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We describe how Time-Compression Multiplexing (TCM) might enable the 
transmission of three National Television System Committee (NTSC) color 
TV signals through a satellite transponder of 36-MHz bandwidth. The input 
TV signals are processed such that three fields from each TV source are 
compressed into an ordinary field period. This is accomplished by sending one 
field as is but time compressed; the other two fields are sent as differential 
signals, also time compressed such that all three fit into a single field period. 
The resultant compressed waveforms are then time multiplexed between the 
three sources and have a combined baseband bandwidth of 7.52 MHz for an 
optimal case, or 8.4 MHz for a practical version. In either case, both the 
transmitter-multiplexer and the receiver-demultiplexer require only three field 
memories for (digital) signal processing. Performance is expected to be of 
network broadcast quality (i.e., weighted signal-to-noise ratio, sIn ~ 56 dB) 
for the optimal case of 7.52-MHz baseband if 12-meter receive earth stations 
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paper may be copied or distributed royalty free by computer-based and other informa
tion-service systems without further permission. Permission to reproduce or republish 
any other portion of this paper must be obtained from the Editor. 
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are employed in a system such as COMSTAR. The practical version, on the 
other hand, would yield an sin ::= 54 dB. 

I. INTRODUCTION 

The problem of transmitting two or more high-quality TV signals 
through a satellite transponder of 36 MHz continues to be a challenge 
in optimizing the use of available transponders in current as well as 
near-future satellites. It was recently proposed! that by combining the 
concepts of Time-Compression Multiplexing (TCM)2,3 and differential 
signals,4 two or more National Television System Committee (NTSC) 
TV signals can be time multiplexed with bandwidth reduction for 
transmission with a single FM carrier in a satellite channel. This 
avoids crosstalk between the pictures. In fact, straightforward TCM 
alone would permit the transmission of two TV s in a transponder with 
performance close to broadcast quality [i.e., peak-to-peak video signal 
to weighted root-mean-square (rms) noise ratio, sin ~ 56 dB] if 12-
meter receive earth stations were used in a satellite system such as 
COMSTAR. The additional application of time-companded (time
compressed or expanded) differential signals reduces the TCM signal 
bandwidth and thus can enhance the transmitted picture quality or 
enable the inclusion of a third TV signal. However, the implementation 
of such a system as described in Ref. 1 involves converting the input 
TV scan pattern from interlacing to sequential. This would mean 
considerable memory needed, particularly in the case of three TV s per 
transponder. Here, we describe an implementation that offers signifi
cant saving in memory, considerable relaxation in timing require
ments, and easy adaptation to existing hardware. The technique 
essentially uses three field memories time shared between the three 
simultaneous, but synchronized, input TV signals to produce differ
ential signals in a proper format for TCM. The receiver, on the other 
hand, also requires three field memories to reconstruct all three TV 
signals. Practically all the signal processing could be implemented 
digitally. 

We will describe the details of the present system in the next section. 
The performanc~ of this could be of broadcast quality if 12-meter 
receive earth stations were used. Finally, we will discuss the inclusion 
of audio, up-link synchronization for transmissions from separate 
earth stations and possible extensions to non -NTSC TV signals. 

II. SYSTEM DESCRIPTION 

Figure 1 shows the block diagram of a transmitting earth station 
with three synchronized NTSC TV signals that are combined for 
transmission by a single FM carrier. The use of frame synchronizers 
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Fig. I-Transmit earth station for the three TVs per transponder. 

is therefore implicit if the three TV sources are not synchronized (the 
case of noncolocated TV sources is discussed later in Section IV). The 
TV inputs are first digitized individually. The digitized TVs, denoted 
by Xi (i = 1 to 3), are processed by the differential-signal multiplexer, 
where various differential signals are formed and multiplexed in its 
three digital outputs Yi (i = 1 to 3). These signals (Yi ) are then passed 
through the time-compression multiplexer, which combines them into 
a single digital stream, Z. The conventional operations of digital-to
analog conversion, low-pass filtering, and preemphasis are performed 
before transmission to the satellite with a single FM carrier. We will 
describe the differential-signal multiplexer and the time-compression 
multiplexer in detail in the following sections. 

2.1 The differential-signal multiplexer 

We could use three types of differential signals: line differentials, 
field differentials, and frame differentials.4

,5 Each type in turn can be 
defined in many ways. They have all been described in the cited 
references, and only a brief summary is provided here for the purpose 
of subsequent discussions. 

Line differentials can be defined as a difference signal between two 
successive scan lines in the same field. In their digital implementation, 
this would mean a difference between more or less vertically adjacent 
picture elements (pels) from two successive lines in the same field, 
and they are chosen such that their amplitude is much smaller, on the 
average, than the original signal. But most importantly, the difference 
signal can be band limited to ~3 MHz without degrading picture 
quality. Field differentials are defined essentially in the same way as 
line differentials except that the difference signal is derived from pels 
in adjacent scan lines in two successive fields. The bandwidth of field 
differentials can be further limited to ~2 MHz without affecting 
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picture quality. These results were verified and used in a previous 
experiment.5 

Frame differentials are merely an extension of the above by using 
pels from two temporally adjacent (or spatially coincident) lines from 
two successive frames. They have not been studied so far, either by 
computer simulation or hardware implementation. Thus, we can only 
speculate as to their performance. Their amplitudes may be larger 
than field difference amplitudes for pictures containing movement, 
whereas for pictures containing no movement they should be smaller. 
The bandwidth required for frame differentials should be comparable 
to or smaller than that needed for field differentials. In this regard, 
much depends on the relative visibility in the picture of distortions 
occurring at the field rate and the frame rate in detailed or moving 
areas of the picture. In the following discussion, we will use the field 
and frame differentials; the use of line differentials will only be a 
possible, though unlikely, extension of the system. 

Our attention returns now to the differential-signal multiplexer, an 
illustrative implementation of which is shown in Fig. 2. The following 
explanation will show that the field- and frame-differential generators 
in this figure. could just as well be replaced by two field -differential 
generators with some connections slightly modified. The key charac
teristic to note in Fig. 2 is that only three field memories are needed 
to produce all the differential signals required for the three input TV s. 

The three input switches, 81 , 82 and 8a, move in synchronism from 
the top position to the middle, to the bottom, and back to the top, etc. 

LP - LOW-PASS FILTERING 

Xl >--+0 

Sl L--_ ....... 

FIELD 
MEMORY 

FIELD 
MEMORY 

FIELD- I 

+ 

FIELD 
MEMORY 

---I 
r--- --, I 

DIFFERENTIALI I 
GENERATOR I I 

L---- r -
+ 

FRAME-OI FFER ENTIAL 
GENERATOR 

Fig. 2-The differential-signal multiplexer. 
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They all change position simultaneously sometime during the vertical 
blanking interval in such a way that complete fields of the input video 
are routed to either the top, middle, or bottom path. 

To demonstrate how this works, we consider Fig. 3, where all the 
waveforms are digital. In the top of the figure, the three synchronized 
input TV waveforms are shown with T being a field period (:::::1/60 
second) and Fij being the jth field from the ith TV source (i = 1 to 3). 
When F11 arrives, we assume that 8 1 , 82 , and 83 are in the top position, 
as shown in Fig. 2. F11 is written onto field memory Ml from time zero 
to T. The switches then change to the middle positions, and F12 is 
written onto M3 while Fll , in Mb is being transferred to M2 • At the 
same time, F21 is also written onto MI' Consequently, at the end of 
2T, F21 is stored in Mb F11 in M2, and F12 in M3 before the switches 
change position again. Now with the switches in the bottom position, 
F13 is routed to the bottom path. It is then used to form a frame 
differential with F 11 , from M2 , denoted by Fll - F13 , which is the 

... 

TIME 

Yl 

T 5T 
TIME 

Fig. 3-Inputjoutput waveforms for the differential-signal multiplexer. 
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output Y3 • The original unchanged signal Fll is also read out from M2 
via Y1 • The remaining output Y2 , is a field differential derived from 
Fll (from M2) and F12 (from M3) and is denoted by FH - F12 . While 
all these are taking place, F21 , from M1, is transferred to M2 with F31 
being written onto M1 , and F22 is written onto M2 • These operations 
are repeated for all subsequent fields. The output waveforms are 
illustrated in the bottom of Fig. 3, where a processing delay of 2T is 
incurred. Such a delay enables the conversion from line-multiplexed 
serial inputs into time-multiplexed parallel outputs. Furthermore, 
there is flexibility in choosing which of the fields is to be read out as 
is and which type of differential signal is to be used. For instance, in 
the above example we could just as well send F12 as is, send FH - F12 
as a field-differential signal, and send F13 - F12 as another field
differential signal. In any event, in every T-second output interval, 
there are always one original field plus two differential fields in the 
three outputs. The bandwidth of the original field is 4.2 MHz, and 
that of the differential signals is assumed to be 2 MHz. 

2.2 The time-compression multiplexer 

The purpose of the time-compression multiplexer is to combine the 
three signals (Y1 , Y2 , and Y3 ) from the differential-signal multiplexer 
into a single signal, Z. In other words, we would like to time compress 
the three inputs over every T-second interval into a single output with 
the same duration. This can be achieved by writing the digital words 
into a memory (say, a RAM) at one speed and reading them out at a 
faster speed (see Fig. 4). The ratio of the read clock to the write clock 
is the time-compression factor (>1 for time compression). Since the 
time compression is to be done over a T-second interval, we could 

WRITE/READ CLOCKS RAM - RANDOM ACCESS MEMORY 

WRITE/READ CLOCKS 

Fig. 4-The time-compression multiplexer. 
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write all Y/s into the RAMs for the field period before reading them 
out appropriately for multiplexing. But this would require the RAMs 
to accommodate entire fields of signals. Instead of this, we propose 
that the time compression be done over a line interval (:::::63.6 IlS) so 
that only line memories are needed. More specifically, let us consider 
a line duration T' within a T-second interval shown in Fig. 5. As 
before, Y1 is the original 4.2-MHz TV; Y2 and Y3 are each a 2-MHz 
differential signal; and T in the output Z is the processing delay. We 
time compress the T' -second line of Y1 by a factor of a(a > 1) so that 
the resultant signal occupies Tl seconds (T1 < T'). Likewise, Y2 and 
Y3 are both compressed by (3({3 > 1) so that each of their resultants 
occupies T2 seconds (T2 < Tl < T'). We require that these three time
compressed signals be contained in T', i.e., 

:' + 2 0.8;T' = T'. (1) 

The factor 0.83 is due to the deletion of the differential-signal hori
zontal blanking intervals, which are identically zero and need not be 
sent. The above simplifies to 

1 1.66 
~+/3=1. 

T' 

TIME COMPRESSED 
~-~ 

T '-----'--1 ---J
1 '---r-" ~ T + T' 

Tl T2 T2 

T 

T 

T 

I ., 

T+T 

Fig. 5-Input/output waveforms for the time-compression multiplexer. 

(2) 
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We further require that the three time-compressed signals have the 
same bandwidth. This can be written mathematically as6 

(3) 

where II! 12, and 13 are the maximum frequencies of YI! Y2, and Y3, 
respectively. In this case, 11 = 4.2 MHz, h = 13 = 2 MHz, and the 
solutions to (2) and (3) are 

a ~ 1.79; {j = 3.76. (4) 

This yields Tl ~ 0.56T' and T2 ~ 0.22T'. The maximum frequency of 
the combined output is given by (3) and is 7.52 MHz, as compared to 
12.6 MHz obtained in a straightforward TCM of the three TV s. We 
call the above case optimal because its bandwidth has been minimized 
by the deletion of the horizontal blanking intervals in the differential 
signals. One obvious drawback, however, is that the compression 
factors required are noninteger, as given in (4). To circumvent this 
difficulty, we can simply choose a = 2 and {j = 4 exactly, i.e., com
pressing the original signal by two and the differential parts by four, 
with all their horizontal blankings retained. This practical case is 
much easier to implement with a slightly larger bandwidth of 804 MHz. 

The last, but not the least, block in the time-compression multi
plexer is the amplitude compandor (Fig. 4). As pointed out previously, 
the differential signals are chosen such that their amplitudes are small 
compared to the original signal on the average. The amplitude com
pandor equalizes the voltage levels for the differential signals in the 
combined output so that the FM link performance can be maximized. 
This was found to be very useful in a previous experiment5 to suppress 
the effect of transmission noise on picture quality. 

In summary, the present system takes in three NTSC TV signals 
and combines them into a 7.52-MHz (or 8A-MHz) signal for trans
mission. The multiplexing technique is TCM, and the bandwidth 
reduction is the result of the use of differential signals. The transmis
sion format is three fields from one TV sotirce compressed into one 
ordinary field period. Thus, the transmission to the satellite is switched 
sequentially between the three sources at a rate equal to the field or 
vertical scanning frequency of ordinary NTSC TV (:::::60 Hz). If the 
three TV sources are synchronized with one another, then the trans
mitter/multiplexer requires only three field memories. Otherwise, ad
ditional memory is needed for synchronization. In either case, the 
receiver requires only three field memories (see the appendix). 

III. PERFORMANCE 

Overall performance of time-compression multiplexing of multiple 
TV signals in a satellite link has never been measured experimentally. 
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But calculations for estimating TCM performance were shown in Ref. 
1. According to these calculations, the optimal case of the present 
system, which has a baseband-combined bandwidth of 7.52 MHz for 
the three TV signals, would require a receive earth station with a 
Gain/Temperature (G/T) of ::=::33.7 dB/K to yield a receive baseband 
TV sin of 56 dB. Such a G/T value is obtainable from 12-meter earth 
stations. The practical version (S.4-MHz baseband bandwidth), on the 
other hand, would require a G/T of 35.9 dB/K to yield sin = 56 dB. 
Such a G/T is probably not obtainable with 12-meter stations. How
ever, the degradation in sin by using 12-meter receive earth stations 
is only about 2 dB, i.e., the received sin would be ::=::54 dB. 

IV. DISCUSSIONS 

4.1 Audio 

With three TV sources, each producing stereo audio, we must 
transmit a total of six audio waveforms. We propose sending the stereo 
audio from each source along with its video by inserting digital audio 
in either the vertical or horizontal blanking periods. As for the optimal 
case where the horizontal blanking periods of the differential signals 
are deleted in transmission, the audio signals may be included in some 
convenient segment of the vertical blanking period. This of course will 
lead to a slightly more stringent timing requirement as well as some 
additional buffer memory. 

As for the practical case where the horizontal blankings of the 
differential signals are retained for transmission, then the insertion of 
digital audio in these blanking periods can be done quite easily. Within 
a group of three video lines (one unchanged original plus two differ
entials), there are two horizontal blankings from the differential lines 
available. We can use one of these two blankings for one audio and 
the other blanking for the other audio. Within one of these time
compressed horizontal blanking intervals (::=::2.7 Ils), we must include 
the audio samples from three TV scan-line durations. Now each audio 
signal requires sampling at ::=::32 kHz, and with nearly instantaneous 
companding, 10 bits per sample are sufficient.7 Thus, we propose 
sampling the audio at exactly twice the TV line-scan rate, yielding a 
total of six samples or 60 bits from the three scan lines for transmission 
in the prescribed time-compressed horizontal blanking period. For this 
we would use twenty multilevel pulses to represent the 60-bit infor
mation. At a baud rate equal to 9/4 X color subcarrier frequency (::=::S.06 
MHz), the six audio samples from the three lines plus another pulse 
for bit timing would just fill the 2.7 IlS time slot. 

There are several ways of mapping the 60+ bits from the three lines 
into twenty multilevel pulses. More discussions in this regard are 
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provided in Ref. 5. Because the three TV lines are from three different 
fields, additional memory is needed to store their audio samples, but 
this requirement seems trivial compared to the video counterpart. 

4.2 Synchronization for multiple up-links 

Use of TCM in satellite systems where up-links are not colocated 
requires that the three TV signals be synchronized, at least to the 
extent that their vertical blanking periods overlap.s This condition is 
not very stringent compared with that of some digital Time Division 
Multiple Access (TDMA) systems being proposed or in operation. 
Other than the additional synchronization hardware required for the 
transmitters, the only minor imposition in the system is that the 
receiver be able to demodulate the FM signal subject to short discon
tinuities in the received carrier at the vertical scanning frequency. 
Conventional limiter-discriminator receivers should have no problem 
in dealing with this. Phaselock receivers, on the other hand, might 
have lockup problems. But then the system is intended for high
quality transmissions with high carrier-to-noise ratios, and threshold 
extension is not needed. 

As an aside, let us note that if the three TV sources are transmitted 
through noncolocated up-links, then the processing in each transmit 
earth station needs only two field memories (instead of three) to 
generate the differential signals required. The input switches in Fig. 2 
are also unnecessary. A similar saving in receiver memory is possible 
too if only one TV is to be received in a down-link earth station. 

4.3 Extension to non-NTSC TV signals 

Application of this technique to non -NTSC color TV signals may 
also be feasible. For example, with Phase Alternation Line (PAL) 
color television the color subcarrier phase is not the same as NTSC. 
However, with only a slight shift in the sampling pattern from line to 
line, the same differential signals can be defined"and the same trans
mission system can be used. The same may be true of Sequential With 
Memory (SECAM) color television, but success is not as likely. 

v. CONCLUSION 

We have described a method to transmit three NTSC TV signals in 
a 36-MHz satellite transponder. The technique uses differential signals 
to reduce the bandwidth and Time-Compression Multiplexing (TCM) 
to combine the three TV s into a single signal. By the use of novel 
circuit configurations, the memory requirements are reduced signifi
cantly compared with the more naive approach of Ref. 1. By com
panding the differential signals, the effect of transmission noise on 
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picture quality is markedly reduced. The estimated performance of the 
system is at or close to broadcast quality if 12-meter earth stations 
were to be used in a satellite system such as COM8TAR. Finally, 
digital audio signals can be sent without interference either to or from 
the video TCM signal by placing it in the horizontal blanking period. 
Extensions to up-links from separate earth stations and non -NT8C 
TV s are also possible. 
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APPENDIX 

Decomposition of the TeM Signal From Three Video Sources 

As Fig. 6 shows, the received FM signal from the satellite is demod
ulated to recover the TCM baseband waveform. It is then digitized to 
produce Z', which would be identical to Z previously except for the 
transmission noise and channel distortion added. An amplitude com
pandor undoes the companding done to the composite waveform. Now 
tIle three segments in this waveform, namely the original field and the 
two differential signals, are then separated by the demultiplexer and 
written onto three separate memories. They are read out at slower 
speeds to get time expanded to the full scan -line length. The expansion 
factors (ratio of write clock to read clock) are precisely the compression 
factors used in the transmitter. Approximations to Yt, Y2, and Y3, 

denoted here by Y'1, Y'2, and Y 3, are then obtained. The same 
predictor as in the transmitter is used to convert the differential 
signals into the originals. The three output switches, 84, 85, and 86, 

move in synchronism from the top position to the middle, to the 
bottom, and back to the top, etc. Their operations are identical to 81, 
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82, and 83 in the transmitter, and they route the output digital signals 
to their appropriate outputs. The output digital signals may (or may 
not) then be converted to analog signals for display or local distribu
tion. 
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Synchronization of Noncolocated TV Signals in a 
Satellite Time-Compression Multiplexing System 
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We describe here a simple method to synchronize three TV signals origi
nated from noncolocated up-link stations in a satellite Time-Compression 
Multiplexing (TCM) system. In this system, information in three fields of 
each TV picture is compressed into a single field time so that the compressed 
signals from the three sources can be time multiplexed for transmission. The 
up-link synchronization ensures that the Radio Frequency (RF) bursts from 
different sources will arrive at the satellite without collision. Our method 
employs a dynamic master/slave arrangement whereby the first station signing 
on assumes the role of a master. The other stations subsequently can synchro
nize their transmissions to the master's by simply monitoring the received RF 
bursts from the satellite, measuring their respective delays to the spacecraft, 
and then phase locking their local color subcarrier clocks to the master's 
transmitted bursts. When the master station stops transmitting, an automatic 
procedure is provided for the second station to take over as the new master. 
The worst-case jitter performance is well below 100 ns, and the initial acqui
sition time can be kept less than one-half second. These are more than 
adequate for the present TV application, although further improvements are 
possible if necessary. 

I. INTRODUCTION 

Time-Compression Multiplexing (TCM) is a method of multiplexing 
various signals by time compressing their (analog) waveforms into 
segments in such a way that the compressed segments from different 
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sources can be sent on the same channel in separate time intervals 
(time-division multiplexing) .1.2 Previous published works3

-
5 have dis

cussed various properties and ways to implement TCM in the trans
mission of multiple high-quality TV signals through a single satellite 
transponder of 36-MHz bandwidth. More recently, this idea has fur
ther been refined to the transmission with practical hardware of three 
broadcast-quality TVs in a transponder6 (i.e., the received peak-to
peak video to weighted rms noise ratio ~56 dB.) As with other TCM 
systems, one requirement in the latter proposal is that the input three 
TV signals be synchronized, at least to the extent that their vertical
blanking intervals overlap. If the signals are colocated in the same up
link earth station, it merely implies that frame synchronizers be used. 
However, if they are to be transmitted from separate earth stations, 
then the up-links have to be synchronized. Of course, the up-link 
synchronization is needed to ensure that signal bursts from different 
sources would arrive at the satellite without collision. We show and 
discuss in this paper how this can be accomplished with simple and 
easy-to-implement hardware arrangements. 

Synchronization techniques in communications satellite systems 
have been studied extensively in past years,7-9 mostly in connection 
with digital Time Division Multiple Access (TDMA) applications. 
They could all be used in the present problem of synchronizing three 
TV up-links. However, these previous techniques were designed for 
performance far exceeding the present requirement and hence tend to 
be more complicated than what is needed. More importantly, they 
were meant for digital signals and are not suitable for analog TV 
where the color sub carrier and various sync pulses must bear strict 
phase and frequency relationships and thus cannot be advanced or 
retarded with respect to one another arbitrarily. We will show in the 
next section how a TV up-link station can synchronize its transmission 
by simply monitoring the Radio Frequency (RF) bursts sent by other 
station(s) already on the air. Such an approach enables synchroniza
tion between the three stations without a centrally controlled master 
station or clock, without the knowledge of one another's exact location, 
without the demodulation of one another's baseband video, and with
out the use of a separate control channel. The only assumption 
imposed is that the three up-link stations be within the down-link 
coverage of the satellite. This is true for satellites similar to Telstar 
III. The hardware implementation is quite simple (Section III) and 
can be realized by conventional equipments and digital circuits. Our 
timing analysis (Section IV) shows that its performance can cover all 
requirements under a variety of worst-case conditions, and simple 
procedures for failure recovery are discussed in Section V. Finally, we 
will make brief comparisons with other methods by showing a number 
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of practical advantages in using the present technique and also discuss 
possible extensions to further improve its performance. 

II. SYSTEM DESCRIPTION 

We outline in this section the basic concept and operation of the 
present method. Detailed parameters and performance evaluation are 
left for subsequent discussions. The system configuration is illustrated 
in Fig. 1, where three up-link earth stations are to transmit their color 
TV signals to a satellite. The TV pictures are assumed to be National 
Television System Committee (NTSC) and are to be time compressed 
with processing prior to transmission so that TCM can be employed. 
More specifically, three fields of each TV are to be time compressed 
into one field period, F, (~1/60s) in a manner previously described in 
Ref. 6. The resulting waveform of a time-compressed TV contains 
successive triplets of a field with picture information followed by two 
blank field periods. The RF transmission of each earth station will 

EARTH STATION 
A 

SATELLITE 

·1' 

~ 
f 1 

EARTH STATION 
B 

~ 

EARTH STATION 
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Fig. I-A three TV/transponder TCM system. 
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then consist of bursts, each having approximately one field duration, 
with two blank field periods as separation between successive bursts 
(Fig. 2). The synchronization problem at hand is to align these bursts 
from the three stations so that they arrive at the satellite without 
overlap. All three stations are assumed to be within the down-link 
coverage of the satellite. 

One could design the system, at least in principle, such that the 
entire portion of the vertical-blanking interval (~1.4 ms) within each 
TV burst is used for guard time. This would be sufficient to account 
for the diurnal drift of the satellite itself (maximum round-trip delay 
variation of about 500 J.LS according to Ref. 7). With the exact locations 
of the stations known, simple open -loop synchronization is then 
possible. The drawback of such an approach is twofold. First, the 
deletion of the entire vertical blanking is undesirable in TV transmis
sion because a variety of test signals and nonvideo information are 
frequently inserted in this time period. Second, the exact known 
location requirement renders the scheme inflexible for the inclusion 
of transportable transmit earth stations. 

We feel that the deletion of only a portion of a scan line (during 
vertical blanking, say 15 J.Ls) for interburst guard time is reasonable 
and would not limit or interfere with picture performance. In addition, 
we do not assume that locations of the stations are known to one 
another. Instead, each station is assumed to know only its own 
approximate location, say to within ±100 km. Note that the latter 
assumption is not imposing at all since every station needs some 
location information of its own for antenna pointing purposes anyway. 

To illustrate the operation of the present system, the three up-link 

ORIGINAL TV 

o F 2F 3F 4F 5F 6F 

~\1 ~\1 
RF TRANSMISSION OF 
TIME-COMPRESSED TV t-----t --3F-------j 

\---T---.I 
Fig. 2-Time-compression processing of a TV signal (F = Field period, T = F minus 

a small guard time). 
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earth stations are labelled A, B, and C. Station A is assumed to be the 
first to transmit. It can do so at will because no other transmission is 
taking place, and its transmission is simply synchronized to its own 
NTSC TV clock. 

We now consider the start-up of B after A has been on the air. 
Station B first monitors the arrivals of the RF bursts from A and 
records their arrival times. Note that B does not have to demodulate 
A's signal; it only needs to detect the RF pulses received. (Indeed, A's 
baseband signal need not be video, as long as its RF timing is otherwise 
compatible.) The RF pulses from A occur in one out of three fields, 
the period is perturbed mainly by the time-varying propagation delay 
between A- and B due to the spacecraft motion. Using these arrival 
times, B can extrapolate for the immediate future arrivals of A's 
pulses, and with the knowledge of its own approximate location (±100 
km), B can compute its propagation delay to the satellite with an 
accuracy better than ±1.2 ms (including satellite drift). This estimated 
delay enables the translation of the arrival times of A's bursts from 
the time reference at B to that at the satellite. Using all this infor
mation, B can then position the transmission of a narrow pulse so 
that it arrives at the satellite in a time window adjacent to a burst 
from A, but not interfering with it. This narrow pulse is then received 
back by B, and we have an actual delay measurement, done inband, 
between B and the satellite. Once the actual delay is obtained, B can 
derive a windowing signal (frequency = one-third of the TV field rate) 
that denotes the proper transmission times in order to maintain 
collision-free synchronization with A. 

The derivation of this window signal at B would mean the end of 
the problem if the system were for digital transmission. However, for 
TV applications, the picture information cannot be arbitrarily ad-' 
vanced or delayed without regard to the phase and frequency relation
ships between its color subcarrier and its sync pulses. Therefore, we 
propose frame (or field) synchronizing the TV picture at B to a local 
color subcarrier clock that is in turn phase locked to the aforemen
tioned window signal in order to achieve proper transmission timing. 
This will be explained further when we discuss the hardware imple
mentation. 

Note that throughout the above procedure of synchronizing B to A, 
the up-link delay from A to the satellite remains unknown to B. This 
is possible because the timing error of B's narrow pulse (as will be 
shown later) is small compared with the start-up guard time allotted, 
i.e., a field period. Subsequent synchronization is maintained by B 
monitoring and updating the delay information and making adjust
ments accordingly. In this way, A is the master by virtue of being the 
first comer in the system, and B is locked onto A as a slave. 
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When station C wants to join in for its transmission, it has to go 
through the same procedure as B did, except it would lock onto B 
instead of A. If A drops out of transmission, B would detect that and 
take over as the master, using its own free-running clock, and C would 
stay locked to B. When A wants to resume its transmission later, it 
would have to join in as a slave to C. Therefore, the system assumes 
a dynamic master/slave arrangement where the first comer assumes 
the role of the master. Although this arrangement, as described, can 
only function properly if the three stations join the system sequen
tially, the time required by a station to establish itself as a slave can 
be designed to be well within a second, and thus for all practical 
purposes the initialization can be achieved almost instantaneously. 
We will show in the next section how all of these operations can be 
implemented with simple hardware. 

III. HARDWARE IMPLEMENTATION 

We describe in this section the hardware implementation of the 
present method. The following discussion will be divided into two 
major parts. The first part outlines the generation of a window signal 
that marks the proper transmission time for the time-compressed TV 
bursts at the local earth station. This window signal is denoted by 
r( t ). The second part explains how r( t) can be used to synchronize the 
incoming TV picture such that its time-compressed bursts automati
cally align with the transmission windows. 

The window signal, r(t), is a pulse train with pulse width, T, equal 
to a TV field period minus the guard time and with a repetition rate 
= 1/3F. It is generated by the window processor depicted in Fig. 3. We 
assume that an external clock of eight-times B's color subcarrier 
frequency is made available to the window processor. This (~28-MHz) 

RECEIVED RF 

_E_N_V_EL_O_PE_~ EDGED~~i~~TION 

28-MHz CLOCK 

RF - RADIO FREQUENCY 

T-SECOND PULSE 
GENERATOR 

NARROW-PULSE 
GENERATOR 

Fig. 3-Window processor for TDM/TCM synchronization. 
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clock is probably necessary for the time-compression operation itself, 
and its use here does not impose any additional burden on the system. 
The other input to the window processor is the received RF envelope 
from the satellite broadcast. In the trivial case of the first station (A) 
to go into the system, the window processor does very little because 
the transmission is free running. Let us consider the operation when 
the second station (B) wishes to start transmission. The received RF 
envelope (at B) is simply edge detected, and the arrival times of the 
bursts from A are recorded using the 28-MHz counter shown in Fig. 
3. (Some accommodation for noise may be required, e.g., first detect 
envelope pulse of duration ::::::T, then detect edges.) This information 
is supplied to the central controller, which could be a microprocessor 
and/ or hardwired logic designed to carry out the windowing procedure 
outlined in the previous section. After acquiring the initial arrival 
times of the bursts from A, the central controller makes a crude 
estimate of the future arrival times. Furthermore, based on its location, 
it can compute an approximate delay to the satellite. Putting all these 
together, the controller produces a narrow pulse (pulse width «T) via 
the narrow pulse generator and sends it via the switch S1 (in the lower 
position) to the transmitter. This narro,W pulse will arrive at the 
satellite well within a predetermined time slot without collision with 
A's transmission. The return of this narrow pulse from the satellite 
completes a round-trip delay measurement that is then used to refine 
the arrival-time estimates. After a few cycles of this operation, the 
proper transmission time windows, r( t ), can be established by gener
ating a sequence of pulses from the T -second pulse generator with S1 
switched to the upper position. Note that the pulse width and repeti
tion rate of these T-second pulses are both computed using B's 28-
MHz clock. A representative r(t) is shown in Fig. 4a. The label output 
distinguishes the master from the slaves, and will be discussed later. 

Before describing the rest of the hardware implementation, we show 
in Fig. 4 the conceptual sequence of operations needed to complete 
the synchronization. The transmission window is established by r(t) 
in Fig. 4a. We use this to align (or phase lock) a composite TV sync 
signal, s( t), such that every third, vertical sync pulse in s( t) straddles 
the beginning of' a transmission window (Fig. 4b). The sync signal, 
s(t), is then used to synchronize an incoming video, resulting in xs(t), 
as shown in Fig. 4c. Finally, the video, xs(t), can be time compressed 
to obtain xc(t) (Fig. 4d), which is in synchronism with the transmission 
windows. The complete hardware to do all these is shown in Fig. 5. 

Referring now to Fig. 5, the TV signal, x(t), is passed through a 
frame synchronizer (and/or time base corrector) whose reference sync 
signal, s(t), is derived from the TCM synchronizer. The frame syn
chronizer aligns x(t) to xs(t) (Fig. 4c). The subsequent time compres-
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r(t), TRANSMISSION WINDOWS TV FIELD PERIOD 

F---j--3F-----j F/iMINUS GUARD TIM] 

(a) 
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(b) 

s(t), VERTICAL SYNC PULSES 

xs(t), SYNCHRONIZED TV (c) 

x,ltl. TIME-COMPRESSED ~ \ j ~\ I 
(d) 

Fig. 4-Illustration of synchronization procedure. Horizontal sync, color burst, etc., 
are now shown. 

sion on xs(t) is done in the time-compression processor previously 
described in Ref. 6. In this example, we assume that the time-compres
sion processor requires three clock inputs in addition to the incoming 
video: a four-times color subcarrier clock (~14 MHz), an eight-times 
color sub carrier clock (~28 MHz), and the transmission window signal, 
r(t). The time-compressed video, xc(t), is ready for immediate trans
mission through the FM-modulator and the rest of the system. The 
pin modulator shown after the FM modulator is included to ensure 
the proper transmission timing as well as to enable the transmission 
of the narrow pulses at start-up. 

As for the TCM synchronizer, its output is s(t), as mentioned 
previously, and its input is the received RF envelope from the satellite 
broadcast. From the detected RF pulses, the window processor (Fig. 
3) generates either r(t) or the narrow pulses, depending on its state. 
When it is in the delay measurement mode, i.e., narrow pulses are 
being generated, the rest of the TCM synchronizer is free running. 
After r(t) is generated, an internaI3.58-MHz color subcarrier is phase 
locked onto r(t) via a TV sync generator and appropriate dividers as 
shown in Fig 3. This simple scheme ensures that the composite sync, 
s(t), is synchronized with the transmission windows, r(t). The label 
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output of the window processor causes short RF pulses to be generated 
in the guard time in order to distinguish master from slaves. More 
discussion of labels will follow. 

IV. TIMING ANALYSIS 

Two important timing parameters reflecting the performance of the 
synchronization method are considered here: the initial acquisition 
time and the subsequent timing jitter in steady state. In our case of 
TV broadcasting, transmission is usually planned ahead of time and 
thus an initial acquisition time of, say, a few seconds should be 
adequate. However, faster acquisition is probably desirable in the case 
of failure recovery, as will be discussed later. 

The guard time needed between bursts from different users is 
obviously determined by the timing jitter of the synchronization 
method and is a rather critical parameter. In the present system, each 
RF burst has the duration of a TV field time minus guard time, and 
the TCM synchronizer at the transmit earth station has to detect 
these bursts individually in order to start, as well as to maintain, lock
up. Therefore, we must ensure that some detectable gap always exists 
between successive bursts. Since we have the freedom to choose how 
to segment the original TV into three-field groups before compression, 
we may as well do it in a way that creates a small gap, and therefore 
we propose that the segmentation be done during a line of the vertical
blanking interval, which contains no information. Furthermore, we 
deliberately delete from transmission a portion of that line, thus 
generating a gap between bursts that could amount to, say, 15 p,s. This 
deletion during vertical blanking does not affect the video quality 
because it is done where there is no information. The resulting benefits 
of this are twofold: we have created the necessary time gap between 
bursts from different stations; and we have a sizable guard time of 
15 p,s to accommodate the timing jitter (and to include labels to be 
described in Section V). 

The major causes and their effects on the steady-state timing jitter 
in our system are summarized in Table I. We now discuss briefly the 

Table I-Summary of timing jitter 
performance 

Jitter 
Parameter (ns) 

Delay measurement uncertainty ±22 
Up-link delay drift ±11 
Down-link delay drift ±1 
Clock resolution ±17 
Field-rate jitter ±O 
Total ±51 
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meaning of each entry in the table, while the detailed derivation is left 
to the appendix: 

1. Delay measurement uncertainty-Delay measurement is made 
either via the narrow pulses or by the monitoring of the up-link's own 
returned TV bursts. In either case, a local 28-MHz clock is used to 
record the time elapsed, and the clock resolution is limited to half a 
cycle. It is implicit that fixed delays through the satellite and earth 
station hardware can be calibrated out from the raw measurement. 
Since this measurement is done in the communication band, propa
gation effects are automatically minimized. 

2. Up-link delay drift-This refers to the up-link delay variation 
from station A to the satellite, which is not known to station B. It is 
time varying because of the spacecraft motion. This cannot be elimi
nated because we assume station B does not know A's location or have 
any ranging information on the propagation from A to B. 

3. Down -link delay drift-This refers to the down -link delay vari
ation between the satellite and station B. It is also time varying 
because of the spacecraft motion, but it is trackable via the delay 
measurement at B. A simple linear prediction should almost eliminate 
this. 

4. Clock resolution-This is the limitation in the TCM synchro
nizer to time itself for the exact instant to start transmission due to 
the finite clock resolution (half a cycle in the 28-MHz clock). 

5. Field-rate jitter-B and C are trying to lock to the inherent jitter 
in the RF bursts from A. However, if A's TV source conforms to the 
NTSC standard, this is so small that it can be dropped for all practical 
purposes. Otherwise, this item must be included in the table. 

As we saw in Table I, the steady-state jitter is so small compared to 
the 15 }lS guard time that under normal circumstances the system can 
be regarded as jitter free. 

We now make a worst-case estimate of the initial acquisition time. 
It is convenient to make the simplifying assumptions that the system 
is jitter free and the satellite is truly stationary. The resulting error 
due to these assumptions is only in the order of less than 100 ns, while 
the acquisition time, as will be shown below, is in the order of a second. 
Again we will treat the case of station B trying a cold start after 
station A has already been on the air. 

After turn-on at station B, the window processor needs to monitor 
a few received bursts from A before it can position its narrow pulses 
for delay measurements. Since the bursts from A are arriving every 50 
ms, the monitoring takes ~150 ms. After this 150-ms listening period, 
the narrow pulses are sent for delay measurements, and in order to 
allow for two delay measurements, we need a maximum of ~500 ms. 
Therefore, after ~650 ms have elapsed since turn-on, the synchronizer 
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has completed the delay measurements and can compute the near
past, current, and near-future arrival times of A's bursts at the 
satellite. At this point, transmission can commence in the next avail
able time slot, which in the worst case involves a delay of three field 
periods (~50 ms). Putting everything together, we have a worst-case 
total of ~700 ms between initial turn-on and the first TV transmission. 
Such an acquisition time certainly meets our objective of keeping it 
below a second. In fact, a potential saving of ~250 ms exists if we do 
a single narrow pulse delay measurement instead of two. Therefore, 
we conclude that our acquisition time is less than one-half second 
with a single delay measurement and less than one second with delay 
verification. 

V. FAILURE RECOVERY 

In any prudent system design the possibility of failure of certain 
components must be taken into account. Here, we desire that the 
failure of one channel does not disrupt the transmissions of the 
remaining channels. In order to facilitate this, we provide for a labeling 
mechanism, in which the window processor causes short RF pulses to 
be transmitted immediately following the video RF burst, i.e., at the 
beginning of the guard time. These pulses are then used to distinguish 
the master from the slaves, as well as to detect anomalies. 

For example, station A (being the master) could transmit three 
pulses. Station B, the next in command, would send two pulses, and 
station C, one pulse. Additional pulses could identify the up-link 
station or, alternatively, this information could be embedded in the 
baseband video. 

The window processor keeps track of time and labeling of all received 
RF bursts, and is ready to accommodate to any change in operating 
conditions. For example, if A finishes its transmission and goes off 
the air, B becomes the new master transmitting three pulses, and C 
becomes second in command transmitting two pulses. 

It is never possible to predict all failure modes. The best we can do 
is accommodate the most likely ones. For example, a brief up-link 
failure will not be detected at any earth station (including, possibly, 
the faulty one) for about 240 ms, and during that time it is possible 
for transmission to resume. Moreover, corrective action by the faulty 
earth station will not be known to the remaining ones for another 240 
ms. Thus, in the case of an up-link failure at master station A, station 
B should not try to take over as master immediately. Otherwise, there 
would be the possibility of two masters existing at the same time. In 
any event, as soon as station A determines that its up-link is unreliable, 
it should resign as master. This could be done by not transmitting any 
pulses following its video RF burst. The other stations would recognize 
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this condition and assume their proper responsibilities, after which 
station A would begin transmitting a single pulse designating itself as 
last station aboard. 

In the case of a down-link failure, continued operation is not possible 
unless the faulty station is master. If it were not already the master, 
it could take over this role by sending, say, four pulses following the 
video RF burst. The other stations would then recognize this condition 
and assume their proper responsibilities. 

In the case of an earth station power glitch, transmission would 
have to cease immediately and the start-up procedure would be rein
voked, since the window processor would, in all probability·, lose its 
timing information. Such a restart could be speeded up considerably 
if nonvolatile memory were provided, however. 

VI. COMPARISONS AND DISCUSSIONS 

As mentioned previously, a number of synchronization methods are 
applicable to solve the present problem. The most obvious one is 
probably that ofa centrally controlled station broadcasting a master 
sync to all three up-link stations. Within this broad class of techniques, 
a large variety of alternatives are possible. As an example, one fixed 
station may be assigned as the master and the other stations must 
lock their transmissions to the master; a master sync marker may be 
broadcast to all stations by a centrally controlled station, and the 
marker could contain sufficient information to TV field and color 
subcarrier synchronizations, as well as ranging data for extremely fast 
open loop acquisition. In fact, only one such master is needed for the 
whole satellite system. Its main advantages are that fast acquisition is 
possible, and the various up-link stations do not have to monitor one 
another's transmissions, although the hardware implementation at 
each up-link station is certainly not simpler than our method. The 
key concern, though, is the reliability of the master station-its 
maintenance and hardware complexity. A single up-link failure at the 
master station would immobilize the whole system. In contrast, our 
method would tolerate quite a combination of different failures because 
an automatic takeover procedure exists for the master assignment. 
Any single up-link or down -link failure at a station can interrupt 
service only at that station and has no bearing on the rest of the 
system. 

It is possible to use a separate channel to perform interstation 
ranging as proposed in Ref. 9. The bandwidth requirement for this 
ranging channel is critically determined by the rise time of the ranging 
pulses, which, in turn, affects the resulting synchronization accuracy. 
Therefore, the addition of this ranging channel could be an imposing 
requirement in the system. 
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Improvements in the jitter performance and the acquisition time in 
our system are both possible. The up-link drift could be removed if 
the up-link delay information from each station were inserted into 
one of the ,vertical-blanking pulses, and the stations could then de
modulate for these data. Higher clock frequencies could be used in 
the delay measurement, thereby decreasing its uncertainty. This would 
also increase the time resolution of system and thus enable the 
synchronizer to time the transmissions more accurately. As for the 
acquisition time, if an accurate site location plus its up-link delay were 
provided by the first (or the master) station in one of its vertical
blanking pulses, then the other stations could compute their respective 
·delays to the spacecraft without performing the narrow pulse mea
surements, resulting in a significant reduction in the acquisition time. 

VII. CONCLUSIONS 

We have described a method of synchronizing up-link earth stations 
in a TCM system where the stations take turns transmitting TV 
information in bursts, each lasting for a field duration. The technique 
is simple and requires only that the stations receive their own as well 
as others' transmissions. It has a dynamic master/slave arrangement 
whereby the first station signing on assumes the role of a master. The 
other stations subsequently can synchronize their transmissions to 
the master's by simply monitoring the received RF bursts from the 
satellite, measuring their respective delays to the spacecraft, and then 
phase locking their local color subcarrier clocks to the master's trans
mitted bursts. When the master station stops transmitting, an auto
matic procedure exists for the second station to take over as the new 
master. As a result, any single up-link or down-link failure can only 
affect the station involved, and there is no need to have centralized 
control. Most of the hardware in the synchronizer can be implemented 
digitally. The worst-case jitter performance in the system is well below 
100 ns, while the initial acquisition time can be kept to less than one
half second. These are more than adequate for the TV application, 
and we conclude that the proposed method offers a practical means to 
synchronize the three up-links in our TCM system. 
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APPENDIX 

Parameters For Timing jitter 

We show briefly here the derivations for the various contributions 
to the steady-state timing jitter (Table I). The following estimates are, 
by and large, worst-case and very conservative. 

