network number, an appropriate message would have been
~ent to the subscriber.

The call can be cleared by either the subscriber or the host. The
subscriber can clear the call by sending a LAPB disconnect frame or
(in the case of a dial-up subscriber) by simply going on-hook. If the
host clears the call (by sending an X.25 clear request packet to the
packet switch) the message

1130 TECHNICAL JOURNAL, JULY-AUGUST 1984

CALL CLEARED BY THE END USER

is sent to the subscriber. At the end of the call, the local data
concentrator will send billing information to the NCC. This informa
tion includes the number of packets sent and received, the time the
call began, and its duration.

VI. SERVICE EVOLUTION

In the future additional capabilities will be added to LADT to
provide expanded customer features, improve system economics, and
further facilitate operations support. This section will summarize what
features are currently available in LADT and what features are
planned or are being considered.

6.1 Current services

The principal capabilities currently provided by LADT are the
following:

1. Dial-up access at 1.2 kb/s
2. Direct access at 4.8 kb/s
3. Synchronous (LAPB of X.25) terminal access protocol
4. Billing via holding time for dial-up subscribers
5. Fixed monthly charges plus packet and holding time sensitive

charging capabilities for direct access subscribers
6. All essential X.25 virtual call features on host links
7. Hunt group across host links
8. Conditional removal of host access lines.

6.2 Potential future services

A number of other capabilities are being considered for future
inclusion in LADT, although no decision to include such capabilities
has been made. Other access protocols may later be provided. For
example, an asynchronous terminal interface capability may be added
allowing asynchronous devices, including most home computers, to
access LADT. Full X.25 protocol to terminals might be provided. This
would permit subscribers to receive (as well as initiate) data calls and
would allow the subscriber to set up multiple, simultaneous data calls.
In the future, LADT customers may be able to place data calls to hosts
in other LATAs. This would be accomplished using the CCITT X.75
gateway protocol22 between the LADT and various interexchange data
networks. Other access arrangements to LADT might be introduced.
New billing capabilities may be included along with support capabili
ties in various operations support systems.

VII. INITIAL EXPERIENCE WITH LADT

The LADT service was initiated by Southern Bell Telephone Co. in
the southern Florida LATA on July 1, 1983, using equipment manu-

LADT OVERVIEW 1131

Fig. lO-The Viewtron™ service showing the Sceptre™ home terminal.

factured by Western Electric.23 A local data concentrator called the
data subscriber interface is being manufactured by AT&T Technolo
gies, Inc. for LADT. The AT&T Technologies, Inc. packet switch
available for LADT is the 1PSS packet switch24 also used in the AT&T
Communications basic packet-switching service. The initial applica
tion of LADT is the Viewtron service provided by Viewdata Corpora
tion of America (see Fig. 10). Subscribers access this service using the
Sceptre* videotex terminal designed AT&T Technologies.25 Twelve

* Trademark of AT&T Technologies, Inc.

1132 TECHNICAL JOURNAL, JULY-AUGUST 1984

southern Florida banks and over fifty information providers cooperate
in providing the Viewtron service. With Viewtron subscribers can read
up-to-the-minute news, order merchandise, post bulletin board mes
sages, consult an electronic encyclopedia, play games, and pay bills. It
is expected that by the end of 1984, 5000 subscribers will be regularly
accessing this service over LADT.

VIII. SUMMARY

LADT represents an important step into the information age. By
providing powerful and economic data transmission to homes and
small businesses, LADT has opened the door to important new infor
mation services. Many new and varied information services may soon
be provided over LADT. Our early experience with the service has
shown strong customer acceptance. As a result we expect LADT
service will become widely available.

REFERENCES

1. J. Tydeman, H. Lipinski, R. Adler, M. Nyhan, and L. Zwimpfer, Teletext and
Videotex in the United States, New York: McGraw Hill, 1982.

2. H. L. Morgan, "The Interconnected Future: Data Processing, Office Automation,
Personal Computing," VACN Symposium, May 1979, pp. 291-300.

3. N. Carruthers, "Personal Computers and Videotex," Viewdata 82, London October,
1982, (Middlesex: Online Conferences Limited, 1982), pp. 159-167.

4. The Viewtron Newsletter, Viewdata Corporation of America, Inc., Miami, Florida,
3 No.2, (June 27, 1983).

5. W. B. Cornfield, "Electronic Banking: Why Its Time Has Finally Come," Viewdata
82, October, 1982, New York, New York, (Middlesex: Online Conferences Limited,
1982), pp. 343-7.

6. D. Shaider, "Taking Videotex to Market: The CBS Role In The Joint CBS/AT&T
Ridgewood Trial," Videotex 83, New York, New York, June 27,1983 (Middlesex:
London Online Inc., 1983) pp. 93-8.

7. P. Sternberger, "Dow Jones News Retrieval Service, Videotex 81, Toronto, Ontario
May, 1981, (Middlesex: London Online Inc. 1981), pp. 85-94.

8. I. Dorros, "Telephone Nets Go Digital," IEEE Spectrum, 20, No.4 (April 1983), pp.
48-53.

9. F. J. Brophy, G. Herbert Honnold, and S. J. Thayer, "DATAPHONE® II Service
New Standard for Data Communications," Bell Lab. Rec., 59, No.8, October
1981.

10. L. Tymes, "TYMNET -A Terminal Oriented Communication Network," 1971
Spring Joint Computer Conf. AFIPS Conf. Proc., 38, pp. 211-6.

11. L. G. Roberts, "Telenet Principles and Practice," European Computing Conf. on
Commun. Networks, London, England, 1975; pp. 315-29.

12. D. W. Davies, et aI., "A Digital Communications Network for Computers Giving
Rapid Response at Remote Terminals," ACM Symposium Operating Systems
Problems, October 1967.

13. "Compatibility Criteria for Data Set 212A," USITA Technical Advisory No. 20-
Revision No.3, September 1977.

14. N. E. Snow and N. Knapp, Jr., "Digital Data System," B.S.T.J., 54, No.5 (May
June 1975), pp. 811-32.

15. H. Zimmermann, "OSI Reference Model-The ISO Model of Architecture for Open
System Interconnection," IEEE Trans. Commun., COM-28, No.4 (April 1980),
pp.425-32.

16. CCITT, "Interface Between Data Terminal Equipment (DTE) and Data Circuit
Terminating Equipment (DCE) For Terminals Operating In The Packet Mode
on Public Networks," Public Data Networks, Yellow Book, 8, Seventh Plenary
Assembly, Int. Telecommunications Union, Geneva, Switzerland, November,
1980, pp. 100-89.

LADT OVERVIEW 1133

17. CCITT, "International Numbering Plan For Public Data Networks," Public Data
Networks, Yellow Book, 8, Seventh Plenary Assembly, Int. Telecommunications
Union, Geneva, Switzerland, November 1980, pp. 245-56.

18. "Local Area Data Transport Terminal Interface Specification," AT&T Preliminary
Technical Reference, PUB 54200, June 1982.

19. American National Standard Code for Information Exchange, ANSI X3.4, Amer.
Nat. Standards Inst., Inc., 1977.

20. "X.25 Interface Specifications," AT&T Preliminary Technical Reference, PUB
5400, August 1981.

21. "Local Area Data Transport Host Interface Specifications," AT&T Preliminary
Technical Reference, PUB 54210, June 1982.

22. CCITT, "Terminal and Transit Call Control Procedures and Data Transfer System
on International Circuits Between Packet-Switched Data Networks," Public Data
Networks, Yellow Book, 8, Seventh Plenary Assembly, Int. Telecommunications
Union, Geneva, Switzerland, November 1980, pp. 142-207.

23. H. J. Kafka, W. J. Paule, and D. J. Stelte, "AT&T Technologies Implementation of
Local Area Data Transport-A Hardware and Software Overview," Bell Lab.
Tech. J., this issue.

24. J. C. Ehlinger and R. W. Stubblefield, "No. 1 PSS Service Capabilities and
Architecture," ICC '83, Boston, Mass.

25. Videotex '83, New York City, New York, June 27, 1983.

AUTHOR
M. Niel Ransom, B.S.E.E., 1970, and M.S.E.E., 1971, Old Dominion Uni
versity; Ph.D., 1973, University of Notre Dame; AT&T Bell Laboratories,
1973-. Mr. Ransom is currently Supervisor of the Switching Architecture
Planning Group of the Exploratory Switching Networks Department of AT&T
Bell Laboratories. His group is responsible for identifying network applications
of emerging switching technology. Prior to this, he held various supervisory
positions with applied research and had development responsibility for AT&T
products that provide Local Area Data Transport service. As a Member of
Technical Staff, he had various responsibilities in switching systems engi
neering, applied research in voice and data switching, and development of the
5ESS™ switching system.

1134 TECHNICAL JOURNAL, JUL V-AUGUST 1984

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

AT&T Technologies Implementation of Local
Area Data Transport-A Hardware and

Software Overview

By D. J. STEL TE,* H. J. KAFKA*, and W. J. PAULE*

(Manuscript received September 12, 1983)

AT&T Technologies has implemented hardware and software components
that will provide an economical Local Area Data Transport (LADT) service.
The AT&T Technologies LADT Generic 1.0 is composed of a No.1 PSS
packet switch, one or more statistical multiplexers called Data Subscriber
Interfaces (DSIs), and an Administrative Processor (AP) responsible for the
administrative functions of the network. This paper describes AT&T Tech
nologies LADT Generic 1.0 hardware and software architectures of the DSI
and AP components of the network.

I. INTRODUCTION

The AT&T Local Area Data Transport (LADT) t system is a packet
switched network that provides local exchange areas an economical
data communications capability.1 It incorporates inexpensive access
mechanisms, standard interfaces, high availability, and the potential
for quick and ubiquitous deployment.2

This system consists of three types of nodes (Fig. 1):
1. Data Subscriber Interfaces (DSIs), a statistical multiplexer that

terminates up to 124 customer lines and one high-speed network access
link.

2. The No.1 PSS packet switch, a high-reliability, high-availability

* AT&T Bell Laboratories.
t Acronyms are defined in the Glossary at the end of this paper.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1135

.....
W
Q"\

-i
m
n
I
Z
n »
r-
'--

o
c
;;:0

z »
r
'--

C
r-
-<
I »

C
C'l
C
Vl
-i

'" co
~

1.2 kb/s

VOICE OR DATA

VOICE

4.8 kb/s

VOICE AND DATA

DATASLC™ LINE

DATA

VOICE
SWITCH

MODEM
LINE CARD

• •

DATA SLC
LINE CARD

DATA
SUBSCRIBER
INTERFACE

OTHER
DSls

X.25

Fig. 1-LADT architecture.

ADMINISTRATIVE
PROCESSOR

X.25 SERVICE
VENDORS

.
•

X.253 data switch used for routing and transporting packets between
DSIs and service vendors.

3. The Administrative Processor (AP), a centralized point for pro
viding maintenance, billing, traffic, craft interface, and network-man
agement functions for the DSIs.

The newly developed DSI provides access and multiplexing func
tions for subscriber lines. The DSI supports two methods of access for
the customer interface. One is a switched access for either voice or
1.2-kb/s data communication through the public switched telephone
network. The other is a dedicated access at 4.8 kb/s that provides
simultaneous voice and data communication over a single wire pair.
The DSI supports Link Access Procedure B (LAPB) as the link-level
protocol for subscriber lines.

The No.1 PSS packet switch is the hub of the network and is used
for switching and transporting packets. It connects 56-kb/s lines from
DSIs and 9.6- or 56-kb/s lines from service providers. The packet
switch provides all essential virtual call services of the 1980 Interna
tional Telegraph and Telephone Consultative Committee (CCITT)
Recommendation X.25 protocol. 3

Like the packet switch, the Administrative Processor is imple
mented on a high-reliability, high-availability processor. It provides
network support functions in a central location for LADT.

While the preceding article provides an overview of the generic
LADT services, this article gives details of the AT&T Technologies
implementation of LADT.

II. DATA SUBSCRIBER INTERFACE HARDWARE

The DS! is a statistical multiplexer that concentrates data packets
from up to 124 subscriber lines onto a single 56-kb/s data link to the
packet switch.4 The primary purpose of the DSI is to reduce LADT
subscriber access costs by sharing packet-switch access costs among
many subscribers and by providing inexpensive access to the DS!. To
keep costs low while providing high availability, the DSI is imple
mented as a simplex system that is reliable and easily maintainable.

The DSI is divided into three major subunits, which consist of the
processor-complex subunit and two line-group subunits (Fig. 2). The
processor-complex subunit contains the intelligence of the DSI, the
protocol-handling functions, the network interface, and the craft in
terface. The processor-complex centralizes the processing power of the
DS! so that these functions can be shared over all of the subscriber
lines. This reduces the cost by minimizing the individual line interface
functions performed in the line-group subunits. Each of the line-group
subunits terminates up to 64 lines and multiplexes the data streams
from these lines into the processor complex. In line-group subunit 0,

LADT HARDWARE/SOFTWARE 1137

UPTO
60

SUBSCRIBER
LINES

UPTO
64

SUBSCRIBER
LINES

· · ·

•
• ·

LlNE-
GROUP f--SUBUNIT

0

~ PROCESSOR-
COMPLEX - SUBUNIT

LlNE-
GROUP -SUBUNIT

1

Fig. 2-Hardware subunits of aDS!.

56-kb/s
LINK
TO
PACKET
SWITCH

4 of the lines are used for test circuitry, while in line-group subunit 1
all 64 lines are available for serving subscribers. The following sections
give physical and functional descriptions of the DSI and its compo
nents.

2.7 Physical description

LADT subscriber access costs are reduced by minimizing the amount
of transmission over lines that are not concentrated. This is accom
plished by locating DSIs in the same central offices with voice switches.
The DSI hardware is optimized for installation and operation in the
central office environment.

The DSI frame, shown in Fig. 3, uses a standard set of devices,
apparatus, equipment, and design tools that are common to many
AT&T Technologies products.5 The DSI frame uses a standard frame
work, which is 7 feet high, 2 feet and 2 inches wide, and 18 inches
deep. Each frame contains up to two DSI units and one -48V fuse
panel unit. The base of each frame also contains two -48V filter
circuits, one for each of the two power buses entering the frame.

A DSI unit, shown in Fig. 4, occupies 24 inches of vertical space in
the frame. Each unit consists of three 8-inch shelves equipped with
backplanes. The upper shelf contains the line-group 0 subunit, the
middle shelf contains the processor-complex subunit, and the bottom
shelf contains the line-group 1 subunit. Each shelf contains its own
power converters for the circuit packs in that level so that a power
failure in one of the line-group subunits will not result in the failure
of the entire unit. A fully equipped DSI unit contains 43 circuit packs.

Four types of cables connect the DSI to other equipment in a central

1138 TECHNICAL JOURNAL, JULY-AUGUST 1984

OSI
UNIT
o

OSI
UNIT
1

FUSE PANEL

Fig. 3-DSI frame configuration with two DSI units.

office. These cables are installed when the DSI is installed. The cables
include:

1. Power cables, which deliver -48V power to the frame from the
central office supply.

2. Tip and ring cables, which connect the subscriber-line interfaces
on the DSI to the main distributing frame in the central office.

3. 56-kb/s link cables, which provide the interface between the DSI
and the packet switch.

4. Central office cables, which connect to alarm and scan points of
the central office through the main distributing frame.

LADT HARDWARE/SOFTWARE 1139

Fig. 4-DSI unit.

2.2 Processor-complex subunit

The processor-complex subunit is designed to provide all of the
protocol handling and processing power required in the DSI. The tasks
that must be performed are functionally partitioned between special
ized hardware components and two general-purpose microprocessors
in order to provide optimal performance and flexible service capabili
ties at a low cost.

Figure 5 shows the functional components of the DSI processor
complex. The main-processor circuit pack contains a general-purpose

1140 TECHNICAL JOURNAL, JULY-AUGUST 1984

DATA { TO
LINE-GROUP

SUBUNITS

CONTROL AND {
STATUS TO

LINE-GROUP
SUBUNITS

DMA
PROCESSOR

MAIN
MEMORY

POWER
CONTROL

AND
DISPLAY

S
Y
S
T
E
M

B
U
S

MAIN
PROCESSOR

Fig. 5-DSI processor-complex subunit.

56-kb/s
FACILITY LINK TO

INTERFACE PACKET
SWITCH

processor that handles call processing, the higher levels of protocols,
and general control functions. The main-memory circuit packs provide
memory for the main processor's programs and for data buffers. The
power-control-and-display circuit pack controls all of the power con
verters in the DSI and provides the local craft interface for the DSI.
The facility-interface circuit pack provides electrical interfaces for the
56-kb/s data link to the packet switch. The control-buffer-and-clock
circuit pack generates clocks for the DSI and provides the main
processor with convenient access to the line-group subunits. The
Direct Memory Access (DMA)-processor circuit pack converts be
tween buffered subscriber data packets and data bytes, and the mul
tiplexed-protocol-formatter circuit pack converts between data bytes
and data bits as it handles the lower levels of the protocol on the
subscriber lines. The following sections provide more details on these
seven types of circuit packs in the processor-complex subunit and on
the system bus that interconnects them.

2.2.1 System bus

As Fig. 5 illustrates, the processor complex is organized around a
general-purpose microprocessor bus called the system bus. Most of the

LADT HARDWARE/SOFTWARE 1141

communication between various components of the processor-complex
subunit occurs over this bus. The system bus consists of a 20-bit
address bus and a I6-bit data bus. The data and address signals are
both protected by parity bits. Other signals that are considered to be
a part of the bus include read and write strobes, circuit-pack selects,
interrupt requests, bus arbitration signals, and bus timing signals.

2.2.2 Main processor

The main-processor circuit pack contains the controlling intelli
gence of the DSI in the form of a microprocessor. This microprocessor
is responsible for the higher levels of protocols, maintenance, and line
control commands, and in general the rest of the DSI. As shown in
Fig. 6, the main-processor circuit pack also contains general-purpose
microprocessor support circuitry, such as bootstrap Read-Only Mem
ory (ROM), scratch-pad Random Access Memory (RAM), bus con
trols, interrupt controls, direct-memory-access controls, memory and
I/O controls, a sanity timer, and an AT&T Technologies X.25 Protocol
Controller6 (XPC) integrated circuit.

The main-processor circuit pack is based on an Intel 8086 micro
processor operating at 5 MHz, with associated clock and reset circuitry.
The main-processor circuit pack also includes 64K bytes of bootstrap
RO M and 4K bytes of static RAM that are used during system
initializations. The bootstrap ROM stores initialization programs,
diagnostic programs, and a download program. These programs enable
the DSI to obtain its operational software by placing an X.25 call to
the AP through the packet switch. The RAM serves as a temporary
scratch-pad memory that is used until the main processor can verify
the integrity of the main-memory circuit packs. After the main
memory diagnostics are completed, the RAM on the main-processor
circuit pack is disabled and logically replaced by a section of the main
memory.

Large amounts of customer data pass between various components
of the processor-complex subunit and the data buffers in main mem
ory. To make these data transfers as efficient as possible, the main
processor permits other components of the DSI to access the main
memory directly by granting them control of the system bus. The
main processor includes circuitry to control these direct-memory
access transfers and to arbitrate control of the system bus.

In any system with the hardware and software complexity of the
DSI, major faults or illegal states may occur that prevent normal
recovery actions from taking place. To facilitate rapid recovery in
these situations, the main-processor circuit pack contains a hardware
sanity timer. After this timer is initialized, it must be periodically reset
by the main processor to keep from expiring. If the main processor

1142 TECHNICAL JOURNAL, JULY-AUGUST 1984

SYSTEM BUS

64K
ROM

4K
RAM

SANITY
TIMER

INTERRUPT
CONTROLS

DMA
CONTROLS

INTERNAL
BUS

B086
MICRO

PROCESSOR

XPC

Fig. 6-DSI main processor.

allows the sanity timer to expire, the main-processor circuit is reset
by an unmaskable interrupt so that appropriate recovery action can
be taken.

