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Pulse Broadening in Multimode Optical Fibers 

ByJ.A.ARNAUD 
(Manuscript received February 21, 1975) 

Closed-form expressions are obtained for the impulse response of 
graded-index fibers whose relative permittivity is a homogeneous function 
of the two transverse coordinates x, y, and for the impulse width in graded
index fibers whose profile departs slightly, but otherwise arbitrarily, from 
a square law. The inhomogeneous dispersion of the material is taken into 
account. Pulse broadening can be reduced by a factor of 12 from the value 
obtained for square-law fibers. Simple expressions are found for the 
acceptance of highly oversized fibers. 

I. INTRODUCTION 

Light-emitting diodes supply their optical power in a time and space 
incoherent form. The line width is typically of the order of 200 A, 
and the radiation is approximately lambertian with an emissive area 
of the order of 50 X 50 ,urn. Time and space incoherent optical pulses 
can be transmitted by oversized optical fibers. However, optical pulses 
propagating in such fibers tend to broaden as they travel. This is in 
part due to the nonzero line width of the source and the dispersion 
(d2kj dw2

) of the fiber material. The other cause of pulse broadening 
is associated with the fact that the time of flight of a pulse along a 
ray depends on the ray trajectory. Pulses traveling along axial rays 
usually go faster than pulses traveling along rays of large amplitude. 
Because both types of rays are excited by spatially incoherent sources, 
the difference in axial group velocity causes a broadening of the input 
pulse. In the main text of this paper, we assume that the carrier is 

1179 



monochromatic and that the spatial distribution of the rays is time
invariant. This is the case, for instance, when the source is an injection 
laser that oscillates simultaneously on many transverse modes. The 
difference in frequency between these various transverse modes can 
usually be neglected. 

It was first pointed out by Kompfner1 that pulse broadening in 
step-index fibers could be drastically reduced by introducing ray 
equalizers at various locations along the fiber. The role of ray equalizers 
is to exchange fast and slow rays. A possible implementation of this 
idea is shown in Fig. 1 together with the calculated impulse response 
for uncorrected and corrected step-index fibers.2 Because natural 
mode mixing appears to be very small in the most recently made 
optical fibers, ray converters may be practical. They have not been 
experimented with, however, and we shall therefore restrict ourselves 
to uniform, uncorrected fibers. 

Important results concerning the broadening of spatially incoherent 
optical pulses in graded-index fibers have already been reported. In 
Refs. 3 to 9, the difference in group velocity between the various 
modes that can propagate in step-index and graded-index fibers has 
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Fig. I-Ray converter that minimizes pulse broadening in step-index fibers. (a) 
Angular spread of a step-index fiber. (b) Optical arrangement with confocal lenses. 
The first and last lenses are unconventional. (c) Calculated impulse response for 
uncorrected [pet) = 1 within the pulse] and corrected step-index fibers (from Ref. 2). 
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been evaluated. The impulse response is obtained by adding the con
tribution of each mode, under the assumption that all modes are 
equally excited by the source. The calculation of the group velocities 
can be simplified with the help of the W.K.B. approximation (see, 
in particular, Ref. 4). 

Let us now describe an alternative ray-optics method. The time of 
flight of a pulse along a ray is first evaluated according to the laws of 
geometrical optics. A ray can be defined by the point x, y where it 
intersects the input plane of the fiber (plane z = 0), and by the 
transverse components, kx, k y of the wave vector k. k is, by definition, 
directed along the ray and has magnitude (27r/Ao)n, where Ao denotes 
the free-space wavelength and n the refractive index of the fiber 
material, usually a function of x and y. Thus, the time of flight of a 
pulse (at a fixed carrier frequency) is, in general, a function of the 
four parameters x, y, kx, kyo These four parameters can be considered 
the components of a four-vector p, in the so-called phase space. The 
impulse response is subsequently obtained by assuming that the 
density of rays is equal to (27r)-2 in the phase space. In other words, we 
assume that the number of rays whose points of intersection with 
the input plane are between x, x + dx and y, y + dy, and whose 
direction is defined by values of kx, k y between kx, kx + dk x and k y, 
k y + dk y, is equal to dxdy dkxdk y/ (27r)2. The total power transmitted 
is the acceptance (or number of modes) of the fiber. This is the power 
transmitted for a source of luminance unity (see, for example, Ref. 10). 

The approach used in Refs. 11 to 13 is based on the conventional 
ray equations. We have shown in Refs. 14 and 15 that it brings a 
considerable simplification to write the ray equations in the Hamil
tonian form. The relationship between the ray-optics method and the 
W.K.B. method becomes more obvious with the Hamiltonian form. 
It can be shown that the W.K.B. method and the ray-optics method 
are essentially identical. 14 

An important difference, however, should be noted. In the W.K.B. 
method, modes whose axial wave number kz is less than the free wave 
number ks in the surrounding medium (or cladding) are assumed to 
leak out so rapidly that they can be ignored. On that basis, the accep
tance of a step-index round fiber with radius a, for example, is found 
to be 

The radiation loss of leaky modes can be small in the case of highly 
oversized fibers, however, as was pointed out by Snyder.16 The ray
optics condition is distinctly different: Only those rays are ignored 
whose tangential component of the wave vector at the core-cladding 
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interface [(Ie; + Ie~)!, where k«J denotes the azimuthal wave number] 
is less than the free wave number le s in the surrounding medium. 
According to ray optics, the acceptance of a step-index fiber is N2 = V2 

instead of V2/2. The influence of the slightly leaky rays on the im
pulse response of fibers has not been observed. This is perhaps because 
high-order modes are more sensitive to irregularities than low-order 
modes. Slightly leaky rays may become important when highly over
sized fibers of good quality are fabricated. This is even more so for 
graded-index (e.g., near-square-Iaw) fibers, because the field decays 
exponentially beyond the caustic line, which bounds the ray 
traj ectories. 

In most previous works, the effect of inhomogeneous dispersion * on 
quasi-monochromatic pulse broadening was neglected. This effect, 
however, \vas taken into account for square-law and linear-law graded
index fibers in Appendix B of Ref. 14, and by Gambling and IVlatsuhara9 

for circularly symmetric modes in square-law fibers perturbed by an 
r4 term. The result for arbitrary small deviations from square-law was 
given by Arnaud in Ref. 15. Olshansky and Keck9 first pointed out 
that inhomogeneous dispersion is of great practical importance, at 
least for fibers doped with Ti02. Dispersion for the promising Ge02 
doped fibers is not known at the time of this writing. The variation of 
the loss of that material as a function of doping is likewise unknown. 
If we consider further that the sources used in pulse broadening experi
ments are not fully characterized in terms of their distribution in 
phase space, it appears that a precise comparison between theory and 
experiment is difficult at the moment. We shall therefore restrict our
selves to the theoretical evaluation of pulse broadening. 

II. GENERAL RESULTS 

The derivations of the general results given in this section appear in 
Appendix A. They follow in a straightforward manner from the Hamil
ton equations for pulse trajectories in space-time. 

Fibers are most often characterized by a refractive-index profile: 
n(x, y, w). However, the quantity that enters directly in the expressions 
for pulse broadening is the square of the wave number le2 (x, y, w) 
== (2'71/Ao)2n2(X, y, w), where Ao denotes the wavelength in free space. 
We shall therefore deal directly with k2(X, y, w). 

Let x(z), y(z) denote a ray trajectory. Assuming that the fiber is 
time-invariant and uniform and that the material is isotropic, we ob-

* Inhomogeneous dispersion refers to the spatial variations of the ratio of the local 
phase to group velocities in the material. This parameter should not be confused with 
the parameter d2k/dw2, usually refered to a~ "material di~per~ioll." The latter i~ 
important only for broadband carriers. 
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tain from the ray equations the following differential equation (see 
Appendix A) : 

!k~d2(X + Y)/dz2 = k2 - k~ + Xak,2/aX + Yak2/aY, (1) 

where we have set, for convenience, X == X2(Z), Y == y2(Z). The quantity 
kz in (1) denotes the axial (z) component of the wave vector k and 
is a constant of motion. In other words, kz remains the same along 
any given ray. In a wave theory, kz corresponds to the propagation 
constant of a mode (sometimes denoted (3). Note that, in spite of the 
fact that we are using the language of wave optics, the theory given 
in this paper is based strictly on ray optics, except when we impose 
the condition kz > ks to make contact with previous results. 