A.1 Delay measurement uncertainty 

The slave stations have to measure their respective delays to the 
satellite in order to start, as well as to keep, synchronized with the 
master. This is done in the beginning via the narrow pulses, and then 
it is updated continuously via the monitoring of its own returned 
bursts. The delay is, of course, measured from edge to edge in the 
transmitted and received RF bursts. Given a 36-MHz RF channel 
bandwidth, the fastest RF pulse rise time is in the order of 30 ns. If 
we have to measure delay from one edge to another, an accuracy of 
±5 ns seems reasonable. In addition, the clock used for the measure
ment is resolution limited due to its finite frequency (:::::28 MHz, or 
eight-times color subcarrier frequency). The uncertainty due to this 
clock is about ±17 ns, yielding a total uncertainty of ±22 ns. 

A.2 Up-link delay drift 

In the absence of any knowledge of the master's (or A's) location, a 
slave station (or B) cannot predict the up-link delay from the master 
to the satellite. Furthermore, this up-link delay is time varying due to 
the motion of the spacecraft. The net result is that B's prediction of 
the near-future burst arrivals from A can never be exact, even though 
the down-link delay between B and the satellite can be predicted 
exactly. To illustrate this point, let us consider a burst transmitted 
from A to B at t = o. The up-link delay (from A to the satellite) is Uo; 
the down-link delay (from the satellite to B) is do; and the delay 
through the satellite is conveniently chosen to be zero. The arrival 
time of this burst at B is simply 
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To = Uo + do. 

Now, at a later instant t = tb A transmits another burst to B. The 
corresponding up-link and down-link delays are U1 and db respectively. 
Again Uo =1= U1 and do =1= d1 because of the spacecraft motion. The 
arrival time at B is then 

T1 = U1 + d1 + t1. 

In order to predict T1 at B at the time To, B has to compute 

T1 - To = (U1 - uo) + (d1 - do) + t1, 

where t1 is known to B because A is transmitting at a fixed rate; (d1 -

do) can be extrapolated based on B's delay measurements; but the 
quantity (U1 - uo) cannot be estimated without knowing A's location. 
In this example, (U1 - uo) is simply the up-link delay variation for A 
due to the spacecraft displacement in the time interval t1• As such, an 
easy upper can be written as 

I U1 - Uo I ~ cutb 

where c is the velocity of light; u is the radial velocity of the spacecraft 
toward or away from an earth station; and tb the time interval, is 
understood to be small compared to a day. If we replace u by the 
highest radial velocity of the spacecraft, and t1 by the round-trip 
satellite propagation delay (::::::300 ms), we have a worst-case estimate 
on the up~link delay drift. According to an example given in page 149 
of Ref. 8 and comparisons to data from more recent communications 
satellites,lo a convenient upper bound on the spacecraft radial velocity 
in geostationary orbit is 10 m/s. Using this, the worst-case up-link 
delay drift is ±10 ns. 

A.3 Down-link delay drift 

With the spacecraft radial velocity limited to 10 mls and continuous 
updates on the delay measurement, we feel that the down -link delay 
drift can easily be computed with an accuracy an order of magnitude 
lower than the up-link delay drift, or about ± 1 ns. 

A.4 Clock resolution 

Using a 28-MHz clock, the resolution is about half a cycle or ±17 
ns. 

AS Field-rate jitter 

This refers to the jitter in the rate at which the master station is 
transmitting its RF bursts. The burst transmission is of course gov
erned by the TV field rate, and only one burst is sent in every three 
fields. The NTSC standard specifies that the color sub carrier fre-
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quency (3,579,545 Hz) must be stable within ±10 Hz and cannot vary 
more than 0.1 Hz/s. For a worst-case situation, we assume that the 
color subcarrier is at the lowest value, i.e., 3,579,535 Hz. It then drifts 
at the maximum rate of 0.1 Hz/s. Thus, at the end of a second, the 
new frequency is 3579535.1 Hz. The difference in TV field period 
derived from these two frequencies is only 7.8 X 10-15 s. The net result 
is that the TV field rate is jitter free over a short period of time, say a 
few seconds. Moreover, this implies that a much less stable color 
subcarrier frequency is still quite compatible with our synchronization 
system. 
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Theory of Reflection From Antireflection 
Coatings 

By R. H. CLARKE* 

(Manuscript received November 24, 1982) 

The reflection that occurs when a beam, rather than a plane wave, is 
incident normally on a quarter-wavelength matching layer can be of vital 
importance in semiconductor laser design. An analysis in three dimensions is 
given for the general case of a field of arbitrary form and polarization incident 
on the matching layer. The field is represented as an angular spectrum of 
plane waves, each component plane wave being modified by the appropriate 
Fresnel reflection coefficient to give the field reflected back onto the diode 
structure. Brown's antenna reciprocity theorem is used to determine the 
amplitude of the corresponding mode traveling back down the diode. 

I. INTRODUCTION 

Antireflection coatings are used on one face of superluminescent 
diodes! and on both faces of diode-laser amplifiers.2 The theoretical 
performance of such coatings has been analyzed by Clarke3 using the 
technique of representing the emerging laser beam as an angular 
spectrum of plane waves, as originally applied by Reinhart et a1.4 and 
Gordon5 to determine the reflectivity of an uncoated facet. Each plane 
wave was modified by the appropriate reflection coefficient of the 
uniform coating,6 and Brown's antenna reciprocity theorem 7 used to 
calculate the amplitude of the wave coupled back into the device. The 
previous analysis3 was restricted to two dimensions, on the grounds 

* Work done while at Bell Laboratories. Now at Imperial College of Science 
and Technology, London, England. 
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that the active region in the device would be a wide flat stripe, so that 
the emerging radiation would be a thin fan -shaped beam. Many 
important laser diode "structures, particularly of the refractive index 
guided type, have relatively narrow active regions, hence the previous 
restriction is limiting. This restriction is removed in the present work, 
and the full three-dimensional analysis is presented. 

II. FIELDS IN THE DIODE 

The transverse electric field of a single mode traveling in the 
positive-z direction (see Fig. 1) along the length of the active-region 
stripe in a diode laser can be written in general as 

Et(x, y, z) = [uxEtAx, y) + UyEty(x, y)]e-j
{3m

Z
, (1) 

where f3m is the phase constant of the mode and the time variation 
exp(jwt) has been suppressed. The field in this mode reflected back 
into the diode by the coating is 

E;-(x, y, z) = p[uxEtAx, y) + UyEty(x, y)]e+j
{3m

z
• (2) 

The objective of this paper is to calculate the reflection coefficient p 

for arbitrary thickness h and refractive index n2 of the coating. 
(Coupling to other modes is ignored here for the sake of simplicity.) 
It will be assumed that the beam eventually emerges into air, so that 
n3 = 1, and that the refractive index of the diode has the effective 
value nI, which is that of the active region in which the field is largely 
confined. (The surrounding bulk material has a refractive index that 
is some 10 percent below nl.

1 A better choice of effective refractive 
index might therefore be a weighted average, as suggested by Kaplan's 
analysis.8

) 

The field incident at the plane z = 0 can be represented as an 

z=o--

Fig. 1-Diode laser with coating. 

x 

\ 
COATING 
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angular spectrum of plane waves by the two spectrum functions 
FAa, (3) and Fy(a, (3), where (a, (3, 'Y) are the direction cosines in the 
X-, y-, and z-directions.9

,!0 Thus, the elemental plane wave incident in 
the direction (a, (3) is einc(a, (3)dad(3, where 

e,.,(a, fJ) = FAa, fJ) ( Ux - u, ~) + Fy(a, fJ) (UY - U, ~) (3) 

with 

and 

(4) 

in which ~ symbolizes a Fourier transform, such as 

1100 100 

FAa, (3) = 2 EtAx, y)exp{jkl(exx + {3yldxdy. 
Al -00 -00 

(5) 

The phase constant in the diode is ki = 27r/AI = nIko, where ko is the 
phase constant of free space. 

It should be noted for later reference that the above angular spec
trum corresponds to a radiation far field (assuming that the subscript 
1 region continues indefinitely but the active region stops in the plane 
z = 0), as kir ~ 00, oflO 

where the far-field vector pattern function is given in this case by 

and 

ex = sin () cos ¢ 
{3 = sin () sin ¢ 
'Y = cos (), 

(6) 

(7) 

(8) 

where () is the polar angle to the z-axis, ¢ is the azimuth angle in the 
x-y plane, and r is the distance to the point of observation. 

III. REFLECTION AT THE COATING 

The incident plane wave given by eq. (3) will be reflected by the 
coating. The amplitude reflection coefficient for a plane wave incident 
on such a uniform layer with its electric vector perpendicular to its 
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plane of incidence (see Fig. 2) is6 

R _ Plcos B + jP3sin B 
.L - P 2cos B + jP4sin B 

(9) 

and, with its electric vector parallel to its plane of incidence, the 
reflection coefficient is 

R = QICOS B + jQ3sin B 
II Q2COS B + jQ4sin B' 

(10) 

where 

P I ,2 = n2(1 - nis2/nnl/2[nl'Y =+= (1 - nis2)1/2] 

P3,4 = nl'Y(1 - nis2)1/2 =+= n~(1 - nis2 /n~) (11) 

QI,2 = n2(1 - nis2/n~)1/2[nl(1 - nis2)1/2 =+= 'Y] 

Q3,4 = nl(1 - nis2 /n~) =+= n~'Y(1 - nis2)1/2 (12) 

with 

(13) 

and 

(14) 

where A2 = Ao/n2' 
Note that when the magnitude of the sine of the angle of incidence 

I s I > (nl)-l, the wave will be totally internally reflected. In that case, 
the magnitude of the reflection coefficient will always be unity, but its 
phase will vary with the angle of incidence. But note also that the 
exp(jwt) sign convention adopted here means taking the negative 

Fig.2-Definition of the amplitude reflection coefficients RJ.. and RI• Their phases 
are defined at O. 
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square root when the round-bracketed quantities in eqs. (11), (12), 
and (14) become negative. 

The elemental plane wave given by the angular spectrum of eq. (3) 
consists, in general, of the sum of perpendicular and parallel polarized 
components, such that 

(15) 

This resolution can be achieved by noting that the unit vector Un, 

which is both normal to the plane of incidence of the plane wave 
travelling in the direction (a, (3) and also parallel to the bounding 
plane surface xOy, is 

1 
Un = .Ja2 + {32 [ux{3 - uya]. (16) 

Hence we may calculate 

(17) 

and 

(18) 

The elemental plane wave erefl(a, (3)dad{3 reflected by the coating is 
thus given by 

(19) 

and comes from the direction (-a, -(3). (To avoid possible confusion 
it should be noted that the argument of erefl(a, (3) denotes the direction 
of the incident wave.) 

IV. COUPLING BACK INTO THE DIODE 

Brown's antenna reciprocity theorem states that if a plane wave of 
vector amplitude ep is incident from the direction Up on a linear, 
reciprocal device, whichwhen radiating has the far-field vector pattern 
function (see eq. 6) of erad(U), then the coupling ratio 

"A2 
C = j4'TrZP

o 
ep·erad(Up) (20) 

gives the complex ratio of the single-mode amplitude when receiving 
to that when transmitting a total power PO•

7
,l1 Z and "A are the 

characteristic impedance and wavelength in the radiating medium. 
Equation (20) is a precise result, being a consequence ultimately of 
the Lorentz reciprocity theorem. 

In the present instance the incident plane wave ep is the elemental 
reflected plane wave erefdad{3 given by eq. (19), and so, integrating 
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over all directions in the forward hemisphere, the reflection coefficient 
describing the returning mode amplitude is 

)-..2 lOO lOO 
p = '4 ZP erefl(a, /3). erad( -a, -/3)dad/3 

J 7r 0 -00 -00 

(21) 

or 

)-..2 roo roo 
p = 2ZP

o 
J-oo J-oo {Rlleinc(a, /3) + un(R.L - RII) 

[un·einc(a, /3)]}.einc(-a, -/3)"(dad/3 (22) 

with einc(a, /3) given by eq. (3) and Un by eq. (16). The total radiated 
power Po, when the radiation is specified by the two spectrum functions 
FAa, /3) and Fy(a, /3), is given by12 

)-..2 r J [1 - /3
2 1 - a

2 
] 

Po = 2Z J
D 

-,,(-I FAa, /3) 12 + -"(- 1 Fy(a, /3) 12 dad/3, (23) 

where D is the domain of (a, /3) such that a 2 + /32 = ::51. 

V. APPLICATION TO A Y-POLARIZED LASER MODE 

In order to see what this result means, consider a guided mode in 
the laser whose tangential electric field is wholly y-directed, for which 
therefore Fx = O. Then 

e.nAO'. (3) = Fy(O'. (3) (uy - U, ~) (24) 

and 

1 
Un = .Ja2 + /32 (Ux/3 - uya). (25) 

Consequently, the reflection coefficient in this case is 

)-.. 

2 loo loo [( /3
2 

a
2

) p = -- RII 1 + - - --
2ZPo -00 -00 "(2 a + /32 

+ RL a' : {3']'YFy(O'. (3)Fy(-O'. -(3)dO'd{3. (26) 

Then finally, assuming that the beam spread is vanishingly narrow 
in the y-z plane compared to the x-y plane, 

)-..2K roo 
p = 2ZP

o 
J-oo ,,(R.LFy(a, O)Fy( -a, O)da, (27) 
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where K depends on the J3-dependence of Fy. Equation (27) is the two
dimensional result used previously.3 

VI. CONCLUSIONS 

A complete three-dimensional analysis has been presented for the 
calculation of reflection from antireflection coatings. It reduces to the 
two-dimensional result given previously where the incident beam was 
assumed to be narrowly confined in one of the principal planes. The 
form and polarization of the field incident on the coating can be 
arbitrarily specified. 
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Equivalent Queueing Networks and Their Use in 
Approximate Equilibrium Analysis 

By A. KUMAR* 

(Manuscript received March 14, 1983) 

Most Markovian queueing networks that arise as models of stochastic 
congestion systems (e.g., communication networks and multiprogrammed 
computer systems) do not have· a product form in their stationary probability 
distributions, and hence are not amenable to the simplicity of product-form 
analysis. In this paper we suggest an approach for systematically examining 
the validity of a class of approximation schemes that is based on the idea of 
equivalent networks and is used for the approximate equilibrium analysis of 
nonproduct-form networks. We study equivalent networks, and prove a gen
eralization of the so-called "Norton's" Theorem for closed product-form net
works in order to study and generalize the equivalent flow method for the 
approximate analysis of nonproduct-form queueing networks. We then present 
the results of a study of the approximation scheme as applied to a type of 
network model (called a central-server model) that arises frequently in mod
eling multiprogrammed computer systems. In this model the central server 
uses a priority discipline, so the resulting network is nonproduct form. This 
study demonstrates the situations under which the approximation can be 
expected to do well or poorly and the kinds of errors it introduces. 

I. INTRODUCTION 

Mathematical modeling of stochastic systems frequently gives rise 
to models in a class referred to as Markovian queueing networks
specifically, queueing networks whose time evolution can be described 
by a discrete-state, regular Markov stochastic process. Markovian 
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©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for 
noncommercial use is permitted without payment of royalty provided that each repro
duction is done without alteration and that the Journal reference and copyright notice 
are included on the first page. The title and abstract, but no other portions, of this 
paper may be copied or distributed royalty free by computer-based and other informa
tion-service systems without further permission. Permission to reproduce or republish 
any other portion of this paper must be obtained from the Editor. 

2893 



1~--1;;t' 
I SUBNETWORK: 

X __ ~~_~ 

(b) 

CLOSED 
NETWORK Q 

(a) 

,----- - - - - -------, 
I 

iM 
I 
I L _______________ _ 

(c) 

Fig. I-Notion of an equivalent network; (a) original network, (b) with arrows 
indicating flows between Ql and its complements, and (c) with arrows indicating models 
of flows between Ql and its complement. 

queueing network models, known as product-form networks, have been 
widely studied, owing primarily to their well-understood stochastic 
behavior, and the simplicity of their analysis in equilibrium. However, 
the class of product-form queueing network models is far from ade
quate for modeling many simple real-world congestion systems. The 
exact equilibrium analysis of nonproduct-form queueing networks is, 
in most cases, computationally, and often fundamentally, intractable. 
Much effort has, therefore, been directed towards devising approxi
mation schemes that attempt to reconcile the conflicting requirements 
of modeling fidelity and the simplicity of product-form analysis. One 
such class of approximation schemes is based on the idea of equivalent 
networks. In this paper we systematically study this approximation. 

By an equivalent network we mean the following (cf. Fig. 1). Con
sider a closed queueing network Q constructed from the set of nodes 
M and the subnetwork Ql consisting of nodes Ml C M. Let Qleq be a 
network constructed from Ml such that the joint equilibrium'(proba
bility) distribution of Qleq is the same as the marginal joint equilibrium 
distribution of Ql in Q. The network Qleq is then said to be equivalent 
to Ql.* Clearly, to study Ql in isolation, one needs to account for the 

* This notion of equivalence may appear unduly restrictive. Why not establish a 
more detailed stochastic equivalence? For the calculation of many performance analysis 
criteria, the present notion is adequate. However, it is easy to see that the equivalent 
networks we later identify yield equality in distribution for the entire process in 
equilibrium. 
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influence of the nodes in M - Ml on the nodes in Ql. When Q is 
product form, the influence of the complementary network on Ql takes 
an especially simple form, and can be determined by analyzing a 
modified version of the complementary network in isolation! For the 
case where Ml consists of a single node, this fact was first recognized 
by Chandy et al., 1 who called the equivalent network so obtained a 
"Norton" equivalent, because of the similarity of this equivalence to 
Norton equivalence in electrical circuits. 

In Section II we study equivalent networks and demonstrate the 
simplifications that arise for product-form networks. The development 
yields a generalization of Norton's Theorem to multinode subnetworks 
of closed product-form networks. Essentially, the same extension to 
the entire class of closed product-form networks has been obtained 
independently and concurrently by Kritzinger et al. 2 and Balsamo et 
al.,3 through an approach based on verification via detailed computa
tions from the product-form solution. Our approach is substantially 
different, in that it derives Norton's Theorem directly as a special case 
of a general result for stochastically equivalent networks. This ap
proach is concise, conceptually and intuitively appealing, gives the 
result a probabilistic interpretation, and shows up clearly the role 
played by the product-form solution. It also seems to be the natural 
approach for the purposes of this study. 

This generalization of Norton's Theorem motivates the following 
approximation scheme. Suppose now that Q is a nonproduct-form 
network, but for the purposes of studying the subnetwork Qh we follow 
the equivalence procedure for product-form networks. Suppose also 
that in doing so we find that the version of the complementary network 
we have to analyze, in order to determine the latter's influence on Qh 
is product form. Let the equivalent network thus obtained be Qleq. 
The approximation scheme, referred to above, approximates the equi
librium distribution of Ql with that of Qleq (i.e., approximates Qleq by 
Qleq). The effort to determine and analyze Qleq will, in general, be 
considerably less than the effort to exactly analyze Ql in Q. 

This approximation scheme is an extension of one (often referred 
to in the literature as an equivalent flow approximation) that has been 
utilized by several workers, in the field of network perfdrmance anal
ysis, with remarkably accurate results. Sauer and Chancly,4 and Chow 
and Yu5 use this idea as the basic step in iterative schemes for 
approximating central-server models in which the central server is not 
of product-form type. Schwartz6 uses the basic scheme directly to 
approximately analyze a model for a multiple-access communication 
system. In Section III we draw upon the theoretical development in 
Section II to study the validity of the approximation scheme when it 
is applied to a simple test-bed model. 
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II. EQUIVALENT NETWORKS 

Consider a closed Markovian queueing network Q consisting of M 
congestion nodes. In this section we study the problem of the equilib
rium analysis of a subnetwork Ql (embedded in Q). To simplify the 
discussion we shall limit our considerations to networks of First In, 
First Out (FIFO) nodes. It is easily recognized that the ideas in this 
section can be extended to apply to more general networks. In Section 
2.3 we establish Theorem 1, which explicates the structure of equiva
lent subnetworks of the networks described in Section 2.1. By combin
ing this result with Theorem 2, we get a generalization of Norton's 
Theorem. 

2.1 Network specifications 

Q is a closed queueing network consisting of M FIFO nodes (indexed 
by i E {I, ... , MD. There are R classes/types of customers (indexed 
by r E R = {I, ... , RD with N r customers in the rth class. The M x 
M matrix p(r) = [p~;>] is the routing probability matrix of type r 
customers; customers do not change class as they move from node to 
node. For each r in {I, ... , R}, p(r) is a stochastic matrix which, when 
considered as a transition probability matrix, leads to a Markov chain, 
on the state space {I, ... , M}, with a single positive, communicating 
class. 

Throughout the following discussion, the network state process is 
assumed to be in equilibrium. The state of the ith node (denoted by 
8 i

) is a finite string drawn from the set R. Given a state vector 8 i
, r 

E R appearing in the kth position in the string 8 i denotes that a 
customer of type r is in the kth position, in FIFO order, at the node i. 
Thus, by definition, the customer in service is in the first position. 8 
= (8\ ... , 8 M

) denotes the state of the entire network Q. The ith 
node is equipped with an exponential server which, when the state of 
the network is 8, serves a customer of class r at the rate vir(8). 

Ql is a subnetwork of Q, consisting of Ml «N) nodes (indexed by 
i E {I, ... , Md). Q2 is the complementary network consisting of 
M2 = M - Ml nodes (indexed by i E{Ml + 1, ... , MD. 

Some additional notation is inevitable; this we proceed to describe 
in the next subsection. 

2.2 Notation 

N = (NI, ... , N R ) is the population vector of the network Q, where 
N r is the number of customers of class r, r E R. 

Let R* = (Un~dl, ... , R}n) U e where e denotes the empty string. 
For any s E R*, denote by Nr(s) the population of class r in the string 
s, and let 
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For K, a positive integer, let 

8~ = {(s\ ... , SK): (for every i, 1 =:::; i =:::; K, Si E R*) 

K 

and L N(Si) = N}. 
i=1 

As stated in Section 2.1, 8 = (8\ ... ,8M
) denotes the Q-network 

state. Let 8 1 = (8\ ... , 8 Ml ) denote the Ql-network state and 82 = 
(8Ml+1, ••• , 8 M

) denote the Q2-network state. Let F~, and F~l and 
F~2 denote respectively the sets of feasible states, in equilibrium, of 
the state process of the networks Q, Ql, and Q2, respectively. 

A network Qleq constructed from the nodes {I, ... ,Md is said to be 
equivalent to Ql if the joint equilibrium (probability) distribution of 
the state processes of Qleq is the same as the marginal joint equilibrium 
distribution of the state process of Ql in Q. 

2.3 Construction of Qleq 

Let 71": F~ ~ (0, 1) be the equilibrium distribution of the state 
process of the network Q. Let (for every (1 =:::; i =:::; M)(l =:::; r =:::; R» (for 
every 8 E F~) vir(8) = vir(81) and (for every 8 1 E F~l) 

pfrl ~ 71" {A customer of type r is in service at node 

i/Ql i is in state 8d. 
Construct a network Qleq from the nodes 11, ... , Md as follows: 

1. The routing between the nodes in Qleq is the same as in Ql (self 
loops around nodes in Ql are included in Qleq). 

2. When the state of Qleq is 81, node j (1 =:::; j =:::; M 1 ) receives an 
exogenous arrival stream of class r customers with (state dependent) 
rate L1!Ml+1 PfrlVir(81)P~). 

3. A customer of class r, after completing service at node i (1 =:::; i =:::; 

M 1), leaves the network Qleq with probability L~Ml+1 p~). 

Theorem 1: Qleq as constructed above is equivalent to the subnetwork 
Ql of Q. 

Proof: The intuitive appeal of the construction is manifest. In Step 2 
of the construction, for every i(MI + 1 =:::; i =:::; M), pfrl vA8d is the 
conditional throughput of type r customers through node i, when Ql 
is in the state 8 1• A fraction p~) of this flow through i finds its way 
into node j of Ql. 

A simple detailed proof can be obtained by summing the Kolmogorov 
equilibrium equations for Q over the set {8 E F~: 8 1 fixed}, and 
observing that the resulting equations are exactly the equilibrium 
equations for Qleq described above (cf. Ref. 7). D 
Remarks: But for the explosion in notation that occurs in setting up 
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a detailed proof, it is clear that the construction of Q1eq described 
above extends easily to networks other than those described in Section 
2.1. In this work, however, we continue to restrict our attention to 
networks of the latter type. 

We now turn to the subclass of product-form networks of the class 
of networks described in Section 2.1. Since we are concerned here with 
FIFO nodes, the service rates cannot be class dependent. We further 
assume that the service rates are not state dependent in any way, i.e., 
we now have 

(for every (1 ::::;; i ::::;; M)(I ::::;; r ::::;; R) and 8 E F~)Vir(8) = Vi. 

Let (for every r E R) c(r) C {I, ... , M} be the subset of nodes of Q 
that communicate under per) (i.e., in queueing-network terminology, 
the chain corresponding to class r). Let R2 = {r E R: c(r) n {M1 + 1, 
... ,M} =1= 0} be the set of customer types that visit Q2. Let II R211 = 
R2 , II R - R211 = R1 (where II II denotes set cardinality), and reindex 
R so that the elements of R2 receive the highest indices. Let N 2 = 
(NR1+1, ••• , N R ) and if s is a string in R*, let N 2(s) = (NR1+1(S), ..• , 
NR(s)), i.e., N 2(s) is the population vector, of the string s, restricted to 
the classes in R 2 • 

For every N' = (Nfl1+h ... ,Nfl)::::;; N 2
, consider the network QHN') 

obtained from Q by replacing all servers in Q1 with infinite speed 
servers (i.e., by short-circuiting the nodes in Qd, and placing N' 
customers in the resulting network. Let 7rN' be the equilibrium distri
bution of the state process of the network QHN'). Define for every 
(M1 + 1 ::::;; i ::::;; M), r E R2 , 

~r:' ~ 7rN' {A customer of type r is in service at node i in QHN')}. 

2.4 The product-Form case 

Theorem 2: If Q is a product-form network then 

for every (M1 + 1 ::::;; i ::::;; M)(r E R 2 ) and every 8 1 E F~l 

(pfrl as defined earlier). 

(Note: it is obvious that (for every (M1 + 1 ~ i::::;; M), r f1. R2 and 8 1 E 
F~l ) pfrl = 0.) 

Proof: The proof utilizes a simple lemma and is outlined in the 
appendix. D 
Remarks: Theorem 2, when combined with Theorem 1, yields a gen
eralization of Norton's Theorem1 to multinode subnetworks. Even 
though the previous development is specific to the class of networks 
described in Section 2.1, it is clear that the same approach can be used 
to extend Norton's Theorem to the entire class of closed product-form 
networks. The product-form solution continues to play the same role 
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as it does in Theorem 2, i.e., it allows the rates of the external arrival 
streams in Qleq to be computed from an analysis of Q2 for all possible 
customer populations in Q2' 

III. AN APPROXIMATION SCHEME 

In an IBM Research Report, Chow and Yu5 suggest a somewhat ad 
hoc, iterative approximation scheme for a class of central-server 
models, with a priority discipline at the central server. As mentioned 
earlier, the scheme relies on an inexact application of Norton's Theo
rem to such networks. In Section I we described a natural generaliza
tion of this so-called equivalent flow approximation scheme to more 
general nonproduct-form networks. In this section, we present the 
results of a detailed study of the application of this approximation to 
a simple, test-bed, central-server network. 

3.1 The test-bed model 

Consider the two-node network Q shown in Fig. 2. There are two 
customer classes, namely 1 and 2, with Nl and N2 customers, respec
tively (i.e., N = (NI,N2». At node 1, the customers of class 1 (high
priority) have preemptive priority over class 2 (low-priority) cus
tomers; after being preempted by a class 1 customer, when a class 2 
customer reaches the service station again, it resumes service where it 
left off; class 1 and 2 customers have exponential service times with 
rates Vn and V12, respectively. Such a service discipline is commonly 
referred to as a preemptive resume discipline. At node 2, there is no 
priority; customers are served in the order in which they arrive 
(irrespective of class), at the class independent exponential service 
rate V2. Customers alternately seek service at nodes 1 and 2 and stay 
in the network forever. This model belongs to a class of central-server 
networks that arise as models of computer systems. 

TYPE 1 

Fig.2-Q. 
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3.2 Approximating the test-bed network 

The network described in Section 3.1 is nonproduct form because 
of the preemptive resume discipline at node 1. In order to approximate 
the equilibrium behavior of node 1, we first increase the service rates 
at node 1 to infinity, thus effectively short circuiting the node. Denote 
the resulting network by Q2 (Fig. 3). Then for each (kI,k2) =s:; (NI,N2 ) 

analyze Q2 with kl and k2 customers of types 1 and 2, respectively, in 
the network. Let (cf. Thm. 2) (for every (kI,k2) =s:; (NI,N2)) (for every 
r ElI, 20 ~~~l,k2) = Prob IA customer of type r is in service at node 2 
when (kI,k2) customers are in Q2J. 

This probability will not depend on the sequence in which the (k l ,k2 ) 

customers are placed in Q2. Since the service rate at node 2 is class 
independent, it is clear that, in equilibrium, all possible states, for any 
arrangement of the customers, are equally likely. From this we can 
directly conclude that 

(for every (0, 0) < (kI,k2) =s:; (NI,N2)) (for every r ElI, 20, 

t (k1,k2) _ kr 
t;2r - kl + k2 

Now consider the open network Qleq consisting of the node 1 in 
isolation. The service rates· and discipline remain the same as in Q. 
When there are nl customers of type 1 and n2 customers of type 2 in 
Qleq then customers of type r (E 11,20 enter the network at the rate 
~~nl,n2) where 

(for every (nI,n2) =s:; (NI,N2))~~nl,n2) = ~r,.-(nl,n2)V2. 

When a customer finishes service in Qleq, it leaves the network (Fig. 
4). 

The evolution of the network Qleq can be described by a regular 
Markov process on the state space l(nI,n2) : (nI,n2) =s:; (NI,N2)}. The 
idea is to approximate the equilibrium distribution of customers at 
node 1 in Q with the equilibrium distribution of customers in Qleq. 

At first glance, the approximation technique described above may 
seem rather ad hoc. However, we can draw upon the development in 

TYPE 1 

TYPE 2 
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Fig. 4-Ql eq. 

Fig. 5-Ql eq. 

Section II to understand the inner workings of the test-bed model, 
and to show that, at least in principle, the approximation scheme is 
not altogether unreasonable. 

It is clear that we can think of node 1, in the test-bed network Q, as 
comprising two FIFO nodes with service rates that depend just on the 
joint state of these two nodes. Consider the subnetwork Ql of Q 
consisting only of node 1. Theorem 1 can now be invoked to determine 
the exact equivalent network Qleq. Let 

(for every (nr,n2) ==:;; (Nr,N2 )) (for every r E {I, 2}), 

p&~1,n2) = ?r{A customer of type r is in service at node 

2/(nr,n2) customers in Qd. 
Qleq is then an open network consisting of node 1. When there are nl 
customers of type 1 and n2 customers of type 2 in Qleq, then customers 
of type r (E 11, 2}) enter the network at the rate A~nl>n2) where 

(for every (nr,n2) ==:;; (Nr,N2))A~nl,n2) = p&~1,n2)V2. 

When a customer finishes service in Qleq it leaves the network (Fig. 
5). 

The equilibrium distribution of customers in Qleq is exactly the same 
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as the equilibrium distribution of customers in Ql. Observe, though, 
that the form of Qleq is the same as that of Qleq, the difference lying 
in the state-dependent input rates. It is in this sense that the approx
imation scheme is reasonable. The idea now is to compare the exact 
state-dependent input rates, p~~bn2)V2' with the approximate state
dependent rates, 

tN-(nbn2)v _ ( N r - nr v) 
<;2r 2 - N N 2 , 

1 - nl + 2 - n2 

3.3 Qualitative evaluation of the approximation 

In this section, we present a qualitative evaluation of the approxi
mation scheme as applied to the test-bed model. 

Observe that if the service rates for the two FIFO queues comprising 
node 1, in Qb were not state dependent (in the priority scheme they 
are state dependent), then Ql would, in fact, be a product-form net
work. Theorem 2 would then lead us to conclude that Qleq and Qleq 
were the same. Consider what happens if, in Ql, Vn is allowed to go to 
infinity. Then, effectively, the high-priority customers do not interfere 
with the low-priority customers at node 1. With Vn = 00, the network 
becomes the one shown in Fig. 6, which is a product-form network. 
Thus according to our observation above, for values of Vn that are 
large, compared to V12 and V2, the approximation can be expected to 
yield very good results. 

In order to discover the situations in which the approximation can 
be expected to behave poorly, one needs to understand what aspects 

TYPE 1 

FIFO 

TYPE 2 

Fig. 6-"Lim" Q "11--. 
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of the exact network the approximation fails to capture. If QI were a 
product-form network, then, given that (kl,k2)(~(N!,N2)) customers 
were in node 2, all arrangements of customers within the node would 
be equally likely. As it stands, however, at node 1, priority 1 customers 
can preempt customers of priority 2. This suggests that given 
(k!,k2)( ~NI,N2) customers in node 2, some arrangements of customers 
would be more likely than others. In fact, we conjecture that priority 
1 customers are more likely to be ahead of priority 2 customers, leading 
to the (conjectured) conclusion that 

and 

(for every (0, 0) < (kI,k2) ~ (NhN2))p~1(kl>k2) ;::: k kl k ' 
I + 2 

P
N -(kl>k2) :< k2 
22 ......, kl + k2 

Thus QIeq uses smaller (resp. larger) state-dependent input rates for 
type 1 (resp. type 2) customers than the exact equivalent QIeq. This 
idea is suggestive, but it is difficult to draw any immediate conclusions 
from this conjecture as to the relationship between exact and approx
imate performance measures of the network. 

Another approach to discovering the direction in which the approx
imation can be expected to err is to observe that if node 2 in. Q is 
replaced by a processor-sharing node, with class-independent service 
rate V2, then QIeq becomes the exact equivalent of QI (cf. Fig. 7). (This 
follows because when node 2 is processor sharing, if (k!,k2)(~ (NI,N2)) 
customers are present at node 2, then the rate of flow of class r( E 
{I, 2}) customers into node 1 is (kr/(kl + k2))V2.) To fix ideas consider 
the case NI = n(~l) and N2 = 1. The throughput of the class 2 
customer is simply the reciprocal of the mean successive passage times 
of the (single) class 2 customer through the point X (cf. Figs. 2 and 

PROCESSOR 
SHARING 

Fig. 7 -Q with node 2 processor sharing. 

TYPE 1 

TYPE 2 
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7). In either network, when the class 2 customer crosses the point X 
to enter node 2, it finds all the class 1 customers receiving service at 
this node. In the original network, since node 2 is FIFO, the class 2 
customer will have to wait for full service completion of the n class 1 
customers before it can leave node 2 (and subsequently, at some future 
time instant, cycle back through X). Thus, the mean sojourn time of 
the type 2 customer, in node 2 of the original network, is (n + 1)/v2. 
However, if node 2 is processor sharing, then on entering node 2, the 
customer of type 2 starts receiving service immediately at the rate V2/ 

(n + 1), and continues to receive service at a rate v2/(k + 1) (0 ~ k ~ 
n) until it finally leaves. Thus, in this case, the sojourn time of the 
class 2 customer at node 2 is stochastically dominated by an exponen
tially distributed random variable with mean n + 1/ V2, and hence has 
a mean smaller than (n + 1)/v2. We further expect, intuitively, that, 
after completing service at node 2, when the type 2 customer returns 
to node 1, it expects to find more type 1 customers at node 1 when 
node 2 is FIFO than when it is processor sharing. Given that the type 
2 customer finds k(O ~ k ~ n) type 1 customers on its arrival at node 
1, its sojourn time at node 1 does not depend on whether node 2 is 
FIFO or processor sharing, and increases with increasing k. Thus, we 
expect that the mean sojourn time of the type 2 customer at node 1 
will be larger if node 2 is FIFO than when it is processor sharing. The 
conclusion is that the mean passage time of the type 2 customer, 
through the point X, is larger in the original network than in the 
approximating network. 

To see the magnitude of the error this effect could cause, let N1 = 1 
and allow V12 ~ 00, V2 ~ 00, and V2/V12 ~ o. Under these assumptions, 
in the original network, the class 2 customer will be blocked once (and 
only once) at node 1 each time it cycles through the point X. The 
average time it spends in the blocked condition is l/v11. The rest of 
the time in each cycle tends to o. Hence, the mean response time for 
the class 2 customer in the original network is l/v11. If node 2 is 
replaced by a processor sharing node, then, each time the class 2 
customer cycles through X, it is blocked once (and only once) with 
probability 1/2. Hence, the mean response time for the class 2 customer 
in the approximating network is 1/2v11, thus yielding an error of 100 
percent. 

We do not yet have a simple but rigorous argument that would allow 
us to say conclusively that the approximation yields higher through
puts for low-priority customers. However, the arguments presented 
above do make the conclusion plausible. 

3.4 Numerical examples 

To examine how the approximation works with specific examples, 
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we wrote a FORTRAN program to solve the equilibrium equations for 
Q1eq using a simple recursive technique.8 The program was somewhat 
more general, in that it could accept arbitrary state-dependent input 
rates and output rates. Thus, the same program could be used to solve 
the network exactly, if it were given the exact values of p 1~bn2) and 
p~~bn2) for the various feasible (nI, n2). 

It is not hard to calculate exactly the probabilities p~7bn2) and p~~1,n2) 
for some simple cases. Of course for (nI,n2) =1= (NI,N2 ), p~~1,n2) = 1 -
p~7bn2). Consider, for the purpose of illustration, the case N1 = 1, N2 = 
1. Note that the state of the network Q is completely described by the 
state of node 2. The epochs of entry into the state 8 2 = (12) are 
renewal epochs. The next state is, inevitably, 8 2 = (2). The next state 
is 8 2 = (21) with probability Vn/(vn + V2) and 8 2 = (8) with probability 
V2/(Vn + V2). Because of the preemptive discipline, the next state to be 
entered in the set {(12), (21)} will be 8 2 = (12), thus completing a 
renewal cycle. Since the expected holding time in each state in {(12), 
(21)} is 1/V2, therefore 

and, of course, 

1 

p(O,O) _ ___ V_2 __ _ 
21 - 1 Vn 1 

-+---
V2 Vn + V2 V2 

1 

1 + _V_ll_ 

Vll + V2 

p~i'O) = 0 and p~~,l) = 1. 

In Table I we list the exact expressions for p~~bn2), for all (nI,n2) :s;; 
(NI,N2), for some values of (NI,N2). These were computed in the same 
fashion as in the above example. 

In Tables II(a), (b), and (c), we give several numerical examples of 
exact and approximate solutions of the test-bed network. The exact 
solutions and the approximate solutions were obtained using the 
FORTRAN program described above. The program yields the equi
librium joint-probability distribution of queue lengths at node 1. In 
Tables II(a), (b), and (c), we display these joint probabilities and the 
node 1 utilizations. 

The following observations are immediate and summarize our con
clusions regarding the performance of the approximation scheme when 
applied to the test-bed network. 

1. The numerical computations support our earlier observations 
that if Vll is large, then the approximation can be expected to yield 
excellent results [cf. case (1) in each of Tables II(a), (b), and (c)]. 

2. The low-priority utilizations are consistently higher, again sup
porting our earlier observations regarding the direction in which the 
approximation can be expected to err. 

QUEUEING NETWORKS 2905 



Table I-Exact expressions for p~~"n2) in the test-bed network Q. 
(d. Thm. 1 and Fig. 2) 

Comparison 
Nt N2 (nl,n2) 

(nl,n2)· 
P2t 

with p~~,.) 

1 1 (1,0) ° (0,1) 1 

(0,0) 1 >1 -2 
1+~ 

Pu + P2 

2 1 (2,0) ° (0,1), (1,1) 1 

(1,0) 1 >1 -2 
1 Pu P2 Pu +--+--.--

Pu + P2 Pu + P2 Pu + P2 

1+~ 
(0,0) Pu + P2 >2 

-3 

1+_va + (~), 
Pu + P2 Pu + P2 

P2 

( Va )' +--. 
Pu + P2 Pu + P2 

1 2 (1,0), (1,1) ° (0,2) 1 

(0,1) 1 >1 -2 
1 P2 Pu P12 +--.--+--

Pt2 + P2 Pu + P2 P12 + P2 

[ Pu P2 pn] 
Pu + P2 + Pu + P2 • Pn + P2 

(0,0) 1 >1 
-3 

1+_Pl_l_+~ 
Pu + P2 Pu + P2 

3. When Vn, VI2 and V2 are comparable, then the approximation 
yields good results with errors in the utilizations in the neighborhood 
of 10 percent. 

4. Considerable errors in the low-priority utilizations can arise, 
however. Witness case 3 in each of the Tables II(a), (b), and (c). With 
a very large low-priority service rate at node 1, the approximate low
priority utilization suffers from an error of 20 to 50 percent. 

5. For the range of examples studied, the equilibrium probabilities 
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Table II-Numerical comparisons of exact and approximate 
solutions of the test-bed network 

Equilibrium State Probabili-
Node 1 Utilizations ties at Node 1 

Approxi- Approxi-
Exact mate* Exact mate* 

Case State Proba- Proba- Utiliza- Utiliza-
No. lin 1112 112 (nhn2) bility bility Class tion tion 

(a) (N1 = 1, N2 = 1) 

1 10 1 1 (0,0) 0.614 0.606 
(1,0) 0.029 0.028 1 0.064 0.063 
(0,1) 0.322 0.331 2 0.322 0.331 
(1,1) 0.035 0.036 

2 1 .5 1 (0,0) 0.231 0.222 
(1,0) 0.077 0.056 1 0.462 0.444 
(0,1) 0.308 0.333 2 0.308 0.333 
(1,1) 0.385 0.389 

3 1 100 2 (0,0) 0.393 0.488 
(1,0) 0.196 0.163 1 0.601 0.504 
(0,1) 0.0059 0.0081 2 0.0059 0.0081 
(1,1) 0.405 0.341 

(b) (N1 = 2, N2 = 1) 

1 10 1 1 (0,0) 0.681 0.676 
(1,0) 0.044 0.043 
(2,0) 0.002 0.002 1 0.0754 0.0748 
(0,1) 0.244 0.249 2 0.244 0.249 
(1,1) 0.027 0.027 
(2,1) 0.003 0.003 

2 1 .5 1 (0,0) 0.179 0.171 
(1,0) 0.083 0.065 
(2,0) 0.024 0.016 1 0.631 0.618 
(0,1) 0.191 0.211 2 0.191 0.211 
(1,1) 0.250 0.260 
(2,1) 0.274 0.276 

3 1 100 2 (0,0) 0.170 0.217 
(1,0) 0.116 0.109 
(2,0) 0.050 0.036 1 0.827 0.780 
(0,1) 0.0022 0.0033 2 0.0022 0.0033 
(1,1) 0.187 0.188 
(2,1) 0.474 0.447 

(c) (N1 = 1, N2 = 2) 

1 10 1 1 (0,0) 0.464 0.457 
(1,0) 0.015 0.014 
(0,1) 0.316 0.319 1 0.0495 0.0487 
(1,1) 0.016 0.016 2 0.487 0.494 
(0,2) 0.170 0.175 
(1,2) 0.019 0.019 

2 1 .5 1 (0,0) 0.116 0.109 
(1,0) 0.028 0.108 
(0,1) 0.177 0.182 1 0.437 0.418 
(1,1) 0.070 0.055 2 0.447 0.473 
(0,2) 0.270 0.291 
(1,2) 0.340 0.346 

3 1 100 2 (0,0) 0.473 0.584 
(1,0) 0.167 0.130 
(0,1) 0.008 0.010 1 0.517 0.404 
(1,1) 0.115 0.090 2 0.0101 0.0123 
(0,2) 0.002 0.002 
(1,2) 0.235 0.184 

*Based on Norton's Equivalent. 
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are never drastically wrong, and follow trends similar to the exact 
values. 

