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High-speed pulse amplitude modulated (PAM) data transmission 
over telephone channels is only possible when adaptive equalization 
is used to mitigate the linear distortion found on the (initially un
known) channel. At the beginning of the equalization procedure, the 
tap weights are adjusted to minimize the intersymbol interference 
between pulses. The "stochastic gradient" algorithm is an iterative 
procedure commonly used for setting the coefficients in these and 
other adaptive filters, but a proper understanding of the convergence 
has never been obtained. It has been common analytical practice to 
invoke an assumption stating that a certain sequence of random 
vectors which direct the "hunting" of the equalizer are statistically 
independent. Everyone acknowledges this assumption to be far from 
true, just as everyone agrees that the final predictions made using it 
are in excellent agreement with experiments and simulations. We 
take the resolution of this question as our main problem. When one 
begins to analyze the performance of the algorithm, one sees that the 
average mean-square error after the nth iteration requires knowing, 
as an intermediate step, the mathematical expectation of the product 
of a sequence of statistically dependent matrices. We transform the 
latter problem to a space of sufficiently high dimension where the 
required average may be obtained from a canonical equation r n+1 

= d(a)rn + §P. Here d(a) is a square matrix, depending on the 
"step-size" a of the original algorithm, and rn and §P are vectors. 
The mean-square error is calculable from the solution rn. 

Information about the solution of our equation is obtained by doing 
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matrix perturbation theory on draY for small values of a. We show 
that the first two terms of the perturbation solution contain, among 
their terms, the terms of the independence theory. Since the parameter 
a needs to be small even for independence theory to converge, agree
ment with an exact theory and experiment is obtained if, in some 
sense, the additional terms which appear in the perturbation solution 
may be disregarded. This will usually be the case. 

I. INTRODUCTION 

Adaptive equalization of telephone channels in order to facilitate 
high-speed data transmission has been successful ever since its intro
duction by Lucky in the 1960s. This technique uses a linear filter 
(configured as a tapped delay line) to r~move the harmful effects of 
the linear channel distortion. At the start of the equalization procedure, 
a set of parameters, the tap weights, are adjusted so that the final 
setting of these taps minimizes the intersymbol interference between 
pulses in the data train. Many theoretical studies have been made 
concerning steady-state equalization after the optimum tap weights 
have been achieved; little analysis has been done concerning the 
convergence of the equalizer tap weights to their final settings. Even 
in the best published study on this problem (Ungerboeck, Ref. 1), it is 
necessary to invoke an assumption stating that a sequence of random 
vectors which direct the operation of the equalizer are statistically 
independent. t This independence assumption will be explained more 
fully later; for the moment, we only indicate that it is not even 
approximately true. In fact, given the nth vector of the sequence, all 
but one component of the next vector will be exactly known. Yet if 
this assumption is made, surprising agreement with actual performance 
is obtained.! Clearly, because of its importance, this situation begs for 
clarification. Hopefully, what we learn in equalization can be used for 
other applications where similar adaptive algorithms are used. In 
particular, the areas of linear prediction and adaptive array processing, 
both electromagnetic and sonar, come to mind. We concentrate our 
presentation on equalization, however, for here the author is sure of 
the details. 

We shall take as our performanc~ criterion the expected value of the 
mean-square distortion, although the average error vector is also 
considered as a simpler problem. In particular, then, we are not 
concerned with the fluctuations which might occur in actual use. 

t We are here concerned with convergence in random data, not with a known specially 
designed sequence. In usual startup operation, the data symbols are also assumed 
known, either by using a known sequence or by assuming that sufficiently accurate 
estimates are available. 
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Typically, the sample paths are close to the mean (see Ref. 1). In a 
nutshell, our contribution to this problem consists of two parts. We 
first establish a time-independent difference equation which governs 
the average in question. This step is accomplished in a space of much 
higher dimension than one would initially assume. Second, examining 
the solution of this equation in a perturbation sense (the small "step
size" of the algorithm being the essential perturbation parameter), we 
find the leading terms contain the independence theory solution. 

Before delving into the abstract problem, we devote Section II to 
describing some more conventional aspects of data transmission and 
equalization and Section III to discussing the behavior of the mean
square error if the independence assumption is made. 

II. DATA TRANSMISSION AND EQUALIZATION 

For our own convenience, we confine the discussion to binary 
baseband transmission and neglect the effects of additive noise. 

The equalizer, and in fact the entire detection procedure, operates 
on the samples of the baseband received signal r(t), where 

r(t) = L am+Kh(t - mT). 
m 

If liT' is the sampling rate, liT the symbol rate, an the data symbols 
(iid, ± 1 with equal probability) and h(t) the overall system impulse 
response, then these samples aret 

r(nT') = L am+Kh(nT' - mT) n = 0,1,2 .... (1) 
m=-oo 

For a synchronous equalizer, T' = T and for a fractionally spaced 
equalizer, typically T' = T 12. If the coefficients of the equalizer are 
denoted by Ci, i = 1, ... ,N (Ci being also the ith component of a vector 
c) and the sequence of output samples of the equalizer are Yn, then 

N 

Yn = L csr[(s - l)T' + nT] n = 0, 1,2, .... (2) 
s=l 

We call attention to the fact that, even when T' =F T, the equalizer 
samples are only of interest at multiples of the signaling interval T, 
and the notation of (2) takes this into account. We define a sequence 
(in time) of vectors x(n) such that the sth component of vector x(n) is 

s = 1,2, ... ,N 
x~n) = r[(s - l)T' + nT] (3) 

n = 0,1,2, ... , 

t We call the bit which "goes with" the mth pulse am+K (instead of the usual am) for 
later convenience. 
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and thus 

Yn = c·x(n). (4) 

The implementation of (2) to (4) is shown in Fig. 1. 
Later, when we consider an adaptive equalizer, the taps will vary 

with time and c(n) will be used for the sequence of tap-weight vectors. 
Ideally we would like (at least when n is large enough) the sequence of 
equalizer outputs to be the sequence of data symbols, except, perhaps, 
for a shift. For a finite equalizer (i.e., N finite) this ideal is not 
achievable, and instead the available taps are adjusted to minimize 
the average square error Ee~, where 

en = Yn - an+K (5) 

and E denotes the mathematical expectation with respect to the data 
symbols {an}. If one introduces the N X N channel autocorrelation 
matrixt (which is positive definite), 

(6) 

and the vector, 

(7) 

both of which do not depend on the time index n, then, for fixed taps 
c, the mean-squared error g" is given by 

(8) 

Equation (8) shows g" to be a convex quadratic function of c. Any 
optimum choice of c, say, c*, satisfies 

Ac* = v (9) 

which has a unique solution if A -I exists. We denote the minimum of 
g" by g"*. 

It will make little difference physically, and it will be a great 
convenience mathematically, if we pretend that the impulse response 
h(t) used in (1) has finite duration. Thus, assume 

h(t) = 0 if I t I > HT. 

Let NI and N2 be the largest integers such that 

N1TsHT 

(N - l)T' - N2T 2: - HT. 

(lOa) 

(lOb) 

Further, choose the integer Kin (1) to be NI and set M = NI + N2 + 
1, and let a(n) be an M-dimensional vector whose ith component is 

t The superscript T always denotes transpose. 
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r(t) 

INPUT 

kT 

k = 0,1,2, ... 

; I 

en=Yn-an I G 
I 

L _____________ -- _ _ _____ ~ 

Fig. I-Adaptive transversal equalizer, N = 5. 

a~n) = an+i-l, i = 1, ... , M. Then using (3) and (1) we have 

x(n) = Ba(n), 

where in (11) B is an N X M matrix having elements 

1 ::; i::; N, 
Bij = h[(i - 1) T' + (N1 + 1 - j)T], 

1 ::;j::; M. 

an (OUTPUT) 

(11) 

(12) 

It follows from (lOb) that M;::: N if T' = T and M> (N + 1)/2 if T' 
= T/2. 

The structure of the matrix B is illustrated below for the special 
case T' = T, N = 3, M = 7. 

This structure means that x(n) has the same shifting property as a (n). 

Thus, for example, in time sequence, 
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Since 

(13) 

it follows from (6), (11), and (13) that 

A = Ex(n)x(n)T = BBT. (14) 

For the special case T' = T, h(nT) = OnO, then M = N, A = I, and 

(15) 

an+N-l 

We now begin to describe the stochastic gradient algorithm used for 
equalizer convergence. But first we describe a different problem, the 
deterministic gradient algorithm, which is a method for finding the 
minimum on the surface Y, where 

Y = cTAc - 2cTv + 1. (16) 

This provides some heuristics for writing down the stochastic algo
rithm, but should not be confused with it. We take pains to point out 
some differences as we proceed, since many people substitute discus
sion of this algorithm for the actual one. 

Taking the gradient of (16) gives 

VY = 2[Ac - v]. (17) 

Hence, if we were searching for a minimum of the function (16) by 
taking steps in the gradient direction, we would write the following 
equation for our position c(n) at the nth stage 

c(n+1) = c(n) - A(Ac(n) - v), (18) 

A being a step-size parameter. Equation (18) coupled with (6) and (7) 
motivates the actual stochastic gradient algorithm used, namely, 

(19) 

(20) 

en being the scalar error (5), and a the step-sizet. Thus in N-dimen
sional tap space we move in directions x(n), where x(n) is [see (4)] the 
vector of values stored in the equalizer at time nT. Clearly, the allowed 

t It is, of course, meaningless to speak of the "size" of a unless one fixes the size or 
scaling of the terms which multiply it in (20). We shall take the scaling of the latter so 
that, in the binary case, the matrix A [see (6)] has largest eigenvalue unity. 

968 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1979 



set of directions along which we "step" is, as (15) will testify, quite 
random and cannot be thought of as being gradient directions. Nev
ertheless, tradition dominates, and (19) and (20) are still referred to as 
a stochastic gradient algorithm. 

For our purposes, (19) may be rewritten slightly by introducing the 
error vector 

(21) 

Subtracting e* from both sides of (19) allows us to write 

E(n+l) = (I - aX(n)x(n)T)E(n) - a(e*Tx(n) - an+K)x(n). (22) 

Note the quantity e*Tx(n) - an+K is the instantaneous error if the 
optimum taps were used. This is normally quite small and would be 
zero if perfect equalization were possible. 

In terms of the E(n), the mean-square error is 

(23) 

In (23) the symbol 18~~) has been introduced for the excess mean-square 
error over 18* . 

In (22) and (23), E(n) is random, and in fact depends on the entire 
sequence of data symbols since the adaptation began. Our measure of 
the progress of the algorithm will be E18(n), the average of the error at 
time n over all data sequences. 

III. THE INDEPENDENCE THEORY 

In this section we describe "independence theory," an approximation 
used to mathematically treat the stochastic gradient algorithm de
scribed by (22). Use of the approximation allows one (as we shall see) 
to determine bounds on the step-size a which will ensure stability and 
allows calculations to be made on convergence rates. 

Independence theory treats the stochastic algorithm by assuming 
that the sequence x(n) are statistically independent vectors. Since, 
from (22), E(n) depends only on the sequence X(l), ••• ,x(n-l) (assuming 
we start with X(l)), we conclude e(n) and x(n) are independent. For an 
example as to how this is applied, we look at the average error vector 
EE(n). We have, from (22), (6), (7), and (9), 

(24) 

If, for comparison, we introduce the error vector en - e* for the 
deterministic theory and call it d(n) so no confusion can arise, we would 
have, subtracting e* from both sides of (18), 

d(n+l) = (I - M)d(n). (25) 
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There is no question of an average in (25); d(n) is the error. In (24), 
Ee(n) can be zero although the norm of e(n) can be quite large. 

To emphasize the difference further, let us return to the simple 
model (15) which describes an undistorted channel, for which perfect 
equalization is possible. Only the initial setting of the taps is wrong. 
For this case, we have [note A = I in (23)] using (22) and the 
independence assumption 

Ee(n+l)Te(n+l) = e(n)T(I _ aXnX(n)T)(I _ aX(n)x(n)T)e(n) 

= (1 - 2a + a 2N)e(n)Te(n). (26) 

Thus the error decays to zero as 

(1 - 2a + a 2N)ng(O), (27) 

which is optimized if a = 1/ N to give 

(1- ~r?(O). (28) 

Note how convergence is slowed as the number of taps N of the 
problem increases. By contrast, if A = I in (25), choosing !l = 1 gives 
convergence in one step, independent of dimension. 

The convergence range of (24) for A = I is 0 < a < 2, while for (27) 
it is 0 < a < 2/ N. In practice, N ranges from about 7 to 64 and thus a 
is, by the requirement of convergence of the mean-square error, kept 
quite small. 

In order to examine independence theory further, it will be conven
ient to discuss the (positive definite) error matrix 

(29) 

All the information we wish about Eg~~), the average excess mean
square error, is contained in (29). Thus, from (23) 

Eg~~) = Ee(n)TAe(n) = ~ (a)ij(Ee(n)e(n)T)ji 
i,j 

(30) 

Similarly, the average norm Ell e(n) 112 = tr R(n). 

Our procedure for writing an equation for the time evolution of R(n) 

is simply to write the definition of R(n+l) using (29), substitute (22) for 
e(n+l), and do the average using the independence assumption. Various 
cross terms arise, and the computations naturally fall into three steps: 

Step 1: 

E[I - aX(n)x(n)T]e(n)e<n)T[I - aX(n>x<n)T] 

= R(n) - a[AR(n) + R<n)A] + a 2E[x(n)x<n)TR(n>X<n>x(n)T]. (31) 
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Appendix A discusses the evaluation of the last term. For simplicity, 
we approximate the exact evaluation by a2 A tr AR(n). When A = I, we 
have tr[a2A tr AR(n)] = a2Nft~~), so in general this term plays the role 
of the a2N term in (26). 
Step 2: 

Ea[I - aX(n)x(n)T]E(n)x(n)T(c* Tx(n) - an+K). (32) 

This is considered further in Appendix A and, for reasons given there, 
is approximated by zero. 
Step 3: As discussed in Appendix A, 

Ea2(c*Tx(n) - an+K)x(n)x(n)T(c*Tx(n) - an+K) :::::: a 2ft* A. (33) 

Putting together these three steps, we have the following accurate 
approximation from independence theory: 

R(n+l) = R(n) - a[AR(n) + R(n)A] + a2A tr AR ~n) + a2ft* A . . (34) 

Note that the last term prevents R(n) = 0 from being a solution. Thus, 
R(n) is prevented from going to zero by the small forcing term. Thus, 
in particular, E(n) only approaches zero but then executes small fluc
tuations about zero. 

Since (34) is an approximation, we prove in Appendix B that the 
positive definite character of R(n) is preserved in (34). 

We now introduce a more useful form of (34) when the mean-square 
error is of primary interest. Since A is hermitian, let U be the unitary 
transformation which diagonalizes A, 

(35) 

where we call the elements of the diagonal matrix D, by di • Further, let 

U+ R(n) U = T(n). 

In general, T(n) is not diagonal, but set T~i) = dn~ Further, note 

N 

ft~~) = tr AR(n) = tr DT(n) = L didn). 
i=l 

It follows from (34), (35), and (36) that 

(36) 

(37) 

T(n+l) = T(n) - a[DT(n) + T(n)D] + a 2D tr DT(n) + a 2ft* D. (38) 

Noting from (37) that the mean-square error depends only on the 
t~n), we are motivated to look at the diagonal terms of (38). Happily, 
they decouple from the off-diagonal terms and we have 

n 

dn +1
) = dn) - 2aditjn) + a 2di L djtr) + a 2ft*di . (39) 

j=l 
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If we introduce vectors t(n) and d in the obvious way, (39) itself can be 
rewritten in matrix notation as 

t(n+l) = Mt(n) + a2g'*d, 

where the N X N matrix M has elements 

Mij = (1 - 2adi)8ij + a2d idj. 

(40) 

(41) 

From (41) we note M is real and symmetric and thus has real eigen
values. 

The solutions to (40) will be stable if and only if the matrix M has 
all eigenvalues Ai such that -1 ::::; Ai ::::; 1. Let g be an eigenvector of M 
with eigenvalue A. Then 

reads 

or 

Mg=Ag 

gi - 2adigi + a 2(L djgj)di = Agi 
j 

2 di 
gi = -a (L digj ) 1 _ A - 2adi ' 

gi denoting the components of g. 

(42) 

(43) 

In (41) we see that, whenever d i = 0, there is a A = 1 for all a. The 
eigenvector has gi = 1 and gj = 0, j =F i. These eigenvalues do not 
change with a and are not of interest here. Set di = di if di =F o. Then 
we are concerned with 

(44) 

in a space of appropriately reduced dimension N. For a small enough, 
the eigenvalues are approximately 1 - 2adi < 1 (a> 0, of course). Now 
increase a until possibly one of the eigenvalues becomes ± 1. What is 
the critical value of a? Since all elements of (44) are strictly positive 
(except at most N values of a), the magnitude of the largest eigenvalue 
may be taken to be associated with a positive eigenvalue.2 Thus, in 
(43) [reinterpreted to match (44)], set A = 1, multiply by d i , and sum 
on i. We then obtain 

2 2 
acrit = L di = L di· 

Thus, independence theory predicts a stable algorithm if 

2 2 
O<a<--=-

Ldi Nd' 

(45) 

(46) 

d being the average eigenvalue of the channel correlation matrix A. 
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The excess error g~~) after adaptation may be derived from (39) 
using (37). We get 

q>(OO) _ q>* ~ di 
Vex - av 

2 - a ~ d i 
(47) 

The above discussion should provide the reader with an idea of what 
we hope to justify and why. The independence assumption, if it leads 
to valid results, provides a very workable theory for gaining insights 
about, and doing calculations on, the convergence procedure. 

IV. AN EXACT DESCRIPTION 

In this section, we put forth an exact description of how, in principle, 
the average mean-square error may be obtained. We begin, however, 
with the average error vector Ee(n), a simpler quantity, but one which 
requires essentially the same treatment. The exact dynamics of e(n) is 
given in (22), and the independence theory for Ee(n) is given by (24). 

For simplicity, we rename the terms in (22) 

(48) 

and 

(49) 

so (22) reads 

(50) 

which, by iteration starting with a fixed error vector e(O), has the 
solution 

.'n+1) = ill Pi"'·' + ]~ C-~l Pi)f'" + c'n'. (51) 

Note in (51) the matrices Pi do not commute so that a product ry Pi 
1 

means in the order P n ••• P2P 1• 

We proceed to examine (51) in more detail. We remark first that, by 
their very definition, Pn and [<n) depend on the data variables {an, an+l, 
••• , an+M-t} [see (11), (15), (48), (45)], and thus e(n+I) depends on the 
entire sequence {ad 7:0M -

I
• If we formally average (51) making use of 

the stationarity of the basic Bernoulli sequence {ad, we have 

E,,'n+1) = (E ill P.),,(O' + '~1 ( E il PiC'.')' (52) 

the expectation being taken over all binary variables which enter (52), 
namely, llo, aI, .•• , an+M-l. The first term of (52) represents the decay 
of the initial error to zero (the transient); the second term is the forced 
response, causing a small but nonzero steady state error as n ~ 00. 
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We have not been able to work with (52) directly, and at this point 
our analysis takes a crucial turn. We average (51) again, only this time 
we do not average over all the binary variables which enter but only 
over the sequence ao, aI, ••• , an. Call this conditioned average En. 
Then 

EnE,n+l) = (En ill P.)E'O) + :~~ (En i~~l Pd",) + Enc,n). (53) 

Now, however, (53) is not one vector equation but 2M
-

1 of them, since 
it is valid for any sequence of values of {an+l' •.. , an+M-d; these 
variables appear in (53) for arbitrary values. ThLs the set of values 
just mentioned form a "super-index" which we may collectively call J, 
J taking 2M

-
1 values. For example, we might choose to call (for M = 

3) the values {+1, +1} to be J = 1, {+1, -I} to be J = 2, {-I, +1} to 
be J = 3, and {-I, -I} to be J = 4. For the moment, however, the 
precise mapping from the (M - 1) binary variables to the integer J is 
unimportant. 

We also want to consider the matrix 

(54) 

not as a N X N matrix, but as one consisting of 2M
-

1 X 2M
-

1 blocks of 
N X N matrices so that it may act in (53) as a transition matrix 
between vector blocks. 

Thus in (54) Pn is determined by x<n), i.e., from (1), by 

x(n)=B 

an 

an+l 

an+M-l 

(55) 

Hence the "super-index" J corresponding to the vector result of an 
operation by P n would be the last M - 1 components of a (n), namely 
(an+l, an+2, ••• , an+m-d. On the other hand, Pn acts on a quantity 
determined by 

x(n-ll = B 

an-l 
an 

an+m-2 

(56) 

that is, something with vector index J' = (an, ••• , an+m-2). Thus if we 
call 

1- aX(n)x(n)T == K(J, J'), (57) 
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K(J, J') can only act between index pairs (J, J'), which are "shift
compatible." Thus if 

J ~ (SI, ••• , sm-d 

J' ~ (tl, ... , tm-d, 

where the Si and ti are binary variables, then 

K(J, J') = 0 unless Si = ti+l, i = 1, ... , M - 2. 

(58) 

(59) 

On the other hand, if (J, J') are shift-compatible, this is enough to 
determine the appropriate x(n). Thus with (58), (59), 

(60) 

Sm-l 

and we use (57) to define the appropriate K(J, J'). Having, in the 
manner thus described, achieved the block structure (57), we define 
the N X 2 M

-
l dimensional square matrix 

[

K(I' 1) 

1 . 
A(a) = - . 

2 K(2';'-', 1) 

K(1,2) ... K(l, r- I

)] • 

(61) 

There are, in fact, in any row of (61) only two nonvanishing blocks. 
Summing over the row thus corresponds, because of the factor of % in 
front, to averaging over the first component an of A(n). 

We write any N vector which is further labeled by our block index 
J [v(J), say] as an N X 2 M

-
l vector V 

V= 

v(l) 
v(2) 

v(2 M - l ) 

(62) 

To tie this all together, it is now easy to convince oneself that, if we 
let Vn+ l correspond to E n E(n+l) as in (62) and, similarly, let F correspond 
to Enf<n), then, by making use of the stationarity of the averages which 
appear, (53) represents the solution of the equation 

Vn+ l = A(a)Vn + F (63) 
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with initial condition 

Vo= (64) 

In (64), the notation [v] has l1een introduced to represent an n-vector 
"stacked" 2 M-I times. 

The solution to (63) and (64) contains all the information we want. 
In fact, once Vn is known we, by definition, know En_IE(n)(J), where 
we have modified the notation slightly to make explicit the dependence 
on J ~ (an+I, .•• , an+M-d. To regain E(n), we simply average: 

1 2M- I 

e(n) = E[En_Ie(n)(J)] = M-I L En_Ie(n) (J). (65) 
2 J=I 

The average in (65) can be put in another form if we introduce the 
matrixt 

I I I 
I I I 

1 
PI = 2M - I 

I I I ... 

having each N X N block equal to the identity matrix. Then 

[e(n)] = PIVn • 

(66) 

(67) 

We may already note that PI is an orthogonal projection operator (Pi 
= PI, pi = Pd and (67) thus states that [e(n)] is a projection ofVn into 
an appropriate subspace. Further, note that 

[E {(n)] = [0] = PIF 

and thus F belongs to the orthogonal subspace. 
The formal solution of (63) (including the final projection) is 

n-I 
PIVn = PIA n(a)[e(O)] + PI L A S(a)F 

8=0 

having the limit 

(68) 

(69) 

(70) 

t We hope a warning that the symbol PI is being used for different things in (66) and 
(48) will eliminate confusion. 
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Both (69) and (70) can be computed using the spectral decomposition 
for functions of a matrix A. If A has all its eigenvalues Ai of index one, 
that is, if its eigenvectors Ui span the space (all Jordan blocks one
dimensional) and if Wi are corresponding eigenvectors of A T, chosen 
so that 

wTlh = ()iJ, (71) 

then for (almost) any function h( . ), 

h(A) = L h(A;)UiWr. (72) 
i 

Roughly, h( . ) is restricted so that h(Ai) is defined. A similar but more 
complicated theorem holds if the Ui do not span the space. If a. ~ 0, it 
may be reasonable to assume that the Ui do indeed span the space, 
but for a. = 0 they do not. 

We may already note that asymptotic stability of the full-fledged 
algorithm is guaranteed if all eigenvalues of A (a.) are less than unity in 
magnitude. In fact, only those eigenvalues which are associated with 
a Ui such that PUi ~ 0 need have magnitude less than unity. 

In general, because of the very large dimension (N2 M
-

1
) encountered 

in practical use, the above theory would be more useful if workable 
approximations could be found. We present one such approach in 
Section VI which is based on a perturbation approach for small step
size a.. Before doing that, we retreat a bit to demonstrate how the 
mean-square error may be brought into essentially the same form just 
developed for the average error vector. 

We again find it more convenient to discuss the error matrix R (n) 

defined in (29). We substitute (50) directly into (29) and perform our 
trick of taking the average En (which involves averaging only over llo, 

al, ... , an leaving an+l, •• '. , an+M-l fixed) to obtain 

In (73), Lan refers to summing over an = ±1. Note that in (73) the 
sequence of quantities En_1E(n) may be regarded as known (or calcula
ble) since they are the N dimensional subvectors which make up the 
N X 2M

-
1 dimensional solution Vn to (63) and (64). 

We will rewrite (73), but first we need some notation. If R is any N 
X N matrix, we may make an N 2 dimensional vector out of it by 
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writing the quantity 

~(R) = (74) 

We call ~(R) the vector made out of R. 
In this trivial sense, we use ~( . ) as an operator. We use this to turn 

some of the terms in (73) into vectors. Introducing the "J-index" for 
emphasis (it is, of course, implicit when we use En) we define 

w(n+l)(J) = HEnR(n+I)(J)] (75a) 

g(J) = HEnr<n)r<n)1) (75b) 

N ext we note that if A, R, and B are N X N matrices, then 

~(ARB) = C~(R), (76) 

where C is an N 2 X N 2 matrix. In fact, C is the direct product A ® B T 

where A ® B (not A ® B T) is given by 

allB al2B alNB 
a2lB a22B a2NB 

A ® B = (77) 
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In the notation (75) and (77), (73) may be rewritten as 

w(n+l)(J) = ~ L Pn ® Pnw(n)(J') + g( Vn, J). (78) 
an 

In (78) J' is the compatible pair of indices that are allowed with J. As 
in (63), we form N 2 X 2M

-
1 dimensional vectors W n , G, and G(Vn ) 

from w(n)(J), g(J), and g(Vn, J), respectively. And finally, using the 
definition of K(J, J') in (57) to (60) we write 

1 [K(I' 1) ~ K(I, 1) K(I, 2) ® K(1, 2) ••• ] 

B(a)=- . 
2 

K(2 M -I, 1) ® K(2 M -I, 1) ••• 

The collection of equations (78) reads 

Wn+l = B(a) Wn + G(Vn). 

Equation (80) with (63), (64), and the initial condition 

~(E(O)E(O)T) 

~(EOE(O)T) 

WO= 

~(EOE(O)T) 

provide an exact description of the error matrix. 

(79) 

(80) 

(8Ia) 

To simplify matters, we replace (80) by the approximate version 

Wn +1 = B(a)Wn + G, (8Ib) 

where G, as already defined, is formed from (75b) as G(Vn ) was formed 
from (75c). When more is understood about the solutions of our 
equations, we see that the replacement of (80) by (8Ib) is not a serious 
matter·t 

Again, we are not interested so much in Wn as the projected version 

(82) 

In (82) the bracket notation is the same as (64) except that ~(R(n») is a 
vector of dimension N 2 instead of N. Also, in (32) Pi has the same 
meaning as in (66) except that the identity matrices are all in N 2 

dimensions instead of N. 

t In most situations, G(Vn ) is small compared to the initial error and the associated 
transient. The main effect of the forcing term is to give a nonzero error as n ~ 00. But 
Vn ~ 0, and G( Vn) reduces to G. 
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In summary, we thus see that both eq. (63) for V n , which represents 
E n _ 1E(n), and (81b) for W n , which represents En _ 1R(n), have the form 

with 

ro = [«1>], 

and the quantity of interest being 

9 1r n 

for the appropriate dimension and projection 9 1 • 

v. THE CASE a = 0 

(83) 

(84) 

(85) 

The equalization problem is uninteresting when the step-size is 
taken to be zero, i.e., nothing happens. However, since we soon intend 
to do a perturbation analysis about a = ° we must be familiar with our 
formalism when a = 0. This is not trivial, and we devote this section 
to it. 