It follows from the space-time ray equations that the ratio of the 
time of flight of a pulse along a ray to the corresponding time on axis 
is (see Appendix A) 

(2a) 

where ko == k (0, 0, w). The sign ( ) denotes an average over a ray 
period. For any function a(x, y, w), we have defined 

(a(x, y, w) == Z-l Io z 
a[x(z), y(z), wJdz, (2b) 

where x(z), y(z) denotes a particular ray trajectory and Z the ray 
period. If the ray trajectory is not periodic, (a) should be understood 
as the limit of the right-hand side of (2b) when Z ~ 00. In the special 
case where the inhomogeneous dispersion of the material can be 
neglected, k is proportional to wand, consequently, ak2/aw2 = k2/W2. 
Thus, (2a) reduces to 

(2c) 

Finally, if the source of rays has a distribution J(p) in the phase 
space p == {x, y, kx, ky }, the response of the fiber to an input P' (t) is 
(see Appendix A) 

pet) = f P'[t - t(p)JJ(p)T(p)(dp). (8) 

The quantity T(p) is the transmission of a ray (usually T < 1), and 
(dp) == dxdy dkxdk y • In the special case of a uniform lambertian source 
of luminance unity, we have J(p) = 1/ (2'11-)2. For simplicity, we can 
assume that T(p) is unity when the point x, y is within the core cross 
section and the components kx, ky of p are within some area to be 
defined later for specific examples and zero outside that area. All the 
subsequent results follow from (1), (2), and (3). 
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III. IMPULSE RESPONSE WHEN k2(X, y) - k~ IS A HOMOGENEOUS 
FUNCTION OF x AND y 

Let the differential equation (1) be averaged over a ray period. 
The left-hand side of (1) vanishes because d(X + Y)jdz assumes the 
same values at the ends of the integration interval. (In this integra
tion, kz can be considered a constant.) Thus, we have 

(4) 

Let us further assume that heX, Y) === k2(X, Y) - k6 is a homogeneous 
function of degree K in X === x2 and Y === y2. This means that, for any A, 

h(AX, AY) = AKh(X, Y). (5) 

If we differentiate (5) with respect to A and set A = 1, we obtain 

XahjaX + YahjaY = Kh(X, Y). (6) 

Thus, going back to k}(x, y, w), 

(7) 

In that case, a simple and general expression for the relative delay 
in the absence of material dispersion is readily obtained from (2c), 
(4), and. (7), 

(8) 

The relative delay t is plotted in Fig. 2 as a function of kz/ko with K 

as a parameter. This result is applicable, for example, to the index 
profile 

k2(X,y) =k6- a \x\-{3\y\, (9) 

where a and {3 denote constants. In that example, K = !. Note that 
the fiber described by (9) is not circularly symmetric, even if a = {3. 

Examples of circularly symmetric fibers that satisfy (5) will be given 
in the next section. 

In almost any z-invariant focusing system, any initial distribution 
eventually reaches a steady state. This steady state in general differs 
from the initial distribution. A lambertian distribution f = constant, 
however, remains lambertian because it is a (trivial) solution of the 
Liouville equation (see Appendix A). Note that the distribution fin 
(3) represents a ray (or pulse) density. If the medium introduces a 
nonuniform attenuation on the rays, the power density T(p)f(p) in 
phase space needs to be distinguished from the distribution f. 

A fiber is usually surrounded by a homogeneous material, called 
the cladding, with wave number k s • For fibers that are not highly 
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Fig. 2-Relative time of flight in a fiber where k2 (x, y) - k5 is a homogeneous 
function of degree K in x and y [ko == k (0, 0)]. For most fibers, kz/ko is close to unity. 

overmoded, the transmission law 

if kz > ks 
if kz ~ ks 

(10) 

is often acceptable. Equation (10) says that rays whose axial wave 
number is less than the free wave number in the surrounding medium 
are leaking sufficiently rapidly to be ignored. The distribution f of 
the lambertian source is set equal to 1/ (27r)2 so that the luminance is 
unity. In that case, the total power transmitted is the acceptance of 
the fiber. The relative time of flight is, within the present assumptions, 
solely a function of k z• The upper and lower bounds on kz are k (x, y) 
and ks, respectively. It remains to express the volume element 
dkxdkydxdy in (3) as a function of dkz , dx, dy. For given x, y, a constant 
value of kz corresponds to a circle of radius squared k2 (x, y) - k~ in 
the kx, k y space because k; + k~ = k} (x, y) - k~. Thus, 

(11) 

Let us evaluate the acceptance of the fiber. The light acceptance of 
any optical system is, as we have seen, the volume in phase space of 
the accepted rays divided by (27r)2. It is also equal to the effective 
number of modes that the system can transmit. If we integrate P (t) 
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from t = - 00 to t = + 00 in (3), the integral over pI in the integrand 
is unity, and we obtain 

N2 = 0/471") f f [k2(X, y) - kndxcly, (12) 

where we have used (10) and (11). Thus, 471"N2 is the volume enclosed 
by the profile: k2 (x, V). For a step-index fiber of any shape with cross
section area A, for example, we have from (12) 

(13) 

This expression should be multiplied by 2 to take into account the 
two states of polarization. 

The pulse transformation in (3) becomes, using (11), 

Pct) = (1/471") f dxdy i;2 CT,V) P'[t - t(kz)Jdk~. (14) 

Let the input pulse pI (t) be a symbolic 0 function (e.g., a rectangular 
pulse of width I1t and height I1t-1 in the limit I1t ~ 0). The output 
pulse in (14) becomes 

(15) 

where I dk~/ dt I denotes the absolute value of dk~/ dt and A (kz) denotes 
the cross-section area that satisfies k(x, y) > kz. kz can be expressed 
as a function of the delay t by inverting the relation t(k z) given earlier. 
We obtain, from (8), 

(16) 

where 

k; = kz/ko = (1 + K)t/2 ± {[ (1 + K)t/2J2 - K p. (17) 

If K > 1, there is only one value of k; between k; == ks/ko and 1, for 
any k.;. If 

k? < K < 1, (18) 

there are two values of k; that need be considered. Their contributions 
to P should be added. If K < k;, there is again only one relevant value 
of k;. 

Let us consider as an example a (noncircularly symmetric) square
law medium 

(19) 

where flx, fly denote arbitrary constants. 271"/fl x and 271"/fl y, for small 
x, y, are the periods of ray oscillation in the xz and yz planes, respec
tively. The area A (kz) defined earlier is the interior of an ellipse 

(20) 
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The impulse response is obtained from (15) and (16) with K = 1, 
and (20), 

(21) 

where, from (17), k; = t - (t2 - I)!. Because, in most fibers, kz re
mains close to ko, the variation of k; can be neglected, and the pulse 
response is almost rectangular. 

For a step-index fiber, the area A is the area of the core cross sec
tion, and t = ko/k z• Thus, the impulse response of a step-index fiber 
with cross-section area A is simply 

(22) 

Because, in most fibers, t remains close to unity, the pulse response is 
almost rectangular. 2 The pulse width, however, is considerably larger 
than for square-law fibers, as we shall see in more detail later. 

IV. CIRCULARLY SYMMETRIC FIBERS WITH k2 
- k~ A POWER 

OF THE RADIUS 

Let the wave-number profile be of the form 

k2(R, w) = k5(W) - k~(w)R\ (23) 

where R === X + Y === r2 denotes the square of the radius. The relative 
time of flight is, substituting (23) in (2a), 

t = (ko/kz)(ak2/aw2)/(dk5/dw2) 
(ko/kz)(1 - EKDK(RK», 

where we have defined 

(24) 

(25) 

(26) 

D" is a dispersion factor equal to unity in the absence of dispersion. 
Thus, we need to evaluate (RK). It is interesting that we can do that 
without solving the ray equations. The quantity (RK) is, of course, 
independent of dispersion, so we may omit the w arguments. 

For circularly symmetric fibers, (1) can be written 

!k~d2R/dz2 = d(k2R)/dR - k~. (27) 

Averaging (27) over a ray period, we obtain 

(28) 

We have also, directly from (23), 

(k2) = k5 - k~(R") (29a) 
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and, from (28) and (23), 

(k2) = (k~ + Kk5)/(1 + K). (29b) 

Equating the two expressions (29a) and (29b) for (k 2 ), we obtain 

(30) 

where k~ == kz/ko. Thus, substituting (RK) from (30) into (24), the 
relative time of flight is 

(31) 

In applications, we need k~ as a function of t. Solving (31) for k~ and 
setting D; == DK/ (1 + K), we obtain 

k~ = (t/2D;) ± [(t/2D;)2 + 1 - D;-lJ!. (32) 

By differentiating (32), we further obtain 

dk?/dt = 2k;[D; - (1 - D;)/k?J-I. (33) 

To obtain explicitly the impulse response in (15), we need the area 
A (kz) defined by kz < k (R). For k (R) in (23), this area is 

A(kz) = 'TrR(kz) = 'Tr[(1 - k?)/€K]I/K. (34) 

If €K were kept a constant as the parameter K varies, the core radius a, 
defined by k (a) = ks, would vary. Thus, it is preferable to express €K 
as a function of the core radius a. We have 

(35) 

where k; == ks/ko. The impulse response is finally obtained from (15), 
(33), (34), and (35); 

pet) = (k5a2/2)k~[(1 - k?)/ (1 - k?)]I/K/[D; - (1 - D;)k;-2]. (36) 

The possibly doubled value k~ is expressed as a function of t by (32). 
Thus, a closed-form expression has been obtained for the impulse 
response of a fiber with k2 - k5 a power of r, that takes inhomogeneous 
dispersion into account. 

In the absence of dispersion, \ve have D; = 1/ (1 + K), and (36) 
reduces to 

As indicated in the previous section, there are in general two values 
of k~ that contribute to P. Note that the shape of the impulse response 
does not depend on the core radius a. 

The impulse response pet) in (37) is shown in Figs. 3 and 4 for 
various values of the parameter K. These curves are essentially the 
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for a lambertian source and various values of K. The optimum impulse response is for 
K ~ k: = 0.9. 
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same as those shown in Ref. 4. Figures 3 and 4, however, are much 
more detailed. We have assumed that ks/ko = 0.9, that is, !!t.n/n = 10%, 
a rather large value. For K = 1 (square-law fiber), the pulse width T 

is 0.0054. For example, if n = 1.45 and the fiber length is 1 km, the 
pulse width is 26 ns. For K = 0.9, however, the corresponding pulse 
width is only 7 ns. We find, in agreement with Ref. 4, that the mini
mum pulse width occurs when K = k;. For a step-index fiber (K ~ 00), 
the pulse width would be as large as 630 ns. Note the following detailed 
features on the curves in Figs. 3 and 4. For (0.9)2 < K < 1, the re
sponse starts from infinity because of the minimum in the t(k z) curve. 
For K = 0.85, P drops suddenly for t ~ 0.998. This is because, at that 
time, the smaller of the two k~ becomes less than 0.9, and is rejected. 
For K = 0.95, the response crosses the t = 1 axis. 