The test-bed model is hard to analyze exactly for population sizes 
larger than the ones considered. We have run detailed simulations of 
the test-bed model for larger population sizes, and the results of these 
simulations continue to support the qualitative observations we have 
made above. 

IV. CONCLUSIONS 

We have demonstrated an approach for systematically analyzing 
the equivalent flow approximation. Our investigations have (1) re
vealed the conceptual basis for the approximation scheme, and (2) led 
to an understanding of the reasons for, and directions of, the errors 
that such an approximation scheme could introduce when applied to 
a class of prioritized central-server models. The approximation as 
described in the paper is of more general applicability, and much work 
remains to be done to discover its validity (accuracy and computational 
tractability) for more complicated, 'nonproduct-form networks. Our 
work, we think, provides the theoretical understanding and motivation 
for pursuing more detailed investigations. 
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APPENDIX 

Proof of Theorem 2: Index the nodes of Qz in the same order in which 
they were indexed in Q. We need the following lemma. 
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Lemma: Let T(r) denote the class r routing probability matrix for the 
network Q2. Partition p(r) as follows: 

M1 M2 
-"'- -"'-

M1 { p(r) p(r) 
p(r) = 11 12 • 

M2 { p(r) p(r) 
21 22 

Then 
(1) r E R2 ~ T(r) = p~1 + P~1[I - pi1r1pi1 
(;~) If A (r) solves A (r) p(r) = A (r) then, partitioning A (r) as 

[ 

A~r) A!f)] 
A(r) = -.-:-.-

M1 M2 
(a) if r fE R2 then A~r) = 0 
(b) if r E R2 then A!f) = A!f)T(r). 

Proof of Lemma: Conclusion 1 follows readily from the fact that, for 
each r E R, p(r) is the transition probability matrix of a finite Markov 
chain with a single, positive communication class that has a nonempty 
intersection with {M1 + 1, ... , M}. For details see Ref. 7. 

Conclusion 2 follows directly from Conclusion 1. 0 
Returning to the proof of Theorem 2, we let 7r: F~ ~ (0, 1) be the 

equilibrium distribution of the state process of network Q.* It is now 
well known (cf. Ref. 9) that 7r(') is of the form 

1 M 
7r(S) = G IX fi(Si), 

where G is a normalization constant and, for each i E {I, ... , M}, Ii . 
depends only N(Si), Vi and (for every r, (1 =:::; r =:::; R»A~r), where A (r) = 
(A~r), ... , At» is any solution of A(r)p(r) = A(r). 

Hence, (for every S1 E F~l) (for every i, r, (M1 + 1 =:::; i =:::; M), r E 
R 2 ) 

M 

L II /i(Sj) 
IS:SEF~,(sl, ... ,SM1)=S"Si(1)=rl j=1 

pV =---------------M--------
L II /i(Sj) 

IS:SEF~,(SI, ... ,SM1)=StI j=1 

M 

L II /i(S~) 
IS2:s2EF~ns~-N2(SI)'S~(1)=rl j=M1+1 

M 

* For notation see Section 2.2. 
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(where F~ n S~LN2(Sl) is the set of feasible states of Q2 when 

N 2 
- N 2(Sl} customers are in Qd, 

which, using the above lemma and the fact that the equilibrium 
distribution of the Qf network state process is still product form, 

Remarks: Some care is needed in asserting the last equality in the 
case where there are classes rl and r2, such that the submatrices of 
the communicating classes under T(r1) and T(r2) are the same permu
tation matrices (i.e., members of classes rl and r2 cannot overtake 
each other). In this case the equality follows because for each N', e;; 
and e;; are independent of the order in which members of these classes 
circulate in the network Qf. D 
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We describe a model for special-service circuit activity to assist in forecast
ing, provisioning, and "churn" studies. We assume that customers order a 
random number of circuits for an exponentially distributed period of time and 
that the rate of new connect orders grows exponentially with time. These 
assumptions yield simple formulae giving the means and variances of the 
number of active circuits at a future time and the total number of connected 
and disconnected circuits during a future period. Distributions of these vari
abIes can, in principle, also be computed. There are three important parameters 
characterizing the model: growth rate, disconnect rate, and batchiness; we 
describe their physical meaning and discuss methods to estimate them. This 
document describes the analytical portion of an effort to develop a model 
based on the physics of special-service circuit activity. 

I. INTRODUCTION 

The purpose of this paper is to describe a model for special-service 
circuit activity to assist in forecasting, provisioning, and "churn" 
studies, which can be summarized by a few parameters that have a 
physical interpretation. The calibration and measurement of the fit of 
this model to data in aNew Jersey Bell database is being pursued 
simultaneously and will be reported elsewhere. 

The model treated here is derived from a priori consideration of the 
physical behavior of customers. It is based on the assumption that the 
number of active circuits, although growing, is in some sense in 

* Bell Laboratories. 
°Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for 
noncommercial use is permitted without payment of royalty provided that each repro
duction is done without alteration and that the Journal reference and copyright notice 
are included on the first page. The title and abstract, but no other portions, of this 
paper may be copied or distributed royalty free by computer-based and other informa
tion-service systems without further permission. Permission to reproduce or republish 
any other portion of this paper must be obtained from the Editor. 
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equilibrium as well; that is, certain characteristics of the system are 
not changing. This is to be contrasted with a model proposed by Nucho 
in which transient analysis is fundamental. 1 The primary difference 
between these models is that the demand rate for new circuits is a 
function of the number of active circuits in the Nucho model, whereas 
it is considered to be an exogenous variable here. In the Nucho model, 
the variance to mean ratio of the number of active circuits increases 
indefinitely with time (since fluctuations tend to feed on themselves); 
in the model considered here this ratio remains constant. Another 
difference between the models is that the model described here allows 
an order to be for more than one circuit. 

Here, we assume that (1) the arrivals of special-service circuit orders 
are given by a nonhomogeneous Poisson process with exponentially 
growing intensity, (2) each order is for a random number of circuits (a 
batch) with arbitrary distribution, and (3) the lifetime of an order is 
an exponentially distributed random variable, during which time the 
number of held circuits per order remains constant. Note that the last 
assumption implies that an order lifetime and a circuit lifetime have 
the same distribution. 

We use three important parameters in special-services modeling, 
each with its own physical interpretation. These parameters may be 
described as growth rate, disconnect rate (per circuit), and batchiness. 

The growth rate summarizes the rate at which the mean number of 
active circuits increases with time. It may be expressed in terms of 
proportion increase per unit of time; we denote it fl. Thus the mean 
number of circuits at time t is proportional to e{3t. We actually assume 
that connect activity grows at rate fl, but it turns out that the number 
of active circuits, the total connect rate, and the total disconnect rate 
are all proportional to e{3t in this model. Of course, for small growth 
rates or short periods of time, exponential growth is very close to 
linear growth. 

The disconnect rate, denoted fJ" is the ratio of the number of 
disconnects per unit time (i.e., the total disconnect rate) to the number 
of active circuits. The mean circuit lifetime is then 1/ fJ,. The distribu
tions of circuit lifetimes have been shown to be well approximated by 
negative exponential distributions;2 thus the disconnect rate does not 
vary with the age of a circuit. 

The batchiness of the arrival process is related to the tendency of 
special service circuits to be ordered in multiples greater than one. We 
call the batchiness parameter v and define it to be the ratio of the 
second moment to the first moment of the number of circuits in an 
order. 

The ultimate goal of this modeling process is to provide a tool that 
can be used to predict special-services needs in the future. The model 
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contained herein should be very useful in this regard. One should 
remember that the underlying process is stochastic so that there is a 
fundamental uncertainty even if one has exact specification of the 
parameters of the model. The standard deviation of future require
ments can be quite large compared to the mean for small circuit 
groupings, and this presents a major problem for provisioning at the 
most detailed level. This problem cannot be surmounted with a better 
model and/or additional data collection. The present analysis allows 
quantification of the fundamental uncertainty of forecasting, an in
sight which is difficult to obtain purely by statistical methods. The 
only possible method to further decrease relative uncertainty is to 
aggregate demand, or to obtain advance knowledge of connect or 
disconnect activity (sometimes called "deterministic events"). 

The rest of the paper is organized as follows: Section II summarizes 
the important results of the paper, giving formulae for the means and 
variances of the number of active circuits in the future, the total 
number of connects in a future interval, and the total number of 
disconnects in a future interval; and giving statistical methods to 
estimate the fundamental parameters of the model such as growth 
rate, disconnect rate, and batchiness. The reader not interested in the 
derivation of these results may stop at this point. 

The predictions (summarized in Section II) of the model are derived 
in Section IV. These derivations are primarily substitutions into 
formulae given in Section III. Section III describes and analyzes a 
much more general model than the one described in this introduction 
(we refer to the latter simply as "the model"). We have chosen to 
introduce this generalized model for two reasons. First, the analysis 
required for the treatment of the generalized model is little different 
in complexity from that required for treatment of the specific model. 
Second, the general results of Section III allow rapid exploration of 
the consequences of changes in assumptions of the model. For example, 
one can explore the effects of linear growth of demand, or the super
exponential growth in demand which follows introduction of a new 
service. However, we do feel that the original assumptions are appro
priate in most circumstances. Thus, the consequences of this model 
are the only ones summarized in Section II, and it is this specific 
model which is being verified with respect to the New Jersey Bell 
Telephone Co. database. Thus, Section III is provided for reference in 
case of non-typical special service applications. 

Section V derives the statistical methods (summarized in Section 
II) for estimation of the fundamental parameters of the model. Section 
VI is a summary. 

Appendix A gives background information on the compound Poisson 
random variable, and Appendix B gives background information on 
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the non-homogeneous Poisson process. These results are needed in 
Sections III and IV. 

Table I presents values of a function useful in estimating growth 
(see Section II) and Table II lists the notation used in the paper. 

II. SUMMARY OF KEY RESULTS 

This section provides a summary of the important results of the 
paper derived in Sections IV and V. 

2.1 Churn 

Our model depends on three physical parameters: growth rate ((3), 
disconnect rate (J,l), and batchiness (v). The meaning of these param
eters is described in Section I. Another physical parameter is "churn," 
which has been defined in many different ways. For any reasonable 
definition, the churn is determined by the growth and disconnect rates 
of the model. We define the churn to be the minimum of the disconnect 
rate per circuit and the connect rate per circuit, and denote it by 1'. 
With this definition, it can be shown [see (75)] that 

l' = min(J,l, J,l + (3). (1) 

The values of churn under other definitions are also readily available. 
For example, if one defines churn to be the ratio of the average total 
connect rate to the average rate of change of net active circuits, then 
this value of churn is (1 - 1')-1. Under still another definition, the 
churn equals J,l/(J,l + (3). 

2.2 Mean and variance of total active circuits at a future time 

Here we give the mean M(t) and the approximate variance V(t) of 
the number of circuits in service at a given time t in the future. The 
mean and the variance depend on the present (at time t = 0) number 
k of circuits in service, the present instantaneous rate Do of circuit 
demand due to new orders, and the three key parameters described 
previously: (3, J,l, and v. We give these two relationships below: 

(2) 

and 

It is interesting that (2) and (3) together imply the relationship 

V(t) = v(M(t) - ke-2Jlt
), (4) 
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which relates the variance of a forecast to the mean of the forecast, 
the number of circuits currently active, k, and the parameters v and p,. 

2.3 Mean and variance of the total number of connected or disconnected 
circuits in the future 

Similar results are available for the mean and variance of the total 
number of connected circuits (variables subscripted with a C) and the 
mean and variance of the total number of disconnected circuits (sub
scripted with aD) in an interval of length t beginning immediately: 

Mdt) = ~o (etJt - 1), 

Vdt) = v ~o (eP' - 1) = vMdt) 

Mn(t) = k(1 - e-I.d ) + Dop, etJt 
(3(p, + (3) 

+ Do -ut Do 
--e"" --
p,+{3 (3' 

and 

Vn(t) = v {ke-"(l - e-") + {3(~~ {3) eP
' + p. ~o {3 e-" - ~o} 

= v(Mn(t) - ke-2J.lt). 

(5) 

(6) 

(7) 

(8) 

In this case, the total numbers of connected and disconnected 
circuits are dependent random variables. 

We may also obtain the coefficient of correlation p between the 
number of active circuits at different times 

p[Y(t), Y(t + r)] = e-(J.l+tJ/2 )T, (9) 

where Y(t) is the number of active circuits at time t. 

2.4 Estimation of the model parameters 

To use results such as (2) through (9), we must be able to estimate 
the parameters {3, Do, v, a!1d p,. These questions are addressed in 
Section V; we provide a brief summary here. Suppose that the system 
has been observed over the interval [-8, 0] and n connect orders are 
observed at times tI, ... , tn. Form the statistic 

n 

S = L tJn8 + 1, (10) 
i=l 
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and then the maximum likelihood estimator ~ for the growth rate {j is 

(11) 

where I is the function given in (79). Values of 1-1 are available in 
Table I. Once ~ has been obtained from (11), the estimator Do for the 
instantaneous present demand Do (assumed to be at the end of the 
interval of observation [-8, 0]) is 

" n~" D= AN 
o 1 - e-{38 ' 

(12) 

where N is an estimator for the average number of circuits per order 
and is equal to the average number of circuits actually observed per 
order. The estimator ;, for the batchiness v of the order size is 

L k2ik 
A k=1 
V = -00--, (13) 

L kik 
k=l 

where ik is the observed number of existing orders of size k. The 
estimator it for the parameter /l can be obtained as the average 
disconnect rate for observed circuits 

.. m 
/l =-, 

T 
(14) 

where m is the total number of disconnects observed, and T is the sum 
of the ob~served connection times for all circuits; /l can also be obtained 
from estimators of the churn and growth rate through the use of (1). 

Estimation of these parameters from data supplied by'New Jersey 
Bell Telephone Co. is being investigated. Estimates of the disconnect 
rate it by service family are available in the Reed and Smith paper,2 
in which it is shown that the lifetimes of special-service circuits are 
well approximated by exponential functions with means dependent on 
the service families. 

III. A GENERALIZED MODEL 

This section treats a model that is more general than that which we 
propose for special-service activity in most cases. The analysis pre
sented here will be applied to the specific model in Section IV. 

3. 1 Description of the generalized model 

We examine an arbitrarily defined category of special-service cir
cuits (for example, circuits of a particular service family in a given 
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wire center) and divide the active circuits into independent groups. 
Possibly, each group is the demand from a single user, since it is 
reasonable that the activity of one user does not affect another. To 
facilitate this method of thinking we shall refer to the groups as 
"orders." Each order becomes nonzero for the first time at some point 
in time (referred to as the arrival or connect time of the order) and 
then has some history of changing size in some arbitrary manner 
before possibly becoming zero again indefinitely at some time (the 
departure or disconnect time of the order). The length of the interval 
between the arrival and departure of an order will be called the lifetime 
of the order. Obviously, the number of active circuits at any time 
equals the sum of the sizes of the existing orders at that time. 

We assume that there is a large pool of customers (or potential 
orders) so that the arrival of an order has little effect on the potential 
arrival of others. Thus, the arrival of orders can be modeled by a 
nonhomogeneous Poisson process, whose intensity at time t is given 
by some function A(t). For background on this process see Ross3 or 
Karlin and Taylor.4 Denote the probability that an arriving order at 
time t is initially of size mas qm(t), and let P~n(t, x) be the probability 
that an order arriving at time t of initial size m as becomes size n at 
time x ~ t. 

3.2 Distribution of the number of active circuits at a given time 

Since the orders are noninterfering it can easily be seen (see Appen
dix B) that the number of orders of size n at time x is Poisson 
distributed with mean an(x), where 

an(x) = ~ L: "A(t)qm(t)P;;'n(t, x)dt, (15) 

and that the numbers of orders of different sizes at time x are 
independent of each other. If Y(x) is the total number of active special
services circuits in the category of interest at time x, then Y(x) has a 
compound Poisson distribution (see Appendix A), and 

E[Y(x)] = L nan(x), (16) 
n=l 

and 

var[Y(x)] = L n 2an(x). (17) 
n=l 

3.3 Distribution of future active circuits due to present orders 

The transient behavior of this model is easily derived if one has 
knowledge of the distribution of order sizes at a given time. We treat 
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this case first and then consider the more difficult case where only the 
total number of active circuits at a given time is known. In either case, 
we will find the distribution of the number of active circuits at time y 
resulting from the orders observed to be active at time x. The total 
circuits active at time y is the sum of this with the number of circuits 
at time y resulting from orders arriving between x and y. 

Case 1: Order sizes known 

Given an order is of size n at time x, the conditional density that it 
arrived as an order of size m at time tis Pmn(t, x), where 

( ) 
_ X(t)qm(t)P~m(t, x) 

Pmn t, x - ( ) 
an x 

(18) 

and if several orders of size n are present at x their arriving times and 
sizes may be considered to be conditionally independent (see Appendix 
B). Thus an order of size n at time x becomes an order of size l at time 
y;?; x with probability rnl(x, y) where 

rnl(x, y) = a;'(x) m~' L: A(t)qm(t)P:!',n(t, X)qmnl(t, x, y)dt, (19) 

and qmnl(t, x, y) is the conditional probability that an order arriving as 
size m at time t which is of size n at time x becomes size l at time y. 
Note that qmnl is not available solely from P*. 

Equation (19) allows us to compute the distribution of the total 
number of circuits at time y that were due to orders observed at time 
x, since all orders behave independently. Evaluating these distributions 
explicitly can be quite difficult. We can, however, easily evaluate the 
moments. Let Mn(x, y) be the mean order size at time y for an order 
observed to be size n at time x, and let Vn(x, y) be the mean order size 
at time y for an order observed to be size n at time x, and let Vn(x, y) 
be the analogously defined variance. Then 

Mn(x, y) = L lrnl(x, y), (20) 
l=l 

Vn(x, y) = L l2rnl (X, y) - M;(x, y). (21) 
l=l 

If in(x) is the number of orders of size n observed at time x, and 
M(x, y) and V(x, y) denote the mean and variance of the number of 
circuits at time y due to orders observed at time x, then 

(22) 
n 
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and 

(23) 
n 

Note that there is a potential problem if orders can become size zero 
and then become nonzero later, since determination of io, the number 
of active orders of size 0, may be an impossible task. 

Case 2: Order sizes unknown 

We now examine the more difficult case where we observe the total 
number of active circuits at time x (call this k), without observing the 
distribution of the order sizes. The conditional probability that there 
are jl orders of size 1, j2 orders of size 2, etc., given that k total circuits 
are observed at time x, written ok.Aj1, j2, ... ), is easily found to be 

ni [ai(x)h/ji!] 
Ok.x (j 1, j2, ... ) = - ....... L-------=n-----[ a-i(-x )"""":'"h-/j-i!]' (24) 

h+2j2+" ·=k i 

provided that jl + 2h + ... = k. Let the conditional first and second 
moment of the number of circuits at time y due to orders observed at 
time x, given that a total of k circuits were observed at time x, be 
Mk.Ay) and M(2)k.Ay) respectively. Then 

(25) 

where J i is a random variable with the same distribution as the 
conditional number of orders of size i at time x, so that the expectation 
is the expectation with respect to the probability distribution given in 
eq. (24). Also, 

Mk~~(Y) = L E(Jd Vi(x, y) + E((L JiMi(x, y))2), (26) 

where the expectation is in the same sense as before. Needless to say, 
these expectations with respect to the distribution in (24) are very 
difficult to evaluate for substantial k. 

Things simplify somewhat if 

Mi(x, y) = iO(x, y), (27) 

that is, if the conditional means are proportional to the size of the 
order. In this case, (25) and (26) give 

Mk.Ay) = kO(x, y), (28) 

and 
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so that 

(30) 

where Vk,Ay) denotes the conditional variance. Equation (30) can be 
approximated by using the following approximation which is intui
tively reasonable for k near L iCXi(X), 

(31) 

In this case, (30) and (31) give the following useful approximation: 

V ( ) ~ k L CXi(X)Vi(x, y) 
k,xY ~. () • 

£.J lCXi X 

3.4 Distribution of future active circuits due to future orders 

(32) 

In section 3.3, we found the mean and the variance of the number 
of circuits at time y from orders observed at time x. To obtain the 
total number of circuits at time y, we need to add to this the (inde
pendent) number of circuits due to orders arriving between time x and 
time y. The number of orders of size n at time y that arrived between 
times x and y is easily seen to be Poisson with mean cxn(x, y), where 

(33) 

and the number of orders of different sizes are independent of each 
other (see Appendix B). Thus, the number of circuits at time y due to 
arrivals occurring between x and y has a compound Poisson distribu
tion (see Appendix A) with mean and variance denoted M*(x, y) and 
V*(x, y), where 

M*(x, y) = L ncxn(x, y), (34) 
n 

and 

(35) 
n 

3.5 Mean and variance of future active circuits 

To find expressions for the mean or variance of the total number of 
active circuits at time y, we merely add together the appropriate means 
or variances from the circuits active at time y due to orders observed 
at time x and from the circuits active at time y due to arrivals between 
x and y, since these are independent. For example, eqs. (28) and (34) 
give 

(36) 
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where MI,Ay) is the total mean number of circuits observed at time y 
given k circuits are observed at time x [and assuming relationship 
(27)]. Also, eqs. (32) and (35) give the following approximation: 

V T ( ) ~ k L ai(x) Vi(x, y) + ~ 2 () (37) 
k,x Y ~. () L.J n an x, y , 

L.J lai X 

where VI,Ay) is the similarly defined variance. 

3.6 Churn 

We have previously defined churn as the minimum of the disconnect 
rate per circuit and the connect rate per circuit. Values of churn from 
other definitions are also easily obtained. We will here derive the 
churn, which happens to be a function of time in this case. To compute 
churn we need to know the probability measure for the individual 
order histories. Let Um(t, x) be the expected number of connects 
for an order of size m arriving at time t in the interval [t, x] (thus 
Um(t, t) = m). The expected total connect rate at time x, denoted 
U(x), is then found to be: 

U(x) = :x (~ 1: A(t)qm(t)Um(t, X)dt). (38) 

and similarly for the disconnects using the variable D, 

D(x) = ! (~ 1: A(t)qm(t)Dm(t, X)dt). . (39) 

and thus we obtain the churn at time x, 'Y(X): 

'Y(X) = min{D(x)/E[Y(x)], U(x)/E[Y(x)]}, (40) 

where E[Y(x)] is given by (16). 

IV. THE MODEL FOR SPECIAL-SERVICE CIRCUIT ACTIVITY 

Here, we assume that the demand rate grows exponentially and that 
the behavior of orders is not dependent on the time of arrival. Specif
ically, we assume, 

and 

P~n(t, x) = Pmn(x - t). 

Later we will assume a specific form for P mn. 

(41) 

(42) 

(43) 
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Assumptions (41) through (43) are equivalent to: 
1. exponential growth in the rate of new orders at rate {3 (new orders 

occur as a nonhomogeneous Poisson process), 
2. the probability that a new order is for m circuits is qm, and 
3. an order initially for m circuits requires a total of n circuits after 

Z units of time with probability Pmn(z). We will shortly further specify 
P mn to represent unchanging orders of exponential lifetime. 

We now explore the consequences of (41) to (43) in the analysis 
presented in Section III. Substituting into (15) we find that the number 
of orders of size n at time x is Poisson distributed with mean an(x), 
where 

(44) 

and 

(45) 

(The total number of circuits required at any time has a compound 
Poisson distribution, see Appendix A.) Thus, the mean and variance 
of the number of circuits at time x, Y(x), are growing exponentially at 
the same rate, and the ratio remains fixed: 

E[Y(x)] = e{3x L nan, (46) 
n=l 

var[Y(x)] = e{3x L n 2a n , (47) 
n=l 

or 

var[Y(x)] = vE[Y(x)], (48) 

where 

n=l 
(49) v = ---:::-00--

Further results are possible if the behavior for orders over time is 
specified. We assume that the order size does not change over its 
lifetime, which has a common distribution with c.dJ. F independent 
of size. Later we will assume that F is an exponential distribution. 
Although in practice the number of circuits per order does change 
with time, it is conceivable that this movement is relatively unimpor
tant; or even if important, that the general form of eqs. (2) and (3) 
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will hold, although the parameter Jl may then have a different physical 
meaning than we will associate here. In the model suggested here, 
Pmo(Y) = F(y); Pmm(y) = 1 - F(y); Pmn(y) = 0, n =F 0, n =F m. In this 
case we may compute an more explicitly. Substituting into (45), we 
obtain 

(
Ao -) an = qn Ii [1 - F(iJ)] , (50) 

where 

(51) 

When the lifetimes are exponentially distributed with mean 1/ Jl, i.e. 
F(x) = 1 - e-llX, 

(52) 

Also, the batchiI1ess v is related to the order-size distribution; 
substitution into (49) yields 

L n2qn 
v=---. 

L nqn 
(53) 

The assumption that the order size does not change throughout its 
lifetime also allows more explicit representation of the mean and 
variance of the future requirements for circuits. Our development here 
parallels that of Section III. We first compute the probability that an 
observed order will change size during the period of observation. Recall 
that qmnl(t, X, y) is the conditional probability that an order is of size l 
at time y given that it was of size n at time x and arrived as size m at 
time t. We easily obtain: 

and 

where 

F(y - t) 
qmmm(t, x, y) = F(x - t) , 

qmmo(t, x, y) = 1 - qmmm(t, x, y), 

F(x) = 1 - F(x), 

·(54) 

and qmml(t, x, y) = 0, l =F 0, l =F m. The value of q is irrelevant for 
n =F m. 

We next find the probability that an order of size n at time x 
becomes of size l at time y, which we denote rnl(x, y). Substitution into 
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(19) gives 

n =1= l, n =1= 0; 

rnn(x, y) = G(y - x), 

where 

and 

rnO(x, y) = 1 - G(y - x). 

Note that in the exponential-lifetime case, where F(z) = e-IlZ
, 

G(y) = e-IlY• 

(55) 

(56) 

(57) 

(58) 

We next find the mean and variance of the number of circuits in an 
order at time y, which was observed to be of size n at time x, denoted 
Mn(x, y) and Vn(x, y), respectively. Substitutions of (55) and (56) into 
(20) and (21) give: 

Mn(x, y) = nG(y - x), and 

Vn(x, y) = n 2G(y - x)[1 - G(y - x)]. 

(59) 

(60) 

Notice that the conditional means are proportional to the size of the 
order, i.e., (59) implies (27). 

We now focus on the mean and variance of the number of circuits 
at time y due to orders which were observed at time x, given that k 
circuits were observed at time x. These quantities are denoted Mk,Ay) 
and Vk,Ay) respectively. Equation (28) gives 

Mk,x(Y) = kG(y - x). (61) 

We also conclude that, given the approximation in (32), 

G - L n 2qn 
Vkx(y) ::::: k (y - x)[1 - G(y - x)] -~-, 

, L.J nqn 
(62) 

thus 

(63) 

where use has been made of (53) and (61). 
We next find the expected number of orders of size n at time y that 

arrived during the interval (x, y) denoted an(x, y). Use of (3.3) yields 
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(64) 

where use is made of the fact P~n(t, x) = qmmn(t, t, x), which follows 
from (54). When the lifetime distribution for orders is exponential, 
(64) becomes 

(65) 

The mean and variance of all circuits at time y due to orders arriving 
in the interval (x, y), M*(x, y) and V*(x, y), respectively, can be 
obtained by substitution of (64) into (34) and (35) yielding 

M*(x, y) = A, L nqnePY 1Y
-

X 

e-P'F(z)dz, (66) 

and 

V*(x, y) = vM*(x, y), 

while for exponential lifetimes, 

(67) 

M*(x, y) = {3 ~'Jl (eP' - e-P
'), (68) 

where 

(69) 

and 

t =y - x. 

Note that (61) and (68) [or (36)] give eq. (2), and (63) and (67) [or 
(37)] give (3), since the total number of active circuits at time y is the 
sum of the number of active circuits due to orders present at time x 
and the number of active circuits due to order arrivals between times 
x and y, and these random variables are independent. Equations (5) 
through (9) can easily be derived by the methods described in the 
paper, although we omit the details here. 

N ext, turning our attention to churn for the specific model of this 
section, we find that the expected number of connects in the interval 
[t, x] for an order arriving at time t of size m, denoted Um(t, x), is 
given by 

Um(t, x) = m, (70) 

and similarly, 

Dm(t, x) = mF(x - t), (71) 
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where the variable D represents disconnects. The total connect rate, 
total disconnect rate, and churn rate at time x, U(x), D(x), and 'Y(x), 
respectively, can be obtained from (38) through (40), yielding 

and 

U(x) = Aoef3x L mqm, 

D(x) = Aoef3x L mqmF({J), 

'Y(x) = l' = (JF({J)/(l - F({J)); 

'Y(x) = l' = (J/(1 - F({J)), 

{J ~ 0; 

{J < o. 
In the special case where lifetimes are exponentially distributed, 

l' = Jl, 

l' = Jl + {J, 

{J ~ 0; 

{J < o. 

v. ESTIMATION OF THE PARAMETERS OF INTEREST 

(72) 

(73) 

(74) 

(75) 

In this section, we describe the methodology that can be used to 
estimate the three key parameters of the model; {J' the growth rate; Jl, 

the disconnect rate; and v, the batchiness. 

5.1 Estimation of {3 

Suppose that we wish to estimate {J on the basis of observed arrivals 
of orders, which by assumption occur according to a nonhomogeneous 
Poisson process with intensity Aoef3t

• Suppose that the system is 
observed over the interval [-8, 0] and arrivals have been noted at 
times tb ... , tn. We show how to obtain the maximum-likelihood 
estimator for {J. (For a discussion of maximum-likelihood estimation, 
see any elementary book on statistics such as Mood & Graybill.)5 The 
log-likelihood function, In L(n, tb ... , tn ), is easily seen to be 

n (1 _ ef3a) 
In L(n, tb ... , t n ) = n InAo + {J L ti - Ao . 

i=l {J 
(76) 

Differentiating with respect to Ao and {J we find the necessary 
conditions for a maximum: 

1 - e-f38 
n/Ao = {J , (77) 

n A 8 (1 - e -(3
8

) 
i~l ti - P e-{38 + Ao (J2 = o. (78) 

Using (77) to eliminate Ao in (78), we obtain 

xeX - eX + 1 
S = x(eX _ 1) == f(x), (79) 
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where 

(80) 

and 

x = {30. (81) 

The function [ defined in (79) can be seen to be strictly monotonic 
with range between 0 and 1. Therefore, eq. (79) allows us to solve for 
(30 as [-1(8), where 8 is the statistic defined in (80) equal to the 
proportion of the interval (a[ter - 0) at which the average time of 
arrival occurs. Thus, the maximum-likelihood estimator for (3, written 
~, is given by 

The function [ has the properties: 

[(-00) = 0, [(0) = 1/2, [(00) = 1, and [(x) + [(-x) = 1. 

Thus, 

and 

[-1(0) = -00, 

[-1(1/2) = 0, 

[-1(1) = 00, 

[-1(1/2 - x) = -[-1(1/2 + x). 

The function [-I is tabulated in Table I. 
For small x, [(x) may readily be expanded in the power series: 

{(x) = 1/2 [1 + (1/6)x - 3!O x3 
• •• ] 

so that 

[-1(1/2 + y) = 12y + 28.8y 3 •••• 

Similarly, a large [ expansion yields 

[-1(1 - l/y) ~ y - y 2e-Y• 

(82) 

(83) 

(84) 

We may also determine the mean and variance of the statistic 8 
given the correct parameter {3 and the number of observed arrivals. It 
is well known that the distribution of the arrival times for a nonho
mogeneous Poisson process, conditioned on a given number of arrivals 
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Table I-Values of the function f-1 useful in 
estimating the growth rate (3, and several 

approximations for the function 

x 
0.50 
0.52 
0.54 
0.56 
0.58 
0.60 
0.62 
0.64 
0.66 
0.68 
0.70 
0.72 
0.74 
0.76 
0.78 
0.80 
0.82 
0.84 
0.86 
0.88 
0.90 
0.92 
0.94 
0.96 
0.98 
1.00 

[see eq. (79) and following] 

0.0000 
0.2402 
0.4819 
0.7263 
0.9751 
1.2299 
1.4926 
1.7654 
2.0507 
2.3517 
2.6721 
3.0168 
3.3920 
3.8060 
4.2703 
4.8010 
5.4219 
6.1691 
7.1010 
8.3164 
9.9954 

12.4994 
16.6667 
25.0000 
50.0000 

00 

0.00 0 
0.2400 
0.4800 
0.7200 
0.9600 
1.2000 
1.4400 
1.6800 
1.9200 

Approxima- Approxima
tion in (83) tion in (84) 

0.0000 
0.2402 
0.4818 
0.7262 
0.9747 
1.2288 
1.4898 
1.7590 
2.0380 
2.3280 
2.6308 
2.9467 

4.8316 
5.4362 
6.1746 
7.1025 
8.3166 
9.9955 

12.4994 
16.6667 
25.0000 
50.0000 

00 

in the interval, is the same as the order statistics from n i.i.d. random 
variables with probability density proportional to the arrival rate. 
Thus S has the distribution of the average of n i.i.d. random variables, 
Yj on [0, 1] with density g(p), where 

xe PX 

g(p) =--
eX - 1 

and 

x = (38. 

It is easily seen that 

E( Y) = f(x) (85) 

and 

1 1 
var( Y) = 2 - -x 2 . 

x eX + e --:-
(86) 

Equation (86) is valid if x =1= 0; when x = 0, var( Y) = 1/12, the limit 
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of (86) as x goes to O. The expression for the variance is symmetric in 
x and takes its maximum value at x = O. 

Thus, for a given value of the growth rate {3, and a (large) given 
number of observations n, the observed statistic S is approximately 
normally distributed with mean f(x) and variance less than or equal 
to 1/12n. This observation can be readily translated into confidence 
intervals through the use of elementary statistical theory. For example, 
a 95-percent confidence interval for f(x) (assuming normality of the 
statistic) is 

S - 1.96 V l!n ". {(x) ". S + 1.96 V l~n' (87) 

which translates to 

r 1 (s - 1.96 V l!n) ". fiB ". r (s + 1.96 V l!n) . (88) 

If S is close to 0.5, then we can use f- 1(x) ~ 12x - 6 [see (83)] to 
obtain for the 95-percent confidence interval for {30 

5.2 Estimation of v 

6.79 
{30 = 12 S - 6 ± In . (89) 

There are several possible statistics for the measurement of the 
batchiness v. We shall take as our starting point eq. (49) which defines 
the batchiness in terms of the distribution of the order size at (any) 
point in time. This is preferable and is more robust than using the 
distribution of the order size on arrival, although the two happen to 
equal when order sizes do not change with time. Thus, if v is to be 
estimated based on observation of the system at a given point in time 
at which in orders of size n are observed, then a reasonable estimator 
for v, which we write v, is: 

A L n 2in 

v = L nin . (90) 

When the number of circuits does change during the lifetime of an 
order, it is possible that the form of (3) still holds. In this case, it is 
likely that the parameter v which multiplies each of the two terms in 
(3) is different. Equation (90) is a reasonable estimator for the multi
plier of the second term. The multiplier of the first term should be 
estimated by other methods. 
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M(x,y) 
M*(x,y) 

MI.Ay) 

M~:~(y) 

Mn(x, y) 

Pmn(t) 

qm 
qm(t) 
qmnl(t, x, y) 

U(x) 
Um(t, x) 

V(x,y) 

V*(x, y) 

VL(y) 

Vk.Ay) 

Vn(x, y) 

Y(x) 

(3 

'Y 
Ok,x(jI, j2, ... ) 

()(x,y) 
o 
Ao 
A(t) 

Il 
v 
Pmn(t, x) 

Table II-Notation 
Present (t = 0) circuit demand rate due to new orders. 
Expected total disconnect rate at time x. 
Expected number of disconnects in the interval [t, x] for an order 
of size m arriving at time t. 
Observed number of orders of size n at time x. 
Conditional number of orders of size i due to orders observed at 
time x given that k circuits were observed at time x. 
Mean total number of circuits at time y due to orders. 
Mean of the total number of circuits at time y due to orders arriving 
between x and y. 
Mean of the number of circuits at time y given k are observed at 
timex. 
Conditional expectation of the number of circuits at time y due to 
orders observed at time x given that k circuits are observed at time 
x. 
Conditional second moment of the number of circuits at time y due 
to orders observed. 
Mean order size at time y for an order observed to be of size n at 
timex. 
Probability that an order of initial size m becomes of size n, t time 
units after arrival. 
Probability that an order arriving at time t of initial size m becomes 
of size n at time x. 
qm(t) when there is no dependence on t. 
Probability that an order at time t is initially for m circuits. 
Conditional probability that an order arriving as size m at time t 
and of size n at time x becomes of size I at time y. 
Probability that an order of size n at time x becomes an order of 
size I at time y. 
Expected total connect rate at time x. 
Expected number of connects for an order of size m arriving at time 
t in the interval [t, x]. 
Variance of the total number of circuits at time y due to orders 
observed active at time x. 
Variance of the total number of circuits at time y due to orders 
arriving between x and y. 
Variance of the number of circuits at time y given that k are observed 
at time x. 
Conditional variance of the total number of circuits at time y due 
to orders observed at x given that k circuits are observed at time x. 
Variance of order size at time y for an order observed to be of size 
n at time x. 
Total number of active special service circuits at time x. 
Constant of proportionality for the exponential growth of lrn(x). 
Mean number of orders of size n at time x. 
The number of orders of size n at time y which arrived between 
times x and y. 
Growth rate. 
Churn. 
Conditional probability that there are jl orders of size 1, j2 orders 
of size 2, etc., at time x given that k total circuits are observed at 
time x. 
Defined in (27). 
Length of observation period. 
Present (t = 0) arrival rate of orders. 
Instantaneous arrival rate of orders at time t. 
Disconnect rate (per circuit). 
Batchiness. 
The conditional probability density that an order arrived at time t 
of initial size m given that it is of size n at time x. 



5.3 Estimation of IL 

The estimation of JL is relatively straightforward. The maximum
likelihood estimator is given in (14) and further details including 
estimated values by service family are given in Reed and Smith.2 

5.4 Estimation of Do 

Equation (77) allows the MLE estimator of Ao, 

... nr3 
Ao = 1 _ e-ti8 ' (91) 

where the estimator ~ has been previously described in (82). The 
estimator of Do (the instantaneous demand at the end of the obser
vation interval of length 0), Do then is 

(92) 

where N is an estimate of the average batch size. The previous 
expectation can be estimated from the order sizes at arrival epochs, or 
more crudely from the general distribution of order sizes at an arbitrary 
point of time. 

Interestingly enough, Do/(IL + (3) can be estimated solely from the 
number of active circuits at a point of time. For simplicity, we assume 
that the orders are solely of size one, although the analysis could be 
repeated for other distributions. In this case, the following analysis is 
applicable. 

Suppose that the number of active circuits at time t is a Poisson 
random variable with mean Ae(3t. The time that the mean is between 
x and x + dx is dx/ x{3. The, expected time that the mean is between x 

and x + dx and a total of k active circuits are observed is dx x
k
: e-X

• 

x{3 . 
Thus, if k active circuits are observed, the conditional distribution 
of the mean (in our case this is Do/(JL + (3)) has density proportional 
to xk-1e-x, or is a standard gamma random variable with k degrees 
of freedom. This random variable has mean and variance equal 
to k. Thus, if k circuits are observed, the conditional distribution of 
Do/(JL + (3) has mean k and variance k, and is approximately normally 
distributed if k is large. This information can be used to modify eqs. 
(2) and (3), to take into account the variability of Do/(JL + (3) to obtain: 

Mk(t) = ke(3t, (93) 

and 

(94) 

where the subscript k on the variables on the left-hand side indicates 
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conditional means and variances knowing {J, f.l, and v but not knowing 
Do. Note that the variance-to-mean ratio is unbounded for increasing 
t, since errors in estimation of Do accumulate indefinitely. 

VI. SUMMARY 

We have described a model for special-services activity useful in 
forecasting special-services requirements. It requires three physical 
characterizations of the process (growth rate, disconnect rate, and 
batchiness) and two instantaneous measurements (the current number 
of active circuits and the instantaneous rate of new connects). We 
give means and variances for the numbers of active circuits at a given 
point in the future and for the total number of connects or disconnects 
during a future period. The distribution of these variables can be 
computed by the methodology described in the paper. We also describe 
general techniques for estimation of the required parameters. 

Work is being undertaken to verify and calibrate the model with 
the New Jersey Bell Telephone Co. database and will be reported 
elsewhere. 
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APPENDIX A 

The Compound Poisson Random Variable 

Briefly, a random variable is said to be a compound Poisson random 
variable if it can be thought of as the sum of a Poisson number of 
independent identically distributed positive integer-valued random 
variables. Thus Y is a compound Poisson random variable if 

N 

Y= LXi, 
i=l 

where N is a Poisson random variable with mean a, N and the Xi are 
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independent and 

P{Xi = n} = pn. 

We have rather easily 

E( Y) = aE(X) = a Lnpn 

Var( Y) = aE(X2) = a Ln2Pn. 

An alternative (and equivalent) way of specifying a compound Poisson 
random variable is 

where 

Zi are independent Poisson random variables with E(Zi) = api == ai. 
In this case it is convenient to think of Zi as the number of batches or 
orders of size n that are aggregated to give the total number denoted 
Y. 

APPENDIX B 

The Nonhomogeneous Poisson Process 

A process which counts events is a nonhomogeneous Poisson process 
(see, for example, Ross, Ref. 5) with intensity X(t) ~ 0 if the number 
of events in the interval [x, y] is a Poisson random variable with mean 
f~ X(t)dt, and the number of events in disjoint intervals are independ
ent. 

Fact: If events from a nonhomogeneous Poisson process are of two 
types, and an event at time t is of Type 1 with probability p(t), then 
the process which counts Type 1 events is a nonhomogeneous Poisson 
process with intensity X(t)p(t), and it is independent of the counting 
process which counts Type 2 events [which is a nonhomogeneous 
Poisson process intensity X(t)(l - p(t)]. 