The main-processor circuit contains an XPC integrated circuit,6
which autonomously handles the complete X.25 level-2 (link level)
protocol for the 56-kb/s link to the packet switch. The XPC chip
handles communications with the packet switch by transferring pack
ets in and out of main-memory data buffers through direct-memory
access. The XPC notifies the microprocessor when significant events
on the link occur, such as when packets are successfully received or
when the packet switch acknowledges the reception of a packet. By
autonomously handling the lower levels of the X.25 protocol, the XPC
chip enables the microprocessor to concentrate on higher-level func
tions.

Unusual or significant system events are reported to the main
processor by system interrupts. The main processor contains 15 in
dependently maskable interrupt controls with programmable priori
ties.

2.2.3 Main memory

The processor complex has three identical circuit packs that form
the DSI main memory. Each of these circuit packs has 256K bytes of

LADT HARDWARE/SOFTWARE 1143

RAM. To increase the reliability of the DSI, the main-memory circuit
packs include additional circuitry for write protection and for the
detection and correction of both hard and soft memory errors. The
DSI main memory provides storage for main-processor operational
software, main-processor data, and packet-data buffers.

The memory array on each circuit pack consists of 128,000 words
of 22 bits each. Sixteen of the bits store the normal memory word,
and the six additional bits provide error detection and correction using
a modified Hamming code. The memory array uses AT&T Technolo
gies 64K-bit dynamic RAM chips. Each circuit pack also contains
circuitry to refresh the dynamic RAM chips and to arbitrate between
memory access cycles and refresh cycles.

A modified Hamming error detection and correction code is used to
correct all single-bit memory errors and to detect all double-bit errors.
Any errors also cause the generation of an interrupt to the main
processor. The Hamming circuitry supports both byte and word reads
and writes.

The main-memory write-protection circuitry allows the main pro
cessor to write-protect any section's main memory in 512-word (lK
byte) blocks. When an attempt to write into a protected area occurs,
the main memory prevents a write from occurring and causes an
interrupt to the main processor. Write-protecting sections of memory
that contain the main-processor program text help to ensure the
integrity of the DS!. When either Hamming or write-protect errors
occur, an error register traps the address where the error occurred so
that the main processor can take appropriate corrective action.

2.2.4 Power control and display

The power-control-and-display circuit pack in the processor com
plex contains the local craft interface and the relay contacts for the
central office alarm interface. All of the power converters in the DSI
are controlled from this circuit pack through the use of switches and
Light-Emitting Diodes (LEDs), and other LED displays are used for
maintenance and debugging purposes. All of the switches and LED
displays are mounted on the faceplate to facilitate access by craft
personnel.

The faceplate, shown in Fig. 7, is divided into four areas of indicators
and switches. These areas correspond to the three subunits (line group
0, line group 1, and the processor complex) and the craft diagnostic
display section. The three subunit areas give the craft control of the
DSI and its subunits. By observing the indicator lights and by oper
ating the appropriate switches, the craft can take a subunit out of
service, remove power from a subunit, restore power to a subunit, and
request restoration to service of the subunit. The lights will also reflect

1144 TECHNICAL JOURNAL, JULY-AUGUST 1984

DIAGNOSTIC DISPLAY
DATA CODE

MP RAM LINK TRAP

oooD
POWER CONTROL

LINE GROUP 0

ALM RQIP ROS 005 OFF

00000
MOR ON OFF o RSTOROS 00

PROCESSOR COMPLEX

ALM RQIP ROS· 005 OFF

00000
MOR ON OFF o RSTOROS 0 0 ~

LINE GROUP 1
ALM RQIP ROS 005 OFF

00000
MOR ON OFF o RSTOROS 00

LAMP TEST 0
~----------------~~

Fig. 7-Faceplate of the power-control-and-display circuit pack.

the status of each subunit when remove/restore service requests are
initiated remotely by the AP.

The diagnostic display section of the faceplate contains three LED
lights and two 7 -segment displays. This diagnostic display section is
used to provide fault localization when the link between the DSI and
the AP is not functional. During initialization of the DSI, the diag
nostic display indicates the correct operation of the DSI main proces-

LADT HARDWARE/SOFTWARE 1145

sor, the DSI main memory, and the data link to the packet switch as
determined by the ROM-based diagnostics in the main processor.
Thus, if a failure occurs during initialization, the craft can make
circuit-pack replacements based on the state of the diagnostic display.

2.2.5 Facility interFace

The facility-interface circuit pack provides for several electrical
interfaces at the 56-kb/s link between the DSI and the packet switch.
The DSI can be located either remotely from the packet switch or in
the same building as the packet switch. The facility-interface card
permits the choice of a transmission mechanism that is cost-effective
for each installation of a DSI.

For the case when both the DSI and the packet switch are not
collocated, the physical link can be provided by a Digital Data System 7

private digital line in which the DSI looks electrically like Data
Terminal Equipment (DTE) and connects to a Data-Service Unit.B

This general-purpose interface permits the DSI to use standard data
transmission equipment to communicate with the packet switch.

For the case when the DSI and packet switch are located in the
same building, a direct-link option is provided to reduce the need for
data communication equipment external to the DSI. This interface
allows the packet switch and the DSI to be directly connected when
they are located close together. For slightly longer distances, limited
distance modems can be used.

The above two DSI interfaces are supplied as standard equipment
and can support any DSI placement currently envisioned. However,
since many DSI installations will be in central offices with digital
facilities, the facility-interface circuit pack provides an interface that
can bypass a substantial amount of the standard customer-interface
hardware. This interface, called the DS-O interface because it connects
to the digital facilities at the DS-O level,9 can be used to alleviate the
need for both the ac-powered data service unit and the office channel
unit. The DSI's ability to directly meet the DS-O interface reduces
the overall cost of the packet-network interface.

2.2.6 Control buFFer and clock

The control-buffer-and-clock circuit pack contains a clock section,
which transmits clock and synchronization signals to many of the
other circuit packs in the DSI, and a control-buffer section, which
provides a convenient means for the main processor to access registers
in the line-group subunits that control and reflect the state of the
subscriber lines.

The clock section includes a crystal-controlled phase-locked-loop
oscillator, divide chains, and buffers, which provide most of the clocks

1146 TECHNICAL JOURNAL, JULY-AUGUST 1984

used throughout the DSI. The crystal-controlled oscillator can free
run or it can be phase-locked to one of several external sources. This
synchronization capability permits the subscriber-line data rates to be
locked to network clocks. When the DSI is configured to be phase
locked to an external clock source, the control-buffer-and-clock circuit
pack reports an error condition whenever the phase lock is lost.

The control-buffer-and-clock circuit pack also contains a control
buffer section with a buffer memory and a scanning mechanism. This
gives the main processor a simple memory-like interface to registers
on the line-interface circuit packs (line cards) that terminate the
subscriber lines, without the reliability problems that would result
from extending the system bus to all of these circuit packs. This
interface permits the main processor to carry out line control and
maintenance functions on each subscriber line. The control buffer and
clock controls the distribution of the line control information from
the control buffer memory to the line cards, and controls the return
of status information from the line cards to the status buffer memory.
The main processor accesses the control and status information simply
by writing to the control memory and reading from the status memory.

2.2.7 DMA processor

The Direct-Memory-Access (DMA)-processor circuit pack and the
multiplexed-protocol-formatter circuit pack together handle low-level
protocol functions for each of the 128 lines (124 subscriber lines plus
4 test lines) supported by a DSI. The multiplexed protocol formatter
(described below) converts individual data bits from the subscriber
lines to bytes of information frames. The DMA processor transfers
these bytes into and out of main-memory packet-data buffers and
controls the multiplexed protocol formatter.

The DMA-processor circuit pack contains an Intel 8086 micro
processor with specialized hardware and ROM-based firmware to put
data bytes from the subscriber lines into the DSI main memory, and
to take data bytes from the DSI main memory for transmission to the
subscriber lines. The DMA processor contains bus interface hardware
that enables it to transfer data bytes in and out of main memory with
direct-memory-access techniques. The DMA processor also contains
hardware for direct communication with the main processor. This
hardware includes First-In First-Out (FIFO) memories for commands
and responses, a shared memory for line states and packet-buffer
addresses, and special registers. Other hardware on the DMA-proces
sor circuit pack includes local static RAM, and specialized hardware
to interface to the multiplexed protocol formatter. The DMA processor
participates in certain maintenance and line control functions because
it acts as the interface between the main processor and the multiplexed

LADT HARDWARE/SOFTWARE 1147

protocol formatter. The firmware that controls the DMA processor is
described later in this paper.

2.2.8 Multiplexed protocol formatter

The multiplexed-protocol-formatter circuit pack is a time-shared
state machine that uses specialized hardware and memory to handle
frame-sublevel protocol functions, including flag and frame recogni
tion, bit stuffing and un stuffing, byte assembly and disassembly, and
Cyclic Redundancy Check (CRC) generation and checking, for up to
128 lines. The multiplexed protocol formatter handles all 128 lines on
time-shared hardware. This reduces costs and simplifies maintenance
by using less hardware and by eliminating the complexity of having
128 independent protocol-handling devices. The multiplexed protocol
formatter does not interface directly to the system bus. Instead, it is
directly controlled by the DMA processor (and therefore indirectly
controlled by the main processor). The multiplexed protocol formatter
also interfaces to each line-group subunit through time-multiplexed
data streams, which contain data bits for all of the subscriber lines in
the line-group subunits.

To provide the above functions, the multiplexed protocol formatter
consists of two finite-state machines that are time-shared among all
customer channels. The basic structure of the multiplexed protocol
formatter is shown in Fig. 8. One state machine performs transmission
functions, and the other state machine performs reception functions.
Each of these state machines is configured for a particular channel
immediately before action is required to service that channel. This
configuration, or state information, is stored for each channel's re
ceiver and transmitter in the state memory sections shown in Fig. 8.
After the channel has been serviced, the new state is stored in memory
and the present state of the next line is obtained. By performing these
operations at a rate equal to the combined line rates of all channels,
the multiplexed protocol formatter handles its portion of the protocol
for all lines.

The multiplexed protocol formatter also contains command memo
ries and FIFOs that interface with the DMA processor. The DMA
processor passes information to the multiplexed protocol formatter by
writing into the command memories. The information in these mem
ories includes line control information and data bytes to be transmitted
to the subscriber lines. These memories have separate locations for
each line, so the DMA processor can effectively control all of the lines
simultaneously. The multiplexed protocol formatter passes informa
tion to the DMA processor by writing into FIFO memories. The
information includes line-status information and data bytes received

1148 TECHNICAL JOURNAL, JULY-AUGUST 1984

TO{ LINE-GROUP
SUBUNITS

Fig. 8-DSI multiplexed protocol formatter.

from the customer lines. Each entry also includes a line number, which
tells the DMA processor the subscriber line to which the entry applies.

2.3 Line-group subunit

Figure 9 is a functional representation of a DSI line-group subunit.
The line group consists of one group-distributor-circuit circuit pack
and up to 16 line-interface circuit packs, or line cards. The line-group
subunits of the DSI may be configured to support various mixtures of
line interfaces because the line cards that terminate subscriber lines
meet the same backplane interface. The mixture of subscriber lines
that terminate on a DSI is determined by the types of line cards that
appear in the line-group subunits.

The line cards contain the interfaces to the subscriber lines. Each
subscriber line terminates on one of the line circuits on a line card.
These line circuits convert the modulated or multiplexed data format
on the subscriber line to a digital data stream. Each line circuit also
responds to control bits and supplies status bits that are used for line
control and maintenance functions. Each line card contains three or
four line circuits and a line-card common circuit, which converts the
data, control, and status information into the proper format for the
backplane interface to the group-distributor circuit. The initial types
of line cards for the DSI include modem line cards with four modem

LADT HARDWARE/SOFTWARE 1149

SUBSCRIBER
LINES

TEST
ACCESS
CIRCUIT

DATASLC
OR MODEM
LINE CARD

•

DATASLC
OR MODEM
LINE CARD

o

GROU~ TO
DISTRIBUTOR !4---. PROCESSOR

CIRCUIT COMPLEX

2

15

Fig. 9-DSI line-group subunit.

line circuits per circuit pack, and data SLC* (Subscriber Line Concen
trators) line cards with three data SLC line circuits per circuit pack.

2.3.1 Group-distributor circuit

The group-distributor circuit pack distributes clocks, data infor
mation, and control information from the processor complex to the
individual line cards. Since the multiplexed protocol formatter requires
the data bits from the line cards to be time-multiplexed, the group
distributor circuit performs the necessary multiplexingjdemultiplexing
between the information format for the processor complex and the
information format for the line cards. The group-distributor circuit
gives each line card a separate set of signals. This permits all of the
line cards to have the same interface to the group-distributor circuit.
It also increases the maintainability and reliability of the line group
by isolating the effects of line-card failures. The group-distributor
circuit also contains circuitry to assist in the maintenance of the
control information paths to the line cards.

2.3.2 Modem line card

The modem line card is currently expected to be the most common

* Trademark of AT&T Technologies, Inc.

1150 TECHNICAL JOURNAL, JULY-AUGUST 1984

en
w
z
::::i
a:
w
CD

a:
u
en
CD
::l
en

MODEM LINE CIRCUIT

LINE-INTERFACE
CIRCUITRY

-t-------~ MODEM LINE CIRCUIT

-t-------~ MODEM LINE CIRCUIT

-t-------~ MODEM LINE CIRCUIT

COMMON
CIRCUIT

Fig.lO-DSI modem line card.

}

TO GROUP
DISTRIBUTOR
CIRCUIT

of the DSI line cards. The modem line card has four line circuits, each
of which interfaces to one subscriber line. As Fig. 10 indicates, the
modem line card consists of a common circuit, which is shared over
all of the subscriber lines, and four modem line circuits (one for each
subscriber line). Each modem line circuit performs the functions of an
answer-only, 1.2-kb/s 212A modem lO operating in the synchronous
mode. The common circuit includes clock circuitry for the individual
modem line circuits and interface circuitry for meeting the common
backplane interface to the group-distributor circuit. This common
circuit is implemented in a custom Metal Oxide Semiconductor (MaS)
device.

Each of the modem circuits on a modem line card includes a Digital
Signal Processor (DSP) integrated circuitll made by AT&T Technol
ogies, which does the actual modulation and demodulation; a codec,
which converts between the analog signals on the subscriber line and
the digital format used by the DSP; and circuitry to interface to the
subscriber line. The DSP performs most of the data functions of the
212A modem, including high-order digital filters for modulation and
demodulation, frequency generation for modulation, carrier detection,
clock recovery, and data scrambling/descrambling. The line-interface
circuitry includes a ringing detector (since the modem line card is
alerted to incoming calls by the presence of ringing on the subscriber
lines), a 2-wire to 4-wire hybrid, and line-control relays.

Each line-card slot in the line-group subunit backplane is equipped
with shorting contacts, which close whenever a line card is removed
from the slot. In the case of modem lines, these contacts make the
lines appear busy to the central office so that they will be skipped in

LADT HARDWARE/SOFTWARE 1151

VOICE SWITCH
I

/

en
w
z
:::i
a:
w
CD

a:
u
en
CD
:>
en

I DATASLCTM LINE CIRCUIT

I LOW~PASS~ I FILTER

1TRANSMIT
FILTER MODULATOR ~

L{ RECEIVE DEMODULATOR ~ FILTER COMMON
CIRCUIT

I DATASLC LINE CIRCUIT r-
I DATASLC LINE CIRCUIT f-

Fig. ll-DSI data SLC™ line card.

- -
}

TO
GROUP
DISTRIBUTOR
CIRCUIT

the line-hunting sequence. This prevents calls from terminating to
lines that are temporarily unequipped in the DSI.

2.3.3 Data SLC line card

Data SLC system provides simultaneous voice and data channels on
a single pair of wires through a technique similar to the SLC-l
subscriber carrier system, except that the derived voice channel of the
SLC-l system is replaced by a data channel in the data SLC system.
As Fig. 1 indicates, the data SLC system loop is terminated by a data
SLC line card at the DSI and by a data SLC remote terminal at the
customer premises. The data SLC line card and remote terminal
separate the data and voice channels in order to maintain two inde
pendent paths: a voice path between the central office and the normal
subscriber telephone equipment, and a data path between the subscri
ber data terminal and the DSI.

As Fig. 11 indicates, the data SLC line card consists of a common
circuit, which is shared over all three of the subscriber lines, and three
line circuits, each of which is dedicated to one subscriber line. The
data SLC line-card common circuit includes interface circuitry for
meeting the common backplane interface to the group-distributor
circuit, and clock circuitry that generates the clocks that are needed
by the line circuits. The line circuits include passive filters to keep the

1152 TECHNICAL JOURNAL, JULY-AUGUST 1984

high-frequency data carrier signals from being sent to the central
office voice switch. Since these filters are passive, power failures in
the line-group subunit do not affect the integrity of the voice path.
Other filters in the line circuit separate the data channels from the
voice channel and from each other. The data channel uses Frequency
Shift Keying (FSK) modulation with carrier frequencies of 76 kHz
and 28 kHz for data transmitted to the subscriber and to the DSI,
respectively. The line circuits include circuitry to send a message to
the data SLC remote terminal in order to invoke "far end loopback",
as well as circuitry to perform a digital loop back on the data SLC line
card itself. These loopback points permit the main processor to verify
the integrity of the data paths.

Since the data SLC line card and the remote terminal are involved
in both the data path and the voice path, they have been carefully
designed to ensure the integrity of the voice channel in the event of
power failures and failures in the data channel. Occasionally, failures
in the data SLC line card require its replacement. To avoid disruption
of the voice paths while repairs are being made, the line-group subunit
backplanes contain shorting contacts. These contacts close whenever
the data SLC line card is removed from the DSI, connecting the
subscriber loop directly to the central office. This ensures the conti
nuity of the voice path between the subscriber and the central office
voice switch when the data SLC line card is removed from the DSI.

2.3.4 Test-access circuit

Each DSI contains one test-access circuit pack, which is used for
diagnosing and maintaining line cards. The test-access circuit facili
tates fault isolation by simulating customer premises equipment in
order to determine whether a fault on a subscriber line is caused by a
line card in the DSI.

The test-access circuit occupies the first line-card position in line
group subunit o. It contains circuitry that simulates dial-up and direct
subscriber lines, including an originate-only modem, a data SLC
remote terminal, a ringing generator, and loss insertion circuits. Under
command of the main processor, any line circuit in the DSI can be
temporarily disconnected from a subscriber line and connected to the
test-access circuit. This permits the DSI to thoroughly diagnose the
line circuit and to localize faults within the DSI.

2.4 Data SLC remote terminal

As Fig. 1 shows, the data SLC remote terminal terminates the data
SLC loop on the customer premises. Although the remote terminal
draws ac power from the customer premises, it is part of the network
and serves as the Network Channel Terminating Equipment. It uses

LADT HARDWARE/SOFTWARE 1153

a passive low-pass filter to pass the voiceband to standard telephones.
The modulation and demodulation circuitry is similar to the circuitry
of the data SLC line circuit. Other circuitry in the data SLC remote
terminal performs clock recovery and provides the interface to the
subscriber data terminal. This is a 4-wire interface using baseband,
bipolar, return-to-zero signaling.12 The data SLC remote terminal also
contains circuitry to loop back the data path for maintenance purposes.

