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Step Response of an Adaptive 
Delta Modulator 

By W. M. BOYCE 

(Manuscript received May 6, 1974) 

N. S. J ayant has proposed a simple but effective form of adaptive delta 
modulation which uses two positive parameters, P and Q, to ad}ust the 
step size. The values P = Q = 1 describe linear delta modulation (LDM) , 

and J ayant has recommended using Q = 1/ P and 1 < P < 2. In this 
paper, we study the step response of this scheme for arbitrary P and Q. 
For each P and Q, we are able to define an integer n, the stability exponent 
for P and Q, such that the step response is unstable when pnQ > 1, it con
verges to the new level when pnQ < 1, and when pnQ = 1, it eventually 
settles into a periodic (2n + 2)-step cycle, for almost all initial conditions. 
For P ~ 2, and for some combinations of P and Q with P between 1.6 
and 2, it is possible to have both PQ < 1 and pnQ ~ 1, so that PQ < 1 
is not sufficient for convergence. When a system is convergent, but a mini
mum step size 0 is imposed, the eventual periodic hunting will not neces
sarily resemble that of LDM, but will be bounded by opn. 

I. INTRODUCTION 

The basic concepts of delta modulation (Dl\I) have been thoroughly 
discussed in several recent publications.1 ,2 In its simpler forms, delta 
modulation is a method of digitally encoding an input signal X = {xd 
into binary pulses C = {cd (where each Ci = ±1) so that an approxi
mation Y = {Yd of X may be reconstructed from the pulses C by a 
simple decoding scheme. The signal X, although presented to the 
encoder as a discrete-time sequence, will normally be a sampled (and 
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perhaps digitized) version of a continuous-time analog signal. The 
encoder works by comparing each Xi with Yi-l through a feedback 
circuit to determine the sign of the subsequent pulse Ci, according to 
the equations 

Ci = sign (Xi - Yi-l) 

mi = ciM i, where 

Yi = Yi-l + mi· 

Various forms of delta modulators differ primarily in the manner of 
determining the step-size M i; of course, since only the pulses Care 
to be transmitted to the decoder, what is required is a rule for deter
mining Mi from C. In conventional linear delta modulation (LDM), 

the step-size Mi is taken to be a constant 0, independent of the pulses 
C (and the signal X), so that each step mi = ±o, resulting in the 
familiar "staircase" appearance of Y under LDM. Since in this simplest 
form of DM, Y can change by only ° per step, no matter how far Xi is 
from Yi-l, Y has a very limited ability to keep up with X when X has 
a steep slope, which results in the condition known as slope overload. 
In contrast to LDM, adaptive delta modulation (ADM) permits M i to be 
modified depending on X, especially as the slope of the signal X changes. 
Since this relieves the slope-overload problem, such adaptation can 
result in better encoding, and several types of adaptive delta modu
lators have been described in the literature (for a survey, see Ref. 2). 

In this paper, we are concerned with the particular ADM scheme 
devised by N. S. Jayant,3 and with certain generalizations of this 
scheme which arise naturally in the course of the investigation. 
J ayant's one-bit-memory scheme has been characterized by Steele2 as 
"instantaneously companded" (that is, having an "instantaneous" 
adjustment of the step-size lIl i ), and Steele refers to Jayant's ADM as 
"first order constant factor delta modulation." The method is "first 
order," since Jayant computes Mi using only Ci-l in addition to M i- 1 

and Ci; the "one-bit memory" is used to save Ci-l. When Ci and Ci-l 

are equal, so that Y has not yet crossed X, there is a possibility of slope 
overload, so that Mi should be increased, and Jayant uses a "constant 
factor" P ~ 1 so that Mi = PMi- 1 (and mi = Pmi-l) when Ci = Ci-l. 

To keep the step size from growing continuously with time, a second 
positive constant factor Q ~ 1 is chosen, so that when Ci and Ci-l have 
different signs, indicating that Y has crossed X, the step size is reduced: 
Mi = QMi- 1, so mi = -Qmi-l. (Jayant concluded that values of P 
and Q with PQ = 1 gave the best performance on segments of speech, 
and he especially recommended P = ! = 1.5, Q = i.) We note that 
when P = Q = 1, we recover LDM, with Mi = 0 and mi = ±o for 
all i. 
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As even basic LDM has proved to be quite difficult to analyze (see 
Refs. 5 and 6 for some recent successful efforts), it is hardly surprising 
that there are few definite analytical conclusions concerning the 
behavior of Jayant's ADM. This is confirmed by Steele's comment that 
"An interesting feature of instantaneously adaptive [delta modu
lators] is their resistance to mathematical analysis· . '." Thus, in this 
paper, we restrict our attention to the comparatively simple problem 
of the step response of the approximating signal Y for J ayant's ADM, 

where by step response we mean the ultimate behavior of Y when X 
assumes a constant value X, Xj = x for all j ~ i. 

For LDM, if X becomes constant, Xj = x for j ~ i, then Y will even
tually enter a "hunting" phase having a two-step period in which 
adjacent values of Y bracket x (see Fig. 1); for some k and all j ~ 0, 

Yk+2j = Yk ~ x, 
Yk+2j+l = Yk + 0 ~ x. 

Thus, for LDl\'[, Y will eventually get and remain no more than 0 away 
from a constant signal X, which is a very desirable characteristic. This 
approximation error, which occurs because Y is discrete and cannot 
exactly match a constant or slowly varying signal X, is called "granular 
error" (or "quantization error"), in contrast to the "slope-overload" 
error which results from the inability of Y to keep up with a steeply 
climbing X. For LDM, a one-time compromise between these two types 
of error must be made in the choice of the sampling rate and step-size 
0; then the granular error is known to be bounded by 0, but the slope
overload error can be severe for unexpectedly steep slopes. For ADM 

the step size can be varied with the signal, thus reducing the slope
overload error, but nature and magnitude of the granular error is 
less understood than for the LDM case, a situation which it is hoped that 
this paper will help resolve. 

The question of the nature of the step response of J ayant's ADM 

was briefly discussed by J ayant in Section 2.3 of Ref. 3, but his 
conclusions were limited to ~he finding that in contrast to LDM, the char
acteristics of the "hunting" phase of the ADM, particularly the mini
mum step size and maximum error, were very dependent on the mag-

k + 1 k+2 k+3 k+4 k+5 

Fig. I-Period-two (LDM) hunting. 
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nitude of the constant value x (with Yo and mo held fixed). Figure 2, 
taken from Ref. 3, shows the behavior for P = !, Q = j, Yo = 0, 
mo = 1, and x = 9, 10, 12. Steele's analysis2 showed that the four-step 
cycle exhibited in all three cases of Fig. 2 is exact and sustainable; as 
shown in Fig. 3, for some k and all j ~ 0, the cycle is given by 

Yk+4j = Yk < X 

Yk+4i+l = Yk + m < X 

Yk+4j+2 = Yk + m(P + 1) > X 

Yk+4j+3 = Yk + mP > x, 
where m = mk+l > 0. Steele further indicated that this four-step 
periodic behavior is the typical ultimate step response of Jayant's 
ADM when PQ = 1. He also concluded that PQ < 1 was necessary for 
Y to converge to X for a step input, but he did not provide a complete 
proof, and he did not claim that PQ < 1 was sufficient for the decay 
of Y to a constant x. (We note that when Y is in this four-step cycle, 
which is a "pure hunting" phase, the signal X is crossed only on alter
nate steps, and the signal value is typically not in the middle of the 
crossing step, calling into question assumptions used in Section IV 
of Ref. 3 and in Ref. 4.) 

Even before the appearance of Steele's work, experimental results 
and preliminary analysis had given rise to the general supposition that 

o~ ________________________ ___ 

TIME-

Fig.2-PQ = 1 step responses (from Jayant3 ). 
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for a step input, (i) Y would be unstable when PQ > 1 (as it was for 
Jayant's speech data3), (ii) that when PQ = 1, Y would ultimately fall 
into the periodic four-step cycle, but with very large hunting ampli
tudes possible, and (iii) that for PQ < 1, Y would converge to the 
constant x, with both step size and maximum hunting amplitude ap
proaching zero. (Although having the step size get too small is con
sidered undesirable in case X should begin to vary, it was generally 
thought that enforcing a well-chosen minimum step-size 0, as J ayant 
did in Ref. 3, would avoid this problem.) The question of convergence 
of Y for PQ < 1 is the most important of these, since as Steele and 
others have observed, using a value of PQ slightly less than 1, together 
with a minimum step size, ,vould eliminate the problem of large
amplitude hunting cycles in Y during times when X was carrying no 
signal, while J ayant's results3 indicate that for PQ < 1 but close to 1, 
the resulting penalty in signal-to-noise ratio during speech segments is 
negligible. 

II. SUMMARY 

Our findings on the step response of a P, Q delta modulator confirm 
that for almost all initial conditions, Y will be unstable when PQ > 1, 
and will eventually fall into the four-step cycle shown in Fig. 3 when 
PQ = 1. (We say "almost all" because for each P and Q with PQ ~ 1, 
there is a set W of initial conditions, negligible in the sense of Lebesgue 
measure, for which Y converges to X. In Fig. 2, there would be con
vergence for x = 11.1625, so that Yo = 0, 1no = 1, and x = 11.1625 is 
a point of W.) Nlore importantly, we find that PQ < 1 is not sufficient 
to insure that Y will converge to a step input X. Rather, in addition to 
those values of P and Q with PQ < 1 for which Y converges to X, 
there are values of P and Q with PQ < 1 for which Y is unstable, and 
also some combinations for which Y is eventually periodic, with a 
period even and greater than four. However, our results establish that 

- '-

Yk--

}m 

k + 1 k+2 k+3 k+4 k+5 k+6 k+7 

Fig. 3-Period-four ADM hunting. 
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when PQ < 1 and either P ~ 1.6 or PQ ~ 1 - Q, which are the cases 
of most practical interest at present, then the PQ < 1 conjecture is 
true, and Y converges to a step-input X for all initial conditions. 

Our basic result is that for each P and Q, we can define an integer n, 
which we call the stability exponent for P and Q, such that the stability 
of the step response of Y depends not on the product PQ, as had been 
supposed, but on the product pnQ. Thus, for almost all initial condi
tions, Y is unstable if pnQ > 1, and is eventually periodic with period 
2n + 2 if pnQ = 1; while for pnQ < 1 (or whenever the initial condi
tions fall in W), Y converges to X. The generally expected findings for 
PQ ~ 1 result from the fact that n = 1 when PQ ~ 1. 

I t is useful to describe the stability exponent n in terms of P and 
PQ. If we define Fk(P) = PcP - 1)/(Pk - 1), then n is the stability 
exponent for P and Q if and only if F n+1(P) ~ PQ < F n(P). Figure 
4 shows the graphs of Fk(P) for k = 1, 2, 3, 4. We see that Fk+l(P) 
< Fk(P) for P > 1, so that n is well defined, and that Fk+1(P) ap
proaches zero with increasing k. Thus, n becomes unbounded as Q 
approaches zero. 

The cases of most interest are those for which PQ < 1 and Y is not 
convergent, that is, when F n+l (P) ~ PQ < F n (P) and pnQ ~ 1. 
Since Fn+1(P) ~ p-n+l, pnQ ~ 1 implies PQ ~ Fn+1(P), so the bind-

a 
c.. 
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I 
I 
I 
I I 
I I I I 
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Fig. 4-Domains of the stability exponent n. 
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Fig. 5-Domains of unstable step response. 

ing constraints are that PQ < F n(P) and PQ ~ p-n+l. In Fig. 5, 
those areas for which p-n+l < PQ < F n(P) are shaded; they repre
sent those values of P and PQ for which Y is unstable for almost all ini
tial conditions. Looking particularly at the cases with PQ < 1, we see 
that when P ~ 1.6, Y is never unstable, but even such seemingly safe 
cases as P = 2, Q = 0.3 fall in the shaded region. As P is made larger, 
which might be useful in some applications, the combinations for 
which Y is unstable become dominant, so that for P = 4, not only 
those values of Q above! cause instability, but also all those between 
l6 and -1-, as well as most values below l6' The basic point of these 
examples is, of course, that it is not PQ which determines the stability 
of Y, but pnQ. 

The combinations for which pnQ = 1 are interesting in that their 
step response is a straightforward generalization of that of Jayant's 
PQ = 1 ADM. Specifically, if we first decide on the stability exponent 
n, choose a P ~ 1 which satisfies 

pn+l - 2pn + 1 > 0, 

and then set Q = p-n so that pnQ = 1, we find that for almost all 
initial conditions, Y will eventually settle into a cycle of period 2n + 2 
steps. The PQ = 1 ADM thus appears as the n = 1 member of this 
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family, while LDM may be viewed as the n = 0 case: POQ = Q = 1, 
with a 2·0 + 2 = 2 step period. For each n, the set of P which satisfies 
the inequality consists of an open interval (Pn, + 00 ), where pn in
creases with n and approaches 2 from below; (Pn, + 00) is also exactly 
the interval of P for which Y can be unstable when the stability ex
ponent is n. Thus, when n > 1, the pnQ = 1 ADl\I is feasible primarily 
for P ~ 2, in contrast to the PQ = 1 ADl\I, for which J ayant has con
jectured that 2 is an upper bound on the optimal P. These "high
response" ADl\I may be useful for some applications, but we have not 
tested them against any data. They seem to offer yet another method 
of trading off granular error against slope overload. Of course, as 
for the PQ = 1 case, one would actually set pnQ slightly less than 1, 
but large enough to preserve n as the stability exponent and thus insure 
convergence. 

As we have observed, the primary current interest is in combinations 
of P and Q for which Y converges to a step input X, so any practical 
system will provide for a minimum step-size 8. Thus, for a step input, 
the theoretically convergent Y will eventually encounter the minimum 
step size and become periodic, hunting about the constant x. We have 
considered the step response of a P, Q delta modulator with minimum 
step size and stability exponent n, and we find that the eventual 
periodic behavior is exactly that of a P, Q' = P-k delta modulator 
with stability exponent k, where 0 ~ k ~ nand P > P k, and where 
the value of k depends on the initial conditions. Thus, the hunting 
amplitude is bounded by 8pk ~ 8Pn. IVloreover, all those k for which 
o ~ k ~ nand P > Pk occur for initial conditions having positive 
Lebesgue measure. In particular, when 1 > PQ ~ 1 - Q, so that the 
stability exponent is n = 1, the four-step hunting cycle with range 
8(1 + P) cannot be rejected. Thus, Steele's conclusion that the k = 0, 
LDM-type hunting is the only type that can occur when a minimum 
step size is imposed does not appear to be justified. 

Our investigations also shed some light on the question of recognizing 
when the slope-overload condition is occurring. Since in the limit for 
pnQ = 1, the sequence is n "forwards," one "reverse," etc., with only 
the nth forward crossing the signal, a sequence of n or fewer forwards 
should not be considered indicative of slope overload. But for n + k 
forwards in a row, even if we decide to label k of them as slope over
load, it is not clear which k of them: first? last? middle? Perhaps the 
magnitude of the error must be considered as well as crossings. On the 
other hand, for pnQ = 1, distance alone cannot be used as the defini
tion since the amplitude of the hunting can be quite large, depending 
on the initial conditions. For pnQ < 1 with a minimum step size, much 
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the same considerations apply, except that in this case, the error 
magnitude would be very useful in recognizing hunting. 

III. ANALYSIS 

We assume that i ~ 0 for all i, and that "initial conditions" Xo, Yo, 
and mo are given. Since there are no bounds on X or Y, we may assume 
that x = 0, and that the "step" in X occurs at i = 1, that is, that 
Xi = x = 0 for i ~ 1. The effects of the previous history of Y and X 
can be summarized in the selection of Yo and 1no. The step response of 
Y for a P, Q delta modulator is then characterized by how well Yean 
approximate x = 0 as a function of the parameters P and Q and the 
initial conditions Yo and 1no. 

J ayant's ADM calculates Y from X by the following equations: 

Ci = sign (Xi - Yi-l) 

if Ci = Ci-l 

if Ci = -Ci-l 

Since (Xi - Yi-l), Ci, and mi will always have the same sign, we may 
summarize the first two equations as 

if (Xi - Yi-l) and mi-l have the same sign 
if they have different signs. 

There is ambiguity in this definition, as the sign of zero is not defined; 
that is, what value of Ci is chosen when Xi = Yi-l? Our later analysis 
indicates that the proper choice is Ci = - Ci-l when Xi = Yi-l, so that 
equality is considered to be a "crossing." After making this conven
tion, and after observing that Xi = x = 0 implies sign (Xi - Yi-l) 

-sign (Yi-l) for i ~ 1, we obtain the equations 

{ 
Pmi if Yi and mi have different signs 

1ni+l = _ Qmi if they have the same sign (or if Yi = 0) 

Yi+1 = Yi + 1ni+1' 

This is a two-state system whose state equations have a discontinuity 
at Yi = 0, but we can transform it into a single-state continuous system 
if we note that the conditions on the comparative signs of Yi and 1ni 
may be expressed as a condition on the sign of their ratio, which is 
always defined since mi is never zero. 

We define the error-step-size ratio ri by ri = yJmi. Then we have 

ri+l = Yi+I!mi+1 = 1 + yJmi+l 
= 1 + (yJmi) (mJmi+l) = 1 + ri(mi/l1l,i+l), 
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where 

if Yi and mi have different signs 
if they have the same sign (or Yi = 0) 
if Y d m i = r i < 0 
if Y d mi = r i ~ 0; 

so the state equation for the ratio may be written simply as 

{
I + r d P if r i < 0 

r i+ 
1 = 1 - r d Q if r i ~ O. 

Thus, the sequence of ratios ri arises from repeated applications, be
ginning with ro = Yo/mo, of the function J( .) given by 

J(r) = {I + riP if r < 0 
1 - r/Q if r ~ O. 

This function is graphed in Fig. 6 for P = !, Q = j. Note that J(.) 
is continuous at r = 1, and the continuity is not dependent on our 
choice of Ci when Xi = Yi-I, since J(O) = 1 simply says that Yi = Xi 
+ mi when Xi = Yi-I, which is true no matter how one computes mi 
from mi-I. But an important observation is that a particular sequence 
of r/s computed from ri+I = J(ri), together with an initial step mo, 
gives the complete sequence of m/s, since a negative ri indicates 
mi = Pm i-I, while an ri which is positive or zero indicates mi = - Qmi-I. 
Thus, the convention on the sign of zero affects not the sequence of 
r/s but the sequence of m/s derived from it. 

We shall henceforth restrict ourselves to combinations of P and Q 
for which P > 1 and Q < 1, since this is the only case (other than 
P = Q = 1) that is suitable for practical applications. 

In our subsequent analysis we are primarily concerned with the 
function J('), which describes how the ratio ri = ydmi changes from 
one step to another. Since J(r) ~ 1 for all r, except for ro no ri can 

f(r) 

Fig. 6-The graph of fer) and A for P = !, Q = j. 
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exceed 1. Thus, after the first step we are not concerned with the be
havior of fer) for r > 1. 

We are not only interested in the change in the error-step-size 
ratio ri during one step, which is given by ri+l = f(ri), but also in the 
change over two steps, three steps, etc. The change in the ratio over 
j steps may be determined by applying the function j times, e.g., 
ri+2 = f(ri+l) = f(f(ri», ri+3 = f(f(f(ri »), etc. The function ob
tained by applying f( .) j times we call the jth iterate of f(·), which 
we write fi(.). Thus, we have ri+i = fieri), and by convention per) 
= fer) and fO(r) = r. 

Since fer) = 1 + riP ~ 1 + r when P > 1 and r < 0, when r is 
negative, the successive values of fi(r) will increase by at least 1 per 
step until finally one of the values per) is nonnegative, that is, ° ~ 
fi(r) ~ 1. This is just another way of saying that the signal Y will 
eventually cross zero on step Yi+i beginning at r = ri < 0. But once 
fi(r) is in the interval [0, IJ, the next value of the ratio, namely 
fi+ 1(r), can be no smaller than f(l) = 1 - I/Q, which we denote by q. 
If fi+1(r) < 0, then the subsequent ratios will increase again 
until they reach [0, IJ, etc. Thus, the ratios can never escape the 
interval [q, IJ = [1 - I/Q, 1J = A once they enter, and we have 
proven: 

Theorem 1: If q = f(1) = 1 - l/Q < 0 and A = [q, 1J, then for each 
r there is a J. such that per) E A, and ri E A implies rk E A for all 
k ~ i. 

So the ultimate behavior of the ratios is determined by the function 
f(·) and its iterates on the interval A = [q, IJ, and thus by the graph 
of f(·) on the square A XA, denoted by the dotted lines in Fig. 6. 

We shall need more precise information on how many steps are 
necessary to go from a given ratio r to a zero crossing, or a nonnegative 
value of fi(r). We define al = 0, a2 = - P and, in general, ai+l = ai 
- pi = - ~~=l pi. We further define Ao = [O,IJ, and Ai = 
[ai+l, ai) for i ~ 1. Since P > 1, this set of intervals forms a disjoint 
cover of the range (- 00, IJ of f(·). 

Theorem, 2: If r E Aj, then j is the least integer such that per) is non
negative, so that r E Ai if and only if r ~ 1 and exactly j steps produce a 
zero crossing of Y. Also, the sequence Ji(r) is increasing for 0 ~ i ~ j. 

Proof: Since f(ai+l) = ai for i ~ 1, it follows that f(A i+l) = Ai for 
i ~ 1. Thus, if r E Aj, after j - 1 steps, fi- 1(r) E AI. Then, f(AI) 
= [0, 1) c [0, IJ = A o, so fi(r) E [0, 1]. 

Corollary: For every ro = yo/mo, the ratios eventually enter and remain 
inA. 
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Proof: For r ~ 1, we have fi(r) E [0, IJ C A, while for r > 1, 
fer) ~ 1 so that fer) E Ai for some j, so that fi+1(r) E [0, 1]. 

We can now define n, the stability exponent for P and Q, as the largest 
valueof j such that Ai intersects A ; that is, it is the maximum number 
of steps from a ratio r in A to a zero crossing. Clearly, n is determined 
by the fact that q < 0, so that q E A n for some n > 0, and this n is 
the stability exponent. l\/lore explicitly, P and Q must satisfy 

or 
n n-l 

L pi ~ 1 - I/Q < L pi 
i=l i=l 

or 
n n-l 

L pi ~ I/Q > L pi. 
i=o i=o 

To obtain the conditions cited in the summary, we invert and multiply 
by P to obtain 

where 
Fk(P) = p/kt

1 
pi = PcP - 1). 

j=O pk - 1 

Another way of expressing this condition is 

pn - 1 1 pn+l - 1 
-=----:- < - < ---=:::-------:--
P-l Q= P-l ' 

so multiplying by (P - I)Q and adding Q gives 

pnQ < P + Q _ 1 ~ pn+lQ. 

Thus, the stability exponent n is the largest n such that pnQ is strictly 
less than the quantity P + Q - 1. Note that Q < 1 implies, pnQ 
< P + Q - 1 < P, so that pn-lQ < 1 whenever n is the stability 
exponent for P and Q. 

Theorem 3: If n is the stability exponent for P and Q, and pnQ < 1, 
then Y converges for all initial conditions, that is, both 1ni and Yi tend 
to zero with increasing i. 

Proof: Once the ratios enter A, no more than n negative ratios can 
occur without an intervening nonnegative ratio. Thus, as mi evolves 
by multiplication of P's and (- Q)'s, each - Q can be grouped with 
at most n P's with no P's left over. Since pnQ < 1, the absolute value of 
mi will be decreasing by a factor bounded away from 1 at least every 
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(11, + 1) steps, and hence going to zero. Each time a ratio is nonnegative, 
which occurs at least once every (11, + 1) steps, Y has just crossed zero, 
so Yi must go to zero along with 1ni. 

The next theorem is the basic result of the theory of J ayant's 
adaptive delta modulation. It states that not only is the stability ex
ponent 11, the maximum number of successive negative ratios that can 
occur once the ratios enter A, but that for almost all initial conditions 
(initial ratios ro), a sequence of 11, negative ratios all in A will eventually 
occur. (Here by "almost all" we mean that the set of initial conditions 
for which this is false has Lebesgue measure zero-it can be covered 
by a family of open intervals of arbitrarily small total length.) This 
result is the key to the analysis for pnQ ~ 1. 

Theorem 4-: Let Bn = A n An = [q, an) and let B be the set of rEA 
such that Ji(r) E Bn for some J (so that 11, successive negative ratios 
eventually occur). Then B is open (as a subset of A) and has Lebesgue 
measure J.L(B) = l/Q = 1 - q, the length (and Lebesgue measure) of A. 
Thus, A \B (the points of A not in B) is a measurable set of Lebesgue 
measure zero. 

Proof: B n is open in A, and B can be written as 

B = U {r/Ji(r) E Bn}. 
i=O 

Since each Ji(.) is a continuous function from A into A, each set in 
the union is open, so B itself is open. Thus, B and its complement 
A \B are measurable. Clearly, if S is a subset of B, and S' is a subset 
of A such that f(S') = S, then S' is a subset of B also. In addition, 
if f(·) is linear with slope l/s on S', f(S') = S, and Sand S' are mea
surable, then J.L(S') = I s I . J.L(S). For each i, 0 ~ i ~ n, let Bi = Ai 
n B, so that each Bi is measurable with measure J.L(Bi). Now f(·) 
maps Ao linearly onto A, with slope -lIQ, so f(·) must map Bo 
linearly onto B, and J.L(Bo) = Q. J.L(B). Similarly, for each i such that 
n - 1 > i > 0, f(·) maps Ai+! linearly onto Ai with slope liP, so 
f(·) must map Bi+l linearly onto B i, and J.L(B i+1) = p. J.L(Bi). When 
i = 0, f(·) maps A1linearly onto A o\{l}, so J.L(B 1) = P·J.L(Bo\{l}); 
but since {1} has measure zero, J.L(B 1) = p. J.L(Bo) also. Thus, for 
o ~ i < n, we have J.L(B i) = pi. J.L(Bo). But since B is the disjoint 
union of the B i, we have 

n n-l 

J.L(B) = L J.L(Bi) = J.L(Bn) + L pi. J.L(Bo) 
i=O i=O 

n-l 

(an - q) + J.L(B o)· L pi. 
i=O 
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or 

Since q < an (this relies on the convention that mi+1 = - Q . mi when 
Yi = 0), we have J.L(Bo) = 1, so J.L(B) = I/Q = 1 - q = J.L(A). Thus 
J.L(A\B) = o. 
Corollary: Let W be the set of real nwnbers r such that p(r) EE Bn for 
all i, i.e., once Ji(r) is in A, no sequence of n successive negative ratios 
ever occurs. Then W has Lebesgue measure zero. 

Proof: Let W 0 = A \B and for all i, let Wi be the set of r for which 
per) E Woo Since each P(·) is piecewise linear, each Wi has measure 
zero, so W = Ui~O Wi = {r I p(r) E Wo for some i} has measure zero. 
But since Wo is the set of rEA such that p(r) EE Bn for all i, W is the 
set of (unrestricted) r such that p(r) EE Bn for all i. 