Figure 4 is applicable to larger values of K. We note that, for a 
very large K (step-index fiber), the response is almost rectangular. The 
slow decay in power shown in Fig. 4 would be almost negligible for 
small !!t.n/n. 

The effect of inhomogeneous dispersion is shown in Fig. 5. The 
parameter K is kept equal to 0.9 (this is the optimum value in the 
absence of inhomogeneous dispersion), but D" is made to vary in the 

(f) 
...J 
W 
CD 
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w 
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~ 

30~----------------r---~~~-------------------------, 

1.025 

20 

1.05 

10 0.950 

o~ __ ~ ____ ~~ ____ ~~~~~ ____ ~ ____ ~~ __________ ~ 
0.990 0.995 1.000 1.005 1.010 

Fig. 5-Impulse response for a fiber with k2(r) = k~ + kHr2)o.9 for various values 
of the parameter D that expresses the inhomogeneous dispersion of the material. 
D = 1 corresponds to the absence of dispersion. D ~ 1 merely introduces a shift 
in the optimum value of K. 
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neighborhood of unity. These curves have a striking resemblance to 
those in Fig. 3. This means that the effect of inhomogeneous dispersion 
merely consists in shifting the optimum value of K. The impulse re
sponse remains essentially the same, at least for K ~ 1. 

The total pulse power is the acceptance of the fiber, a function of K. 

The acceptance is, in the present case, 

N2 = 1_:00 P(t)dt = C!) loa [k2(R) - k;JdR 

= (t)[(k5 - k;)a2 - k~a2(a2)K/(K + l)J 
= [K/4 (K + 1) J (k5 - k;)a2• (38) 

The coefficient in the last expression in (38) is t for step-index fibers 
(K ---..,. (0) and i for square-law fibers. The acceptance given in (38) 
should be multiplied by 2 to account for the two states of polarization. 
The same rule applies to all the expressions given in this paper. It is 
more difficult to obtain the ray-optics acceptance of fibers. The result 
is derived in Appendix B. 

In the next section, we consider fibers whose profile departs slightly, 
but otherwise arbitrarily, from a square law. 

v. NEAR-SQUARE-LAW FIBERS 

Let us rewrite the differential equation (1) for circularly symmetric 
fibers 

!k;d2R/dz2 = d(k2R)/dR - k;. (39) 

For square-law fibers 
k2 (R) = k5 - lciR, (40) 

the solution of (39) is 

R(z) = Ro + (R5 - l;/ki)! cos (2Qz/k~), (41) 
where 

(42) 

and Q == kI/ko. We have introduced in (41) the axial component of the 
angular momentum (or Bouguer invariant) 

lz = xk y - ykx, 

which is the second constant of motion. Let us set 

e == (lz/k 1RM)2, 

(43) 

(44) 

where RM denotes the maximum radius squared. Note that, for merid
ional rays, e = 0 and, for helical rays, e = 1. Equation (41) can be 
written in the convenient form 
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For later use let us evaluate (Rn), the average of Rn over a ray 
period. Using the binomial expansion and the result 

(cosm ) = m!2-m [(m/2) !J-2 (46) 

for 1n even and 0 for m odd, we obtain 

In particular, 

(R2) = R~f(3(J2 + 20 + 3)/8 (48a) 

(R3) = R~f(1 + 0) (502 - 20 + 5)/16 (48b) 

(R4) = Rjf(3504 + 2003 + 1802 + 200 + 35)/128. (48c) 

Let us now show that a closed-form expression can be obtained for 
the times of flight in fibers whose permittivity profiles depart slightly 
from a square law. Inhomogeneous dispersion is taken into account. 
Let the profile be of the form 

N 

k,2 (R) = k5 - kiR + L k~Rn. (49) 
n=2 

We assume that €nRn-l, n ~ 2, is of the order € « 1, where €n == k;/k5. 
Substituting (49) in (2a), we obtain (with SV == €1 == kUk5) 

N 

t = k;-l(1 - D 1Q2(R) + L €nDn(Rn»), 
n=2 

where ,ve have defined inhomogeneous dispersion factors 

D n = (k5dk~/ dw2) / (k~dk6/ dw2) . 

(50) 

(51) 

The Dn are unity in the absence of inhomogeneous dispersion. Because 
the perturbation is small, (Rn) in the sum (50) can be replaced by 
the expression (47) applicable to square-law fibers. This approximation 
is not permissible, however, for the term (R) in (50) because this term 
is not small. We need an exact expression for (R). We proceed as in 
the previous section. We first observe that, for k2 in (49), 

N 

d(k2R)/dR = 2k2 - k5 + L (n - l)k~Rn. (52) 
n=2 

Integrating (39) over a ray period, the left-hand side vanishes and, 
using (52), we obtain an expression for (k2 ) that does not involve 
(R) 

N 

(k2) = ! (k~ + k5) + ! L (1 - n)k~(Rn). (53) 
n=2 
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We also have, directly from (44), 

N 

(k2) = kg - ki(R) + L k~(Rn). (54) 
n=2 

Thus, by comparing (53) and (54), 

N 

ki(R) = !(kg - k;) + ! L (n + l)k~(Rn). (55) 
n=2 

Substituting this expression for (R) in (50), we obtain the relative 
time of flight for circularly symmetric near-square-law fibers 

N 

t = k;-l{1 - !(1 - k?)D 1 + L [Dn - !(n + I)DIJEn(Rn)}. (56) 
n=2 

Alternatively, t can be expressed in terms of the azimuthal and radial 
mode numbers. The result is given in Appendix C. 

In the absence of inhomogeneous dispersion, (fi6) reduces to 

N 

t = !k~-l[k? + 1 + L (1 - n) En(Rn)]. (57) 
n=2 

Limiting ourselves to an r4 correction to the square-law profile, 
E3 = E4 = ... =0, and setting E2 == E, (57) becomes, using (48), 

t = ![1 - PM(1 + 0)J-![2 - PM(1 + 0) - EPM(302 + 20 + 3)/8J 
~ 1 + p~I[(2 - 3E) + (4 - 2E)0 + (2 - 3E)02J/16 + 0(P11) 

(58) 

The first two terms in (58) give sufficient accuracy when PM ;5 0.01, 
that is, when the total relative change in refractive index /).n/n ~ Pa/2 
is less than 0.005 (Pa == Q2a2). 

The total pulse width T is the maximum variation of t for 0 < 0 < 1 
and 0 < P < pa. For the square-law fiber [E = 0 in (58)J, we obtain 

T = p~/2 (ray optics). (59) 

It should be noted that, in defining T in (59), we have specified that 
the maximum radius of the ray be less than a for any o. This condition 
is different from the condition used earlier that kz be larger than k s. 
The ray-optics condition PM < Pa is applicable to highly oversized 
fibers. 

If we now consider the expression in (58) with a correction term in 
r4, we find that t = 1 for meridional rays (0 = 0) when E2 = ~ in 
agreement with Ref. 17, where it is shown that all the rays have 
exactly the same optical length when k2 (x) = [cosh (X)J-2 ~ 1 - X2 
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+ (j)X4 + .... We also find that t = 1 for helical rays (0 = 1) when 
€2 = 1, in agreement with Ref. 3, where it is shown that helical rays 
have exactly the same optical length when k2 (r) = (1 + r2)-1 ~ 1 
-r2 + r4 + .... By considering all rays whose maximum radius is 
less than a, we find that the minimum T is obtained for €2 = 0.91. In 
that case, T = 0.046p~. The improvement compared with square-law 
media is therefore as large as 11. If we had imposed instead the wave
optics condition kz > ks, the vertical scale in Fig. 6 would be divided 
by (1 + 0)2. For €2 = 0, for example, the wave-optics pulse width is 
p~/8 instead of p~/2 as in (59). With the wave-optics limit, the opti
mum value of €2 turns out to be j instead of 0.91. The improvement 
over the square-law case is only 4, instead of 11. 

Let us now consider the effect of r6 terms. Figure 7 shows the varia
tion of the pulse width T, defined as the maximum variation of t for 
any 0 < 0 < 1 and any 0 < P!If < 0.002, as a function of €2 for various 
values of €3. The effect of €3 is essentially to shift the optimum value 
of €2 to lower values. The reduction in pulse width is rather modest. 
Nevertheless, a small improvement is obtained, compared to the case 
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N:;: 

g; 
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(J == (iz/RMl 

Fig. 6-Variation of the normalized time of flight for a fiber with k2 (r) = k~ - kir2 

+f2(ktlk~)r4 in the absence of material dispersion for various values of the parameter 
f2. () = 0 corresponds to meridional rays and () = 1 to helical rays. ('2 has been 
redefined to be dimensionless. 
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4.-------------------------------------------------

3 

o~ ________ ~ ________ ~ ________ ~ ________ ~ ______ ~ 
0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 7-Variation of the width of the impulse response with €2 for various values 
of €a for a fiber with k2(r) = k6 - kir2 + €2(kUk~)r4 + €3(kVk~)r6. 

where f3 = 0 when 

k0
2k2(r) = 1 - P + 0.615p2 + 70p3, 

P == Q2r2. 
Pa = 0.002 (60) 

We give only the result when the departures from a square-law 
profile are not circularly symmetric. The free wave number in the fiber 
is now in the form 

N n 

k2(X, y, w) = k5(w) - ki(w)R + L L k~I(W)Xlyn-l, (61) 
n=l 1=0 

where, as before, X == X2, Y == y2, R == X2 + y2 == r2. The ratio, t, of 
the time of flight along a ray to thc corresponding time on-axis is found 
to be 

N n 

t = k;-l{1 - !(1 - k?)D 1 + L L [Dnl - !(n + l)DIJ 
n=l 1=0 

where fnl == k~l/k5 and Dnl is defined as Dn in (51) with k n replaced 
by k n1 • Let us assume that it is permissible to use the sinusoidal rays 
of the square-law medium to evaluate the quantity (Xlyn-l). Because 
the average over one cycle of the product of powers of sinusoidal func
tions is known, the relative delay t can be written in closed form. 
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Let the ray trajectory be written 

x (z) = Xo cos (az + cPx) 

y(z) = Yo cos (az + cPy). 