To display matrices explicitly, we need a labeling procedure. We let 
the "super-index" J run from ° to (2M

-
1 

- l).t The J value which 
labels (at, .•. , aM-1)(ai = ±1) is gotten as follows: Change +1 to 0, 
and -1 to 1, obtaining then binary representation of J. Thus, for M 
= 3, J = 0,1,2,3 correspond respectively to (+, +), (+-), (-+), and 
(-, -). With this labeling we have 

1 
.51(0) =-

2 

1 1 
1 1 
01 ° 01 
01 01 
001 001 
001 001 

000···100 
000···100 

0 

... 1 

... 1 

®1= r®I. (86) 

Let S be vector space of dimension N or N 2 accordingly as r n in 
(83) refers to Vn or W n • Then in (86) 1 refers to the identity in S. 

The matrix .51(a) has the same structure as (86), with each identity 
being replaced by the appropriate 1 - aXJ(T or (1 - aXJ(T) ® (1 -
aXJ(T). 

t This labeling is for descriptive convenience here. We hope the reader is forgiving if 
we later let J = 1,2, ... ,2M

-
I
• We will be explicit about the convention when it matters. 
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Table I-Zero eigenvalue 
structure of r 

Index 

M-I 
M-2 
M-3 
M-4 
M-5 

M-l 

M- (M- 2) = 2 
1 

# Blocks of 
This Index 

1 
1 
2 
4 
8 

The matrix r in (86) is basic to our study and we now concentrate 
on it; it has dimension 2M

-
I
• Clearly, the all-ones vector is an eigenvec

tor of r having eigenvalue one. The reader may convince himself that 
~-l is proportional to the matrix consisting of all ones, which has 
(2M

-
1 

- 1) eigenvectors perpendicular to the all-ones vector. These 
eigenvectors are associated with eigenvalue zero. Using the fact that 
the eigenvalues of a power of a matrix are the powers of the eigenval
ues, we conclude that r has one unity eigenvalue and (2M

-
1 

- 1) zero 
ones. The zero eigenvalues are not of index one however (index, recall, 
is the dimension of the Jordan block). Table I summarizes the structure 
of the zero eigenvalues of r. 

While it is not crucial for the sequel, we also give the eigenvectors 
and generalized eigenvectors of r. These are the columns, albeit 
permuted, of Hadamard matrices Hn constructed according to H2 = 1, 

Hn] = Hm. 
-Hn 

(87) 

Rows and columns of Hn are labeled from 0 to n - 1. Our claim is that 
the columns of H(2M 

- 1) are the (unnormalized) generalized eigen
vectors of r. Recall that a sequence of vectors Xl, l = 1, ... , k forms 
a chain of generalized eigenvectors corresponding to a k-dimensional 
Jordan block when 

rXI = XI+1 

rXk = }..)(k. 

l = 1, ... ,k - 1 

Clearly, the last 2M
-

2 columns of H satisfy rXk = 0 and these are the 
only ones. If Ck is the kth column, '2M

-
2 + 1 =s k =s ~-l, then the chain 

that ends with it is, in reverse order, t 

t For (88) to hold, it is essential that the flrst column be labeled co. Also, of course, 
the Ck of this section is different from Ck in Section II where it signifled equalizer taps. 
No confusion should arise. 
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(88) 

These notions may be verified for 

111 1 1 111 
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 

Ha= 
1 -1 -1 1 1 -1 -1 1 

(89) . 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 

The chains are (4, 2, 1), (5), (6, 3), (7). If we rearrange the columns of 
Ha to give 

then 

1 -T -
-HarHa= 
8 

1 l 
00 I 

~~ J. 010 
001 
000 

(90) 

(91) 

From the direct product structure in (86) we conclude that if <I>i are 
a complete o.n. set for S, then the generalized eigenvectors of d(O) are 

1 
--Ck®<I>i, 

J2M - 1 
(92) 

Ck being the columns of the Hadamard matrix just described. In 
particular, d(O) has N (or N 2

) unity eigenvalues of index one, having 
eigenvectors 

(93) 

the remaining eigenvalues are zero. The projection operator onto the 
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space spanned by the eigenvectors having A = 1 is, using (93), 

L uiuT = 9 1 , 
i 

(94) 

where 9 1 has already been introduced in (66), I being the identity of 
s. Sinc~ 9 1 = 9 r, the projection is orthogonal. We call the projection 
onto the "zero eigenvalue subspace" of d(O) by 9 0 and 9 0 = 1-91• 

Thus, when we solve (83), we really desire, according to (85), not rn 
but PJJtYn , its projection onto the unity eigenvalue subspace of d(O). 

A standard spectral representation of d(O) is 

d(O) = 9 1 + £1)0, (95) 

where £I)~-I = o. This defines (for us) £1)0. It may be shown that 9 1£1)0 

= o. 
We remark here that our basic equalization problem is unchanged 

if any infinite sample sequence of data values {an} is replaced by their 
negatives. This follows from the quadratic nature (in the an) of the 
algorithm (19). As a consequence, we have 

Ene(n)(I ~ 81, 000, 8 m-I) = Ee(n)(J ~ -81, 000, -8m-I) (96) 

and similarly for w(n)(J). We have not exploited this symmetry, but if 
we had, the dimension of d(a) could be reduced by a factor of 2. d(O) 
would then, in particular, have a different form, but would have many 
of the same properties discussed here. 

Finally, we take this opportunity to get some notational problems 
out of the way. We introduce a convenient way of labeling matrices C 
with block structure as in (86). Label rows by IL, IL = 1, 2, 0 0 0, 2M

-
1 and 

likewise columns by v. If we write 

IL = (i - l)n + k 

v = (j - l)n + I 

1 :s i, j :S 2M
-

1 

1 :S k, l:s N (or N 2
) 

n = N (or N 2
), (97) 

then the pair (i, j) specifies which block we are concerned with, while 
the pair (k, I) are the usual matrix indices for the N X N (or N 2 X N 2

) 

matrix in that block. Thus, for example, in (77), 

(98) 

Likewise, in (92) the vector c <8l () has components 

(99) 

The orthonormal basis for S where the kth basis vector has a one in 
the kth position and zeros elsewhere is denoted by {ek}. 
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VI. THE PERTURBATION THEORY 

We begin the next stage of analysis by writing our matrices in a new 
basis. Consider the orthogonal transformation matrix U which brings 
d(O) to Jordan form, namely, the matrix U whose columns are of the 
form 

(100) 

where Ci are columns of the Hadamard matrix of appropriate dimen
sion, and ek are the basis vectors of S. In (100), i and k range over all 
possible values. The columns of U are assumed to be arranged so that 
the result on d(O) comes out "nice." We will not bother to be too 
explicit, except to say that the fIrst N(or N 2

) columns of U are 

k = 1, "', N(N 2
). (101) 

Thent 

U T d(a)U = [~ ~ J = s1(a). (102) 

In (102),13 is an N X N matrix, v is N X (2M
-

1 
- N) matrix, etc. If a 

= 0, (102) takes the form 

(103) 

f being a Jordan block exemplifIed by (91), i.e., "nice." Note that ft' 
= 0 if 1 ~ M-l. 

In general, when a ¥: 0, all blocks in (103) have added terms which 
are linear in a, or linear and quadratic, depending on whether (61) or 
(79) applies.* 

We shall be especially concerned with the matrix /3, for it is here 
that the germ of independence theory appears. To calculate it, we 
want 

13kl = [_1_ Co ® ekJ d(a) [_1_ Co ® e1J. (104) 
~2M-l ~2M-l 

Calling the (m, n) element of the (i, j) block of d(a) by V20:fm, (104) 
becomes 

t Henceforth, we denote transformed quantities by a tilde. * The reader should note that the simple equations (27) and (28) suggest that the 
linear and quadratic a-terms are of equal importance for ranges of a of interest. 
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1 "" 
Phi = 2M ~ (CO)i(Ch)m ffhtn (CO)ACi)n. 

IJ 
mn 

(105) 

Now £f~n = 0 whenever r ij in (86) is. Thus, for fixed mn there are only 
2m possible £f~n which are nonzero. Denote the sum over these as 
Lnonzero. Then (105) becomes, using (Ch)m = Dhm, (CO)i = 1 

1 
Phi = M L £fii. 

2 nonzero 
(106) 

Equation (l06) gives Phi as the average of the (k, 1) elements of all 2M 
blocks in d(a) which are not a priori zero. This, however, is nothing 
but 

E(I - aXXT) = 1- aA, (107) 

precisely the matrix which enters in the independence theory! Like
wise, if d(a) = B(a) 

E(I - a XXT) ® (1- axxr) (l08) 

is the matrix by which we would solve independence theory had we 
rewritten (31) giving R(n) its vector form rather than its matrix form. 

What do vectors look like with our new o.n. basis? If r is a column 
vector of numbers in the original basis, then in the new basis the 
numbers are ufr. Let r be considered as blocks of N (N2

) vectors 
<pi; the kth component of each is «P~. Then the inner product of a 
particular row of U with r, namely, 

L (Ci X Ch)/tr/t 
/t 

is a generic term of U T 
" which evaluates to 

2 M - J 

1 i -- L (Cdi«Pk. 
.J2M - 1 i=1 

(l09) 

Thus the first N(N2
) components (the first blocks) is simply .J2M

-
1 

times the average of the blocks of r. In other words, 

(110) 

The right member of (110) is, of course, written in a notation compat
ible with (102). Likewise, a vector with zero average transforms to a 
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vector which may be written 

(111) 

Thus the initial condition for (63) or (80) is of type (110) unlike the 
driving term for (63), which is of type (111). The driving term for (80) 
has both types. 

Finally, we note that the projection operator onto the unity eigen
space of .xi' (0) is 

:] 
while 

It will also be convenient to write 

uTrn = rn = _1 [xn]. 
.J2M - 1 Yn 

(112) 

(113) 

(110b) 

Putting together the pieces just described in this section, the contrast 
between the mathematics of the exact theory and independence theory 
is as follows. The former problem is the following: solve for Xn where 

[
Xn+l] = [f3 v] [xn] + [fIl] , 
Yn+l y 8 Yn 'l' 

(114) 

where Xo is given, yo = o. The latter problem is: Solve for Xn where 

Xn+l = f3xn + fIl, (115) 

Xo is given. Note if v and yin (114) were zero, the solution to the two 
problems would be identical. Since v and y vanish when a = 0, we may 
hope a perturbation approach will be useful for small a. More specifi
cally, we treat 

[
f3-1 v ] 
y 8-f 

as a perturbation of (103), the matrix A(a) when a = o. 

986 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1979 



We begin by considering the eigenvalue problem for d (a). When a 
= 0, the eigenvalues of f3 are unity while these of 0 are zero, and these 
eigenvalues vary continuously as a is increased. Consider solving for 
the large eigenvalues. In general, we have to solve 

f3x + vy = AX 
(116) 

yx + oy = AY, 

where A is one of these eigenvalues, presumed close to one. Since the 
eigenvalues of 0 will be presumed smaller than A, (A - 0)-1 exists and 
we conclude from the second equation of (116) that 

Substituting this into the first equation yields 

(117) 

Consistent with the perturbation spirit, we replace the A (on the left) 
by 1 and 0 by its value when a = 0, namely, f [see (103)]. 

Thus the large A's are (approximately) solutions to 

(118) 

and the corresponding eigenvector to d(a) is, approximately,t 

(119) 

Using these approximations and applying the spectral decomposition 
discussed in (72) to evaluate dn(a), it is now straightforward to show 
that the desired solution to (114) is, at least if we neglect the small 
eigenvalues. 

Xn = [p + v I ! J' y r Xo 

+ I [p + v I ! J' y n <I> + v I ~ J' qr l (120) 

t With the present representation, the perturbation theory has been painless. More 
formal and more thorough approaches to perturbation theory of matrices may be found 
in Refs. 2 and 3. 
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From (120) we conclude 

~".! Xn = [I - P - p 1 ~ J y r'[<I> + p I ~ J '1']. (121) 

In fact, the steady-state error can also be computed exactly from (114) 

as 

1 1 1 
[1 - f3 - v-- yr [<ll + v-- '1']. 

1-8 1-8 
(122) 

Within the spirit of our approximations, (122) is consistent with (121). 
The neglect of the small eigenvalues is justified by the fact that their 
contribution will damp out quickly, and also that they operate in a 
subspace approximately orthogonal to the one we are interested in. 
Thus in (119) the "second half" of the large eigenvector is small 
because of the y factor. The corresponding form for the "small" 
eigenvectors would have the first portion small. 

We take (120) and (121) as our approximate solution. The terms 

1 1 
v 1 _ / y and v 1 _ / '1' (123) 

are higher order terms in the perturbation, and neglecting them we 
obtaint 

n-l 

Xn = pnxo + L pS<ll (124) 
s=O 

1 
Xoo = 1 _ P <ll, (125) 

exactly what independence theory would predict. 
To examine further the key expression 

(126) 

some more concrete expression for the vy type terms is needed. For 
example, consider an initial error matrix Ro. Then 

Rl = E[1 - aXIXf]Ro[1 - aX1Xf]. 

This must correspond to f3 and so, as we already know, 

p = E[1 - aXIXf] @ [1 - aX1Xf]. 

(127) 

(128) 

In general, then (neglecting the forcing terms), independence theory 

t Noting that (A + E)n Z An for n = O(ljE) but not for n ~ 00, we expect the 
approximation to break down after a while. This may very well happen only after the 
taps have, for practical purposes, converged to the desired solution. 
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can be written (letting P n = I - aXnX~) 

Rn+l = EPIRnPI. (129) 

If we consider two iterations 

R2 = E[I - aXzX:f][I - aXIXf]Ro[I - aXIXf][I - aX2Xf] , (130) 

this corresponds, on squaring the matrix in (102), to Ii + vy. Thus vy 
corresponds to 

(131) 

where P 00 is simply a notation denoting that it (P (0) is to be treated 
independently of Pl. The matrix Ro is not statistical. The proper way 
to write (131) ist 

(132) 

In general, it can be shown 

1 M-2 M 

V I _ f y = s~o vfSy = S~2 [E(Ps ® Ps)(PI ® PI) - ,82]. (133) 

Using (133) in (126) provides us with the next correction to the 
eigenvalues by way of (118). 

Furthermore, (133) suggests a simplified "dynamics" for Rn , namely, 

M-I 

Rn+l = EPIRnPI + E L [Pl+sPIRn-sPIPl+S 
8=1 

A general discussion of these correction terms seems out of the 
question. In fact, the expectations are not trivial to do. Instead, we 
resort again to the simple model of (15), where A = I, andg"~~) = tr R n , 

and set N = 3. For this case, we have been able to do the expectations 
and compute the eigenvalues of f3 and f3 + v[l/(I - f)]y. The 
eigenvalues results are given in Table II. Certainly, in this case the 
perturbation philosophy seems well justified. 

VII. CONCLUSIONS 

We conclude (as explained above) that a perturbation analysis 
suggests that the difference between independence theory and one 
which takes into account the correlations between the "gradient" 

t Using (A 0 B)(C 0 D) = AC 0 BD, other forms are, of course, possible. 
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Table II-A comparison of 
the eigenvalues of f3 and 

its perturbation for a 
special situation 

1 
f3 f3+PI_~Y 

0.667 0.674 
0.555 0.543 
0.555 0.555 
0.555 0.555 
0.333 0.337 
0.333 0.333 
0.333 0.333 
0.333 0.333 
0.333 0.333 

directions is slight. Our early worry was that the shifting property 

~ (135) 

Xn Xn+l 

in going from one gradient direction to the next could cause trouble 
with independence theory. Any notion that this particular dependence 
must result in mathematics completely foreign to that of independence 
theory has been shown to be false. Independence theory is an inherent 
part of the exact description. 

The situation in (135) does, however, have the rigorous property 
that the "new" component (Xn+l) is independent of the otherg. For real 
problems, this situation may well be violated in certain cases of severe 
intersymbol interference. Examining the N = 1 case leads us to propose 
the following criterion to measure this dependence. Namely, if, in the 
synchronous case, the received pulse h(t) [see (1)] is normalized so 
that ~~ 00 h; = 1, then we might expect 

to be a good measure of independence for the new component. 
Our effort has been a long and tedious one, and our attempts to pull 

insights from complicated equations have sometimes been nonrigorous 
and no doubt occasionally colored by the previous experimental results 
and simulation results of others. 1 Thus, while the ultimate justification 
of independence theory must remain empirical, we hope that our 
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efforts at least make mathematically plausible the successes of inde
pendence theory. 

Finally, it is a pleasure to say that the present work has benefited 
from discussions with J. Salz, L. A. Shepp, N. J. A. Sloane, and H. S. 
Witsenhausen. 

APPENDIX A 

Evaluation of Some Averages 

For the purposes of this appendix, we drop the superscript in (11), 
labeling things as if n = 1. For application to (31) we consider the 
average 

(136) 

for an arbitrary N X N matrix R. Here (11) holds, and we are averaging 
over the binary variables in a. Expanding (136) using (11) we have to 
do the key average 

EaaTQaa T == EC, 

where Q = BTRB. Thus from (137), 

(EC)ij = E L (aa T)ikQkZ(aa T)Zj 
k,Z 

= E L aiakaZajQkZ. 
k,Z 

U sing the fact that for independent binary variables 

(137) 

(138) 

EaiakaZaj = 8ik8zj + 8i/8kj + 8ij8kZ - 28ik8i/8ij (139) 

we obtain, upon using (139) in (138) 

(EC)ij = Qij + Qji + (tr Q)8ij - 2Qii8ij. 

In matrix notation, (140) becomes 

EC = Q + QT + (tr Q)I - 2 diag Q, 

with the definition 

(140) 

(141) 

(142) 

Note that if the ai were unit-variance Gaussian, the last term in (141) 
(diag Q) would not arise. It will be dropped because it is small in usual 
cases. Finally, multiplying (141) on the left by B and on the right by 
BT we recover (136), obtaining (since Q is symmetric now) 

EXX?RXXT = 2 ARA + (tr RA)A - 2B(diag BTRB)BT. (143) 

Now we recall that all terms in (143) are multiplied by a 2
• We would 
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neglect them all unless one can be large. In fact, (tr RA)A can be N 
times larger and hence this is the only term we need keep. 

We move on to consider (32), rewritten as 

(144) 

The term linear in a in (144) vanishes as a correspondence of (6), (7), 
and (9). One of the a 2 terms is 

(145) 

Evaluating (145) using (143), we check to see if the dominant term can 
be large. It is given by 

(146) 

If we introduce the (M - 1) vector u, having all zeros except a one in 
the (1 + J) place, then 

an+J = u·a = uTa, (147) 

and the other a 2 term is proportional to 

a2EXXTruTaXT = a2EB[aaT(BTeuT)aaT]BT. (148) 

Evaluating (148) using (138) and (141), we get 

A(eTBu). (149) 

However, using (7) we readily verify Bu = v, and a final use of (9) 
shows that the two dominant a 2 terms (146) and (149) cancel. The 
other terms are truly a 2 terms (as opposed to a 2 N) and are neglected, 
leading us to replace (32) by zero. 

We have introduced enough tricks now so that the reader may easily 
reproduce (33). 

APPENDIX B 

Definiteness of Solution to (34) 

We give here an explicit demonstration that the solution to (34) 
retains its positive definite character. By induction on n, it is sufficient 
to show that R(n+l) is positive definite (2: 0) if R(n) is. 

We make repeated use that R 2: 0 if R is hermitian and cpTRcp 2: 0 for 
any vector cp. 

We recall A 2: 0 (and therefore hermitian) and hence R(n+I) is 
hermitian. 

Rewrite the right member of (34) as 

(I - aA)R(1 - aA) + a2[A tr AR - ARA] + a2g:'* A. (150) 

Each term in (150) is positive definite; the only nonobvious one is the 
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second. However, it may be rewritten as 

JA [tr JA R JA - JA R JA] JA, (151) 

since tr AB = tr BA. The matrix JA R JA is, of course, positive 
definite. Now observe that if B ~ 0 then tr B - B ~ o. This concludes 
the proof. 
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This paper presents some experimental results concerning the pulse 
transmission properties of fine line printed conductors (e.g., width = 
8 mils, spaces = 9 mils) on various styles of circuit packs (cps). The 
pulse transmission properties include the characteristic impedance, 
the propagation delay, the rise time, the bandwidth, and the intra
layer and interlayer pulse crosstalk. A simplified theoretical model 
is presented which leads directly to some basic crosstalk equations. 
Theoretical results are developed to extend the application of the 
experimental crosstalk results to arbitrary pulse signals, periodic 
signals, and random signals. Also, theoretical scaling laws are 
developed to extend the crosstalk results to conductor spaces in the 
range of 7 to 40 mils. The crosstalk results are very important, since 
they tend to limit the packaging density of printed conductors on the 
CP styles by limiting the coupled length and spacing of parallel 
conductors. The results can be incorporated into computer-aided 
designs which can analyze routed CP s to detect potential crosstalk 
problems before the CP routing is finalized for manufacture. Other 
applications include CP selection, crosstalk estimation, electrical 
characterization of CP s and backplanes, estimation of conductor 
capacitance and inductance, and effects of various dielectrics. The 
results are applicable to general styles of printed wiring boards. In 
particular, they apply directly to all styles of CP s in the BELLP AC™ 
apparatus housing-a modular packaging system for packaging elec
tronic equipment in the Bell System. 

I. INTRODUCTION 

In the physical design of large electronic systems, the interconnec
tion of the integrated circuits and other components at the circuit pack 
or printed wiring-board level constitutes a basic and relatively expen
sive level of interconnection. In addition to supplying power and 
ground, the circuit pack (cp) provides the conductor paths for the 
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Table I-Description of the circuit pack styles 
Circuit 
Pack 
Style 

Wire wrap 
Extender board 

Double-sided 
(epoxy) 

Double-sided 
(metal) 

Bonded board 
(LAMPAC)t 

4L MLB (EXT PIG) 
6L MLB (EXT PIG) 
6L MLB (INT PIG) 
6L MLB (INT PIG, 

surface routing) 
8L MLB (INT PIG) 

Description 

Wire wrap board for breadboarding 
6 layer MLB, 2 pad layers, 2 signal layers, power (P) and ground 

(G) on inside, dedicated ground conductor between every 
pair of signal conductors 

Double-sided, epoxy PWB 

Double-sided, metal core, PWB 

Flex bonded to epoxy coated steel 

4 layer MLB, 2 signal layers, P and G on outside 
6 layer MLB, 4 signal layers, P and G on outside 
6 layer MLB, 2 pad layers, 2 signal layers, P and G on inside 
6 layer MLB, 4 signal layers, P and G on inside 

8 layer MLB, 2 pad layers, 4 signal layers, P and G on inside 

t This particular bonded board is also known as LAMPAC. 

transmission of pulses and other types of signals between the inte
grated circuits, other components, and the cp connector. 

The basic pulse transmission properties, such as characteristic 
impedance, propagation delay, rise time, bandwidth, and crosstalk 
depend a great deal on the cp configuration or style. Since the costs 
associated with the various cp styles differ significantly, it is very 
important to develop cp styles which are suitable electrically and 
which are relatively inexpensive. 

For the past few years, a Bell System packaging effore (BELLPAC* 
packaging system) has been under way to develop a modular packaging 
system for packaging electronic equipment. This effort makes use of a 
suitable connector (963) and a number of cp styles that have common 
features suitable for computer-aided design. 

The purpose of this paper is to present some basic transmission 
properties of various styles of CPs which include those in the 
BELLPAC hardware family. The transmission properties are very 
important, since they help to determine which CP style is most appro
priate for a given application. 

A listing of the CP styles along with a short description of each is 
presented in Table I. Copper conductors are used on all the CP styles. 
The dielectric material for most cps is a composite of epoxy and glass 
fibers. The composite structure has a relative dielectric constant 
(effective) of about 4.2. Except for the extender board, all the CP styles 
have the common features shown in Fig. 1. 

* Trademark of Western Electric. 
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Fig. I-Some common features applying to all circuit pack styles except the extender 
board. The plated-through holes are on either lOO-mil or 200-mil centers. The spaces 
between the rows of plated-through holes are denoted as lOO-mil or 200-mil channels. 

The extender board is a very special design. Its primary function is 
to extend any CP beyond the apparatus housing so that both sides of 
the CP are accessible for debugging or test purposes. Thus, the extender 
board is basically an "extension cord" for a CPo 

To determine the basic transmission properties of the various cps, 
appropriate test boards were designed for each style of CP listed in 
Table I. Except for the double-sided (metal) board, all test boards were 
fabricated at the Western Electric printed-circuit manufacturing plant 
at Richmond, Virginia. The double-sided metal board was manufac
tured at the Western Electric plant in Kearny, New Jersey. The test 
routing consisted of either 8 ± 2 mil conductors with nominal 9-mil 
spaces or 12 ± 3 mil conductors with nominal 13-mil spaces. The 8-mil 
conductors were on 17-mil centers, and the 12-mil conductors were on 
25-mil centers. In general, the length of the conductor paths was about 
1 foot. 

An experimental approach was necessary for this study because 
detailed theoretical models which include all Cp styles of interest 
become very complicated, and . they are not now very useful for 
determining many basic pulse transmission properties. The experimen
tal methods used to determine the transmission properties of the test 

'boards are described in the next section. 
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II. DESCRIPTION OF THE EXPERIMENTAL METHODS 

2. 1 Pulse transmission properties 

Each CP style containing the test routing was probed with a Hewlett 
Packard time domain reflectometer (TDR) system consisting of a 1815A 
sampling plug-in, an 1817 A sampling head, and an 1106B tunnel diode 
pulse generator. The TDR system was used to apply a fast rising step 
signal into each CP and display the reflected waveform on a sampling 
oscilloscope. In general, the conductor path on the CP was open
circuited and was free of any parallel branches. 

For purposes of detailed analysis, a photograph was taken of each 
TDR display of interest. The general form of the TDR display is pre
sented in Fig. 2. By analyzing the TDR display of the reflected wave
form, one can determine the basic pulse transmission properties of the 
various CP styles. The particular CP properties of interest are the 
characteristic impedance, Z}, the propagation delay, Td , the 80-percent 
rise time, Tn and the bandwidth, B. All these CP properties can be 
determined by analyzing each TDR display as indicated in Fig. 2. The 
SO-percent rise time, Tr , on the TDR display is a result of the input step 
signal traversing the CP twice, as is characteristic of a reflection 
method. The one-way rise time is faster by a factor of approximately 
II J2. By applying this factor to the usual relationship between band
width and rise time, we have 

B 
_ 0.35 -=- 1 
- TrlJ2 - 2Tr · 

(1) 

Reference 2 presents some additional discussion concerning the TDR 

method along with some detailed results concerning the theoretical 
TDR display for an ideal CPo 

END OF PIN 
INPUTTO 
CIRCUIT " 

PACK '\ 

REFLECTION 
COEFFICIENT 

t 

0.8 (1-P1 ) --
ASYMPTOTE = (1-p/) 

: .... - 80% RISE TIME 

I 

Z1 Tr : 
'-------~----~~-~ 

I _ Z1- Zo 1\, 
I 1 0 1 

COAX CABLE, 
Zo = 50n 

I P1 - "'Z+'Z til .... - OPEN CI RCUIT 

--+------------- 1 
~ : I 

\ ... - - - - - 2T d - - - - - -~ 
I 
I 

END OF CABLE / _TIME 

Fig. 2-The general form of the TDR display. 
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2.2 Pulse crosstalk properties 

The pulse crosstalk properties of the CPs were determined experi
mentally by using th~ method described in Refs. 3, 4, and 5. Briefly, 
the method consists of applying a fast pulse (rise time ,..., 2 ns) to a 
driven conductor and monitoring the resultant waveform at the near
end or far-end of some idle conductor of interest. In all cases, the 
crosstalk results apply when all conductors are properly terminated 
with matched loads. The corresponding results for other loads can 
yield higher values of crosstalk which can be estimated from the results 
for matched loads by determining the reflections and using superpo
sition. Thus, the crosstalk results for the matched loads are basic 
properties of the CP styles. The crosstalk results are very important 
since they limit the packaging density of printed conductors on the 
CPs by limiting the coupled length and spacing of parallel conductors. 