We note that W is nonempty for all P > 1 and Q < 1, since f(·) 
has a fixed-point w = Q/(Q + 1) E (0,1), and wand all its preimages 
(r such that p(r) = w for some i) will be in W. In addition, for all 
i ~ 2, Ji( .) will have fixed points in addition to w, and many of these 
fixed points and their preimages will be in Walso. 

Theorem 5: W'ith n the stability exponent for P and Q, on An= [a n+l' an) 
the function f nH ( .) is linear with slope - (pnQ)-l and has a fixed point 
z E [q, an) = Bn. 

Proof: Since f(Ai+l) C Ai and f(·) is linear on each Ai, p( .) is linear 
on each Ai for j ~ i + 1. Clearly, fn(a n+l) = 0 and fn(a n) = 1, so 
fn+l(an+l) = 1 and fn+l(a n) = f(l) = q = 1 - I/Q. The slope of 
fn+l(.) onAn is thus (q - 1)/(an - an+l) = (-I/Q)/pn = _(pnQ)-l. 
Since q E An by definition, q = fn+l(a n) < an, but since fn+l(.) has 
negative slope, fn+l(q) > fn+l(a n) = q. Thus, fn+l(q) > q, fn+l(a n) 
< an, and so fn+l ( .) has a fixed point z between q and an. 

Theorem 6: If pnQ>l, thenfn+l(Bn) C B n, that is, if riEBn= [q, an), 
then ri+(n+l)k E Bn for all k ~ o. Thus, except for 1'0 E W, the ratios 
eventually enter B n and return to B n every n + 1 steps thereafter. M ore
over, the ratios falling in B n converge to the fixed point z of f nH ( . ). 

Proof: fn+l(a n) = q, and the absolute value of the slope of fn+l(.) on 
A n is (pnQ)-l < 1 so I f n+1 (q) - fn+l (an) I < I q - an I and so 
fn+l(B n) = (q, fn+l(q)] C (q, an) C Bn. Each j<n+l)k(B n) IS an In-
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terval containing z, and each increase in k (each n + 1 steps) reduces 
the length of the interval by a factor (pnQ)-l < 1, so for each r E Bn 
we have J<n+l)k(r) approaching z with increasing k. Thus, except for 
initial conditions in W, the ratios not only eventually enter Bn (by the 
corollary to Theorem 4) but return there every n + 1 steps, each time 
coming closer to z. 

Corollary: If n is the stability exponent for P and Q and pnQ > 1, 
then for all initial conditions which are not in W, the signal Y is un
stable. Also, if riEB n, then Mi+j>Mi for all }>O, where Mi= Imil. 
Proof: Once ri is in B n, every n + 1 steps Mi increases by a factor of 
pnQ > 1; hence the step size increases without bound. 

The next theorem and its corollary establish the nature of the stable, 
periodic step response which is characteristic of the Jayant family of 
delta modulators. 

Theorem '7: If n is the stability exponent for P and Q and pnQ = 1, 
then pn+2(.) is the identity on B n, and if Yi and mi are such that ri 
= ydmi E B n, then whenever f ~ i, k ~ 0, and l = (2n + 2)k, we 
have YHl = Yj and mHl = mj, so that Y becomes periodic with period 
2n + 2 steps. Thus for all initial conditions which are not in W, Y 
eventually settles into a periodic (2n + 2)-step cycle. 

Proof: If pnQ = 1, then the slope of fn+l ( . ) is -1, so that fn+l (q) = an 
in addition to fn+l(a n) = q. Thus, pn+2(an) = an, pn+2(q) = q, so 
pn+2(.) is the identity on [q, an] and hence on Bn = [q, an) itself. 
Thus, 'when rj E B n, rH2n+2 = rj. But by Theorem 2 we know that 
among the 2n + 2 successive values of r j+i there are 2n negative ones 
and 2 nonnegative ones, so that mj+2n+2 = p2n( -Q)2mj = (_pnQ)2mj 
= mj. Thus, Yj+2n+2 = Yj as well. The connection with W is made as 
in previous theorems. 

Theorern 8: If pnQ ~ 1 and ro E W, then Yi and mi both converge to 
0, i.e., for initial conditions in W, Y is neither unstable nor periodic but 
converges to X. 

Proof: For all initial conditions, the ratios eventually enter and remain 
in A, but if ro E W, then all ratios in A fall in the Ai with i < n. Thus, 
at most, n - 1 successive negative ratios can occur; hence, each - Q 
can be grouped with no more than n - 1 P's with no P's left over. 
But PiQ < 1 for i < n even if pnQ > 1, so at intervals of no more 
than n steps mi will be reduced in absolute value by a factor bounded 
away from 1; hence mi will converge to zero, and with it Y, since a 
zero crossing will occur at least every n steps. 
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We can now relate our findings to the general supposition on the 
stability of J ayant's delta modulator: that is, that the system is un
stable, periodic, or convergent according to whether PQ exceeds, 
equals, or is less than 1. We see that the general supposition is in fact 
correct when PQ ~ 1 - Q and ro EE W. 

Theorem 9: If PQ ~ 1 - Q, then the stability exponent for P and Q 
is 1. Thus, Y converges to X when 1 - Q ~ PQ < 1 (or when PQ ~ 1 
and ro E W), settles into a four-step cycle when PQ = 1 and ro EE W, 
and is unstable when PQ > 1 and ro EE w. 

Proof: All we must show is that q = 1 - I/Q ~ a2 = -P, so that 
q E A 1. But dividing 1 - Q ~ PQ by - Q yields q ~ - P as required. 
The rest follows from our earlier theorems, taking n = 1. 

The most unexpected results of our analysis are the existence of both 
unstable combinations of P and Q with PQ < 1 and Jayant-type delta 
modulators that satisfy pnQ = 1 and are eventually periodic with a 
2n + 2 step period when n > 1 (and ro EE W). The next three the
orems establish that since n depends on P and Q, in order to attain 
pnQ ~ 1 we must have P > pn, where PI = 1, P2 ~ 1.62, Pi < Pi+!, 
and limi~oo Pi = 2. Thus, for P ~ 2, all values of n are realizable, 
while for P ~ P2 ~ 1.62, only the n = 1 value will allow pnQ ~ 1. 
(The sequence {pd that we define here comes up again in our subse
quent analysis of a P, Q delta modulator with a minimum step size.) 

Theorem 10: If PkQ ~ 1, then q ~ ak+I, so the stability exponent for 
P and Q ~ p-k cannot exceed k. 

Proof: Since q = 1 - I/Q ~ 1 - Pk, all we need show is that 1 - pk 
~ ak+I = - 2:~=1 pi, or pk ~ 2:~=o pi, which always holds. Thus, 
if q E An = [an+I' an), then an > q ~ ak+I so n ~ k. 

Theorem 11 : We can choose a Q such that pnQ ~ 1, where n is the 
stability exponent for P and Q, if and only if P satisfies pn+l - 2pn 
+ 1 > O. Equivalently, n is the stability exponent for P and Q = 
p-n (pnQ = 1) if and only if pn+1 - 2pn + 1 > o. 

Proof: If pnQ ~ 1, then q = 1 - I/Q ~ 1 - pn. By the definition 
of n, 1 - pn ~ q < an = - 2:j:i Pi, so pn > 2:j:i pi = (pn - 1)/ 
(P - 1). But then pn(p - 1) = pn+l - pn > pn - 1, and pn+l 
- 2pn + 1 > 0. Since each of these steps can be reversed, if pk+l 
- 2pk + 1 > 0, then setting Q = P-k, we have q < ak, so n ~ k. 
Since q is strictly less than ak and aq/ aQ > 0, there is an open interval 
of values of Q ~ p-k for which n ~ k. But by Theorem 10, n ~ k 
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when PkQ ~ 1, so for these values of Q we have n = k and pnQ = 1 
or pnQ > 1, respectively. 

Theorem 12: For each k ~ 1, let CPk be the set of P > 1 which satisfy 
pHI - 2pk + 1 > o. Then, each CPk is an open half-line (Pk, + 00), 

where Pk < Pk+l < 2 and limk-+ooPk = 2. 

Proof: For k = 1, the requirement is simply that (P - 1)2 > 0, so 
PI = 1. For k ~ 2, differentiating g(P) = pk+l - 2pk + 1 gives 
g'(P) = (k + I)Pk - 2kpk-I, whose only zero besides P = ° is 
P = 2k/(k + 1), which lies between 1 and 2 and approaches 2 with 
increasing k. Since g(l) = 0, g' (1) = 1 - k < 0, and g(2) = 1, g(P) 
has a zero Pk between 2k/ (k + 1) and 2, and g(P) > ° for P ~ 2. 
Thus, P > Pk implies g(P) > 0, and 1 < P < Pk implies g(P) < 0. 
Since 2k/ (k + 1) < Pk < 2, Pk approaches 2 with increasing k. Since 
g(Pk+I) = Pk - 1 > 0, Pk+I > Pk, so the sequence {pd converges 
monotonically to 2. 

In fact, since g(2) = 1 and g' (2) = 2k, a good approximation for 
Pk is 2 - 2-k. For k = 2, 3, 4, the approximations are 1.75, 1.875, 
1.9375 and the actual values 1.6180, 1.8393, 1.9275. 

We have previously observed that the periodicity that occurs when 
pnQ = 1 is undesirable in practical systems, since it may result in Y 
having significant power when X is zero or close to it. This problem is 
aggravated by the fact that the amplitude of the periodic hunting is 
unpredictable and can be quite large. To overcome this problem, 
Steele and others have suggested setting pnQ slightly less than 1, so 
as to make the Y converge to X, and using a minimum step size, which 
we call 0, to prevent the step size from getting so close to zero during 
long stretches of zero (or constant) signal X that Y cannot quickly 
respond when X begins to vary. Indeed even when studying the case 
PQ = 1, Jayant used a minimum step size, although it was seldom 
binding (see Fig. 3 of Ref. 3). 

In our final three theorems we treat the case of a P, Q delta modula
tor with a minimum step-size 0, so that when Mi < o/Q and a zero 
crossing occurs, instead of the next step having magnitude Mi+I 

= QMi < 0, we set 1I1i+1 = o. Thus, Mi ~ 0 for all i. We note that if 
Y would be unstable or periodic in the absence of a minimum step 
size, then the step sizes may never be reduced to the point that the 
minimum becomes binding. If a step of size 0 does occur, however, 
with 1I1i = 0 and ri-I E [0, IJ = Ao, we show that Y eventually 
becomes periodic with a 2J + 2 step cycle, where ° ~ J ~ n (the 
stability exponent for P and Q) and P > PJ; with the exception of the 
case pnQ > 1, r i E B n CAn, for which Y is unstable and a step of 
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size 8 never reoccurs. Thus, in contradiction to Steele's conclusion, 
the step response of a P, Q delta modulator with minimum step size 
does not reduce to the LDM case, but is fully as complex as the pnQ = 1 
case with no minimum. However, it is true that if pnQ < 1, or pnQ 
~ 1 and ro E W, the minimum step size will eventually occur and the 
hunting amplitudes be thereafter bounded by P n8. 

Theorem 13: If ri < 0, then ri+l = f(ri); if ri ~ 0 and Mi ~ 8/Q, 
then ri+l = f(ri); and if ri ~ 0 and 8 ~ Mi < 8/Q, then f(ri) < ri+l 
~ 1. Thus, for all initial conditions, ri E A for some i, and if ri E A 
then rj E A for allj ~ i. 

Proof: When ri ~ 0, we have mi+l = Pmi, so the minimum is not 
relevant, and when ri ~ 0 and Mi ~ 8/Q, we have mi+1 = -Qmi' so 
the minimum is not binding. Thus, for these cases, ri+l = f(ri). But 
when ri ~ 0 and Mi < 8/Q, we have f(ri) = 1 - ri/Q but ri+l 

= Yi+I!mi+1 = 1 + (mdmi+l) (ydmi) = 1 + (mdmi+l)ri. Since mi/mi+l 
< 0, we can write this ri+l = 1 - (MdlJfi +l)ri. But Mi+1 = 8, 
Mi < 8/QsoMi/Mi+1 < (8/Q)/8 = I/Q,O ~ 1 - ri+l = ri(MdMi +1) 

< rdQ, and so 1 ~ ri+l > 1 - rdQ = f(ri). Thus, the evolution of ri 
for ri < 0 is given by f(·), so ri E A and ri < 0 implies ri+1 E A; 
while if ri E [0, IJ, q ~ f(ri) ~ ri+1 ~ 1 so ri+l E A in this case also. 

For the next two theorems, we assume that a minimum step size 
has occurred, with Mi = 0, and that ri-l E Ao so that ri E A. Since 
ri E A, we must have ri E AJ for some J, 0 ~ J ~ n, where n is the 
stability exponent for P and Q. For almost all cases of interest, steps 
of size 8 will continue to occur at least every J steps, and Y will be 
periodic; the sole exception, which we dispose of first, is when pnQ > 1 
and J = n, in which case Y is unstable and a step of size 8 never 
reoccurs. 

Theorem 14: If Mi ~ 8, ri E A n An = B n, and pnQ> 1, then 
ri+j = p(ri) and M i+j > 8 for all j > 0, so that Theorem 6 and its 
corollary apply and Y is unstable. 

Proof: If Mi ~ .8 and ri E B n, then by Theorem 13, ri+n = fn(ri) 
E A o, and Mi+n = pnMi. But pnQ > 1, so Mi+n > MdQ ~ 8/Q, 
and Mi+n+l = QMi+n -= pnQMi ~ 8pnQ > 8. Thus, ri+n+l = fn+l(ri) 
E B n, Mi+n+l ~ 8pnQ, and so ri+(n+l)k E Bn and Mi+(n+l)k ~ o(pnQ)k 
for all k ~ O. 

The next theorem characterizes the ultimate behavior of the P, Q 
delta modulator with minimum step size for the more interesting cases 
-those not covered by Theorem 14. Thus, we assume that Mi = 0 
and ri E A, with ri E A J, where PJQ ~ 1. Without loss of generality, 
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we choose signs so that mi = Mi = 0 and Yi - 0 = Yi-l ~ ° (we con
tinue to assume x = 0, i.e., X is identically zero). Since ri E A J , we 
have ri+J E Ao so ri+J+l E AK for some K, ° ~ K ~ n. To simplify 
the notation, we set l = 2J + 2. 

Theorem 15: If mi = 0, ri E A n AJ, PJQ ~ 1, and ri+J+l E A K , 

then K ~ J. If K = J, then P > pJ, and Yi+l = Yi, mi+l = mi, and 
Y is periodic with period 2J + 2 and maximum amplitude opJ ~ opn. 
Moreover, for each j such that 0 ~ j ~ nand P > Ph the set of initial 
conditions which produce a (2j + 2)-step period has positive Lebesgue 
measure. 

Proof: When J ~ 2, we have Yi+l = Yi + oP < 0, mi+l = oP; Yi+2 
= Yi + o(P + P2), mi+2 = OP2; and, in general (even for J = 0, 1), 
we have Yi+J = Yi + 0 L~=l pi ~ 0, mi+J = OPJ. Since PJQ ~ 1, 
opJ ~ o/Q so that mi+J+l = -0. If K ~ J, then 

J 

Yi-l+l = Yi+J - 0 L pi = Yi - 0 = Yi-l ~ 0, 
i=O 

so that K ~ J; thus, K ~ J implies K = J, so we have proven that 
K ~ J. If K = J, then we have seen that Yi-1+l = Yi-l; also, mi+l = 0 
since mi-1+l = - opJ and PJ ~ l/Q. Thus, Yi+l = Yi-l+l + 0 = Yi-l 
+ 0 = Yi, and mi+l = 0 = mi, so Y is periodic with period l = 2J + 2. 
To show that P > PJ when K = J and Y has period l = 2J + 2, we 
observe that by the definition of J and K (= J) we have (see Fig. 7, 

x----r---------__ ===T--------------;----------

i-l i+l i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 

Fig. 7-Period-eight ADM hunting with minimum step-size o. 
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with J = 3) 

so that 

so that 

so 

from which 

Yi+J-l < 0, 
Yi-2+l > 0, 

J-l 

Yi+J ~ 0, 
Yi-1+l ~ 0, 

Yi+J-l = Yi-l + 0 L pi < ° 
i=O 

Yi-2+l = Yi-1+l + opJ = Yi-l + opJ > 0, 

J-l 

Yi-l + 0 L pi < Yi-l + OpJ, 
i=o 

PJ - 1 < PJ 
P-1 

pJ+l - 2pJ + 1 > 0. 

But this is the defining condition for P > pJ. To show that each j 
satisfying ° ~ j ~ nand P > Pi comes up with positive measure, it 
is only necessary to observe that choosing Yo, mo such that 0 ~ - mo 
~o/Q and 

J-l 

-opJ < Yo < -0 L pi 
i=l 

will realize the 2J + 2 step period analyzed above with i = 1. 

We note that once a minimum step occurs, the series of "reversal 
numbers" (of which the J and K are two adjacent elements) is mono
tone decreasing (K < J) until it repeats itself (K = J), after which 
it is constant, and Y is periodic. This mono tonicity holds only after 0 
occurs; when there is no minimum step size, there is no monotonicity, 
except that when pnQ ~ 1 an occurrence of J = n will result in 
nothing but n's thereafter. What we have shown is: 

Corollary: If 0 is the minimum step size and Mi = 0 where ri E A n Ail 
then unless pnQ > 1 and j = n, within (j + 1)2 steps Y will become 
periodic with period 2J + 2, where 0 ~ J ~ j. 

Proof: Until the reversal numbers become constant, at least every 
j + 1 steps a new, lower reversal number occurs, and there are only 
j + 1 possible such numbers; thus, within (j + 1)2 steps the minimum 
number J is obtained and Y is periodic. 
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In this paper, the problem is discussed of designing a signal other than 
the standard impulse function to be used to test a digital systern of limited 
dynamic range. The constraints on such a signal are that it must be all
pass, of limited duration (approximately), and peak-amplitude-limited 
so as to utilize the limited dynamic range of the system as far as possible. 
Stated another way, the goal is to spread out the energy in the signal as 
much as possible to reduce its peak amplitude and therefore to be able to 
pass higher energy signals through the system without clipping them. The 
class of all-pass signals (obtained as the impulse response of a variable 
order all-pass filter) was investigated for use as the test signal. The parame
ters of the all-pass filter of a given order were optimized to give an all-pass 
signal whose peak amplitude was the smallest possible. Filter orders from 
first to eighth order were designed and investigated. It was found that 
reductions in the peak signal level of up to 11.2 dB (relative to the signal 
level of an equivalent energy impulse) could be obtained for an eighth-order 
all-pass signal. Interpolated versions of these all-pass signals showed that 
the peak value of the interpolated waveform was only on the order of 6 dB. 
Thus, the use of an all-pass signal, rather than the standard impulse, for 
testing a digital system can result in about 1 bit extra dynamic range. 

I. INTRODUCTION 

The problem of designing digital signals for testing (e.g., evaluating 
the impulse response) digital systems is one which has received very 
little attention in the digital signal-processing literature. This is be
cause the impulse function is used as the standard test signal for most 
systems. Although the impulse function is suitable for this purpose in 
a wide variety of digital systems, there are cases in which the use of 
the impulse function leads to problems. Generally, such systems are 
those that have limited dynamic range-e.g., digital hardware im
plementations of a system, or fixed-point, finite, precision, software 
implementation of a digital system. In this paper, the problem is con-
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sidered of designing signals other than the standard impulse function 
to be used to test digital systems of limited dynamic range. 

The desirable features of a test signal for digital systems are 

(i) It must be an all-pass signal in that it must be capable of testing 
the system (i.e., determining the frequency response of the 
system) for any admissible frequency. 

(ii) It should be of limited duration. 
(iii) It should be peak-amplitude-limited, to give the maximum 

utilization of the limited dynamic range of the system. 

The above features define a desirable test signal as one whose energy 
is spread out as much as possible to reduce the peak signal amplitude 
and therefore be able to pass higher energy signals through the system 
without clipping. 

If we let x(n) denote the test signal, then the requirements described 
above can be related to x(n) and X (e i"') , the Fourier transform of 
x(n), in the following manner. For the signal to be all-pass implies 

all w, (1) 

where C is an arbitrary constant value. If we let C = 1, then by 
Parseval's theorem we have 

(2) 

i.e., the overall energy of the test signal is unity. For the signal to be 
of limited duration (at least approximately) requires 

N1-I 

L x2 (n) = "'I, (3) 
n=O 

where "'I ~ 1 and N 1 is the signal duration in samples. (The constraint 
of (3) has not been used directly in the work presented here, since it 
was found that it was satisfied by all the signals that were designed.) 
Finally, the constraint that the peak signal amplitude be as small as 
possible requires that max n I x(n) I be minimized over the design pa
rameters of the signal. 

Besides the standard impulse function, the only other class of signals 
that is appropriate for a test function (i.e., that has the set of features 
described above) is the set of all-pass filter impulse responses. Such 
signals can be optimized to meet the design requirements by varying 
the parameters of the all-pass network to minimize the peak signal 
amplitude. 

The purpose of this paper is to discuss the issues in the design of all
pass signals to be used to test a digital system. In Section II, the design 
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methods used to optimize these all-pass signals are discussed. In 
Section III, considerations dealing with the interpolation of the result
ing all-pass test signals are given. Finally, in Section IV a brief discus
sion of the effects of filtering these all-pass signals is given. 

II. DESIGN TECHNIQUES FOR ALL-PASS SIGNALS 

The signal design problem is one of choosing the parameters (the 
filter coefficients) in the implementation of an Nth-order all-pass filter 
to minimize the peak amplitude of the resulting impulse response. For 
the actual implementation of most all-pass filters, it is generally con
venient to consider the cascade realization which is of the form 

N. 
X(z) = II Hi(z), (4) 

i=l 

where Ns is the number of sections in the cascade and Hi(Z) are the 
individual sections, which generally are either first-order or second
order sections. A first-order all-pass section has the system function 

-a + Z-l 
Hi(Z) = 1 - az-1 , 

whereas a second-order all-pass section has the system function 

(5) 

(6) 

The design problem is thus to choose the all-pass parameters (a, bi , Ci) 

to minimize the peak signal amplitude in the impulse response of the 
filter. 

For the first-order case, the parameter a can be analytically de
termined. In this case, the difference equation is 

where 

or 

x(n) = uo(n - 1) - auo(n) + ax(n - 1), 

uo(n) = {~ n=O 
otherwise, 

x(n) = 0 

x(O) = -a 

x(l) = (1 - a2) 

x(n) = (1 - a2)an- 1, 

n<O 

n ~ 2. 

(7) 

(8) 

Since I a I < 1 for stability, it is seen from (8) that the largest possible 

ALL-PASS SIGNAL DESIGN 397 



samples are x(O) and x(l). Thus, to minimize the larger of Ix(O) I and 
I x (1) I requires a choice of a such that 

Ix(O) I = IX(l) I (9) 
or 

(10) 

The solution to (10) gives amin = 0.618. 
For optimization of higher-order all-pass filters, no analytical solu

tion could be found. Thus, an optimization method was used to obtain 
the desired solutions. In particular, a nonlinear unconstrained optimiza
tion method developed by PowelF was used in which the evaluation 
of derivatives was not required. The maximum peak amplitude of the 
all-pass signal can be minimized by minimizing the function 

(11) 

In practice, however, the function of (11) is not unimodal or smooth, 
and thus it is not practical to find the optimum choice of parameters 
without a good starting point (initial choice of parameters) for the 
optimization routine. To obtain such starting points, (11) was used as 
the objective function for a value of p = 4. A variety of randomly 
chosen starting points was used to obtain the best solutions for p = 4. 
The p = 4 solutions were then used as starting points to determine the 
optimum p = 00 solutions. 

The parameters that were varied within the optimization program 
were the b/s and c/s of the second-order sections within the cascade 
and the a for a first-order section (used whenever the order of the 
all-pass filter was odd). The advantage of using the cascade realization 
is that it is simple to ensure stability of the resulting filter. Additionally, 
instabilities occurring during the optimization program because of 
poles drifting outside the unit circle were easily detected and cor
rected with minimal computational effort. 

Using the Powell optimization method, the optimum all-pass signals 
of order 1 to 8 were designed. Table I gives values of the optimum 
all-pass filter parameters and the resulting peak signal level for each 
of these cases. It is seen in this table that the peak signal level falls 
from 0.618 to 0.275 as the all-pass filter order varies from first to 
eighth order. Further, it can be seen that progressive increases in the 
order of the all-pass filter result only in very modest reductions of the 
peak signal level beyond a second-order filter. Figures 1 and 2 show 
the positions of the poles and zeros of the optimum all-pass filters and 
their group delay responses for each of the filters of Table 1. 
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Table I - Filter coefficients for optimum all-pass filters with peak amplitude constraints 

Filter Maximum b1 Cl b2 C2 ba b4 Order Signal Level a Ca 

1 0.618 0.6180 - - - - - - -

2 0.500 - 0.5 1.0 - - - - -
3 0.428 0.8698 0.4915 0.6961 - - - - -

4 0.386 - 0.8008 0.5137 -0.4823 0.3491 - - -

5 0.3380 0.6734 0.6081 0.4462 0.7996 -0.5253 - - -

6 0.3183 - 0.6151 1.4640 0.8228 0.3748 -0.6290 0.0197 -

7 0.2895 -0.5183 0.8339 -0.4254 0.7668 1.5407 0.8735 0.4700 -

8 0.2748 - 0.8149 1.2308 -0.4970 -0.1060 0.8621 -0.2135 0.7870 
-----

C4 

-

-
-
-
-

-
-

1.5727 
--
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0 8th ORDER 0 
x 

(9) (h) 

Fig. 1-Positions of the poles and zeros of the optimized all-pass signals of order 
1 to 8. 

An interesting property of this class of signals is that the optimum 
all-pass filter is not unique. This result is readily seen since the simple 
replacement of z by Z-l in the z transform leads to a multiplication of 
the signal by (-l)n, which does not affect the signal magnitude at all. 
Thus, each pole and zero of Fig. 1 could equally be shown reflected 
about the imaginary z axis and still be a valid optimum solution. 
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Fig. 2-Group delay responses of the optimized all-pass signals of order 1 to 8. 

III. INTERPOLATION OF THE OPTIMUM ALL-PASS SIGNALS 

The results of the preceding section indicate that reductions in the 
peak level of the optimized all-pass signal on the order of 4 to 1 can be 
obtained with an eighth-order filter. This result can be somewhat mis
leading, however, since the continuous waveform (from which the 
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signal samples could be derived) could peak up between samples-i.e., 
the actual reduction in signal level could be a fortuitous result obtained 
by sampling the waveform at the most opportune sampling intervals. 
If this were the case, and the test signal was used as input to a network 
which approximated a noninteger delay, the output signal could be of 
higher amplitude than the input signal simply because of the interpola
tive properties of the network. 

