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SAFEGUARD Data-Processing System 

Preface 

The papers in this special supplement to The Bell System Technical 
Journal differ markedly from the more quantitative typical B.S.T.J. 
papers, which are characterized by their analytical and experimental 
approach, usually with a definitive telecommunications tie-in. The 
reason for this contrast is that these papers, taken together, are in
tended to serve a quite special purpose. 

In its defense work for the U.S. government for the past several 
years, the team of Bell Laboratories and Western Electric, with close 
support from many contracting firms, has carried out the development 
of what is believed to be the most complex real-time software/hardware 
system ever successfully undertaken. These papers constitute an in
tegrated story of the scope of the software task, the way it was organized 
and managed, and the principal lessons learned (problems encountered 
as well as successes achieved). 

Weare making this story available in the hope that the computer / 
data-processing community and others might profit from those de
velopmental and administrative approaches that proved to be par
ticularly effective and avoid those avenues that were found to contain 
pitfalls. 

THE B.S.T.J. EDITORIAL COMMITTEE 
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SAFEGUARD Data-Processing System: 

Foreword 

The U.S. government needs and obtains a wide range of serVIces 
from the nation's businesses. From the Bell System, these services 
range from the large amounts of ordinary telephone service required 
to carryon its day-to-day operations to the development of complex 
systems designed to ensure the nation's defense. With respect to the lat
ter, Bell System policy is summarized in a remark by H. 1. Romnes at a 
stockholders' meeting on April 15, 1970: 

"The Bell System engages in military work as a responsibility we 
owe our country. We make available some of the communications 
expertise of the Bell Telephone Laboratories and the Western 
Electric Company to carry out programs for which responsible 
agencies of the government have a defined need. We did not seek 
out military work nor do we seek to expand the amount we have." 

The largest system development ever carried out for the Depart-
ment of Defense by the Bell System started with some exploratory re
search and development work in 1957 and culminated with the com
pletion of installation and testing of the SAFEGUARD Ballistic lVIissile 
Defense System in early 1975. Western Electric was the prime con
tractor for the SAFEGUARD system and Bell Laboratories was responsi
ble for the design. l\1ajor subcontractors were Raytheon and General 
Electric for the radars, 1\1artin Marietta and NIcDonnell Douglas for 
the missiles, and Univac and IBl\1 for the data-processing system. 

SAFEGUARD may be the most complex system ever produced by a 
single, integrated, research and development project and the system 
would take many volumes to describe. The overall design required the 
solution of many complex technical problems, and the major subsys
tems-the two radars, the two missiles, data processing, command 
and control, and communications-are lengthy stories in themselves. 
However, the data-processing subsystem development probably has 
the greatest relevance to the Bell System. This is so because more and 
more systems are organized around a stored-program, general-purpose 
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computer, controlling system operation on a real-time basis. SAFE
GUARD is an extraordinarily large system of this type. It provides a 
sort of upper bound for the other developments in many ways. For 
that reason, this supplement to The Bell System Technical Journal 
consists of papers that describe the major issues arising in the de
velopment of the data-processing subsystem, with emphasis on the 
software. The material included is limited to that which is felt to be 
useful to the general computing community, and is an attempt to de
scribe the lessons learned rather than just the successes. As a result, other 
system developers may be helped in identifying some management 
techniques and technical approaches to avoid as well as those that 
might be useful to them. 

To restrict this supplement to a manageable size, the level of detail 
had to be restricted. The papers are highly interdependent and are 
intended to be read as a group. Although many details of the design 
and development are not treated here, the volume as a whole provides 
a comprehensive summary of the pragmatic approach required for a 
highly schedule-sensitive project. 

The volume begins with an introduction and overview paper. This 
paper provides important background material for all the other papers, 
including not only the general organization of the data-processing 
system but also the role of the data processor in the overall system and 
a brief history of the ABM system. 

The remaining papers are organized into six sections, each covering 
a major facet of the effort. The Systems Engineering section consists 
of one paper that discusses the generation and control of requirements. 
Fundamental control of the entire software development was achieved 
through the Data Processing System Performance Requirements dis
cussed in this paper. 

The Hardware section contains papers describing the data-process
ing system architecture, emphasizing the modular nature of the system 
and the maintenance and diagnostic techniques that were important 
parts of the strategy for obtaining high availability. 

The Real-Time Software Development section contains the descrip
tion of those aspects of the design that depend most critically on the 
real-time nature of the application and the multiprocessor computer. 
The successful use of a pool of identical processors to provide the total 
required processing capacity was one of the major features of the 
project, and these papers summarize the impact of this system charac
teristic on the design of the operating system and the overall structure 
of the software. In particular, the techniques used to structure the 
software to make the most efficient use of aU processors are described 
in the paper entitled "Process Design: The Structure of Real-Time 
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Software Systems." Other papers in this section describe the facilities 
and techniques used to test and debug the system. 

The Support Systems section discusses those facilities that were of 
major importance in supporting the development of the real-time 
software. The overview paper which introduces this section provides a 
critical examination of some key decisions in establishing the support 
environment, which is necessary to every software development. As a 
result, this paper, and the other papers in this section, should be par
ticularly relevant to other such efforts. 

The Development Tools and Techniques section contains two papers 
that describe special techniques that were used to improve program
ming efficiency. Although it was not possible to gather enough data to 
establish unequivocal efficiency improvements, the results are in
teresting enough to warrant consideration on other projects. 

The final section, Project Control, describes some of the more im
portant techniques used throughout the project to monitor progress 
and maintain control. Although no panaceas were found for any of 
the well-known problems of controlling software developments, the 
successful completion of the project demonstrates that adequate tech
niques are available. Since industry-wide experience indicates that 
many large software developments in the past have had as much 
trouble with general project control as with the technical aspects of 
design, the discussion of the variety of project control techniques used 
and their effectiveness is believed to be important. 

I t is impossible in a brief description of a large system development 
to find any adequate way to acknowledge the contributions of everyone 
involved. In addition to the major subcontractors listed earlier, im
portant contributions were made by a large number of other organiza
tions. Although all the authors were major participants in the activities 
which they have documented, many other individuals made contribu
tions equally important. Each of the over two thousand people involved 
during the course of the project made real contributions toward its 
success, and it is not possible to acknowledge individually here the 
very large number of these who provided the key technical and mana
gerial innovations that were vital to that success. 

THOMAS H. CROWLEY 

Executive Director 
Safeguard Design Division 

FOREWORD 55 
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SAFEGUARD Data-Processing System: 

Introduction and Overview 

By N. H. BROWN, M. P. FABISCH, and C. J. RIFENBERG 

(Manu5cri pt received January 3, 1975) 

This paper provides the background information necessary for under
standing the other papers in this volume, and serves as an introduction 
to them. It provides a brief history of SAFEGUARD, discusses the hardware 
and the software involved, and then focuses on the technical and managerial 
approaches to producing the software. 

I. INTRODUCTION 

SAFEGUARD is an antiballistic missile (ABM) system primarily de
signed to respond to attacks by intercontinental ballistic missiles. It 
is composed of three major subsystems: missiles, radars, and data 
processing and control. Incoming missiles, after being detected and 
tracked by the radars, are intercepted and destroyed by defensive 
missiles. The radars and defensive missiles are controlled by the data
processing system. 

Development of the large, real-time data-processing system for the 
SAFEGUARD Ballistic Missile Defense System was a significant under
taking from any point of view. Developing a system with unique 
processing and availability requirements led to the involvement of 
thousands of people and a very substantial commitment of resources. 
The resulting multiprocessor data-processing system entailed the de
velopment of new and sophisticated algorithms, the design of unique 
testing programs, and the extensive employment of simulations. 

These SAFEGUARD papers primarily emphasize the techniques and 
methods of a software development effort that produced millions of 
lines of code. Although the classified nature of the project precludes 
description of a few of the innovations in both software and hardware, 
most of the important problems encountered involved no security 
questions and the objective of these papers is to serve the data
processing community by imparting some of the lessons that were 
learned. 
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II. OVERVIEW 

2.1 Historical context 

At Bell Laboratories, research and development on the first anti
ballistic missile (ABM) system, the NIKE-ZEUS, began in 1957. The 
data-processing hardware requirements for NIKE-ZEUS were met by 
the development of special-purpose digital computers, an outgrowth 
of the use of analog computers in previous air defense systems. N IKE
ZEUS field test sites were established in New Mexico, California, and 
the Pacific. Applications programs and techniques were developed for 
using digital computers as controllers for tracking and missile guidance, 
for trajectory estimation and discrimination, and as planning and re
source allocators in battle management. These application programs 
were installed and tested at the field sites during the late 1950s and 
early 1960s. In 1962, an historic intercept was achieved when a NIKE
ZEUS missile launched from Kwajalein Atoll in the Pacific successfully 
intercepted a TITAN ICBM launched from Vandenberg Air Force Base. 

With the termination of the NIKE-ZEUS project in 1963, NIKE-X 
system development began. This system required a highly reliable 
data-processing system (DPS) that could support a peak throughput 
of about 10 million instructions per second and a peak 110 transmission 
for radar control of about 70 thousand 64-bit words per second. To 
achieve these requirements, a special-purpose digital computer was 
designed using integrated circuits and core storage techniques. A field 
test site for the NIKE-X development was established at Meck Island, 
part of the Kwajalein Atoll. Testing at this site has had significant 
impact on the development program. 

In 1967, the basic design of the NIKE-X machine was incorporated 
into the SENTINEL ABM system. Throughput requirements were met by 
a multiprocessor capable of using as many as ten processors. 

Originally, the goal of SENTINEL was the protection of cities from a 
ballistic missile attack. In 1969, new objectives, including the protec
tion of U. S. MINUTEMAN ICBM bases rather than cities, were an
nounced. This redirection was indicated by a new system name, 
SAFEGUARD. SENTINEL equipment remained unchanged. The field test 
site for NIKE-X now became the Meck Prototype System. Its objec
tives were redefined from those of an R&D program to those of sup
porting SAFEGUARD design. A detailed test program was established 
for the Meck system, providing indispensable support for SAFEGUARD 
in hardware, software, and algorithm development, as well as multi
processor operation and reentry environment characterization. 

The entire software development of SAFEGUARD has been directed 
at the specific needs of a real-time, high-throughput, very reliable 
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computing system. The applications programs, operating system, sup
port software, and data-reduction facilities were all designed to meet 
these objectives. 

2.2 System description 

There are three types of sites in the SAFEGUARD system: Perimeter 
Acquisition Radar (PAR), Missile Direction Center (~IDC), and one 
Ballistic Missile Defense Center (B~IDC). Figure 1 provides a functional 
overview of these sites. Although several PAR and MDC sites were 
planned, only one of each is being deployed. The PAR site utilizes a 
single-face, phased-array radar to provide early detection and tra
jectory data on threatening ICBMs. Functions of this site include long
range surveillance, detection, and target selection of threatening ob
jects, and ICBM-threat tracking for SPARTAN intercept. This last 
capability significantly increases the long-range SPARTAN field of fire. 
The PAR site does not perform missile guidance. The MDC complex 
uses the target trajectory and classification data from the PAR along 

DATA-PROCESSI NG 
SYSTEM 
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OPERATIONAL 
CENTER 

• ABM TRACK GUIDANCE 

• THREAT TRACK 

• SURVEILLANCE 

Fig. I-SAFEGUARD system. 

• SINGLE-FACE PHASED
ARRAY RADAR 
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• TRACK SPARTAN 
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with additional data supplied by its multiface phased-array radar. 
This site provides additional surveillance and target tracking and also 
performs the functions of track and guidance for the SPRINT and 
SPARTAN missiles. Both PAR and MDC sites report to the BMDC, a 
central command center. The BMDC provides a command interface 
with other military systems and a means of disseminating command 
directives and controls. 

The PAR and MDC radars are controlled by the data-processing sys
tems, collocated with the radars. At the PAR and MDC sites, application 
programs perform surveillance, tracking, target classification, radar 
management and testing, intersite communication, and display func
tions. Additional application programs at the MDC support the battle 
management and missile guidance functions. The BMDC data-processing 
system primarily contains display and command/control programs. 

Both PAR and MDC radars are controlled by the DPS through the use 
of digital commands. These commands are used to control beam 
pointing, frequency selection, receiver gating, thresholding, etc. The 
SAFEGUARD system design makes use of some constraints on the 
combinations of radar operations that can be performed and, there
fore, on the sequences of pulse transmissions. Appropriate radar com
mands must be generated by the application programs and sent to the 
radar at least every few milliseconds. The radar pulse patterns used 
in SAFEGUARD provide a framework for the time design of the real
time application programs. 

2.3 DPS requirements 

The data-processing system design was dominated by requirements 
for high throughput and stringent availability/reliability constraints; 
i.e., requirements supporting a high probability that the system would 
be available when required for a mission and highly reliable during the 
mission. 

The fact that the radar is controlled by the DPS contributed signifi
cantly to both input/output (I/O) and processing requirements. Appro
priate radar commands must be generated by the application programs 
and output to the radar at least every few milliseconds, yet the DPS 

must be able to complete processing between two radar events. This 
contributes to estimates of a peak-load throughput of 10 million 
instructions per second. 

Input/output requirements were further increased by a variety of 
special-purpose peripherals such as missile controllers and data-trans
mission controllers for intersite data transmission. The DPS was also 
required to communicate simultaneously with computing peripherals, 
especially disc and tape, as well as to provide status information to, 
and receive commands from, system-control personnel. 
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The nature of the application imposed requirements for high avail
ability; therefore, a maintenance system was required for fast recovery 
and quick fault isolation and repair in the event of a hardware 
malfunction. 

Size and complexity increased the problem of verifying the system. 
This imposed a requirement for a system exerciser that could be used 
to verify as much of the system as practical. 

2.4 Tactical site configuration 

This section describes in detail four aspects of a site DPS configura
tion: hardware, software structure, maintenance and diagnostic sub
system, and exercise subsystem. Except for the absence of an exercise 
subsystem at BMDC, the DPS structure is similar for MDC, PAR, and 
BMDC. 

2.4.1 DPS hardware 

Figure 2 shows the equipment at the MDC site consisting of a central 
computer and associated peripherals. The central logic and control 
(CLC) is the multiprocessor computer used to drive each DPS. Under 
software control, the CLC can be configured into two separate partitions 
of arbitrary size, each capable of operating as an independent com-
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Fig. 2-SAFEGUARD data-processing system equipment. 
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puting system. Application software executes on the larger partition. 
Exercise drivers (described below) for the application software and 
support activity execute on the smaller partition, which also provides 
a pool of spare equipment. 

The CLC can be configured with up to ten processors. Single-processor 
throughput of about 1.5 million instructions per second is achieved by 
a combination of design techniques including instruction execution 
overlap and use of high-speed arithmetic algorithms. Instruction over
lap is achieved by utilization of three asynchronous control units for 
instruction fetch, operand fetch, and arithmetic execution. Every 
processor has access to each of several read-only instruction memories 
called program stores, and several read/write memories called variable 
stores. These stores have a memory cycle time of 500 ns and a double 
word size of 64 bits to provide a memory bandwidth in excess of that 
required for maximum performance of a single processor. 

The input/output controller (IOC) controls the transfer of data 
between the CLC and its peripherals. Since processors do not com
municate directly with peripherals, processing and I/O can occur 
simultaneously. The lac provides full-duplex operation on 16 channels. 
Priority circuitry within the controller allows time-multiplexed opera
tion of the channels. The lac executes commands from lac programs 
resident in variable store. Both processors and peripheral devices can 
initiate lac program execution. 

A timing generator provides a real-time clock and a programmable 
mechanism for initiating activities at specified times. It can cause the 
initiation of an IOC program when a specified time of day has been 
reached. A status unit provides a means of monitoring, in real time, 
the status of any DPS unit. It also serves as a central point fo!' the 
distribution of control over the DPS. 

CLC peripherals are divided into several subsystems. The l\1ain
tenance and Diagnostic Subsystem and the Exercise Subsystem will 
be described later. 

The radar interface controller is the primary interface between the 
radar and the I/O controller of the CLC. Control and data words are 
exchanged between these two units. The radar control computer 
accepts formatted binary words from the CLC and distributes data to 
the appropriate radar subsystem where a digital-to-analog conversion 
takes place. 

The recording subsystem contains the standard computer peripheral 
devices: magnetic tape transports, disc memory units, line printers, 
and card reader. 

A man-machine interface is provided through the display subsystem 
which includes cathode-ray-tube displays with light pens, wall dis
plays, and teletypewriters. 
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Digital data are transferred between sites by means of the intersite 
data transmission controllers. 

The missile launch subsystems convert CLC commands into control 
signals for the collocated and remote missile farms and receive missile 
status conditions, encode them, and send them to the CLC. 

2.4.2 DPS software structure 

The collection of application software used to drive the DPS is called 
the application process. The application process is built from basic 
computing units called tasks, which are single routines with or without 
subroutines. The operating system, considered to be part of the 
process, schedules tasks from a predetermined, priority-ordered task 
list for execution on the next available processor. Once in execution, 
f1 task is not interrupted before completion except for error conditions. 

A bit string associated with each task on the priority-ordered task 
list indicates completion of predecessor condition(s) prior to task 
execution. The operating system enables execution of the highest
priority task with all predecessor condition bits set. Thus, an im
portant part of process design is development of the priority-ordered 
task list and the predecessor conditions for each task. The predecessor 
conditions fall into three main types: 

(i) Time-Functionally, the programmable feature of the timing 
generator is utilized in setting predecessor condition bits. 

(ii) I/O completion-Input/output may be initiated by a processor 
or by a peripheral device. In either case, a task does not "hold" 
a processor while waiting for I/O completion. Instead, upon I/O 

completion, a predecessor condition bit is set for a designated 
task. 

(iii) Other task completion-Long-running computations are often 
subdivided into several shorter ones. Appropriate sequential 
computational requirements are preserved by designating other 
task predecessor conditions. 

Where possible, the application process is asynchronous, i.e., tasks 
are only enabled when data are available to be processed. 

2.4.3 Maintenance and diagnostic subsystem (M&DSS) 

The M&DSS is composed of test equipment and software that sup
ports digital equipment maintenance. The M&DSS verifies the avail
ability and readiness of DPS hardware by conducting nonreal-time, 
programmed, diagnostic tests on equipment through an independent 
data bus connected to each digital unit. These speciall\1&D data paths 
are also used to support other objectives of the l\I&DSS which include 
initializing DPS hardware and, in the event of a malfunction, auto-
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matically supporting DPS recovery operations. The M&DSS also provides 
a centralized control point for status monitoring, equipment allocation, 
and manual interface with DPS software. 

The M&DSS has two distinct facilities for running diagnostics. The 
primary one involves the M&D processor group, which uses a modified 
CDC Model 1700 computer system to provide fully automatic, high
speed execution of test programs with automatic interpretation of 
results through use of fault-location dictionaries. The other facility 
involves the M&D console group, which uses a cathode-ray-tube display 
console for manual execution of diagnostics and interpretation of re
sults. Each facility is linked to all the digital racks in the DPS and to 
certain digital racks in the radar areas. These data paths provide the 
means by which M&DSS software can access each unit as required for 
DPS initialization, recovery, and diagnostic operations. 

2.4.4 System exerciser 

A system exerciser was designed for PAR and MDC sites. It provides 
support for development and integration of the applications processes, 
evaluation studies that include fidelity validation of various simulators, 
and site readiness verification of both local and multisite system 
configurations. 
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Fig. 3-Functional representation of the hardware configuration for the PAR sys
tem exerciser. 
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Software was developed to run on the exercise partition of the CLC 

to generate simulated radar returns and simulated intersite communi
cation. Special hardware was developed to inject the simulated threat 
data at the receiver of the radar. This allows testing a significant por
tion of the radar and drives the data processor with realistic data at 
its actual interface with the radar. Figure 3 provides a functional 
representation of a PAR exercise configuration. 

The principal communication between the two partitions is through 
the exercise control unit (ECU). The ECU intercepts application program 
orders to the radar, and intersite messages, and directs them to the 
exercise partition. The ECU routes simulated radar returns generated 
by exercise software to the radar-return generator for conversion to 
analog waveforms and injection into the receiver of the radar. 

The exercise software is a real-time process similar in construction 
to the application process. An off-line facility is used to simulate a 
threat and generate tapes with a time sequence of the manner in which 
the threat appears in the radar viewing volume. These tapes are used 
by the exercise process in generating replies to application-process 
radar transmissions. 

2.5 Software development 

2.5.1 Tactical Software Control Site 

To develop the large number of programs required for the deployed 
system and its support, a Tactical Software Control Site (TSCS) was 
established at Madison, New Jersey. The software development 
organization, consisting of designers, programmers, test teams, and 
many others, was located at a few distinct facilities in northern New 
Jersey, all within a few miles of each other, and a single North Carolina 
location. 

A test bed was required to reproduce accurately the software en
vironment existing at site such that performance of software in its 
operational environment could be verified; software testing could be 
accomplished in close proximity to the design organization; and testing 
could precede site availability to reduce development time. To repro
duce the site software environment, the test bed was required to have 
a representative complement of computing hardware for the PAR and 
MDC; replicate the interfaces between the computer and peripherals; 
replicate the peripheral devices to the extent that device performance 
and characteristics were not completely isolated from the computer; 
and provide the capability for actually netting the PAR and MDC 

processes for purpose of system testing. Thus, a test bed was established 
at TSCS and contained separate PAR and MDC configurations correspond
ing to the PAR and MDC sites. The configurations provided peripheral 
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hardware needed by software, but did not include all of the analog 
portions of the radar or missile interfaces. Communication paths be
tween PAR and MDC test-bed configurations were included via the data
transmission controllers. This permitted TSCS netted testing in advance 
of system testing at the sites. 

Experience from previous development projects indicated that all 
available test-bed time would be required for system testing, operat
ing-system development, and hardware installation and maintenance. 
Support functions (e.g., software preparation and analysis) were there
fore designed for operation on general-purpose computers such as the 
IBM System/370 and HIS 635. These machines were then also re
quired at TSCS. 

2.5.2 Software development cycle 

The software development cycle for SAFEGUARD was not substan
tially different from that of other large systems. In practice, individual 
phases of the development cycle overlapped since the general approach 
followed was integration of a basic working system with increasingly 
more complex capabilities. The separate phases of the development 
cycle consisted first of the requirements-generation phase, in which 
system requirements were determined, established, negotiated, docu
mented, and rigorously controlled. The design phase consisted of 
process design and program design. In process design, the system re
quirements were translated into a software architecture which defined 
global data structures, tasks, task priorities, and task-timing require
ments for the data-processing environment. In program design, the 
local data base, algorithms, and control structure for the individual 
tasks were determined. In the coding and unit-testing phases, code was 
written, compiled, and checked at the unit or task level, using a simu
lator, drivers, and standard debugging techniques. Next, at the test 
bed, separate process-integration teams combined blocks of new, de
bugged unit code into processes for increasing functional capabilities. 
When the tactical software achieved a predefined level of capability, 
it was sent to site for site integration. 

Activities at site were similar to those at the TSCS. However, at 
site the entire complement of peripheral hardware was available for 
integration with the system. Moreover, it was at site that formal 
acceptance tests were run. The final phase of system development was 
system integration, in which the PAR, MDC, and BMDC sites were "netted" 
and the coordinated operation of the entire system was achieved. 
During all phases of system development, evaluation played a strong 
role. A separate organization was responsible for evaluating system 
requirements, implementation algorithms, and system-test results. 
Feedback resulted in frequent changes and refinements in many areas. 
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Following is an expanded overview of some important features of 
the SAFEGUARD software-development cycle. 

2.5.3 Requirements 

The Data Processing System Performance Requirements (DPSPRS) 
are a set of documents that define the requirements of SAFEGUARD 
tactical programs for the PAR, MDC, BMDC, and system exerciser 
processes. Requirements were generated by the system engineering 
organization in accordance with overall system objectives, which were 
defined by the Department of Defense. Changes to the requirements 
were made as a result of detailed software design by the development 
organization, Meck prototype system-test-program data, system
evaluation efforts, and detailed review with the U.S. Army SAFEGUARD 
System Command (USASAFSCOM). 

The DPSPRs met their original objectives of providing a clear defini
tion of the computing requirements. They have continued to be the 
up-to-date system definition of SAFEGUARD performance, and have been 
used to specify all system-testing and acceptance requirements. 

2.5.4 Design 

Process design was the definition of overall software structure in
cluding task assignment and global-data-base design. The objective 
of process design is to meet system requirements with the minimum
cost DPS configuration. This activity was complemented by program 
design which involved developing the algorithms, internal data base, 
and control structure necessary to implement the function defined for 
a task. This activity led to a detailed software specification, including 
specific mathematical equations or decision tables. 

Decisions were made in both process and program design to support 
early development of a system to which greater capability would be 
gradually added. Emphasis was placed on modularity in design to ease 
system growth. 

It was found to be essential to initiate the design of the data record
ing and reduction system early in the development cycle. An attempt 
was made to define data to be recorded for each computing function, 
and to design the data base to include consideration of recording and 
the subsequent analysis to be carried out upon the recorded data. 

In many areas simulations were used to validate the design. In some 
cases, a few selected equations were implemented on a time-sharing 
system for a quick exploration of correctness and adequacy. In others, 
a subset of the real-time computer program, complete with its inter
face structures, was simulated. 

The size of individual programs and the time required for their 
execution were two major parameters which were controlled. Initial 

INTRODUCTION AND OVERVIEW 819 



sizing and timing estimates were made early in the development based 
on past experience with similar programs. Throughout the course of 
further development, sizing and timing estimates were tracked on a 
monthly basis. 

Design reviews were held frequently and proved to be an effective 
means for communicating problems and solutions relating to planning 
or design issues to other members of the project. These were attended 
by a review board consisting of both designers and project managers. 

2.5.5 Coding and unit testing 

All of the software preparation and most unit testing was performed 
using commercial computers. This was primarily because test-bed time 
was too valuable to be consumed for compiling and unit testing. 

Most SAFEGUARD software was written in CENTRAN, an extensible 
intermediate-level language resembling a subset of PL/l. CENTRAN gen
erated efficient code. It provided many of the advantages of high-level 
languages, but could be interspersed with assembly language and 
system macros when necessary. It was adopted as the project standard. 

To facilitate program preparation and unit testing, a linkage editor, 
a CLC simulator, and a disc library system were also developed for 
execution on the IBM System/370. The linkage editor bound units of 
CENTRAN object code for execution on the CLC or CLC simulator. The 
library system functioned as an editor and disc-file manager, which 
helped control CENTRAN source and object code. The linkage editor 
and simulator were developed on the SAFEGUARD project, while the 
library system was a SAFEGUARD modification of an existing IBM 
proprietary program. 

2.5.6 Process integration 

Following unit debugging, collections of units were tested for in
creasingly greater functional capabilities on the PAR or MDC test beds 
by independent integration teams. Frequently, large drivers were de
veloped to assist in early functional testing. Subsequently, the system 
exerciser was used to stress and drive the application process to various 
conditions and loads. 

Detailed analyses of integration tests were possible because the 
application and exercise processes contain real-time recording functions 
which were designed as an integral part of the software. Recorded 
data were reduced and analyzed primarily off line on the IBM System/ 
370 using the SAFEGUARD Date Reduction System, although summary 
information was available on line. 

A hardware/software CLC performance monitor was developed and 
installed at the TSCS. It was used primarily to validate that the process 
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performance was consistent with its design. Troubles, such as heavily 
loaded time frames and long-running tasks, were analyzed. When 
possible, design changes were made to provide a more balanced system. 

2.5.7 Site and system integration 

When the application and exercise processes achieved predefined 
capabilities, they were sent to site for further integration. Capabilities 
already established at TSCS were reverified in the expanded hardware 
environment. Further testing concurrent with and complementary to 
test-bed integration was conducted, with primary emphasis on full 
process testing using the system exerciser. A comprehensive series of 
acceptance tests was run to demonstrate that system capability was 
consistent with requirements. Tests ranged from satellite tracking and 
identification to system exercises which drove the system to design 
traffic levels. 

During system integration, which is the final level of product testing 
prior to delivery to the customer, it was not possible to exhaustively 
test all tactical threat environments. An "Endpoint Test" was defined 
at the design traffic level for each of the various system-operating 
modes. A series of tests was designed for each mode, at first simulating 
all communications with other sites, then netting pairs of sites, and 
finally netting the system. 

The stress level was reduced in early testing by selecting subsets 
of the Endpoint Test environments and by running buildup tests at 
these lower stress levels before operating the netted system at design 
traffic levels. The use of a common environment for a number of tests, 
with traffic buildup by addition to this environment, and buildup of 
physically internetted sites in stages, led to the "test-chain" approach 
to testing. This approach, in which all tests in the chain support the 
Endpoint Test, greatly simplified the problems of integrating a dy
namic system. 

Commercial computers were installed at site during the site-and
system integration period for data-reduction support. This support 
was required on location to provide prompt analysis of data recorded 
during testing. Tight schedules and lack of available CLC time required 
that this facility be provided by a support computer. 

2.5.8 Evaluation 

System evaluation was primarily an analytical activity which, be
cause of the complexity of the SAFEGUARD system, relied heavily on 
simulation. A SAFEGUARD system simulation was designed to provide 
insight into overall system operation with particular emphasis on 
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battle-planning functions. Initially, the simulated system was made to 
operate in accordance with performance requirements. Since, quite 
properly, performance requirements often permit the designer con
siderable latitude, modeling of the system in this initial phase often 
entailed considerable invention. The goal was to ensure that objectives 
would be achieved if the system operated in accordance with perfor
mance requirements and that inadequacies in system design would 
be identified and corrected before resources were wasted attempting 
to implement a faulty design. Since there was a practical limit to the 
level of detail in which the various weapon system functions could be 
modeled, more detailed simulations of the particularly critical func
tions of surveillance, tracking, target selection, and guidance were 
added. By employing these simulations in concert, considerable insight 
was gained into detailed system operation. 

As the design of the tactical hardware and software stabilized, these 
simulations were continually updated to provide a more accurate 
representation of tactical operation, and a continuous evaluation of 
the evolving system. Early development of detailed but evolving 
simulations permitted in-depth analysis of most critical areas of SAFE
GUARD operation. A number of significant design modifications can be 
attributed directly to evaluation activity. A noteworthy example is 
the restructuring of both the PAR and MDC overload-response software 
to provide improved performance in a high-traffic environment. 

Systematic and detailed analysis of the Meck prototype-system 
tests, which were designed to stress critical functional capability, pro
vided confidence in the validity of analyses based on simulation. 
Finally, simulation, in addition to providing a tool for evaluation of 
overall system performance, permitted the definition of explicit 
thresholds for use in acceptance tests of the entire netted system. 

2.6 Project organization and control 

2.6.1 Organization 

Organizations were established for each of the major software 
efforts, PAR, MDC, BMDC, and System Exerciser. A separate systems
engineering organization was responsible for requirements and evalua
tion. Support-software development organizations were also established 
for each major support activity such as DPS maintenance software, 
real-time support software, nonreal-time support software, and com
puter operations. Each major activity was directed by a project 
manager. 

The software development organization consisted of engineers and 
programmers primarily from Bell Laboratories, IBM, and Western 
Electric. While project responsibility rested with Bell Laboratories, 

522 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



IBM was responsible for much of the software development. These 
development activities were directed by IBM managers who were in 
turn responsible to Bell Laboratories project managers for completion 
of the tasks. For the most part, Western Electric engineers and pro
grammers were integrated directly into Bell Laboratories organizations, 
with the notable exception of test-bed-facilities management, which 
was turned over to Western Electric early in the development cycle. 

2.6.2 Control 

Overall scheduling for the project was the responsibility of the 
system-engineering organization. Project managers were held respon
sible for coordinating and setting schedules for software under their 
control, consistent with overall schedules. 

Schedules were documented at several levels of detail in a manage
ment-information system. Visibility was provided by frequent design/ 
schedule reviews, and by a Principal Event Report. The principal 
events were selected major milepost achievements in performance, 
and were scheduled within the total network of activities related to 
software and system development. A written report as to the per
formance achieved relative to the defined requirements for a principal 
event was required within 72 hours of the schedule date. All open items 
were reported with a schedule for their completion. Upon completion 
of an open event, written confirmation to management was required. 

Further development control and discipline were achieved by the 
use of additional techniques. A Policies, Procedures, and Standards 
(pps) Manual was established and maintained. The manual provided 
detailed policies and standards to ensure uniformity and control within 
the project. PPSs were written on change management, documentation, 
management reporting, programming standards, etc. Software change 
management standards were established early, and they were extended, 
modified, and adapted for use on each major activity. Typically, this 
included documenting troubles on standard Trouble Report forms and 
keeping track of them and their solutions in a Status Accounting 
System. Stable software was "frozen," stored, and officially released 
by a central organization. 

Because of the difficulty of employing subcontractors on a large 
complex software development, very careful attention was given to 
defining interfaces and a detailed task description, monitoring, and 
evaluation system was devised. This system was fundamental to the 
success of the development effort. 

Comprehensive documentation standards were also established early. 
Support software documentation emphasized requirements and user 
information; tactical software documentation emphasized require-
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ments, design information, test plans, and well-commented listings. In 
general, documentation and software development were synchronized. 

The emphasis on planning was fundamental to the overall manage
ment approach. Although no single planning format or technique was 
prescribed, each project manager was required to plan in detail for the 
complete design, implementation, and testing of his part of the system. 

2.6.3 Resource requirements 

Resource estimation and control were generally the responsibility 
of project managers. Normal budgetary procedures were used, requir
ing justification to and approval by upper management and the 
customer on a yearly basis. Manpower needs were estimated by pro
ject managers using experience and algorithms from other large pro
jects together with a detailed plan of the work to be performed. 
Manpower restrictions were resolved by replanning and modifying 
schedules. 

Support-computer needs were estimated by project managers and 
analyzed by the support-computer project manager, who coordinated 
the acquisition of support equipment. Application-computer require-

Table 1-SAFEGUARD software development-quantities 
of instructions and statements 

Real-Time Software Instructions 

CLC operating system 
MOC applications 
MOC exerciser 
PAR applications 
PAR exerciser 
BMOC applications 

Total 

Support Software Source Statements 

CLC software preparation support 
System simulation 
Exercise support 
Data reduction 
Configura tion management 
Logic simulation 

Total 

100,000 
300,000 

50,000 
200,000 

25,000 
60,000 

735,000 

210,000 
50,000 
30,000 

150,000 
70,000 
70,000 

580,000 

Installation and Maintenance Software Instructions 
MDC radar installation 50,000 
PAR radar installation 110,000 
PAR radar test 60,000 
Maintenance & diagnostic 300,000 
Diagnostic operating facility 120,000 
DPS installation & test 190,000 

Total 830,000 
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ments were established and monitored through periodic sizing esti
mates by the PAR, MDC, and BMDC project managers. 

The size and duration of the SAFEGUARD development effort was 
large indeed. Table I shows the size of the major components of soft
ware: real-time software, consisting of MDC and PAR applications and 
exercise programs, BMDC applications pr()grams, and the CLC operating 
system, totalled 735,000 instructions; support software, such as com
pilers and simulators executed on commercial computers, totalled 
580,000 statements, some assembly language, and some PL/l and 
FORTRAN; installation and maintenance software for the data-process
ing system and the radars totalled 830,000 instructions. At least several 
hundred thousand additional instructions were developed for other 
purposes, such as test drivers and specialized simulations. The total 
development interval, starting with the generation of SENTINEL re
quirements and concluding with SAFEGUARD system integration, 
spanned 90 months. 

III. CONCLUSION 

Perhaps the most important lesson to be learned from SAFEGUARD 

is that a large, well-conceived development project, however ambitious, 
can be completed successfully. During the development, the number 
of sites was changed, drastically reducing the size of the deployment. 
This, coupled with test results, as well as changes in objectives, led 
to modifications in the overall system design. However, it can reason
ably be said that the complete development, including the integration 
of the first installed sites, was performed on schedule and that the 
system met the prescribed performance specifications. Although cost 
performance is a little bit harder to define because of the effects of 
inflation over the period and because of changes in the deployment, 
it seems clear that costs were controlled reasonably. 

To reiterate an observation made earlier, implementation of the 
SAFEGUARD data-processing system was a significant undertaking, one 
of the most complex ever attempted. Its production entailed the de
velopment of a highly reliable multiprocessor computer system, and 
the generation of millions of lines of code. The papers that follow 
describe some of the design of the system as well as the lessons that 
were learned and the techniques employed. 
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The Data-Processing System Performance Requirements (DPSPRs) 
specify the required performance to be provided by the SAFEGUARD system 
software. They were developed primarily by one systems engineering 
department at Bell Laboratories. Their objective was to specify the required 
functional performance in sufficient detail to permit software development. 
The DPSPRs evolved from similar documentation that was developed for 
systems prior to SAFEGUARD. Their history, development, use, and 
document control system are described. Suggested improvements are also 
discussed. 

I. INTRODUCTION 

The Data-Processing System Performance Requirements (DPSPRS) 
are a set of documents that specify the required system performance 
to be provided by the tactical real-time software. A separate set of 
requirements exists for each site: one for the Missile Direction Center 
(MDC) site, one for the Perimeter Acquisition Radar (PAR) site, and 
one for the Ballistic Missile Defense Center (BMDC). The DPSPRs 
include requirements for such functions as site communications, dis
plays and controls, radar control, interceptor response planning, and 
missile guidance. Since the SAFEGUARD system must operate con
tinuously in real time with minimum down time, the DPSPRs also 
include requirements for exercise and fault detection to verify total 
system performance. The DPSPRs do not include requirements for 
installation and checkout software, software error control, or process 
initialization. 

The primary obj ective of the DPSPRs is to specify the required 
functional performance in sufficient detail to permit the development 
of the software by the designers, yet not in such detail as to overly 
limit design freedom. A second objective is to state functionally how 
the system is to operate in its different defense modes. Thus, the DPSPRs 
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formalize for the customer-the Army SAFEGUARD System Command 
(SAFSCoM)-the required system functions, their interactions, and the 
expected system performance. 

The DPSPRs contain detailed requirements for each identified system 
function. They are not part of the high-level contractual documenta
tion, and they do not contain the detail required to subcontract soft
ware development. They are written at an intermediate level along 
functional lines, but they do not dictate the organization of the soft
ware. For example, one section, Target Selection, provides require
ments for calculating a set of parameters from quantities specified in 
another section, Track. When the software was designed, it was found 
more efficient to have the track software calculate the parameters and 
pass them to the target selection software. Because the DPSPRs did 
not specify software organization, it was possible to choose the more 
efficient software implementation. 

This paper provides a retrospective view of the DPSPRs, identifying 
different aspects of their development that either worked well or should 
have been done differently. The history of the DPSPRs is given first, 
followed by a description of how they were developed. A short descrip
tion of how they were used is given next, followed by a section on 
document control. The conclusion summarizes recommendations that 
may be useful for the generation of future data-processing performance 
requirements. 

II. HISTORY 

Prior to SAFEGUARD, considerable experience had been gained from 
the design of the NIKE-ZEUS, NIKE-X, and SENTINEL ABM systems. 
As part of NIKE-X research and development, a series of documents 
was developed to specify how various system functions would be 
performed. They described, for example, how the radars were to 
gather target trajectory data required to launch and guide a missile 
to intercept a target. These documents were the forerunner of the 
DPSPRs. 

In January 1967, system studies were initiated to determine the 
feasibility of deploying a thin area-defense system, later defined as 
SENTINEL, using components (radars, data processors, missiles, etc.) 
developed for NIKE-X. The first Data Processing System Performance 
Requirements documents were written for the SENTINEL system. 

In April 1969, Bell Laboratories was redirected by the Department 
of Defense to develop the SAFEGUARD ABM system. The initial issue of 
the DPSPRs for SAFEGUARD was completed in July 1969 in accordance 
with this redirection. The time interval was short because many of the 
DPSPR concepts and functions that had been developed for SENTINEL 
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were applicable to SAFEGUARD and because this first issue contained 
mainly qualitative requirements; i.e., many parameter values were 
still to be determined. The purpose of this first issue was to disseminate 
as much information as soon as possible to the software designers, who 
had already organized to develop the SENTINEL system. This issue was 
succeeded by a second, more quantitative issue in May 1970, which 
was placed under internal document control. 

On March 31, 1971, the DPSPRs were submitted to the customer for 
baselining. Baselining the DPSPRs consisted of a detailed document 
review and preparation of changes, after which both the customer and 
Bell Laboratories agreed to accept the documents. This process was 
completed on May 31, 1972. The baselined DPSPRs were then submitted 
for formal configuration control procedures under which all changes 
had to be (and must still be) approved by the SAFEGUARD Local 
Configuration Control Board. 

III. HOW THE DP8PRs WERE DEVELOPED 

Development of the DPSPRs was the function of the system design 
department, which initially consisted of about thirty engineers and 
programmers. Their first step was to write an "operational concept" 
paper for SAFEGUARD. The concept paper identified the defense objec
tives, the command and control configuration, and the general oper
ation of the radars and missiles in their defense roles. 

Based on the concept paper, the DPSPRs were organized according 
to the operational functions required at each site. The organization of 
a typical DPSPR is shown in Table 1. The DPSPRs were arranged so 
tha t each section addresses a maj or system function. The ordering of 
the sections within a DPSPR was primarily based on the sequence in 
which the functions must be performed. Each section includes three 
main subsections: objective, operational description, and requirements. 

Table I - MDe DPSPR organization 

1. General 
2. MDC Site Management 
3. Radar Management 
4. Surveillance 
5. Track 
6. Target Selection 
7. SPARTAN Interceptor Response 
8. SPRINT Interceptor Response 
9. SPARTAN Guidance 

10. SPRINT Guidance 
11. Equipment Tests 
12. Exercise Subsystem 
13. System Constraints 
14. Displays and Controls 
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The operational description includes, in most sections, a general de
scription of how that function is to operate in different system-defense 
modes. It has been suggested that the DPSPRs should have had one 
section devoted to a complete operational description of the system 
rather than appearing throughout the documents. Since the level of 
detail varies from section to section, this suggested reorganization 

I 

could probably have provided a more consistent description of the 
functional operation of the entire system. The concept paper did not 
provide the detailed descriptive information that was later felt to be 
lacking on the project. 

Original plans called for each DPSPR section to have an inputs/ 
outputs subsection that would define the interfaces among functions. 
These subsections were never included in the DPSPRs, primarily be
cause there was insufficient time. Since the requirements for each 
function either specified or implied its inputs/outputs, it was felt that 
these subsections could be omitted. In retrospect, this probably was 
a mistake. For instance, an implied output of one function was missed 
by the software designers in a specific case in which one function was 
required to stop or inhibit an action previously started by another 
function. This mission output was not discovered until later during 
functional integration testing of the designed software. Then, many 
questions were raised: 

(i) Is it really necessary to stop the action? 
(ii) What happens if the action is not stopped? 

(iii) Can the missing output be implemented without jeopardizing 
schedules? 

(iv) How much retesting is required if a modification is made? 

Clearly, a perturbation in the software development effort occurred 
that might have been avoided if the inputs and outputs had been 
explicitly stated. 

The general policy for writing requirements for a function was to 
state the requirements without descriptions of how the function should 
be implemented. In many cases, this was difficult to do; it was often 
easier to say how a function should be done rather than to state a 
performance requirement for the function. This led to two problems. 
First, when a requirement specifies how something is to be done, the 
software designer feels constrained. He may know a better way to 
implement the requirement or he may want to try other ways. Second, 
if a performance requirement does not exist for a function and only the 
technique is specified, then the test designer must generate his own 
performance requirement, or his tests will check only to see that the 
proper technique has been implemented. For this -reason, it has been 
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suggested to both system designers and software designers that the 
DPSPRs should have included only system performance requirements 
with no mention of implementation or algorithms. This is a philosophi
cally "pure" notion which might or might not work. The method of 
specifying requirements depends largely on the project organization 
and the talent of the people involved. For example, before writing a 
DPSPR function, the systems engineer discussed the particular function 
with his counterpart, the software designer. In some instances, pri
marily those in which there was a lack of specific experience, the de
signer requested that complete design details be supplied. In other 
cases, the designer wanted only an overall performance requirement 
because he felt he knew how to produce the design. Requirements were 
written both ways, but experience suggests that it is probably best 
to state the performance requirement and then provide a recommended 
technique to be used at the designer's option. In summary, the system 
designers tried to reason out the level of detail to be included and took 
the pragmatic approach of "getting the job done" and trying to satisfy 
both the software designer and the customer. 

IV. HOW THE DPSPRs WERE USED 

In software design, the DPSPRs were used in three phases: setting 
up the software structure, establishing the internal organization of 
each basic function, and functional testing. 

In setting up the software structure, the routines and subroutines 
needed to perform the functions were based on the requirements in 
the DPSPRs. In software design, primary emphasis was placed on 
definition of the inputs required to perform the functions and the 
outputs required by other functions. 

N ext, the internal organization of the defined routines and sub
routines was established. At this time, emphasis was placed on defining 
both the particular algorithms required within a function and the 
interfaces between routines. 

As the design of the routines approached completion, the DPSPRs 

were continually consulted to determine if the designs met require
ments. DPSPRs were then used to determine the functional testing 
required for the completed design. 

In system evaluation, the DPSPRs were used primarily as a reference 
document. The first stage of system evaluation was to verify that the 
DPSPR specifications would meet system objectives. The evaluation 
program then determined if the implementation met the DPSPR re
quirements. The system evaluation effort led to development of new 
system functions, changes to existing ones to provide better perform
ance, and sometimes modification of the requirements themselves. 

PERFORMANCE REQUIREMENTS S33 



The DPSPRs were used by the customer as the documents that speci
fied performance of the system they were buying. The customer 
coordinated with the design engineers in the formulation of all pre
baseline versions of the DPSPRs. After baselining, the customer was 
deeply involved in the evaluation and discussion of each change 
proposed for the DPSPRs. In addition, the DPSPRs were used by the 
customer for his independent evaluation of the system design. 

v. DOCUMENT CONTROL 

After the first issue of the DPSPRs was published and distributed, an 
intensive review was held with software designers and system evalu
ators. This resulted in changes to add new requirements, to expand 
upon old ones, and to correct errors. No formal accounting of the 
agreed-upon changes was kept, and some systems and software de
signers were not made aware of these changes until they received their 
copies of the next issue. Clearly, there was a need for a better method 
of keeping track of problems and their solutions and a need for timely 
revisions. 

To solve this, a document control system was established in which 
all DpsPR-related problems were identified by a Trouble Report (TR) 
and the solution to each problem was described by a Correction Report 
(CR). TRs could be written by anyone uncovering a problem, but had 
to be approved by the writer's immediate supervisor. Once approved, 
the TR was given a number, recorded in the log book, and sent to the 
supervisor responsible for the affected DPSPR. After his approval for 
action, the TRs were assigned to the persons responsible for the par
ticular sections that were related to the problem. Each solution was 
described in a CR to be approved by the TR originator. So both the TR 
originator and CR originator had to agree upon the solution. When 
agreement was reached, the CR had to be approved by the supervisor 
responsible for the applicable DPSPR. 

Since changes to the DPSPR generally implied corresponding changes 
in the software design, all CRs were reviewed and approved by all 
affected software design departments, with final approval delegated to 
higher levels of management as the software delivery date was ap
proached. After final approval, the CR was sent to publications for 
preparation and distribution of the revision pages for the CR. 

Three different methods of achieving this approval were tried before 
an adequate approval sequence was found. Figure 1 shows a flowchart 
of each of these methods. First (Method 1), after the DPSPR coordinator 
approved the CR, a copy was sent to each affected software design 
supervisor for an assessment of the software impact of the change in 
terms of cost and schedules. When all assessments were received by 
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METHOD 1 

METHOD 2 

DESIGN 
GROUPS 

FOR 

DESIGN 
DEPARTMENTS 

APPROVAL 

DESIGN 
GROUPS 

FOR 

DESIGN CHANGE 
COORDINATION 

DEPARTMENT 

METHOD 3 

Fig. I-TRieR approval sequence. 

DESIGN 
DEPT. 

APPROVAL 

the DPSPR coordinator, the assessments were attached to the CR and 
the CR was then routed in turn to the head of the system design depart
ment, to the head of the software design department affected by the 
change, to the heads of all other software design departments, and 
finally to the director of software design. This procedure resulted in 
significant delays in the return of impact assessments and in depart
ment-head routing. It only worked efficiently when the DPSPR co
ordinator hand-carried the CR through the approval sequence. 
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The procedure was then changed (Method 2) to one in which the CR 

was immediately routed to department heads and, at the same time, 
information copies were sent to all software design supervisors whose 
design would be affected by the change. When each department head 
received the CR for approval, he requested software impact estimates 
from his supervisors. This procedure was more effective than the 
previous one; however, CRs tended to become backlogged in the de
partment-head routing process. This resulted primarily because no one 
representative of the design organization had the responsibility to 
ensure that each CR received appropriate and timely action. 

The final procedure (Method 3) was quite similar to the previous 
one except that one department head was designated as the change 
coordinator with the responsibility of ensuring that each CR received 
the appropriate attention and that all software changes were properly 
coordinated. 

The DPSPRs were submitted to the customer for baselining on March 
31, 1971. From that time until the DPSPRs were finally baselined in 
May 1972, changes were allowed in the DPSPRs by means of the pro
cedure described above. This allowed the DPSPRs to be reasonably 
current during this period; however, additional effort was required by 
the customer to review the TRI CR changes as well as the submitted 
DPSPRs. After baselining, the only change to the TR/CR procedures 
described above was that approved CRs were incorporated into an 
Engineering Change Proposal (ECP) which required customer approval 
before the CRs associated with the ECP were forwarded to pUblications 
for generation and distribution of revision pages. There were instances, 
of course, where softw~re design changes had to be made to make the 
system work before customer approval could be obtained. The control 
procedures allowed for this as a "management risk." 

The control procedure enabled the proj ect to keep track of all 
problems and their solutions and to control the changes in system 
design. However, after the document control procedures had been 
prepared, a few suggestions were made that might have improved the 
process. 

First, in addition to detailing the specific change to the DPSPR, the 
CR should have included the rationale and/or study that led to the 
change. In cases where significant changes were made, they were 
generally documented in a memorandum; however, little or no rationale 
accompanied many small changes. Including the rationale would prob
ably have reduced duplication of studies that were conducted by the 
system designer and the software designer to evaluate changes. 

Second, the software design organization always should have been 
a party to the initial approval of a correction report. This was done 
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when the TR was originated by software design, but was not done 
when a TR was initiated by system design or by system evaluation. 
By coordinating all correction reports through the software designer, 
there probably would have been fewer unapproved CRs to rework. 
This would also have made the software designer aware earlier that 
a change in his design was being proposed. 

Third, the TRI CR approval sequence and publication of the change 
should have been streamlined as much as possible. Even though the 
designers knew of the change, most other DPSPR users were not aware 
of it until the revision pages were issued. One change to the approval 
sequence that might have shortened the approval cycle time would 
have been to establish a formal calendar date for final review and 
approval at the highest necessary management level when the CR 

began its approval sequence. Each CR would be reviewed on that date 
and rescheduled if a final approval decision could not be reached. This 
approach would have forced timely attention to each CR in the ap
proval cycle. 