We now summarize all the experimental results presented in the 
appendix to this paper. 

III. SUMMARY OF THE EXPERIMENTAL RESULTS 

Table II presents a summary of the pulse transmission properties of 
all the CPs considered in this paper. More detailed properties for each 
of the cp styles are presented in the appendix, as stated in the last 
column of Table II. 

The propagation delay per foot, the rise time, and the bandwidth 
include the effects of the 963 connector plus fanout (see Fig. 1). 
However, an earlier study6 has shown that the 963 connector plus 
fanout limits all the CP styles to applications having one-way signal 
rise times (= 1/ J2 of the TDR rise time values) no faster than about 
2.0 ns (bandwidths :s 175 MHz). This 2.0-ns limit was determined by 
considering the crosstalk levels and impedance mismatch associated 
with the 963 connector plus fanout. This lower limit on signal rise time 
is sufficient to include most applications in the Bell System. 

The pulse crosstalk results were measured as a percentage of the 
signal step in the driven conductor. The crosstalk results apply when 
the printed conductors are terminated with matched loads. 

The interlayer crosstalk can be decreased to negligible values by 
simply using orthogonal routing on adjacent layers. This technique is 
now widely used during the routing of the conductors. Therefore, 
intralayer crosstalk is usually more of a concern than is interlayer 
crosstalk. 

The attenuation of the conductors has not been thoroughly inves
tigated, but some preliminary results have shown that signal attenua
tion is about 0.4 dB/ft at 250 MHz. 
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I 
I 
1Lm 
I 

V L 
I 

Zl I --- IDLE 
CONDUCTOR 

-= 
(b) 

Fig. 3-A simplified model of crosstalk for a pair of lossless, uniformly, and loosely 
coupled conductors terminated with matched loads. ZI, U, and Ie denote characteristic 
impedance, propagation velocity, and coupled length, respectively. (a) Capacitive 
crosstalk, Ve, resulting from the mutual capacitance per unit length, Cm. (b) Inductive 
crosstalk, VL , resulting from the mutual inductance per unit length, Lm. 

Table II shows that the CP styles in the BELLPAC family of cps* 
provide a wide variety of pulse transmission properties that can satisfy 
the CP needs of most presentday Bell System projects. Many current 
projects (e.g., AMARC, PDT2A, PLAID, Triport, ESS Ring and Tone, DIF) 

make use of the double-sided (epoxy) style. In fact, this is the most 
common CP style. The double-sided metal CP is used in customer 
equipment and is now under consideration for power supply applica
tions. The 4L MLB and 6L MLB (EXT P /G) were used in some switching 
applications such as the PRO CON project. The higher capability MLBS, 

the 6L MLBS (INT P /G with and without surface routing), were used in 
the lA ESS processor, and are expected to find use in projects such as 
the 3B ESS processor and DIF. 

IV. THEORETICAL CROSSTALK RESULTS 

4. 1 Derivation of basic crosstalk equations 

Consider the simplified model of crosstalk presented in Fig. 3. The 
capacitive crosstalk voltage denoted by Vc in Fig. 3a is a suitable 
approximation when the conductors are loosely coupled. A more 

* At the present time, the bonded board (LAMPAC) and the 8L MLB (INT P /G) are not 
members of the BELLPAC family of cP's. 
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Table II-Summary of pulse transmission properties of various circuit pack styles 
More Details 

Maximumt Maximumt Shown 
Interlayer Intralayer in the 

Rise Pulse Pulse Following 
Circuit Characteristic Propagation time· Crosstalk Crosstalk Figures 
Pack Impedance delay· (TDR) Bandwidth· (Near-End) (Near-End) in the 
Style (ohms) (ns per ft) (ns) (MHz) (percent) (percent) Appendix 

Wire wrap* 125 ± 50 1.4 2.0 250 40 4 160 ± 35 1.3 1.8 278 35 
Extender 70 ± 5 1.8 1.3 385 0.3 1.6 5 Board 
Double-Sided 150 ± 20 1.5 2.6 190 21 39 6 (epoxy)§ 150 ± 20 1.5 2.6 190 24 34 
Double-Sided 98 ± 8 1.5 2.6 190 1.2 15 7 (metal)§ 83 ± 6 1.5 2.6 190 3.2 13 
Bonded Board§ 95 ± 10 1.5 2.6 190 38 21 8 (LAMPAC) 85 ± 10 1.5 2.6 190 44 19 

"tJ 4LMLB 95 ± 35 1.8 2.5 200 20 30 9 :n (EXT P/G)§ 85 ± 30 1.8 2.5 200 21 16 Z 6LMLB 75 ± 30 1.8 2.5 200 40 32 
~ 

(EXT P/G)§ 70 ± 35 1.8 2.5 200 46 16 10 
m 
0 6LMLB 68 ± 3 1.9 1.8 278 0.5 20 11 
:E (INT P/G)§ 61 ± 3 1.9 1.8 278 0.5 15 

Jj 6LMLB 85 ± 25 1.5 (surface), 1.8 1.8 278 22 16 
(INT PIG, 

Z Surface 75 ± 15 1.5 (surface), 1.8 1.8 278 26 14 12 
(j) Routing)§ 
OJ 8LMLB 85 ± 25 1.9 1.8 278 20 18 13 0 (INT P/G)§ 75 ± 15 1.9 1.8 278 24 12 » 
:n • Includes the effect of 963 connector plus fanout; see Fig. 1. 
0 t Maximum pulse crosstalk occurs when the round trip propagation delay over the coupled length is at least as great as the signal rise time. See en Section 4.2. 
.... * The fIrst entry applies to Milene (registered trademark of W. L. Gore & Assoc., Inc.) insulation, the second to Teflon (registered trademark of 

8 E. I. DuPont) insulation. 
.... § The fIrst entry applies to conductor width = 8 mils, conductor space = 9 mils, the second to 12, 13 mils . 



accurate expression for Ve is obtained by applying circuit theory to the 
elemental circuit in Fig. 3a. The result is that Ve satisfies 

dVe Ve 1 aV(t - (x/v» 
-+--= 
dt ZlCm 2 at 

(2) 

or 

1 it -(t-~) aV(~ - (x/v» 
Ve = - e zlc", d~. 

2 (x/v) a~ 
(3) 

When the conductors are loosely coupled, Cm is relatively small, and 
eq. (3) yields the approximation given in Fig. 3a, since 

(t-~) 

Ve = ZlCm it e- zlc'" av(~ - (x/v» d~ __ ZlCm aV(t - (x/v». (4) 
2 (x/v) Zl Cm a~ 2 at 

The loose coupling approximation not only allows the simplification 
of Ve but also allows one to neglect the interaction of the idle conductor 
on the driven conductor. When this interaction is considered along 
with conductor losses, the analysis becomes extremely difficult (see, 
for example, Refs. 7 and 8). 

U sing this simplified model, the total near-end (backward) crosstalk 
waveform, Vne(t), and the total far-end (forward) crosstalk waveform, 
Vfe(t), can be expressed as two independent differential equations: 

d TT () - ! (Z C Lm) d aV(t - (2x/v» 
Y ne t - 2 1m + Z X 

1 at 
(5) 

d TT ( ) = ! (Z C _ Lm) d dV(t - (Ie/V» 
Y fe t 2 1m Zl X dt . (6) 

By integrating the variable x over the coupled length Ie, we have that 

where 

Vne(t) =! (ZlCm + Lm) (c aV(t - (2x/v» dx (7) 
2 Zl Jo at 

= Kne[V(t) - V(t - 2Tn)] , (8) 

Tn = ~ = propagation delay over the coupled length 
v 

Kne=- ZlCm +- . v [ LmJ 
4 Zl 

Similarly, 
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1 ( Lm) lie dV(t - Tn) 
Vfe(t) = 2 ZI Cm - ZI 0 dt dx (9) 

= K i dV(t - Tn) (10) 
fe e dt ' 

where 

1 ( Lm) Kfi =- Z I C --e 2 m ZI . 

Equations (8) and (10) agree with the earlier results presented in Refs. 
3, 4, 9, 10, 11, and 12. These references also contain some useful 
discussions of crosstalk associated with printed wiring interconnec
tions. 

Notice that, if Z I Cm = (Lm/Z1), K fe == 0 and Vfe(t) = o. This result 
forms the basis of the design of directional couplers and occurs quite 
naturally whenever the conductors are surrounded by a homogeneous 
medium. See Ref. 13 for a discussion of this interesting point. However, 
for all the cps considered in this paper, it turns out that Vfe(t) =;i:. o. 

The simplified model presented in Fig. 3 can be generalized to 
include the case when the driven conductor has characteristic imped
ance ZI and propagation velocity VI while the idle conductor has 
characteristic impedance Z2 and propagation velocity V2. For this case, 
(5) and (6) become: 

1 ( Lm) av(t - : - :) 
dVne(t) = 2" Z2Cm + ZI dx at (11) 

av[ t - -=- - (Ie - X)/V,] 
dVr,(t) = ~ ( Z2Cm - ~7 ) dx Vj at (12) 

By integrating the variable x over the coupled length ie, we have 

Vne(t) =! (Z2Cm + Lm)( VIV2 ) 
2 ZI VI + V2 
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Equations (13) and (14) agree with the results given in Ref. 11, and 
they reduce to (8) and (10) when Z2 = ZI and VI = V2 = v. 

The corresponding results for the case when the driven conductor 
has Z2, V2 and the idle conductor has ZI, VI can be obtained from eqs. 
(13) and (14) merely by interchanging ZI and Z2 and also VI and V2. In 
this manner, one can determine the following general result: 

Vne(t, Z2, V2) Vre(t, Z2, V2) Z2 

Vne(t, Zl, VI) Vre(t, ZI, VI) - Zl' 
(15) 

where 
Vne(t, Zi, Vi) = near-end crosstalk waveform when the idle con

ductor has Zi, Vi, 

and 
Vre(t, Zi, Vi) = far-end crosstalk waveform when the idle conduc

tor has Zi, Vi. 

Notice that eq. (15) is independent of time and the propagation 
velocities. Also, it can be shown that (15) satisfies reciprocity. 

In cp design, one usually attempts to make the characteristic imped
ance constant throughout the CP or Zl = Z2. However, if ZI =F Z2 (as it 
can be when dealing with interlayer crosstalk), then eq. (15) shows 
that both near-end and far-end crosstalk are reduced when the con
ductor having the lower characteristic impedance is taken as the idle 
conductor. 

Although eqs. (13) and (14) are more general, experimental work has 
shown that eqs. (8) and (10) or, more generally, eqs. (13) and (14) with 
VI = V2 = V are sufficient for characterizing the crosstalk on all the CP 

styles of interest in this paper. Also, in order to help simplify the tables 
in the appendix, we shall only report on the average interlayer crosstalk 
associated with a given conductor pair. This appears to be sufficient, 
since interlayer crosstalk is usually of less concern than intralayer 
crosstalk. 

The results based on the simplified model given in Fig. 3 turn out to 
be good approximations for printed wiring boards when the value of 
Kne is less than about 25 percent. However, even when Kne is somewhat 
greater than 25 percent, the results based on the simplified model can 
still be applied, although they become less accurate in this region. 

On all styles of cps, we have found experimentally that max I Vre(t) I 
< max Vne(t) for all signals and coupled lengths of interest* in this 
paper. Thus, by controlling Vne(t), one also controls Vre(t). Accordingly, 
we have directed our experimental work toward estimating the mag
nitude of the near-end crosstalk and only provide experimental bounds 
on the intralayer far-end crosstalk for all the CP styles. 

* Because of connector limitations, the signal rise times of interest are 2 ns or more 
(i.e., a signal bandwidth of 175 MHz or less). The coupled lengths of interest are all less 
than 18 inches. 
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4.2 Crosstalk resulting from a pulse signal 

Let V(t) represent a ramp type of pulse signal given by: 

I 

Vot 
-T' O:s. t:s. TR 

V(t) = R 

Yo, t> TR • 

(16) 

When Vo > 0, V(t) represents a rising step signal having a 100 percent 
rise time of TR • This type of signal is convenient for characterizing the 
crosstalk resulting from the leading edge of a pulse signal. 

In practice, the total near-end crosstalk, NEXT, is usually defined as 
the fraction of the pulse drive signal that appears at the near-end of 
the idle conductor. Thus, for the pulse signal, eq. (8) yields: 

max Vne(t) 
NEXT = Vo 

(
2TD) 

Kne TR ' 
(17) 

When 2TD > T R , the near-end waveform, Vne(t), is a trapezoidal pulse 
and when 2TD:s. TR , this waveform is a triangular pulse. 

Equation (17) shows that the value of Kne represents the maximum 
value of near-end pulse crosstalk. In the appendix, the experimental 
values of Kne and l/v = TD/ Ie for all CPs of interest in this paper are 
tabulated in Tables A and B of Figs. 4 through 13. By using these 
tabulated values and eq. (17), one can readily estimate the NEXT for an 
arbitrary pulse-like signal on any CP style. 

As discussed in Section 4.1, only the average values of Kne for 
interlayer, near-end crosstalk are tabulated. To estimate the two 
individual values of Kne for interlayer, near-end crosstalk, it can be 
shown that each Kne value must be multiplied by JZt/Z2 and 
JZz/Zl. The values of Zl, Z2, the characteristic impedances of the 
conductors, are also tabulated in the appendix. 

The corresponding result for the total far-end crosstalk, FEXT, can 
be obtained from eq. (10): 

max I Vre(t) I I K re lie 
FEXT = =. 

Vo TR 
(18) 

In this case, the far-end crosstalk waveform, Vre(t) , is a rectangular 
pulse. 

For all the CP styles, we have determined experimentally that I Kre I 
:s. 0.09 ns/ft for intralayer crosstalk. We shall see that this result can 
be used to bound intralayer FEXT on all the CPs. 

4.3 Crosstalk resulting from a periodic signal 

If V ( t) represents a periodic signal of period T = 1/ fo, then 
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V(t) = L aneiwnt, (19) 
n=-oo 

where 

1 JT
/
2 

. 
an = - V(t) e-1wnt dt 

T -T/2 

and 

Wn = n27Tfo. 

For this periodic signal, eq. (8) yields 

00 

v. () K ~ (2 . . T ) iw (t-TIJ) 
ne t;= ne ~ zan SIn Wn Den • (20) 

n=-oo 

If we now define near-end crosstalk, NEXT, as 

[ J
l~ _ ac power of Vne( t) 

NEXT = , 
ac power of V(t) 

(21) 

then 

(22) 

Equation (22) shows that NEXT $ 2Kne for all periodic signals. 
The corresponding result for FEXT, assuming no jump discontinuities 

in V(t), is 

and 

v. ( t) - K I ~ Z·f\JnWneiwn(t-TIJ) fe - fe e L.J u. 

n=-QO 

ac power of Vfe(t) 
FEXT= [ J

V2 

ac power of V(t) 

(23) 

(24) 

(25) 

By using the tabulated values of Kne and l/v = Tn/Ie given in the 
appendix together with eq. (22), one can estimate the NEXT resulting 
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from a general periodic signal on any of the CPs. Also, by using the 
bound on I K{e I given in Section 4.2 along with eq. (25), one can bound 
the intralayer FEXT on any of the CPs. 

As an example of a simple periodic signal, let V(t) represent a 
sinusoid of frequency fo. Then eqs. (22) and (25) yield 

NEXT = 2Kne I sin 2wfo Tn I 
FEXT = I K{e I Zc2wfo. 

(26) 

(27) 

When fo = (4Tn )-1, NEXT attains its maximum value of 2Kne, which is 
twice the maximum NEXT resulting from the pulse signal considered in 
Section 4.2. 

It can be shown that eqs. (26) and (27) are special cases of the more 
general results presented'in the classical works on sinusoidal crosstalk 
presented in Refs. 14 and 15. These references also include the effects 
of conductor losses. In our application, the coupled length, lc, is 
relatively short (lc::::; 18"), so that conductor losses are negligible over 
a frequency range of about 250 MHz. 

For small values of foTn(= folc/v), eq. (26) yields 

folc 
NEXT = 4wKnefoTn = 4wKne-. 

v 
(28) 

In this case, eq. (28) shows that NEXT is proportional to both frequency, 
fo, and coupled length lc much as is FEXT. 

4.4 Crosstalk resulting from a random signal 

Let V(t) represent a differentiable, stationary random signal having 
zero mean and one-sided power spectral density W(f). The correlation 
function, p(T), of the random signal is defined by 

p(T) = E[V(t)V(t + T)] = f W(f) cos 27TfT dt. (29) 

where E = expectation operator. 
The correlation function, Pne(T), of the crosstalk waveform at the 

near-end of the idle conductor can be determined from eq. (8). Thus, 

Pne(T) = E[Vne(t) Vne(t + T)] 

= K~e[2P(T) - p(T - 2Tn) - p(T + 2Tn)]. (30) 

The power spectral density, Wne(f), of Vne(t) is given by 

Wn.(f) = 41- Pn.(T) cos 27TfT dT (31) 

= 4K~e W(f) sin2 2wfTn . (32) 
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For this random signal case, it is reasonable to define the NEXT by 

where 

Thus, 

ane 
NEXT=-, 

a 

ane = rms value of Vne(t) 

a = rms value of V(t). 

ane ~pne(O) 
NEXT=-= --

a p(O) 

[ 
p(2TD) ] 1/2 

= .J2Kne 1 - a2 ~ 2Kne . 

(33) 

(34) 

(35) 

Equation (35) shows that NEXT is bounded by 2Kne for all stationary 
random signals. 

The corresponding results at the far end are 

Pfe(T) = E[Vfe(t)Vfe(t+ T)] = -IKfeI2l~P"(T) (36) 

Wfe(f) = [I Kfe Ile (2'7Tf)] 2 W(f) (37) 

and 

where 

afe /-p"(O) 
FEXT = -;; = I K fe Ile 'J p(O) 

= I Kfe I k'7T,8, 

afe = rms value of Vfe(t) 
f3 = average number of zero crossings per 

second of V(t). 

(38) 

(39) 

Thus, for all differentiable, stationary random signals FEXT is propor
tional to the average number of zero crossings per second of V(t). 

By using the tabulated values of Kne and l/v(= TD/le) given in the 
appendix together with eq. (35), one can estimate the NEXT resulting 
from a general random signal on any of the CPs. Also, by using the 
bound on I Kfe I given in Section 4.2 along with eq. (38), one can bound 
the intralayer FEXT on any of the CPs. 

As an example of a random signal, let 

{

a 2 

W(f) = B' 

0, 
(40) 

otherwise, 
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where 

B = bandwidth of the signal V(t) 

fo = center frequency of the signal V(t). 

For this case, eqs. (29) and (35) yield 

ane [(sin 27TBTn) ] 1/2 
NEXT = --;- = J2Kne 1 - 27TBTn cos 47TfoTn . (41) 

Notice that, as B ~ 0, eq. (41) approaches eq. (26), the corresponding 
result for the sine wave case. 

The result for FEXT is 

FEXT = ate = I Kte Ile7T .J 4(5 + B2/3. 
a 

(42) 

As B ~ 0, this result approaches eq. (27), the corresponding result for 
the sine wave case. 

The theoretical developments in Sections 4.2, 4.3, and 4.4 can be 
generalized to include eqs. (13) and (14) in place of eqs. (8) and (10). 
When VI = V2 = V, all one needs to do is replace ZI Cm by Z 2Cm in Kne 
and Kte. The more general case, VI =j:. V2, will not be treated in this 
paper, since experimental results show that the propagation velocity 
is approximately constant on a given CPo 

V. SOME APPLICATIONS 

5. 1 Selection of a CP style 

Since the costs associated with the various CP styles differ signifi
cantly, I it is very important to select a CP style which is both suitable 
electrically and relatively inexpensive. The pulse transmission prop
erties summarized in Table II and tabulated in more detail in the 
appendix can be used to help select such a cost-effective CP for a given 
application. 

It is also very important that the physical designers and systems 
designers using BELLPAC hardware be aware of these basic pulse 
transmission properties. The CP transmission properties must be com
patible with the transmission properties of the backplane, frame wiring, 
and the cp components. 

5.2 Estimation of crosstalk on a given CP style 

By using the theoretical results presented in Section IV together 
with the appropriate Kne and l/v values given in the appendix, one can 
estimate the amount of near-end crosstalk for fine line conductors 
carrying a wide variety of signals on any of the CPS considered in this 
paper. As discussed in Section IV, far-end crosstalk is always less 
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than near-end crosstalk, usually much less. Also, intralayer, far-end 
crosstalk can be bounded by using the experimentally determined 
constant I K{e I :s 0.09 ns/ft and the theoretical results presented in 
Section IV. 

Let us consider as an example a pair of adjacent, parallel conductors 
on the inside signal layer of the 6L MLB (INT P /G, surface routing). 
From Table B of Figure 12 in the appendix, we see that Kne = 0.16 for 
two adjacent conductors (Y1 Y2 ) in the 200-mil channel when the 
conductor width and conductor spacing are 8 and 9 mils, respectively. 
Table A of this same figure gives l/v = 1.8 ns/ft. Thus, for a pulse 
signal, eq. (17) yields 

where 

0.16, 2Tn > TR 

NEXT = 

(
2Tn) 

(0.16) TR ' 2Tn:S TR, 

Tn = ~ = propagation delay over the coupled length (ns) 
v 

Ie = coupled length (ft) 

TR = rise time of the pulse signal (ns). 

Also, for the pulse signal, eq. (18) yields 

Ie 
FEXT :s (0.09) T

R
• 

(43) 

(44) 

Similarly, for a sine wave signal of frequency fo, eqs. (26) and (27) 
yield 

NEXT = (2) (0.16) I sin 27TfoTn I 
FEXT :s (0.09) le27Tfo. 

(45) 

(46) 

In a very similar manner, one can also estimate the NEXT and bound 
the intralayer FEXT for an arbitrary periodic or random signal by using 
eqs. (22), (25), (35), and (39). 

By using this method, one can estimate the NEXT and bound the 
FEXT for a wide variety of conductor pairs and a wide variety of signal 
types on any of the CPs considered in this paper. 

For a required crosstalk constraint, the theoretical and experimental 
crosstalk results can be used to help determine routing restrictions on 
coupled length for general types of signals. Alternately, this informa
tion can be incorporated into computer-aided designs to help deter
mine whether a routed cp has violated a given crosstalk constraint 
associated with a particular signal type. In this manner, a routed cp 
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can be analyzed to detect potential crosstalk problems before the cp 
routing is finalized for manufacture. 

As a final point concerning the estimate of crosstalk, one can also 
estimate intralayer NEXT for a pair of adjacent, parallel conductors 
having a range of conductor spacings. It turns out that intralayer NEXT 

is essentially independent of conductor width (see Ref. 4). Accordingly, 
to estimate the value of Kne (S) for a pair of adjacent, parallel conduc
tors (i.e., Y1Y2) having conductor spacing S, one can interpolate or 
extrapolate the values of Kne for S = 9 mils or 13 mils given in the 
appendix by assuming that Kne (S) is proportional to II S. It can be 
shown that this is a satisfactory assumption when 7 mils :S S :S 40 
mils, the region of most interest in this paper. 

As an example, let us apply this method to a pair of adjacent parallel 
conductors having conductor spacing S (mils) on the inside signal layer 
of the 6L MLB (INT PIG, surface routing). For the 200-mil channel, 
Table B of Fig. 12 yields the following minimum mean square error 
estimate: 

K (S) = (9)(13) [13Kne (9) + 9Kne (13)] = 147.99f (47) 
ne (92 + 132)S S o. 

This method can be applied to pairs of adjacent, parallel conductors 
on any cp considered in this paper. 

5.3 Electrical comparison of the CPs 

The results in Table II and the appendix can be used to compare 
the various CPs from the electrical point of view. For example, Table 
II shows that, of the three CPs containing only two layers of metalli
zation, namely, the double-sided epoxy, the double-sided metal, and 
the bonded board, the double-sided epoxy board is inferior to the other 
two. It has a relatively high characteristic impedance and higher values 
of intralayer crosstalk. Recall that intralayer crosstalk is more trouble
some than interlayer crosstalk, which can be reduced considerably by 
using orthogonal routing on adjacent layers. 

Also, the double-sided metal board is somewhat better electrically 
than the bonded board because the impedance variations and crosstalk 
are less for the metal board. 

Table II also shows that the MLBS having an internal power and 
ground plane (INT PIG) are superior electrically to those having an 
external power and ground plane (EXT PIG). The MLBS having (INT 

PIG) have less impedance variations and yield less intralayer crosstalk. 
Notice from Table II that a wire-wrap cp and the double-sided 

(epoxy) CP are both inferior to the MLB styles from the electrical point 
of view. Also, the double-sided (metal) and the bonded board have 
electrical properties which are comparable to all the MLBS having (INT 

PIG). 
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Finally, the extender board, because of its special design, is clearly 
the best electrical design of all the CPs considered in this paper. It has 
relatively little variation in characteristic impedance and very low 
crosstalk. 

5.4 Estimation of the capacitance and inductance of the conductors 

In certain applications of the cps, it is important to have an estimate 
of the value of C, the capacitance per unit length, and L, the inductance 
per unit length for the conductors on all of the CP styles. This 
information is important, for example, when one needs to estimate the 
electrical load on a driver circuit for certain ranges of frequency or rise 
times. The values of C and L can be estimated from the values of 
propagation delay per foot (llv) and characteristic impedance Zl given 
in the appendix for each CP style. Using these values, C and L are 
given by 

(48) 

L = (!)Zl nh. 
v ft 

(49) 

For worst case estimates, 11v should be increased by about 10 percent, 
since the values listed in the appendix are averages over about 20 
different conductor paths on each CPo 

5.5 Generalization to other dielectric materials 

If eqs. (48) and (49) are used in eq. (8) to reduce K ne, we have 

K =! [Cm + Lm] (50) 
ne 4 C L' 

Equation (50) shows that Kne is independent of the relative dielectric 
constant, Er (effective). It can also be shown that the more general Kne 
discussed at the end of Section 4.4 is also independent of the relative 
dielectric constant. Thus, the values of Kne given in the appendix apply 
when the CPs are fabricated with any dielectric material. 

One can also show that the propagation delay per foot, 11v, and the 
far-end crosstalk coefficient I K re I are both proportional to £, while 
the characteristic impedance, Zl, is inversely proportional to £. Thus, 
many of the results in this paper can be applied when the CPs are 
fabricated with other dielectric materials such as ceramic, Teflon, or 
polyimide. 

5.6 Electrical characterization of backplanes 

In the physical design of large electronic systems, various styles of 
printed wiring-board backplanes are often used to interconnect CPs. 
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These backplanes are usually very similar to some cp styles considered 
in this paper. Accordingly, many results in this paper can be applied 
to help electrically characterize various styles of backplanes. 

VI. SUMMARY 

A Bell System packaging effort (BELLPAC packaging system) is 
now under way to develop a modular packaging system for packaging 
electronic equipment. This effort makes use of a suitable connector 
(963) and a number of circuit pack (cp) styles (ranging from wire-wrap 
cps to multilayer board cps) which have common features suitable for 
computer-aided design. 

This paper presents some experimental results concerning the pulse 
transmission properties of fine line printed conductors (e.g., width = 8 
mils, spaces = 9 mils) on various styles of CPs which include those in 
the BELLPAC hardware family of CPs. The pulse transmission prop
erties include the characteristic impedance, the propagation delay, the 
rise time, the bandwidth, and the intralayer and interlayer pulse 
crosstalk. Theoretical scaling laws are developed to extend the appli
cation of the experimental crosstalk results to conductor spaces in the 
range of 7 to 40 mils. 

A simplified theoretical model is presented which leads, directly, to 
some basic crosstalk equations. Also, theoretical results are developed 
to extend the application of the experimental crosstalk results to 
arbitrary pulse signals, periodic signals, and random signals. 