2.5 DSI hardware provisions for maintenance

The DSI hardware design incorporates many features to detect and
isolate hardware faults. These features help to ensure high availability
by detecting and isolating minor faults before major service disruptions
occur and by localizing faults to circuit packs so that rapid repairs can
be made by replacing the circuit pack. The circuitry that implements
these features falls into two main classes: operational error detection
circuitry and diagnostic error detection circuitry. The operational error
detection circuitry continuously and automatically checks for errors
while the DSI is operating normally. If an error is found, it is reported
to the main processor so that corrective action may be taken. The
diagnostic error detection circuitry provides thorough operational
checks and fault localization. Since this diagnostic error detection
circuitry could interfere with normal DSI operations, it must be
explicitly requested by diagnostic software.

2.5.1 Operational error detection circuitry

Several types of error detection circuitry operate automatically and
notify the main processor only when errors occur. The parity bits sent
over the processor-complex bus fall into this category. During every
bus cycle involving a transfer of information between two circuit
packs, the circuit pack that is driving the address bus generates the
address parity bit, and the circuit pack driving the data bus generates
the data parity bits. The circuit pack that reads the bus also checks
bus parity. If any error is detected, an interrupt notifies the main
processor. This permits the rapid detection of bus faults.

Parity bits are also sent between the control buffer and clock and
the line cards in order to verify the integrity of the control and status
data path. The method of generating and checking these parity bits
allows the control buffer and clock to verify the integrity of this path
both to and from the line cards. The control buffer and clock generates
a parity bit over the control data, and sends these data through the
group-distributor circuit to a line card. The line card determines the
sense of the parity bit (odd or even), and then generates a parity bit
over the status information that has the same sense (odd or even) as
the parity bit that it received. The line card sends the status infor-

1154 TECHNICAL JOURNAL, JULY-AUGUST 1984

mation and parity bit back to the control buffer and clock through the
group-distributor circuit. The control buffer and clock checks the
sense of the parity over the status information to confirm that it
matches the sense of the parity that it sent out with the control
information. If an error is detected, the main processor is alerted.

By varying the sense of the parity in a particular manner, the
control buffer and clock uses the parity mechanism to verify other
aspects of the control and status scanning procedure. In each cycle of
scanning the 128 lines, the control buffer and clock sends out odd
parity to 127 of the lines and even parity to the other line. The line
that receives the even parity is changed from one cycle to the next, so
that all lines receive even parity once in every 128 cycles. With this
procedure, the control buffer and clock confirms the integrity of the
control and status path, confirms the parity checking and generating
hardware on the line cards, and confirms that it is transmitting to and
receiving from the proper line card at each point in the cycle.

The multiplexed protocol formatter and the line cards exchange
parity over the data bits in a manner similar to the exchange between
the control buffer and clock and the line cards. If the multiplexed
protocol formatter detects any parity errors, it notifies the D MA
processor, and the DMA processor notifies the main processor. In this
way, all of the major data paths in the DSI are continuously monitored
for integrity through the use of parity bits. This permits the main
processor to detect and respond to faults very rapidly.

2.5.2 Diagnostic circuitry

The DSI contains diagnostic error detection circuitry, which enables
the main processor to verify the proper operation of the circuitry, to
localize any detected faults to a particular component, to verify the
repair of the DSI, and to reconfigure the DSI so that it can operate in
the presence of certain faults.

The localization of faults is accomplished principally through loop
back points. At a loopback point, the main processor can order the
transmit data to be looped back to the received data. This enables the
main processor to compare the received data to a known pattern that
it is transmitting in order to verify that the circuitry up to the loopback
point is operating properly. Loopback points occur at strategic loca
tions in the DSI in order to permit the detection of faults and to
permit the determination of the location of faults. Since the data
coming from the customer are ignored when a loopback is activated,
loopback tests are only performed when customers are not being served
by the portion of the circuitry under investigation.

The DSI contains diagnostic circuitry, which permits the main
processor to inject faults in order to verify that fault detection circuitry

LADT HARDWARE/SOFTWARE 1155

is operating properly. As an example, the main processor can force
bad parity to be generated by the multiplexed protocol formatter in
order to confirm that the bad parity is sent to a line card, returned to
the multiplexed protocol formatter, and reported back to the main
processor.

III. LADT SOFTWARE OVERVIEW

To make the network more flexible and cost-effective, functions in
the LADT system are divided between two different types of proces
sors. The functions that provide the interface to subscriber lines tend
to be real-time intensive and are performed in small, microprocessor
based concentrators called Data Subscriber Interfaces (DSls). The
DSls were kept simple to make them both reliable and cost-effective.

Functions such as billing and traffic-data processing, required to
administer an LADT network, were centralized in the AP, the highly
reliable duplex computer. Since only one AP is required per LADT
network, it can have resources such as terminals, printers, and disk
storage that cannot be economically provided on each DS!. The disk
storage in the AP is used to store the operational software of the DSls
so that they do not need to have local mass storage. The AP also
provides a convenient central location from which the network can be
administered.

Many LADT functions are divided between the DSls and the AP.
For example, traffic data for subscriber lines are collected in the DSls,
then sent to the AP for processing into printed reports. Table I shows
how functions in LADT are partitioned between these two network
nodes. The remainder of this section will discuss some major LADT
functions and how they are divided between the DSls and the AP.

3.1 AP/DSI communication

Since many logical functions are split between the AP and the DSls,
a mechanism was created to allow the two parts of each function to
communicate. During normal operation, each DSI always has one X.25
virtual call up to the AP. The Remote Internal Communication
Handler (RICH) implements another layer of protocol above the X.25
level 3 to handle the multiplexing of the many logical data streams
between the AP and the DS!. It allows individual processes within the
AP and DSI to communicate by providing an addressing scheme
compatible with the LADT internal architecture and adds another
layer of error checking.

3.2 Craft interface

An LADT network can be distributed over an area at least the size
of a major metropolitan area. The AP provides a centralized craft

1156 TECHNICAL JOURNAL, JULY-AUGUST 1984

Table I-Division of functions between AP and DSls
Function AP DS!

Subscriber call processing
Billing data collection
Billing data processing
Traffic data collection
Traffic report generation
DS! diagnostics
DS! trouble-locating procedures
Craft interface
DS! generic storage
DS! recent change craft interface
Central LADT recent change database
Local copies of DS! database

x
X

X
X
X
X
X

X
X

X

X

X

interface for the geographically distributed DSIs, with only a limited
subset of the craft interface available at the DS!. Locating the craft
interface for the network in the AP lowers the number of craft needed
to administer the network, makes the DSIs less expensive, and allows
the DSIs to be located in unattended offices.

DSIs and DSI subunits can be restored to service, removed from
service, and diagnosed from the AP. All recent changes in data for the
AP and the DSIs are entered at the AP.

In addition to the maintenance terminal and recent change terminal,
which are standard on the AT&T 3B20D computer, LADT provides
remote terminals for interfacing to other telephone operating company
work centers such as the network administration center, the recent
change and memory administration center, and the switching control
center. Each center has a command set tailored to run only the LADT
commands needed at that center, with only the switching control
center and the local terminals allowed to run the entire set of LADT
commands.

3.3 Data call processing

The data-call-processing functions of LADT are performed by the
DSIs and the packet switch. The packet switch provides a standard
CCITT recommendation X.25 interface for direct 9.6- and 56-kb/s
lines, while the DSI provides an X.25 level-2 (LAPB) interface for
4.8-kb/s direct subscriber lines and 1.2-kb/s dial-up subscriber lines.
With this configuration, the DSI is treated as a host DTE (Data
Terminal Equipment) by the packet switch, while the DSI provides
an X.25 LAPB DCE (Data Circuit-Terminating Equipment) interface
to the subscriber terminal.

The DSI data-call-processing software is responsible for supporting
the X.25 protocol on a single 56-kb/s access line to the packet switch
and supporting the LAPB protocol for up to 124 subscriber lines. The
DSI establishes an X.25 virtual circuit through the packet switch to a

LADT HARDWARE/SOFTWARE 1157

remote X.25 host for each call initiated on a LAPB access line. Once
the data call setup has been performed, subscriber data flow transpar
ently on this virtual circuit until either end disconnects the call.

3.4 Billing

Billing data collection for subscribers with direct access is done in
the DSIs. Single-entry billing is done for calls that cross less than two
midnight boundaries. At the end of one of these "standard" calls, the
DSI sends a data-call record to the AP that contains connect and
disconnect times, packet counts for up to four different rate periods,
and a variety of "per-call" data that may be used for detailed traffic
studies. If a call extends past two midnights, at each midnight after
the first, the DSI sends an interim record to the AP and clears its
internal packet counters. A final record is then sent at the end of the
call. This method prevents counter overflow on very long calls and
prevents all the data from a long call being lost if a DSI failure occurs.
The DSI can buffer several hours of billing records if the link to the
AP is temporarily unavailable.

3.5 Maintenance

The LADT maintenance functions are divided between the AP, the
packet switch, and the DSIs. Each of these units has local diagnostics
to detect and localize· hardware faults, along with local audits to verify
the integrity of the operational software. The AP provides a unified
craft interface for maintenance of the AP and of all of the DSIs that
communicate with the AP. While the DSI has its own local diagnostics
and audits, the DSI reports the results of its diagnostics and audits to
the AP, where they are displayed to the craft. The AP also provides a
means for the craft to control the execution of diagnostics in the DS!.
In order to permit the craft to localize faults that may prevent a DSI
from communicating with the AP, the DSI hardware includes a basic
display and craft interface at the unit itself. This permits the evalua
tion of the results of diagnostics that the DSI executes in order to
determine why the link to the packet switch cannot be established.

3.6 DSI software generic download

The DSI is a RAM-based processor. The software generic needed
by the DSI is downloaded from the AP to the DSI during DSI start
up. The DSI contains only enough ROM to accommodate start-up
diagnostics and the software needed to download the generic. Storing
the DSI generic in the AP allows the code in the DSIs to be updated
without having to change the ROM in each DS!. The generic download
function is the only AP-to-DSI communication that does not use the
RICH, since the code for the RICH function is part of the generic to

1158 TECHNICAL JOURNAL, JULY-AUGUST 1984

be downloaded. Instead, generic download uses its own layer on top of
X.25 level 3, optimized to transfer large amounts of data efficiently
and with high reliability.

3.7 Traffic

The DSIs collect extensive traffic measurements, which are sent to
the AP every 5 minutes for processing. Any errors occurring at the
DSI will be reported to the AP immediately. The AP produces two
sets of traffic reports, one for normal DSI traffic measurements, and
one for DSI error counts. Both types of reports can be generated for
5-minute, 30-minute, and 24-hour periods. The printing of the 5-
minute reports is normally inhibited, but they are printed automati
cally any time a threshold in a report is exceeded. In addition, the
craft can manually request a printing of any of the last six 5-minute
reports, any of the last 48 30-minute reports, or the last 24-hour report.
The content of each of the reports can be tailored through the LADT
recent change system.

IV. OSI SOFTWARE ARCHITECTURE

The DSI software system, which executes on the main processor, is
divided between ROM-based firmware, which is responsible for boot
strapping the DSI from power-up or system recoveries, and the RAM
based operational software, which is responsible for normal operations
of the DSI. The operational software generic is remotely stored on the
AP disk file system and is downloaded into DSI main memory by the
firmware.

The firmware is designed as a collection of special-purpose programs
that are executed sequentially from a single controlling subroutine.
Sequential execution is performed at base level while external events
such as timer interrupts and packets received from the packet switch
access line are processed at interrupt level. Common library routines
are available for setting software timers and communicating with the
AP. After start-up or system recoveries, the bootstrap firmware is
responsible for placing the hardware into a known state, running a
minimal set of diagnostics on essential hardware such as the main
processor and main memory, establishing an X.25 virtual circuit to
the AP for downloading the operational software, and installing the
downloaded software into DSI main memory. Once this has been
successfully performed, execution will be passed to a known entry
point in the operational software. When the operational software
begins execution, the real-time DSI Operating System (DSIOS) is
initialized; a master-control process is created, which performs data
initialization and synchronizes system-process creation; and execution
control is turned over to DSIOS.

LADT HARDWARE/SOFTWARE 1159

The core of the DSI operational software is the data-calI-processing
system, which contains the X.25 protocol programs and access line
interface software. Administrative programs collect and maintain
LADT administrative data such as billing and traffic measurements.
The DSI software includes resident maintenance programs that min
imize the impact of failures on system performance and provide the
craftsperson with the information required to locate and repair any
troubles quickly. Management of the execution of these programs and
of system resources is controlled through DSIOS.

The operational software programs execute as processes under
DSIOS. A process can be either a system process or a nonsystem
process. System processes are permanent, created during system ini
tialization, and should never terminate unless a system reinitialization
is performed. Most administrative and maintenance programs execute
as system processes. Nonsystem processes are temporary, created upon
demand, and normally terminate when the task they are designed to
perform is complete. Transient tasks such as hardware diagnostics
and call processing execute as nonsystem processes. Except for hard
ware interrupts, task execution is strictly nonpreemptive. Processes
run until they voluntarily return control of the main processor to
DSIOS.

4.1 Operating system

The DSI has a general-purpose real-time operating system (DSIOS)
designed to meet the specific needs of the operational software. DSIOS
manages processes, memory allocation/ deallocation, software timers,
and intra-DSI process communication. Access to these resources is
controlled through a set of DSIOS primitives that have been designed
to provide a powerful and efficient, yet simple, interface. A list of the
most frequently used DSIOS primitives and their functions is shown
in Table II.

Programs execute as processes under DSIOS. Process creation is
controlled by the OS create primitive. A program table defines the
characteristics of each system program, such as scheduling priority,
stack size, and main entry point. At process creation, a stack and
process-control block is allocated to the process. The process-control
block is used to store the state of the process when it relinquishes the
main processor. A process-ready queue is associated with each process
priority level. There are three process-ready queues-high, medium,
and low. A program's priority is determined by the needs of the entire
system. Critical tasks such as DSI clock synchronization are given
highest priority, call processing receives medium priority, and deferr
able jobs such as maintenance have lowest priority.

When a process is ready to run, it is appended to its respective

1160 TECHNICAL JOURNAL, JULY-AUGUST 1984

Table II-List of frequently used 051 Operating 5ystem (05105)
primitives

Primitive Operation

OS ere ate Create a new process and schedule it to run.

OSget 1 type Get a message of a specific type. If no message of desired type is
waiting, caller can request either immediate return or suspension
until message arrives.

OS s e ndms g Send a message to a process. If the receiver is waiting for a message of
that type, schedule it to run.

OS r time r Set a timer using the relative clock. A relative timer is used to schedule
a process after a specific delay.

OS a time r Set a timer using the absolute clock. Absolute timers are used to
schedule a process at a specific time.

OS k time r Kill a timer. This is used by the call processing software to stop protocol
timers.

OSsuspend Take a real-time break. The process is placed on the bottom of its
priority queue.

OS e x i t Exit the current process and remove it from the system.

process-ready queue. The DSIOS process scheduler visits the process
ready queues in a fixed pattern. The high-priority queue is visited
most frequently and the low-priority queue least frequently. When a
nonempty process-ready queue is found, the first process on the queue
is removed, the state of the processor is updated by its process-control
block, and processor execution is turned over to the process.

Processes within the DSI communicate by passing messages. The
OSsendmsg primitive allows any process to send a message to any
other process, while the OSget 1 type primitive allows a process to
receive messages. A process can request a specific message type or any
message type. A request for any message will return the first message
waiting for the process. Message reception can be blocking or non
blocking. When a blocking OSget 1 type request is made and the
requested message is not immediately available, the process relin
quishes the main processor. A nonblocking request returns immedi
ately with an indication of whether or not a message was found.

DSIOS memory management is simplified by partitioning memory
into preallocated buffer pools. Initializing the DSIOS creates a linked
list of free buffers for each buffer type. Allocation and deallocation
routines are provided for each buffer pool. When a buffer is allocated,
it is removed from its respective free list, and the buffer is tagged with
the process identification number for software auditing purposes. This
scheme eliminates memory fragmentation, simplifies software audits,
and provides a simple environment for software testing and debugging.

Access routines are provided for starting and stopping software
timers. Timers are maintained in a circular queue that is serviced on

LADT HARDWARE/SOFTWARE 1161

a periodic basis. The circular queue is composed of head cells that
point to a linked list of timers. When a timer is set, DSIOS inserts
the time on the linked list associated with the appropriate head cell.
When the time expires, it is removed from the circular list and placed
on the destination process-control block. When a timer stop request
is issued, the timer is removed from the circular list, or if the timer
has expired, it is removed from the process-control block. Timer delays
can be set relative to the current time of day with the OSrtirner
primitive, or for an absolute time of day with the OSatimer primitive.

4.2 DSI-system start-up

The DSI-system-start-up subsystem is responsible for initializing
the DSI to an in-service state for processing subscriber calls. The
system is initialized upon start-up or whenever an unrecoverable error
is detected. The software for this subsystem is split between the DSI
bootstrap firmware that brings the system up from a power-up, and
RAM-based operational software that is responsible for initializing
the system to an operational state after the operational software has
been downloaded into DSI main memory.

4.2.1 DSI boot sequence

Whenever the DSI starts up or the integrity of the operational
software is suspect, the DSI must download a copy of the operational
software from the AP disk into the DSI main memory. The start-up
firmware is responsible for DSI hardware initialization, running out
of-service hardware diagnostics, setting up an X.25 virtual circuit to
the AP for receiving the operational software, and downloading the
operational software into the DSI main memory.

A goal of the system start-up firmware is to bring up those compo
nents of the hardware that are absolutely necessary to communicate
with the AP in order to download the operational software. The DSI
peripheral hardware associated with interfacing to subscriber access
lines (control buffer and clock, DMA processor, group distributor
circuits, and subscriber line interface cards) is disabled. Hardware
diagnostics are executed on the main processor, main memory, power
control-and-'display (PCD), and facility-interface circuit packs to de
termine whether hardware faults exist that will prevent the DSI from
coming into operation. If diagnostics fail, the system cannot be brought
into service. The main processor will be halted and a hardware alarm
will be asserted. The PCD panel lights will identify the circuit pack
and the diagnostic test that failed.

Once the hardware has been initialized and diagnostics have passed,
the DSI attempts to establish an X.25 virtual circuit to the AP. If this
is successful, main processor control is turned over to the generic

1162 TECHNICAL JOURNAL, JULY-AUGUST 1984

Fig. 12-Flow diagram of DSI boot sequence.

download program, which sends a download request message to the
AP. The operational software is transferred from the AP over the X.25
virtual circuit. The generic download program numbers and checksums
each message as an added measure of protection. Once the operational
software is successfully received, control is passed to a fixed entry
point in the operational software. A software initialization will be
performed to place the machine in an in -service state for servicing
subscriber calls. A flow diagram of a DSI boot sequence is shown in
Fig. 12.

4.2.2 Software initialization

Software initialization is the lowest level of DSI recovery. This
action is taken immediately after completing a DSI boot or whenever
unrecoverable software or hardware faults are detected. A threshold is
placed on the number of software initializations allowed during a given
period of time. When this threshold is exceeded, a DSI boot is initiated.
This causes hardware diagnostics to run and a fresh copy of the
operational software to be downloaded.

The entry routine of the operational software initializes DSIOS,
creates a process called start-up control, and turns main processor

LADT HARDWARE/SOFTWARE 1163

Fig. 13-DSI start-up flow sequence.

control over to DSIOS. The control flow sequence for the start-up
control process, which coordinates bringing the DSI into service, is
shown in Fig. 13. The start-up control reinitializes the DSI hardware,
initializes shared system tables, and creates all of the system processes.
After hardware initialization, the X.25 protocol over the packet-switch
access link is reestablished. An AP IDSI communication process is
created to establish an X.25 virtual circuit to the AP for receiving
critical data and craft requests. Once a communication path is estab
lished to the AP, a process is created for downloading the recent
change tables from the AP. A process is then created to retrieve the
current time-of-day from the AP. The DSI needs an accurate time-of
day clock for call billing purposes and for scheduling time-of-day
events. After updating the time-of-day clock, all other system processes
are created. The start-up control waits for completion messages from
each process before it brings the line groups into service. Once the

1164 TECHNICAL JOURNAL, JULY-AUGUST 1984

line groups have been brought into service, the DSI is ready to receive
subscriber calls.