To investigate the true peak amplitude of the continuous waveform 
associated with the test signal, each of the eight test signals of Table I 
were interpolated using a 20-to-l interpolator implemented using the 
methods described by Crochiere and Rabiner.2 •

3 Figure 3 and Table II 
show the results of interpolating the test signals. Figure 3a shows both 
the test SIgnal samples as well as the interpolated waveforms (dotted 
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Fig. 3-Samples and interpolated waveforms of (a) the all-pass signals for orders 
1 to 8 and (b) the all-pass signals modulated by (-l)n. 
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Fig. 3 (continued). 

lines) associated with the signals. Figure 3b shows the alternate set of 
peak-limited waveforms formed by multiplication of the signals in 
Fig. 3a by (-l)n. Although each test signal attains its peak amplitude 
at a number of different sampling instants, its interpolated waveform 
generally shows a distinct maximum amplitude. Table II also shows 
that the peak interpolated waveform amplitude ranged from 0.766 for 
the first-order signal to 0.421 for the seventh-order signal. Thus, in 
terms of the interpolated waveform, on the order of a 2-to-1 reduction 
in peak signal level was obtained for these test signals. 

One more observation can be obtained from Fig. 3 and that is that 
the test signals, although generated as the output of a recursive struc
ture, damp out in level extremely rapidly and could be considered 
finite duration signals. It was found that 128 samples of the test signal 
were sufficient for obtaining 16-bit test signals to full 16-bit accuracy. 
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Filter 
Order 

1 
2 
3 
4 
5 
6 
7 
8 

Max. 

0.618 
0.500 
0.428 
0.375 
0.338 
0.301 
0.290 
0.273 

Peak-Limited Signal 

Min. Ratio Ratio 
dB 

-
-0.618 0.618 -4.18 
-0.500 0.500 -6.02 
-0.428 0.428 -7.37 
-0.386 0.386 -8.27 
-0.334 0.338 -9.42 
-0.318 0.318 -9.95 
-0.290 0.290 -10.75 
-0.275 0.275 -11.21 

Waveform (Interpolated) of 
Peak-Limited Signal 

Waveform (Interpolated) of Peak-
Limited Signal with (-l)n Modulation 

Max. Min. Ratio Ratio Max. Min. Ratio Ratio 
dB dB 

0.766 -0.633 0.766 -2.32 0.377 -0.924 0.924 -0.68 
0.595 -0.522 0.595 -4.52 0.533 -0.501 0.533 -5.46 
0.465 -0.632 0.632 -3.98 0.545 -0.502 0.545 -5.27 
0.505 -0.627 0.627 -4.06 0.586 -0.391 0.586 -4.65 
0.526 -0.391 0.526 -5.57 0.474 -0.503 0.503 -5.97 
0.585 -0.345 0.585 -4.65 0.525 -0.442 0.525 -5.60 
0.497 -0.367 0.497 -6.07 0.338 -0.457 0.457 -6.79 
0.544 -0.313 0.544 -5.29 0.387 -0.421 0.421 -7.51 



IV. APPLICATION OF PEAK-LIMITED SIGNALS AS TEST SIGNALS 

One application of the above class of peak-limited signals is for use 
as test signals for systems of limited dynamic range. By spreading the 
signal energy among many samples, a test signal of greater total energy 
than an impulse can be used without exceeding the dynamic range of 
the system. This then enhances the signal-to-noise ratio (sin) of the 
measurement. 

For a system that has approximately a linear-phase response, sin 
improvements of the orders shown in Table II can be expected. If the 
system has considerable phase distortion, the amount of sin enhance
ment may be less. In an extreme case, a system could act as a "matched 
filter" to a particular test signal and compress all the signal energy 
back into a single sample. In this case, no sin improvement would be 
possible with that test signal, although other peak-limited test signals 
in this class might be useful. 

To investigate the use of the peak-limited signals as test signals, we 
chose a system that consists of a complex modulator, a decimator, an 
interpolator, and another complex modulator. The system was im
plemented on a 16-bit computer, and the decimator and interpolator 
were designed as discussed in Refs. 2 and 3. The net function of the 
above system is that of a bandpass filtering operation. It represents a 
useful type of system for speech-processing applications (e.g., 
vocoders). 

The frequency response of the system is shown in Fig. 4a. It was 
measured by exciting the system with the peak-limited signal for 
N = 7 and taking the Fourier transform of the output. The largest 
peak amplitude signal which could be used without overflow was 
16384, or 214. Similarly, the largest impulse that could be used as a test 
signal was 214. The frequency response measurement in this case was 
essentially equivalent to that using the peak-limited signal (see Fig. 
4a). The reason for this is apparent. The 16-bit system has a large 
dynamic range (about 90 dB) compared to the frequency response of 
the filter (about 45 dB). Obviously, the use of peak-limited signals is 
not warranted. 

We next considered a 12-bit implementation of the same system. * 
This would very likely be the available word length of a practical 
hardware implementation or small minicomputer implementation. In 
this case, the dynamic range of the system is about 66 dB, and we can 
expect that roundoff noise will affect the frequency response measure
ment. The largest magnitude impulse that could be used to test this 

* This was simulated on the 16-bit system by not allowing the use of the four most 
significant bits. 
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Fig. 4--Frequency response measurement using (a) an N = 7 all-pass test signal in a 16-bit system, (b) an impulse test signal in an 
equivalent 12-bit system, and (c) an N = 7 all-pass test signal in the 12-bit system. 



system without overflow was 1024, or 210. A measurement of the fre
quency response based on this impulse response is shown in Fig. 4b. It 
is apparent that the roundoff noise has degraded the measurement con
siderably. The passband response has been distorted, and the peak 
stopband signal rejection measures only 31 dB compared to 41 dB in 
Fig.4a. 

Figure 4c shows the frequency response measurement of the same 
12-bit system based on the peak-limited signal for N = 7. The maxi
mum amplitude that could be used for this signal was 210 and, as can 
be seen from Table II, it contains 10.75 dB more signal energy than 
an impulse of the same amplitude. In comparing Figs. 4a, b, and c, it 
is clear that the use of the peak-limited signal has improved the 
frequency response measurement of the 12-bit system. The measure
ment of the stopband rejection is on the order of 40 dB, or 9 dB better 
than in Fig. 4b. The passband response looks more like the essentially 
noiseless measurement in Fig. 4a. 

V. CONCLUSIONS 

I t has been shown that a class of peak-limited and essentially finite 
duration signals can be generated by optimizing the p = 00 norm of 
the impulse responses of the class of all-pass networks. Signals were 
generated for all-pass filter orders from N = 1 to N = 8. It was 
demonstrated that this class of signals is useful as test signals for 
systems of limited dynamic range. Improvements of up to 11 dB in 
sin enhancement were found to be possible. 
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A two-dimensional receiver structure has been proposed, incorporating 
two innovations: passband equalization, which lnitigates intersymbol 
interference, and data-dir~cted carrier recovery and demodulation following 
equalization, which enables compensation of carrier frequency offset and 
phase J'itter, but does not require transmission of a separate pilot tone with 
the data signal. The receiver is fully adaptive; the adJ'ustment of the equal
izer tap coefficients and of the estimate of the current channel phase shift is 
based on a gradient algorithm for jointly minimizing the mean squared 
error with respect to those parameters. 

In this paper, we analyze the dynmnic behavior of the detenninistic 
gradient algorithrn (where channel parameters entering into the gradient 
expression are assumed known in advance). The corresponding estimated 
gradient algorithm_ (where these parameters are initially unknown) has 
previously been studied experimentally, but is not treated here. 

The first part of the present study concerns system start-up (or transient) 
response when the channel's phase shift is fixed. Exmnination of the analyt
ical solution leads to the qualitative conclusion that, if the equalizer tap 
adaptation coefficient {3 is small relative to the phase-tracking coefficient a, 
the added phase estimation feature does not strongly affect the start-up 
behavior of the passband equalizer under typical operating conditions. 
Indeed, if the equalizer tap coefficients all start at zero, their evolution in 
the deterministic gradient algorithm is completely unaffected by the phase
tracking loop. 

The second situation analyzed is the steady-state response of the system 
to a conatant carrier frequency offset. In this case, the phase-tracking loop 
is found to reduce the resulting rate of rotation of the equalizer taps to about 
{3/ (a + (3) of the original frequency offset. As a result, the degradation in 
system mean squared error due to frequency offset is typically quite small. 

The final analysis is of the response of a linearized version of the 
receiver structure to sinusoidal phase jitter. When the channel's linear 
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distortion is not too severe and the coefficient {3 is small, the system mean 
squared error owing to phase tracking error is found to approximate that 
of a simple, first-order, phase-locked loop. 

I. INTRODUCTION 

The combination of adaptive equalization and decision-directed 
estimation of a fixed carrier phase offset in suppressed-carrier PAM 

modems by means of a gradient algorithm has been suggested by 
Chang1 and by Kobayashi,2 the latter also including adaptive timing 
recovery. The receivers contemplated in those papers demodulated the 
received data signal prior to equalization and carrier phase estimation. 

Reference 3 describes an alternative receiver configuration for two
dimensional modulated data transmission systems, combining equaliza
tion and carrier recovery. This receiver's distinction is that it employs 
a passband equalizer4 whose reference signal consists of receiver 
decisions amplitude-modulating a carrier whose phase shift is the 
receiver's estimate of the channel phase shift. Following the passband 
equalizer is a demodulator which compensates for the channel's phase 
shift (which may be time-varying as a result of frequency offset or 
phase jitter). 

The receiver's estimation of the carrier phase shift is based on a 
decision-directed gradient algorithm for estimating a fixed phase shift, 
as proposed in Refs. 1,2, 5, and 6. An advantage of the demodulator 
following the equalizer is that the demodulator's phase reference is 
delayed relative to the actual channel phase shift by only one symbol 
interval instead of by the entire equalizer delay as in the traditional 
"baseband" receiver configuration. This fact, plus the provision of a 
sufficiently large gain coefficient in the phase-tracking gradient algo
rithm, makes possible tracking and compensation of typical conditions 
of frequency offset and phase jitter that may occur on voiceband 
telephone channels. Computer simulations, reported in Refs. 3 and 7, 
have confirmed this capability. 

In this paper, we study the dynamic behavior of the gradient algo
rithm for jointly adjusting the equalizer tap coefficients and the phase 
estimate in each of the following situations: (i) start-up (transient 
response) for a fixed carrier phase shift; (ii) steady-state response to a 
frequency offset; (iii) steady-state response to sinusoidal phase jitter. 
Throughout, we consider only the deterministic gradient algorithm; 
that is, receiver decisions are assumed perfect, and the gradient of the 
mean squared error as a function of equalizer tap coefficients and carrier 
reference is assumed known. A stochastic gradient algorithm, which 
would be used in practice, has been simulated,3.7 but is not treated in 
this paper. 
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II. SYSTEM EQUATIONS 

The transmitted two-dimensional modulated data signal is assumed 
to be of the form 

s(t) = Re {I: Ang(t - nT)ei21rlct}, 
n 

where An is a two-dimensional (complex-valued) data symbol trans
mitted in the nth symbol interval, g (t) is a band-limited baseband 
pulse waveform, T is the duration of a symbol interval, and fe is the 
carrier frequency. The set of possible discrete complex values that each 
A n can assume constitutes the signal constellation. Quadrature ampli
tude modulation (QAM) and digital phase modulation (PM) systems are 
familiar examples of two-dimensional modulation systems. We shall 
assume that successive data symbols are uncorrelated; i.e., 

for n = m 
otherwise. 

Figure 1 shows the receiver structure. The received signal, after 
transmission through a noisy, dispersive channel which may introduce 
a slowly time-varying phase shift, is passed through a phase splitter 
to produce parallel in-phase and quadrature components. These parallel 
waveforms can be represented as a single complex waveform that is 
sampled and passed on to a passband transversal equalizer with, say, 
2N + 1 complex-valued tap coefficients. In the nth symbol interval, 
when a decision is to be made on the nth data symbol, the latest 
(2N + 1) complex-valued samples stored in the (2N + I)-tap pass
band equalizer can be represented by the complex (2N + I)-dimen
sional vector Rnej/ln, where On is the channel phase shift (assumed 
quasi-stationary in the nth symbol interval). A sequence {On} changing 
at a constant rate with time is an example of frequency offset, while 
{On} varying randomly or quasi-periodically constitutes phase jitter. 
Typically, the change in On in one or two symbol intervals is so small 
as to allow us to neglect the phase-to-amplitude modulation con
version effected by filtering the sequence of incidental frequency
modulated components {ei/l n }. 

RECEIVED 
SIGNAL PASSBAND 

EQUALIZER 

1\ 

exp[-j(2rrfcnt + /In)] 

Fig. I-Twa-dimensional receiver. 

QUANTIZER 
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The (2N + 1) complex equalizer tap coefficients in the nth symbol 
interval are denoted by the complex (2N + I)-dimensional vector 
Cn = (C-N, ... , Co, ... , CN).* The symbol * will denote transposed 
complex conjugate throughout. Then the nth complex equalizer output 
IS 

(1) 

the real part being interpreted as the in-phase component and the 
imaginary part as the quadrature component. 

The receiver's estimate of On is a real quantity denoted by On, and 
the demodulator output is written 

(2) 

This quantity is passed into a simple quantizer to produce jf n, which 
is the receiver's decision on An. Based on this decision, the complex 
reference signal used for updating the equalizer taps and the phase 
estimate is 

(3) 

We define the properties of the channel in terms of expectations 
(denoted by ( )) with respect to the ensembles of information symbol 
sequences and additive noise samples. The complex impulse response 
X is defined by 

X _I (A*R 'e-j27r!cnT 
- <IAnI 2) n n/ . (4) 

The positive definite Hermitian ct matrix of the channel is defined by 

(5) 

The normalized mean squared error in the nth symbol interval is 
defined to be 

1 A 

En = (IAn\2) (I Qne- j(27r!cnT
-Hln) - AnI 2), 

which, by virtue of (1), (4), and (5), can be rewritten as 

En = 1 - X*ct-1X + 'Yn, 

(6a) 

(6b) 

where 'Yn == E~aEn ~ 0 is the excess mean squared error and En is a 
tap-error vector, 

(7) 

Since ct is positive definite, the value of En is a positive minimum, t 
1 - X*ct-1X, when the equalizer taps Cn and phase shift estimate On 

t The positive quantity X* a-lX is therefore less than unity, a fact which is exploited 
in the appendix. 
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are adjusted so that En = 0, or 

(8) 

This equation is also the condition for the gradients of En with respect 
to en and On to be jointly zero; it is satisfied by an infinitude of points 
(C n, On). 

Thus, a gradient algorithm can be used to adjust the tap coefficients 
en and phase estimate On recursively toward optimal values. The 
equations governing the evolution of {en} and {On} are3 

(9) 

and 

(10) 

where I is the identity matrix and {J and a are positive gain coefficients. 
These equations [or the equivalent equations (13) and (14) ] form the 
basis for the results in this paper. 

In practice, X and ct would generally not be known in advance, and 
the following stochastic gradient algorithm,3 involving the equalizer in
puts Rne jlin, outputs Qn, and modulated decisions Qn, would replace 
the deterministic gradient algorithm described by eqs. (9) and (10). 

Cn+1 = Cn - (JRnejlin(Q~ - Q~). (11) 

(12) 

These are coupled stochastic difference equations, since succeSSIve 
vectors {Rn} are correlated random variables. Simple stochastic 
gradient algorithms have been studied by Widrow. 8 The application 
to equalizer adaptation, where no phase recovery is involved and under 
the assumption that the {Rn} are uncorrelated, has been studied by 
Ungerboeck,9 by Gersho,lO and by Gitlin, Mazo, and TaylorY The 
extension to correlated vectors {Rn} has been introduced by Daniell. 12 

That the algorithm specified by (11) and (12) converges and can 
perform satisfactorily is confirmed by the computer simulations re
ported in Refs. 3 and 7. Analysis of the stochastic gradient algorithm is 
complicated by the possibility of a cycle-slipping phenomenon as in 
phase-lock loop systems. References 5 and 6 deal with continuous
time, decision-directed, phase-locked loops in the absence of adaptive 
equaliza tion. 

However, insight can be gained by studying instead the deterministic 
gradient algorithm of (9) and (10), since the estimated gradient algo
rithm can be interpreted as implicitly performing the averaging in
volved in determining X and ct, provided the signal-to-noise ratio is 
high and the gain coefficients a and {J are sufficiently small. 
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Using definition (7), we can rewrite the coupled difference equations 
as 

and 
(14) 

where 
and 

III. SYSTEM START-UP WITH FIXED CHANNEL PHASE SHIFT 

In this section, we study the behavior of the deterministic gradient 
algorithm during start-up, assuming the channel's phase shift is fixed: 
On = O.t General theorems tell us that, if the initial error and the 
coefficient of the gradient algorithm are small enough, convergence is 
guaranteed.13 However, we are interested in sharper results for the 
specific problem at hand. 

The solution of (13) and (14) will depend on the initial choice of 
Eo (or Co) and 00• It is interesting to consider first the special case 
Co = 0, the all-zero vector; i.e., Eo = - a-IX. In this case, 

~I = -ex 1m [x*a-IX] = 0, 

SInce a is Hermitian, and 

El = - (1 - (jet) a-IX. 

Continuing, it is easy to show that 

An = 0 for all n 

and that 
(15) 

Thus, at least for this special all-zero starting condition, the estimated 
carrier phase shift On does not change at all and the start-up behavior 
of the deterministic algorithm is exactly the same as that of the pass
band equalizer alone. 4 

Let us now consider the more general case, when Eo is not necessarily 
equal to the right-hand side of (15) for some n ~ o. We remark that 
the mathematical formulation of this start-up situation will be basi
cally the same as that of a system transient caused by an abrupt change 
in the channel's carrier phase shift. 

Expression (6b) for the normalized mean squared error involves the 
positive definite 'quadratic form E~aEn == "(n. We can bound this term 

t There is no loss of generality in assuming a fixed phase shift of zero, since any 
nonzero fixed phase-shift factor ei8 can be incorporated in the complex channel im
pulse response x. 

414 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1976 



and study its evolution by writing down a recursive expression for it 
and upper-bounding the right-hand side of that expression. Using (13) 
with .1n+1 = 0 for all n, we can write 

I'n+l = E:(I - /3 a) a(I - /3a)En + x*a-Ix/ ej~n+1 - 1/ 2 

+ 2 Re {E:(I - /3a)X(I - e-j~n+1)}. (16) 

The right-hand side of expression (16) is upper-bounded in the ap
pendix. The derivation of the bound requires the following assumptions 
about the channel and algorithm parameters. 

Assumption (1): The initial value I'D == E~aEo is less than unity. This 
condition is fulfilled, for example, if Co = 0; i.e., Eo = - a-IX, for 
then I'D = X* a-IX ~ 1, since the positive quadratic form X* a-IX, 
which is one minus the minimum mean squared error, must be less 
than unity. 
Assumption (2): a < aD, where aD is the solution of 

where 

ao(l + (:fo) = 2 sinc (ao{:fo) , 

. sin () 
smc(} = --. 

() 

Assumption (3): Let the maximum and minimum eigenvalues of the 
positive definite Hermitian matrix a* be denoted respectively by Amax: 
and Amin. Then the gain coefficient /3 must satisfy 

o 2Amin 
< /3 < A~ax(l + E5) , 

where E5 is defined in terms of a by 

a (1 + -{Yo + ~) = 2 sinc (a-v:t"o) , a < aD. 

Figure 2 illustrates the solution of the equations defining E5 and aD. 
For example, if we assume a = 0.5 and I'D = 1, then aD is 0.88 and 
E5 is 0.543. 

The upper bound obtained in the appendix is 

I'n+l == E~+laEn+1 ~ E:aEn - 2/3E:a2En 
+/32 (1 + E5)E:a3E n • (17a) 

An explicit bound on I'n+l is obtained by first weakening (17a) using 
(41) of the appendix to obtain 

I'n+l ~ (1 - 2/3Amin + /32 (1 + E5)A~ax)I'n, (17b) 
so that 
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a 

Fa 
Fig. 2-Illustration of the definitions of E~ and ao. 

In the absence of phase tracking, a = .:3. n = 0, and the mean 
squared error at step n + 1 of the deterministic gradient algorithm is 
obtained directly from expression (15)9,10,14 as 

'Yn+l = L Ai(l - ,BAi)2nI80iI2, 
i 

(18) 

where the summation is over all the eigenvalues of the matrix ct, the 
{Ad are the set of eigenvalues, and 80i is the inner product of Eo with 
the normalized ith eigenvector. 

Comparison of the upper bound (17c) for the joint equalizing and 
phase-tracking receiver and the exact expression (18) for the equalizer 
alone yields some insight into the penalty in convergence rate imposed 
by the additional phase-tracking algorithm. Consider an example where 
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all {Ad (and therefore Arnax and Arnin) are equal to a common value A. 
This would represent the case of a channel with delay distortion but 
not amplitude distortion (flat Nyquist equivalent frequency charac
teristic). Then inequality (17 c) becomes 

and, recognizing that 
'Yo == L Aij 00ij2, 

i 

we can write equality (18) for the case of no-phase tracking as 

'Yn+l = (1 - {3A) 2n'Y0. 

(19) 

(20) 

In practice, the equalizer adaptation coefficient {3 is small ({3 « I/A), 
to minimize the mean squared error resulting from a practical stochastic 
gradient algorithm.9 Thus the right-hand sides of (19) and (20) should 
be nearly equal, and we conclude that an ideal gradient algorithm for 
joint phase tracking and equalization should not converge appreciably 
slower than the equalizer adjustment algorithm alone. An exact 
analytical evaluation of the effect of phase tracking on the convergence 
of a practical stochastic gradient algorithm for a severely distorted 
(Arnax »Amin) channel remains elusive. However, the results of this 
section suggest that the influence of the phase-tracking parameter a 

in the convergence is relatively small. This conjecture is bolstered by 
the experimental results summarized in Figs. 3a and 3b. A 9600-b/s 
two-dimensional data transmission system was simulated, employing 
the stochastic gradient algorithm described by eqs. (11) and (12). 
The transmission channel, whose frequency characteristics are shown 
in Fig. 3a, was regarded as severely distorted (it violates the minimum 
standard for private line voiceband channel data transmission). The 
plots of measured mean squared error versus time for ex = 0 and for 
ex = 0.2 shown in Fig. 3b are very similar, indicating that little penalty 
in convergence rate is to be ascribed to the use of joint decision
directed phase tracking. 

IV. CASE OF FREQUENCY OFFSET 

In this section, we study the behavior of the system in the presence 
of frequency offset by obtaining steady-state solutions to eqs. (13) and 
(14) when the channel phase shift increases linearly with time; i.e., 
Ll n = 27rLlT, where Ll is the frequency offset. In this case, eq. (13) 
becomes 

En+l = (I - (3a)Enej(~n+l-21l"~T) + a-lX(ej(~n+l-21l"~T) - 1). (21) 
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Fig. 3a-Frequency characteristics of the simulated channel. 

2 

o 

A steady-state solution to (21) and (14) is obtained by substituting 
the trial solution, 

En = E 
Lin = 27r(~ + o)T, 

and then solving for the fixed quantities E and o. The substitution 
results in 

E = (ei27roT - 1)M-1a-1x, 

where M is the matrix 

M = I - ei27rOT(I - (3a) 

and 
27r(~ + o)T = a 1m (E*X). 

(22) 

= a 1m [(e-i27roT - 1)X*a-1M*-lX]. (23) 

It is clear from the definition of M that the eigenvectors {t'd ~N of a, 
which form a complete orthonormal set, are also those of M. Thus, 
expressing the vector X as a linear combination of t'i, we write 

N 

X = L: Git'i, 
i=-N 
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Fig. 3b-Convergence with and without phase tracking (ideal reference; all 
equalizer top coefficients start at zero). 

we can rewrite (23) after a little algebra as 

N IG.12 
27r(.1 + 0) T = a 1m [(e-i211"~T - 1)] i=~N :\i[l _ e-i211"/T (1 - ,B:\i)] , 

= - a,B sin 27roT f 1 Gi 12 , (24) 
i= -N 1 - 2 (1 - ,B:\i) cos 27roT + (1 - ,B:\i)2 

where {:\i} f= -N are the eigenvalues of a and are positive and real. 
The excess mean squared error is similarly given by 

'Yn = E~aEn = lei211"~T - 1 1 2X* a-IM* aM-I a-IX 

= 2 (1 - cos 27roT) 

f IGi l2 . 
i= -N :\i[l - 2 (1 - ,B:\i) cos 27roT + (1 - ,B:\i)2] (25) 

Equation (24) is a transcendental equation whose solution 0 is 
clearly not zero in general. The quantity 0 may be interpreted as a bias 
in the receiver's estimate of the frequency offset. This "residual" 
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frequency offset then must be compensated for by a rotation of the 
equalizer complex tap coefficients at rate 0 Hz. 

For purposes of illustration, we again consider only a special case 
of a "good" channel, for which all Ai = 1 and Li 1 Gi 12 = 1. Then (24) 
becomes 

- ex{3 sin 27roT 
27r(~ + o)T = (32 + 2(1 _ (3)(1 _ cos 27roT) (26) 

Typically, {3 «ex < 1; for example, {3 = 0.001 and ex = 0.2. The left
and right-hand sides of (26) as functions of 27roT are sketched in Fig. 4. 
Apparently in the region of intersection, 27roT« {3 and sin 27roT 
~ 27roT. Solving (26) with this approximation yields 

Thus 

(27) 

and the necessary rate of rotation of the equalizer taps has been reduced 
by a factor of {3/ (ex + (3), which is about 1/200 for a typical case, 
ex = 0.2, {3 = 0.001. The corresponding normalized excess mean squared 
error is 

* (27roT)2 (27r~T)2 
En<xEn ~ {32 + (27roT)2 ~ (ex + (3)2 + (27r~T)2· (28) 

If ~ = 1 Hz, ex = 0.2, {3 = 0.001, T = 1/2400 s. This amounts to 
about 10-4• 

V. STEADY-STATE SINUSOIDAL RESPONSE 

The phase jitter process {en} that occurs in telephone channels is 
typically quasi-periodic. It is thus of interest to determine the steady
state solution of the coupled difference equations (13) and (14) when 
the driving term {en} is sinusoidal. 