Fact: Suppose that a nonhomogeneous Poisson process is observed 
over the interval [x, y] and n events are observed. If the times of these 
events are arranged in random order, their distribution is identical to 
that of n independent identically distributed random variables whose 
density at t is 

X(t) 

IY A(z)dZ 

if t E [x, y] and is zero otherwise. 
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TELBECC-A Computational Method and 
Computer Program for Analyzing Telephone 

Building Energy Consumption and Control 

By P. B. GRIMADO* 

(Manuscript received February 2, 1983) 

Telephone Building Energy Consumption and Control (TELBECC) pro
gram has been developed to accurately and efficiently analyze environmental 
control and energy use in telephone company buildings. The program simulates 
various operational plans to determine the relative energy and cost savings. 
By analyzing the operation of the heating, ventilation, and air conditioning 
system as it regulates a changing environment, TELBECC calculates the 
heating and cooling load, dry-bulb temperature, and relative humidity in the 
building. The user specifies the building's dry-bulb temperature limits, which 
are the control variables for the program analysis. The simplified computa
tional procedure of the program incorporates a recursive scheme using time 
series to perform the necessary calculations. The results of the computations 
can be obtained for different periods: the quarter hour, hour, day, or month. 
Energy consumption and control in several equipment buildings located in 
three different geographical areas have been analyzed by TELBECC. Analysis 
and comparison of the resulting data demonstrate the advantages of the 
program. 

I. INTRODUCTION 

An ambitious energy-cost savings program has been instituted to 
reduce energy use in telephone company buildings. In recent years, 
telephone companies have saved energy mainly by redesigning and 
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retrofitting buildings to operate and maintain environmental control 
equipment at peak performance, to turn out unneeded lights, to reduce 
heating and cooling losses, and the like. Further energy and cost 
savings, although -requiring additional capital investment, could be 
achieved through modification of environmental control systems, pur
chase of sophisticated microprocessors for more efficient control of 
building Heating, Ventilating, and Air conditioning (HV AC) systems, 
and installation of alternative energy sources, such as solar power and 
wind power. Before adopting any conservation plans that require 
appreciable capital investment, however, we should make a thorough 
economic evaluation. Such an evaluation can be carried out by corre
lating the changing operating characteristics of a building with selected 
energy conservation plans. This procedure would enable us to pinpoint 
the most economical operating strategies. 

There are several commercially available computer programs to 
perform this type of analysis, such as DOE II, ESP, and BLAST;1,2 
most, however, are proprietary. These complex programs can analyze 
any of a broad spectrum of commercial, industrial, and residential 
buildings. But, because of their versatility, they require large computer 
systems, extensive data preparation, and high costs. The use of energy 
in the majority of telephone company equipment buildings, which are 
small, single-story structures varying in area from 1500 to 10,000 
square feet, can be best evaluated by a more focussed computer 
program. 

This paper describes a new computational method and computer 
program called Telephone Building Energy Consumption and Control 
(TELBECC). This program simulates building operations and quickly 
evaluates numerous energy conservation plans and cost-saving strat
egies under variable weather conditions [according to standard hourly 
Test Reference Year (TRY) weather data3

]. The program can evaluate 
energy consumption for intermittent or proportional HV AC plant 
operation, economy cycle operation, enthalpy cycle operation, and 
wideband temperature operation with no heating or cooling between 
preset room temperature limits. Also, the program can calculate the 
optimum building orientation and U factor (heat transmission char
acteristics) of the outside walls and roof, chiller and heater plant size, 
dry-bulb temperature and Relative Humidity (RH) variations, and 
quantity of water required to maintain 20-percent minimum RH 
during economy cycle operations. 

II. PROGRAM DESCRIPTION 

We can derive the heating or cooling load in an enclosed building 
from the following considerations: 

1. Conduction of heat through the building walls and roof. 
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2. Permeation of outside air through the building envelope. 
3. Internal heat generation from equipment, lights, and people. 
4. Direct solar radiation through windows and skylights (fenestra

tion). 
Since most operating company equipment buildings have few win

dows, the program does not consider item 4 in the present version. 
A Constant-Air-Volume (CAV) supply fan system typically controls 

the air temperature of a building. The building engineer normally sizes 
the fan system using the elementary steady-state heat balance, which 
takes into account the internal heat loads, outside air temperatures, 
and solar radiation in conjunction with the U factor of the building 
envelope. In general, this conservative approach produces fan systems 
that are oversized and therefore inefficient. To find a smaller, and 
perhaps more efficient, fan capacity, a TELBECC user selects different 
fan capacities for analysis by the program. The program generates 
data on the space temperatures, relative humidity, peak heating and 
chiller loads, and the hours of system operation for the different fan 
capacities that can be used to find an optimum air supply fan system. 

For comfort, a limit is imposed on the difference between HV AC 
supply and return air temperatures. For cooling, this temperature 
difference is -20 degrees F; for heating, +40 degrees F. These default 
values may be overridden by the user. With an environmental dry
bulb temperature standard specified, the program computes the re
quired operation of the HV AC. 

The user can specify one of two basic ways to operate the HV AC: 
intermittent operation or proportional control. With intermittent 
operation, the HVAC does not supply any heating or cooling when the 
dry-bulb air temperature is within the wideband temperature range. 
Reaching or exceeding either wideband temperature limit activates 
the HV AC. The HV AC stays on and does not deactivate until the dry
bulb air temperature reaches 3 degrees F above the lower limit of the 
wideband temperature range for heating and 3 degrees F below the 
upper limit of the wideband temperature range for cooling. The TEL
BECC user ~an reset the numerical values of the throttling range if a 
different range is appropriate. The proportional control plan operates 
by continuously adjusting the supply and return air temperature 
difference in increments of 1 degree F to satisfy the instantaneous 
building heating or cooling load. This plan follows the building load 
to closely track the lower and upper limits of the wideband temperature 
range with essentially no throttling. When selecting a dual or extended 
wideband temperature standard (that is, one with different wideband 
limits for occupied and unoccupied times), the HVAC activates before 
occupancy in order to reach the preset temperature standard. 

TELBECC calculates the heat added or removed by the HV AC 
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system in controlling the dry-bulb air temperature every quarter hour. 
In particular, when cooling is required, the sensible and latent loads 
on the chiller plant are simultaneously computed by incorporating any 
of three standard methods of fan system operation: 

1. Conventional operation, which is chiller operation with no econ
omizer. 

2. Chiller operation with a dry-bulb economy cycle. 
3. Enthalpy cycle. 

In conventional operation, the minimum quantity of outside air needed 
for ventilation is circulated. This mode is also used as a benchmark 
for the program. The dry-bulb economy cycle uses outside air for 
cooling whenever the outside dry-bulb air temperature falls below the 
maximum value. The default value is 55 degrees F, but the user can 
reset the value. The enthalpy cycle checks the enthalpy of the inside 
air and the outside air. If the outside air enthalpy is lower, 100 percent 
outside air is circulated to reduce the load on the chiller regardless of 
the relative humidity. Otherwise, only the minimum quantity of out
side air required for ventilation is circulated. 

System control is based on dry-bulb air temperature and is not 
predicated on maintaining a particular value of relative humidity. 
Nevertheless, the program computes changes in relative humidity for 
the three methods of fan-system operation discussed above. The 
program summarizes the variation in relative humidity for the time 
period chosen by giving the number of hours the relative humidity is 
less than 10 percent, between 10 and 15 percent, between 15 and 20 
percent, between 20 and 55 percent, between 55 and 60 percent, and 
greater than 60 percent. 

In addition, since dry-bulb economy cycle operation generally calls 
for bringing in winter air with low humidity, the program calculates 
the quantity of water required for humidification. The operating 
company minimum standard of 20 percent RH in the inside air for 
dry-bulb economy cycle operation in winter is the basis for calculating 
the amount of water added to the air. 

III. TRANSIENT HEAT CONDUCTION THROUGH THE BUILDING 
ENVELOPE 

Weather conditions influence the heating and cooling load of a 
building by heat conduction through the structural and decorative 
materials of the exterior walls and roof, as well as by permeation of 
outside air and direct absorption of solar radiation through window 
areas. Since, as previously mentioned, most operating company equip
ment buildings have few windows, only heat conduction and permea
tion are treated in the computer program. The program must account 
for the heat storage effects of the structure, as well as the daily and 
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seasonal variation of the outside air temperature and solar radiation. 
We can account for these influences on the building by considering 
the building envelope elements as one-dimensional flat slabs or plates. 
We then obtain a solution to a partial differential equation with time
dependent boundary conditions. A classical analytical solution of this 
equation4 produces a set of equations that require an inordinate 
quantity of computational effort and time, rendering the whole idea 
of performing the analysis impractical and uneconomical. However, 
the analytical solution can be recast into a simpler, though effective, 
computational scheme with a method first introduced by Mitalas and 
Stephenson,5 which is ideally suited to calculation by computer. 

The inside-wall and roof-surface temperature TBE(t) and the air 
temperature of the building Ta(t), which are dependent on time, 
determine the environmental load due to convection.* TBE(t) is rep
resented in the form of the following time series: 

m-l m m 

T BEt = - ~ biTBEt_i + ~ aiTOt_i_1 + ~ a[Tat_i-l' (1) 
i=l i=l i=l 

where 

t = current time, 
T BEt = inside-wall temperature of the building at the current time, 

T BEt_i = inside-wall temperature of the building i time units prior 
to t, 

TOt_i 
= outside sol-air temperature6 i time units prior to t, and 

Tat_i 
= air temperture of the building i time units prior to t. 

For hourly temperature calculations, the number of terms, m, will 
rarely exceed 5, and for quarter-hour calculations, m will generally be 
less than 15. The recursive properties of the calculation make it 
extremely efficient and economical, especially when the operating 
characteristics of the building may need to be tracked for an entire 
calendar year. The coefficients bi, ai, and afin eq. (1) are determined 
from the thermophysical properties of the structure. Only six values 
are needed to uniquely specify these coefficients: wall thickness, wall 
U factor, wall-weight density, effective heat-transfer coefficient of the 
inside- and outside-wall surface, and the time interval between 
successive calculations. The appendix presents the mathematical pro
cedure to evaluate these coefficients. Figures 1 and 2 show the math
ematical and physical models for deriving the coefficients. 

We can validate this simplified computational approach by compar-

* Radiative interchange between inside building-wall surfaces is not included in the 
present version of the program. 
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ing it with an exact solution given in the literature.7 We can see this 
in Figs. 3 and 4 for several values of the inside-wall dimensionless 
convective heat-transfer parameter Bi == hiL/k and two limiting values 
of the outside-wall convective heat-transfer parameter Bo == hoL/k. In 
Fig. 3 the outside-wall convective heat transfer parameter Bo = 0; i.e., 
the surface x = L is insulated. in Fig. 4 the solution corresponds to Bo 
approaching 00; i.e., the surface x = L is maintained at a constant 
temperature. The initial and boundary conditions are indicated in the 
figures. The solid curves represent the exact condition given in Ref. 7, 
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Fig. 3-Temperature response of front face of plate, 0 ::; x ::; L, with back face 0 ::; x 
::; L, with back face x = L maintained at To = 0 degree F after sudden exposure to 
uniform-temperature convective environment Ta = 1 degree F at x = O. Sampling 
interval b,. is one min. 

and the dots represent the numerical values computed by the time 
series in eq. (1). The sampling interval for this example is ~ = 1 min. 
or, in terms of dimensionless time, k~/L2 = 0.001. We can see that 
after some time has elapsed the exact solution and the time-series 
solution match identically. For the problem considered here at t = 0, 
the ambient convected temperature Ta is suddenly raised from Ta = ° 
to Ta = 1; i.e., the boundary condition is a step function. However, 
since the development of the time series assumes a linear variation 
between time intervals, as stated in the appendix, the solution resem
bles an initial ramp followed by a constant value, as shown in Fig. 5. 
Once the effect of the initial ramp input diminishes after about 10 
sampling intervals, the solution coincides with the exact solution. This 
characteristic of the time series is not a problem here, since instanta
neous changes of air temperatures inside and outside the building do 
not occur. 

IV. CALCULATION OF BUILDING AIR TEMPERATURE AND ENERGY 
USE 

The air temperature of the building is obtained through the following 
equation for the heat balance within the building: 

qair(t) = qequipt(t) + qlights(t) + qpeople(t) 

+ qinfiltration(t) + qwalls(t) + qHVAC(t) , (2) 
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Fig. 5-Convection temperature environment at inside boundary surface x = O. 

where qair(t) (Btu/hr) represents the sensible thermal-energy convec
tion rate of the inside air, resulting in a change in the overall dry-bulb 
air temperature. The other terms on the right represent the rate at 
which heat is convected to the air from the following: equipment heat 
dissipation; lighting; people; inadvertent infiltration of outside air; the 
exterior walls, floor, and roof of the building; and the building's HVAC 
control system. 

To evaluate the air temperature Ta(t) from eq. (2), each term is 
expressed as the difference in temperatures between the air and the 
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heat-convecting medium. We can determine Ta(t) from the following 
differential equation: 

dTa(t) 
pcu ----;Jt = HELAEdTEdt) - Ta(t)] + pcm[To(t) - Ta(t)] 

+ HBEABE[TBE(t) - Ta(t)] + pcQ[DTsp(t)], (3) 

where 

Ta(t) = average building dry-bulb air temperature; 
TEdt) = combined average temperature of the equipment, lights, 

and people; 
To(t) = outside dry-bulb air temperature; 

TBE(t) = inside surface temperature of the building envelope; 
DTsp(t) = difference between the air-supply temperature and the air 

temperature of the building; 
p = air density; 
c = air specific heat; 
u = volume of the building space; 

HEL = heat-transfer coefficient between the air and equipment; 
AEL = average surface area of equipment; 

m = rate at which outside air infiltrates the building; 
HBE = heat-transfer coefficient between the building envelope 

and air; 
ABE = surface area of the building envelope; and 

Q = air-supply rate of the HV AC system fan units. 

Only one of the temperatures in eq. (3) is presumed known: the out
side-air dry-bulb temperature, To(t). The other four tempera
tures-Ta(t), TEdt) , TBE(t), and DTsp(t)-are coupled; therefore, ad
ditional equations are needed for their resolution. 

We can consolidate our terms into two other equations. When we 
combined the heat gain generated by the equipment, lighting, and 
people into a single term for heat dissipation per unit of building floor 
area W(t)(W Ife), one additional equation can be written as 

dTEdt) 
GEL dt = 3.41 Af Wet) + HELAEdTa(t) - TEdt)], (4) 

where 

GEL = heat capacity of the equipment, lights, and people; 
Af = building floor area; and 

Wet) = combined heat dissipation of the equipment, lights, and peo
ple per unit of building floor area. 

A third equation coupling the building envelope temperature TBE(t) 
and the building air temperature Ta(t) is needed. A likely equation 
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would be the time series given by eq. (1). But before this can be 
applied, both eqs. (3) and (4) must also be recast in the form of time 
series. This is easily done by using the properties of the z transform 
and the procedure already delineated in the appertdix. The time-series 
solution of eqs. (3) and (4) assumes the form 

and 

where 

i1 = sampling time interval, 
TEL = HELAEL/ pCU, 

TO = m/u, 
TBE = HBEABE/ pcu, 
TSp = Q/u, 

T = TEL + TO + TBE + TSp, 

s = EXP(-i1T), 
Tw = AriCEL, 

Ta = HELAEL/CEL, 

i = i w + fa, and 
S = EXP(-i1T), 

and the subscripts t and t - 1 indicate that the temperature is evaluated 
at times t = ni1 and t = (n - 1)i1. 

The calculation of the humidity ratio in the space is also formulated 
in terms of a first-order linear differential equation in time similar to 
eqs. (3) and (4). This equation is also recast in the form of a time 
series [see eqs. (5) and (6)]. Knowing the humidity ratio and the dry
bulb air temperature, we can find the relative humidity by employing 
standard psychometric formulae.6 

' 

As previously noted in Section II, the system of eqs. (1), (5), and (6) 
permits controlling the dry-bulb air temperature in two basically 
different ways, intermittent operation and proportional control, and 
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determines the hours of operation. We use these equations for inter
mittent HV AC operation where we assume that the HV AC system 
holds the supply and return air-temperature difference constant at 
DTsp = -20 degrees F whenever cooling is required and at DTsp = 40 
degrees F whenever heating is required. The hours of operation, and 
hence the total quantity of heat removed or added to satisfy the 
imposed dry-bulb temperature standard, can then be determined. For 
the proportional control plan, eqs. (1), (5), and (6) are also used to 
calculate not only the hours of HV AC operation but also the numerical 
value of the supply and return air-temperature difference DTsp(t), 
which in general varies continuously for this mode of control. The 
variation in time of the numerical value of DTsp(t) is determined by 
just satisfying the instantaneous building environmental load. When 
the HV AC system is activated, the proportional control plan closely 
follows the lower limit (for heating) or the upper limit (for cooling) of 
the building wideband temperature range. 

Once DTsp(t) and the hours of operation are known, the program 
calculates the heat added or removed from the building by the HV AC 
system during every quarter hour and for whatever other period is of 
interest, e.g., monthly. As a corollary, we can estimate the environ
mental control system energy use, assuming the following HV AC 
system characteristics: 

1. For chiller operation, a constant Coefficient Of Performance 
(CO P) supplied by the user, together with the quantity of heat removed 
from the building air, characterizes its energy requirements. 

Case 

1 
2 
3 
4 
5 

Table I-Equipment buildings analyzed 
Energy Consumption and Control 

Wideband Temperature 
CF) 

Occupied Unoccupied 
Times Times 

65-80 65-80 
65-80 65-80 
65-80 60-85 
65-80 65-80 
65-80 65-80 

Control 

Intermittent 
Proportional 
Intermittent 
Intermittent 
Intermittent 

Building Parameters 

Factor 

Size (L x W x H) 
Average heat transmission 
Occupancy time 
Fan support rate 
Ventilation capacity 
Static fan pressure 
Internal heat load 
Economy cycle temperature limit 

Geographic Location 

New York City 
New York City 
New York City 
New Orleans 
Phoenix 

Parameter 

60 ft x 40 ft x 13 ft 
U = 0.25 Btu/hr - ftz 
8 a.m. to 6 p.m. 
7400 CFM 
150 CFM 
2 in. of water 
15W/ft2 

::565 degrees F 
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Table lIa-lntermittent control of building space air temperature-New York City, case 1 in Table I r 
r 
(J') 

Degree-Days Space Temp Max Load Total Load Number of Hours Cooling (kWh) -< (tons) (MBtu) Heating Water (gal) to (J') 

--I (kWh Maintain 20% 
m Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) No Econ Econ MinRH 
~ 
--I Jan 858 0 76.1 80.5 0.0 13.3 0.0 49.2 0 319 314 0.0 5291.2 1229.3 1352.7 
m Feb 797 0 76.3 80.5 0.0 13.3 0.0 44.2 0 256 ·281 0.0 4754.4 1114.7 1143.5 n Mar 703 0 76.5 80.5 0.0 13.3 0.0 56.1 0 361 356 0.0 6021.7 1391.1 1026.2 I Apr 358 0 76.6 80.6 0.0 13.6 0.0 65.1 0 414 334 0.0 6967.9 2582.9 321.7 Z 
n May 118 38 76.6 80.6 0.0 13.9 0.0 77.5 0 486 179 0.0 8271.2 5901.2 101.2 
:> Jun 23 147 76.6 80.9 0.0 14.2 0.0 83.1 0 512 36 0.0 8833.2 8348.4 0.0 
r Jul 0 325 76.7 80.8 0.0 14.2 0.0 92.6 0 563 0 0.0 9819.7 9819.7 0.0 

0 Aug 0 268 76.7 81.1 0.0 14.2 0.0 90.4 0 550 0 0.0 9590.8 9587.5 0.0 
Sep 32 116 76.8 80.9 0.0 14.1 0.0 80.1 0 495 42 0.0 8521.6 7960.9 20.2 

C Oct 192 21 76.4 80.6 0.0 ·13.9 0.0 71.7 0 450 207 0.0 7659.2 4928.8 79.3 
AJ Nov 625 0 76.1 80.6 0.0 13.6 0.0 53.7 0 344 306 0.0 5755.8 1764.3 1124.1 Z 
:> Dec 793 0 76.4 80.5 0.0 13.4 0.0 50.2 0 323 292 0.0 5385.9 1593.2 1245.5 
r 
0 Totals 4499 915 76.1 81.1 0.0 14.2 0.0 814.0 0 5107 2351 0.0 86873.0 56222.0 6414.0 
m Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F, n 
m economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760. 
~ 
OJ 
m 
AJ 

~ 
co 
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2. For fan operation, fan power is calculated from the following 
equation: 

Fan power (kW) = 2.487 X 10-4 X Q X iVJ, (7) 

where 

Q(CFM) = air flow delivered by the fan; and 
D-.P = static pressure head of the fan in inches of water. 

By multiplying the fan power by the total hours of fan operation, we 
can obtain the total energy use (kWh). 

3. Humidification costs are based on supplying energy at the rate 
of 1000 Btu per pound of water added to the supply air stream. Costs 
are derived from the unit cost of energy, such as electricity ($/kWh), 
natural gas ($/1000 ft3

), and fuel oil ($/gal), which is supplied by the 
user. An 80 percent efficiency rate is assumed for these energy sources. 

4. Heating costs are similarly calculated by the unit cost. An 80 
percent efficiency rate is also used, in these calculations. 

V. ILLUSTRATIVE EXAMPLES OF ENERGY CONSUMPTION AND 
CONTROL 

Different geographic loctions of equipment buildings, dual or ex
tended wideband temperature limits, and the method of HV AC control 
(intermittent or porportional) are considered in several variations. 
Table I gives this information along with some of the more salient 
building parameters. The results of the calculation are summarized by 
month in Tables II through VI for the cases specified in Table 1. We 
assume here that a conventional cooling system, consisting of a chiller 

Table lib-Intermittent control of building space air temperature
New York City, case 1 in Table I 

Number of Hours at Specified Relative Humidity (No Humidity Control) 

Conv (no econ) 
Economy 
Enthalpy 

<10% 10-15% 15-20% 20-55% 55-60% >60% 

697.00 1090.00 1086.75 5886.25 0.0 0.0 
815.25 1048.75 1029.75 5866.25 0.0 0.0 
697.50 1101.00 1144.00 5817.50 0.0 0.0 

Estimated Operating Cost for Cooling at $0.10/kWh for Electricity 
(Chiller COP = 3.50) 

Conv (no econ) 
Economy 
Enthalpy 

$9687 for 86870 kWh 
$8622 for 56221 kWh 
$7534 for 75342 kWh 

(Fans = 18669 kWh, chiller = 68201 kWh) 
(Fans = 18669 kWh, chiller = 37552 kWh) 
(Fans = 18669 kWh, chiller = 56673 kWh) 

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10/kWh for 
Electricity 

Humidification $1959 for 19580 kWh 
Heating $0 for 0 kWh 

Notes: Min space temp occurred on day 300, max space temp occurred on day 213, 
max cooling load occurred on day 224. 
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r- Table Ilia-Proportional control of building space air temperature-New York City, case 2 in Table I 
V'l 
-< Max Load Total Load Number of Hours V'l Degree-Days Space Temp (tons) (MBtu) Heating Cooling (kWh) Water (gal) to -i 
m (kWh Maintain 20% 
~ Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) No Econ Econ MinRH 
-i Jan 8.58 0 78.9 80.0 0.0 7.8 0.0 44.7 0 744 741 0.0 6465.4 2734.1 4261.7 m 
n Feb 797 0 79.9 80.0 0.0 8.3 0.0 40.4 0 672 667 0.0 5839.7 2487.0 3737.9 
I Mar 703 0 79.9 80.0 0.0 8.5 0.0 52.6 0 744 744 0.0 7126.1 2719.8 2885.7 
Z Apr 358 0 79.9 80.0 0.0 10.0 0.0 62.3 0 720 652 0.0 7855.6 3182.1 837.9 n May 118 38 79.9 80.0 0.0 11.4 0.0 75.4 0 744 434 0.0 9034.2 5461.4 262.5 » Jun 23 147 79.9 80.0 0.0 12.2 0.0 81.4 0 720 139 0.0 9451.8 8252.0 0.0 r-

0 
Jul 0 325 79.9 80.0 0.0 13.0 0.0 91.0 0 744 0 0.0 10342.3 10342.3 0.0 
Aug 0 268 79.9 80.0 0.0 12.3 0.0 88.9 0 744 10 0.0 10172.1 10080.5 0.0 

C Sep 32 116 79.9 80.0 0.0 11.4 0.0 78.2 0 720 135 0.0 9187.3 8078.6 76.3 
;;:0 Oct 192 21 79.9 80.0 0.0 11.2 0.0 69.2 0 744 514 0.0 8520.7 4672.8 241.7 Z Nov 625 0 79.9 80.0 0.0 8.6 0.0 50.1 0 720 696 0.0 6828.1 2797.4 3312.4 » r Dec 793 0 79.9 80.0 0.0 8.5 0.0 46.1 0 744 731 0.0 6584.7 2806.8 4105.5 

0 Totals 4499 915 79.9 80.0 0.0 13.0 0.0 780.3 0 8960 5466 0.0 97408.0 63615.0 19721.0 m 
n Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F, m 
~ economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760. 
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and air-handling unit, provides cooling. By comparing the different 
cases, we find some interesting results. 

Case 1 differs from case 2 in that the HV AC is intermittently 
controlled in case 1, but proportionally controlled in case 2. We see 
from Tables lIb and IIIb, for example, that the maximum cooling 
loads for both cases occur close in time [August 12 (day 224) and July 
31 (day 212)]. However, the maximum cooling load of 13 tons for the 
proportional control plan (Table IlIa), which compares favorably with 
the load of 14.2 tons for the intermittent control plan (Table IIa), 
reduces the required size of the chiller plant by 9 percent. We would 
expect such a reduction from using a control sequence that follows the 
load closely and minimally overshoots the dry-bulb air temperature. 
Also, a control plan that matches the fan capacity to the load would 
compare favorably in energy use with on -off fan operation. 

We can see in Table IlIa (in the column labeled "Space Temp") 
that the proportional control plan regulates the temperature to within 
one-tenth of a degree of the wideband temperature limit for the entire 
calendar year. For the economy cycle operation, the yearly electrical 
use of case 1 in Table lIb is 56,221 kWh, and that of case 2 in Table 
IIIb is 63,614 kWh. The chiller energy consumption for case 1,37,522 
kWh, is larger than that for use 2, 31,591 kWh. The proportional 
control plan, which modulates the air-supply temperature, requires 
the fan to run continuously at maximum power for the entire year. 
This maximum use of the fan creates larger overall energy require
ments in spite of lower chiller· energy use. However, a variable-air
volume system that modulates the fan supply rate to match loads 
should decrease the required fan power and significantly reduce total 
energy use. 

Table IIIb-Proportional control of building space air temperature
New York City, case 2 in Table I 

Number of Hours at Specified Relative Humidity (No Humidity Control) 

Conv (No Econ) 
Economy 
Enthalpy 

<10% 10-15% 15-20% 20-55% 55-60% >60% 

869.75 1090.75 1118.75 4393.25 1011.25 276.50 
911.25 1092.50 1110.50 4354.00 1015.00 276.75 
869.75 1095.50 1134.50 4337.75 938.75 383.75 

Estimated Operating Cost for Cooling at $0.10jkWh for Electricity 
(Chiller COP = 3.50) 

Conv (no econ) 
Economy 
Enthalpy 

$9741 for 97400 kWh (Fans = 32023 kWh, chiller = 65383 kWh) 
$6361 for 63614 kWh (Fans = 32023 kWh, chiller = 31591 kWh 
$8930 for 88296 kWh (Fans = 32023 kWh, chiller = 56273 kWh) 

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10jkWh for 
Electricity 

Humidification $6022 for 60219 kWh 
Heating $0 for 0 kWh 

Notes: Min space temp occurred on day 100, max space temp occurred on day 10, 
max cooling load occurred on day 212. 
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Table IVa-Intermittent control of building space air temperature-New York City, case 3 in Table I r-
r-
(J') 

Degree-Days Space Temp Max Load Total Load Number of Hours Cooling (kWh) -< (tons) (MBtu) Heating Water (gal) to 
(J') 

-l (kWh Maintian 20% 
m 

Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) No Econ Econ MinRH ~ 
-l Jan 858 0 74.7 85.4 0.0 13.2 0.0 46.8 0 304 299 0.0 5033.1 1171.1 1590.2 
m Feb 797 0 75.1 85.4 0.0 13.3 0.0 42.2 0 274 268 0.0 4534.1 1074.7 1341.3 n Mar 703 0 76.0 85.4 0.0 13.3 0.0 53.8 0 347 343 0.0 5776.8 1326.7 1302.5 I 
Z Apr 358 0 76.3 85.6 0.0 13.6 0.0 62.8 0 400 326 0.0 6725.0 2452.0 446.6 
n May 118 38 76.3 85.6 0.0 13.9 0.0 75.4 0 473 225 0.0 8047.1 5073.1 158.9 
» Jun 23 147 76.3 85.6 0.0 14.1 0.0 81.3 0 502 70 0.0 8643.7 7711.2 0.0 
r- Jul 0 325 76.3 85.7 0.0 14.2 0.0 90.7 0 553 0 0.0 9625.4 9625.4 0.0 
""'- Aug 0 268 76.2 85.8 0.0 14.2 0.0 88.6 0 541 3 0.0 9406.7 9356.9 0.0 
0 Sep 32 116 75.7 85.6 0.0 14.1 0.0 78.3 0 485 72 0.0 8336.3 7384.6 45.6 
C 
:;:0 Oct 192 21 76.0 85.5 0.0 13.9 0.0 69.5 0 437 245 0.0 7422.9 4189.6 148.0 
Z Nov 625 0 75.1 85.5 0.0 13.6 0.0 51.7 0 332 307 0.0 5545.3 1556.7 1332.1 
» Dec 793 0 75.5 85.4 0.0 13.4 0.0 48.0 0 310 285 0.0 5152.6 1457.1 1429.6 r 
0 Totals 4499 915 74.7 85.8 0.0 14.2 0.0 789.0 0 4962 2447 0.0 84249.0 52379.0 7795.0 
m 

Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, widehand temperature limits for occupied times = 65° to 80°F, wideband temperature n 
m limits for unoccupied times = 60° to 85°F, economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760. ~ 
o:l 
m 
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Tables IVa and IVb display monthly energy use for case 3 of Table 
I. Differing from case 1, this plan imposes dual wideband temperature 
limits. The wideband temperature limits for unoccupied times increase 
to 60 degrees F and 85 degrees F. Tables IVa and IVb show that this 
simple change with economy cycle operation reduces annual cooling 
energy use by 7 percent, from 56,222 kWh to 52,379 kWh. We can 
attribute this saving mainly to the lower chiller energy requirement, 
from 37,552 kWh to 34,237 kWh, and to a lesser extent to the smaller 
fan energy requirements, from 18,669 kWh to 18,141 kWh. 

Tables V and VI show the results of the simulation for the buildings 
located in New Orleans and Phoenix, cases 4 and 5 of Table I. We can 
see that the maximum chiller load, 14.4 tons, is the same for these 
diverse locations. The total energy required in these buildings for 
economy cycle cooling is also nearly equal, 85,027 kWh and 85,123 
kWh. Since the cooling load includes both sensible and latent energy, 
we can surmise from the degree-day totals that the dominant load on 
the system for Phoenix is sensible heat, and on that for New Orleans 
latent heat. The distribution of the relative humidity and the costs for 
humidification shown· in Tables Vb and VIb tends to support these 
observations. 

We can see the advantages in running the TELBECC program to 
compare different control plans. For example, although the intermit
tent control plan appears to use less energy overall, the proportional 
control plan actually reduces the size of the chiller plant by 9 percent 
in the same locale under similar conditions. The higher overall costs 
can be attributed to continuous operation of the fan, which, if operated 
to match the load, would consume much less power and make the 

Table IVb-lntermittent control of building space air temperature
New York City, case 3 in Table I 

Number of Hours at Specified Relative Humidity (No Humidity Control) 

Conv (No Econ) 
Economy 
Enthalpy 

<10% 10-15% 15-20% 20-55% 55-60% >60% 

857.50 1205.75 1213.00 5483.75 0.0 0.0 
976.75 1115.75 1138.25 5529.25 0.0 0.0 
857.50 1241.00 1212.00 5449.50 0.0 0.0 

Estimated Operating Cost for Cooling at $0.10jkWh for Electricity 
(Chiller COP = 3.50) 

Conv (no econ) 
Economy 
Enthalpy 

$8425 for 84247 kWh (Fans = 18141 kWh, chiller = 66106 kWh) 
$5238 for 52378 kWh (Fans = 18141 kWh, chiller = 34237 kWh) 
$7278 for 72776 kWh (Fans = 18141 kWh, chiller = 54635 kWh) 

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10jkWh for 
Electricity 

Humidification $2380 for 23802 kWh 
Heating $0 for 0 kWh 

Notes: Min space temp occurred on day 22, max space temp occurred on day 224, 
max cooling load occurred on day 224. 
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m Table Va-Intermittent control of building space air temperature-New Orleans, case 4 in Table I r-
r-
(J) 

Degree-Days Space Temp Max Load Total Load Number of Hours Heating Cooling (kWh) Water (gal) to -< (tons) (MBtu) (J) (kWh Maintain 20% --I 
m Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) No Econ Econ MinRH 
~ 
--I Jan 502 0 76.4 80.6 0.0 13.5 0.0 60.8 0 388 341 0.0 6518.0 2044.9 386.5 
m Feb 465 0 76.4 80.6 0.0 13.8 0.0 55.9 0 356 287 0.0 5984.1 2231.2 865.2 
(") Mar 204 8 76.6 80.7 0.0 14.0 0.0 72.8 0 458 223 0.0 7776.9 4836.3 74.3 
I Apr 21 133 76.6 80.9 0.0 14.2 0.0 81.1 0 499 36 0.0 8624.8 8136.8 0.2 Z 
n May 0 296 76.7 81.1 0.0 14.3 0.0 91.7 0 555 2 0.0 9716.7 9690.2 0.0 

» Jun 0 459 76.8 81.1 0.0 14.4 0.0 95.7 0 570 0 0.0 10103.2 10103.2 0.0 
r- Jul 0 457 76.8 81.1 0.0 14.4 0.0 98.3 0 583 0 0.0 10369.4 10369.4 0.0 

0 
Aug 0 477 76.7 80.8 0.0 14.4 0.0 98.6 0 586 0 0.0 10402.5 10402.5 0.0 
Sep 0 397 76.8 81.0 0.0 14.4 0.0 92.8 0 553 0 0.0 9797.1 9797.1 0.0 

C Oct 25 147 76.7 80.9 0.0 14.1 0.0 83.9 0 516 31 0.0 8915.4 8503.2 0.0 
;;:0 Nov 123 62 76.6 80.9 0.0 14.2 0.0 73.5 0 456 141 0.0 7824.2 5953.5 83.7 Z » Dec 383 1 76.1 80.6 0.0 13.9 0.0 64.6 409 300 0.0 6909.0 2960.9 228.1 
r 
0 

Totals 1723 2437 76.1 81.1 0.0 14.4 0.0 969.7 0 5934 1364 0.0 102941.0 85029.0 1638.0 
m Notes: Fan supply rate = 7400 CFM, ventilation = i50 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F, (") 
m economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760. 
~ 
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Table Vb-Intermittent control of building space air temperature
New Orleans, case 4 in Table I 

Number of Hours at Specified Relative Humidity (No Humidity Control) 

Conv (No Econ) 
Economy 
Enthalpy 

<10% 10-15% 15-20% 20-55% 55-60% >60% 

14.25 395.50 441.25 7909.00 0.0 0.0 
60.0 383.00 474.75 7842.25 0.0 0.0 
14.25 419.00 455.25 7871.50 0.0 0.0 

Estimated Operating Cost for Cooling at $0.10jkWh for Electricity 
(Chiller COP = 3.50) 

Conv (no econ) $10294 for 102939 kWh (Fans = 21693 kWh, chiller = 81246 
kWh) 

Economy $8503 for 85027 kWh (Fans = 21693 kWh, chiller = 63334 
kWh) 

Enthalpy $9295 for 92949 kWh (Fans = 21693 kWh, chiller = 71256 
kWh) 

Estimated Operating Cost for Humidification (20% min) and Heating at $0.10jkWh for 
Electricity 

Humidification $500 for 5002 kWh 
Heating $ 0 for 0 kWh 

Notes: Min space temp occurred on day 345, max space temp occurred on day 147, 
max cooling load occurred on day 165. 

proportional control plan much more attractive. We can conclude that 
TELBECC has great potential for pinpointing significant energy 
reductions and cost savings before a building's HVAC system is 
purchased. 

VI. CONCLUSIONS 

The TELBECC program analyzes more efficiently and quickly than 
any method used heretofore the possible telephone building environ
mental energy use and control options. To pinpoint the most econom
ical energy-conservation plan, the program analyzes multiple plans at 
minimal cost and with minimal expenditure of time. The program 
calculates the energy consumed every quarter hour by the HVAC in 
regulating the environment under changing weather conditions. It 
computes the required energy from the physical characteristics of the 
building envelope, such as the U factor, internal heat generation, 
geographic location, orientation of the building, and the dry-bulb 
temperature standard. In order to make it feasible to calculate by 
computer, we employ a simplified recursive computation procedure 
using time series. For each of the illustrative problems in Tables II 
through VI, the procedure produced monthly projections; yet it took 
less than 40 seconds to calculate results on an IBM/3033 computer. 
From the examples, we see the advantages and disadvantages of both 
the intermittent and proportional control plans, as well as the signif
icant savings obtained from increasing the range of the dual or 
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r- Table Via-Intermittent control of building space air temperature-Phoenix, Ariz., case 5 in Table I r-
Vl Max Load Total Load -< Degree-Days Space Temp Number of Hours Heating Cooling (kWh) Water (gal) to Vl (tons) (MBtu) 
--i (kWh Maintain 20% m 
~ Month Heat Cool Min Max Heat Cool Heat Cool Heat Cool Econ Elect) No Econ Econ MinRH 

--i Jan 432 0 76.3 80.6 0.0 13.5 0.0 62.8 0 401 300 0.0 6724.2 2812.0 1132.0 m 
Feb 257 1 76.5 80.7 0.0 13.6 0.0 61.5 0 390 249 0.0 6578.6 3313.1 455.0 n 

I Mar 139 12 76.6 80.7 0.0 13.5 0.0 74.0 0 468 212 0.0 7908.0 5125.0 1705.1 
Z Apr 38 122 76.6 81.1 0.0 13.7 0.0 79.6 0 497 104 0.0 8486.9 7105.4 336.4 
n May 16 403 76.7 81.2 0.0 13.9 0.0 92.1 0 570 38 0.0 9807.0 9301.8 64.9 
» Jun 0 560 76.7 81.1 0.0 14.1 0.0 95.8 0 589 2 0.0 10181.0 10148.0 256.0 
r- Jul 0 847 76.9 81.2 0.0 14.4 0.0 109.5 0 657 0 0.0 11574.5 11574.5 0.0 

0 Aug 0 679 76.7 81.2 0.0 14.4 0.0 104.1 0 626 0 0.0 11016.5 11016.5 0.0 
C Sep 0 521 76.8 80.8 0.0 14.2 0.0 94.4 0 574 0 0.0 10010.3 10010.3 0.0 
Al Oct 14 201 76.6 81.0 0.0 14.0 0.0 84.5 0 525 86 0.0 9003.7 7860.2 12.0 
Z Nov 196 0 76.5 80.6 0.0 13.6 0.0 67.8 0 428 236 0.0 7243.1 4138.2 161.3 » Dec 413 0 76.5 80.6 0.0 13.4 0.0 63.0 0 401 307 0.0 6742.1 2719.4 458.0 r 
0 Totals 1505 3346 76.3 81.2 0.0 14.4 0.0 989.0 0 6130 1536 0.0 105276.0 85124.0 4582.0 
m 
n Notes: Fan supply rate = 7400 CFM, ventilation = 150 CFM, wideband temperature limits for occupied and unoccupied times = 65° to 80°F, m 
~ economizer temperature limit = 65°F, time period = 1 to 365 days, total hours = 8760. 
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Table Vlb-Intermittent control of building space air temperature
Phoenix, Ariz., case 5 in Table I 

Number of Hours at Specified Relative Humidity (No Humidity Control) 

Conv (No Econ) 
Economy 
Enthalpy 

<10% 10-15% 15-20% 20-55% 55-60% >60% 

168.50 611.50 1430.00 6550.00 0.0 0.0 
199.00 627.00 1432.25 6501.75 0.0 0.0 
185.50 648.50 1375.00 6551.00 0.0 0.0 

Estimated Operating Cost for Cooling at $0.10/kWh for Electricity 
(Chiller COP = 3.50) 

Conv (no econ) $10527 for 105274 kWh (Fans = 22412 kWh, chiller = 82862 
kWh) 

Economy $8512 for 85123 kWh (Fans = 22412 kWh, chiller = 62711 
kWh) 

Enthalpy $9205 for 92054 kWh (Fans = 22412 kWh, chiller = 69642 
kWh) 

Estimated Operating Cost for Humdification (20% min) and Heating at $0.10/kWh for 
Electricity 

Humidification 
Heating 

$1399 for 13991 kWh 
$0 for 0 kWh 

Notes: Min space temp occurred on day 18, max space temp occurred on day 225, 
max cooling load occurred on day 204. 

extended wideband temperature limits fer unoccupied times. In the 
larger view, we can understand how TELBECC can significantly 
contribute toward the operating companies' energy-conservation plan 
for future savings. 
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APPENDIX 

Calculating Inside-Wall Temperature Time Series Coefficients hi, ai, a~ of 
Eq. (1) 

The basis for computing the time-series coefficients is the z trans
form,8 a discrete function transformation. This transformation is 
applied to time functions sampled at regular intervals of time. The z 
transform has the same role in discrete systems that the Laplace 
transform has in continuous systems analysis. 

Let us consider a continuous function of time f(t). When the 
function is sampled at regular intervals ~, the output consists of a 
train of pulses, as illustrated in Fig. 1. We defined the z transform of 
this output as a polynomial in powers of Z-l in the following: 

f(O) + f(~)Z-l + f(2~)Z-2 + f(3~)Z-3 + ... . (8) 

The successive outputs of the sampler are the coefficients of the 
successive powers of Z-l in the z transform. 

A linear system is characterized when its response to an elementary 
input (such as a pulse, a unit step, or, as will be adopted here, a unit 
ramp) is ascertained. This is nothing more than obtaining a transfer 
function of the system. If both input and output of the system are 
expressed in terms of their z transforms, the ratio of output/input is 
the z transform of the system. If we assume that such a transfer 
function, G(z), can be found and that it can be expressed as the 
quotient of two polynomials in z-l, then 

G(z) = N(z) = ao + alz-
1 + a2z-

2 + ... ajz-
j 

. (9) 
D(z) bo + b1z-1 + b2z-2 + ... bpz-P 

It follows that the z-transform of the output O(z) resulting from an 
arbitrary input I(z) is represented by 

O(z) = G(z)I(z) or 

O(z)D(z) = N(z)I(z). 

(10) 

(11) 

Since both sides of (11) are polynomials, the coefficients of the various 
powers of Z-I must be the same on both sides of the equation. If, say, 
the coefficients of z-n are equated, eq. (11) yields 

boOn = aoIn + adn-I + a2In-2 + ... + aln-j 

- [bIOn- 1 + b20n-2 + ... + bpOn-p]. (12) 

The subscript n on 0 and I indicates the value of the function at 
t = n~; i.e., On = O(n~), the coefficient of z-n in the z transform of 
O(z).This expression relates the output at . any time t = n~ to the 
input at that time and the input and output at earlier times. The 
coefficients ao, ... aj and bo, ... bp contain all the characteristics of 
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the system. With the properties of the z transform described above, a 
method for determining the z transform or time-series coefficients for 
the inside building wall temperature follows. 