VI. CONCLUSIONS 

One of the most fundamental needs in a software development 
project is a clear statement of requirements. The DPSPRs were designed 
to meet this need and were successful in doing so. They have also 
provided valuable insight into the design of testing and evaluation 
procedures. The most notable deficiency in the DPSPRs was a lack of 
explicit definition of interfaces among the various functions. More 
concentrated effort in specifying exact definitions of these interfaces 
would have greatly helped the software designers. The most important 
lesson learned in setting and maintaining requirements is that changes 
to the system design must be carefully controlled. It is essential that 
software designers be made fully aware of the content and implications 
of each system change. 
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The Central Logic and Control (CLC) unit is the digital computer that 
controls SAFEGUARD. Its development represents the first reduction to 
practice of large-scale multiprocessing in a computer system. This paper 
describes the CLC and explains some of the decisions behind its design. 

I. INTRODUCTION 

The Central Logic and Control (CLC) represents the first practical 
application of the multiprocessing concept to a large-scale computing 
system. A modular design is employed in which as many as ten proc
essors and two Input/Output Controllers (rocs) share as many as 32 
memory racks. The units are interconnected by a flexible switching 
network that allows the system to be partitioned into two independent 
computers. Partitioning can be controlled by software, and complete 
reconfiguration may be accomplished in less than one second. 

This paper focuses on the architecture of the CLC, and on how system 
requirements influenced the decisions behind its design. 

II. DESIGN PHILOSOPHY 

2.1 System requirements 

Availability, reliability, and performance requirements are placed 
on the CLC because of its importance to SAFEGUARD. The data-process
ing system is required to be fault-tolerant. This means that the system 
must be able to perform its workload in the presence of any single 
malfunction. In addition, the CLC is allowed only a limited amount 
of down time. High-reliability specifications are placed on each of the 
components from which the CLC is fabricated to increase the mean
time-to-failure. High CLC performance requirements are dictated by 
the nature of its primary job, controlling a radar tracking system in 
real time and the launch/guidance of missile interceptors. Sufficient 
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Fig. I-Central Logic and Control unit. 

reserve power must be available to handle peak loads. A block diagram 
of the CLC is shown in Fig. 1. 

2.2 Resulting architecture decisions 

2.2.1 Modularity 

The CLC is composed of five types of elements: up to ten processors, 
sixteen racks of program store, sixteen racks of variable store, two 
lOCs, and two time-and-status units. This system is capable of opera
tion with only one element of each type and may grow in a modular 
fashion. The JOC provides peripheral-world access to the computer 
while the time-and-status unit provides a number of special functions 
which include real-time clocking, monitoring system status, and con
trolling the configuration of the hardware resources in the system. The 
multiple elements communicate via well-defined interfaces and are 
interconnected by a flexible switching network. 

The method of interconnecting elements within the multiunit com
puting system must permit ease of growth and be consistent with the 
availability and reliability requirements. The switching method chosen 
for the CLC is based upon a distributed implementation of the switching 
network such that a portion of the switch is included with each unique 
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system element. Both economic and availability considerations favor 
a distributed switch in which each added processor and storage ele
ment comes with its own portion of the switching system to allow 
smooth system growth. System availability is enhanced because a 
failure of a portion of the distributed switching system affects only 
the unique element to which it is attached. 

All communication among elements of these five types is handled 
asynchronously on a request-and-acknowledge signaling basis. The 
collection of processors is capable of asynchronously accessing any of 
the collection of memory elements. The switching network is such that 
if each processor makes an access to a different memory element, then 
all may receive service simultaneously. Priority circuits at each 
memory element resolve conflicting requests sequentially. 

2.2.2 Multiple processors 

Although it would have been possible to design a single processor 
system with sufficient performance, the CLC is a multiprocessor machine 
for three reasons. First, a single processor sufficiently powerful would 
have been a complex machine, difficult to design and difficult to get 
working. Second, a single-processor system would not have been 
expandable; if a more powerful machine were later found necessary 
and none were available, major software changes would have been 
required. Also, multiple processors satisfy a wide range of processing 
requirements including smaller applications. Finally, the multipro
cessor design increases availability because processing can continue 
even if some processors have failed. 

2.2.3 Two memory types 

A multiprocessor design hinges around its storage design. A number 
of possible strategies are available to handle the necessary references 
of the multiple processors to main storage. The first strategy used in 
the design is the splitting of main storage into two independent portions 
called program (or instruction) store and variable (or operand) store. 
This organization doubles the data flow rate to each processor at the 
expense of independent instruction and operand fetch circuitry within 
each processor. One of the reasons for this architecture is to physically 
separate programs and data sets for reliability purposes. Thus, program 
store is a read-only memory, while variable store is a read-write 
memory which holds real-time Ilo data and provides storage for the 
results of calculations.* To optimize memory utilization of the CLC 

* Program store is read-only in the sense that processors have no instructions that 
write data into it. Software can alter program store via the store transfer unit which 
is described in a later section. 
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during the software development phase, additional switching paths 
are provided from variable store to each processor to allow instructions 
as well as operands to be stored in variable store. 

2.2.4 lin + 1" redundancy 

To achieve nearly continuous operation as economically as possible, 
the CLC employs n + 1 redundancy. Each of the five types of elements 
has at least a single replacement that is not required for running the 
application software and is therefore redundant. For example, if the 
application software requires 15 racks of program store for execution, 
then at least 16 are provided. The n + 1 element may be switched 
in to replace a failed element. 

2.2.5 Partitioning 

The CLC can be partitioned into two independently operating comput
ers, each capable of executing its own job stream. By convention, these 
two partitions have been differentiated by the terms green and amber, 
with green usually the larger of the two fractions. However, since the 
computer is composed of a number of modular elements, the boundary 
defining which are green and which are amber is almost completely 
flexible, as illustrated in Fig. 2. In fact, all elements may be brought 
into the green partition to operate as a very large multiprocessor com
puter with as many as ten processors sharing the job load. As a further 
degree of flexibility, some elements, such as memory elements, may be 
placed into a shared green/amber state where they are available to 
both partitions simultaneously. Finally, an element may be defined 
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I 
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Fig. 2-Element partitioning within the CLC. 
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to be neither green nor amber and is said to be isolated. This state 
is necessary to remove malfunctioning elements without shutting down 
the entire system. 

It is even more significant that partitioning is under program control. 
Further, the control logic for effecting partitioning is redundant. There 
is a fundamental asymmetry to the control of partitioning which allows 
the green partition to have priority over the amber partition. The 
partitioning logic may be placed into a state whereby a master/slave 
relationship exists between the green and amber partitions. Control 
software residing on the green partition may alter the partitioning of 
the system at any time. The amber or slave partition can in no way 
alter the partition boundaries. This will be described in more detail 
in Section 3.4.1. 

III. DETAILED DESCRIPTION 

3.1 The processors 

The processor is the most important element in establishing the 
real-time computing capacity of the CLC, so the design of a high-speed 
processor has been a primary goal. Each processor contains three 
control units that operate asynchronously with respect to each other. 
Timing within each control unit is overlapped to some degree so that 
more than one instruction may be in execution. High-speed arithmetic 
algorithms and associated logical implementations have been exploited 
advantageously to increase the flow of operands through the arithmetic 
sections. The resulting processor design can execute successive fixed
point add operations on full-word 32-bit operands at an average rate 
of 4.15 million per second. 

The processor organization, as shown in Fig. 3, is best explained 
by considering a typical arithmetic operation. Three functions must 
be performed: instruction fetch, operand fetch, and arithmetic execu
tion. Three control units allow these functions to be overlapped, 
thus avoiding simple concatenation of the functions for successive 
instructions. 

The Program Control Unit (pcu) prefetches instruction words from 
program store into an instruction word buffer. The pcu then extracts 
instructions from the buffer and determines which of the control units 
will participate in executing the instructions. For those instructions 
involving operand access, the operand control unit will address vari
able store to fetch or store all operands to be used internal to the 
processor. For those instructions involving arithmetic operations, the 
arithmetic control unit will perform all fixed-point and floating-point 
arithmetic. 
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3.1.1 Program control unit 

The peu supplies instructions to the operand and arithmetic control 
units. Reference to program store is by absolute address from a location 
specified by a program address counter. A change from sequential 
operation can be effected either by interrupt or by executing a jump. 
Instruction sequencing is optimized by use of four double-word buffer 
registers that form an instruction stack. Whenever branches in the 
instruction sequence are encountered, alternate path fetching is em
ployed to fetch both the normal path word and the jump path word. 
Both of these words are placed in the instruction stack to await a jump 
decision. Since many jumps are conditional to an arithmetic test 
within the processor, having both paths available will in general 
reduce the time needed to proceed regardless of which jump decision 
is made. In addition to the above optimizing, short instruction loops 
may be entirely contained within the instruction stack and executed 
without further access to program store. To smooth and optimize 
instruction flow to the other control units, instruction list buffers exist 
at the interface between the program control unit and the other control 
units. 
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3.1.2 Arithmetic control unit 

The arithmetic control unit contains fifteen addressable A-registers 
for temporary storage of operands. All arithmetic operations are per
formed on operands from the A-registers with results returned to 
these registers. The registers make data currently in use immediately 
available to the processor. Within the arithmetic control unit, Ao is 
defined to be a fixed accumulator for all arithmetic operations. The 
Ao-register functions alone as a single-length accumulator or in con
junction with an extension register to form a double-length accumu
lator. The double-length accumulator will handle the double-length 
results obtained for multiply operations and will hold the quotient 
and remainder for divide operations. The two-address arithmetic 
instructions will always place the result in Ao and have the option to 
overwrite the second named register. This method allows some of the 
generality of a three-address format without the need for a third 
address. 

3.1.3 Operand control unit 

The operand control unit fetches operands from variable store; 
it performs any required operand fetching address arithmetic itself. 
Fifteen addressable B-registers provide temporary storage of addresses 
or index values. The operand control unit can perform shifts and edits 
on data contained in the B-registers. (Edits are instructions that access 
only a selected portion of a register.) Data can be exchanged between 
B-registers and A-registers. 

The operand control unit provides a set of 15 addressable Z-registers 
which are used to control the operation of the entire processor. Inter
rupt jump and return addresses are found in the Z-registers. Memory 
protection is controlled by these registers; the appropriate bit in a 
Z-register must be set to allow the processor write access to a particular 
segment of variable store. One of the Z-registers is a delta clock which 
acts as an alarm clock. The delta clock will generate an interrupt if it 
is not reset before a selected primary countdown interval is exceeded. 

3.2 The memories 

To further increase the data-flow rate between processors and main 
storage, program and variable store are further subdivided into 
modular groupings, as shown in Fig. 4. Variable store is organized as 
16 independent racks, with an independent data path from each rack 
to each of the processors. Since queuing is heavier at program store 
than at variable store, program store is organized as 32 independent 
modules with an independent data path from each module to each of 
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the processors. Processor addressing is interleaved between two 
modules; that is, the address structure is arranged so that adjacent 
program store words reside in two separate modules. 

The memory module cycle time of 500 ns and the double-word size 
of 64 bits are selected to provide a memory bandwidth in excess of 
that required for maximum performance of a single processor. Each 
program-store and variable-store rack holds 16,384 64-bit words. There 
are four parity bits associated with each memory word. 

In a multiprocessor system, the need frequently arises to prevent 
one processor from modifying data that another processor is accessing. 
A lock mechanism is also needed to avoid IOC and processor interfer
ence at variable store. To allow resolution of these problems, a special 
memory instruction called biased fetch is included. A biased fetch 
reads a word from variable store and, in one memory cycle, restores 
the word with the upper two bits set to binary ones. (Two bits are 
chosen because the parity of the memory word is not regenerated 
during the read/modify/write cycle.) The original word, before modifi
cation, is returned to the processor or lOCo The processor or IOC can 
test the upper two bits of this word to determine whether access to 
the data has been granted. If these bits are zeroes, the data are avail
able; if they are ones, the data are not available. 
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3.3 The input! output controllers 

In any computing system, input/output is of paramount importance 
and frequently determines throughput. The I/O Controller (IOC), which 
is shown in Fig. 5, directs the flow of information between variable 
store and the peripheral devices. Processors are thus relieved from 
communicating directly with the peripherals. Processors and IOCs can 
operate simultaneously. The I/O subsystem, which consists of the lac 
and its associated peripherals, is duplicated to achieve system avail
ability requirements. 

A basic feature of the lac is its ability to simultaneously and con
tinuously service several peripheral devices. The fastest way to service 
any individual peripheral device is to transfer its entire block of data 
by preempting all of the transfer facilities. Since this violates the rule 
of simultaneous service to several peripheral devices, it is necessary 
to time-share the IOC facilities among all devices. 

Each lac contains 16 channels; each channel contains independent 
input and output cables, thereby allowing full-duplex operation. 
Priority circuits are utilized to allow time-multiplexed operation of the 
channels. 
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Each peripheral is assigned a priority order which takes into con
sideration the allowable latency of a peripheral device requiring access 
to variable store. High-speed, synchronous devices usually are assigned 
higher priority channels than buffered, asynchronous devices. 

The laC is a programmable device. Its operations are controlled by 
commands it reads from variable store. The instruction repertoire 
includes jump commands and simple data operation commands. An 
laC program can be initiated by a processor or by a peripheral device. 
The lac accesses 110 programs by indirect addressing. 

3.4 Associated equipment 

Although the processors, the memories, and the laCs are the principal 
components of the CLC, three other devices deserve mention: the status 
unit, the timing generator, and the store transfer unit. A block diagram 
of the time-and-status unit, which includes the above functions, is 
shown in Fig. 6. 

3.4.1 Status unit 

The status unit is essentially a register memory that may be read 
or written by all processors in a given partition. By reading from the 
status unit, processors obtain information about the condition of the 
data-processing system: parity errors, time-outs, power on-off, etc. 
By writing into the status unit, processors control the data-processing 
system. 

Partitioning is controlled by signals from the status unit. Software 
can specify whether each component of the data-processing system is 
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to be partitioned green, partitioned amber, or is to be isolated. The 
status unit enables communication between elements in the same par
tition and disables communication between elements in different par
titions or to elements which are isolated. 

Since there are two status units, subtle logic-design problems exist. 
For example, status information from peripheral devices partitioned 
amber must affect only the amber status unit and not the green. One 
status unit must be designated the master and the other the slave in 
such a way that partitioning signals from the master status unit take 
precedence. Transients caused by powering up a status unit must not 
disturb this relationship. 

The status unit also interacts with the lac. If certain status unit 
bits change, the status unit presents a command request to the lac. 
The lac program thus initiated informs software of the event. 

3.4.2 The timing generator 

The timing generator performs two basic functions that are essential 
within a real-time system. The first is that of initiating activities at 
points in time that can be specified by program means. The second 
is that of providing an accurate time value which can be used in record
ing the time of occurrence of specific events during operation of the 
SAFEGUARD system. This is accomplished in the CLC by providing a 
time-of-day binary counter which is driven from a precise 5-MHz 
generator. As with other system components, for availability reasons 
the timing generator is duplicated. The timing generator is syn
chronized with a time-of-day standard. In addition, there is a pro
cedure to synchronize the timing generator in the amber partition to 
the timing generator in the green partition. This is necessary whenever 
the amber timing generator is shut down for maintenance. 

To fulfill the function of initiating activities at specified times, the 
timing generator performs time-notice comparisons of the time-of-day 
clock to a time-arranged list of orders stored within variable store. 
This activity is analogous to that of an alarm clock set to turn on 
various software processes. This function is handled via an 110 channel 
to relieve the processor from the housekeeping function of presenting 
time-notice orders to the clock. As long as the time-notice list has been 
prepared in advance, the lac will methodically transfer a new order 
from the list maintained in variable store. In addition, the lac will 
interact with the global data sets maintained in variable store to 
trigger various software events without necessarily providing a direct 
processor interrupt. 

The second function of providing an accurate time value is accom
plished by allowing all processors within the same partition to directly 
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access the clock and fetch time of day as a binary word. Access to the 
timing generator is designed so that, regardless of the number of 
processors in queue, each processor may obtain time of day in less 
than a microsecond. The time-of-day value can be used to attach a 
time tag to various recorded events or to determine whether certain 
system deadlines have been missed. 

The timing-generator and status units may be thought of as hybrid 
devices within the CLC from the viewpoint that they may be accessed 
directly by a processor using the internal switching network within 
the computer or they may be accessed as a peripheral device using an 
I/O channel. As these devices either provide control information or 
report status, they are not accessed frequently during normal opera
tions and so they share the same switching port and I/O channel. To 
take advantage of the economy of sharing interfaces, they are grouped 
together in the same equipment rack which is designated the time
and-status unit. 

For partitioning purposes, the time-and-status units are paired with 
the 10Cs to which they are attached. Thus, time-and-status unit 
number one is always configured in the same partition as I/O con
troller number one. The same philosophy holds true for many of the 
peripheral devices connected to the 10C in the SAFEGUARD system. 

3.4.3 Store transfer unit 

The time-and-status unit also includes a third function called the 
Store Transfer Unit (STU). The STU is the only device that can write 
into the program store elements. For reasons of economy, it shares the 
same direct switching interfaces with the timing-generator and status 
units. New program segments flow from either tape or disc through the 
10C to the STU and into the appropriate rack of program store via the 
internal switching network within the computing system. During re
covery of the CLC, the STU associated with the locthat is on-line at the 
time handles the reloading of the tactical software process into program 
store. 

3.5 Instruction repertoire 

The instruction repertoire for the CLC processor has been specified 
to accommodate the addressing structure of the computer. The pro
cessor can address program and variable store. A 20-bit internal 
address is used which, when mapped into actual memory addresses, 
allows addressing the maximum of 256 K double-words for both pro
gram and variable store. In addition, the processor contains internal 
register areas for temporary storage of operands. All arithmetic opera
tions are performed on operands from the registers. The use of this 
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type of memory hierarchy separates the two functions of operand fetch 
from main storage and arithmetic execution. The instruction repertoire 
takes this into account so that the access of operands from variable 
store is distinct from arithmetic operations. 

The addressing structure of the CLC will accomodate dynamic re
location of data sets. This requires that the processor have the cap
ability to store and modify addresses locally within its registers. A 
method of double indexing is employed, using the contents of as 
many as two B-registers and a 12-bit displacement value contained 
within the instruction itself, to form an address value. 

There are two different instruction lengths, 16 bits or 32 bits. Most 
instructions work with operands contained in the fast internal registers. 
The method of addressing operands from these registers is charac
terized by the use of two-address instructions with register addresses 
in the range of 0 to 15. These instructions use the half-word (16-bit) 
length which contains an 8-bit operation code and two register ad
dresses. Instructions which access variable store utilize the longer 32-bit 
instruction length. In addition to the operation code and address dis
placement value, the memory access instructions also specify two 
B-registers used in address generation and the source or destination 
register in either the A, B, or Z register areas. There is also an instruc
tion which references variable-store operands in absolute fashion using 
a full 20-bit address field contained within the instruction. In addition, 
a subset of instructions, designated "true" instructions, permit con
stants to be stored within the instruction itself. These constants may 
be directly loaded into the internal registers of the processor. 

The processor can handle both fixed-point and floating-point data 
represented in fractional two's complement notation. All arithmetic 
operations are normally performed on 32-bit operands for both fixed
and floating-point data. Exceptions include a half-multiply instruction, 
the ability to manipulate exponents, and the ability to perform address 
arithmetic on 20-bit values. Floating-point numbers are usually 
normalized. There is no hardware capability to perform double-pre
cision arithmetic. 

3.6 Hardware concept 

The SAFEGUARD hardware concept permits fabrication of the data
processing system from a standard stock of racks, chassis, and inte
grated-circuit packages. The design is based upon integrated-circuit 
technology using a modified direct-coupled-transistor-Iogic circuit hav
ing circuit delays in the 5- to 6-ns range. The hardware provides a 
flexible system for interconnecting groups of integrated-circuit pack
ages on chassis, and chassis into racks as shown in Fig. 7. To enhance 
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Fig. 7-SAFEGUARD rack. 

reliability, the integrated-circuit packages are wire-wrapped to achieve 
connections on the chassis. Each chassis can accommodate 275 inte
grated-circuit packages and, therefore, more than 600 logic circuits. 
The chassis are housed in a water-cooled rack with two chassis mounted 
side by side on a chassis carrier plate which locates, supports, and 
cools the chassis. The chassis carrier plates are mounted on a I-inch 
vertical pitch within the rack. There are a maximum of 59 levels in 
the rack housing 118 chassis. 

It was recognized that a large multiprocessor would present a need 
for a large number of access connections. In fact, there is a need for 
more access connections to the chassis than could be provided with 
rear access only. Therefore, the chassis also uses both sides for addi
tional access terminals. The rear contacts to the chassis are made in a 
conventional plug-in manner. The side contacts use a linear-actuated 
cam arrangement to engage the side contacts after the chassis has 
been situated properly in the rack. This arrangement results in wiring 
fields on three sides of the rack. In addition, internal connections are 
provided at the interface between the chassis, which are situated side 
by side on the carrier plate, to provide near-neighbor connections be
tween groups of chassis. In total, the rack provides for more than 
40,000 possible signal connections. It should be noted that having 
rack wiring on three sides has resulted in a diamond orientation of 
racks on a floor plan to allow physical access to all four sides of a rack. 
Rack-to-rack interconnections are provided by plug-in coaxial ter-

554 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



minal fields at the top of the rack which allow as many as 11,520 
connections in this area. 

To preserve the integrity of the high-speed pulse transmission be
tween the various units that make up the multiprocessor, a charac
teristic impedance of 100 ohms is maintained for the transmission 
of all signals. Coaxial cables are used for all connections between racks 
and for all rack wiring runs in excess of five feet. Twisted pair is pre
dominantly used to wire the rack. The chassis connector maintains a 
fixed impedance across the connection by providing both a signal and 
a ground path using a highly reliable double-contact arrangement to 
gain entry to a chassis. 

The memory racks include a 16-K by 68-bit-per-word core memory 
unit and the associated interface logic switching circuits which pro
vide interconnection to the multiple units in the system. The core 
memory units are air-cooled and operate at a cycle time of 500 ns 
and have an access time of 300 ns. 

3.7 CLC performance 

One of the primary reasons for the development of a parallel and 
modular computing system for SAFEGUARD is the potential for high 
performance. In addition to the properties this architecture possesses 
for high availability, a multiprocessor organization possesses a great 
deal of reserve power which, when applied to a problem with the 
appropriate degree of parallelism, can yield high performance. This is 
the type of problem which is associated with a radar tracking system 
and which must be solved in real time. 

In a multiprocessor system, the processors gain access to main 
storage according to a priority rule. The rate at which each processor 
executes instructions depends, therefore, on the severity of this queuing 
at main storage. Throughput will be defined as the number of in
structions of a particular instruction mix executed per second by n 
processors. 

Adequate performance, or throughput, of a parallel processing sys
tem depends upon a number of hardware factors, which include the 
speed of the processor, the speed of program store including its priority 
circuit, the total number of processors relative to the total number 
of independently addressable program stores, and the number of in
structions executed per memory word fetched. From a software view
point, the distribution of programs and data sets within the modular 
memory and the instruction mix of the particular programs in execu
tion are also important factors which directly affect throughput. 

Since variable store queuing will, in general, be less than that at 
program store, its effect has been eliminated in the throughput data 
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presented here. This has been done by dedicating a separate variable 
store rack to each processor for experimental studies. 

Throughput data have been gathered using multiprocessor hardware 
with configurations containing as many as ten processors. Benchmark 
programs have been used which provide varying instruction mixes. 
Four instruction mixes were selected for testing. The NOP mix, con
sisting of no-operation instructions, defines an upper bound on through
put. The LOGICAL mix is a representative mix that is similar to CLC 

operating system code that might be executed during real-time opera
tions. The MATH mix is also a representative mix, being a portion of 
the cosine subroutine from the CLC operating system. The JUMP mix 
consists exclusively of jumps and represents a kind of lower bound on 
throughput. 

Figure 8 shows the effect of requiring all processors to execute out 
of one program store. The number of instructions executed per second 
increases with the number of processors until the program store is 
returning instructions as fast as it can. Throughput levels off when 
this point is reached, and a further increase in the number of processors 
does not increase throughput. 
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Fig. 8-N processors executing from one program store. 
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Figure 9 shows the effect of providing an equal number of processors 
and program stores. For this case, the number of processors and pro
gram stores is incrementally increased from one to ten. The program 
stores are not dedicated to a processor on a one-for-one basis, but 
their access by the processors is randomized such that several proces
sors may be attempting to read from the same program store at once. 
Hence, some reduction in throughput due to queuing is expected. The 
effect of queuing is small for one to ten processors. Figure 9 shows that 
throughput increases linearly with the number of processors. Data are 
shown for the LOGICAL and MATH mix only. 

The data presented in Fig. 9 are for the case of an even distribution 
of memory access over all program stores. It is interesting to deter
mine what happens to throughput for the case of an unequal work-load 
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distribution. A series of runs were made for both the LOGICAL and 
MATH mixes where the number of processors was kept equal to the 
number of program stores with one important difference. One of the 
program stores was selected as a "favored" program store and its 
fraction of total instructions executed was varied from 0 to 100 percent 
while the remaining program stores shared the remaining work load 
equally. Figures 10 and 11 show the results for the six to ten processor 
cases. The curves represent throughput as a function of the "favored" 
program store. Zero percent means ten processors are executing out of 
nine program stores. Note that throughput is a maximum when the 
"favored" program store shares equally in the work load. 

The curves of Figs. 10 and 11 are useful in that they show the sen
sitivity of throughput to an unequal distribution of the work load 
in memory. For instance, if one considers a 10-percent reduction in 
throughput to be serious, the above curves show for the seven-processor 
case that a single program store can have almost 40 percent of the 
work load without a serious reduction in throughput. For the ten
processor case, the corresponding number is approximately 25 percent. 
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Therefore, as long as the work load is not too unequally distributed, 
the dependence of throughput on work load distribution should not be 
critical. Throughput dependence on more than one program store 
having more than an equal share of the work load has not been 
investigated. 

IV. CONCLUSIONS 

4.1 Success of the modular design 

The use of the well-defined interfaces and modular hardware building 
blocks capable of communication within the framework of a distributed 
switching system provides the basis for a dynamic computing com
plex-a structure that is capable of incorporating new functional units 
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offering unique economic or performance advantages. * This structure 
has been very useful in satisfying the wide range of computing applica
tions within the SAFEGUARD system. These range from a single proces
sor, nonredundant. installation to a ten-processor, maximum-sized 
system. Not only does this structure handle the wide variations in 
system sizing, but it can easily accommodate changes that may result 
from new or revised system requirements. 

4.2 Reduced cost for lin + 1" philosophy 

Historically, early fault-tolerant systems, such as ESS-I, employed 
IOO-percent redundancy through use of a complete standby system. l 

That is, the system required to support the full work load is duplicated, 
with data processing proceeding in parallel on each system. This 
organization is conceptually simple and upon detection of a failure in 
either system, the other system can carryon the data-processing 
work load. 

The multiunit system approach to gaining high performance can 
provide high system availability without the need for costly, complete 
duplication. The n + I redundancy approach has reduced the amount 
of equipment added for redundancy and for system exercise to a frac
tion of that required for a complete standby system. 

4.3 Instruction repertoire 

The CLC instruction repertoire was designed long before CLC soft
ware was written. As a result, programmers seldom use certain instruc
tions and often wish for others. For example, character manipulation 
instructions are lacking, as is one instruction that will store all proces
sor registers. 

4.4 Status-unit performance 

The status unit, as implemented in the CLC design, represents a 
comprehensive method of gathering system status and providing con
figuration control information to the various parts of the data process
ing system. The use of the status unit to control the configuration of a 
partitionable machine is unique and has been proven successful during 
the SAFEGUARD project. 

* This structure, for example, will very easily accomodate the addition of an array 
processor, such as the Parallel Element Processor Ensemble (PEPE), or it will easily 
allow direct connection of a high data rate peripheral subsystem to the modular 
variable stores. Although not a part of the present SAFEGUARD system, extensions 
to the multiunit architecture, as described above, have been seriously considered and 
are entirely feasible. 
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4.5 CLC performance 

The performance of a multiprocessor system depends upon a number 
of factors including the speed of the processor, the speed of the memory 
element and the speed of its priority circuit, the total number of 
processors relative to the total number of independently addressable 
memory elements, and the number of instructions executed per memory 
word fetched. The distribution of programs and data memory and the 
instruction mix of the particular program being executed are also 
important. CLC performance as a function of the number of processors 
and the number of independent program-store data paths has been 
measured by D. B. Knudsen, and the information presented in Section 
3.7 is a result of that effort. 

v. SUMMARY 

The requirement that a computer function properly even though 
some of its components fail has been a primary goal in the development 
of the SAFEGUARD computer. The multiprocessor approach was chosen 
to achieve high performance and availability. The multiunit architec
ture has provided a system which satisfies a wide range of computing 
requirements on the project through the use of a single design. 
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The SAFEGUARD Maintenance and Diagnostic Subsystem (M &DSS) is 
a unique, independent, hardware group within the data-processing system 
through which the nonreal-time functions of fault detection and isolation 
are performed. In this paper, the M&DSS hardware and fault detection 
software are described and system performance is reviewed. 

I. INTRODUCTION: AN OVERVIEW OF SAFEGUARD MAINTENANCE 
OPERATIONS 

The specific tactical mission for which the SAFEGUARD system has 
been designed is of extremely short duration compared to the life 
of the system. Once such a mission has begun, fault isolation and repair 
are of no concern; at this point, mission success in the face of hardware 
failures is totally dependent on real-time fault detection and, when 
necessary, the automatic execution of system recovery. Thus, the 
fault detection and isolation features of the Maintenance and Diag
nostic Subsystem (M&DSS) are oriented primarily toward the goal of 
maximizing system availability, the probability that, at any random 
point in time, a complete set of fault-free Data-Processing System 
(DPS) resources exists. 

The M&DSS contributes to maximizing system availability in two 
ways. First, M&D tests are periodically run on critical DPS equipment 
to supplement real-time fault detection methods in minimizing the 
mean-time-to-awareness of hardware faults. These tests are auto
matically scheduled by real-time software in the green partition and 
the test requests are sent to the M&DSS over a special interface through 
the status unit. In this way, every processor in the DPS is switched 
into the amber partition and tested once every hour; the complete 
amber partition is tested once each hour; and the green I/o controller 
with its slaved peripheral controllers is switched amber and tested 
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once every four hours. The M&DSS passes test results back to green 
system software again via the status unit interface. 

Second, and more important, the M&DSS minimizes the mean time 
to repair of faulty racks by rapidly identifying a minimum set of 
replaceable or easily repairable modules in which the fault is located. 
These fault isolation functions may be initiated in response to fault 
symptoms detected either in real time or during the nonreal-time 
scheduled tests described above. In either case, fault isolation takes 
place with the failed rack isolated from the rest of the DPS. 

The M&DSS accomplishes this goal through the unique integration of 
two significant maintenance concepts. First is the use of a special 
two-way maintenance data path into each DPS digital unit, which 
bypasses normal data paths. Second is the use of a small general
purpose computer dedicated to system testing, which applies tests over 
the maintenance paths and interprets test results. 

The communication interface between the green partition status 
unit and the M&DSS provides a rapid and flexible means for bringing 
maintenance resources to bear on any DPS fault indication. N onethe
less, until a specific faulty rack has been identified, the particular 
response to be made to any given fault indication often involves 
judgments based on the total status of DPS resources. Thus, normal 
SAFEGUARD maintenance operations involve a significant degree of 
manual interaction. In general, two primary maintenance management 
functions are performed manually: 

(i) Monitoring and response to overall system status as reported 
by green system real-time software and hardwired displays. 

(ii) Direct control of maintenance testing: The M&DSS will not 
honor any scheduled test request unless manual "permission" is 
granted, any test in progress may be manually aborted, and 
alternate tests may be requested via green system software and 
the status unit interface. 

II. THE SAFEGUARD MAINTENANCE TASK 

In its largest configuration, the SAFEGUARD DPS consists of as many 
as 50 digital racks, each containing up to 100 logic chassis. Each chassis 
can have between 500 and 600 logic gates. A total installation can have 
over 2000 chassis with over 500 unique chassis designs. Approximately 
two million distinguishable faults can occur distributed over these 
2000 logic chassis in the typical installation. 

The primary goal of the SAFEGUARD M&DSS is to provide rapid fault 
isolation for the largest, most common class of faults likely to occur. 
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Other, more subtle faults will involve longer isolation times, but by 
optimizing isolation for the most common faults, the required overall 
mean time to repair will still be met. Several assumptions are made 
concerning this major class of faults which must be handled by the 
M&DSS: 

(i) Only hardware faults are considered. 
(ii) Only permanent faults are considered. Transient and inter

mittent faults, when they occur in the green partition, are 
handled by real-time error response mechanisms. 

(iii) All faults have equal probability of occurring. 
(iv) Only one fault will occur at a time: Measured device failure 

rates support this assumption. 

These assumptions, along with further assumptions regarding real
time fault detection capabilities and the distribution of the various 
classes of faults expected, provided input to a series of parametric 
studies designed to arrive at specific l\I&DSS design objectives. The 
studies led ultimately to the goal of a four-hour mean time to repair 
for 90 percent of all DPS faults. The mean time to repair includes the 
time to: 

(i) Isolate the fault to a reasonable number of suspect chassis. 
(ii) Remove these chassis and test them on an automatic test set 

that identifies the specific faulty chassis and the failed circuit 
pack. 

(iii) Repair the chassis. 
(iv) Replace all chassis and verify the repair. 

An analysis of the possible trade-offs of time between these activities 
led finally to the requirement that the l\I&DSS be capable of isolating 
90 percent of the class of faults defined by the assumptions above, 
to three or less logic chassis within 15 minutes of their detection. 

III. M&D88 HARDWARE 

The conventional approach to digital fault diagnosis involves apply
ing a set of input data to the particular circuit under test and, by 
comparing the output of the circuit to an expected value, deducing 
the location of the possible circuit faults that could have caused any 
observed differences. Obviously, the larger and more complex the 
circuit between input and output, the greater the number of circuit 
faults that could cause any specific output error, and the greater the 
ambiguity in the final fault resolution. The primary design feature of 
the M&DSS (Fig. 1) is aimed at overcoming this problem. 
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Every digital rack within the SAFEGUARD DPS is equipped with a 
unique internal logic interface to the M&DSS. This interface consists 
of special programmable Pulsed-Set-and-Indicate circuits (PSIS) con
nected to most data and control registers within the rack. These 
circuits provide the means to read from or write into these registers 
independent of normal data paths. The PSIs are connected via an 
internal data bus to a maintenance buffer chassis within the rack 
through which the pSI'd registers may be selectively accessed. 

The proper placement of PSIs was an integral part of the logic design 
process for each SAFEGUARD digital rack. Through PSI access, large 
blocks of sequential logic are effectively dissected into smaller com
binational blocks, each having a number of inputs and outputs acces
sible via the M&DSS. This not only makes it quite simple to implement 
system recovery, as will be explained later in this paper, but also 
results in two important advantages related to fault isolation. First, 
it makes possible considerably greater fault resolution than can be 
had in standard logic design. Second, it makes practical the simulation 
approach to fault dictionary construction.! 
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Testing a digital rack, therefore, involves the repetitive execution 
of a simple four-step "program" : 

(i) "Set" data onto one pSI-accessible register. 
(ii) "Set" bits in one or more control registers to enable circuit 

operation. 
(iii) "Indicate" (read) the contents of another pSI-accessible 

register. 
(iv) "Compare" the result to an expected value. 

The execution of such programs is one of the primary functions of a 
digital rack called the ThI&D controller. The M&D controller receives 
maintenance programs from one of several program sources, translates 
and executes the program in a unit called the sequencer, and communi
cates with the rack being tested through fan-out logic called a data 
tree. The data tree is connected to the buffer chassis of each digital 
rack in the DPS through a separate maintenance channel. 

Once the communication channel to a particular rack has been 
established, the sequencer uses this channel to set data into and read 
data from selected registers within the rack. Data returned through 
the "read" instructions can be compared within the sequencer to an 
expected value and the results of t.he comparison will be returned to 
the program source. Again, these three operations, write, read, and 
compare, are the essence of the sequencer function. The sequencer 
can also specify up to two additional channels to allow interface 
maintenance tests between racks. 

DPS recovery is implemented through the M&DSS via sequencer 
"write" instructions stored in a protected core memory (part of the 
M&DSS itself) and designed to accomplish two functions: 

(i) Set the appropriate partition bits in the status unit to configure 
a minimum DPS. 

(ii) Initialize operational registers in selected DPS racks to boot-load 
a simple DPS control program and pass control to it; this pro
gram then completes the recovery operation. 

When recovery is initiated, the ThI&D sequencer automatically 
switches to the recovery memory as its program source. 

Since the M&DSS is used for both fault diagnosis and system recovery, 
it must be extremely reliable. The nl&D controller, the heart of the 
M&DSS, can overcome most single faults within itself. It has built-in 
redundancy, built-in fault detection logic, and PSI access that permits 
the application of M&D tests to one of the redundant sequencers via 
another. The chassis involved in system recovery are duplicated, as 
are the stores containing the system recovery programs. 
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IV. NONREAL-TIME MAINTENANCE SOFTWARE 

The M&D test program itself is the most basic unit of nonreal-time 
maintenance software. Conceptually, the design of an l\I&D test is 
quite straightforward, in keeping with the limited command repertoire 
of the l\I&D sequencer described above. Design begins at the level of 
"micro" tests, each oriented toward a single logic circuit path. Each 
consists of a number of set-up instructions that set a test vector into 
a register via PSI access, further instructions which toggle the necessary 
control bits to cause the test vector to propagate through the logic 
path to an "output" register, and finally an instruction to compare the 
output data to an expected value. 

From 200 to 2000 such "micro" tests might be designed to cover all 
the circuits within a logic block. The size of a logic block depends on 
functional boundaries of logic within a rack. Five to ten such logic 
block tests typically make up the total test for a single SAFEGUARD 
digital rack; over 300 block tests are involved in the maintenance 
facility for the largest SAFEGUARD DPS configuration. 

Three independent means exist for applying l\I&D tests to the digital 
equipment. The first and most direct means employs a mobile console 
that is used only during installation of a site. This console, containing 
a simplified version of the main l\I&D controller, has its own control 
panel and associated tape machine. The mobile console connects to 
the normal l\I&D buffer chassis in each rack to verify the operation of 
the rack before the installation of system cabling. 

After system cabling is installed, the l\I&D controller has direct 
access to each rack, and the second means of applying tests is made 
available. This consists of the l\I&D console (shown in Fig. 1) through 
which tests are transferred to the l\I&D sequencer from magnetic tape, 
and test results are displayed on a cathode-ray tube (CRT). 

Both the mobile console and the CRT console, however, are extremely 
slow, depending on magnetic tape as a test program source. Moreover, 
both return test results to the user in the form of an identification of 
the compare instructions that failed and the resulting error patterns. 
Fault isolation then requires a fairly knowledgeable maintenance man 
to interpret test results. Thus, while the CRT l\I&D console is a part of 
the tactical maintenance center, it exists primarily as an emergency 
backup to the third and most important test facility, the l\I&D Pro
cessor (MDP). 

The l\IDP is a modified CDC Model 1700 general-purpose digital 
computer. It provides the means for fully automatic high-speed selec
tion and transfer of tests to the l\I&D sequencer and the automatic 
interpretation of test results. 

The total collection of l\I&D logic block tests is stored on l\IDP disc 
along with alll\IDP operating software, including a test control program 

S68 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



that accepts commands ranging from a request to test a single logic 
block to a request for a test of an entire'digital subsystem. 

These test commands may be sent to the l\IDP automatically from 
green partition software or manually from its own TTY. In this latter 
mode, which is normally used for fault isolation, the test program 
saves the error symptoms (M&D noncompares) encountered and then 
requests that the fault dictionary tape for the logic block test ·which 
detected the fault be mounted on one of the l\IDP tape transports. 
Another MDP program then searches the dictionary to find fault lists 
for the noncompares detected. After the lists are processed, the result 
is printed out as a list of suspect chassis. 

The l\IDP provides the additional bonus of extending the diagnostic 
capabilities of the M&DSS beyond pSI-accessible boundaries. The use of 
fault dictionaries is limited to SAFEGUARD digital logic, but faults in 
other equipment may be diagnosed by applying functional tests 
through pSI-accessible registers in a digital unit that interfaces with 
the unit being tested. An l\IDP program controlling the test analyzes 
test results as they occur and branches to other tests along a program 
path that terminates with the identification of one or more likely 
faulty circuit cards, or the output of an error code pointing to a written 
manual procedure to be followed for a final fault resolution. This ap
proach has been successfully applied to the main SAFEGUARD memories 
and CRT consoles and their supporting equipment. 

v. M&DSS APPLICATIONS AND PERFORMANCE 

Any evaluation of overall SAFEGUARD M&DSS performance must, of 
necessity, consider the entire maintenance concept, not only the 
M&DSS itself, but also the role of the partitionable DPS, its status unit 
interface with the M&DSS, and the function of system recovery. All 
playa significant part in achieving the required system availability / 
reliability product. 

At this time, however, the full-scale system tests that will eventually 
yield specific maintenance system performance data are just beginning. 
Nonetheless, data do exist in two categories. Extensive testing has 
been done on the detection and dictionary-isolation capabilities of the 
basic M&D tests. 1 The M&DSS has also been used extensively in the 
maintenance of the DPS equipment at the tactical sites during the 
installation and test period. Maintenance experience in this environ
ment, while not directly translatable to the tactical situation, has 
produced considerable insight into l\I&DSS performance. 

More than anything else, experience to date has demonstrated the 
fundamental power and flexibility inherent in the primary l\I&DSS 
feature, the extensive maintenance data interface with the entire DPS, 
in concert with the general-purpose computing capability of the 
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maintenance data processor. Just as encouraging, however, has been 
the performance of a set of extended l\I&DSS capabilities developed 
during the early phases of installation and operation, before the 
widespread availability of l\I&D tests and dictionaries. A brief descrip
tion of these capabilities is instructive as background for the quantita
tive performance data to be discussed later. 

Central to all the extended capabilities of the M&DSS is a set of MDP 
programs known as Digital Unit Exercisers (DUX). One such program 
exists for each unique DPS rack type. Each DUX program provides the 
capability to control the functional operations of a rack on a macro
scopic level and to "dump" the contents of individual registers or 
groups of related registers within the rack. DUX perform these func
tions by accepting commands in a functional language, translating 
these commands within the l\IDP into appropriate l\I&D sequencer 
"write" commands, and transferring these to the sequencer for exe
cution. Subsequent "read" commands are used to dump the desired 
registers, and the results are output on l\IDP peripheral devices. 

In actual hardware maintenance operations, DUX have been used 
primarily to provide manual interaction, via the M&DSS, with a set 
of real-time programs originally developed to verify the complete 
functional capabilities of the DPS. * Data currently being gathered at 
SAFEGUARD sites show that this mode of fault detection and isolation 
continues to play an important role. 

Table I shows the results of data that have been gathered on the 
actual use of all MDP resources for a three-month period at the tactical 
sites. As mentioned earlier, the basic M&DSS and MDP software capa
bilities were designed to optimize fault detection and isolation on the 
most common class of faults anticipated, namely, single "hard" device 
failures. This class is shown in the table under the heading Hard Faults. 
The Other category includes timing and intermittent failures, design 
errors, and a variety of miscellaneous failures, largely mechanical in 
nature. It is important to note that these data were gathered midway 
during the site test and integration period, a time when design errors 
are indeed expected to be uncovered, and when frequent handling of 
the equipment, because of change activity, directly contributes to a 
greater number of intermittent and mechanical problems. 

In view of these facts, the data shown in Table I are extremely 
encouraging. They show that, for the period covered, the M&DSS success-

* Though not the subject of this paper, it is worth noting that the various DUX 
capabilities also provide an extremely powerful means for system software debugging 
by allowing dumps and snaps of otherwise inaccessible DPS registers without perturb
ing the very condition being probed. This capability has found extensive use through
out SAFEGUARD software development. 
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Table 1- MDP performance (July-September 1973) 

Fault Type 

Total Faults* Grand Total 
Hard Faults Other (75) 

(51) (24) 

M&D tests only Detect. 96% (49) 83% (20) 92% (69) 
Isol. 92% (47) 54% (13) 80% (60) 

DUX/ITPS required Detect. 8% (2) 0% (0) 3% (2) 
Isol. 17% (4) 0% (0) 11 % (4) 

All MDP resources Detect. 96% (49) 92% (22) 95% (71) 
Isol. 100% (51) 71%(17) 91 % (68) 

* In those cases where isolations exceed detections for a given capability, the fault 
was usually first detected by a user program. The CDC 1700 was then used to gather 
enough additional data to achieve isolation. 

fully achieved its design goals with respect to the Hard Fault class. 
Moreover, through use of the MDP extended capabilities, the M&DSS 

achieved at least its detection goals with respect to all faults. * Finally, 
the M&D tests alone come very close to achieving design objectives for 
all faults. Experience, then, supported by the data shown above, leads 
to a number of specific conclusions regarding M&DSS performance. 

Maintenance considerations must be an integral part of logic design. 
SAFEGUARD development schedules did not allow two or three iterations 
of the PSI placement-simulation-evaluation cycle. As a result, during 
test design, cases were discovered where additional PSIs, or a more 
efficient distribution of existing PSIs, would have produced significant 
improvements in fault detection, isolation, or both. In particular, 
more PSI access to control circuits and within logic feedback loops 
would have made it possible to define smaller and more independent 
logic blocks. In the most serious cases, hardware change orders were 
processed to add or rearrange PSIs. Nonetheless, nonoptimum PSI 

placement remains as the single most significant limitation on detection 
and isolation. 

Increasing the speed of the entire M&DSS would significantly extend 
its fault-detection capabilities. In its present design, the M&DSS 

executes a complete read-write-compare cycle in approximately 35 jJ.s, 
more than two orders of magnitude slower than many internal logic 
events in the DPS. In the design of the M&DSS, speed was sacrificed for 
reliability; for example, communication between the M&D controller 
and each DPS rack is in serial form to minimize the number of con-

* Isolation times using DUX are significantly longer than for M&D tests. Thus, we 
cannot conclusively say whether or not the goal of IS-minute isolation for 90 percent 
of all faults has yet been achieved. 
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nectors, relatively low-reliability components, in the entire path. As a 
consequence of this design decision, however, the M&DSS is limited in 
its ability to detect failures that only affect logic timing. A compare 
instruction can verify whether or not the expected value eventually 
appeared in a PSI's register, but not whether it arrived there on time. 
If, however, the M&DSS operated at system speed, it would be more 
effective in diagnosing this class of faults. 

The extended capabilities of the l\1&DSS described earlier in this 
section are effective, however, in compensating for both the short
comings owing to M&DSS speed and those owing to insufficient PSIs. 

By using M&D access to load and set into execution the more complex 
real-time functional test programs, the effects of timing faults and 
faults in complex control circuits can be detected. DUX capabilities 
can then be used to sample various PSI'd registers along the more 
elaborate functional path exercised by the test program, and the 
results can be interpreted to obtain fault isolation to a functional 
level. In fact, there are very few DPS fault conditions that cannot be 
handled by one or another of the maintenance tools available through 
the M&DSS. It is this aspect of experience that leads to a final conclusion 
on M&DSS performance. 

The total M&DSS concept offers great power and versatility as a 
digital maintenance facility. "Total concept" means the integral 
combination of PSI access and general-purpose computational control 
of the PSIs. On-line dictionary search makes possible the rapid isolation 
of the largest class of common device failures, while the extended 
capabilities available through the MDP allow the remaining faults to 
be dealt with in such a manner that the only limitation is the ingenuity 
of the maintenance man. 

In retrospect, the full range of M&DSS capabilities has yet to be fully 
explored. For example, again because of project schedule constraints, 
the logic block partitions originally defined have not been changed; 
but different partitions, chosen perhaps with timing faults specifically 
in mind, might allow timing faults to be handled via straight M&D 

test/dictionary methods. Conversely, the real-time DPS capability 
verification tests that have proven to be so useful in conjunction with 
the DUX might themselves be restructured with fault isolation more in 
mind (they were not originally designed for this purpose); it would 
then be possible to use the MDP to analyze the fault symptoms obtained 
through PSI access to yield on-line chassis level isolation information. 
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This paper provides an overview of one aspect of the SAFEGUARD 
approach to digital maintenance-the Maintenance and Diagnostic (Jyf&D) 
program-fault dictionary. TheM&D program detects the presence of faults. 
The associated fault dictionary provides fault lists for automatic fault 
isolation; it is generated by executing the maintenance program in an 
environment simulating the action of hardware in the presence of faults. 
The paper also provides some detailed discussion of simulator-performance 
im provements. 

I. INTRODUCTION 

A SAFEGUARD data-processing system consists of racks of equipment 
for three functional areas: a large real-time central computer facility, 
a large peripheral subsystem, and a Maintenance and Diagnostic 
Subsystem (M&DSS).1.2 This paper describes an essential aspect of the 
SAFEGUARD maintenance plan, the Maintenance and Diagnostic 
program-fault dictionary. * 

Fault-isolation dictionaries are available for most maintenance 
programs. Dictionaries provide a correspondence between fault
diagnostic-test failures and possible hardware faults (or faults of 
replaceable units) which could cause the failures. They have been 
used successfully in the No.1 Electronic Switching System (ESS)3,4; 
however, ESS and SAFEGUARD dictionaries differ in their format, 
generation, and use. Both Armstrong5 and Godoy6 have described a 
method for efficiently simulating the action of hardware in the presence 
of faults. Their technique is used in the generation of SAFEGUARD 
fault-isolation dictionaries. 

* Maintenance and Diagnostic programs are described by Hahn and Slojkowski.1 

In addition, supplemental maintenance programs are used to test hardware, which 
cannot be exercised by these programs, or to provide increased fault detection. 
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A test-control program accesses the dictionaries to isolate detected 
faults. After receiving results of test failure, the test-control program 
performs set union and intersection operations on the sets of fault 
lists in the dictionary entries associated with failed and passed tests 
to isolate them to an acceptable number of replaceable units (chassis). * 
If a maintenance program is completed without failure, the test
control program can either consider the rack fault free, schedule 
additional maintenance programs for execution within the M&D con
troller, or schedule supplemental maintenance programs. 

II. CONSTRUCTION OF SAFEGUARD DICTIONARIES 

2.1 Approach 

The dictionary approach to fault isolation was chosen early in the 
design cycle primarily to satisfy a requirement that craftspeople with 
moderate skill, working at a large number of installations, be able to 
quickly accomplish fault isolation. Simulation was considered as the 
only feasible method for generating dictionaries since there was no 
hardware time available for fault insertion, and the logic was too 
complex for manual dictionary generation. 