It is convenient at this point to rewrite eqs. (13) and (14) further 
in terms of eigenvalues and eigenvectors of the matrix <X. Since <X is 
Hermitian, its eigenvalues {Adf= -N are positive real and its eigen
vectors {tid f= -N form an orthonormal set which is a basis in 2N + 1-
dimensional space. Using these properties and expressing the vectors 
En and X as linear combinations of the {tid, 

N 

En = L &nitli 
i=-N 
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-a(J sin x // 

(J2 + 2(1-(J)(1- cos x) 

/ 
/ 

SOLUTION // 
x = 21ToT 

/ 
/ 

a 

2.fi=i3 

..... _- 21TAT + x 

Fig. 4-Illustration of the solution of 

211"(<1 + fJ)T = -a{3 sin 211"fJT 
{32 + 2(1 - {3)(1 - cos 211"fJT) 

we can write (13) and (14) as 
A G· A 

&(n+l)i = (1 - (3Ai) &niei(An+l-An+l) + A: (ei(An+l-An+l) - 1) 

- N ~ i ~ N (29) 

and 
N 

.1n+l = a L 1m (&~iGi). (30) 
i=-N 
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We now make the following change of variable in (29) and (30). 
Define 

(31) 

Then we can write the real and imaginary parts of (29) as 

U(n+l)i = 
IGi l2 A A 

(1 - {3Ai)Uni + ~ [cos (On - On) - cos (On+l - On+l)], 

- N ~ i ~ N (32) 

and 

and we can write (30) in the form 

N 

On+l - On = ex L [Vni cos (On - On) - Uni sin (On - On)]. (34) 
i=-N 

Equations (32), (33), and (34) are a set of nonlinear coupled differ
ence equations. In particular, eq. (34) is reminiscent of the equation 
governing a discrete-time, first-order, phase-locked loop. We shall solve 
linearized versions of (32), (33), and (34). Assuming the steady-state 
error angle (On - On) for n » 1 is very small, we replace cos (On -On) 
by 1 and sin (On - On) by (On - On). Then (32) becomes 

U(n+l)i = (1 - {3Ai)U ni, 

= (1 - {3Ai)n+luOi, -N ~ i ~ N, 

which approaches zero in the steady state (assuming (3 < 1jAi for all i). 
Thus in the steady state we are left with the linearized versions of (33) 
and (34) : 

IGi l2 A A 

V(n+l)i = (1 - {3Ai)V ni + ~ (On+! - On - On+! + On) 

-N ~ i ~ N (35) 

and 
N 

On+l - On = ex L Vni· 
i=-N 

(36) 

Equations (35) and (36) are linear and can be solved for a given 
sequence of channel phase shifts {On}. We consider the case where the 
phase jitter is sinusoidal with frequency w rad/s; i.e., 

On = Re (Je iwnT) , 

where J is a complex constant. The solution for {vnd is also sinusoidal: 

-N ~ i ~ N. (37) 
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Substitution of this trial solution in (35) and (36) yields a value of 
V i after some algebraic manipulations. 

J(l - e jwT)/G i /2 
Vi = --------------~--~--~~~~----------------~ 

Ai(l- (3Ai - ejwT
) (1- ak=~N /Gk /2j[(1- (3Ak - ejWT)AkJ) 

(38) 

It follows from the sinusoidal variation of {vndf=-N that the error 
angle {On - On} and the equalizer tap coefficient vector en also vary 
sinusoidally with frequency w in the steady state. 

The excess time-averaged mean squared error can be calculated from 
expression (31), (37), and (38). 

where 

and 

"I = ("In) = (E~aEn) 

/J/2/1 - ejwT
/
2S1 

2/1 - ejw T - as 2/2 , 

The total mean squared error is, from (6b), 

(En) = 1 - X*a-1X + "I 

(39) 

N /Gi /2 /J/2/1 - ejwT
/
2S1 

= 1 i =L;N ~ + 2/1 - ejw T _ aS2/ 2· (40) 

Typically, if the overall mean squared error is close to zero, 

N /G./2 L _t_~l 
i= -N Ai 

and {3Ai« /1 - ejwT
/. 

Then the excess mean squared error in (40) is approximately 

/ J /2/1 - ejw T /2 
2/1 - ejw T - a /2 

This expression corresponds to a previously derived, approximate, mean 
squared error due to sinusoidal jitter in the absence of noise [see eq. 
(39) of Ref. 3]. That equation, valid for a first-order, phase-locked loop, 

GRADIENT ALGORITHM ANALYSIS 423 



was derived ignoring the coupling between eqs. (13) and (14) and 
assuming perfect equalization. Calculated curves of mean squared 
error versus a are found in Ref. 3. 

VI. CONCLUSIONS 

Previous studies have shown that the functions of joint passband 
equalization and data-directed carrier recovery in a QAM receiver can 
be formulated as a gradient search algorithm. If the channel parameters 
entering into the expression for the gradient of the mean squared error 
are known, it is termed a deterministic gradient algorithm. In this 
paper we have analyzed the start-up behavior of the deterministic 
gradient algorithm and also the steady-state response to frequency 
offset and to sinusoidal phase jitter. The more practically motivated 
stochastic or estimated gradient algorithm, in which the channel 
parameters are initially unknown, has been studied experimentally and 
awaits further analytical study. 

It was shown that, under typical channel conditions, when the 
carrier phase offset is fixed, phase tracking does not greatly slow down 
the start-up behavior of the deterministic gradient algorithm, at least 
provided the equalizer adaptation coefficient {3 is much less than that 
of the phase estimator a. 

The phase estimator was first proposed as an adjunct to the pass
band equalizer, to mitigate the effects of too-rapid tap-coefficient 
rotation in the presence of channel frequency offset. It has been shown 
that frequency offset still causes tap rotation in the equalizer-plus
phase estimator system, but that the rate of rotation is tolerable, being 
on the order of 1/[1 + (a/{3)] times the amount of frequency offset. 

The steady-state response of the linearized system to sinusoidal phase 
jitter was obtained. When linear distortion in the channel is not severe 
and the coefficient {3 is small, the system mean squared error due to 
tracking error approximates that of a first-order, phase-locked loop, 
as was assumed in an earlier paper. 

APPENDIX 

We wish to upper-bound the right-hand side of (16), given assump
tions (1), (2), and (3) of Section III. 

E:+ 1 CtE n+1 = E~(I - {3a)a(I - {3a)En + X*a-1X 1 ej f. n +1 - 112 
+ 2 Re {E~(I - (3a)X(l - e-j~n+1)}, (16) 

where Lin+l was given by (14). 
The first term on the right-hand side can be written 

E~aEn - 2{3E~a2En + {32E~a3En. 
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The matrix a is positive definite and Hermitian; hence, 

-E~a2En == -(a!En)*a(a!En) ~ -AminE~aEn, 

where Amin is the minimum eigenvalue of a. Similarly, E~ a3E n 

~ A~axE~ aE n , where Amax is the maximum eigenvalue. Thus we note 
for future reference that the first term in (16) is bounded as 

The second term in (16) is 

X* a-1X 1 ejLln+l - 112 ~ sin2 .6;+1 , 

since X*a- 1X ~ 1. Upper-bounding sin2 (.6 n+d2) by (.6 n+d2)2 and 
substituting expression (14) for .6 n+1, we have 

(42) 

The third term in (16) can be written as the sum of three terms. 

2 Re {E~(I - ,aa)X(l - e- j t. n+1)} = 4 Re [E~(I - ,aa)X] sin2 .6;+1 

- 2 1m (E~X) sin .6 n+1 + 2,a 1m (E~ aX) sin .6 n+1• (43) 

As in the inequality (42), the first term in (43) is upper-bounded by 

a2
1 E~(I - ,aa)X I [1m (E~X)]2. 

The matrix I - ,a a is Hermitian; its eigenvalues are {I - ,aAi}, where 
the {Ad are the eigenvalues of a. Let Amax and Amin be the maximum 
and minimum eigenvalues, respectively. By assumption (3), 1 - ,aAmax 
> 0 and thus I - ,a a is positive definite. Therefore, 

IE~(I - ,aa)XI = IE~(I - ,aa)!a!a-!(I - ,aa)!XI 

~ [E~a!(I - ,a a) a!En]![X*a-!(I - ,a a) a!x]!, (44) 

where we have used Schwartz's inequality. Using the positive definite
ness of I - ,a a and a, we can further upper-bound the right-hand 
side of (44) by 

I E~(I - ,aa)XI ~ (1 - ,aAmin)2(E~aEn)!(X*a-1X)! 

(45) 

since the quantities 1 - ,aAmin and X* a-1X are less than unity. Thus 
we have upper-bounded the first term in (43) by 

4 Re {E~(I - ,aa)X} sin2 .6;+1 ~ a2(E~aEn)![lm (E~X)]2. (46) 
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After substituting for ~n+1 using eq. (14), we can express the second 
term in (43) as 

-2 1m (E~X) sin ~n+1 = -2a{lm (E~X)]2 sinc [a 1m (E~X)], (47) 

where 

The third term in (43) is 

. sin () 
sInc() =-. 

() 

2(3 1m (E~ aX) sin ~n+I' 

which can be upper-bounded, using (14) and the inequality 1 sin ~ 1 
~ I~I, by 

2a(3( 1 E~aX 1)[ 1 1m (E~X) I] ~ E2(321 E~ax 12 
2 + a
2 

[1m (E~X)]2 for any arbitrary E, 
E 

where we have used the simple inequality 

But 
1 E~ax 12 = 1 (E~a~)( a-!X) 12 

~ (E!a3E n)[x*a-IX] 

~ E~a3En, 

by Schwartz's inequality and the fact that X* a-IX ~ 1. 
Thus the third term in (43) is upper-bounded by 

(48) 

Finally, sUbstituting (42), (46), (47), and (48) into the right-hand 
side of (16), we have 

'Yn+1 == E:+I aEn+1 ~ E~aEn - 2(3E~a2En + (32(1 + E2)E~a3En 
+ affin[lm (E~X)]2, (49) 

where E is arbitrary and 

ffin = a [1 + (E~aEn)i + ~ ] - 2 sinc [a 1m (E~X)]. (50) 

We make the following choice of E: E = Eo, where EO is defined by (with 
'Yo = E~ (tEo) 

(51) 
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Figure 2 is a sketch of the left- and right-hand sides of eq. (51) as func
tions of a for various values of EO. Equation (51) has a unique solution 
with 0 ~ E~ < 00 as long as 0 ~ a < ao, where ao is defined by 

ao(1 + ..fYo) = 2 sinc (ao..fYo). 

Note also that, by assumption (3), the coefficient 1 - 2(3Amin 

+ (32Amax of E~aEn in the bound (41) is less than 1 and hence (49) 
can be weakened to 

(52) 

Lemma: CR n is negative, and hence the sequence {'Yn == E:aEn} is mono
tone decreasing. 
Proo f : We first observe that the sinc function in (50) defining CR n is 
even, positive, and monotone decreasing provided its argument's 
absolute value is less than 7T'. But its argument is 

a 1m (E~X) ~ a/ E~a!a-!X I. 

This can be bounded, using Schwartz's inequality, by 

a(E~aEnX*a-!X)! ~ a(E~aEn)! 

and so 

- sinc [a 1m (E~X)J ~ -sinc [a(E~aEn)J for a(E~aEn)! < 7T'. 

(53) 

In particular, 

a 1m (E~X) ~ a+Yo < 7T' 

by assumption (1), and hence we can upper-bound CR o by 

CRo ~ a (1 + +Yo + ~) - 2 sinc (a+Yo). (54) 

According to our choice of E = EO, defined by (51), the right-hand 
side of (54) is zero, and so CR o ~ O. It follows from (52) that -v:;; ~ +Yo, 
which is less than 7T' by hypothesis. Thus CR! is bounded, using (53) and 
E = EO, by CR! ~ <Jh, where eRn is defined by 

eR n = a [ 1 + 'Y ~ + ~] - 2 sinc (a'Y A) , 

and &0 = 0 by the definition of E~. Now since -v:;; ~ {:y; ~ 7T', 

-2 sinc (a'YD < -2 sinc (a'Y3) 

and so 

(55) 
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Similarly, from (52), 'Y2 < 'Yl and by induction 

'Yn ~ 'Yn-l ~ ... ~ 'Yo 

and all (Rn ~ o. 
Q.E.D. 

Finally, since (Rn is negative, we obtain the following recursive upper 
bound from (49): 

'Yn+l == E~+laEn+l ~ E~aEn - 2,6E~a2En + ,62(1 + E5)E~a3En. (56) 
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The spectral or band occupancy of an RF signal is often defined as the 
bandwidth that contains a specified fraction (usually 99 percent) of the 
modulated RF power. The band occupancy of binary and quaternary PSK 

signals with and without RF filtering and with modulation pulses of several 
shapes has been evaluated and the results presented in graphical and 
tabular form. For a binary FSK signal with phase deviation of ±7r12, 
sometimes called an FM-PSK signal, numerical values of the spectral oc
cupancy with rectangular and raised-cosine signaling have been obtained 
and the results given in graphical form. For a binary PSK signal with 
signaling rate 1 IT and with arbitrary baseband pulse shaping, we have 
derived a lower bound on the fraction of the continuous power contained 
outside any given band, but have not been able to get a bound on the total 
band occupancy. However, for an FM-PSK signal, a lower bound on the total 
band occupancy has been derived, and it is shown that the value of this 
lower bound for 99-percent power occupancy is 1.117 IT. The 99-percent 
power occupancy bandwidth of an FM-PSK signal is 1.1701T with rectangu
lar signaling and 2.201T with raised-cosine signaling. 

I. INTRODUCTION AND SUMMARY 

Efficiency of use of the radio spectrum has recently become the 
subject of increased attention since terrestrial and satellite com
munication needs have placed an increasing burden on the available 
RF bands. 1 •2 For spectrum conservation, the band occupancy of the 
chosen modulation scheme must be small so that as many channels as 
possible can be accommodated in a given band. Since the band oc
cupancy of analog signals has been extensively discussed in the litera
ture,3-5 we shall deal here only with digital signals. 

For radio systems, the "occupied bandwidth" is often specified by 
the spectral band which contains a certain fraction of the total RF 

power.* The Federal Communications Commission (FCC) presently 

* For analog FM systems, an alternate way of specifying bandwidth is discussed in 
Ref. 5. 
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specifies this power to be 99 percent and requires that not more than 1 
percent of the power be contained outside the assigned band. 6 For 
radio transmission using digital modulation techniques, the additional 
requirements presently specified by the FCC are in terms of the spectral 
density of out-of-band emission rather than just total out-of-band 
power: For operating frequencies below (above) 15 GHz, the attenua
tion A, expressed in dB and equal to the mean output power divided 
by the power measured in any 4-kHz (1-l\1Hz) band, the center fre
quency of which differs from the assigned frequency by 50 percent or 
more of the authorized bandwidth, shall not be less than 50 dB (11 dB) 
and shall satisfy the relation A ~ 35 + 0.8 (P - 50) + 10 loglo B for 
operating frequencies below 15 GHz and the relation A ~ 11 + 0.4 
(P - 50) + 10 loglo B for operating frequencies above 15 GHz where 
P is the percent difference from the carrier frequency and B is the 
authorized bandwidth in megahertz. For operating frequencies below 
(above) 15 GHz, attenuation greater than 80 dB (56 dB) is not re
quired for any value of P. While this is the "necessary bandwidth" 
specified by the FCC, the quantity "occupied bandwidth" still remains 
as one of the parameters used to specify the assigned band. t 

The spectral occupancy of binary and quaternary PSK signals with 
nonoverlap ping pulses of several shapes has been determined and the 
results presented in graphical form. The 99-percent power occupancy 
band of a PSK signal with rectangular signaling is extremely large; 
hence, for this case we also give the band occupancy when different RF 

filters are used to confine the spectrum. 
By using the classical work of Slepian, Landau, and Pollak,8,9 we 

derive a lower bound on the fractional power, contained outside any 
given band, of the continuous part of the binary PSK spectrum.lO It is 
shown that the lower bound can be achieved if the baseband pulse is 
the inverse sine function of a certain prolate spheroidal wave function. 
It is also shown that the smaller the value of the lower bound, the 
smaller the amount of total power that can be contained in the con
tinuous part (the total RF power has been normalized to unity). We 
have not been able to get a bound on the total fractional power that 
may be contained outside the assigned band of a binary PSK signal or 
find an optimum pulse shape if the total power contained in the con
tinuous part is assumed to be a specified fraction of the total RF power. 

For a binary PSK signal \vith phase deviation of ±71' /2, sometimes 
called an FM-PSK signal, numerical values of the spectral occupancy 

* For details, see FCC Docket 19311, FCC 71-940, adopted September 8, 1971, 
released September 15, 1971; FCC 73-445, adopted May 3, 1973, released May 8, 
1973; FCC 74-985, adopted September 19, 1974, released September 27, 1974. 

t Another method of determining "sufficient bandwidth" for PSK systems is dis
cussed in Ref. 7. 
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with rectangular and raised-cosine signaling have been obtained and 
the results are given in graphical form. For such a binary FSK signal 
with arbitrary baseband pulse shaping, a lower bound on the total band 
occupancy has been derived, and it is shown that the value of this 
lower bound for 99-percent power occupancy is 1.117/T, where T is 
the signal interval. The 99-percent power occupancy bandwidth of an 
FM-PSK signal is 1.170/T with rectangular signaling and 2.20/T with 
raised-cosine signaling. The good spectral properties of an FM-PSK 

signal with rectangular signaling are well known,l1 and it may be de
tected as a PSK signal with the same bit error rate performance as that 
of BPSK.12 

II. SPECTRAL OCCUPANCY OF DIGITAL SIGNALS 

In our analysis for PSK and Fl\I-PSK systems, we assume that the 
baseband signaling pulses have a common shape and that all signaling 
pulses are equally likely. We also assume that symbols transmitted 
during different time slots are statistically independent and identically 
distributed. 

If the digital angle-modulated (PSK or FSK) wave is represented as 

x(t) = Re exp (j[27r fct + <p(t) + OJ}' (1) 

it is shown in Refs. 10 and 13 that the power spectral density P x(f) 
of x (t) can be expressed as 

where Pv(f) is the power spectral density of 

vet) = ej<I>(t) 

(2) 

(3) 

and fc is the carrier frequency. In (1), 0 is assumed to be a random 
variable uniformly distributed over [0, 27r). 

The fractional power A2 contained outside the band [fc- W, fc+ WJ 
can be shown to be 

~
oo ~2/C+W 

A2 = 2 Pv(f)df - Pv(f)dj. 
w 2/c-W 

(4) 

In most cases of practical interest, P v (f) is a rapidly decreasing func
tion of f, fc/W» 1, and* 

A2 = 2 J: Pv(f)df. (5) 

* Since P,,(f) ~ 0, <12 ~ 2 J; P,,(f)df for any fc/W. 
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2.1 Spectral density of an M-ary PSK signal 

For an M-ary PSK signal (we assume M = 2N , N an integer) with 
signaling rate liT, 

00 

<lJ(t) = L ~·g(t - kT)], 
k=-oo 

(6) 

where ak is a vector-valued stationary random process and g(t)] are 
the pulse shapes corresponding to the M symbols. 

If the signaling pulses in different time slots never overlap, it is 
shown in Ref. 10 that Pv(f) consists of a line component part Pvl(f) 
and a continuous part PVc(f), Pv(f) = P VI + PVc(f), 

1 co ( n) Pvl(f) = T2 1~·R(f)] I n=~ co 0 f - T ' (7) 

(8) 

where ~ = [WI, W2, •.. , W M], Wi is the probability that the ith signaling 
waveform gi(t) is transmitted in any time slot and Ri(f) is the Fourier 
transform of ri(t), 

ri(t) = I exp [jgi(t)], 
1 0 , 

o < t ~ T 
otherwise. 

(9) 

Since we assume that the M signaling pulses have a common shape, 

(10) 

where ai is the peak phase value of the ith symbol and the maximum 
value of g(t) has been normalized to unity. 

From (5), 
/l2 = 6.r + 6.~, (11) 

where 

6.r = 2 foo Pvl(fJ.)dfJ. = the fractional part of line power (12) 
W contained outside the band 

and 

6.~ = 2 foo Pvc (fJ.)dfJ. = the fractional part of continuous 
W power contained outside the band. 

2.2 Spectral density of an M-ary FSK signal 

For an M-ary FSK signal,13 

<I>(t) = J t !d(fJ.)dfJ., 
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,h(t), =~, t ~ 0, t > T, (15) 

Pv(f) = ~,R(f),. (A + At) ·R*(f)], (16) 

where 
1 e-i21r/ Tw}r(T) ·Wd 

A= -Wd+ '--'--...:.J 2 1 - e-i21r/T~. r(T)] , / ~ . r (T) ] / < 1, (17) 

WI 0 
W2 

(18) 

o 
Ri(f) is the Fourier transform of ri(t), and 

o < t ~ T 
(19) 

otherwise. 

We make the same assumptions for FSK as for PSK. However, note 
that Pv(f) does not contain any lines if w] and r(t)] satisfy the in
equality in (17). Since spectral lines do not often contain any useful 
information (except for carrier recovery), their presence indicates 
nonoptimum pulse shaping. In this paper, we shall not consider FSK 

with spectral lines. For FSK, Li2 = Li~ from (5). 

III. BAND OCCUPANCY OF A BINARY PSK SIGNAL 

For binary PSK, we assume that 0:1 = - 0:2 = 7r /2 and that both 
symbols are equally likely. From (8), 

1 
Pvc(f) = 4T /RI(f) - R 2(f) /2, (20) 

where 

RI(f) - R 2(f) = loT [e i (1r/2)o(t) - e-i(1r/2)o(t)]e-i21r/tdt 

= 2j J,T sin ( ~ g(t) I e-"<I'dt. (21) 

For rectangular, cosinusoidal, raised-cosinusoidal, trapezoidal, and 
triangular g(t), we have calculated Pv(f) from (7) and (8) and Li2 from 
(5). For these cases, the total out-of-band power ratio Li2 for binary 
PSK is plotted in Figs. 1 and 2. The 99-percent (or any other fractional) 
power bandwidth occupancy for binary PSK may be determined from 
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Fig. I-Normalized power contained outside the band [-W, WJ for binary PSK 
with different baseband signaling waveforms. 

these figures. Since the 99-percent power occupancy of binary PSK with 
rectangular signaling is very large, we show the bandwidth occupancy 
with RF filtering in Figs. 3, 4, and 5. 

IV. BAND OCCUPANCY OF A QPSK SIGNAL 

For QPSK modulation and for equally likely symbols, 

1 4 4 

Pvc(f) = 32T i~l J!;l I Ri(f) - Rj(f) 1
2, (22) 
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where R z(!) is the Fourier transform of rz(t), 

rz(t) = I exp [jazg(t)], 
1 0 , 

and 

az = (2l - 5) ~ , 

Pvz(f) is given by (7). 

O<t;£T 
otherwise, 

l = 1,2,3,4. 

(23) 

(24) 

For rectangular, cosinusoidal, raised-cosinusoidal, trapezoidal, and 
triangular get), we have calculated Pvc!) from (7) and (8) and L\2 from 
(5). For these cases, the total out-of-band power ratio L\2 is plotted in 
Figs. 6 and 7. The 99-percent (or any other fractional) power band
width occupancy for quaternary PSK may be determined from these 
figures. Since the spectral density of QPSK with rectangular signaling 

SIGNAL SPECTRAL OCCUPANCY 435 



til 
...J 

« 
I-
w 
:c 
I-

~ 
c:: 
w 
:::: 
o 
0.. 

o 
w 
N 
::::i 

10-2 

~ 10- 3 
c:: 
o 
z 

PSK WITH RECTANGULAR SIGNALING 
AND TWO-POLE BUTTERWORTH 
TRANSMISSION FILTER 

,..._2BT =00 

" 

10-5~ ______ ~ ______ ~ __ ~ __ ~ ____ ~ __ ~ ______ ~ ______ ~ 

o 4 6 8 10 12 
2WT 

Fig. 3-Normalized power contained outside the band [-W, W] for M-ary PSK 
(M = 2N , N ~ 1) with rectangular signaling and a two-pole Butterworth trans
mission filter. The squared amplitude characteristic of the equivalent low-pass filter 
is assumed to be given by IHT(f) 12 = 1/[1 + (f/A)4], where 2B = 2A (7I"/4)/sin 71"/4 
is the noise bandwidth of the filter. 

is the same as that of BPSK, the bandwidth occupancy of QPSK with RF 

filtering is also given by Figs. 3, 4, and 5. 

v. BAND OCCUPANCY OF AN FM·PSK SIGNAL 

A binary FM-PSK signal is a special case of the binary continuous
phase FSK modulation where the phase deviation in one signaling 
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interval is ±7l'/2 and which can be detected as a PSK signal. Note that 
one may use a four-phase demodulator to detect a binary Fl\I-PSK 

signal· to have the same bit error rate performance as that of BPSK. I4- 16 

• A form of binary FM-PSK can be shown to be equal to the sum of two offset 
quadrature-phase binary PSK signals. A form of it is, therefore, sometimes referred 
to as offset QPSK (Ref. 2). An FM-PSK with rectangular frequency modulation signal
ing is called fast FSK in Ref. 12 and MSK in Ref. 14. 
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There are no discrete lines in the FM-PSK spectrum, but standard 
techniques (such as the Costas loop) can be used to recover the co
herent carrier (it is necessary to use differential encoding or prior 
knowledge of framing polarity, etc., to resolve the ambiguity present 
in the phase of the recovered carrier) .12 
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To get the spectral density of binary FSK, we put 

ej (7r/2) ] 

reT)] = e- j (7r/2) (25) 

in (16), (17), and (19) for any baseband signaling waveform h(t). We 
assume that we transmit + 1 by shifting the carrier frequency by 
+ fdg(t), 0 < t ~ T, and -1 by shifting the carrier frequency by 
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- !dg(t) , 0 < t ~ T. For rectangular signaling, 

1 1 
!d = 4 T' 

and for raised-cosine signaling, 

(26) 

(27) 

so that the peak frequency deviation with raised-cosine signaling is 
larger than that with rectangular signaling. 

From (16), (17), and (25) one can show that the spectral density 
PvC!) of binary FM-PSK is 
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_ _ 1 . [~ {1 + sin (2'71}T)} - ~ cos (27rfT)] 
Pv(f) - Pvc(f) - 'F,R I R2 , • 1 

~ cos (27r fT) 2" {1 - sin (27r fT) } 

R;] . R; , (28) 

where RI, R2 are the Fourier transforms of rI(t), r2(t) 

{
exp [j27r fd lot g(t)dt] , 

o , 
o < t ~ T 

(29) 
otherwise, 

{
exp [ - j27r fd fot g(t)dt] , 

o , 
o < t ~ T 

(30) 
otherwise. 

For rectangular and raised-cosine signaling, we plot for binary 
Fl\I-PSK the out-of-band power ratio Ll2 in Fig. 8. The 99-percent (or 
any other fractional) power bandwidth occupancy may be determined 
from results given in this figure. 

VI. TIME-LIMITED AND BAND-LIMITED SIGNALS 

We shall derive the lower bound on the band occupancy of binary 
PSK and FSK signals by using the results obtained for time-limited and 
band-limited functions. 

In their classical papers, Slepian, Landau, and Pollak have derived8 ,9 

the pulse waveform of given duration that has a maximum of its energy 
concentrated below a certain frequency band. These optimum pulse 
waveforms are the well-known prolate spheroidal wave functions. A 
widespread opinion is that pulses with minimum energy at high fre
quencies should have a rounded form with many continuous deriva
tives. Since the optimum pulses (the prolate spheroidal wave func
tions) are usually not continuous at the limits of their truncation 
interval, this opinion does not seem to be justified. In fact, Hilberg and 
Rothe17 have shown recently that constraints of continuous derivatives 
tend to increase the total out-of-band energy. We shall now state the 
bounds given by Slepian, Landau, and Pollak. 