4.3 Administrative software

The administrative functions of LADT such as billing, traffic mea
surements, and recent change are split between the DSI and AP. The
DSI administrative software programs serve to collect and update the
administrative data. Data are collected and sent to the AP for proc
essing. The processes that perform these operations in the DSI com
municate with their counterpart routines in the AP through the
Remote Internal Communications Handler (RICH) software subsys
tem.

4.3.1 DSI/AP communication

Data exchanged between the DSI and the AP are multiplexed over
a single X.25 virtual circuit. A DSI process called the RICH process
manages this data stream. An access routine sends messages to AP
processes. The DSIOS message-sending primitive OSsendmsg routes
messages from the AP to the DSI processes. To simplify the DSIj AP
RICH process interface, no flow-control or acknowledgment proce
dures are used. The features of X.25 level 3 accomplish this. The user
process must provide additional data integrity procedures.

The DSI/ AP virtual circuit is established during software initiali
zation. The DSI-RICH process attempts to reestablish this connection
upon detecting a failure without having the system recovery software
intervene. This allows the DSI to provide subscriber service when
communication with the AP fails. All transmission requests to the AP
are denied when the DSI/ AP communication path is not operational.

4.3.2 Billing

The DSI collects billing data for each subscriber call. Data such as
holding time and packet counts are maintained in a virtual call record
for each call. When a call terminates, the call processing software
sends the virtual call record to a DSI per-call billing process. This
process then sends the virtual call record to the AP for storage on a
magnetic tape.

Because of the importance of the billing information, the design of
the per-call billing process prevents the loss of billing data if the
communication path to the AP is lost. During an outage, virtual call
records are stored in the DSI, and the per-call billing process periodi
cally attempts to retransmit the stored records to the AP.

Calls that extend over two or more consecutive midnight boundaries
are given special attention. A special process called long duration
billing handles these calls. This process runs every midnight and scans

LADT HARDWARE/SOFTWARE 1165

each virtual call record to determine whether it extended over two
midnight boundaries. If so, a long duration record is created from the
virtual call record and is sent to the AP for storage.

Periodic checks are made to ensure that billing records are not lost
between the DSI and the AP. A billing-tracer process sends counts to
the AP every hour, allowing the regional accounting office to keep
track of billing records. If any billing records are lost, the regional
accounting office can detect this by comparing the number of billing
records received with the tracer counts.

4.3.3 Traffic

The DSI collects measurements that are used for off-line evaluation
of system demand, subscriber calling patterns, service, and DSI com
ponent utilization. Counters are pegged by the operational software
and are collected and sent to the AP for storage every 5 minutes by a
DSI traffic process. Certain measurements, such as queue lengths and
the number of active calls, are sampled on a more frequent basis by
the DSI traffic process and are also sent to the AP.

4.3.4 Recent change

Certain information in the DSI changes independently of the oper
ational software and is referred to as recent-change data. The recent
change subsystem maintains these data in system tables and provides
access routines for other programs. Because of the critical importance
of these data, checksums are included as part of the data tables, and
the tables are write-protected.

Recent-change information can be altered by the craft at any time.
The recent-change data are managed by the recent-change-system
process that is created immediately after the DSIj AP virtual circuit is
established during software initialization. The recent-change process
sends a download message to the AP asking for its tables that are
stored on AP disk. If the AP recent change has reason to suspect that
the recent-change information is not correct, it will ask DSI recent
change to verify that the tables at a DSI are up to date. If these tables
are out of date, the AP recent change will begin a download of all
current information.

An update interface exists between the DSI recent change and its
counterpart in the AP. When the craft enters a change at the AP, the
updated recent-change tables are automatically sent to the DSI. The
same procedures are followed as those for the original recent-change
table insertion. Equipment status updates may require that an equip
ment remove or restore to service request be sent to the DSI equipment
maintenance manager software.

1166 TECHNICAL JOURNAL, JULY-AUGUST 1984

4.3.5 DSI/AP clock synchronization

Accurate billing requires that the DSI be synchronized to the AP
time-of-day clock. Time changes may be necessary because of DSI
clock drift or changes to or from daylight savings time. A DSI time
change-system process manages corrections to the DSI time-of-day
clock. Messages that exchange the time of day between the DSI and
AP are used to update the DSI clock. The time-change process must
note these changes in active billing records when the time of day is
updated. Special attention must be given to changes that cross mid
night boundaries. Timers that were set to expire based on the time of
day must also be given special attention. A DSIOS primitive is pro
vided to adjust these timers. The DSI clock can also be adjusted by
craft command from the AP.

4.3.6 Emergency program update

Facilities are built into the DSI that allow the craft to examine and
modify DSI data and text during in-service operation. Formatted octal
or hexadecimal memory dumps of DSI memory or a snapshot of system
process status information can be requested. A memory-patch facility
allows emergency modifications to the operational software. This
allows field updates without having to remove DSIs from service and
without having to issue new software. Software patches are stored on
AP disk and downloaded after the operational software is downloaded.
Patches may be installed by the craft any time after the DSI is brought
into service.

A software patch is installed by downloading the replacement soft
ware into a block of memory reserved for software patches. An assem
bly language jump instruction is inserted in the program text that is
in error. This will transfer execution to the replacement software. The
last executable statement in the replacement software will jump back
to the executing program.

4.4 Data call processing

The data communication functions of the DSI are provided by the
data-calI-processing software. Data call processing controls the inter
faces to subscriber access lines, the packet-switch access line, and
provides text messages to subscribers during call setup. Each sub
scriber call is handled by a separate process called a call process. The
call process performs both the data transfer functions specified in
X.25 and LAPB, as well as handling the call setup and termination
procedures. Each call process executes the same collection of shared
protocol access programs. Per-call state information is kept in a data
block that is allocated by DSIOS upon the call process creation. Each
call process allocates a virtual call record for storing billing informa-

LADT HARDWARE/SOFTWARE 1167

tion. A call process is created when a subscriber initiates a request for
service over a subscriber access line. Receipt of an X.25 LAPB frame
initiates a request for service. This process will exist until the call is
torn down. At that time, the call process will return any system
resources to DSIOS and terminate itself.

Routing tables are used for associating packets received on an access
line with the call process that'handles the packet. A subscriber-line
routing table is used to route all X.25 LAPB frames received on
subscriber access lines to call processes. One entry exists for each line.
Likewise, a network-channel routing table is used to route X.25 level-
3 packets received on the packet-switch access line to the appropriate
call process. One entry exists for each X.25 level-3 logical channel
supported on this interface. Figure 14 shows a simplified view of
packet routing and call-process architecture.

4.4.1 Call-control software

Coordination of call setup and termination procedures is performed
by a program called call control, which is executed by the call process.
Its responsibilities include allocating resources for the call when the
call process is created, prompting the subscriber for a destination
address, originating a request to X.25 level 3 to set up the X.25 virtual
circuit, transmitting call progress messages to the subscriber terminal,
coordinating call termination, and deallocating any system resources
before the call process terminates.

4.4.2 Subscriber-access-interface software

The subscriber-access-interface software manages the software in
terface to the subscriber access lines. The main processor interface to
subscriber lines is through the DMA processor. Interactions with the
DMA processor are made through a hardware-control FIFO, a hard
ware status FIFO, and memory that is shared by both processors. The
DMA processor interrupts the main processor when an entry is placed
into an empty status FIFO. A DMA-processor-interface package pro
vides a software interface to the DMA processor. Access routines are
provided for transmitting control and data to the DMA processor.
These routines are robust enough to allow use by both call processing
and D MA processor diagnostics. Per-line status information is routed
to the call process identified in the subscriber-line routing table.

The state transitions of dial-up line modems are controlled by DSI
software. Modem status information is placed in shared memory by
the control-buffer-and-clock circuit pack. A system process called the
dial-up control process periodically scans this information looking for
modem status transitions, such as ringing and carrier detected. When
the dial-up control software detects that a subscriber is calling into

1168 TECHNICAL JOURNAL, JULY-AUGUST 1984

o
t----'---t

FRAMES FROM 1 f-----'-'----i
SUBSCRIBERS

123
~----'

SUBSCRIBER-LINE
ROUTING TABLE

DATA
BLOCK 1

DATA
BLOCKN

o
t--C=P,---i 1 X.25 PACKETS

FROM PACKET
2 SWITCH

NETWORK-CHANNEL
ROUTING TABLE

Fig. 14-Simplified diagram of call-process architecture.

the DSI, it takes the modem through the necessary handshake proce
dures for establishing an X.25 level-l connection. Access routines are
provided for external control of dial-up line states by other software
systems.

A subscriber data-link manager called the customer-data-link status
system process is responsible for serving events that may affect the
status of subscriber access lines. For example, call waiting tones on a
telephone line should not affect subscriber data service. The customer
data-link process must differentiate between the loss of the level-l
connection and the call waiting tones. If the link remains idle for more
than a predetermined period of time, the customer-data-link status
process assumes that the level-l connection is lost and notifies the
call process.

4.4.3 X.2S protocol controller interface software

The DSI supports an X.25 interface on the packet switch access
line. A specially designed Large-Scale Integration (LSI) device called
the XPC performs the entire X.25 level-2 protocol procedures. The
X.25 level-3 protocol processing is performed by the call process.
Because the X.25 level-3 processing is distributed across many call
processes, a special system process, called the level-3 status process,
globally monitors the status of the entire X.251evel-3 interface. Events
such as packet-switch link failure, which affects all X.25 virtual

LADT HARDWARE/SOFTWARE 1169

circuits, are reported to this process. Handling of X.25 level-3 packets
on the logical channel 0 is also performed by this process.

An XPC-interface software package, similar to the one used for the
DMA processor, provides a software interface to the XPC device.
Access routines are provided for transmitting level-3 packets and
controlling the operation of the level-2 protocol. Priority queues are
used to buffer packets sent by level 3 to the XPC device for transmis
sion. The priority of a packet is specified in the packet buffer that
contains the level-3 packet that is passed to the XPC-interface soft
ware. When the XPC device requests a packet for transmission, the
highest-priority queue is serviced first.

The logical channel number of a received packet is used to index
into the network-channel routing table for routing purposes. Any
packet received on an inactive channel is routed to the level-3 status
process.

4.5 Craft interface

The DSI craft-interface subsystem includes those programs that
allow operations personnel to monitor and control the operations of
the DSI. There are two methods that the craft can use to interact with
the DSI. The Maintenance Terminal (MTTY) at the AP provides the
craft with remote control of the DSI. Requests to execute hardware
diagnostics, software audits, and requests to remove and restore DSI
hardware can be sent to the DSI from the MTTY. The front panel on
the power control and display circuit pack contains switches and LED
indicators, which provide the craft with local control of the DSI and
an indication of its current state.

4.5.1 Remote interface

Remote craft requests from the AP are routed to the DSI through
the AP IDSI RICH communications package. There is no central DSI
craft-input program. Craft requests are routed to the destination
process by DSI-RICH software. Each destination process must then
parse the input message to extract the information that is needed.

4.5.2 DSI power control and display panel administrator

Craft inputs can be made directly to the DSI through the Power
Control and Display (PCD) panel circuit. Requests to remove or
restore a line group or the entire DSI are made by activating switches
on the panel. The PCD circuitry generates a hardware interrupt to
the main processor when a switch is activated or a line group is
powered on or off. When a PCD interrupt is detected, a PCD nonsys
tern process is created to handle the request in a background mode.
This allows the DSI to continue processing calls.

1170 TECHNICAL JOURNAL, JULY-AUGUST 1984

When a line group is turned on, a PCD line-group diagnostic is
automatically requested by the DSI maintenance software. Should the
diagnostic fail, an alarm light is enabled on the panel and the line
group is not brought into service. Otherwise, if the toggle switch
associated with the line group is in the "restore" position, a request to
restore the line group to service is made. Conversely, when a line group
is turned off, a line group "remove request" is made by the PCD panel
administrator.

The PCD software enables the "Request In Progress" (RQIP) light
on the panel associated with the equipment. When the request has
been completely processed the RQIP light is disabled, and the panel
switch is examined to determine whether another request is pending.

The DSI has two 7 -segment displays that are used to inform the
craft of DSI status. Software-access routines are provided for control
ling these displays. During system start-up, the PCD display is used
to track the progress of DSI software initialization. After start-up is
completed and the DSI is ready for normal operation, the display
indicates the occurrence of certain errors.

4.6 Equipment maintenance

Equipment maintenance is the name given to those programs de
signed to control and monitor the operation and configuration of the
DSI hardware. Equipment maintenance minimizes the impact of fail
ures by providing the operating personnel with specialized hardware,
software, and human interfaces to allow rapid detection, isolation, and
repair of troubles. The specific tasks involved with equipment main
tenance are restoring, removing, and diagnosing the DSI hardware,
routinely exercising the system to ensure proper operation, and ana
lyzing the system for problems.

4.6.1 Maintenance request administration

The central controller of equipment maintenance is a system process
called the Maintenance Request Administrator (MRA). MRA coordi
nates equipment removal and restoral requests and hardware diagnos
tic requests. It also responds to inquiries on the state of equipment in
the DSI. These requests can be made remotely from the MTTY, from
the PCD panel, or from other DSI processes.

For nonstatus requests, MRA spawns nonsystem processes to handle
each request. These processes are responsible for validating the request
message parameters, determining whether the request can be honored
given the current state of the machine, and returning a result message
to the requesting process.

Requests to remove or restore equipment can be conditional or
unconditional. Conditional requests for bringing equipment into serv-

LADT HARDWARE/SOFTWARE 1171

ice require running a diagnostic on the equipment. If the diagnostic
fails, the request will be denied. Conditional requests to remove
equipment from service will cause the MRA software to remove idle
equipment and to camp-on busy lines. A camp-on procedure requires
that the line be placed in a maintenance busy state. The MRA software
will wait for the call to terminate before removing the line from
service.

Unconditional requests for restoring equipment to service are han
dled immediately without running diagnostics. Unconditional requests
to remove equipment from service cause any active calls on the affected
lines to be terminated. Call termination messages are broadcast to the
affected call processes to allow graceful call termination. After a brief
delay to allow the broadcast messages to be transmitted, the lines will
be removed from service.

When a diagnostic request is issued, the MRA determines which set
of diagnostic phases are to be run. It then sends a diagnostic request
message to the diagnostic software, which defines what phases to
execute and how to execute them. Only one diagnostic request can be
serviced at a time. If an additional diagnostic request is received, it
will be queued until the currently executing diagnostic has completed.

4.6.2 Diagnostics

DSI diagnostics are those programs that test the DSI hardware and
report detected faults. The goal in executing these diagnostics is to
isolate errors to a single circuit pack as quickly as possible so that the
faulty circuit pack can be replaced and the unit restored to full service.

To locate faults quickly, the diagnostics are organized so that they
exercise the DSI hardware in layers. During the first stage, the first
layer (the main processor and main memory) is diagnosed. Next, the
other circuit packs in the processor complex are exercised, and finally,
the group-distributor circuits and line cards are tested. By running
diagnostics in this order, the core of the DSI is verified before any
peripheral circuit packs are tested. Therefore, any errors uncovered
are probably located in the circuit under test and are not the result of
faults in a more central circuit pack.

Because the DSI is a simplex system, the diagnostics are divided
into two categories: those that can execute without affecting the
normal operation of the DSI and those that must be run when the
DSI is out of service. Because the DSI downloads its operational
software (including most of the diagnostics), it must have the capabil
ity to verify the minimal system needed to complete the download
process before the download occurs. Therefore, some diagnostics are
present in the bootstrap ROM for execution during a DSI boot
sequence.

1172 TECHNICAL JOURNAL, JULY-AUGUST 1984

The diagnostic programs in the ROM- and RAM-based software
systems consist of a two-part structure. A diagnostic controller sched
ules individual tests, reports errors, and performs the supervisory
tasks needed to execute the diagnostics. The second part of the
diagnostic structure consists of the diagnostic functions, or phases.
Each phase contains multiple tests and is designed to exercise a portion
of a particular circuit or subsystem. The first test of each phase, called
the prologue, sets the environment for the hardware to be exercised.
The last test of each phase, called the epilogue, restores the environ
ment for normal operation when the diagnostic phase is complete.
The phases contained in the operational software are organized so
that a subset may be performed with the DSI in operation without
affecting normal call-processing activities.

Diagnostic requests are received by the MRA, which subdivides the
request into logical parts that exercise sections of the hardware at
given intervals. After determining the logical breakdown, MRA creates
the diagnostic-control process, which controls the execution of the
diagnostic phases. Diagnostic failure messages are sent back to the AP
MTTY. A completion message is sent back to the MRA software.

There are various modes of diagnostic operation that can be enabled
in the diagnostic request at the AP MTTY. Running a diagnostic in
"raw mode" causes each diagnostic failure to be reported back to the
MTTY. Normally only the first failure is reported. The repeat mode
allows the diagnostic to be executed more than once by a single craft
command. The trouble-location-procedure mode causes diagnostic fail
ures to be routed to software in the AP, which will output additional
information about the probable cause of the diagnostic failure on the
MTTY.

4.6.3 Routine exercises

The goal of the routine-exercises subsystem is to thoroughly verify
the integrity of all hardware units of the DSI on a periodic basis
without disrupting service to the subscriber. It detects hardware fail
ures before they affect system performance. Routine testing is done
during periods of low traffic. The routine-exercises subsystem includes
line tests and the nondisruptive diagnostics of the common equipment.
During routine exercises only lines without active calls are diagnosed.

Since the low traffic period of each DSI varies (observed by the
operating personnel), the run time of the routine exercises can be
changed depending on the low traffic period of the office. The routine
exercises trigger time is altered via recent change by the craft. Routine
exercises can be disabled by recent-change input.

Routine exercises will first run in-service main-memory and main
processor diagnostics. Failures are reported to the craft. Next, routine

LADT HARDWARE/SOFTWARE 1173

exercises diagnoses each idle iine. If a line diagnostic fails, a request
is sent to MRA to remove the line from service. Craft will be notified
that the line was removed. The number of lines that can be removed
during a routine-exercises cycle is limited by a recent-change param
eter.

4.7 System integrity

Service to the subscriber may be affected by hardware failures,
software errors, data irregularities, and system overload. The system
integrity software is designed into the DSI to minimize the impact of
these failures on system performance.

4.7.1 Sanity detection

Basic system sanity is monitored by a hardware sanity timer. The
timer is initialized by the start-up software and generates an unmask
able interrupt when it expires. Should the timer expire, software
initialization is initiated. During normal operation, the system process
called the sanity-timer reset process is responsible for periodically
resetting the sanity timer. Should the system stop cycling for any
reason, the sanity timer will automatically cause the DSI to recover
without manual intervention.

4.7.2 Exception handler

Error handling is centralized in the DSI by providing a software
interface through which all software and hardware errors are reported.
This software subsystem, called the exception handler, is used to
report and, when necessary, correct errors. The implication of each
exception error may have different meanings for different processes.
For example, certain processes may be able to recover from a tempo
rary inability to allocate a system buffer, while others may not. To
accommodate this flexibility, the exception-handler interface allows
each process to pass a parameter that suggests the recovery action
that should be taken. The final decision about error recovery is built
into the exception handler for errors that have global system impact.

Each exception error has a unique error code. There are three
categories of errors. The least severe are report errors. Software errors
that do not affect system performance fall into this category. Report
errors are reported to the AP and, in certain cases, a software audit is
scheduled to run. Threshold errors can affect system performance if
they happen too frequently. Each threshold error has a counter asso
ciated with it, which is incremented when the error occurs. Another
system process, the error-analysis subsystem, periodically looks at
these counters to determine whether further recovery action is re
quired. The third category, called recovery errors, are serious errors

1174 TECHNICAL JOURNAL, JULY-AUGUST 1984

that affect system performance and must be handled immediately.
The DSI recovery subsystem is notified immediately to take corrective
action.