The results in this paper can be applied to the: 
(i) Selection of a CP style for a given application. 
(ii) Estimation of crosstalk on a given CP style. 
(iii) Comparison of the electrical properties of the CP styles. 
(iv) Estimation of the capacitance and inductance of the conduc

tors. 
(v) Determination of the pulse transmission properties of the CP 

styles with various dielectrics. 
(vi) Electrical characterization of various styles of backplanes. 
The crosstalk results are very important since they tend to limit the 

packaging density of printed conductors on the CP styles by limiting 
the coupled length and spacing of parallel conductors. 
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APPENDIX 

Experimental Results 
Index to pulse transmission properties 

Circuit Pack Style 

Wire wrap 
Extender board 
Double-sided (epoxy) 
Double-sided (metal) 
Bonded board (LAMPAC) 
4L MLB (EXT PIG) 
6L MLB (EXT PIG) 
6L MLB (INT PIG) 
6L MLB (INT PIG, surface routing) 
8L MLB (INT PIG) 

Figure No. Containing 
the Pulse Transmission 

Properties 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
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62 mils "" C-STAGE "" r =*UP,*UP======:C===O==MP==O""N'='EN==T=S=IO==E==MU=*'lUF= P, (2 OZ CuI 

LAYUP FOR THE WIRE WRAP BOARD 

TABLE A 

PULSE TRANSMISSION PROPERTIES OF THE 
WIRE WRAP BOARD 

AWG 30 WITH MILENE INSULATION AWG 30WITH TEFLON INSULATION 

LOCATION CHARACTERISTIC LOCATION CHARACTERISTIC 
OFWRAP IMPEDANCE OF WRAP IMPEDANCE 

ON PIN (OHMS) ON PIN (OHMS) 

ROUTING IN TOP 175 OHMS TOP 194 OHMS 
200 mil 

CHANNELS(l) BOTTOM 78 BOTTOM 124 

ROUTING IN TOP 158 TOP 164 
100mil 

CHANNELS BOTTOM 117 BOTTOM 138 

e PROPAGATION DELAY = 1.4 ns/ft. (=l/v, MILENE), 1.3 ns/ft. (=l/v, TEFLON). 
e80% RISE TIME ON TOR FOR 1 ft CONDUCTOR LENGTH = 2.0 ns (MILENE) 1.8 ns (TEFLON). 
e BANDWIDTH FOR 1 ft CONDUCTOR LENGTH = 250 MHz (MILENE), 278 MHz (TEFLON). 

(1) THE 200 mil CHANNEL ALSO CONTAINS A GROUND PLANE. 

TABLE B 
Kne = MAXIMUM NEAR-END PULSE CROSSTALK(l) FOR 

VARIOUS WIRE PAIRS ON THE 
WIRE WRAP BOARD 

AWG 30WITH MILENE INSULATION AWG 30WITH TEFLON INSULATION 

LOCATION CROSSTALK LOCATION CROSSTALK 
OF WRAP (TIGHTL Y COUPLED OF WRAP (TIGHTL Y COUPLED 

ON PIN PAIRS) ON PIN PAIRS) 

ROUTING IN TOP 40% TOP 35% 
200 mil 

CHANNELS(2) BOTTOM 16 BOTTOM 23 

ROUTING IN TOP 28 TOP 36 
100 mil 

CHANNELS BOTTOM 23 BOTTOM 13 

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE INPUT STEP. 

(2) THE 200 mil CHANNEL ALSO CONTAINS A GROUND PLANE. 

Fig. 4-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for 
the wire-wrap board with 963C-100 connectors. 
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T ······1 t 15 C-STAGE 

I --''--r: -12------.t::::::J""'"·,,,.· ---B---ST-A-G-E- S2 

L-- - PAD2 

.202 CU CONDUCTORS .ALL DIMENSIONS IN MI LS 

(a) NOTATION FOR INTERLAYER CROSSTALK ON THE 
EXTENDER BOARD. 

W,=12 

l==========~ S = *25p ::::::::: ::::::::::: ::::: :::;:;:::::::::::::::::::::: ::::::: ::;, :.:::::::: ::::::: ::::::: ::::::::::::::::::::::: G 

:.:.:::::: :::::::::::::::.:::::::.:.:-: :.:.:.:.::::::::::::::::::::::::::::::::::.:.:.:.:.:.:.:.::::::::::::::::::::::: Y, 

+ W2 = 8 :::::::;:;:::;:;:::;:;:;:; ;:;:::;:;:::::;:::: :;:;:;:;:;:;:;:;:;:::;:;:;:;:::;:;:::;:;::::::::;:;:;:;:;:::;:;:;:;:;:;:;:::;:;:;:;:;: G 

:.:.:.:.:.:.:.:.:.:.:.:.:.;.: .. ::: .......... . :.:::::::::::::::::::::: 

(b) NOTATION FOR INTRALAYER CROSSTALK ON THE 
EXTENDER BOARD. 

ELECTRICAL CHARACTERISTICS OF LARGEST (7.67" X 14.78") 
EXTENDER BOARD (WITH 963C CONNECTORS) 

• CHARACTERISTIC IMPEDANCE = 70 ± 5 OHMS. 

• PROPAGATION DELAY = 1.80 ns/ft . 

• 80% RISE TIME ON TDR = 1.3 ns. 

• BANDWIDTH = 385 MHz. 

• MAXIMUM INTRALAYER NEXT: Y, Y2 = 1.6 % 

• MAXIMUM INTERLAYER NEXT: S, S2 = 0.3 % 

Fig. 5-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for 
the extender board with 963C-lOO connectors. 
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ROUTING IN 
200 mil 

CHANNELSI21 

ROUTING IN 
100 mil 

CHANNELS 
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62 C-STAGE 
I 
I 

~ S7 
C~, __ :P ""'" ..... """ ""'" G/S2 

e2 OZ CONDUCTORS eALL DIMENSIONS IN MILS 
(a) NOTATION FOR INTERLAYER CROSSTALK ON THE 

DOUBLE SIDED EPOXY PWB. 

; t :~~Y~.~~/S'HOR G/S
2 

(b) NOTATION FOR INTRALAYER CROSSTALK. 
W= 12, S = 13 MILS OR W= 8,S = 9 MILS. 

TABLE A 
PULSE TRANSMISS10N PROPERTIES OF THE 

DDUBLE-SIDED EPOXY PWBI31 

CONDUCTOR WIDTH = 12 mils CONDUCTOR WIDTH = 8 mils 
CONDUCTOR SPACING = 13 mils CONDUCTOR SPACING = 9 mils 

SIGNAL 
CHARACTERISTIC 

SIGNAL 
CHARACTERISTIC 

IMPEDANCE IMPEDANCE LAYER 
(OHMS) LAYER (OHMS) 

PIS, 163 OHMS PIS, 158 OHMS 

G/S2 166 G/S 2 163 

P/S,--G/S21'1 146 P/S,-G/S2 150 

PIS, 142 PIS, 142 

G/S 2 135 G/S2 146 

P/S,--G/S2 129 P/S,-G/S2 129 

• PROPAGATION DELAY = 1.5 ns/h. (=l/v). 
.80% RISE TIME ON TOR FOR lh CONDUCTOR LENGTH = 2.6 ns. 
• BANDWIDTH FOR 1ft CONDUCTOR LENGTH = 190 MHz. 

(1) THE TRANSITIONS FROM PIS, TO GIS 2 USED 10 VIAS. 

(2) THE PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 
(3) NO CDVERCDAT CASE. CDVERCOAT (GFR) HAS NEGLIGIBLE EFFECT ON 

RISE TIME (OR BANDWIDTH) BUT DECREASES THE CHARACTERISTIC 
IMPEDANCE BY ABOUT 5% AND INCREASES THE PROPAGATION DELAY 
BY ABOUT 10"10 . 

LAYER 

S l!:AYER PIS,: G/S2 : LAYER PIS, 

*¥~~~~r~;i":';iii; ;; 
(el NOTATION FOR CROSSTALK BETWEEN CONDUCTORS 
WHICH APPEAR ALTERNATELY ON LAYERS PIS, AND G/S2. 

W= 12,S= 13MILSORW=8,S=9MILS. 

TABLE B 
Kne = MAXIMUM NEAR-END PULSE CROSSTALKI'I FOR 

VARIOUS CONDUCTOR PAIRS ON THE 
DOUBLE-SIDED EPDXY PWBI31 

CONDUCTOR WIDTH = 12 mils, CONDUCTOR SPACING = 13 mils 

INTERLAYER INTRALAYER ALTERNATELY ON P/S 1, G/S2 

LOCATION OF S2 S, LAYER Y, Y2 Y, Y3 Y, Y4 X,~ X, X3 X, X4 ROUTING 

200 PIS, 34% 12% 8.0% 
mil 24% 32% 20"10 20% 

CHANNELI21 G/S 2 34 12 8.0 

100 PIS, - - -
mil 19 - - -

CHANNEL G/S2 - - -

CONDUCTOR WIDTH = 8 mils, CONDUCTOR SPACING = 9 mil' 

INTERLAYER INTRALAYER AL TERNATEL Y ON PIS" G/S2 

LOCATION OF S2 S, LAYER Y, Y2 Y, Y3 Y, Y4 X, X2 X, X3 
ROUTING 

200 PIS, 39% 17% 10% 
mil 21% 34% 22% 

CHANNEL G/S2 37 16 9.2 

100 PIS, 32 - -
mil 17 30 -

CHANNEL G/S2 32 - -

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE SIGNAL STEP. 

(2) THE PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

(3) NO CDVERCOAT CASE. COVERCOAT (GFR) INCREASES CROSSTALK BY 
ABOUT 10"10 OF THE TABULATED VALUES. 

X, X4 

22% 

-

Fig. 6-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the double-sided 
epoxy printed wiring board with 963C-lOO connectors. 
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(a) NOTATION FOR INTERLAYER CROSSTALK ON THE 
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(b) NOTATION FOR INTRALAYER CROSSTALK. 
W= 12,S= 13 MILS OR W= 8,S =9 MILS. 

TABLE A 
PULSE TRANSMISSION PROPERTIES OF THE 

DOUBLE-SIDED METAL PWBI31 

CONDUCTOR WIDTH = 12 mils CONDUCTOR WIDTH = B mils 
CONDUCTOR SPACING = 13 mils CONDUCTOR SPACING = 9 mils 

SIGNAL 
CHARACTERISTIC CHARACTERISTIC 

IMPEDANCE SIGNAL IMPEDANCE 
LAYER (OHMS) LAYER (OHMS) 

P/SI 89 OHMS P/SI 104 OHMS 

G/S2 B5 G/S2 106 

PIS l--G ISp I 77 P/S1--G/~ 92 

P/SI 87 P/SI 104 

G/S2 83 G/S2 104 
P/S 1--GIS2 78 P/S 1--G/S2 90 

• PROPAGATION DELAY = 1.5 "s/fl. (=I/v). 
.80"10 RISE TIME ON TDR FOR 1 fl. CONDUCTOR LENGTH = 2.6 os. 
• BANDWIDTH FOR 1 It. CONDUCTOR LENGTH = 190 MHz. 

(1) THE TRANSITIONS FROM P/S I TO GIS2 USED 10 VIAS. 

(2) THE PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 
(3) NO COVERCOAT CASE. COVERCOAT (GFR) HAS NEGLIGIBLE EFFECT ON RISE 

TIME (OR BANDWIDTH) BUT DECREASES THE CHARACTERISTIC IMPEDANCE 
BY ABOUT 5% AND INCREASES THE PROPAGATION DElAY BY A80UT Hl%. 

LAYER 
S .t.:AYER P/S1: G/S 2 :LAYER P/S I 

~ :;:~:*~:,~~~:; ~~ 
~·:::X;~~~X~~ ~~ 

(e) NOTATION FOR CROSSTALK BETWEEN CONDUCTORS 
WHICH APPEAR ALTERNATELY ON LAYERS P/S I AND G/S2. 

W= 12,S= 13 MILS OR W= 8,S = 9 MILS. 

TABLE B 
K"e = MAXIMUM NEAR-END PULSE CROSSTALKIll fOR 

VARIDUS CONDUCTOR PAIRS ON THE 
DOUBlE-SIDED METAL PWBI31 

CONDUCTOR WIDTH = 12 mils, CONDUCTOR SPACING = 13 mils 

INTER LAYER INTRALAYER AL TERNATEl YON P/S1, G/S2 

LOCATION OF 
S2 Sl LAYER Yl Y2 Yl Y3 Yl Y4 Xl X2 Xl X3 Xl X4 ROUTING 

200 PISI 13% 2.8% 0.8% 
mil 3.2% 9.2% 2.4% 6.8% 

CHANNELI21 G/S2 13 2.4 0.8 

100 PIS 1 - - -
mil 1.2 - - -

CHANNEL GIS2 - - -

CONDUCTOR WIDTH = 8 mils, CONDUCTOR SPACING = 9 mils 

INTERLAYER INTRALAYER ALTERNATElY ON P/S1, G/S2 

LOCATION OF 
~Sl LAYER Yl Y2 VI Y3 Yl Y4 Xl~ X lX3 ROUTING 

200 PIS I 15% 3.6% 1.2% 
mil 1.2% 11% 3.2% 

CHANNEL G/S2 14 3.2 1.2 

100 PISI 14 - -
mil I 1.2 11 -

CHANNEL G/S2 13 - -

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE SIGNAL STEP. 

(2) THE PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

Xl X4 

8.0% 

-

(3) NO COVERCOAT CASE. COVERCOAT (GFR) INCREASES CROSSTALK 8Y ABOUT 
HI'Io OF THE TABULATED VALUES. 

Fig. 7-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the double-sided 
metal printed wiring board with 963C-lOO connectors. 
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(,) NOTATION FOR INTER LAYER CROSSTALK ON THE 
BONDED BOARD. 

Y, 

Y2 

(b) NOTATION FOR INTRALAYER CROSSTALK. 
W= 12,S= 13MILSORW=B,S=9MILS. 

TABLE A 
PULSE TRANSMISSION PROPERTIES OF THE 

BONDED BOARDI31 

CONDUCTOR WIDTH = 12 mils CONDUCTOR WIDTH = B mils 
CONDUCTOR SPACING = 13 mils CONDUCTOR SPACING = 9 mils 

SIGNAL 
CHARACTERISTIC 

SIGNAL 
CHARACTERISTIC 

IMPEDANCE IMPEDANCE 
LAYER (OHMS) LAYER (OHMS) 

PIS, 95 OHMS PIS, 104 OHMS 

G/S2 84 G/S2 B9 

P/S,--GISzI'1 77 P/S,-G/S2 BB 

PIS, B9 PIS, 102 

G/S2 73 G/S2 B4 

P/S,--GIS2 B2 P/S,--G/S 2 97 

- PROPAGATION DELAY = 1.5 nslft. (=I/vl. 
- BO"lo RISE TIME ON TDR FOR 1 fl. CONDUCTOR LENGTH = 2.6 ns. 
• BANOWIOTH FOR 1 ft. CONDUCTOR LENGTH = 190 MHz. 

(1) THE TRANSITIONS FROM PIS, TO G/S2 USED 10 VIAS. 

(2) THE PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

(3) NO COVERCOAT CASE. COVERCOAT (GFR) HAS NEGLIGIBLE EFFECT ON RISE 
TIME (OR BANOWIDTH) BUT DECREASES THE CHARACTERISTIC IMPEDANCE 
BY ABOUT 5% AND INCREASES THE PROPAGATION OELAY BY ABOUT 10"10. 

I 

LAYER 
S .l:AYER PIS,: GISz :LAYER PIS, 

~ ~;::c'X~;····.····c~~¥~;: ~'2 
~~;c~X;:.· .••••• ·<X~~~ ~: 

(e) NOTA"" ..• FOR CROSSTALK BETWEEN CONDUCTORS 
WHICH APPEAR ALTERNATELY ON LAYERS PIS, AND G/S2. 

W= 12,S= 13MILSORW=B,S=9MILS. 

TABLE B 
Kne = MAXIMUM NEAR-END PULSE CROSSTALKI'I FOR 

VARIOUS CDNDUCTDR PAIRS ON THE 
BONDED BOARDI31 

CONDUCTOR WIDTH = 12 mils, CONDUCTOR SPACING = 13 mils 

INTERLAYER INTRALAYER IALTERNATELY ON PIS" G/S2 

LOCATION OF S2 S, LAYER Y, Y2 Y, Y3 Y, y41 X, x21 X, X3 1 x, X4 ROUTING 

200 PIS, 19% 4.0"10 1.2% 
mil 44% 16% I 6.4% I 7.6% 

CHANNELI21 G/S2 19 3.6 1.2 

100 ~ mil 40 
CHANNEL G/S2 

CONDUCTOR WIOTH = 8 mils, CONDUCTOR SPACING = 9 mils 

INTERLAYER INTRALAYER IALTERNATELY ON P/S"G/S2 

LOCATION OF S2 S, LAYER Y, Y2 Y, Y3 y,yJ x,x 21 x,~ 1 X,X4 
ROUTING 

200 PIS, 21% 7.2% 3.2% 
mil 3B% 20"10 I B.4% I 11% 

HANNEL G/S2 21 6.8 3.2 

100 PIS, 20 
mil 38 21 

HANNEL G/S2 20 

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE SIGNAL STEP. 

(2) THE PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

(3) NO COVERCOAT CASE. COVERCOAT (GFR) INCREASES INTRALAYER 
CROSSTALK BY ABOUT 10% OF THE TABULATEO VALUES. 

Fig. 8-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the bonded 
board with 963C-IOO connectors. 
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• 2 OZ CU CONDUCTORS. ALL DIMENSIONS IN MILS 

(a) NOTATION FOR INTER LAYER CR'OSSTALK ON THE 
4L MLB (EXT PIG). 

; t- LAYER S, 

W :;:: I 

'.:.:.:.:.:.:.'.:.:::::::::: 

......... -:.:.:.;.:.;::: 

"';:;;:' Y, 

:: Y2 
:: Y3 
:.: Y4 

(b) NOTATION FOR INTRALAYER CROSSTALK. 
W = 12, S = 13 MILS OR W = 8, S = 9 MILS. 

TABLE A 
PULSE TRANSMISSION PROPERTIES OF THE 

4l MlB (EXT PIG) 

CONDUCTOR WIDTH = 12 mils CONDUCTOR WIDTH = 8 mils 
CONDUCTOR SPACING = 13 mils CONDUCTOR SPACING = 9 mils 

SIGNAL CHARACTERISTIC SIGNAL 
CHARACTERISTIC 

lAYER IMPEOANCE lAYER IMPEDANCE 
(OHMS) (OHMS) 

S, 58 OHMS S, 61 OHMS 

S2 56 S2 64 
CHANNElS(21 S,---S2 (1) 54 S,---S2 64 

ROUTING IN 
S, 117 S, 129 

100 mil S2 117 S2 129 
CHANNELS S,-S2 111 S,---S2 120 

• PROPAGATION DELAY = 1.8 nslft. (=1!v). 
.8(1'/0 RISE TIME ON TDR FOR 1 ft. CONDUCTOR LENGTH = 2.5 ns. 
• BANOWIDTH FOR 1 ft. CONDUCTOR LENGTH = 200 MHz. 

(1) THE TRANSITIONS FROM S, TO S2 USED 10 VIAS. 

(2) THE EXTERNAL PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

S L LAYER S, ;LAYER S2 :lAYER S, 

*¥ ~:~:'::::;X;~;~,:::;~~~ ~; 
:.~.~~~,::::Y;.'..;l.;:.::.:~:~~~: ~ 

Ie) NOTATION FOR CROSSTALK BETWEEN CONDUCTORS 

WHICH ~~El~~t=L ii~~L~T~~ ~ 0=N8~:~~~I~S.ANO S2' 

TABLE B 
Kne = MAXIMUM NEAR-END PULSE CROSSTALK(1) FOR 

VARIOUS CONDUCTOR PAIRS ON THE 
4L MLB (EXT PIG) 

CONDUCTOR WlflTH = 12 mils, CONDUCTOR SPACING = 13 mils 

INTER LAYER INTRALAYER AlTERNATELYONS, ,~ 

LOCATION OF 
S2 S, 

ROUTING 
LAYER Y, Y2 Y, Y3 Y, Y 4 X, X2 X, X3 X, X4 

200 S, 16% 9.2% 8.4% 
mil 13% 14% 9.(1'/0 8,(1'/0 

CHANNEL(21 S2 14 11 8.4 

100 S, - - -
mil 21 - - -

CHANNEL S2 - - -

CONDUCTOR WIDTH = 8 mils, CONDUCTOR SPACING = 9 mils 

INTER LAYER INTRALAYER ALTERNATELY ON S" S2 

LOCATION OF 
S2 S, LAYER Y, Y2 Y, Y3 Y, Y 4 X, X2 X, X3 X, X4 ROUTING 

200 S, 16% 10% 8.4% 
mil 12% 13% 7.2% 8.8% 

CHANNEL S2 16 12 8.4 

100 S, 31 - -
mil 20 28 - -

CHANNEL S2 30 - -
-

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE SIGNAL STEP. 
(2) THE EXTERNAL PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

Fig. 9-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the 4L MLB (EXT P /G) with 
963C-lOO connectors. 
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W L LAYER Sj 
(b) NOTATION FOR INTRALAYER CROSSTALK. ¢ :.:.::.:..... . Y1 

W= 12,S = 13 MILS OR W=8,S = 9 MILS. r:':" ............................ Y 2 

S 

TABLE A 
PULSE TRANSMISSION PROPERTIES OF THE 

6L MLB (EXT PIG) 

CONDUCTOR WIDTH = 12 mils CONDUCTOR WIDTH = 8 mils 
CONDUCTOR SPACING = 13 mils CONDUCTOR SPACING = 9 mils 

SIGNAL CHARACTERISTIC 
SIGNAL 

CHARACTERISTIC 

LAYER IMPEDANCE 
LAYER 

IMPEDANCE 
(OHMS) (OHMS) 

S1 36 OHMS S1 43 OHMS 

ROUTING IN 
S2 64 S2 68 

200 mil S3 61 S3 62 
CHANN ELS(2) 

S4 39 S4 47 

S1- S4(1 ) 44 S1- S4 52 

S1 102 S1 104 

ROUTING IN S2 95 S2 106 

100mil S3 95 S3 97 
CHANNELS S4 104 S4 106 

S1- S4 99 S1-S4 103 

• PROPAGATION DELAY = 1.8 nslft. (=IIv). 
.80% RISE TIME ON TOR FOR 1 ft. CONDUCTOR LENGTH = 2.5 ns. 
• BANDWIDTH FOR 1 ft. CONDUCTOR LENGTH = 200 MHz. 

(1) THE TRANSITIONS FROM S1 TO S4 USED 5 OR 10 VIAS. 

(2) THE EXTERNAL PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

(e) NOTATION FOR CROSSTALK BETWEEN S LLAYER S1: LAYER S4: LAYER S1 

g:'&~~l1S";, ~~'g:;~'~:~r\:~:::i~ *¥~~:';~:,~;~~;~ 
TABLE B 

Kn. = MAXIMUM NEAR-END PULSE CROSSTALK(1) FOR 
VARIOUS CONDUCTOR PAIRS ON THE 

6L MLB (EXT PIG) 

CONDUCTOR WIDTH = 12 mils, CONDUCTOR SPACING = 13 mils 

INTERLAYER INTRALAYER A.LTERNATELY ON S1,S4 

LOCATION OF 
S2 S1 S2 S3 S2 S4 LAYER Y1 Y 2 X 1 X2 X1 X3 X1 X4 ROUTING 

S1 11% 

200 S2 14 
mil 12% 35% 5.0% 

S3 16 
16"10 7.2% 8.0% 

CHANNEL (2) 

S4 16 

S1 -
100 S2 -
mil 32 46 16 

S3 
- - -

CHANNEL -
S4 -

CONDUCTOR WIDTH = 8 mils, CONDUCTOR SPACING = 9 mils 

INTER LAYER INTRALAYER AL TERNATEL YON S1 ,S4 

LOCATION OF 
S2 S1 S2 S3 S2 S4 LAYER Y 1 Y2 X1 X2 X1 X3 ROUTING 

S1 17% 
200 S2 20 
mil 8.0% 30% 5.0% 16"/0 13% 

CHANNEL S3 20 

54 18 

S, 31 
100 

S2 32 
mil 28 40 13 29 -

CHANNEL S3 32 

S4 32 

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE SIGNAL STEP. 
(2) THE EXTERNAL PIG ROUTING ALSO OCCUPIES THE 200 mil CHANNELS. 

X1 X4 

14% 

-

Fig. lO-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the 6L MLB (EXT P / 
G) with 963C-lOO connectors. 
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(a) NOTATION FOR INTERLAYER CROSSTALK ON THE 
6L MLB (lNT PIG). 

I ~ LAYERS· 

W :;:::: • 

~ 

·~Y, 

~Y2 

:: Y 3 

8:7:Y4 

(b) NOTATION FOR INTRALAYER CROSSTALK 
W = 12, S = 13 MILS OR W = 8, S = 9 MILS. 

TABLE A 
PULSE TRANSMISSIDN PROPERTIES OF THE 

6L MlB (lNT PIG) 

CONDUCTOR WIDTH = 12 mils CDNDUCTOR WIDTH = 8 mils 
CONDUCTDR SPACING = 13 mils CDNDUCTOR SPACING = 9 mils 

SIGNAL 
CHARACTERISTIC 

SIGNAL 
CHARACTE RISTI C 

IMPEDANCE IMPEDANCE 
LAYER (OHMS) LAYER (OHMS) 

S, 61 OHMS S, 72 OHMS 

S2 62 S2 70 

SI-- S2(1) 60 S,_S2 64 

S, 64 S, 71 

S2 64 S2 68 

S,--S2 58 S,_S2 65 

• PROPAGATION DELAY = 1.9 nsllt. (= lfv). 
.80% RISE TIME DN TDR FOR 1 ft. CONDUCTOR LENGTH = 1.8 ns. 
~ BANDWIDTH FOR 1 ft. CONDUCTOR LE~TH = 278 MHz. __ 

--

(1) THE TRANSITIONS FROM S, TO S2 USED 10 VIAS. 

S LLAYERS, !LAYERS2:LAYERS, *¥ ::~;;::::::;;~::::~¥::::::::~~~: ~~ 
:;,;,:::::;::*~:.:;~::::::::.;: ~~ 

(e) NOTATION FOR CROSSTALK BETWEEN CONDUCTORS 
WHICH APPEAR ALTERNATELY ON LAYERS S, AND S2' 

W= 12,S= 13 MILSORW=8,S=9 MILS. 

TABLE B 
Kne = MAXIMUM NEAR-END PULSE CROSSTAlK('IFOR 

VARIOUS CONDUCTOR PAIRS ON THE 
6L MLB (lNT PIG) 

CONDUCTOR WIDTH = 12 mils, CONDUCTDR SPACING = 13 mils 

INTERLAYER INTRALAYER ALTERNATELY ON S"S2 

LOCATION OF 
S2 S, LAYER Y, Y2 Y, Y3 Y, Y 4 X,X2 X, X3 X,X4 

ROUTING 

200 S, 15% 3.0"10 2.0"10 
mil 0.5% 

S2 
12% 5.2% 6.4% 

CHANNEL 14 2.9 1.2 

100 S, - -- --
mil 0.5% - - -

CHANNEL S2 -- -- --

CONDUCTOR WIDTH = 8 mils, CONDUCTOR SPACING = 9 mils 

INTER LAYER INTRALAYER ALTERNATELY DN S"S2 

LOCATION OF 
S2 S, LAYER Y, Y2 Y, Y3 Y, Y 4 X, X2 X,~ X, X4 ROUTING 

200 S, 20"10 5.0% 2.4% 
mil 0.4% 16% 5.2% 6.8% 

CHANNEL S2 20 5.0 2.0 

100 S, 20 -- --
mil 0.4 16 - -

CHANNEL S2 20 -- --

(1) CROSSTALK WAS MEASURED AS A PERCENTAGE OF THE SIGNAL STEP. 