Figure 1 is a block diagram of the Logic Simulation Facility (LSF). 
For simulation purposes, each rack is divided into several, often 
overlapping, logic blocks, none of which exceeds 20,000 gates. This 
maximum gate count is a serious design limitation which occasionally 
causes functionally integral logic blocks to be subdivided. Had time 
permitted, this design limitation would have been eliminated. Each 
SAFEGUARD data-processing system has over 300 maintenance pro
grams designed to detect faults in the logic blocks. The tests within 
the program are designed manually. Most of these programs have 
associated fault-isolation dictionaries generated through simulation. A 
few programs (mostly for rack interface blocks) were not simulated 
since they were only testing a small portion of a block functionally 
much larger than 20,000 gates. Before programs are run on the simu
lator, they are debugged on the hardware to verify that predetermined 
logic values within compare instructions are correct. By debugging 
on the hardware rather than the simulator, the possibility that the 
simulated logic block is incorrectly constructed or initialized is 
eliminated. 

Circuit interconnections and other pertinent wiring information for 
the computer units are described in manufacturing tape files. The data 
in these files are used by an automatic wire-wrap machine to wire the 

* These chassis (500 to 600 logic gates) are, in turn, repaired by replacing integrated
circuit packages. 
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chassis and racks. These files are used to construct a simulation data 
base and to simulate the hardware at the logic-gate level. 

In addition to the manufacturing files, there are two primary inputs 
to simulation: the maintenance program discussed above and a set of 
supplemental instructions. These supplemental instructions enable the 
test designer to set any gate in the simulated logic to any logic state. 
They are particularly useful in initializing gates on the boundary of 
the logic block which are driven from logic not being simulated. It is 
through these instructions that the simulated logic block goes from an 
unknown state to a state representing the hardware at the start of 
testing. 

The true logic value simulation, pictured in Fig. 1, is a simulated 
execution of the maintenance program in the absence of faults. Since 
the program has "run clean" on the hardware (i.e., all compare in
structions are correct in predicted true logic value), the true logic 
value simulation is used to find discrepancies between simulation and 
hardware execution of the maintenance program. Discrepancies are 
usually caused by erroneous supplemental instructions or by de
ficiencies in the logic-block data base. These differences are usually 
resolved through changes to the instructions or data base. Standard 
aids are provided to assist in identifying causes for discrepancies (e.g., 
gate timing traces of change from known to unknown logic value). 

The LSF fault simulator is a deductive simulator (see Ref. 3). At 
any given simulation time, each gate in the circuit has a true logic 
value (possibly unknown) and a fault list (possibly null) associated 
with it. A gate's fault list contains all faults in the circuit which, if 
present singly, would complement the true logic value of the gate. 
Every fault present in a gate's fault list is said to be detectable at the 
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gate. The simulator assumes that only single, hard faults occur in the 
hardware. Transient failures, most timing faults, and marginal faults 
are not considered. Unit gate delay is assumed. At each interval of 
simulation time, the fault-free logic value and the fault list for a gate 
are computed if either the logic value or fault list of any of the gate's 
inputs has changed in the preceding time period. When a compare 
instruction of the maintenance program is simulated, the instruction 
number and all faults associated with the compared register (i.e., all 
the faults which, if present singly, would cause a bit to be comple
mented from its true logic value) are output to a fault tape for later 
dictionary generation. Thus, for each compare instruction, there exists 
a list of faults which are detected by that compare instruction due to 
their causing an incorrect logic value in the compared register. 

Statistical programs provide the maintenance programmer with 
both summary and detailed information on the faults detected and 
faults simulated but not detected. This output from the simulator, in 
many cases, is more important than the dictionary (described in 
Section III) and is a significant advantage of the simulation approach 
to dictionary generation. The statistical information is used locally to 
improve the detection quality of a given program. It is used globally 
in directing efforts to improve detection in certain areas (e.g., to design 
a supplemental maintenance program) or conversely, to suspend effort 
in an area already achieving good detection. 

2.2 Simulation performance improvements 

The initial version of the simulation facility required extensive 
computer usage for dictionary generation. Estimates indicated full 
utilization of an HIS 635 computer for a period of about two years. 
Even this large cost was an underestimate since many programs would 
have to be simulated more than once either because the corresponding 
hardware was significantly changed or because the program was sig
nificantly modified to improve detection. Therefore, considerable effort 
was devoted to reducing computing requirements. Some resource-use 
reduction resulted from internal algorithm and code modification. The 
four major items below, however, have most significantly reduced 
resource requirements, with a cumulative effect of approximately a 
ten-fold reduction. 

2.2.1 Fault list paging 

Core storage requirements for fault lists can become excessive. This 
necessitates partitioning of the simulation into n fault runs, each simu
lating faults in only lin of the total number of gates. Results for 
partitions are merged into a single dictionary. Since the entire M&D 
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Table I - Computer time savings due to software paging 

Block Partitions Total Elapsed Hours 
No Paging Paging No Paging Paging 

1 100 13 210.0 110.0 
2 50 12 19.4 10.0 
3 20 6 11.1 3.5 
4 6 1 7.3 2.2 
5 4 1 5.1 1.9 
6 4 1 4.0 1.3 

program must be simulated for each partition, the time required for 
calculating the true logic values is multiplied by the number of par
titions. When n becomes large this introduces a very significant 
overhead. However, it was determined by experimentation that core 
requirements for fault lists during simulation peak sharply after a few 
tests and then fall off quickly (particularly after implementation of 
other performance improvements to be described). An objective of 
reducing the number of partitions and total elapsed time was then met 
by a fault-list paging algorithm which minimized the time required 
during the absence of paging at the expense of time required during 
demand paging. The number of partitions for very large blocks is not 
always reduced to one in order to prevent the paging overhead from 
exceeding the overhead inherent in dividing the block into a few 
partitions. On the average, the number of partitions required is reduced 
by about 75 percent while elapsed computer time is reduced by 40 to 
75 percent. Table I provides some sample computer time savings due 
to demand paging of fault lists. 

2.2.2 No simulation of conditionals 

In simulation, unknown logic values appearing on the output of 
gates can be due to either one or more uninitialized boundary-access 
terminals or to a race condition jn a flip-flop. The fault list associated 
with a node whose state is unknown is not unique, since detection of a 
fault is dependent upon the particular logic value present. Armstrong5 

provides a method for nonexact treatment of fault lists in the presence 
of unknowns in order to reduce simulation time. The method was 
successful because the majority of unknowns appear only transiently 
and are replaced by known states before monitoring is performed. 
This method flags faults as "conditional" if their detection is con
ditioned on the logic value actually existing at an unknown input. It 
provides a more accurate simulator than one which ignores conditionals. 

Experimentation was performed on the trade-off involved between 
computer time required for simulation of conditionals versus decrease 

PROGRAM-FAULT DICTIONARY 877 



in fault isolation by nonsimulation of conditionals. Simulation of 
conditionals required from four to ten times as much computer time 
as did nonsimulation of conditionals. An additional 3 to 5 percent of 
the faults in the test blocks had no chassis isolation or wrong chassis 
isolation when dictionaries were generated without simulating con
ditional faults. It was concluded that conditionals should not be 
simulated so that computer time could be more profitably used. 

2.2.3 Fault elimination 

Fault isolation is essentially a process of applying tests and observing 
passes and failures (i.e., a fault signature) until only faults on an 
acceptably small number of replaceable units have the same signature. 
For example, Table II illustrates fault signatures for three faults. 
Faults a and b are indistinguishable in signature while Fault c is 
distinguished from a and b at Tests 5 and 9. 

The effect upon isolation of not simulating all faults for all tests 
was investigated; e.g., one could stop simulating a fault after it is 
detected once or twice (i.e., fails one or two tests). In the example 
in Table I, if a fault were no longer simulated after one detection, 
Faults a, b, and c would now be indistinguishable since they have the 
same signature through the first detection (i.e., Test 4). On the other 
hand, if the fault were no longer simulated after two detections, 
Faults a, b, and c would have the same isolation as simulating all 
faults for all tests, since Fault c is still distinguished from a and b at 
Test 5. 

Several blocks were simulated varying the number of detections 
required before a fault was eliminated from simulation. Results showed 
that eliminating a fault after two detections provided dictionaries with 
essentially the same isolation as eliminating a fault at three or more 
detections; yet simulation time (all other factors being equal) was 
reduced by 80 percent compared with no fault elimination. Table III 
provides some representative statistics. The net simulation time sav
ings is even greater since eliminating faults after two detections 

Table II - Sample fault signatures 

Faults Tests 
2 3 4 5 6 7 8 9 10 

a p P P F F F F P P P 
b P P P F F F F P P P 
c P P P F P F F P F P 

Note: P = Test passes in presence of fault. F = Test fails in presence of fault 
(detects fault). 
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Table III - Computer time savings due to fault elimination 

Eliminations * Savingst It 

1 92 83 
2 88 90 
3 83 91 

No Elim. - 92 

* Number of detections prior to elimination. 
t Percent simulation time savings vs no elimination. 
t Percent detected faults isolated to 1, 2, 3 chassis. 

2t 3t 

97 100 
98 100 
98 100 
99 100 

contributes to the sharp peaking of core requirements for fault lists 
and, therefore, is partially responsible for making fault-list paging 
possible. 

2.2.4 Fault collapsing 

Another attempt at reducing simulation time was "fault collapsing," 
i.e., merging two faults if detection of one guarantees detection of the 
other. For example, consider the string of invertor gates shown in 
Fig. 2. The effect of the output of C being stuck in logic value one is 
indistinguishable at the monitor able output from the effect of the 
output of A being stuck in logic value one. Therefore, a test will either 
detect both faults or neither fault. If both faults are located on the 
same replaceable unit, there is no loss in isolation by "collapsing" one 
onto the other and simulating only one of the faults. In order not to 
reduce replaceable unit isolation, strong restrictions are placed on 
candidates for collapsing. Only faults on strings of gates located on a 
single chassis are considered for fault collapse. Thus, a fault might be 
isolated to the wrong integrated-circuit package but not the wrong 
chassis. Typically, 15 percent of the faults in a logic block are col
lapsed resulting in computer savings of about 10 percent. One problem 
experienced with this limited fault collapse is that additional time is 
required to evaluate the accuracy of the simulator, and to repair 
chassis based on the ambiguous integrated-circuit-package isolation 
information in the dictionary. Table IV summarizes the results of the 
parameter trade-offs. 

2.3 Other methods tried and their limitations 

A study of a technique for building dictionaries, called Reachability 
List Dictionaries (R-LIST), was conducted. Figure 3 is a diagram of 

B···· ····8 
Fig. 2-Sample logic string. 
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Table IV - Summary of computer time savings 
vs dictionary degradation 

Parameter 

Paging 
No simulation of conditionals 
Fault elimination 
Fault collapse 

Time* Savings 
(%) 

40-75 
60-90 
80-90 
10-12 

Dictionary t 
Degrada tion 

(%) 

o 
3-.11 

1 
o 

* HIS 635 elapsed computer time vs full simulation. 
t Percent of faults with no or incorrect chassis isolation compared with a dictionary 

created without using the paramet.er. 

a simple logic block. An R-LIST is associated with each output gate 
(e.g., 4, 5, and 6). 

The R-LIST contains all gates (or faults) that lie on paths which 
feed the gate. The R-LISTS may be derived from the total connectivity 
matrix for the complete block. The R-LISTS may also be obtained by 
performing a reverse trace to all input (or boundary) gates to the 
logic block (e.g., gates 1, 2, and 3 of Fig. 3). The R-LIST can be 
created from the logic block description alone, without any dynamic 
simulation. Therefore, there was promise of providing a very economi
cal method of generating dictionaries providing the isolation was 
good. Experiments were performed to determine the isolation capa
bility of dictionaries constructed using these techniques. They showed 
poor isolation capability because: 

(i) Lists were much longer than expected and embraced many 
chassis. Each list contained over 50 percent of all possible fault
producing gates. 

(ii) Lists overlapped; that is, many of the gates in anyone list 
appeared in all lists. * 

Problems associated with automatically generating tests for large, 
asynchronous, sequential logic are well known. 7 It is difficult to adapt 
known test-generation algorithms to such circuits. SAFEGUARD de
signers were successful, however, in supplementing manually generated 
tests with automatic addition of compare instructions to outputs not 
already monitored. Usually, outputs were not monitored because the 
complexity of the circuit was such that the programmer did not 
realize the full effect of establishing correct logic configurations on 
control lines. The simulator was modified to "look" at all output points 

* The R-LIST technique was further refined and met with somewhat greater 
success when applied to ESS I-A. 
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Fig. 3-Sample block with output gate R-LISTS. 

for additional propagated faults. This simple technique is being used 
to increase detection by 3 to 10 percent (an increase which typically 
required several programmer months). 

III. EXPERIENCE WITH DICTIONARIES 

Dictionary entries are associated with test compares which could 
detect a fault. Functionally, a dictionary entry appears in the form 
shown in Fig. 4. For example, if Test N failed (i.e., observed output 
was not 101 2) with observed error pattern 1102, Faults F, G, C, D, and 
E are candidates for having caused the failure. The test-controller 
program on the CDC 1700 computer processes dictionary entries corre
sponding to both matched and mismatched test compares in order to 
compute a list of faults that have fault signatures consistent with ob
served test results. The test controller then prints out a list of suspect 
chassis (with suspect integrated-circuit packages) ordered by chassis 
with the greatest number of faults on the computed list. 

A sample of 31 dictionaries was examined to determine the number 
of suspect chassis associated with each compare and with each error 

TEST COMPARE N 

TRUE LOGIC VALUE 101 2 

THREE POSSIBLE ERROR PATTERNS 

(1) 0002 WITH POSSIBLE FAULTS 
A,B CHASSIS 1 
C,D,E CHASSIS 2 

(2) 1102 WITH POSSIBLE FAULTS 
F,G CHASSIS 1 
C,D,E CHASSIS 2 

(3) 1112 WITH POSSIBLE FAULTS 
A,B CHASSIS 1 
H CHASSIS 3 

Fig. 4-Functional dictionary entry. 
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pattern within the compare. For example, in Fig. 4, test compare N 
shows that faults from three different chassis could cause the test to 
fail. Figure 4 also shows that faults on only two different chassis could 
cause any of the three possible error patterns. 

These results show that chassis lists are usually short (on the 
average, 95 percent of the error patterns for a dictionary had three or 
fewer suspect chassis). Figure 5 indicates that both the tests and the 
logic are functionally designed; i.e., groups of tests are usually exercis
ing logic that has been reasonably arranged on a small number of 
chassis. This fact contributes to making the dictionary useful even 
when there is no exact match between an error pattern in the dictionary 
and the one occurring during the running of the maintenance program, 
as is shown below. It also contributes to the success of the above
mentioned performance improvement studies. 

Additional testing was performed to determine the accuracy of the 
simulator and the degree of dictionary isolation. Test approaches 
included limited hardware fault insertion, comparison with another 
independent simulator, off-line analysis of dictionaries, and vigorous 
program testing of simulator versions. The results confirm that the 
simulator accurately generates dictionaries for hard faults, and diction
aries usually isolate detected hard faults to three chassis more than 
90 percent of the time (i.e., if one can detect the hard fault, one can 
isolate it). 

Table V summarizes three different ways of evaluating how well the 
dictionary approach isolates faults. The first column shows the ex
perimental results from actually inserting 102 randomly chosen faults 
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Fig. 5-Typical number of chassis per fault list. 
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Table V - Preliminary fault isolation evaluation results 

Fault Insertion Independent Analysis Number of Chassis Simulation (%) (%) (%) 

1 76 70 85 
2 or fewer 87 81 96 
3 or fewer 93 92 98 
4 or fewer 94 94 99 
5 or more 4 3 1 
No or wrong 2 3 -

into a processor (99 detected). Physical fault insertion exercised the 
processor dictionaries in their actual environment. Faults were isolated 
to three chassis 93 percent of the time. The second column sum
marizes the results of simulating 261 detected faults on an independent 
simulator and then searching the appropriate 32 dictionaries for 
isolation. Finally, the third column summarizes the results obtained 
by analyzing the 300,000 possible detected faults covered in 19 ran
domly chosen dictionaries. The size of the 19 logic blocks covered by 
the dictionaries ranges from 12 to 31 chassis and averages 22 chassis. 
This analysis assumes that when the M&D program is run on the hard
ware in the presence of a fault, the first two detections of the fault will 
occur exactly as predicted in simulation and, therefore, will always 
yield correct isolation (i.e., the isolation list for a fault is exactly the 
set of chassis associated with the first two detections). The advantage 
of this type of analysis is easy determination of the approximate 
isolation for very large numbers of faults. Again, isolation to three 
chassis is better than 90 percent. 

Dictionary isolation evaluation is continuing with emphasis on 
increased hardware fault insertion, off-line analysis of dictionaries, and 
initial field experience. Results to date have been generally consistent 
with those presented in Table V. In fact, dictionaries have been used 
in the field to isolate to the integrated-circuit package. The feedback 
to programmers on detection has been instrumental in improving the 
quality of program fault coverage. Simulation statistics on processor 
programs, for example, show they now detect 87 percent of the simu
lated detectable faults. A four-man committee reviews simulator 
information on undetected faults and makes recommendations for 
improvement code. This technique has increased detection by as much 
as 25 percent in some areas. In most cases, the maintenance program 
was resimulated after the recommended improvement code was added. 
In such cases, the simulation data base was first made consistent with 
the latest hardware changes. In a few cases, where the computer time 
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for simulation was large, improvement code was added to the end of 
the program so that the dictionary remained correct with entries 
corresponding to the added program instructions at the end of the 
dictionary. 

Hardware changes which cause a divergence from the simulated 
hardware are a significant problem. These hardware changes eventually 
cause maintenance programs to noncompare when run against fault
free hardware. Such a condition causes rapid modification of the main
tenance program. Often, however, the corresponding dictionary cannot 
be immediately regenerated. Since it is difficult to quantify the re
sulting dictionary degradation, maintenance personnel eventually lose 
confidence in the dictionary and stop using it. Dictionaries seem to be 
worthwhile for hardware that is modified only occasionally. 

There has been much discussion about the need for a "nonexact
match"· strategy to handle such items as marginal, transient, and 
multiple faults or faults improperly handled due to parameter trade
offs or minor hardware change. The general strategy of on-,line pro
cessing of dictionary entries allows a very simple algorithm for isolating 
faults causing exact match. N onexact match can be handled by inter
action between maintenance personnel and dictionary. Simple informa
tion requests, such as "List all chassis associated with the first six non
compares or previous six compares," can be answered from the general 
dictionary entry (see Fig. 4). Such information tells maintenance 
which logic was being tested at the failed instructions. Since the 
chassis list is usually short, it is a good starting place for further 
manual troubleshooting. Thus, maintenance personnel can use the 
dictionary in homing in on the fault. Not all this interactive capa
bility is currently available. A microfiche print summarizing dictionary 
entries (i.e., which logic chassis could cause the failure) is being pro
vided to allow such interaction, although less conveniently. 

IV. CONCLUSIONS 

As others have noted, simulation facilitates detection feedback. 
Statistics provided by simulation agree with the laboratory experi
ments (i.e., they are believable). Since the statistics indicate which 
faults are not detected, they enable the M&D programmer to improve 
detection, resulting in a better maintained system. Since good detection 
is required for good isolation, this benefit of simulation should be con
sidered when one chooses a dictionary generation method. It often 

• A nonexact match situation results when a fault causes the maintenance program 
to noncompare when it is run on the hardware and the dictionary entries do not 
indicate any fault consistent with the observed error patterns. 
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overshadows the dictionary itself. If the simulator is efficient, the 
augmented l\I&D program can be resimulated. 

The consistently high quality of the processor-unit dictionaries, for 
example, indicates the practicality of dictionaries for large logic blocks 
(20,000 gates) using SAFEGUARD hardware technology.1,2 Both the 
fault model and the simulation were simplified, yet isolation remained 
quite good. (In fact, multiple faults were often correctly isolated.) 
Thus, dictionaries for large, stable blocks are useful in isolating faults 
to a small number of chassis. Because the format actually indicates 
suspect integrated-circuit packages, the dictionary is further useful in 
repairing the chassis. On the other hand, dictionaries are marginal, at 
best, for very small logic blocks, blocks with very low detection, or 
blocks subject to a very high rate of hardware change activity. Diction
aries can be regenerated for blocks experiencing high hardware change 
order activity providing the computer time required for regeneration 
is reasonable. 
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The Central Logic and Control (CLC) is the digital computer that con
trols SAFEGUARD. This paper describes the novel features of the CLC 

operating system, presents its design rationale, and points out its limita
tions. Enlphasis is on the characteristics that make the operating system 
suitable for applications other than SAFEGUARD. These include its ability 
to control as many as ten processors, its ability to initiate the execution of 
a program within milliseconds of an event, and its ability to detect and 
isolate faulty hardware racks without manual interventioll. 

I. INTRODUCTION 

The Data-Processing System (DPS) at a SAFEGUARD installation is 
controlled by a stored program computer, the Central Logic and Con
trol (CLC). CLC software can be divided into a set of applications pro
grams plus an operating system. From the point of view of the operating 
system, all applications programs are simply the user or the user 
process. 

Although assemblers, compilers, and linkage editors are usually con
sidered part of an operating system, the CLC operating system provides 
none of these. All program preparation takes place on a separate 
support computer, currently an IBl'vI System 370. * The programs com
piled and link-edited on this machine, including the operating system 
itself, are brought to the CLC on magnetic tape as load modules. 

II. THE ARCHITECTURE OF THE CLCt 

The CLC consists of one to ten identical processor units sharing a 
common memory system, two Input/Output Controllers (roCt;) , and 
two Timing Generators (TGS). Processors are independent of. one 

* The reasons for this are discussed in Ref. 1. 
t A more complete hardware description appeart; in Hef. 2. 
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another in the sense that each executes its own instruction stream 
without knowledge of the instruction stream being executed by any 
other processor. An interrupt causes a processor to switch instruction 
streams in response to an error condition it has detected, such as 
arithmetic overflow. l\1emory is of two types: program store, read-only 
core from which processors may fetch instructions but not data; and 
variable store, ordinary core which processors may read or write. 
l\1emory racks are shared and not associated with a particular processor 
so that any processor can reference any memory location. Processors 
always reference program store by absolute address; they may refer
ence variable store either by absolute address or through base registers. 

Data transfer between the CLC and its peripheral devices is per
formed by an roc that operates independently of the processors. roc 
programs residing in variable store may be initiated either by a proces
sor or by a peripheral device; these programs may perform elementary 
storage-to-storage operations, such as setting or clearing bits in variable 
store, as well as r/ o. 

The roc controls a variety of peripherals. Some of these are con
ventional data-processing devices such as the disc drive units, the 
magnetic tape transports, the card reader, and the line printer of the 
recording subsystem; the teletypes; and the cathode-ray tube dis
plays of the display subsystem. Other equipment such as the radar 
subsystem, the missile subsystem, the TG, and the l\1aintenance and 
Diagnostic Subsystem (M&DSS) are also considered peripheral devices 
only because they communicate with the roc rather than with the 
processors directly. 

The TG, part of the CLC, contains a time-of-day clock incremented 
every 200 ns. The TG can cause the initiation of an roc program when 
a specified time of day has been reached. By suitable roc programming, 
this notification may be made repetitive. 

The M&DSS is particularly important to the operating system. It can 
inject logic signals into and sense logic signals within DPS racks at 
predefined M&DSS test points. Under the proper conditions, the M&DSS 
can control DPS equipment by means other than their normal inter
faces. For example, an M&DSS instruction that places the proper pattern 
on roc test points could cause an r/o operation to be performed. 
M&DSS instructions can originate from various sources, only one of 
which will be mentioned here: the M&DSS read-only core memory. 
M&DSS executes instructions from this source in response to one of three 
stimuli: manual intervention, failure of the CLC operating system to 
reset a sanity timer, or an explicit request from CLC software. 

The SAFEGUARD data-processing system includes standby equip
ment. There is one extra processor, program store, variable store, roc, 
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and TG. A given peripheral device is either duplicated and wired to a 
particular 10C or switchable under program control to either IOC. Soft
ware can establish a green partition and an amber partition such that 
equipment in the green partition cannot communicate with equipment 
in the amber partition, and vice versa. The amber partition has two 
purposes. Spare equipment is partitioned amber, so it may be used as 
a pool of inactive equipment from which replacements for green units 
are drawn; for example, the operating system can substitute the amber 
IOC for the green IOC. When it contains sufficient equipment, the amber 
partition may function as an independent computer. The operating 
system then executes independently in each partition. 

III. THE SUPPORT MODE AND THE PROCESS EXECUTE MODE 

The SAFEGUARD data-processing system is used for three different 
activities with distinct requirements: 

(i) Tactical execution of a user process. 
(ii) Debugging of a user process. 

Uii) Utility operations such as saving the contents of disc packs 
on magnetic tape. 

The operating system reconciles conflicting requirements between 
these three environments by functioning in the process execute mode 
for item (i) or the support mode for items (ii) and (iii). 

In the support mode, the CLC operating system reads requests from 
job control cards to invoke utility programs. Some of these programs 
allocate space on DPS disc volumes; others install load modules created 
on the support computer onto DPS disc. Still others temporarily or 
permanently patch load modules. 

Debugging is easier in the support mode than in the process execute 
mode. In the process execute mode, program testing is hampered be
cause manual interactions such as a teletype input cannot be exactly 
reproduced for each test run and because the cause of an error is diffi
cult to determine when several processors have been executing simul
taneously. In the support mode, on the other hand, the operating 
system allows simulated manual inputs to be generated as specified by 
a card deck, each card tagged with the time of day it is to be processed. 
Also in the support mode, the operating system allows all processors 
but one to be idled when a programmer-specified condition occurs. 
Only one user job can run at a time, although that job may use more 
than one processor. A more detailed discussion of the operating system 
support mode debugging capabilities appears in this volume.3 

The second mode of the CLC operating system, the process execute 
mode, is discussed in depth in Sections V through IX. 
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IV. RECONFIGURATION, LOADING, AND DPS RECOVERY 

Selection of either the support mode or the process execute mode is 
under the control of the CLC data-processing system operator at the 
time the system is initialized. The major events following a request for 
the process execute mode will now be examined. 

First, the operating system attempts to identify faulty hardware, 
such as an JOC that appears unable to reference a particular variable 
store. Next, it establishes a green partition sufficiently large for the 
user process (by examining tables stored on disc along with the 
process), and partitions amber all equipment not needed. Finally, it 
loads the user process from disc, it enables the sanity timer, and 
execution begins. 

The same sequence of events can also be initiated manually or 
automatically during execution when DPS sanity is in question, in 
which case it is called DPS recovery. The reason for this operation is 
discussed in Section IX. 

Both manually initiated loading and DPS recovery involve the M&DSS. 
Each causes the M&DSS to execute a program that idles all processors, 
causes the IOC to load a portion of the operating system into memory, 
and restarts all processors. The remainder of the load or the recovery 
is performed by the operating system as described above. 

V. THE PROCESS EXECUTE MODE 

Two fundamental constraints are placed on the CLC operating 
system in the process execute mode: 

(i) Timing. Certain user process computations are required as often 
as every 6.5 ms. 

(ii) Error Control. The incidence of a hardware or software failure 
must not cause the operating system to lose control. 

The following sections of this paper examine how the four operating 
system functions of processor management, main storage management, 
I/o management, and error recovery are performed as a consequence 
of these constraints. 

VI. PROCESSOR MANAGEMENT 

The problem of processor management is simply stated: How shall 
the CLC processors (as many as ten) be best utilized to perform the 
SAFEGUARD process control calculations within the real-time constraints 
imposed by system requirements? To provide the necessary through
put, the multiple processors must be permitted to perform certain 
calculations in parallel, but hmv shall this capability be provided to 
the programmer? Shall the programming language allow statements to 
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be executed in parallel as in ALGOL G8? The answer is no. Parallelism is 
excluded from the language, and instead the operating system is 
allowed to execute simultaneously as many "independent" programs 
as possible, as in conventional multiprogramming systems. 

Recognizing that it may be necessary to prevent one program from 
interfering with another through alteration of shared data, the operat
ing system provides functions equivalent to Dijkstra's4 P and V so 
that "independent" programs may cooperate, thus becoming no longer 
truly independent. Programmers can write parallel algorithms in
volving several programs. The operating system will assign programs 
(now called tasks) to processors so that as many processors as possible 
are busy. The assignment algorithm is sketched later. 

The real-time constraint can be approached in two ways. "Time" 
often suggests "interval timer," the expiration of which usually causes 
a processor interrupt, followed by the initiation of the time-dependent 
computation. This method becomes decidedly unattractive if the time
dependent computation must be performed on more than one processor, 
for the operating system would have to decide which processors to 
interrupt, save the previous state of each, initiate new tasks on several 
processors, and later restore the processors to their original tasks. 
Therefore, this interrupt-driven approach is discarded in favor of a 
simpler method that is suggested by the following observation. Assume 
the time-dependent calculation must be completed within 6.5 ms from 
the time of request and further that it can be structured as P tasks each 
having an execution time T of less than 6.5 ms. Then if, among the 
tasks that are already running at the instant the time-dependent 
calculation is requested, at least P of them finish within 6.5 - T ms, 
sufficient processors will be available to complete the desired computa
tion. By restricting task run times to the millisecond range, the desired 
behavior can be produced without timer interrupts because processors 
become free every few milliseconds. 

If a computation cannot be completed in milliseconds, it is divided 
into pieces (tasks) that can be completed in the allotted time, and 
each task is executed in turn. This requires the operating system to 
recognize predecessor conditions, e.g., that Task B cannot run until 
Task A completes. It is useful to allow more complex situations, such 
as those represented by Fig. 1. Here, Task A is said to enable Tasks B, 
C, and D, and Task E cannot execute until conditionally enabled by 
both C and D. Enablement is a generalization of the "wake-up" opera
tion of other operating systems. 5 

What conditionally enables Task A? It could be some other task not 
shown, or it could be the operating system. One particularly important 
feature of the operating system is that it can be requested to enable a 
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Fig. I-Predecessor conditions among tasks. 

given task approximately every 6.5 N ms (N = 1, 2, 4, "', 64). Sets 
of tasks initiated this way are called timed arrays, structures that form 
the basis for almost all time-dependent computations performed in the 
process execute mode. 

Assuming that each task is assigned a unique priority relative to all 
other tasks, the following algorithm decides which task will run next 
on a given processor: 

(i) Of all the tasks whose predecessor conditions have been satisfied 
but which are not executing yet, execute the task of highest 
priority. 

(ii) Allow each processor to perform step (i) independently of all 
other processors. 

If each processor performs this operation whenever the task it is 
currently executing terminates, then no one processor is master over 
another, and the operating system is not sensitive to the number 
available. In fact, the number of processors can be increased or de
creased during execution. 

The way in which the operating system keeps track of the 6.S-ms 
intervals can now be explained. In Section II it was stated that the 
IOC can alter bits in memory, that an IOC operation can be initiated by 
a peripheral device, and that the timing generator may be programmed 
to signal the IOC at intervals of 6.5 ms. Let the IOC program "satisfy the 
predecessor conditions" of a task (i.e., set bits in an operating system 
table), and let this task be of high priority. The above algorithm then 
ensures that this task will execute as soon after the timing generator 
command as a task on any processor terminates. Although an exact 
6.S-ms synchronism is not possible, the simplification of the operating 
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system achieved by not using timer interrupts for this purpose out
weighs the disadvantage of having to account for a slight timing jitter 
when real-time deadlines are being planned. 

The previous paragraph implies that, in the process execute mode, 
the operating system is itself executed as a set of tasks. This is indeed 
the case. In fact, the processor management algorithm makes no 
distinction between operating system tasks and those of a user, nor 
are system tasks necessarily of higher priority. In this way, execution 
of the CLC operating system is distributed over all the processors and 
the loss of a processor simply results in its load being equally distributed 
among those that remain. 

VII. MAIN STORAGE MANAGEMENT 

The hardware design of the CLC processor restricts the main storage 
management that the operating system can easily perform. The design 
does not allow the creation of a virtual memory since program store 
and variable store are both referenced by absolute addresses embedded 
within machine instructions. For the same reason, code is not easily 
relocatable, and a main storage management technique that assigns 
the same program to different locations in memory at different times 
is not feasible. A static allocation for all main storage is therefore im
plied. With a minor exception for part of variable store, this is the 
case. 

Since programs are placed in fixed locations in memory, it is desirable 
to make this assignment only once, prior to task execution. The 
Execution Preparation Facility,! executing on the support computer, 
performs this function, and the load module brought to the CLC is not 
relocatable. This implies that the CLC memory rack configuration 
assumed at link-edit time must be available when the load module is 
read into core, and it is the responsibility of the reconfiguration and 
loading function of the operating system, described in Section IV, to 
ensure this. 

The operating system provides a limited overlay mechanism. Two 
or more programs in the load module may be bound to the same address, 
and one or the other read into core as desired. The operating system 
performs the disc transfer, but it is the responsibility of the user to 
request the operation explicitly and to keep track of the current con
tents of overlay areas. Data base overlays may also be performed. 

The operating system provides up to ten pushdown stacks in variable 
store, one for each processor. The stacks are used in the ordinary way 
for passing subroutine parameters, saving return addresses, and pro
viding local storage for subroutines. A processor's stack is initialized to 
empty whenever a new task begins. 
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The CLC operating system provides no other forms of dynamic 
memory allocation. All other variable store usage, like all program store 
usage, must be declared at compile time. The decision not to allocate 
variable store dynamically meant that the maximum amount of data 
to be passed between two tasks would have to be decided at design 
time. This decreased operating system overhead and ensured the 
existence of a data structure large enough to handle the specified 
traffic level. 

VIII. 1/0 MANAGEMENT 

The traditional r/o management functions of an operating system 
are r/ a scheduling, buffering, I/O completion processing, reservation 
and allocation of devices, and protection of one user from another. But 
an operating system can also provide other services such as concealing 
differences between devices so that one device can be substituted for 
another or altering the appearance of the device so that it is easier to 
program. In any case, an operating system should ensure the reliable 
performance and efficient use of the peripheral devices. 

The CLC operating system deals with t,yO general categories of 
devices. The first set consists of the conventional devices and includes 
the magnetic tape transports, the disc drive units, the cathode ray tube 
displays, the teletypes, the card reader, and the printer, and the 
second consists of the special-purpose devices such as the radar sub
system and the missile subsystem. These latter units are considered 
first. 

For the special-purpose peripherals, the CLC operating system is only 
concerned with I/O completion and reliable performance. In particular, 
device characteristics are not camouflaged, and no attempt is made by 
the operating system to ensure the efficient use of the unit. Buffering is 
generally limited to providing an input area for devices that send 
data to the roc of their own accord, under hardware rather than soft
ware control. The operating system functions of r/o scheduling, reser
vation, allocation, and user protection for this class of peripherals are 
simple. There is only one on-line unit of each type, and the user must 
do everything himself. Finally, an attempt is made to ensure the re
liable performance of each device by monitoring some error indications 
it can produce and informing the user if trouble is being reported. 
These reports deal generally with the roc-peripheral interface; the 
user is responsible for sensing and responding to device-dependent error 
conditions. The operating system was designed this way because the 
users were not sure at the time of how they wanted to program the 
special-purpose devices. 

S96 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



While the operating system management philosophy for special
purpose peripheral devices is generally one of minimal intervention, its 
approach for conventional devices is almost the opposite. Emphasis is 
placed on I/O scheduling and reliability and, in some cases, on altering 
the appearance of the device to the user. For example, to increase disc 
drive efficiency, read and write requests received by the operating 
system are reordered to minimize access delays. To increase reliability, 
each disc write is performed to two units so that if a subsequent read 
on one unit fails, a duplicate copy is available. The magnetic tape 
transports are another example. In this case, the appearance of the 
device is altered so that the user sees a tape capable of recording at up 
to four times the hardware rate of an individual transport. This is ac
complished by directing suitably buffered output not to a particular 
transport but to a pool of four, capitalizing on the ability of the IOC 

to overlap writes on as many as four transports. The designers of the 
operating system knew how the conventional peripherals would be used, 
so they were able to plan more sophisticated support for them. 

N either the conventional nor the special-purpose peripheral devices 
generate processor interrupts when they complete a request. Instead, 
every 6.5 ms the operating system tests whether any I/O has completed. 
It then notifies the user via the conditional enablement of a user task. 
Since processor management uses no interrupts, neither does I/O 

management. 
In the process execute mode, the CLC operating system makes no 

attempt to conceal the differences between devices, and programs are 
usually device-dependent. For tactical execution, this is permissible, 
but in other circumstances, it is a handicap. This is discussed further 
in Section X. 

IX. ERROR DETECTION AND RESPONSE 

The operating system detects errors in many ways and provides both 
local and system responses to these errors, depending on the circum
stances. Local error responses consider the frequency with which an 
error is reported. If the frequency exceeds a given threshold, then 
extensive corrective action is assumed to be required. For error con
ditions that are treated in this manner, the operating system may make 
a particular response before the threshold is reached, but a different 
response after it is exceeded. For example, before the threshold is 
reached, a device reporting errors may be reset; after it is exceeded, 
further use of the device may be prevented. 

This latter action suggests a general technique called "severing." 
If a peripheral device or a software function is declared severed, the 
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operating system rejects all future requests for that device or function. 
This procedure is applicable to a variety of error conditions; its intent 
is to minimize snowballing by preventing a second failure from occur
ring as a result of the first. In the face of many errors, severing pro
duces a relatively gradual loss of operating system capabilities and is 
appropriate in situations in which the consequences of DPS recovery 
cannot be tolerated. 

Some operating system functions, especially processor management 
and I/o management for the special-purpose devices, are never severed. 
These functions execute moderately elaborate error recovery code that 
attempts to prevent unrelated calls of the same type from failing. 

System level responses are provided in but not initiated by the op
erating system. A more complete discussion of SAFEGUARD error control 
can be found in Ref. 6. 

X. DEFICIENCIES OF THE OPERATING SYSTEM 

A single mechanism for peripheral device substitution, a feature 
commonly found in general-pupose operating systems, is not in the 
CLC operating system. Initially, this was felt to be an unnecessary 
complication because the important peripherals, the special-purpose 
devices, cannot be mimicked by any other peripherals. Later, several 
operating-system designers needed particular instances of this capa
bility, and each built his own version. Allowing commands to be read 
from the card reader rather than from a teletype (in the support mode) 
and permitting the use of one teletype in place of another (in the 
process execute mode) are both instances of peripheral device substitu
tion, yet two different mechanisms were coded. 

The operating system does not provide for communication between 
tasks, and it should. An extension of conditional enablement would 
be to allow a parameter list to be passed by each predecessor task. 
Communication between tasks does take place, but each programmer 
devises his own mechanism. 

Whenever a particular subroutine was needed by one class of users, 
it was made part of the operating system and accessible to aU users, 
thus penalizing those \vho did not require the subroutine by costing 
them core. A subroutine library established on the support computer 
would have avoided this. 

XI. CONCLUSION 

The CLC operating system is not intended to be general purpose and 
cannot easily be made so. Criteria that might be used to judge the 
adequacy of a general-purpose operating system do not apply to it, 
such as the ease of learning its job control language or the number of 

S98 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



jobs it ,can proc~_s~ per hour. Since the real-time performance of the 
SAFEGUARD DHta-Processing System depends not only on the CLC 

operating system but s,lso on the user process, the operating system 
would have to be considered a failure no matter how elegant it was if 
the overall real-time performance of the DPS were not achieved. But 
since the required performance has been achieved, the CLC operating 
system can be termed a success. 

The operating system's most innovative and greatest success is its 
approach to processor management. The approach taken provides a 
rapid response time without the conventional use of processor inter
rupts. It also sets a logical framework in which it is possible to design, 
code, and test real-time programs taking advantage of up to ten inde
pendent processors. 
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Process design, structuring the real-time program fOl' the CLC, was one 
of the difficult aspects of SAFEGUARD software development. I nit1:ally, there 
were no significant guidelines or criteria. In the course of the project, 
basic process-design rules were developed and sign1jicant experience was 
acquired. S01ne techniques that emerged are the use of short-running, asyn
chronous tasks; overlays to minimize storage requirements; and multiple 
storing of programs to lninimize processor queuing. 

I. INTRODUCTION 

Process design involves defining the characteristics, interrelation
ships, and organizational structure of the tasks that comprise the 
operating system and the applications software. It was one of the 
difficult aspects of SAFEGUARD software development. Initially, there 
were no specific criteria to be followed. Several iterations were required 
to converge on the final process design. The purpose of this paper is to 
present some of the basic guidelines that evolved in the course of the 
SAFEGUARD project. The guidelines included are those believed to be 
most workable and most applicable to a wide range of real-time soft
ware systems. 

II. GENERAL PROCESS-DESIGN GUIDELINES 

Maj or efforts in the process design involved selecting from among 
the available methods of enablement for tasks, selection of the time 
frames in which they would execute, and the definition of task priorities. 
(For a description of tasks and processor management, see Ref. 1.) 

2.1 Task structure 

Initial investigation of possible process structures led to the use of 
both synchronous (time-enabled) tasking and asynchronous (event-
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triggered) tasking. It was clear that critical processing had to be given 
high priority, and it was generally of a synchronous nature. Asyn
chronous tasks were to be used to fill the time slots between critical 
synchronous tasks and to provide a uniform distribution of processing 
among the available processors. This general approach had to be 
modified by a few additional considerations. First, low-priority asyn
chronous tasks must have a short run time or they will hold a processor 
too long, denying access to high-priority tasks. Second, it is generally 
more difficult to design and test a process which utilizes asynchronous 
tasks. Further, it is not always necessary to achieve a uniform work 
distribution, e.g., during the process initialization and termination 
sequence. An almost totally synchronous design was chosen for process 
initialization and termination tasks to facilitate design and testing. 

It is inefficient to enable a synchronous task, only to find that the 
task has no data to process because a peripheral device has not com
pleted its transfer or because other tasks have not generated it. 
Ultimately, synchronous tasks were utilized when critical and periodic 
response was required and when the availability of data at the same 
frequency as task enablement could be guaranteed. 

The asynchronous, event-triggered task is enabled by the completion 
of an Ilo transfer or by the successful completion of processing by a 
predecessor task or tasks. Each predecessor task can conditionally 
enable one or more successor tasks. A successor task is absolutely 
enabled, i.e., ready to run, only after all conditional enablement 
criteria have been satisfied. The predecessor-successor relationship of 
conditional enablement can also help alleviate data interference prob
lems. Table I depicts some of the process-design questions that \yere 
faced and the type of tasks used to answer these questions. 

Table I - Process design 

Problem Description 

Support high-frequency, high
accuracy endoatmospheric 
target track. 

Process intersite communications 
message traffic. 

Generate time-ordered, simulated 
radar replies during an 
exercise. 

Task Description 

Synchronous task whose frequency is at 
least as high as the update 
requiremen ts. 

Asynchronous tasks whose trigger for 
enablement is the arrival of intersite 
communication messages. 

Both synchronous and asynchronous 
tasks. Tasks that generate the replies 
are synchronous. These tasks condi
tionally enable an asynchronous task 
which time-orders and outputs the 
simulated replies. 
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2.2 Parallel processing 

There were several cases where identical processing had to be re
peated for several items in a short time frame. In this case, the through
put requirement exceeded that of a single processor. The solution to 
the problem was to parallel process, i.e., to define several tasks execut
ing identical code. Since the code was re-entrant, only one program 
copy was required even though each instance of the task could be 
separately controlled and separately enabled. Again, the structure of 
this processing could be synchronous, asynchronous, or a combination 
of both. It was found necessary to parallel process different types of 
tasks to take full advantage of the multiprocessor environment. 

Obviously, multiple-instance task use may cause processor queuing 
problems. These can be alleviated by storing one program copy for 
each task. The critical consideration determining the number of pro
gram copies needed is the response requirement on the tasks involved. 

2.3 Data interference 

One of the primary design goals was to maximize throughput of the 
processing system. A natural implication of this was an attempt, in the 
beginning, to multiprocess everything. This immediately triggered 
task-to-task data-interference problems. Reviewing the task-response 
requirements made it obvious that not only was it not necessary to 
multiprocess all tasks, but in many instances it was impossible. 

This observation led designers to take a closer look at task time
frame design and the serial-processing relationship among tasks. From 
these investigations evolved two basic task-design guidelines for 
avoiding data interference. If possible, competing tasks should be 
assigned to nonoverlapping time frames of possible execution. * If this 
could not be done, an attempt was made to establish predecessor
successor relationships among them. These techniques could be used 
only infrequently when tasks were competing for data. 

Since a large number of data-interference problems were not solvable 
by either of these techniques, attention was directed to data-base 
design. lVlany interference problems arose when only two tasks were 
in competition, one loading the data and the other processing them. In 
those instances where the competing tasks were accessing a variable 
number of data items each time executed and the response requirements 
on the task were not critical, a circular queue with an access mechanism 
called a take-load pointer was used. With this mechanism, the loading 
task uses the load pointer to control the writing of data. It never 

* A time frame is a time "window" in which a task is allowed to execute. 
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writes beyond the take pointer. The processing task uses the take 
pointer to control the reading of the data. It never takes beyond the 
load point. This technique alleviated about 10 percent of the inter
ference problems. 

When two high-frequency tasks with critical response-time require
ments were competing for data, a double-buffering technique was useful 
to avoid data interference. In this case, two tasks both execute at a 
high frequency and in the same time frame. One loads the data and the 
other processes it. The competition question was solved by dividing 
the data area into two identical buffers, one of which was being loaded 
while the other was being unloaded. When unloading was complete, 
the buffers were switched. This technique works, but was of limited 
applicability. 

As a final resort to solving interference problems, locking and un
locking conventions were used. These conventions required use of 
predefined program-logic sequences to lock and unlock data areas. 
These sequences relied on a special CLC instruction called a "biased 
fetch" which was implemented for this purpose. (For a more complete 
description, see Ref. 2.) Locking will always work, provided locking 
conventions are observed and enforced. Improper use of locking has 
caused the integration effort many headaches. The improper use of 
locks will manifest itself in a thousand disguises. However, it was 
necessary to use locking to solve more than half of the interference 
cases. 

2.4 Discussion 

How well is the process working? How close does the process conform 
to the process-design requirements? These are two questions that were 
constantly asked. To answer them, a process performance-monitoring 
capability was implemented. The implementation relied on constant 
monitoring of "probe" or test points within the process. Implantation 
of these probes into the process and interpretation of the resulting 
data proved useful for fine tuning the design and verifying that the 
basic requirements were being met. This should have been done much 
earlier in the design cycle. Probes should be capable of furnishing such 
data as routine and subroutine execution timing; the time differential 
between when a task is enabled and when it actually acquires a proces
sor; minimum, maximum, and average task run times, etc. 

This section would be incomplete without a few words about the 
position of the process designer. It became obvious that the process 
designer must participate in program design and integration. He must 
do this to guarantee that the program designers do not stray from the 
process-design requirements on program timing and interfaces. He 
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must be part of the integration effort to ensure that the process design 
is actually implemented in the process. Furthermore, it was found that 
the process designer required this program design experience and 
integration experience to be able to accurately interpret performance 
data and to use it to refine the design of the process. 

III. SYSTEM SIZING CRITERIA 

Estimates of the number of processors, program stores, and variable 
stores needed to do the job were continually monitored in the light 
of the mission to be fulfilled by the system. System sizings were an 
iterative effort. As requirements solidified and understanding of them 
improved, as routine, subroutine, and data-base estimates improved, 
and as simulation tools for forecasting system loading improved, sizing 
estimates changed. 

3.1 System operating points as design input 

It was the process designers' responsibility to map system perform
ance requirements into the number of instructions needed to code these 
requirements, the amount of variable store required to support the 
data base, and the number of processors needed to meet throughput 
requirements. The design effort attempted to balance, on a system cost 
basis, the inevitable trade-offs among these three resources. 

To facilitate evaluation of the impact of the various trade-offs on 
process design, a contour or envelope of possible system operating 
points was developed. Points on this contour reflected maximum usage 
of one or more resources and/or maximum processing capability of one 
or more process functions. It soon became clear that there were not 
enough resources to support the "worst-case" condition for all process 
functions. Further, it was not only impossible to support the worst 
case, but not necessary, since all functions do not peak simultaneously. 
Once the contour was identified and a feasible and reasonable set of 
operating points selected from it, trade-offs could be thoroughly 
examined. 

After the operating point was selected, it was the responsibility of 
the process designers to ensure that the design supported it. It was this 
effort that required the continual resizing of the system to guarantee 
that it would fit into the resources available. 

3.2 Minimizing core requirements by the use of overlays 

As design proceeded, program storage resources were rapidly ex
hausted. Further investigation showed that there were certain sets of 
programs that were not required to be in core simultaneously since their 
functions were mutually exclusive. Another set of programs had such 
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"loose" timing requirements that they could be called in from a 
peripheral storage device prior to execution. Examples of such sets are 
hardware test programs, display update programs, and system initiali
zation programs. 

3.3 Load balancing 

One of the most critical factors that influenced selection of the system 
operating point was the need to maintain a balance between the 
capability of the application process and the exercise process; that is, 
the exercise process must be capable of driving the application process 
at or above the system operating point.3 

When planning for load balancing, two factors must be studied. 
These factors are the "immediate-response" processing requirements, 
representing a maximum allocation of resources applied for a short 
time, and the "long-term" or residual processing requirements, repre
senting the load over a typical processing cycle. 

Since the process had two basic time frames, one approximately 5 
to 10 ms and one approximately 50 to 100 ms, two levels of load balanc
ing were needed, short term and long term. Experience showed the 
most critical need for load balancing to be at the short-term level. It 
was also the most difficult to satisfy. Once the short-term problem was 
solved, the long-term problem disappeared. Short-term balancing was 
found to be extremely sensitive to changes in routine and subroutine 
execution times, and tuning the balance was always required. 

IV. ALLOCATION OF RESOURCES 

Consideration of possible process structures led to three basic alter
natives for the allocation of the most critical systcm resources, processor 
and radar time. The first alternative is fixed allocation in "\vhich the 
execution time frame of each task is fixed in nonreal time by the 
process designer. The second alternative is real-time allocation in which 
the execution time frame of each task is determined dynamically by a 
synchronous allocation task included in the process. The third alter
native is a combination of the previous two. 

Initially, fixed allocation with its heavy reliance on synchronous 
tasking was favored because it appeared to be easier to design and test, 
and its reactions to traffic were easier to predict. After study, this 
design was rejected because it resulted in a nonuniform distribution 
of the work which, it was thought, would result in unacceptable system 
performance. 

The second alternative to a process structure centered on attempting 
to allocate almost all resources in real time. This techniquc yields a 
much more uniform distribution of work among the processors and a 
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better utilization of resources; however, designing and testing this type 
of process appeared to be very complex. In addition, it was decided 
that the uniformity of the distribution of work was not as critical as 
first thought. 

Process design eventually included both types of allocation. This 
combination allowed the process to be designed and tested in a 
timely manner and yielded a nearly uniform distribution of work, 
giving reasonable processor utilization. 

V. OVERLOAD RESPONSE REQUIREMENTS 

SAFEGUARD process designers had to answer the question of what to 
do when there were more requests for service than could be accom
modated. Because it was felt that the inherent overload handling of 
the priority tasking structure was not sufficient, a predefined, fixed
response technique was developed. 

In this approach, a tunable processing load point was defined at 
which overload-response rules were invoked. The exact rule to be used 
depended on the outcome of an overload function which "predicted" 
processor usage for the next cycle. This prediction was done by sum
ming selected system-traffic components weighted by an appropriate 
factor. Depending upon predicted processor usage, the execution of 
certain lower-priority tasks was curtailed. The higher the predicted 
usage, the more tasks ,vere curtailed. Once the system entered over
load, it remained there for the duration of the engagement. 