4.7.3 Recovery

Recovery software is resident within the DSI to handle critical
hardware and software faults that affect the entire system. Recovery
takes immediate action to contain the failure before it becomes wide
spread. Since the DSI is a simplex system, hard faults cannot be
circumvented and the affected equipment may have to be removed
from service. Recovery actions taken include DSI boot, software ini
tialization, packet-switch link reinitialization, line-group removal, or
DSI removal. Errors are reported through the exception-handler soft
ware.

For each reset action, a report and alarm is issued to alert the craft
about the failure. Should a recovery action require a DSI boot, the
recovery software will store system status information in protected
memory. This system snapshot, referred to as the postmortem, is
transmitted to the AP for off-line analysis after the DSI boot has
completed.

Neither the DSI recovery nor the DSI initialization invokes diag
nostics directly. To find out more about the failing device, the AP
craft must initiate a diagnostic session.

4.7.4 Error analysis

The main function of error analysis is to detect DSI hardware errors
or abusive subscriber terminal conditions and isolate them before they
can degrade DSI performance. Error counters maintained by error
analysis are incremented by the operational software or through calls
to the exception handler. The error counters are treated as "leaky
bucket" integrators. Error analysis decrements them periodically and
also checks to see if they have exceeded threshold. The decrement
frequency and threshold of each counter is a function of the type of
error condition which that counter is tracking.

Two types of error counters are maintained by error analysis.
General errors are the result of faults from common equipment. When
the threshold for any of the errors is exceeded, the recovery software
is notified immediately to remedy the situation. Line errors can be
isolated to a single subscriber access line or a line-card circuit. Line
errors are pegged directly by the call-processing software. Depending
on the type of line equipment and the error condition, a request to
terminate a call can be sent to a call process if the line is active, or a
request can be sent to the MRA to remove the line from service.

LADT HARDWARE/SOFTWARE 1175

4.7.5 Audits

System audits protect against the loss of system integrity due to
corrupted transient data. Transient data include routing tables and
system resources such as packet buffers and message buffers. Audits
are performed on a routine basis and upon demand. Data irregularities
are corrected at the point of discovery.

The audit-controller process administers audit requests and sched
ules audits to run. Demand audits, requested by the DSI software
through the exception-handler software, receive immediate attention
by the audit controller. These requests are made when certain errors
indicate a possible loss of resources or when the number of available
key resources drops below a system threshold. Manual audits, re
quested by the craft, can be scheduled at any time but are queued
behind demand audits. The lowest-priority audits are routine audits.
They are scheduled frequently enough to support the main-line exe
cution, but not so frequently as to affect system capacity.

For every irregularity detected, a report is generated that provides
enough information about the irregularity for off-line analysis. Be
cause a single data irregularity may have multiple side effects that
could flood the AP with many reports, the number of audit reports is
limited for each invocation of the audit controller.

4.7.6 Overload control

The objectives of the overload-control subsystem are to smooth
variations in traffic loads, to provide normal service to existing sub
scribers, and to prevent an overall system outage due to overload. The
overload controls are aimed primarily at controlling packet-buffer
congestion. The purpose of packet-buffer congestion procedures is to
avoid the negative consequences of running out of packet buffers.
Running out of packet buffers could result in calls that are deadlocked
or prematurely dropped. Overload monitors are built into the main
line code. When critical resources drop below defined thresholds,
overload actions are taken. Several levels of control are allowed by
having two overload states. Hysteresis is used to smooth the transi
tions between overload states. Overload controls include flow control
ling access lines and blocking new call originations.

4.8 DMA-processor firmware

In addition to the software that runs on the DSI main processor,
the DMA processor is controlled by its own firmware, which resides
in a separate ROM on the DMA-processor circuit pack. This firmware
is designed to operate strictly in response to external events, and it
includes both operational and maintenance programs. The DMA
processor operational software is an extremely compact and efficient

1176 TECHNICAL JOURNAL, JULY-AUGUST 1984

set of assembly language routines. These routines are invoked by a
main routine, which cyclically scans the FIFO memory interfaces to
the main processor and the multiplexed protocol formatter for entries.
The scanning procedure has been designed to optimize the D MA
processor's response time to critical events. When an entry is detected
in one of the FIFOs, the DMA processor reads the entry, takes
appropriate action, and then returns to the main scanning routine. In
addition to the operational software, the DMA processor contains
certain limited diagnostics and maintenance software. Many of the
maintenance routines are divided into short sections, each of which
executes very quickly. This permits these routines to run while the
DMA processor is processing customer information without affecting
service.

4.9 Data flow through the DSI

In order to help clarify the functions of many previously described
DSI software subsystems, and in particular the data-calI-processing
subsystem, this section traces the progress of a data call through the
DSI. The treatment is developed for a dial-up data call, although the
sequence of events for a dedicated access data call is similar, but does
not require a level-l connection to be established.

4.9.1 Establishment of a leve/-l connection on dial-up lines

When a subscriber dials the LADT access number, the public
telephone network routes the call to a line in a line hunt group to
which a DSI is connected. The terminating voice switch applies ringing
to that line. The modem line circuit detects the presence of ringing
and sets an internal-status bit. When the dial-up control-unit software
scans these bits and detects ringing, it commands the modem line
circuit to go off-hook and answer the incoming call.

After two seconds, the dial-up control-unit software commands the
modem line circuit to send an answer tone. When the subscriber
modem receives an answer tone, it should respond by sending carrier.
If the subscriber terminal does not send carrier within 18 seconds, the
modem line circuit will go back on-hook. When the dial-up-control
unit software detects carrier, it commands the modem line circuit to
send an answering carrier.

After 1 second, the multiplexed protocol formatter will start trans
mitting flags on that line. A packet buffer is allocated for receiving
the first LAPB frame from the subscriber terminal. If the LAPB
protocol is not established within a specified period of time after flags
are sent, the dial-up control-unit commands the line to go back on
hook.

LADT HARDWARE/SOFTWARE 1177

4.9.2 Call set-up/termination flow

For a dial-up subscriber line, the DSI must go through a modem
handshake sequence to establish the level-l (circuit-switched) connec
tion. For in-service dedicated lines, the DSI is always sending flags to
the terminal indicating a willingness to establish a level-2 connection.
After a level-l connection is established, the subscriber may request
service by establishing the X.25 level-2 LAPB protocol. When a frame
is received on a subscriber line whose entry in the subscriber-line
routine table is free, the DMA processor interface software creates a
call process. The routing table is updated to point to the newly created
call process, and a message identifying the subscriber line number and
the received frame are forwarded to the call process.

The first frame expected by the DSI LAPB protocol is a Set
Asynchronous Balance Mode (SABM) command for establishing the
level-2 protocol. Non-SABM frames are discarded and the call process
is terminated. Otherwise, an acknowledgment is transmitted to the
terminal and the call-control program is invoked. Call control trans
mits an ASCII prompt to the terminal requesting a destination address.
These signaling messages between call control and the terminal are
transmitted in LAPB information frames. If a destination address is
not received within a specified period of time, call control will termi
nate the call process.

When a valid address is received from the user, call control selects
a free logical-channel number entry from the network routing table.
The routing table is updated to associate the call process with the
selected logical channel. Call control creates an X.25 level-3 call
request packet and invokes the X.25 level-3 program to set up a call
through the packet switch. A call-attempt signaling message is trans
mitted to the terminal informing the user that the call is being placed.
Call control waits for an acknowledgment from level 3 that a virtual
call has been set up and periodically sends the call-attempt signaling
message to the terminal. When the call-connect packet is received, it
is passed to call control for a facility field verification. If the parameters
are valid, a call-connected signaling message is sent to the user's
terminal. After the call is set up, all data are passed transparently on
the virtual circuit.

A call can be terminated by the subscriber terminal, remote host
DTE, or by the LADT network due to internal errors. A subscriber
terminal can terminate a call by transmitting a LAPB Disconnect
Command (DISC) to the DSI or by terminating the level-l protocol
(hanging up). The remote host DTE terminates the call by clearing
the virtual circuit. The DSI can initiate call termination by either of
the above methods.

When the DSI receives a DISC command from the subscriber

1178 TECHNICAL JOURNAL, JULY-AUGUST 1984

terminal, an acknowledgment is sent to the terminal and the subscri
ber-line routing table is restored to the free state. Call control com
mands level 3 to clear the virtual call. The call process will wait for
an acknowledgment (or time-out) from the packet switch. When the
acknowledgment is received, the network-channel routing-table entry
is restored to the free state. The billing record is sent to the billing
process and the call process terminates.

4.9.3 Call flow for packets received from terminals

The largest percentage of the DSI main-processor real time is used
to switch ordinary information packets after the data call has been
established. The DSI data-call processing has been designed to be
real-time efficient in effecting such packet transfers. The paragraphs
that follow describe the logical steps of the hardware and software
interaction for a packet received from a subscriber terminal.

When the multiplexed protocol formatter detects the start of a
packet, it builds up the first byte of the packet by accumulating the
data bits. After it has assembled an entire byte, it transfers the data
byte to the DMA Processor. The DMA processor and the main
processor communicate by using bidirectional hardware FIFOs for
time-critical events, and by using a shared memory accessible by both
the DMA processor and main processor for routine events. When the
DMA processor receives the first byte of a packet, it looks into its
shared memory for the address of the packet buffer that has been
previously allocated for that line. If a valid packet-buffer address is
present, the DMA processor transfers the byte into main memory at
the address specified by the packet buffer. The DMA processor also
puts a message into its FIFO for the main processor to indicate that
it has started to receive a packet from the subscriber line. As the
multiplexed protocol formatter assembles additional bytes, it passes
them on to the DMA processor, which in turn transfers the bytes into
the packet buffer in main memory.

While the packet is being transferred into main memory, the DMA
processor interface software reads the FIFO from the D MA processor
and discovers that the subscriber line has started to receive a packet.
The DMA processor will need a new packet buffer after the packet
reception is complete, so a new packet buffer is allocated and its
address is written into the DMA processor's shared memory. This
preallocation of packet buffers is necessary so that another packet can
be received immediately after the end of the current packet is detected.

When the multiplexed protocol formatter detects the end of the
packet, it confirms that the reception was accurate by checking the
CRC at the end of the packet and then informs the DMA processor
that the packet reception has been completed. The DMA processor

LADT HARDWARE/SOFTWARE 1179

then writes an entry into the FIFO to the main processor indicating
that the subscriber line has just received a packet with a good CRC.

After the DMA-processor interface software reads this entry from
the FIFO, it routes the packet to the call process associated with the
subscriber line. All inputs to a call process are funneled through a
single entry point that is waiting for messages. When a LAPB frame
is received, the LAPB protocol is invoked to process the frame. The
LAPB program will transmit responses to control frames while data
frames are passed on to the X.25 level-3 program for transmission to
the packet switch.

The X.25 level-3 program queues data received from the subscriber
terminal if the virtual circuit to the remote DTE has been flow
controlled or the flow-control window is full. Otherwise, it inserts an
X.25 level-3 data-packet header and calls a packet-switch access
routine to transmit the packet. The XPC-interface software queues
the packet for transmission based on the priority of the packet speci
fied in the packet buffer by level 3. The XPC device notifies the main
processor when X.251evel-2 acknowledgments for a packet are received
form the packet switch. This allows the XPC-interface software to
deallocate the packet buffer.

4.9.4 Call flow for packets received from packet switch

The packet flow through the DSI from the packet switch is similar
to that for packets received from a subscriber terminal and is not
covered in as much detail. The hardware, firmware, and software
interaction for transmitting a packet is also similar to that required
for receiving a packet and is not elaborated in detail. The XPC device
interrupts the main processor after an incoming packet has been
placed into main memory by DMA. The XPC-interface software driver
extracts the X.25 level-3 logical-channel number from the level-3
header for routing purposes. If the routing-table entry is free or invalid,
the packet is routed to the level-3 status process. Otherwise, the packet
is routed to the appropriate call process. The call process will invoke
the level-3 program when it receives a packet from the packet switch.
When level 3 determines that a valid data packet has been received,
it invokes the LAPB protocol program to transmit the data out to the
subs~riber terminal.

LAPB will queue the data if it is flow-controlled or the flow-control
window is closed. Otherwise, it inserts a LAPB header and invokes a
DMA-processor-interface software transmit routine which queues the
frame for transmission. Each subscriber access line has an output
transmit queue. If the transmit queue is empty, the packet buffer
address is placed in shared memory and a command is sent to the
DMA processor to start transmission. If other frames are queued, the

1180 TECHNICAL JOURNAL, JULY-AUGUST 1984

frame is placed at the end of the transmit queue. The DMA processor
will interrupt the main processor when it has completed a transmit
request. The DMA-processor-interface software will then initiate an
other transmission on that line if a frame is queued.

V. ADMINISTRATIVE-PROCESSOR SOFTWARE ARCHITECTURE

The AP is implemented under the DMERT (Duplex Multi-Environ
ment Real Time)13,14 operating system that runs on the AT&T 3B20D
computer.15 The 3B20D computer was chosen for its high reliability.
All AP software is written in C programming language, most of it
residing at the user level of the operating system, with only a few real
time critical functions running at the kernel-process level. Figure 15
shows the internal architecture of the AP software.

5.1 X.25 handler

The AP communicates with the rest of the LADT network over one
9.6~kb/s link running levels 2 and 3 of the X.25 protocol. The AP
X.25 implementation is based on the DMERT-supplied X.25 package.
The DMERT package was modified to support dynamic virtual calls
and to conform to the version of X.25 supported by the packet switch.16

The LADT implementation of X.25 retains the basic file interface for
the UNIX* operating system provided by DMERT. However, a new
interface was added to notify AP processes that use X.25 about changes
in the status of X.25 calls. Each of these AP processes attaches to its
own DMERT message port, to which the X.25 handler sends a
DMERT message whenever a call to that process is set up or cleared.

Since the DSIs all use identical copies of the DSI software, a DSI
has no way of knowing which DSI it is. However, the packet switch
can identify a DSI by the physical link on which the DSI call originates.
If the DSI does not fill in the originating address in the call request
packet, the packet switch will fill in an originating address unique to
that DSI. The AP can then use this originating address to identify the
DSI. The table of legal DSI addresses is stored in the DMERT
supplied equipment configuration database, and the AP will refuse
any call that is not from one of these addresses.

5.2 Generic download

Since the DSIs are RAM-based, their operational generics must be
downloaded from the AP. There is a ROM-based start-up program in
the DSI that includes some hardware diagnostics, a partial X.25 level-
3 implementation, and the DSI portion of the generic download

* Trademark of AT&T Bell Laboratories.

LADT HARDWARE/SOFTWARE 1181

.....
co
t-J

-l
m
n
I
Z
n »
r-

o
c
;:0

z »
r
C
r-
-<
I »
C
[)
C
Vl
-l

\.0
co
~

KERNEL-PROCESS
LEVEL

ADMINISTRATIVE PROCESSOR

USER LEVEL

Fig. 15-Internal architecture of the administrative-processor software.

program. At start-up, the DSI first runs its internal diagnostics and
then sets up a call to the generic download process in the AP.

When the AP receives a request from a DSI for a download, it first
checks a history file to see when the DSI was last downloaded. If the
DSI has requested an excessive number of downloads within a specific
period of time, the AP will alert the craft and refuse to download the
DSI. If the download request is accepted, the AP generic download
function checks the LADT database to determine which DSI generic
should be sent. The generics are divided into 1792-byte blocks, with a
checksum over each block. When the DSI receives each block, it
computes the checksum, and then sends an acknowledgment back to
the AP for that block. The AP end of generic download will only
transmit blocks to the DSI as long as there are fewer than five
unacknowledged blocks outstanding. This windowing mechanism is
used so that the AP does not have to always idly wait for the
acknowledgments, but will also not needlessly send several bad blocks
after an error has occurred. If the DSI does report that there was an
error in receiving a block, the AP will resume sending the generic
starting at that block. If the download is interrupted for external
reasons such as a failure of the DSI-to-packet switch link, the DSI
generic download program keeps track of the last good block that it
received and notifies the AP to start at that block number when it re
establishes the call.

5.3 Shared-memory manager

When large amounts of data must be moved between two processes,
one of the most efficient methods is through the use of shared memory
segments. The shared-memory manager is a process that centralizes
the handling of shared-memory segments in the AP. When the AP is
initialized, the shared-memory manager reserves all the shared mem
ory segments using DMERT's UNIX system calls. Each shared mem
ory segment has a process associated with it that is considered to be
the master of the segment. For example, the RICH process controls
the shared memory that is used to pass RICH transactions between it
and application processes.

When the AP reinitializes, it is not known which processes will need
to be restarted. Because of this, it is conceivable for user processes to
request to be attached to shared memory before the memory has been
initialized by the master process. To circumvent this possibility, the
shared-memory manager waits until the master process for each seg
ment notifies it that the segment has been initialized before it allows
the other processes to attach to the shared-memory segment.

Besides controlling the initialization sequence, the shared-memory
manager also allows a greater degree of fault tolerance in the AP

LADT HARDWARE/SOFTWARE 1183

architecture. If each master process reserved its own segment using
DMERT's UNIX system calls and the master process terminated, it
would lose track of the memory segment and all the data stored in it
would be lost. With the shared-memory manager, if a process termi
nates, it can ask the shared-memory manager for the correct memory
segment when it reinitializes. Since the shared-memory manager is a
simple process, it is considered less likely to terminate than some of
the more complicated processes.

5.4 Remote internal communications handler

The only way the AP can communicate with the DSIs is over X.25
virtual circuits. However, there are many processes in each DSI that
the AP needs to address, such as maintenance, recent change, billing,
and traffic. If one virtual circuit was assigned between the AP and
each DSI for each individual process that needed to be addressed, the
AP would have to terminate several hundred virtual circuits.

To avoid having to terminate many virtual circuits in the AP, a new
internal protocol, RICH, was developed, which allows most of the AP
to-DSI communication to share one virtual circuit between each DSI
and the AP.

A RICH transaction consists of a 12-byte header and up to 244
bytes of user data. RICH addresses are 4-byte integers that allow
processes to be addressed by a combination of their function (such as
billing) and the type and instance of their host processor (such as DSI
number 3). Within a given process address, up to 100 RICH transaction
types may be locally defined. For instance, the maintenance processes
could use different transaction types to distinguish between different
types of diagnostic messages that are returned from the DSIs. A
destination process can ask to be given either the oldest message of a
given type or just the oldest message of any type.

The RICH in the AP is implemented using a dedicated memory
segment that is shared among all the processes that use the RICH.
The RICH provides function calls to send and receive packets which
are implemented as a UNIX software library that is built into every
process that uses the RICH.

One complication in the RICH is that the byte and word orders of
the AP and the DSI processors are different, making it impossible to
pass data structures directly from one processor to the other. To pass
data structures other than arrays of characters between the two
processors, every data structure must have the bytes "swabbed" to the
correct order for the other processor.

5.5 Periodic data handler

Every 5 minutes, the DSIs each send traffic counts to the AP in a
RICH transaction. Since these counts are needed by several AP

1184 TECHNICAL JOURNAL, JULY-AUGUST 1984

processes, another shared-memory segment was created to allow all
the processes to access the same copy of the data. The periodic data
handler is the process that reads the traffic transactions from the
RICH and puts them into the shared-memory segment. The periodic
data handler uses data in the recent-change table and from the DSI
status monitor to determine from which DSIs it should receive trans
actions. When transactions have been received from all the DSIs, it
sends a signal to all the AP processes that use the data. If the
transactions from all the DSIs have not been received within a short
period of time after they are expected, the periodic data handler
informs the DSI status monitor that there may be problems with a
DSI and signals all the user processes to read the data.