Fig. ll--Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the 6L MLB (INT P /G) with 
963C-lOO connectors, 
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W L LAYERS, 

(e) NOTATION FOR CROSSTALK BETWEEN S LLAY~R~~ :LAY~,RS3 !LA~E,RS2 
CONOUCTORS WHICH APPEAR AL TERNATEL Y ~ ;;;,~:X;:",;l;;-:;~' 
ONLAYERSS2ANOS3.W=12.S=13MILSOR~ , : 2 

W=B.S=9MILS. -.......... ' .•...•.....•..... '.'.'., .. '.t .. · ..... · ..... '.'.-x ........ _.' .. _ ...... X3 
0 ... ~.~:"'.·.·.:-:.:.·: .':' .. ~.:-~.~ I ··:- .. ·······~ .. ·-X4 

TABLE B 
Kne = MAXIMUM NEAR-ENO PULSE CROSSTALKllI FOR 

VARIOUS CONDUCTOR PAIRS ON THE 
6L MLB (tNT PIG. SURFACE ROUTING) 121 

CONDUCTOR WIDTH = 12 mils. CONDUCTOR SPACING = 13 mil' 

~
., Y, 

(b) NOTATION FOR INTRALAYER CROSSTALK.., Y 
W= 12.S= t3MILSORW=8.S=9MILS. . 2 X, X4 

S . .~ 

TABLE A 
PULSE TRANSMISSION PROPERTIES OF THE 

6L MLB (tNT PIG. SURFACE ROUTlNG)121 

CONOUCTOR WIDTH = 12 mils CONDUCTOR WIDTH = 8 mils 
CONOUCTOR SPACING = 13 mils CONDUCTOR SPACING ~ mils 

SIGNAL 
CHARACTERISTIC 

SIGNAL CHARACTERISTIC 
IMPEDANCE IMPEDANCE 

LAYER (OHMS) LAYER 
(OHMS) 

S, 89 OHMS S, 104 OHMS 

ROUTING IN 
S2 66 S2 72 

200mil S3 66 S3 75 

CHANNELS S4 92 S4 110 

S2-S31'1 59 S2- S3 65 

S, 92 S, 106 

ROUTING IN S2 69 S2 73 

100mil S3 6B S3 75 
CHANNELS 

S4 93 S4 109 

S2- S3 60 S2--S3 66 

- PROPAGATION DELAY - 1.5 n,lft. (- l/vl ON S,. S4 AND 1.B n,/ft. (- 1/vl ON S2' S3' 
-BO% RISE TIME ON TOR FOR 1 ft. CONOUCTOR LENGTH = I.B n,. 
- BANDWIDTH FOR 1 ft. CONDUCTOR LENGTH = 27B MHz. 

(1) THE TRANSITIONS FROM S2 TO S3 USED 10 VIAS. 
(2) NO COVERCOAT CASE. ON LAYERS S,. S4' COVERCOAT (GFR) HAS NEGLIGIBLE 

EFFECT ON RISE TIME (OR BANDWIDTH) BUT DECREASES THE CHARACTERISTIC 
IMPEDANCE BY ABOUT 1(),1o AND INCREASES THE PROPAGATION DELAY 
BY ABOUT 10% . 

Y4 
I.B% 

200 I I 1.7 
mil 25% 25% 9.2% I 2.B% I 5.0% 

CHANNEL 1.1 

S4 1.7 

S, 

100 I I B mil 26 26 S 
CHANNEL 3 

S4 

CONDUCTOR WIDTH = 8 mils. CONDUCTOR SPACING = 9 mil' 

INTERLAYER INTRALAYER ALTERNATELY ON S2,S3 

3.1% 

200 I I 2.0 
mil 22% 22% 

2.0 
12% I 3.8% I 

CHANNEL 
2.5 

16 

100 I I S2 16 
mil 21 22 13 

CHANNEL S3 16 

S4 16 

(1) CROSSTALK WAS MEASUREO AS A PERCENTAGE OF THE SIGNAL STEP. 
(21 NO COVERCOAT CASE ON LAYERS S,. S4' COVER COAT (GFR) INCREASES 

INTRALAYER CROSSTALK BY ABOUT 20% OF THE TABULATED VALUES. 

X, X4 

7.1% 

Fig. 12-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the 6L MLB 
(INT P jG, surface routing) with 963C-l00 connectors. 
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f 5 B-STAGE Sl 

69 .i12 C-STAGE S2 

(a) NOTATION FOR INTERLAYER P .... B-STAGE . G 
CROSSTALK ON THE BL MLB (lNT PIG). T 12 C-STAG~ . P 

5 B-STAGE ~3 
4 

+ C-STAGE/" PAD2 
• 1 OZ CU CONDUCTORS • ALL DIMENSIONS IN MILS 

W 
S L LAYER Si 

~::. (b) NOTATION FOR INTRALAYER 
CROSSTALK. W = 12, S = 13 MILS 

OR W = B, S = 9 MILS. 

TABLE A 

':':':':':':':':':':':':':':-.,:.:::. 

~ 

PULSE TRANSMISSION PROPERTIES OF THE 
BL MLB (lNT PIG) 

CONDUCTOR WIDTH = 12 mils CONDUCTOR WIDTH = B mils 
CONDUCTOR SPACING = 13 mils CONDUCTOR SPACING = 9 mils 

SIGNAL 
CHARACTERISTIC 

SIGNAL 
CHARACTERISTIC 

LAYER IMPEDANCE 
LAYER 

IMPEDANCE 
(OHMS) (OHMS) 

S, 94 OHMS S, 114 OHMS 

52 65 52 83 
ROUTING IN 

200mil 53 68 53 82 

CHANNEL5 54 85 54 102 

52_S3
111 62 52_S3 73 

5, 91 Sl 111 

ROUTING IN 52 65 52 B4 

100 mil 53 68 53 83 
CHANNEL5 

54 84 54 102 

52-53 62 52-53 74 

• PROPAGATION DELAY = 1.9 ns/ft. (= l/v). 
.80"10 RISE TIME ON TOR FOR 1 ft. CONDUCTOR LENGTH = 1.8 ns. 
• BANDWIDTH FOR 1 ft. CONDUCTOR LENGTH = 278 MHz. 

(1) THE TRANSITIONS FROM 52 TO 53 U5ED 10 VIA5. 

; Y, 

''''32 Y 2 
::: Y 3 

····'·'·~Y4 

(e) NOTATION FOR CROS5TALK 
BETWEEN CONDUCTORS WHICH 

APPEAR ALTERNATELY ON 
LAYERS 52 AND S3' W= 12, 

S= 13 MIL5 OR W= 8,5= 9 MILS. 

5 ~AYER52 :LAYER53 :LAYERS 2 

M=~:~~f~~\ 
TABLE B 

Kne = MAXIMUM NEAR-END PULSE CROSSTALKI'I FOR 
VARIOUS CONDUCTOR PAIRS ON THE 

8L MLB (lNT PIG) 

CONDUCTOR WIDTH = 12 mils, CONDUCTOR SPACING = 13 mils 

INTERLAYER INTRALAYER AL TERNATEL YON S2' 53 

LOCATION OF S,52 S3 54 LAYER Y, Y2 Y, Y3 Y, Y 4 X, X2 Xl X3 X, X4 ROUTING 

S, 12% 3.2% 1.3% 
200 

S2 8.4 1.8 0.8 mil 20% 24% 6.8% 2.5% 3.3% 
CHANNEL 53 9.2 1.9 1.1 

54 12 3.2 1.3 

5, - - - I 

100 52 - - -
mil 20 24 

53 
- - --

CHANNEL - - -
I 54 - - -

CONDUCTOR WIDTH = 8 mils, CONDUCTOR 5PACING = 9 mils 

INTERLAYER INTRALAYER AL TERNATEL YON S2 53 

LOCATION OF 
5, S2 ROUTING 

53S4 LAYER Y, Y 2 Y, Y3 Y, Y4 X, X2 X, X3 X, X4 

S, 16% 5.2% 2.4% 
200 S2 12 3.6 2.0 
mil 19% 20"10 9.2% 2.8% 5.2% 

CHANNEL 53 12 3.6 1.6 

54 18 5.6 2.4 

5, 15 - -
100 

52 12 - -mil 18 20 10 - -
CHANNEL 53 12 - -

54 16 - -
(1) CR055TALK WA5 MEASURED A5 A PERCENTAGE OF THE SIGNAL 5TEP. 

Fig. 13-Impedance, propagation delay, rise time, bandwidth, and pulse crosstalk for the 8L MLB (INT P / 
G) with 963C-l00 connectors. 
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High Resolution, Steep Profile, Resist Patterns 

By J. M. MORAN and D. MAYDAN 

(Manuscript received September 26, 1978) 

High resolution and steep profile patterns have been generated in 
a 2.6-JLm thick organic layer which conforms to the steps on a wafer 
surface and is planar on its top. This thick organic layer (a photore
sist in the present experiments) is covered with an intermediate layer 
of Si02 and a top, thin layer of X-ray or photoresist. After exposure 
and development of the top resist layer, the intermediate layer is 
etched by CHF3 reactive ion etching. The thick organic layer is then 
etched by O2 reactive ion etching. Submicron resolution with essen
tially vertical walls in the thick organic material was achieved. The 
technique is also applicable to photo- and electron lithography. It 
reduces the need for thick resist patterns for the lithography step and, 
at the same time, ensures high resolution combined with good step 
coverage. 

I. INTRODUCTION 

One of the more difficult problems with resist pattern generation is 
to achieve good linewidth control, high resolution, and good step 
coverage simultaneously. Often the requirements appear to be mu
tually exclusive; good step coverage requires thick resist; high resolu
tion, however, is more easily obtained in thin resist. This is true for all 
resists, both positive and negative. 

With any resist, the ideal conditions to obtain high resolution and 
good linewidth control are a flat surface and a thin resist (3000-4000 
A 0). The flat surface means that the resist has very little variation in 
thickness and that, as a result, there will be little variation in resist 
line width. However, such resist line width variations will occur when 
lines traverse a step. As device wafers do have steps, thick resist (7000-
15000 A) must be applied to achieve coverage over steps. 

We discuss here a method for generating high resolution, steep 
profIle resist patterns by fIrst preparing a flatter surface on the wafer. 1 

This is done by applying a layer of thick organic material that conforms 
with its lower surface to the wafer and is planar on its top. The thick 
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Table I-High resolution, steep profile, resist patterns 
Advantages 

1. Planar surface for resist patterning 
2. Excellent step coverage 
3. Good linewidth control 
4. Thinner resist can be used for better resolution 
5. Eliminates standing waves and scattering in photolithography 
6. Reduces proximity effects in electron lithography 
7. Minimal resist erosion during substrate etch by plasma or ions 

Disadvantage 

Requires extra processing steps 

4000 A PHOTO, 
REACTIVE R.F. SPUTTER ETCH-CHF3 ELECTRON OR 

1200 A X-RAY RESIST 

SI ~: "t l ~ l , t 1 t , l ~. / / 

1, .. _____ ----l~'~H;~~ L VLSI SUBSTRATE } RESIST 

VLSI SUBSTRATE 

'----l __ -------.J(~:~::,ST L- VLSISUBSTRATE j 
Fig. I-Schematic presentation of the various steps required to define a steep resist 

proflle. 

layer is then patterned using an intermediate masking layer and a thin 
top layer of X-ray resist. The result is that as much as 2.6 Jlm of 
plasma-resistant organic material can be patterned with better than 1-
Jlm resolution and steep sidewalls comparable with those in positive 
photoresist. The advantages and disadvantages of this technique are 
outlined in Table I. 

II. EXPERIMENT 

A 2.6-Jlm thick layer of photoresist, * serving as the thick organic 
layer, was spun on a silicon wafer. The intermediate layer of 0.12 Jlm 

* HPR-204, manufactured by Hunt Chemical Co. 
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of silicon dioxide was plasma-deposited at 200°C on the photoresist, 
and then a 1.0-JLm thick layer of chlorine-based negative X-ray resist 
was deposited on top of the oxide. Figure 1 is a schematic presentation 
of the processing sequence. 

The top layer of X-ray resist was exposed and developed to a final 
thickness of 0.45 JLm using an X-ray exposure too1.2

,3 With the X-ray 
resist as a mask, the Si02 was either plasma- or reactive-ion-etched 
with a CHF 3 gas. The pattern was then transferred into the thick 
organic (resist) layer using reactive RF sputter etching, with pure O2 

gas forming the plasma and the Si02 acting as the mask. The RF power 
density was 0.50 watt/ cm2 and the time required to etch the resist was 

Fig. 2-Pattern etching into 2.6-fLlll thick resist layer using reactive RF sputter etching. 
Trench width is 1.5 /Lm. 
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20 minutes. Figure 2 shows the resultant pattern, which is 2.6 /Lm high 
and has a trench width of 1.5 /Lm. The photos were taken with a 
scanning electron microscope at a very steep angle to clearly show the 
wall structure of the resist. Note that the walls are perpendicular and 
there is very little undercut. The oxide is still on top of the organic 
(resist) layer, and its thickness loss during the sputter etch was less 
than 0.02 /Lm. 

Another method of etching the thick organic layer is with plasma 
etching using a radial flow machine. This method, however, produced 
patterns with some undercut and had a resist etch uniformity variation 
across a 3-in. wafer of 50 percent, which, coupled with the undercut, 
would give poor linewidth control. 

Fig. 3-SEM photograph of texture surrounding all the etched features. The fibers of 
this texture are aluminum oxide and are submicron in diameter. 
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One of the more serious problems encountered with RF reactive 
etching was the presence of texture after completion of the etch (see 
Fig. 3). This texture,4,5 as determined by Auger analysis, consisted of 
aluminum oxide fibers that were resistant to further plasma processing. 
Their formation was due to the presence of aluminum in the active 
plasma area. In fact, the presence of any metals (e.g., copper, titanium, 
tantalum, etc.) also produced this texture. 

Solution to the texture problem involved the construction of a 
chamber having no exposed metallic surfaces. Figure 4 shows a pattern 
etched under these conditions. The thick organic layer in this case is 

Fig. 4-Pattern sputter-etched using a system having no exposed metallic surfaces. 
Etching has caused no fiber formation. 
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Fig. 5a-1-llm lines and spaces on top of phosphosilicate glass steps. Note uniformity 
in line width. 

2.0 p,m of Novolac-based positive photoresist. Again, note the straight 
walls and high resolution. 

Although this technique dramatically demonstrates high resolution 
capabilities in thick resists, its most useful application is in patterning 
over steps. Figure 5a shows I-p,m lines with I-p,m spacings going over 
I-p,m high steps in flowed phosphosilicate glass. There is no measurable 
variation in linewidth as the I-p,m feature traverses a step. Figure 5b 
is a profile SEM photo of the same features showing the conforming 
lower surface and the planar top which make the high resolution 
possible. 

To further demonstrate the high resolution capabilities of this type 
of system, Fig. 6 shows that a 0.5-p,m window can be patterned in the 
thick resist. Figure 7 shows a OA5-p,m trench that was made by using 
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~ I 

Fig. 5b-ProfIle of Fig. 5a showing step coverage and flat top surface. Thick resist 
varies from 2.8-J.Lm high in valley to 2.1 J.Lm on top-of a step. Resist width is 1 J.Lm. 

a O.3-lLm thick positive photoresist for the top layer. This feature was 
exposed in the photoresist using a projection photomask aligner. 

III. DISCUSSION 

The three-layer technique to obtain high resolution features need 
not be applied solely to X-ray lithography. This technique has various 
advantages for other lithographic systems as well. 

For optical lithography, the thick underlying layer of resist and the 
layer of Si02 are sufficient to reduce the reflection from the wafer 
surface and, as a result, reduce standing-wave problems. The flat 
surface of the thick organic layer will keep scattering down and the 
top resist can be made thin for high resolution. 
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Fig. 6-A O.5-pm trench in 2.3-pm thick resist. 

For electron beam lithography, backscattering from a substrate 
covered by 0.1 Jlm Si02 on top of 2 Jlm to 3 Jlm of polymer should be 
less than that from an Si or Si02/Si substrate. Thus, proximity effects 
existing in that technology might be reduced and better linewidth 
control can be expected. In addition, high-speed negative resists, such 
as COP, might be considered for patterning since the top layer of resist 
need not be thick. 

Although a three-layer technique (i.e., top radiation sensitive resist, 
Si02, bottom organic (resist) layer) has been discussed here, a two
level scheme6

•
7 without Si02 also works if the top patterned resist is 

very resistant to the reactive RF sputter etch. In addition, there are 
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Fig. 7-A 0.45-/Lm trench RF etched into a 2.0-/Lm thick layer of organic material 
(resist). Initial patterning was done with projection photolithography. 

many choices for the intermediate and the thick organic layers. The 
intermediate layer could be silicon nitride, boron nitride, or some other 
suitable low-defect material. For the bottom layer, many positive and 
negative resists familiar to photo and electron lithography may be 
used, as well as other polymers. 

IV. CONCLUSION 

The steep profile three-layer pattern generation technique presents 
many potential advantages and applications to all phases of lithogra
phy. Sub micron resolution features with better linewidth control and 
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good step coverage are possible. The problem regarding the deposition 
of high-quality and low-defect density material for the intermediate 
layer remains to be evaluated. 
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A New Selective Fading Model: Application to 
Propagation Data 

By W. D. RUMMLER 

(Manuscript received September 21, 1978) 

Channel transmission models for use in estimating the performance 
of radio systems on line-of-sight paths at 6 GHz are explored. The 
basis for this study is the simple three-ray multipath fade, which 
provides a channel transfer function of the form H (w) = a[l - b exp 
- j (w - WO)T}, where a is the scale parameter, b is a shape parameter, 
T is the delay difference in the channel, and Wo is the (radian) 
frequency of the fade minimum. This model is indistinguishable from 
an ideal channel model, within the accuracy of existing measure
ments. The propagation data that confirm the model were obtained 
in summer 1977 from a 26.4-mile hop near Atlanta, Georgia. The 
received power at 24 sample frequencies spaced at 1.1 MHz and 
centered on 6034.2 MHz was continuously monitored and recorded 
during periods of anomalous behavior. The model is applied to 
estimating the statistics of the channel delay difference, T. The aver
age delay difference giving rise to significant selectivity in the channel 
is between 5 and 9 ns. The distribution of delay difference is obtained 
for delay differences greater than IOns. The channel is found to have 
more than 3 dB of selectivity (difference between maximum and 
minimum attenuation in band) due to delay differences greater than 
20 ns for more than 70 seconds in a heavy fading month. (This is 
comparable to the time the channel attenuation of a single frequency 
exceeds 40 dB.) The three-path model requires further simplification 
for narrowband channel application. For a channel with 30 MHz 
bandwidth, a model with fixed delay of 6.3 ns provides a sufficiently 
accurate representation of all observed channel conditions. The re
sulting nonphysical model is used to statistically characterize the 
condition of the fading channel. The statistics of the parameters of 
the fixed delay model are almost independent and of relatively simple 
form. The distribution of the shape parameter b is of the form (1 -
bl·3

• The distribution of a is lognormal. For b > 0.5, the mean and 
standard deviation of -20 (log a) are 25 and 5 dB, respectively; the 
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mean decreases to 15 dB for smaller values of b. The probability 
density function of Wo is uniform at two levels; measuring Wo from the 
center of the band, the magnitude of WoT is five times as likely to be 
less than 'IT/2 than to be greater. A companion paper describes the 
use of this model for determining the bit error rate statistics of a 
digital radio system on the modeled path. 

I. INTRODUCTION 

Performance prediction of a digital radio system on a line-of-sight 
microwave channel requires an accurate statistical model of the chan
nel. Because different digital radio systems may have different sensi
tivities to the various channel impairments, the model must be com
plete to the extent that it must be capable of duplicating the amplitude 
and phase (at least approximately) of all observed channel conditions. 
To facilitate laboratory measurements and computer simulations for 
calculating outage, the model should be realizable as a practical test 
circuit and should have as few parameters as possible. Most important, 
the parameters should be statistically well behaved. 

Two types of models have been generally considered for line-of-sight 
microwave radio channels: power series type modelsl

-
3 and multipath 

models.4
-
6 A power series model will require a few terms only if the 

channel is a multi path medium with a small spread of delays relative 
to the reciprocal bandwidth of the channel. 3 This implies that one 
must understand the channel as a multipath medium to understand 
the behavior of a power series model. Hence, we have limited our 
characterization efforts to multipath models. 

The basis for this study is the simple three-ray multipath fade. 7 If 
the fading in a channel can be characterized by a simple three-path 
model, the channel will (as shown in Section II) have a voltage transfer 
function of the form 

H(w) = a[l - be±j(w-wo)'T]. (1) 

where the real positive parameters a and b control the scale and shape 
of the fade, respectively, T is the delay difference in the channel, and 
Wo is the radian frequency of the fade minimum. The plus and minus 
signs in the exponent correspond, respectively, to the channel being in 
a nonminimum phase or minimum phase state. Note that, with appro
priate choices of parameters, this model can be reduced to a two-path 
model or a scaled two-path model, etc. 

It has been shown previously/ and is illustrated in Section II, that 
the simple three-path fade overspecifies the channel transfer function 
if the delay is less than J,i B, where B is the observation bandwidth. 
The critical value of T for a 30-MHz channel is about 5.5 ns, which is 
comparable to the mean delay in the channel. As a consequence, unless 
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the channel response can be determined to an accuracy on the order 
of 0.001 dB, a unique set of parameters a, b, 'T, and fo cannot be 
determined for more than half the faded channel conditions encoun
tered. To avoid this problem, one must suppress or fix one of the 
model parameters. Section II shows that the delay, 'T, is the only 
parameter which, when fixed, produces a reasonable model. 

While a model with a fixed delay may appear to be a strange choice, 
it has all the required characteristics for modeling the channel transfer 
function. Figure 1 shows the amplitude of the channel transfer function 
of eq. (1) on a power scale and on a decibel scale for 'T = 6.31 ns. With 
'T fixed, the response minimum is shifted with respect to frequency by 
varying fo. Varying a changes the overall level and b changes the 
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Fig. I-Channel model function. H(w) ;", a[1 - b exp(- j 2 7T(f - fo)T)], for 7' = 6.3 ns, 
a = 0.1, b = 0.7. 
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"shapeliness." If the minimum is within the 30-MHz bandwidth of a 
channel, the fixed delay model can generate notches with a wide range 
of levels and notch widths. With the minimum out of band, it can 
generate a wide range of combinations of levels, slopes, and curvatures 
within the channel bandwidth. Section VI shows that the model 
versatility, with T chosen to be 6.31 ns, is sufficient to characterize a 
30-MHz channel in the 6-GHz common carrier band. 

Section II provides a brief discussion of the simple three-path fade. 
A comparative discussion of the relative merits of the different possible 
simplifications of this model leads to the choice of the fixed delay 
model. 

The data used for detailed evaluation of models were obtained from 
a 6-GHz experiment in Palmetto, Georgia, in June 1977. The radio 
channel was equipped with a general trade 78-Mbit/s, 8-PSK digital 
radio system, and the received spectrum was monitored with a set of 
24 filters with bandwidths of 200 kHz spaced at a 1.1-MHz separation 
across this channel. During fading activity, the received power of each 
of these frequencies was measured five times each second, or once 
every 2 seconds, depending on how rapidly the channel was changing; 
sampled power, quantized in I-dB steps, was recorded by the MIDAS 

system. * The data base used for this study consists of approximately 
25,000 scans representing 8400 seconds of fading activity; about 8700 
scans were recorded during periods when the equipment was indicating 
errors. These data represent about 60 percent of the fading activity of 
a heavy fading month; therefore, the derived statistics must be viewed 
as provisional and subject to some modification as additional data are 
processed. At the very least, the data base is sufficiently large to 
indicate what can happen on the channel and to form a basis for 
choosing and validating a model. 

As described in Section III, the model parameters were estimated 
for each scan by fitting the magnitude squared of the transfer charac
teristic [eq. (1)] to the observed channel shape as characterized by the 
power received at the sampling frequencies. Phase is subsequently 
derived by assuming the channel is minimum phase. Problems are 
encountered in realizing a minimum-phase solution because of quan
tization noise and the presence of certain channel shapes caused by 
large delays. The procedure for handling these difficulties is described. 

The statistics of the parameters of the fixed delay model are dis
cussed in Section IV. Equations providing an idealized description of 
the statistics of the parameters of the model are also given here. 

In Section V, the determination of the delay difference present in 
the channel is considered. In the first subsection, it is demonstrated 

* Multiple Input Data Acquisition System, constructed by G. A. Zimmerman; see 
Ref. 1. 
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that, during the observed period of fading activity, the average delay 
is 9 ns. A lower bound on the distribution of delay difference for large 
delays is developed in the second subsection. A third subsection 
provides an example of a channel scan that can best be approximated 
by a three-path fade with a delay difference of 26 ns. Fades with at 
least this delay and with a more moderate amount of shape (2 dB or 
more) were encountered for about 60 seconds of the data base studied. 
Thus, one might expect 26-ns delays to be present during about 100 
seconds of a heavy fading month. 

The presence of such large apparent delays raises questions as to 
the accuracy with which the fixed delay model represents the channel. 
These questions are addressed in Section VI where the statistics of the 
errors in modeling scan fits are described. The errors are small and do 
not compromise the usefulness of the model. 

Results and conclusions are briefly summarized in Section VII. 

II. CHOICE OF MODEL 

In this section, we provide a brief description of the simple three
path model and show why it cannot be used to estimate delays when 
the delay bandwidth product is less than Vs. In a comparative discus
sion, we show why the fixed delay model is the only simplification of 
the model that is manageable. 

2. 1 Simple three-path model 

Consider a channel characterized by three paths or rays. The am
plitude of the signal on each of these three paths, as seen by the 
receiver, is 1, aI, and a2. The second and third paths are delayed with 
respect to the first by Tl and T2 seconds, respectively, where T2 > TI. We 
define the simple three-path model by requiring the delay between the 
first two paths to be sufficiently small, i.e., 

(2) 

where W2 and WI are the highest and lowest (radian) frequencies in the 
band. The complex voltage transfer function of the channel at a 
frequency W may be illustrated with a phasor diagram. Figure 2a shows 
the phasor diagrams for WI and W2 superimposed. By designating the 
amplitude of the (vector) sum of the first two paths by a; the angle of 
the sum by <p = WoT - 'TT, where T is equal to T2, the delay difference in 
the channel; and the amplitude of the third ray by ab, we obtain the 
simplified diagram in Fig 2b. * 

* Note that, if the third amplitude is greater than the sum of the fIrst two, we 
interchange the assignments of amplitudes a and ab and obtain a nonminimum phase 
fade. 
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The simple three-path fade cannot be used for a channel model 
because the path parameters lack uniqueness. The basic difficulty is 
illustrated by the two superimposed fades in Fig. 3. Note that the 
amplitudes of the transfer functions of these two fades match, at 

(a) 

H(w) = a (l_be- i (w-wOIT) 

(b) 

Fig. 2-Simple three-path fade. (a) Three, rays shown. (b) Simplified. 

H 1(w)=al (1-ble-iWT1) 

H2 (w) = a2 (1-b2 e- iWT2) 

Fig. 3-Two degenerate simple three-path fades with WoT = O. 
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midband and at both edges. It has been shown elsewhere7 that fades 
matched in this way will be identical in band to within a few tenths of 
a decibel at most, and will have almost identical envelope delay 
distortion. Given noisy quantized measurements of I H(w) lover the 
band, it is impossible to distinguish between such fades unless we fix 
one of the four parameters. Let us consider each of the four possibili
ties. 

2.2 Pseudo two-path fade 

If one fixes the amplitude, a, at unity, the simple three-path fade 
reduces to a two-path fade with independent control of the frequency 
of the minimum of the response. The difficulty with this model, as 
may be seen by referring to Fig. 2b, is that it can provide in-band 
minima only for IH(w) 1< 1 and maxima in-band only for IH(w) I> 1. 
In other words, the model cannot match an in-band maximum at an 
arbitrary fade level. In addition, it was found that during approximately 
half the periods when the radio equipment was indicating errors, the 
channel could not be well modeled with a pseudo two-path model. 

2.3 Scaled two-path fade 

If one fixes the phase, cf> = Wo'T - 'TT, in the simple three-path model 
at 0, the fade reduces to a scaled two-path fade. (For a two-path fade, 
we require the additional condition a = 1.) This is the most physically 
desirable of the reduced three-path models because it may be derived 
without recourse to the three-path formalism. Unfortunately, it is 
mathematically intractable, particularly when dealing with amplitude 
data only. In fitting the model to a given channel shape (in the manner 
described in Section III for the fixed delay model), one obtains a 
function of a, b, and 'T that must be minimized to obtain the best fit. 
Because of the W'T term in the exponent of the model, this function has 
a local minimum in every interval of'T of length 0.17 ns, the reciprocal 
of 6 G Hz. Since the possible range of 'T extends to about 30 ns, one 
may have to perform hundreds of minimizations to find the best fit to 
a single channel scan. Even then this "best fit" may have no minimum 
phase realization, and there is no known procedure that leads to one. 