This technique eliminated the additional testing and design required 
to implement a feedback type of overload response. The feedback 
technique was tried in the prototype system and was found to be 
impractical. 

VI. MULTIPROCESSOR QUEUING PROBLEMS 

Minimizing task run times was of critical importance for certain 
process functions; e.g., endoatmospheric tracking. Generally, functions 
with critical response times were also those functions selected for 
multiprocessing. This quickly led to a realization of the impact on task 
run time of processors queuing for instructions. 

A decision had to be made either to use multiple copies of multiple
instance parallel tasks or to divide the program into subunits. The final 
decision was based on each task's response requirement. For example, 
in one instance five identical tasks executing from a single program 
copy ran 77 percent longer than single-processor run time. The same 
programs were suitably subdivided and partially distributed to five 
independently addressable storage units and run time was reduced to 
a level about 25 percent greater than single-processor run time. Of 
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course, if five complete copies were stored in five different independently 
addressable storage units, there would be no increase in the parallel
tasking time versus single-processor execution. The final decision made 
was to use multiple program copies only for those tasks that always 
had to execute at maximum efficiency. This was done to conserve 
program storage. More commonly, large programs were divided into 
subunits distributed among program storage units in such a manner as 
to equalize the number of accesses per storage unit per time interval. 
This general technique was found to be sufficient for a large number of 
applications. 

VII. SUMMARY 

Initially, there were no significant guidelines to process design; these 
were developed as design progressed. No claim is made that the criteria 
which evolved in our design are exhaustive, but they should be ap
plicable to a wide spectrum of real-time software systems. 

It was good design practice to use short-running, low-priority, 
asynchronous tasks wherever possible. This helped alleviate task 
scheduler conflict problems, which arose when there were a large 
number of high-priority synchronous tasks. It helped guarantee that 
high-frequency, high-priority tasks would execute at their specified 
frequency, and it also aided in achieving a more uniform work 
distribution. 

Data-interference problems arise naturally in a multiprocessing 
environment. The most useful technique to solve these problems was 
consistent use of software locking conventions; however, improper im
plementation of these techniques caused problems during integration. 

To minimize system overhead and to avoid wasting processing time, 
tasks should be enabled only when they have work to do. Synchronous 
tasking should be used only if data are available to be processed at the 
same frequency as the enablement. 

Since it was essential to maintain a balance of capabilities between 
the application process and the exercise process, it was required that 
the interfaces between these processes be established as soon as possible 
and that their integrity be rigidly maintained. 

Because it was necessary to measure how well the process was work
ing, it was found that performance probes should be included in the 
initial design and considerable thought should be given to their correct 
placement. Performance probes proved invaluable throughout the 
system-integration process, particularly in helping to identify task
timing and queuing problems. Resolution of these problems requires 
that the process designer become deeply involved in the test-and
integration effort. 
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Finally, process design is iterative. For this reason, it is important 
that the design be kept as simple and straightforward as possible. This 
standard guideline of programming is even more important in process 
design because of the inherent complexity of the multiprocessing 
environment. 
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This paper considers two problems: how to build the SAFEGUARD soft
ware so that it is testable and how to test it as realistically as possible. 
The first is solved by an iterative process of adding software capabilities, 
testing them, then adding more. The second problem is solved by driving 
SAFEGUARD with computer-generated radar echoes. 

I. INTRODUCTION 

Testing activities play a crucial role in the development of all 
hardware/software systems. These activities are described in terms of 
two phases, system integration and system testing. The system integra
tion phase is carried out through tests which determine that all com
ponents of the system have been properly connected and are perform
ing their specific function correctly. During the system test phase, the 
performance of the overall system is determined through analysis of 
the results obtained from some finite set of tests. The tests must reflect, 
as well as possible, the environment and full range of permissible data 
and control inputs. Although these phases overlap extensively, much 
system integration occurs before the system test phase. 

It is well known that very difficult problems may be encountered in 
the system integration and test phases of complex system development 
programs. The plans and some of the significant techniques used to 
minimize these difficulties for the SAFEGUARD development are 
discussed. 

Plans for the full SAFEGUARD system tests required large-scale 
analysis and simulation of the complete system. Since it is not possible 
to describe all the considerations that went into this planning, discus
sion is limited to a general description of overall system test planning. 
However, the relationship between the overall system tests and the 
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data-processing effort are described specifically. Particular attention 
is given to the system exerciser because of the important role it plays. 

II. SYSTEM INTEGRATION AND TEST PLAN 

For several reasons, it is vital to prepare a detailed system integra
tion and test plan. First, the time allocated for conducting the integra
tion and test phases is usually not sufficient to demonstrate system 
performance under all conditions. This is simply an empirical observa
tion. It could be attributed to the lack of detailed understanding of the 
objectives at the time the overall system development schedules are 
being formulated. It is always possible to conceive of an infinite number 
of tests of any complex system. No matter how carefully planned, the 
number of necessary tests will still be very large and, therefore, require 
a significant amount of calendar time to conduct. Since the system 
integration and test phases are the last activities before making the 
system available to the user, there is always pressure to make these 
periods as short as possible. The early existence of a detailed test plan 
is important because it provides strong support in arguing for reason
able system integration and test intervals and allows optimal use to be 
made of the allotted time. 

Second, the system integration and test phases can overlap and, 
therefore, interact extensively. The tests that are conducted during the 
integration phase are designed to verify that system components per
form as specified. Results from these tests can serve to increase con
fidence in overall system performance. The scope of future testing can 
be significantly influenced by this increased confidence. As a result, 
the testing activities in these two phases should be well coordinated. 

Third, there are always schedule difficulties during the system in
tegration and test phases if planning for test tools, techniques, and 
procedures does not begin long before the actual test period. Develop
ment of the hardware/software products can be influenced by test 
considerations. The test tools can often be developed more economi
cally, and will better serve needs if identified early. Preparation of a 
detailed plan is the best way to recognize required lead times and 
avoid such scheduling difficulties. 

Fourth, monitoring of progress is particularly difficult during these 
phases of the development. It is not uncommon to find that progress 
has been negative (and unknown) during parts of these intervals. A 
detailed test plan can serve as a very good measuring guide to monitor 
this progress. 

Some general characteristics of a good system integration and test 
plan are reasonably clear. It identifies the means to achieve a specific 
set of objectives in a specific time, it recognizes the availability and 
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capability of other tests carried out during the development, and it 
reflects all appropriate constraints on the use of resources. In SAFE
GUARD, certain features of the plan were more significant than others. 
Four have been selected for more detailed discussion. 

2.1 The incremental approach 

Everyone recognizes that a complex system cannot be integrated in 
one step, so an "incremental approach" must be used; i.e., the com
plexity of the hardware environment, the software, and the test cases 
must be built up incrementally. 

Several factors were considered in arriving at the specific incre
mental approach for SAFEGUARD. These led to a series of steps of in
creasing complexity, where each step included a given level of hardware, 
software, and functional tests. The principal steps were: 

(i) Integrate all the "control" software; i.e., demonstrate the 
basic operating control necessary to perform initialization and 
cycling. 

(ii) Integrate those software units that are part of critical timing 
chains. 

(iii) Integrate additional software, which allows a simple, but con
sistent, stream of functional processing. 

(iv) Interface this software with hardware; e.g., radars. 
(v) Integrate remaining software to provide complete capability. 

These principal tests were supplemented with additional parallel 
testing of various parts of software. Following is a brief description of 
how these steps were applied to the fviissile Direction Center (MDC) 
application software. 

First, the basic control programs were merged with the operating 
system, and the ability to load, initialize, and cycle was established. 
Then software dealing with the radar loop was added; i.e., radar 
management, search, and track programs. Ability to search and track 
was then established at low traffic levels, while the radar hardware 
was simulated with software. After sanity was established in the soft
ware, the radar hardware was introduced into the testing loop. In 
parallel with this activity, application programs supporting intersite 
communications and command and control were tested in a separate 
test bed. Similarly, both battle planning and missile guidance software 
were tested in separate software environments. Ultimately, these pro
grams were merged into a single process, and the complexity of the test 
cases was systematically increased. 

The incremental approach can create difficulties. It is obvious that 
some mechanism must be provided to represent interfaces of programs 
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that are not yet a part of the process. Dummy programs, called "stubs," 
were provided. The requirements for stubs depend on the nature of the 
programs they represent and the sequence in which programs are added 
and tested. If this aspect of the incremental approach is not carefully 
considered during test planning, the stubs may become nearly as com
plex as the programs themselves, thus defeating the incremental 
strategy. 

The selection of test cases can affect the efficiency of a test plan in 
a major way. SAFEGUARD has literally hundreds of individual capabili
ties and operates over a continuum of threat environments. Each test 
was carefully designed, using a design-of-experiments approach, so that 
all capabilities covering the full range of operation could be verified 
with the smallest number of tests. The test design was also approached 
from an incremental viewpoint, and was found to require an iterative 
effort. 

The sequence used in identifying the test cases for full system testing 
of the SAFEGUARD l\1DC is briefly described here. 

(i) The peak traffic level to be verified in full system testing was 
selected. 

(ii) The types of threats to be countered, and allowable combina
tions, were delineated. 

(iii) A sequence of tests starting with a single target and building 
up to peak traffic was identified. The "single target" was 
common to all test cases, as were other targets added later. 
Keeping pieces of the threat environment common provided 
a basis of test result comparisons-peg points along the way. 

(iv) A set of high-traffic test cases was defined and all capabilities 
tested were identified. This exercise was performed iteratively 
with the goal of identifying a minimum set of high-traffic tests 
that, as a collection, test all system capabilities and cover all 
necessary threat mixes. 

2.2 Success criteria 

The system integration and test phases are intended to demonstrate 
that the various components and the system operate as intended. 
Tests are designed to subject the system to various stresses and con
ditions. The crux of test design is the clear specification of criteria that 
can be used to measure successful operation. It is obvious that this has 
to be done, but it is not always recognized that the success criteria ,vill 
affect a test program in so many ways. For example, the efficiency of 
the test activities is vastly improved if the success criteria, that is, 
expected results, are available before the execution of the test. The 
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criteria can also affect the data recording and reduction efforts. Since 
the specification of success criteria is a form of testing, it is not un
common to uncover problems in either requirements or implementation. 
All these factors recommend that success criteria be identified early 
in the development sequence. 

This effort was both difficult and large. On the SAFEGUARD project, 
sources of information that provided a basis for establishing success 
criteria included results of the test program conducted at IVIeck Island, 
desk analysis, and simulations. The greatest amount of data came from 
the simulations of the system. Various portions of SAFEGUARD were 
simulated in varying degrees of detail. These simulations were in turn 
calibrated using analytical and field data results. Where possible, the 
simulations were then used to predict system performance for each test 
case. The success of a test was measured by comparing data recorded 
during the test to predicted values. The simulations were large, 
initiated early, and served as a basis for system evaluation activities. 

2.3 Data recording and reduction 

One critical step in testing a system is measuring the system's per
formance. The basic measurement tool in the SAFEGUARD project was 
the recording and reduction of test data. Because of the complexity of 
the software processes and the tightness of schedules and on-line com
puter time, the ability to process recorded data off-line was essential. 
Recording and data reduction were not treated as two problems, but 
rather as two aspects of the same problem. l A coordinated approach 
to recording and data reduction was taken to achieve an efficient 
solution. 

In "high-traffic" testing, or in any mode of testing, in fact, recording 
should be minimized (e.g., so that the off-line data reduction system is 
not overwhelmed with data). To meet this goal and still preserve the 
necessary error isolation capabilities, a "hierarchy" of recording select
ability was defined. 

The basic approach to recording and data reduction for SAFEGUARD 
was to construct each process so that the ability to select the desired 
mix of recording per run or per test could be accomplished with ease. 
Each process has the necessary capability for all possible recording 
permanently embedded in the on-line code. Data reduction program 
activities of sorting and formatting are minimized by the real-time 
association of sort "handles" ,vith the recorded data. The key to the 
approach lies in a hierarchical structure in which multiple levels of 
recording are established. In general, three levels (high, intermediate, 
and low) are sufficient, although additional levels could be used in 
special instances. 
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The basic three levels can be described as follows. A process is divided 
into process functions. The recording necessary to isolate a test failure 
to a process function or to a peripheral is the highest level of recording. 
In general, these highest level data should consist of "counts" or sta
tistics usable to determine logic flow, basic time sequencing, etc. The 
lowest level of recording consists of a detailed record of the processing 
of an input by a process function on a single logical pass. The inter
mediate level of recording is designed to aid the tester in selecting the 
proper low-level recording options. 

A quick-look on-line computer capability was embedded in the soft
ware to allow off-line data reduction to be bypassed on occasion. This 
allows critical data to be "recorded" in on-line memory and output on 
a printer immediately following test completion. The test teams used 
quick-look and operating-system debugging aids2 to support integra
tion. Using quick-look, they determined when and in what portion of 
the process detailed recording should be performed. In the case of 
system tests, the system test specification specifies success criteria and 
prescribes the data to be recorded. 

In testing the Meek prototype system, there were several examples 
of missions in which millions of "wrds of data were recorded. In con
ducting a test involving missile launches, it is necessary to record all 
data of any possible interest, for the cost of repeating such tests is 
extremely high. However, the cost of repeating a test is reasonably 
economical in the TSCS (Tactical Software Control Site) since no 
launches are involved. Although tests are not absolutely repeatable, 
they are essentially repeatable in a functional sense. This means that a 
hierarchy of recording can be utilized to minimize the data recorded 
in real time, minimizing the off-line data reduction required. If a test 
fails, it can be repeated with selective recording performed in the sus
pect areas of the system. Although this approach forfeits some capa
bility to isolate transient errors, it allows trade-offs to be made in the 
use of on-line computer time vs off-line data reduction time. With 
hierarchical recording, better test turnaround and lower overall in
tegration costs were achieved without any serious problem in isolating 
transient errors. 

2.4 Test tools 

The need to provide test signals and data to "drive" any system is 
clear. As the complexity of the system and its operating environment 
increases, so does the complexity of the driver. It was considered vital 
to devote considerable resources to the development of a driver, and 
the effort was started early. 
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Few ground rules were available to guide its development. As it 
evolved, both special-purpose hardware and software were required. 
Because this effort was viewed as one of the more significant ones, the 
driver, or the SAFEGUARD system exerciser, is discussed in detail in the 
following section. 

III. THE SYSTEM EXERCISER 

The primary role of the system exerciser is to support test and in
tegration of SAFEGUARD applications software in the hardware environ
ment in which it was designed to operate. But testing SAFEGUARD 
against a simulator is difficult for two reasons. First, SAFEGUARD is a 
complex system involving radars, missiles, and interacting sites; the 
number of combinations of inputs is immense. Second, in actual opera
tion, some inputs, such as radar noise, are random variables; these 
inputs should be random during testing as well. 

Because of its complexity, it was not feasible to simply assemble the 
entire system and drive it utilizing the system exerciser. The system was 
assembled in an incremental sequence. The development of the system 
exerciser was, likewise, modular in nature. At each building stage, 
portions of the system exerciser's capability were used to drive that 
portion of the system included in the test bed. By relating the sequence 
of capability buildup in testing to the modularity of the system, an 
efficient development plan was evolved. 

During the early stages of SAFEGUARD development, several goals 
for the system exerciser were established consistent with the primary 
role. The five most important goals are: 

(i) As much of the system, hardware and software, should be 
exercised as is cost-effective. The software heavily interacts 
with the hardware; hence, confidence in the software/hardware 
combination can only be established through successful 
demonstration of their interactions. 

(ii) The impact of system exerciser implementation on the ap
plication-system implementation should be kept to a minimum. 

(iii) The system exerciser's simulation of the environment should be 
as realistic as is feasible. 

(iv) The traffic capacity of the system exerciser should exceed the 
design level of the application system. 

(v) The system exerciser should provide the capability to record 
the outputs of the application system. 

During the development, every effort was made to retain sufficient 
flexibility to allow the system exerciser to be used in other ways, e.g., 

PROCESS-SYSTEM TESTING S117 



determining in part the system readiness and verification in an opera
tional time period. 

The discussions that follow apply to the l\IDC and PAR system ex
ercisers. The approach taken for the Bl\IDC exercise was different 
because of its distinct processing function (control and display) and 
relatively small size. The l\IDC system exerciser is the most complex. 

3.1 Structure of the MDe system exerciser 

Figure 1 shows the normal connections between equipment at an 
l\IDC site. During a system exercise, these connections are rearranged 
under software control as shown in Fig. 2. Data sent by the application 
data processor to the radar, the missile ground equipment, and other 
sites are directed instead to the exercise data processor. The system 
exerciser generates plausible radar returns, missile responses, and 
messages from other sites, and returns these to the application data 
processor. The exerciser is separated from the system being tested; it 
operates in a separate data processor connected to the application data 
processor through a special digital hardware unit, the Exercise Control 
Unit (ECU). 

Tapes containing target and some environmental data to be used in 
the simulation are prepared off-line ill nonreal time by a program called 
the SAFEGUAIW Threat Action Generator (STAG). The design of STAG 
and the real-time processes was closely coordinated. 

Several decisions were made in the design of the l\IDC system exer
ciser. First and foremost, the exerciser software was executed in a data 
processor distinct from the application data processor. The execution 
of exerciser programs in no way interferes with the execution of appli
cation programs. The alternative of executing the exerciser programs 
in real time on the application computer had been taken in the pro-
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totype system. Separation of the application and exerciser program 
systems also allows the development of the exerciser to remain as 
independent of the application system as possible. The potential for 
the exerciser programs to corrupt the application programs while 
operating in a combined form was demonstrated on occasion with the 
Meck test system. 

Experience with the separated application and exercise systems has 
been favorable. No interference or identifiable differences in queuing 
or timing between the exercise and application modes was found. For 
instance, exercises were conducted that involved the tracking of 
"simulated" satellites. The performance of the application process 
was comparable when similar "live" satellites were tracked. 

At one stage of the design, it was recognized that requirements for 
exerciser data processing throughput could be reduced by about 40 
percent if the exerciser's load could be made more uniform. All that 
this required was to have the application program distribute in time 
the data which the application data processor sends to the radar (see 
Fig. 2). Changes were made to accomplish this without affecting the 
capability of the application system. Other examples include the setting 
of "flags" by the application program in data that it sends to the radar. 
When the exercise intercepts the data, it uses the flags to help expedite 
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processing. This was accomplished without compromising either the 
applications or exerciser roles. 

A second decision made in the design of the exerciser was to utilize 
as much of the hardware in an exercise as possible. Clearly, the real 
defensive missiles could not be included, but we note that the exerciser 
interfaces with the system of missile ground equipment, not just at 
the software/hardware interface. The full radar could not be included 
because a real target environment is not available to be viewed and 
because the cost of injecting simulated signals at the radar face is pro
hibitive. As shown in Fig. 2, the ECU injects simulated signals into the 
radar at the IF strip. This has allowed the applications software to be 
tested with major portions of the radar. This proved to be an effective 
approach from several points of view. It provided a mechanism to 
identify numerous problems in the hardware and software at the TSCS 

(the test bed). These problems included radar instruction sequencing 
errors, tracking bias errors, miswiring, etc. Corrections were made to 
both TSCS and site hardware. Software was corrected before it was 
shipped to the site. As a result of the prior testing at the TSCS, relatively 
few problems were found with the testing at site. Problems that were 
found were largely attributed to the detailed characteristics of the 
hardware not included in the exercise. The number of problems was 
lower than originally expected. 

A third decision in building the system exerciser was to perform 
as much of the calculation required for simulation as possible before 
conducting the real-time exercise. Calculations for targets, defensive 
missile farms, and other sites and of hardware was done off-line, in 
the STAG facility; and results were placed on tape. The real-time soft
ware modified these data as appropriate for the real-time condition. 
This approach minimized the size and complexity of the real-time 
exerciser on a nonreal-time, pre-exercise basis. It also allowed programs 
such as trajectory generators to be used to support exercises for differ
ent radars; i.e., both the PAR and the MSR. This reduced the total size 
of the effort. 

Fourth, in designing the exerciser, a number of decisions were made 
relative to the realism of the various exercise simulations. The ap
proach was usually, but not always, to simulate the effect of a particu
lar phenomenon, rather than the phenomenon itself. For example, in 
simUlating the stream of intersite messages the MDC receives from the 
PAR, there were several options. The highest degree of realism would 
be a detailed simulation of the PAR system interacting with the threat 
environment. A much cheaper option would be to generate a represen
tative sequence of intersite messages per threat. These threat messages 
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would then be combined with a set of PAR status messages and modified 
in real time as appropriate. For SAFEGUARD, the latter approach was 
taken because it was economical, yet sufficient. 

3.2 Exercising the exerciser 

The system exerciser is a complex system, although considerably 
smaller than the applications system. As the principal tool in integrat
ing the applications software, it had to be stable and reasonably de
bugged. There were at least two alternatives to test it. On one hand, 
the testing of the exerciser could be performed in conjunction with the 
testing of the applications system. On the other hand, the system 
exerciser could be tested as a stand-alone system. The latter approach 
was taken for SAFEGUARD, because it allowed greater control and 
easier isolation of problems. 

Testing the exerciser was conceptually simple. We can view the 
applications software as outputting radar instructions, missile instruc
tio ns via the missile ground equipment, and intersite messages. Those 
three classes of outputs represent the stimuli to which the exerciser 
responds. To test the exerciser, a simple software package called the 
Exercise Standard Test Process (ESTP), which resided in the applica
tion data processor and output these stimuli, was generated. 

In simplest terms, ESTP obtains time-tagged data blocks containing 
radar instructions, missile instructions, and intersite messages from a 
driver tape. ESTP outputs each data block at the appropriate time. 
The key part of all this, of course, is the generation of the driver tape. 

The most critical output from the applications software to the real
time exerciser is the stream of radar instructions. The real-time exer
ciser must determine whether or not any tactically ordered radar 
operations will cause the simulated radar to view any simulated 
targets. To test this portion of the exerciser, a stream of radar in
structions that cause the exerciser to perform its 'simulation calcula
tions is required. The target trajectories are known, and the expected 
response of the applications system is known. With this information, 
the radar instructions to be generated by the applications system are 
computed. ESTP assumes a "perfect" tracker but does not simulate 
the application system tracker. With respect to the missile loops and 
the intersite loops, similar deterministic test methods were used to 
exercise the exerciser. 

Because of the testing done with ESTP, relatively few problems were 
experienced with the exerciser when it was interfaced with the appli
cations software. Just as importantly, ESTP provided a vehicle for 
further isolation and debugging of problems that did occur. 
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IV. CONCLUSIONS 

Some lessons learned from SAFEGUARD system integration and test 
activities can possibly be applied to other projects. They are sum
marized as follows: 

(i) Prepare a test plan early; even though it cannot be complete 
initially, it should address those items that could affect design, 
or require long lead time. 

(ii) Consider an incremental approach to testing. Several iterations 
will be required to decide what form the incremental buildup 
should take. Details will affect the program development 
schedules. 

(iii) Start the identification of tests early. Don't delay the specifi
cation of success criteria. This specification requires lead time 
and coordination with other activities and can go a long way 
toward getting design problems resolved early. Make every 
attempt to minimize the total number of test cases. The 
expense of doing the necessary analysis, test specification 
preparation, etc., is large and often underestimated. 

(iv) Make adequate provisions for an exerciser. Consider separating 
but not isolating the exerciser from the applications system. 
Try to incorporate as much of the hardware in the exercise 
configuration as possible. Test the exerciser to create a stable 
base for system testing. 
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Errors occur even in well-designed, well-tested systems. This paper 
describes how errors are detected and controlled in the SAFEGUARD system 
and makes rec01nmendations pertaining to the design of error control in 
large-scale, real-time control systems. 

I. INTRODUCTION 

SAFEGUARD is a fault-tolerant system. It can perform its tactical 
function even in the presence of many types of errors, including latent 
design errors, hardware failures, and operator mistakes. This paper 
describes some of the automatic error-control features of a generic 
SAFEGUARD Data-Processing System (DPS) and also the important role 
of manual control in maintaining the operational integrity of the DPS. 

II. AVAILABILITY-RELIABILITY REQUIREMENTS 

What are the availability and reliability requirements of the SAFE
GUARD system? How are they satisfied? What is the role of error 
control? 

As it pertains to SAFEGUARD, availability is the probability that the 
system is capable of performing its tactical functions-surveillance, 
tracking, intercept, etc.-at any given point in time. Reliability is the 
conditional probability that the system will function through the 
duration of a missile attack provided that the system is available at 
the beginning of that attack. The product of availability times reli
ability is required to be high to provide adequate assurance that the 
system can, at any time, quickly detect a missile attack and success
fully defend against it. During peacetime operation, the emphasis is 
on availability so that the system can perform continuous surveillance 
and be ready at all times to wage battle against offensive missiles. 
During a battle, the emphasis is on reliable operation which includes 
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avoiding significant interruption of tactical performance for any 
reason, even in response to errors. 

Availability and reliability are both enhanced through the use of 
highly reliable, individual, hardware and software components, as 
well as through the use of inherently fault-tolerant hardware and 
software systems. For example, the DPS hardware design features 
extensive component redundancy and multiprocessor control. (The 
availability and reliability advantages of multiprocessor computers are 
commonly accepted today.I) The software design also has many 
features that minimize its vulnerability to errors. For example, it has 
decentralized system control. This means that total control is not 
contained in any single, and thus highly vulnerable, software module. 
It has distributed software execution control, i.e., all processors are 
treated equally. There is no single controlling processor, which would 
have an inherently greater vulnerability to errors. Also, the software 
makes minimal use of particularly vulnerable data structures such as 
linked lists. In addition to the use of highly reliable components and 
a fault-tolerant design, thorough testing is also performed to ensure 
that all components, as well as· the total system itself, function as 
intended! Thus, error prevention is one of the principal means of 
satisfying the availability-reliability requirements of the system. The 
other is error control. 

Error control enhances system availability by aiding in rapid detec
tion and replacement of faulty components. The DPS contains re
dundant components and, in conjunction with the software, it is 
self-diagnosing. The DPS is normally configured into two distinct 
partitions: one, called the green partition, is the primary computer 
system; the other, called the amber partition, is a secondary computer 
system containing the redundant units. When a faulty green partition 
unit is detected, a reorganization or reconfiguration of the DPS may be 
initiated either by the DPS itself or manually by a DPS operator in order 
to replace the faulty unit with its redundant counterpart. However, 
such replacements generally require interruption of tactical perform
ance for several seconds. 

Error control also enhances reliability by confining errors to mini
mize their effect on tactical performance, and thus minimize the need 
for such replacements during a battle. The remainder of this paper 
describes in greater detail how error control helps to satisfy SAFE

GUARD's availability-reliability requirements, especially as they apply 
to the DPS. 

* Software-debugging and system-testing methods are described in Refs. 2 and 3. 
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III. SYSTEM ERROR-CONTROL STRUCTURE 

How are errors detected in the SAFEGUARD system? How are the 
effects of errors confined? How does the system recover from errors? 
This section discusses the general approach to solving these problems. 
The following two sections describe in more detail the two principal 
aspects of error control, namely error detection and error response. 

Figure 1 illustrates the basic system error-control structure. Errors 
may be detected by hardware, by software, or by the DPS operators. 
Software detections include hardware-reported errors. Likewise, 
manual detections include both hardware- and software-reported 
errors. 

Software provides the principal responses to hard,vare and software 
errors. There are two principal classes of error responses: local re
sponses and system responses. Local responses are attempts to confine 
or correct errors at the point of detection. System responses replace 
faulty hardware or software components and restore basic system 
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sanity. System responses generally require a brief (several-second) 
interruption of tactical operation. 

During normal peacetime operation, both local and system responses 
contribute to system availability by correcting errors and replacing 
faulty components. During battle-mode operation, the emphasis is on 
local responses to assure reliable operation by confining and correcting 
errors and to avoid the need to interrupt tactical operation for the 
purpose of performing system responses. 

Specific local responses depend on the type of error detected. Several 
examples of such responses are described in Section 5.1. In addition to 
any specific response that might be performed, one common local 
response is to report the error to a centralized error logging and thres
holding function. This function logs (records) the error-report data 
onto tape for use in off-line error analysis. It also keeps a record of 
error occurrences. If a report causes an error count or an error rate 
for the associated class of errors to exceed a prespecified threshold, 
then several additional common local responses may be taken. One 
such response is to return a sever indication to the program that 
reported the error. Severing is a method by which a program is per
mitted to degrade the operation of certain noncritical parts of the 
SAFEGUARD system by simply removing them from service. Its purpose 
is to avoid recurrence of errors. Typical components that could be 
severed are operating-system modules, such as data recording, or 
certain CLC peripherals such as printers, tape units, TTYs, etc. In 
addition to severing, another common local response to an exceeded 
error threshold is to notify a DPS operator and/or the highest-level 
software-control function called the process coordinator. * Either may 
then initiate a system response. 

In general, system error responses may be invoked manually, by 
the process coordinator, or by a special hardware device called the 
system sanity timer. (Use of the sanity timer is described in Section 
4.1.) System responses involve reinitializing the software and/or re
configuring the DPS to remove faulty components. One of the principal 
system responses is DPS recovery which includes both DPS reconfigu
ration and software reinitialization. System error responses are dis
cussed in greater detail in Section 5.2. 

IV. ERROR DETECTION 

4.1 Hardware detection 

Error-detection circuitry is an integral part of the DPS. For example, 
the processors detect errors such as arithmetic overflow or attempts 

* The entire collection of operating system and application software that execute 
on a single CLC partition is called a process. 
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to store data into nonexistent memory locations. When such errors 
are detected, a processor interrupt is generated and the processor 
transfers execution control, via the operating system, to the program's 
local-level interrupt-response code. Peripherals detect various types of 
input/output (I/O) errors, e.g., data-transfer parity errors. Such errors 
are reported to the software via I/O status returns. 

In addition to the error-detection logic, which is a part of basic 
circuit design, the DPS also contains hardware devices specifically 
designed to aid in error detection. One such device is the CLC's status 
unit. It reflects the hardware status of each processor, memory rack, 
and peripheral, as well as of the radar and missile equipment. This 
status information obtained from the hardware is accessible to the 
soft,vare and displayed to the operators. Typical status-unit indicators 
are "processor disabled," "tape unit power marginal," "missile equip
ment internal error," etc. 

Another special error-detection device is the Maintenance and 
Diagnostic Subsystem (:\I&DSS) sanity timer. This timer must be reset 
by the operating system's task scheduler every 50 ± 10 ms as an 
indication of basic system sanity, i.e., that the software is still executing 
on the CLC. If the operating system fails to reset it within the correct 
time interval, the sanity timer will automatically initiate DPS recovery. 

4.2 Software detection 

Just as error-detection circuitry is an integral part of the hardware, 
error-detection code is an integral part of the software. For example, 
the operating system performs input-validity checks on call parameters 
and the weapons process performs data-reasonableness checks on 
important data such as radar return signals. 

The software also performs several types of hardware diagnostic 
tests. The operating system performs diagnostics on the DPS equip
ment; the weapons process performs diagnostics on the radar and 
missile equipment. For example, whenever the operating system re
configures the DPS, it performs normal path diagnostics to verify that 
each green-partition CLC unit functions properly. Also, during tactical 
execution, CLC units and peripherals in both partitions undergo 
additional tests. For example, the operating system contains programs 
called real-time exercisers which test each green-partition memory rack 
every five minutes. They compare the entire program-store contents 
with a program-store image on disc to verify that no programs have 
been modified. They "read test" each variable store rack in its entirety, 
and they "write test" the first two words and the last t,vo words of 
each variable store rack by storing test-pattern data into these words 
and then fetching the words to verify their contents. These four 
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words in each variable store rack arc reserved for this testing purpose. 
The weapons process contains continuously running radar tests that 
verify the basic functional operation of the radars. It also contains 
manually invokable radar tests and missile tests, which are more 
extensive diagnostics and which are used when faults are suspected in 
this equipment. 

Extensive l\I&DSS diagnostics, capable of isolating faults to the 
chassis level, are also performed on amber CLC units and peripherals. 
All DPS units are periodically reconfigured out of the green partition 
(replaced by their redundant counterparts) in order to undergo such 
testing in the amber partition. The purpose of these tests is to minimize 
the probability of failure in green-partition units by detecting poten
tially faulty units before they actually fail. M&DSS tests are scheduled 
by the CLC operating system and are initiated manually. Processors 
may be reconfigured without terminating execution and arc scheduled 
for M&DSS testing hourly. Other CLC units and the I/O subsystem require 
an interruption of tactical execution in order to be reconfigured. The 
entire I/O subsystem is scheduled for l\I&DSS testing every four hours. 
CLC units other than processors are not automatically scheduled for 
M&DSS testing; however, such tests may be initiated on those units 
manually at any time.4 

In addition to hardware diagnostic tests, a system exerciser3 is used 
to periodically test much of the total hardware/software system. 

4.3 Hardware- and software-reported errors 

The hardware and the software report many of the errors they 
detect to the DPS operators. For example, the operators' consoles have 
many hardware- and software-controlled error-indicator lamps. A 
system-status panel displays much of the information in the CLC's 

status unit, thus indicating the operational status (working, faulted, 
off-line, etc.) of the CLC units and peripherals. Software also notifies 
the operators of exceeded error thresholds via error-report messages. 
With the wide variety of error-status information available to him, a 
DPS operator often better comprehends the system's error environment 
than do either the hardware or the software and, in many cases, he 
must determine whether or not a system level response should be 
initiated. 

v. ERROR RESPONSES 
5.1 Local responses 

Local error responses are attempts to automatically confine or 
correct errors at the point of detection. They are important in all 
modes of operation, but especially in the battle mode where they are 
a significant factor in short-term system reliability. 
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Programs commonly use the centralized error-Iogging-and-thres
holding function to report, record, and threshold errors they detect. 
They also perform many kinds of specific local responses designed to 
correct or confine the effects of a specific type of error detected. The 
following are several typical examples of such responses. 

A program's response to a processor interrupt might be to re
initialize a critical portion of its data base using default values, to 
unlock any locked data sets, and to exit. If an I/O error is detected, a 
program might retry the I/O operation. If a radar return-tracking 
signal fails a data-reasonableness check, a program might employ an 
algorithm to "coast" the object's track for one radar cycle. 

Suppose repeated error indications in the status unit for a peripheral 
device cause an error-report threshold to be exceeded. If the periph
eral is not essential for tactical operation, the peripheral device manager 
could sever it, thereby degrading system operation but avoiding 
recurrence of the errors and also avoiding the possibility of propagating 
the errors in to other parts of the system. 

In the case where memory errors detected and reported by the 
real-time exercisers exceed a threshold for a certain memory rack, the 
only local response is the error-Iogging-and-thresholding function's 
notification to a DPS operator and to the process coordinator. Either 
may then initiate a system response to replace the rack with a spare. 
Such a replacement might be done during surveillance-mode operation, 
but not during a battle. During battle-mode operation, the software's 
local responses must be able to recover from any errors that might 
occur either in the memories or in other parts of the system. 

5.2 System responses 

System level error responses are used to reinitialize the system or to 
replace faulty components. They are invoked automatically by the 
system sanity timer or by the process coordinator in response to certain 
errors that cannot be easily corrected at the local level. In many 
instances, they are invoked manually in response to errors or com
binations of errors reported by the hardware or the software. System 
responses are performed by the operating system but they are never 
initiated by it. System-error responses contribute to system avail
ability, but they may be inhibited during a battle to prevent interrup
tion of tactical operation. 

There are three basic system level error responses: reinitialization, 
reconfiguration, and DPS recovery. Reinitialization involves reloading 
the system's entire data base. It can be initiated by the process co
ordinator to restore severed software components. Reconfiguration 
involves swapping DPS units between the green and amber partitions. 
It provides a method for the software's process coordinator or for an 
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operator to replace faulty or severed hardware units in the tactical 
(green) partition with their redundant counterparts from the amber 
partition. However, DPS reconfiguration is most commonly used by an 
operator to switch units from the green partition to the amber partition 
for M&DSS testing. The most commonly used system-error response is 
DPS recovery. It is the easiest to use because errors do not have to be 
localized beforehand. It is also the only system error response which 
may be invoked either by hardware (the sanity timer), by software 
(the process coordinator), or manually by a DPS operator. 

DPS recovery reinitializes the entire hardware/software system in 
approximately 10 to 20 seconds, depending on the CLC configuration 
size. Once initiated, DPS recovery proceeds automatically under the 
control of the operating system. It involves the following steps: 

(i) Terminating process execution. 
(ii) Saving the system image (including the data base, the con

tents of the status unit, and the contents of the processor 
registers) on disc for possible later analysis. 

(iii) Running normal path diagnostics, and reconfiguring the CLC 

to eliminate faulty units if necessary. 
(iv) Completely reinitializing the software by reloading all programs 

and the entire data base with fresh copies from disc. 
(v) Resuming tactical execution. 

VI. EXPERIENCE/RECOMMENDATIONS 

The following are a few key points and recommendations based on 
the SAFEGUARD experience with error control. The recommendations 
are believed to be generally applicable to designing error control into 
large-scale, real-time control systems. 

(i) A system's error-control guidelines and error-control structure 
must be defined early. They are required early in the design if 
the system is to have a consistent approach to error control. 

(ii) Error logging must be provided as one of the first software 
functions. It is an invaluable debugging tool. 

(iii) Certain error-control features, e.g., audits, must be considered 
early to make implementation feasible. SAFEGUARD might have 
made greater use of data-base audits if the data base had been 
designed with audits in mind. 

(vi) Testing local error responses is difficult, but it is important 
for reliable operation. To enhance reliability, keep local re
sponses simple and testable. To help simplify testing and to 
help reduce the amount of code devoted to local responses, 
categorize errors to minimize the number of different local 
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responses required. Many natural opportunities for testing 
local-error responses occur during early software testing. To 
take advantage of these opportunities, local-error responses 
must be implemented during early software development. 

(v) Error responses should be easily modifiable. The desired re
sponses may change as operational experience with a new 
system provides additional information about error occurrence 
rates. In the SAFEGUARD system, centralized, table-driven 
error-thresholding functions and system error-response maps 
permitted tailoring many of the local and system error re
sponses as experience with the system grew. 

(iv) Hardware and software status returns should be "response 
oriented." They should include a simple code indicating what 
to do about an error, that is: retry the operation; reset the de
vice or correct a parameter first, then retry; don't retry, the de
vice is broken; etc. More detailed status information to further 
identify the nature or cause of the error may also be included, 
but it should be independent of the response-oriented status. 
The detailed status may be recorded by software for off-line 
analysis. 

(vii) Manual error control or manual override should be provided 
even for automatically operating or self-repairing systems. 
Manual control is essential for "bringing up" systems-even 
automatic systems. It is also invaluable when automatic 
systems fail to operate, or when self-repairing systems fail to 
repair themselves. 
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The debugging of SAFEGUARD software was performed in phases, each 
with a unique environment, problems, and debugging tools. The unique 
aspects of each phase are described here with special elnphasis on the 
debugging tools used. Although the multiprocessor configuration introduced 
new kinds of software "bugs" and complicated the debugging problem, the 
real-time character of the system had a greater overall impact. 

I. INTRODUCTION 

This paper describes the debugging approach used on SAFEGUARD. 

The debugging effort is presented in terms of three testing phases: 
(i) unit and module, (ii) software integration, and (iii) system level. 
The tools and techniques required for each phase receive special 
emphasis. Although the multiprocessor configuration introduced new 
kinds of software "bugs" and complicated the debugging problem, the 
real-time character of the system had a greater overall impact. The 
debugging experience gained from SAFEGUARD is applicable to other 
large, real-time systems, whether multiprocessor or not. 

1.1 The debugging problem 

The basic steps for debugging a large, real-time multiprocessor 
system are essentially the same as for other software: detect the 
error, isolate the cause, and provide a fix. Underlying this sequence 
are two fundamental prerequisites: the ability to make an error 
repeatable and to be able to collect the data required to isolate the 
problem. Repeatability and data gathering, while taken for granted in 
simpler environments, are severely affected by real-time and multi
processor system characteristics. Real-time execution limits the ways 
in which data may be collected. In fact, the very mechanism used to 
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capture data may perturb the timing enough to cause other problems 
or to make the original e:::ror disappear. The multiprocessor attribute 
introduces further complexities. Active system components not in
volvcd in the error may destroy critical debugging data before it can 
be collected. Certain problems may manifest themselves in extremely 
complex interactions requiring closely timed, coordinated, and parallel 
occurrences of events. New classes of errors are introduced: timing 
changes due to memory queuing effects on processor speed; shared
data accessing conflicts; and intermittent, phantom "clobbers" of data. 
Although the great majority of errors found (e.g., incorrect register 
usage, destroyed data, and bad interfaces between programs) are 
similar to those encountered in simpler systems, those errors unique 
to this special environment are among the hardest to find and correct. 
Two other factors compounded the SAFEGUARD debugging problem. 
One was the parallel development of both hardware and software. 
The other was the amount of software involved, of which the real-time 
portion alone contained approximately three-quarters of a million 
instructions. 

II. PHASE I-UNIT AND MODULE TESTING 

The purpose of this phase is to test all logic paths in each program 
and to test the interfaces between programs. In many instances, hard
ware simulators extend the testing domain to encompass hardware 
interfaces as well. 

2.1 Environment 

Most of the unit and module testing occurred on an IBM support 
computer. A simulator called STACS (SAFEGUARD Tactical Simulator) 
provided the primary testing vehicle. 1 Various special-purpose test 
drivers and hardware simulators interfaced with STACS and enhanced 
its value. By eliminating the real-time and multiprocessor factors, 
STACS reduced the testing effort to a more common situation: program 
developers systematically testing their programs in a batch-oriented 
environment. 

As soon as the CLC became available, the operating system was 
transferred to it for unit testing. This transition was greatly facilitated 
through the use of support programs that executed on the Maintenance 
Data Processor (MDP). Prior to entering the software-integration phase 
of testing, it was necessary that operating-system support capabilities 
be thoroughly tested and verified on the CLC. This requirement necessi
tated the early development of a basic set of debugging aids called 
DEBUG. 
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2.2 Debugging tools 

2.2.1 The STACS simulator 

STACS fully simulates the CLC processor and most of the conventional 
CLC peripheral units such as tapes, discs, consoles, and TTYs. It also 
simulates many of the CLC operating-system capabilities; in some cases, 
it uses the actual operating-system programs. A number of special
purpose test drivers simulate the hardware, extending the STACS 

testing capability. In some cases, these drivers are written in high-level 
languages such as FORTRAN or PL/l. These languages have the ad
vantage of being stable, already known to many programmers, and 
well suited to the problem at hand. The ability to link to user-written 
drivers of this kind is an important consideration in designing a 
simulator. A good example of what can be done under STACS was the 
testing of the I/O manager of the CLC operating system. Although the 
module contained complex and widely distributed hardware inter
faces, STACS allowed thorough debugging to occur on the support 
computer. The transition to the CLC produced few problems. 

STACS provides a variety of debugging aids including register 
initialization, execution traces, conditional register and data snaps, 
and post-execution dumps. An interrupt generation capability permits 
error interrupt occurrences to be simulated at any specified location 
in a program. Coupled with the STACS simulation of the CLC operating 
system interrupt handling, this allows exhaustive testing of program 
interrupt response code. Special commands to simulate manual inputs 
enable man/machine interactions, which are normally asynchronous 
and not exactly reproducible, to be reduced to a single repeatable form 
for testing purposes. Run-time statistics accumulated by STACS (e.g., 
the number of instructions executed and the number of memory 
accesses) assist programmers in estimating program execution times 
and memory queuing loads. 

The ability to temporarily patch programs and data sets proved 
extremely valuable. STACS supports a simple, instruction-level patch 
capability. To modify a program, the programmer specifies the in
struction to be inserted and its offset within the program. Patching 
frees the program tester from time-consuming source recompilations 
and provides a great deal of flexibility. For example, one STACS run 
might contain many test cases, each created by using patches to change 
test data between program executions. The patch capability also per
mi ts verification of the correctness of the instructions or data being 
changed. Such verification eliminates two common problems: patching 
the '''Tong location and patch conflicts due to more than one patch 
at the same location. 
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2.2.2 MDP support program 

Support programs executing on the MDP played an important role 
in the transition of the operating system's support capabilities to the 
CLC. These programs utilize the independent access paths of the 
Maintenance and Diagnostic Subsystem (M&DSS)2 to interface with 
various CLC units. Along with the capability to load and execute 
bound code, they provide a set of single-processor, nonreal-time de
bugging aids including traces, snaps, and dumps, as well as a temporary 
program and data set patch capability. Attempting to debug the 
operating system's support capabilities without such a set of basic 
tools, which are provided by a separate support computer, would 
represent a formidable task. Later, these programs provided a capa
bility that allowed a complete and uncorrupted snapshot dump of the 
system to be taken in the event of a system "crash." 

2.2.3 DEBUG-a single-processor, nonreal-time tool 

DEBUG represents the CLC operating system's first package of de
bugging aids. Although it includes some multiprocessor capabilities, 
which will be discussed under phase II testing, its design is more 
oriented toward a single-processor, nonreal-time environment. Its 
programs are not reentrant, its 110 is not concurrent with processor 
execution, and some of its capabilities require overlays from disc. 
DEBUG output may be directed either to printer or tape. 

DEBUG capabilities include many of those provided by STACS and 
the MDP support programs. They include register initialization, traces 
of jump instructions or subroutine calls, conditional register and data 
snaps, dumps after termination, and program or data set verification 
and patching. A TTY interrupt capability allows an operator to inter
rupt program execution, request debugging actions, and then cause 
execution to resume. Using the breakpoint hardware of the CLC 
processor, DEBUG provides a breakpoint capability, which allows a 
trace of all accesses to a specific variable store memory location. Its 
patching capability became the standard approach across SAFEGUARD 
for fixing problems, thus eliminating the need for source-code re
delivery and rebinding except at widely spaced intervals. Consistent 
with this philosophy, DEBUG capabilities require no special compile
time changes. For example, to cause a snap or program breakpoint, 
DEBUG temporarily inserts an illegal instruction into the program. 
When a processor encounters the illegal instruction, it interrupts, and 
DEBUG gains control, performs the requested debugging service, and 
then executes the instruction which has been replaced. The debugging 
"hook" exists only for the duration of the run. 
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2.3 Lessons learned from phase I 

Phase I testing would have benefitted from better compatibility 
between STACS and the CLC operating system, and more complete 
hardware simulation by STACS. Ideally, the transition from the support 
to the target machine should be transparent. However, except for the 
patch commands, the command languages as they exist are completely 
different. Programmers must become familiar with a new command 
language prior to beginning testing on the CLC. In addition, due to 
the way it simulates CLC memory, STACS requires programs and data 
sets to have a memory allocation different from their eventual CLC 

mapping. Thus, rebinding was required before the transition to the CLC. 

The status unit is a good example of a device which should have 
been simulated but was not. The status unit is a special-purpose hard
ware unit used to collect status information from the CLC and its 
peripherals.3 Both the operating system and the application software 
contain numerous references to this device, and the effort required to 
simulate it would certainly have been worthwhile. 

The ideal situation would be to leave phase I testing with only 
timing, multiprocessor, and some interface errors remaining in the 
software. 

III. PHASE II-SOFTWARE INTEGRATION TESTING 

The purpose of phase II testing is to integrate the software, starting 
with a simple nucleus of tested code and adding increments until all 
of the various software components are included. Testing is at an 
external interface level, which may involve the complex interaction 
of many programs and hardware units. 

3.1 Environment 

Phase II testing was performed on the CLC, primarily in a "hands-on" 
environment. There were efforts to move toward batch operations, but 
the complexity of the system and its unstable character during this 
phase limited this approach. Independent test-and-integration groups 
performed the bulk of the testing. For example, in the operating sys-, 
tem area, eight to ten people were engaged full time in the debugging 
effort. The DEBUG patch capability allowed quick fixes to problems 
until the next source code update was made. During this phase, 
single-processor, nonreal-time testing gave way to testing in a multi
processor, real-time environment. At regular intervals, operating
system releases provided new capabilities to the application software. 
Special drivers were used to simulate the missiles and radar, later to 
be replaced by the system exerciser4 when it became available. During 
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this period, test-and-integration personnel, using the DEBUG patch 
capability, "invented" many debugging tools as they were needed. 
As the debugging environment became more constrained, the de
bugging approaches attempted to minimize timing impact. Consistent 
with this evolution, the debugging tools will be presented in order of 
decreasing timing perturbation. 

3.2 Debugging tools 

3.2.1 Time suspension 

As mentioned earlier, although DEBUG's basic design is not intended 
for a real-time, multiprocessor environment, it does include a few 
capabilities for dealing with both of these complicating factors. Not 
surprisingly, its approach, a form of time suspension, attempts to 
collapse the system to the simpler, single-processor environment for 
which it is designed. 

The time-suspension strategy involves stopping the system, per
forming a debugging operation, and then restarting the system. To 
stop the system, DEBUG first stops the timing generator and then causes 
each processor, except the one controlling the time suspension, to be 
interrupted and to enter an idle loop. At this point, the controlling 
processor performs the requested debugging operation, e.g., a memory 
dump to the printer, which may consume many seconds or even 
minutes. To restart the system, DEBUG first restarts the timing gener
ator and then the processors. Each processor restores its previously 
saved registers prior to resuming execution. 

Time-suspension suffers from several serious drawbacks. Using 
interrupts to stop processors is a serial operation, requiring 10 to 20 J.l.s 
per processor. This permits scores of instructions to be executed, and 
proves particularly unsatisfactory in a "stop-on-error" situation. The 
fact that all processors cannot be stopped instantly leads to several 
difficulties. For example, some processors may be stopped with critical 
data sets locked, causing lock recovery code to be erroneously triggered 
on one of the processors still running. An even more serious difficulty 
is that time suspension does not work with synchronous peripherals 
such as the radar. DEBUG cannot correctly stop and restart the radar's 
internal clock and, therefore, cannot preserve its timing relationship 
with the data-processing system. Early in phase II testing, when 
synchronous peripherals and large processor configurations were not 
used, time suspension proved helpful. 

3.2.2 System image save 

The "system image save" is one of the most important data
gathering tools, providing a complete snapshot of the system. Preceding 

S138 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



the save, the system is collapsed to a single-processor, nonreal-time 
state. Following the operation, the software must be reloaded prior 
to restarting the system. The system image includes the entire data 
base, all processor registers, the contents of the status unit, and the 
contents of internal hardware registers. The information is written to 
tape or disc, the entire operation requiring only a few seconds. Test
and-integration personnel invoke this capability manually when they 
suspect the occurrence of a serious error. During phase II testing, the 
automatic invocation of it by DEBUG in response to an error interrupt 
was important. In phase III testing, a system-image-save automati
cally occurs as a first step during system-error-recovery operations. 