(63a) 

(63b) 

The coefficient a does not enter in the final result and is henceforth 
omitted. We evaluate 

(Xlyn-l) == (x2I y2(n-l» 
= x5lY5(n-l) ([cos (z + cPx) ]21[COS (z + cPy)]2(n-l». (64) 

It can be shown that18 

([cos (z + cPx) ]21[COS (z + cPy) ]2(n-l» 

=2-
2.1 <~: (,;~ ;-~)s) C ~ s)cos [2s(~. - ~y)] 

+ (2(n - l») (2l)) (65) 
n - l l ' 

where 

(~) == --;-( a-__ a-::-:~ )c-7!::-:b! (66) 

Thus, given a ray trajectory, defined by the parameters Xo, Yo, cPx, 
and cPy (or, equivalently, by the values of x, y, kx, and kyat the input 
of the fiber), we can evaluate in closed form the quantity (Xlyn-l) 
that enters in formula (62) for the relative time of flight, from (64) to 
(66). 

The above calculation is incomplete for the following reasons. When 
the power law n2 (r) of a fiber departs from the exact square law, pro
jected ray trajectories in the (xy) transverse plane are precessing 
ellipses.* That is, the principal axes of the near-elliptical trajectories 
slowly rotate as a function of z. This precession is unimportant for 
circularly symmetric fibers. For noncircularly symmetric fibers, how
ever, the ellipse precession introduces an averaging effect. Further
more, the noncircularly symmetric components of n2(r, cp) change the 
eccentricity of the precessing ellipse. The axial component kz of the 
wave vector remains a constant, but the axial component L of the 
angular momentum varies. Finally, in real fibers, slow (adiabatic) 
changes of the refractive index law along the fiber axis are likely to 
occur that must be taken into account. The twists of the fiber axis 
must also be taken into account. Thus, a realistic assessment of the 
effect of small noncircularly symmetric departures of the index law 

* It is well known in mechanics that the only r2K potentials (potential U f"-' n2) 
that give closed trajectories are the harmonic potential U(r) "-' n2(r) = 1 - r2 and 
the Newton potential U(r) f"-' n2(r) = 1/r. 
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from square law on pulse broadening requires a deeper and more 
intricate analysis than the one given in the present section. However, 
the result in (62) and (65) can be used as a basis for more complete 
analyses. 

VI. CONCLUSION 

From a rather straightforward application of the Hamilton ray 
equations, we have obtained closed-form expressions for the pulse 
width in graded-index fibers when k,2(x, y) - k5 is a homogeneous 
function of x and y, and for fibers whose profile departs slightly, but 
otherwise arbitrarily, from a square law. Inhomogeneous dispersion 
was taken into account. The expressions obtained are exact. The small 
angle (or weakly guiding) approximation need not be made. We have 
also given simple expressions for the wave optics and ray optics 
acceptance of weakly guiding graded-index fibers. 

The algebraic results given should prove more accurate and require 
much less computer time than the straightforward numerical integra
tion of time along ray trajectories. We have carried the perturbation 
only to first order in the small parameter f. To obtain more accurate 
results, up to order f2, we need a more accurate expression of the ray 
trajectory. This expression can be obtained, for example, by the 
method of strained coordinates.19 These more accurate expressions are 
probably not needed, however, in most practical cases. 
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APPENDIX A 

The Hamilton Equations of Ray Optics 

The Hamiltonian form of the ray equations are well known in 
mechanics and wave dynamics,20 and they have also been used fre
quently in optics (e.g., Refs. 14, 15, 17, 21, and 22). However, their 
simplicity and power is not always appreciated. The physical difficulty 
is that it is not always recognized that ray momenta and wave vectors 
(or photon momenta) are identical concepts. On the other hand, ray 
momenta (proportional to the wave vectors) need be carefully dis
tinguished from mass-carrying momenta (proportional to the group 
velocities).23 On the mathematical side, we need distinguish a function 
such as kz(x, y) and the value kz assumed by that function. We must 
also be aware that daJdz denotes a total derivative, that is, in the 
present context, the variation of the quantity a along some given ray. 
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If a is a known function of x and y, and x = x(z), y = y(z) denote a 
knownraytrajectory,thenda/dz = (aa/ax) (dx/dz) + (aa/ay)(dy/dz) 
can be evaluated explicitly as a function of z. Here again, an arbitrary 
point in space x, y should not be confused with a specific ray trajec
tory x = x(z), y = y(z). Unfortunately, it is not possible to go into 
more details here. An excellent reference is Lighthill's paper.20 A com
parison between the W.K.B. method and the Hamilton equations is 
given in Ref. 14. 

Let X == (x, y, z, ict) denote a point in space-time (t is time) and 
K == (kx, k y, kz, iw/ c) denote the four-wave vector, with w the angular 
frequency. An arbitrary medium is characterized by a function of K 
and X that we denote 

ll(K, X) = o. 
The Hamilton equations for light pulses X (cr), K(cr) are 

dX/dcr = all/ aK 

dK/dcr = -all/aX, 

where cr denotes an arbitrary parameter. 

(67) 

(68a) 

(68b) 

Equations (68a) and (68b) can be considered the basic postulates 
of geometrical optics. From a wave-optics point of view, (68a) follows 
from the requirement that the wave lengths and periods of the waves 
that constitute a wave packet be the same in the direction of a ray. 
Equation (68b) follows from (67), (68a), and the fact that K is the 
gradient of an eikonal function. Thus, in wave optics, the Hamilton 
equations (68) are derived from first principles and need not be 
postulated. 

Let ~ denote a point in phase space (kx, k y, w, x, y, t) at the input 
plane, and e a point in phase space at the output plane. The optical 
system maps the input phase space into the output phase space, that is, 

~ = He). (69) 

It follows from (67) and (68) that the Jacobian of the transformation 
(69) is unity, a result often used in photometry. Equivalently, we can 
say that the determinant of paraxial ray matrices is unity or that the 
ray density in phase space is a constant of motion (Liouville theorem). 
These three statements are obviously equivalent, provided the rays 
are not reflected. 

A source of light that is time and space incoherent is described by 
a distribution S (~) in phase space. Each small volume in phase space 
can be pictured as an optical pulse, provided the dimensions of the 
volume are larger than unity. More precisely, this picture requires 
that AwAt» 1, AkxAX» 1, and AkyAY» 1. The detailed structure 
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of the pulse is ignored in ray optics. Only the motion of the center is 
considered. 

The transmission Tl of an optical pulse through the optical system 
is a presumably known function of ~ that we denote as 

(70) 

For lossy optical systems, Tl < 1. Because the Jacobian of the trans
formation ~ ~ ~' is unity, the output distribution is simply 

(71) 

The power emitted by the source and the power that can be collected 
at the output of the optical system are obtained by integrating 8 
(or 8') over all variables, except t (or t'). Thus, 

P(t) f 8(~)(d{) 
P'(t') = f 8'(~')(d{'), 

(72a) 

(72b) 

where { == (kx, k y , w, x, y) and {' is similarly defined. The terms (d{) 
and (d{') denote elementary volumes in { and {' spaces, respectively. 
The response of the detector could be described by a function D (f). 
For simplicity, we do not take the detector response into considera
tion. All subsequent results follow in a rather straightforward manner 
from the above results, through a succession of approximations. 

Let us assume that the properties of the fiber do not vary with time. 
This means that the Hamiltonian in (67), the transmission T I , the 
mapping ~ ~ f, and the pulse delay do not depend on time. In 
particular, 

(73) 

Sources that are t-separable, on the other hand, have the property that 

8(~) = P(t)F({). (74) 

That is, the distribution in {-space does not vary with time. For a hot 
tungsten wire whose temperature varies with time, the spatial phase
space distribution is almost lambertian at all times, but the frequency 
spectrum (approximately given by the Plank law of radiation) varies 
with time. Thus, (74) is not applicable to that source. For consistency 
with (72), we assume that F({) is normalized to unity. 

For most sources, we can further assume that 

F({) = Q(w)f(p), (75) 
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where p == (kx, ky, x, y) denotes a point in spatial phase-space. That 
is, we assume that the spatial distribution does not depend on what 
part of the frequency spectrum we are considering. Both nand j are 
assumed normalized to unity. This ensures that F is normalized to 
unity. When the spectral width of the source is small (e.g., less than 
1 percent, as is the case for light-emitting diodes) and the fiber material 
absorption does not exhibit sharp resonances in that band, we can 
assume that 

(76) 
and 

(77) 

For definiteness, we assume that the maximum value of To(w) is 
unity, and we define to(w) as the delay experienced by axial pulses. 
We evaluate in the main text t(p)/to at a fixed angular frequency. 

The pulse response is obtained from (71) to (77), 

where 

P'(t') = f pet' - to(w) - t(p)]n(w)To(w)f(p)T(p)(dp)dw 

f P"[t' - to (w)]n (w) To(w)dw, 

P"(t") = f P[t" - t(p)]j(p)T(p)(dp). 