5.6 Billing process

The DSIs send billing transactions to the AP using RICH transac
tions. While several transactions may be sent for very long calls, the
AP does not do any call record assembly. The DSIs also send hourly
tracer records that contain counts of the number of billing records of
each type that the DSI has sent. The AP billing program checks the
number of records that it has received against the counts given in the
DSI tracer records. Any errors in the counts are then reported in
tracer records generated by the AP for the billing processing center.
For most telephone operating companies, the bill generation will be
done by revenue accounting offices.

The processing of billing records in the AP is done in two stages.
As records arrive from the DSIs, they are processed to check their
validity and to calculate holding times. Then that information along
with other billing data such as packets sent and received based on rate
periods is written to a daily billing file stored on disk. Both dial-up
and dedicated records are read by this process, but only dedicated
records are processed. Both types of records are also written to a log
file that allows off-line analysis of the per-call data. The last five daily
billing files are stored on disk, allowing several days worth of billing
data to be written to tape at the same time. If errors are encountered
during the reading of the tape at the revenue accounting office, a new
copy of the tape can be generated from the disk data.

5.7 Traffic data processing

Every 5 minutes, each DSI sends a block of traffic data to the AP
in a RICH transaction, which is then read into the periodic data
handler. The traffic report generator then reads the traffic data out of
the periodic data handler to generate reports. The traffic process
prepares reports at 5-minute, 30-minute, and 24-hour intervals with
identical content, though it is possible to tailor the printed output of

LADT HARDWARE/SOFTWARE 1185

the different reports through the use of recent-change forms. For
instance, the output printed in the 30-minute reports can be limited
to the subset of the reports that is needed on a timely basis. The entire
report could then be printed only at midnight. The 5-minute reports
can be turned on conditionally so they will be printed only if the value
in one of the report fields exceeds a set threshold. Thresholds can be
set on any field in the report through recent change. Crossing a
threshold also causes an error message to be printed. Threshold
exceptions and any other DSI errors are summarized in 5-minute, 30-
minute, and 24-hour error reports that can also be tailored through
the recent-change system.

5.B Recent change

The AP recent-change system stores all configuration data for the
AP and the DSIs. While the AP stores the master copy of all config
uration data, the recent-change data for each DSI is sent to the DSI
when the DSI is initialized or when the copy in the AP is changed.
The craft interface to the AP recent-change system is through the
DMERT-provided Online Data INtegrity (ODIN) system, a forms
based data entry system that provides several levels of data validation.
Many new ODIN forms were created for LADT, including forms for
traffic report formats, DSI equipment forms, DSI subunit equipment
forms, and customer data forms.

The AP recent-change database is implemented using a shared
memory segment and a UNIX software library of recent-change func
tion calls. For the simple types of data retrieval needed in LADT, a
shared-memory implementation is faster than a database built using
the more powerful DMERT-supplied database tools.

5.9 DSI status monitor

While the recent~change system stores data on the DSIs that are
equipped, a different mechanism is needed to store the maintenance
state of the DSIs. The DSI status monitor provides the current
maintenance status of the DSIs to both internal AP processes and to
the craft. The DSI status monitor classifies each DSI in one of the
following states:

1. Active
2. In the process of being downloaded
3. Manually out of service
4. Link down
5. Out of service.
The DSI status monitor gathers data on the state of the DSIs from

many sources. First it determines which DSIs are equipped from the
recent-change system. When a DSI starts a generic download, the

1186 TECHNICAL JOURNAL, JULY-AUGUST 1984

X.25 handler notifies the DSI status monitor that the DSI is in the
download state. When the download is finished and the DSI opera
tional, the DSI sends a message to the DSI status monitor stating that
it is active. The DSI status monitor checks the periodic data handler
every 5 minutes to see which of the DSIs have sent data for that 5-
minute period. If the periodic data handler informs the DSI status
monitor that data were not received from a DSI that should be active,
the DSI status monitor sends a RICH transaction to the DSI querying
the DSI status. If the DSI status monitor does not get the proper
response from the DSI, it marks the DSI out of service and triggers
an alarm. The X.25 handler also alerts the DSI status monitor any
time a call from a DSI to the AP is torn down.

5.70 DSI craft interface

While some local craft capabilities are provided by the DSI power
control and display panel, most of the craft interface for the DSIs is
provided through the AP. All LADT craft commands conform to the
Program Documentation Standards (PDS) formats used for many
types of AT&T switching systems. Some commands execute locally
on the AP, while other commands are entered on the AP and then
sent to a particular DSI for execution. Where the commands actually
execute is transparent to the craft who enter the commands.

5.71 AP maintenance

Besides the LADT maintenance functions for DSIs, the AP has
some internal maintenance functions to augment the maintenance
functions provided by DMERT. The AP uses the User Level Auto
matic Restart Process (ULARP) provided by DMERT to handle
internal initializations. This process has a list of AP processes that
should be started at initialization and restarted if any of them termi
nate. To prevent thrashing, the application integrity monitor checks
how often a process is restarted. If any process is restarted more than
twice in 6 minutes, the application integrity monitor will cause an AP
software initialization.

The AP has one level of application initialization defined below the
DMERT levels of initialization. If fatal errors are encounted in run
ning the AP application code, this application level of initialization
restarts all the LADT specific processes without restarting DMERT.
If two iterations of user-level initialization occur within a 5-minute
period, then the initialization level is escalated to DMERT initializa
tions.

5.72 AP audits

Since many AP processes use shared memory segments, it is impor
tant to prevent a bad process from corrupting the data stored in the

LADT HARDWARE/SOFTWARE 1187

segments. The AP has internal audits for the shared memory buffers
that run periodically. These audits attempt to correct any errors that
are found, or cause a software initialization if the errors cannot be
corrected.

VI. SUMMARY

The LADT system has been designed to provide data-transport
services within a Local Access and Transport Area (LATA). AT&T
Technologies implementation of LADT divides the necessary func
tions among already existing and newly designed components in order
to provide economical access for various types of customers. The
network has been designed to be both cost-effective and reliable.

REFERENCES

1. H. J. Kafka et aI., "Local Area Data Transport-A Packet-Switched Network For
Exchange Area Services," IEEE Int. Conf. on Commun. ICC '83, June 1983.

2. G. J. Handler, "Networking-Bit by Bit," Conf. Record of Videotex '82, pp. 453-63.
3. C.C.I.T.T., Data Communication Networks Services and Facilities, Terminal Equi

pent and Interfaces, Vol. VII-Fascicle VIII.2, Geneva, 1981.
4. M. N. Ransom, "Local Area Data Transport System Overview," AT&T Bell. Lab.

Tech. J., this issue.
5. W. L. Harrod and A. G. Lubowe, "The BELLPAcrM Modular Electronic Packaging

System," B.S.T.J., 58, No. 10 (December 1979), pp. 2271-88.
6. A. B. Glaser et aI., "The XPC-A VLSI Link-Level Controller for X.25 LAPB,"

IEEE Int. Conf. on Circuits and Computers ICCC '82, September-October 1982.
7. N. E. Snow and N. Knapp, Jr., "Digital Data System: Sytem Overview," B.S.T.J.,

54, No.1 (May 1975), pp. 811-32.
8. E. C. Bender, J. G. Kneuer, and W. J. Lawless, "Digital Data System: Local

Distribution System," B.S.T.J., 54, No.1 (May 1975), pp. 919-42.
9. P. Benowitz et aI., "Digital Data System: Digital Multiplexers," B.S.T.J., 54, No.1

(May 1975), pp. 893-918.
10. "Data Set 212A Interface Specification," AT&T Technical Reference, PUB 41214,

January 1978.
11. J. R. Boddie et aI., "Digital Signal Processor: Architecture and Performance,"

B.S.T.J., 60, No.7, Part 2 (September 1981), pp. 1449-62.
12. "Local Area Data Transport Terminal Interface Specifications," AT&T Technical

Reference, PUB 54200, June 1982.
13. J. R. Kane, R. E. Anderson, and P. S. McCabe, "Overview, Architecture, and

Performance of DMERT," B.S.T.J., 62, No.1, Part 2 (January 1983), pp. 291-
302.

14. M. E. Grzelakowski, J. H. Campbell, and M. R. Dubman, "DMERT Operating
System," B.S.T.J., 62, No.1, Part 2 (January 1983), pp. 303-22.

15. W. N. Toy and L. E. Gallaher, "Overview and Architecture of the 3B20D Processor,"
B.S.T.J., 62, No.1, Part 2 (January 1983), pp. 181-90.

16. "X.25 Interface Specifications," AT&T Preliminary Technical Reference, PUB
54010, August 1981.

GLOSSARY

AP
CRC
DMA
DISC
DMERT

administrative processor
cyclic redundancy check
direct memory access
LAPB disconnect command
duplex multi-environment real time

1188 TECHNICAL JOURNAL, JULY-AUGUST 1984

DSI
DSIOS
DSP
DTE
FIFO
FSK
LADT
LAPB
LATA
MOS
MRA
MTTY
ODIN
PCD
PDS
RAM
RICH
ROM
RQIP
SABM
SLC
XPC

AUTHORS

data subscriber interface
DSI operating system
digital signal processor
data terminal equipment
first-in first-out
frequency shift carrier
local area data transport
link access procedure B
local access and transport area
metal oxide semiconductor
maintenance request administrator
maintenance terminal
on-line data integrity
power control and display
program documentation standards
random access memory
remote internal communication handler
read-only memory
request in progress
set asychronous balance mode
subscriber loop carrier
X.25 protocol controller

Henry J. Kafka, B.S. (Electrical Engineering), 1979, Northwestern Univer
sity; M.S. (Electrical Engineering), 1980, University of Illinois, Urbana; AT&T
Bell Laboratories, 1979-. At AT&T Bell Laboratories, Mr. Kafka's respon
sibilities have included hardware and software design, as well as applied
research in new digital services and advanced packet-switching concepts. Mr.
Kafka is presently Supervisor of the LADT System Evaluation Group and is
responsible for software development and field support for AT&T's Local
Area Data Transport products. Member, Eta Kappa Nu, Tau Beta Pi, IEEE.

w. Joseph Paule, B.S. (Computer Science), 1976, Iowa State University;
M.S. (Computer Science), 1977, University of California, Berkeley; AT&T
Bell Laboratories, 1976-. Upon joining Bell Laboratories, Mr. Paule worked
on the development of the 1A Voice Storage System (1A VSS), participating
in tool development, system integration, system test, field support, and feature
design. He was promoted to Supervisor in 1980. From 1981 to 1983, Mr. Paule
worked on the LADT project, where he supervised software development,
system integration, and field support. He is currently in the Data Packet
Switching Department, where he is Supervisor of the 1PSS System Test and
Field Support Group. Member, Phi Beta Kappa, Phi Kappa Phi, ACM.

David J. Stelte, B.S., Electrical Engineering (summa cum laude), 1972,
University of Notre Dame; M.S. (Electrical Engineering), 1973, University of
Illinois; GTE Network Systems Digital Switching Development Laboratory,
1974-1978; AT&T Bell Laboratories, 1978-. At GTE, Mr. Stelte was involved
in the design and implementation of Pulse Code Modulation systems as well
as system architectural work on class 5 digital switching systems. At AT&T

LADT HARDWARE/SOFTWARE 1189

Bell Laboratories, Mr. Stelte's responsibilities have included applied research
in new digital services, and work on ISDN standards and their implementation
in digital switching systems. He has also worked in the areas of data set design
and mobile telecommunications. Mr. Stelte is presently Supervisor of the
LADT System Design Group and is responsible for architectural planning and
software development for AT&T data switching products. Member, Eta Kappa
N u, Tau Beta Pi, IEEE.

1190 TECHNICAL JOURNAL, JULY-AUGUST 1984

AT&T Bell Laboratories Technical Journal
Vol. 63, No.6, July-August 1984
Printed in U.S.A.

Optimum Scan-Width Selection Under
Containment Constraints

By M. R. GAREY* and R. Y. PINTER*

(Manuscript received December 20, 1983)

We consider the following algorithmic problem, which arises in connection
with optimally choosing beam widths and positions for electron exposure of
integrated circuit wafers. Let H> 0 be a fixed real number, and let c be a
fixed, positive-valued, nondecreasing cost function defined on (0, H]. An
instance of the problem consists of a given range R = [a, b] and n given
intervals Ii = [ai, b;], 1 ~ i ~ n, each contained in R and of length not exceeding
H. A solution (or feasible solution) for such an instance is a collection of
segments, 81, 8 2, ••• , 8 k , each of length at most H and contained in R, such
that each given interval is contained in at least one segment and the union of
all the segments is R. The goal is to find an optimal solution with respect to c,
i.e., a solution for which the sum of the costs of the individual segment lengths
is as small as possible. The segments in a solution describe the beam positions
and widths, projected on one side of the wafer, and the given intervals
correspond to particularly sensitive regions on the layout mask, each of which
must be entirely exposed by a single scan. The cost function gives the time
required for a single scan of given width, including alignment overhead. Using
dynamic programming techniques, we give efficient algorithms and data struc
tures for solving this problem for several natural classes of cost functions, the
most general of which is the class of all concave increasing functions, solved
by an algorithm that runs in time O(n 2

).

I. INTRODUCTION

Electron lithography systems! are used in the fabrication of inte
grated circuits to expose areas of the manufactured device specified

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1191

by layout masks. In most such systems an electron beam repeatedly
sweeps across the mask in parallel horizontal movements, exposing
one horizontal stripe of the material at a time, so that each point of
the mask is included in at least one stripe. The height of the stripe
can vary on successive sweeps and is subject to a physically determined
upper bound, H, with the time required for a sweep being a nonde
creasing function of height. In general, it is desirable to process each
mask in the minimum possible amount of time in order to maximize
throughput and minimize the risk of failure.

The quality of the etching made by a single sweep is highly reliable,
and the generated stripe can be regarded as an atomic piece of the
process for purposes of quality control and cost evaluation. However,
the machinery cannot be realigned between sweeps with absolute
precision, and errors can arise from the resulting imperfect positioning
of the stripes. Usually, conservative design rules prevent such align
ment errors from being harmful, but some parts of a circuit mask may
be too sensitive to tolerate these (otherwise acceptable) errors. These
more sensitive regions ("islands") cannot tolerate either small unex
posed gaps between stripes or multiple exposures created by overlap
ping stripes, although an island can be shielded during some sweeps
to prevent exposure during those sweeps. Thus, the islands impose
containment constraints on the scanning process, in that each island
must be completely contained within a single stripe. This paper focuses
on how to minimize the cost (time) for exposing a two-dimensional
region in the presence of such containment constraints.

Notice that the upper bound, H, on the height of any stripe implies
that no island can have height greater than H. It also implies that, in
general, some parts of the region may have to be scanned more than
once. For example, if there are two islands of height 3H/4 arranged as
in Fig. 1, the stripe exposing the first must overlap and be distinct
from the stripe exposing the second. Hence, each of the islands would
need to be shielded during the sweep that exposes the other island.

The total cost of the scanning process is the sum of the costs for
the individual sweeps, where the alignment overhead is incorporated
into the cost for the sweep. Various cost functions can be used to
approximate the actual cost of scanning a stripe of given height. We
will examine several classes of such functions and present efficient
algorithms that minimize the covering cost for them. All cost functions
considered will be monotonically nondecreasing in the stripe height.

Section II gives the mathematical formulation of the scan -width
selection problem and makes some preliminary observations. Section
III describes our optimization algorithms for the various cost func
tions. Section IV concludes the paper by mentioning several open
problems.

1192 TECHNICAL JOURNAL, JULY-AUGUST 1984

-r-
I
I
I
I
I
I
I
I

H
I
I
I
I
I
I
I
I

~~--~~~~------------~

~ig.l-Layout mask showing that two islands of height 3H/4 require overlapping
stnpes.

II. PROBLEM FORMULATION

We first observe that the problem we have described is essentially
one-dimensional. We can project the region to be exposed and the
islands contained in the region onto a vertical line, transforming the
region into a range [a, b] and each island into an interval [ai, bd
contained in this range. (See Fig. 2.) A stripe of height h =::;; H then
becomes a segment of length h =::;; H, and containment of an island
within a stripe corresponds to containment of the associated interval
within the appropriate segment. We will deal exclusively with this
one-dimensional formulation in the remainder of the paper, rotating
it 90 degrees for convenience of description.

Problem definition: Let H> ° be a fixed real number, and let c be a
fixed, positive-valued, nondecreasing cost function defined on (0, H].
An instance of the problem consists of a given range R = [a, b] and n
given intervals Ii = [ai, bd, 1 =::;; i =::;; n, each of length at most Hand
contained in R. A solution (or feasible solution) for such an instance
is a collection of segments, 81, 8 2, ••• , 8k , each of length at most H
and contained in R, such that each given interval is contained in at
least one segment and the union of all the segments is R. Our goal is
to find an optimal solution, i.e., a solution for which the sum of the
costs of the individual segment lengths is as small as possible.

We will assume that the specified intervals are given in a particular

IC FABRICATION 1193

I
b

Fig. 2-A covering problem and its one-dimensional interpretation.

sorted and reduced format. First, we assume that the intervals are
sorted by their left end points, so that ai :::::; ai+1 for 1 :::::; i < n. Second,
we assume that no given interval is contained in another given interval;
any segment that contains the larger one must also contain the smaller,
so the smaller can be ignored without loss of generality. Thus, the
intervals will also be sorted by their right endpoints, i.e., bi :::::; bi+1 for
1 :::::; i < n. We shall not account for the complexity of the preprocessing
needed to meet these assumptions, which is O(n log n) if sorting is
necessary or O(n) if the intervals are presented in sorted order.

We will consider the following types of cost functions (all are
assumed to be positive and nondecreasing on (0, H]):

1. c(h) is constant, i.e., c(h) = fl.
2. c(h) is proportional to h, i.e., c(h) = ah.
3. c(h) is linear, i.e., c(h) = ah + fl.
4. c(h) is concave, i.e., if hI < h2 < Hand ° < E :::::; min{hh H - h21,

then c(hl) + c(h2) ~ C(hl - E) + C(h2 + E).
We will also consider the variant on the constant cost function in

which all segments must have length exactly H. This is not a nonde
creasing function, since segments shorter than H have essentially
infinite cost, but we shall see that the solution for this case follows
directly from the solution for the case of constant cost functions.

In the general case of a concave cost function, we will assume that
the function is given simply by a "black box" subroutine for computing
c(h). We will also assume that the running time for the subroutine is
bounded by some constant, ')'; if the calculation is more complex and

1194 TECHNICAL JOURNAL, JULY-AUGUST 1984

a more detailed timing analysis is needed, this should be easily obtain
able from our analysis.

We conclude this section with a general normalization lemma for
optimal solutions. Let us define a gap in a given problem instance to
be a maximal subinterval of R = [a, b] that is disjoint from all the
given intervals. We regard a gap as an open subinterval, i.e., the two
endpoints of a gap do not belong to the gap. A maximal subcollection
of the given intervals such that no two are separated by a gap will be
called a block; by our assumption that the intervals are sorted, each
block consists of intervals whose indices are consecutive. Thus, the
given problem instance is partitioned into an alternating sequence of
gaps and blocks, with the indices of all intervals in each block being
less than the indices of all intervals in blocks to its right. If no interval
starts at the left end, a, of the range, we will regard a as both the left
end of the corresponding gap and as the right end of an empty block.
Similarly, if no interval ends at b, we will regard b as both the right
end of the corresponding gap and as the left end of an empty block.
Our "normalization lemma", which will be used for all but the case of
constant cost functions (and its fixed length variant), follows.
Lemma 1: For any nondecreasing cost function, c, and any given problem
instance, there always exists an optimal solution in which:

(1.1) No segment is contained in another segment.
(1.2) All segments start at left ends, ai, of intervals, right ends of

blocks, or in gaps; and all segments end at right ends, bi, of intervals,
left ends of blocks, or in gaps.