3.2.3 Real-time simulation 

Real-time simulation on the CLC is another useful technique for 
reducing the debugging effects of a time-constrained environment. Two 
SAFEGUARD approaches deserve mention: one employs the timing 
generator and the other eliminates it entirely. The operating system 
manages processors by dividing time into discrete units, called phases. 
The length of a phase is determined by the timing generator and can 
be increased by simply programming the timing generator such that 
the phase length is longer than it normally would be. This approach 
does not eliminate the timing generator's time constraint, but does 
provide a continuum of execution rates from nonreal time to real time. 

The other approach used on SAFEGUARD employs a software mech
anism instead of the timing generator to control software execution 
and phase length. In order that I/O jobs may terminate properly, a 
minimum time between phases is enforced. This approach eliminates 
the timing generator's time constraint completely, allowing a task's 
execution time to extend as long as necessary, e.g., for many seconds 
or minutes in the case of a dump of processor registers on the printer. 
An additional benefit is greater repeatability since the elimination of 
the hardware clock reduces many of the run-to-run variations which 
normally occur. However, because real-time simulation precludes 
synchronous peripheral interfacing, its use was confined to the early 
portion of phase II testing. 

3.2.4 DARTS-a low-perturbation tool 

The intent of Debugging Aids for Real-Time Systems (DARTS) is 
to provide debugging capabilities in a multiprocessor, real-time en
vironment with a minimum of timing perturbation. This environment 
includes normal timing-generator and radar operation. The underlying 
assumption is that debugging actions can be performed during normal 
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processor idle time. The design of DARTS resembles in many respects 
that of the real-time portion of the operating system: reentrant pro
grams that are permanently resident during execution; a real-time 
component driven by tables constructed in nonreal time; and service 
times low enough to be measured in microseconds. 

DARTS permits the establishment of program breakpoints at which 
desired debugging actions can occur. These actions include both data
collection and data-manipulation services. Actions can be conditional, 
depending on register contents, data values, the operating system 
phase, the arrival of a specified point in time, or the completion of a 
specified time delay. Breakpoints can be enabled or disabled during 
execution, providing added flexibility. A manual input simulation 
capability permits complex man/machine interactions to be reduced 
to a list of DARTS commands. This feature offers a number of significant 
benefits. First, repeatability is increased since the simulated inputs 
can be timed precisely. In addition, the number of operators required 
is reduced, the possibility of operator error is virtually eliminated, and 
run times are shortened considerably. DARTS also provides an interrupt
simulation capability which proved extremely useful in debugging the 
extensive interrupt-response code within the operating system. 

Instead of dumping captured data to the printer, DARTS either 
accumulates it in circular buffers or writes it on tape using the operating 
system's recording capability. At termination, information in the cir
cular buffers can be dumped in chronological order. 

DARTS provides a flexible, easy-to-use, high-level language with 
which test-and-integration programmers can create their own de
bugging tools. It incorporates many of the ideas and techniques 
learned during the early SAFEGUARD debugging experience. 

3.2.5 Event traces and error logs 

The operating system provides a number of historical traces and 
logs of key system events, including both normal occurrences and 
errors. These data-collection capabilities are extremely valuable in 
debugging and performance analysis. The normal path traces include 
task executions, status-unit bit changes, and manual inputs. For 
each error occurrence, the operating system generates a four-word 
entry containing the time of the error, its category, and two data 
words that are dependent on the particular kind of error. The event
trace and error-log information is accumulated in memory and, 
periodically, is written to tape using the operating system's recording 
capability. The information remaining in memory becomes an im
portant portion of any system image save which may be made. It 
reflects the key system events leading up to a serious error occurrence. 
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3.2.6 Data recording 

The operating system provides a flexible and powerful data-recording 
capability which permits continuous data collection onto tape with 
a capacity of one hundred thousand 32-bit words per second. Numerous 
recording calls are permanently embedded both in the operating system 
and the application software. These calls may be easily augmented 
using DARTS. Both software and manual controls permit individual 
recording categories to be turned on or off. Thus, the recording stream 
can easily be adjusted to meet the needs of particular test situations 
or suspected errors. 

In addition to recording the various event traces and error logs 
described earlier, the operating system supports special recording 
capabilities relating to processor interrupts and CRT displays. Specifi
cally, on a processor interrupt, the operating system records the 
processor registers and stack information. The stack contains tem
porary data variables and information sufficient to recreate the chain 
of programs leading up to the interrupted program. These interrupt
related data become increasingly useful in phase III testing when 
continuous operation in the presence of errors, including interrupts, 
becomes commonplace. The operating system provides the capability 
to record CRT displays. This output can be reduced using special pro
grams on the support computer, producing a "hard" copy of displays. 
Verifying the correctness of displays in this manner is more convenient 
than taking photographs. 

3.3 Lessons learned in phase 1/ 

The most obvious lesson from phase II testing is that debugging 
approaches suitable for nonreal-time, single-processor systems are not 
adequate for a system like SAFEGUARD. Specifically, the philosophy of 
minimum perturbation as exemplified in DARTS is far superior to the 
time-suspension technique used by DEBUG. For time suspension to be 
feasible, hardware mechanisms to allow abrupt stopping and restarting 
of all active system elements (e.g., processors and clocks) must exist. 

The second lesson is that debugging aids must be developed early, 
well ahead of the software which will use them. Waiting for experience 
to provide feedback on what tools are needed does not allow sufficient 
time for their development. A solution to this dilemma is to provide 
the test-and-integration personnel with the tools to construct de
bugging aids as the need arises. The patch capability is the simplest 
example of this approach while DARTS represents its easy-to-use 
culmination. An analogous problem occurred in developing individual 
operating-system tests. Often the test team would identify new areas 
requiring testing. However, the amount of time required ruled out the 
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normal test-development cycle. The solution was a software facility 
that allowed quick test generation using a simple, high-level command 
language. 

IV. PHASE III-SYSTEM TESTING 

The purpose of phase III testing is to verify that the software and 
hardware work together as a system in an environment that resembles 
as closely as possible the expected operating conditions. 

4.1 Environment 

During phase III, "hands-on" testing continued, primarily in a 
real-time, multiprocessor environment. The completed system exer
ciser became the test driver for the process. The duration of test runs 
increased and, in some instances, testing extended for periods of many 
hours. As confidence in the extensive error-recovery code in the system 
increased, "stop-on-error" modes of testing declined. Errors provided 
unexpected opportunities to verify the software error response. Load 
testing and process tuning became important. Netted tests which 
involve multiple site interactions occurred frequently. Across SAFE

GUARD the number of official patches grew into the thousands, re
quiring extensive control- and quality-assurance measures. The 
debugging tools developed in phases I and II remained available, per
mitting changes to the software to reach the test groups in a well
tested state. Although most of the debugging aids described previously 
continued to be used, the tools that were permanently part of the 
applications software and that normally caused the least timing 
perturbation were the most important. These included the event traces, 
error logs, data recording, and the system image save. Data recording 
and reduction were the tools that had the most widespread use during 
this phase of debugging. 

4.2 Additional debugging tools 

4.2.1 CLC hardware monitor 

The CLC monitor is an external hardware monitor which includes 
its own memory, extensive logic to count and filter data, and two 
tape units. Although its primary use has been to gather system per
formance measurements, it has proven valuable in debugging two 
areas. One is the kernel of the CLC operating system, where normal 
debugging tools cannot be used. The other includes extremely time
critical portions of the system where the insertion of debugging 
"hooks" causes an unacceptable perturbation. The mechanism for 
transferring the software event information to the monitor is a single 
store instruction, which increases task execution time by approximately 

S142 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



1 J..Ls. A number of these monitor instructions are permanently embedded 
in the software. 

4.2.2 Operating system testing during phase /II-the system test "cycler" 

A special test process called the system test cycler tested the operat
ing system in an environment quite different from that of phase II 
testing. It exemplifies the kind of testing done in phase III. The cycler 
allows continuous testing of the operating system over periods of many 
hours. Special logic within the cycler exercises many of the conven
tional data-processing peripherals (e.g., tape and disc) and the operat
ing system software which manages them under extremely heavy 
loads. Using a TTY command, test personnel can insert simulated 
hardware faults into memory units and processors, verifying that 
the operating system can detect and recover from the errors. Most of 
the error-recovery mechanisms provided by the operating system can 
be exercised using the cycler, either manually or automatically. 
Besides uncovering numerous software and hardware problems, the 
cycler provided a test-bed for verifying many of the changes made to 
the operating system during phase III. 

4.2.3 Visual error-detection aids 

During phase III, visual error-detection aids became increasingly 
important. In a system such as SAFEGUARD, where no observable 
activity normally occurs, visual signs are needed to inform the operator 
as to system "health." Error indicators may prompt him to enable 
recording, or they may serve as clues as to which portion of the total 
recording output should be reduced. In addition to error messages, 
wall display boards, and various error light indicators, the operating 
system provides a CRT memory dump display. This allows areas of 
memory or the status unit to be viewed. In this same category is a 
printer trace4 of key events which was extensively used during the 
phase II testing of the application software. It provided a window 
through which the system tester could observe the continuous func
tioning of the process. Although an important testing capability, it 
was never made a permanent part of the system. 

4.3 Lessons learned in phase /II 

The most important deficiency uncovered during phase III testing 
was the absence of sufficient visual indications to determine what was 
really happening inside the computer. One solution proposed, but 
never implemented due to lack of available memory space, was a 
"vital signs" CRT display. Such a display might show the accumulated 
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errors on various units, the amount of I/O and processor activity, or 
key radar and missile information. 

v. RECOMMENDATIONS 

Table I lists the capabilities discussed in this paper. If one capability 
could be singled out as the key to the SAFEGUARD debugging success, 
it would be the ability to patch programs. It eliminated the need, 
except at widely spaced intervals, for time-consuming source-code 
redeliveries and system reverification. In addition, patching provided 
a flexible, easy-to-use tool through which new debugging aids and test 
tools could be created. 

The importance of unit and module testing cannot be overempha
sized. A high percentage of the bugs found in the later phases could 
have been eliminated in phase 1. Therefore, it is highly cost effective 
to provide extensive unit and module test facilities. Programs which 
bypassed phase I testing, either because of extensive hardware inter
faces or schedule constraints, generally became long-term problems 
during later phases of testing. 

The early consideration of three vital areas is mandatory: error 
logging, data recording, and other special debugging aids. On SAFE

GUARD, error logging and data recording could have simplified debug
ging if they had been available earlier. The tendency to postpone 
consideration of these areas because they are not critical capabilities 

Table I - Use of debugging tools by testing phases 

Testing Phases 
Debugging Tools 

CLC simulation on support computer (STACS) 

Unit debugging aids}M 
Dump capability DP programs 

Unit debugging aids on CLC} 
Program patching DEBUG 

Time suspension 
Real-time simulation 
Low-perturbation aids } 
Manual input simulation DARTS 
Error-interrupt simulation 
System image save 
Event traces and error logs 
Data recording 
CRT memory display 
Prin ter trace of key events 
CLC hardware monitor 
System test cycler 

I 
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should be avoided. In the case of other specialized debugging aids, 
it is clear that waiting for actual testing experience to reveal what 
tools are needed is unsatisfactory. 

Although it may seem obvious, the availability of an experienced 
nucleus of people may be the best guarantee of success. The Meck 
test system prototype effort which preceded SAFEGUARD provided a 
sizeable pool of real-time, multiprocessor experience, which proved 
invaluable in testing the SAFEGUARD system. 
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This paper gives a critical overview of the development of a selected set 
of support software programs. These programs comprise part of the 
support environment required to make the SAFEGUARD system application 
software and hardware operational. 

I. INTRODUCTION 

In the development of the SAFEGUARD system or any other large
scale programmed system, one may distinguish between two types of 
software-application and support. Application software does the job 
for which the system is intended. In SAFEGUARD, this means driving 
the radars, tracking objects, firing missiles, etc. Support software 
includes all other software required to make both application software 
and hardware operational. 

This paper, and others that appear in this section, cover a limited 
set of support software programs. Included in this set are 

(i) CENTRAN-A compiler for a high-level extendible language of 
the same name. 

(ii) sNx-A macro assembler. 
(iii) xPF-A binder for preparing CENTRAN and SNX output for 

execution. 
(iv) STACS-A simulator for execution of XPF output. 
(v) SDRS-A set of programs for reducing, i.e., decoding and 

formatting, data recorded during CLC execution. 

All these programs have several things in common. First, their 
purpose is to assist the development and debugging of SAFEGUARD 
application software. Second, for reasons to be discussed in detail 
later in the paper, these programs operate on computers other than 
the Central Logic and Control (CLC). >I< 

* The CLC is discussed in Ref. 1. Discussions of support software that operate on the 
CLC may be found in Ref. 2. 
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This paper critically examines some key decisions that shaped the 
programs and the environment in which they operate. In doing this, 
the groundwork will be laid for the other papers in this section. The 
paper is divided into two sections: the first covers support software; 
the second covers the computers on which the support software pro
grams were developed and on which they run. 

What is the value of such a critical examination? The frequency 
with which programming projects fail or repeat the mistakes of their 
predecessors leads to the conclusion that the knowledge required to 
manage program development is largely based on experience. Perhaps 
the communicating of experiences, successful and unsuccessful, may 
help to transmit some of the knowledge gained on the SAFEGUARD 

project. 
Why is SAFEGUARD a good choice for such an examination? Because 

its development and that of its prototype span a ten-year period 
that overlaps the development of the "science" of programming 
management. Because during those ten years many intensely creative 
people were involved, and since the magnitude of the proj ect was 
enormous, their creativity was not constrained. Because the SAFE

GUARD effort encompassed a multiplicity of organizational structures 
within Bell Laboratories and its various subcontractors. Because it 
seems that, at one time or another, practically everything was tried 
or seriously studied. 

During the ten-year period examined, one can distinguish three 
successive phases of support software development. Each phase was 
built on the lessons learned during previous phases, and each phase 
had its own characteristic spirit. The first phase was part of the N IKE-X 

antiballistic missile research and development effort in the mid-1960s. 3 

The second phase was the development of support software for the 
Meck test system, a prototype system intended to validate some of 
the results from the first phase. The third phase was the development 
of support software for SAFEGUARD, which has applied the results of 
N IKE-X research on an even wider scale. The topic of this paper is 
SAFEGUARD support software, but since it has been shaped by a synthe
sis of N IKE-X and Meck test system experiences, it is with these that 
the story must begin. 

II. SUPPORT SOFTWARE FOR NIKE-X AND THE MEeK TEST SYSTEM 

In the early days of N IKE-X, support software designers envisioned an 
environment in which the application programmer "typed" high-level 
language programs at a terminal under control of a time-sharing system 
operating on the CLC. Programs would then be processed by a global 
optimizing compiler and executed, with results routed to the program-
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mer at his terminal. In retrospect, these ideas are perfect examples of 
the optimism that pervaded the computer industry in the mid-1960s. 
As the industry lost its innocence, these ideas crumbled. The CLC time
sharing system, Program Development Facility (PDF), was ultimately 
dropped when it became apparent that there was not enough CLC time 
to allow concurrent development of hardware, support software, and 
application software. PDF development had lost not only its means 
but its end as well, for application software development for the :Meck 
test system had already passed the unit testing stage where PDF could 
have been most helpful. 

A global optimizing compiler, NIKE-X Compiler Language (NICOL), 
was abandoned after completion of three of the four planned stages 
of its development. A working, but incomplete, compiler (NICOL :{) had 
been built for the CLC, but there was insufficient CLC time for support 
software development and compiler maintenance. This, combined with 
a long time estimated for completion of the optimizing phase given the 
available manpower and with technical problems encountered in 
maintaining NICOL :3, indicated that NICOL would not be able to meet 
the needs of the project. lVleanwhile, coding for the 1V1eck test system 
had been done in assembly language so the compiler was needed only 
for SAFEGUARD software development. 

A message in the NICOL and PDF stories will recur in this paper. 
Support software goals must be realistic, particularly in the sense that 
they be attainable at the time they are required. Essential features 
must be available on schedule. The purpose of support software is, 
after all, to support the objective of building systems. Building state
of-the-art support software as well is laudable, but only if it con
tributes to the main objective. 

These experiences led to several important decisions that influenced 
support software development for SAFEGUARD. First, it was decided 
to move as much support software activity as possible to a computer 
other than the CLC. This had the desired effect of making the CLC 
more available for application software testing, but it also rcsulted in 
a sizable support computer requirement which is discussed in Section 
V of this paper. 

A second major decision \vas that application program development 
would be done primarily in batch rather than in time-sharing mode. 
This decision was reached over the course of several years and was 
based on many contributing factors. First, experiences with MULTICS 
and TSS4 were disappointing, in the sense that they did not support 
the expected number of users at the predicted time. Second, other 
available, or nearly available, time-sharing systems appeared to have 
serious limitations: CP / CMS was not tile-compatible with 1B1\11 System 
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360. TSO, which IBM advocated in place of TSS, was limited in capa
bility and lacking in human engineering. No system provided adequate 
availability and reliability. Third, interactive support software would 
have to be written and it appeared easier, and therefore faster, to 
write support software that would operate in the batch mode. Finally, 
the exact trade-offs between batch and time-sharing program develop
ment were not yet known (and perhaps still are not). It was speculated 
that time-sharing might improve programmer productivity, but it 
would do so at the expense of additional computer requirements. It 
would have been difficult for management, already faced with large 
development costs, to commit itself to time-sharing without a better 
understanding of its cost effectiveness. 

This shifting support software philosophy affected the development 
of application software for the Meck test system. From the ashes of 
PDF and NICOL emerged a set of support software tools that were 
sufficient to get the job done. Application programs were coded in 
assembly language. Linking and binding the various application 
programs was an intricate and awkward process. Computer program 
source was stored and distributed on cards. The key to effectiveness 
was an ironclad set of control procedures that made the system work. 
Despite a lack of sophisticated support software, the Meck test system 
has consistently met its objectives. 

iii. BUILDING SUPPORT SOFTWARE FOR THE SAFEGUARD SYSTEM 

The decision to deploy the SAFEGUARD system had a direct impact 
on support software. It would be necessary to improve the programs 
and procedures used to develop the Meck test system, since SAFEGUARD 
was a larger and more complex undertaking. However, there was very 
little time to implement these improvements and still meet tight 
development schedules. 

One of the first decisions made was to "borrow" software. Under 
the aegis of the ESS project, Bell Laboratories had developed a modular 
assembler called SWAp5 that was specifically designed for portability
as long as there was an IBIVI System 360 available. Borrowing SWAP, 
converting it to generate CLC machine code, and relabeling it SNX 360 

yielded a fast, efficient assembler at minimal cost. However, it was 
necessary to provide people to maintain and modify SNX 360 as re
quirements grew. SNX 360 was adopted by both SAFEGUARD and the 
Meck test system. 

What about a programming language for the deployed system? 
Assembly language had been used exclusively for the l\1eck test 
system and was favored by most of the "old pros." l\1anagement and 
support software designers were concerned because experience indi-
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cated that a programmer could write and maintain a fixed number of 
statements per month, no matter what language was used. The use of 
high-level languages promised greater productivity. lVlanagement also 
knew that system requirements would be fluid in the early stages of 
development, requiring frequent changes. This supported the argument 
for the use of a high-level language. 

The only high-level language available for the CLC was NICOL, 

however. At that time there was a working, but incomplete, NICOL 

compiler of unknown reliability generating inefficient code. It ran 
slowly and was very difficult to maintain. Estimates of the time 
required to complete the final phase of NICOL development, an optimiz
ing compiler, were unacceptably long. This was due in part to the 
inherent difficulty in generating optimal code for a machine whose 
instruction set had not been designed with an optimizing compiler in 
mind. In addition to the flaws mentioned above, NICOL did not allow 
programmers to "get at the machine," i.e., access the CLC hardware 
registers. This alone was enough to make NICOL unsuitable for a major 
part of CLC software, the operating system. What was needed was a 
language that was easy to use and available immediately, could produce 
optimal code, allowed programmers to access the CLC registers, was 
efficient, and was sufficiently rich in syntax and semantics to serve 
the needs of system programmers, tracking and filtering analysts, and 
radar and missile control programmers. 

What evolved from this need was CENTRAN, * a high-level extendible 
language. The compiler for CENTRAN ,vas coded as a SNX 360 macro 
package. While this implementation permitted early compiler availa
bility, it did result in long compilation times. Later improvements 
increased the speed, but not to the point where it was comparable 
with most compilers. 

CENTRAN offered the programmer his choice of language level, from 
assembly language to something resembling a subset of PL/l, and 
statements of varying levels could be intermixed. If the programmer 
felt that the language syntax was inadequate, he could extend it with 
relative ease. Extendibility allowed for development of the language 
in stages, so a minimum facility could be made available to users 
almost immediately. Reference 7 contains a retrospective look at some 
of the design issues in CENTRAN. 

As a postscript to the programming language issue, it is interesting 
to note that use of CENTRAN was decreed rather than sold. There are 
several "extreme" reasons why this had to be. On one side, CENTRAN 

designers felt that the CLC programmers' attachment to assembly 

* CENTRAN is described by its inventor under the name BTC. See Ref. 6. 
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language was excessive* and that the programmers' cries of inefficiency 
were misdirected. Efficiency concerns, argued the CENTRAN designers, 
should be directed first to the design of the program and data base, 
rather than to the programming language. lVlany programs need not 
be coded with scrupulous efficiency. Further, with a knowledge of a 
few basic facts of CLC architecture, the programmer could write 
CENTRAN statements that would generate code just as efficiently as an 
experienced assembly language programmer could. The programmers 
countered with arguments of their own. They claimed, with some 
justification, that CENTRAN was unreliable. CENTRAN taxed SNX 360 

macro capabilities as they had never been taxed before. If a program
mer made a syntax error, his compilation would occasionally abort 
without a diagnostic or produce a SNX 360 diagnostic that was meaning
less to him. Programmers also complained about CENTRAN documenta
tion, again with justification. It is impossible to write adequate 
documentation, construct courses, and reeducate GOO programmers 
overnight. These things take time to evolve, and while they do, 
programmers suffer. The battle over CENTRAN raged for some time 
and became quite bitter. But in the end, CENTRAN was used and 
programs were written. 

Programs were indeed written, several thousand of them, in fact. 
A better source code storage and control mechanism was needed to 
replace the card-oriented J\1eck test system approach. A disc-based 
filing system was under development, but not near completion. Bell 
Laboratories accepted the offer of the use of an IBJ\![ proprietary 
system that had been used in the development of IBN[ programs. 

This product is a comprehensive disc-based source-object listing 
filing system which offers programmers many of the features required 
in the software development process; for example, an editor for chang
ing source lines, a means of temporarily changing source for testing, 
and a mechanism to facilitate delivery of completed code. In addition, 
the system helps to protect the programmer from his O\vn or others' 
mistakes by allowing limited access to libraries. Initially, users were 
not enthusiastic about the system, and management pressure had to 
be applied to ensure its use. Complaints centered around reliability 
and documentation deficiencies. In retrospect, however, the decision 
to use the system proved to be a good one, primarily because of the 
procedural discipline it forced on the programmers. 

* Part of this attachment is really an unwillingness to give up comfortable, familiar 
coding patterns. B. N. Dickman relates an anecdote that illustrates this vividly. 
When he joined the project in 1967, he found that CLC programmers were hard-coding 
base registers in their instructions. He implemented a USING pseudo-operation similar 
to the one in IBM System 360 BAL. But he found it difficult to get programmers to 
llse this most helpful and completely noncontroversial feature. 
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CENTRAN and SNX 360, like most compilers and assemblers, produce 
relocatable object code. A program was developed to allocate CLC 
memory, build the control tables needed by the operating system, 
perform binding functions, structure the overlays, and perform a host 
of related services. * This program was named the Execution Prepara
tion Facility (XPF). 

XPF was possibly the most volatile of the support software programs. 
As new capabilities were incorporated into the CLC operating systems, 
XPF had to be changed to reflect these new capabilities in the bound 
versions of users' programs. This could have been a massive coordina
tion problem, but the XPF designers found a creative solution. First, 
they implemented XPF in PL/l, which facilitates changes, and made 
clever use of its preprocessor to automate change as much as possible. 
Second, they planned a series of releases with incrementally expanding 
capabilities and coordinated them with the development schedules for 
the CLC operating systems. 

XPF is discussed in Ref. 9. This paper by Van Sciver focuses on the 
use of PL/l and its consequences, stressing the additional flexibility 
which its use affords. 

All the support software discussed above is classical in the sense 
that its operation is well understood by every student of computer 
science and that most technical problems involved have been studied 
theoretically and translated into cookbook solutions. Because of its 
complexity, the SAFEGUARD application requires an additional support 
facility operating in an area where the theory is not well understood. 
The basic question is how does one validate a real-time multiprocessing 
system as complex as SAFEGUARD? How does one really know what 
has happened inside the CLC? To answer the latter question, the 
capability of data recording is provided by the CLC operating system. 
Recording makes it possible to transmit data of the designer's choosing 
to tape at the rate of three million bits per second during CLC execution. 
These raw data would fill more than 150 printed pages for each second 
of CLC execution. Clearly, some automated techniques are required to 
help the designer through this morass of data. This is the function of 
reduction programs that group and format the information for orderly 
and meaningful presentation. These programs are called the SAFE
GUARD Data Reduction System (SDRS). 

A lack of clearly specified requirements makes designing data re
duction programs difficult. The designer of an assembler, a compiler, 
or a simulator can take much for granted. A large body of knowledge 
exists about these programs, and techniques for implementing them 

* The rationale behind the choice of functions may be found in Ref. 8. 

SUPPORT SOFTWARE AND COMPUTERS 5155 



have been studied extensively. The designer of a data reduction system 
has little theoretical knowledge from which to draw. Although the 
data reduction problem was documented as far back as SAGE, very 
few people have extensive experience in debugging large-scale real-time 
systems, and even fewer people understand the importance that real
time debugging considerations play in data base design. So the data 
reduction designer gets little help from anyone, and must build the 
most flexible and basic package possible in the hope of meeting user 
requirements as they are discovered. 

SDRS is a generalized information storage and retrieval system, part 
of which was borrowed from another Bell Laboratories application 
and adapted for SAFEGUARD. lO 

IV. SOME CONCLUSIONS ABOUT SUPPORT SOFTWARE 

What made certain support programs more successful than others? 
Obviously, the more successful ones met the needs of the users. They 
were available when they were needed, were flexible enough to react 
as requirements changed, and were reliable. Various methods were 
used to achieve these objectives. High-level languages were used to 
retain flexibility. In fact, flexibility was considered so important that 
efficiency was sacrificed. Software was borrowed shamelessly, but with 
the knowledge that it would have to be maintained. High-risk state
of-the-art approaches were avoided. Incremental implementations were 
planned so that programs could be used as quickly as possible. Strict 
testing and release procedures were adopted to ensure quality. Pro
grams were "frozen" after release and became subject to change
control procedures. Stringent control was placed over the interfaces 
between the facilities to ensure integrity. All these techniques helped 
to build a successful support software system. 

V. THE USE OF SUPPORT COMPUTERS IN SAFEGUARD DEVELOPMENT 

As indicated earlier in this paper, a basic decision was made to move 
as much support software work as possible from the CLC to a commercial 
computer. This led to major involvement in the use and operation of 
commercial computers. Items to be discussed include the computers 
currently being used and how they were selected, their locations, and 
some of the ~echniques used to improve cost effectiveness. 

In the mid-to-Iate 1960s, NIKE-X computing was performed ex
clusively by the Bell Laboratories, Whippany, General-Purpose Com
puter Center, which operated an IBM 7094 and a GE 635. NIKE-X 
support software development work had been divided between the 
GE and the IBl\![ systems. PDF and NICOL development was being done 
on the GE 635, while the CLC assembler and rudimentary binding 
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facilities were tied to the IB1Vl 7094. The IBlYl 7094 was to be phased 
out when MULTICS became available. However, when it became neces
sary to choose a computer for installation at l\1eck Island, the GE 635 
PDF-NICOL package was not ready. The only alternative was to code 
programs from the l\/leck test system in assembly language. Since there 
was no CLC assembler for the GE 635, it was necessary to install an 
IBl\,I System 360/65 (which could emulate the IBl\/l 7094 at lower 
cost than the original) on l\/Ieck Island. Once the commitment had 
been made for lUeck, the IBl\'l 7094 at Whippany could not be released, 
since it was required for compatibility with Meck. The GE 635 then 
began to disappear from the mainstream of software development 
activities. It remains in use full time, principally to produce fault
location dictionaries for SAFEGUARD equipment.!1 

l\;leanwhile, the Bell Laboratories IB1\I 7094 was also replaced with 
an IBl\/l System 360/65 and the CLC assembler and program preparation 
facilities were run under emulation. Gradually, these programs were 
converted to run on the IBl\/l System 360/65 in its native mode for 
increased efficiency. As each conversion occurred, l\/leck test system 
dependence on IBl\1 System 360 hardware increased. 

Support software for SAFEGUARD further increased the dependence. 
SNX 360, the IBM proprietary library system, and parts of SDRS were 
borrowed from other IBl\!I System 360 installations. CENTRAN was built 
as a macro package on top of SNX 360. XPF was coded in PL/l. Con
version to a non-IBl\1 computer would have severely delayed the 
operational date of the SAFEGUARD system because virtually the entire 
support software system 'would have had to be replaced. 

As the project grew, the number (and size) of support computers 
grew 'with it. Table I is a summary of the dedicated support computers 
used for SAFEGUARD and the l\leck test system. 

The prime purpose of these computers is to provide \vhatever service 
is necessary for program development. The challenge in operating 
them is to do the job in a cost-effective manner. Some methods used 

Table I - SAFEGUARD-dedicated support computers 
(November 1973) 

Computer 

IBM 370/165 
IBM 370/165 
IBM 370/155 
IBM 370/15.~ 
IBM 360/50 
HIS 635 
IBM 360/65 
IBM 360/65/40 

Location 

Madison, N.J. 
Morris Plains, N.J. 
Concrete, N.D. 
Nekoma, N.D. 
Colorado Springs, Colo. 
Whippany, N.J. 
Whippany, N.J. 
Meck Island 
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to achieve this will be discussed in the following paragraphs. Because 
the list of such methods is potentially limitless, the discussion focuses 
on items that might be considered surprising or controversial. 

System tuning usually comes to mind first when one contemplates 
increasing cost effectiveness. Two kinds of system tuning can be 
distinguished immediately, synthetic and analytic. Synthetic tuning 
consists of an algorithmic application of such familiar standbys as 
data set placement optimization and channel balancing. Synthetic 
tuning is a necessary but not a sufficient condition for a tuned system. 
The slack is taken up by analytic tuning, which is an attempt to view 
the computer as a system, to ferret out the bottlenecks through use 
of the analyst's bag of tricks, to rank the bottlenecks in terms of their 
system impact, and to propose and implement solutions. 

Different types of analysts can be identified by their approach. The 
most common and perhaps most effective type is the mystic, who 
appears to find problems by using a logic compounded of experience 
and intuition. Other types of analysts are the theoreticians, who try 
to construct classical proofs that one course of action is better than 
another, and the simulators, who attempt to model the computer with 
a series of parameters that can be varied to determine an optimum 
course of action. Neither the theoreticians nor the simulators were well 
represented on SAFEGUARD. What one did find on SAFEGUARD were 
the chartists. The chartist believes that it is possible to build one or 
more computer performance reports that will tell where the bottlenecks 
are and where tuning is required. One has only to decide which num
bers to include in the charts and how to interpret them. 

The chartist approach was very successful, but not exactly in the 
way it was intended. The most significant information derived from 
the charts was that the biggest system bottlenecks were the users 
themselves. Reading the reports seemed to show who was a good 
programmer and who was not, who was getting his job done and who 
was not, and who was hogging resources at the expense of others. This 
caused some rethinking about what it really meant to improve through
put. In a global sense, if the programmers do not get their job done, 
what difference does it make if turnaround time has been reduced or 
CPU utilization increased? To improve throughput, both the userS and 
the system must be tuned. 

Realization of this fact resulted in a campaign to search out those 
who were using the computer inefficiently. This endeavor was called 
"bird-dogging. "12 

Another method used to increase the cost effectiveness of SAFEGUARD 
computer-center operation was the use of plug-compatible components 
when their use offered equal or superior performance at lower cost. 
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This had the additional benefit of supporting the government's objec
tive of fostering competition within the computet industry. SAFE
GUARD experience gained in replacing IBlY! 2314 disc storage, IB1VI 2401 
tape drives, and IBM System 370/165 memory does not differ sub
stantially from that reported in the literature. However, certain key 
points should be mentioned. 

First, it is important to have a solid grasp of the economic situation. 
A commitment to install plug-compatible equipment is also a com
mitment to expend the funds and the manpower to select replacement 
equipment and then to make sure that it works. SAFEGUARD has found 
this to be a nontrivial investment. One must be relatively certain that 
new announcements or price reductions will not eliminate the expected 
savings. IBM's announcement of 2319 disc drives cut heavily into the 
net savings that accrued from SAFEGUARD's switch to plug-compatible 
2314s. On the other hand, the conversion to plug-compatible IB]VI 
System 370/165 memory has been enormously successful from an 
economic point of view, primarily because it was decided to purchase 
the IBM System 370/165s rather than convert to System 370/168s. 

Second, it is important that the vendor have a good local service 
organization with trained, competent people backed by a hierarchy 
of expertise including the design engineers themselves. Looking back 
over several years' experience with plug-compatible equipment, the 
major problems encountered always seem to be due to difficulties 
within th~ service organization. 

The third and last technique for improving computer-center cost 
effectiveness is the use of facilities management companies to operate 
SAFEGUARD computer centers. The IBJ\1 System 370/165s at lYladison 
and Morris Plains, N. J., and the IBM System 360/50 at Colorado 
Springs, Colorado, were all operated this way. There are many ad
vantages to such an arrangement. Perhaps the most significant one is 
the emphasis that the facilities management companies place on 
service. In the case of both companies used by SAFEGUARD, the results 
have been outstanding. This is partially because facilities management 
companies exist to provide service and partially because of the nature 
of Cost-Plus-A ward-Fee (CPAF) contracts,13 which make it financially 
advantageous for the subcontractor to do his best. Another advantage 
is that Bell Laboratories need not recruit and hire additional computer 
operations specialists. Finally, there is the issue of cost. Experience on 
SAFEGUARD has shown that, when all considerations are taken into 
account, a facilities management company can provide excellent cost
effective service. 

The principal disadvantage of subcontracting computer-center 
operations is that the company selected occasionally takes a parochial 
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view toward project needs. For example, one company felt that it 
was extremely important to reduce average turnaround time. What 
they should have tried to do was to ensure that jobs received turn 
around in accordance with their importance to the project, regardless 
of the effect on the average turnaround time. Here again, the CPAF 

contract is a valuable tool for ensuring that the subcontractor's goals 
remained aligned with the contractor's goals. 

VI. SOME CONCLUSIONS ABOUT SUPPORT COMPUTERS 

It is impossible to point out in a few pages all the important lessons 
from almost ten years of computer-center management experience. In 
this paper, the emphasis has been put on high-return items-bird
dogging, plug-compatible equipment, and facilities management. Other 
items, such as hardware and operating system change control and inter
location compatibility, were addressed but have not been discussed. 
Despite overall success, solutions to many problems were not found; 
e.g., how does one get users to estimate their computing requirements 
correctly, or what is an accurate measure of performance improve
ment? Perhaps our experiences can help othen; to increase cost 
effectiveness. 
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The history of the design and implementation of CENTRAN, an ex
tendible language, is presented as an example to language designers. The 
history is viewed in the context of four groups of factors: environmental 
issues, general design issues, specific design issues, and implementation 
issues. The paper concludes with an evaluation of the design decisions that 
were made. 

I. INTRODUCTION 

There are many papers about the syntax and semantics of computer 
languages. There are some papers about the compilers for these 
languages. But there are few papers describing how and why a language 
was designed and how it was implemented. In presenting the design 
history of CENTRAN, * we attempt to provide a method that language 
designers may apply to improve the writing of software. 

Previous attempts at building a language for SAFEGUARD either 
attempted to provide a she lIt language like PL/l (NICOL), the entirety 
of which could be implemented or understood only with extreme 
difficulty, or attempted to provide a complete syntactical uniformity 
of the machine language structure, like PL360. The attempt to provide 
syntactical uniformity failed because requisite hardware uniformity 
does not, in fact, exist. At the assembly language level, the syntax 
of a language cannot be more uniform than the structure of the object 
machine. 

CENTRAN can be viewed as an extendible language in which several 
levels of language features exist. At the lowest level, CENTRAN is the 
assembly language. At the next level, CENTRAN provides a uniformity 
for the machine by completing incomplete data paths and by providing 

* CENTltAN and ETC are different names for the same language (see Ref. 1). 
t A shell language attempts to provide all the featnre:-; users would ever want. 
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uniform register usage. At this level, CENTRAN is still almost one-to-one 
with the machine code, but provides a more concise syntax for the 
machine operations by means of, for example, polymorphic operators. 
At the next level, machine dependence may still exist in the form of 
hardware register references, but CENTRAN functions as a true compiler. 
At the highest level of use, CENTRAN programs can be as machine 
independent as those written in PL/l. 

The extended language of CENTRAN approximates PL/l in control 
structure and FORTRAN in data structure. In addition to the control 
structure of PL/l, CENTRAN has CASE, BREAK, and ITERATE state
ments. BREAK allows a program to exit a DO loop or group gracefully 
(without use of a GO TO statement) ; I'l'ERATE causes the next iteration 
of a DO loop or group to begin. The data structure is similar to that 
of FORTRAN except that there are based variables, simple structures, 
and partial word variables. The base language has been described in 
Ref. 1. 

II. LANGUAGE DESIGN PROCESS 

The many factors which control the design and implementation of 
a language can generally be classified into four groups, the designer 
having increasingly greater control over the resolution of the factors 
in the later groups. 

The four groups are: environmental factors (external resources and 
constraints), general design issues (decisions to be made based directly 
on environmental factors), specific design issues (decisions of a topical 
nature to be made based on the resolution of general design issues), 
and implementation issues. The resolution of the issues posed in earlier 
groups are factors in the resolution of issues in the later groups. 

2.1 Environmental factors 

This group consists of factors over which one generally has little 
or no control. 

2.1.1 Necessity for a new language 

First, there is the basic presumption that yet another language is 
necessary. The need for a new language hopefully arises from external 
considerations, rather than out of some inner need of the designer or 
as a result of the "not invented here" syndrome. There must be good 
justification for designing a new language rather than choosing all or 
part of an existing language. 

It was clearly desirable to write at least some of the SAFEGUARD 

software in a language higher than machine language. There were 
many cases in which the possible inefficiencies in code generated by 
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a compiler could be tolerated. There were also many cases in which 
it was desirable to produce working programs inexpensively, regard
less of the cost in running time and core, e.g., drivers and other test 
programs. Furthermore, if assured of good programming leverage 
(object-to-source-code ratio greater than one) from a language, and 
concise generated code from its compiler, it would be desirable to 
write all software in that language. 

In the SAFEGUARD project, the compiler for the existing high-level 
language, NICOL, was unstable, and it was felt advisable to develop 
a language intermediate to NICOL and the assembler language as in
surance. Selling CENTRAN as an "intermediate level" language (rather 
than a high-level language) avoided the presumption of NICOL'S demise 
and avoided promising too much prematurely. 

2.1.2 Manpower and implementation schedule 

Two rigid constraints on the implementation of a language in an 
industrial environment are the manpower available and the imple
mentation schedule: PL/l cannot be implemented on a FORTRAN budget. 
Furthermore, the feasibility of using a high-level language must be 
proven before a commitment will be made to the implementation. A 
working compiler, with programs written in the language, is the most 
persuasive proof of feasibility. 

For CENTRAN, the requirement existed to produce something useful 
within six months because the project was well under way and user 
software development could not wait. Only two full-time people and 
one person half time were available for design and implementation. 
There was no promise of increased manpower or lengthened schedule. 
Only one of these people had previously designed and implemented a 
compiler. It was necessary that the structure of the compiler be clean 
enough and simple enough for the available manpower to implement. 
The extendibility features of CENTRAN played a role here in assuring 
that the basic structure of the compiler could be implemented in a 
short time. Using the SWAp2 macro facilities to write the compiler also 
contributed to the quick implementation of the language. 

Within three months, a skeleton compiler was written that was able 
to successfully compile sample programs with which to show the 
feasibility of CENTRAN. A computer listing can be powerful magic, 
even among the initiated, and compiler development support was soon 
forthcoming. 

2.1.3 Hardware 

The hardware on which the programs are to be run is more of a 
constraint in the design of a language than is usually realized. Going 
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from one generation of hardware to another has revealed machine de
pendencies and influences in language design. It has often been said 
that there should be more feedback to hardware design from language 
design, but until the state of software technology reaches that of 
hardware technology, hardware will be a fixed factor in language 
design. 

The language designer has the final word on how the hard ware 
appears to the user. He has the satisfaction of knowing that one 
purpose of a computer language is to compensate for "errors" in hard
ware design, such as to make the machine seem more uniform in 
structure than it actually is or to make explicit by syntactic equiv
alence the classes of machine operations. For example, the designer 
may use "+" to add a constant to a variable as well as to add two 
variables, even though the "+" may be implemented as two different 
machine operations. 

The SAFEGUARD Central Logic and Control (CLC) computer was the 
target machine for CENTRAN. At a low level, CENTRAN supplied a uni
formity to the CLC instruction set that did not in fact exist. For 
example, there were no machine operations to move data from certain 
registers to others without first moving the data to an intermediate 
register. CENTRAN "completes" incomplete data paths by generating 
the appropriate code. Of course, at the highest level of CENTRAN use, 
no references to hardware registers are necessary. 

2.1.4 Software environment 

The degree to which the software environment (e.g., loaders, 
binders, and operating system) is a fixed factor may affect the me
chanics of program production and perhaps even the design of the 
language itself. 

At the time CENTRAN was being designed, a large body of support 
software already existed. It was tedious matter to reassemble all 
SNX programs each time the object module format changed, and so 
it was decided that CENTRAN would conform to SNX object module 
format. As a result, certain desirable language features could not be 
included (e.g., multiple location counters) because they could not be 
represented in the object module. 

2.1.5 User population 

The two attributes of the intended user population, programmer 
proficiency and programmer background, affect the design of the 
language. For CENTRAN, the user population (in addition to Bell 
Laboratories people) consists of several subcontractors. The pro
grammers exhibit a wide range of ability and experience. 
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Programmers have an emotional investment in the first language 
they learn; it is difficult to teach a programmer a second language. 
On the SAFEGUARD project, most of the experienced programmers were 
assembly language programmers and had a strong bias toward writing 
in machine code. This phenomenon has been noted in a more general 
context by Weinberg. 3 CENTRAN attempted to make the transition 
to a high-level language more palatable by keeping the machine 
accessible if so desired. The assembly language, SNX, is actually a 
proper subset of CENTRAN. 

CENTRAN may have made the transition to a high-level language 
too easy-some programmers still think in machine language when 
organizing their programs, leading to a potential rigidity of structure 
and lack of language leverage. 

2.2 General design issues 

While the environmental factors generally are not under the control 
of the language designer, some degree of design creativity can be 
expressed in the resolution of the general design issues. These issues 
are: whether to create a new language or adapt an existing one, what 
the degree of machine independence and the language level are to be, 
how important ease of learning and ease of use are, whether the 
language should in some sense be "complete," and whether the 
language design should express present technology or the state of the 
art. 

2.2.1 Creation of a new language or adaptation of an existing language 

In determining whether to create a new language or adapt an exist
ing one, the designer must beware of contracting either or both of two 
diseases: the "not-invented here" and the "it's-more-fun-to-design
my-own-Ianguage" syndromes. 

In the case of a language for SAFEGUARD, the language compiler 
for NICOL 3 was found to be nonviable. An alternative seriously con
sidered was to code, debug, and unit-test all programs in PL/l using 
IBNI computers and then to hand-compile the programs into SNX so 
that they could run on the CLC. This may well have been the course 
taken if CENTRAN had not been produced on schedule. 

There was, however, an "almost existing" low-level language, the 
CLC assembly language SNX. It included the SWAP macro facilities, 
possibly the most sophisticated in existence (see Ref. 2), most of the 
interfaces with the operating system, and an object module generator 
that almost met requirements. By building on the existing SNX as
sembler, the designer and implementers gained a certain built-in 
compatibility with existing SNX SAFEGUARD programs, familiarity with 
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the format, and most important, because of manpower and develop
ment-time constraints, free maintenance. However, the approach lost 
block structure (since the assembler did not have it), efficiency with 
respect to compile time (since the macro facility is completely in
terpretive), and control over lexical analysis. 

Thus, an existing assembler was used as the base language for an 
extendible compiler. This allowed maximum use of existing software. 

2.2.2 Degree of machine independence and language level 

The two concepts, language level and machine independence, al
though related, are not equivalent. The language level is best described 
in terms of the degree of clarity and conciseness possible. lVlachine 
independence is usually defined in terms of the degree of portability 
of a program written in the language, i.e., how easily a program may 
be transferred from one machine to another. A language may be very 
machine dependent and of a high level. 

Since there were no plans for successors to the SAFEGUARD system, 
machine independence was not a major factor in the design of CENTRAN. 
The level of the language, however, was a factor; As was mentioned 
in the discussion of the environmental factors, at the time CENTRAN 
was being designed there was a perceived need for an intermediate
level language. At the same time, it was apparent that certain high
level language features would soon be needed. CENTRAN's extendible 
design made it feasible to satisfy both of these requirements. 

2.2.3 Ease of use and ease of maintenance 

A language may be constructed with consistency, uniformity, and 
good debugging features, all of which makes it easy to learn the 
language and to write programs. Languages of this sort are ALGOL 68 

and SNOBOL 4. 

Program maintenance is aided if the purpose of a program written 
in the language is easy to comprehend, even though the syntax and 
semantics are nonuniform. Languages of this sort are PL/l and FORTRAN. 

Are ease of use and ease of maintenance related? Programs may 
be easy to write but incomprehensible once written, e.g., programs 
written in PAL, QED, and APL. Programs may be difficult to \\Tite but 
easy to read once written and debugged (e.g., FORTRAN, PL/l, and 
COBOL). Programs may be difficult to write and difficult to maintain 
(e.g., machine language programs and IBlV[ JCL). 

Another aspect of ease of maintenance that should be considered 
in language design involves binding time: binding addresses to vari
ables and programs, disc locations to files, and generated code to 
source statements. In general, the later binding occurs, the easier 
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programs are to maintain. "Patching" is usually easier, as is having 
independent compilation of subroutines and independent order of 
compilation. Late binding does, however, increase the cost in link, 
load, or run time. In CENTRAN, since the object module format was 
fixed, the language designer had no control over when binding was to 
occur. 

2.2.4 Present technology or state of the art 

A decision is made, unfortunately often only implicitly, as to 
whether the language is to advance the state of the art in language 
design and implementation or is to represent ,vhat present technology 
can accomplish. 

Why design a language if it is not state of the art? Often, there is no 
need to invent a new language merely to fulfill user needs for a special
purpose language. It may be sufficient to select those features which 
are needed from existing languages. In a production environment, due 
to schedule constraints and caution on the part of management, state
of-the-art language may be considered undesirable. A state-of-the-art 
language and compiler represent more of a design investment and more 
of a risk. 

CENTRAN was never sold as state of the art. However, CENTRAN 

still had to be implemented as an extendible compiler so that incre
mental implementation would be feasible. There was no time to do 
anything else. 

Extendibility allowed the circumvention of general design issues by 
delaying their resolution, possibly indefinitely. If the language is not 
sufficiently machine independent, extend it to a machine-independent 
level and code only at that level. Completeness? Extend it as necessary. 
Efficiency? Start from the machine language; what could be more 
efficient? 

Except for the extendibility features and treatment of machine 
registers, the extended CENTRAN language is not state of the art. Of 
course, the extendibility features of the base language, register alloca
tion, and subroutine interface primitives may be considered state of 
the art, but the average user does not use these features. 

2.3 Specific design issues 

Specific design issues include: control structures, data structures, 
program-development features (e.g., tables of variables and attributes, 
listing format control), and extendibility features (e.g., programmer
defined subroutines, functions, macros, and data types) to be in
corporated into the language. 
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The model chosen for the extended language for CENTRAN was PL/l. 
It is believed that this was the best decision, provided that a new 
language could not be designed from scratch. However, there are 
several reasons why ALGOL 68 (see Ref. 4) would be a better choice 
as the model. (It should be noted that the ALGOL 68 Report was not 
available when CENTRAN was being designed.) Perhaps the most im
portant reason is that "expression languages" (in which most state
ments, as well as what are commonly thought of as expressions, return 
values and can occur anywhere expressions can occur) can allow the 
programmer to express himself in a degree of clarity not possible in 
other languages. Furthermore, an expression language is especially 
desirable for efficiency and clarity if the compiler does not do any 
common subexpression analysis, and the language gives the program
mer access to hardware registers for the purpose of improving efficiency. 

In particular, one of the results of modeling the extended language 
on ALGOL 68 would have been the choice of distinct representations for 
equality comparison and assignment. Then assignation could return 
a value, facilitating, for example, the use of register variables. 

System macros (a set of utility macros used, for example, to interface 
with the operating system) were SNx-style and should have been 
cENTRAN-style. While implementation of a CENTRAN representation 
for all system macros was vetoed as not worth the effort, program 
bugs were induced by syntactical and semantic non uniformities. 

No thought was given in language design to program patching. 
Patching on the CLC was necessary, primarily due to the logistic 
problems involved in recompiling programs on the IBM machine and 
transporting them to the CLC. Little thought was given to data reduc
tion because there were no requirements specified at the time. Re
quirements for patching and data reduction should have been con
sidered. We pay the piper: for patching, one must patch in SNX or 
recompile; for data reduction, few symbolic data structures are 
allowed. 

On the positive side, in addition to permitting the compiler to be 
built quickly, the extendibility mechanism confers additional ad
vantages. The extended language was planned so that extensions 
could be made to semantics rather than syntax. Some documentation 
for the extension is free, since description for new syntax is not re
quired. Some user education is free when new semantics can be 
associated with old syntax. 

Extending a language is trivial if all extensions consist of new syntax 
not meant to interact with old syntax. That is how some language 
designers and users of extendible languages extend a language. The 
difficulty is to maintain uniformity, especially when the extension is 
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not orthogonal to the old language. The classic problem here is to 
add complex arithmetic to a language, extending the semantics of the 
existing arithmetic operators, rather than creating new ones. Reference 
1 describes how this may be accomplished in CENTRAN. 

2.4 Implementation issues 

2.4.1 Compiler speed and degree of optimization 

There always seems to be a trade-off between the speed of a com
piler and the optimality of the code produced. In an academic en
vironment, where there are many student jobs, there are many 
compilations and few executions. In that case, a fast compiler designed 
without regard to object code efficiency is acceptable. In a production 
environment, presumably little time is spent in compilation in com
parison to the execution time for production programs. Here, highly 
optimized code is desired. 

One way to circumvent making the trade-off is to write two com
pilers, but this introduces obvious problems, not the least of which is 
potential incompatible language implementations. 

CENTRAN is a slow compiler. This is due primarily to its interpretive 
nature. While some performance improvements were made after the 
compiler was written, stability requirements outweighed compilation 
speed requirements, and extensive improvements have not been made. 
The lesson learned is that if a program works, it is not likely to be re
written just to improve its efficiency. 