(7S) 

(79) 

In writing (7S) we have used the fact that the Jacobian of the trans
formation ~ ~ r is unity and that dw = dw'. The pulse response is 
the convolution of the pulse response in (79), which we may call the 
quasi-monochromatic pulse response, and the spectral width of the 
source. In most cases, To (w) is a constant. For injection lasers, the quasi
monochromatic pulse response is the most important contribution. 

In what follows, we assume that the fiber is uniform and long com
pared with the period of ray oscillation and therefore approximately 
z-invariant. Let the Hamiltonian in (67) be written 

H = kz - kz(kx, ky, w, x, y) = O. 

The Hamilton equations (6S) are 

dx/ dz = - ale z/ alex 

dy/dz = -akz/aky 

dt/ dz = akz/ aw 

dkx/dz = akz/ax 

dk y/ dz = akz/ ay. 
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Let us assume further that the medium is isotropic, that is, 

k; = k2(W, X, y) - k~ - k~. 

Thus, (81a) to (81e) are 

dx/ dz = kx/kz 

dy/dz = ky/kz 

dt/dz = (ak2/aw)/2k z 

dkx/dz = (ak2/ax)/2k z 

dky/dz = (ak2/ ay)/2k z• 

(82) 

(83a) 

(83b) 

(83c) 

(83d) 

(83e) 

According to (83c), the time of flight of a pulse along a ray for a period 
(period == Z) is obtained by integrating (ak2/ aw)/2kz from z = 0 to 
z = Z. If ko(w) == k(w, 0, 0) denotes the wave number on axis, the 
time of flight of a pulse along the z axis is similarly obtained by inte
grating (ak5/aw)/2ko. Thus, the ratio of the time of flight of a pulse 
along a ray to the corresponding time on axis is 

(84) 

where ( ) denotes an average over a ray period. If the trajectory is not 
periodic, ( ) is understood as a limit for z -7 00. When k is proportional 
to w, (84) reduces to 

t = (k2 )/kok z• (85) 

Let us now observe that, from (83a), (83b), (83d), and (83e), 

tk;d2(X + Y)/dz2 = k2 - k; + Xak2/aX + Yak2/aY, (86) 

where X == X2, Y == y2. This is easily verified by carrying out the differ
entiations. Equations (86), (84), and (79) (with a slightly different 
notation) are those used in the main text. 

APPENDIX B 

Acceptance of Highly Oversized Fibers 

The acceptance, or effective number of modes transmitted by the 
optical system, is the volume of the accepted rays in phase space 
divided by (21l') 2. We have said earlier that, if the fiber is very long, 
all leaky rays are eliminated and the acceptance is simply the volume 
enclosed by the profile k2(X, y) divided by 41l'. If the fiber is highly 
oversized, however, many leaky rays (kz < k s) are not significantly 
attenuated. I6 We need then consider the ray-optics condition that the 
tangential (rather than axial) component of the \vave vector be larger 
than ks at the core-cladding interface. The ray-optics acceptance is 
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now evaluated for circularly symmetric fibers. We specify that 

at r = a, (87a) 

where kIP denotes the azimuthal wave number at the interface. We 
also have the condition 

(87b) 

which is not implied by (87a). In this appendix, we restrict ourselves 
to small differences in refractive index, in which case condition (87b) 
can be ignored. Because of the conservation of lz (the axial component 
of the angular momentum), we have 

(88) 

for a ray with x = r, Y = 0, kx, ky, at the input plane, that can reach 
the interface r = a. Thus, condition (87a) is 

(89) 

Equation (89) defines an area in the lex, ky plane bounded by an ellipse. 
We have to make sure, however, that rays outside that area do in 
fact reach the interface. This is not necessarily the case. The maxi
mum ray radius TM is defined implicitly by 

(90) 

where TM is the largest real number that satisfies (90). (The initial 
radius r is considered a constant in the present discussion.) Equation 
(90) shows that the lex, ky that correspond to r M are contained in an 
ellipse with semi-axes squared k~o = k}(r) - le2(rilf) and k~o = [k2(r) 
-k2(rM)]/(1 - r2/r~), respectively. If k}(r) is never increasing, we 
are sure that kxo keeps increasing as r M increases from r to a. We do 
not have any such assurance for kyo, however. When r M reaches a, 
there may be acceptable values of lex, ky that are located outside the 
ellipse defined above. For each profile, we need therefore verify that 
k~O(rM) never exceeds k~o(a). We easily verify that this is the case for 
square-law fibers, because 

(91) 

increases with r M for any r. 
Thus, for square-law fibers at least, we can proceed with the calcu

lation of the area of the ellipse defined by (89). This area is 

(92) 

Substituting this result in the general expression for the acceptance 
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factor, we obtain 

N2 = (!) i a2 

[k2(1') - k~J(1 - 1'2ja2)-!dr2. (93) 

This expression simplifies if we introduce the variable u == (1 - 1'2ja2)t. 
Equation (93) becomes 

N2 = (a2j2) i1 [k2(u) - k;Jdu. (94) 

Thus, the ray-optics acceptance of most circularly symmetric fibers is 
half the area enclosed by the curve k2 (u)a2• For a step-index fiber, we 
obtain from (94) 

N2 = (k5 - k;)a2j2 (step-index, ray optics). (95) 

This is twice the wave-optics acceptance. Thus, for step-index fibers, 
the slightly leaky rays carry half the power. Our result agrees with 
that in Ref. 16 for weakly guiding fibers. For a square-law fiber, with 
k (a) = ks, we obtain 

N2 = (k5 - k;)a2j6 (square-law, ray optics). (96) 

In square-law fibers, 25 percent of the total power is carried by slightly 
leaky rays. * 

APPENDIX C 

Impulse response width of near-square law fibers 

When the source distribution is lambertian, all propagating modes 
are equally excited. It is convenient in that case to express the relative 
time of flight t for near-square-Iaw fibers given in (56) as a function of 
the mode numbers (azimuthal number: J..L = ... -2, -1,0, 1, 2 ... 
and radial number: a = 0, 1, 2 ... ) rather than kz and lz. This can be 
done by quantizing the ray trajectories. [If the W.K.B. method is 
used, it is essential to first remove the singularity of the Helmholtz 
equation at l' = 0. This is achieved by changing the independent 
variable from l' to log (1').J One easily finds that the axial component 
of the ray angular momentum lz is equal to J..L. Furthermore, we can 
use for kz the well-known expression applicable to square-law media. 
The result (56) is written below as a function of a, J..L, for the reader's 
convenience. We have 

tea, J..L) = (1 - B)-! (1 - !BDI + 'Y~2 F'YN'Y) , (97) 

* This is in agreement with a recent result by D. N. Payne. 
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where 

B == 2gKi/2/Ko 
g == 2a + I}L I + 1; I}L I == a bs. val. (}L) 

F-y == I'!2--Y[D-y - !(I' + 1)DIJK-y/(KoKI/2) 

The parameters K-y == k;, l' = 0, 1 ... and D-y, l' = 1, 2 ... are ob
tained from the square of the wave number: K(R) == k2(R) == (W/C)2 
n2(R) of the fiber as a function of R == r2, measured at the nominal 
wavelength Ao and at a slightly different wavelength, A~, expanded in 
power series of R as follows 

K(R) = Ko - KIR + K2R2 + .. . 
K'(R) = K~ - K~R + K;R2 + .. . 

The D-y are obtained from (99) 

(Ao) 
(A~). 

D-y = Ko(K~ - K-y)/K-y(K~ - Ko). 

(99) 

(100) 

If we can neglect the power in the leaky modes, the mode numbers 
a, }L are restricted by the condition kz > ks, that is, 

B < 1 - Ks/Ko ~ 2~n/n, (101) 

where Ks == k~ is the square of the cladding wave number. The root
mean-square impulse response width is defined as 

u = 5,000[(t2) - (t)2J! ns/km, (102) 

where ( ) denotes an average taken over all the modes permitted by 
(101). Thus, it is a straightforward matter to evaluate from our ex
pression in (56) the root-me an-square width of the impulse response of 
any circularly symmetric near-square law fiber, provided the wave
number profile can be measured with sufficient accuracy at two 
wavelengths. 
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A comparison of the available data on environmental radiation and 
on the radiation damage in fibers and glasses under controlled laboratory 
conditions leads us to the conclusion that long-term exposure to gamma rays 
and neutrons in the environment does not pose a serious problem, for the 
optical fibers. 

Resistance of optical fibers to damage from long-term exposure to 
environmental nuclear radiation is an important factor to be considered 
when planning a communication system using these fibers. In this 
report, we first summarize the nature and intensity of the natural 
environmental radiation to which the fibers will be exposed, and then 
discuss the available data on radiation damage in optical fibers and 
glasses under controlled laboratory conditions. A comparison of these 
data leads us to conclude that long-term exposure to gamma rays and 
neutrons in the natural environment does not pose a serious problem 
for the optical fibers. 

I. NATURAL ENVIRONMENTAL RADIATION 

The total background radiation at sea level is divided approximately 
equally between extraterrestrial and terrestrial components.! The 
extraterrestrial component results from the secondary radiations in
duced by cosmic rays, solar radiation, and Van Allen belt radiation. 
The terrestrial component is due to the radiation from naturally occur
ring radio nuclides in the earth. Gamma rays ('Y rays) and neutrons (n) 
are important constituents of this radiation2 and we will concentrate 
on them for the purposes of this report. 