(1.3) No point in a gap is in the interior of more than one segment.
Proof" For (1.1) we simply observe that any segment that is contained
in another can be deleted with no increase in cost and without
destroying the solution. Thus, any optimal solution that also has a
minimum number of segments (among all optimal solutions) must
satisfy (1.1).

For (1.2) consider any optimal solution with a minimum number of
segments [hence, satisfying (1.1)]. If the left end of any segment is
not of the specified form, we can shorten the segment to start at the
leftmost point of that form that it contains, without changing the set
of intervals contained in the segment and without leaving uncovered
any portion of a gap. Thus, the new solution is still a solution, and
since the cost cannot have increased, it remains an optimal solution.
Similarly, we can shorten the right end of any segment whose right
endpoint fails to have the specified form. Repeating these operations
to the given optimal solution results in a new optimal solution satis
fying (1.2). Furthermore, it must still satisfy (1.1), since the number
of segments in the solution has not been increased (if the shortening
of any segment were to make it contained in another segment, we

IC FABRICATION 1195

could delete the smaller, which would be a contradiction of our
assumption that the number of segments was originally minimal
hence, this cannot happen).

For (1.3) consider any optimal solution obtained as in the preceding
paragraph, and suppose some point in a gap is in the interior of two
segments. Let the segments be [x, y], [z, w], with x < z < y < w. Since
some point, u, in the range (z, y) is in a gap, we can replace these two
intervals by the two intervals [x, u], [u, w] without destroying the
solution and without increasing the solution cost, since both intervals
have been shortened. Moreover, this operation clearly preserves (1.1),
because the number of segments remains minimum, and preserves
(1.2), because the only new point to start or end a segment is u, which
is in a gap. Thus, repeating this operation will eventually result in an
optimal solution . satisfying (1.1), (1.2), and (1.3). 0

We will restrict attention to finding optimal solutions of the form
given in Lemma 1. Notice that (1.1) of the lemma allows us to order
the segments in a solution from left to right in the same way intervals
were ordered; if the left end of a segment is less than the left end of
another segment, then its right end must also be less than the right
end of the other segment. Thus, there will be no confusion when we
say a segment is to the left of another segment.

III. OPTIMIZATION ALGORITHMS

We now consider each of the four types of cost functions, in order
of increasing difficulty.

3.1 Constant cost function

In this case we are simply trying to mInImIze the number of
segments, so we may, without loss of generality, restrict all segments
to the maximum possible length H. (We will not be using Lemma 1
here.) The solution then follows immediately by observing that we can
always start the first segment at the left endpoint, a, of the range
[a, b]. This leaves a remaining problem that includes exactly those
intervals not contained in the first segment, i.e., those intervals [ai, bd
for which bi > a + H; and the range for the new problem can be taken
to be [a', b], where a' is the minimum among a + H and the left
endpoints, ai, of the remaining intervals. Because we can always start
the first segment at the left end of the range, we can repeat this
"greedy" approach until we reach the end of the range [a, b]. However,
the last segment must be started at the point b - H to keep it within
the original range. The following algorithm implements this approach
and runs in time linear in the larger of the number of given intervals
and the number of segments in the optimal solution. The variable Sj

1196 TECHNICAL JOURNAL, JULY-AUGUST 1984

denotes the left endpoint of the jth segment, and the final value of j
is the number of segments in the optimal solution.
Algorithm 1:

initialize i := 1; j := 0; newa := a;
while newa ~ b - H do

j := j + 1; Sj: = newa;
while (bi ~ newa + H) do i := i + 1;
newa: = min(ai' newa + H);

if (newa < b){j:= j + 1; Sj:= b - H};

3.2 Proportional cost function

For the sake of simplicity, we shall assume that the constant of
proportionality a has been normalized to 1, so the cost of a solution is
just the sum of the lengths of its segments. We first observe that the
gaps can be covered independently of the blocks, with each gap being
covered simply by a sequence of adjacent segments whose lengths sum
to the length of the gap. The lengths of these segments can be chosen
arbitrarily, but all must be H or less. Thus, we need only show how to
solve problem instances that consist of a single block, starting at the
left end of the range and running all the way to the right end.

So, suppose the given problem consists of just a single block. Since
there are no gaps, Lemma 1 tells us that we can restrict attention to
solutions in which all segments start at left ends of intervals and run
to right ends of intervals. This sets the stage for the use of a dynamic
programming approach. Let C(i), 1 ~ i ~ n, be the cost of an optimal
covering for the range R(i) = [ai, b] and the intervals raj, bj], i ~j ~ n,
contained in that range. We want to find C(l). Then we can write

C(i) = min {bj - ai + C(j + I)},
j""i

brai~H

(1)

where we artificially set C(n + 1) = o. The solution corresponding to
a particular value of j consists of the segment [ai, bj] followed by an
optimal solution for the range [aj+l, b]. (Notice that aj+l ~ bj since
there are no gaps). By using (1) to solve for the C(i) in order of
decreasing i, we can then find C(l). The segments that realize the
solution can be recorded in a one-dimensional trace vector T, where
T(i) is set to that value of j for which C(i) is minimized. From this
information we can easily reconstruct the optimal solution.

The obvious algorithm based on this approach can require time
proportional to n 2

• We will show how to reduce this to O(n), by using
some simple algebraic transformations and a carefully chosen data

IC FABRICATION 1197

structure. First, we can rewrite (1) as

C(i) = -ai + min {bj + C(j + I)},
j;?!;i

bj-aj""H

(2)

which leaves the minimization independent of i, except for defining
the relevantj values. Let us define C*(i) = bi- 1 + C(i). Then, from (2)
we have

C*(i) = b i- 1 - ai + min {C*(j + I)},
j;?!;i

(3)

braj""H

and by defining bo = 0, we have C*(l) = C(l). We also extend the
definition of C* so that C*(n + 1) = bn + C(n + 1) = bn • We will use
(3) as the basis for our improved dynamic programming algorithm.

The C*(i)'s will be computed in order of decreasing i. The key idea
is to keep accessible only those C*(i) values that can be useful for
subsequent minimizations and, at the same time, to make it easy to
find the new minimum for each C*(i). At each stage (new value of i),
we need to delete those previous C*(j) values that are too large to be
of further use or that are "too far away" to be used because bj - ai

> H. We do this by storing the so-far-computed C* values in a deque
(double-ended queue), a data structure that allows lookup, insertion,
and deletion at both ends, but allows no direct access to interior
elements. The elements stored in the deque are pairs (C*(i), i) with i
monotonically increasing from left to right, although the i values need
not be consecutive. The deque operations are (since there is only one
deque, we omit explicit reference to it):

push-left (x, i), push-right (x, i)

pop-left (), pop-right ()
C-af-left (), C-af-right ()

i-of-left (), i-of-right ()

to insert element (x, i) at desig
nated end

to delete element at specified end
to return C* -value on specified

end without changing deque
to return i-value on specified end

without changing deque.

These are easily implemented in standard ways.2

Now we can present the linear-time algorithm for computing C(l)
= C*(l) and the trace vector, T. The input for the algorithm is the
sequence ab a2, ... , an of interval left endpoints and the sequence bb
b2, ••• , bn of interval right endpoints, both in increasing order.
Algorithm 2:

initialize deque := < (bn, n + 1); bo := 0;
for i := n to 1 by - 1 do

while (bi-ol-right ()-1 - ai > H) do pop-right ();

1198 TECHNICAL JOURNAL, JULY-AUGUST 1984

r----------------,
r----------,

I I I I I I I I
o 5 10 15 20

Fig.3-Intervals (solid lines) and segments (dashed lines). There are two segments
in the solution and their total length is 17.

C*(i) := bi- 1 - ai + C-of-right ();
T(i) := i-of-right () - 1;
while (C-of-left () ~ C*(i» do pop-left ();
push-left (C*(i), i);

The preceding discussion and the following easily verified observa
tions directly imply the correctness of the algorithm and the fact that
it runs in time O(n).
Observation 1. Algorithm 2 maintains the de que in such a way that if
(x, i) is to the left of (y, j), then x> y and i < j.
Observation 2. For each i, 1 ~ i ~ n, (C*(i), i) is inserted exactly once,
and in each iteration of the loop the number of elements that are
examined but not deleted is exactly two.
Theorem 1: Algorithm 2 correctly computes C(I) = C*(I) and the trace
vector, T, in O(n) steps.
Example. Consider the set of intervals [1, 6], [4, 7], [5, 10], [6, 13], [7,
16], with H = 11. Then the deque will assume the following values at
the end of each iteration:

init: (16, 6)
i = 5: (22, 5), (16, 6) T(5) = 5
i = 4: (20, 4), (16, 6) T(4) = 5
i = 3: (18, 3), (16, 6) T(3) = 5
i·= 2: (20, 2), (18, 3) T(2) = 2
i = 1: (17, 1) T(I) = 2.

The intervals and the optimal covering are shown in Fig. 3.

3.3 Linear cost function

In this case, gaps become significant and can no longer be treated
separately. However, we shall see that we can restrict our attention to
a limited set of potential segment starting points in the gaps. This will
let us use a slightly more complicated, but still very efficient, dynamic
programming approach.

IC FABRICATION 1199

Lemma 2: For any linear cost function, c, and any given problem
instance, there exists an optimal solution of the form given by Lemma
1 such that, for any segment [x, yj in the solution:

(2.1) If x + H lies in a gap, then y = x + H, i.e., the segment has
lengthH.

(2.2) If x + H does not lie in a gap, then y does not lie in a gap.

Proof: Consider any optimal solution of the form given in Lemma 1
and suppose also that it has a minimum number of segments among
all such solutions. Then we know that no two adjacent or overlapping
segments in the solution have lengths summing to H or less, since by
the linear cost function they could then be combined into a single
segment at no increase in cost.

Consider the leftmost segment [x, y] that violates either (2.1) or
(2.2). If no such segment exists, we are done. Otherwise, let [z, w], with
x < z ~ y < x + H < w, denote the next segment in the ordering. [The
inequalities on x, y, z, and w follow from Lemma 1 (1.1) and our
observation at the beginning of the proof]. If x + H is in a gap but
y -::j:. x + H, we can replace the two segments [x, y] and [z, w] by the
two segments [x, x + H] and [x + H, w] without destroying the solution,
since the new segments cover the same span, and any interval con
tained in one of the original two is contained in [x, x + H] if it was to
the left of x + H and is contained in [x + H, w] otherwise. If x + H is
not in a gap but y is in a gap, let u be the right endpoint of the gap
containing y. Then we can replace [x, y] and [z, w] (where in fact z = y)
with [x, u] and [u, w] without destroying the solution. In neither case
have we increased the cost of the solution, because the sum of the
lengths of the two new segments is no greater than the sum of the
lengths of the original two. Moreover, the new segment starting at x
retains the position of [x, y] in the left-to-right ordering of segments
in the solution and no longer violates (2.1) or (2.2). In addition, it is
easy to verify that all segments starting to the left of x continue to
satisfy (2.1) and (2.2) and no violations of the conditions of Lemma 1
have been introduced. Thus, we can repeatedly apply the appropriate
one of these two transformations to the leftmost violator of (2.1) or
(2.2), and we will eventually obtain an optimal solution of the stated
form. D

We will restrict attention to optimal solutions of the form given by
Lemma 2.

Consider what this tells us about solving any subproblem consisting
of a range [x, b] and all intervals contained in that range. If x + H is
not in a gap, then, by Lemma 2 (2.2) and Lemma 1 (1.2), we need only
consider solutions in which the leftmost segment runs from x to the
right endpoint of some interval or to the left end of some block. The
remaining subproblem in each such case will have a range starting at

1200 TECHNICAL JOURNAL, JULY-AUGUST 1984

the left endpoint of the leftmost uncovered interval from the original
subproblem, as in the proportional case, so we do not need to know
about any subproblems that start with points in gaps. If x + H does
lie in a gap, then, by Lemma 2 (2.1), we know that there is an optimal
solution in which the leftmost segment has length exactly H, and we
can, without loss of generality, choose to start with such a segment.
However, to compute the cost of that solution, we need to know the
optimal solution cost for the subproblem that then remains, and the
range for that remaining subproblem begins at the point x + H, which
does lie in a gap. This suggests that we will indeed need to solve
certain subproblems whose ranges begin with points that lie in gaps.
The key lies in finding a small number of such points that will suffice.

For any point x, define fwd(x) to be the rightmost point y ~ x such
that y is congruent to x modulo H and such that all points in the
sequence x + H, x + 2H, ... , y lie in gaps. If x + H does not lie in a
gap, we let fwd(x) = x. Now, again consider the above situation of
solving a subproblem with range [x, b], where x + H belongs to a gap.
Then, by repeated application of Lemma 2 (2.1), we know that there
is an optimal solution for this subproblem that begins with a sequence
of adjacent segments of length exactly H ending at the points x + H,
x + 2H, ... ,fwd(x), and we can, without loss of generality, choose to
start this way. The remaining subproblem, whose solution cost we
need for computing the optimal cost for the initial subproblem, still
begins with a point in a gap (namely, the point fwd(x)), but it is a
point of very special form. In particular, by the definition of fwd(x),
we have that fwd(fwd(x)) = fwd(x).

It follows directly from the preceding discussion that we need only
solve subproblems for ranges of the form [x, b], where x is the left end
of some interval, the right end of some block, or fwd(z) for Z one of
those two types of points. We can describe the computation as follows:
Let Iz1, Z2, ... , Zm} be the set of all such starting points, sorted so that
a = Zl < Z2 < ... < Zm = b. For each Zi, let b(zJ be defined as bj if
Zi = aj for some interval [aj, bj] (there can only be one such j by our
assumption that no interval is contained in another) and as Zi+1
otherwise. Notice that b(Zl) < b(Z2) < ... < b(zm) and that b(Zi) ~ Zi+1
for all i, 1 :::::; i < m. Let C(Zi) denote the cost of an optimal solution
for the subproblem with range [Zi' b] consisting of all intervals con
tained in that range. Then, if Zi # fwd(Zi), we have

fwd(z·) - z·
C(Zi) = l-I ! (aH + (3) + C(fwd(Zi)). (4)

The solution in this case consists of a sequence of intervals of length
H starting at the points Zi, Zi + H, ... , fwd(zJ - H, followed by an
optimal solution for the range [fWd(Zi), b]. If Zi = fwd(zJ, we have

IC FABRICATION 1201

C(Zi) = min {a(b(zj) - Zi) + (3 + C(Zj+1)}. (5)
r~i

b(zj)-zj.:;.H

The solution corresponding to a particular choice of j here consists of
the segment [Zi' b(zj)] followed by an optimal solution for the range
[Zj+1, b]. It is not difficult to see that the sequence b(Zi) < b(Zi+1) <
... < b(Zk), where k is the greatest index such that b(Zk) - Zi :s:.; H,
includes all possible right endpoints that need be considered for a
segment starting at Zi, although it may also include some points in
gaps that could have been ignored.

In addition, we can still use an algebraic transformation like that of
the preceding section to simplify the computation. Accordingly, define
C*(Zi) = ab(zi-1) + C(Zi). Then, rewriting (4), we have, if Zi # fwd(Zi),

C*(zJ = a(b(zi-1) - fwd(zJ)

+ fWd(~ - Zi (aH' + (3) + C*(fwd(Zi)). (6)

Here we used the observation that if fwd (Zi) = Zk, k > i, then b(Zk-1)
= Zk. Then, rewriting (5), we have, if Zi = fwd(zJ,

C*(Zi) = a(b(zi-1) - Zi) + (3 + min {C*(Zj+1)}' (7)
j";!;i

b(zj)-zj.:;.H

We also have C*(Zm) = b(Zm-1), and we define b(zo) = O. These equations
will provide the basis for our algorithm, which again uses the deque
data structure of the previous subsection.

We assume that the algorithm is given as input the integer m, the
sequence Zo = Z1, Z2, "', Zm, and, for 0 :s:.; i :s:.; m, the corresponding
values for b(Zi) and fwd(zJ. The algorithm computes C(Zl) = C*(Zl)
and the trace vector T, as before. However, the value T(i) of the trace
vector Tat Zi will be undefined whenever Zi # fwd(Zi), since we already
know that the solution for the subproblem starting at Zi begins with a
sequence of length H segments from Zi to fwd(Zi).

Algorithm 3:

initialize deque := (b(Zm-1), m);
for i := m - 1 to 1 by - 1 do

while (b(Zi-of-right ()-1) - Zi > H) do pop-right ();
if Zi ¥- fwd (zJ

then C*(Zi) := a(b(zi-1) - fwd(zJ)
+ ((fwd(Zi) - zi)/H) (aH + (3) + C*(fwd(Zi))
else {

C*(Zi) := a(b(zi-1) - Zi) + {3 + C-of-right ();
T(i) := i-of-right () - I};

1202 TECHNICAL JOURNAL, JULY-AUGUST 1984

while (C-of-left () ~ C*(Zi)) do pop-left ();
push-left (C*(Zi), i);

The correctness of this algorithm and the fact that it runs in time
O(m) = O(n) follow from the preceding discussion and observations
analogous to those made in the previous subsection.
Theorem 3: Algorithm 3 correctly computes C(Zl) = C*(Zl) and the
trace vector Tin O(n) steps.

It remains for us to show how to compute the input for Algorithm
3. The computation of the b(zJ values is straightforward and can be
accomplished easily in linear time. However, computing fwd(z) for z,
the left end of an interval or the right end of a block, from which the
sequence Zl, Z2, ••• , Zm is determined, requires some care. It is easy to
do this in linear time for each such z, simply by comparing Z to each
of the given intervals in left to right order, searching for the first
interval to the right of Z that contains a point congruent to Z modulo
H, and then setting fwd(z) equal to that point minus H. Unfortunately,
this would require O(n 2

) time overall, substantially worse than Algo
rithm 3 itself. We now describe a method for computing the values of
fwd(z) for all such Z in time O(n log n), still worse than linear but
comparable to the preprocessing time for originally sorting the inter
vals.

The basic idea of the method follows: Suppose the range [a, b], and
all the given intervals, are cut at all points that are exact multiples of
H and the resulting pieces are arranged into "shelves", as shown in
Fig. 4, so that the multiples of H increase as we go down the shelves.
For any point x, consider a vertical cutline through the shelves that
passes through x, i.e., a line at distance x mod H in from the left ends
of the shelves. Then it is easy to see that fwd(x) is the furthest point
not in any interval that can be seen from x by looking downward along
this cutline, where the presence of an interval along the cutline blocks
the view of shelves below it. To prevent "looking" beyond the last
shelf, we include a dummy interval [b, b + H] at the end of the original
range.

Let us define the H-value of a shelf, or any point on that shelf, to
be the integer t such that tH is the left endpoint of the shelf, and let
us call a shelf empty for a particular cutline if the point at which the
cutline passes through the shelf does not belong to any interval on
that shelf. Now suppose we start with a cutline through the left ends
of the shelves and gradually move it to the right, always keeping track
of the H-values for the shelves that are nonempty at the current
cutline position. This set of H-values changes whenever the cutline
encounters the left or right endpoint of some interval, and we maintain
this information in a data structure that can be updated easily when-

IC FABRICATION 1203

j------H------1
I

H I--

I

I I

--I I I

I--l ~

~ I

Fig. 4-Intervals arranged in shelves. Each shelf has width H.

ever such an endpoint is encountered. In addition, we choose our data
structure so that it is easy to find, for any given integer t, the least
H-value in the data structure that is larger than t. This is used for
computing the value of fwd(x) each time the moving cutline hits a
point x that is the left endpoint of an interval or the right end of a
block (it may hit more than one such point simultaneously). To
compute fwd (x) at this point, we simply find the least H -value q
in the data structure that is larger than the H -value for x and set
fwd(x) = (q - 1) H + x mod H. Thus, the values of fwd (x) for all such
points x will have been computed by the time the cutline has moved
all the way to the right end of the shelves.