If we define 

(31) 
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and 

(32 = F(f) (32) 

it is shown in Ref. 9 that 

cos-1 (a) + cos-1 ({3) ~ cos-1 ~ (33) 
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where Ao is the largest eigenvalue of the integral equation 

AJ(t) = 1 jT'/2 J(s) sin {27rW(t - s)} ds. (34) 
7r -(T'/2) (t - s) 

In (31), we assume that J(t) E £~ where £~ is the set of all complex
valued functions defined on the real line and integrable in absolute 
square [J(t) has finite energy]. 

In binary PSK and certain binary FSK, we shall show that Pv(J) or 
Pvc(J) can be expressed as the energy density spectrum [IX(J) 1

2J of 
a certain x(t), time-limited to a duration Teq.* From (31), if x(t) is of 
duration T eq, 

a 2 = 1, T' = T eq, 

{j2 ~ Ao 
(35) 

and the maximum value of (j2 is attained when x (t) is a prolate sphe
roidal wave function 1/Io(t, d) given in Refs. 8 and 9, d = 7rWTeq . The 
fractional energy A2 contained outside the band [- W, W] is, there
fore, lower-bounded by 

(36) 

The values of A~ln computed from the relations given in Refs. 8, 9, 
and 18 are shown in Fig. 9. It therefore follows that it is impossible to 
find an £2-integrable pulse waveform x(t) which has a duration Teq and 
which has a fractional energy less than A~ln(WTeq) outside the band 
[-W, W]. 

VII. LOWER BOUND ON THE BAND OCCUPANCY OF PSK AND 
FM·PSK SIGNALS 

Let us first consider the band occupancy of the continuous part 
Pvc (J) of a BPSK spectrum. 

From (20) and (21), 
(37) 

where X (J) is the Fourier transform of 

_lsin { ~ get) I 
x(t) - -{T' 

o , 
o < t ~ T (38) 

otherwise. 

In (37) we have expressed the continuous part of the spectral 
density of a binary PSK signal in terms of the energy density spectrum 

* In FM-PSK, it will turn out that Teq = 2T, where T is the duration of the signaling 
waveform get). Hence, we use the symbol Teq to denote the duration of x(t). 
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of an arbitrary pulse waveform x(t) Ene £~.* x(t) can be nonzero 
only for 0 < t ~ T. From Section VI, it therefore follows that the 
out-of-band power ratio A~ of a binary PSK signal is lower-bounded by 

(39) 

where 

A2 = Continuous power contained outside the band (- W, W). (40) 
C Total power contained in the continuous part 

Note that A~ =;C /:::.2 or /:::.~, but 

A~ Total power in PvC!) ~ 1. 
!:::.~ = Total power in Pvc(f) -

(41) 

Now A~ can be made equal to A~ln(WT) by choosing 

x(t) = k1/;o(t - T /2, d), d = 7I"TW, T' = T, (42) 

where 1/;o(t, d) is a prolate spheroidal wave function and k is a normaliz
ing constant. t We choose k so that the total power E contained in the 
information-bearing part Pvc(f) [equivalently, the total energy con
tained in x(t) ] is maximum. Since 1/;o(t, d) is maximum at t = 0, E is 
maximized by choosing 

{ 

2 Sin-1 11/;0 (t - T /2, d) I 
get) = 71" 1/;0(0, d) , 

o , 
For this value of get), 

AO 
E = =T:-:-1/;~5 (;-::-0-, d-=-) 

o < t ~ T,t 

otherwise. 
(43) 

(44) 

For x(t) in (42) and get) in (43), the minimum out-of-band power 
ratio A~ln (WT) can be attained, and 

(45) 

For some values of d, the minimum out-of-band power ratio A~ln(WT) 
and the maximum power contained in the continuous part are listed 
in Table IJ The rest of the power in the PSK signal is contained in 
Pvz(f) or the discrete lines. For binary PSK, it follows from Sec. VI and 
eqs. (39) and (42) that [A~Jmin is given in Fig. 9. 

* Since ix(t) i ~ 1, note that n is a proper subset of £~. 
t Our letter d in 1/Io(t, d) corresponds to the letter c used in Refs. 8, 9, and 18. 
t (J = Sin-1 (x) denotes the principal value of the inverse sine, -7r/2 ~ (J ~ 7r/2. 
§ We chose the values of d given in Table I so that we can make use of the results 

given in Refs. 8, 9, and 18. 
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Table I - Minimum out-of-band power ratio of binary PSK 

Minimum Maximum Normalized 
d = 7TTW WT Out-of-Band Power Contained in the Power Ratio Continuous Part of Pv(f) A;"inOVT ) 

0.5 0.1592 0.6903 0.9730 
1.0 0.3183 0.4274 0.9015 
2.0 0.6366 0.1194 0.7122 
4.0 1.2732 0.00411 0.4736 

For d = 0.5, 1.0, 2.0, and 4.0, we plot the optimum get) from (43) 
in Fig. 10. For get) in (43) and Fig. 10, we plot the spectral density 
Pvc (f) of binary PSK in Fig. 11. 

From (11), A2 = A'! + A~, and since one usually specifies the total 
out-of-band power ratio, we list in Table II A'!, A~, and A2 for get) in 
(43) and WT in Table I. Also for get) in (43), we plot the total out-of
band power in Fig. 12. Comparing Figs. 1, 2, and 12, note that the 
total out-of-band power for the optimum pulse is very close to that for 
the rectangular pulse for ° ~ 2WT ~ 1. In the neighborhood of 
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Fig. 9-Lower bound on the fractional energy contained outside the band [ - w, WJ 
when the pulse J(t) is of duration Teq. 
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Fig. lO-Phase modulation pulse g(t) for binary PSK for optimum continuous 
spectral occupancy. 

2WT = 0, the total out-of-band power with the optimum pulse is 
greater than that with cosine, raised-cosine, triangular, or trapezoidal 
pulse. This is because the optimum pulse minimizes the fractional 
out-of-band continuous power and not the total power. For get) in (43), 
it must be noted that the smaller the out-of-band continuous power 
ratio, the smaller the maximum amount of power contained in the 
continuous part. The rest of the power is contained in the discrete 
lines! 

One must note that, in general, 

(46) 

the total out-of-band power ratio (the total out-of-band power divided 

* The total out-of-band power with optimum pulse increases as a function of 2WT 
if we use the pulse in (43) and if 2WT > 2.5. This is because an increasingly large 
amount of power is contained in the discrete lines and the total out-of-band discrete 
power very much dominates the out-of-band continuous power. By choosing the 
pulse which is optimum for 2WT ~ 2.5, we can make the total out-of-band power a 
monotone-decreasing function of 2 WT. 

446 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1976 



('oj 

X-
I! 

-u 

" Cl. 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 

...... - d = nWT = 1.0 

fT 
W 

2.5 3.0 3.5 

Fig. ll-Continuous spectral density Pvc (f) of binary PSK for optimum continuous 
spectral occupancy. 

by total power) is not equal to the out-of-band continuous power (the 
out-of-band continuous power divided by power contained in the con
tinuous part). Also note that we have obtained a lower bound on 
A~in(WT) and not on Ll2• Since any time function yet) containing 
discrete lines does not belong to oC~, analysis given in Refs. 8 and 9 
does not enable the optimization of Ll2. 

Our efforts to find a lower bound on the total band occupancy of a 
BPSK signal have not been successful so far, and it is suggested as an 
interesting problem for the reader. 

So that we may compare the spectral occupancy of binary PSK with 
several different modulation pulses for Ll2 = 0.1, 0.01, and 0.001, we 
list in Table III the values of 2WT. 

Let us now consider a QPSK signal. From (22) one can show that no 
single function x(t) can be found such that its energy density spectrum 
IX(f) 12 is equal to Pvc(f). If 2WT is large so that a small amount of 
total power is contained in the tails, we feel that the total out-of-band 
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0.5 0.1592 
1.0 0.3183 
2.0 0.6366 

4.0 1.2732 

Table II - Total out-of-band power ratio for binary PSK with g(t) given by (43) 

Normalized Normalized Minimum Out-of-Band Total Power Con- Power Con- Out-of-Band Normalized Power in 
tained in the tained in the Continuous Discrete Out-of-Band the Lines at Frequency Power Power Ratio Continuous Part Discrete Part Power Ll2 Ll2 niT from the Carrier 

Pvc (f) Pv/(f) Ll2 I 
c 

0.9730 0.0269 0.6717 0.00668 0.6784 n=O 0.02024 
0.9015 0.0985 0.3853 0.02368 0.4090 n=O 0.07483 
0.7122 0.2878 0.08506 0.06258 0.1476 n=O 0.2252 

n=O 0.4364 
0.4736 0.5264 0.001943 0.00721 0.009153 

n = ±1 0.04139 
--- ---- -
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Fig. 12-Normalized total power contained outside the band [-W, WJ for get) 
in (43). Observe that the total out-of-band power for get) in (43) increases (see the 
dashed portion of the figure) as a function of 2WT for 2WT > 2.5. This is because 
the total out-of-band discrete power, which is not optimized, very much dominates the 
out-of-band continuous power. Note that get) in (43) only minimizes the fraction of 
the continuous power contained outside the band [-W, W]. For 2WT > 2.5, by 
choosing get) which is optimum for 2WT ~ 2.5, we can make the total out-of-band 
power decrease as a function of 2WT. 

power for a QPSK signal is lower-bounded by the results given for a 
BPSK signal. The band occupancy of QPSK for .12 = 0.1, 0.01, and 0.001 
for different modulation pulses is listed in Table IV. 

We now derive a lower bound on the total band occupancy of an 
Fl\I-PSK signal. In (29) and (30), get) E oC~ is assumed to be completely 
arbitrary. 

By defining 

(47) 

. ej ( 7rIT-7r/4) _ e- j ( 7rIT-7r/4) 

Rt2 = J 2 R 2, (48) 

we can show from (28) that 
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Table III - Values of out-of-band power ratio Ll2 for binary PSK 
with different baseband modulation pulses 

Total Out-of-Band 

Normalized 
Power Ratio fj.2 

Pulse 
get) Power 

Contained 0.1 0.01 0.001 gCt) = 0, t ;;:; 0, t > T 
in PVc (f) ---------

2WT 2WT 2WT 
------

Rectangular 
gCt) = 1, 0 < t ;;:; T 1.000 1.807 19.295 
Trapezoidal 

. T 
l' r 0 < It I ;:; 4" 

g(t + 2 ) ~ 2(1 _ ~ ) '.£ S It I S '.£ 0.750 2.000 4.000 8.000 

T '4 - -2 
Triangular 

(t+!) = 1-~ g 2 T 

<! 
0.500 2.000 3.283 6.000 

o < It I =2 
Cosinusoidal 
( T) 7rt g t + '2 = cos T' 

0.652 2.000 3.744 6.246 

o < It I <! 
=2 

Raised -Cosinusoidal 
1 ( 27rt) g Ct) = 2" 1 - cos T ' 

0.500 o < t;;:; T 
2.000 2.958 4.904 

Table IV - Values of out-of-band power ratio Ll2 for quaternary 
PSK with different baseband modulation pulses. 

Expressions for g(t) are given in Table III 

Total Out-of-Band Power Ratio fj.2 

Normalized 
Pulse Power 0.1 0.01 0.001 gCt) Con tained in 

PVc (f) 
2WT 2WT 2WT 

Rectangular 1.000 1.807 19.295 
Trapezoidal 0.769 2.000 5.389 8.672 
Triangular 0.538 2.000 3.651 6.274 
Cosinusoidal 0.682 2.000 3.839 6.270 
Raised-Cosinusoidal 0.526 2.000 4.000 5.491 
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where X (f) is the Fourier transform of x(t) and 

Jr sin 12.-Id J,' g (It JdJ, I o < t ~ T, 

x(t) 
1 1 r t

-

T I ..JT cos 27r fd J 0 g(J.L)dJ.L, T ~ t ~ 2T, (50) 

o otherwise. 

Since x(t) may be nonzero only over an interval (0, 2T) it follows that 
the minimum out-of-band power ratio Ll2 of a binary FM-PSK is lower
bounded by" 

Teq = 2T, (51) 

where A~in is defined by (45). For 2WT» 1, one can show19 that 

~2 ~ A~in(2WT) "" 47r~2WT (1 - 64}WT) exp (-47rWT). (52) 

Note that xU) is not completely arbitrary over the interval (0, 2T). 
From (50) one can show that if 

o < t ~ T, 

then 

x(t) = ~~ - x~U - T), 

Equations (25) and (50) also yield 

and 

x(O) = 0 

1 
x(T) = -. 

..JT 

T ~ t ~ 2T. 

(53) 

(54) 

(55) 

(56) 

When x(t) E £~ is completely arbitrary, the lower bound in (51) 
is attained when 

x(t) = k'¥o(t - T, d), d = 27rTW, T' = 2T, (57) 

where '¥o(t, d) is defined in Section VI. Any function other than (57) 
has a larger out-of-band power ratio. Since x(t) in (57) does not satisfy 
(53) to (56), it follows that the bound in (51) is strictly a lower bound 
and is not attainable. t 

.. Note that there is no discrete power contained in an FM-PSK signal. 
t The derivation of an attainable lower bound is extremely complicated and will 

not be attempted here. Also, Table V shows that rectangular signaling gives a band
width occupancy which is very close to the lower bound when ~2 ~ 0.01, the region 
of interest. 
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Table V - Values of the lower bound on 2WT and of bandwidth 
occupancy for binary FM-PSK with rectangular 

and raised-cosine signaling 

Raised-Cosinusoidal 
Pulse g(t) Rectangular 

1 ( 27ft) 
g (t) = 0, t ~ 0, t > T g(t) = 1, g (t) = 2 1 - cos T ' 

0< t ~ T Lower 0< t ~ T Bound 

(Peak-to-Peak Frequency on 

Deviation) X T 0.5 1.0 2WT 

Out-of-Band Power Ratio /12 (Bandwidth Occupancy 2W) X T 

0.1 0.773 0.930 0.675 
0.01 1.170 2.200 1.117 
0.001 2.578 2.874 1.517 

The values of the lower bound on 2WT and of band occupancy of 
binary FM-PSK for tl2 = 0.1, 0.01, and 0.001 with rectangular and 
raised-cosine signaling are listed in Table V. The lower bound on A2 
given by (51) is also plotted in Fig. 8. Note that the lower bound is very 
close to tl2 with rectangular signaling for 1 ~ tl2 ~ 0.01. 

Note that the bandwidth occupancy of binary FM-PSK with rectan
gular signaling is smaller than that with raised-cosine signaling if 
A2 ~ 0.001.* Note also that the peak-to-peak frequency deviation with 
raised-cosine signaling is larger than that with rectangular signaling. 
The phase deviation in one signaling interval is always ±71' /2. 

VIII. CONCLUSIONS 

For binary and quaternary PSK systems, the band occupancy results 
presented here can be combined with the results given in Ref. 7 so 
that channel bandwidth and channel spacing can be chosen to produce 
minimum distortion transmission and to satisfy any specified power 
occupancy criterion. The band occupancy of PSK with overlapping 
baseband pulses is known to be narrower,l° but we have not considered 
such signals in this paper. 

The 99-percent power occupancy bandwidth of an FM-PSK signal 
with rectangular signaling is shown to be only 4.7 percent higher than 
the lower bound. The channel spacing requirements of FM-PSK, from 

.. The tails of the FM-PSK spectra with raised-cosine signaling go as "-'1/f8, with 
rectangular signaling as "-'1/ f4. Hence, the bandwidth occupancy with raised-cosine 
signaling becomes smaller than that with rectangular signaling for small enough 
/12 (/12 < 7.5 X 10-4 ). 
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the point of view of distortion produced by adjacent channel inter
ference, will be treated in subsequent work. 

An attempt is also being made to derive a lower bound on the band 
occupancy if the total power in the continuous part of a BPSK signal 
is a specified fraction of the total RF power. 
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A Touch-Tone ® receiver with cyclotomic digital channel filters intro
duced in a c01npanion paper is presented in this paper. A comparison 
with standard digital channel filters reveals that the number of additions 
per second needed to implement the channel filters is significantly reduced 
using cyclot01nic filters. The perfornwnce of cyclot01nic filters as a function 
of their period is presented in graphic form. The results presented here 
simulating the filter with randorn inputs indicates that the filters can 
effectively reJ'ect non-Touch-Tone signals. Sensitivity of some important 
criteria as a function of the accuracy of the clock used to control the digital 
filters is summarized. The results show that the filters are not particularly 
sensitive to nonaccurate clocks. 

I. INTRODUCTION 

In Ref. 1 we describe a family of filters with several advantages over 
existing filters, which can be used to generate and detect single tones. 
Here, we describe how such filters can be used in the construction of 
a Touch-Tone® receiver. 

The standard Touch-Tone receiver is described in Ref. 2; many 
other receivers have been proposed in the literature; one which is 
completely digital is described in Refs. 3 and 4, and an analog receiver 
with a digitally controlled center frequency is described in Ref. 5. 
The basic Touch-Tone telephone must generate tones to identify the 
ten basic possible inputs (1, 2, .. " 9, 0) or, in the case of augmented 
telephones, 12 to 16 possible inputs (including, for example, * and #). 
This is done by arranging the input buttons in a grid of four rows and 
three or four columns. Associated with each row is one of four "low" 
frequencies (697, 770, 852, or 941 Hz), and associated with each 
column is one of three or four high frequencies (1209, 1336, 1477, or 
1633 Hz). When a button is pushed, one low and one high frequency 
are simultaneously generated, corresponding to the row and column 
in which the button is situated. In the central office, a detector decodes 
the incoming pair of tones to determine which button was pushed. 
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An incoming signal first passes through a series of tuned filters that 
filter out dial tones, ring tones, busy tones, and power harmonics 
(which have amplitude too large to be accommodated by the subse
quent channel filters). Next, the signal passes through two parallel 
bandpass filters (UPF) (see Fig. 1), one to reject the four high-frequency 
tones (low BPF) and one to reject the four low-frequency tones (high 
BPF). The output of each BPF passes through a limiter, and the limited 
signal passes through four parallel channel filters. Each channel filter 
is connected to a threshold detector which, in 40 ms, makes a deter
mination of whether the tone was present or absent. 

In analog receivers, the most critical section consists of the channel 
filters. Hence, these have to be made with precision components to 
meet the specifications for station sets. Use of a completely digital 
receiver requires analog-to-digital (A-to-D) conversion, and special 
care has to be taken to avoid problems caused by roundoff errors in 
the BPFs. Furthermore, use of the receiver to generate Touch-Tone 
signals leads to unwanted limit cycles, impairing performance (see 
Ref. 6). 

We propose here a hybrid receiver based on the cyclotomic filters 
presented in Ref. 1. In the hybrid receiver, the filters that attenuate 
the dial tone, etc., are the standard analog filters which, using Re 
active circuitry, can be integrated. 6 The digital part of the receiver 
follows the limiting circuits (see Fig. 1), which in this case are hard
clippers, thus eliminating the need for separate A-to-D conversion, 
and at the same time replacing a significant portion of the receiver by 
digital circuitry. The analog part need not be made with precision 
components, since variation in the gains of the bandpass filters does 
not affect the output of the hard limiter significantly. Only the sign 
of the outputs of the BPFs are used in the digital part of the receiver. 
The digital filters in the receiver are all operated with perfect arith
metic. All channels have identical filters operating on samples of the 
output of the hard limiters. However, for each channel, the sampling 
frequency is proportional to the channel frequency. 

Some important features of the system can be summarized as 
follows: 

(i) Compared to the channel filters in the all-digital receiver 
presented in Ref. 3, the number of additions needed to detect 
tones is relatively small. Hence, fewer adders are needed. 

(ii) All digital channel filters are mechanized with perfect arith
metic, thus avoiding problems of roundoff. 

(iii) Since we use perfect arithmetic, we can also generate Touch
Tone receiver frequencies using the same channel filters in the 
receiver. 
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(iv) Without using any A-to-D conversion, we use digital channel 
filters with analog BPFs. 

(v) By resetting the filters periodically, we lessen the chance that 
noise during inter-digit silences, or residual ring tone signals 
before the first digit, will affect performance. 

(vi) Since the channel filters have infinite Q, it is possible to increase 
the signaling rate. 

(vii) Although the filters have infinite Qs, the peak-to-threshold 
rejection is kept below 3 dB, thus still preserving the guard 
action of the hard limiters. 

We assume that the reader is familiar with Refs. 1 and 2. Section II 
gives a description of the hybrid receiver. Section III deals with the 
performance of the channel filters. Some remarks concerning the factors 
that enter into choosing the period of cyclotomic filters and interval of 
operation are contained in Section IV. 

II. DESCRIPTION OF THE HYBRID RECEIVER 

Figure 1 is a block diagram of the general receiver. The structure of 
the hybrid receiver is very similar to the standard receiver which is 
described in Ref. 2. The analog part of the receiver includes both the 
BPFs and the filters which attenuate power harmonics, ring tones, etc. 
The outputs of each BPF go into hard-limiters, which convert the analog 
output of the BPFs into a signal which is either + 1 or -1, depending 

LOW FREQ TONE 

SUM OF 
TWO TONES SEPARATION 

GENERATOR - .... ,'-----------
LINE FILTER 

HI FREQ TONE 

TUNED 
FILTERS 

Fig. I-General receiver. 
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on whether the analog signal is nonnegative or negative, respectively. 
This entire analog part can be integrated using active RC circuitry 
(see Ref. 4). The channel filters which follow the hard-limiters (see 
Fig. 1) are identical cyclotomic filters (see Ref. 1 and Fig. 2). The 
cyclotomic filter for each channel has as its input the output of the 
hard-limiter sampled at a rate p times the channel frequency, where p 
is the period of the cyclotomic filter used. This requires clock pulses 
of different frequencies for the different channels. 

The channel filters are run periodically for an interval of time in
versely proportional to the channel frequency, called the interval of 
operation. At the beginning of each such interval, the filters are set to 
zero. The magnitude of the output of each of the filters is compared 
with a fixed threshold; when the magnitude exceeds this level, a tone 
corresponding to this frequency is assumed to be present (during the 
entire interval of operation). The length of the interval of operation is 
dependent on the permissible error. An interval of operation corre
sponding to seven cycles of the channel frequency was found to be 
sufficient (see Section 3.2). This corresponds to 10 ms for the channel 
corresponding to the lowest Touch-Tone frequency, 697 Hz. Hence, 
if the 697-Hz channel tone is present for the required 40 ms (Ref. 2, 
p. 11), then in at least three consecutive intervals the tone will produce 
a signal above the threshold. For higher frequencies, the interval of 

LIMITER 
OUTPUT 

p x 770 Hz 

p x 697 Hz 

p x 941 Hz 

p x 852 Hz 

CYCLOTOMIC 
FILTERS 

Fig. 2-Channel filters of the low group. 

THRESHOLD 
DETECTORS 
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operation is shorter. By synchronizing the intervals of operation of 
all channels, testing is made for the simultaneous presence of a high 
tone and a low tone. When a high tone and a low tone are each present 
for three consecutive intervals, a valid Touch-Tone signal is assumed 
to be present. The digit corresponding to a pair of tones is decoded in 
the standard way, as described in Section 1. l\fodification of the ele
mentary decision process could be made to increase the signal rate, 
since the interchannel rejection achieved in a single operating interval 
is sufficient (see below). 

We will not be concerned here with details of hardware in the 
mechanization of the receiver, but will describe some ways in which 
the computations in the channel filters can be performed in a multi
plexed system. 

Two basic modes of implementation will be discussed. One involves 
individual channel filters dedicated to a fixed frequency. These could 
be multiplexed to receive inputs from many sources (Fig. 3). This 
may be more useful in central office applications, where a substantial 
number of Touch-Tone receivers have to be operating at the same time. 
In this case, the channels controlled by the same clock can be mul
tiplexed in the usual way using serial arithmetic as described in Ref. 1. 
A system of 20 receivers would require eight clocks (or clock pulses 
derived from a simple high-frequency clock). For a system using, for 
example, six times the channel frequency as sampling rate, one adder 
per channel seems adequate. From Table II, Ref. 1, computations show 
that the cyclotomic polynomial of period 6, F 6, needs 84 adds per 
period. The channel corresponding to the highest frequency, 1633 Hz, 
will need (1633 X 84 X 20) adds/so This implies that an add must 
not take more than about 0.36 J.Ls. So, with 0.36-J.Ls adders, eight adders 
would be needed for the whole system. This is, of course, excluding the 
logic involved in the decision process. If in the system we allow for 
buffers in the higher frequency channels, then a slower adder could be 
used, since we wait 10 ms before a decision is made. In this case, the 
speed of the adder is determined by the channel corresponding to the 

LIMITER 
OUTPUTS 
SAMPLED 
FOR THE 
697-Hz 

LINE 1 

LINE 2 

CHANNEL ./ 

~ 
Fig. 3-System amenable to serial mUltiplexing. 

RECEIVER-GENERATOR 459 



lowest frequency. The lowest frequency channel requires (697 X 84 
X 20) adds/s, corresponding to an add in I"'V 0.85 J./,S. 

Another system involves buffering the input in such a way that a 
single filter can be used for two or more channels (Fig. 4). This might 
prove useful when an adder is mutliplexed between channels corre
sponding to the same receiver. In this case, buffers for each channel 
store the output from the limiter in segments corresponding to the 
seven-cycle interval of operation. For the filter based upon F 6, this 
would be 42 bits long. Since the buffer corresponding to a higher 
frequency would fill up faster than one corresponding to a lower fre
quency, the channel corresponding to the highest frequency, i.e., 
1633 Hz, is fed into the filter first, say, after 5 ms (the buffer of this 
channel fills up in less than 5 ms). After completing the operation on 
all the 42 bits of input of this channel, the filter is multiplexed to op
erate on the next highest frequency channel, and so on. This requires 
that the adder be fast enough to do 7 X 84 adds in less than i ms, 
i.e., 940,800 adds/s so a 1-J./,s adder would suffice. Since this adder is 
idle for every 5 ms of the 10-ms cycle, it can be used for another re
ceiver. Hence, a 1-J./,s adder could do all the additions for the channel 
filters of two receivers. IVIodification of this elementary decision 
process could be made depending on the statistics of noise in the 
channel and sensitivity of the limiter. When a high and a low tone 

LIMITER 
OUTPUT 

p x 770 Hz 

p x 697 Hz 

px941 Hz 

p x 852 Hz 

SAMPLERS 
AND BUFFERS 

Fig. 4--Multiplexing using buffers. 
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have been simultaneously detected for three consecutive 10-ms periods, 
then a decision is made that a Touch-Tone signal has been received 
and the digit is identified in the usual way. The regular second-order 
filter used in the all-digital receiver of Ref. 3 requires a minimum of 
2400 adds/ms and a total of 96,000 adds and achieves an interchannel 
rejection of "-' 7 dB. Using· a cyclotomic filter of period 6 (based on Fs) 
would require 840 adds to give the same interchannel rejection. This 
corresponds to a rate up to 60 adds/ms for the 697-Hz channel. If the 
period were raised to 30 and no use of read-only memory were made, 
it would still only require a maximum of 56,700 adds to achieve the 
same rejection; this corresponds to approximately 4010 adds/ms. Of 
course, intermediate periods would give intermediate statistics, which 
can be readily computed for systems based on F p (p = 8, 9, 12, 15, 
16, 18,24; see Ref. 1). 