The design goal for CENTRAN was to optimize on the statement 
level only, producing the best code possible for statements such as 
"a = b operation c," where a, b, and c are simple variables. Sufficient 
manpower to produce a global optimizer was not available. Users 
would rather have more features in CENTRAN than have a globally 
optimized program. The local optimization design goal of CENTRAN 

\vas achieved, leaving global optimization to the user (aided by effec
tive counseling). 

Since the expression parser produced nonoptimal code, users were 
warned against using complex expressions if they had severe running 
time or space constraints. This was done also to protect the imp le
menters against the possible wrath of users complaining about ineffi
cient code. However, the lack of optimization of code produced by 
the expression parser was oversold, and programmers get much less 
leverage from CENTRAN than they could. 

2.4.2 Compiler structure 

After the questions of degree of optimization and speed of the 
compiler are resolved, there remains an issue that is the primary 
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concern of the designer: compiler structure. Related to the Rtrnp.t.ure 
of the compiler is the question, "In what language should the compiler 
be written?" 

Several alternatives were considered in the implementation of 
CENTRAN. First, as indicated earlier in the discussion of environmental 
constraints, it certainly was not feasible to create a language com
pletely independent of SNX. There were no resources to implement a 
new output-module generator, interfaces to the operating system, and 
machine-operations listing. The compiler at least had to be assembler
ended; the output of CENTRAN had to be an input to the SNX assembler. 
The question then became that of the degree of interaction between 
the compiler and the assembler. 

Why was CENTRAN not implemented as a preprocessor to or a co
routine with SNX? The answer is that it was not clear at the time how 
the interface could be achieved. It still is not clear that this can be 
done successfully. The assembler was not designed to interface ex
ternally with a language processor. Other problems to be considered 
include the possibility of duplicate symbol tables, duplicate language 
processing, the loss of the macro facility, and the introduction of 
non uniformities. 

A compiler-compiler was not used to implement CENTRAN because 
there was none available and creating one would have meant main
taining t'wo languages. 

The method of implementation of CENTRAN consists of a combination 
of recursive descent and precedence tables. The arithmetic, logical, 
and relational expression parsers are driven by precedence tables; 
everything else is recursive descent with a vengeance. All the state
ments generated by the compiler (even those generated by the table
driven parser in the expansion of a CENTRAN statement to machine 
code) are legal CENTRAN source statements. There is no "canonical" 
intermediate-level language inaccessible to the user of the extended 
language. Each machine operation is (textually) generated in only one 
place. All CENTRAN code generating statements are eventually ex
panded into a set of CENTRAN statements, each generating exactly 
one machine instruction. 

III. LANGUAGE USAGE 

3.1 Who is using the language? 

CENTRAN is the official language for the SAFEGUARD project. Except 
for programs which had been written in assembly language before the 
availability of CENTRAN (parts of the CLC operating system), all 
SAFEGUARD programming is done in CENTRAN. Programmers may not 
use machine language without management approval. No cases are 
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known where it was necessary to "drop down" into machine language. 
In a large sample, no programmers had machine language interspersed. 

3.2 How are the extendibility features being used? 

As might be expected, most extensions are made in terms of macros 
used to generate CENTRAN syntax. Some programmers, however, have 
extended the language in data structures, where it is weakest. 

IV. CONCLUSION 

4.1 The designer-implementer-educator-user relationship 

From our experience in the development of the system, we can draw 
several conclusions that might be helpful to others. We as designers 
along with the implementers, educators, and users should not be 
disjoint groups. We should be involved as an implementer to keep in 
touch with reality. We should also be involved as an educator (if a 
feature is difficult to explain, maybe there is something wrong with 
it), and a user (uniformity in extension is best achieved by knowing 
how language is being used). The implementer should act as both 
educator and program counselor to get feedback on bugs being "pro
grammed around" and to establish priorities for fixing them. 

Several things about the implementer-user relationship should have 
been learned earlier in CENTRAN development. First, the release cycle 
should be rigidly controlled as soon as possible, no matter how short 
the cycle. It does not pay to give fixes to bugs informally. Next, old 
versions of the compiler should not be kept around and certainly not 
maintained. The maintainers are blamed for bugs that no longer exist, 
and much time is spent rediscovering causes for problems long since 
resolved. 

Notices of new releases must go to everyone, not just supervision. 
Users often underestimate the impact on schedules of changes due to 
improvements to the compiler, even though the improvements were 
requested. 

Insofar as the designer-implementer-educator-user relationship is 
concerned, we, as designers, should have contributed more to the struc
ture and content of the CENTRAN courses. Frequent symposia (e.g., 
"Advanced Topics in CENTRAN Programming") should have been held, 
with compulsory attendance. 

4.2 Lessons learned 

Most of what has been learned in the design and implementation 
of CENTRAN has been covered in previous sections. Some of the more 
critical aspects are worth reiterating. 
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CE~JTR.l\~! should have been an expression language. This ",""ould rlot 
only have aided the production of more efficient, clearer, and more 
concise code, but would have provided a greater degree of uniformity 
to the language. 

We should have given more thought to data types required for data 
reduction. Maintenance of CENTRAN programs (especially patching) 
should have been given greater priority in the design of CENTRAN. 

Variability in the backgrounds and experiences of programmers 
should have been anticipated. Not enough consideration in the design 
of the language was given to the characteristics of the user population, 
and not enough emphasis was placed on continuing education. 

Several of the CENTRAN design approaches were advantageous. 
CENTRAN was implemented by a small group of programmers. This 
approach avoided communication and other problems typically en
countered in a large group of programmers. 

The register allocation mechanism, subroutine interface primitives 
(Ref. 5), and extendibility mechanism designs worked well, as exhibited 
by CENTRAN's short development time. The ability to have partial 
word variables has been found useful. The structured programming 
features have been used extensively. The ability to program at several 
levels in one language made the language suitable for systems and 
applications programming. Finally, and most important, the design 
of the extended language is sufficient for the implementation of 
SAFEGUARD software. The SAFEGUARD programs have been success
fully implemented in CENTRAN. Several studies of the suitability of 
CENTRAN for SAFEGUARD have been made outside of Bell Laboratories, 
and all have arrived at positive conclusions. 
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This paper deals with the development of a large systems program in a 
high-level language. The reasons for selecting a high-level language, the 
most extensively used features, the benefits derived, and the significant 
problems encountered are described. 

I. INTRODUCTION 

This paper highlights the important aspects of developing a large 
systems program in a high-level language. The Execution Preparation 
Facility (XPF) performs the linkage editor function on the SAFEGUARD 
project. When XPF was originally designed, the decision was made to 
develop it in PL/l. The paper examines the most extensively used 
features of PL/l, describes the problems encountered during develop
ment, points out the lessons learned, and discusses the benefits derived 
from the use of a high-level language. An appendix provides XPF de
velopment productivity data and comparisons. 

II. FUNCTIONAL DESCRIPTION 

XPF is the last maj or step through which software must pass on its 
way to execution on the CLC. Some functions performed by XPF can 
be compared to those of the operating-system linkage editor in that 
XPF prepares the output of the language processor for execution, sets 
up the overlay environment, and produces memory maps and cross
reference listings. 

The output of XPF, called a thread, is a collection of programs and 
data sets and their associated control tables bound to absolute ad
dresses. The thread also contains installation, debugging, and data 
reduction information. Inputs to XPF are user-supplied commands, 
execution time parameters, assembler or compiler output, a partitioned 
data set called the system file that describes the CLC operating system, 
and, in an update mode, the results of previous XPF runs. 
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The major functions of XPF are construction of control vector tables 
(CVTS) for interthread linkage, allocation of CLC resources, primary 
memory and disc storage, binding of thread units, and construction of 
operating-system control tables (PCTS). In addition, XPF produces a 
series of printed listings describing memory configuration, process 
structure, forward and back referencing among units, PCT construction, 
and thread summary data. 

III. PHYSICAL DESCRIPTION 

XPF consists of 246 subroutines, 95 percent of which are written in 
PL/t. The internal structure is modular. Functions are performed by 
24 independent modules that overlay each other. The XPF load module 
consists of 130 overlay segments and requires 2.5 megabytes of disc 
storage. The access method used to retrieve object code, while not 
actually a part of XPF, is also included in the XPF load module. 

XPF operates in a 400-K region, of which 260 K is occupied by the 
overlaid load module. During execution, 12 internal files are used for 
work space and intermodule communication. Since the disc space 
needed for these files varies with the input, space allocation is con
trolled by catalogued procedure parameters. The actual execution of 
XPF is controlled by the execution time parameter field on the user's 
JCL execute card. Most modules execute at the option of the user and 
are controlled through this field. The mode of execution (regular, de
bug, or update) is also directed by execution time parameters. 

IV. DESIGN DECISIONS 

Since most systems software is written in assembly language, one 
question arises: Why was a high-level language used for this facility? 
Three major factors contributed to this decision. 

(i) Development time was short. It was felt that the anticipated 
ease of writing in a high-level language, coupled with extensive 
utilization of compiler-provided debugging capabilities, would 
help provide the desired results within the allocated time. 
This proved to be the case, and each of ten XPF releases was 
produced on schedule. 

(ii) A high degree of flexibility was required. XPF, the operating 
systems, and the applications processes were to be developed 
concurrently. Since XPF is the software that links the operating 
systems and the applications processes, responsiveness to the 
design requirements of both groups was a necessity. A high
level language was judged to be best equipped to provide the 
required flexibility. This approach proved valid. In practice, 

S174 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



when a SAFEGUARD design problem could have been solved by 
changing the CLC operating system, the applications processes, 
or the XPF, XPF was usually chosen. 

(iii) The execution of XPF was expected to be I/O limited. Therefore, 
potential compiler-generated CPU inefficiency was not a major 
considera tion. 

Since XPF was to be developed and executed under 08/360, the con
tenders for a high-level language were PL/l, FORTRAN, COBOL, and 
ALGOL. PL/l was an easy choice. The bit-handling capabilities of the 
language were well known, and many members of the development 
group had PL/l experience. 

v. HOW PL/1 WAS USED 

This section records those features of PL/l used most extensively in 
the development of XPF. 

External variables were used to store relatively small amounts of 
data needed throughout XPF execution. Since the external variables 
were located primarily in the root segment of the load module, their 
use in intermodule communication aided in segmentation and structur
ing of the overlay tree. 

Static storage was used extensively to take advantage of what would 
have been dead space in the short legs of the overlay tree. The judicious 
use of static storage minimized the amount of memory required for 
execution. Static variables require special attention in an overlay en
vironment. Every time a segment is brought into memory, each static 
variable is reinitialized, but in subsequent calls to the segment that 
do not require overlay, the variables retain their current values. 

Three types of I/O \vere utilized. Stream-oriented I/O was used for 
printed listings and debugging output. Sequential-record-oriented I/O 
was used for intermediate files for communicating between, at most, 
two modules. The TITLE option was used \vith these files to allow 
many modules to utilize the same disc area, thereby reducing overall 
resource requirements. Regional I update files were used to satisfy 
global communication requirements, e.g., paging of data and storage 
of object and bound units. 

Area variables were utilized by many modules. Ea9.h record entered 
into the update files consisted of a single area variable. Individual data 
entries were allocated within the area and entry addresses assigned. 
The use of areas avoided excessive I/O by allowing large amounts of 
data to be stored on a single record. The utilization of PL/l area 
management greatly reduced the amount of user-supplied code neces
sary for record formatting and control mechanisms. 
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In the shorter legs of the overlay tree, area variables declared with 
the static attribute were employed, realizing the advantages described 
earlier. 

Based variables were used extensively, especially in the areas of I/O. 

Based structures were declared in the calling programs, and file 
managers returned pointers to the requested items. 

List processing was a major requirement in XPF design. Frequent 
sorts of these lists were required. The use of linked lists prevented 
excessive data movement during sorts, since only the pointers needed 
to be modified to change the order of the tables. 

The bit handling features of PL/l, an important aspect of the decision 
to use this language, were used extensively. Since the CLC uses ASCII 

character representation, characters had to be interpreted as bit strings. 
Label arrays were utilized in command processing. Since many 

commands contained common keywords and fields, processing was 
broken down to that level. Keywords and fields were interpreted and 
assigned number values that were used as indices into label arrays for 
keyword processing. 

The PL/l preprocessor played an important role in XPF development. 
Preprocessor statements and procedures were placed on a file that 
was accessed via "% INCLUDE" by all procedures. Four key functions 
were performed by the preprocessor: 

(i) Declarations of global data such as external variables and 
based variables used in I/O were stored on the file and brought 
into each procedure that utilized them. This assured identical 
variable declarations throughout XPF. 

(ii) Declarations of utility and file manager entry points and their 
associated parameter attributes were also placed on the file. 
This helped assure the consistency of parameters passed to 
these subroutines. 

(iii) Certain constants such as area sizes, array dimensions, and 
conversion constants were subject to frequent change while 
optimal values were being ascertained. Programs referencing 
these constants did so via preprocessor variables. When modifi
cations were necessary, the values of the preprocessor variables 
were changed on the file and the referencing programs were 
recompiled. 

(iv) Preprocessor procedures were provided for frequently used 
in-line code. 

VI. HOW ASSEMBLY LANGUAGE WAS USED 

\Vhile .5 percent of the subroutines in XPF are written in assembly 
language, these amount to less than 0.2 percent of the total number 
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of machine instructions. Assembly language subroutines fell into two 
categories: data conversion subroutines originally written in PL/I and 
recoded in assembly language for reasons of storage economy or effici
ency, and subroutines written in assembly language to provide facilities 
not directly available in PL/l. 

An example of the first is a TRANSLATE function that converts ASCII 

to EBCDIC, and vice versa. This function was not supported in PL/I 

Version 4. By recoding in assembly language, a 20-K-byte subroutine 
was reduced to 500 bytes and made much faster. 

An example of the second is a routine to access a partitioned data 
set of twenty or so members. Had this routine been written in PL/l, 

one DD card for each member of the data set would have been required. 

VII. MAJOR PROBLEMS ENCOUNTERED 

The most serious problem encountered during development was an 
obscure but critical bug in object code generated by PL/I Version 4 
that became important when a new computer with a larger memory 
was installed. XPF would ABEND if loaded in the upper third of memory 
because of bad code generated for bit-string operations. This made it 
necessary to convert XPF to Version 5 of PL/l. Incompatibility between 
these versions required complete recompilation and some recoding. Six 
weeks of effort were required to complete the conversion. 

Another major problem was directly related to this conversion. 
Half-word storage, implemented in Version 5, caused structure align
ments to be altered. Since boundary alignments were not required on 
the development computer, some problems were not detected. It was 
later discovered that XPF would not work on certain models of the 
IBM System 360. The most expedient method of correcting the prob
lem was to declare the offending structures unaligned. Portability of 
XPF could probably have been ensured in advance by constantly being 
aware of the consequences of PL/I defaults. 

The XPF execution problem causing the most impact ,vas excessive 
110 usage generated by the os overlay manager and not by PL/l. 

Dramatic reduction in load module accesses was accomplished by 
overlay restructuring. 

VIII. LESSONS LEARNED 

In addition to the initial decision to use PL/l, throughout the develop
ment of XPF many design and implementation decisions concerning 
the use of PL/I were made. Some of these proved to be sound, and 
others had unfortunate results. This section deals with the results of 
these decisions. 

The extensive use of the PL/I preprocessor proved to be an excellent 
control mechanism. The inclusion of macros, entry point declarations, 
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and global variable declarations via preprocessor procedures greatly 
facilitated intermodule communication. This standardization guar
anteed the integrity of interfaces. 

As originally expected, the liberal use of PL/I debugging aids was an 
invaluable development tool. The large number of logic errors de
tected through ON conditions such as SUBSCRIPTRANGE and STRING

RANGE underlines the value of their use. 
PL/I provides no debugging aids for pointer variables, used ex

tensively in XPF, so it ,vas frequently necessary to examine a dump to 
ascertain the exact nature of a problem. Since no error control phi
losophy within XPF had been established, dumps could not be produced 
at will. A global error control mechanism was instituted. By placing a 
single ON ERROR block in the main procedure and removing them from 
lower-level subroutines, the problem of inappropriate or inadequate 
response by these subroutines was eliminated. 

No global coding conventions were established at the beginning of 
the project. This resulted in various methods of implementation of the 
same b(1sio requirements, some of which were more efficient than 
others. A subset of PL/I should be extr(1cted that is most efficient for the 
particular application. Programmers should be W(1rned to avoid certain 
implementation methods and encouraged to use other more efficient 
ones. 

Since XPF was required to execute in a 400-K region (the maximum 
size for an express run), the use of small independent subroutines that 
could be overlaid was encouraged. In the longer legs of the overlay 
tree, this philosophy proved valid. However, in the shorter legs of the 
tree, this introduced unnecessary inefficiencies because of operating 
system overhead. The increased use of static storage in the shorter 
legs decreased the effect, but the use of fewer subroutines would have 
been more efficient. 

The use of assembly language subroutines, though dictated by 
reasons of efficiency and necessity, presents some disadvantages. Since 
parameter definition is compiler-dependent, assembly language sub
routines must be coded to meet the parameter passing standards and 
conventions of a specific compiler. In PL/I these proved even more 
limiting since assembly language subroutines must be coded for a 
specific version of the compiler. When such subroutines are utilized, 
this dependency on a particular version of a compiler should be ex
plicitly documented. 

The assembly language complications are the most obvious of the 
compiler dependency problems. However, as noted previously, incom
patible compiler versions, the resulting recompilations required, and 
possible machine-dependent errors are also problems. Unless a private, 
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unchtLnging compiler is used, time must be reserved in the develop
ment schedule for this type of updating activity. 

IX. DISCUSSION 

Flexibility was one key factor in the decision to use a high-level 
language, and it proved to be one of the primary tLssets of the develop
ment technique. Since XPF was written in PL/l, it could be fine-tuned 
with less effort than if it \yere written in assembly language. Sections 
of code could be rewritten in a reltLtively short period of time. This 
made it feasible to experiment with implementation methods until 
optimal code was produced. 

One benefit of development in PL/I that was not considered in the 
original decision was the ease with which transfer of responsibility is 
accomplished. Partial turnover of personnel occurred throughout the 
project. The transfer of code responsibility to new personnel was ac
complished very smoothly with no apparent decrease in productivity. 
Since PL/I can be largely self-documenting through the use of mean
ingful variable ntLmes tLnd standard operation symbols, it is easy to 
read and understand. This ease of understanding was the primary 
reason for the smooth personnel transitions. 

Perhaps the most important advantage of developing a system in 
a high-levellangutLge is that the compiler provides area management, 
storage allocation, error control, data access, and I/o interfaces. The 
programmers can devote their time to acquiring expertise in the unique 
requirements of the system. 

APPENDIX 

Over a period of two years (by Release 8), XPF grew to approximately 
32,000 PL/1 plus assembly-language statements. Almost all the 

Table I - Comparative productivity, Release 9 

SNX Assembler CLC Simulator XPF 

Total no. of subroutines 72 90 231 
Total no. of source statements 69,788 63,737 34,344 
No. of subroutines added or 

changed 40 30 84 
Percent of total subroutines 55.5 37.7 36.3 
No. of source statements added 

or changed 3,286 2,336 7,342 
Percent of total source 

statements 4.7 3.6 21.3 
Man-months programmer, 

management, librarian 23.5 10.5 37.0 
Statements per man-month 140 222 198 
Man-months, programmers only 18.4 9.0 30.0 
Statements per man-month 177 259 244 
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changes for each release were planned increases in capability, although 
some, of course, were fixes for bugs. The total effort to produce the 
first eight releases, debugged and tested, was 222 man-months. The 
average productivity over this time is therefore about 140 statements 
per man-month. 

Table I compares Release 9 of XPF to the corresponding releases of 
the SNX assembler and the CLC simulator, both written in assembly 
language. The simulator was a considerably easier task than XPF for 
this release because the simulator was only receiving maintenance, 
while 21.3 percent of XPF was rewritten to add major new capabilities. 
Nevertheless, the total number of machine instructions produced (per 
man-month) by the XPF group was greater because they were coding 
in PL/t, whereas the assembler and simulator groups were coding in 
nssembly language. 
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In evaluating and certifying the SAFEGUARD ABM system, it was neces
sary to interrogate and analyze the massive volume of data generated during 
tests. The number of different reports, listings, and plots was so large and 
the variety so great that a flexible data reduction system had to be placed 
at the disposal of the user community. At the same time, the system had 
to be highly efficient and quickly available to be used at all. The SAFE
GUARD Data Reduction System was designed to accomplish these o~jectives. 

I. INTRODUCTION 

Since any operational system must be tested, certified, and evalu
ated, provision of the means for doing so must be part of its design. 
The first step in certifying that a process is performing as specified 
is the recording of certain significant data during test runs. These data 
must be reduced and presented in a variety of ways. The SAFEGUARD 
Data Reduction System (SDRS) fills this role by providing a flexible 
and highly efficient facility to serve the needs of the test teams. 

The fundamental capabilities of SDRS had to be available when the 
testing began. The design for the real-time recording programs and 
the data reduction programs had to be coordinated, since the recording 
program serves as input to the reduction program. Short reduction 
program development schedules made necessary the use of certain 
preexisting designs and code, which had to be worked into the result
ing system \vithout compromising the other requirements. To accom
plish this, a number of deliveries were planned, starting with the 
simplest and most basic features. Users who tried the first system \vere 
able to give SDRS designers useful feedback for future deliveries. 

This paper discusses the experience gained in formulating require
ments, organizing the program, developing the facility, and interacting 
with users. 
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II. REQUIREMENTS FOR THE SAFEGUARD DATA REDUCTION SYSTEM 

To test, certify, and evaluate the behavior of a SAFEGUARD pro
cess, it is necessary to record data from memory during the real
time execution of the process. Debugging and integrating can con
ceivably be accomplished by stopping the process and taking post
mortem memory dumps, but this destroys the real-time sequence of 
events. Since the SAFEGUARD processes contain hundreds of thousands 
of lines of code, testing would be exceedingly cumbersome if it were 
necessary to stop the test to record data. Because calls to the recording 
subroutine are planned for and remain always in the code, a wealth 
of internal data can be recorded without disturbing the real-time be
havior of the process. Recording occupies some CPU time but, aside 
from this effect, the process performs in the same way whether or not 
recording occurs. Real-time recording is essential for a practical testing 
program. 

2.1 Requirements for recording 

Thousands of events for which data might be taken occur during a 
test. The specific data needed depend on the purpose of the test. The 
CLC operating systeml allows the applications process to record up to 
100,000 32-bit words of data per second, as many as eight reels of tape 
during a 16-minute test. 

Unless care is taken in recording design, even this large capacity 
can be exceeded. Designers tend to do more recording than is needed. 
This happens because the recording decision must be made long before 
testing begins. By recording almost everything, designers protect 
against overlooking some data items that may be wanted. As a result, 
a burden is placed on data reduction to select from a large mass of data 
only those items the user needs. 

The data as recorded by the CLC operating system are organized 
into physical records of variable length. Each physical record contains 
a header and one or more logical records. The header preceding each 
logical record categorizes the data to follow. Records of one type 
would contain the most common and essential items, while records of 
another type might contain more voluminous data. 

2.2 SDRS requirements 

Consideration of the content, structure, and volume of the input 
and the expected use for the output dictate requirements for the data 
reduction system. Very large quantities of data are recorded from 
over 1000 different data sets. 

Many data structures are implemented in the processes, but four 
typical ones ·were selected for processing by SDRS. Many more com
plicated structures, if properly recorded, can be handled by SDRS. 
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To be correctly interpreted by SDRS, the physical attributes (floating 
point, integer, etc.) of each item of recorded data must be defined. 
Since a majority of these items must also be defined for CENTRAN 

compilations, SDRS avoids possible incompatibilities by accessing the 
CENTRAN declarations. 

To reduce data items not defined in CENTRAN and to allow quick 
response to patches in the CLC applications processes, SDRS also pro
vides utilities to define and modify attributes. Experience with earlier 
data reduction systems, which provided only manual methods of data 
attribute definition, led to the requirement for both automated and 
manual methods. 

There is a need to format the data so that they may be interpreted 
with ease. Some factors to be considered are discussed here. 

Ease of interpretation of the recorded data requires that methods 
be supplied for selection of only the necessary subset of the data for 
presentation. This allows the user to generate exception reports and 
summaries rather than printing or plotting every data value. 

Raw data may be recorded in one form, but they may be much more 
useful in another. Presentation in engineering units is often helpful. 
User-defined computations can be made by SDHS to facilitate evalua
tion of data. 

In some cases, related data are scattered over a series of records 
and even over a series of tapes. The difficult task of correlation is per
formed by a file handler that can associate data for a user. 

Some forms of presenting data are more useful than others. Since 
it is impossible to predict what particular listing or plotting form will 
best serve a given user, the users need the ability to format their own 
reports for presentation. Specifically, the users choose from among 
four basic ways to present data: formatted reports, tabular listings, 
line and point plots, and histograms. Users specify titles, subtitles, 
column headings, plotting axes, and scaling parameters for plots. 

To gain user acceptance, SDRS (which is not a real-time facility) 
had to provide features that could satisfy quick turnaround time re
quirements with minimum effort. 

Since most users developed their requirements as they began testing, 
SDRS had to provide users with plots and tabular listings which they 
could then easily modify to suit their later needs. SDRS provides users 
with a high-level command language in which to specify more com
plicated reduction requirements. Sufficient default conditions are 
supplied so that a simple set of user commands will result in a listing 
of all data items in a logical record. 

One group of five users designed 737 tabular listings and reports in 
12 months, averaging 12 per man-week. The elapsed time to get a 
simple tabular listing to work was about two days. 
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Because thousands of corrections had to be made to applications 
processes, there ,vas a premium on quick turnaround time in processing 
the recording tapes. Since many testing teams submitted reduction 
runs simultaneously, it was essential that SDRS process a large volume 
of records efficiently. 

It would be possible to reduce data on the CLC (this will be done 
during the post-installation and test phase). However, the CLC instal
lations are limited in number, and time on the CLC is normally devoted 
to testing. Therefore, a decision was made early that data reduction 
should be done off-line on commercially available computers. Testing 
is performed for SAFEGUARD in several locations. In each of these 
locations, an off-line computer of the IBM 360/370 series is used for 
data reduction. The decision to use an off-line facility was correct. 
Time on the test machine is limited and is in much demand for the 
primary testing task. 

A facility such as SDRS cannot be developed with all capabilities 
operational at the time an initial capability is needed by users. The 
designer can capitalize on this. If he designs a modular system and an 
open-ended user command language, he can first deliver a simple sys
tem. Feedback after the users have tried the first system can improve 
the design of later extensions. In fact, while users were presented with 
a proposal for SDRS and were invited to give their comments, most 
suggestions were obtained only after the first version of the system 
was working. 

2.3 What was learned in setting requirements 

The needs of users with a great many reduction requests to main
tain were not foreseen. Since SDRS made it easy to request a large 
number of different reductions, the administration of requests re
quired automation. One user group, supporting a single process inte
gration, generated over 7000 SDRS statements. User groups usually 
solved this problem by developing their own administrative programs. 

It was important to restrict users to one specific command language 
to give them the ability to turn out data reduction requests quickly. 
Some users, familiar with FORTRAN or PL/I, undoubtedly would have 
liked full control over program execution and the use of data types 
available in those languages. Restricting the number of data types 
supported increased the speed with which the system was developed. 

III. SYSTEM ORGANIZATION 

3.1 Design considerations 

The development of a system organization and design philosophy 
for SDRS was influenced by a variety of factors. These included user 
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requirements, schedule constraints, experience of the designers, and 
successes and failures of earlier systems. 

The designs of several previous data retrieval and analysis systems 
were analyzed to determine their applicability to the system require
ments. This analysis uncovered serious shortcomings in most of these 
systems for the high data volume requirements of SAFEGUARD; how
ever, several common strong points were noted in each. 

A general solution to the data correlation problem was attempted 
with the Mission Data Reduction (.\lDn) system, which was developed 
for use in the IVleck test system. The significant features of this system 
were a command language user interface, general data sorting capa
bilities, general data conversion capabilities, and data presentation 
capabilities in the form of reports, plots, and tabular listings. The 
major shortcomings of '\IDR ,yere its complete dependence upon sorted 
data to produce any output as well as a requirement to convert all 
data before selecting the subset of interest. Both these characteristics 
introduced exorbitant overhead for sequential processing. 

A more specific approach to the problem was used in the systems 
that were successors to l\IDR. These systems added a data attribute 
dictionary, an efficient sequential-file data extractor, and specific 
data correlation capabilities in the form of special-purpose subroutines 
to the basic capabilities of '\lDR. The major shortcomings of these 
systems were limited selectivity during the extraction phase, a re
quirement to convert a large percentage of the total data before select
ing the subset of interest, and limited file generation capabilities that 
required many passes over the raw data to extract all data of interest. 
An additional shortcoming was a dependence upon manual main
tenance methods for the data attribute dictionaries. 

A common factor in each of these systems was uncovered: The 
designers had little or no control over the format of the data files 
that they were required to process. In general, the files were written 
without regard to the eventual processing and correlation requirements. 
\Vith few exceptions, these characteristics of the data to be processed 
introduced a great deal of complexity and overhead into the systems. 

Once it had been determined that none of the available systems 
would meet the requirements adequately, a design was proposed that 
would provide an initial capability with incremental growth potential. 
The user community required delivery of the first release within nine 
months and incremental releases at two-month intervals. 

To meet these schedules, it was necessary to achieve a balance be
tween the development of new programs and the adaptation of existing 
programs. The advantages of short development time offered by use 
of existing programs had to be weighed against their extendibility, 
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flexibility, and maintainability. In addition, the efficiency requirements 
for the data presentation capabilities had to be considered. 

The requirements obtained from the user community were analyzed 
to determine possible commonality. An attempt was made to deter
mine the general characteristics of the data that would be generated 
by the users. An estimate of the probable volume of data to be gen
erated by these users was also made. 

All users requested the same basic capabilities. These included 
printing reports in a variety of forms, correlating and sorting data on 
a variety of criteria, plotting data, and specifying the conditions under 
which this processing was to be done. The large number of special 
processing requests made it obvious that the development of a general
purpose facility was necessary. 

3.2 Basic functional components 

The system consists of four basic functional components as in
dicated in Fig. 1: 

(i) The data attribute definition component defines the charac
teristics of data items by examining their CENTRAN declarations. 

(ii) The sequential data base retrieval component provides data 
collection, selection, and presentatioIi capabilities for sequen
tially organized data files. 

(iii) The hierarchical data base generation component allows the 
relatively efficient creation of direct access data files. 

(iv) The hierarchical data base retrieval component provides data 
collection and selection capabilities as well as sequential data 
base generation capabilities for direct access data files. 

3.3 Lessons learned 

The overall efficiency of SDRS is difficult to measure since the users 
of the system specify what the system must process. This introduces 
into the evaluation of SDRS performance such factors as user expertise, 
user knowledge of data characteristics, and user analysis of needs. 
Several design decisions were made to minimize the impact of these 
factors on system performance. 

Provision of methods for the user to perform many data presenta
tion operations on a single data retrieval pass was the primary charac
teristic of the design that provided efficient processing capabilities. 
This approach, although somewhat obvious for processing sequential 
data bases, is equally applicable to the processing of direct-access 
data bases. This is true because minimization of the number of times 
data are retrieved will minimize elapsed time and system overhead. 
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Fig. I-Basic functional components. 

Structured data recording makes it feasible to develop a simple 
efficient data-filtering algorithm. This algorithm enables SDRS to dis
card all records not requested by a user by interrogating fields in the 
header and ignoring all data in the record. 

Limiting the number of data structures supported makes it feasible 
to design algorithms that extract and convert a minimum amount of 
data. Minimizing the number of data conversions was especially critical 
in the sequential data base retrieval module because of the large volume 
of data. In this module, data conversion is delayed until after all user 
conditions had been satisfied. 

Assembly language was used in coding those critical paths of the 
system that "'ould process large volumes of data. The extra time re
quired to develop these programs was offset by the increased efficiency 
derived from this approach. 

IV. DEVELOPMENT CONSIDERATIONS 

The development of SDRS and the delivery of the system to the user 
community with capabilities consistent with the requirements were 
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accomplished on short schedules. Several development procedures and 
techniques were used by the design group that may be applicable to 
other development efforts faced with similar problems. 

The critical need of many users for a simple data-printing capability 
was the basis for the design of the first release of snus. This release 
consisted of the basic versions of the data attribute definition com
ponent and the sequential data base retrieval component. 

Although simple from a user capability point of vie\Y, this initial 
release of the system was designed to be extendible. Emphasis was 
placed on development of a design that would allow inclusion of addi
tional processing capabilities without major perturbations. 

The development of an outline for further functional capabilities 
was begun in parallel with the development of the initial system. This 
outline served as a vehicle for planning capability development and 
delivery. 

Formal design specifications for each system component were not 
written. However, detailed interface specifications \\'ere developed. 
This made it possible for individual routines to be designed in parallel. 

The development of snus on schedule would not have been possible 
without the use of a time-sharing system. Although time sharing is 
relatively expensive, development times can be minimized when rapid 
correction of troubles and extensive testing are required. 

The size of the system required that extensive testing be done to 
verify system performance. Although testing is possible in a batch 
environment, the effectiveness of the system test team was greatly 
enhanced by the availability of immediate test results and on-line de
bugging capabilities. 

V. USER INTERACTION 

Before snRS was designed, users were asked to submit their require
ments. The snRS design group then proposed to users an initial set 
of requirements. Only after the initial release \yas meaningful user 
feedback received. Whenever possible, suggested improvements were 
incorporated into subsequent versions. 

A system as complicated as snus requires user education. Two 
methods were used for this purpose: A user's manual ·was written and 
counselors were provided. The role of the counselors was to teach cor
rect and efficient snus use and to collect feedback for improvements. 

The final service to users is proper test and maintenance of the 
system. Users were not asked to be guinea pigs. They were allowed 
to try a new snus only after a complete set of tests were run. During 
two years of use, only 81 troubles were encountered in 105,000 lines 
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of source. Because of the error messages and the modularity of the 
system, it was easy to identify and fix problems. 

Total effort expended in user services has been 18 percent of the 
manpower of the SDRS group. This is considered a minimum effective 
support level. 

VI. CONCLUSION 

The primary lesson learned from the development of SDRS is that 
user data base design is critical. Recording and reduction efficiency 
is achieved by designing data bases to minimize the requirement for 
further correlation and restructuring. 

The real achievement of SDRS lies in simultaneously accomplishing 
the objectives of flexibility and efficiency. Many systems attain one 
goal or the other: SDRS attempted to do both. Two design decisions 
contributed to the success of this effort. First, recorded data not 
wanted by the user are ignored by the system. Second, once data are 
retrieved, they are processed in as many ways as needed. 
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"Bird-dogging" is the process of tracking down computer center users 
who are either having problems and therefore are not getting their J'ob done 
or who are using a disproportionate share of the cornputer's resources. 
Analysis of utilization data for the SAFEGUARD support computer centers 
has shown that the problems caused by these users can be of alarming 
magnitude, leading some observers to believe that bird-dogging is the single 
most effective system pe1jormance tuning activity that can be pe1jormed. 
Bird-dogging is an integral component in reliable project scheduling and 
effective cost control. This paper discusses the methods now used to identify 
problem users and some experiences gained from the effort. 

I. INTRODUCTION 

This paper describes the function of bird-dogging as the main tool 
for achieving the most efficient use of the computer. Specifically, 
through analysis of computer utilization data (\vhich may be sampled 
on a daily, weekly, or monthly basis), the use of computer center re
sources and the problems of its users are monitored in detail. This is 
followed as needed with a program of counseling. The purpose of 
counseling is to better educate computer users to employ effectively 
the computing resources available to them (hardware, operating sys
tem, and application software). Counseling also provides feedback to 
the designers of application software to allow implementation of de
signs that would permit better utilization of the hardware and operat
ing system features. 

Some segments of the bird-dogging campaign are conducted on a 
daily basis for short-term gains, and other segments take the form of 
more extensive investigations yielding long-range gains. The latter 
activity more closely approximates the traditional system tuning. 
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Bird-dogging has been actively supported at several project support 
computer centers since the fall of 1971. l\1anpower allotment during 
this period is estimated to be two or three full-time technical staff 
members at each location. This total includes manpower employed 
to develop programs for automated report generation. 

II. WHY BIRD-DOG? 

Although many installations are committed to ongoing efforts in 
the traditional areas of systems performance analysis, few are engaged 
in bird-dogging campaigns. Why, then, are the SAFEGUARD project 
centers actively supporting this activity? There are two main reasons: 
schedule reliability and cost control. 

First, schedule reliability. During the years of developing the 
system's software, timely completion of the hundreds of interlocking 
software modules has been critical for project delivery. It has been 
imperative, therefore, that everyone, even the below-average pro
grammer, complete his or her responsibilities on time and successfully. 
To increase confidence in meeting project schedules, those who are 
unable to make it on their own must be helped. 

Second, cost control. Bird-dogging helps reduce costs through short
term immediate benefits and long-range improvements. For example, 
bird-dogging usually produces immediate benefits by reducing the 
resubmittal rates of "problem" programs, which increases the turn
around potential of other programs competing for the limited comput
mg resources. 

In the long run, for example, many users having similar problems 
may reveal that the documentation of how to use a particular feature 
is inadequate. Following through on individual problems to gain in
sight into underlying causes is often worthwhile and carries consider
able long-range benefit. 

III. UTILIZATION DATA 

To permit monitoring the center's users, several types of utilization 
data are obtained from a series of automated reports and other sources. 

3.1 Automated reports 

The bulk of bird-dogging data is generated by several special
purpose report programs developed by project personnel. l\10st of 
these programs use the System l\1anagement Facilities (SMF) * data 
as input. A brief description of each report and its use follows. 

* 8MI<' is an optional feature of the Operating System (08) (Hef. 1), which collect.s 
system, job-management, and data-management information. 
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The stat (statistics) card report shows detailed accounting informa
tion about each job run on the computer, sorted by supervisory group 
and department. Information such as CPU time, lines printed, region 
size, disc and tape setups, read-in time, and purge time are shown for 
each job processed. This report is produced and examined daily and 
gives indications of overall throughput, average turnaround, distribu
tion of work among departments, and unusual jobs. It also provides a 
reference for the day's activities. 

The abnormal end (ABEND) report provides data about each job 
that aborts. Information such as failure code, programmer name, job 
name, and CPU time is provided. These data are also printed and 
examined daily to give indications of particular users who consistently 
have problems, specific programs that frequently fail, and repeated 
ABEND codes that may be symptomatic of system problems. 

The usage report provides detailed characteristics of the high-usage 
programs executed by each department. It also shows a rank order 
list of these high-usage programs. These data are used to pinpoint 
programs to be considered for performance analysis and improvement, 
as well as to pinpoint possible inefficient or unusual use of a program 
by a particular department. 

The high-resource report and the exception report highlight users 
whose jobs exhibited certain high-resource characteristics such as ex
ceptionally long turnaround time, extended use of central processor 
time, great volume of printed output, very large use of core memory, 
and utilization of several setup devices, or those jobs that experience 
a job control language error after significant expense of resources. 

3.2 Other sources of data 

In addition to the various automated report programs that provide 
utilization data, there are several other important sources of bird
dogging data. Direct problem program monitoring and feedback from 
operations personnel are the two most significant sources. 

Program monitoring is achieved through use of a proprietary soft
ware monitor that provides valuable execution profiles of user pro
grams. Several monitors are on the market; the project centers are 
using Boole and Babbage's Program Evaluator (PPE).2 Experience to 
date indicates PPE is easy to use, well documented, and consistently 
helpful in providing areas for program performance improvements. 
PPE indicates where and how the monitored program spends its time 
and how compute-limited or input/output-limited the program is. The 
effects of subsequent improvements to the program are readily ap
parent by remonitoring. 
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Operations personnel can provide valuable bird-dogging data. In 
many cases, user problems may not appear in the automated reports, 
or problems do appear but their magnitude is hidden. 

IV. CASE STUDIES 

This section presents several cases that typify many of the long
range studies undertaken as a result of the analysis of weekly and 
monthly computer utilization data. 

4.1 Study 1 

For a period of several months, the types and frequencies of ABENDs 

at the computer centers were investigated. It was found that 15 to 
20 percent of all jobs submitted eventually ABENDed and 25 to 30 
percent of the total Central Processing Unit (cpu) time was spent 
executing these jobs. The ABENDs were grouped into four categories: 

(i) Those that were a result of insufficient estimates of the com
puter resources required by the job (resources include cpu 
time, memory; and I/O estimates). 

(ii) Those ~liat teflected problems of a data base nature. 
(iii) Those that resulted from a program check condition. 
(iv) Those that were symptomatic of a hardware malfunction. 

The most striking observation from this study was that the inability 
of users to correctly estimate the computer resources required for their 
Job appeared to be by far the biggest obstacle to successful job execu
tion. As a result of this and other related studies: 

(i) The support software user manuals were revised to include 
algorithms for estimating required computer resources. 

(ii) l\10difications were implemented to os that allowed selected 
critical modules to complete execution even though the actual 
cpu time consumed has exceeded the programmer's estimate. 

As a corollary to the problem of insufficient estimates, system per
formance was often degraded by serious overestimation. An educa
tional campaign was initiated by distributing to all project program
mers an informational bulletin that clarified the specification of job 
and of job step region parameters. 

Because of the changing nature of the project and its computation 
requirements and the scattered implementation of study recommenda
tions, objective measurements of subsequent improvements have not 
as yet been attempted. 
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4.2 Study 2 

The usage report indicated heavy use by one department of a 
"home-grown" data reduction routine. By revising the program only 
slightly, CPU time was dropped from 110 to 8 seconds per execution. 

4.3 Study 3 

Analysis of the execution profile for the CENTRAN compiler demon
strated that a much higher than average number of accesses to the 
CENTRAN symbol tables were required during the compilation of large 
programs with certain characteristics. By specifying additional core 
memory in the region size over the default, overall resource require
ments were reduced (and, hence, cost to process the job was reduced). 

Detailed data for each CENTRAN compilation were available through 
the automated reports. The 75 programmers who were responsible for 
programs with exceptional characteristics were contacted over a period 
of several months and were requested to allocate additional memory 
for their compiles. Most individuals complied and experienced a de
crease of turnaround time (by reduced elapsed time), with an attendant 
system cost reduction. 

4.4 Study 4 

The exception report provided a list of jobs requiring high resource 
use. With the cooperation of the users, these jobs were scheduled for 
evening or weekend shifts. Rescheduling of these jobs eliminated them 
from competition with other jobs for limited prime-shift computing 
resources. 

4.5 Study 5 

It was observed by operations personnel, and later confirmed by 
examination of reports that correlated turnaround time and resource 
usage, that certain users were taking advantage of a loophole in the 
computer centers' job-scheduling algorithm. The slightly higher priority 
assigned by the algorithm to jobs requiring a setup led to the sub
mittal of jobs with unneeded setups. A job-scheduling adjustment cor
rected the problem. 

4.6 Study 6 

The usage report indicated that the SAFEGUARD Data Reduction 
SYSTEM (SDRS) was the largest single user of CPU resources, consuming 
20 to 30 percent of all CPU time. Analysis of the facility with PPE 

indicated that much of this time was spent communicating with the 
operating system. Interrupt recovery capabilities were provided for 

EFFECTIVE COMPUTER UTILIZATION S195 



each type of input data. These required many different recovery 
routines that necessitated specifying different interrupt exit addresses 
to os many times. The same capabilities were preserved by some 
minor restructuring of the program and the addition of logic to deter
mine the appropriate interrupt recovery. Post-modification bench
marking revealed an average 50-percent savings of CPU time for this 
program. 

v. CONCLUSIONS 

It is the belief of the project centers that bird-dogging is the single 
most effective tuning activity that can be performed. Bird-dogging is 
an integral component in reliable project scheduling and effective 
cost control. As in other areas of system tuning, although the fruits 
of individual events and incidents seem indisputable, the successes 
(or failures) of bird-dogging can seldom be proven objectively by 
quantitative measure. Justification, therefore, remains mostly in the 
subjective domain. 

The bird-dogging effort has been hindered by design errors and 
limitations in the SMF portion of the operating system and by the lack 
of commercially available SMF data reduction systems suitable for 
project needs. * Hence, considerable manpower ,vas expended in de
veloping a series of automated report programs. 

The computer centers have found a software monitor, in this case 
Boole and Babbage's PPE, helpful in providing data for program per
formance improvement. Every bird-dogger should have something of 
this sort available. 

The ultimate success of any bird-dogging program depends heavily 
upon the degree of cooperation received from the user community and 
its management. Care should be taken from the outset to present sug
gestions and criticism in a positive manner. Helping users to help 
themselves will contribute to improved confidence in meeting schedules 
and to lower computer center costs. 

REFERENCES 

1. IBM System 360 Operating System, System Management Facilities, Order 
Number GC28-6712-5, International Business Machines Corporation. 

2. Systems Measurement Software (SMS/360), User's Guide for PPE, Boole and 
Babbage, Inc., Cupertino, California. 

* To this author's knowledge, there is only one "off-the-shelf" SMF reduction sys
tem available, the SMF Selective Analyzer, FDP-5798-AAR, IBM Corporation. 

S196 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



Section V 

DEVELOPMENT TOOLS AND TECHNIQUES 

R. D. Freeman An Experiment in Software Development 5199 

B. C. Nichols Structured Programming and 5211 
Program Production Librarians 





Copyright © 1975 American Telephone and Telegraph Company 
THE BELL SYSTEM TECHNICAL JOURNAL 

SAFEGUARD SUPPLEMENT 

Printed in U.S.A. 

SAFEGUARD Data-Processing System: 

An Experiment in Software Development 

By R. D. FREEMAN 

(Manuscript received January 3, 1975) 

This paper describes a type of flowchart review used as a program
development technique in which each programmer is required to give a 
box-by-box explanation of a detailed flowchart of his program to a small 
group of critical colleagues. Such reviews appear to have caught all the 
major software design errors before the code was written. It also cut the 
software-development time by at least 25 percent, representing a return of 
at least 10: 1 in terms of software-development time saved as a result of 
the week of the group's time spent in the flowchart review sessions. 

I. INTRODUCTION 

This paper describes a program-development technique used in the 
programming of the sensor (i.e., radar) control portion of the early-1973 
release of the software used in the Meck test system. For this release, 
the sensor control was completely redesigned and reprogrammed. Re
programming provided an opportunity to experiment with techniques 
in program development. Of the techniques that were tried, "flowchart 
reviews" had the largest effect on the development effort. 

II. BACKGROUND 

Sensor control serves as the software interface between the Central 
Logic and Control computer and the phased-array Missile Site Radar 
(MSR) at the Meck Island test site of Kwajalein Atoll in the central 
Pacific. The most complex job done by sensor control is to resolve 
conflicting requests for radar usage, e.g., target search and target track. 
This is accomplished by changing the time at which one of the requested 
MSR transmit/receive order pairs is executed by an amount small 
enough not to degrade the validity of the resulting data. Since it is 
naturally desirable to obtain the maximum amount of data from the 
radar, the rules for performing this radar-order-conflict resolution are 
inherently complex. The memorandum analyzing these rules is about 
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100 pages and demonstrates that the resulting radar-order-conflict
resolution algorithm meets all the system requirements. 

As the test missions at lVIeck Island became more complex, they 
began to strain the original version of sensor control. There were 
problems in program execution time and also in the limitations of the 
radar-order-conflict-resolution algorithm designed into the original 
version. It was therefore decided that sensor control would be re
written, essentially from scratch, using a new data structure and an 
improved conflict-resolution algorithm. 

The development of the new sensor control required about six man
years of work, including algorithm design and analysis but excluding 
any detailed documentation that might be written in the future. For 
reasons that are mainly historical and beyond the control of the 
sensor control group, the programming was done in assembly language. 
Every few tenths of a millisecond of execution time was important. 
The new sensor control requires about 5000 lines of assembly language 
code (plus a somewhat larger number of comment lines) and executes 
in about half the processor time (about 1.5 to 2 ms) of the old sensor 
control. 

III. THE PROCESS OF FLOWCHART REVIEW 

During the reprogramming of sensor control, flowchart reviews were 
used to find software-design errors or possible improvements before 
the code was written. As a sensor control group policy, before coding 
was started, the programmer wrote very detailed flowcharts and data
set layouts. * The flowcharts were to be sufficiently detailed that, given 
the flowchart, coding the routines would be almost a mechanical 
process. In particular, every decision point and all possible branches of 
control were to be shown. On the average, there were fewer than a half
dozen lines of code per flowchart box. The data-set layouts were in 
complete detail, i.e., down to the level of the bit. Given these layouts, 
coding the data sets was strictly mechanical. There were no specific 
format requirements for the flowcharts and data-set layouts except 
that they be easy to read. 

As soon as the flowchart and data-set layouts for an area were com
plete, a review meeting was held. These review meetings were always 
attended by the group supervisor and several group members. Those 
group members specially knowledgeable in the area covered in a par
ticular flowchart review were specifically asked to attend. Other mem-

* A "data-set layout" is a pictorial representation of the structure of a data area. 
Fields within memory locations are shown left to right across the page and con
secutive memory locations are shown top to bottom down the page. 
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bers of the group were encouraged to attend. Flowchart reviews were 
also open to anyone else who was interested but, in practice, no one 
outside the group chose to attend. Except for the supervisor, people 
attending had either given flowchart reviews themselves or were 
scheduled to give them. The programmer whose flowchart was being 
reviewed, therefore, had a technically critical, but sympathetic, 
audience. Although the discussion of technical alternatives sometimes 
grew quite spirited, criticism of a programmer's design was never 
sarcastic and there was no gloating when an error was discovered. 

At the beginning of each review meeting, copies of the flowchart and 
data-set layouts were passed out to all participants. Copies were not 
passed out ahead of time, nor were they later given to anyone who 
missed the review, primarily because it was unlikely that they would 
be read. 

Usually the programmer began the flowchart review by giving a 
brief overview of how his code was structured. No high-level flowcharts 
were used. However, it proved quite easy for a programmer to point 
out what sections of his detailed flowchart represented what major 
functions and, in effect, to create a high-level flowchart in the course 
of the discussion. If the data-set structure used by his program was at 
all complex, the programmer usually gave a summary of the data 
structure at this point, leaving the definition of the specific fields for 
later. Occasionally, there was some discussion of alternative data 
structures at this point. Usually, however, any alternatives to the data 
structure designed by the programmer were suggested during the de
tailed discussion of the flowchart. This was probably because the func
tional structure of the data base had been one of the earliest decisions 
made and was a basis for an improved radar-order-conflict-resolution 
algorithm. 

After this overview had been completed, the programmer explained 
his flowchart in detail. This explanation consisted simply of starting 
at the beginning and going through it box by box in the same order as 
the code they represented would be executed. If the descriptive phrase 
enclosed by a box was not self-explanatory, the programmer gave a 
brief explanation of what the code would do. For a few more complex 
algorithms, the programmer set up an example on the blackboard and 
carried it through during the discussion of the flowchart. The flow
charts were sufficiently detailed so that it was not necessary to describe 
how the code represented by a box in the flowchart would do the 
specified function; this was self-evident. However, it was often neces
sary to stop after reviewing all the individual boxes associated with a 
particular major function and to discuss whether the design represented 
by the flowchart would in fact carry out the desired function for any 
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valid input and retain sanity for all possible inputs passed to sensor 
control. Also, the participants in the flowchart review interrupted the 
programmer with a question or comment on the average of once for 
every two to three boxes in the flowchart. 