1.1 Gamma rays 

A number of measurements of the intensity of the environmental 
radiation as a function of location, altitude, and latitude have been 
made. According to Hollaender,3 the worldwide average exposure is 
approximately 0.5 R/year (R stands for roentgen, a unit of exposure 
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dose. A brief discussion of units relevant to this report is given in the 
appendix). More recent studies (e.g., Ref. 4) indicate that values 
range from 0.1 to 0.2 rad/year in normal regions (rad is a unit of 
absorbed dose-see the appendix). An average value of 0.13 rad/year 
appears to be generally acceptable 5 for normal regions. * However, for 
the purposes of our discussion of radiation damage, we will deliberately 
overestimate the ')'-ray dose and assume a value of 0.5 rad/year. 

1.2 Neutrons 

Hess et al6 have measured the extraterrestrial neutron flux as a 
function of neutron energy and found that the total neutron flux 
[fooo ¢(E)dEJ at sea level is ~ 1.5 X 106 n/cm2-year. t Measurements 
by Herbst8 indicate that the additional neutron flux from terrestrial 
sources is ;:S 106 n/cm2-year in open air. However, in tunnels or above 
rocks containing a high density of radioactive nuclides, or in regions 
with high radioactivity, Herbst obtained a flux of up to 4 X 107 

n/cm2-year. For the purposes of estimating neutron-induced damage, 
we will assume a rather high value of 1 X 108 n/ cm2-year to provide 
us with an extra margin of safety. 

II. RADIATION DAMAGE IN FIBERS AND GLASSES 

2.1 Gamma rays 

The')' rays interact with glasses principally by forcing the electrons 
to leave their normal positions .and move through the glass network. 
The primary consequence of this is an increase in the absorption 
coefficient in the uv-visible-near-IR range. A detailed study of 
,),-induced damage in fibers has been made by G. H. Sigel and co
workers9 at the Naval Research Laboratory. They find that the 
,),-induced change in the refractive index is small « 10-3) at doses as 
high as 109 rads. They also find that the ,),-induced losses in optical 
fibers depend strongly on the fiber composition and vary from 10-4 

dB/km-rad for bulk Suprasil Si02 to 5 dB/km-rad for Corning fiber 
No. 5010 at 8000 A. Thus, pure fused silica is extremely resistant to 
radiation, while the Corning 5010 is quite susceptible to it. 

A 20-year exposure to natural environmental')' radiation (assumed 
to be 0.5 rad/year) would lead to an increase of 50 dB/km for Corning 

* There are regions with exceptionally high level of natural background radiation. 
In some special areas such as Kerala in India or the Santo Spirito province in Brazil, 
values of up to 14 R/year have been reported (Ref. 2). Certain regions of the Black 
Forest (Germany) have shown dose rates up to 1.8 R/year. However, these regions 
are rare and will not concern us in this report. 

t Later reports (see Ref. 7) indicate that the values reported by Hess et al may 
be too high by a factor of 2 to 4. 
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5010 fiber. However, even in this case, the normal bleaching of the 
damage9 would probably reduce the total (20-year) loss to ;S 15 dB/km. 
Although this number appears large, it is only a small fraction of the 
loss of 1000 dB/km present in the Corning 5010 fiber before exposure 
to any radiation. Furthermore, this is the worst case reported by 
Sigel et a1.9 The -y-induced losses are generally smaller in fibers with 
smaller initial losses. * For example, the Corning low-loss fiber (type B), 
having germanium-doped silica core and pure silica cladding, has an 
initial loss of 10 dB/km and a -y-induced loss of 0.01 dB/km-rad be
tween 8000 A and 12,000 A (1.2 .urn). Thus, even if we neglect bleach
ing, the -y-induced loss in 20 years would amount to only 0.1 dB/km. 
Since fibers with small initial losses are precisely the ones that will be 
used in communication systems, it seems reasonable to conclude that 
long-term exposure to environmental -y radiation will not seriously 
affect the fiber performance. 

2.2 Neutrons 

Neutrons interact principally with the nuclei rather than electrons 
in solids. Neutron radiation, therefore, results not only in increased 
absorption losses but also in structural changes that lead to changes in 
density, refractive index, rotary power, birefringence, thermal con
ductivity etc. Since small differences in refractive indices of the core 
and the cladding are essential to fiber performance, we will pay par
ticular attention to refractive index changes as well as to increased 
losses caused by n-irradiation. 

To our knowledge, the only study of n-induced losses in optical 
fibers is by Maurer et aUo They irradiated high-silica-glass multimode 
fiber waveguides with 14-Me V neutrons, using doses of as high as 
1.4 X 1012 n/cm2• They concluded that the n-induced loss varies 
roughly linearly with the total dose and is less than 1.5 X 10-11 

(dB/km)/ (n/cm2) in the 8000-A to 12,000-A region. This number, 
which is obtained from the figure given by Maurer et al,lO is in fact an 
overestimate of n-induced damage, because we have disregarded the 
fact that the n-irradiated samples also received a simultaneous dose 
~ 1000 rads of -y radiation. However, even if we assume this to be the 
true value, a 20-year exposure to environmental n-irradiation (2 X 109 

n/cm2) would increase the loss by only about 3 X 10-2 dB/km. It 
should be emphasized that this extrapolation is only approximately 
valid because neutrons in the environment have a wide range of 
energies (from 0.01 eV to 1010 eV), whereas the neutrons in the con-

* While there is no evidence that the correlation between low radiation damage 
and low initial losses is universally valid, such a correlation definitely exists in the 
presently available data. 
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trolled experiment were monoenergetic (14 MeV). However, even 
after a thirtyfold increase, the n-induced losses would still be less than 
1 dB/km. Therefore, it seems reasonable to conclude that absorption 
losses induced by long-term exposure to environmental n-radiation 
will not seriously affect fiber performance. 

Neutron-induced changes in the refractive index of the fibers can 
be a potential source of problems. We know of no measurements on 
fibers which can shed light on this problem. However, an extensive 
literature exists on the effects of n-irradiation on various forms of 
silica and other commonly used glasses (a good summary is given in 
Ref. 11). The refractive index of vitreous silica changes by 0.67 percent 
under a flux of 2 X 1020 n/cm2 of thermal «0.1 eV) neutrons. 12 From 
the measurement by Primak,12 we deduce that the rate of increase of 
the refractive index of vitreous silica is approximately 5 X 10-22 per 
(n/cm2) for doses less than 1 X 1019 n/cm2. This suggests that the 
changes in refractive index induced by environmental neutrons 
(2 X 109 n/cm2 in twenty years) will be less than 1 X 10-12, a truly 
negligible effect when we consider the fact that the difference in the 
refractive index of the core and the cladding is typically larger than 
10-3• 

No data are available on the n-induced changes in refractive indices 
of other glasses. However, density changes have been investigated 
for many glassesY For vitreous silica,12 the density increases approxi
mately linearly (10-19 percent per n/cm2) up to 2.5 X 1019 n/cm2 and 
then saturates. Other glasses (except borosilicate glasses) are also 
quite resistant to neutrons and show very few changes up to about 
1017-1018 n/cm2. * The borosilicate glasses are more susceptible because 
boron, like other light elements, has high neutron cross section. How
ever, even these glasses show damage only when flux levels exceed 
1014 n/cm2, * which is some five orders of magnitude larger than the 
accumulated (20 years) flux of ~ 2 X 109 n/ cm2 encountered in the 
environment. 

III. CONCLUSIONS 

We have summarized the available data on environmental nuclear 
radiation and also the data on radiation damage in glasses under con
trolled laboratory conditions. Unfortunately, the laboratory experi
ments were not performed with the exact 'Y ray or neutron energy 
distributions that one encounters in environmental radiation. It is 
difficult, therefore, to make accurate predictions about the radiation 
damage in fibers caused by environmental radiation. However, we 

* See Table 6.12 in Ref. 10. 
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have made some approximate estimates from which it is reasonable 
to conclude that damage induced by environmental 'Y or neutron 
radiation should not pose any serious problems to optical fibers so far 
as their optical loss or refractive index are concerned. More recent 
experimental works by Evans and SigeP3 and Mattern et aP4 do not 
affect this conclusion. 

Some general comments seem to be appropriate in conclusion. Pure 
fused silica seems to be extremely resistant to radiation damage. It is 
also useful to remember that the addition of small amounts (0.1 to 
0.2 percent) of Cerium9,ll makes most glasses more resistant to radia
tion. We have not discussed damage by a particles, but it is appro
priate to mention here that a particles have very short ranges in air 
as well as in most other materials. Therefore, it seems unlikely that a 

particles will pose any problems for the optical fibers if the fibers are 
enclosed in a conduit. Finally, the background luminescence induced 
by environmental ionizing radiation has been considered by Cohen 
and Lanzerottil 5 and found to be not significant for fiber optic com
munications systems. 
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APPENDIX 

Units of Dosimetry 

The most useful units in the study of radiation damage in solids 
are the particle or photon fluxes as a function of their energy. Thus, 
¢ (E) dE, expressing the number of particles/ cm2-sec in the energy 
range E to E + dE, completely specifies the incident radiation field. 
However, many special units are frequently used in specifying the 
radiation. Roentgen (R) is a unit of exposure dose used for X rays 
and 'Y rays and is defined as follows. Roentgen is that exposure of X 
or 'Y radiation which gives a dose of 87.7 ergs/g to air. 

A special unit of absorbed dose is called a "rad." One rad = 100 
ergs/g. 

Unlike the roentgen, the rad is independent of the irradiated ma
terial. This means that a given beam of radiation acting for the same 
time will deliver different doses, expressed in rads, according to whether 
it is absorbed in air, tissue, or other materials. The rad in Section I 
refers to air as the reference material. The rad as used here is indirectly 
a measure of the radiation field rather than the absorbed dose in the 
sample because it refers to energy absorbed by air rather than the 
sample under study. Under these conditions, rad and roentgen are 
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numerically equal within about 20 percent and can be used 
interchangea bly. 