III. PERFORMANCE OF THE CHANNEL FILTERS 

To discuss the performance of the channel filters, we need to define 
certain terms. Let fi, i = 1, 2, .. " 8 be the eight channel frequencies. 
As described earlier, each channel filter is a cyclotomic filter of some 
period p, based on the cyclotomic polynomial F p' The order of the 
filter is denoted by k (the degree of F p). The fundamental resonance 
frequency of each filter is determined by Ti, the sampling interval in 
seconds of the output of the hard-limiter. In order that the fundamental 
resonance of the filter be at frequency fi, Ti should satisfy 

1 
PTi = fi' 

From Ref. 1 we see that the operation of any channel filter can be 
modeled by 

k 

Xn = L aiXn-i + Un 
i=l 

k 

Yn = L CiXn-i 
i=l 

n = 0,1, "', N 

Xj = ° for j < 0, 

\vhere Xn-i, i = 1, .. " k are the numbers stored in the shift register 
implementing the particular channel filter, Yn the output of the filter, 
and Un the sampled output of the hard-limiter, which is, of course, the 
input to the filter. Hence, if the output of the BPF is a sinusoid of fre
quency f, 

Un = 1 
= -1 

if sin 27rnfT ~ ° 
if sin 27rnfT < 0, 
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where T is the sampling interval associated with the channel. So that 
we may use the same threshold for all channels, we normalize the 
interval of operation by the fundamental resonant frequency. Hence, 
if each filter is operated for N steps, this corresponds to operating the 
filter for N Ti s. N /p describes the same interval in units corresponding 
to a period of the fundamental resonant frequency, hence, an interval 
of operation of seven periods of the fundamental, i.e., 7 ·1/ fi s. We will 
compare performance of cyclotomic filters of different periods operating 
for the same number of periods of the fundamental. 

Let M(f) denote the maximum absolute value of Yn in the interval 
of operation when the input square wave is of frequency f. Detection 
of the fundamental frequency is based on M (f) exceeding a preassigned 
threshold. A plot of M (f) vs frequency for various cylotomic filters 
when operated for seven periods of the fundamental is given in Ref. 1. 
The curves serve to indicate how well the filter performs in distinguish
ing between tones. The model of a typical curve is shown in Fig. 5. 
Following standard terminology, we use the term power gain or gain 
at f to mean 20 loglo M (f). Difference between power gains at two 
frequencies is related in the obvious way to the ratio of M2(f) at these 
two frequencies. By scaling the frequency axis linearly, the funda
mental resonant frequency can be shifted arbitrarily. The specifica-

t 
I
=:J 
0-
I
=:J 
o 

Tr-----------------------~ 

Ar---------------------~_r+---~--~--~ 

ft \ 
O.9Bfj 1.02fj 

FREQUENCY ~ 

Fig. 5-Specifications for a typical channel. 
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tions (see Ref. 2, p. 11) for the Touch-Tone receiver require that any 
tone of frequency f lying in the interval Ii defined by fi- == 0.987 fi 
- 4 ~ f ~ 1.013fi + 4 == ft be accepted as a tone corresponding 
to frequency fi. This band of frequencies is referred to as the accept 
band of channel i. The threshold T i has to be set such that M (f) > T i 
for all f in the accept band. Therefore, Ti ~ 11inf;;[:f;[:JtM(f). We 
call 20 loglO Ti the "maximum threshold" for channel i. On the other 
hand, Ti has to be greater than lYI(f) for f E:: Ij, j ~ i. We call Ai 
== [lVlaxYi M(ii)] the "maximum gain at reject channels." If the 
gain at any other channel j exceeds T i , then a tone corresponding to 
channel j could be mistaken as one corresponding to i. The threshold 
with 3-dB rejection is merely 20 loglo Ai + 3. Use of this threshold 
assures that if the input to channel i is a signal corresponding to some 
other channel, then the signal level in the filter is at least 3 dB below 
threshold. Finally, the "rejection at edge" is the measure of the maxi
mum drop in signal level at the edge frequencies fi- and ft from the 
center frequency ji. 

Evidently, these parameters are different for different channels. 
However, by setting certain standards for a typical threshold and 
maximum reject channel gain, a worst-case standard set for the whole 
receiver can be found to compare the performance of cyclotomic filters 
of different periods. It is easily seen that Ii is contained in the interval 
[0.98fi' 1.02ii]; on the other hand, this interval is not significantly 
bigger than Ii for any j. For each channel frequency fi, every iij ~ i 
lies outside the interval [0.91fi' 1.09fi]. The rejection of every alien 
channel is greater than the rejection of frequencies at ends of this 
interval because of the bell-shaped nature of the curve in the intervals 
of interest. 

Now that the ends of the intervals of interest have been scaled with 
respect to the resonant frequency, we can define 

T = Min [M(0.98fi), M(1.02ji)] 

A = IVlax [M(0.91fi), M(1.09fi)]. 

Then 20 loglo T and 20 IOglo A serve as standards for threshold and 
maximum reject channel gain for all channels. Figure 6* is a plot of 
M (fi), T, and A for cyclotomic filters of periods 6 through 30, run for 
seven periods of the fundamental resonant frequency. Although the 
T and A as a percentage of M(fi) do not change appreciably as the 
period of the filter increases, the effect of increasing the period of the 
cyclotomic filter is not equivalent to scaling the input to the filter. 

* In Fig. 6, 0, +, and 0 correspond to M(fi), T, and A adjusted for phase 
shift of input signal as described in Section 3.2. 
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Fig. 6-Performance vs period. 

This is because filters of larger periods assume a larger number of dis
tinct levels. Furthermore, increasing the period of the filter may be a 
way of reducing the effect of noise at the limiter as described in Ref. 1. 
Although rejection in decibels is a conventional method of describing 
performance of the tuned filter, the actual level of the signal may be 
more pertinent to digital applications; hence, the plot is a linear scale. 
We can now discuss some specific aspects of the performance of these 
filters. 
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3.1 Higher-order resonances of filters 

Since the channel filters are discrete-time filters, spurious resonances 
could affect performance, especially since the inputs are hard-clipped, 
and hence have all odd harmonics (see Ref. 1, Section III). The higher 
harmonics introduced resulting from clipping could interfere with the 
fundamental. However, for a cyclotomic filter with transversal weight
ing function (see Ref. 1) of period p, the spurious resonance closest to 
the fundamental resonant frequency is (p - 1) times the fundamental. 
Hence, for example, for p = 6 (the lowest period considered here) the 
closest spurious resonance is five times the fundamental. Therefore, 
for the channel corresponding to the lowest Touch-Tone frequency 
(697 Hz), the first spurious resonance occurs at 3485 Hz, well outside 
the Touch-Tone band. The higher the period of the cylotomic filter, 
the further away this resonance will move. 

3.2 Interchannel rejection 

It was observed above that the ratio Td Aji ~ j was greater than 
T / A for all channels. Hence, the minimum interchannel rejection is 
greater than 20 loglo (T / A). We will use 20 loglo (T / A) as a measure 
of interchannel rejection. The interchannel rejection for all filters of 
periods between 6 and 30 varies between 4.2 and 4.9 dB. This is predi
cated on the assumption that the tone was synchronized with the 
switching on of the filter. This, of course, need not be the case in prac
tice. Hence, this figure was adjusted for the worst-case phase differ
ence between switching on of the receiver and zero of the time signal. 
Calculations showed that in all cases the rejection was not lowered by 
more than 0.5 dB for all filters. The values shown in Fig. 5 are cor
rected for worst-case phase difference. By increasing the interval of 
operation to 10 periods of the fundamental, the minimum interchannel 
rejection for all channels can be increased to about 7 dB. If the interval 
of operation is of the form (m + !) periods of the fundamental for 
any integer 1n, no correction for phase shift seems to be necessary. 

3.3 Sensitivity to clock rate 

Some important parameters of the filters corresponding to each 
channel as a function of percentage variation in sampling rate was 
calculated. The results when cyclotomic filters of period 6 are used for 
seven cycles of channel frequency show that with a threshold set at 
28 dB above the unit signal level of the hard-clipper, a ±2-percent 
change in sampling rate can be tolerated. Hence, even though we have 
to use eight different clock pulses, these clock pulses do not have to be 
controlled especially accurately. For cyclotomic filters of period 30, 
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the largest period considered in Ref. 1, similar observations can be 
made based on computational results. It can be deduced then that the 
performance of the channel filters are not especially sensitive to clock 
rate. This allows for the use of cheaper clocks, when each channel is 
clocked separately. 

IV. REJECTION OF PSEUDO TOUCH-TONE SIGNALS 

Whenever the input to the hard-limiter is a sinusoid, M (f) gives 
an indication of the signal level in the filter. However, when no 
Touch-Tone signal is present, the output of the BPFs are not sinusoids. 
Owing to the nonlinear nature of hard-limiting, the curve on Fig. 5 
does not lend significant insight into the signal level for complex 
signals. To simulate a family of non-Touch-Tone receiver inputs to the 
filter, we modeled the output of the hard-limiters as a two-state sym
metric l\1arkov chain such that the average number of changes of sign 
in the interval of operation was equal to the number of changes of sign 
of a tone corresponding to the channel frequency. Then a simulation 
of the filter operating on such inputs was made. The noise level was 
about 12 dB below the level in the accept band for all cyclotomic filters 
of periods 6 through 30. 

V. SOME REMARKS ON THE CHOICE OF INTERVAL OF OPERATION 
AND PERIOD OF CYCLOTOMIC FILTERS USED 

As mentioned earlier, an interval of operation corresponding to seven 
periods is sufficient to provide adequate interchannel rejection. Hence, 
for signaling it is possible that a 20-ms on-time requirement for tones 
might be sufficient. In this case, one can eliminate the need for bandpass 
filters by altering the signaling process somewhat. Instead of trans
mitting two tones simultaneously for 40 ms, the tones can be sent one 
after the other, each being 20 ms at present. However, it would be 
necessary to determine whether this scheme can provide adequate 
speech immunity. This would reduce the number of channel filters to 
four, since only one frequency from the two groups of frequencies is 
present at a time. Because of simplifications effected in the receiver, 
this method of signaling might prove more useful for transmitting 
information using Touch-Tone signaling. 

As for the period of the cyclotomic filter used, it is clear from Table 
II, Ref. 1, that the number of adds/s increases as the period increases. 
However, depending on the signal-to-noise ratio at the input to the 
hard limiter, the use of a period high enough to make the frequency 
of errors in detection small might be necessary. 
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A class of digital, linear generator-detectors, based upon cyclotomic 
polynomials, which have simple implementation and operate without 
roundoff errors, is proposed. It is shown how these filters are optimal among 
all linear generator-detectors which have no roundoff required in the feed
back loop. The complexity of various cyclotomic filters are compared. 
These filters in general require far fewer binary adds/s than conventional 
second-order filters used for the same purpose. 

I. INTRODUCTION 

Devices for pure tone generation and detection have widespread 
applications. The most notable examples are Touch-Tone® signaling, 
frequency shift keying (FSK) , and multifrequency (MF) signaling. 
Associated with such devices are problems of stability and predict
ability, which in practice are dealt with on an individual basis, using 
techniques peculiar to the particular application. When these devices 
are realized digitally, the above problems are manifest from errors due 
to operational roundoff. 

Generally, tones for signaling are analog signals of the form A sin wt 
(A is the amplitude, 27r/w is the period, and w/27r is the frequency). 
Devices that generate these tones are usually oscillators of various 
kinds. Because of the requirement of structural stability, in practice 
these devices are limit cycle oscillators. These are simulations and 
realizations in hardware of nonlinear differential equations that have 
limit cycles. Because of the complexity of these equations, the ampli
tude and frequency are not easily predicted from given values of resis
tors and capacitors in the network. 

For detection of these tones, linear analog filters are frequently used. 
These are also used as generators, when the duration of the signal is not 
too long compared to the period. However, passive linear analog oscil
lators require inductors which are bulky, and the frequency and 
amplitude of these oscillators can vary with changes in value of the 
inductors and capacitors due to environmental conditions. Active 
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linear oscillators using Re elements are used in many· applications. 
However, they also generally need some form of limiting and end up 
being nonlinear devices, thus usually preventing them from being used 
as receivers. 

Digital oscillators, on the other hand, are almost insensitive to chang
ing parameter values and produce stable repeatable waveforms. How
ever, in the mechanization of these oscillators (which are usually 
based upon second-order linear equations), roundoff in multiplication 
and addition produce errors in the feedback that lead to limit cycles 
and can significantly impair the signal quality. Also, when such linear 
digital devices are used as receivers, the precision required for satis
factory performance goes up quite rapidly with increasing Q. Although 
the effects of this can be satisfactorily controlled in certain specific 
applications (see, for example, Ref. 1), the difficulties, in general, can
not be ameliorated except by increasing the accuracy of computations.2 

In this paper, we present a class of digital filters that operate without 
arithmetic roundoff. These filters are linear, and can be used both as 
oscillators for signal generation and also as receivers for signal detec
tion. The feedback loop of each filter is constructed in such a way as 
to eliminate the possibility of roundoff or truncation errors, thus insur
ing perfect arithmetic. This entirely eliminates the problem of limit 
cycles. The filters presented, when used as generators, produce quan
tized values of A sin wt of arbitrary accuracy. Implementation of these 
filters as receivers involves first sampling an analog input signal to 
produce a digital input into the filter. The filter is designed to resonate 
for a particular input frequency, thus enabling detection. 

The means by which arithmetic errors are eliminated in the feedback 
loop involves constraining all feedback coefficients to be integers (a 
constraint which turns out to be necessary to guarantee perfect 
arithmetic in any digital filter). Thus multiplication by these coeffi
cients can be performed as additions, simplifying implementation. 

The behavior of the feedback loop of this filter is modeled by a linear 
recursion whose characteristic polynomial is a cyclotomic polynomial. 
In recognition of this, we call the filter consisting of the feedback loop 
alone a "cyclotomic filter." It will be demonstrated that the only way 
to ensure perfect arithmetic with no limit on the period of operation 
(and thus avoid limit cycles) in a filter modeled by a linear recursion 
(i.e., a linear digital filter) is to constrain the feedback coefficients to 
be integers. Furthermore, it will be shown that, with this constraint 
on the feedback coefficients and also subject to minimizing memory 
and eliminating as many resonant harmonics as possible, the cyclotomic 
filter is uniquely optimal among all digital linear filters, both for the 
purpose of tone generation and the purpose of tone detection. 
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In subsequent sections of this paper, it is demonstrated how a 
weighting function can be applied externally to the cyclotomic filter 
to drastically reduce the impact of those higher-order resonances that 
remain. This is applied also to determine those impulse responses 
which have a small number of integer levels and lack higher-order 
harmonics. All the cyclotomic filters of practical significance, along 
with their associated weighting functions and impulse responses, are 
examined. 

In Ref. 3, a specific proposal is described for the Touch-Tone receiver 
(and tone generator), utilizing eight cyclotomic filters. 

II. CYCLOTOMIC FILTERS 

The purpose of this filter, as discussed in Section I, is to generate or 
detect a single pure tone u(t) = A sin (27rft + <p) of frequency f. 
Digital implementation involves realizing a discrete time filter with 
k stages of memory (see Fig. 1), which is described recursively in terms 
of an input sequence Un as 

k 

Xn = L aiXn-i + Un· 
i=l 

(1) 

The numbers ai(i = 1, ... , k) are the feedback coefficients of the 
filter. The filter is driven by a clock with the time interval r between 
pulses. In tone generation, the filter must satisfy 

Xn = u(nr), (2) 

at least for some initial conditions Xo, •.• , Xk-l. When used as a 
receiver, the analog input u(t) is sampled, producing a discrete input 
Un = A sin (27rfnr + <p); the filter (1) must distinguish between the 
desired frequency fo and all other frequencies in a band containing fo. 

Fig. I-Recursive filter in k stages of memory. 
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Specifically, it must satisfy the resonance property 

lim sup \ Xn \ = 00, (3) 

when f = fo, and in a sufficiently large band B including fo there must 
be no other such resonances. Then \ Xn \ will be uniformly bounded in 
B in the complement of any small interval 0 about fo, say, \x n \ ~ m(o) 
for all fEB, f EE 0, for all n. A threshold detector can thus detect in 
a finite amount of time NT, the presence (or absence) within B of an 
input frequency fo (with error ±! \ 0 \). It does this by comparing the 
gain SUpn;£N \ Xn \ with the bound m(o); if sup \ Xn \ > m(o), then f Eo; 
otherwise it is not. Of course, the smaller the allowable error 0, the 
larger N must be. 

To know precisely when an input Un will resonate with respect to 
this filter, we first observe that the general solution to (1) is 

(4) 

where PI, "', Pk are the roots (assumed to be distinct) of the charac
teristic equation 

k 

'Ak - :E ai'Ak- i = 0 
i=1 

(5) 

and b1, "', bk are complex functions of the roots. [This is derived in 
(17) below.] If the magnitude of a root of (5) is greater than 1, the 
filter will be unstable. However, if all roots are inside the unit circle, 
then (1) will not have any resonance as defined in (3). Hence, in 
general we will assume that all roots of (5) lie inside or on the unit circle. 

Hence, the resonance (3) will occur if and only if the frequency f is 
such that with ()(i) = arg Pi either 

or 211'fT == -()(i) (modulo 211') (6) 

for some i = 1, "', k with the property that \ Pi \ = 1. That is, the 
detector (see Fig. 2) will give a "yes" response iff (6) is satisfied. As 've 
are trying to detect the presence of the frequency f = f 0, let us sup
pose by way of example that e(l) = 211' fOT (\ Pl\ = 1). Then an input 
A sin (211'fot + <p) would elicit a "yes" response from our receiver. (Any 
phase shift of A sin 211' f ot will not affect the resonance of this signal, as 
A sin (211'fot + <p) = (A cos <p) sin 211'fot + (A sin <p) cos 211'fot, and 
cos <p and sin <p never simultaneously vanish.) However, let us now 
suppose that also e(2) = 211'fiT (\pz\ = 1). Then the receiver would 
also detect an input frequency fl (and would not differentiate between 
f 0 and f 1)' Hence, one would know only whether or not either f 0 or f 1 

is among the inputs. To positively identify the presence of fo, one 
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CLOCK 

Fig. 2-Structure of a tone detector. 

must either insure that f1 is out of band or use some other means to 
differentiate between fo and fl. 

Similarly, because of (6), the filter cannot distinguish between the 
frequency f and the frequency T-I - f, since 271"( T-I - f) T = 271" 
- 271"fT == -271"fT (modulo 271"). In fact, 271"fT and -271"fT are the re
spective arguments of complex conjugates, and thus we see from (6) 
that no new resonances can occur if the characteristic polynomial (5) 
is altered to include among its roots any complex conjugates of PI, .. " 

Pk. We shall use this fact in our determination of a good structure for 
the recursion (4). When the filter is such that an input of frequency 
f will resonate, we shall say that the filter resonates (or has a reson
ance) at f. 

Recapitulating, because of (6), whenever the filter has a resonance 
at a frequency f, it will also necessarily and unavoidably resonate at 
the frequency T-I - f. To counter the effect of this in practice, T must 
be made sufficiently small so that T-I - f is out of band. In keeping 
with (6), we refer to resonance at the frequency f as "resonance at the 
root ei27r/ T

," and resonance at T-I - f as "resonance at the conjugate 
root e-i27r/T" [the roots in question being, of course, roots of (5) J. 

The remaining resonances described by (6) are those due to aliasing. 
These also are intrinsic to the system-a consequence of using discrete 
(rather than continuous) input samples Un. Indeed, if resonance occurs 
at a frequency f (or, equivalently, at the root ei27r/ T

), it will also occur 
at all the frequencies f + mT-I for any integer m, as 271" f T 
== 271"(f + mT-I)T (modulo 271") or, equivalently, 

In practice, if conjugate resonances are out of band, resonances due to 
aliasing will also necessarily be out of band. 
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Hence, if PI, •. " Pm are those roots of (5) of modulus 1, the filter will 
have resonances within the band [0, r-l ] at the frequencies e(I)/27rr, 
[27r - e(I)]/27rr, e(2)/27rr, "', [27r - e(m)]/27rr. The number of 
distinct resonances in the interval [0, (2r)-I] is m, less the number of 
roots among PI, .• " pm which appear along with their conjugates. This 
picture is repeated in each successive interval [nr-l, (n + 1) r-l ] 

(n = ±1, ±2, " .). 
It should be clear that, in choosing the recursion (1), one desires to 

have the number of resonances as small as possible-for the purpose 
of generation, to minimize the number of harmonics that can be pro
duced by perturbations of the initial conditions, and for the purpose of 
detection, to maximize the band in which the filter can detect a unique 
signal. Also, of course, one desires to have the memory k (a measure of 
the complexity of implementation) as small as possible. 

Ideally, one would like to have only one resonance, namely at the 
frequency one is trying to detect or generate. This is possible within 
the band [0, r-l ], by using the recursion Xn = -Xn-l + Un. However, 
this resonates at a frequency equal to half the clock frequency r-l and 
thus also resonates at the third harmonic (2r)-1 + r-1 due to aliasing. 
As the third harmonic is frequently in band, this recursion is generally 
not satisfactory. 

On the other hand, for some complex number P of unit modulus, one 
could use the recursion Xn = pXn-l + Un which also has memory one. 
By adjusting r, one could make the argument of P = exp (i27rfor) 
small, thus avoiding any resonance up to as high a frequency as 
desired. However, there are problems with this recursion. First of all, 
the memory (in implementation) is not really one but two, as the real 
and imaginary parts of P must be handled separately. In fact, as seen 
before, no new resonances would be introduced by including the com
plex conjugate p of P to form a recursion of order two. Hence, one does 
just as well by replacing the characteristic equation 'A - P = ° with ° = ('A - p)('A - p) = 'A2 - a'A + 1 (where the real number a = P 

+ p). The corresponding recursion replacing Xn = PXn-1 + Un, also 
(but now explicitly) of memory two, is Xn = aXn-1 - X n-2 + Un. This 
is the recursion after which digital linear filters are customarily 
modeled. However, as a (p) is, in general, not a rational number 
(gaussian rational*), it must in general be truncated, leading to slight 
frequency shifts, and multiplication round-off error in the feedback 
loop of these filters (Fig. 1) ; this could lead to unwanted limit cycles.2 

To avoid this, a (p) is restricted to be rational (gaussian rational). 
Even for rational numbers, however, truncation error would occur if 

* Has rational real and imaginary parts. 
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the number of bits necessary to represent the number Xn exceeded the 
word length allowed. In Section V we show that this can be controlled 
only if a is an integer. 

Hence, in the case of the real recursion, we restrict a to be an integer, 
and the only possibilities are a = 0, ±1, ±2. We have already ruled 
out a = - 2 (this gives the square of the characteristic equation of 
Xn+l = - Xn + Un). If a = 2, this gives the square of the characteristic 
equation of Xn+l = Xn + Un, which is even worse, as it produces 
resonance at the second harmonic. The remaining three possibilities 
for a correspond to cyclotomic polynomials of orders 3, 4, and 6 (as 
defined subsequently in this section). It will be shown that, by taking 
a cyclotomic polynomial for the characteristic equation (5), one 
always obtains the best possible recursion (1) for the given amount of 
memory. 

In general, to have perfect arithmetic (the only means by which to 
uniformly avoid unwanted limit cycles), it is necessary to constrain the 
feedback coefficients ai, i = 1, ... , k [see (1)] to be gaussian integers 
(see Section V). In fact, it will be shown that one can take each ai = 0, 
±1 so that each tap in the feedback loop involves at most changing 
the sign. Hence, from here on we restrict ourselves to three cases: the 
ai's are gaussian integers, are integers, or are 0, ±l. In what follows, 
we will show that the three are, for practical purposes, equivalent. 

For the first case, in the recursion corresponding to X - p = ° (no 
complex conjugate), the restriction to integer real and imaginary parts 
requires p = ±1, ±i resulting in less generality than possible, as this 
corresponds to the recursions of the previous example with a = ±2 
only. In fact, we can generalize this, and say it is always better to 
include among the roots of (5) all the complex conjugates, and thus to 
have a recursion (1), all of whose- coefficients are real (and hence 
integers). We will make this explicit in a moment, but let us first 
indicate the reasoning. First of all, by including the conjugates, no new 
resonances are introduced (as has already been demonstrated). Second, 
if among the roots of (5) even one conjugate were missing, the coeffi
cients of (1) would not all be real. In this case, the real and imaginary 
parts of Xn would have to be considered separately, and one would thus 
need an effective memory of 2k. On the other hand, if one multiplies 
(5) by factors of the form (X - p), one for each root p of (5) whose 
complex conjugate is not also a root of (5), then the resulting poly
nomial and the corresponding recursion will have real coefficients. The 
respective degree and memory will thus be raised to no more than 2k 
(the effective memory of the complex recursion). Furthermore, as will 
be shown in Theorem 1 below, the new polynomial (and recursion) 
obtained from multiplication by the factors (X - p) will also be 
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guaranteed to have integer coefficients. Thus, we will do at least as 
well (and, as we have seen above, even better) by restricting all the 
recursions (1) to have real (and hence integer) coefficients. 

Let us now make this explicit. Suppose one has the recursion 

k 

Xn = L (X1'Xn-1' + Un, 
1'=1 

where C4(J = 1, ... , k) are gaussian integers: {X1' = aj + bJi (a1' and b1' 
integers, i = -Y=I.). Let Yn and Zn be, respectively, the real and im
aginary parts of xn • Then 

k 

Yn = L (a1'Yn-1' - bjz n- 1') + Un, 
1'=1 

k 

Zn = L (b1'Yn-1' + ajzn-j). 
1'=1 

The only feature possibly mitigating in favor of the complex recursion 
is this: Weare constrained to have a1' and bj be integers. If the new 
recursion with added roots did not have integer coefficients, then in 
spite of the other considerations above, one would choose the complex 
recursion. However, in the following theorem we show this is not 
possible. 

Theorem 1 : Suppose F (~) is a polynomial with gaussian integer coeffi
cients, and suppose PI, ••. , pm are those roots of F(~) whose complex con
Jugates are not also roots of F. Then F (~) IDn=1 (~ - Pi) has integer 
coefficients. Furthermore, if F (~) has no polynomial with integer coeffi
cients as a factor, then deg F = m. 

Proof: Write F(~) = g(~)h(~), where h(~) = II (~ - Pi). Then g has 
real coefficients. Let p (~) be any irreducible factor of F (~) (considered 
as a polynomial over the gaussian integers). Suppose p has the root r 
in common with g and the root s in common with h. Then p (the 
polynomial in ~ whose coefficients are the complex conjugates of the 
coefficients of p) has f as a root, and hence p must also be a factor of 
F. But s is also a root of p, whereas s is expressly not a root of F. 
Hence, any irreducible factor of F must be a factor of either 9 or h. It 
follows that g has integer coefficients, and h (and thus fi) have gaussian 
integer coefficients. As h(~)fi(~) has real, and hence integer, coefficients 
the theorem follows. 