By using a balanced binary tree for storing the H-values, we can
add or delete an individual H-value, or find the least H-value larger
than a given integer, in time O(log n). Since at most O(n) H-values
will be added to or deleted from the data structure, regardless of the
number of shelves, and since at most O(n) requests for the least H
value larger than a given integer will occur, the entire procedure will
thus require only O(n log n) time. The input Zh Z2, "', Zm for
Algorithm 3 is then obtained by combining the set of points x for
which fwd was computed with the corresponding set of points fwd(x)
computed for them, and sorting the resulting collection of points (also
in time O(n log n».

To clearly show how this scanning process can be implemented, we
will describe it in more detail. The balanced tree data structure is
quite standard and we will not go into detail here (see Ref. 3, for
example). For our purposes, the entries in the tree can be regarded as

1204 TECHNICAL JOURNAL, JULY-AUGUST 1984

pairs consisting of an H-value and an integer multiplicity for that H
value. The insertion of an H-value into the tree requires following the
appropriate path from the root to find the node for that H-value,
increasing its multiplicity by one if it is in the tree, and otherwise
creating and inserting a new node for it with multiplicity 1. The
deletion of an H-value from the tree requires following the appropriate
path from the root to the node for that H-value, decreasing its
multiplicity by one, and deleting the node if the multiplicity becomes
zero. Finding in the tree the least H-value larger than a given integer
t also involves a simple traversal from the root (the details depend on
the exact implementation of the tree structure) and can be facilitated
by storing in each interior node the smallest H-value occurring in its
right subtree. Notice that the tree must be rebalanced only when a
new node is inserted or deleted. Standard methods for implementing
these operations ensure that each requires time at most logarithmic
in the number of H-values in the tree and hence time G(log n).

The first step of the procedure is to cut the given intervals into
shelves. It is convenient to begin by adding two dummy intervals, [a
- H, a] and [b, b + H], at the beginning and end of the range, so that
the points a and b do not have to be treated exceptionally. We then
cut each interval that contains a point congruent to 0 modulo H in its
interior (not as an endpoint) into two adjacent intervals at that point,
i.e., replacing [ai, bil by [ai, tH] and [tH, bil, where ai < tH < bi (there
can be at most one such t). Next we combine all the endpoints of the
resulting set of intervals into a single set (retaining repetitions),
associating with each point the type of point it was in the interval it
came from, with the choices being from among left end of a block (lb),
right end of a block (rb), left end of an interval (but not of a block)
(li), and right end of an interval (but not of a block) (ri). We also
remember which points were introduced as dummies to split intervals.
Finally, we replace each of these points x by the ordered pair (Lx/HJ,
x mod H), where LwJ denotes the largest integer not greater than w,
and we sort them into nondecreasing order according to their second
components. Notice that the first component for a point is its H-value
(designating the shelf it is on), the second component is its position
on that shelf, and the ordering corresponds to the sequence in which
the points will be encountered as the cutline is moved from left to
right.

We initialize the binary tree data structure to contain the H-values
for all points with shelf position (second component) 0 and type either
rb or rio We then repeat the following steps until all points in the list
have been processed (initially none have been processed):

1. Let () be the shelf position (second component) for the next

IC FABRICATION 1205

unprocessed point on the list. (Notice that all points on the list with
shelf position 0 occur consecutively on the list.) Add to the tree the
H-values of all points with shelf position 0 and type either lb or lie

2. For each point x with shelf position 0 and type lb, Ii, or rb, except
for those that were added as dummies, compute fwd(x) by finding in
the tree the least H-value q larger than the H-value for x and setting
fwd (x) = (q - 1) H + o.

3. Remove from the tree the H-values of all points with shelf
position 0 and type either rb or rio All points with shelf position 0 have
now been processed.

It is easy to check that this procedure correctly computes fwd(x) in
. each instance and that, except for the points a - Hand b + H, the

points x for which fwd(x) has been computed are exactly those that
are left endpoints of intervals or right ends of blocks for the original
set of intervals, as required. Thus, we simply need to delete those two
inappropriate points, combine the remaining points x for which fwd (x)
was computed with the corresponding set of points obtained as values
of fwd(x) for them, and sort the resulting collection to form the
sequence Z1, Z2, ••• ~ Zm.

Combining Algorithm 3 with this method for computing the se
quence Z1, Z2, ••• , Zm, we then have Theorem 4.
Theorem 4: The proportional cost function case can be solved in time
O(n log n).

3.4 Concave cost function

In this case we will again show that we can restrict attention to a
limited set of potential segment starting points in gaps. The key
lemma is the following:
Lemma 3: For any concave cost function c and any given problem
instance, there exists an optimal solution of the form given by Lemma
1 such that, for any segment [x, yJ in the solution:

(3.1) if x + H lies in a gap, then y = x + H, i.e., the segment has
length H, and

(3.2) if y lies in a gap and y ¥ x + H, then for some integer k ;;;:: 1 the
points y + H, y + 2H, ... , y + (k - l)H all lie in gaps, the point
y + kH does not lie in a gap (and, hence, by Lemma 1, y + kH is either
the right endpoint of some interval or the left end of some block), and
the segments [y, y + HJ, [y + H, y ± 2 HJ, ... , [y + (k - l)H, y + kHJ
all belong to the solution.
Proof: Consider any optimal solution of the form given in Lemma 1,
and suppose also that it has a minimum number of segments among
all such solutions. Then, as in the proof of Lemma 2, we know that
no two adjacent or overlapping segments in the solution have lengths

1206 TECHNICAL JOURNAL, JULY-AUGUST 1984

summing to H or less, since by the concave cost function they could
then be combined into a single segment at no increase in cost.

We first deal with violations of (3.1). Consider the leftmost segment
[x, y] that violates (3.1). If no such segment exists, we are done with
this portion of the proof. Otherwise, let [z, w], with x < z ~ y <
x + H < w, denote the next segment in the ordering. (The inequalities
on x, y, z, and w follow from Lemma 1 (1.1) and our observation at
the beginning of the proof.) If x + H is in a gap but y ~ x + H, we
can replace the two segments [x, y] and [z, w] by the two segments
[x, x + H] and [x + H, w] without destroying the solution, since the
new segments cover the same span, and any interval contained in one
of the original two is contained in [x, x + H] if it was to the left of
x + H and is contained in [x + H, w] otherwise. Moreover, since the
sum of the lengths of the two new segments is no greater than the
sum of the lengths of the original two, and since the length of the
longer of the two is now as large as possible, we cannot have increased
the cost of the solution. It is easy to see that this transformation can
cause no violation of (3.1) to the left of [x, y] and that the properties
of Lemma 1 are preserved, so repeated application to the leftmost
violator of (3.1) will eventually remove all such violations.

So suppose we now have a solution satisfying Lemma 1 in which
there are no violations of (3.1). Consider the leftmost segment [x, y]
that violates (3.2). If none exists, we have a solution of the form given
by the lemma. Otherwise, since [x, y] violates (3.2), x + H is not in a
gap and y is in a gap. Letting k be the least positive integer such that
y + kH does not lie in a gap, all the segments [y, y + H], [y + H,
y + 2H], ... , [y + (k - 2)H, y + (k - l)H] belong to the solution,
since (3.1) is not violated, but [y + (k - l)H, y + kH] does not belong
to the solution. Let [y + (k - l)H, z] denote the segment in the
solution that does start at y + (k - l)H. We propose to shift the entire
sequence of length H intervals starting at y to either the left or the
right in a way that lengthens the longer of [x, y] and [y + (k - l)H,
z], correspondingly shortening the shorter of the two, until either one
of the points y + iH (for the new value of y), 0 ~ i < k, no longer
belongs to a gap or one of the two extreme segments achieves length
H. By the concave cost function, this cannot increase the solution
cost; it also introduces no violations to (3.2) to the left of [x, y] and
no violations to the conditions of Lemma 1. If the shifting terminates
because one of the points y + iH, 0 ~ i < k, ceases to belong to a gap,
then the segment [x, y] no longer violates (3.2). However, in this case
it is possible that the new segment [y + (k - l)H, z] now violates (3.1),
but we can then reapply the transformation described in the preceding
paragraph until there are no such violations of (3.1) without affecting
any intervals to the left of the point y + (k - l)H. If the shifting

IC FABRICATION 1207

terminates with all points y + iH, 0 =:::: i < k, still in gaps, then it must
have terminated with the new segment [y + (k - l)H, z] having length
H, since the point x + H does not belong to a gap. In this case we have
not introduced any violations to (3.1), and if Z is not in a gap, [x, y]
no longer violates (3.2). On the other hand, if Z is in a gap, we now
have a new value of k for our new value of y and a longer sequence of
length H segments starting at y. Hence, we can continue as above, and
since the length of such a sequence of length H segments is finite,
eventually we must obtain a solution in which [x, y] no longer violates
(3.2). Therefore, continued application of such transformations to
repeatedly eliminate the leftmost segment violating (3.2) will eventu
ally produce a solution satisfying the lemma. 0

We will restrict attention to optimal solutions of the form given by
Lemma 3.

Consider what this tells us about solving any subproblem consisting
of a range [x, b] and all intervals contained in that range. If x + H lies
in a gap, then, by Lemma 3, we know that there is an optimal solution
that begins with a sequence of segments of length exactly H ending at
the points x + H, x + 2H, ... , fwd(x), where fwd(x) is defined exactly
as in the preceding subsection. If x + H does not lie in a gap, then, by
Lemma 1 (1.2), we need only consider solutions in which the leftmost
segment runs from x to the right endpoint of some interval or the left
end of some block, or from x to some point y in a gap. Furthermore,
in the latter case, by Lemma 3 (3.2), we can restrict attention to points
y such that, for some integer k ~ 1, y + kH is the right endpoint of
some interval or the left end of some block, and all the points y + H,
y + 2H, ... , y + (k - l)H lie in gaps.

As in the preceding subsection, let a = Zl < Z2 < . . . < Zm = b be the
sorted collection of all interval left endpoints, block right endpoints,
and points of the form fwd(x) for x one of those two types of points;
for 1 =:::: i =:::: m, let b (Zi) be defined in the same way as before. In
addition, for 1 =:::: i =:::: m, define bkwd(Zi) to be b(Zi) if b(Zi) is in a gap
or b(Zi) - H is not in a gap; otherwise, define bkwd(zJ to be the
leftmost point y =:::: b (Zi) congruent to b (Zi) modulo H such that all
points b(Zi) - H, b(Zi) - 2H, ... , y lie in gaps. Notice that, for b(Zi)
not in a gap, bkwd(Zi) is defined in the same way as fwd(Zi) except
that the jumps of length H are made to the left from b(zJ instead of
to the right from Zi, i.e., we reverse our sense of direction and use the
other end of the interval or block. Thus, bkwd(Zi) for all i can be
computed in time O(n log n) using a method analogous to that of the
previous subsection for computing fwd(Zi). Also as before, let C(Zi)
denote the cost of an optimal solution for the subproblem with range
[Zi' b] consistin~(of all intervals contained in that range.

Now, once again consider the consequences of Lemma 3. If

1208 TECHNICAL JOURNAL, JULY-AUGUST 1984

Zi ¢ fwd(Zi) (or, equivalently, Zi + H lies in a gap), we have

(8)

The corresponding solution consists of a sequence of length H intervals
ending at the points Zi + H, Zi + 2H, ... ,fwd(Zi), followed by an
optimal solution for the range [fwd (Zi) , b]. On the other hand, if
Zi = fwd(Zi), then, from the fact that every right endpoint of an interval
or left end of a block in this subproblem is included among (b(zj): j ~
i}, C(Zi) will be the smaller of

and

mIn
j~i

b(Zj»Zi+H
bkwd(zj)";;;'Zi+H

mIn
j'~i

b(Zj)";;;'Zi+H

(9)

Formula (9) covers all the possibilities in which the leftmost segment
does not end in a gap (but includes some potential ending points in
gaps that could have been ignored), and (10) covers all the possibilities
in which the leftmost segment does end in a gap and is followed by a
sequence of segments of length H that terminates at the right endpoint
of some interval or left end of some block (the corresponding b(zj)).
The solution corresponding to a particular choice of j is, in (9), the
segment [Zi' b(zj)] followed by an optimal solution for the subproblem
with range [Zj+b b] and, in (10), is the segment [Zi' Zi + (b(zJ - Zi)
mod H], followed by a sequence of length H intervals starting at the
points Zi + (b(zj) - zJ mod H, ... , b(zj) - 2H, b(zj) - H, followed by
an optimal solution for the subproblem with range [Zj+b b]. Notice that
the condition that bkwd (Zj) ::::;;; Zi + H will be satisfied if and only if the
left endpoints of all those length H segments belong to gaps, as
required. Since bkwd(zj) ::::;;; b(zj), we can combine (9) and (10) to obtain,
for the case of fwd (zJ = Zi,

+ c«b(zj) - z,)mod H) + C(Zj+1)}. (11)

IC FABRICATION 1209

Notice that the cost for the interval starting at Zi is accounted for in
the first term of the minimization if that interval has length Hand
otherwise is accounted for in the second term of the minimization.

Equations (8) and (11) will serve as the basis for our algorithm.
(The further simplifications used in the previous cases do not apply
here, since they hold only for cost functions that are linear). We
assume that the algorithm is given as input the integer m, the sequence
Z1, Z2, ... , Zm, and, for 1 ~ i ~ m, the corresponding values for b(Zi),
!Wd(Zi), and bkwd(Zi). These can be computed using the methods of
the previous subsection in time O(n log n). The algorithm computes
C(Zl) and the trace vector T. The value of T(i) will be that value for j
for which the cost expression for C(Zi) is minimized and from which
the segments in the optimal solution can be reconstructed. T(i) will
be undefined whenever Zi :;6; !Wd(Zi), since then we already know that
the solution for that subproblem begins with a sequence of adjacent
length H segments running from Zi to !Wd(Zi).

Algorithm 4:

initialize C(zm) := 0;
for i := m - 1 to 1 by - 1 do

if Zi:;6; !Wd(Zi)
then C(Zi) := «!Wd(Zi) - zJ/H)c(H) + C(!Wd(Zi))
else {

};

initialize C(zJ := 00; T(i) := 00;
for j := m - 1 to i by - 1 do

if bkwd(zj) ~ Zi + H
then {

h l lb(Zj) - ZiJ
mut:= H;

resid := (b(zj) - zi)mod H;
newC := hmult.c(H) + c(resid) + C(Zj+l);
if newC < C(Zi)

then {C(Zi) := newC; T(i) := j};
};

It is straightforward to verify that the algorithm runs in time
O(m2) = O(n2). The correctness of the algorithm follows from the
preceding discussion and Lemma 3.
Theorem 5: Algorithm 4 correctly computes C(Zl) and the trace vector
T in O(n 2) steps.

IV. OPEN PROBLEMS

The obvious open problems are to ask for improvements on and
simplifications of the algorithms derived in this paper. Given the

1210 TECHNICAL JOURNAL, JULY-AUGUST 1984

apparent need for sorting, it appears unlikely that the speed of our
first three algorithms can be improved in any major (i.e., asymptotic)
way. However, the algorithm for the concave cost function case offers
some room for improvement here~ even though it intuitively seems
that the arbitrary nature of such functions can force one to evaluate
the cost function for O(n 2) different segment lengths in general.
Further simplification of our algorithms, on the other hand, seems
feasible and certainly would be useful.

There is also a generalization of our problem that is of great potential
interest. Suppose that the problem definition is augmented to include
an additional integer K as input, with the additional restriction on
solutions that no more than K segments can ever overlap at a single
point. This overlap constraint arises in situations where extensive
multiple exposures are likely to arise and cannot be tolerated anywhere
on the layout. It is easy to see that all of our normalization lemmas
continue to hold under such a constraint, i.e., the transformations
done in their proofs do not increase the maximum number of overlap
ping segments in the solution. However, it is no longer the case that
in an optimal solution the solutions to subproblems (of the types
considered in this paper) need be optimal solutions for those subprob
lems, since they may need to satisfy certain derived (and possibly
complicated) additional constraints on the maximum overlap in var
ious subregions. At present we do not see an appropriate, more
restrictive, definition of subproblem that is both sufficient to allow
these problems to be solved via dynamic programming and, at the
same time, leads to a small enough class of subproblems for any given
problem instance that all can be solved in a reasonable amount of
time. We would be very interested in either efficient algorithms for
problems of this sort or convincing demonstrations that these prob
lems are inherently intractable.

v. ACKNOWLEDGMENT

We would like to thank Dave Alles for suggesting the problem and for
helpful discussions.

REFERENCES

1. D. R. Herriott et aI., "EBES: A Practical Electron Lithographic System," IEEE
Trans. Electron Dev., ED-22, No.7 (July 1975), pp. 385-92.

2. D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
Reading, MA: Addison-Wesley, 1968, Chap. 2.

3. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms,
Reading, MA: Addison-Wesley, 1983, Chap. 5.

AUTHORS

Michael R. Garey, B.S. (Mathematics), 1967, M.S. (Computer Science),

IC FABRICATION 1211

1969, and Ph.D. (Computer Science), 1970, University of Wisconsin; AT&T
Bell Laboratories, 1970-. Mr. Garey has been Head of the Mathematical
Foundations of Computing Department since 1981. He has done research in
various areas of mathematics and computer science, including combinatorics,
graph theory, design and analysis of algorithms, and computational complex
ity. He was awarded the 1979 Lanchester Prize of the Operations Research
Society of America, and from 1979 through 1982 he served as editor-in-chief
of the Journal of the Association for Computing Machinery. Member, ACM,
SIAM,ORSA.

Ron Y. Pinter, B.S. (Computer Science), 1975, Technion-Israel Institute
of Technology; S.M. and Ph.D. (Computer Science), The Massachusetts
Institute of Technology, 1980 and 1982, respectively; AT&T Bell Laboratories,
1982-1983; IBM Israel Scientific Center, 1983-. Mr. Pinter was a member of
the Principles of Computing Research Department, where he had been study
ing layout algorithms for integrated circuits, computational geometry, and the
design of programming languages. Recently, he returned to Israel after spend
ing 5 years in the United States as a Fulbright-Hayes grantee. Member, ACM,
IEEE Computer Society.

1212 TECHNICAL JOURNAL, JULY-AUGUST 1984

AT&T BELL LABORATORIES TECHNICAL JOURNAL is abstracted or indexed by

Abstract Journal in Earthquake Engineering, Applied Mechanics Review, Applied

Science & Technology Index, Chemical Abstracts, Computer Abstracts, Current

Contents/Engineering, Technology & Applied Sciences, Current Index to Statistics,

Current Papers in Electrical & Electronic Engineering, Current Papers on Computers &

Control, Electronics & Communications Abstracts Journal, The Engineering Index,

Internation.ll Aerosp.lC<' AiJslr.lcts, Journal of Current Laser Abstracts, Language and

L.lllglJ.lge lkil.lvior l\iJ~lr.I(h, M.llilematical Reviews, Science Abstracts (Series A,

Physics /I/)qr.lch; Serh" H, I h·(Iric.J/.lI1Cj Electronic Abstracts; and Series C, Computer

t\- COlllroll\iJ'lr.1< h), Sc iC'nc c' Cil.Jlioll Index, Sociological Abslracts, Social Welfare,

Soci.ll P/.lnning .1I1c/''I()(i.1I /)('ve/opment, and Solid Stale Abstracts Journal.

Reprodll(lillJl', III Ihc' /lIlIfIl.d I>y years are available in microform from University

Microfillll~, 300 N. /c·"I> Ro.HI, Ann Arbor, Michigan 48106.