2.4 Fixed b model 

If one fixes the amplitude b in the simple three-path model, the 
resulting reduced model has all the mathematical difficulties of the 
scaled two-path model and no satisfactory physical interpretation. 

2.5 Fixed delay model 

It is demonstrated in the remainder of this paper that the fixed 
delay model described in Section I is useful and effective in character
izing the channel. 
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III. ESTIMATION PROCEDURES 

This section describes how the model parameters are estimated from 
the channel scans and how realizability difficulties are surmounted. 

3. 1 Parameter estimation 

The channel data consist of a set of 25,000 scans of the channel 
power spectrum. Each scan consists of a power measurement at each 
of 24 frequencies at 1.1-MHz spacing across the channel. (Actually, 
only 23 frequencies are used since the 19th was inoperative during this 
test period). The power measurements are recorded in decibels, and 
each must be referenced to the average power level of that frequency 
at mid-day. With proper conversion and calibration, the basic data 
characterizing a scan are a set of power ratios. We designate the power 
ratio at nth frequency by Yn , where 

n = 1,2, ... ,24. (3) 

We wish to model the channel with a voltage transfer function of 
the form given in eq. (1), which we repeat here for convenience 

H(w) = a[1 - be±j(W-WO)T], 

Thus our estimate of Y n will be 

where 

Yn = 1 H(wn ) 12 = a - f3 Cos(Wn - WO)T, 

a = a2(1 + b2
) 

f3 = 2a2b. 

(1) 

(4) 

(5) 

For convenience, we measure frequency in the units of the frequency 
separation of the power measurements. Thus, 

Wn = 21Tfn = 21Tn(1.1 X 106
) n = 1,2,3, ... ,24. (6) 

If we choose 

then 

1 

n 
WnT = 21T N' 

(7) 

(8) 

For the fixed delay model, we choose N = 144 which gives a model T 

of 6.31 ns. Thus, the in-band frequencies correspond to n values 
between 1 and 24, and the channel transfer function given by the 
model is periodic for n modulo 144, corresponding to a frequency shift 
of 144 X 1.1 X 106 = 158.4 MHz. 
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The weighted mean-square error between the estimated and ob
served power is given by 

24 

L Cn(Yn - Yn)2 
E = _n=_1_~2::-:-4 ___ _ (9) 

where the summation skips n = 19 as described above, and where CIl 
is a weighting applied to the measurement at frequency wn • Since the 
original data, from which the Yn'S were derived, were uniformly quan
tized on a logarithmic scale, it is appropriate to use a weighting that is 
approximately logarithmic. Hence, we use the weighting function 

(10) 

A number of different weighting functions were tested, but the one 
given by (10) is, generally, the most satisfactory. 

Estimates of a, b, and fo may be obtained by minimizing the weighted 
mean-square error, E. It is shown in the appendix that one may obtain 
closed form estimators for lX, {1, and fo by substituting eq. (4) into (9) 
and minimizing E, fIrst with respect to lX, then with respect to {1 (or 
vice versa), and last with respect to fo. In the resulting scheme, the 
estimator of fo, the frequency of the model minimum, is a function of 
data only. The estimators of lX and {1 are functions of the estimated fo 
and the data. * 

After estimates of lX and f3 have been calculated, the parameters a 
and b of the model are obtained by inverting the relationships given 
byeq. (5). 

(11) 

(12) 

It is clear from (11) and (12) that we can realize the channel shape 
with the model only if lX ~ {1. This is to be expected. Since I H(w)1 2 is 
a power transfer function, it must be positive for all frequencies, which 
is possible only if lX ~ {1 [see eq. (4)]. Thus, the condition lX ~ f3 allows 
us to obtain a minimum (or nonminimum) phase transfer function 
whose magnitude squared is the minimum weighted mean-square error 
fIt to the observed power transfer response of the channel. 

* For mathematical simplicity, we actually use an estimator for fJ conditioned on fo, 
a, and the data. 
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3.2 Application of estimators 

If the procedure described above is strictly applied to the set of 
25,000 scans in the data base, one finds that about 35 percent of the 
scans cannot be modeled with real values of a and b. A study of these 
problem scans revealed that the estimator for fo, the frequency of the 
fade minimum, was biased for two types of scans. One type is a scan 
with little shape, dominated by quantization noise; the other is a 
selective channel shape having a steep slope across the band. Both 
types of scan are illustrated in Fig. 4. The scan in Fig. 4, which is 
almost flat, was fabricated to illustrate the severity of the quantization 
problem. The other scan is typical of the more shapely troublesome 
scans. 

To obtain a good realizable fit to such channel shapes requires 
degrading the quality of the fit; that is, moving the parameters away 
from the values that minimize the fit error, eq. (9). Given the form of 
the estimation scheme, this is easily accomplished by moving the 
frequency of the fade minimum, fo, away from its original "optimum" 
value and reoptimizing the remaining parameters to obtain values of 
a and b that are optimum for the new value of fo. Figures 5 and 6 
illustrate the results of such a quasi-optimization regarding fo as a free 
parameter. They show the fit error E and the values of a and bas fo is 
varied from its original optimum value. Figure 5 corresponds to the 
flat fade in Fig. 4 and Fig. 6 to the sloped fade. 

The shapes of the curves in Figs. 5 and 6 are typical of those 
obtained when the channel has no minimum in band. The weighted 
error in the fit, E, is not very sensitive to the estimate of fo, the 
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frequency of the modeled fade minimum. The minimum of E is broad 
and flat, due to quantization and instrumentation noise in the channel. 
The variation of the parameter a with fo is also typically very gradual. 
The salient features of the variation of b with respect to fo are clearly 
seen in Fig. 6, and are also present and labeled in Fig. 5. As fo is varied 
from its original optimum value, b varies from a value of 1 to a value 
of 0 in a sideways s-curve with two stationary points, a maximum and 
a minimum. Extensive simulations with known channel characteristics 
indicate that a good choice of parameters is the set corresponding to 
the point where b is locally minimized. To illustrate this point, assume 
that the channel shape is that given by the model, with 6.3-ns delay, 
fo at 18.5 X 1.1 MHz, a = 0.04, and b = 0.7. One can construct a plot 
similar to Figs. 5 and 6 for this simulated fade, with the result shown 
in Fig. 7. The curves in this figure illustrate the results cited above, in 
that the true value of fo occurs near a minimum value of b. A better 
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choice for the case shown and for others that have been simulated 
would be "on the shoulder" between the minimum and b = 1; however, 
such a criterion is difficult to quantify. 

To summarize, if the standard routine does not provide a realizable 
fit to a scan, one merely varies fo, the position of the minimum, until 
one obtains a realizable solution with a value of b that is stationary* 
with respect to variations in fo. We recognize that this procedure 
introduces additional sources of error into the estimates of the model 
parameters. The errors in a and b are small because b is near a 
stationary value and a is slowly varying. The error in fo is also small, 

* Since b is a monotone function of OIl {3, it is only necessary to invert solutions with 
stationary values of the ratio, OIl {3. 
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usually less than 3 MHz, but is always in the direction corresponding 
to moving the minimum nearest to the band closer. We consider the 
effects of these errors in Section VI. 

IV. MODEL STATISTICS 
-, 

Applying the procedures described in Section III to the scans in the 
data base results in 25,000 sets of values of a, b, and fo. The relative 
joint frequency of occurrence of these three parameters may be de
scribed by the set of distribution functions shown in Figs. 8 to 12. The 
distribution of the parameter b is described in Fig. 8 in terms of the 
distribution of -20 log (1 - b), which is approximately exponentially 
distributed with a mean of 3.8 dB. This distribution gives the time 
that b exceeds the value given by the abscissa as a fraction of the time 
in a heavy fading month that the rms level in the channel is depressed 
by more than 15 dB. For instance, we see that 40 percent of the time 
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when the channel is depressed the value of b exceeds 0.3. It exceeds 
0.7 for 4 percent of that time, and 0.99 about 0.3 percent of that time. 
The distribution of b can be modeled in the form 

20 

P(l - b < X) = x 3
.
8 

Log 10 = X 2.3• (13) 

The distribution of a is conditioned on b and is approximately 
lognormal as shown in Figs. 9 and 10. The mean and standard deviation 
of the distributions in F~gs. 9 and 10 are plotted in Fig. 11. From Figs. 
9 to 11 it is apparent that a and b are almost independent; however, 
less shapely fades tend to occur at less depressed values. We note that 
shape occurs when the average depression is 20 to 25 dB, * that the 

* The value of a corresponds to average power level over a large frequency span and 
not strictly to the average power in a narrowband channel. 
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average depression is near 25 dB for b greater than 0.7, and that it falls 
off gradually to 15 dB for small b. The distribution of A = -20 log a is 
conditioned on b and may be modeled as 

(14) 

where P is the cumulative distribution function of a zero mean, unit 
variance, and Gaussian random variable, and Ao( b) is the mean of A 
for a given value of b as given in Fig. 11. We see from Fig. 11 that the 
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standard deviation of A may be taken as 5 dB regardless of the value 
of b; the variations near -20 log (1 - b) = 20 are due to small sample 
problems. 

Figure 12 shows the time during which scans had fo in 4 XLI-MHz 
frequency intervals. It is, in effect, an estimate of the density function 
of the distribution of fo and is, consequently, quite noisy. The maxima 
near ± 30 X 1.1 MHz from the center of the band are due in part to the 
movement of estimates of fo to achieve realizability. While, on physical 
grounds, one would expect fo to have a uniform distribution, the fixed 
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delay model is decidedly not a physical model. Consider a simulated 
set of simple three-path fades having a uniform distribution of fo, fixed 
values for a and b, and a delay 'T, fixed at a value other than 6.31 ns. 
This set of fades will engender a nonflat probability density function 
for the fo's obtained in fitting to the 6.31-ns model. The probability 
density function is flat within the band regardless of the fixed delay of 
the set of simulated fades; however, it will more nearly resemble that 
shown in Fig. 12 if the delay of the set is greater than 6.31 ns than if it 
is less than 6.31 ns. In short, Fig. 12 is characteristic of a channel with 
a considerable fraction of delay differences greater than 6 ns. 

Based on Fig 12, we approximate the probability density function of 
fo by a two-level function. Note that fo is defined on an interval of 
length 1/'T, where 'T is 6.3 ns the delay of the model. Thus, with fo 
measured from the center of the band, the probability density function 
for fo may be approximated by 

5'T 1 

pr.,(fo) = 3 I fo I :s 4'T 
(15) 

'T 1 1 
- 4'T < I fo I < 2'T . 3 

30 
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10 
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Fig. ll-Mean and standard deviation of the distribution of -20 log a as a function 
of -20 log (1 - b). 
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An extensive examination of various conditional distributions has 
established that there are no other obvious and pervasive dependencies 
among the statistics of the parameters. 

V. CHANNEL DELAY DIFFERENCE 

This section presents some results obtained in estimating the chan
nel delay difference. Some techniques described here are used in the 
error analysis in Section VI. Three topics are considered in this section. 
First a simple method is presented of estimating the average delay 
spread in the channel. A second subsection shows that the distribution 
of large delays (larger than 10 ns) can be obtained for a simple three
path fade model. The delay distribution is shown to be consistent with 
the estimate of average delay. A third subsection illustrates the prob
lem with an observed channel shape that can be matched most 
successfully using a simple three-path model with a delay of approxi
mately 26 ns. 

5. 1 Mean delay difference in the channel 

The mean delay difference of a channel that can be characterized by 
a simple three-path model is easily estimated. Consider a fade with a 
delay, T. If to, the frequency of the minimum, is uniformly distributed, 
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the probability that such a fade produces a minimum in a band B Hz 
wide is equal to the ratio of the bandwidth to the spacing of the 
minima, or 

B 
-=BT. 
liT 

(16) 

If P (T k) il T is the fractional number of fades having delays between (k 

- l)Ll T and kilT, then the fractional number of fades having a minimum 
in band will be Pmin, where 

and 

Pmin = L BTkP(Tk)LlT = BT 
k 

T = ~>hP(TdLh = I Tp(T)dT. 

(17) 

(18) 

It follows from eq. (17) that one may estimate the mean delay, T, 
from a knowledge of Pmin, the fractional number of scans having a 
minimum in a band of width B. Since any method of determining P min 

is acceptable, consider estimates of Pmin from the parameters estimated 
using the fixed delay model. The method of estimating the frequency 
parameter in the model involved moving null positions of some fades 
that had out-of-band minima. These fades can be excluded by using 
only the central two-thirds of the band in estimating T. Of the 24,920 
scans in the data base, 3974 had minima between the 4th and 20th 
frequencies. Hence, 

[ 
3974 ] 1 

T = 24920 16 X 1.1 X 106 = 9.1 ns. (19) 

One might argue that the mean delay should be estimated for a 
more carefully screened set of scans. Table I shows the mean delay 
estimates obtained from scan populations qualified by having the 
estimate of the model parameter a in a given 5-dB interval. Table II 

Table I-Mean delay for scans selected by value of 
parameter, a 

-20 Log a, dB Number of Scans Scans Bi!~dMin. in Delay, T, ns 

0-5 101 31 17.4 
5-10 725 235 18.4 

10-15 4299 875 11.6 
15-20 6891 1161 9.6 
20-25 7644 906 6.7 
25-30 4184 606 8.2 
30-35 1019 159 8.9 
All 24920 3974 9.1 
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Table II-Mean delay for scans selected by value of 
parameter, b 

Scans With Min. in 
-20 Log 1-b, dB Number of Scans Band Delay, T, ns 

0-2 10,442 1186 6.5 
2-4 7040 1712 13.8 
4-6 3721 538 8.2 
6-8 1474 191 7.4 
8-10 892 118 7.5 

10-12 527 68 7.3 
12-14 282 28 5.6 
14-16 190 21 6.3 
16-18 146 46 17.9 
18-20 99 32 18.4 
All 24920 3974 9.1 

shows mean delay estimates qualified by the model parameter b, which 
specifies the shapeliness of the fade. 

With several exceptions, the estimated delay spreads given in Tables 
I and II are reasonably constant. One exception is seen for large values 
of b (-20 log 1 - b greater than 16). This is consistent with a channel 
for which large differential attenuation across the channel is more 
likely to occur when long delays are present. The existence of such a 
correlation should not be surprising. The other exception is the large 
delays estimated for small values of b and for values of a between 0 
and 10 dB. We provide strong evidence of the existence of such a class 
of fades in the next subsection. The existence of this subclass of fades 
suggests that they have a different physical source than the other 
fades in the population. 

5.2 Distribution of delay difference 

To further enhance our knowledge of the distribution of delay in the 
channel, the data base was processed to extract a delay estimate. 
Recall that, for the fixed delay model, parameter estimates are chosen 
to minimize the weighted fit error [E in eq. (9)] for a given fixed 'T. 

The present calculation was performed for a set of different values of 
'T and the value which produced the smallest weighted fit error and 
corresponded to a realizable fade was designated as the delay for that 
scan if it met certain qualifications. 

Because of the degeneracy in the simple three-path model, changing 
the delay in the fixed delay model will not appreciably improve the fit 
for any scan that can be well approximated by a fixed delay of 6 ns or 
less.7 In performing the optimum delay calculation, the weighted fit 
error was minimized for a predetermined set of delays; the differences 
between adjacent delay values were chosen to be approximately 15 
percent. A given scan was assigned a delay different from 6.3 ns only 
if the third best value of the weighted fit error was at least 0.1 dB 
worse than the best value. (We use the third best value because we 

1056 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1979 



must examine three values to detect a minimum.) This criterion sets 
a threshold on the acceptable sharpness of the minimum in the fit 
error with respect to changes in delay. 

The selection criterion was chosen, after several iterations, to insure 
regularity in the estimates derived from successive scans. With the 
chosen criterion, the scans that were assigned a new delay occurred in 
groups of consecutive scans and may be said to constitute fading 
events. During any of these events, the delay was consistent in that 
indicated delays were within ±15 percent. If we assume that the 
physical channel does not change between scans, we can associate a 
time with each scan and plot the distribution of the time periods 
during which the characterizing delay was greater than a specified 
delay. 

A series of such plots, conditioned on the concurrently estimated 
value of b, is given in Fig. 13. The uppermost curve contains the data 
derived from all scans which met the selection criterion; its shape is 
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dominated by the 627 seconds during which the channel was best 
modeled by a delay of 43 ns (the largest delay in the test set) or more, 
but had little shape (b < 0.115). These characteristics contribute to 
the large (18 ns) mean delays noted in the previous subsection for 
small values of b. They may be due to quantization but are apparently 
not artifacts of the estimation scheme. Although the origin of this type 
of channel defect is currently not understood, it should not trouble 
any existing radio system. 

It is apparent from the distributions in Fig. 13 that very few scans 
qualified for a new delay with delays less than 10 ns. Consequently, 
the distribution should not be trusted for delays less than 12 or 15 ns; 
beyond 15 ns, it may be interpreted as a lower bound to the true 
distribution. The three curves qualified by the parameter b correspond 
to fades with peak-to-peak variability of 2,3, and 6 dB. (Peak-to-peak 
variability is 20 log (1 + bll - b), as may be seen in Fig. 1.) If the delay 
were exponentially distributed, the distribution of delay would be a 
straight line on Fig. 13 and would have the form 

(20) 

Fitting a straight line to the three distributions in Fig. 13 for which b 
> 0.115 shows that the average delay decreases with increasing b. The 
corresponding values are 5,5.5, and 11 ns. Note that this implies that 
band T in a simple three-path model are not independent. 

5.3 An example of a long delay scan 

To confirm the existence of long delay scans, consider an event that 
covered approximately 10 seconds on 22 June 1977, from 23 h, 28 m, 54 
s. A representative scan from the middle of this period is shown with 
the fit obtained with the fixed delay (6.3 ns) model in Fig. 14a. To 
emphasize the consistency of this channel condition, an average of the 
channel condition for the central 4.2 seconds (21 scans) of this event 
is compared to the selected scan in Fig. 14b. 

It is apparent from Fig. 14a that the 6.3 ns delay does not have 
enough curvature (delay is too short) to precisely model the channel 
shape. Figure 15 shows the same scan modeled by three-path fades 
having delays of 22.7,26, and 30.3 ns. The 26-ns fit is the best; it has 
a weighted fit error 0.4 dB better than the 22.7-ns fit and 0.8 dB better 
than the 30.3 ns fit. However, the closeness of all three fits illustrates 
the difficulties in estimating channel delay differences. Visually, one 
would choose the 26-ns model on the basis that the 30.3-ns fit has too 
much curvature and the 22.7-ns fit too little. 

VI. ERROR ANALYSIS 

To verify that the model adequately represents the transmission 
characteristics of the channel, we examine the errors between the 
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channel as observed and as modeled. In this section we consider the 
statistics of the rms errors and the maximum errors. 

6.1 RMS errors 

A useful measure of the quality of the fit of the model to a given 
channel scan is the root-mean-square value of the decibel error at each 
of the sampled frequencies. Denoting this error as E rms , we have 

[ 
1 24 ] 1/2 

E rms = --2 L (dB error at fn)2 • 
3 n=l 

(21) 

n""19 

The model parameters were estimated, as described in Section III, to 
minimize the error, E, which is a weighted sum of the squares of the 
power differences at each frequency [see eq. (9)]. The weighting was 
chosen [eq. (10)] so that the error E would approximate the error E rms 

as given by eq. (21).* Indeed, one may show directly that the two 
expressions are equivalent as long as 

}Tn 
11 - Y

n 
1« 1 for all n. (22) 

* Note that the parameter estimation problem cannot be solved in closed form by 
minimizing E rms. 
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As we have seen in Fig. 14, this inequality is not always satisfied. 
Consequently, in using E rms as a standard' of comparison, we are 
evaluating not only how well the model fits the observed channel, but 
also how well we have chosen the parameters to make the match. 

The error E rms is a desirable quantity to work with because we can 
estimate its distribution under the assumption of perfect matching. 
We observe that if the decibel error were Gaussian with unit variance 
and zero mean, 23 E~ms would be a X2 variable with 20 degrees of 
freedom (to account for the three parameters estimated per scan). 
Observations of a simulated channel with the transmitter and receiver 
back-to-back indicate that the instrumentation errors are approxi
mately Gaussian with a standard deviation, OJ, of about 0.65 dB. 
Observations of the channel at mid-day with the channel nominally 
flat and unfaded indicate that the standard deviation of the errors is 
between 0.68 and 0.73, varying frequency to frequency and day to day 
by a few hundredths of a decibel. Hence, if we enter a table of the X2 
distribution, Q(X2 I 20), with 

(23) 2 23 E~ms 
X = 2' 

OJ 
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we can determine the distribution of E rms under the assumption of 
perfect matching. * This distribution is shown as a reference on 
Figs. 16 and 17. It is indicated by a solid curve labeled "ideal" for (Jj 

= 0.70 and by o's for (Jj = 0.75. 
Figure 16 presents the distribution of the rms error for two scan 

subpopulations using the fixed delay (6.3 ns) model. The subpopulation 
of the distribution labeled "standard" consists of all scans that could 
be modeled directly; the distribution labeled "modified" shows the rms 
error distribution for all scans which required an adjustment of the 
frequency of the modeled fade to achieve realizability. Figure 17 shows 
the distribution of the rms error for the composite of all samples using 
the fixed delay (6.3 ns) model. The distribution labeled simple three
path model indicates the error distribution that was obtained when 
the scan fitting allowed unqualified variation in model delay to achieve 
the best fit. That is, the calculation described in Section 5.2 was 
performed and the results were qualified only on the basis of realiza
bility·t 

In each case described above, the mean value of the rms error is 
close to the median value. For the two subpopulations shown in Fig. 
16, the calculated mean fit errors correspond to (Jj values of 0.76 and 
0.85 dB, or the errors are about 0.09 dB larger when a realizable fit is 
obtained by varying the frequency of the model minimum. Comparing 
the composite distributions in Fig. 17, we find that the mean error in 
the fixed delay (6.3 ns) model corresponds to (Jj = 0.78 dB or about 
0.08 dB higher than that observed when the channel is quiescent. The 
simple three-path model has a distribution of rms error that very 
nearly matches the ideal distribution (with 19 degrees of freedom) for 
(Jj = 0.75. This is consistent with the instrumentation error imputed to 
the standard distribution in Fig. 16 and is indicative of the instrumen
tation error in the presence of multipath fading. It is exceptionally 
good considering that the data are obtained from time sequential 
measurements on a dynamically changing channel. One concludes that 
the modeling error is negligible for the simple three-path model. For 
the fixed delay model under the assumption that the instrumentation 
and modeling errors add in quadrature, the modeling error has a 
tolerable value on the order of 0.2 dB. That is, 

[(0.75)2 + (0.2)2r /2 = 0.776. 

The tails of the distributions in Figs. 16 and 17 for large errors are 
of considerable interest. The tails near small values are of little 

* From the central limit theorem, we know that E;ms will be approximately Gaussian, 
as is X2

, regardless of whether or not the measurement errors are precisely Gaussian. 
t Note that although one cannot always reliably localize the values of the parameters 

in fitting with the simple three-path model (see discussions in Section 2.1 and Ref. 7), 
the error in the fit is always well defined. 
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consequence; they are distorted by quantization because one cannot 
associate any error with the 12 flat fades included in the data base. 
The deviation of the distributions from the ideal distribution at large 
errors is significant. 

The large deviation of the modified fits in Fig. 16 reflects the failure 
of the fixed delay (6.3 ns) model to accurately fit the long delay fades. 
The tail deviation from ideal is modest down to about the 0.5 percent 
level, corresponding to a few tens of seconds per month. For compar-
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ison, we note that the rms error of the fit shown in Fig. 14a is 2.3 dB; 
this was the worst fit encountered for the fixed delay (6.3 ns) model. 
However, even in this case the model failure is hardly describable as 
severe. The model of the channel is depressed by 40 dB and has 9.5 dB 
of gain slope; the actual channel is depressed by 39 dB and has 11 dB 
of gain slope. Also, we note that the 6.3-ns delay model has the 
response minimum at about the same frequency as the best represen
tation, the 26-ns delay model shown in Fig. 15. 
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The deviation of the tail of the error distribution for the three-path 
fade (Fig. 17) reflects the fact that there are fades that even this model 
has difficulty in fitting. An example of such a fade is shown in Fig. 18 
along with the fit provided by the fixed delay (6.3 ns) model. The same 
rms error (1.6 dB) is obtained for all values of model delay between 
0.05 and 9 ns; the fit degrades for larger delays. Either more than three 
rays are needed to describe the channel shape in Fig. 18, or the channel 
is so depressed that the amplitudes in the notch are distorted due to 
closeness to the noise level in the measuring equipment. The scan 
shown in Fig. 18 is one of three similar scans and has little statistical 
significance. 

6.2 Maximum errors 

Another type of error that can be used to judge the quality of the fit 
of the model to the channel is the worst-case error. That is, after fitting 
to each scan, one records the magnitude of the largest difference (in 
decibels) between the observed channel shape and the shape calculated 
from the model. The following paragraphs consider the distribution of 
these worst-case errors. 

As in the preceding subsection, we can calculate an ideal distribution; 
however, the ideal distribution is not as realistic in this case since it is 
strongly dependent on the tails of the distributions of the individual 
measurement errors. We assume that each power measurement had 
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an error in decibels that was Gaussian, with zero mean, a standard 
deviation of J20/23 (Ji to account for the three parameters estimated 
from the 23 observations per scan, * and that the errors are independent 
frequency to frequency. If the probability of anyone measurement 
having an error less than x is denoted by PI(x), the probability that all 
23 have values less than x is 

(24) 

This is the probability that the maximum error is less than x, whereas 
we want the probability that it is greater than x which we denote 
Q23(X). It follows immediately from eq. (24) that 

Q23(X) = 1 - [PI (x) ]23 

= 1 - [1 - QI(X)]23. (25) 

The distribution given by (25) is used as a reference in Figs. 19 and 
20, which show the distribution of the maximum error for the same 
cases as in Figs. 16 and 17. Since the tails of these distributions are 
well behaved for larger errors, the distribution of the maximum errors 
is apparently dominated by the instrumentation noise. That is, if we 
use for the standard deviation of the measurement noise the value 
obtained from the mean of E rms for one of these cases (as given in 
Section 6.1), the resulting worst-case error distribution calculated with 
eq. (25) will closely match the observed maximum error distribution. 

VII. CONCLUSIONS 

By analyzing the errors in fitting the observed channel characteris
tics in Section VI, we demonstrated that the simple three-path fade 
model is indistinguishable from a perfect model of a line-of-sight 
microwave radio channel. 

The simple three-path model was used in Section V to characterize 
the channel delay difference. By two different methods, it was shown 
that, when there is 3 dB or more shape present in the channel, the 
average delay difference is between 5 and 8 ns. We developed a lower 
bound on the tails of the distribution of delay difference. From these 
results, which are shown in Fig. 13, we observe that a differential 
channel attenuation in-band of 3 dB or more may be due to delay 
differences as great as 43 ns. In another dimension, one would expect 
to see differential attenuation of 3 dB or more in-band due to delays 
greater than 20 ns for at least 70 seconds in a heavy fading month. 
This is comparable to the time the channel attenuation at a single 
frequency exceeds 40 dB. 

* For comparisons with the three-path model, it is appropriate to use v'19/230i • 
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fixed delay (6.3 ns) model. 

From the error analysis in Section VI, we also conclude that the 
fixed delay (6.3 ns) model is a very good approximation to the channel 
for all observed conditions. This conclusion is further substantiated by 
Figs. 14 and 18, which show the scans for which the fits with the fixed 
.delay model exhibited the largest rms fit error (2.3 dB) and the largest 
maximum error (3.9 dB), respectively. The fixed delay model is pref
erable to the three-path model for channel modeling because it requires 
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only three parameters, and these can always be uniquely determined 
from a channel amplitude scan. 