If we consider the outside building walls and roof structure as 
homogeneous flat slabs (Fig. 2), the temperature in the slab adheres 
to the following equations: 

where 

o2Ts oTs 
K-=

ox 2 . at' 

Ts(x, 0) = 0, 

oTs 
k {;; (L, t) = -ho[Ts(L, t) - To(t)], 

oTs 
k - (0, t) = hi[Ts(O, t) - Ta(t)], 

ox 

Ts(x, t) (OF) = temperature in the slab, 
L(ft) = slab thickness, 

k(Btu/hr - ft - OF) = thermal conductivity, 
k == K/pc(ft2/hr) = diffusivity, 

pc(Btu/ft3
) = volumetric heat capacity, 

ho(Btu/hr - ft2 
- OF) = outside-wall heat transfer coefficient, 

hi(Btu/hr - fe - OF) = inside-wall heat transfer coefficient, 
To(t) = outside sol-air temperature, and 
Ta(t) = inside building air temperature. 

It is convenient to use the Laplace transform 

T.(x, p) = J.oo T,(x, t)e-P'dt 

(13) 

to eliminate the independent time variable t in eq. (13). Then the 
solution for the inside wall surface (x = 0) temperature in terms of the 
transform parameter P assumes the form: 

- ( ) _ hi[kq cosh(qL) + ho sinh(qL)]Ta(p) + hokqTo(p) 
Ts 0, p - hi[kq cosh(qL) + ho sinh(qL)] , 

+ kq[kq sinh(qL) + ho cosh(qL)] 
(14) 

where q = (p/K)1/2. 
Letting Ta(t) and To(t) be unit ramp functions and inverting eq. 

(14) back to the real-time domain by using standard residue theory in 
the complex plane, the solution for TAO, t), the temperature of the 
inside surface, is expressed as 
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(15) 

where T~l)(O, t) is the portion of the solution dependent on the outside 
sol-air temperature, and T~2)(0, t) the part dependent on the building 
space-air temperature. These temperatures are explicitly: 

T~l)(O, t) = Bo [ 1 (t _ L2 (3Bi + BoBi + 3Bo + 6») 
Bi + BoBi + Bo 6K (Bi + BoBi + Bo) 

and 

(2) _ [ 1 (L2 
Ts (0, t) - Bi Bi + BoBi + Bo 6K (3 + Bo) 

L2 (1 + Bo)(3B i + BiBO + 3Bo + 6) (1 B) ) -- + + ot 
6K (Bi + BoBi + Bo) 

2L2 ~ [ancos an + Bosin an]e-a~t/L2 ] (17) 
K n=l O"~[ (Bi + BiBO + Bo - a~] , 

. cos an - a n[2 + Bo + Bi]sin an 

hoL hiL 
where Bo = k' Bi = k' and an are roots of the transcendental 

equation 

a~ - BoBi 
cot an = (B B.)' an 0 + 1 

n = 1,2, .... 

Equations (15) through (17) contain all the ingredients for forming 
the z-transform transfer functions for the inside-wall surface temper
ature. These are obtained by forming the ratio of output/input z 
transforms as per eq. (9): 

G(l)( ) = T~l)(O, z) d G(2)() = T~2)(0, z) (18) 
z To(z) an z Ta(z)' 

To(t) and Ta(t) were taken as unit ramp functions, and therefore their 
z transform from Ref. 8 is given as 

(19) 

The sampling interval is ~. The use of the input ramp function 
amounts to linear interpolation between the discrete values given by 
the z-transform coefficients. 
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The z transforms of both Ti 1)(0, z) and Ti2)(0, z) are similar in form 
and, with the aid of the table of z transforms given in Ref. 8, can be 
expressed as 

A (1,2) B (1,2) Ll 00 C~1,2) 

Ti1,2)(0, z) = 1 -1 + (1 -1)2 + ~ 1 J -1 , (20) 
- z z - Z j=1 - s.z 

where 

(1) _ -BoL2 
A - 6K(Bi + BoBi + BO)2 (3Bi + BoBi + 3Bo + 6), 

A(2) = Bi 
Bi + BoBi + Bo 

(
L2 (3 + Bo) _ L2 (1 + Bo)(3Bi + BiBO + 3Bo + 6») 
6K 6K (Bi + BoBi + Bo) , 

B(2) = Bi(1 + Bo) 
Bi + BoBi + Bo ' 

C~2) = _ 2BiL2 ( ajcos aj + Bosin aj ) and 
J K aJ[(Bi + BiBO + Bo - aJ)] , 

·cos aj - aj(2 + Bo + Bdsin aj 

Equation (18) can now be expressed in the form of a ratio of polyno
mials in Z-1: 

G(1,2)( ) = N(1,2)(Z) 
z D(z) , 

where, from the results of eqs. (19) and (20), 

N(1,2)(Z) = (A (1,2) z(1 - Z-1) + B(1,2») IT (1 _ SjZ-1) 
Ll j=1 

+ z(1 - Z-1)2 ~ C~1,2) IT (1 _ SjS-1), 
Ll n=1 j=n 

D(z) = IT (1 - SjZ-1). 
j=1 

(21) 
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Equation (21) is the form of eq. (9); consequently, the bi coefficients 
that are derived, as in eq. (12), from the coefficients of the polynomial 
D(z) can be generated by a recursive scheme given as 

bo = 1, b~l) = 0, b~n+l) = b~n) - Si-n+lb~~i n = 1, ... N (22) 

The number of Sj terms needed to obtain the desired degree of accuracy 
for the bi coefficients is indicated by the index n = N, which in most 
instances should not exceed 20. 

The ai and at coefficients in eq. (1) came from N(l)(Z) and N(2)(Z), 
respectively, by expanding these functions into polynomials in powers 
of Z-l; i.e., 

N(1)(z) = alz-1 + a2z- 2 + ... 

N(2)(Z) = a{z-l + a2z- 2 + 

The desired coefficients are sorted out. 

AUTHOR 

Philip B. Grimado, B.S. (Civil Engineering), 1961, City University of New 
York; M.S. (Applied Mechanics), 1962, Columbia University; Ph.D. (Applied 
Mechanics), 1968, Columbia University; Bell Laboratories, 1968-. Mr. Gri
mado's responsibilities include vulnerability studies of antiballistic missile 
systems, fire protection studies involving fire risk analyses, heat-transfer 
calculations, development of standard fire testing methods for operating 
company equipment, and development of algorithms for optimum control of 
building environmental equipment. He is currently engaged in developing 
computer software for automatic generation of optimum layout configurations 
of administrative office space. 

2960 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983 



THE BELL SYSTEM TECHNICAL JOURNAL 
Vol. 62, No. 10, December 1983 
Printed in U.S.A. 

Recursive Fixed-Order Covariance Least-Squares 
Algorithms 
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This paper derives fixed-order recursive Least-Squares (LS) algorithms that 
can be used in system identification and adaptive filtering applications such 
as spectral estimation, and speech analysis and synthesis. These algorithms 
solve the sliding-window and growing-memory covariance LS estimation prob
lems, and require less computation than both unnormalized and normalized 
versions of the computationally efficient order-recursive (lattice) covariance 
algorithms previously presented. The geometric or Hilbert space approach, 
originally introduced by Lee and Morf to solve the prewindowed LS problem, 
is used to systematically generate least-squares recursions. We show that 
combining subsets of these recursions results in prewindowed LS lattice and 
fixed-order (transversal) algorithms, and in sliding-window and growing
memory covariance lattice and transversal algorithms. The paper discusses 
both least-squares prediction and joint-process estimation. 

I. INTRODUCTION 

Computationally efficient recursive Least-Squares (LS) algorithms 
have recently attracted attention in applications such as adaptive 
equalization,l-4 echo cancellation,5 and speech analysis and synthesis6

,7 

because of their fast convergence properties when compared to older 
least-mean-square or gradient adaptation techniques.8

-
10 Since the 

work on computationally efficient LS algorithms by Morf and others 
first appeared in Refs. 11 and 12, numerous papers have followed that 
produce computationally efficient algorithms that solve different types 
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of autoregressive LS estimation problems.13
-

17 In general, these algo
rithms fall into four categories: (1) prewindowed recursive LS, (2) 
sliding-window recursive LS, (3) growing-memory covariance recursive 
LS, and (4) nonrecursive LS algorithms. Each of the first three 
categories has two subcategories: fixed-order, or transversal, algo
rithms; and order-recursive, or lattice, algorithms. 

References 1 and 12 present a prewindowed LS algorithm that 
satisfies a transversal filter structure (fast Kalman algorithm). Sub
sequent Refs. 7, 18, and 19 describe prewindowed and growing-memory 
covariance LS algorithms that satisfy a lattice structure. Normalized 
prewindowed LS lattice algorithms that involve fewer recursions than 
the original unnormalized versions, and which have the important 
advantage that all internal variables are less than or equal to unity in 
magnitude are presented in the more recent Ref. 13. Reference 14 
extends the normalized lattice algorithms to solve the sliding-window 
and growing-memory covariance LS problems. The recursive algo
rithms mentioned so far require order N arithmetic operations per 
iteration to update the filter parameters, where N is the order of the 
filter. A computationally efficient order-recursive algorithm that 
solves the set of linear equations for the covariance LS prediction 
problem has been presented in Ref. 11, and extended to the joint
process-estimation case in Ref. 17. These algorithms require order N 2 

operations to compute the LS prediction coefficients and are nonre
cursive in the sense that the solution generated at time interval i is 
not used to generate the solution at time interval i + l. 

This paper attempts to unify and extend the previous work by (1) 
systematically gene,rating all of the recursions needed to derive all of 
the previously mentioned algorithms, and (2) using these recursions 
to derive new recursive fixed-order sliding-window and growing-mem
ory covariance LS algorithms. These new algorithms solve directly for 
the prediction- or autogressive-model coefficients, and involve signif
icantly less computation than both the unnormalized and normalized 
versions of the order-recursive or covariance lattice algorithms pre
sented in Ref. 14. In addition, in some applications it may be advan
tageous to work directly with the prediction- or autogressive-model 
coefficients, rather than the set of reflection coefficients produced by 
lattice algorithms. The algorithms mentioned in the previous para
graph, along with the new ones derived here, are obtained by appro
priately arranging subsets of least-squares recursions. The geometric 
or Hilbert space approach originally used by Lee and Morf20 to derive 
the prewindowed LS lattice algorithm is used to derive all of the basic 
least-squares recursions in a cohesive manner. In this paper, however, 
only scalar-valued data are considered. 

The next section defines the sliding-window and growing-memory 
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covariance LS problems to be solved. Then Section III reviews the 
geometric approach to LS estimation. Fundamental order and time 
updates for the least-squares projection operator are given in Section 
IV, with derivations in Appendix A. In Section V these projection 
updates systematically derive least-squares recursions. Section VI 
gives fixed-order covariance algorithms and Section VII extends the 
preceding discussion to the joint-process-estimation case. Appendix B 
lists subsets of recursions in Sections V and VII that constitute other 
LS algorithms. 

II. PROBLEM STATEMENT 

We start by defining a sequence of data values Yo, Yl, ... ,Yi, where 
i is the current time index. A linear least-squares forward predictor of 
order n chooses the coefficients tin to minimize 

'/(i In) = J. (ym - }, filnYm-ir (1) 

where i' to i is the time window of interest. The coefficients fnn, 1 $ 

j $ n, are called the forward-prediction coefficients. A linear least
squares backward predictor of order n chooses the backward-prediction 
coefficients bjl n, 1 $ j $ n, to minimize 

'b(il n) = J,. (Ym-n - i~' bilnYm-i+1)'. (2) 

Minimization of (1) rather than (2) is generally desired for a given 
application. The forward and backward prediction problems stated 
above are closely related, however, and the LS algorithms to be 
presented use the backward prediction coefficients to solve for the 
forward prediction coefficients in a computationally efficient manner. 

If, instead of estimating future values of the same process, we wish 
to estimate another related process {xiI, the least-squares cost function 
becomes 

'x(i In) = mt (Xm - it. Cil nYm-j+1 r (3) 

where tap coefficients Cjln replace the prediction coefficients tin and 
bjln • The cost function (3) is relevant to joint-process-estimation 
problems such as channel equalization and echo cancellation. In the 
case of channel equalization, Yi is the ith sample of the channel output, 
and Xi is the ith channel symbol. 

Setting the derivatives of the cost functions (1), (2), and (3) with 
respect to the prediction (tap) coefficients equal to zero results in the 
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following linear equations: 

and 

where 

i 

<I>i'-l,i-llnf(il n) = L YjYj-lln, 
j=i' 

i 

<I>i',ilnb(iln) = L Yj-nYjln, 
j~i' 

i 

<I>i',ilnC(i1 n) = L XjYjln, 
j=i' 

(4a) 

(4b) 

(4c) 

fT(il n) == [flln!2In .•• !nln], (5a) 

bT(i In) == [bllnb2ln ... bn1n], (5b) 

cT(i In) == [Cll nC2ln ••• Cnl n], (5c) 

YJin == [YjYj-l ••. Yj-n+d, (6) 

and the covariance matrix 
i 

<I>i',iln == L Yjlnylln. (7) 
j=i' 

Suppose now that i I = 0, and that Yo is the first available data 
sample. The least-squares solutions for f, b, and c, obtained by solving 
(4), are undefined since they depend on the unspecified data values 
Y - 1, Y - 2, ... , Y-n. The simplest, and perhaps most popular, 
technique for circumventing this problem is to assume all data values 
Yj, j < 0, are zero. The least-squares solutions resulting from this so
called prewindowed estimation are then well defined as long as the 
covariance matrix is nonsingular. In applications such as speech 
modelling, however, where estimates of the prediction coefficient 
vector f(i I n) are desired given relatively few data samples, prewin
dowed estimation may result in undesirable edge effects from assuming 
data is zero outside a given window. For these types of applications, it 
is desirable to estimate the prediction coefficients without any as
sumptions concerning the data outside the time window of interest. 

Covariance least-squares estimation replaces the lower time limit i I 
in (1), (2), and (3) by n, so that only known data values are used to 
compute the LS prediction (tap) coefficients. The improved estimates 
so obtained are not without cost, however. The resulting covariance 
LS algorithms derived in this paper and elsewhere7 involve more 
computation than prewindowed LS algorithms. Notice that at each 
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iteration i, the prediction coefficients are computed from i + 1 data 
values. Because the number of data samples entering the least-squares 
computation grows with time, this type of estimation has been called 
growing-memory covariance estimation.16 

Finally, another windowing technique that has attracted attention 
recently is the sliding-window technique, in which the lower time limit 
i' in (1) and (2) is replaced by i - M + n + 1, and in (3) by i - N + 
n, where M is a predetermined constant. At each iteration the least
squares prediction coefficients are therefore computed from a fixed 
number (M) of data samples. Notice that data samples outside the 
time window i - M + 1 to i have no effect on the least-squares solution 
for f, b, and c at time i, i.e., they are totally forgotten. This is in 
contrast to more conventional exponential forgetting techniques that 
reduce the effects of past data samples in a more continuous fashion.16 

The sliding window is therefore useful in applications where the 
autoregressive model changes abruptly with time, or where undesirable 
transients periodically affect the data samples. In the former case, 
when the model parameters change, the sliding window eventually 
discards data values corresponding to previous model parameters. In 
the latter case, the sliding window eventually discards corrupted data 
values. 

Computationally efficient recursive algorithms that solve the grow
ing-memory covariance and sliding-window LS estimation problems 
will be derived in Sections V through VII. The next section develops 
the necessary mathematical background by reviewing the geometric 
interpretation of linear least-squares estimation. 

III. MATHEMATICAL BACKGROUND 

Given two vectors X and Y having the same dimension i, the inner 
product of X and Y is defined to be 

(X, Y) == XTWY, (8) 

where W is some prespecified i x i weighti_ng matrix. As an example, 
a typical weighting matrix is the exponential weighting matrix 

(9) 

where I is the i x i identity matrix. For convenience, we will assume 
that W is the identity matrix. Modification of the results in this paper 
to the case where W is arbitrary is straightforward. The distance 
between two vectors X and Y with the same dimension is therefore 
the regular Euclidean distance, 

d(X, Y) = IIY - XII == (Y - X, Y - X)I/2. (10) 

The (nth order) projection of a vector Y onto a subspace (or 
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manifold) M, which is spanned by the n vectors {XI, X2, ••• , X n }, is 
denoted as PM Y. The orthogonal projection of Y onto M is defined as 

pity == Y - PMY, (11) 

and is orthogonal to the subspace M. This implies that 

(Xj, Y - PMY) = 0, for j = 1, ... , n. (12) 

Since PM Y lies in M, there exist constants, or regression coefficients 
II, 12, ... ,In such that 

n 

PMY = L liXj = Sf, (13) 
j=I 

where S = [Xl' .. Xn] and fT = [11 ... In]. Using (12) and (13), it is 
easy to show that 

(14) 

and 

(15) 

assuming S TS is nonsingular. 
The linear least-squares estimate of Y, based upon the vectors 

XI, ... , Xm is formed by choosing II, ... ,In such that 
n 

IIfl12 == IIY - L liXj ll 2 (16) 
j=I 

is minimized. Differentiating this quantity with respect to Ii and setting 
the result equal to zero gives 

n 

Y == L liXj = PMY, 
j=I 

and the vector of estimation errors, 
n 

f = Y - L liXj = pity. 
j=I 

We have identified the operator P as a least-squares projection. 

IV. PROJECTION-OPERATOR UPDATE FORMULAS 

(17) 

(18) 

In this section some fundamental relationships satisfied by the least
squares projection operator are presented. These projection updates 
fall into two main categories: order updates and time updates. Under 
time updates are two subcategories, forward and backward time up
dates. We point out in advance that a total of three projection-operator 
updates will be used throughout this paper: one order update, one 
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forward time update, and one backward time update. In addition, one 
forward and one backward time update for inner products will be 
needed. 

4.1 Order updates 

Given two vectors, Y and X, and a linear space M spanned by the 
vectors XI, X2, ... , Xn, all in R i, suppose we wish to calculate the 
least-squares estimate of Y based upon the vectors XI, ... , Xn and 
X. In particular, we wish to find coefficients aj, j = 1, ... , n, and b 
such that II Y - 0:7=1 ajXj + bX) 112 is minimized. From the discussion 
in the last section, we know that the least-squares estimate of Y is 

n 

L ajXj + bX = P1M+X'Y, 
j=l 

(19) 

where (M + X} denotes the space spanned by M and X. We can write 
the following orthogonal decomposition of the space (M + X},21 

(M + X} = M El1 {P~X}. (20) 

By the Hilbert space projection theorem,21 we have that for any vector 
YER i

, 

(21) 

Figure 1 illustrates this equation for the special case n = 1. The 
projection of Y onto the space spanned by two vectors Xl and X2 is 
shown as the sum of the two projections PX1Y and PtpX

1
X2'Y' 

y 
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Equation (21) constitutes a fundamental order update for the least
squares projection operator. The (n + l)st-order projection P'M+xl is 
expressed as the sum of the nth order projection PM and the first order 
projection P,Pgxl. By subtracting both sides of (21) from Y, we obtain 
the following order update for the orthogonal projection operator p.L, 

(22) 

4.2 Forward time updates 

The forward time updates derived in this section compute a least
squares projection at time i given the same least-squares projection at 
time i - 1. These recursions, when combined with the order recursions 
in the last subsection, can be used to derive prewindowed LS algo
rithms. We first consider the following vectors X~,i and Yio,i, which are 
composed of data samples from time io to i, i.e., 

XT. = [x· X· 1 ••• x·] 10,1 I 1- 10 , (23a) 

and 

Y!o,i = [Yi Yi-l ... Y~]. (23b) 

For notational convenience, in this section only we will omit the lower 
time subscript on the data vectors and assume it to be io• Our objective 
is to compute the linear least-squares estimate of Y i, given Xi in terms 
of a least-squares estimate that does not use the most recent value Yi. 
With this in mind we define the unit vector 

uT = [1 0 ... 0 0], (24) 

which has the same dimension as Y i, i.e., Ui E Ri-io+l. Associated with 
Ui is the space spanned by Ui, or the space of most recent data values, 
denoted as Ui. Note that PUtYi = YiUi. For notational convenience we 
define a tilde operator as follows, 

Yi == PDiYi = [0 Yi-l Yi-2 ... Y~+1 Y~], (25) 

i.e., Yi is the projection of Y i onto the subspace of past data values. 
The basic prediction problem is illustrated in Fig. 2, where Y i is a 

vector having its endpoint in back of the plane of the paper and Xi 
has its endpoint in front of the plane of the paper. We are given the 
vector Xi, from which the least-squares estimate of Y i, PXiY i, is to be 
recursively obtained. At time i we therefore assume a regression 
coefficient a cOI~puted .. at time i-I (i.e., PXi-lYi-1 = aXi- h or 
equivalently, PXiYi = aXi), which we wish to modify using the most 
recent data values Yi and Xi. Figure 2 therefore shows PXiYi decomposed 
into the two vectors aXi and PX.(Yi - aXi). Figure 3 illustrates the 
plane spanned by Xi, jt, and rj. Since ABC and ADE are similar 
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triangles, 

/ 

/1\ 
/ / \ 

/ / 
/ aX· 

/ I 

Fig. 2-Decomposition of PXjYj • 

Xi 

(26) 

so that AC = aXi• Figure 4 attempts to include vectors not shown in 
Fig. 2 and again illustrates the decomposition of PXjYi. (Only the 
endpoint of Y i is in Fig. 4.) 

Assume now that the vector Xi is replaced by the subspace Mi 
spanned by the vectors X1,i, X 2,i, . . . , Xn,i. Let 

(27) 

and 

Si = [:X1,i X2,i ... Xn,d. (28) 

We define the projection 

(29) 

i.e., PM-. Y i lies in Mi, but uses regression coefficients computed at 
111-1 

time i - 1. Referring to Fig. 3, PXjlj_1Yi = aXi. Appendix A shows that 

PM.Yi = PM·
I
· lYi + PMUi(Ui, P-Kr.Yi)sec2lh, (30) 

I "- , I 

where 
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E 

A D 

Fig. 3-Plane spanned by Xi and :;t. 

Fig. 4-Rotated view of Fig. 2. 

and 

2 1 
sec fh = 1 . 2 • - sln fh 

AE = Xi 

AD = Xi 
AB = aXi 

(31) 

(32) 

The variable fh can be interpreted as the angle between the spaces 
spanned by the matrices of basis vectors Si and Si. Referring to Fig. 
3, the angle () is given by 

• 2 II Xdl 2 
x r ( ) 

sln () = 1 - "Xd1 2 = "Xi" 2 ' 33 
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and measures the unexpectedness of the data received at time i. Notice 
that (33) can be rewritten as (31), where Mi and Si are replaced by Xi. 

We obtain the following time update for the orthogonal projection 
operator by subtracting both sides of (30) from Y i, 

P-KrjYi = P-Krjlj_1Yi - PMjUi(Ui, P-KrjYi)sec2(h. (34) 

One more relation that will be useful in the following section is a 
recursive equation for the inner product (Vi, P-KrjYi), where Vi is an 
arbitrary vector in R i-io+ 1. This recursion, which is derived in Appendix 
A, is 

(Vi, P-KrjYi) = (Vi, P"kijYi) + (Ui' P-KrjVi)(Ui, P-KrjY i)sec2lh, (35) 

where !VIi is the space spanned by Si. 

4.3 Backward time updates 

Consider again the data vectors Xi and Y i defined by (23). Suppose 
we wish to compute the linear least-squares estimate of Y i given Xi in 
terms of a least-squares estimate that does not use the most distant 
or past values Yio and Xio. Clearly, this problem can be solved in exactly 
the same fashion as the time-update problem stated at the beginning 
of the last section. By turning the vectors Y i and Xi upside down, and 
assuming that Yio and Xio are the most recent samples, one can solve 
this problem by using time updates already derived. The same argu
ment holds when Xi is replaced by the subspace Mi spanned by vectors 
Xl,i, X 2,i, ... , Xn,i. In this case we wish to calculate the projection 
PMjYi in terms of a projection onto the space spanned by the matrix 
of basis vectors Si in which the bottom row has been replaced by zeros. 
This is in contrast to the previous time updates, which expressed 
PM.Yi in terms of a projection onto the space spanned by Si in which 
th~ top row has been replaced by zeroes (i.e., !VIi). 

In analogy with the notation defined in the last section, we define 
the unit vector 

ufo = [0 0 ... 0 1] E R i-io+1, (36) 

and the space spanned by Uio as Uio. We also define the following 
asterisk operator in analogy with the previous tilde operator, 

(37) 

Similarly, 

Sr= [Xi,i X~,i ... X~,d. (38) 

The projection of Y i onto Mi using regression coefficients computed 
from Sris defined as 

PMiolio+1Yi == Si[SrTSrrl[stTyi]. (39) 
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The regression coefficients that multiply the basis vectors of Mi are 
in this case elements of the vector [stTsn-1[StTyi]. 

The derivation of (30) can be repeated with Ui replaced by uio' tildes 
replaced by asterisks, and PMjlj_l replaced by PMjoljo+l to give the follow
ing projection decomposition, 

PMjYi = PMioljo+lYi + PMjUio(Uio' P-KtjYi)sec20t, (40) 

where 

sin20t = II PMjUio 1/
2 

= (UToSi)(STSJ-1(STuio) 

(41) 

and 

2 * _ 1 
sec Oi - 1 . 20*· - sIn i 

(42) 

Subtracting both sides of (40) from Y i gives 

P-KtjYi = P-Ktjolio+lYi - PMjUio(uio, P-KtjYi)sec20t. (43) 

Finally, the following update for inner products is analogous to (35), 

(Vi, P-KtjYi) = (vt, P-KttYt) + (Uio' Pit jVi)(Uio' P-KtjY i)sec20t. (44) 

This completes the presentation of projection-operator recursions 
needed to derive the least-squares recursions in Sections V and VII. 
All order updates for variables entering the least-squares algorithms 
to be presented can be derived from (22). Similarly, all forward and 
backward time updates for vectors entering these algorithms can be 
derived from (34) and (43), respectively, and all forward and backward 
time updates for inner products can be derived from (35) and (44), 
respectively. 

v. LEAST-SQUARES RECURSIONS 

5.1 Notation 

Referring to the definition (23), a shift operator z-j is defined by 

Z-jYTo,i = [Yi-j Yi-j-l .•• Yio-j]· 

Equations (1) and (2) can now be rewritten as 

and 

n 

f/{i In) = II Y io+n,i - L filn(z-jy io+n,i) 112 
j=l 

(45) 

(46a) 
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n 

fb(i In) = II z-ny io+n,i - L bj In(Z-j+1y io+n,i) 11
2

, (46b) 
j=l 

where i' has been replaced by io + n. A matrix of shifted data vectors 
is denoted as 

Sio+nAl, n) = [Z-lYio+n,i z-l-lYio+n,i •.. z-nYio+n,d, (47) 

where l < n. The space spanned by the columns of Sio+nAl, n), which 
is a subspace generated by past data values, is denoted as Mio+n,i(l, n). 
For notational convenience we will omit the lower time index of Sand 
M and assume that it is always io + n. Notice that we can write the 
covariance matrix defined by (7) as 

tl>io+n,iln = sT(o, n - l)Si(O, n - 1). (48) 

Two types of updates exist for least-squares parameters: order 
updates and time updates. The time updates in this section generally 
fall into two categories. Given some LS parameter ~ (i.e., the forward 
prediction vector f or the prediction residual), we wish to find (1) a 
recursion for ~ computed from the data samples {Yio' Yio+b ... , Yi} in 
terms of ~ computed from the data samples {Yio' Yio+!, .•. , Yi-l} (for
ward time update), and (2) a recursion for ~ computed from the data 
samples {Yio' Yio+b •.. ,yd in terms of ~ computed from the data 
samples {Yio+b Yio+2' ... , yd (backward time update). Associated with 
the variable ~ is therefore an order index n and the time indices of the 
data used in the least-squares computation. If the data values 
{Yio' Yio+b ... , Yi} are used to compute ~, then the indices io and i must 
be specified. This is in contrast to the prewindowed case where only i 
need be specified since io is always zero. 

Throughout the rest of this paper, the starting-time index of the 
generic parameter ~ will appear as a subscript, and the current-time 
index will appear as a function argument. As an example ~io(i In) 
implies that the data values {Yio' Yio+b ... , yd are used to compute 
the nth order variable ~. The following variables are needed to derive 
the LS algorithms in the next section: 

1. Forward and backward prediction vectors [from (4)], 

(49a) 

and 

biO(i In) = tI>~.!-n,iln[ST(O, n - l)(z-nyio+n)]. (49b) 

2. Forward and backward prediction residual vectors, 

Er,io(i In) == Yio+n,i - Si(l, n)fio(i In) (50a) 

and 
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Eb,io(i In) == z-nYio+n,i - Si(O, n - l)bio(i In). (50b) 

3. Forward and backward prediction residuals (scalars), 

e{,io(i In) == (ui,E{,io(i In) = Yi - fTa(i I n)Yi-lln (51a) 

and 

eb,io(i In) == (Ui' Eb,io(i In) = Yi-n - bTa(i I n)Yiln. (51b) 

4. Forward and backward cost functions, 

(52) 

5. PARtial CORrelation (PARCOR) coefficient, 

kn,io(i) == (E{,io+1(i In - 1), Eb,io(i - 11 n - 1). (53) 

6. Auxiliary variables, or gains, 

gio+l(i In) == <I>~~n,ilnYiln' (54a) 

hio+1(i In) == <I>~~n,ilnYio+nln' (54b) 

'Yio+l(i In) == (Ui' PMi(O,n-l)Ui) = Y~n<l>~~n,ilnYilm (55a) 

'Yto+1(i In) == (Uio' PMi(O,n-l)Uio) = YTa+nln<l>~~n,ilnYio+nlm (55b) 

and 

aio+1 (i In) == (Uio' PMi(O,n-l)Ui) = Y ~n<l>~~n,ilnYio+nln. (55c) 

Notice that 

and 

Si(O, n - l)h io+1(i In) = PMi(O,n-l)Uio; 

and that 

and 

'YiO+l(i In) = gTo+l(i I n)Yilm 

'Y~+1(i In) = hTo+l(i I n)Yio+nln, 

(56a) 

(56b) 

(57a) 

(57b) 

aiO+1(i In) = gTa+1(i I n)Yio+nln = hTo+l(i I n)Yiln. (57c) 

U sing the notation in the last section, the gains 'Y and 'Y* are, 
respectively, sin2{h and sin20t, where Oi and Or are, respectively, the 
angles between Mi(O, n - 1) and Mi(O, n - 1), and between Mi(O, n -
1) and Mr(O, n - 1). 

At each time instant our objective is to minimize the cost functions 
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€{,io(i I n) and €b,io(i I n). From the discussion in Section III it follows 
that 

(58a) 

and 

Eb,io(i In) = PKrj(O,n-l)(z-nYio+n,i). (58b) 

The following variables, which are closely related to the prediction 
residuals, are also needed: 

E;,io(i In) == PKrjlj_l(l,n)Yio+n,i 

(59a) 

and 

= z-nYio+n,i - Si(O, n - l)bio(i - 11 n), (59b) 

i.e., E; and Eb are the forward and backward residual vectors obtained 
by using prediction vectors computed at the previous time interval. 
The top components of E;,io(i I n) and Eb,io(i I n) are, respectively, 

e;,io(i In) == (Ui' Ef.io(i In) 

= Yi - fTo(i - 11 n)Yi-lln (60a) 

and 

eb,io(i In) == (Ui, Eb,io(i In) 

= Yi-n - bTo(i - 11 n)Yiln. (60b) 

The nth order forward prediction residual computed at time io + n 
using the tap vector fio(i I n) is 

ei,io(i In) == (uio,E{,io(i In) 

(61) 

The forward residual vector at time i using the forward prediction 
vector calculated from the data samples {Yio+b ... , yd is 

E{,iolio+l(i In) == PKriolio+l(l,n)Yio+n,i 

(62) 

The variables et,io(i I n) and Eb,iolio+l(i I n) are similarly defined. 
Notice that the time indices associated with a residual vector change 

in accordance with the projection space, i.e., 

PXIj(l,n-l)Yio+n,i =E{,io+l(i In - 1), (63a) 
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and 

PKtj(1,n-l)(Z-nYio+n,i) = Eb,io(i - 11 n - 1). (63b) 

The recursions needed to derive the algorithms in the next section 
are now generated systematically. By appropriately defining the vec
tors and subspaces entering the projection order update (22), order 
updates are derived for all of the basic variables defined by (49) through 
(55). We then use the forward and backward time updates (34) and 
(43) to obtain forward and backward time updates for the basic vectors 
defined by (49), (50), and (54). Finally, the forward and backward 
time updates for inner products (35) and (44) are applied to 
kn,io(i), €(,io(i I n), and €b,io(i I n). It would take up too much space to 
explicitly define the vectors and subspaces that must be substituted 
in the projection update used to derive each recursion. Consequently, 
only the results are stated, with a few representative examples worked 
out in more detail. 

5.2 Order updatr:s 

The following order updates are obtained by using the projection 
order update (22) [Qr equivalently (21)]. The lth through the mth 
component of fio(i I n) is denoted by [fio(i I n)]/,m, and [fio(i I n)]j is the 
jth component of fra(i I n). The same notation is used for the backward 
prediction vector bio(i I n) and the gain vectors gio(i I n) and hio(i In). 

E ( 'I) E ( , I ) kn,io (i) 
{,io l n = {,io+ 1 l n - 1 - ( , 1 I 1) 

€b,io l - n -

.Eb,io(i - 11 n - 1), (64a) 

E ( 'I) E ( . I ) kn,io (i) b,io l n = b,io l - 1 n - 1 - ('I 1) 
€{,io+l l n-

(64b) 

( 'I ) ( 'I ) k ;,io (i) €{,io l n = €{,io+l l n - 1 - (' 11 1) , 
€b,io l - n -

(65a) 

( 'I) ( , I ) k ;,io ( i ) 
€b,io l n = €b,io l - 1 n - 1 - R. ( , I _ 1) , 

(,Io+l l n 
(65b) 

, kn,io(i) 
[fio (ll n)]n = ( '11 1) , €b,io l - n -

(66a) 

[fio(i I n)h,n-l = fio+1(i In - 1) - [fio(i I n)]nbio(i - 11 n - 1), (66b) 
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(67a) 

[bio(i I n)h,n = bio(i - 11 n - 1) - [bio(i I n)hfio+1(i In - 1), (67b) 

° ) eb,io(i I n) 
[gio(£ln+l]n+1= (°1)' 

{b,io £ n 

[gio(i In + l)h,n = gio+1(i In) - [gio(i In + 1)]n+1bio(i In), 

and 

° ef,io(i In) 
[gio(£ln+l)h= (°1)' {f,io £ n 

*( 01 ) _ * (°1) et,~(i In) 
'Y io £ n + 1 - 'Y io+1 £ n + ( ° I )' {b,io £ n 

* ( ° I ) - * ( ° I) e i,~ (i In) 'Yio £ n+l -'Yio £-1 n + (01)' 
{f,io £ n 

( °1 1) - (°1) eb,io(i I n)et,io(i I n) 
CYio £ n + - CYio+ 1 £ n + ( 01) , 

{b,io £ n 

·(°1 1) - .(0 - 11) ef,io(iln)ei,io(iln) 
CY /0 £ n + - CY /0 £ n + ( 01) • 

{f,io £ n 

(68a) 

(68b) 

(69a) 

(69b) 

(70a) 

(70b) 

(71a) 

(71b) 

(72a) 

(72b) 

(73a) 

(73b) 

(74a) 

(74b) 

As an example, (64a) is derived from (22), where M is replaced by 
M i(l, n - 1), X is replaced by z-nYio+n,i, and Y is replaced by Y io+n,i' 
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By observing that Eb,io(i - 11 n - 1) is orthogonal to M i(l, n - 1), it 
is clear that 

(Yio+n,i, Eb,io(i - 11 n - 1» = (Ef,io+l(i In - 1), 

• Eb,io(i - 11 n - 1» 

= kn,io(i), (75) 

Recursions (65) are obtained by taking norms of (64) respectively, 
The recursions (68) through (71) are obtained from (21), where Y is 
replaced by Ui and Uio' respectively, Making the same substitutions in 
(21) and then taking inner products with Ui or uio gives recursions (72) 
through (74), 

5.3 Forward time updates 

The following forward time updates are obtained from the (orthog
onal) projection operator forward time update (34): 

and 

E ( 'I) E' ('I) [P ] e f,io (i In) f,io £ n = f,io £ n - Mj(l,n) Ui 1 ( . I) , 
- 'Yio l - 1 n 

f ( 'I) f (. 11) (. 11) ef,io(i I n) 
io £ n = io £ - n + gio £ - n ( , I) , 

1 - 'Yio l - 1 n 

b ( 'I) b (' I) ( 'I) eb,io (i In) 
io £ n = io £ - 1 n + gio+1 £ n 1 ( 'I )' 

- 'Yio+1 l n 

h ( 'I) h (' I) ( 'I) aio (i In) 
io l n = io £ - 1 n - gio l n 1 ( 'I )' 

- 'Yio £ n 

*( 'I ) - *(' I) a~(i In) 'Yio£ n -'Yio £-1 n -1 ('I)' 
- 'Yio l n 

(76a) 

(76b) 

(77a) 

(77b) 

(78) 

(79) 

(80) 

Equation (78) is obtained from (34), where Mi is replaced Mi(O, n) and 
. Y i is replaced by uio' Equations (79) and (80) are obtained by making 
the same substitutions in (34) and then taking inner products with 
uio and Ui, or by pre multiplying (78) by yTo+n-lln and y~n' respectively. 
Taking the inner product of (76) with Ui and uio' respectively gives the 
following recursions: 
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and 

'('I ) - e{,io(iln) 
ef,io" n - (' , 

, 1 - I' io " - 11 n) 

, ('I) eb,io (i In) 
e b,io " n = 1 _ . ( 'I )' 

1"0+1 " n 

* ('I) * (' I) ('I) CXio(i - 11 n) e {,io" n = e {,io " - 1 n - e{,io" n , , 
1 - 1'41(" - 11 n) 

* ('I) * (' I) ( 'I ) CXio+ 1 (i In) e b,io" n = e b,io " - 1 n - eb,io " n 1 ( 'I ). 
- 1'41+" n 

5.4 Backward time updates 

(81a) 

(81b) 

(82a) 

(82b) 

The following backward time updates are obtained from the projec
tion operator backward time update (43): 

E ( '1 ) - E ( 'I) [P ] e 1.io (i In) {,io " n - {,iolio+1" n - M j(1,n)Uio 1 *(' 11) , 
- 1'41 " - n 

(83a) 

E ' ) - ( , ] e t,io (i In) 
b,io(" In - Eb,iolio+1 "1 n) - [PMj(O,n-l)U io 1 * ('I )' 

- 1'41+1 " n 
(83b) 

f ( , I) f ('I) h (' I) e 1.io (i In) 
io+ 1 " n = 41" n - io " - 1 n 1 * ( , 11) , 

- 'Yio " - n 
(84a) 

b ( 'I) b ('I) h ( 'I) e 6,io (i In) 
io+ 1 " n = io " n - io+1" n 1 * ( 'I )' 

- 1'41+1 " n 
(84b) 

( 'I ) ("I) h ('I) cxio(i In) 
gio"n=gio+l"n- io"n 1 *('1)' 

-I'io " n 
(85) 

('I ) ( 'I) CXTo(i In) 
I'io " n = I'io+1" n - 1 *( 'I )' 

- I'io " n 
(86) 

and 

(87) 

Equation (85) is obtained by replacing Y i by Ui in (43). Equations (86) 
and (87) are obtained by premultiplying (85) by Y~n and yTa+n-1In, 
respectively. The following recursions are obtained by taking the inner 
product of (83) with Ui, respectively: 

( 'I ) - ( 'I) * ('I) CXio (i - 11 n) 
e {,io+1 " n - e{,io" n + e {,io" n 1 * ( , 1 I )' 

- 1'41 " - n 
(88a) 
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and 

("I ) - ("I)· * ("I) aio+l(iln) eb,io+l l n - eb,io l n + eb,io l n 1 _ :j< ("I ) 
I' '0+1 l n 

(88b) 

The recursions that result from taking inner products with uio will not 
be used and are therefore omitted" 

5.5 Inner product updates 

The following recursions are obtained from the forward time update 
for inner products (35): 

kn,io(i) = kn,io(i - 1) + e{,io+1(i In - l)eb,io(i - 11 n - 1) 

1 

1 - 'Yio+1 (i - 1 I n - 1) , 
(89) 

E{,io (i In) = E{,io (i - 1 In) + e l.io (i In) 1 ( ~ 1 I )' 
- 'Yio l - n 

(90a) 

and 

'b.~(i 1 n) = 'b.~(i - 11 n) + d.~(i 1 n) 1 1 ('I ). (90b) 
- 'Yio+l l n 

The following recursions are obtained from the backward time 
update for inner products (44): 

kn,io(i) = kn,io+1(i) + ei,io+l(i In - l)et,io(i - 11 n - 1) 

1 
(91) 

1 - I' t+ 1 (i - 1 I n - 1) , 

E{,io(i I n) = E{,io+l (i I n) + ei.70(i In) 1 *( ~ I) , 
- 'Yio l - 1 n 

(92a) 

and 

Eb,io(i In) = Eb,io+1(i In) + et30(i In) 1 *1 ("I ). (92b) 
- 'Yio+l l n 

Equations (89) and (91) are obtained by using (35) and (44), where Vi 

is replaced by Y io+n,i, Y i is replaced by z-ny io+n,i, and Mi is replaced by 
M i(l, n - 1), respectively. The previous set of recursions (64) through 
(92) are complete in the sense that any existing least-squares alogrithm 
can be derived by manipulating suitable subsets of these recursions. 
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VI. RECURSIVE FIXED-ORDER COVARIANCE ALGORITHMS 

6.1 Sliding-window algorithm 

Combining (60), (61), (68) through (73), (77), (81a), (84), (90a), and 
(92a), gives the following sliding-window LS algorithm for the predic
tion coefficients. Where unspecified, the order of the variable is 
assumed to be N, the order of the least-squares filter. Also, the starting 
time index is denoted as io. If the sliding window contains M data 
values, then io = i - M + 1, 

fio(i) = fio(i - 1) + gio(i - l)e/'io(i), 

e[,io(i) = e/.io(i)[l - 'Yio(i - 1)], 

b. (0) = bio(i -1) + eb,io(i)[gio(i IN + l)h,N 
10 £ 1- eb.io(i)[gio(i IN + l)]N+l ' 

gio+1(i) = [gio(i I N + l)h,N+ [gio(i I N + l)]N+1b io(i), 

hio+l(i) = [hio(i I N + l)h.N+ [bio(i I N + l)N+lb io(i), 

'Yio(i - 1) + ef,io(i)[gio(i IN + l)h 
-eb.io(i)[gio(i I N + l)]N+l 
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(93a) 

(93b) 

(93c) 

(93d) 

(93e) 

(93f) 

(93g) 

(93h) 

(93i) 

(93j) 

(93k) 

(93l) 

(93m) 

(93n) 

(930) 

(93p) 

(93q) 
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and 

I'to+l(i) = I'to(i - 1) + ei,io(i)[hio(i I N + l)h 

- et.io[hio(i IN + l)]N, 

b ( .) b (.) h ( .) et.io(i) 
io+l 1, = io 1, - io+l 1, 1 * (.). 