Thus, it is best to take the coefficients of the recursion (1) to be 
integers. The theorem which follows completely characterizes those 
recurSlOns. 
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First, however, a short description of cyclotomic polynomials must 
be given. The Euler cp-function is a function on the positive integers, 
defined as follows: cp(m) is the number of positive integers less than or 
equal to m and having no integer factor in common with m, other than 
1 (such integers are said to be relatively prime to m). For example, 
cp(l) = cp(2) = 1, cp(3) = cp( 4) = 2, cp(g) = 6. The cyclotomic ("cir
cle-dividing") polynomial of order m, denoted FmC,,), is that monic 
polynomial (coefficient of the term of highest degree is 1) with integer 
coefficients all of whose roots are primitive mth roots of unity (that 
is, rm = 1, and rn ~ 1 for ° < n < m). Over the integers, F me,,) is 
irreducible (not a nontrivial product of polynomials with integer coeffi
cients).4 From the definition, one can explicitly determine that Fm(,,) 
= IId (>-. - exp [27ri(d/m)]), where the product is taken over all d, 
1 ~ d < m such that d and m are relatively prime. Thus, the degree 
of F m is cp ( m) . 

The next theorem shows that, whatever constraints there are on 
available memory and acceptable resonant harmonics, the characteris
tic polynomial of the optimal recursion will be a cyclotomic polynomial. 

Theorem 2: Let F(,,) = >-.k - L~=l ai>-.k-i, where ak ~ 0, ai (i = 1, .. " k) 
are integers. Suppose every root p of F(>-.) = 0 satisfies I p I ~ 1. Then F 
is a product of cyclotomic polynomials. 

This is proved in Section V. Recall from our prior discussion that all 
the roots of F must be chosen to satisfy I p I ~ 1 to have stable detec
tion. As it is, of course, better to have fewer resonances, one would 
hence choose for (4) a single cyclotomic polynomial. The cyclotomic 
polynomials make very desirable characteristic polynomials because of 
their extremely simple structure. For example, for m < 105 or for m a 
product of two primes, the coefficients of F m are all 0, ± I! For m a 
power of a single prime, the coefficients are all 0, 1 and for m < 385, 
the coefficients do not exceed 2 in absolute value. If m is a product of 
three distinct odd primes, all the coefficients are less than the smallest 
of those primes. These assertions are cited in Ref. 5. 

This means that implementation of the recursion (1) in the filter 
shown in Fig. 1 is very simple indeed. For all cases of practical interest, 
the feedback coefficients ai will be 0, ± 1. Of course, when ai = 0, one 
simply does not put a tap on the ith stage. Because of the relation 

(Pi distinct primes-see Ref. 4), most of the coefficients of F m will 
usually be zero, and hence the taps-to-memory ratio is generally low 
(see Table I). 

In the preceding discussion, the principal emphasis has been on the 
use of the filter as a receiver. However, considerations relating to its 
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use as a generator lead to the same conclusion: that the characteristic 
polynomial (5) of the recursion (1) should be a cyclotomic polynomial. 
Indeed, for a generator, the probleln of unwanted limit cycles is more 
critical. There is again the requirement that all the roots Pi of (5) 
satisfy I Pi I ~ 1, as small perturbations in the initial conditions 
Xo, ••• , Xk-1 from the (ideal) values 0, sin 27rl07, ... , sin 27rJo(k - 1)7 
(to generate sin 27r lon7) are inevitable; if such a perturbation occurs 
along an eigenvector corresponding to a root Pi, where I Pi I > 1, it 
produces a nonzero coefficient bi for that root in the general solution 
Xn = L~=1 bipf (where b1, ••• , bk are functions of the initial conditions 
Xo, ••. , Xk-1; see Section III). This component would attain an arbi
trarily large amplitude (with time) and overwhelm the desired tone. 

Hence, one again requires a filter that can perform perfect arithmetic 
and whose characteristic equation has all its roots on the unit disc. 
From Theorem 2 we thus deduce that (5) should be a product of cyclo
tomic polynomials for the generator as well. As tone generation is 
impeded by the presence of harmonic resonances at other roots (due, 
again, to perturbation of initial conditions), one takes for (5) a single 
cyclotomic polynomial. 

Thus we have shown that, for both generating and receiving, the 
best linear recursion is one whose characteristic polynomial is cyclo
tomic. As the roots in this case are all of the form exp [27ri(d/m)], the 
resonant frequencies can be expressed as 

(7) 

for all positive integers d < m such that d is relatively prime to m. 
Resonance at the fundamental is described by 27r 17 = 27r(I/m), that 
is, the fundamental of the filter is 1 = 7-1/m. Hence, if one requires a 
fundamental frequency of 10 (i.e., if 10 is the frequency of the tone to 
be generated or detected) and one intends to use a filter with memory 
k = cp(m), the clock rate 7-1 is set at 7-1 = 10m. All other resonances 
occur at various harmonics (multiples of 10) as follows: the resonant 
harmonics in the band 0 ~ 1 ~ 7-1 occur when 17 = dim, that is, at 
1 = dlo for all those integers d as above. For example, if m = 30 then 
k = 8 and d assumes the values 1, 7,11,13,17,19,23,29. Hence, this 
filter has no resonances between the fundamental fo and the seventh 
harmonic. It resonates at the seventh harmonic 7 fo, and thereafter at 
lIfo, 13fo, and so on. The resonances are at all the prime harmonics 
greater than 5, since in general those integers less than and relatively 
prime to the product m of the first p primes, are those primes lying 
between the pth prime and m. Furthermore, note that 30 = 1 + 29 
= 7 + 23 = 11 + 19 = 13 + 17. The first resonance due to aliasing 
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will always be at f = fa + r-1 = fa + fom = (m + l)fo. In the case 
of the previous example, this is the thirty-first harmonic. 

Factors pertinent to the choice of which cyclotomic polynomial to 
use are relegated to Section VI. Suffice it to say at this point that the 
more memory available, the farther away from the fundamental can 
the first resonance be made due to aliasing. However, except for the 
cases m = 1 and m = 2, the first resonance after the fundamental will 
be below the clock frequency r-1• In these cases, for a given amount of 
memory le, if the interest is to have the first higher-order resonance as 
far from the fundamental as possible, one would find the largest integer 
r such that the product m of the first r primes satisfies cp(m) ~ k. Then 
the first higher-order resonance would occur at the qth harmonic, where 
q is the (r + l)st prime. 

III. ELIMINATING IN-BAND HIGHER-ORDER RESONANCES 

The preceding analysis has indicated that, within the constraints 
established, various higher-order resonances are unavoidable. This 
could lead to difficulties. In practice, many higher-order harmonics are 
introduced in the process of limiting the input signal. The limiter (see 
Fig. 2) limits the amplitude of the input signal u(t). For example, a 
common limiter is a "hard-clipper." This has output ± 1, depending 
upon whether u(t) ~ 0 or u(t) < o. The effect of hard-clipping on an 
input is to produce all the odd harmonics: sin 2n-jt ~ 2/1r sin 27r it 
+ 2/37r sin 67r ft + 2/57r sin 107r ft + .... Hence, a filter with more 
resonances frequently must be run for a longer period of time to attain 
a threshold sufficiently high to reject spurious signals. Also, when used 
as a generator, perturbations of the initial conditions of the filter could 
lead to unwanted harmonics at all the resonances of the filter. As such 
perturbations are inevitable, it is usually necessary to make allowance 
for eliminating these harmonics. 

While resonances due to aliasing are inherent to the discrete-time 
nature of the system and are hence unavoidable, resonances below the 
clock frequency r-1 can be handled outside the feedback loop. In par
ticular, it is possible (in theory) to eliminate (in practice, to reduce the 
Fourier coefficients of) any or all resonances at a frequency f, 0 < f 
< (2r)-I, along with the conjugate resonance at r-1 - f. This is 
effected through operations outside the feedback loop. Specifically, this 
is accomplished either through alteration of the input before it enters 
the filter: Un ~ Vn = 'Lt=1 CiUn-i, or equivalently through alteration 
of the filter output before it enters the threshold detector: Xn ~ Yn 

= 2:t=1 CiXn-i (see Figs. 3 and 8). Although these two options are 
mathematically equivalent, considerations with respect to minimizing 
the word length necessary for perfect arithmetic would mitigate in 
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favor of one or the other. This will be discussed in Section V. Here, we 
will describe the latter option only. 

Let X (;\.) be the generating function for the sequence 

k 

Xn = L aiXn-i + Un, 
i=l 

and let U (;\.) be the generating function for the input Un. That is, 

X(;\.) = f: xn;\.n, U(;\') = f: un;\.n. 
n=O n=O 

Then 
k 

X(;\.) = L ai;\.iX(;\.) + U(;\.) , or X(;\.) = 
i=l 

(8) 

Notice that defining F(;\.) == ;\.k - L ai;\.k-i, the characteristic poly
nomial of the filter, we obtain 

(9) 

Since F (;\.) is assumed to be a cyclotomic polynomial, it is real and all 
its roots are of unit modulus. Hence p is a root if and only if p = p-l is 
a root. It follows that ;\.kF(;\.-l) = F(;\.). Thus (9) may be rewritten as 

1 
X(;\.) = F(;\.) U(;\.). (10) 

We define a weighting function W (;\.) with the property that the 
resulting output function 

Y(;\.) == W(;\.)X(;\.) (11) 

has poles only at those roots of F (;\.) corresponding to those resonances 
actually desired. Specifically, W (;\.) will be a real polynomial of degree 
k - 2r, where r is the number of resonances desired in the band 
[0, (2r)-lJ; the roots of W shall be those roots of F corresponding to 
the unwanted resonances. Typically, one desires to eliminate all 
resonances but the fundamental, in which case r = 1 and W(;\.)IF(;\.) 
= II (;\.2 - a;\. + 1) for an appropriate real number a. Then, from (10) 
and (11), one obtains Y(;\.) = W(;\.)X(;\.) = (1/(;\.2 - a;\. + 1)) U(;\.) so 
Y(;\.) = _;\.2Y(;\.) + a;\.Y(;\.) + U(;\.), and 

Yn = aYn-l - Yn-2 + Un. (12) 

This corresponds to a second-order filter with only one resonance in 
the band [0, (2r)-lJ as shown in Fig. 3. Although there will be trunca-
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Fig. 3-Implementation of the weighting function. 

tion error in (12), this will not lead to limit cycles, as there is no feed
back from this to the filter [although (12) represents the performance 
of the filter in terms of resonances, the filter, of course, is not realized 
in this way]. Specifically, the weighting function is implemented as in 
Fig. 3. This is derived from definition (11): if W(X) = Lt=o CiXi, 
then equating terms in (11) yields 

d 

Yn = L CiXn-i, 
i=O 

where, typically, d = k - 2. 

(13) 

As mentioned earlier, the arithmetic of the weighting function is only 
approximate; since there is truncation error in the computation of the 
coefficients Ci, the roots of W will not precisely cancel out the roots of 
F. Rather, the roots of W will be slightly perturbed from the corre
sponding roots of F. The effect of this, as will be shown, is that all the 
resonances due to the roots of F (i.e., all the resonant harmonics of the 
original feedback loop) will be present in the output Yn-however, they 
will have reduced energy (but for the fundamental). That is, the less 
the error in the implementation of W, the smaller the Fourier coeffi
cients of the higher resonant harmonics of the filter. This is demon
strated below. 

Suppose F is the cyclotomic polynomial of order m (or any poly
_nomial whose roots Pi, "', Pk are distinct mth roots of unity, so that 
each Pi = ei21rq/m for some integer q, 0 ~ q < m). A continuous-time 
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extension x(t) of the discrete-time function xn, satisfying x(nT) = Xn 
can be defined as 

m-l 

x(t) == L xnv(t - nT), (14) 
n=O 

where vet) describes a continuous-time extension of xn. Specifically, 
vet) is a periodic input pulse satisfying vet + mT) = vet) for all t 
[typically, vet) = 1 for 0 ~ t < T]. In (4), set Un = VenT) and nor
malize v(O) = 1. Then Xn = L~=l bjpj for n < m. Let x(q) [v(q) ] 
denote the qth Fourier coefficient of x(t) [v(t)]. It follows that 

x(q) == ~ (mT x(t) exp (-i27r!I t) dt 
mTJo m 

= v(q) L Xn exp -i27r !I n m-l ( ) 

n=O m 

= v(q) jtl bj :~: PJ exp ( -i27r ~ n) 
= v(q)bj, (15) 

where j is that index such that Pj = exp [i27r(q/m) J; if no such index 
exists, then x(q) = O. To simplify matters, we will use the expression 
"the Fourier coefficient at (the root) pi' to indicate what in the case of 
(15) is the qth Fourier coefficient :r(q). 

These Fourier coefficients can be computed explicitly from (9). 
Indeed, factoring AkF(A-1) = II~=l (1 - PjA) obtains 

X(A) = j:[ 1 _1 PjA U(A) 

k 1 
= j~l B j 1 _ PjA U(A), (16) 

where the B/s are the coefficients of the partial fraction decomposition, 
derived explicitly in Lemma 3 below (it is assumed that all the roots 
pj are distinct; in the case of multiple roots, however, similar results 
obtain). From (16) one obtains 

k 00 00 

X(A) = L B j L (pjA)n L UiA i 

j=1 n=O i=O 

= L B j L pj-iuiAn , (17) 
j i,n 

so Xn = L~=1 B j Lf=o pj-iUi [which is (4) above]. Hence, B j = bj 

(j = 1, ... , k) and their explicit form is given in the following lemma. 
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Lemma 3: Suppose PI, ••• , Pk are distinct numbers. Then 

t (IT Pi ) _1_ 
i=l j=l (pi - Pj) 1 - PiA 

i ,ci 

Proof: The residue of the left-hand side at the ith pole is the coeffi
cient of that term in the sum above. The decomposition follows from 
the Cauchy residue theorem. 

Notice that, as the roots of F occur in conjugate pairs, a direct con
sequence of (17) is that, if Pi and pj are conjugate roots, then the cor
responding Fourier coefficients are also conjugate: bi = bj • 

The Fourier coefficients for the sequence Yn can be determined as in 
(15). For Xn = L bjpj as before, we obtain from (13) 

(18) 

Thus, the Fourier coefficient of the sequence Yn at the root Pj is W(pj)b j 
(as could be expected, since Fourier transformations are multiplica
tive). Again, the conjugate coefficient W(Pj) = W(Pj). Observe that, 
if Pj is a root of W, then the Fourier coefficients of Yn vanish at the roots 
Pi and pj (W was chosen to be real). If W' is the result of perturbing the 
coefficients of W to correspond to truncation error, then W' (Pi) is (by 
continuity) close to zero. Hence, as errors in the weighting functions 
are reduced, so is the power at each of the resonant harmonics above 
the fundamental (running the system for finite time, of course). 
Surprisingly, W is very stable; if the coefficients of W' are simply those 
of W rounded to the nearest integer (!), the results are frequently 
virtually as good as if W itself were used. This is exhibited in Table I 
and illustrated in Figs. 4, 5, and 6. These figures correspond to a filter 
using the cyclotomic polynomial F 30. The input is a hard-clipped sine 
wave for each given frequency up to 15 times the fundamental. The 
input frequencies are normalized to units of the fundamental frequency 
for each filter. For each input frequency, the filter is run for an amount 
of time equal to seven cycles of the fundamental. If this time corre
sponds to N steps of the filter, the output is maxn;£N I xn I, as measured 
at each input frequency (1500 samples). Using a W' with integer 
coefficients (or any W' with uniformly truncated coefficients) enables 
one to perform all the multiplications as additions, simplifying im
plementation and eliminating any further errors. As one expects, upon 
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Fig. 4-Hard-clipped/no weighting. 
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Fig. 5-Hard-clipped/rounded weighting. 
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Fig. 6-Hard-clipped/exact weighting. 

setting P2 = PI, the Fourier coefficient of Yn ~t the fundamental 

W (PI) IT _P_I _ = PI IT PI (1 - PiPI) = PI 
j=2 PI - Pi PI - P2 j=3 PI - Pi PI - P2 

is the Fourier coefficient of (12) at the fundamental. 

IV. IMPULSE RESPONSE 

The impulse response is the output resulting from an input of a 
single pulse: Uo = 1, Un>o = O. Since this output can also be produced 
by appropriately setting initial conditions, we will refer to it as a pulse 
train. From (4) we see that if the input Un is a single pulse, then the 
output Xn reduces to 

k 

Xn = L bipf. (19) 
i=l 

In the context of the previous sections, it is assumed that the charac
teristic polynomial of the sequence Xn is cyclotomic. Since each Pi is 
then an mth root of unity, the sequence Xn is periodic: Xn+m = Xn for 
all n. As before, the resonant harmonics present in the pulse trains Xn 

correspond to the mth roots of unity which are roots Pi (i = 1, .. " k) 
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of F = F m; the Fourier coefficient of the pulse train at the root pj is 
bj (see Section III). 

In particular, using the notations of Section III, U (A) = 1 and thus 
(10) reduces to 

1 
X(A) = F(A)' (20) 

But X(A) = L::=o XnAn = (L:~~ol XnAn)(L::=o Amn) since Xn+m = x n. 
Defining f(A) = L:~,;J xnA n, one obtains 

1 - Am 
f(A) = F(A) (21) 

from (20). Notice that fhas integer coefficients (the input Un is integer, 
as are the coefficients ai). Indeed, 1 - Am is a product of cyclotomic 
polynomials, one of which is F (A). Specifically, 

1 - Am = ± II F n(A) 
nlm 

[the product is taken over all n which divide m; hence, for example, 

1 - A6 = -Fl(A)F2(A)F3(A)F6(A) 

and, from (21), 

= (A - I)(A + I)(A2 + A + I)(A2 - A + I)J; 

f(A) = ± II F n(A) 
n 1m 
nr!m 

obtains. Consequently, f(p) = 0 for all mth roots of unity p, except 
for the primitive roots of unity [the roots of F m(A)]. This was antici
pated by E. N. Gilbert in Ref. 6, where he showed that a pulse train 
Xn of period m has resonances at those harmonics corresponding to the 
mth roots of unity which are not roots of L:~,;J XnA n = O. Equation 
(21) covers the general situation where f(A) [and consequently F (A) J 
are arbitrary products of cyclotomic factors of 1 - Am. 

In the same paper, Gilbert was concerned about the problem of 
increasing the power of the pulse train at the fundamental (relative to 
the power at the other resonances). This could be done by shaping the 
input Un for one period, but it is usually undesirable to do this. As 
explained in Section III, however, the same effect is obtained by 
utilizing a weighting function W. If utilized directly, this will introduce 
noninteger levels into the pulse train. Nonetheless, it is possible to 
avoid this by replacing W with WI where the latter is obtained through 
rounding off to the nearest integer the coefficients of the former. The 
pulse train resulting from WI will have integer levels, but the trunca-
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tion error will again introduce higher-order resonances. However, 
Table I shows that these are very small indeed, leaving typically about 
98 percent of the power at the fundamental. This compares with 25 
percent or less (for F I6, F 24 , F 30) without WI. Note, for example, F 8• 

The pulse train 1, 0, 0, 0, -1, 0, 0, ° has resonances at the third, fifth, 
and seventh harmonics. However, by simply altering this to 1, 1, 1, 0, 
-1, -1, -1, 0, the first appreciable resonance does not come until 
the seventh harmonic. In this case, use of WI does not introduce any 
new levels in the pulse train. 

The worst case in Table I is F9 where 92 percent of the power is at 
the fundamental. E. N. Gilbert has pointed out that if one wished to 
increase the proportion of the power at the fundamental of this train 
(or any other), one could multiply the output yeA) by some constant 
c > 1, chosen so that the roundoff error of cW ~ (CW)I is smaller 
than that for WI alone [recall (11)]. This, however, would introduce 
more levels into the pulse train (although no more than c times as 
many). 

Table I gives an indication of the possibilities for various filters. 
Included are the filters with memory less than 12 which provide the 
greatest separation between the fundamental and the first resonant 
harmonic, either with or without the weighting function. The asterisks 
and daggers indicate those which, for the amount of memory, have the 
largest possible separation without or with the weighting function. For 
utilization with a "hard-clipper" (which has all odd harmonics), F 3 , 

F9, and F I5 are included. Although these resonate at all even harmonics, 
they have the same response to a hard-clipped input at the fundamental 
as the respective cyclotomic filters of twice the sampling rate. To have 
the first resonant harmonic higher than the seventh (without W) 
would require a memory of 48 (and F to have a coefficient of 2). The 
next interesting entry with respect to W is F36 with memory 12. The 
columns to the right of the double line all deal with the integer-rounded 
transfer function WI. Columns A and B give / bi/2/L~~1 / bi /2 and 
/ bi WI (PI) /2 /L7~1 / bi WI (Pi) /2 as a percent, respectively, where bi is 
the Fourier coefficient of the sequence Xn at the root Pi [see (6) and 
Section III)]. Column C gives (max2~i~k/2 / bi WI (Pi) /2)/ / bi WI(pI) /2 as 
a percent. The roots Pi (i = 1, ... , k/2) are assumed to be in order of 
ascending argument < 7r (so PI is the fundamental). Columns D and E 
give the moduli of the Fourier coefficients bi and bi WI (Pi) of the 
sequences Xn and Yn, respectively. Columns F and G give the pulse 
trains of Xn and Yn, respectively, with initial pulse Uo = 1, Un>O = 0. 
The exponent denotes repeated digit; the arrow indicates that the 
preceding train is followed by another identical train, but that each 
digit is the negative of what it was. 
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Table I - Characteristics of 

Resonan t Harmonics in the 
Band [0, T-1], Aside From 

Number of 
Characteristic 

Fundamental First Taps on Filter Integer-Rounded 
Mem- Polynomial Resonant (Without Weighting 

ory F Harmonic Due Weighting Function 
to Aliasing Function) WI 

Without With 
Weighting Weighting 
Function Function 

*1 F2=}.+1 none - 3 1 -
2 Fa=}.2+}.+1 2 - 4 2 -
2 F,=}.2+1 3 - 5 1 -

*2 F6=}.2-}.+1 5 - 7 2 -
4 F8=}.'+1 3,5,7 7 9 1 1+}.+}.2 

t4 F12=}.'_}.2+1 5,7,11 11 13 2 1+2}.+}.2 
6 Fg=}.6+).3+1 2, 4, 5, 7, 8 8 10 2 1+2}.+}.2+2}.3 

+}., 
t6 F18=}.6_}.3+1 5,7, 11, 13, 17 17 19 2 1+2}.+3}.2+2}.3 +}., 

8 F15=}.8-}.7+}.5 2, 4, 7, 8, 11, 14 16 6 1+}.+}.2+}.3+}., 
_}.'+}.3_}. 13,14 +}.5+}.6 
+1 

8 F 16 =}.8+1 3, 5, 7, 9, 11, 15 17 1 1+2}.+2}.2+3}.3 
13,15 +2}.'+2}.6+}. 

8 Fa=}.8-}.'+1 5,7,11,13,17, 23 25 2 1+2}'+3}.2+3}.3 

t*8 
19,23 +3}.'+2}.6+}. 

Fao=}.8+}.7-}.5 7, 11, 13, 17, 29 31 6 1+3}'+5}.2+5}.3 
_}.'_}.3+}. 19,23,29 +5}.5+3}.5+}. 
+1 

*t See text for explanation 

v. CONDITIONS FOR PERFECT ARITHMETIC 

Here we indicate why cyclotomic polynomials yield optimal recur
sions for generating sinuosidal signals. When we use (1) to generate 
tones, the Un is set to zero and some initial condition xo, Xl, ..•• , Xk-l is 
chosen to generate the required samples Xn: 

k 

Xn = L aiXn-i. 
i=l 

(22) 

If we use the usual second-order recursion, then (22) is of the form 

Xn = aXn-1 - Xn-2, (23) 

where I a I < 2, so we have complex roots. In this case, we show below 
that the number of distinct values that X n , n = 0, 1, ... , N can take 
grows at least as fast as N /2, with N. So, to simulate (22) with perfect 
arithmetic, the number of "words" needed grows at least as fast as N, 
the number of samples needed. 

Proposition 4-: Suppose I a I < 2, and rational but not an integer. Then 
for any initial conditions xo, Xl (not both zero) and any positive integer N, 
the number of distinct values among Xo, ... , XN, where Xn = aXn-1 
- Xn-2, for 2 ~ n ~ N, is at least N /2. 
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some cyclotomic filters 

A I 
B D I E F 

I G 

% of Total Highest Power l\f odulus of Fourier Power in at a Rejected Coefficients (in Order of Pulse Trains [0, (2T)-1] at Resonance Arguments < 11") Fundamental (% of 
Fundamen tal) 

Without With 
TVI WI Xn Yn Xn Yn 

---
100 - - 1 - 1, -1 -
100 - - 0.58 - 1, -1,0 -
100 - - 0.5 - 1, 0, -1,0 -
100 - - 1.73 - 120 -120 -
50 97.1 2.9 All 0.25 0.60,0.10 103-103 130-130 
50 99.5 0.5 All 0.29 1.08,0.08 10103-10-103 12310-1-23-10 
33.3 92.7 7.8 All 0.19 0.85,0.04, 102-105 1212-12-2-10 

0.24 
33.3 99.6 0.3 All 0.19 7.6,0.04, 102105 --> 1234210--> 

0.06 
53.3 98.9 0.8 0.33,0.27, 4.78,0.51, 1302-1307 123321-1-2 

0.09,0.11 0.55, 0.75 -33-2-10 

25 98.0 1.8 All 0.13 1.29,0.02, 107-107 12232210--> 
0.06,0.17 

25 99.5 0.3 All 0.14 1.97, 0.05, 103107 -103-107 12324332210 --> 
0.09,0.11 

6 98.4 1.0 0.11,0.09, 2.41,0.04, 1-11021-1107 --> 123254524532210 -+ 
0.27,0.33 0.19,0.24 

Proof: We can write Xn = b1P~ + b2P~' where PI, P2 are the distinct 
roots of ~v - aX + 1, as in (19). Since the roots are not real, let 
P = PI(= P2), b = bl (= 62). Thenxn = xmimplies Re (bpn) = Re (bpm). 
In this case, letting 0 = arg p, cp = arg b, we obtain cos (cp + nO) 
= cos (cp + mO) so cp + nO == ±(cp + mO) (mod 271'). Since p is not a 
root of unity, the numbers nO (n = 0, 1, 2, ... ) are all distinct and 
hence for fixed 1n either n = m or nO == - 2 cp - mO (mod 271'). As this 
last congruence can be satisfied by at most one n, it follows that, for 
each m, there is at most one n ~ m such that Xn = xm • 

The following result shows that, if one wishes to generate sin 71'nO 
with perfect accuracy using a linear recursion, ei

1l"fJ must be a root of 
the corresponding polynomial (5). 