The statistics of the parameters of the fixed delay model as described 
in Section IV and shown in Figs. 8 to 12 provide the means of 
statistically generating all the channel conditions that one expects to 
see on a nominal hop channel operated at 6 GHz. If one determines, 
by laboratory test, the parameter values that will cause a particular 
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error rate in a digital radio system, one can easily calculate the time 
during a heavy fading month that the error rate will equal or exceed 
this critical value. A companion paper describes the laboratory test 
and the required calculations.8 

Future work will be directed toward verifying the model and model 
statistics with additional fading data obtained both at 6 GHz and at 4 
GHz. Using coherent data obtained in 1973, it will be possible to 
determine the extent to which the channel is actually a minimum 
phase channel. 
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APPENDIX 

Estimation of Parameters 

The problem of estimating the parameters a, /3, and fo in Section III 
is equivalent to the problem of determining the fIrst three terms in a 
subharmonic Fourier series expansion of a function in the frequency 
domain. Since such expansions are not standard, we provide a complete 
description of the methodology here. 

From eqs. (4) and (9), we may express the weighted mean-square 
error between estimated and observed power as* 

E = ~ Cn ( Yn - a + /3 cos(wn - WO)T)2 

~ Cn • 
(26) 

For simplicity, we use a normalized weighting function, dn, defined by 

d=~ 
n ~ Cn 

so that 

~ dn = l. 

In terms of the normalized weighting we may write (26) as 

E = ~ dn ( Yn - a + /3 cos(wn - WO)T)2 

(27) 

(28) 

(29) 

* Throughout this appendix, all summations are taken over all values of n correspond
ing to all frequencies observed in a scan. 
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or in expanded form as 

E = L dnY~ + a2 + {32 L dncos2(Wn - wo)T 

+ 2/3 L dnYncos(Wn - WO)T 

- 2a/3 L dncos(wn - wo)T - 2a L dnYn. (30) 

The error E is a minimum when a, /3, and Wo are chosen so that the 
partial derivatives of E with respect to a, /3, and Wo are all equal to 
zero. Setting the partial derivative of eq. (30) with respect to {3 equal 
to zero and solving for {3 gives 

fJ = a ~ dnCOS(w~- Wo)T 2- ~ dnYncoS(Wn - wo)T. (31) 
dncos (Wn - Wo)T 

Substituting (31) into eq. (30), we find Ep, the error minimized with 
respect to {3, as 

2 2 1 
Ep = L d n Y n + L d 2( ) nCOS Wn - Wo T 

. {a2[L dncos2(Wn - wo)T - (L dncos(wn - WO)T)2] 

- 2a [(L dnYn)(L dncos2(Wn - wo)T) 

- (L dncos(wn - wo)T)(L dn YnCOS(Wn - wo)T)] 

- (L dn YnCOS(Wn - WO)T)2}. (32) 

Minimizing this with respect to a requires that we set the partial 
derivative of Ep with respect to a equal to zero. This gives 

(L dn Yn)(L dncos2(Wn - wo)T) -

(L dncos(wn - wO)T)(L dn YnCOS(Wn - wo)T) 

a = L dncos2(Wn - Wo)T - (L dncos(wn - wo)T)2 . 
(33) 

Substituting (33) into (32) gives E ap, the error minimized with respect 
to both a and /3, as 

Epa = L dn Y~ - y2 

(34) 

where 

(35) 

We note that we could have obtained this same expression by first 
minimizing with respect to a and then with respect to /3; however, one 
obtains different but equivalent expressions for a and /3, depending on 
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the order of differentiation. We develop the alternative expressions for 
a and {3 in the following paragraphs. 

Let us define some new quantities to simplify these expressions. Let 
the difference between the observed power and the weighted mean 
power in the band be designated by Xn; then 

Xn = Yn - L dn Yn = Yn - Y. (36) 

If we also define the quantities 

Xc = L dnXncos WnT, 

Xs = L dnXnsin WnT, 

Da = L dncos2(Wn - Wo)T, 

Db = L dncos(wn - Wo)T, 

we may rewrite a and {3 from eqs. (31) and (33) as 

_ Y- _ [Xccos WoT + Xssin WoT ]Db 
a - Da - Dg 

and 

(37) 

(38) 

(39) 

(40) 

(41) 

1 -
{3 = Da {(a - Y)Db - (Xccos WoT + Xssin WOT)} . (42) 

Using (41) to eliminate a from (42), we obtain 

f3 = _ Xccos WoT + Xssin WoT 
Da- Dg 

(43) 

We may use (43) in (41) to obtain 

a = Y + {3Db. (44) 

Equations (43) and (44) are the estimators that would have been 
obtained if the order of taking partial derivatives in the preceding 
development had been reversed. It is apparent that, after one has 
estimated Wo, one may estimate a and {3 by using either eqs. (41) and 
(42), (43) and (44), or eqs. (41) and (43). 

The estimate of Wo that minimizes the weighted error is obtained by 
minimizing Epa with respect to woo Using eqs. (35) to (40) in eq. (34), 
we write -

(45) 

To see the explicit dependence of Epa on Wo, we define the following 
quantities 

(46) 
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ds = l: dnsin2wnT - (l: dnsin WnT)2, (47) 

des = l: dncos WnT sin WnT - (l: dncos WnT) (l: dnsin WnT). (48) 

Substituting these into (45) gives 

E = l: d X 2 _ [XeCOS WnT + Xssin wOTY 
pa n n decos2 WoT + 2descos WoT sin WoT + dssin2woT . (49) 

Setting the partial derivative of Epa, as given by (49), equal to zero 
gives the estimator for Wo as 

T _l[deXs - desXe] WoT = an . 
dsXe - desXs 

(50) 

Obviously, two values of WoT in the interval (-7T, 7T] will satisfy 
eq. (50). One of these, the principal value, lies in the interval (-7T/2, 
7T/2], the other differs from the fIrst by ±7T. We shall show that the two 
solutions are equivalent, but that our chosen solution is unique. 

If we replace WoT by WoT ± 7T in eqs. (39), (40), (43), (44), and (45), we 
see that Db and {3 change sign and a and Epa are unchanged. Since we 
want the solution with {3 greater than zero, we take the principal value 
solution to (50) if the resulting estimate of f1 is positive. Otherwise we 
add or subtract 7T to obtain a positive value for f1 and a value of WoT in 
the appropriate interval. 

While we could substitute the result of eq. (50) into (49) to obtain 
the minimum error, E aBwo , it is more generally useful to evaluate EaP 
for the optimum woo This is especially true when we do not use the 
optimum Wo, as given by eq. (50). The simplest form for Eap is obtained 
by substituting (43) into (45) to give 

Eap = l: dnX~ - (Da - D~)f12. (51) 

These equations were implemented, with the modifIcations de
scribed in Section 3.2, to obtain all the fIts described in this paper. 
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A statistical model (introduced in a companion paper) of fading on 
a radio path is used with laboratory measurements on a digital radio 
system to estimate the outage due to multipath fading, where outage 
is the time that the bit error rate (BER) exceeds a threshold. Over the 
range of BER of interest (10-6 to 10-3

), the calculated outage agrees 
favorably with the outage observed during the period for which the 
fading model was developed. It is further shown that the calculated 
outage, when scaled to a heavy fading month on the basis of single
frequency, time-faded statistics, agrees equally well with the outage 
observed on the same path during a heavy fading month. The agree
ment between measured and predicted outage substantiates the se
lective fading model. The prescribed laboratory measurements char
acterize the sensitivity of the radio system to selective fading. Thus, 
the methodology provides a useful basis for comparing the outage of 
alternative realizations of digital radio systems. 

I. INTRODUCTION 

Present interest in using high-speed common carrier digital radiol
-

5 

has precipitated a need for estimating the performance of such systems 
during periods of selective (multipath) fading. This paper describes a 
method of characterizing a digital radio system in the laboratory which 
allows the outage to be accurately estimated. For a digital radio 
system, outage requirements are stated in terms of the number of 
seconds in a time period (usually a heavy fading month) during which 
the bit error rate (BER) may exceed a specified'level; typically, 10-3 or 
10-4 is appropriate to voice circuit application. 

The method is based upon a statistical channel model6 developed 
from measurements on an unprotected 26.4-mile hop in the 6-GHz 
band in Palmetto, Georgia in 1977 using a general trade 8-PSK digital 
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radio system as a channel measuring probe. The modeled fading 
occurrences were scaled to the basis of a heavy fading month using the 
occurrence of time faded below a level at a single frequency as the 
means of calibration. The bit error rate performance of the digital 
radio system was measured during the time period used for channel 
modeling and for an extended period corresponding to a heavy fading 
month. This same radio system was later subjected to a measurement 
program in the laboratory using a multipath simulator which provides 
a circuit realization of the fading model. The measured results are used 
with the channel model to determine the occurrence of channel con
ditions which will cause the BER to exceed a given threshold. Compar
isons on the basis of the modeling period and a heavy fading month 
show good agreement between calculated and observed outages for 
BERS between 10-6 and 10-3

• 

The properties of the fixed-delay channel model are reviewed briefly 
in Section II as a basis for describing the measurements and for the 
subsequent outage calculations. This three-parameter channel model 
is realized in the laboratory by an IF fade simulator. The simulator 
and its use in obtaining the necessary laboratory data are described in 
Section III. The procedures to be followed in calculating outage times 
for a given BER are described in Section IV. Calculated and observed 
outage times are compared in Section V. Conclusions are provided in 
Section VI. 

II. MODEL DESCRIPTION-METHODOLOGY 

It has been demonstrated6 that the complex voltage transfer function 
of a line-of-sight microwave radio channel is well modeled by the 
function 

H(w) = a [1 - be-j(w-wo)T] (1) 

with T fixed. A 6-GHz channel (30-MHz bandwidth) has been charac
terized statistically by the model with T = 6.3 ns. Such a channel has 
a power transfer function given by 

1 H(w) 12 = a2[l + b2 
- 2b cos(w - WO)T] (2) 

and an envelope delay distortion function, i.e., the derivative of the 
phase of H(w) with respect to w, given by 

D(w) = bT(COS(W - woh - b) . 
1 + b2 

- 2b cos(w - woh 
(3) 

In the following paragraphs, we summarize the properties of the model, 
the statistics of the model parameters, and the measurement objec
tives. 
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2. 1 Fixed delay model 

A plot of the attenuation produced by the fixed delay model of eq. 
(1) is shown in Fig. 1. Since the delay is fixed at 6.3 ns, the spacing 
between nulls of the response, 158.4 MHz, is much larger than the 
channel bandwidth. The parameters a and b control the depth and 
shape of the simulated fade, respectively. The parameter fo(=wo/2'IT) 
determines the position of the fade minimum or notch. Both the notch 
frequency, to, and the response frequency, {, are measured from the 
center of the 30-MHz channel for convenience. 

The model function of eq. (1) may be interpreted as the response of 
a channel which provides a direct transmission path with amplitude a 
and a second path providing a relative amplitude b at a delay of 6.3 ns 
and with a phase of WoT + 'IT (independently controllable) at the center 
frequency of the channel. This interpretation is represented in Fig. 2 
by a phasor diagram at W = 0, the center frequency of the channel. 
Varying the frequency, w, over the channel bandwidth (30 MHz) moves 
the angle of the interfering ray through an arc of about 60 degrees (2'IT 
X 30 MHz X 6.3 ns :::::: 'IT/3) , centered at the position shown. This 
diagram is useful for understanding the fade simulation; it also provides 
an alternate means of describing the position of the notch. The notch 
position may be specified by its frequency, fo, or by </>, the angle of the 
interfering path at the center of the channel. 
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Fig. I-Attenuation of channel model function, H(w) = a[1 - b exp(-j(w - woh)], for 
'T = 6.3 ns, a = 0.1, b = 0.7. 
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Fig. 2-Phasor diagram of a modeled fade, cf> = 45°, b = 0.7. 

From Figs. 1 and 2, or eq. (1), it may be seen that varying a changes 
the overall level and varying b changes the shapeliness of the modeled 
fade. Furthermore, if the minimum is within the 30-MHz channel 
bandwidth (I cJ> 1< 30°), the fixed delay model can generate notches 
with a wide range of levels and notch widths. With the minimum out 
of band, it can generate a wide range of combinations of levels, slopes, 
and curvatures within the channel bandwidth. 

2.2 ModeJ statistics 

The statistics of the model parameters were obtained from a selected 
data base during which heavy fading activity was observed.6 The 
distribution of b is best described in terms of B = -20 log(I - b). 
Figure 3 shows the distribution of B and the least-squares straight line 
fit to the distribution over the region where it best represents selective 
fading-between B values of 3 and 23 dB. The channel is described by 
B greater than 23 dB for less than 0.15 percent of the observed time 
which makes the distribution less certain beyond this point. At the 
other extreme, during the periods of time when there is little or no 
selective fading, the channel is characterized by values of B less than 
3 dB. Thus, the fitted line represents a lower bound on the distribution 
for B less than 3 dB. Since the fitted line has an intercept of 5400 
seconds, we may model the fraction of 5400 seconds during which B 
exceeded a value X by the probability distribution 

P(B > X) = e-X / 3.8• (4) 

Thus the probability of finding a value of B between X and X + dX is 

dX 
PB(X) dX = 3.8 e-X

/
3

.
8

• (5) 

The distribution of a is lognormal with a standard deviation of 5 dB 
and a mean that is dependent on B (or b). Hence, the probability that 
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Fig. 3-Distribution of B for model data base period. 

A = -20 log a has a value between Yand Y + dY is given by 

PA(Y) dY = dY e-[Y-Ao(B)f/50• 

5J2; 
(6) 

The relationship between Ao, the mean of the distribution, and B is 
given in Fig. 4. 

The distribution of fo is found to be independent of A and B. It is 
usually simpler to work with </> rather than fo. The two variables are 
simply related in that </> is defined on the interval (-'TT, 'TT) and a 2.5-
degree change in </> corresponds to a 1.1-MHz change in fo. For the 
fixed delay model, the variable </> has been found to have a probability 
density function that can be described as uniform at two levels, with 
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values less than 7T/2 being five times more likely than values greater 
than 7T/2. Thus, we have the probability density function per degree 
as: 

1 

216 

1 

1080 

(7) 

90° ~ I <P I ~ 180. 

The functions in eqs. (5) to (7) can be used to determine the 
probability of finding a, b, and fo in some region of a-b-fo space. This 
probability can be converted to number of seconds in the observation 
period by multiplying by 5400 seconds. To convert this probability to 
the number of seconds in a month requires scaling the data base. The 
scaling may be obtained from Fig. 5 which shows, for several frequen
cies in the band, the time during the model data base period that the 
channel was faded below a given level. Distributions are shown for 
average power in the band and for power at selected frequencies at the 
center and near the edges of the radio channel. (Frequencies indicated 
are at IF where the center frequency is at 70 MHz.) For the path used, 
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one expects the received voltage (single frequency) relative to midday 
average to be less than L for 72.5 X 104 L 2 seconds in a month.7 For the 
data base used, the fading is best described by 48 X 104 L 2 hence, the 
data represent % of a fading month. To obtain outage on a seconds
per-heavy-fading-month basis, the probabilities calculated with eqs. 
(5) to (7) must be multiplied by 5400 x 1.5 or 8100 seconds. 

2.3 Outage estimation 

The fixed delay model described above can be simulated with an 
equivalent circuit laboratory measurement to determine the equip
ment response to multipath fading. Conceptually, one determines 
critical values of A and B for which a specified error rate is achieved 
for each fade notch position. In practice, it is difficult to maintain a 
constant BER; it is more expedient to fix b and vary the carrier-to-noise 
ratio (a) while plotting the BER. From the resulting curves, one may 
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compute critical contours of A and B for each prescribed notch location 
and HER. Using eqs. (5) and (6), the probability that A and B lie on the 
high error rate side of a given critical contour may be calculated. 

By repeating this calculation for a uniform set of notch positions 
and using (7) to determine the probability weighting given to each and 
summing, one may estimate the probability of all selective fades that 
produce a HER exceeding the prescribed one. Multiplying this proba
bility by 5400 gives the outage time expected over the data base period; 
multiplying by 8100 gives the expected outage time per heavy fading 
month. 

The following section describes the laboratory measurement; Sec
tion IV describes the reduction of the measured curves and parameters 
to outage times. 

III. LABORATORY MEASUREMENTS 

Figure 6 illustrates stressing of a digital radio system by means of an 
IF fade simulator. The simulator, which is inserted after linear IF 

preamplification but before any high-gain amplification, shapes both 
the desired signal and the effective received noise. It is necessary to 
operate the simulator at a sufficiently large input carrier-to-noise ratio 
that the concomitantly shaped noise at its output remains a negligible 
contributor to degraded system performance throughout the operating 
range of interest. 

Within its restricted frequency range of operation, the IF simulator 
is adjusted to achieve those specific shapes implied by Fig. 2. Although 
the measurements could have been made using an RF fade simulator, 
the choice of an IF simulator was based primarily upon considerations 
of signal and noise levels, and the repeatability of adjustments. The 
following section describes an IF shape-stressing measurement in the 
minimum detail necessary to qualify the data collected. 

3. 1 Representative IF two-path fade stressing measurement 

The block diagram of Fig. 7 illustrates an arrangement employing 
an IF fade simulator and an IF flat noise source. A pseudo-random test 

RF TRANSMITTER, RF -IF 
IF FADE MAIN 

MODULATOR r---. DOWN COVERTER, ~ SIMULATOR ~ RECEIVER, 
IF PREAMPLIFIER DEMODULATOR 

DATA PATTERN BER TEST 
GENERATOR RECEIVER 

Fig. 6-IF fade stressing. 
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pattern modulates the 6-GHz radio transmitter whose output is nom
inally 5 watts (@, in Fig. 7). The output spectrum is usually shaped by 
a bandpass fIlter following the microwave power amplifIer to comply 
with FCC regulations. 

To enable back-to-back operation of the transmitter and receiver of 
a single repeater which normally operate on different radio channels, 
a radio test translator was employed. The translator output power was 
approximately -30 dBm (adjustable, at Cl))) to simulate the unfaded 
received signal level (RSL) observed typically in the fIeld. 

AssumIng a linear RF-IF conversion gain of 20 dB, the signal power 
at the input (©) to the IF fade simulator is -10 dBm. The simulator 
incorporates low-noise linear amplifIcation. A reference insertion loss 
for the main unfaded ray is 10 dB, including the output power summer. 
Hence the maximum desired signal power at the input to the main IF 

amplifIer (®) is -20 dBm. 
Assuming a 30-MHz receiver noise bandwidth and a current-art 

receiving system noise fIgure of 5 dB, the total system noise power is 
approximately -95 dBm, referred to the receiver's input port. This 
results in a flat receiver noise contribution of -85 dBm at input ® to 
the main IF amplifIer. Consequently, the maximum attainable carrier 
to simulator-shaped RF noise ratio is 10 log (Co/Nrt) = -20 - (-85) = 
65 dB. The noise contributed by the fade simulator amplifIers must 
not exceed -100 dBm, to be negligible. 

Flat IF noise much larger than the unwanted and shaped system 
noise is added artifIcially at ® and is adjusted in magnitude by a 
calibrated attenuator @ to superpose thermal noise degradations upon 
the simulated selective fading degradations of the desired signal. One 
would ideally measure the added IF noise power in the fInal predetec
tion bandwidth of the digital radio system, or twice the Nyquist 
bandwidth. It is more convenient in the laboratory to reference carrier
to-noise ratios to the output of the main IF amplifIer by using the
precalibrated AGC voltage (assuming that wideband AGC detection is 
employed), to measure both the unshaped signal and noise powers. 
The carrier-to-noise ratio at the detector would be higher-by the 
ratio of the system noise bandwidths that would be measured at the 
respective points. 

The noise source output in Fig. 7 may be adjusted so that an 
attenuator setting of 0 dB @ results in a noise power equivalent to 
that of the unfaded signal power (the attenuator is then calibrated 
directly in uncorrected CO/Nit, in dB). As the IF fade simulator is 
readjusted to achieve different prescribed fade shapes, its mean inser
tion loss may also change. The change in insertion loss is determined 
by monitoring the change in signal power at ®; the same loss increment 
(dB) must be added to the noise attenuator @ to reestablish the 0 dB 
reference. 
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3.2 IF two-path fade simulator 

Figure 8 illustrates splitting the desired IF signal into an arbitrarily 
phased, adjustable "main" component and a "delayed" component 
fixed in delay (T ns) but adjustable in magnitude. The main component 
is further resolved into orthogonal components (inset to Fig. 8) using 
wideband networks exhibiting flat gain and well-behaved delay. A 
particular sum vector is constructed by adjusting the orthogonal 
components to establish a simulated fade notch frequency; in practice, 
the phase sense of 0- and 90-degree components are independently 
reversible, as indicated by the switches in the figure, for complete 
flexibility in notch. frequency selection. 

The 6.3-ns fixed delay added to the delayed path imparts a phase 
shift of 159 degrees at the 70-MHz IF center frequency. This is shown 
built out to 225 degrees, relative to the O-degree transmission path, 
using a 66-degree wideband network of the same type. The delayed 
vector is fixed in direction opposite the midrange position of the 
adjustable main vector, corresponding to a channel-centered fade (</> 
= 0 degrees). 

Since 1/ T = 158.4 MHz, a change of 1 degree in direction of the main 
vector corresponds to a frequency displacement of the fade notch 
location of 0.44 MHz. For </> = -45 degrees, the notch location is 
displaced 19.8 MHz below the channel center (to = -19.8 MHz). The 
magnitude of the delayed component is then adjusted to achieve the 
desired notch depth. 

WT 

OUTPUT 

ab 

1590 FOR 6.3 ns 

DELAYED 

Fig. 8-IF fade simulator-conceptual block diagram. 

COMPONENTS SHOWN 
FOR: 

T = 6.3 ns 
llT= 158.4 MHz 

¢ = 150 

fo = 15/360 x 158.4 
= 6.6 MHz 
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3.3 Digital radio performance stressed by in-band selectivity and thermal 
noise 

The radio equipment was measured at uniformly spaced notch 
frequencies separated by 4.4 MHz (il</> = 10 degrees). To fully charac
terize a period of variation in </>, or fo, one would need to make 36 sets 
of measurements. Ideally, half may be omitted because of symmetry. 
For given values of A and B, the same error rate should obtain for a 
notch at a given frequency displacement above or below the channel 
band center. Variations in B ought not to have a significant effect for 
I </> I greater than 90 degrees. It was determined that detailed measure
ments were required for nine different values of fo to characterize the 
digital radio tested. 

U sing a wideband RF fade simulator in the field, the digital radio 
performance for out-of-channel notch locations was relatively inde
pendent of whether minimum or nonminimum-phase fade simulations 
were employed. The nonminimum phase fade is modeled by eq. (1) 
with the sign of the phase term reversed. This leaves the amplitude 
[eq. (2)] unchanged, but reverses the sign of the envelope delay 
distortion [eq. (3)]. We conclude that the minimum phase channel 
model is sufficiently general for use in simulating the channel and in 
estimating performance. 

The IF fade simulator was adjusted for each notch frequency, and 
the depth of notch was varied by adjusting the magnitude of the 
delayed component. Then various amounts of IF thermal noise were 
added. Figure 9 typifies the performance data collected. BERS are 
plotted versus the uncorrected IF carrier-to-noise ratio (C/Nit), for a 
constant fade notch offset from midchannel (fo = -19.8 MHz, 'T = 6.3 
ns). Each curve corresponds to a different notch depth (B = -20 
log(l-b) dB), and hence a different amplitude and delay shape in the 
radio channel. Each curve is also identified with an in-band selectivity, 
defined as the difference between the maximum and minimum atten
uation present in the (25.3-MHz) channel bandwidth. The lower-left 
"baseline" curve presents the unshaped signal, flat fading performance 
obtained by adding only IF thermal noise. This curve was verified 
(without the added IF noise) by attenuating the received RF input 
signal in the back-to-back configuration. 

Consideration was given to matching the order of measurements to 
characteristics of the particular digital radio tested. For example, 
considerable scattering of data at low error rates can result from 
synchronizations involving different reference carrier phases. The au
thors elected to perform several synchronizations while observing the 
BER for each phase, and then chose that phase giving the worst 
performance. * Synchronization was accomplished at the low error rate 

* Because the phase information in the measured system was Gray coded and digital 
access was on a per-rail basis, one rail had twice the BER of the other two. All 
measurements in the field and in the laboratory were made on this worst-case rail. 
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Fig. 9-High-speed digital radio IF dispersive fade simulations, or = 6.3 ns, to = -19.8 
MHz. 

(bottom) of each curve, and this phase relationship was maintained 
for all data points obtained for each curve. 

From the baseline curve of Fig. 9, a HER = 1 X 10-6 obtains for 10 
log(C/Nif) ::: 21.5 dB. For the digital radio system installed on the 
instrumented hop and reported in the figure, the measured flat fade 
margin for a threshold HER = 1 X 10-6 was 40.5 dB This leads to an 
unfaded IF carrier-to-noise ratio 10 log(Co/Nif} ::: 21.5 + 40.5 = 62 dB. 

From the baseline curve for a HER = 1 X 10-7
, note that insertion of 

a fade whose notch depth is 6.5 dB results in four orders of magnitude 
degradation in HER performance; equivalently, an in-band selectivity 
of only 5.7 dB in 25.3 MHz results in a HER> 1 X 10-3

• 

The asymptotic regions in Fig. 9, corresponding to high values of C/ 
Nif, are not normally presented in characterizations of this type; 
however, system outage depends primarily upon the performance in 
these asymptotic regions. Thus, under typical fading conditions, the 
transmitted carrier power might be increased at will without improving 
the HER significantly. The effects of decreasing the carrier power are 
discussed in Section 4.4. 

A family of curves like those shown in Fig. 9 was obtained (but are 
not given here) for each of nine uniformly spaced frequency offsets 
below mid channel to characterize the digital radio system sufficiently 
for the prediction of outage. A number of spot checks were also made 
using both RF and IF fade simulators at symmetrical positive and 
negative offset frequencies, to establish that acceptable symmetry 
existed. 
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IV. CALCULATION OF OUTAGE 

This section describes four methods of calculating outage. The 
derivation of the critical curves of A and B, which provide the basis 
for making and understanding these calculations, is given in Section 
4.1. In Section 4.2 the detailed calculation of outage from the critical 
A-B curves is described. It is shown in Section 4.3 that for the present 
system this method may be greatly simplified by calculating only 
selectivity-caused outage (i.e., neglecting thermal noise). Section 4.4 
presents an approximate method of accounting for the effects of 
thermal noise. Section 4.5 provides a basis for estimating the selectiv
ity-caused outage from a single measurement. 

4.1 Derivation of critical characteristics 

To calculate the outage for a fixed bit error rate, one must first 
obtain the critical curves of A and B at each simulated value of to, the 
notch position. Thus, from Fig. 9 which corresponds to to = -19.8 MHz 
(or cp = -45°), we obtain six points on the critical curve of A and B for 
a BER of 10-3

, one point from each of the six curves which cross the 
critical BER. The value of B is obtained from the value of b since 

B = -20 10g(1 - b). (8) 

For the curve in Fig. 9 corresponding to B = 4.4 dB, we obtain the 
corresponding critical value of A for a BER of 10-3 from the value of 
carrier-to-noise ratio, which is 20.2 dB where this curve crosses the 
10-3 BER line. Since the carrier-to-noise ratio is 62 dB when the channel 
is unfaded, the 20.2 dB value corresponds to a relative average power 
loss of 41.8 dB, 

Ls = 62 - 20.2 = 41.8 dB. (9) 

Without loss of generality, we assume that the PSK signal has a 
rectangular spectrum of width tb; consequently, the relative power 
transmitted by the model is obtained from eq. (2) as* 

(10) 

* The calculated result is not critically dependent on the flatness of the signal 
spectrum or the spectral width chosen. We have used for {b a value of 25.3 MHz as 
representing the effective width of the signal. 
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Defining a correction term by 

C = -10 !Og{ 1 + b' - 2b cos 2?TfoT( S~;':bT) }, (11) 

we may express the signal loss as 

Ls = -10 log P au = A + C. (12) 

Thus, we obtain the critical value of A as 

A = Ls - C. (13) 

For B = 4.4 dB (b = 0.4) and fa = -19.8 MHz, we find C = 2.06 dB and 
the critical value of A is 41.8 - 2.1 = 39.7 dB. 