- I'io+1 1, 

(93r) 

(93s) 

The recursions (93m) and (93q) were not listed in the previous section, 
but are easily obtained by solving (77b) and (68b) simultaneously for 
bio(i), and by substituting (68a), (69a), and (81b) into (72), and solving 
for I'io+1(i I n). Notice that all data samples in the sliding window 
(Yi-M+l . .... y) must be stored. This is also true of the order-recursive 
sliding-window algorithm presented in Ref. 14. If division is counted 
as multiplication, then the algorithm (93) requires 12N + 16 multiplies 
and 12N + 12 additions at each iteration. In contrast, the unnormal
ized sliding-window lattice predictor (see Appendix B) requires 16N 
multiplies and ION additions per iteration, and the normalized lattice 
predictor16 requires 30N multiplies, 18N additions, and 6N square 
roots per iteration. 

Because sliding-window algorithms have finite memory, initializa
tion for these algorithms is basically the same as for the prewindowed 
case, i.e., the data Yi can be assumed to be zero for i < O. After M 
iterations, where M is the window length, these data points are 
discarded. The algorithm (93) is therefore initialized by setting the 
gains l' and 1'*, and the elements of the vectors f, b, g, and h equal to 
zero, and letting 

€f.io(O) = 0, (94) 

where 0 is chosen to ensure that the algorithm remains stable. It is 
easily verified that for time i < M - N - 1, where M is the length of 
the sliding window, the algorithm (93) becomes a modified version of 
the prewindowed LS transversal (fast Kalman) algorithm.1

•
22 

6.2 Growing-memory covariance algorithm 

The following fixed-order growing-memory covariance algorithm is 
obtained by combining (60), (68b), (69), (77), (78), (80), (85), (87), and 
(90a). The lower index of the window io is assumed to be zero. For 
notational convenience we define the following variables, 

(3io(i I n) == cxio(i I ~) 
1 - I'io(ll n) 

(95a) 

and 
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(95b) 

Where unspecified, the lower time index and the order of the variables 
are equal to zero and N, respectively,* 

e/(i) = Yi = fT(i - l)Yi-I, 

f(i) = f(i - 1) + g(i - l)e/(i), 

(96a) 

(96b) 

eii) = Yi - fT(i)Yi_I, (96c) 

fii) = ff(i - 1) + ef(i)e/(i), (96d) 

. ef(i) 
[g(~ I N + l)h = -( .)' (96e) 

ff ~ 

[g(i I N + l)b,N+l = g(i - 1) - [g(i IN + l)hf(i), (96f) 

eb(i) = Yi-N - bT(i - l)Yi, (96g) 

b(") = b(i -1) + eb(i)[g(i I N + l)h,N (96h) 
~ 1 - eb(i)[g(i I N + l)]N+1 ' 

gl(i) = [g(i I N + l)h,N+ [g(i I N + l)]N+1b(i), (96i) 

(3(i) = yTh(i - 1), (96j) 

(3*(i) = Yh-lgl(i), (96k) 

( .) _ gl(i) - (3*(i)h(i - 1) (961) 
g ~ - 1 - (3(i)(3*(i) , 

and 

h(i) = h(i - 1) - (3(i)g(i). (96m) 

Notice that this algorithm can be applied only if i > N. Otherwise, 
the least-squares variables of order N are undefined and cannot be 
used to compute the same least-squares variables at the successive 
time interval. Initialization of this algorithm can be performed, how
ever, by using an order-recursive algorithm for i < N to increase the 
order of the filter by one at each successive time iteration. An order
recursive algorithm for the prediction coefficients is obtained by 
combining (89), (66a), (67a), top components of (64a) and (64b), (66b), 
(67b), (65a) and (65b), (82a), (88a), (84a), (92a), (71), (73b), (72), and 
(74b). This algorithm is basically the same as the covariance lattice 

* The author recently discovered that this algorithm has been independently derived 
in Ref. 23 using an algebraic approach. 
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algorithm presented in Refs. 7 and 19, except that additional order 
recursions for the prediction vectors f and b have been added. It is 
not explicitly stated in an effort to conserve space. Order-recursive 
computation of f and b requires order N 2 arithmetic operations per 
iteration, rather than order N operations per iteration, as required by 
the fixed-order algorithm. Not all N components of the vectors f and 
b need to be updated at each iteration for i < N, however. If data is 
first received at time i = 0, the recursions listed above can be used for 
n = 0 up to n = i. At time i = N all of the variables that enter the 
fixed-order algorithm (96) have been computed by the order-recursive 
algorithm except for g{i), (3(i) and (3*(i). The gain g(i) is the only 
variable needed at the next iteration of the fixed-order algorithm and 
can be computed by first using (96j) to calculate (3(i) and then using 
(96m) to solve for g(i). 

Derivation of initial conditions for the order-recursive initialization 
routine is significantly more complicated than for the sliding-window 
algorithm. This is because for i = n, the matrix <l>n,il n is guaranteed to 
be singular, and hence all variables are technically undefined. Refer
ence 14 gives a convenient solution to this startup problem. By using 
a generalized inverse of a singular or nons in gular matrix, the least
squares projection operator P, given by (15), can be defined even when 
the matrix STS is singular. If this generalized inverse is defined 
appropriately, it can be shown that the projection updates in Section 
IV hold even when the covariance matrix is singular. This implies that 
all of the recursions listed in the last paragraph that constitute the 
order-recursive initialization routine can be used starting from i = 0 
with the following initial conditions: 

f(O I 0) = b(O I 0) = f 1( -110) = h( -110) = 0, 

1:::::;; n:::::;; N, 

')'(-110) = ,),*(-110) = a(-11 0) = 0, 

and 

At each iteration i < N, 

ef{i 10) = eb{i 10) = Yi 

and 

(97a) 

(97b) 

(97c) 

(97d) 

(97e) 

(97f) 

Counting division as multiplication, the algorithm (96) requires 
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lIN + 7 multiplies and lIN + 1 additions per iteration. To compare, 
the un normalized growing-memory lattice predictor (see Appendix B) 
requires 22N multiplies and 12N additions per iteration. The normal
iz~d lattice algorithm requires 30N multiplies, 18N additions, and 6N 
square roots per iteration. We point out that the fixed-order covariance 
algorithm specified by (96) is not unique. In particular, equation (96c) 
can be replaced by (81a). The extra recursion (93q) must be added to 
compute "y, however. This type of modification has been applied to the 
fast Kalman algorithm, and has resulted in improved numerical prop
erties.22 

VII. EXTENSIONS TO JOINT-PROCESS ESTIMATION 

The algorithms presented so far solve the LS prediction problem 
wherein the sums (1) and (2) are minimized. In applications such as 
channel equalization, echo and noise cancellation, and adaptive line 
enhancement, two processes, {Xj} and {Yj}, are given, and our objective 
is to estimate the {Xj} process in terms of the {yj} process. The vector 
of estimation errors is denoted as 

n-l 

Ex,io+l(i In) == Xio+n,i - L Cj+1ln(Z-jYio+n,i) 
j=O 

= Xio+n,i - Si(O, n - l)Cio+l(i In), (98) 

where Xio,i is defined by (23a), cio+1(i I n) is the n-dimensional vector 
of regression coefficients at time i used to estimate Xio+n,i [given by 
(4c)] where if = io + n), and the lower time subscript of Ex and C 

denotes the time index of the starting value from the y sequence (i.e., 
Yio+l), which is used in the least-squares computation. Our objective is 
to choose Cio+ 1 (i In) such that 

fx,io+1(i In) == II Ex,io+1(i In) 112 (99) 

is minimized. The discussion in Section III implies that 

Ex,io+1(i In) = P-Ktj(O,n-l)X io+n,i. (100) 

We now use the projection recursions in Section IV to derive order 
and time updates for Ex,io(i I n) and cio(i I n). Details are again omitted 
since they are basically the same as before. Combining recursions in 
this section with the prediction algorithms of the last section results 
in recursive algorithms that solve the LS joint-process-estimation 
problem. 

The following notation, which is analogous to the notation in 
Section 5.1, is first defined: 

1. Cross-correlation coefficient, 
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k ~J l,io (i) == (Xio+n,i, Eb,io (i In) ) 

= (Ex,io+l(il n), Eb,io(il n). 

2. Current residual (scalar), 

ex,io(i In) = (Ui' Ex,io(i In) 

3. Past residual (scalar), 

e~,io+l(i In) = (Uio' E x,io+l(i In) 

4. Oblique residual 

e~,io(i In) == Xi - cTo(i - 11 n)Yiln. 

The following order recursions are obtained from (22): 

° ° k~xJl,io(i) ° 
Ex,io(ll n + 1) = E x,io+1(ll n) - (01) Eb,io(ll n), 

fb,io l n 

k(X)2 (0) 
( °1 1) ( °1) n+ l,io l 

fx,io l n + = fx,io+ 1 l n - ( 01 )' 
fb,io l n 

and 

(101) 

(102) 

(103) 

(104) 

(105) 

(106) 

(107a) 

[Cio(i In + l)h,n = Cio+l(i, n) - [cio(i, n + l)]n+lbio(i' n). (107b) 

Derivation of the following forward time updates involves a straight
forward application of (34) and (35), where Y i is replaced by Xio+n,i 
and Mi is replaced by Mi(O, n - 1): 

cio(i, n) = cio(i - I, n) + e~,io(i I n)gio(i, n), (108) 

k~Jl,io(i) = k~Jl,io(i - 1) + ex,io+l(i, n)eb,io(i In) 1 _ .1 (0' )' 
1'10+1 l n 

(109) 

(110) 

* (01 ) _ * (0 I) (°1) (Xio(iln) e x,io l n - e x,io l - 1 n - e x,io l n 1 ( 01 )' 
- 'Yio l n 

(111) 

and 
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, (0, ) _ ex,io(i, n) 
e x,io 1, n - 1 ( 0' ). - 'Yio 1, n 

(112) 

Similarly, the following backward time updates are obtained from (43) 
and (44): 

( 0' ) (0') h (0' ) e~,io(i' n) (113) 
cio 1, n = Cio+ 1 1, n + io 1, n 1 * ( 0' )' - 'Yio 1, n 

( 0' ) _ (0') * (0') lXio(i'n) (114) ex,io+1 1, n - ex,io 1, n + ex,io 1, n 1 _ 'Y~(i' n) , 

k (x). (0) _ k(x) .(0) _ *. (0' ) *.(0' ) 1 (115) n+1,lo+1 1, - n+1,10 1, e x,lo+1 1, n eb,lo 1, n 1 _ :j< (0' )' 
'Y 10+1 1, n 

and 

'xMl(i In) = 'x,,,,(i In) - e;;,(i In) 1 _ 'Y~(i In) (116) 

Combining (104), (108), (103), and (113) (in that order) with the 
fixed-order sliding-window algorithm (93) gives the corresponding 
sliding-window joint-process-estimation algorithmo Adding these ad
ditional recursions results in a total computational complexity of 
16N + 17 multiplies and 16N + 13 additions per iteration. This should 
be compared with 23N multiplies and 14N additions per iteration 
required by the unnormalized sliding-window lattice joint-process 
estimatoro Initialization of these additional recursions is accomplished 
in a fashion analogous to the prediction recursions. In particular, the 
data Yi and Xi is assumed to be zero for i < 0, and cio(-l, n) = o. 

The fixed-order growing-memory algorithm (96) is extended to the 
joint-process-estimation case by adding the recursions (104) and (108). 
The order-recursive prediction algorithm listed in Section 6.2 is ex
tended to the joint-process-estimation case by adding the recursions 
(105) (top component only), (109), (107), (111), and (113). In each 
case the variable io = o. Adding (104) and (108) to (96) results in a 
total computational complexity of 13N + 7 multiplies and 13N + 1 
additions per iteration. This should be compared with 28N multiplies 
and 16N additions per iterations required by the growing-memory 
covariance lattice joint-process estimator. The following accomplishes 
the initialization of the additional recursions for the order-recursive 
algorithm: 

1 ~ n ~ N, 

c(-l' n) = 0, O~n~N, 

(117a) 

(117b) 
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and 

e*(O In) = {xo for n = 0 
x 0 for n> O. (117c) 

The fixed-order algorithm is initialized by using the order-recursive 
algorithm for i < N. 

VIII. CONCLUSIONS 

We have presented new fixed-order algorithms that recursively solve 
the sliding-window and growing-memory covariance least-squares es
timation problems. The fixed-order growing-memory algorithm re
quires approximately one half the number of multiplies and divides 
required by the analogous unnormalized order-recursive or lattice 
algorithm. The fixed-order sliding-window algorithm requires approx
imately 70 percent of the number of multiplies and divides required 
by the analogous lattice algorithm. These fixed-order algorithms also 
help complete the list of computationally efficient LS algorithms 
currently available. In particular, each type of windowing technique 
that has been proposed for the LS computation (i.e., prewindowed, 
growing-memory covariance, and the sliding window) has resulted in 
both computationally efficient fixed-order and order-recursive algo
rithms. The order-recursive algorithms offer the advantage of being 
able to dynamically choose the order of the autoregressive model, while 
the fixed-order algorithms require Jess computation. 

Associated with the algorithms mentioned in this paper are per
formance issues such as the relative convergence speed of each algo
rithm given different types of stationary and nonstationary random 
inputs, and the evaluation of finite word-length effects. As an example, 
the relative performance improvement offered by LS covariance al
gorithms over LS prewindowed algorithms has yet to be ascertained 
in applications where the prediction coefficients must be estimated 
from relatively few data samples. These issues will playa crucial role 
in determining the practical value of the LS algorithms presented in 
this paper. 
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APPENDIX A 

Derivation of (30) 

We wish to prove (30). By definition, 

(118) 

where M is the subspace spanned by the column vectors of Si. Pro
jecting both sides of (118) onto Mi gives 

PMiPMili-IYi = PMiPMiYi + PMiPUiPMil i-IYi. (119) 

Now PMili-IYi lies in M i , and hence 

PMiPMili-IYi = PMili-IYi. (120) 
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Also, 

= PMj(Yi - PUjYi ). (121) 

Combining (118) through (121) gives 

= PMjlj_lYi + (PMjUi)(Ui, P-Ktjlj_lYi). (122) 

Subtracting both sides of (122) from Y i , and then taking inner products 
of both sides with Ui gives 

(Ui' P-KtjYi) = (Ui' PMjlj_lYi)[l - (Ui' PMiUi)]. (123) 

Combining (122) and (123), and using the definition (31) gives (30). 
[Ref. 24 gives a purely geometric proof of (30) for the case where Mi 
is spanned by one vector (as illustrated in Fig. 2).] 

To derive the inner product update (35), we first rewrite (34) as 

P-KtjYi = PDjP-Ktjlj_lYi + PUjP-Ktili-lYi - PMjUi(Ui, P-KtjY i)sec2fh 

= PDjP"1jY i + Ui(Ui, P-Ktjlj_lYi) - PMjUi(Ui, P-KtiY i)sec2fh 

= PDjP"1jY i + P-KtjUi(Ui, P-KtjY i)sec2fh. (124) 

Taking the inner product of both sides with Vi and using the fact that 

(125) 

gives (35). 

APPENDIX B 

Other Recursive Least-Squares Algorithms 

The recursions in Section V and VII are complete in the sense that 
any of the existing computationally efficient LS prediction or joint
process-estimation algorithms can be derived from suitable subsets of 
these recursions. The purpose of this appendix is to illustrate this 
point by listing the recursions that enter the prewindowed LS trans
versal (fast Kalman) and lattice algorithms, the un normalized sliding
window and growing-memory covariance lattice algorithms,14 and the 
nonrecursive LS algorithm presented in Refs. 11 and 17. The list of 
recursions presented below does not completely describe each algo
rithm. For example, initialization is not discussed. Consistent steady
state algorithms can be formulated, however, by choosing the time 
indices and order of the variables in each recursion appropriately. The 
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following algorithms apply to the more general joint-process-estima
tion case (eliminating the recursions from Section VII gives the 
analogous prediction algorithm): 

1. Prewindowed transversal (fast Kalman) algorithm:1 (60a), (77a), 
(51a), (90a), (69), (60b), (93m), (68b), (104), and (108). 

2. Prewindowed lattice algorithm* (See Refs. 18 and 16): (89), (64a)t 
and (64b), (65a) and (65b), (72a), (109) and (105). 

3. Sliding-window lattice algorithm:14
,16 (89), (64a) and (64b), (65a) 

and (65b), (72a), (73a), (91), (109), (105), and (115). 
4. Growing-memory covariance lattice algorithm:14,16 (89), (64a) and 

(64b), (65a) and (65b), (82a), (88a), (92a), (72b) and (72a), (73b), (74b), 
(109), (105), (111), and (114). 

5. Nonrecursive LS algorithm:1l,17 
The following set of recursions, which represents a modified version 

of the algorithm presented in Ref. 17, can be used to compute f(i IN), 
b(i I N), and c(i I N), given by (4), in an order-recursive fashion starting 
with first-order least squares variables at time i. Initialization consists 
of computing these first-order variables via the definitions given in 
Section V. 

(78) (for computing h(i - 11 n)), (85) (for computing g1(i In)), (79), 
(86), (84a), (77b), (92a), (90b), (53), (66), (67), (65a) and (65b), (51b), 
(61), (68), (71), (57c), (72a), (73b), (103), (113), (101), (107). 

Assuming that the covariance matrix <I>N,iIN+l has been computed, a 
more convenient form for (53) is 

kn(i) = (Yn,i, Eb(i - 11 n - 1) 

= Y~i[Z-ny n,i - Si(l, n - l)b(i - 11 n - 1)] 

n-l 

= Rn - L Rn-Ab(i - 11 n - 1)]j, (126) 
j=1 

where Rj = Y~i(Z-jy n,i), and is the (1, j + l)st element of <I>n,iln+1' 

Equation (101) can be similarly modified. 
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Let Xi be members of a stationary sequence of zero mean gaussian random 
variables having correlations EXiXj = a2pli-il, 0 < P < 1, a> o. We address the 
behavior of the averaged product qm(P, a) == EXIX2 ... X2m-IX2m as m becomes 
large. Our principal result when a2 = 1 is that this average approaches zero 
(infinity) as P is less (greater) than the critical value pc = 0.563007169 .... To 
obtain this we introduce a linear recurrence for the qm· (p, a), and then con
tinue generating an entire sequence of recurrences, where the (n + l)-st 
relation is a recurrence for the coefficients that appear in the nth relation. 
This leads to a new, simple continued fraction representation for the gener
ating function of the qm(P, a). The related problem with ijm(P, a) = E I 
Xl ... Xm I is studied via integral equations and is shown to possess a smaller 
critical correlation value. 

I. INTRODUCTION 

The problem that we consider in this paper is as follows: Let {Xi} r 
be a stationary sequence of zero mean, gaussian random variables with 
covariances 

i, j = 1, 2, ... , (1) 

where E(·) denotes mathematical expectation. What is the behavior 
of 
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(2) 

as m becomes large? 
In other words, the product in (2) is formed from samples of a gauss

markov process that are taken at regular intervals. Only an even 
number of samples is considered in (2) since an odd number would 
result in a zero average. 

Originally, the problem was conceived as a simple model for averages 
of multiplicative structures having infinite memory between the fac
tors of the product. Such products arise in the analysis of learning 
curves for many adaptive systems, and for these problems one encoun
ters products whose factors are noncommuting matrices. We felt that 
the analysis of a simple problem, such as that described above, would 
serve as a valuable guide to what results might be achievable for more 
realistic situations. However as one may readily imagine, as soon as 
the problem described in (1) and (2) was written down it became of 
interest in its own right, consisting as it does of a simple question 
about long familiar quantities. 

Our principal result is that for large m the behavior of the average 
product qm(P, 0") in (2) depends on the relationship of P to a critical 
value, Pc = Pc(O"). If P < Pc, then qm(P, 0") will approach zero exponen
tially fast; if P > Pc, qm(P, 0") approaches infinity exponentially fast; 
finally, if P = Pc, qm(P, 0") ~ qoo(O"). We find for 0" = 1, Pc(1) = 
0.563007169391816 ... , and qoo(l) = 0.50900853 .... A plot of Pc(O") is 
given in Fig. 1. All of these results were obtained from a continued 
fraction representation for the generating function 

Q(z, p, 0") = L qm(P, O")zm. (3) 
m=O 

Q(z, p, 0") = Q(Z0"2, p, 1), (4) 

so it is without loss of generality that we will set 0" = 1, Q(z, p) = Q 
(z, p, 1), and qm(P) = qm(P, 1). By introducing a sequence of generating 
functions, we show in Section II that 

Q(z, p) = ____ 1 __ _ 
1 - pz 

------

1 - 2p3z 

1 - .. 
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The value p~<T) is then the smallest p for which Q((J2, p) = 00, while the 
value qoo((J) is the limit as z ~ 1 of (1 - Z)Q(Z(J2, Pc). 

Since methods are as interesting as results, Section III presents 
another approach involving integral equations for discussing the qm(P) 
behavior. Although this method is not rigorously justified for the 
present problem due to anon-hermitian kernel, it is applicable to a 

N 
C 
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Fig. 1-Critical correlation value Pc(0'2) vs. variance 0'2. 
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related problem, the behavior of E I Xl ••• Xm I as m ~ 00 [still assuming 
(1)]. Using the integral equation we show that Pc, the critical value of 
P for this new problem, is strictly smaller than the Pc defined above. 
This is of interest since it shows that the behavior of qm(P) is deter
mined both by how large I Xl ... X2m I is on the average, and by the 
extent of cancellation between positive and negative values of qm. 

Although we do not give the details here, it is not difficult to show 
that for all P < 1, qm(P) approaches zero with probability one as m 
becomes large. 

II. LINEAR RECURRENCES AND GENERATING FUNCTIONS 

Given 2m zero-mean jointly gaussian random variables Xi of unit 
variance and correlations EXixj = Pij, then a known formula l states 
that 

EXI ••. X2m = L Pi1i2Pi3i4 ••• PiZm-li2m' 
all 

pairs 

(6) 

where the unordered set {iI, ... , i2m } is equal to the unordered set 
{I, 2, ... ,2m}. The sum in (6) is over all distinct, unordered pairs of 
subscripts. That is, we do not count twice terms which differ only by 
interchanging the values within one or more subscript pairs, nor do 
we count twice terms which differ only by permuting subscript pairs. 
Thus there are (2m)!/(2mm!) terms in the sum (6). 

If we denote permutations of 2m objects by O"(i): i ~ O"(i), i = 1, 
2, ... ,2m, then a succinct way of writing (6) when (1) holds is 

m 

1 L I u(2j)-u(2j-l) I 
( ) 

~ j-I 
qm P = -2m , ~ P , 

m. uESZm 
(7) 

the sum in (7) being over all (2m)! permutations of 82m , the group of 
permutations of 2m symbols. Formula (7) shows immediately that 
qm(P) > 0 if P > o. 

Now define qo(p) = 1 and write 
m 

qm(P) = L bs(p)qm-s(P), m = 1, 2, .... (8) 
s=1 

We evaluate a few of the bs(p), writing for convenience bi(p) = bi, 
qi(p) = qi. The evaluation is done from (8) by explicitly evaluating the 
qm(P) as needed. A partial list of bi(p) follows: 

b1 = P 

b2 = 2p4 

bg = 4p7 + 6l 
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b4 = 8plO + 24p12 + 18p14 + 24p16 

b5 = 16p13 + 72p15 + 108p17 + 150p19 + 144p21 

+ 96p23 + 120p25. (9) 

Equation (9) suggests the possibility that, for small p, only a few 
terms in (8) would need to be kept for an accurate description of qm(P). 
For example, keeping only one term yields 

qm = pqm-I, (10) 

or qm = pm. Since EXIX2 = p, this approximation corresponds to treating 
the successive pairs of gaussian variables which determine qm(P), via 
(2), as independent. The next step after (10) would be to write 

(11) 

This equation, involving b2 as well, would be a correction to the 
"independence assumption," but one involving only up to fourth-order 
correlations, since, from (8) the highest average appearing in b2 is 
E(XIX2X3X4). Further corrections are obtained by including more terms 
of (8), with higher order correlations entering.t 

Assuming the bi(p) to be known, the natural procedure would be to 
"solve" (8) using generating functions. We define these as follows: if 
Yo, Yb Y2, ... is a bounded sequence of numbers, then the generating 
function, Y(z), of the sequence is defined for complex z, I z I < 1, by 

Y(z) = L YiZi. 
i=O 

(12) 

Given Y(z), the Yi are, in principle, uniquely determined. We assume 
that the reader is familiar with the use of generating functions. If not, 
consult Chapters XI and XIII of Feller.2 

We define bo{p) = 0, qo(p) = 1, and call the generating functions of 
the bi(p), and qi(p) sequences B(z; p) and Q(z; p), respectively. The p 
dependence is explicitly indicated. 

If we multiply (8) by zm and sum from m = 1 to 00 (treating qm = 0, 
m < 0 and bm = 0, m < 0), we obtain the basic relation 

1 
Q(z; p) = 1 - B(z; p) (13) 

Equation (13) thus allows us to determine, in principle, the qm from 
the bm • In particular, we have 

tThe above interpretation prompts us to advocate consideration of the ideas repre
sented by (8) for analyzing more complex multiplicative structures, particularly when 
connections to some sort of independence approximation are a natural thing to seek. 
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00 1 
11 qm(P) = Q(I; p) = 1 - B(I; p)' (14) 

and the critical value Pc will be given by the equation 

B(I; Pc) = L bk(pc) = 1. (15) 
1 

Although we could work with the bm(p) themselves, a more conve
nient approach for finding Pc numerically is to set up a continued 
fraction representation for the generating functions Q(z; p), or equiv
alently, B(z; p). It is this approach that we follow now. 

Recall (8) defining bs(p). Since these bs coefficients are a numerical 
sequence themselves, we can use the same reasoning that took us from 
the qk to the bs and use it to suggest going from the bs to a new set of 
coefficients, b~), via the following recurrence 

k 

bk(p) = L b~2)(p)bk_s(p), k = 2, 3, (16) 
s=l 

where we define bo(p) = O. The recurrence (16) yields 

b1(p)z 
B(z; p) = 1 _ B(2)(Z; p)' (17) 

B(2)(Z; p) being the generating function for the b~2)(p). To continue this 
procedure with a uniform notation, we define 

and write 

b~l)(p) = bs(p) 

bbm)(P) = 0, 

k 

m = 1,2, ... 

bim)(p) = L b~m+1)(p)bk~~(P), m = 1, 2, 
k = 2, 3, s=l 

(18) 

(19) 

The corresponding sequence of generating functions are related by 

(m). _ bim)(p)z 
B (z, p) - 1 _ B(m+1)(z; p)' (20) 

We use this repeatedly in (13) and obtain the continued fraction 
representation t 

tThe fact that this continued fraction does not terminate implies that Q(z; p) is not 
a rational function of z, and thus one cannot find a (finite-order) difference equation 
for the qm(P), See Ref. 3, Theorem 99.1, p. 400. 
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1 
Q(z, p) = b(1) 

1 - 1 Z 

1 - bi2)z 

1 - b(3)Z 
1 

1 - .. 

In (21) we have, for simplicity, written bim)(p) = bim). 

(21) 

A relation which will be used later to aid in finding the bim) follows 
by setting k = 2 in (19), to obtain 

b(m+l)( ) _ b~m)(p) 
1 p - bim)(p). (22) 

We can calculate some of the bim)(p) using the partial list of the 
bk(p) given in (9) to derive several b~m)(p) from (19). Using (22) we 
then obtain 

The obvious guess that 

bi!) = P 

b(2) - 2 3 
1 - P 

b (3) - 3 5 
1 - P 

bi4 ) = 4p7 

bi5 ) = 5p9. 

b(m) _ 2m-1 
1 - mp , m = 1,2, ... 

(23) 

(24) 

follows from a direct proof of the continued fraction given in the 
appendix. Assuming (24) to hold yields the simple representation 

1 
Q(z;p)=------

1 - pz 
------
1 - 2p3Z 

1 - 3p5Z 

1 -

The accurate numerical value 

Pc = 0.563007169391816 ... 

(25) 

(26) 

was obtained by using this representation along with (14) and (15). 
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When P = Pc, 

1 
qoo = lim qk(Pc) = -'-00--- (27) 

k-+oo L kbk(pc) 
I 

Using the computed value of Pc and the definition of the bk(p), we 
found numerically that 

qoo = 0.50900853 .... (28) 

It was quite surprising to us that Q(z, p) turned out to be a new, but 
simple, continued fraction. 

III. INTEGRAL EQUATION METHOD 

The purpose of this section is to introduce the integral equation 
method and to show that Pc < Pc, where Pc is the critical correlation 
value for the related problem involving E 1 Xl ••• Xn I. 

We begin by developing an expression for EXI ... Xn • We have, from 
the Markov property of the Xi sequence, 

EXl ••• Xn = I ... I XnP(XnIXn-l) 

... XIP(XII Xo)cf>(xo)dxo ... dxn , (29) 

where 

1 
cf>(x) = rn- exp(-x2/2) 

v27r 

is the standard normal density and 

(30) 

1 
p(y 1 x) = v'27r(1 _ p2) exp[ -(y - px)2/2(1 - p2)] (31) 

is the generic form of the conditional densities occurring in (29). 
Define a kernel K(x, y) by 

K(x, y) = yp(y 1 x), 

Kf(x) = 1: K(x, y)f(y)dy. 

Then (29) may be written in the inner product notation of Hilbert 
Space 

(32) 

where cf>. is the normal density (30), 1 is the unit constant function, 
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and Kn is the nth iterated kernel. Now assume, heuristically, that Kn 
has the usual expansion 

Kn(x, y) = L Ajtf;j(x)tf;j(Y) (33) 
j=l 

in terms of eigenfunctions tf;j(x) and eigenvalues Aj of K. Then 
EXI ... Xn would remain bounded, if, and only if, the largest eigenvalue 
Al = AI(p) is less or equal to one; thus AI(Pc) = 1 would determine Pc. 
Unfortunately there is no general eigenexpansion theory available for 
K since it is not symmetric and is not symmetrizable. 

Fortunately symmetry holds for the integral equation method when 
one expresses E I Xl ... Xn I via kernels. Define, in analogy to (32), 

K(x, y) = I yl p(YI x). 

If we further define 

h(x) -
J(x, y) = h(y) K(x, y), 

where 

h(x) = JjXTexp(-x 2/4), 

then 

[ 
pxy ] ·exp --

I - p2 

is a symmetric kernel. 
As in (29), 

E I X, ••• Xn I = I ... I K(Xn-h xn)K(Xn-2, Xn-l) 

... K(xo, Xl) ¢(XO)dxO ... dXn 

= I ... I dxo ... dXn J(xo,x,) 

h(xn ) 
... J(Xn-b Xn) h(xo) ¢(Xo) 

(34) 

(35) 

(36) 

(37) 

(38) 
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Since J is symmetric and square-integrable, it is a Hilbert-Schmidt 
kernel and so has a discrete spectrum. Further its maximum eigen
value, A, is given by 

(JI, f) 
A = s~p (I, f) . (39) 

Since J(x, y) ~ 0, we see that the maximum eigenfunction g = g(x) is 
nonnegative and A> 0 as well. Further since hand ¢/h are nonnega
tive, (h, g) > 0 and (¢/h, g) > 0 so that E I Xl ... Xn I = (Jnh, ¢/h) ~ 
00 if and only if A > l. 

Define la by 

(40) 

and note that from (39), 

(41) 

Now 

(fa, fa) = f Ixl exp(-ax2/2)dx = 2/a (42) 

and 

where 

(44) 

Set y = xu and integrate over X to obtain 

J _ 4 r" luldu 
( fa, fa) - ~27r(1 _ p2) J-oo (c(l + u 2) - {jU)2' 

2p 
{j=--

1 - p2· 
(45) 

Using Ref. 4 (p. 68, 2.175) we evaluate the last integral as 
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(.6. = 4c2 
- (32. (46) 

Setting a = 0.5, P = 0.55, we find that c = 1.18369, {3 = 1.57706, .6. = 
3.11738, (JIc" fa) = 4.0824, (fa, fa) = 4, so that A > 1.012. Thus for 
P = 0.55, E 1 Xl ... Xn 1 ~ 00, and Pc < 0.55. We have seen that Pc > 
0.563 so the claim is proven. 
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APPENDIX 

Combinatorial Derivation of Continued Fraction 

In this appendix we give a direct combinatorial proof of the contin
ued fraction representation (25) of Q(z, p). This derivation is complete 
in itself, but we preferred the method of the text for showing where 
the continued fraction comes from. Our starting point is the formula 
(7). Let us define, for a E 8 2m , 

m 

V(a) = L la(2i) - a(2i - 1) I. 
i=l 

For 1 :s;; k :s;; m, let 

8(m, k) = {a E 8 2m:a(2m) = 2m, 

a(2m - 2) = 2m - 1, 

a(2m - 4) = 2m - 2, "', 

(47) 

a(2m - 2k + 2) = 2m - k + I}. (48) 

For k = 0, we adopt the convention that 8(m, 0) = 8 2m • We also define 

( k) - 1 ~ V(s) 
u m, - 2m - k ( _ k)' L.J p , 

m . aES(m,k) 

(49) 

so that u(m, 0) = qm. (We take u(O, 0) = qo = 1, and u(m, k) = 0 for 
k < 0 and k > m.) Our key result is: 

Lemma. If m ;:: 1, k ;:: 0, then 
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u(m, k) = kp 2k-lu(m - 1, k - 1) + u(m, k + 1). (50) 

Proof. We will prove this for 1 ::::;; k ::::;; m - 1, as the other cases are 
easy. Let 

S' = {u E S(m, k):2m - k 

E {u(2m - 1), u(2m - 3), ... , u(2m - 2k + I)}}, 

S" = S(m, k) - S'. (51) 

If u E S", we construct a permutation u* E S(m, k + 1) by changing 
the action of u on four letters in such a way that V(u) = V(u*) and 
u*(2m - 2k) = 2m - k. To define u* precisely, let p and r be such that 
{r, 2m - k} = {u(2p - 1), u(2p)}. Then, if we associate to u the vector 
A(u) = (u(l), u(2), ... ,u(2m)), the vector A(u*) is obtained fromA(u) 
by interchanging the pairs {u(2m - 2k - 1), u(2m - k)} and {r, 2m -
k} so as to keep the same ordering in the first pair, but possibly 
reversing it in the second, so as to have u*(2m - 2k) = 2m - k. As an 
example, if m = 5, k = 3, and A(u) = (7, 2, 4, 1, 6, 8, 3, 9, 5, 10), then 
A(u*) = (4, 1, 2, 7, 6, 8, 3, 9, 5, 10). It is clear that u* E S(m, k + 1) 
and V(u*) = V(u). Moreover, every T E S(m, k + 1) can be represented 
in exactly 2(m - k) ways as T = u*, u* E S". Therefore, 

1 ~ V(u) - ( k 1) 
2m-k( k)' ~ p - u m, + . m - . uES" 

(52) 

Suppose now that u E S'. Then 2m - k = u(2m - 2r + 1) for some 
r, 1 ::::;; r ::::;; k. We now define a permutation u' E S(m - 1, k - 1) as 
follows: In A(u), delete a = u(2m - 2r + 1)(= 2m - k) and b = u 
. (2m - 2r + 2) and reduce the remaining entries that" are between a 
and b by 1, and those that are larger than max (a, b) = a by 2. As an 
example, if m = 5, k = 3, and A(u) = (2, 1, 6, 3, 5, 8, 7, 9, 4, 10), then 
A(u') = (2, 1, 6,3,5, 7,4,8). The resulting vector clearly equals A(u') 
for some u' E S(m - 1, k - 1), and each T E S(m - 1, k - 1) has 
exactly k such representations. Further, V( u) equals the sum of 
(i) V(u'), (ii) a - b for the pair that was dropped, (iii) 2 for each of the 
r - 1 pairs (u(2m - 2j + 1), u(2m - 2j + 2)) for 1 ::::;; j ::::;; r - 1, since 
in each such pair u(2m - 2j + 2) > a, u(2m - 2j + 1) < b, and finally 
(iv) 1 for each of the k - r pairs (u(2m - 2j + 1), u(2m - 2j + 2)), r + 
::::;; j ::::;; k, since in each of them u(2m - j + 1) < b, b < u(2m - 2j + 2) 
< a. Hence, 

V(u) = V(u') + a - b + 2(r - 1) + k - r. (53) 

But a = 2m - k and b = u(2m - 2r + 2) = 2m - r + 1 from the 
definitions of S(m, k), so 

V(u) = V(u') + 2k - 1. (54) 
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Hence, we have 

1 L P V(<T) = kp2k- 1u(m - 1 k - 1) (55) 
2m

-
k (m - k)! <TES' " 

which proves the lemma. 
We now can use the recurrence of the Lemma to derive the continued 

fraction expansion of the generating function. Let 

Ik = Ik(z) = L u(m, k)zm, k = 0,1, 
m=O 

which for the moment we regard as formal power series in z. Then the 
Lemma gives us 

11 = 10 - 1, 

and for k ~ 2, 

Ik = L u(m, k - l)zm - (k - 1)p2k-3 L u(m - 1, k - 2)zm 
m m 

= Ik-l - (k - 1)p2k-3zl k_2. 

Relations (56) and (57) show that for k ~ 0, 

Ik = sklo - rk, 

(56) 

(57) 

(58) 

where So = SI = 1, ro = 0, rl = 1, and for k ~ 2 both Sk and rk satisfy 
the recurrence 

Xk = Xk-l - (k - 1)p2k-3zxk_2. 

Hence the quotients rk/sk are the partial quotients of the continued 
fraction R(z, p) on the right side of (25), and Sk and rk converge as 
k ~ 00 to power series (in z) s(z, p) and r(z, p), respectively, for which 

R( ) 
= r(z, p) 

z, p ( ). 
S z, p 

(59) 

On the other hand, since Ik starts with a term involving Zk, we conclude 
that Ik converges to ° in the ring of formal power series as k ~ 00. 

Therefore, from (58), 

r(z, p) 
10 = -(-) = R(z, p). 

S z, p 
(60) 

Since 10 = Q(z, p), we obtain the relation (25), at least in the ring of 
formal power series in z. However, the continued fraction (25) is 
clearly a meromorphic function of z for p fixed, ° < P < 1, and it is 
analytic at 0. Hence (25) holds as an equality among meromorphic 
functions, and we can obtain from this the exponential decrease of the 
qm(P) for p < Pc and the exponential increase for p > Pc. 
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Series Solutions of Companding Problems 
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A formal power series solution (i) x(t) = Li" mkxk(t) is given for the 
companding problem (ii) Bf{x(t)} = my(t), Blx(t)l = x(t), where B is the 
bandlimiting operator defined by Bg = (Bg)(t) = J~oo g(s)[sin A(t - s)]/[7r(t -
s)]ds and I(t) has a Taylor series with 1(0) = 0, f' (0) =1= o. Expressions for the 
Xk are given in terms of the coefficients of I, and operations on y, and in a 
different form in terms of the coefficients of the inverse function ¢, ¢ I I(x) I = 
x. A series development is given for a bandlimited z(t), Bz = z, such that the 
solution of (ii) is given by x = B¢(z). Also a series development is given for 
the "approximate identity", x == B¢IBI(x)}, where x = x(t), Bx = x, which is 
shown to be a good approximation to x for fairly linear I(x), not necessarily 
having a Taylor series expansion. As an example of one application of the 
results, a few terms are given for correction of the "inband" distortion arising 
in envelope detection of "full-carrier" single-sideband signals. The results 
should prove useful in correcting small distortions in other transmission 
systems. Finally, it is shown that the formal series solution (i) actually 
converges for sufficiently small 1 m I. This involves proving that the compand
ing problem (ii) has a unique solution for arbitrary complex-valued y(t) and 
complex m of sufficiently small magnitude, the solution x(t; m):being, for each 
t, an analytic function of the complex variable m in a neighborhood of the 
origin. It is a curious fact, as shown by an interesting example, that the series 
(i) may converge for values of m for which it is not a solution of (ii). 

I. INTRODUCTION 

Suppose x(t) is a bandlimited signal whose Fourier transform van
ishes outside the interval [-A, A]. If such a signal is instantaneously 

* Bell Laboratories. 
©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for 
noncommercial use is permitted without payment of royalty provided that each repro
duction is done without alteration and that the Journal reference and copyright notice 
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paper may be copied or distributed royalty free by computer-based and other informa
tion-service systems without further permission. Permission to reproduce or republish 
any other portion of this paper must be obtained from the Editor. 
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distorted by a nonlinear (companding) function !(x), the distorted 
signal f{x(t)J will, in general, have frequency components outside the 
interval [-A, A]. If the out-of-band components of the distorted signal 
are removed by ideal low-pass filtering, the result is a bandlimited 
signal y(t) whose Fourier transform agrees with that of !{x(t)} over 
(-A, A). How, and under what conditions, may x(t) be recovered from 
y(t)? When the signals are real-valued, this is known as the compand
ing problem of Landau and Miranker (Refs. 1 and 2), hereafter referred 
to as the r. v. companding problem. Before stating their result, and our 
purpose, we introduce some notation. 

The symbol ~2(A) will denote the subspace of L2 = L2( -00, 00) whose 
elements are those (square-integrable) functions whose Fourier trans
forms vanish outside [-A, A]. Associated with this subspace is the 
bandlimiting operator B A, defined for gin L2 by 

f oo sin A(t - s) 
BAg = (BAg)(t) = g(s) ( ) ds. 

-00 7r t - s 

The Fourier transforms of g and BAg agree over (-A, A), the transform 
of the latter vanishing outside [-A, A]. In the language of Hilbert 
space, BAg is the projection ofg on ~2(A), being the best approximation 
to g in the subspace ~2(A). In case g belongs to ~2(A),. we have 

BAg = g. 

It follows that 

n = 1,2, .... 

The operator BA may be applied also to functions belonging to Lp , 1 ~ 
p < 00; i.e., to functions g satisfying 

{
rOO }l1P 

Ilg lip = J-oo Ig(t) I Pdt < 00 (1 ~ p < 00). 

Here the notation II g lip designates the norm of g in Lp , or simply the 
Lp-norm of g. The space Loo consists of those functions g whose 
magnitude is bounded on the real line, their norm II g 1100 being the 
"essential supremum" of 1 g(t) I, which for functions we will be dealing 
with here, is simply the maximum value of 1 g(t) I. The operator BA 
may not be applied to an arbitrary bounded function, since the 
associated integral may not converge. However, the integral may 
converge conditionally for a large class of functions; in particular, 
BAg = g, for any constant function g. 

The operator BA is a "contraction" operator on L 2; i.e., 
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with equality attaining only for g in ~2(A). This follows from Parsev
aI's theorem and the definition of B>.. 

Applying Schwarz's inequality to the integral equation denoted by 
B>.g = g, we obtain the useful inequality 

II g II", ~ ~A/7r II g 112, g in ~2(A). 

Also, it is easy to show from the integral equation that 

lim g(t) = 0, 
t-+±'" 

We shall also make use of the high-pass operator H>., defined by 

H>.=I-B>., 

where I is the identity operator. H>. is an identity operator for functions 
h of L2 whose Fourier transforms vanish over (-A, A), and it is also a 
contraction operator on L 2 , 

IIH>.gI12 ~ Ilg112' 
with equality attaining only for H>.g = g, i.e., for B>.g = O. (In these 
operational equations, 0 is interpreted as the null function.) 

It is clear from the operator definitions and the associated Fourier 
transform relations that any function f in L2 has the decomposition 

f = g + h, 

where 

g=Bd, h =H>.f. 

Since A will be fixed throughout the paper, we will, except where 
emphasis is desired, simply write B, H, and ~2 for B>., H>., ~2(A), 
respectively. 