Proposition 5: If Sn = sin 71'nO is a solution of Xn = L aiXn-i and 0 is 
not an integer, then ei

1l"fJ is a root of the polynomial Xk - L aXk-i.· 

Proof: From sin 71'(n + 1)0 = L ai sin 71'(n + 1 - j)O, we expand 
both sides using a familiar trigonometric identity and get 

sin 71'nO cos 71'0 + cos 71'nO sin 71'0 = sin 71'(n + 1)0 
= L ai sin 71'(n + 1 - j)O = L ai sin 71'(n - j)O cos 71'0 
+ L ai cos 71'(n - j)O sin 71'0 = sin 71'nO cos 71'0 

+ L ai cos 71'(n - j)O sin 71'0. 
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Since 0 is not an integer, sin 7rO ~ 0, and thus from the equality of the 
first and last expressions, we obtain cos 7rnO = L.: aj cos 7r(n - J)O. 
Hence, cos 7rnO is also a solution to the recursion, and it follows that 
ei7rn6 = cos 7rnO + i sin 7rnO is a solution too. Consequently, ei7rk6 

- L.: aje i7r (k-f)6 = 0. 
The next theorem shows that every recursion which satisfies the 

stability criterion I p I ~ 1 for all its roots, and for which perfect 
arithmetic is possible, is cyclotomic. 

Theorem 6: Suppose every root p of the polynomial F (;>..) = ;>.. k 
L.:~=l ai;>..k-i satisfies I p I ~ 1. 

(i) If aI, "', ak are integers and ak ~ 0, then F(;>..) is a product of 
cyclotomic polynomials. 

(ii) If aI, .. " ak are rational numbers and Xn = L.: aiXn-i is periodic 
(Xn+p = Xn for some p, all n) for some nonzero initial conditions 
Xo, "', Xk-l, then F (;>..) has as a factor a cyclotomic polynomial. 

Proof: For case (i), each irreducible factor (over the integers) of F(;>..) 
has the same form as F(;>..) itself by' 'Gauss' Lemma".6 Thus, it 
suffices to assume that F (;>..) is irreducible, in which case all its roots are 
distinct. In this case, we can write Xn = L.: bipf where the p/s are the 
roots of F(;>..) and Xn is as in case (ii). But then IXnl ~ L.: Ibil, and as 
for any integer initial conditions Xo, "', Xk-l, Xn will be an integer for 
all n, Xn can in such a case assume only a finite number m of distinct 
values (m = [L.: I bi I]). Hence for all n, the ktuple (Xn+l, "', Xn+k) 
can assume at most m k distinct values, and as Xn is recursively gen
erated with memory k, Xn must be periodic, of period p ~ mk. This 
brings us to case (ii). 

For case (ii) , let L be the rational canonical form associated with 
the recursion Xn (see Ref. 7, Section 5.2.1), and J be the Jordan 
canonical form of L. Then for some initial state vector x, Jpx = x, and 
it follows that some diagonal element of J, that is, some root of F(;>..), 
must be a pth root of unity. Hence, the irreducible factor of F(;>..) 
having that root must be cyclotomic. 

Hence, from the above the 0 of Proposition 5 must be rational when 
perfect accuracy is required. 

In all the preceding, the basic assumption has been that all the 
coefficients of the recursion (22) are real. We can infer from Theorem 1 
that this is no loss of generality as, if the recursion had complex coeffi
cients (with rational real and imaginary parts) and was irreducible 
over the field Q(i) (the field of gaussian rationals), then the roots of 
the characteristic polynomial would be distinct, no pair being con
jugate. Indeed, Theorem 1 remains true if the word "integer" is every-
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where replaced by "rational number." The arguments of Section II 
show that we may as well assume all the coefficients are real. 

VI. COMPUTING WORD LENGTH AND ADDITIONS PER CYCLE 

To realize the cyclotomic filters in hardware with perfect arithmetic, 
the necessary amount of memory and adder complexity must be pro
vided. We describe here how to estimate the word length and the rate 
of additions required to implement a cyclotomic filter with a weighting 
function. It shall be assumed that all operations are performed in 
binary form. The number of binary bits required to store each Xn is 
called the word length w of the system. For generators that produce a 
signal approximating a sinusoid, the word length required will depend 
on the accuracy of approximation needed. When the filter is used as a 
tone detector, the word length required will depend on the duration of 
operation, since the signal level tends to build up, especially at fre
quencies close to any resonant frequency (Fig. 7). The signal level, of 
course, does not uniquely specify the minimum word length. Even 
though for storing Xn we may need only w bits, it is conceivable that 
during the computations numbers greater in magnitude than X n , which 
need more bits for storage, could arise. To perform operations in a 
serial-multiplexed fashion, it is desirable to have uniform word length 
for all operations in the feedback loop of the filter. Hence, the word 
length will have to be increased to accommodate any number en
countered during the computations. However, for the filters considered 
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in Table II, it is possible to arrange the computations in such a way 
that the word length is determined by the maximum magnitude of x n • 

In general, there are a finite number of ways in which the additions 
involved in the filter can be arranged. By simulation of the different 
arrangements, the word length required can then be determined. 

There are two possible ways of implementing the cyclotomic filters 
as generators. The first is to generate the impulse response (19); this 
is generally sufficient (see Table I). In this case, the weighting function 
(13) shapes the effect of this impulse to simulate the initial conditions 
Xo, ••. , Xk-l of the tone being generated. As the input is zero after the 
initial pulse Uo = 1, the weighting function need only be used during 
the first d + 1 steps of the filter. Let m be the largest number in the 
pulse train Yn of Table I, and let [[x]] be the smallest integer larger 
than x. The word length necessary for perfect arithmetic is at least 
w = [[lOg2 In]] + 1 and, for the filters considered here, w is also 
sufficient. (We add 1 for a sign bit.) This word length is shown in 
column B of Table II. 

However, rounding off in the weighting function introduces errors 
in the effective initial values of the signal. If this approximation is not 
sufficiently good, then the initial conditions of the filter Xo, ... , Xk-l 

can be set as accurately as needed, and then the filter is operated with 
the feedback loop alone. In particular, one can set the initial conditions 
of the filter such that I Xn - sin 27rn/p I < 2-m (n = 0, ... , k - 1) 
where sin 27rn/p is the desired signal. One can then compute the mini
mum word length required by simulating the filter for one period. In 
all cases of interest here, the word length including sign is (m + 1) 
for m ~ 12. Hence, as an example, the cyclotomic filter of order 30 
can generate a sequence (Xn) such that I Xn - sin 27rn/p I < 2-10 if 
the initial conditions are set such that I Xn - sin 27rn/p I < 2-10 

(n = 0, ... , 7), using a word length of II. 
To determine the number of binary additions per period of the filter 

(i.e., per cycle of the fundamental), one counts the number of bit 
additions per step. If m denotes the number of additions per step, then 
pmw is the number of binary additions per cycle, where p is the period 
of (22) and w the word length used in the feedback loop (see above). 
When the generator is implemented in the first way (using an initial 
pulse and the weighting function), the number of additions is shown 
in column C of Table II (not including those necessary in the initial 
d + 1 steps for the weighting function). When the generator is im
plemented in the second way (setting the initial conditions), the num
ber of additions can be computed by multiplying the value in column C 
by w/w', where w is the word length chosen and w' is the corresponding 
word length from column B. 
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When the filter is used as a detector, we assume that the input to the 
filter is a sequence which only assumes the values + 1 and -1. This is 
true, for example, when the analog signal to be detected is either hard
clipped or delta-modulated. In these cases, it js advantageous to apply 
the weight function to the input sequence Un rather than to the se
quence X n ; since, in general, Xn can assume many values other than + 1 
and -1, computations involving the weighting function are simplified 
if they are performed on the input (see Section III). In fact, applying 
the weighting function to the input is so simple arithmetically that it 
can be implemented with read-only memory. On the other hand, if 
read-only memory is not used and one wishes to save on computations 
by checking the threshold (max {Xn}) only in the last cycle of the filter 
(with respect to its duration of operation for detection), then the 
weighting function is best implemented as in Section III, on the output 
of the feedback loop. Then the filter can be run during all but the last 
cycle, without computing the weighting function. 

When the weighting function is applied to the input, the filter is 
described by 

d 

Vn = L CiUn-i 
i=O 

k 

Xn = L aiXn-i + V n , 
i=l 

(24) 

(25) 

where Un is the input into the filter and Vn is the result of the weighting 
function. Figure 8 describes this filter. 

For the filters in Table I, the effect of rounding Ci to the nearest 
integer is slight. Hence, it is a fortiori suitable to round off 
Vn = L CiUn-i to the nearest integer. Therefore, since the only values 

Fig. 8-Implementation of the weighting function at the input. 
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assumed by Ui are ±1, it suffices to have for Vn a word length of 
w = [[lOg2 {L I Ci I }]] + 1 (where {x} is the integer closest to x and 
[[x]] is the smallest integer larger than x; 1 is added for a sign bit). 
The sequence Vn can then assume any value between - {L I Ci I} and 
{L I Ci I}. With d as in (24) and w as above, implementations of the 
weighting function with read-only memory then requires 2d+l w memory 
bits. The respective values for this are shown in column D of Table II. 
When a bank of such tuned filters is used in one receiver (for example, 
in a Touch-Tone® system such as described in Ref. 3), all the filters 
could use one read-only memory foor the weighting functions. Also, by 
increasing w, we can make the round-off error as small as we wish. 

To determine the word length for use in the feedback loop of the 
detector, the maximum signal level can be determined by using an 
input Un of the same frequency as the resonant frequency. Since the 
impulse response [see (19)] of these filters is periodic and of the same 
period as the resonant frequency, the latter produces the maximum 
signal level SUpn;£.N xn , for duration of operation N 7. Let this maximum 
be M. The word length required should then be at least [[lOg2 M]] + l. 
For all the filters considered here, [[lOg2 M]] + 1 is also sufficient. 
The number of M, of course, is determined by N. If the cyclotomic 
filter is of period p (i.e., Theorem 1 is F p), then the filter runs through 
N /p periods, corresponding to N /p cycles of the fundamental. Calcula
tions have been made for two values of N /p: 7 (the number of cycles 
computed in Ref. 3 to be necessary for Touch-Tone interchannel rejec
tion), and 10 (a more uniform point of reference). 

In Table II, column E shows the word length required in the feed
back loop for the indicated durations, when the weighting function is 
computed on the input as in (24), implemented equivalently with or 
without read-only memory, producing the filter response (25). 

When there is no weighting function on the input, the word length 
required is shown in column F (of course, a weighting function may be 
applied to the output as in Section III). 

The number of binary additions per cycle for the detector is de
termined in the same way as for the generator; the number is pmw as 
defined above. These numbers are shown in columns G, H, and K of 
Table II. Column G shows the number of binary additions per cycle 
in the feedback loop when read-only memory is used to implement the 
weighting function, applied to the input as in (24). If read-only memory 
is not used, then the weighting function has to be computed. Since the 
numbers involved in the computation of the weighting function [when 
implemented as in (24)] are generally smaller than those in the feed
back loop, the word length required for their computations are smaller. 
Hence, one can use two different adders, one for the weighting function 
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Table II - Complexity of some cyclotomic generator-detectors 

Detector: 7 Cycles Detector: 10 Cycles 
Generator 

Using 
Impulse Word Adds/Cycle Word Adds/Cycle Response Length Length 

for (Xn) for (Xn) for (Xn) for (Xn) 

"C "C "C "C 

'" '" '" Cl 
"C :c "C :c "C :c "C :c 

..c: ..... .3 t:lJ .3 t:lJ . .3 t:lJ .3 t:lJ . 
"C "C.., ~~ .-'; ..c:.., .Q)....,:l ..c:+> 'a:)~ ..=- ..c:+> .Q)~ ..c:.., 'Q)~ ..=-
.~ ... t:lJ 0 .~ S. >::l .~ S. ;:::l ... .~ s. ;: ::l .~ S. ~ ::l ... 0': "C>, ~t .:0- .:0- .:0-
'" ~j ~ ~..:; ~..:; p":; 0 

~..:; p":; p.-.: p":; 0 
~ <0 >=. ......... >=. ----------------------------
A B C D E F G H K E F G H K 

----------------------------
6 2 24 - 6 6 72 72 - 7 7 84 84 -
8 2 16 24 7 5 56 40 112 8 6 64 48 128 
9 3 54 128 8 5 144 90 360 8 6 144 108 360 

12 3 72 24 8 6 192 144 288 9 7 216 168 324 
15 3 270 512 9 7 810 630 810 10 7 900 630 900 
16 3 48 640 9 5 144 80 1276 10 6 160 96 1440 
18 3 108 128 9 6 324 216 1134 10 7 360 252 1260 
24 4 192 640 10 6 480 288 2160 11 7 528 336 2376 
30 4 720 768 11 8 1980 1440 3630 11 8 1980 1440 3630 

and one for the feedback loop. Using this arrangement, the number of 
additions per cycle for calculating the weighting function is shown in 
column K. The number of binary additions per cycle when no weighting 
function is used is shown in column H. This, of course, applies when 
the weighting function is applied to the output as in Section III (but 
does not include the number of additions necessary for the weighting 
function). To calculate the number of additions when the weighting 
function is applied to the input, but read-only memory is not used, add 
columns Hand K. 

Column A indicates the respective cyclotomic filters described by 
their periods. 

One important consideration that affects the choice of the order of 
cyclotomic filter is the noise level at the input to limiter (together with 
the noise in the limiter). This affects the output of the limiter when the 
signal level is low. One could divide the period of the signal to be 
detected into regions where errors could affect the decision about the 
sign of the signal, and regions where no errors will occur. Those sam
pling instances where errors could occur lie in regions where the absolute 
value of the signal is small. Suppose these regions are intervals of 
length E around the zero crossings of the signal. The worst case cor
responds to a phase shift of the signal with respect to the sampling 
interval which maximizes the number of samples in the error regions. 
For E = 1/63 (corresponding to approximately 20 dB sin), there are 
at most two samples per period that are subject to errors for all the 
filters we have considered here. Hence the ratio of error-susceptible 
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samples to error-free ones decreases in this case as the period p in
creases (for p ~ 30). This ratio indicates the perturbation of the thresh
old one has to make in order to compensate for errors in the limiter. 

VII. APPLICATIONS 

Possible uses for the systems described in this paper have been 
mentioned in Section 1. In particular, a scheme is proposed in Ref. 3 
for utilizing eight cyclotomic filters as channel detectors in a Touch
Tone receiver. 

Another application of cyclotomic filters may be FSK. As described 
earlier, by selecting the initial conditions of a cyclotomic filter of 
period p, one can approximate uniformly sampled values of a sinusoid 
of period p, i.e., sin 27rn/p. By changing the clock rate of the filter, one 
can shift the frequency of the sinusoid to any preassigned value. 
Hence, when using the filter as a generator, one can shift the clock rate 
to shift the frequency. This method of shifting frequencies does not 
introduce any "discontinuities" in the signal. If, instead of changing 
clock rate, one were to change the coefficient of a filter, then the filter 
has to be reinitialized to have constant amplitude, thus producing a 
discontinuity in the signal. In a similar manner, when using the filter 
as a detector, one can shift the resonant frequency by shifting clock 
rate. Hence, with the same filter, one can generate and detect both 
tones used in a typical FSK arrangement. Furthermore, cyclotomic 
filters have infinite Q, allowing for the possibility of increasing signaling 
rate above the presently used systems with finite Q. 
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Robert P. Kurshan, Ph.D. (l\1athematics), 1968, University of 
Washington; Krantzberg Chair for Visiting Scientists, Technion, 
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497 



Kurshan is engaged in mathematics research, with an emphasis on 
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Abstracts of Bell System Papers 
Appearing in Other Publications 

Beginning with this issue, the Journal will publish abstracts of papers 
written by Bell System authors for other technical and scientific publi
cations. We hope this new section provides you, our readers, with a 
reference source for articles covering the broad range of research and 
development in the Bell System. 

CHEMISTRY 
Heterogeneous Removal of Free Radicals by Aerosols in the Urban Troposphere. 
L. A. Farrow, T. E. Graedel, and T. A. Weber, ACS Symposium Series, Removal of 
Trace Contaminants from the Air, ed. Victor R. Deitz, 17, 1975, pp. 17-27. The 
effect of aerosols on atmospheric photochemistry has been evaluated in a computation 
of the gas phase chemistry of the urban troposphere for the northern New Jersey 
metropolitan region. It is shown that aerosol-radical interactions provide an efficient 
radical sink and stabilize the diurnal variation of radical concentrations. 

The Influence of Aerosols on the Chemistry of the Troposphere. T. E. Graedel, L. A. 
Farrow, and T. A. Weber, I. J. Chern. Kinetics, Symposium No.1, 1975; Proceed
ings of the Symposium on Chemical Kinetics Data for the Upper and Lower Atmo
sphere, pp. 581-594. Full kinetic calculations of the diurnal chemistry of the 
urban troposphere have been made using a formalism that includes the interactive 
effects of aerosols and free radicals. These effects are shown to be necessary to a 
unified analysis of atmospheric chemical reactions. 

Liquidus-Solidus Isotherms in the In-Ga-As System. M. A. Pollack, R. E. N ahory, 
L. V. Deas, and D. R. Wonsidler, J. Electrochem. Soc., 122 (November 1975), pp. 
1550-1552. Liquidus and solidus data are presented for the 800°,850°, and 900°C 
isotherms in the In-rich corner of the In-Ga-As phase diagram. A simple solution 
model gives excellent agreement with the solidus data, but describes the liquidus 
more poorly than desired. 

Ozone: Involvement in Atmospheric Chemistry and Meteorology. T. E. Graedel 
and L. A. Farrow, Ozone Chemistry and Technology, ed. J. S. Murphy and J. R. Orr, 
Philadelphia: Franklin Institute Press, 1975, pp. 165-175. The chemistry of ozone 
is closely related to virtually every gas phase chemical process that occurs in the 
troposphere and stratosphere of the earth. This paper reviews the current knowledge 
of ozone sources and sinks for the urban troposphere, the rural troposphere, the natural 
stratosphere, and the perturbed stratosphere. 

The Synthesis and Characterization of Some Oxide Fluorides of Rhenium and 
Osmium. W. A. Sunder and F. A. Stevie, J. Fluorine Chern., 6 (November 1975), 
p. 449. Existing synthetic methods for oxide fluorides of rhenium and osmium 
have been reviewed. New syntheses, using static heating, have been developed for 
OSOaF2' Os02Fa, OsOF5, OsOF4 , ReOaF, Re02Fa, ReOF 5, and ReOF4 • The products 
were characterized principally by mass spectroscopy, with supporting information 
for X-ray powder diffraction, chemical analysis, and molecular beam deflection. 

ELECTRICAL AND ELECTRONIC ENGINEERING 

Using Discretionary Telecommunications. D. Gillette, IEEE Trans. Commun., 
COM-23 (October 1975), pp. 1054-1058. Continuing technical effort can help 
reduce the cost of telecommunications and add opportunities for their use. However, 
the biggest task in application is organizing institutions and procedures to use exist
ing telecommunications systems and information technologies effectively. 
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MATERIALS SCIENCE 

Lead Alloys for High Temperature Soldering of Magnet Wire. W. G. Bader, Welding 
Journal, 54 (October 1975), Research Supplement, pp. 370-s to 375-s. Lead-tin 
solders were evaluated for use in high-temperature soldering of fine gauge, poly
urethane-insulated, copper-magnetic ''lire. The dissolution rates of copper by molten 
solders were determined at temperatures to 900°F and the reduction of these rates by 
copper additions to the solder. Also, wetting of copper by the solders and solder 
joint appearance were evaluated. 

GENERAL MATHEMATICS AND STATISTICS 

Explicit Construction of Invariant Measures for a Class of Continuous State Markov 
Processes. S. Halfin, Ann. Prob., 3 (October 1975), pp. 859-864. An explicit 
construction of invariant measures for a certain class of continuous-state Markov 
processes is presented. A special version of these processes is of interest in the theory 
of representation of real numbers (,a-expansions). Previous results of Rcnyi and Parry 
are generalized, and an open problem of Parry is resolved. 

Ridge Analysis Following a Preliminary Test of the Shrunken Hypothesis. R. L. 
Obenchain, Technometrics, 17 (November 1975), pp. 431-441 (with discussion by 
G. C. McDonald, pp. 443-445). Ridge analysis is a "new" form of multiple linear 
regression which can be helpful when the data are ill-conditioned (nearly multi
collinear) and least-squares coefficients are highly intercorrelated. Utilizing the 
likelihood function for mean-squared-error optimality under normal distribution, a 
statistical test can detect situations where ridge analysis will be worthwhile. 

PHYSICS 

Aspects of the Band Structure of CuGaS2 and CuGaSe2' B. Tell and P. M. Briden
baugh, Phys. Rev. B, 12 (October 15, 1975), pp. 3330-3335. The spin-orbit 
splitting has been determined in the sulfur-rich section of the system CuGaSe2_2xSe2x, 
which demonstrates that the spin-orbit splitting is negative in CuGaS2. A model which 
provides adjustable coupling and separation between the p- and d-like valence band 
can account for the main features of the band structure of CuGaS2 and CuGaSe2. 

Excitation of Transversely Excited CO 2 Waveguide Lasers. O. R. Wood II, P. W. 
Smith, C. R. Adams, and P. J. Maloney, App!. Phys. Letters, 27 (November 15, 
1975), pp. 539-541. Using a preionization scheme based on the Malter effect, 
small-signal gains >5%/cm at 10.6 }.lm have been produced in a 1-mm2 cross-section 
waveguide CO2 amplifier at total operating pressures of 0.1 to 1 atmosphere. Com
parisons between this preionization scheme and those using electron beams are made. 

Dynamic Spectroscopy and Subpicosecond Pulse Compression. E. P. Ippen and C. 
V. Shank, App!. Phys. Letters, 27 (November I, 1975), pp. 488-490. Picosecond 
pulses from a mode-locked cw dye laser have been compressed in time to produce 
pulses as short as a few tenths of a picosecond. Dynamic spectroscopic investigations 
of the laser pulses reveal temporal asymmetry and frequency chirping on a sub
picosecond time scale. 

Frequency Dependence of the Electron Conductivity in the Silicon Inversion Layer 
in the Metallic and Localized Regimes. S. J. Allen, Jr., D. C. Tsui, and F. DeRosa, 
Phys. Rev. Letters, 35 (November 17, 1975), pp. 1359-1362. The conductivity of 
electrons in the inversion layer of silicon has been measured from 0 to 40 cm-1 at 
1.2°K in the metallic and localized regimes. The correlation between u(T) and 
u(w) in the localized regime suggests that the drop in conductivity at low electron 
concentrations is caused by the appearance of a gap at the Fermi level. 

Elasticity Measurements in the Layered Dichalcogenides TaSe2 and NbSe2' M. 
Barmatz, L. R. Testardi, and F. J. Di Salvo, Phys. Rev. B, 12 (November 15, 1975), 
pp.4367-4376. The Young's modulus and internal friction exhibit large anomalies 
at the commensurate charge-density wave (CDW) transition in 2H-TaSe2. Hysteresis 
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effects (,......,5K) verify the first-order nature of this transition. The incommensurate 
CDW transitions and the superconducting transition in 2H-NbSe~ show weak elastic 
anomalies with essentially no hysteresis effects. 

Interdiffusions in Thin-Film Au on Pt On GaAs (100) Studied with Auger Spectros
copy. C. C. Chang, S. P. Murarka, V. Kumar, and G. Quintana, J. Appl. Phys., 
46 (October 1975), pp. 4237-4243. Pt/GaAs heated in vacuum reacted initially 
by rapid Ga migration into Pt and formation of an As-rich layer at the Pt/GaAs 
interface. Ga eventually traveled entirely through even 9000 A Pt films, while As 
always stopped abruptly about ~ way into the Pt. No Au was detected « 1 atom 
percent) in the Pt or GaAs after extensive Pt-GaAs reaction in Au/Pt/GaAs. Pt/ 
GaAs heated in air behaved similarly, but developed a Ga-O layer over the Pt and 
an oxygen-rich layer at the Pt/GaAs interface. 

Low-Threshold Room-Temperature Double-Heterostructure GaAsl_xSbx/AlyGal_y
Asl_xSbx Injection Lasers at I-tIm Wavelengths. R. E. Nahory and M. A. Pollack, 
Appl. Phys. Letters, 27 (November 15, 1975), pp. 562-564. Double-hetero
structure (DR) injection lasers based on the GaAsl_xSbx/ AlyGal_yAsI_xSbx system 
have been fabricated using liquid phase epitaxial growth techniques and operated 
at room temperature at wavelengths in the I-}.Lm region. The observed room-tempera
ture threshold current densities, as low as 2100 A cm-2, are comparable to those of 
GaAs/ AlGaAs devices of similar geometry. 

Observation of Resonance Radiation Pressure on an Atomic Vapor. J. E. Bjorkholm, 
A. Ashkin, and D. B. Pearson, Appl. Phys. Letters, 27 (November 15, 1975), pp. 
534-537. We have used the resonance radiation pressure from 40 m W of cw 
dye laser light propagating axially down a tube filled with sodium vapor to increase 
the sodium pressure (density) up to 50 percent over a length of 20 cm. The magni
tude of the effect agrees well with measurements of the absorbed power. 

Optical Pumping in Nitrogen Doped GaP. R. F. Leheny and Jagdeep Shah, Phys. 
Rev. B, 12 (October 15, 1975), pp. 3268-3274. Absorption saturation at the A 
bound exciton in GaP:N is described for a pulsed pump laser tuned directly to this 
absorption line and for a pump laser tuned above the indirect absorption edge. The 
second measurement yields lO-percent capture efficiency for N impurity. These 
measurements are analyzed by a model three-level system for the bound exciton by 
states. 

Physical Properties of Poly (vinylchloride )-Copolyester Thermoplastic Elastomer 
Mixtures. T. Nishi, T. K. Kwei, and T. T. Wang, J. Appl. Phys., 46 (October 1975), 
pp. 4157-4165. A study was made on the compatibility, thermal behavior, 
and mechanical properties of the poly (vinylchloride) blended with copolyester 
thermoplastic elastomer. Results from NMR, thermal expansion, tensile test, and 
dynamic mechanical measurements indicate extensive mixing of the segments of two 
polymers. 

Torsional-Mode Losses at Contacts Between Homogeneous Fiber Waveguides and 
Supporting Structures. R. L. Rosenberg and G. D. Boyd, J. Appl. Phys., 46 (Novem
ber 1975), pp. 4654-4658. The losses from an ultrasonic torsional wave in a 
homogeneous fiber that are caused by contacts with fiber supports are found to de
pend primarily on contact area for a wide range of contact forces and materials. The 
associated force, compliance, and frequency dependencies are used to evaluate 
long-waveguide poten tiali ties. 

Volume Holograms in Photo chromic Materials. W. J. Tomlinson, Appl. Opt., 14 
(October 1975), pp. 2456-2467. Theoretical expressions are derived describing 
the process of writing volume (or thick) hologram gratings in photochromic materials. 
The theory includes the effects of the saturation of the material response, scattering 
of the writing beams by the partially written hologram, and the refractive index 
changes that accompany the photoinduced absorption changes. 
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