Carrying out these calculations for the six curves in Fig. 9, one can 
generate the critical curve of A and B for fa = -19.8 MHz and a BER 

of 10-3
• The curve is shown in Fig. 10 along with the critical curves for 

several other values of the BER. A complete set of curves must be 
generated for all values of fa. 

The curves in Fig. 10 are typical of the critical curves obtained for 
I fa I::::: 33 MHz. The intercept with the A-axis represents the flat fade 
margin for the given HER; this margin is independent of notch position. 
The intercept of a critical contour with the B-axis represents the 
shape, or relative fade depth, margin for the given notch position. For 
values of B to the right of this intercept, the critical value of BER 

cannot be obtained at any carrier-to-noise ratio for the given notch 
position. 

4.2 Outage calculation- detailed method 

The probability, Po, of finding A and B outside all critical contours 
may be written with eqs. (5), (6), and (7) as 

(14) 

where 

(15) 

and Ac(X) is the functional relation of the critical values of A to B (or 
X), for B less than Be, the B-axis intercept, and for a given HER and <J> 
value. * Since measurements were made for a uniformly spaced set of 
notch positions with spacing 8<J> = 10°, we may approximate (14) by 

* The dependence of the function Ac(X) and the asymptote R· on BER and </> is not 
explicitly denoted to keep notation simple. 
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Po = A</> L P<p(</>i)Pc(</>i). 
All <Pj 

(16) 

To illustrate the calculation of outage probability with eqs. (15) and 
(16), we shall calculate the term in the summation of eq. (16) corre
sponding to a HER of 10-3 and </>i = -45 0 (or fo = -19.8 MHz). From 
Fig. 11, which is taken from Fig. 10, we note that the double integral 
in eq. (15) may be broken into integrations over two regions. Thus 

Po(</>i) = L~ L~ PA(Y)PB(X) dY dX (17) 

+ fBe Joo PA (Y)PB(X) dY dX, 
o Ac(X) 

where the two double integrals correspond to integrations over Regions 
1 and 2, respectively, in Fig. 11. Outage due to the occurrence of A and 
B in Region 1 may be described as outage due only to shape or 

1088 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1979 



selectivity. In Region 2, outage is due to the combined effects of signal 
loss and selectivity. 

Using eqs. (5) and (6), the integral over Region 1 is obtained as 
e-B

c/3.8. The contribution due to thermal noise and shape (Region 2) is 
slightly more complicated. Dividing the interval 0 to Be in Fig. 11 into 
N subintervals, as shown in Fig. 12, the probability of being in Region 
2 is the sum of the probabilities for each subinterval. Thus eq. (17) 
becomes 

where 

(19) 

50.--------.---------------------------------, 
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Fig. ll-Classification of outage with respect to critical curve for HER = 10-3
, to = 

19.8 MHz. 
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Evaluating the two components of eq. (18) from Fig. 11, we find 

P c( -45°) = 0.181 + 0.003 = 0.184. (20) 

This calculation was performed for 10 values of cf>i from -5 to -85 
degrees in 10-degree steps. Using these results in eq. (16) and multi
plying by two to account for positive values of cf>i which are assumed to 
contribute equally, we find the probability, Po for a BER of 10-3 as 

Po = 0.0996. 

The expected outage for the data base period is, then, 

To = 5400 X 0.0996 = 538 seconds. 

4.3 Outage calculation- selectivity only 

(21) 

It is apparent from eq. (20) that most of the outage for the system 
under study is caused by selectivity, fades characterized by A and B 
values in Region 1. From eqs. (14) and (17), we may express Pas, the 
probability of outage due to selectivity, as 
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(22) 

For the system studied for a BER of 10-3
, a finite Be is obtained only 

for I <1>d < 90 degrees. Hence, we may use eq. (7) to simplify (22)* 

26.<1> 10 P . = -- " e-B ('(cp;)/3.8 
ru 216 ~ . (23) 

From eq. (23) we see that the outage due only to selectivity depends 
on the relationship between Be, the asymptote of critical B values, and 
the notch angle or notch frequency. Figure 13 shows the relationship 
between Be and the notch frequency for four values of BER. It is 
apparent from eq. (22) that the outage probability is the probability of 
finding Band fo values in the region above this curve. Such curves, 
therefore, provide a useful basis for evaluating the selectivity outage 
of a digital radio system. 

4.4 Outage calculation- approximate method 

For a radio system sensitive to both thermal noise and selectivity, 
the calculation of Section 4.3 is inadequate and that of Section 4.2 is 
unduly cumbersome. 

To illustrate a simpler, but generally applicable, method and at the 
same time to provide a useful incidental result, let us evaluate the 
effect of reducing the transmitted power by 10 dB. For the reduced 
power system, the carrier-to-noise ratio would be 52 dB for the unfaded 
channel, and the critical curves of A and B would be shifted by 10 dB. 
Figure 14 shows the critical curve of A and B for a 10-3 BER and fo = 
-19.8 MHz with an overplot of the conditional mean of the distribution 
of A. The dotted curves on Fig. 14 represent 2-sigma intervals on 
either side of the mean. From the properties of the Gaussian distri
bution, one may determine that more than 95 percent of the values of 
A and B will lie between these two dotted curves. We designate as Am 
and Bm the coordinates of the intersection of two curves: the critical A 
- B curve and the conditional mean curve. Then approximating the 
critical curve of A and B with a straight line segment tangent at (Am, 
Bm), with slope s, we may approximate the probability of outage by 
integrating the probabilities over the region to the right of the tangent 
line. Using eqs. (15) and (16), we obtain 

* The factor of two is required in eq. (23) because the indicated summation corre
sponds to an integration only over negative notch frequencies (rpi < 0). 
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Interchanging the order of integration and ignoring* the B dependence 
of Ao(B), this becomes 

Po = Llcp L PrJ>(CPi)e-Bm/3.SeO.S66/s2. (25) 
All rJ>j 

Evaluating eq. (25) for a 10-3 BER and multiplying the result by 5400 
gives an outage estimate for the data base period of 602 seconds. 
Recalculating the total outage time at a 10-3 

BER using the method of 
Section 4.2 [eqs. (16) and (18)] gives 636 seconds, which verifies the 
accuracy of the approximate method. The estimate of 636 seconds was 
calculated as an upper bound; the 602 seconds calculated using (25) 
tend to be a lower bound. We conclude that backing off transmitted 
power by 10 dB would increase the outage by about 12 percent (538 to 
602). 

4.5 A further simplification 

In this section, we show that the outage due to selectivity can be 
estimated approximately for a given BER from a determination of the 
in-band selectivity required (with the notch out-of-band) to produce 
that BER. Such a measurement may provide a useful approximation 
for any digital system using quadrature modulation components;9 
however, we provide a justification based on the performance of the 
system at hand. In-band selectivity is defined as the difference between 
the maximum and minimum attenuation present in the (25.3-MHz) 
channel bandwidth. 

Since the in-band selectivity is a constant for any of the curves 
shown in Fig. 9, one can use Fig. 9 to plot the asymptotic BER against 
in-band selectivity for fa = -19.8 MHz. Such a plot was generated for 
each notch position measured to produce the family of curves shown 
in Fig. 15. Note that, except for notch positions near the band center, 
the BER is uniquely related to the in-band selectivity. Neglecting the 
in-band notches, we find that a 10-3 

BER corresponds to an in-band 
selectivity of 5.5 dB. 

If we use the original model of eq. (2) to determine the values of B 
that will produce an in-band selectivity of 5.5 dB for a number of 
different notch positions, we would generate Fig. 16. It is apparent that 
for this system there is a good correspondence between the curves of 
asymptotic performance (Fig. 13) and the curves of constant in-band 
selectivity (Fig. 16). 

To reinforce this conclusion, we provide Figs. 17, 18, and 19. Figure 
17 shows the locus of in-band selectivity in a 25.3-MHz band corre-

* Including the effect of the slope of Ao(B) at B = Bm gives the same symbolic result 
with s interpreted as the algebraic sum of the slope of the tangent and dAo/ dB evaluated 
at B = Bm. 
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sponding to each of the curves of constant BER in Fig. 13. That is, for 
each BER and each value of notch position, fo, we have plotted the 
peak-to-peak amplitude difference in the band for the corresponding 
value of Be, the asymptotic critical value of B. Figure 18 shows a 
similar set of curves with the peak-to-peak delay distortion in a 25.3-
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MHz band as the ordinate. Similarly, Fig. 19 has as the ordinate the 
"slope," or amplitude difference at a separation of 25.3 MHz. It is again 
clear from these three figures that the in-band selectivity is the 
relevant channel impairment giving rise to errors. We see from Fig. 18 
that, for out-of-band notches, high BERS are obtained with very small 
values of peak-to-peak delay distortion, and from Fig. 19 that for in
band notches high BERS are obtained for very small values (zero at 
mid-band) of slope. 
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The model data base was analyzed to determine the time during 
which the in-band selectivity in a band of 25.3 MHz exceeded a given 
value. Figure 20 presents this distribution for in-band selectivity as 
calculated from the modeled fits. Figure 20 can be used directly in 
conjunction with Fig. 15 to calculate the outage times for the model 
data base. * For instance, from Fig. 15 we note that 5.5 dB of selectivity 
corresponds to a 10-3 BER. We use Fig. 20 to determine that 5.5 dB 
was exceeded for 520 seconds. 

V. COMPARISONS OF CALCULATED AND OBSERVED OUTAGES 

Using the methods of Sections 4.2 to 4.5, outage times were calcu
lated for bit error rates of 10-3 to 10-6 for both the model data base 
period and for a heavy fading month, by multiplying the outage 
probabilities by 5400 and 8100, respectively. 

5. 1 Model data base period 

Calculated and observedt outages for the model data base period 
are shown in Table I. In general, comparing the calculated results with 
observed results, we see that the outage is underestimated at high 
BERS and overestimated at low BERS. Any estimation procedure based 
on the current modeled state of the channel will tend to underestimate 

* In practice, one would use a single measurement of in-band selectivity. For instance, 
in Fig. 9 one would take the 5.7-dB value corresponding to the curve asymptotic at a 
10-3 BER. 

t Because of quantization, the outage times observed from the field experiment 
correspond to bit error rates of 1.26 X 10-3

, 1.57 X 10-4,0.981 X 10-5
, and 1.19 X 10-6

• 
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Table I-Outage in modeling data base period (seconds) 
BER= 10-3 10-4 10-5 10-6 

Observed 636 903 1191 1487 
Detailed calculation (Section 4.2) 538 960 1430 1860 
Approximate calculation (Section 4.4) 527 950 1420 1830 
Asymptotic calculation (Section 4.3) 527 950 1420 1830 
Selectivity calculation (Section 4.5) 510 900 1570 2730 

outage at high BERS because of hysteresis effects in the radio receiving 
equipment. That is, when the channel condition becomes sufficiently 
severe, the bit error rate becomes high enough (on the order of 10-3

) 

that the timing and/or phase of the radio system breaks lock. If the 
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channel impairment becomes less severe, the BER will not improve 
until the system resynchronizes. The hysteresis is important at the 
10-3 BER, since a significant fraction of the events that cause 10-3 BER 

will cause the system to break lock. 
One would expect to overestimate the outage at low BERS because 

of the method of taking data. Recall that, in measuring the curves in 
Fig. 9, it was found that the BER depended on the phase to which the 
system had locked. The recorded performance represented the worst
phase condition. At a 10-6 BER, the best phase produces a BER that is 
about V3 that produced by the worst phase; the difference in BER from 
worst to best phase at a 10-3 BER is negligible. Hence, one would 
expect outage to be overestimated significantly at low bit error rates. 

In comparing the outage calculated from in-band selectivity (Section 
4.5) to the outage observed, we find that the overestimation of outage 
at low BERS is more severe than with the other methods. This is due 
to the greater sensitivity of the differential selectivity· method to the 
bias induced by choosing the worst-case phase. For instance, compar
ing calculations at a 10-6 BER, we find that Fig. 20 is steeper for 
amplitude differences near 2 dB than is Fig. 3 near B values of 3.5 dB. 
(F:igure 9 verifies the appropriateness of this comparison). More gen
erally, one expects the method based on in-band selectivity to overes
timatethe outage because the method is based on notches out of band. 
From Fig. 15, it is apparent that, for a given M, some scans will not 
have the BER specified. 

We conclude that, although calculation of outage from sensitivity to 
in-band selectivity provides quick estimates, they are less accurate. 
The calculation requires knowledge of the distribution of in-band 
selectivity over a specified bandwidth. These statistics are neither 
simple nor generally available. It has been shown,IO for instance, that 
slope statistics have a nontrivial dependence upon the measurement 
bandwidth. 

It is clear that the calculations based on selectivity (Sections 4.3 and 
4.5) agree for the system studied here because that system has very 
little outage due to thermal noise limitations, and because it is sensitive 
primarily to in-band amplitude excursions. The extent to which these 
statements are true for other systems is currently unknown. 

5.2 Outage on a monthly basis 

The results in Table I may be put on the basis of a heavy fading 
month by increasing them by a factor of 1.5, as discussed in Section 
2.2. The resulting outages (including the scaled observed outage) are 
compared with the outage observed in a one-month periodB in Table 
II. We see that the outage times observed in the total one-month 
period agree well with the values obtained by scaling the observed 
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Table II-Outage in a heavy fading month (seconds) 
BER = 10-3 10-4 10-5 10-1; 

Observed (Ref. 8) 1000 1320 2100 2900 
Scaled observation from Table I 955 1350 1790 2230 
Calculation (Section 4.2-4.4) 800 1430 2140 2760 
Selectivity calculation (Section 4.5) 770 1350 2350 4100 

outage for the data base period used in modeling, except for the slight 
divergence appearing at low BERS. This divergence should not be 
unexpected for this equipment. As may be seen in Fig. 15, a 10-6 

BER 

may be caused by differential amplitude selectivity in band of 2 dB. 
Such modest amounts of selectivity may be expected to occur some
times in the presence of very moderate selective fading. The modeling 
data base was constructed by selecting only periods of significant 
selective fading. This reinforces the comments made in conjunction 
with Fig. 3, namely, that the model distribution of B represents a lower 
bound for small values of B which can contribute to outage at the 10-6 

BER level. 

VI. CONCLUSIONS 

We have demonstrated the validity of a technique for estimating the 
unprotected outage of a digital radio system due to selective fading on 
a particular hop in the 6-G Hz common carrier band. The technique 
required field measurements to statistically characterize the param
eters of a model of propagation on the hop. It also requires performance 
data obtained in the laboratory for the radio system by stressing it 
with a two-path fade simulator with a differential path delay of 6.3 ns, 
corresponding to the fixed delay channel model. Since the radio path 
on which these measurements were made has a length close to the 
average for the Bell System long haul radio network and has an 
average incidence of fading activity, the channel model is representa
tive of a typical path. At the very least, the technique provides a basis 
for determining the relative merits of various digital radio systems 
operating without benefit of space diversity. 

For the system under test, outage was calculated by four different 
methods. Because this system was selectivity-limited rather than 
noise-limited, all four methods predicted approximately the same 
outage as that summarized in Table I; however, the method based on 
in-band selectivity is more severely biased at low BERS. The method 
based on asymptotic performance and that based on in-band selectivity 
can only be used to estimate outage due to selectivity. If the transmit
ted power of the system under test were reduced by 10 dB, both of the 
other two methods, the detailed and the approximate method, would 
predict an increase in outage time of about 12 percent. 
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lett, Plenum Press, N.Y., (1978), p. 179. 
Nonionizing Radiation. G.M. Wilkening, Patty's Industrial Hygiene and Toxicol-
ogy General Principles, 1 (1978), pp. 359-440. 

COMPUTING 

An Approach to the Selection and Control of Program Modules in Transaction 
Processing. A.Z. Lieberman, Proc. NatI. Conf. Info. Syst. Inform. Develop. (Feb-
ruary, 1978), pp. 138. . 
Architecture of a Modular Network-The Bancs Network. K.L. Leung, Pro-
ceedings of the 17th IEEE Computer Society International Conference, (September 
1978), pp. 212-220. 
Data Base Subject Index. H.H. Teitelbaum and D.T. Hawkins, On Line, 2, No.2, 
(Apri11978), pp. 16-21. 
An Error Analysis for a Rolling Year Traffic Data Base. C.E. Johnson, IEEE 
Int. Conf. Commun. Conf. ReI., 1, (June 4, 1978), pp. 5.1.1-5.1.5. 
File Format for Data Exchange Between Graphic Data Bases. A.G. Gross, 
Proc. Fifteenth Des Automation Conf., (June 1978), pp. 54-59. 
Multiple Data Base Searching: Techniques and Pitfalls. D.T. Hawkins, On 
Line, 2, No.2, (April 1978), pp. 9-15. 
PL/I Language Summary. RF. Rosin, ACM SIGPLAN History of Programming 
Languages Conf., (June 1, 1978), pp. 225-226. 
Unconventional Uses of On-Line Retrieval Systems, D.T. Hawkins, J. Amer. 
Soc. Inform. Sci., 29, No.4, (July 1978), p. 209. 
Verification and Design Aspects of True Concurre~ cy. D.W. Mizell, Fifth 
Ann. ACM Symp. Princ. Prog. Lang., (Jan. 1978), pp. 171- -.75. 
Workshop Report: The New and the Not So New. H.F. Slana and G.G. Dumas, 
Computer, 11, No.3, (March 1978) pp. 47-51. 

ELECTRICAL AND ELECTRONIC ENGINEERING 

An Approximate Method to Estimate an Upper Bour.d on the Effect of Multipath 
Delay Distortion on Digital Transmission. W.C. Jakes, Jr., IEEE Int. Commun. 
Conf. Rec., 3 (1978), pp. 47.1.1-47.1.5. 
The D4 Channel Bank Codec. D.A. Spires, IEEE Trans. Circuits and Syst., CAS-
25, (July 1978), pp. 468-475. 
On the Design of Quantizers for DPCM Coders: Influence of the Subjective 
Testing Methodology. C.B. Rubinstein and J.O. Limb, IEEE Trans. Commun., 
26, No.5, (May 1978), pp. 565-572. 
A Digital Codec Simulation Facility. W.R Daumer, IEEE Trans. Commun., 
COM-26, (May'1978), pp. 665-669. 
Direct Polar Display of Subnanosecond Millimeter-Wave Switching Transients 
at 300 Mbit/s. F. Bosch and S. Cheng, IEEE Trans. Microw. Theory Tech., MTT-
26, No.1, (January 1978), pp. 24-27. 
The Evolution of Techniques for Data Communication Over Voice-Band Chan-
nels. E.R Kretzmer, IEEE Commun. Soc. Mag., 16, No.1, pp. 10-14. 
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A Fault Tolerant Memory for Duplex Systems. W.T. Hartwell, C.W. Hoffner, 
W.N. Toy, IEEE Trans. Rel., R·27, (June 1978), pp. 134-138. 
Gaussian Power Model for Optical Fiber Splices. C.M. Miller and S.C. Mettler, 
Proceedings of Conference on Laser and Electrooptical Systems, (February 7, 1978), pp. 
36-37. 
Heat Conduction in the Cable Insulation of Force-Cooled Underground Trans
mission Lines. J.V. Sanders, L.R Glicksman, W.M. Rohsenow, P. Koci, and M. 
Buckwcitz, PAS-97, (January-February 1978), pp. 134-139. 
An Implicit Enumeration Algorithm for Sequencing Polices Applied to Tele
phone Switching. L.J. Ackerman, H. Luss, and RS. Berkowitz, IEEE Trans. Syst. 
Man. Cybern., 8 (April 1978), pp. 296-300. 
LAMP AC-A High Density Printed Wiring Board for General Application. 
V. L. Brown, Proc. First Printed World Conv. Ckt., London, England, 1 (June 5, 1978), 
pp. 24.1-24.15. 
Microprocessors in Telecommunication Systems. D.C. Stanzione, Proc. IEEE, 
66, No.2, (February 1978), pp. 192-199. 
Multiparameter Multiport Sensitivity Measure. M.J. Chien, 1978 IEEE Int. 
Symp. Ckts. Syst., New York, (May 17,1978), pp. 1040-1045. 
Statistical Modeling for Circuit Design. E.M. Butler, Conference Record of 
Electro/78, 5 (May 23,1978), pp. 1-5. 
Sufficient Criteria for PCIR Stability in Linear 2-Port Networks in Terms of 
Qualitative Data. J.D. Williams and N.N. Puni, 1978 IEEE International Sym
posium on Circuits and Systems Proceedings, 78CH135·1, CAS (May 1978), pp. 638-641. 

MECHANICAL AND CIVIL ENGINEERING 

Experimental and Analytical Investigation of Self-Excited Chatter Vibrations 
in Metal Cutting. N. Saravanja-Fabris and A.F. D'Souza, J. Mech. Des., 100 
(January 1978), pp. 92-99. 

PHYSICS 

Calculation of Per-Unit-Volume RF Scattering Cross Sections in the Radar 
Aurora. J. Minkoff, Can. J. Phys., 56 (February 1978), pp. 280-287. 
Calorimetric Measurements of Absorption and Scattering Losses in Optical 
Fibers. F.T. Stone, W.B. Gardner, and C.R Lovelace, Opt. Lett., 2 (Feburary 1978), 
pp.48-50. 
CCITT No.6 (And Other) Common Channel Signaling Systems. Network Man
agement Signals. J .S. Ryan, Conference Record Sem. Tele. Switch. Signal. Tech., 
Singapore, (April 17-28 1978), pp. 9-1-9-13. 
Comparison of Cyclofusion in Central and Peripheral Vision. M.T. Sullivan 
and A.E. Kertesz, Proc. Ann. Conf. Assn. Res. Vision Opthal. Mol., Sarasota, Florida, 
(April 1978), p. 140. 
Digital Transmission Network Maintenance Aspects. W. Bleickardt, Proc. 
Ann. Rel. Maintain. Symp., Los Angeles, Calif., IEEE Catalog No. 77CH1308·6R, 
(January 17-19, 1978), pp. 460-464. 
A Guide to Conduit Selection. J.W. Peters, Tel. Eng. Manage., (September 1, 
1978), pp. 116-121. 
Measured Performance of a High Capacity 6GHz Digital Radio System. W.T. 
Barnett, ICC '78 Conference Record, 3 (June 4-7, 1978), pp. 47.4.1-47.4.6. 
Mechanized Activity Tracking and·Fill Monitoring in the Loop Plant. G.W. 
Aughenbaugh and N.H. Noe, The International Symposium on Subscriber Loops and 
Services, (1978), pp. 85-89. 
On-Line Information Retrieval Bibliography. D.T. Hawkins, On-Line Review, 
2 (1978), pp. 63-106. 
Plant Engineering in a Phone Center Environment. R Sherman, Proceedings 
of International Symposium on Subscriber Loops and Services, (March 1978), pp. 90-93. 
The Reflections of a Former High Energy Physicist Doing Industrial Applied 
Mathematics. RA. Mercer, Proc. 39th A.I.P. Conference, American Institute of 
Physics, New York, N.Y., (1978), pp. 193-196. 
Results of an Experiment to Detect for Field-Normal Plasma Line Scattering in 
the Auroral Ionsphere. J. Minkoff, M. Laviola, R Tsunoda, and R Presnell, 
Radio Sci., 13, No.3, (1978), pp. 577-580. 
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The Role of the lTV and CCITT in Telecommunications. J .S. Ryan, Commun. 
Trans. Tech. Switch. Syst. Sem, Princeton, Univ., (March 20, 1978), pp. 2-1-2-6. 
Spectrum Management in the Loop Plant. R.K. Even, J. Kreutzberg, G. Miller, 
and L.M. Smith, The International Symposium on Subscriber Loops and Services, 
(February 1978), pp. 234-238. 
A Study of the Effects of Mobile Telephone Use on Driving Behavior. A.J. 
Kames, 28th IEEE Veh. Technol. Conf., Denver, Colorado, 78CH1297·IVT, (March 22-
24, 1978). p. 537. 
Two Conferences Address Local Digital Switching and Transmission in Zurich 
and Atlanta. R.W. Wyndrum, Jr., Communications Society Magazine, 16 (July 
1978), p. 23-24. 
Underwater Sound Arrival Angle Estimation by Multiple Cross Correlation 
Measurements. H.J . Young, IEEE International Conference on Acoustics, Speech 
& Signal Processing Record, (April 10-12, 1978), pp. 659-664. 

SYSTEMS ENGINEERING AND OPERATIONS RESEARCH 

The Output of Multiserver Queuing Systems. 
June 1978), pp. 492-509. 
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B.S. T .J. BRIEF 

A Counterexample to a Conjecture on the 
Blocking Probabilities of Linear Graphs 

by H.W. BERKOWITZ 

(Manuscript received November 21, 1978) 

It was conjectured by Chung and Hwang that a series-parallel 
regular linear graph is superior to another if its degree sequence 
majorizes the degree sequence of the other. A counterexample to this 
conjecture is given. 

The following definitions are taken from Refs. 1 and 2. Consider a t
stage linear graph with a source (the vertex of the first stage) and a 
sink (the vertex of the last stage). All the vertices are arranged in a 
sequence of stages such that, for each edge, one vertex is in stage i and 
the other vertex is in stage i + 1, for some i. Each edge is in one of two 
states, busy or idle. A linear graph is blocked if every path joining the 
source and the sink contains a busy edge. Assume that any edge 
connecting a vertex in stage i with a vertex in stage i + 1 has probability 
Pi of being busy for 1 :::; i :S t - 1. For a 't-stage linear graph, the 
sequence (PI, P2, ..• , pt-d is called the link occupancies for that 
graph. One t-stage linear graph is superior to another if, for any given 
link occupancies, the blocking probability of the first graph does not 
exceed that of the second. 

Let e be an edge from a vertex a in stage i to a vertex b in stage i 
+ 1. Define A( e) to be the ratio of the outdegree of a to the indegree 
of b. A t-stage linear graph is regular if, for each i, 1 :S i :S t - 1, if e 
and f are any two edges between stage i and stage i + 1, than A(e) = 
A(j). In this case, let Ai = A( e). Thus a regular linear graph is associated 
with a unique degree sequence (AI, A2, ••• , At-I). 

A degree sequence (AI, A2, ••• , At-I) majorizes another degree 
sequence (AI', A2', ••. ,At-I') if and only if AIA2 •.• Ai 2: AI'A2' ... A/ for 
every i, 1 :S i :S t - 1. 

A series-parallel regular linear graph is a regular linear graph which 
is either a series combination or a parallel combination of two smaller 

1107 



series-parallel regular linear graphs with an edge being the smallest 
such graph. 

I. A COUNTEREXAMPLE 

In Ref. 2, Chung and Hwang conjectured that one series-parallel 
regular linear graph is superior to another if the degree sequence of 
the fIrst majorizes the degree sequence of the second. 

The graphs of Fig. 1 are a counterexample to this conjecture. The 
degree sequence of graph (a) is (2, 1, 1, 1/2), the degree sequence of 
graph (b) is (2, 1/2, 2, 1/2). Thus, the degree sequence of graph (a) 
majorizes the degree sequence of graph (b). 

<:> 
(a) 

(b) 
Fig. I-Counterexample. 

Let (PI, P2J P3J P4) be the link occupancies of the two graphs. Let qi 
= 1 - piJ for 1 :5 i :5 4. Then the blocking probability of graph (a) is A 
= (1 - QIQ2Q3q4)2. The blocking probability of graph (b) is B = (PI + 
P2 - Pl/12)2 + (P3 + P4 - P3P4)2 - (PI + P2 - PIP2)2(P3 + P4 - P3P4)2. 
Now let Pi = 0.1, for 1:5 i :5 4. Then A = (1 - (0.9)4)2 = (1 - 0.6551)2 
> (1 - 0.7)2 = 0.09. But B = 2(0.19)2 - (0.19)4 < 2(0.2)2 = 0.08. Thus 
for this set of p/s, the blocking probability of graph (b) is less than 
that of graph (a); so graph (a) is not superior to graph (b), contradicting 
the conjecture. 

II. ACKNOWLEDGMENTS 

The author would like to thank the referee for his helpful suggestions 
and for noting that graphs (a) and (b) permit 2 paths and 4 paths, 
respectively, between terminals. Because of this, they are not really 
alternative choices of linking patterns for a fixed network with given 
switch sites and number of stages. If the restriction "total paths = 
constant" is maintained, the original conjecture may well be true. 
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