Now, using our notation, we may state the important result of 
Landau and Miranker as follows: 
Theorem (Landau and Miranker): Let f(x) be a real-valued function of 
the real variable x, satisfying 

(i) f(O) = 0 
(ii) 0 < ml ~ f'(x) ~ m2 < 00, (-00 < x < 00). 

Then to each real-valued y in ~2 there corresponds a unique x in ~2, 
also real-valued, satisfying 

(iii) Bf(x) = y. 
The solution x of (iii) may be obtained as the limit of the sequence of 
approximants {xn } defined iteratively by 

(iv) Xn+1 = Xn - cB {f(xn ) - y}, 
provided only that Xl is a real-valued function in ~2 and the real 
constant c is so chosen that 
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(v) max 11 - cf'(x) I ::::::; r < 1. 
x 

The beauty of this result is that, under the hypotheses on f, every 
(r.v.) y in !J&2 has the representation (iii) where x is a unique (r.v.) 
function in !J&2. In some r.v. companding problems of interest, f(x) 
may not be defined outside some interval and/or the condition on 
f' (x) may not be satisfied over the whole real axis, but rather over 
some interval including the origin. Then the conclusion will apply only 
to y of sufficiently small norm. In such cases, the companding problem 
has two essentially different interpretations. The first is the recovery 
problem: y is known to be of the form (iii); recover x. The second is 
the design problem: y is a prescribed (desired) signal; find x, if possible, 
so that y is given by (iii). In this case, one is faced with the problem 
of determining for what y the problem has a solution. 

The speed of covergence of the iterative solution of Landau and 
Miranker is a matter of practic~l concern. They show that 

II Xn+1 - Xn 112 ::::::; rll Xn - xn-lll2. 
Then the constant c in (v) should be chosen to make r as small as 
possible. Assuming that equality may attain on both sides in (ii), one 
should choose 

giving 
m2 - ml 

r=---
m2 + ml 

Thus rapid convergence is assured if (m2/ml) is not much larger than 
1. If this is not the case, a large number of iterations are, in general, 
required to obtain a close approximation to the solution of the problem. 
In a practical implementation of the iterative scheme of solution (Ref. 
1), the ideal bandlimiting operator is replaced by an approximate 
operator, incurring a certain delay, in addition to (eventually) signifi
cant spectral distortions, with the result that the sequence {xn } will 
not converge to the solution x. Thus, in practice, the number of 
iterations to be performed is limited both by practical and theoretical 
considerations. The conclusion is that good approximate solutions to 
companding problems may be conveniently obtained in practice only 
in those cases where the companding function f(x) is fairly linear over 
the range of x(t). 

We should remark at this point that there is only one known 
(nonlinear) r.v. companding problem (see Ref. 3) admitting of an 
explicit non iterative solution; viz., 

B{log(1 + x)} = y, x> -1, x In ~, 

which has a solution if, and only if, the function t 

t Here we are applying the B operator to a function not in ~, the proper interpretation 
being w = 1 + BI-l + exp( .)}. 
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w(t) = B{exp 1/2[y(t) + y(t)]}, 

where y is the Hilbert transform of y, extends as a function zero-free 
in the upper half-plane, which will be the case if II y 112 is sufficiently 
small. Then the solution is given by 

x(t) = I w(t) 12 - 1. 

Motivated by the above considerations, pure curiosity, and the fact 
that in many cases of practical interest the companding function and/ 
or its inverse can be well approximated by a polynomial of low degree 
over the range of interest, we are led to consider the case where the 
companding function has a Taylor series expansion, allowing the 
possibility of developing a corresponding series solution to the prob
lem. To obtain the terms (1st order, 2nd order, etc.) in the series 
solution it is convenient to multiply y by a scalar parameter m, and 
consider the problem 

Bf(x) = my (1) 

to be solved for x in ~, given y in ~, for companding functions 

Ixl < Ro (2) 

b1 =1= O. 

For sufficiently small I x I, f will have an inverse 1>, 

x = 1>{f(x)} 

I yl ~ R~. (3) 

We assume that the solution x = x(t; m) of (1) has a series expansion 
in the parameter m, 

x(t; m) = L mkxk(t), (4) 
1 

where the Xk(t), aptly described as kth order corrections, (not to be 
confused with the Landau-Miranker approximants) depend only on 
y(t) and f. Presumably, in cases of small distortion, a few terms of the 
series would give a satisfactory approximation to the solution. 

Explicit expressions for the first five of the Xk(t) are given in the 
sequel, first in formulas involving the coefficients of 1>, and next, the 
coefficients of f, together with certain operations on y. These formulas 
reveal how the Fourier transforms of the Xk(t) may be calculated from 
the Fourier transform of y(t), if this be given. 

Next, we find a series development of z in ~, 
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z(t) = z(t; m) = L mkZk(t) (5) 
1 

such that the solution to (1) is given (presumably for sufficiently small 
I ml) by 

x = B¢(z). (6) 

We find that ZI = y, Z2 = 0, and in case a2 in (3), or b2 in (2), vanishes, 
we have, in addition, Z3 = Z4 = o. That is, under certain conditions, 
z == my, implying that B¢{BI(x)} is an "approximate identity" (==x) for 
x in !lJ2, especially if 1 is odd and fairly linear, or if x( t) is a predomi
nantly low-frequency function. 

To further investigate the approximate identity, we introduce the 
parameter m again, and obtain expressions for Uk in 

x in ~. (7) 

To see how interchanging 1 and ¢ affects the approximate identity, we 
compare Uk with Vk in 

Bf{B¢(mx)} = L mkVk' x in !lJ2. (8) 
1 

As expected from the series development of z, we find Ul = VI = x, and 
U2 = V2 = o. Further comparisons [with the same m in (7) and (8)] 
should be made for the case f' (0) = ¢' (0) = 1. For this case, we find 
U3 = V3 = 2b~B(x.Hx2), which may be small if b2 is small or if Hx2 is 
small. In case b2 = 0, we find Uk = Vk = 0 for k = 2, 3, 4, and U5 = 
V5 = 3b~B(X2. Hx 3

). 

These series developments of the approximate identity suggest that 
it would be useful in obtaining an approximate solution to the r.v. 
companding problem for fairly linear companding functions, not 
necessarily having a Taylor series expansion, but merely satisfying 
1(0) = 0 and 

(-00 < x < (0). (9) 

Compelled by this suggestion, we digress in the Appendix to show for 
such 1 that 

x in ~, (10) 

where 

'Y = 4(1 + f)' 

(Note that 'Y = 1/8 for m2/ml = 2.) Thus in many companding 
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problems, B¢(y), involving only one filtering operation, would be an 
adequate approximation to the solution x. We go on to define an 
iterative procedure, involving both f and its inverse ¢, obtaining 
approximants converging to x for 'Y < 1, offering an alternative to the 
solution of Landau and Miranker in cases where (m2!ml) < 3 + 2../2. 
In any case, B¢(y) is suggested as a good choice for Xl in their iterative 
solution. We note, in leaving this topic, that the inequality (10) is 
invariant to the interchange of f and its inverse ¢. 

Returning to th"e series solution, we apply the results to the problem 
of compatible single-sideband transmission (Ref. 4), obtaining a few 
terms for correction of the "in-band" distortion arising in envelope 
detection of "full-carrier" single-sideband signals. 

Although the original intent of the work here was to obtain expres
sions for the first few terms of the series solution (4), supposedly 
adequate for correcting small distortions, the mathematical question 
naturally arises in the end as to whether the series actually converges 
for sufficiently small I m I (or equivalently, for I m I = 1 and II y 112 
sufficiently small), or whether it is merely an asymptotic series. It is 
indeed a pertinent mathematical question, since the expressions for 
the Xk(t) were obtained by purely formal manipulations of power series 
and application of the operators Band H. The resulting expressions 
become progressively cumbersome and complicated, with no obvious 
general form, offering no possibility of establishing (from them) 
bounds on I Xk(t) I which would ensure convergence of the series. The 
remainder of the paper is addressed to the problem of establishing the 
convergence of the series. 

If we suppose in the r.v. companding problem that the series con
verges for real-valued m of sufficiently small magnitude, then it would 
also converge for similar complex m, suggesting that the companding 
problem [for fixed y(t)] would have a solution for all complex m of 
sufficiently small magnitude. This, in turn, suggests that the problem 
would have a solution for arbitrary complex-valued y(t) in !lJ2 and all 
complex m of sufficiently small magnitude, depending on f and the 
norm of y. That this is a fact has been established previously (Ref. 3) 
only for complex-valued y(t) whose Fourier transforms vanish outside 
[0, A], (or [-A, 0]), the Fourier transform of the solution x(t) having 
the same property. In this case (with m = 1), the solution is given by 
x = B¢(y) for y of sufficiently small norm; i.e., in case the Fourier 
transform of x(t) vanishes outside [0, A], (or [-A, 0]) the "approximate 
identity" is an exact identity, 

x = B¢{Bf(x)} = ¢{f(x)} 

for x of sufficiently small norm. This result can be explained, roughly, 
by the fact that nonlinear (analytic) distortion of such x(t) does not 
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produce both "sum and difference" frequency components, but only 
"sum" components. 

In order to prove that the series solution actually converges for 
sufficiently small I m I, we show that the companding problem (1), 
where y(t) is an arbitrary complex-valued function in !i82, has a solution 
x(t; m) for all complex m of sufficiently small magnitude, this solution 
being, for each fixed t, an anaytic function of the complex variable m, 
from which it follows that the solution has a Taylor series expansion 
in m; i.e., 

x(t;m) = L mkxk(t), Iml <mo. (11) 
1 

To obtain this result, we first have to establish for the complex
valued (c.v.) companding problem the analogue of A. Beurling's 
uniqueness theorem (see Ref. 1) for the r.v. companding problem. 

We then examine in detail a specific problem illustrative of the 
theory and some of its nuances; viz., the problem (taking A = 2 for 
convenience) 

B {_x_} = m sin 2t 
1 - x 2t 

(12) 

for which the solution is (at least for sufficiently small I m I) 

( ) 2{3 sin 2t {32 (sin t)2 x = x t·m = -- - --
, 2t t' 

(13) 

where 

(3 = m/(2 + m). 

The rather surprising revelation of this example is that, although the 
series expansion in m of x(t;m) converges, uniformly in t, for I m I < 
2, it is not a solution of (12) for all such m. Furthermore, one might 
reasonably assume that (13) is a solution of (12) for all m other than 
-2, but this is not true either. As an illuminating exercise, we deter
mine precisely the set of m for which (13) is a solution of (12). 

II. THE INVERSE SERIES METHOD 

To obtain a series solution to (1), we first think of recovering from 
y(t) the out-of-band components of f{x(t)l, so that we might apply the 
inverse function ¢ to the whole in order to recover x(t) = x(t;m). We 
have 

f{x(t)l = my(t) + h(t), (14) 

3014 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983 



where h(t) = h(t;m) is some unknown "high-pass" function satisfying 

Bh(t) = 0 (15) 

and hence 

x(t) = ¢(my(t) + h(t)}. (16) 

It is convenient at this point to introduce the high-pass operator 
defined by 

H = 1- B, (17) 

where I is the identity operator. Thus applying H to (16) we have 

H¢(my(t) + h(t)} = o. (18) 

We would like to solve (18) for h(t), which we think of as small in 
cases of inter~st. 

N ow we assume that 
co 

¢(y) = L akyk for sufficiently small I yl, (19) 
1 

al =1= 0 

and that in (16) 

h(t) = h(t;m) = L m khk(t), Hhk = hk' k ~ 2, (20) 
2 

x(t) = x(t;m) = L mkxk(t), BXk = Xk, k ~ 1, (21) 
1 

where hk(t) and Xk(t) do not depend on m. 
We want to expand ¢(my(t) + h(t)} as a power series in m. To do 

this it is convenient to write 

my(t) + h(t) = L mkhk(t), (22) 
1 

where we identify 

(23) 

Then we write 

4> {~ mkhk(t)} = F(m;t) = ~ mkFk(t). (24) 

For convenience we suppress the variable t and write simply Xk, hk' Fk. 
In terms of the coefficients ak in 
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¢(y) = L ak)'\ 
I 

we find, equating coefficients of m k in (24), 

FI = aIh l 

F2 = aIh2 + a2hi 

F3 = aIh3 + a2(2hIh2) + a3hi 

F4 = aIh4 + a2(2hIh3 + h~) + a3(3hih2) + a4hi 

F5 = aIh5 + a2(2hIh4 + 2h2h3) + a3(3hih3 + 3hIh~) 
+ a4( 4hih2) + a5h~ 

F6 = aIh6 + a2(2hIh5 + 2h2h4 + h~) + a3(3hih4 + 6hIh2h3 

(25.1) 

(25.2) 

(25.3) 

(25.4) 

(25.5) 

+ h~) + a4(4hih3 + 6hih~) + a5(5hih2) + a6h~ (25.6) 
F7 = alh7 + a2(2hIh6 + 2h2h5 + 2h3h4) 

+ a3(3hih5 + 6hlh2h4 + 3hlh~ + 3h~h3) 
+ a4(4hih4 + 12hih2h3 + 4hlh~) 
+ a5(5hih3 + 10hih~) + a6(6h~h2) + a7hi 

Fs = alhg + a2(2hIh7 + 2h2h6 + 2h3h5 + hn 

+ a3(3hih6 + 6hlh2h5 + 6hIh3h4 + 3h~h4 + 3h2h~) 
+ a4(4hih5 + 12hih2h4 + 6hih~ + 12hlh~h3 + h~) 
+ a5(5hih4 + 20hih2h3 + 10hih~) 
+ a6(6h~h3 + 15hih~) + a7(7h~h2) + agh~ 

Fg = alhg + a2(2hlhs + 2h2h7 + 2h3h6 + 2h4h5) 

+ a3(3hih7 + 6hlh2h6 + 6hlh3h5 + 3hIh~ + 3h~h5 
+ 6h2h3h4 + h~) + a4( 4hfh6 + 12hih2h5 + 12hih3h4 

+ 12hlh~h4 + 12hIh2h~ + 4h~h3) + a5(5hih5 

+ 20hfh2h4 + 10hfh~ + 30hih~h3 + 5hIh~) + a6(6hfh4 

+ 30hih2h3 + 20hfh~) + a7(7h~h3 + 21h~h~) 
+ as(8hih2) + aghi 

FlO = alhlO + a2(2hlhg + 2h2hS + 2h3h7 + 2h4h6 + h~) 
+ a3(3hihs + 6hlh2h7 + 6hlh3h6 + 6hlh4h5 + 3h~h6 
+ 6h2h3h5 + 3h2h~ + 3h~h4) + a4(4hih7 + 12hih2h6 

(25.7) 

(25.8) 

(25.9) 
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+ 12hih3h5 + 6hih~ + 12hlh~h5 + 24hlh2h3h4 + 4hlh~ 

+ 4Mh4 + 6h~h§) + a5(5hths + 20Mh2h5 +20Mh3h4 

+ 30hih~h4 + 30hih2h§ + 20hlh~h3 + hg) + as(6Mh5 

+ 30hih2h4 + 15hih~ + 60hrh~h3 + 15hih~) 
+ a7(7h~h4 + 42h~h2h3 + 35hih~) + as(8hih3 

+ 28h~h~) + a9(9h~h2) + alOhto. (25.10) 

In general the coefficient of am in the expansion of F n consists of sums 
of products of the hk corresponding to partitions of n into m parts. 
The coefficient of the product is m! divided by the product of the 
factorials of the exponents of the hk (the multinomial theorem). For 
example, in FlO the coefficient of a5 is found by writing down the 
partitions of 10 into 5 parts and proceeding thus (see Table 24.2, Ref. 
5): 

1\ 6 ~ hih6 coef. = 5!/4! = 5 

13,2,5 

13,3,4 

12
, 22

, 4 

12,2, 32 

1,23,3 

25 

hrh2h5 

hrh3h4 

hih~h4 

hih2h~ 

hIh~h3 

h~ 

5!/3! = 20 

5!/3! = 20 

5!/2!2! = 30 

5!/2!2! = 30 

5!/3! = 20 

5!/5! = l. 

Now we may obtain a formal series solution (21) by successively 
solving for the hk by requiring 

k = 1,2, ... (26) 

and setting 

k = 1,2, .... (27) 

Recall that hI = y, the given bandlimited (low-pass) function, and all 
the other hk are high-pass functions. t We have Hhk = hk' k ~ 2 and 

HFI = alHhl = 0 (28.1) 

HF2 = aIh2 + a2Hhj = 0 

(28.2) 

t Actually, for k ~ 2, hk is a bandpass function whose Fourier transform vanishes 
over (-A, A) and outside [-kA, kA]. This can be seen from (28.1)-{28.k). 
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HF3 = a1h3 + 2a2H(h1h2) + a3Hhf = 0 

h - 2a~ H(h Hh2) a3 Hh3 
3 - -2 1· 1 - - 1 

a1 a1 
(28.3) 

HF4 = a1h4 + a2(2H(h1h3) + Hh~) + 3a3H(hih2) + a4Hht = 0 

4a~ 2 2a2a3 3 
h4 = - -3 H[h1·H(h1·Hh1)] + -2- H(h1·Hh1) 

a1 a1 

_ (a2)3 H[(Hhi)2] + 3a2
2a

3 H(hi.Hhi) _ a4 Hhi (28.4) 
a1 a1 a1 

HF5 = a1h5 + a2[2H(h1h4) + 2H(h2h3)] + a3[3H(hih3) 

+ 3H(h1h~)] + 4a4H(hfh2) + aJlhf = 0 

+ 2a2a4 H(h1.Hht) + 4a~ H[(Hhi) .H(h1.Hhi)] 
ai at 

- 2a~a3 H[(Hhi) .Hhn _ 6a~a3 H[h'f.H(h1.Hhi)1 
at at 

Now replacing hI by y we have from (25), (27), and (28) 

Xl = BFl = a1Y 

X2 = BF2 = a2By2 

X3 = BF3 == 2a2B(yh2) + a3By 3 

2a~ (2 3 = --B y.Hy) + a3By 
a1 

(28.5) 

(29.1) 

(29.2) 

(29.3) 
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X5 = BF5 = a2[2B(yh4) + 2B(h2h3)] + 3a[B(y2h3) + B(yh~)] 
+ 4a4B(y3h2) + asBy5 

8a~ 4a~a3 
= - -3 B{y.H[y.H(y.Hy 2)]} + -2- B[y.H(y.Hy 3)] 

al al 

_ 2a3~ B[y.H(Hy 2)2] + 6a~2a3 B[y.H(y2.Hy 2)] 
al al 

_ 2a2a4 B(y.Hy 4) _ 4~~ B[(Hy 2) .H(y.Hy 2)] 
al al 

(29.5) 

If in (29) we replace the H operator by I - B and collect terms we 
obtain 

Xl = alY 

X2 = a2By2 

2a~ 2 ( 2a~) 3 X3 = - B(y·By ) + a3 - - By 
al al 

4a~ B[ B( B 2)] (4a~ 2a2a3) B( B 3) X4 = -2 y. y. Y - -2 - -- y. y 
al al al 

( 
5a2a3 5a~) B 4 + a4---+-2 Y 

al al 

8a~ 2 (4a~a3 8a~) 3 X5 = - Bly·B[y.B(y.By )]} + - - - B[y.B(y.By)] 
af ar af 

(6a~a3 12a~) B[ B( 2 B 2)] 2a~ + -- - -- y. y. y + -at at at 

(30.1) 

(30.2) 

(30.3) 

(30.4) 
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(3a~ 12a~a3 12a~) B( 2 B 3) + ----2-+-3- y. y 
al al al 

(
4a2a4 20a~a3 20a~) B( 3 B 2) + -----2-+-3- y. y 

al al al 

(30.5) 

Note that if y belongs to ~(A/n), then Byk = yk for k = 1, 2, ... , n. 
In this case we will have Xn = anYn. So the sum of all coefficients in 
the expressions for Xn must be an. If ¢ is an odd function these formulas 
simplify considerably. It is rather curious that if a2 = 0, a3 =1= 0, the 
coefficient of B( y3 . By2) vanishes, whereas the coefficient of B( y2. 
By 3) does not. The coefficients in (30) are more simply expressed in 
terms of the coefficients in the power series for f as we see below. 

III. FORWARD SERIES METHOD 

We can also solve (1) in the "forward" direction by writing 

Bf(mxl + m 2x2 + m 3x3 + ... ) = my, (31) 

where 

(32) 

Then applying the expansion (24) and (25) to feL mkxk) we have, 
equating coefficients of m \ 

Bb1Xl = Y (33.1) 

Bb1X2 + Bb2xI = 0 (33.2) 

Bb1x3 + Bb2(2xIX2) + Bb3xt = 0 (33.3) 

Bb1X4 + Bb2(2xIX3 + x~) + Bb3(3xIx2) + Bb4xi = 0 (33.4) 
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BblX5 = Bb2(2xIX4 + 2X2X3) + Bb3(3xix3 + 3XIX~) 

+ Bb4(4xfx2) + Bb5xf = o. 
Then solving (33) successively for Xk, (BXk = Xk), we have 

b2 2 
X2 = - bf By 

_ 2b~ 2 b3 3 
X3 - bf B(y.By ) - bi By 

4b~ 2 2b2b3 3 
X4 = - bI B[y.B(y·By )] + 7 B(y·By ) 

_ b~ B(B 2)2 3b2b3 B( 2.B 2) _ b4 B 4 
bI y + M y y bf y 

8~ 4~ 
X5 = bi B{y.B[y.B(y.By 2)]} + bi B[(By 2) .B(y.By 2)] 

+ 2~~ B[y.B(By 2)2] _ 4~r3 B[y.B(y.By 3)] 

- 6~r3 B[y.B(y2.By 2)] - 2~t3 B[(By 2).(By 3)] 

_ 6~;b3 B[y2.B(y.By 2)] _ 3~;b3 B[y. (By2)2] 

2b2b4 B( B 4) 4b2b4 B( 3 B 2) + ---z;r y. Y + ---z;r y. y 

3b~ 2 3 b5 5 + bI B(y .By ) - M By . 

(33.5) 

(34.1) 

(34.2) 

(34.3) 

(34.4) 

(34.5) 

These correspond to the solutions for the hk in (28) with Hand B, and 
a's and b's interchanged, except here Xl = y/bl as compared by hI = y 
in (28). They agree with the formulas in (30) according to the identities 
in reversion of series (see 3.6.25, Ref. 5) 

albl = 1 (35.1) 

afb2 = -a2 (35.2) 

afb3 = 2a~ - ala3 (35.3) 

aIb4 = 5ala2a3 - aia4 - 5a~ (35.4) 

COMPANDING PROBLEMS 3021 



aib5 = 6aIa2a4 + 3aIa~ + 14a~ - ara5 - 21ala~aS 

apb6 = 7ara2a5 + 7araSa4 + 84alaraS - a1a6 

- 28aIa2a~ - 42a~ - 28aIa~a4 

a~sb7 = 8a1a2a6 + 8a1asa5 + 120aIa~a4 

+ 180aIa~a~ + 132a~ - a~a7 - 36ara~a5 

(35.5) 

(35.6) 

- 72ara2aSa4 - 12ara2asa4 - 12ara~ - 330ala1as. (35.7) 

Of course the a's and b's may be interchanged in (35). Actually the 
expressions for Xk in (34) are analogous in a way to the coefficients ak 
expressed in terms of the bk as given by (35) (with the a's and b's 
interchanged). That is, if it were not for the B operator in eq. (33.k), 
we would have simply Xk = akyk according to the determining equations 
for the inverse coefficients. Because of the B operator, successive 
solutions for the Xk generate powers of y interposed with B operators 
and powers of (B( . ) I in all combinations so that, for example, in X5 we 
have a number of terms with coefficients b~bs/M that combine only 
when B is replaced by I to give -21b~bsy5 /b~, corresponding to the last 
term in (35.5). Note if all the bk = 1, the sum of the integer coefficients 
in Xn is (_l)n+1 as this is the case y = f(x) = x/(l - x), x = c/>(Y) = y/ 
(1 + y). Note also that in the expression (34.5) for X5, for example, 
there are five groups of functions with common "b" coefficients. These 
combine with certain weights, depending only on the coefficients of 
f(x), to give X5. Similarly, in the expression (29.5) obtained from the 
inverse function, there are again five groups of functions with common 
"a" coefficients that combine with certain weights, still depending 
only on the coefficients of f(x), to give X5. The interesting and rather 
puzzling fact is that the groups are not identical but overlap. 

IV. A SOLUTION OF THE FORM x(t) = Bq,{z(t)}, z in !182 

For the solution to (1) we have x = Li mkxk' where according to 
(25) and (29), we have 

Xl = alY 

X2 = alh2 + a2y2 = a2By2 

Xs = alhs + 2a2yh2 + asYS = 2a~(yh2) + aaBys. 

Since 

c/>(my) = almy + a2m 2y2 + asm SyS + ... , 

we see that x = Bc/>(my) + fl(mS
), m ~ O. Then setting m = 1 (with y 

sufficiently small) we can conclude that 
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y~o. (36) 

At least as y ~ 0, B¢(y) is a better approximation than ¢(y) = x + 
»(y2). Also B¢(y) could be a good approximation to x without y being 
small, as would be the case if y were a predominately low-frequency 
function (compared with its top frequency). This suggests that given 
y in (1) we determine a bandlimited function z, perhaps close to y, 
such that the solution to (1) is given by 

x = B¢(z). (37) 

To determine a series solution for z we set 

(38) 

and expand ¢(z) in a power series in m: 

¢(mzl + m2z2 + m3z3 + ... ) = L mkFk. (39) 
1 

The Fk are given by (25) with Zk replacing hk. The difference now is 
that the Fk are bandlimited to [-kA, kA], i.e., ¢(z) is not bandlimited 
(in general) with z in .982• However, we must have 

(40) 

where in terms of operations on y the Xk are given conveniently by 
(29). We have 

BalZl = Xl = alY (41.1) 

B(alz2 + a2zi) = X2 = a~y2 (41.2) 

3 2a~ 2 3 
B(alz3 + 2a2zlz2 + a3zl) = X3 = - - B(y.Hy ) + asBy (41.3) 

al 

B[alz4 + a2(2zlz3 + z~) + a3(3zyz2) + a4zi] = X4 

4a~ 2a2a3 
= -2 B[y.H(y.Hy 2)] - -- B(y.Hy 3) 

al ~ 

a~ 2 2 3a2a3 2 + 2 B(Hy) - -- B(y .Hy 2) + a4By4 (41.4) 
al al 

B[alz5 + a2(2zlz4 + 2Z2Z3) + a3(3zyz3 + 3ZlZ~) 

( 3) 5] 8a~ { 2 + a4 4Z lZ2 + a5zl = X5 = - -3 B y.H[y.H(y.Hy )]} 
al 

4a~a3 2a~ + -2- B[y.H(y.Hy 3)] - -3 B[y.H(Hy 2)2] 
al al 

COMPANDING PROBLEMS 3023 



6a~a3 B[ H( 2 H 2)] 2a2a4 B( H 4) + -2- y. y. y - -- y. y 
al al 

_ 4~~ B[(Hy2) .H(y.Hy 2)] + 2a~:3 B[(Hy 2). (Hy 3)] 
al al 

6a~a3 B[ 2 H( H 2)] 3a§ B( 2 H 3) + -2- y. y. y - - y. y 
al al 

3a~a3 B[ (H 2)2] 4a2a4 B( 3 H 2) B 5 + -2- y. Y - -- y. y + a5 y. 
al al 

Solving these equations successively for Zk we find 

2a~ 2 
Z3 = - -2 B(y.Hy ) 

. al 

4a~ B[ H( H 2)] 2a2a3 B( H 3) a~ B(H 2)2 Z4 = -3 y. y. Y - -2- y. Y +"3 Y 
al al al 

3a2a3 B( 2 H 2) 4a~ B[ B( H 2)] - -- y. y + - y. y. y . 
ai ar 

(41.5) 

(42.1) 

(42.2) 

(42.3) 

(42.4) 

The first and last terms in (42.4) combine (H + B = I) to give 4~~ 
al 

B(y2.Hy 2), which then combines with the fourth term to give 

(42.4a) 

8a~ { (2) 1 Z5 = - -4 B y.H[y.H y.Hy ]J 
al 

2 

+ a~ (3ala3 - 2a~)B[y. (Hy2)2] 
al 
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(42.5) 

The expressions for the third- and fourth-order terms, Z3 and Z4, are 
quite simple, owing to the fact that Zl = y, Z2 = o. Note in eq. (41.n) 
the "diagonal" term anBz~ on the left is cancelled by the term anByn 
appearing in Xn on the right. Also in case a2 = 0 we have 

v. THE APPROXIMATE IDENTITY 

(43.1) 

(43.2) 

(43.3) 

(43.4) 

(43.5) 

The series development in the previous section suggests that as a 
practical expedient one might take 

x == B¢(y) = B¢{Bf(x)} == ¢{f(x)} = x. 

That is, what appears to be the naive thing to do may in fact be quite 
good, especially for odd functions ¢ (or f) that are not severely 
nonlinear. The interposition of the bandlimiting operator between a 
nonlinear function and its inverse and then subsequent bandlimiting 
is an interesting "approximate identity" that we examine further in 
the Appendix. One might ask how the interchange in the order of a 
particular function and its inverse in the transformation affects the 
approximate identity. The series expansion of the approximate iden
tity may shed some light on the general problem. To keep track of the 
various orders, it is convenient to introduce the parameter m as before. 
We have 

Bf(mx) = L m kbJ3xh, (44) 
1 

¢{Bf(mx)} = L m kFk' (45) 
1 

where the Fk are given by (25) with bkBxk replacing hk' and Bx = x. 
Thus, 
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F2 = a1b2Bx2 + a2bix2 

Fa = a1baBxa + 2a2blb2x.Bx2 + aabtxa 

F4 = a1b4Bx4 + 2a2blbax.Bxa + a2b~(Bx2)2 

+ 3aabib2x2.Bx2 + a4bix4 

F5 = a1b5Bx5 + 2a2blb4x·Bx4 + 2a2b2ba(Bx2). (Bxa) 

+ 3aabibax2.Bxa + 3aablb~x. (BX2)2 

+ 4a4byb2xa ·Bx2 + a5 bfx5. 

Now we set 

Bc/>{Bf(mx) I = L mkUk' 
I 

where 

(46.2) 

(46.3) 

(46.4) 

(46.5) 

(47) 

(48) 

Now note in (46) that if all the terms in BFk involving x were of the 
form BXk then BFk would vanish identically for k ;?; 2 because c/>{ f(x) I 
= x. So we will introduce the high-pass operator H = 1- B to collect 
the terms BXk that cancel. For example, to collect terms Bxa in BFa 
we write 

Thus, 

UI = BFI = X 

U2 = BF2 = a1b2Bx2 + a2biBx2 = 0 

Ua = BFa = a1baBxa + 2a2blb2B(x.Bx2) + aabtBxa 

= a1baBxa + 2a2b1b2B(xa - x.Hx2) + aabyBxa 

= -2a2b1b2B(x. Hx2) 

U4 = BF4 = a1b4Bx4 + 2a2blbaB(x.Bxa) + a2b~B(Bx2)2 
+ 3aabib2B(x2.Bx2) + a4biBx4 

= a1b4Bx4 + 2a2blbaB(X4 - x.Hxa) + a2b~B(x2 - HX2)2 

+ 3aabib2B(x4 - x2. Hx2) + a4biBx4 

= -2a2b1baB(x.Hxa) - (2a2b~ + 3aabib2)B(x2.Hx2) 

(49.1) 

(49.2) 

(49.3) 

+ a2bW(Hx2)2 (49.4) 
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U5 = BF5 = a1b5Bx5 + 2a2blb4B(x.Bx4) 

+ 2a2b2b3B[(Bx2). (Bx3)] 

+ 3a3bib3B(x2.Bx3) + 3a3blb~B[x. (BX2)2] 

+ 4a4brb2B(x3.Bx2) + a5bfBx5 

= a1b5Bx5 + 2a2blb4B(X5 - x.Hx4) 

+ 2a2b2b3B[(x2 - Hx2). (X3 - Hx3)] 

+ 3a3bib3B(x5 - x2.Hxa) 

+ 3a3blb~B[x. (X2 - HX2)2] + 4a4Mb2B(x5 - x3.Hx2) 

+ a5bfBx5 

= -2a2b1b4B(x.Hx4) - (2a2b2b3 + 3aabiba)B(x2.Hx3) 

- (2a2b2bs + 6aablb~ + 4a4brb2)B(x3. Hx2) 

+ 2a2b2baB[(Hx2). (Hx3)] + 3aablb~B[x. (HX2)2]. (49.5) 

Now in order to assess the symmetry or lack of symmetry in inter
changing ¢ and f we can use the identities (35) to express the mixed 
coefficients of Un in terms of the bk or the ak alone. We have 

U2 = 0 

Us = aC1B(x.Hx2) 

U4 = 4C1B(x.Hxa) + 4C2B(x2.Hx2) + 4CaB(Hx2)2 

U5 = 5CIB(X.Hx4) + 5C2B(x2.HxS
) + 5C3B(x3·Hx2) 

+ 5C4B[(Hx2). (Hx S
)] + 5C5B[x. (HX2)2], 

where 

(50.1) 

(50.2) 

(50.3) 

(5004) 

(50.5) 

(50.3a) 

(50Aa) 
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(50.5a) 

2 4b~b3 3b~ 
5C2 = -(2a2b2b3 + 3a3bIb3) = - T + bi 

= (2a~ - aIa3)(2a~ - 3aIa3)/a~ 

5C3 = -(2a2b3 + 6a3bIb~ + 4a4brb2) 

8b~ 12b~b3 4b2b4 4a~ 8a~a3 4a2a4 
=----+--=----+--

bi br bi aI aI ar 

5C4 = 2a2b2b3 = _ 2b~b3 = 2a~a3 _ 4a~ 
br aI a~ 

C - 3 b b2 _ 6b~ _ 3b~b3 _ 3a~a3 
5 5 - a3 1 2 - b4 b3 - 7· 

1 1 al 

Now if we interchange the order of ¢ and I in (45) and write 

Bf{B¢(mx)} = L mkUk' (51) 
1 

we obtain the Uk by replacing Uk by Uk in (49.k) and then interchanging 
the a's and b's. We have UI = UI = x and U2 = U2 = o. We should 
compare Uk and Uk, k ~ 3, for I' (0) = 1 = al = bl • Then we have 

k = 1,2,3. (52) 

But we have, for example (with al = bi = 1), 

U4 = 2b2baB(x.Hx3) + (3b2b3 - 4b~)B(X2 .Hx2) - b~B(Hx2)2 (53.1) 

U4 = (2b2b3 - 4b~)B(x. Hx3) 

+ (3b2b3 - 2b~)B(X2 .Hx2) + b~B(Hx2)2. (53.2) 

If, however, b2 = 0 (a2 = 0) we have 

k = 2, 3,4, (53.3) 

and if al = bi = 1, 

U5 = U5 = 3b~B(X2 .Hx3). (53.4) 

In case b2 = b4 = b6 = 0, (a2 = a4 = a6 = 0), we have 

= 3b3b5 B( 2.H 5) (5b3b5 _ 9b3) B( 4.H 3) 
U7 bi x x + bi br x x 

_ 3~~ B[x.(Hx3)2]. (54) 
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where the coefficients expressed in terms of the a's are 

3b3b5 3a3a5 9a~ 
bf=~- ai' 

So we do not have, in general, U7 = V7 for odd functions f(x) with 
['(0) = 1. 

VI. APPLICATION TO COMPATIBLE SINGLE-SIDEBAND TRANSMISSION 

The mathematical problem of compatible single-sideband transmis
sion was formulated in Ref. 4. Given a signal y(t) in ~ the problem 
is to determine m such that the equation 

B{v'(l + S(t))2 + §(t)2} = my(t) + 1 (55) 

has a solution s(t) in !?J2. In (55) §(t), sometimes called the quadrature 
signal, is the Hilbert transform of s(t), and B is operating on the 
envelope of the single-sideband signal. The idea is to transmit a single
sideband signal that is compatible with receivers designed for double
sideband (AM) reception. Setting 

2s(t) + S2(t) + §2(t) = x(t), (56) 

we may write (55) as 

Bf{x(t)} = my(t), (57) 

where 

f(x) = v'l+x - 1, x;:::: -1. (58) 

Then s(t) may be found from the solution x(t) of (57). (This requires 
factoring 1 + x(t) in the form g(t)g(t), where the bandwidth of g is 
half the bandwidth of x.) Then with y = f(x) we have for the inverse 

x = ¢(y) = 2y + y2. (59) 

Setting 

we have from (29) with al = 2, a2 = 1, ak = 0 for k ;:::: 3, 

Xl = 2y 

X2 = By2 

X3 = -B(y.Hy 2) 

(60) 

(6.1.1) 

(61.2) 

(61.3) 
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X4 = B[y.H(y.Hy2)] + 1/4B(Hy2)2 (61.4) 

Xs = -B(y.H[y.H(y.Hy 2)]} - 1/4B[y.H(Hy2f] 

- 1/2B[(Hy2) .H(y.Hy 2)]. (61.5) 

Replacing H by I - B we have from (30) the alternate forms 

X3 = B(y.By 2) - By3 (61.3a) 

X4 = B[y.B(y.By 2)] - B(y.By 3) + 1/4B(By2)2 

- 3/2B(y2.By 2) + 5/4By4 (61.4a) 

Xs = B(y.B[y.B(y.By 2)]} - B[y.B(y.By3)] 

- 3/2B[y.B(y2.By2)] + 1/4B[y. (By2)2] 

- 3/4B[y. (By2)2] + 5/4B(y.By4) 

+ 1/2B[By 2) .B(y.By 2)] 

- 3/2B[y2.B(y.By2)] - 1/2B[(By)2. (By 3)] 

+ 3/2B(y2.By 3) 

+ 5/2B(y3.By 2) - 7/4Bys. (61.5a) 

The factoring of 1 + x can be avoided by developing a series solution 
for s, Bs = s. We have 

Then setting 

we have 

x = 2s + S2 + S2 

X = mXl + m2x2 + m3x3 + .... 

s = mSl + m 2s2 + m3s3 + .. . 

s = mSl + m 2s2 + m3s3 + ... , 

S2 = m 2sI + m32s1s2 + m4(2s1s3 + s~) 

+ mS(2s1s4 + 2S2S3) + ... 

S2 = m2sI + m32s1s2 + m4(2s1s3 + s~) 

+ m S(2s1s4 + 2S2S3 ) + .... 

(62) 

(63) 

(64) 

(65) 

Note that if s belongs to .96'2(>"), then the Fourier transform* of (s + 
is) vanishes outside [0, >..] and that of its complex conjugate (s - is) 

* Here the Fourier transform of § is -i(sgnw)S(w) where S(w) is the Fourier transform 
ofs. 
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vanishes outside [-A, 0]. Thus the Fourier transform of e- iAt
/
2(8 + i8) 

vanishes outside [-(A/2), A/2]. It follows that the Fourier transform 
of S2 + 82 vanishes outside [-A, A], and hence that the sums of the 
coefficients of mn in (64) and (65) are functions whose Fourier trans
forms vanish outside [-A, A]. 

N ow we can solve successively for 8k. It is convenient to introduce 
the Hilbert transform (Quadrature) operator Q 

(66) 

to indicate the "hat" of complicated expressions. 
Equating coefficients of mk in 

x = 28 + S2 + 82, 

we have 

81 = xd2 = y (67.1) 

82 = 1/2X2 - 1/2(8I + 8i) 

= 1/2By2 - 1/2(y2 + y2), (67.2) 

which may be written, using B82 = 82, as 

82 = - 1/2By2 (67.2a) 

83 = 1/2X3 - (8182 + 8182) 

= - 1/2B(y.Hy2) + 1/2yBy 2 + 1/2Y.QBY2. (67.3) 

Here we may write 

yBy2 = y.Y2 _ y.HY2 

and then use B83 = 83 to obtain 

83 = - 1/2B(y.Hy 2) - 1/2B(y.Hy 2) + 1/2B(y.y2) + 1/2B(Y.QBy 2) 

= - 1/2B[y.H(y2 + y2)] + 1/2B(y.y2) + 1/2B(Y.QBy 2). 

Then since H(y2 + y2) = 0, we have 

S3 = 1/2 B(y. y2) + 1/2 B(Y. QBy 2) 

S4 = 1/2 X4 - (8183 + 1/2 8~) - (8183 + 1/2 8~) 

= 1/2 B[y.H(y.Hy 2)] + 1/4 B(Hy 2)2 

- 1/2 yB(y.y2) - 1/2 YQB(y.y2) 

- 1/8 (By2)2 - 1/8 (QBY2)2. 

(67.3a) 

(67.4) 

There appears to be no simplification here. One may prefer the 
alternate expression (61.4a) for X4 to eliminate the H operator. Note 
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that QB can be replaced by the bandlimiting quadrature operator 13 
where 

13g = (13g)(t) = 100 

g(s) 1 - c~s A(\- s) ds. (68) 
-00 7r t - S 

VII. THE COMPLEX-VALUED COMPANDING PROBLEM 

The c.v. companding problem is considerably more complicated than 
the r.v. companding problem, even for the same analytic companding 
function. For example, if 

{(x) = tan-Ix + EX, (E > 0), 

we know from the Landau-Miranker theory that the r.v. companding 
problem 

B{(x) = y 

has a unique solution x in !J82 corresponding to every real-valued y in 
!J82. However, in the case of complex-valued y, this may not be true 
because x must then take complex values which, if the norm of y is 
not restricted, may be singularities of {. In addition, we are confronted 
with the problem of establishing the uniqueness of the solution, which 
may require still more severe restrictions on the norm of y. 

Beurling's uniqueness proof (see Ref. 1) for the r.v. companding 
problem is elegant and simple: Suppose {(x) = .L5'( I x I), I x I ~ 0, and 
is monotone increasing, and further that 

and 

with Xh X2, (and y) in !J82. Then {(Xl) and {(X2) belong to L2 and B{{. 
(Xl) - {(X2)} = 0, i.e., the Fourier transform of {{(Xl) - {(X2)} vanishes 
over (-A, A), and therefore {{(Xl) - {(X2)} must be orthogonal to 
(Xl - X2). But this is impossible unless Xl == X2, for otherwise (Xl - X2)· 
{{(Xl) - {(X2)}, which is everywhere non-negative, will be positive 
everywhere on the real axis, except at the isolated zeros (if any) of 
(Xl - X2). 

For establishing uniqueness in the c.v. companding problem, it 
would seem that the weakest analogue of monotocity should be 
"schlichtness" of {, i.e., that X should be confined to a region, where 
{(Xl) = {(X2) implies Xl = X2. This suffices to establish uniqueness of 
the solution in the special case where X has a one-sided Fourier 
transform, but we are not able to see that it suffices in the general 
case. We can establish the following analogue of Buerling's theorem, 
where, without loss of generality, we assume f' (0) is positive. 
Theorem 1: Suppose {(O) = 0, f' (0) > 0, and {(z) is analytic in a convex 
region G including the origin, wherein 
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Re{l'(z)} > O. 

If Xl (t) and X2(t) belong to Y82 and are confined to G for all real t, then 

and 

imply 

XI(t) == X2(t). 