The participants in the flowchart review, although sympathetic, 
were expected to take an aggressive "I'm from Missouri and you have 
to prove it to me" attitude toward every assertion that the programmer 
made. If the programmer said that a data field began at a particular 
bit in a particular word, more than half the participants would turn 
to their data-set layouts to verify that. If the programmer said that 
the various inputs to a given internal subroutine could be divided into 
three classes, the other participants would try to think of a fourth. 
If the programmer said that the inputs from another module were in a 
particular format, the person responsible for that module would be 
asked to verify this. If it could not be verified on the spot, e.g., be
cause the module owner was not present, it would be checked later. 
This aggressive questioning of the programmer's every assumption by 
his colleagues was undoubtedly the key to the success of these flow
chart reviews. The programmer would sometimes catch a minor error, 
e.g., branch conditions reversed for a decision point, as he explained his 
flowchart to the group. However, the more significant problems were 
almost invariably found by the other participants. 

Discovery of many more significant problems found during these 
flowchart reviews often resembled the way a lawyer sometimes (at 
least, on television) finds a major flaw in a witness's story during cross
examination. Instead of anyone at first noticing the basic problem with 
the design, someone would notice a minor problem. Two or three 
people, including the programmer responsible for the code, would then 
propose obvious patches to the design to handle this special case. The 
discussion of this minor problem would, however, have focused the 
group's attention on that particular area of the design. During the 
discussion of the best way to patch the design to handle this minor 
problem, someone would notice a second problem. Now that the group 
had seen two problems related to the same aspect of the design, com
ments would come thick and fast, with interruptions every few sen
tences. In a few minutes, this whole area of the design would be 
thoroughly explored and any problems would be obvious. Often, the 
person who noticed the second minor problem, and hence triggered 
the discussion leading to the discovery of the basic problem, was neither 
the person who noticed the first problem nor the programmer respon
sible for the code. 

Another interesting feature of these flowchart reviews is the way two 
or three people, usually including the programmer responsible for the 
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code, would occasionally seize the conversational initiative and draw 
the group down a side path. These side paths would often explore an 
alternative design in a manner not unlike a chess player exploring the 
consequences of a particular move. One person would suggest a modifi
cation to the original design; a second person might suggest that if you 
were going to make the first change, the design could then be improved 
by changing another feature. Another person might then suggest a 
third change, or might suggest that if you were already going far 
enough to make the first two changes, you could go all the way, make a 
certain change in one of the basic design assumptions and redo a 
portion of the design. These side paths were particularly useful in 
finding simplifications to the original design. In at least some cases, a 
few minutes of discussion saved a few weeks of programming and unit 
testing. In one area, the code used to recover from machine interrupts, 
the side path led to a spirited technical argument extending through 
several flowchart reviews and ultimately resulting in a design with 
more capabilities than any initial proposal. 

As a conclusion to this description of the process of flowchart review, 
it is worth reemphasizing the importance of maintaining a matter-of
fact and unemotional atmosphere. This is essential so that the program
mer can accept his colleagues' aggressive questioning as just the rules 
of the game. Viewed in that light, a flowchart review is just a form of 
professional review that is part of the programmer's job as a technical 
professional. A group of programmers meeting for a flowchart review 
is then not unlike M.D.s holding a seminar to discuss a particular 
patient's history and the treatment that is or was being given to him. 
However, if a matter-of-fact atmosphere were not maintained, the 
aggressive questioning in a flowchart review would be an intolerable 
insult to the programmer's pride as a technical professional. 

IV. RESULTS OF UTILIZING FLOWCHART REVIEW 

About two dozen flowchart reviews, including repeats, were required 
for all sensor control. Although the length of the flowchart reviews 
varied considerably, they averaged about two hours. Since the entire 
group often did not attend a flowchart review, two dozen two-hour 
reviews amounted to slightly less than a week of the group's time. As 
one would expect, the number of problems uncovered at the flowchart 
reviews varied considerably. However, the average two-hour flowchart 
review led to the discovery of about a dozen problems, varying in im
portance from trivial to major. As a result of the reviews, several areas 
of the new sensor control were redesigned essentially from scratch, 
several areas were changed significantly, and no area was left un
changed. Perhaps the best indication of the number of changes that 
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resulted is the number of times that it was worthwhile to repeat the 
review. In roughly half the cases, the first flowchart review led to 
sufficiently extensive changes that a second review was held after the 
design had been modified. Had all the errors uncovered in the flow
chart reviews been found a few at a time as the code was written and 
tested, it would easily have required at least several more months of 
the entire group's time (equal to roughly one-third of the time actually 
required) to complete the development of the new sensor control. Thus, 
assuming that the programmers would write detailed flowcharts or do 
some other form of detailed design for their own use, there was a return 
of over 10: 1 on the week's worth of the group's time spent in the 
flowchart reviews. These calculations exclude the time saved in system 
testing by delivering higher quality software, which probably exceeds 
that saved during program development. The group responsible for 
programming the target search and target track algorithms used in the 
Meck test system has also used flowchart reviews like those used by 
the sensor control group, with similar results. 

Perhaps the most striking result of using flowchart reviews was that 
all the major software design errors appear to have been caught during 
the reviews, before the code was written. Excluding a few cases where 
changes in the system requirements or the discovery of errors in engi
neering assumptions used by the sensor control group forced some 
redesign; the design was very stable after the completion of the flow
chart review. This illustrates both one of the successful results of 
flowchart reviews and one of the chief limitations found. If the func
tional requirements and engineering algorithms remained stable, then 
the software design remained stable after the flowchart review. How
ever, the flowchart reviews were not very useful in protecting against 
unexpected changes in system requirements or errors in clearly 
articulated-but wrong-engineering assumptions made by the entire 
group. Fortunately, there was only one case where this problem caused 
a large amount of redesign, and in that case the redesign occurred 
before any code had been written. 

The use of flowchart reviews led to the discovery of two disad
vantages that seem inherent in any such highly detailed review pro
cedure. The first is that it involves too much detail to be useful during 
the preliminary design stage. Sensor control was a modestly sized set 
of programs designed by a small group whose desks were only a few 
steps from each other. Thus, the lack of a formal review process during 
the early stages of the design was not a real problem. However, looking 
back, it seems that some effort might have been saved if a more formal 
top-down design approach, with design reviews at intermediate points, 
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had been adopted after the basics of the data structure and radar
order-conflict-resolution algorithm had been determined. 

The second disadvantage is the level of boredom that must be 
tolerated. Interest drops off rapidly if no serious questions have been 
raised for 15 to 20 minutes, and the discussion becomes very boring. 
During the sensor control flowchart reviews, periods of intense bore
dom sometimes lasted over half an hour. Also, the policy of aggressively 
questioning every assertion sometimes leads to three- to five-minute 
discussions to resolve trivial points. Despite the boredom involved in 
this nit-picking, such discussions should not be dropped. Discovery of 
many major problems resulted from unsuccessful attempts to satis
factorily resolve what seemed at first to be trivial questions. 

Concerning the amount of boredom that has to be tolerated during 
a flowchart review, experience throughout the flowchart review has 
been that if the leader does not care enough to personally take part in 
the flowchart reviews, they will not be held. If the leader of a group 
lets boredom take the edge off his personal aggressiveness, then the 
whole group loses its aggressiveness. Although it is hoped that the 
leader would be a key technical contributor to the review process, his 
chief responsibility is to maintain the group's aggressiveness despite 
the inevitable boredom-and the leader's personal example is critical 
in carrying out this responsibility. 

To be sure, it is difficult for a supervisor to allocate the several hours 
required to take part in a flowchart review. However, if a fair-sized 
piece of software is being built, then the quality of the software design 
is an important factor in determining the quality of the supervisory 
group's output. Thus, ensuring the quality of the software design-by 
one method or another-is an important part of the supervisor's job. 

Besides the group leader's personal example, motivating the group 
members to participate actively requires convincing them that the 
reviews are productive. Because of the number of problems found 
during the sensor control flowchart reviews, their usefulness was ob
vious to the participants, although no one-especially not the group 
supervisor-pretended that they were fun. As mentioned above, only 
those group members who had the knowledge to make a meaningful 
contribution to a particular flowchart review or who could learn from 
it were specifically asked to attend the review. No one was ever asked 
to participate in a flowchart review just because of arbitrary group 
rules. Those group members who were asked to attend, especially the 
lead programmers who were asked to participate in most of the reviews, 
were told frankly that the supervisor realized that this was not one of 
the more enjoyable parts of their job, but that they were being invited 
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because their participation was important. In practice, there was no 
problem motivating the lead programmers to participate in so many 
flowchart reviews. The same personality traits that made a person into 
a lead programmer in the first place also made that person willing to 
put up with some boredom to obtain the satisfaction of having had a 
strong personal impact on the quality of the group's work. 

V. COMPARISON WITH OTHER FORMS OF PROFESSIONAL REVIEW 

It is worthwhile to compare the formal group-meeting style of flow
chart review used in the development of the new sensor control with 
other forms of professional review that have been discussed in the 
literature. Flowchart reviews are very similar in spirit to Weinberg's 
concept of "egoless programming,"l in which programmers are trained 
to encourage other members of their programming team to contribute 
to their work; e.g., by reading their programs. The intent of egoless 
programming is for each program to be-as much as is practical-the 
product of the collective efforts of a programming team rather than 
the product of an individual programmer working in isolation (hence 
the term "egoless"). The group members are encouraged to be tech
nically aggressive in reviewing each other's work. Also, as with flow
chart reviews, group members are encouraged to be as matter-of-fact 
and unemotional as possible in pointing out errors or making sugges
tions. As Weinberg has reported, egoless programming has worked 
extremely well in some programming groups. One advantage of flow
chart reviews compared with egoless programming is that flowchart 
reviews are a formal group meeting in which the supervisor takes part. 
Thus, their success is less dependent upon personalities and it is con
siderably easier for the supervisor to ensure that the reviews maintain 
a uniform standard of thoroughness. 

Mills2- 4 has made several very innovative proposals [e.g., chief 
programmer teams, programmer librarians, top-down design/struc
tured programming, PIDGIN (roughly similar to outlines) ] as alterna
tives to flowcharts for organizing software development. See also the 
papers by Donaldson,5 l\1iller,6 Baker,7·8 and Nichols.9 Chief pro
grammer teams, especially when combined with top-down design, pro
vide an opportunity for a great deal of professional review. 

Another technique similar to flowchart review is a "walk-through";l0 
Maucerill has used group meetings to walk through the actual code in 
a manner similar to the way that detailed flowcharts were reviewed in 
the development of the new sensor control. One difference between the 
work reported by Mauceri and the flowchart reviews used in the de
velopment of sensor control is the handling of problems discovered 
during the course of a review session. Mauceri reported that the 
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procedure his groups used was to resolve questions and problems 
"off-line" ; i.e., they were put on a list to be settled later. During the 
sensor control flowchart reviews, the questions and problems could be 
said to have been resolved "on-line" ; that is, resolved immediately as 
they came up during the review if this were at all possible. As men
tioned above, many major problems found during the flowchart re
views were discovered as a result of repeatedly unsuccessful attempts 
to resolve what first seemed to be trivial problems. Another difference 
between the sensor control flowchart reviews and the reviews reported 
by Mauceri is the inclusion of unit and module test cases in the reviews 
reported by Mauceri. This was not done in the development of the new 
sensor control. Instead, professional review of unit test cases was ob
tained by a technique suggested by the various experiments on code 
reading. Based on the detailed flowcharts used in the flowchart reviews, 
one senior person in the group did the functional design of the unit test 
cases for all of sensor control. The individual programmers were still 
responsible for unit testing of their own code. Thus, they had to review 
the proposed unit test cases for completeness and possible redundancy. 
In this way, unit test cases were examined in detail by two people. 

It is interesting to compare the group-meeting-style flowchart re
views with the widely practiced technique of "code reading," in which 
a programmer's code is read line by line by either his manager or a 
senior programmer. In code reading, ideally the reviewer and the 
programmer read through the code together, although sometimes the 
programmer merely gives the reviewer a copy of his program listing. 
For code written in assembly language, the flowchart review has the 
advantage that it can be done earlier in the development cycle. How
ever, if the code is to be written in one of the better high-level languages, 
it is not obvious that the professional review procedure should be 
based on flowcharts. Even if one were to use a formal group-meeting 
style of review, it might be better to skip writing highly detailed flow
charts and to base the review on the actual code as Mauceri and his 
colleagues did. One disadvantage of flowchart review compared with 
code reading is that a flowchart review will not detect minor coding 
errors; e.g., misnamed variables. 

The fact that a flowchart review involves a much larger number of 
people than a typically two-person code-reading session is both an 
advantage and a disadvantage. As a disadvantage, the more people 
involved in a given review session, the more of the group's time is con
sumed. As an advantage, a group review appears to be able to detect 
many more errors, especially errors of omission (e.g., simply forgetting 
a given situation or a given class of inputs) than would be found if the 
design were reviewed by any single person. One of the more interesting 
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features of the flowchart reviews was the fact that no one participant 
noticed half the errors that were found. This illustrates the advantage 
of flowchart reviews by a group of a programmer's colleagues, as com
pared with the more traditional managerial practice in which a pro
grammer reviews his design, probably briefly, only with his manager. 
The traditional managerial review procedure is probably inferior to 
almost any reasonable procedure that involves the detailed review of 
a programmer's work by a group of his colleagues. 

This is not to say that a formal group-meeting-style flowchart review 
is always to be preferred to code reading. Flowchart reviews are not 
very useful for small changes to existing code corresponding to less 
than several dozen lines of assembly language code and to flowcharts 
with fewer than a half-dozen boxes. Unless it is possible to review 
several such changes in one session, the flowchart review will probably 
be finished-accompanied by much grumbling by the participants 
whose work was interrupted-in about as much time as the people 
could be brought together. In fact, some months after the original 
version of sensor control was delivered to the system-integration team, 
code reading was introduced into the sensor control group to help 
tighten coding and testing of the minor changes being added to the 
original design. How this came to pass is a story with a useful moral. 

Some months after the new sensor control was delivered to the sys
tem-integration team, minor additions had to be made to the code to 
provide for some new capabilities. These additions went beyond the 
software design that had been covered in the flowchart reviews. In the 
time since the new sensor control had been turned over to the system
integration team, the group, or at least the supervisor (the author), 
had grown too cocky. The code had run well during the several months 
of system-integration testing, and a series of minor changes had al
ready been introduced with few problems. Probably significantly, the 
design for this first series of minor changes had been included in the 
original flowchart reviews; the implementation of these changes had 
been delayed. The new changes that went beyond the original design 
seemed at the time to be just more minor changes; no special review 
seemed needed. The programmers individually tested their code and 
released it after they felt that the changes had been thoroughly tested. 
Suddenly, during one week, the system-integration team found bugs 
in minor changes submitted by more than half the group. As a result 
of this, the supervisor got a useful lesson in humility and a certain 
amount of cheerful harassment from the system-integration team. To 
deal with this minor fiasco, a referee system was set up for minor 
changes. Each programmer submitting a minor change was required 
to select a referee from among the senior members of the group. The 
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programmer would discuss both his proposed change and the procedure 
to be used in testing the change with the referee. The change could not 
be released until the referee was satisfied with the testing as well as 
with the code itself. After the referee system was introduced, the prob
lem of bugs in minor changes came to a very satisfying end. 

VI. LESSONS LEARNED 

One lesson that was learned from the experiments described above is 
the extent of the increase in quality and productivity that can be 
obtained from the disciplined use of professional review. The use of 
flowchart reviews in the development of the new sensor control: 

(i) Improved and simplified the software design. 
(ii) Appears to have caught all the major software design errors 

before code was written. 
(iii) Reduced the software development time by at least 25 percent. 
(iv) Improved the quality of the software delivered. 

The use of a referee procedure brought an end to the errors in minor 
changes turned over to the system-integration team. Other forms of 
professional review have led to similar results. 

A second significant lesson can be learned by comparing professional 
review with some other techniques that have also led to improvements 
in program quality and programmer productivity; e.g., programming 
teams, modular and top-down design, and structured programming. A 
common denominator to these techniques is the increased structure 
and discipline placed on the process of writing software. Although what 
we now know about writing software is undoubtedly much less than 
what remains to be learned, it is already clear that designing and 
writing software needs to be a much more structured process than it is 
today. 
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This paper discusses the phased implementation of structured pro
gramming techniques over a period of two years. It was observed that, by 
standardizing programming techniques, the resulting program becomes 
more maintainable and programmer productivity increases. By confining 
the clerical work of programming to the program librarian, productivity 
again increases. 

I. INTRODUCTION 

Structured programming techniques have been widely publicized 
throughout the data-processing industry. In March 1970, one pro
gramming department was chosen as a pilot group to test the validity 
of these techniques in the SAFEGUARD environment. This paper sum
marizes the experience gained in the ensuing two years, as increasingly 
advanced structuring techniques were used by the pilot group. Phased 
introduction of each technique is discussed to indicate that the transi
tion from a conventional to a structured environment can be accom
plished smoothly. Effects of the phased transition on personnel are 
discussed, and quantitative productivity data are provided for each 
phase. Although the statistical validity of these data must be qualified, 
a definite trend toward increased productivity is indicated. 

II. DEFINITION OF TERMS 

Within the pilot group, the term "structured programming" was 
used to identify five distinct techniques. They are structured code, 
top-down programming, code reading, PIDGIN, and the Program Pro
duction Library (PPL). 

Structured code is based on a mathematical theorem that shows that 
any program can be developed by the appropriate nesting of three 

S211 



basic logic patterns: sequence of operations, conditional branch to one 
of two operations, and repetition of an operation while a condition is 
true. 1 Elaboration of these patterns leads to the five basic logic struc
tures used by the group to implement structured code: sequence, 
IFTHENELSE, DOWHILE, DOUNTIL, and CASE. Since only this statement 
grouping was permitted, standardization of code resulted. Also, ad
herence to these logic patterns results in complete control of all branch
ing logic and therefore programs are easily readable from top to bottom. 

Top-down programming requires that both design and code be de
veloped from the control logic level down to the detail logic level. 
Program design has traditionally followed this approach, proceeding 
from system specifications to design instructions. Top-down design· 
adds to this requirement that the control levels be coded prior to com
pleting the detail design of lower-level paths. 

Conventional program code, however, frequently does not follow the 
top-down approach. Detail level logic is often coded concurrently or 
before high-level control logic. Top-down code dictates that the next 
level of program code cannot be developed until all paths upon which 
this code depends have been coded and (preferably) tested. 

Another structured technique, code reading, was made possible by 
the use of top-down programming and structured code. This is the 
practice of having all programmers exchange listings to ensure that 
each program is read by someone other than the author. Desk debug
ging is significantly increased and fewer, if any, preliminary clean-up 
computer runs become necessary. 

Large programs, however, still present a problem since the ability 
to read them top to bottom is jeopardized by their total length. To 
resolve this problem, the pilot group used a segmenting technique that 
breaks down the program structure into functional segments. Each 
segment is then constructed so that ideally it occupies no more than 
one page of a program listing. 

PIDGIN is a program design language that combines English, a pro
gramming language, and the structured conventions. This language 
was used to describe each functional segment. Through this design 
medium, system functions are visually broken into dependent segments 
showing the relation of each segment to the overall purpose of the 
program. 

The last technique used in this study was the Program Production 
Library (PPL). The PPL concept stems from the observation that much 
of the task of computer programming is clerical. The PPL provided a 
standardized means for recording, cataloging, and filing all code 
generated, and it ensured a coherent library control system during 
program development and maintenance. It also provided a means for 
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standardizing the JCL-type interface to the computer whereby process
ing options (Compile, Linkedit, IVlodify, etc.) were invoked through 
key words chosen by the programmers. A more detailed discussion of 
the PPL appears in Section VII. 

III. PROGRAMMING ENVIRONMENT 

Structured programming techniques, PPL, and program librarians 
were introduced into a programming project over a one-year period and 
observed for an additional year. The project comprised the develop
ment of independent functional tests for the CLC operating system.2 

The complete set of tests was developed incrementally over several 
years, and the end product was a set of test specifications and the 
programs implementing them. Data for this study were gathered from 
the development of the test monitor facility and the first 11 test sets. 
The test monitor facility provided standard result recording for all 
tests, such that each test set contained no reused design or code. The 
SAFEGUARD assembler level language was used for all coding. 

The nature of the development environment is also important for 
interpreting the results of this study. Test sets were being developed 
in parallel with the operating system. The CLC was the target computer,3 
but all software development occurred on the IBM 360, testing being 
accomplished on the CLe or by simulation on the 360. 

The activities of the pilot project group were confined solely to test 
design, coding, and documentation. Testing and debugging were ac
complished by a separate test team. However, correction of imple
mentation and coding errors in response to error reports made by the 
test group was a continuing background activity to all development 
efforts. This maintenance activity reached a peak during the first two 
months following delivery of each test set. 

A programming team consisting of three to four people, each having 
an average of two years of programming experience, was assigned to 
each test set. The schedule time allowed for the development of a 
test set was four to five months, or an average of 16 man-months. Each 
development cycle had three stages: test specification (2 man-months), 
test design (3 man-months), coding and documentation (11 man
months). 

Another equally important aspect of the development environment 
was the personnel skill mix. The SAFEGUARD software proved to be a 
great equalizer in that personnel new to the project had to learn not 
only the complex application area, but also a new spectrum of support 
software. The result was that experience with SAFEGUARD software was 
frequently equal in value to overall programming experience. The 
rotation of SAFEGUARD-experienced personnel to related critical project 

STRUCTURED PROGRAMMING 8213 



areas was common. In the pilot group, personnel assignments were 
rotated frequently throughout the two-year period studied, thus 
keeping the average programmer experience constant through each 
development cycle. Over a three-year period, a total of 21 programmers 
were assigned to the pilot group. Its total size ranged from 7 to 10. 

The difficulty of the programming job is another important con
sideration. In retrospect, the tests performed in earlier sets are less 
complex but, at the time of their development, user documentation for 
the operating system was incomplete. The complexity of the later test 
sets was significantly higher; however, by this time documentation had 
improved, familiarization with the general modus operandi of the 
operating system had occurred, and personnel were accustomed to the 
test monitor interface. Hence, the relative difficulty of the programming 
job remained constant. 

IV. IMPLEMENTATION PHASES 

The test monitor and the first test set were developed using con
ventional programming methods. Improved programming techniques 
were then introduced in two distinct phases. The next three test sets 
were developed using structured programming and represent phase I. 
The next six were developed using structured programming, the PPL, 

and program librarians, representing phase II. 

V. QUANTITATIVE RESULTS 

Table I quantifies the effect of each phase on programmer produc
tivity over the two-year period. For this study, productivity is defined 
as the number of delivered lines of code produced per day during the 
coding phase. Activities during coding include design, documentation, 
coding of the unit programs, and maintenance of previous test sets. 
Debugging was not a part of this activity, as has been previously dis
cussed. Source statement counts include all lines coded, including 
comments and other descriptive lines required to meet documentation 
standards. The object size includes both instruction and data areas 
and measures the delivered product, as do the source lines. The ratio 
of source to object is provided to give the reader a rough indication of 
the number of executable instructions per line coded. Programmer
days reflects cumulative elapsed days for each programmer, and it 
does not account for overtime, vacations of less then one week, or 
illness. Also, it reflects only days spent by programmers, i.e., it does 
not include management or program librarians. It is the intent of this 
study to indicate the effect of new technologies on programmer pro
ductivity as defined above, rather than on overall product cost. 

5214 THE BELL SYSTEM TECHNICAL JOURNAL, SAFEGUARD 



Table I - Comparison of productivity 

Delivered Source Object Size Ratio of Programmer- Source Lines 

Item Lines (32-bit Source to Days (Coding Per Pro-
words) Object Size Phase) grammer-Day 

Conventional 

Test Monitor 4056 1914 2.1 301 13 
Set 1 6072 6540 0.9 381 16 

Phase I 

Set 2 9654 7300 1.3 240 40 
Set 3 4271 2150 2.0 150 28 
Set 4 6601 3500 1.9 130 .51 

Phase II 

Set 5 9968 3700 2.7 165 60 
Set 6 14689 7000 2.1 225 65 
Set 7 16773 6500 2.6 1.50 111 
Set 8 5588 3900 1.4 136 41 
Set 9 11666 5830 2.0 160 73 
Set 10 11.1)96 6230 1.9 1;")8 74 

A comparison of raw productivity rates was made over the two-year 
period reported. No difference between the three- or four-person team 
was observed, and thus no distinction is made in Table 1. The data in 
Table I should not be used out of the context of the background 
already provided in previous sections, since this can lead to rather 
startling conclusions. Table II summarizes the data for each phase, 
but must only be considered as indicating a trend rather than actual 
percentage gains. The productivity figures reported are dependent on 
many factors unique to the specific development environment of this 
study. 

VI. PHASE I 

Phase I introduced structured programming, code reading, and unit
level top-down approach into the development cycle. These techniques 
can probably be introduced into any existing programming project if 
the following prerequisites are satisfied. The programming language in 

Table II - Summary of results 

Implementation Total Total Average Programmer-Phase Source Lines Days Lines per Day 

Conventional 10128 682 14.7 
Phase I 20526 520 :39.8 
Phase II 70280 994 70.8 
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use must include instructions that implement the structured program
ming logic patterns. This may require the development of a special set 
of macros to support the branching logic. In the case of the project 
being studied, two man-months were required to develop a macro 
package to provide structured statements in the language used. At the 
outset of phased introduction, a programmer experienced in structured 
programming must be available for consultation. This person need not 
be a member of the group itself, but should conduct an orientation 
seminar for those programmers asked to use the new techniques. The 
program areas selected for structured programming must be func
tionally separate from other areas. It is difficult to introduce these 
techniques into an existing program unless the new code represents a 
distinct functional unit that can be restricted to having only one entry 
and one exit. 

The effects of phase I implementation were significant. Resistance 
from programmers occurred at the orientation seminar and during the 
early stages of implementation. However, once they began to use 
structuring techniques for program control, acceptance was quick. 
Resistance to thc new techniques seemed to be directly proportional 
to programming experience. That is, firmly established coding habits 
were difficult to discard when they were to be replaced by a stand
ardized method. There was also the mat.ter of bruised pride, a definite 
psychological side effect. However, experienced programmers soon be
came convinced of the validity of standardization, based on their past 
experience and the obvious benefits. For example, because of the 
standardized method of coding, code reading proved to be a valuable 
desk debugging tool. 

Toward the end of phase I, it became evident that maintenance of 
programs was easier. As is mentioned in Section III, the maintenance 
activity for each test set peaked during the first two months following 
delivery. Maintenance requirements generated by debugging activities 
generally required one programmer full time for that period. Structur
ing techniques made the programs easily readable and enabled them to 
become community property. In fact, this standardization was so 
effective that, immediately following delivery, maintenance of all 
programs in a test set could be assigned to one member of the original 
developing team. Maintenance responsibility included an average of 
100 programs per test set. Transferability of program maintenance thus 
had the effect of freeing key personnel for scheduled critical design 
activities for the next test set, as well as lessening the impact of loss of 
personnel through rotation. Orientation of new personnel was also 
simplified, since this could be partially accomplished through code 
reading. 
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VII. PROGRAM PRODUCTION LIBRARY AND THE LIBRARIAN 

The Program Production Library (PPL) facilitates the work of pro
grammers engaged in code development; it also aids project and line 
management wishing to review the project's progress. The PPL depends 
on a computerized library system in which all types of data have a 
defined source and destination. It is maintained by clerical personnel, 
but no operations are carried out in it unless they are directly requested 
by the programmers. 

Program librarians staff the PPL. Just as structured programming 
must be introduced slowly, the program librarian must be given 
adequate time to learn. The librarian's first job is to provide an inter
face with the computer center, submitting and picking up jobs. The 
librarian can later be taught to change source code, working from 
marked-up program listings. The skills required for this are the ability 
to interpret the sequence of source changes, to make up the appropriate 
change deck, to incorporate this change deck in the necessary computer 
input deck so the program source change will be made, and to include 
the proper tests so that the programmer will have a new set of outputs 
to analyze. This represents a high level of proficiency for a program 
librarian, yet it requires no programming skills. 

The librarian is also responsible for maintaining current listings for 
all programs being developed. During the development of interde
pendent programs, library listings must be updated daily, since several 
programmers may be working on the same program or require interface 
to a common data area. However, on the project studied, each test 
in the set was designed so that all required predecessor conditions were 
established during the test. Each team member was assigned a specific 
test, and, since only the programs within a test were interdependent, 
it was not necessary to file final listings until they were ready for 
debugging. 

VIII. PHASE II 

Phase II involved the introduction of the programming production 
library and the program librarian. The overall effects observed during 
phase II were not immediately visible. This was due mainly to the 
learning curve of the program librarians. The acceptance of the li
brarian service and the PPL concept was not universal, and it occurred 
much more slowly than the acceptance of structured programming 
techniques. Initially, it had the effect of placing one more barrier be
tween the programmer and successful computer output. During the 
project studied, the training of new librarians was a continuing activity, 
because of frequent turnover. One month overlaps for training were 
worked into the schedule, increasing the overall manpower required to 
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support the PPL. During that training period, library performance 
usually suffered. This also hampered the expansion of PPL functions, 
since overall accuracy of PPL output varied. It took four to six months 
before programmers began to rely entirely on the librarian service. 

The sporadic accuracy and reluctant acceptance of the PPL and li
brarians can be attributed almost entirely to frequent turnover of 
librarian personneL 

The librarian's job is not trivial and requires about two months of 
close supervision by trained personnel to achieve the basic skill of job 
setup using change decks provided by programmers. Six months after 
phase II began (Test Set 7, Table I), the impact of the training period 
had been mitigated by increased experience and improved PPL pro
cedures that defined additional fail-safe measures for new personnel. 
For the remainder of the study, PPL throughput and accuracy increased 
despite continuing turnover. 

Another effect of this turnover was the operation of the PPL on a 
"pool" basis. Since experienced librarians were scarce, all PPL activities 
were centralized into a pool of three to four librarians shared by four 
programming departments. This arrangement was quite effective in 
handling the peak activity periods that precede each delivery. 

The number of librarians required for such a pool varies according 
to the amount of new development being done, the number of pro
grammers involved, and their skill level. The ratio used in the environ
ment described here was 6: 1; that is, one librarian for every six pro
grammers. These personnel were not added to the programming group. 
Instead, given the 6: 1 ratio, in a group of seven programmers with an 
average experience level of two years, one programmer was replaced 
with one librarian. The remaining six programmers then produced the 
same amount of code with the aid of the librarian as the original seven 
programmers would have produced without the librarian. 

Another observation is that personnel new to programming can gain 
programming experience quickly since they are not concerned with the 
detailed procedures required for job submission and job handling. 
They need only concentrate on the technical aspects of programming. 

IX. CONCLUSION 

Standardization of programming techniques through structured pro
gramming and its related practices leads to increased maintainability. 
Background maintenance activities are more easily rotated since 
structured programs become community property. The PPL concept 
extends standardization to the programmer/computer interface and 
as such is beneficial. The role of the program librarian removes as 
many clerical tasks as possible from programmers, allowing them to 
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concentrate more directly on the technical content of development. The 
productivity trend indicated in Table I is presented to indicate the 
effect of these new technologies on programmers. Obviously, produc
tivity should increase as programmers are freed of time-consuming 
clerical tasks as indicated by phase II. However, it can also be seen that 
productivity in phase I increases simply with the use of standardized 
programming techniques. 
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This paper describes the managem,ent approach developed to support 
the SAFEGUARD software design effort. Project organization and some 
techniques used for planning and control are discussed. 

I. INTRODUCTION 

The magnitude and scope of the SAFEGUARD system software-design 
effort presented unique management challenges across a broad front. 
Solutions to problems involving organizing, planning, activating, and 
controlling had to be tailored to the specific needs of the project. 
Successfully achieving the objectives of perhaps the most ambitious 
software development effort undertaken to date was no easy task. 
Although no dramatically new techniques or remarkable insights into 
the management process emerged, several useful lessons were learned. 
While there was not a wealth of tradition and folklore to draw on with 
regard to similar software development efforts, we found that the 
fundamental management approaches and disciplines developed over 
the years in hardware and systems design and other software develop
ment activities at Bell Laboratories were in most cases directly 
applicable. 

II. ORGANIZATION 

The organization structure that emerged for managing the SAFE
GUARD software project is a case in point. We established an organiza
tion designed along the general lines of major deliverable generic 
systems. This organization is shown in Fig. 1. Note that there were 
four centers reporting to the project director. One center was charged 
with total SAFEGUARD systems design responsibility. This meant that 
this center concerned itself with high-level requirements, with evalu
ation of the design, and with customer interaction. This center under
took software design in the form of simulation programs and other 
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PROJECT DIRECTOR 
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STAFF DOCUMENTATION 
CHANGE CONTROL 

PROCESS DESIGN PROCESS DESIGN REAL-TIME PROCESS DESIGN 
& INTEGRATION & INTEGRATION OPERATING SYSTEM & INTEGRATlDN 

RADAR CONTROL COMMAND & SUPPORT SOFTWARE SURVEILLANCE 
CONTROL & SUPPORT 

COMPUTERS 
TEST DESIGN SYSTEM EXERCISER RADAR CONTROL 

TRACKING TRACKING M&D 

GUIDANCE RADAR CONTROL CLC TEST BED 

CLC TEST BED & 
SUPPORT COMPUTERS 

Fig. I-Organization structure. 

analytical tools which were necessary to support evaluation or the 
development of requirements, but designed no software system de
liverable to the customer. Each of the other three centers was charged 
with design, test, documentation, and delivery of software associated 
with specific radars, i.e., the prototype Missile Site Radar (MSR) at 
Meck Island, the tactical MSR at Grand Forks, and the Perimeter 
Acquisition Radar (PAR) at Grand Forks. The PAR center was also 
charged with the responsibility for designing support software for the 
tactical radars. 

The departments within these centers were given specific functional 
design tasks as indicated by their abbreviated titles. The identification 
of a number of subprojects, derived from the total project work break
down, permitted a second organizational structure to be superimposed 
on the line organization structure of Fig. 1. Figure 2 shows one of these 
subproject organization structures for the MSR weapons subsystem. 
A project manager was designated for this subproject; in this case, he 
was the department head (second-level manager) of the Process Design 
and Integration Department. His responsibilities as project manager 
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included high-level planning for the subproject, detailed design and 
its implementation, integration and testing at all levels, and monitoring 
and control of all subproject critical activities. He generally was the 
person who scheduled and conducted design reviews and periodic 
project meetings where key engineers, programmers, first-level mana
gers, and support personnel worked together to identify problems and 
initiate action to solve the problems. The subproject meetings also 
were used to disseminate information of interest to all those working 
on that particular subproject. Because the organization remained intact 
throughout the life cycle of the project, the project manager frequently 
was called on to preside simultaneously over control of a released 
system, a system in the planning and design stage, and one in the 
integration and test phase. The project manager was given a great 
deal of latitude as to how he managed his subproject. As is evident 
from Ref. 1, a variety of management approaches were used con
currently, and many contributed to the overall project success. 
Emphasis was on results rather than technique. 

PROJECT DIRECTOR 

r -------, 
I PROJECT MANAGERI 

PROCESS DESIGN 'I PROCESS DESIGN 
& INTEGRATION & INTEGRATION 

RADAR CONTROL I COMMAND & 
I CONTROL 

TEST DESIGN I SYSTEM EXERCISER 

I 
TRACKING I TRACKING 

_____ ...J 

r---------------, 
I STANDARDS 

TECHNICAL REPORTING 
STAFF DOCUMENTATION 

I CHANGE CONTROL 
L..: _______ -, 

------, 
REAL-TIME I 
OPERATING SYSTEM I 
SUPPORT SOFTWARE I 
& SUPPORT I 
COMPUTERS I 

-------' 

I .-----'----, 
I 
1'---__ -' 
L __ ---, 

I 
PROCESS DESIGN I 
& INTEGRATION I 
SURVEILLANCE I 

I 
RADAR CONTROL I 

I 
M&D I ____________ --.1 

I GUIDANCE RADAR CONTROL CLC TEST BED I L _________________________ ~ 

CLC TEST BED & 
SUPPORT COMPUTERS 

Fig. 2-Subproject organization structure. 
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Figure 2 shows that the MSR weapons subsystem manager considered 
people in other centers-for instance, the systems engineers, the CLC 

test bed operation, the guidance designers, the real-time operating
system designers, and the support-software and support-computers 
people-as part of his subproject. Note the horizontal spread of this 
proj ect as it reaches across center boundaries for the people to provide 
its component parts. Conceptually, it illustrates the coordinated 
system of relationships among essential functions typical of a matrix 
type of organization. 

All together, there were 17 subprojects-some of them nested within 
major sUbprojects like the one mentioned above-with project mana
gers at the second level of management. Experience proved that there 
was a great deal of commitment to subproject goals on the part of all 
personnel involved. Clearly, this structure had the potential for con
flict-particularly relative to critical resources like the CLC test bed, 
where goals for two or more subprojects were in competition. However, 
overall project goals were pretty well understood at all management 
levels so that conflicts rarely had to be referred up the line-management 
chain for solution. While the potential conflict situation was recognized, 
the benefits of cross-fertilization were also a consideration. Good ideas 
and design approaches were frequently passed rapidly from one sub
project to another because of subproject ties that spanned the line 
organization. 

In Fig. 1, note that there was a technical staff organization that had 
the charter to attack certain projectwide problems, such as training, 
project standards, documentation, change control, and management 
reporting. In some areas it provided services to the various project 
managers, such as training new people. In other areas, it acted as a 
catalyst to cause project standards to be created. It was not an en
forcement agency. For instance, this group sponsored studies and 
development of structured programming and promoted the develop
ment of critically needed macros, but it did not have the authority to 
impose structured programming as a standard on any subproject. That 
type of decision was in the province of the proj ect managers. 

The project management approach as implemented on the SAFE

GUARD software project proved to be a stable organization capable of 
eliciting strong project commitment at the working level and close 
technical control in the appropriate line organizations. 

III. DETAILED PLANNING 

Once overall project and subproject goals were defined and an 
organization was designed to accomplish them, a detailed development 
plan was constructed. This development plan, which was prepared in 
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parallel with the Data Processing System Performance Requirements 
(DPSPRs),2 forecast the needs of the entire project and spelled out the 
development approach. 

Estimating algorithms, derived in part from a study of previous 
Bell Laboratories work in electronic switching systems and software 
development for earlier military systems, were used to help plan the 
allocation of resources. These algorithms were applied to the estimation 
of resource demands for each major activity. Schedules were then 
built up within the constraints of budget, time, and manpower. Trade
offs among these primary resources allowed the coordinated scheduling 
of critical activities. This anticipation of requisite predecessor/suc
cessor relationships between various parts of the job was designed to 
minimize delays, bottlenecks, and interruptions. Obviously, the initial 
plan was changed many times during the course of the project. How
ever, it eventually led to very detailed plans which were extensively 
used throughout the proj ect. 

The planned addition of large numbers of people to the project, 
coupled with an increasing reliance on subcontractor performance, 
presented a significant management challenge. For example, the 
accomplishment of in-house training required establishment of a corps 
of instructors and preparation of text materials. The overall plan had 
to provide for this substantial investment in student and instructor 
time. In some cases, where traditional mechanisms were not feasible, 
novel techniques for evaluating and controlling subcontractor per
formance were adopted. One such method, the Cost-Plus-Award-Fee 
contract,3 was considered one of the maj or proj ect successes. 

In order that forecasts of manpower buildup and total project cost 
be realistic, it was important that the development plan be imple
mented and kept current. To this end, a management reporting struc
turewas set up by the technical staff organization to update the develop
ment plan and schedules and to provide monitoring information to 
proj ect managers. 

The significance of planning was that it existed across the entire 
project and that it used reasonably consistent definitions. The sub
project managers were not required to use the algorithms that had 
been put together in the original development plan in working out 
their more detailed plans. 

A conscious effort was made throughout the planning process to 
require the active involvement of those people who were to be charged 
with the responsibility of implementation. Participation in the formu
lation of goals, plans, and schedules conduced to a personal commit
ment to carry them out. In addition, the unconstrained format of the 
plan encouraged teamwork and emphasized the use of creativity. 
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IV. STANDARDS AND CONTROL 

Development of appropriate standard operating procedures for de
signing, testing, documenting, and delivering software was a difficult 
and tortuous process. Since comprehensive standards did not exist at 
the start of the project, to a certain extent it was necessary to develop 
them in parallel with initial development of the software itself. 

Rather than create a large, specialized bureaucracy, a small group 
was organized to act as a catalyst for generation of necessary standards. 
This group identified the need for specific standards either indepen
dently or through requests from design or test groups. A sponsor, 
usually from one of the design groups, was appointed for each required 
standard. The sponsor, in concert with designers from other subpro
jects, prepared a draft that was circulated to the management of 
affected organizations. Eventually, through a process of iterative feed
back, each standard was approved at the highest level for projectwide 
implementation. In practice, this procedure proved very time-con
suming, frequently requiring reliance on preliminary drafts when no 
approved standard existed. As might be expected, one of the first 
standards that was provided consisted of a procedure for changing 
standards. 

The standards were divided into a number of different areas, the 
major ones being change management, documentation, and manage
ment reporting. In the area of change management,4 for example, 
standards for "freezing" a software unit were developed. As a mini
mum, to be considered for freezing, a software unit must have been 
properly documented, successfully assembled or compiled, and success
fully unit-tested. While freezing did not stop changes to software units, 
it did require the application of configuration control procedures, 
which made all proposed changes clearly visible to interested managers. 

Also included in change management were standards and procedures 
for reporting program malfunctions. The primary mechanism was a 
standardized trouble report/correction report form that kept all 
information about a problem and its solution on a single sheet of paper. 
This report was eventually adapted for describing any discrepancy 
between observed status and requirements and, as such, became very 
widely used to track current program status. 

Documentation standards attempted to identify and describe every 
type of document that was needed. Since documenting any large 
system is a costly and time-consuming process, each requirement was 
subject to the criteria of reasonableness, usefulness, and timeliness. 
First, it is not reasonable to expend a great deal of effort to produce a 
formal document when the information it contains can be made 
available less expensively in other ways. Second, there is no point in 
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preparing a document that is not going to serve a useful purpose. 
Finally, a document's utility is greatly diminished if it is not available 
when, where, and in the form that it is needed. Certainly, schedule 
constraints did not always allow the criteria to be met, and quite a 
bit of learning as to just what was useful took place only after the 
documents were put to the test of use. 

Management reporting standards were keyed to a computerized 
management reporting system that was developed for use on the 
project. The system incorporated data bases for schedule, manpower, 
and computer usage information, and was designed to produce a wide 
variety of special-purpose reports. 

v. DISCUSSION 

Although, as stated before, no major new management techniques 
emerged during SAFEGUARD development, the project's success can be 
attributed at least in part to the close attention that was paid to the 
content and control of requirements documents and to the early and 
detailed planning of testing. Most important, highly skilled technical 
people were selected for key management positions. They were relieved 
of most tasks peripheral to their jobs, and, subject only to the con
straints of necessary standards and control, they were allowed to use 
their own style. 

The papers that follow deal with some lessons learned in establishing 
software change control systems and subcontract administration sys
tems. A critical appraisal of SAFEGUARD project management-as seen 
by the managers-is also included. 
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Large software projects require control procedures to ensure that 
changes to code can be made systematically. Programmers, however, wish 
to be able to make changes to their programs without being bothered by 
administrative considerations. This paper explores the attitudes of people 
toward change control and the problems associated with establishing a 
workable system. 

I. INTRODUCTION 

Software change control-formalizing the identification and resolu
tion of program errors and improvements-has been critical to SAFE

GUARD for three reasons. First, software change control promotes 
systematic communication. Anyone on the project can formally record 
a problem. A formal resolution is then ensured; the suggested change 
is either accepted, rejected, or consciously deferred, but not ignored. 
Second, software change control helps in estimating the maintenance 
activity required and in scheduling new software releases. Third, 
software change control provides visibility. It allows one to see what 
errors have been found and what action is being taken about them. 
Based on the requests for changes, one can determine which capabilities 
of the software are being used. Change control can ensure that the 
design intent of the software is maintained by consistently identifying 
all changes made. 

II. THE THREE PHASES OF SOFTWARE CHANGE CONTROL 

Change control on SAFEGUARD has passed through several stages, 
progressively becoming more formalized. The first stage was essentially 
no control at all. At the beginning of the project, the only evidence of 
what the final product would be was a requirements document and a 
high-level design specification. Developers responsible for building the 
final product as specified by such documents had a very special attitude 
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toward the software they were creating. Typically, a programmer felt 
he understood the design considerations and implementation details 
of the program he was coding, and he felt his knowledge of the code 
was such that he could remain fully aware of all the ramifications of 
any changes to it. At this time, the programmer was not bothered with 
any type of change procedures, for he did not yet have a stable pro
duct, and possibly not even well-defined requirements. Any constrain
ing procedures would merely have hindered him from doing his job. 
This phase of no-control continued as long as the programmer did 
not have to deliver his program to anyone else. 

The second phase might be called informal change control. The 
phase began when several programs had to be integrated, and people 
other than the original programmer became involved. It was now 
desirable to have problems documented on forms called trouble re
ports and solutions-though not coding details-on correction reports. 
The trouble report and the correction report should be on one sheet 
of paper, to keep all the information about a problem and its solution 
together. This procedure met a fair amount of resistance, yet it is only 
consistent with the standard practice of the scientific and business 
world, where people write down their ideas, agreements, and problems 
without feeling they are needlessly harassed by paperwork. Experience 
has taught them the necessity of doing so. The software world is no 
different, since programmers, like people, cannot remember every 
problem and situation they encounter. 

For two reasons, it is important that trouble-reporting procedures 
be set up before they are required. First, if they are not defined before
hand, a vacuum will exist when they do become necessary, and each 
part of the project will be forced to establish its own. Of course, the 
primary responsibility of groups that are integrating and testing soft
ware is to get a working product, not to define procedures. This 
responsibility will take precedence, and thus the resulting procedures 
may not be as good as one might expect. A second and more compelling 
reason for having change-control procedures defined in advance is that, 
at a later time when all the software on the project is brought together, 
it is desirable to have a consistent procedure projectwide. 

The final phase of change control for the SAFEGUARD project is 
called formal change control. Since the software is being sent to a remote 
site for testing and eventually will be sent to the customer, stringent 
control is essential. In this phase, a central control organization having 
the following objectives is involved. First, the organization provides 
consistent, complete, and adequately documented deliveries to remote 
sites or to customers. Second, it accepts trouble reports, noting problems 
in the software, and keeps a record of what is being done about these 
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problems. Third, the central control organization checks that certain 
minimal standards are followed in documenting the problems fixed in 
each software release, and it checks that all programs to be included 
in a release are properly identified. Finally, it provides historical 
backup of all SAFEGUARD software, including source code, object code, 
assembly listings, and load modules. 

Whether a central organization is designated to perform change 
control or whether this responsibility is scattered throughout the 
design, test, and integration groups, someone will ultimately do it. On 
SAFEGUARD, a very small central organization was designated, but it 
did not insert the actual changes into the code. Therefore, at least one 
group in each process design department evolved into a control group 
for that department. Each of these groups defined their own pro
cedures, in some ways making the central organization superfluous. 
Each department felt it had unique change-control problems that 
could only be solved by a change-control group that reported to that 
department's management. It was also felt that only under such an 
arrangement would the change-control group have the requisite interest 
in meeting the schedules and objectives of the department. These 
attitudes made transition to formal change control under one central 
organization difficult. 

The transition from informal to formal change control can be smooth 
only if there is adequate management backing for such a move. This 
backing is necessary because of the interjection of a central control 
organization that is in a position to police certain activities of the 
development groups. Programmers and even managers are reluctant 
to let this control organization become involved in their activities, and 
will probably question both its necessity and its competence. The 
degree of success this central organization has will depend first on 
management backing and second on the similarity between the existing 
informal change-control procedures and the desired formal ones. 

III. ESTABLISHING A CHANGE-CONTROL SYSTEM 

Thus far, we have considered primarily the human aspects of soft
ware change control. The problems associated with this part of the 
subject are difficult to define and the solutions nebulous. Problems of 
standards and mechanisms for an effective change-control system are 
easier to solve. As a rule, these standards and mechanisms are neces
sary but not sufficient for maintaining control of software. 

For three reasons, SAFEGUARD follows a standard procedure for 
identifying program statements that are changed to fix a given problem. 
First, the programmers responsible for maintaining the code in the 
future will be better able to determine the intent of previous changes 

SOFTWARE CHANGE CONTROL S233 



by being able to relate source statements via their "change level" to 
a specific correction report. The change level of the program is in
cremented by one for each correction report written against the pro
gram, and the change level is placed on each altered statement. * 
Second, both the programmer and anyone else examining the code can 
double-check that the intended change was in fact put in. The third 
reason, which applies only when the object code is being patched, is 
that a programmer at a remote site who has solved a problem with a 
patch may want to check the source code change to make certain it 
does the same thing his patch did. This checking is especially important 
when the source code is written in a compiler-level language. 

Both source and obj ect code are maintained using a proj ectwide 
storage and retrieval system. This system allows the automatic inser
tion of new change levels into the source code as new statements are 
added to a program or existing statements are changed. These change 
levels are then carried through to the assembly listings. In addition, 
this system provides a convenient mechanism for transmitting changed 
programs from development groups to testing groups and, ultimately, 
to the central control organization. The library system was available 
to programmers early in the project. 

When a set of programs is first placed under formal change control, 
a configuration listing is created. This configuration listing specifies, 
at the very minimum, a list of all the individual programs with their 
change levels and a precise identification of all support software 
(compilers, assemblers, linkage editors, etc.) used in creating this 
release. With each new release, this configuration listing is updated. 

SAFEGUARD programmers write a large number of trouble reports, 
and an automated mechanism is used to keep track of them. This 
system was designed and built early enough in the project so that it 
could have been used to record trouble reports during the informal 
change-control phase. Although the software Status Accounting Sys
tem (SAS) was available, developers all seemed inclined to invent their 
own automated systems because SAS was operated by the central 
organization at a time when each group wanted to maintain its own 
data base. These groups should have been allowed to maintain in
dividual data bases using SAS. 

SAS can create reports by retrieving and sorting on any data param
eter stored for each trouble report and correction report, or on any 
combination of data parameters. The following information is stored 
for each trouble report: trouble report number, the program in which 

• Since source statements have change levels, so also do object decks and assembly 
listings. The concept is also applied to load modules, patch decks, user and main
tenance documentation, etc. 
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the problem was detected, the date the problem was detected, a func
tional description of the problem, the originator of the trouble report, 
the person to whom the problem was referred for resolution, a status 
indicator showing the current status of the trouble report, the date of 
last status change, comments about the trouble report, and the date 
the correction report is due. The following information is stored for 
each correction report: correction report number, the program in 
which the problem was corrected (including its change level as dis
cussed previously), the date the correction report was written, the 
originator of the correction report, an indicator showing the current 
status of the correction report, the date of the last status change, and 
the identification of the load module in which the updated program was 
first released. 