In the work reported by Sigel et al.,9 Si is used as the reference 
absorbing material. The differences in using air or Si as the reference 
material are small (less than a factor of two) and are inconsequential 
for the purposes of this report. 

The conversion between rad and n/ cm2 and photons/ cm2 as a func
tion of energy are given by H. Stern. I6 (See also the report by J. 
MoteffY) For example, for 1 Me V 'Y-ray photons, 1 rad ~ 2 X 109 

photons/cm2• For 1 MeV neutrons, 1 rad ~ 2.6 X 108 n/cm2• For 
'Y rays with energy E bet,,{een 0.07 and 2 Me V, 1 rad (air) ~ 2 X 109/ E 
photon/cm2• Conversion factors at other energies may be obtained 
from the above references. See also the American Institute of Physics 
Handbook. Is 
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A technique for splicing optical fibers has been developed that uses a 
self-aligning square cross-section tube, with inner dinwnsions slightly 
laruer than the optical jiber. A total loss of 0.58 dB was obtained for eight 
splices connected in series using a graded-index jiber with a 6'8-J.Lm core 
diameter. The splices were made one at a time without the use of micro
scopes 01' micromanipulators; however, the fabrication process could be 
mechanized and extended to groups of fibers. A holding fixture could be 
added to adapt this technique to a connect-disconnect type splice. The 
size of the splice is presently 0.012 in. square, making it suitable for use 
within cables. 111 easurement set refinements that were needed to measure 
individual splice losses as low as 0.05 dB include an improved detector 
and means for betier control of launching conditions. 

I. INTRODUCTION 

The basic requirements for low-loss splices are (i) accurate align
ment, (ii) good fiber ends, and (iii) accurate diameter control. Trans
verse alignment accuracy of approximately ±O.I-fiber-core radius 
(typically, ±O.OOOI in.) is required to achieve a splice loss of 0.1 dB. 
Good fiber ends may be produced by scoring and breaking,! grinding 
and polishing, or disc sawing. Accurate fiber diameter control is also 
needed; ho\yever, significant progress is being made in this area. Of 
these three requirements, accurate transverse alignment may be the 
most difficult problem to solve, especially when the field environment 
and variabilit~· of craftsmen's skill are considered. 

Single-fiber splicing has been accomplished by Bisbee~ and Dyott 
et aP using heat fusion. Someda4 suggested using embossed plastic to 
obtain transverse alignment. This paper describes a splicing technique 
that uses a loose-fitting, square, cross-section tube to align the fibers. 
The splices produced are small, exhibit very low losses, and are simple 
and inexpensive. 

Previously, snug-fitting sleeves have been suggested,;:' but three 
problems are usually encountered. 
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(i) If the glass sleeve is to support the fiber with the required 
alignment accuracy, it must be less than typically 0.0001 in. 
larger than the fiber. Both fiber and sleeve must be highly circu
lar, and the fiber diameter must be controlled to at least the 
same tolerances. These tolerance requirements have discouraged 
efforts to use a snug tube as an alignment mechanism. 

(ii) Given a snug tube of the proper dimensions, the initial insertion 
of a fiber into that tube is difficult. Pinnow5 has described a 
method of flaring the inner diameter of capillary tubes, which 
reduces the initial insertion difficulty. 

(iii) Contaminants that are scraped off the inside wall of snug
fitting sleeves during fiber insertion are trapped between the 
fiber ends where the effect of contamination is worst. 

The "loose"-fitting square-tube splice described below reduces these 
difficulties substantially and appears to have potential application in 
several places in a fiber-optic communication system. 

II. SPLICE CONFIGURATION AND ASSEMBLY 

The loose-tube splice combines the alignment accuracy obtainable 
by using a groove for alignment4 with the small size and simplicity of 
glass sleeves. 5 The fiber ends are biased to one corner of the square 
cross section by bending the fiber outside the tube. Figure 1 is a 
pictorial layout of the square tube with two fiber ends in position 
within the tube. The tube has nearly flat interior walls and a small 
radius in the interior corners, as shown in the cross section in Fig. 2. 
One corner of the square is used as a groove for aligning the fibers. 

Fig. l-Splice configuration. 
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~0006~ 
Fig. 2-Square tube cross section. 

Epoxy is forced into the square tube prior to insertion of the fibers 
and serves several useful functions. 

(i) The epoxy serves as an adhesive after curing to hold the splice 
together. 

(ii) The epoxy also serves as an index-matching material with good 
glass-wetting characteristics. 

(iii) Contamination on the fiber ends is washed away by the flow 
of epoxy around the fiber ends during insertion of the fibers. 

Assembly of a splice involves inserting two fibers with good ends 
approximately halfway into each end of a square cross-section tube 
filled with uncured epoxy. No particular orientation of the square
tube cross section is required. The fibers are placed on a flat surface 
and bent in a curved pattern. This causes forces to be generated that 
rotate the tube so that a diagonal of the square cross section is in the 
same plane as the bent fibers. The tube is therefore self-aligned and 
the fibers biased to one corner by action of the fiber stiffness. After 
the bends are made, the fibers are taped to a flat surface in the bent 
configuration and the fibers pushed into the tube until they touch each 
other. Figure 3 is a cross-section photograph of a splice showing a 
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Fig. 3-Splice cross section showing position of fiber in vicinity of joint. 

fiber in a corner of the square tube. Figure 4 is a magnified view of one 
splice, and a longitudinal section is shown in Fig. 5. In spite of the 
small angle between the fiber ends caused by one end not being broken 

Fig. 4-Single loose tube splice, with tube approximately 0.5-inch long and 0.012-
inch wide. 
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'---------TUBE OUTE R WALL ----------1 

Fig. 5-Longitudinal section, 250X. 

perpendicular to the fiber axis, the splice loss for the splice in Fig. 5 
was only 0.07 dB. 

III. END PREPARATION 

Good fiber ends are necessary for the fabrication of low-loss splices. 
As mentioned earlier, several techniques exist for preparing suitable 
ends. A score-and-break technique! was used for end preparation on 
all splices reported in this paper. A single fiber is clamped in the 
apparatus shown in Fig. 6 with approximately 100-g load applied to the 
fiber by a spring. The fiber rests in a groove along a 2-in. radius arc 
and is scored lightly with a hand-held diamond knife edge. Fiber ends 
prepared by this method are nearly perfect, as shown in Fig. 7. A very 
flmall amount of edge chipping is present where the fiber was scored. 

IV. SPLICE-LOSS MEASUREMENTS 

After constructing just a few square-tube splices, it became evident 
that the measurement set-up being ufled wafl not adequate for losses 
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Fig. 6-End preparation apparatus. 

Fig. 7-Good fiber end. 
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Fig. 8-Single fiber detector. 

below 0.1 dB. A new detector was built, which repeated to within 
±0.015 dB. Accurate positional repeatability ,"as accomplished by 
using a 0.05-in. inner-diameter capillary tube which was tapered to 0.006 
in. inner diameter by heating and pulling. The fiber is easy to insert in 
this detector, and the positional repeatability is excellent. The solar cell 
sensor was immersed in index-matching liquid to reduce reflections, 
and a microscope cover slip was used to protect the cell from damage 
by the fiber being measured. A photograph of the detector is shown 
in Fig. 8. At the input end of the measurement set, a vacuum chuck 
was added to ensure repeatability of launching conditions. This chuck 
positions the fiber accurately along the optical axis of the 30X launch
ing objective lens and the laser. The overall repeatability of splice
loss measurements is within ±0.03 dB. 

Care was taken to place the fiber in the same coiled configuration 
after splicing so that bending losses before and after splicing would 
be similar. Fiber loss of approximately 0.01 dB/m was subtracted from 
the total loss measurements so that losses stated are for the splices 
only. All loss measurements were made at a wavelength of 0.6328 ).Lm. 

V. RESULTS 

Initially, a fixture was used to hold the square tube and control the 
fiber bending. Although the maximum loss measured 011 25 consecutive 
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splices fabricated with this fixture was 0.21 dB, it was found that the 
tube would align itself if allowed to rotate. Losses were lower and the 
assembly of the splice, as previously mentioned, was much easier. 

Eight epoxied square-tube splices fabricated in series using no 
fixtures except the end-making apparatus produced a total splice loss 
of 0.58 dB or 0.073 dB per splice. The splices had approximately I! m 
of fiber between each splice and on each end and were put together 
in series to increase the total loss to an accurately measurable quantity. 

It has been found that splices measured in series have higher losses 
than when measured individually. Ten earlier splices were fabricated 
in series and measured 1.37 dB. The ten-series splices were measured 
separately and gave the distribution shown in Fig. 9. The average loss 
per splice was 0.077 dB compared to 0.137 dB in series, or a nearly 
2-to-l increase for splices in series. The process of peaking up the 
power through a single splice probably selects the launching conditions 
and therefore the mode structure best suited to the particular imperfec
tions of that splice. A loss measurement made in this way gives a value 
that is too low. That is, the loss of a splice with long lengths on either 
Ride or with other splices nearby is apt to be considerably higher than 
when measured separately with short fibers on each side of the splice. 
The eight-series splices mentioned earlier were not measured separately 
because losses as low as 0.03 dB, which would be expected based on the 
series loss, could not be accurately measured. 