Proof of Theorem 1: Since G is convex, any two points Xl and X2 in G 
can be connected by a straight line segment in G. Suppose (Xl - X2) = 
re iO, where r > O. Then integrating f' along the connecting line 
segment, we have 

f(x.) - f(x2) = e"' J.' f' (X2 + se"')ds, 

and hence 

R f(XI) - f(X2) R 1 lr f'e + iO)d > 0 e = e - X2 se s . 
Xl - X2 r 0 

In case Xl ~ X2, the limit is Re l' (X2) > O. 
Now ([[XI(t)] - f[X2(t)]} belongs to L2 and must be orthogonal to all 

members of Y82, in particular to {XI(t) - X2(t)}; i.e., setting 

P(t) = (Xl - X2){ f(XI) - f(X2)} = 1 Xl - X21 2 ([(Xl) - f(X2)} , 
Xl - X2 

the integral of pet) must vanish. However, we see that the real part of 
pet) is non-negative everywhere on the real axis, and vanishes only 
where Xl = X2. Since the integral of P is zero, its real part vanishes 
a.e. Thus the function {XI(t) - X2(t)} in Y82 vanishes a.e., and hence 
everywhere. 0 

Now we can establish that the c.v. companding problem, 

Bf(x) = y, 

will have a solution X, which will take values in a disk centered on the 
origin, wherein Re{[/(z)} > 0, provided II Yl12 is sufficiently small. Then 
the uniqueness of the solution follows from Theorem 1. 

An objectionable, but inherent, feature of companding problems (as 
formulated here) is that a restriction on II y 1100 is not sufficient to give 
a corresponding restriction on II X 1100 • We can, however, establish that 
II X /12 will be small if II y 112 is small, and hence that II X 1100 will be small, 
according to the inequality (given in the introduction) for a function 
gin Y82(A), 
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In the sequel, we assume, for convenience and without loss of 
generality, that f' (0) = 1, 

Izl < Ro, (70) 

where Ro (perhaps 00) is the radius of convergence of the series. We 
exclude the trivial case f(z) = z, and define 

M(r) = maxlf'(z) - 11 ~ L klbklrk-\ r< Ro, (71) 
Iz=rl 2 

which increases steadily from 0 to 00, allowing us to define p uniquely 
by 

M(p) = 1. (72) 

Then it is clear that 

Re{f'(z)l > 0 for Izl < p. (73) 

Weare now able to establish the following result. 
Theorem 2: Let y(t) be any complex-valued function in Y82 = Y82(A), 
satisfying 

.JA/7r II Y 112 ~ max (r[1 - M(r)]l = ro[1 - M(ro)]. (74) 
O<r<p 

Then the companding problem 

Bf(x) = y 

has a unique solution x = x(t) in Y82 • 

Proof of Theorem 2: We can use the method of Landau and Miranker 
to obtain a Cauchy sequence (xnl converging to the solution x, provided 
we restrict II y 112, in the end, to be sufficiently small that all the 
approximants satisfy I Xn I < p. 

Assuming the norm of y to be sufficiently small, we take 

Xl = Y = By, (75) 

which should be a good approximation to x for small y. Then we set, 
following Landau and Miranker, 

Xn+1 = Xn + y - Bf(xn), n ~ 1, (76) 

so that, by induction, BXn = Xn, i.e., Xn belongs to Y82 • We have, writing 
the same equation for n - 1 and subtracting, 

Xn+1 - Xn = Xn - Bf(xn) - (Xn-l - Bf(xn-l) I 
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Now we write 

(78) 

Then assuming that 

IXnl ~ r < p for all n ~ 1 (79) 

[and all t, suppressed in the notation Xn = xn(t)] we have in (78) 

1 f:. (f'(z) - Ildz I .. M(r) IXn - xn-d, (80) 

where 

M(r) < M(p) = l. 

Substituting in (77) the inequality (80) for the magnitude of the 
function in (78), we obtain 

(81) 

So, under the assumption (79), {xn} forms a Cauchy sequence converg
ing to x in .962 [cf. Landau, Ref. 1]. It follows from (76) that 

Bf(x) = y. (82) 

Now we would like to see how large II yl12 may be in order that (79) 
hold, giving the conclusion in (82). We write 

Xn = Xl + (X2 - Xl) + (X3 - X2) + ... + (Xn - Xn-l) (83) 

from which follows 

where 

n 

II Xn 112 ~ L II Xk - Xk-l 112, 
I 

and Xo = O. 

Applying (81) to (84), we have 

(84) 

(85) 

where ex = M(r) < 1, provided (79) holds. This will be the case, 
according to (69), if 

II Xn 112 ~ .J7r/Ar for all n ~ 1, (86) 

which, in turn, will hold if in (85) we have 
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~7r/A II Y 112 ~ r[l - M(r)]. (87) 

Here we are free to take the maximum over r. Thus the problem 
will have a solution x satisfying the hypotheses, provided the norm of 
Y satisfies 

~7r/A II yI12 ~ max{r(l - M(r)} = ro[l - M(ro)], (88) 
O<r<p 

and the solution is unique according to Theorem 1. D 
We note that if (88) is satisfied, then the solution x satisfies, 

according to (85) and (69), 

II x 1100 ~ ro < p. (89) 

So, in fact, the restriction (88) on the norm of Y is too severe. We 
obtain a slightly better result later, using a different method. 

We now wish to show that if YI and Y2 are close to each other, then 
the corresponding solutions, Xl and X2, are also close to each other. 
Lemma: Let YI and Y2 satisfy the hypotheses on Y in Theorem 2. Then 
the solutions of 

and 

satisfy 

(90) 

(91) 

Proof of the Lemma: We have 

Xl - X2 = YI - Y2 - B[f(XI) - Xl - f(x2) + X2], (92) 

giving 

IlxI - x2112 ~ IIYI - Y2112 + IIB[·]112 ~ IIYI - Y2112 + 11[·]112' (93) 

Also, since, according to (89), 

and 

we have from (78) and (80), 

II f(xI) - Xl - f(x2) + x2112 ~ M(ro)ll Xl - x2112' (94) 

which with (93) gives 

II - 11:< II YI - Y2112 
Xl X2 2 "'" M() . 1 - ro 

(95) 
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This, with (69) and the assumptions on Yl and Y2, establishes the 
lemma. D 

With this Lemma and Theorem 2 we can show that the problem 

Bf{x(t;m)} = my(t), 

for fixed y in !la2, has a unique solution in !la2 for all complex m of 
sufficiently small magnitude, the solution x(t; m) being a continuous 
function of the complex variable m in a certain disk centered on the 
origin. To establish for each t that F(m;t) = x(t;m) is an analytic 
function of m in that disk, we show that F(m) has a derivative 
(non directional) there. Working with the derivative we are able to 
improve on Theorem 2. It is convenient now to set JA/7r II y 112 = 1 so 
that I y(t) I ~ l. 
Theorem 3: Let y(t) be any complex-valued function in !la2 == !la2(A) 
satisfying 

Then the problem 

Bf{x(t;m)} = my(t) 

has a unique solution x(t; m) in !la2 for all complex m satisfying 

I m I '" a(p) = J.P [1 - M(r)]dr, (96) 

where M(r) and p are defined in (71) and (72). Furthermore, for each 
fixed real t, x(t;m) is an analytic function of m, I m I ~ a(p), and hence, 
since x(t; 0) == 0, 

x(t;m) = L mkxk(t), I ml ~ a(p), (-00 < t < 00) (97) 
1 

where the Xk (t) depend only on y(t) and f. 

We note, before proving Theorem 3, that in Theorem 2, ° < ro < p, 
and in Theorem 3 

l ro rp 
a(p) = [1 - M(r)]dr + Jr_ [1 - M(r)]dr, 

o ~ 

where M(r) increases from ° to 1 over (0, p). Thus 

J." [1 - M(r)]dr > ro[l - M(ro)], 

and hence 

ro[1 - M(ro)] < a(p) < p. (98) 
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Then, according to Theorem 3, the c.v. companding problem 

Bf(x) = y 

has solutions for y of larger norm than specified in Theorem 2. 
Proof of Theorem 3: We first consider the solutions Xl = x(t;ml), X2 = 
x(t;m2), corresponding to YI = mly(t), Y2 = m2y(t), where 

and 

1 ml 1 + 1 f 1 ~ ro[l - M(ro)], 

so that Theorem 2 and the Lemma apply. 
We have 

Y2 - YI = fy(t), 

and hence, from the Lemma, 

Now 

which we rewrite as 

(99) 

(100) 

(101) 

(103) 

X2 ~ Xl = Y _ B f(X2) - {(Xl), - (x, - x.)} . (104) 

We intend to let f ~ 0 (with any argument) and show that the quantity 
on the left tends to a limit, independent of arg(f); viz., F' (ml;t), where 

a 
F'(m;t) = am x(t;m), 1 m 1 ~ ro[l - M(ro)]. (105) 

From (78), (80), and (102) we have 

II f(x2) - f(xI) - (X2 - Xl) 112 ~ M(ro) II X2 - xll12 
Ifl~M(ro) 

~ 1 - M(ro) . (106) 

So 

(107) 

We also have from (102), or the Lemma, 
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(108) 

Thus we may write 

(109) 

where 

u = u(t;mh €) belongs to Y82 and I u I 
= »(1) as € ~ O. (110) 

rrhen 

{(X2) - {(Xl) = {(Xl + € u) - {(Xl) 

= €Uf'(XI) + »(€2U2). 

So (104) may be rewritten as 

u = y - B{uf'(xI) - U + »(€U2)}. (111) 

Now letting € ~ 0 and replacing ml by m and Xl by x(t;m), we obtain, 
setting u(t;m, 0) = u(t;m), the equation 

u(t;m) = y(t) - B{u(t;m)[f' {x(t;m)} - I]}, (112) 

I m I :::::; A < ro[l - M(ro)]. 

Here we make the identification 

a 
u(t;m) = F' (m;t) = am x(t;m), Iml :::::;A (113) 

by verifying that (112) has a solution u(t;m) in Y82, in fact, for I m I 
larger than ro[l - M(ro»). We observe, since x(t;O) == 0, and 1'(0) = 1, 
that 

u(t;O) = y(t). (114) 

Actually, we can obtain better estimates for I x(t;m) I by integrating 
its partial derivative from 0 to m. 

We consider the equation for u, 

u = y - B{u. [f'(x) - I]}, (115) 

assuming X = x( t; m) is known and satisfies 

II X 1100 :::::; r < p, (116) 

so that 

I {'(x) - 11 :::::; M(r) < M(p) = l. (117) 

Using this inequality in (115) we obtain 
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(118) 

or 

II II ~ Ilylb 
u 2 ~ 1 _ M(r) 

~ 
1 - M(r) . 

(119) 

The last inequality implies that (115) has a solution u in ~ 
(obtained iteratively), in fact, for II x 1100 < p, since M(r) < 1 for r < p. 
We note further that the inequality (119) is crude, with equality 
possible only for r = 0, for we cannot have 

If' {x(t;m)} - 11 == M(r), (-00 < t < 00) 

unless x(t;m) == O. Therefore, in (115) we have 

IIB{u[f'(x) - 1]112 < M(r)lluI12 for 0 < Ilxll oo ~ r <po 

So we have strict inequality in (119) for 0 < r < p. Hence, 

1 
II ulloo < 1 _ M(r) for 0 < Ilxlloo ~ r <po (120) 

N ow let us set 

a>O (121) 

and 

r(a) = max II x(t;ae ill
) 1100. (122) 

II 

We want to see how large we can make a, say a(p), and have r(a) < 
p. Using (120) in 

x(t;m) = J.m u(t;~)d~, (123) 

we obtain the inequality 

ra d~ 
r(a) < Jo 1 - M[r(~)]' 0< a ~ a(p). (124) 

Then, after defining 

ra d~ 
s(a) = Jo 1 - M[s(~)]' 0< a ~ a(p), (125) 

it is clear, since M(r) is an increasing function of r, that we will have 

r(a) < s(a), 0< a ~ a(p). (126) 

Differentiating (125) with respect to a, we obtain the simple equa
tion 
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s'(a){l - M[s(a)]} = 1, 

or, considering a as a function of s, 

da 
ds = 1 - M(s). 

Thus 

a(8) = J.' [1 - M(r)]dr, 0< s :::::p. (127) 

We have s(a(p)) = p and r{a) < s(a) for a > O. So we will have 

II x(t;m) 1100 < P for (128) 

I m I .. a(p) = J.P [1 - M(r)]dr. (129) 

According to (120) and (128), the partial derivative u(t;m) will exist 
for I m I somewhat larger than a(p). This completes the proof of 
Theorem 3. D 

VIII. AN ILLUSTRATIVE EXAMPLE 

It will be shown in a future paper that the r.v. companding problem 

x < 1, x, y in ~(A), (130) 

is equivalent to finding the reproducing kernel for a certain Hilbert 
space of bandlimited functions. The specific problem with A = 2 (for 
convenience) and 

sin 2t 
y=m--

2t 

is quite easily solved. For real m > -2, the solution is 

x(t;m) = 2{j Si~t2t - (j2(Si~ t)", 

where 

{3 = m/(2 + m). 

(131) 

(132) 

We need not be concerned here with the derivation of this solution, 
as we will later show directly that it satisfies 

B{ x(t;m) } = m sin 2t (133) 
1 - x(t;m) 2t 
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"for all m in a certain region of the complex plane, but for no other m. 
We know from Theorem 3 that (133) has a unique solution for 

sufficiently small I m I, and that the solution is an analytic function 
of m. It follows that (132) is the solution of (133) for all complex m, 
I m I < I mol, for some I mol> o. Since m = -2 is the only point where 
x(t;m) is not analytic, we might suppose I mol = 2. The series expan
sion of x(t;m) certainly converges (uniformly in t) for all 
I m I < 2, but it is not a solution of (133) for all such m. For example, 
we have 

anrJ. 

2{j 
m=--1 - {j. 

Then for (j = ± i7r /2, we have 

-2 m=---
2' 

l±i-
7r 

Therefore, the meromorphic function of t, 

x(t;m) 
{{x(t;m}} = 1 ( ) - x t;m 

will have poles at t = ± 7r/2 for m = -2/(1 ± i2/7r). Thus we have here 
an example, I m I < 2, for which (132) is not a solution of (133). 
However, it is, according to Theorem 3, for all m satisfying I m I ~ 
3 - 2 -/2. This, as it turns out, is an overly conservative upper bound 
for Iml. 

We now turn to the problem of determining precisely those m for 
which (132) is a solution of (133). 

First we can easily show that the r.v. problem has no solution for 
m ~ -2 by convolving both sides of (133) with l/7rK(t), where K(t) = 
(sin t)2/t2. The result is 

Leo x(s;m) 1 K( )d m K( ) 
-~~-.- t-s s=- t. 

-eo 1 - x(s;m) 7r 2 
(134) 

Since x/(l - x) > -1, and K(t) ~ 0, we have 

reo x(s;m) . .!. K(t _ s)ds > _.!. reo K(t)dt = -1 
J-eo 1 - x(s;m) 7r 7r J-eo 
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This gives, setting t = ° in (134), 

m> -2. (135) 

N ow to proceed towards our stated goal, we first write 

1 - x(t;m) = (1 - {Je lt Si~ t) (1 _ {Je-It Si~ t). (136) 

Then in order for x(t;m) to be a solution of the problem, the Fourier 
transform of the function 

h(t.m) = x(t;m) _ m sin 2t 
, 1 - x(t;m) 2t 

(137) 

must vanish over (-2,2). With a bit of manipulation we arrive at the 
expression 

h(t;m) = g(t;m) + g( -t;m), (138) 

where 

2it(1 it sin t) e -e--
_(32 t 

g(t;m) =~ . 
{J 2it (1 _ {Jei' Sl~ t) 

(139) 

and 

(m/2) 
(3 = 1 + (m/2) =1= 1. 

We now introduce the complex variable 7 = t + iu, and observe that 

I g(t + iu; m) I = fl{1 t e;2;u J, u ---> + 00. (140) 

Then if the denominator satisfies the condition, 

( 
. sin 7) . 

1 - {3e lT 
-7- lS zero-free for u ~ 0, (141) 

it is easy to see (by contour integration in the upper half-plane) that 

G(w;m) = 1: g(t;m)e-iW'dt = 0 for w < 2. (142) 

On the other hand, if the function in (141) has zeros 7k in the upper 
half plane u > 0, (it must have no real zeros in order for g to have a 
Fourier transform) we will have, by the calculus of residues, 
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n 

G(w;m) = L Cke-iwTk, Ck =t= 0, (143) 
1 

where n, depending on (j, is finite, since it is clear that the function in 
(141) can have only a finite number of zeros in the upper half-plane. 
Since the Fourier transform of h(t;m) is given by 

H(w, m) = G(w;m) + G(-w;m) (144) 

it will vanish over (-2,2) if, and only if, the condition (141) is satisfied. 
Now the values taken by e

iT sin T/T in the upper half-plane, u ~ ° 
are precisely those values on the boundary and interior of the cardioid
like region whose boundary is described parametrically by 

it sin t e --
t ' 

(Some values are taken more than once.) Then x(t;m) will be a solution 
to the problem except for those values of m such that 1/ {j is a point 
on the boundary or in the interior of the cardioid-like region. By the 
mapping 

2 
m = -1--' 

--1 
(j 

x(t;m) is a solution to the problem for precisely those (finite) m lying 
in the region to the right of the boundary line described parametrically 
by 

2 
m=-----

it sin t ' 
e ---1 

(145) 

t 

This region (see Fig. 1) includes the half-plane Re{m} ~ -4/3, its 
boundary indenting more to the left near the real axis, having a cusp 
at its leftmost point, m = -2, where it is tangent to the real axis. It is 
found that the distance from the origin to the boundary is minimal 
(see circle in Fig. 1) at the point mo and its conjugate, where 

mo = (-2 + ~) + i~, 

~ = .!. == .4895273114 == (2.42786943)-1, (146) 
to 

to is the smallest positive root of sin tit = cos t + sin t, 

J2 7r 
I mol = -.- == 1.58781760, arg{mo} = - + to. 

SIn to 4 

So I mol is the largest number such that x(t;m) is a solution for all m 
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Re em) 
Fig. I-Open region in m-plane (unshaded) for which eq. (132) is a solution of eq. 

(133). Shown is the largest disk (centered on the origin) contained in the region. 

satisfying I m I < I mo I. Also, 

I mol = min Ro(t), 
t 

where Ro(t) is the radius of convergence of the series 

x(t;m) sin 2t 2h ( ) 3h ( ) 
( ) =m-2-+m 2t +m 3 t + 

1 - x t;m t 

the minimum occurring for t = ±to. 

IX. CONCLUSION 

The expressions for the nth order components xn(t) of the series 
solution to the companding problem become so complicated that, for 
practical purposes, only the first few are of interest. These should be 
useful in correcting small distortions in nonlinear transmission sys
tems which fit the companding model. It would appear that the 
corrections applied internally to the inverse function (the Zk in Section 
V) would be more effective for correcting larger distortions, especially 
if the lower frequency components are predominant in the signals. In 
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this connection, the simpler "approximate identity" should be quite 
effective for correcting small to moderate distortions of a more general 
nature, as evidenced by the inequality given in the appendix. Experi
mental evidence of the effectiveness of these correction schemes would 
be desirable. 

The question of the convergence of the series solution is a matter 
of little practical concern, but the fact that it does attaches more 
mathematical significance to the results. To settle this question we 
had to show that the complex-valued companding problem has solu
tions for functions of sufficiently small norm. This generalizes the 
result for functions of one-sided spectra; and whether or not the 
general result will ever find practical application, it is an interesting 
addition to a theory, though still incomplete in many respects. For 
example, it is doubtful that the condition that x(t) be confined to a 
convex region G where Ref I'} > 0 is a necessary condition for unique
ness of the solution. In this connection, one could probably use analytic 
continuation arguments to show that the specific problem examined 
in Section VIII has solutions only for those values of m for which the 
(particular) solution given is the only solution, this being unique for 
sufficiently small I m I, and being an analytic function of m having no 
branch points. Also there is the difficult question of determining for 
what y(t) the companding problem has a solution, where particular 
interest is attached to the real-valued problem with analytic compand
ing functions. It can be shown for the case I(x) = x/(l - x), x < 1, 
that the problem has a solution for every (r.v.) y in ~ satisfying 
y> -1. This suggests (conjecture) that the r.v. companding problem 
with I (x) = x/(l - x 2

), -1 < x < 1, has a solution for every (r.v.) y in 
~, or more generally for monotone I(x) defined on (-1, 1) having 
singularities as strong as poles at ±1. In general, it is not enough for 
I(x) to increase from -00 to +00 over its range of definition in order to 
draw the same conclusion; e.g., I (x) = log( 1 + x), x> -1. The questions 
raised here are certainly worthy of future consideration. 

In connection with the series solution, one naturally inquires 
whether an explicit formula (albeit complicated and involving parti
tions of various kinds) can be given for the general term xn • Perhaps 
the combinatorics experts will consider this question. 

We note that the solution x = B¢(y), valid for y (of sufficiently 
small norm) whose Fourier transforms vanish outside [0, A], is verified 
by the fact that in (29.n) the expression reduces to Xn = anByn, the 
other terms vanishing because B is operating on functions whose 
Fourier transforms vanish over (-00, A). The same reduction occurs in 
the expression (34.n), because, in this case, B is operating on functions 
whose Fourier transforms vanish over (-00, 0) and agree over [0, A]; 
i.e., 
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B[ ... ] = Byn 

holds for each term in (34.n), the sum of all the coefficients being an. 
Some interesting identities are obtained by equating the expressions 

for Xn in the series solution of the general problem to those obtained 
from the explicit solution (given in the introduction) to the special 
problem 

B log(l + x) = my, 

which involve y, the Hilbert transform of y, which does not appear in 
the more general expressions. For example, we find from (34.3) that 
X3 in the series solution of this problem is given by 

X3 = 1/2B(y.By 2) - 1/3By 3, 

and, from the series expansion of the explicit solution, by 

X3 = 1/8yB(y2 - y2) - 1/8B(yy2) + 1/24By 3 + 1/4YB(yy). 

It is an interesting exercise to show directly that these two expressions 
are identical. 

Finally, since truly bandlimited signals exist only as mathematical 
abstractions, some attention should be given to developing a mathe
matical theory of practical companding problems, 

1: f!x(s)jk(t - s)eis = y(t), 

where k(t) is the (absolutely-integrable) impulse response of a practical 
low-pass filter, so that the theory may be extended to signals that are 
merely bounded. Here one may not be interested, for various reasons, 
in the exact solution of this problem but, instead, a compromise 
problem, where the equation is nearly satisfied with both x(t) andy(t) 
being close to bandlimited functions. For example, in many cases 
f{ x( t) I is given (say) by an nth order differential operator acting on 
y(t). Then the (exact) solution x(t) = ¢If(x)j may be far from a 
bandlimited function. However, if y(t) is close to a bandlimited func
tion there should be an approximate solution which is also close to a 
bandlimited function. A case in point is found in Landau's simulation 
of the iterative solution of the companding problem (Ref. 2), where, 
in fact, the equation he was obtaining approximate solutions to was 
the case y(t) = k(t), (approximately bandlimited) for which the unique 
solution is (a multiple of) the Dirac delta function. 
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APPENDIX 

Suppose I(x) is a monotone increasing function of the real variable 
x, satisfying 

(i) 

(ii) 

1(0) = 0 

0< ml ~ f'(x) ~ m2 < 00, (-00 < x < 00). 

Then I has an inverse ¢ 

(iii) x= ¢{/(x)}, (-00 < x < 00), 

satisfying, since 1 = I' (X)¢' {f(x)}, 

(iv) 
1 1 0<- ~ ¢/(y) ~ - < 00, 

m2 ml 
(-00 < y < 00). 

N ow let x = x( t) be any function in ~. We wish to establish 

II x - B¢{BI(x)} 112 ~ I'll X 112, 

where 
l' = 4(1 + f)' 

Set 

y(t) = y = BI(x). 

Then 

I(x) = y + h, Bh = o. 
Now set 

Xl = B¢(y) 

so that, since x = ¢(y + h) = Bx = B{¢(y + h)}, 

x - Xl = B{¢(y + h) - ¢(y)}. 

(147) 

(148) 

(149) 

(150) 

(151) 
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Since I ¢(y + h) - ¢(Y)I :::::; ~ h, we see that 
ml 

1 
II ¢(y + h) - ¢(y)112 :::::; - II h 112 

ml 

and hence that 

1 
II x - xll12 :::::; - II h 112, 

ml 

'but we can improve this inequality by writing 

l
Y+h 

¢(y + h) - ¢(y) = {¢'(~) - a}d~ + ah, 
Y 

where 

Then, since 

we have 

¢(y + h) - ¢(y) = u + ah, 

where u = u(t) and 

1 ( 1 1 ) lul:::::;- --- Ihl· 
2 ml m2 

Thus 

x - Xl = B(u + ah) = Bu, 

and hence 

Now we need an inequality of the form II h 112:::::; c II X 112' We have 

h = Hf(x), 

where H = 1- B is the high-pass operator. So, clearly 

II h 112 :::::; II f(x) 112 :::::; m211 x 112. 

We can improve this inequality by setting 

u(t) = u = f(x) - {3x, 

where (3 = 1/2(ml + m2)' 

(152) 

(153) 

(154) 

(155) 

(156) 

(157) 

(158) 

(159) 
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Then 

and, since Hx = 0, 

h = Hf(x) = H{ f(x) - {jx} = Hu. 

Hence 

IIhl12 ~ IIul12 ~ 1/2(m2 - ml)llxI12' 
This, with (157) gives 

Ilx - xll12 ~ -4
1 (~-~) (m2 - ml)llxl12 = 'YllxI12' 

ml m2 

(160) 

(161) 

(162) 

(163) 

which is the result (147). The number 'Y in the inequality is invariant 
under the interchange of ¢ and f in the approximate identity (147), as 
we would expect from using only (ii) and (iu). 

So Xl = B¢{Bf(x)} is a good approximation to X if'Y is small. The 
manipulations leading to the inequality (163) suggest an iterative 
scheme for solving, given y in !id2 , 

BF(x) = y, (164) 

provided'Y < 1, which will be the case if (m2/ml) < 3 + 2 J2. 
We set 

xn = B¢(y + hn- l), n;;:: 1, (165) 

where 

hn = Hf(xn), n;;:: 0, (166) 

and Xo = ho = 0, 

giving Xl = B¢(y) as in (150). 

N ow we wish to show that 

n;;::1. (167) 

We have 

X - Xn = B{¢(y + h) - ¢(y + hn- l)}. (168) 

Following the previous pattern we write 

¢(y + h) - ¢(y + hn- l) = Un + a(h - hn- l), (169) 

where 

l
Y+h 

Un = {¢' (~) - a}d~, 
y+hn- 1 
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and hence 

(170) 

Then 

x - Xn = B{un + a(h - hn-dl = BUn, (171) 

giving 

1 ( 1 1 ) II x - xnl12 ~ -2 - - - II h - hn- 111 2• 
• ml m2 

(172) 

Now 

h - hn- l = H{ f(x) - f(Xn-I)}, n ~ 1, with Xo = ho = O. (173) 

Here we write 

{(x) - {(xn-,) = JX If'W - Pld~ + P(x - xn-,) 
Xn-l 

= Un + (3(x - Xn-l), (174) 

where 

(175) 

Then 

h - hn- l = H{un + (3(x - Xn-l)} = HUn, (176) 

giving, with (175), 

m2 - ml 
II h - hn-111 2 ~ 2 II x - xn-1112. 

This, with (172), gives 

II x - xnl12 ~ 'Y II x - xn-1112, 

whence follows, with Xo = 0, 

n~l. 

(177) 

(178) 

(179) 

Note that there is a bonus attached to Xl = B¢(y), in that only one 
filtering operation is required to obtain it. Thereafter, two filtering 
operations are required to obtain Xn from y and Xn-l. 
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Given two baseband signals f(t) and g(t), suitably restricted in amplitude 
and bandlimited to [A, IL] and [-IL, -A], ° < A < IL < 00, it is shown how 
to generate a carrier signal, s(t) = A(t) cos/ct + c/>(t)}, bandlimited to [c - {3, 
c + {3] and [- (c + (3), - (c - (3)] , where (3 need be only sightly larger than IL, 
and such that f(t) and g(t) may be recovered by bandlimiting log A(t) and 
c/>(t), respectively. The restriction A > 0, i.e., that the baseband signals be 
bandpass, is not essential but it is a practical constraint in approximating the 
required operations. Also a modification is given for conserving bandwidth in 
case the signals f (t) and g( t) are of disparate bandwidths. 

I. INTRODUCTION 

Double-sideband amplitude modulation is wasteful of bandwidth, 
but it offers the advantage of envelope detection (with full carrier). A 
simple way to utilize the same bandwidth in transmitting two inde
pendent signals, I(t) and g(t), is the so-called in-phase and quadrature 
modulation 

8 1 (t) = I (t )cos ct - g(t )sin ct, 

where synchronous demodulation is required to recover I and g. A 
modification that allows Ito be recovered (approximately) by envelope 
detection is 

8 2(t) = {I + I(t)}cos ct - g(t)sin ct. 

* Bell Laboratories. 
©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for 
noncommercial use is permitted without payment of royalty provided that each repro
duction is done without alteration and that the Journal reference and copyright notice 
are included on the first page. The title and abstract, but no other portions, of this 
paper may be copied or distributed royalty free by computer-based and other informa
tion-service systems without further permission. Permission to reproduce or republish 
any other portion of this paper must be obtained from the Editor. 
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The envelope of 8 2(t) is 

A2(t) = v'{1 + f(t)}2 + g2'(t). 

Then if g is made small (compared to min {I + f (t ) }), we have 

A2(t) ~ 1 + f(t). 

The phase of 8 2 (i.e., the part due to signals) is 

_ -1 g(t) ,...., g(t) 
cf>2(t) - tan 1 + f(t) = 1 + f(t)' 

So making g small allows envelope and phase detection to be used so 
as to approximately recover f and g (multiplying the phase output by 
the envelope output). 

A still further modification is 

83(t) = {I + XI(t)}cos ct - {I + x2(t)}sin ct, 

where Xl and X2 are both small. The envelope of 83 is 

A3(t) = .J(I + XI)2 + (1 + X2)2 = .J2 + 2XI + 2X2 + xi + x~ 

~ -i2 (1+ Xl ; X2). 

The phase of 8 3 is 

( ) 
-1 1 + X2 7r X2 - Xl 

cf>3 t = tan -- ~ - + . 
1 + Xl 4 2 

So if 

i.e., 

Xl + X2 = f and 
2 

Xl = f + g 

X2 = f - g, 

then envelope and phase detection of 8 3 will give (approx.) the desired 
independent signals f and g. 

An exact result of this type may be obtained using log of the 
envelope, rather than the envelope, and then bandlimiting the phase 
and log of the envelope to obtain the desired independent signals f 
and g. A slight increase in bandwidth is required to allow a guard band 
in the filtering operations. Also I f I and I g I cannot be too large if the 
increase in bandwidth is to be small. The basic theory is that of 

3054 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983 



Exponential Single-Sideband Modulation (ESSB) developed in Ref. 
1. 

II. THE EXACT METHOD 

We assume that the desired signals, f and g, are bounded band-pass 
signals whose Fourier transforms vanish (in the sense detailed in Ref. 
1) outside [A, Jl] and [-Jl, -A], 0 < A < Jl < 00, which then (automati-
cally) have bounded Hilbert transforms, 1 and g. The band-pass 
assumption is not essential to the theory, but affords important 
practical simplifications in approximating the Hilbert transform op
erations as well as in effecting the sUDsequent analytic exponential 
modulation. 

Now suppose Zl(t) and Z2(t) are bandlimited "analytic signals" whose 
Fourier transforms vanish outside [0, 13] and which signals are zero
free in the upper half-plane with 

IZI,2(t+iu)l;;:::f for u;;:::O, :::-00 < t < 00. (1) 

Then log Zl and log Z2 are analytic and bounded in the upper half
plane, and hence their Fourier transforms vanish over (-00, 0). 

Writing 

we have 

Zl (t) = Al (t )eicf>l(t), 

Z2(t) = A 2(t)eicf>2(t), 

Al = IZII 

A2 = IZ21, 

log Zl(t) = log A1(t) + i¢l(t) 

log Z2(t) = log A 2(t) + i¢2(t). 

Under further assumptions on z, e.g., 

ZI,2(t + iu) = 1 + O(e-AU
), 

log A and ¢ will be Hilbert transform pairs: 

u~ 00, 

¢l(t) = logA A1(t), log A1(t) = -¢l(t) 

¢2(t) = logA A 2(t) log A 2(t) = -¢2(t). 

N ow we consider the product 

ZI(t)Z2(t) = A 1(t)A2(t)e i[cf>1(t)-cf>2(t)], 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

where the bar denotes the complex conjugate. The F.T. (Fourier 
transform) of Zl(t) vanishes outside [0, tJ] and the F.T. of Z2(t) vanishes 
outside [-13, 0]. Therefore, the F.T. of ZI(t)Z~t) vanishes outside 
[-13, 13]. Then we form the signar 
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where c> {J, 

s(t) = Re eictzl(t)Z2(t) 

= A(t)cos{ct + Q>(t)}, 

A(t) = A 1(t)A2(t) 

Q>(t) = Q>l(t) - Q>2(t), 

(9) 

(9a) 

(9b) 

and the spectrum of s(t) is confined to [c - {J, c + m and [-c - {J, 
-c + {J]. 

We require 

BIL,a{log A(t)} = f(t) 

BIL,a{Q>(t)} = g(t), 

(10) 

(11) 

where Jl < a < {J, and, in general, Bp,q is any bandlimiting operator 
[with passband (-p, p) and cut-off frequency ± q] defined by 

Bp,qlx(t)l = L: x(s)Kp,q(t - s)ds (12) 

and 

k (w) = Loo K (t )e-iwtdt = 1 p,q p,q , 
-00 

= 0, 

0< p < q < 00. 

> 

-p < w <p 

Iwl > q. (12a) 

(12b) 

The definition of Kp,q(w) in the cut-off region (p, q) and (-q, -p) is 
> 

not important, but Kp,q(w) must be sufficiently smooth to give 

L: I Kp,q(t)ldt < 00 (12c) 

so that Bp,q{x(t)} is defined for any bounded x(t). 
Writing (10) as 

BIL,a{log A 1(t) + log A2(t)} = f(t) 

and taking Hilbert transforms of both sides of (10) and (11), using (7) 
and (8), we have 

or 

B IL,a{Q>l(t) + Q>2(t)} = l(t) 

B IL,a{Q>l (t) - Q>2(t)} = g(t) 

(13) 

(14) 

3056 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983 . 



BI1,a(cPI (t)} = 1f2( /(t) + g(t)} 

B I1,a(cP2(t)} = 1f2(j(t) - g(t)}, 

which according to (7) and (8) is equivalent to 

B I1,a(log A1(t)} = 1/2(f(t) - g(t)} 

Setting 

B I1,a(log A2(t)} = 1f2(f(t) + g(t)}. 

hl(t) = 1/2(f(t) - g(t)}; 

H1(t) = h1(t) + ihl(t), 

h2(t) = 1/2(f(t) + g(t)}; 

H 2(t) = h2(t) + ih2(t), 

(15) 

(16) 

(17) 

(18) 

(19) 

(19a) 

(20) 

(20a) 

the four equations (15), (16), (17), and (18) are equivalent to the two 
equations, implying (6), 

BI1,a(log Zl(t)} = H1(t) 

BJl,a(log Z2(t)} = H 2(t), 

(21) 

(22) 

where HI and H2 are given "analytic" band-pass signals whose Fourier 
transforms vanish outside the single interval [A, IL] and Zl and Z2 are 
bandlimited "analytic" signals whose Fourier transforms vanish out
side the single interval [0, {j]. The problem of finding Zl and Z2 has 
been solved (see Ref. 1): 

Zl(t) = Ba,(t(exp H 1(t)} 

Z2(t) = Ba,(t(exp H 2(t)}, 

(23) 

(24) 

where Ba,(t is any bandlimiting operator with passband (-a, a) and 
cut-off frequency ±{j. 

Now Zl and Z2 given by (23) and (24) satisfy (21) and (22),prouided 
ZI(T) and Z2(T), T = t + iu,> are zero free in the upper half-plane u> o. 
The filter characteristic Ka,(t(w) in the cut-off region (a, (j) becomes 
important, but not critical, in this respect. From theoretical consid
erations the linear cut:'off characteristic is desirable (see Ref. 1): 

> (j - W 
Ka,(t(w) = -R -, 

fJ- a 
a < W < {j. (25) 

For a given a and {j, and a smooth cut-off characteristic, Zl and Z2 will 
be zero free in the upper half-plane provided I HII and I H21 are not 
too large. In practice this means that the levels of f and g must not be 
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too large if a and {3 are not much larger than J..L, the top signal frequency, 
i.e., in the bandwidth conserving case. The results in Ref. 1 may be 
used as a rough guide. For example, if a is only slightly larger than J..L 

and {3/a = 1.1 (relatively sharp cut-off), then Zl and Z2 will be zero free 
in the upper half-plane if I Hd and I H21 are less than 0.6. (See the 
appendix for a modification of signals f andg of disparate bandwidths.) 

III. IMPLEMENT A nON 

The block diagram of an implementation is shown in Fig. 1. The 
transmitter is shown in Fig. 1a. The inputs are labeled f(t + T) and 
g(t + T) to account for a delay T incurred in the Hilbert transform 
filters. The delay T need not be more than one or two periods of the 
lower signal frequency A to obtain a good approximation to the Hilbert 
transforms, l(t) and g(t). (The inputs f(t + T) and g(t + T) must be 
delayed accordingly to obtain f(t) and g(t ).) The signals f(t), j(t), g(t), 
and g(t) are summed to obtain 

hI = 1f2(f - g) 

17,1 = %(1 + g) 

h2 = 1f2(f + g) 

17,2 = 1f2(1- g) 

in accord with (19) and (20). (The gain factor of the summing net
works, shown as 1/2, may be any constant, which may be simply 
reflected as a gain factor on the inputs.) Then these outputs are fed 
to two analytic exponential modulators that furnish outputs 

Xl = eh1cos 17,1 = Re{exp HI} 

YI = eh1sin 17,1 = Im{exp HI! 

X2 = eh2cos 17,2 = Re{exp H2} 

Y2 = eh2sin 17,2 = Im{exp H2}. 

A feedback circuit for accomplishing the analytic exponential mod
ulation is described in Ref. 2. The outputs of the modulators are then 
bandlimited with identical low-pass filters LPF 1 having the character
istic shown in Fig. 2a to obtain 

Xl = Re{zI!, 

X2 = Re{z2}, 

YI = Im{zI! 

Y2 = Im{z2}. 

These outputs are then combined to form 
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sIt) 

IN 

(a) 

¢(t) 

(b) 

Fig. la-Transmitter. 

Fig.lb-Receiver. 

fIt) 

OUT 

g(t) 

OUT 
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(a) 

-{3 --a-J.l 

1.0 

o 
FREQUENCY 

(b) 

J.l ex. (3 

Fig. 2a-Characteristic of LPF 1. 

Fig. 2b-Characteristic of LPF 2. 

1.0 

o 
FREQUENCY 

s(t) = Re{[XI(t) + iYI(t)][X2(t) - iY2(t)]e ict
} 

= Re{[XIX2 + YIY2 + i(YIX2 - Y2XI)]e ict
} 

= (XIX2 + YIY2)COS ct - (YIX2 - Y2xI)sin ct 

= A(t)cos{ct + ¢(t)). 

J.l ex. 

The signal s(t) is then transmitted to the receiver, Fig. 1b, where an 
envelope detector is used to obtain the envelope A(t), which is then 
fed to a device having a logarithmic characteristic to furnish the 
output log A(t). This output is then filtered with LPF2 to obtain f(t). 
A phase detector, e.g., a phase-locked loop, is used to detect the phase 
¢(t), which is subsequently filtered with another LPF2 to obtain g(t). 
The characteristic of the filters LPF 2 is shown in Fig. 2b. 

Note that ¢(t) is high pass with lower frequency A; so ¢(t) may be 
recovered from {¢'(t) + c}, if desired. 

REFERENCES 

1. B. F. Logan, "Theory of Analytic Modulation Systems," B.S.T.J., 57, No.3 (March 
1978),pp.491-576. 

2. B. F. Logan, "Click Modulation," unpublished work. 

APPENDIX 

Modification for Signals of Disparate Bandwidths 

Note that the bandwidth of the transmitted signal is the sum (or 
twice the sum, counting positive and negative frequencies) of the 
bandwidths of the analytic signals ZI(t) and Z2(t), which need be only 
slightly larger than the sum of the bandwidths of the analytic signals 
HI(t) and H2(t). Owing to the linear combinations in (19) and (20), 
the bandwidths of HI (t) and H 2(t) will be the same, equal to the larger 
of the bandwidths of f (t) and g( t ). In case the bandwidth of, say, g( t ) 
is (considerably) larger than that of f(t), the bandwidth of the trans
mitted signal may be reduced by setting 
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H 1(t) = f(t) + ij(t) 

H2(t) = g(t) + ig(t). 

(26) 

(27) 

Here we assume that the Fourier transforms of H 1(t) and H 2(t) 
vanish outside the intervals [A, JLd and [A2' JL2], respectively. Now we 
set 

Zl(t) = Ba1,{31{exp H1(t)}, 

Z2(t) = B a2,{32{exp H2(t)}, 

(28) 

(29) 

where /31 and /32 need be only slightly larger than III and JL2 (respec
tively), the top frequencies off(t) andg(t) (respectively). The Fourier 
transform of Zl(t)Z2(t) now vanishes outside the interval [-/32, /3d, 
which is smaller than would obtain in the previous scheme. Thus the 
Fourier transform of the transmitted signal, 

(30) 

vanishes outside the interval [c - /32, C + /3d (ar3 its reflection about 
the origin). The price paid for the saving in bandwidth is another 
Hilbert transform operation required in separating the signals at the 
receIver. 

We have 

where 

s(t) = A(t)cos[ct + ¢(t)], 

A(t) = IZ1(t)Z2(t)l 

¢(t) = ¢l(t) - ¢2(t). 

(31) 

Then, assuming as before that Zl and Z2 are zero free in the upper half
plane, we have 

(32) 

where L 1(t) = log 1 Zl(t) I, L 2(t) = log 1 Z2(t) 1 and L(t) is related to ¢(t) 
by 

¢(t) = ¢l(t) - ¢2(t) = L1(t) - L2(t) 

¢(t) = ¢l(t) - ¢2(t) = -L1(t) + L 2(t). 

(33) 

(34) 

In accord with (28) and (29) and the zero-free hypothesis, we have 
(as shown in Ref. 1) 

B Il1 ,al{L1(t)} = f(t) (35) 

B Il2,a2{L2(t)} = g(t) (36) 
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To obtain L 1(t) and L2(t) from log A(t) and ¢(t), we need the Hilbert 
transform ¢(t), where according to (32) and (34), 

L 1(t) = 1/2 log A(t) - Ih¢(t) (37) 

L2(t) = 1/2 log A(t) + 1f2¢(t). (38) 

However, to recover f(t) and g(t), we may use a modified version of 
¢(t). We define 

(39) 

where HA,Jl is a modified (e.g., band-pass) Hilbert transform operator 
defined by 

H".I<fJ(t)} = L: h, .. (t - x)<fJ(x)dx (408) 

h, .. (w) = L: h".(t)e'W'dt = -i sgn w, (40b) 

for 0 < A ~ I w I ~ p,. 

Now ¢1(t) and ¢2(t) are high-pass functions with lower frequencies 
Al and A2 (respectively). Thus, if we require 

then we have 
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