The timing of the definition of forms and procedures was important 
because programmers became accustomed to the forms and procedures 
used during informal change control and did not want to convert to 
others. Thus, the official trouble report/correction report form was 
defined early in the life of the project, avoiding the proliferation of 
unofficial versions. The procedures followed during informal change 
control were a subset of those followed during formal change control. 
The primary difference, of course, is the presence of the central control 
organization during the formal period. 

The major steps of the SAFEGUARD formal change control process 
are now described. When someone discovers a problem, he writes a 
trouble report and submits it to the central organization, which logs 
it in and forwards it to the people responsible for the program, who 
accept, reject, or defer it when it is received. They tell the change 
control organization the date by which a correction for the problem 
will be submitted. After the people responsible for the program have 
updated their code, they write a correction report describing the 
change. They test the new release and update the configuration listing 
to include the new change levels of programs that have changed. They 
now send the source code, the object code, assembly listings, a load 
module, and all correction reports relating to this release to the central 
control organization. The control organization checks that all changes 
have been documented; that the source code, assembly listing, and 
the object code of each program in the load module are consistent; 
that all program change levels are specified; and that the configuration 
listing is accurate. This organization then prepares copies of the soft
ware for shipment to users or remote test sites. 

Although it is not being done on SAFEGUARD, the central control 
organization should be responsible, upon direction from the develop
ment areas, for actually making the changes in all released software. 
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This requires a substantial commitment of manpower to the organiza
tion, but it is one way of ensuring that the changes indicated by correc
tion reports are indeed made, and that no others are. 

IV. CONCLUSION 

Two aspects of software change control that were relatively success
ful on SAFEGUARD were a projectwide library maintenance system to 
control source and object code and a standard trouble report form. 
These two were not developed over a long period of time, but appeared 
very early in the project. Because of this stability, software developers 
grew accustomed to using them. The library maintenance system was 
available during the first phase (no change contro!), and the trouble 
report form was available at the beginning of informal change control. 
It was recognized that early introduction and acceptance would be 
beneficial, because transition to the later phases would be simplified. 
Two additional features of the system, change control procedures and 
software status accounting, proved to be more troublesome to define 
and implement. Since, early in the period of informal change control, 
each process area independently developed its own procedures, a 
certain amount of reexamination and redefinition was required during 
the transition to formal change control. 

Any software change control system is destined to meet with some 
resistance. Programmers as a rule have very definite ideas about what 
should be done to their software. This factor combined with the dy
namic nature of software makes change control a difficult problem, 
not so much in establishing the mechanisms and procedures, as more 
in dealing with human factors and ensuring adherence to procedures. 
The first step is to recognize that change control is a problem that 
should be addressed early and, in fact, will be addressed either early 
in a systematic manner or later in a less organized but more costly 
manner. Only the developers' admitting this and conscientiously 
addressing the problem will guarantee successful change control. The 
mechanisms and procedures suggested in this paper are tools, nothing 
less, but certainly nothing more. The human factors are the more 
important considerations in successful software change control. 
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This paper describes the Cost-Plus-Award-Fee (CPAF) contract that 
has been used to control a major software development effort, amounting 
to approximately $30 million annually. The amount of the award fee is 
determined periodically, based on a unilateral judgment of supplier 
performance. The lessons learned in handling a contract of this type and 
magnitude are summarized. The CPAF contract has proven to be a good 
means of ensuring the continued attention of supplier management that 
is necessary for obtaining high performance on time. 

I. INTRODUCTION 

Put very simply, the Cost-Plus-A ward-Fee (CPAF) contract is a cost
reimbursable level-of-effort arrangement in which the fee to be paid 
for each (predetermined) period is based on the customer's unilateral, 
subjective judgment of the supplier's performance during that period, 
measured against previously-agreed-upon performance criteria. The 
fee awarded is not subject to change. The award-fee contract differs 
from other types of cost-reimbursable contracts such as (i) the Cost
Plus-Fixed-Fee (CPFF) contract where the fee is fixed at the outset of 
work, and (ii) the Cost-Plus-Incentive-Fee (CPIF) contract, in which the 
fee is determined by applying a previously-agreed-upon formula to 
objective measurements of cost and/or performance and schedule 
events upon completion of the work. 

The key words in award-fee are "unilateral" and "subjective." This 
type of contract is a complete departure from convention and one not 
eagerly sought by suppliers unless they have enough self-confidence 
to take some very real monetary risks. The motivating factor for the 
supplier is to maximize the profit-the all-important "bottom line"
by high performance, and the award-fee contract is a vehicle for doing 
so if the supplier is willing to take the risk of realizing a very small 
profit or none at all if he does a poor job. 
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In the past, CPFF contracts had often been chosen for both hardware 
and software development programs. The principal technical diffi
culties lay in communications and motivation: in getting requirements 
changes implemented, getting feedback on current progress and 
problems, and getting appropriate attention by supplier management. 

Software development is characterized by many requirements 
changes and many complex interfaces, and one must ensure close and 
continued communication if a software development contract is to be 
successful. Furthermore, software development is a process of evolu
tion, and it is very difficult to set liP predetermined performance goals 
against which the final product could be measured; hence, a software 
objective-incentive contract is frequently not desirable. 

To get the good communications and motivation that are essential in 
the development of software, we decided to use the Cost-Plus-Award
Fee method. At the time of this decision, the CPAF form of contract 
was relatively new, and had not even been recognized in the Armed 
Services Procurement Regulations (ASPR). It was being used principally 
by NASA and the Navy, for various kinds of work including software 
development, and had been well regarded by them. The concept 
appeared to be suitable for our major software development exte:gding 
over several years, since it provided a financial incentive for good 
performance, and this periodic pressure of profit determination offered 
the best promise of continued attention by the contractor management. 

Accordingly, a specific award-fee approach was devised, and pro
posals based on this approach were invited. A contract format was 
devised specifying a periodic award of fee money based on a quantita
tive scoring of supplier performance, using stipulated subjective cri
teria. Its provisions included developing a curve that would give 
profit in terms of score and establishing an effective procedure that 
would ensure prompt and continuous feedback. A selection procedure 
was devised, and the supplier was chosen with the knowledge that this 
was to be an award-fee contract. 

The contract was signed on January 14, 1969 and with some modi
fications has been used steadily since then. 

II. DETAILS 

The contract has covered up to about 800 people. At the time, the 
work was divided for control purposes into 16 mission orders (missions) 
covering broad areas such as MSR tactical data processing and com
puting facilities. In turn, the missions were divided into some 70 tasks, 
with titles like "Software Quality Improvement" and "PAR Instal
lation and Test System Development." Each mission can be viewed as 
an individual contract since it contains a scope of work, designates a 
representative for evaluating performance, sets forth the planned hours 
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and dollars estimated to do the work, assigns a base fixed fee, and 
establishes an award-fee pool that can be earned in whole or in part 
depending on the evaluated performance. Thus, the entire contract 
is essentially a collection of mission orders handled within a common 
procedural framework. 

2.1 Evaluation 

Evaluation of the tasks and missions is a key part of the administra
tion of the contract and, accordingly, it has been structured carefully. 
For convenience, the several steps in the evaluation procedure are 
summarized in Table 1. 

Each task is defined by a specific task plan, and is monitored by a 
designated Bell Laboratories member of technical staff, usually a 
first-line supervisor. Once each month, this task monitor evaluates the 
performance of the supplier on his task by means of a formal set of 
scores, supplemented by a written commentary that notes prominent 
strengths and weaknesses observed during the month. The monitor, 
based on his subjective judgment, assigns a score between a minimum 
of 59 (a failure) and a maximum of 100, about the interval of a typical 
school report card. A score of 80 will return to the supplier a fee 
commensurate with what would be expected for a good-quality job on 
a CPFF basis. The technical evaluation form is shown in Fig. 1, and the 
definitions of the categories in Fig. 2. Each technical evaluation is 
reviewed and approved (possibly with changes based on mutual dis
cussion) by the project manager, who is the task monitor's supervisor. 

Table I - Summary of evaluation procedure for CPAF contract 

Frequency By Whom 

Monthly Bell Laboratories Task 
Monitors 

Monthly Bell Laboratories Project 
Managers 

Monthly DPS Control Department 

Quarterly Performance Evaluation 
Board 

Quarterly DPS Control Department 

Quarterly Fee-Determining Officer 

Functions 

Technical evaluation of tasks. 

Management evaluation of tasks in a 
mission. Due the 5th of the month. 

Calculates scores for all tasks. 
Sends preliminary evaluations to sup-

plier as of the 12th of the month. 
Reviews evaluations. 
May make score adjustments. 
Recommends scores to fee-determining 

officer. 
Adjusts scores as recommended. 
Makes errata sheets. 
Reviews recommended scores. 
Makes final decision on scores. 
Determines fee. 
Sends official evaluation to supplier. 

Quarterly Management Review Board Discusses evaluations (and reviews 
contract work generally). 
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TASK TITLE 

L 
I 

CATEGORY TASK MONITOR'S REMARKS 

ADEQUACY 
OF 

PLANNING 
AND 

SCHEDULING 

CONFORMANCE 
TO REQUIREMENTS 

AND 
RESPONSIVENESS 

TO CHANGE 

COOPERATION 

QUALITY 
OF 

TECHNICAL 
ACHIEVEMENT 

QUANTITY 
OF 

TECHNICAL 
ACHIEVEMENT 

CONTRACTOR REVIEW I AOMINISTRATIVE USE I -' PROJECT MANAGER -'. 
I I I I 

TECHNICAL EVALUATION 
16/73) 

Fig. I-Technical evaluation form. 

THE BASIC REFERENCE IS THE TASK PLAN. 

PLANNING AND SCHEDULING - QUALITY OF PLANNING AND REPLANNING, 
MEASURING AND PROJECTING PROGRESS, SCHEDULING, AND ALLOCATING 
RESOURCES DURING THE REPORT PERIOD (NOT NECESSARI L Y HOW WELL 
THEY ADHERED TO PREVIOUSLY ESTABLISHED SCHEDULES). 

CONFORMANCE TO REQUIREMENTS AND RESPONSIVENESS TO CHANGE -
DEMONSTRATED ABILITY TO MEET DESIGN REQUIREMENTS AND KEEP WORK 
IN LINE WITH PROJECT GOALS, EVEN IF CHANGING. 

WT. 

COOPERATION - IN ADDITION TO THE USUAL MEANING, PROMPT FURNISHING 
OF ALL DATA ON ANY PROBLEM AREAS THAT COULD IMPAIR PERFORMANCE 
OR OTHERWISE AFFECT TASK PERFORMANCE. 
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QUALITY OF TECHNICAL ACHIEVEMENT - IMAGINATIVENESS, ACCURACY, 
COMPLETENESS, RELIABILITY, AND APPROPRIATE OPTIMIZATION OF DESIGN 
AND IMPLEMENTATION. FOR EXAMPLE, EFFICIENCY OF CODE IN REGARD 
TO THE USE OF TIME AND SPACE, COMPLETENESS AND TECHNICAL AND 
EDITORIAL QUALITY OF REQUIRED DOCUMENTATION, INITIATIVE, IDEA 
GENERATION, AND GENERAL APPROACH TO THE JOB. 

QUANTITY OF TECHNICAL ACHIEVEMENT - PRODUCTIVITY IN DESIGN AND 
IMPLEMENTATION OF PROGRAMS AND PRODUCTION OF DOCUMENTS. OVERALL 
AMOUNT OF USEFUL WORK ACCOMPLISHED DURING THE PERIOD. 

MANPOWER: 

REQUIRED - THIS NUMBER IS TAKEN DIRECTLY FROM THE TASK PLAN 
AND REPRESENTS THE MANPOWER PLANNED FOR THE MONTH SPECIFIED, 
IN EQUIVALENT FULL-TIME PEOPLE. 

ASSIGNED - THIS NUMBER IS DERIVED FROM TOTAL MAN-HOURS (INCLUDING 
OVERTIME) REPORTED DIVIDED BY THE NUMBER OF HOURS IN THE 
ACCOUNTING MONTH. HENCE, THIS NUMBER REPRESENTS EQUIVALENT 
FULL-TIME PEOPLE. 

Fig. 2-Definition of technical evaluation categories. 
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PROJECT MANAGER FROM I TO 

I I I 
CRITERIA PROJECT MANAGER'S REMARKS WT. SCORE 

COOPERATION 
AND 

RESPONSIVE 
MANAGEMENT 

ORGANIZATION, 
MANNING, 

AND 
QUALITY 

OF 
PERSONNEL 

MANAGEMENT 
ACHI EVEM ENT 

ADMINISTRATIVE USE PROJECT MANAGER 

I 
DATE 

TOTAL 
SCORE 

I TASKS PERIOD COVERED 

MANAGEMENT EVALUATION I 
(6/73) 

Fig. 3-Management evaluation form. 

Separately, each project manager evaluates the tasks for which he is 
responsible within a given mission by means of a management evalu
ation (see Figs. 3 and 4). Technical scores are calculated, based on a 
weighting of the categories that varies with the individual tasks. 
Management scores are also calculated, but with a uniform weighting 
that is the same for all missions. The entire body of monthly evalu
ations is sent to the supplier soon after the start of the succeeding 
month, and face-to-face discussions ensue shortly thereafter. 

COOPERATION AND RESPONSIVE MANAGEMENT - QUALITY OF ACCURATE AND 
OBJECTIVE EVALUATION OF THE IMPACT OF REQUIREMENTS AND CHANGES. 
FURNISHING DATA, INFORMATION, AND ADVICE ON KEY PROBLEMS, AND 
MAKING TECHNICAL AND ADMINISTRATIVE CHANGES AS REQUIRED. 

ORGANIZATION, MANNING, AND QUALITY OF PERSONNEL - ESTABLISHING AND 
MAINTAINING HIGH QUALITY PERSONNEL AND A USEFUL ORGANIZATION 
WHICH INTERFACES CONVENIENTLY WITH THE LABORATORIES, AND MEETING 
CONTRACT MANPOWER REQUIREMENTS. 

MANAGEMENT ACHIEVEMENT - QUALITY AND QUANTITY OF USEFUL OUTPUT. 
MAKING EFFECTIVE USE OF PERSONNEL, CONTROLLING THE USE OF 
RESOURCES, FILTERING OUT INESSENTIAL WORK, AND PROPERLY USING AND 
CARING FOR FACILITIES AND EQUIPMENT, 

Fig. 4-Definition of management evaluation categories. 
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2.2 Review 

Once a quarter, the evaluations for the entire three months are 
reviewed by the performance evaluation board, which consists of the 
project managers, the senior management of the division, and the head 
of the local contracting (purchasing) department [who enters into the 
scoring equation his own evaluation of cost and contract administration 
(see Fig. 5)]. All evaluations are scrutinized and reviewed for fairness 
and appropriateness of category. The project managers are permitted 
to change the evaluation scores if they consider it necessary, based on 
subsequent information of events during the quarter that had not been 
available at the time of the evaluation, provided they can justify the 
changes to the board's satisfaction. The board is permitted to change 
scores to reflect a broader view, and comments are frequently made in 
the minutes of the review meeting that draw attention to a strength 
or weakness or emphasize a particular problem. Normally, the changes 
in scores are few, and are made only for a specifically explained reason. 
The board then recommends, to the fee-determining officer, a set of 
scores by mission for the quarter. 

2.3 Fee determination 

The mission scores are converted to mISSIOn fees according to an 
essentially linear algorithm, with 59 corresponding to the base fixed 
fee (if any) or 0 percent award and 100 corresponding to the maximum 

PE. 80AAD MEM8U FAOM TO 

I j 1 
CRITERIA PURCHASING DEPARTMENT'S REMARKS WT. SCORE 

CONTRACT 
ADMINISTRA TION 

COST CONTROL 
ACCURACY OF 

RESOURCE 
ESTIMATES FOR 

EACH TASK PLAN 

COST REDUCTION, 
EFFECTIVE 

REDUCTION IN 
DIRECT OPERATING 

COSTS, AND INDIRECT 
BURDEN RATES 

ADM USE DATE I ADMINISTRATIVE EVALUATOA 

I 
DATE 

TOTAL 

I SCORE 

PEAIOD COVUED 

COST AND CONTRACT ADMINISTRATION EVALUATION I 

Fig. 5-Cost and contract administration evaluat.ion. 
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fee of 15 percent which would include the base fixed fee. In military 
work, the base fixed fee cannot exceed 3 percent nor can the maximum 
fee exceed 15 percent for R&D work (including the base fixed fee, if 
any). The fee-determining officer (the local director of purchasing) 
then reviews the scores from the purchasing point of view; he is em
powered to change the fees if in his sole judgment it is appropriate. 
He then forwards the official copy of the quarterly evaluations to the 
supplier, together with any score changes and performance evaluation 
board minutes, and with the fees for the quarter. 

2.4 Supplier review 

A contractor/supplier review is normally held quarterly, at the 
supplier's request, by the management review board, which consists 
of officials of the supplier, technical contractor personnel, and the fee 
officer, to discuss the evaluations and pertinent technical and manage
ment questions. This review may be waived by the supplier. 

III. DISCUSSION 

Experience has shown that firm customer management support must 
be given to the process of evaluating the work and reviewing the evalu
ations. This involves many people; for example, in July 1971, when 
the job stood at 14 missions and 54 tasks, the customer monitoring 
involved (part-time) 44 task monitors and 17 project managers. These 
numbers may suggest an inordinate amount of monitoring; however, 
this is not the case, since in a program of this magnitude one would 
expect to have roughly this number of customer technical people 
involved to ensure a good product. The distinctive feature is the 
coordinated evaluation effort of these people. There is a tendency for 
the evaluation process to become routine and thus to lose its incisive
ness. This must be guarded against continuously, by vigorous top
management interest, principally at the quarterly performance evalu
ation board meetings. Not only must the evaluations be incisive, they 
must also be timely. In any busy organization, there is a tendency for 
paperwork such as these evaluations to lag. This must be prevented, 
since prompt feedback with the supplier is essential. 

The evaluations must be carefully and thoughtfully done. In the 
course of reviewing a great many evaluations, some DOs and DON'Ts 

have been formulated. Since these have come from hard experience, it 
is appropriate to include them here. 

(i) Make the task plans clear and concise. 
Cii) Encourage initiative. 

(iii) Ensure that the score represents the exact evaluation of the 
supplier for the period. 
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(iv) Say why you thought the work was good or bad. If the score 
is very high or very low, always include an explanation. Make 
the remarks constructive, so that they may be used to maxi
mize supplier performance. 

(v) Task monitors should discuss evaluations face-to-face with 
supplier counterparts. 

(vi) Jot down comments as the month proceeds. 
(vii) Get completed forms in on time, to permit quick feedback to 

the supplier. 
(viii) Don't use an unsupported adjective: 

NOT "Good" 
BUT "Good replanning to accomodate a peak work load." 

Some problems were observed from the supplier's point of view. 
Some supplier managers felt that task monitors were arbitrary in their 
scoring, and sometimes they tended to please the task monitors rather 
than exerting their own judgment on how best to do their jobs. At 
times, requirements changes made supplier managers uncertain as to 
the customer's needs and made them regard evaluations as unfair. 
In the main, these problems were growing pains, and disappeared as 
higher management review was applied to the evaluations. 

A frequent question is "Are you paying a proper fee for the work?" 
The answer is that, if you need high performance on time, then the 
value of a high-quality job more than compensates for a higher fee. 
If the proper evaluation of the supplier's performance results in a high 
fee, then by definition you must be receiving the kind of product you 
desire. And such is the case with the contract under discussion. 

IV. CONCLUSIONS 

The award-fee contract discussed here has been in operation for 
more than four years and has covered, as of October 1974, over $130 
million of effort. The gaps in communication have been few, and by 
and large they have been spotted and corrected promptly. 

In summary, the award-fee contract is a good vehicle for dealing 
with a large, complex, dynamic problem, where the customer needs as 
good a job as he can get and on time. This type of contract requires 
good faith between customer and supplier and a substantial monitoring 
and evaluation effort. The format encourages good customer-supplier 
communications and the active management involvement that is, in 
fact, necessary to successful performance. The improved visibility of 
problems makes it possible to address them quickly and solve them. 
The CPAF contract format has played a very important role in getting 
high-quality software on schedule in a major software development. 
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A broad-based study of software project management for the SAFEGUARD 
project is presented. SAFEGUARD posed unprecedented project manage
ment challenges because of its size and complexity, yet the project was 
successful in attaining its objectives. This account of what some of the 
challenges were and which approaches were most effective in meeting them 
will hopefully suggest guidelines for the management of other software 
projects. Subjects include planning, methods for gathering status informa
tion, control actions, requirements, and programming methodology; also, 
differences between managing a software and a hardware project are 
explored. This study is based on intensive semistructured interviews with 
26 SAFEGUARD software managers at all levels concerning their experi
ences on the pro.iect and opinions derived from them. The views expressed 
are limited to those of the individual managers interviewed and do not 
represent a consensus of SAFEGUARD management. 

I. INTRODUCTION 

For the purpose of this paper, "project management" is defined as 
work planning and scheduling; gathering and reviewing status informa
tion; and controlling and allocating human, computer, financial, and 
time resources so as to meet project objectives. Control consists of a 
continuing series of corrective actions resulting from status reviews. 
Project management differs from management in general in that 
technical questions or individual personnel matters are not considered, 
except where they might affect the areas within the definition of 
project management. 

II. METHOD OF STUDY 

Most accounts of management experience on a project are relatively 
personal ones. In this case, it was decided to obtain a broad perspec
tive by interviewing a cross section of 26 software managers about their 
experiences. The interviews included subcontractor managers and in-
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volved every level of management from first to fourth; and the 
participants held a wide range of jobs. There were varying degrees of 
background in software and management, and widely differing manage
ment philosophies. 

A discussion lasting approximately two hours was held with each 
manager. An interview guide was sent to each participant one week 
before the interview. One-third of this guide contained background 
material; two-thirds, questions. The guide prepared the managers for 
the interviews, giving them time to consider the topics. Each inter
view was semistructured in the sense that the open-ended questions 
of the guide were generally followed; however, digressions into related 
topics were also encouraged. 

The authors looked for patterns in the responses and held follow-up 
discussions with the managers based on the initial draft of this paper. 

III. RESOURCES DEVOTED TO PROJECT MANAGEMENT 

To gauge the importance placed on project management activities, 
each manager was asked what percentage of his organization's re
sources he was willing to allocate to this function. Estimates ranged 
from 5 to 25 percent, with the average about 12 percent. To get a job 
running smoothly, it was generally believed that more resources (up 
to 50 or even 100 percent) should be devoted to project management in 
the early stages of a job. On SAFEGUARD, the rapidly changing en
vironment necessitated a high level of planning effort extending into 
the late phases of the job. Several people believed that the proportion 
of effort required for project management is larger on large projects; 
this was especially so on such a complex project as SAFEGUARD. 

IV. PLANNING 

System requirements were first defined in 1969 in a system concept 
paper; by the third quarter of 1969 they were specified at a detailed 
system engineering level in the data-processing system performance 
requirements. l During the same time period, a complete software 
development plan and schedule was prepared, along with the rationale 
on which it was based. This overall plan was followed by extensive 
planning in more detail at lower levels, much of it stimulated by the 
requirements of the Management Reporting System (MRS). The MRS 
is described in Section 5.2. 

One of the most difficult challenges was establishing the proper time 
relationships between different parts of the job. When this was not 
done realistically, simultaneous design and coding often resulted; this 
was inefficient because then interfaces were not ironed out and the 
feasibility of algorithms was not investigated (and they finally had to 
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be). It was found that the timing of test planning activities was fairly 
critical. The optimum time appears to be approximately when pro
gram design is complete but coding has not started, since a good test 
plan should have both requirement- and implementation-oriented 
components. The point in time at which users had enough knowledge 
about their data reduction requirements to specify them in detail and 
the point in time at which the requirements were needed by the data
reduction system designers were usually incompatible. It was very 
hard to schedule system evaluation, since the design had to be far 
enough along to provide definitive information but the evaluation 
had to be completed early enough so that problems could be identified 
and corrections implemented before the design was frozen. 

Several managers would have placed more emphasis on centralized 
planning. They suggest that a group, reporting directly to the highest
level manager, should be responsible for overall planning and schedule 
control. A formal development plan for the entire SAFEGUARD project 
had been prepared; however, almost everyone felt that this develop
ment plan was useful mainly for introductory orientation. 

Despite a general feeling that planning is important, a slight majority 
of managers did not think it necessary to prepare written, explicit 
schedule and resource plans for their own areas. Most of them do not 
enj oy such planning; however, this distaste does not extend to technical 
planning, such as the generation of requirements and test plans. Those 
who feel that a development plan is necessary generally suggest a 
written plan (with format left to the author) plus supplementary bar 
charts. Most managers believe the PERT networks are not worth 
the effort required. 

Accurate estimation of time, manpower, and computer time re
quired for a job was found difficult by most managers. Estimation 
accuracy was not significantly affected by the size of a job. Several 
managers commented that they found it difficult to evaluate schedule 
performance because the work often changed after the original plan 
had been created. One noted that although computer time usage was 
the hardest resource to estimate, it was the least critical of all the 
resources to manage (except when "turnaround" time deteriorated). 

When errors in estimating occurred, the prime sources of error were 
found to be neglecting learning time and underestimating the lengths 
of test intervals and the amount of maintenance support required. 
One manager felt that from 25 percent to 50 percent of the peak 
manpower of a project must be "kept" for the maintenance phase. The 
lower figure represents the manpower required to correct "bugs" but 
not to implement any changes, and the higher figure represents the 
manpower required to deal with a fairly high change rate. 
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Several participants felt that a better basis for estimating a job was 
previous experience on similar jobs rather than the use of numerical 
planning algorithms. Hence, their approach was to let their subordin
ates use their own direct experience to do the estimating and then 
question them on it. 

v. GATHERING STATUS INFORMATION 

Gathering status information is one of the most important project 
management activities. There was a fair amount of diversity in 
establishing the criteria that were considered to be most important 
in evaluating the worth of a particular report or information-gathering 
technique; however, timeliness and accuracy stood out. Definitiveness 
(providing enough information to identify the accomplished work un
ambiguously) ranked next. Several managers indicated that, above all, 
a report or technique should make problem areas visible. Conciseness 
was considered useful, but completeness ranked fairly low. Some 
minor considerations were flexibility and understandability. It was felt 
that asking the question, "What actions can I take as a result of this 
report?" was a good approach to measuring its value. 

A very strong pattern of preference for informal methods emerged, 
with primary reliance on oral rather than written communications. This 
preference was found to be independent of management level. One 
argument advanced for oral reporting was that the useful life of status 
information is short. Another advantage of oral communication is that 
it permits questioning and probing and rapid interaction with feedback. 
Also, many managers believe that they can evaluate the reliability and 
accuracy of oral communication better than that of written com
munication because they can observe the way in which a respondent 
answers questions. Lower-level managers prefer making oral reports 
because it takes less time and involves more personal contact with 
their superiors. The main weakness of oral communication is that for 
higher-level managers it may be either indirect (i.e., received second
hand) or time-consuming. 

Some managers found conventional written progress reports moder
ately useful as reminders for low-priority items or for keeping up to 
date on activities in peripherally related organizations, but most 
believe that written reports have a low density of useful information. 
(They may be inaccurate, heavily filtered or censored, or out of date.) 
Written reports usually only formalize communication that has already 
occurred. Finally, the formality of writing does cost time and money. 
This cost could be such that the need for any written report should be 
periodically challenged. 

The types of information-gathering techniques used by different 
levels of management were generally not very different. There was, 
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of course, less need for detail at the higher levels. Higher-level managers 
were more interested in tracking the status of capabilities; lower-level 
managers more interested in components. Lower-level managers were 
very well satisfied with the information available to them; however, 
higher-level managers occasionally felt that some of their needs were 
not met. Most of the attempts made to provide better information to 
higher-level managers involved written reports. They apparently were 
only partially satisfactory in meeting the needs, since higher-level 
managers still primarily relied on oral communication. 

The contractor's low-level managers had mixed attitudes about 
technical involvement of high-level managers. They appreciated the 
understanding that resulted, but believed that frequently there was 
too much concern with detail. They felt that this concern indicated a 
lack of trust and that it restricted their freedom to do the job in the 
way they thought best. It was suggested that higher managers some
times dipped into detail simply because they enjoyed keeping tech
nically involved. 

High-level managers, in general, recognize some of the dangers that 
their subordinates cite and realize that there may be disadvantages in 
their concern with detail. They also know that keeping informed is 
expensive in terms of demands on the time of their subordinates. 
However, one of them pointed out that perhaps the disadvantages 
must be accepted as concomitants to the drive for technical under
standing and that the advantages on the whole won out. One ad
vantage, for example, was that technical understanding permitted 
rapid evaluation of situations and made for more immediate decisions. 

Reporting techniques did not change much as a result of changes 
in the phase of a job, excluding reports obviously tailored for a partic
ular phase, except that there was some tendency for more detailed 
information to be needed in the later stages. The program-design, 
code, and unit-test phases of a job, characterized by a large number of 
parallel efforts, were the most difficult to track. Attempts at numerical 
characterization of status were not always completely successful be
cause available measuring units are generally nonuniform and are not 
sufficiently descriptive of problems. The system analysis and system 
design phases can be tracked by observing the status of the require
ments and functional specification documents, and the system integra
tion test phase by the completion of tests of various capabilities. There 
is a clear need to find a way of defining more intermediate milestones 
of a specific nature for the program-design, code, and unit-test phases. 

It was noted that many persons receiving reports would like to have 
had direct control of the level of detail and format. In some cases, 
reports satisfied the needs of several people, but these "communities of 
interest" were generally small in size and on the same managerial level. 
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The persons making reports were sometimes unhappy about the dupli
cation of data between reports, resulting from lack of standardization. 
This situation needs to be recognized as being generally unresolvable; 
good compromises may not always be possible. 

Most participants felt that they needed information on a weekly 
basis in their area of responsibility. Information more than one week 
old has limited usefulness for solving problems. A monthly interval is 
considered sufficient for overall project status information external to 
one's area of responsibility and for computer usage and manpower and 
financial reports. (It was noted that the reason for the less frequent 
reporting of financial status was that dollars usually cannot be con
trolled very rapidly on a project.) Several participants believe that one 
needs daily information on a few crucial items, particularly if a problem 
exists, or during the final stages of a project. 

5.1 Discussion and meetings 

Informal individual discussions were by far the most commonly used 
data-gathering method. Managers found that individual discussions 
were generally more effective than meetings. However, there is often 
not enough time to talk about a problem 'with all the individuals 
concerned. 

Meetings, usually held on a weekly basis, were the second most 
common data-gathering technique. Most managers found that meet
ings were more successful if they lasted no more than I! to 2 hours, 
with an agenda prepared beforehand. A majority agreed that someone 
should be assigned to record and publish action items generated during 
a meeting. It was also agreed that specific problems should usually be 
"delegated" for later solution. 

It was found that there are several common problems that occur in 
meetings that a manager must learn to deal with. Occasionally, most 
of a meeting may be taken up with "educating" high-level managers. 
Some participants may make contributions merely to make an im
pression. In other cases, meetings can become forums in which one 
manager tries to shift the responsibility for a problem to another 
manager. People may make unnecessary efforts to dig up problems 
just because they believe their managers expect them to bring them up. 
It was agreed that discipline should be exercised as to the frequency, 
length, and size of meetings; the principle of representation, rather 
than that of full attendance of all parties, should also be followed. 

5.2 Written reports 

Trouble Reports (TRS) 'were generally considered to be the most 
valuable written source of information on the project. Fairly early 
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during the SAFEGUARD project, the concept of writing a TR for a pro
gram malfunction was generalized to permit such reports to be written 
on documentation and requirements as well. This idea was apparently 
very well received, and TRs were widely used to report and record all 
sorts of discrepancies. After a program had been turned over for 
integration, the tracking of these reports was the method most com
monly used by first-line supervisors for keeping track of program status. 
Several managers initially preferred local TR accounting systems to a 
centralized system, since speed in gathering information and meeting 
the differing needs for detail of different groups were their most im
portant objectives. However, later in the project a centralized system 
was established which met these goals. Program-review boards were 
set up in several areas to evaluate TRs and approve or disapprove sug
gested program changes; they were found to be very effective. 

A computerized Management Reporting System (MRS) was de
veloped for use on the SAFEGUARD project. The system incorporated 
data bases for schedule, manpower, and computer usage information. 
The schedule data comprised some 3000 items, with information on 
the scheduled and estimated start and completion dates of various 
significant activities and events. Status information was provided, as 
well as indications of dependencies between the various items. Error
checking and data-interrelating capabilities were incorporated. On a 
monthly basis, information was updated and a standard report 
published. In addition, sorting and retrieval capabilities were provided 
so that a wide variety of special reports could be produced, on an as
requested basis. 

The success of this system was mixed. Several managers, particularly 
at the higher levels, felt that MRS was of significant help in structuring 
and planning the project, in that it forced both long-range planning and 
the coordination of plans between different areas. On the other hand, 
the three-week time lag between gathering information and publishing 
it was considered too great. Experience indicated, however, that 
gathering, publishing, and distributing this much information (ap
proximately 850 pages every month to 70 managers), with high 
standards of accuracy and good coordination of dependencies and dates 
across interfaces, can probably not be speeded up to any significant 
degree. Several managers did not like the discipline forced upon them 
or the background information lost in a fixed, computerized reporting 
system. They believe that managers should be allowed to choose the 
reporting method best suited for describing the status of their work. 

A Principal Events Reporting System was developed which identi
fied and carefully defined a number of important milestones on the 
SAFEGUARD project. Many of the events listed were the completion 
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of tests of various functional capabilities. Status reports on these events 
were made by TWX within 48 hours of their scheduled completion dates. 
Estimated dates were given for completion of late items, and follow-up 
TWXs were sent on the rescheduled dates. A principal events report, 
which described and gave the status of all items, including previously 
completed events, was issued at quarterly intervals. This system was 
primarily valuable to the customer and to higher levels of manage
ment; the TWX reports were particularly useful. 

Program unit reports (reports indicating the status of the smallest 
program units and data sets in terms such as "design complete," 
"coding complete," "unit test complete," etc.) were considered to be of 
little value by most managers. 

The weekly TWX status reports sent between the test sites and the 
contractor's home location were considered to be useful because of 
their timeliness and conciseness. The almost universal recognition given 
to the need for writing and handling a TWX expeditiously ensures that 
the information is timely. Furthermore, a TWX progress report must 
be concise; this ensures that only the most important items get re
ported. This seems to indicate that if a system of written progress 
reports is to be of any value, it should be severely constrained in both 
preparation time and length. (It might actually save money to require 
all written communication to be sent by TWX.) 

Several managers used wall schedule charts but all eventually 
abandoned them as not being very useful, except possibly for initial 
planning. The majority felt that their wall charts did not shed any 
particular light on critical issues. 

Managers primarily employed computer usage reports to spot trends 
or to make budget projections rather than for control. l\1anpower 
usage reports were not employed in manpower allocation decisions 
because so many other factors were more important. 

Financial reports were used for reporting on expenditures. Several 
managers felt that more detailed information should have been 
provided as to the sources of the data and the date on which it was 
valid. 

VI. MANAGEMENT REPORT ANALYSTS 

One innovation that was introduced on the SAFEGUARD project was 
the assignment of a staff assistant, called a Management Report 
Analyst (MRA), to each second-level manager. The MRAs were, in 
general, college graduates with backgrounds in planning, scheduling, 
and budgeting. Besides acting as general "right-hand assistants," 
they aided the managers with budget preparation and control, planning 
and scheduling, interfacing with overall project management report-
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ing systems and following up on action items. Almost all of the man
agers who were assigned MRAs were enthusiastic about their use
fulness. A high-level manager noted that MRAs made it possible to 
accelerate schedule-information flow. Some of the managers felt that 
the MRAs saved them time by buffering them from duplicate requests 
for information. 

There seemed to be no need to assign MRAs to first-line supervision 
on a full-time basis; sharing the MRA assigned to the second-level 
manager was satisfactory. One high-level manager said that he felt 
that the usefulness of MRAs was such that they also should have been 
assigned to the third-level managers. It might be noted that the 
fourth-level managers were already assigned staff assistants. 

The comment was made that MRAs were most beneficial when they 
were assigned to report directly to a second-level manager rather than 
to a central group supervisor. However, some managers thought it was 
best to centralize the physical location of the MRAs so that there 
could be interchanges concerning common problems, solutions, inter
faces, and action items. Also, centralized training was felt desirable. 

VII. CONTROL 

Control relates to the corrective actions that result from the process 
of comparing status to plan. The size and complexity of the SAFEGUARD 
project made prediction of the likely consequences of various actions 
difficult at times, complicating the process of selecting from among the 
alternatives. 

Good organization, adapted continuously to changing job require
ments, was found essential to the successful implementation of manage
ment actions. As a by-product, it was observed that the amount of 
status reporting and communication required was substantially re
duced when the organization was well fitted to the tasks to be ac
complished and responsibility was not divided. Interface and system
coordination departments had to be in the mainstream of activity and 
authority to function effectively. Some managers would have created 
a more clearly hierarchical organization. This might obviate the 
problem (common among managers with strong technical orientation) 
of multiple levels of management working on the same problem at the 
same level of detail. Others felt that conflicting needs in a complex 
project require conflicting organizations; consequently, informal 
organizations and informal channels of communication should be 
encouraged. 

Most of the managers believe that interfaces on the project were 
handled well or very well, but many agreed that specific improvements 
could have been made. Some of the interface areas that were initially 
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significant sources of problems were the contractor-subcontractor 
interface; the interface between support software users and designers; 
the interface between system engineering and development; and the 
interface between users and support service activities, such as the 
computation center. 

Most managers found that personal contact and meetings are the 
best ways to coordinate interfaces; letters of agreement were con
sidered to be relatively ineffective (partly because of reorganizations), 
although they were of some value when used with subcontractors. 
Even where organizations are geographically remote, personal con
tact is preferred. (For example, coordination with even our Pacific 
site was found to work much better by phone than by TWX or letter.) 
It is recommended that documentation should be used only to confirm 
and record agreements after the fact. 

7.1 Control of time 

Most managers noted that although only slight deviations from any 
scheduled end dates were acceptable to their superiors (the average of 
estimates of acceptable deviation is five percent), they had (and should 
have) relative freedom to change intermediate schedules. 

When tasks could not be finished according to plan, the most com
monly employed strategies for recovery were to work personnel over
time or use extra computer time. Increasing manpower on the job or 
decreasing the scope of the task were secondary choices. Slipping 
schedules, decreasing or deferring documentation (surprisingly), and 
decreasing the quality of testing, in that order, were considered to be 
increasingly undesirable. (One manager observed that decreasing 
testing is a very bad option because people have a way of forgetting 
they agreed to reduce testing when a program doesn't work.) 

Several managers found that overtime was ineffective except in 
urgent situations, because people tended to get stale. This is felt to be 
particularly true in creative jobs. 

Many of the managers concluded that adding manpower to a job 
is usually not a useful technique. Even if budgetary constraints do not 
exist, suitable people usually are not available at the critical point of 
the job. Adding people generally hurts the effort because of the train
ing required at such a late stage in the project. (A few areas did add 
people effectively late in the project but they had special skills as 
trouble shooters.) 

Managers generally determined that, when schedule changes are 
necessary, it is best to consider all the inputs at one time and do a 
complete revision. Complete revision permits the changes to be 
carefully thought out and documented. (One high-level manager said 
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he felt that some of his principal contributions to the project were 
vetoes on changes.) 

It was generally agreed that the MRS approach to controlling 
schedule dates was a good one: high-level managers controlled the 
schedule dates for events, while the supervisor responsible for an event 
provided his own estimated date. Many managers believe that a sub
ordinate should only be held to "end" dates (Le., the dates at which 
deliveries to another organization must be made). A subordinate 
should be required to make his intermediate dates visible, but should 
be permitted to modify them as he desires. 

7.2 Control of human and computer resources 

Allocating resources efficiently was found to be most difficult at 
the higher management levels. It was hard to gain detailed insight into 
how various activities contributed to the real goals of the project. 
Activities, particularly in the support area, tended to go on "forever" 
unless their value was questioned. Most lower-level managers con
sidered that they had the knowledge and the freedom to allocate 
manpower and computer resources productively within their own areas. 

There is general agreement that selecting good people was the 
factor of greatest importance in the success of SAFEGUARD. Selection 
must be considered not only as an initial choice but also as the con
tinuing process of assigning people to jobs and problems. The generally 
flexible, informal management style that prevailed on SAFEGUARD 
aided management greatly in this process, in that there was a lot of 
"self-selection." Large numbers of nonmanagers exercised initiative 
in digging out and solving problems. The strong technical capability 
of proj ect members occasionally led to excessive technical discussion, 
design polishing, and uneven work coverage due to a concentration on 
technically interesting problems (to the detriment of important but 
less rewarding ones). These difficulties were small, however, compared 
to the advantages. 

Although many of the programmers were inexperienced, there was a 
cadre of people with three or four years experience (at the start of the 
project) who became the lead programmers and in some cases first
line supervisors. Previous background of the contractor, background 
gained with similar systems, was also valuable. Inexperience oc
casionally resulted in some errors of judgment. However, one of the 
surprises of this study was that inexperience had a relatively minor 
overall effect on the project. 

The shortage of experienced software managers on the proj ect posed 
a more serious challenge than the shortage of experienced programmers. 
I t was found that if there was not enough supervisory attention given 
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to programming, both efficiency in attaining objectives and quality 
of output sometimes suffered. 

A "software mystique" can discourage managers who have no soft
ware background from applying some of their general managerial 
skills; hence, many skills may be lost. 

Turnaround time was the key parameter that was monitored in the 
control of support computer resources, since it had maximum impact 
on schedules, overtime costs, and programmer satisfaction. Allocation 
of support computer time was found to be worthwhile only when turn
around time deteriorated, i.e., it did not pay on a regular basis. 

VIII. REQUIREMENTS 

Overall success in various areas of the proj ect was considered to be 
strongly correlated with the degree to which project system require
ments were clearly and completely defined, written, and stabilized. It 
was found to be necessary to focus on the feasibility of implementation 
of requirements and routine details such as interface coordination as 
much as on the requirements themselves. (Simulations of algorithms 
on a support computer were determined to be very beneficial.) It 
proved to be very challenging to pick the right level of specification of 
detail without unduly restricting the designer's freedom to apply his 
special competence. It was suggested that it might be useful to have a 
high-level requirements document for the customer and a more detailed 
one for the developer. One pitfall to avoid is the incomplete require
ments specification, particularly with inexperienced personnel, who 
often will not recognize the deficiency early enough to request timely 
corrective action. 

Some of the areas that the development managers believe should 
have received more attention in the system requirements are: 

(i) Error control. 
(ii) Interface specifications. 

(iii) Requirements for equipment tests. 
(iv) IVlaintainability, reliability, and availability. 

Coordination of software requirements with hardware changes was 
found to be very important. 

One suggested way of achieving greater focus of system engineering 
on implementation is to place senior designers in the systems groups 
during the first part of the project, so that they can make the systems 
engineering people more a ware of their detailed needs. As a system is 
defined and as more detailed development starts, designers may return 
to their development groups. 
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IX. PROGRAMMING METHODOLOGY 

Another surprise in this study was that the lack of well-developed 
methodology in the programming art did not turn out to be a serious 
problem. Managers did comment that lack of an established technology 
meant that extra time had to be spent in experimentation, which 
impacted on cost and schedules. 

There are a number of things that managers believe that they learned 
in the area of programming methodology. Several managers noted the 
need to keep debugging and testing in mind during design. For ex
ample, one must consider recording requirements and clarity of code. 
The idea of holding design reviews with flowcharts was a technique that 
many managers tried and found very beneficial. A number of managers 
became strongly convinced of the virtues of structured programming, 
considering it to be extremely important in the maintenance phase. 

Another attitude that changed during the course of development was 
the attitude toward patches. It was originally planned to make all 
changes by altering source code, so that program listing documentation 
could be kept under good control. It was found, however, that the 
amount of recompilation and relinking necessary for a large program 
made this approach impractical for priority changes or for fixing bugs 
during the testing process. It was more practical to place "alters" in 
the source code and recompile and relink at less frequent intervals. 
Consequently, it became very important to provide good patch 
facilities and good procedures for documenting patches and keeping 
them under control. 

Many managers found that the best documentation for programs 
was a well-commented listing. This represents a change of opinion on 
the part of a number of managers who had first seen some value in 
flowcharts and narratives, but who later found that few people used 
them in the maintenance of programs. Flowcharts appear to be better 
design tools than program-maintenance tools. Narratives appear to 
be of value primarily to system evaluators. 

Several managers believe that more attention should be given to 
developing good unit test tools early in the development cycle. This 
philosophy of independent testing (i.e., test cases generated and tests 
conducted by groups other than the original design organizations) was 
widely used on the project and in general was quite successful. 

There is general agreement that using a local "duplicate" computer 
facility for checking out programs prior to shipment to site was not 
only useful, but was in fact necessary to the success of the project. 
Using a support computer for simulations of algorithms, system 
performance measurements, etc., was very effective. 
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There were some comments that standards for programming 
practices should be specified to a uniform level of detail. Several 
managers believe that standards should be function-oriented rather 
than format-oriented; i.e., different formats should be permitted pro
vided they satisfy the objectives of the standards. 

X. DIFFERENCE BETWEEN MANAGEMENT OF SOFTWARE AND 
HARDWARE PROJECTS 

All participants were asked how managing a software project differs 
from managing a hardware project. In general, about half the managers 
believe that there is nothing essentially different, and the other half 
see differences ranging from minor ones to everything being completely 
different. 

The largest number of noted differences occurred in the area of 
development methodology. It was observed that there are more 
variables in software than in hardware development. It was felt that 
good engineering tools plus the constraints of physics will ensure a 
reasonable hardware product, but good programming tools will not 
ensure a good software product (it appears to be difficult to set up 
enough worthwhile constraints). Programming is more of an art than 
a science at present, and software design is often influenced by a per
sonal approach to the problem. There seems to be a much tighter 
coupling between software development and the entire system-inte
gration process than between hardware development and the system
integration process. This has been caused not only because logic and 
control is mostly implemented in software, but also because hardware 
lead~time constraints force system trade-offs to be made with software 
to a greater extent than with hardware. Software design was considered 
to require more time because software is usually more complex. How
ever, in hardware design, each element is usually more thoroughly 
designed because it will be mass-produced. 

The management of changes was another large area of noted dif
ference. It was considered that software is generally more volatile 
than hardware and is more vulnerable to external influences. Several 
managers believe that for software there is less understanding of the 
impact of change on schedules and costs on the part of customer, 
manager, and programmer. The lead time required for changes in 
hardware is well recognized, but it is not in software. 

In the area of personnel, it was noted that technical competence is 
both much more important and harder to evaluate for software be
cause· the design technology is not well developed. There is a shortage 
of people with both the programming and hardware backgrounds 
necessary to a good system perspective. 
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Quality control is at present more difficult for software; the criteria 
for success (what is a good program?) are less well defined. The volume 
of a worker's output is much greater in software and, thus, a super
visor cannot examine his work very extensively. (For example, a 
typical hardware group might produce 12 hardware circuits in a year 
in contrast to 30,000 instructions from a software group.) 

Other comments were that software subcontracting is more difficult 
than hardware subcontracting because the requirements tend to be 
more variable, management of software development is more of an 
art, and estimation of the duration and size of hardware jobs is more 
accurate. 

XI. CONCLUSIONS 

What major lessons may be drawn from the SAFEGUARD software 
experience by prospective managers of other software projects? 

(i) There appears to be great virtue in maintaining a flexible, 
informal, participative style of management. 

(ii) Selecting good people and matching them to the right functions 
and problems are probably the most important management 
functions. 

(iii) Informal, oral approaches to reporting status seem to work 
the best; written reports should be kept to a minimum. When 
used, they should be strictly constrained by length, time dead
lines, and very hard-headed analysis of their purposes. 

(iv) Defining and tracking concrete events based on functional 
capabilities, as exemplified in the Principal Events Reporting 
System, was found particularly useful by higher-level managers. 

(v) Informal status reporting should be balanced with carefully 
prepared and written requirements and test plans and good 
configuration control of both requirements and code. 

(vi) Using project management specialists as staff assistants for 
managers was found to be a very productive technique. 
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Glossary 

ABM Antiballistic missile. 
BMDC 

CENTRAN 

CLC 

DPS 

DPSPRs 

ECU 

JOC 

M&DSS 

MDC 

MDP 

Meck 
MSR 

PAR 

PPS 

SAFSCOM 

SDRS 

SNX 

SPARTAN 

SPRINT 

STACS 

STAG 

TSCS 

TR/CR 

XPF 

Ballistic Missile Defense Center-SAFEGUARD operations center in 
Colorado. 
Central Logic and Control Translator-The SAFEGUARD project standard 
software language. 
Central Logic and Control-The multiprocessor computer used to drive 
each SAFEGUARD data-processing system. 
Data~Processing System-The CLC hardware, software, and peripheral 
devices. 
Data-Processing System Performance Requirements-Documents that 
specify the required performance to be provided by the SAFEGUARD 
system software. 
Exercise Control Unit-Digital interface equipment between the CLC and 
radar analog hardware used to facilitate simulation of a threat 
en vironmen t. 
Input Output Controller-Controls the transfer of data between the CLC 

and its peripherals. 
Maintenance and Diagnostic Subsystem-Test equipment and software 
supporting digital equipment maintenance. 
Missile Direction Center-The MSR site and its remote launch facilities. 
Maintenance and Diagnostic Subsystem Processor-CDC 1700 computer 
supporting digital equipment maintenance. 
Meck Island-Field test site; part of the Kwajalein Atoll. 
Missile Site Radar-Part of the MDC site complex; the radar equipment 
for missile tracking and local surveillance. 
Perimeter Acquisition Radar-Long-range surveillance and tracking radar. 
Policies, Procedures, and Standards-Manual containing documents that 
state policy defining the management, documentation, design, imple
mentation, and control of SAFEGUARD software. 
Army SAFEGUARD System Command-The Army agency having re
sponsibility for SAFEGUARD ABM development. 
SAFEGUARD Data Reduction System. 
SAFEGUARD NI[(E-X-CLC assembly language. 
The long-range interceptor missile employed by the SAFEGUARD system. 
A fast-reacting, short-range interceptor missile employed by the SAFE

GUARD system. 
SAFEGUARD Tactical Computer Simulator-Used for unit/task level de
bugging of programs. 
SAFEGUARD Threat Action Generator-A software facility that enables the 
simulation of a SAFEGUARD threat for use by the system exerciser. 
Tactical Software Control Site-A collection of SAFEGUARD hardware that 
provides a duplicate of the software environment at a deployed tactical 
site. 
Trouble Report/Correction Report-Part of a control system in which all 
problems were identified by a trouble report and the solution to each 
problem was described by a correction report. 
Execution Preparation Facility-Performs the linkage editor function for 
software to be executed on the CLC. 
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