A slight longitudinal separation of fiber ends within the tube occurred 
during epoxy cure for the 10 splices in series. Loss measured before 
epoxy cure was 0.69 dB and 1.37 dB after epoxy cure as stated above. 
Fibers were bent in a 90-degree arc and taped to an optical table while 
the epoxy cured. This configuration applied very little, if any, force 
component to hold the fibers in place during cure. The eight-series 
splices were bent through an arc of approximately 45 degrees and 
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Fig. 9-Splice loss histogram. 
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taped to the table with a definite force applied to keep the fiber ends in 
contact. Although this force (a result of the fiber stiffness) is small, end 
separation did not occur and a loss of 0.58 dB was measured before 
and after epoxy cure. 

These extremely encouraging results have stimulated thinking as to 
how loose square-tube splices could be applied to other types of 
splices, e.g., connect-disconnect configuration. 

VI. CONNECT-DISCONNECT SPLICE FOR SINGL.E FIBERS 

Several configurations based on the square tube can be envisioned 
for a connect-disconnect splice, that is, a splice that can be reassembled 
many times and used as a connector. Figure 10 is a photograph of a 
simple fixture that supports a single square-tube splice by the fibers 
on each side of the splice. The splice itself is suspended in air. This 
fixture is not intended to be a finished design, but it does produce 
losses of 0.1 dB or less. The clamps are lined with a thick, soft EVA 
layer that grips the fibers and holds them in position. More practical 
designs are sketched in Fig. 11. An index-matching material is neces
sary to achieve 0.1 dB, although a liquid index-matching material 
may be feasible. 

Polymethylmethacrylate (PMMA) was suggested as an alternative 
index-matching material by Pinnow. 5 This thermoplastic could be 
drawn into a fiber and inserted into the square tube. Heat could then 
be applied to melt the PMMA, the fibers inserted, and the Pl\IMA 
allowed to cool. The splice could be disassembled by again heating the 
tube and removing the fibers. These connect-disconnect splices may 

Fig. lO-Quick-connect holding fixture. 
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EVA GRIP- __ __ 

- - - -OPTICAL FIBER - ---

Fig. ll-Connect-disconnect holders for single-fiber splices. 

be useful as methods for connecting sources, detectors, and line 
regenerators in a fiber-optic communication system. 
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111 ultipair cables are carefully constructed to control the coupling be
tween wire pairs to prevent excessive crosstalk. Several types of coupling 
modes exist between pairs, but the principal effort is devoted to controlling 
the "metallic-to-metallic" coupling mode because the coupling loss in this 
path is the most important in ordinary telephonic use of the cable. Over a 
half-century ago, Campbell showed that crosstalk behavior of this mode 
could be characterized by measuring a simple function called capacitance 
unbalance. This paper shows that at voice frequencies the crosstalk charac
teristics of the "longitudinal-to-metallic" mode can be predicted by 
measuring a second similar function of the same parameters that are con
tained in the capacitance unbalance. With the aid of these two functions, 
it is shown how the longitudinal balance of terminal equipment connected 
to a cable pair affects crosstalk. It is further shown that a longitudinal 
balance of approximately 40 dB or more is necessary for any station or 
terminal equipment used in the telephone network so that it will not 
significantly increase the small amounts of crosstalk inherent in the careful 
cable design. Also, a limitation is established for the maximum longitudinal 
voltages at voice frequency that can be applied without noticeably increasing 
crosstalk and noise in other cable pairs. This limitation is approximately 
40 dB more restrictive than the tar~ff limitations for metallic voltages. 

I. INTRODUCTION 

A multipair cable consists of many insulated but unshielded con
ductors within a protective conducting sheath. The individual con
ductors are used to form circuits. In one configuration, called a metallic 
circuit, two conductors are paired and form the circuit. Signals are 
applied between them. This is called metallic excitation of the circuit, 
and the signal is said to propagate in the metallic mode. In another 
configuration, called a longitudinal circuit, two conductors are paral-
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leled and these, plus the conducting cable sheath, form the circuit. 
Signals are applied between the paralleled conductors and the conduct
ing cable sheath, which is grounded. This is called longitudinal excita
tion of the circuit, and the signal is said to propagate in the longitudinal 
mode. It is also possible for one wire pair to be used for both circuits 
simultaneously and, consequently, for one wire pair to be simultan
eously excited in the metallic and longitudinal modes of propagation. 
This happens when the terminal equipment is longitudinally un
balanced, as will be explained. 

Because the conductors are not shielded and are in close proximity 
to each other, electromagnetic fields generated by current flowing 
through the conductors cause energy to be coupled from one circuit 
to another. This is called crosstalk and is undesirable, since it may 
cause noise in other circuits that can impair the performance of digital 
and analog systems, or even be intelligible speech that is overheard 
and leads to loss of privacy. 

Crosstalk cannot be eliminated, but several things can be done to 
reduce it, that is, to increase the crosstalk loss between circuits. First, 
metallic circuits are used rather than longitudinal circuits, because it 
was found by experience that the crosstalk loss between two metallic 
circuits is generally greater than the loss between two longitudinal 
circuits or between a longitudinal and a metallic circuit. Second, ad
jacent conductors are paired and often twisted and are used for the 
metallic circuits because they are less susceptible to inductive noise 
and the crosstalk loss between twisted pairs is generally greater than 
between nontwisted pairs. Twisting reduces crosstalk by assuring that 
each pair of the cable is exposed to opposing couplings by transposing 
its conductors relative to the disturbing pair. Third, the terminal 
equipment at both ends of a pair should be longitudinally balanced, 
i.e., have impedance symmetry with respect to ground, because longi
tudinal imbalance has the effect of producing longitudinal excitation 
which consequently can increase crosstalk. Finally, the cable pairs are 
also constructed to have longitudinal impedance symmetry for the 
same reason. 

Since metallic circuits are usually used, and both cables and terminal 
equipment are usually constructed to be longitUdinally balanced, most 
crosstalk studies to date have concentrated on what is called metallic
to-metallic crosstalk, i.e., crosstalk between balanced metallic circuits. 
IVIuch less is known analytically about the crosstalk loss between 
longitudinal circuits or between a longitudinal and a metallic circuit. 
For example, to explain crosstalk between balanced metallic circuits, 
CampbelF assumed that all circuits within a cable were longitudinally 
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symmetrical, that the pairs were excited metallically, and that, con
sequently, the applied metallic signal would not excite any longitudinal 
voltage in the disturbing or disturbed pairs. Thus, crosstalk ,,,ould be 
due to cable characteristics alone. Campbell was then able to show 
that crosstalk at low or voice frequencies, where inductive coupling is 
negligible, was very nearly proportional to the capacitance unbalance, 
which is a function of the four interwire capacitances between two 
cable pairs, and is now used as a measure of quality of a cable with 
regard to crosstalk performance. 

In another study, Foschini2 developed an accurate transmission 
model of cable systems for computing crosstalk which is an extension 
of Campbell's work. He too assumed longitudinal symmetry and 
showed that crosstalk coupling losses between metallic circuits can be 
predicted quite accurately from Campbell's capacitance unbalance. Al
though his results are valuable in the study of crosstalk for the metallic 
mode of propagation, they, as well as Campbell's results, do not con
sider the effects of terminal imbalance on crosstalk loss. 

The objectives of this paper are to extend the results of Campbell 
and Foschini by first removing the constraints of metallic circuits, 
terminal balance, and pair symmetry; and to construct a model to 
permit calculating the crosstalk loss between pairs as a function of 
terminal balance and pair symmetry. The model is used to show why 
terminal imbalance can greatly increase crosstalk by causing longi
tudinal excitation of a cable pair and, consequently, why limitations 
must be imposed on the longitudinal balance of terminal equipment 
and on the direct application of longitudinal signals. These objectives 
are accomplished by showing, through numerical solutions and ex
perimental results, that longitudinal excitation couples energy into 
adjacent wire pairs with much less loss than does metallic excitation. 

The paper is divided into four sections. First, the important results 
un longitudinal balance and longitudinal voltage restrictions are given. 
N ext, the model of crosstalk between two wire pairs in a cable is 
analyzed using transmission line equations. This model is used to 
derive a new set of crosstalk coupling coefficients that can be used to 
relate the crosstalk loss between two metallic circuits, a longitudinal 
and a metallic circuit, and two longitudinal circuits. Third, average 
values for these coupling coefficients for a typical cable are obtained, 
derived from measured characteristics. Using the coupling coefficients 
the predicted increase in crosstalk resulting from longitudinal excita
tion is compared with direct measurements of the increase made on 
another cable. Finally, restrictions on longitudinal balance and longi
tudinal voltages are established. 
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II. RESULTS 

2.1 Requirement on longitudinal balance 

For application to crosstalk performance, it is appropriate to define 
a longitudinal balance$ of terminal equipment as 

where eL is the longitudinal voltage produced when a metallic voltage 
eM is applied at any frequency f. The subscript "M - L" means the 
conversion from a metallically applied voltage to a longitudinal voltage. 
This paper shows that a balance of approximately 40 dB or more in 
the voice frequency region is required for any terminal device to ensure 
that the level of crosstalk that already exists in the network will not 
be significantly increased. This requirement is based on measurements 
of the near-end crosstalk at 1000 Hz of cable with a balanced and 
unbalanced termination. It is assumed that any metallic signal applied 
to the telephone network does not exceed the power level specified in 
Ref. 3. Longitudinal and metallic voltages are defined in Section 3.3. 

2.2 Restriction of longitudinally applied voltages 

Crosstalk coupling losses decrease with increasing frequency and 
hence voltage restrictions are frequency dependent. Figure 1 shows 
the limitations on applied longitudinal voltages established so as to 
increase the crosstalk energy already present in the telephone network 
by no more than about 1 dB. 

2.3 Derivation of crosstalk coupling coefficients 

Three new capacitive coupling coefficients have been derived that 
can be used with a simple but reliable computation method to predict 
the degradation in crosstalk performance for a particular cable when 
any of its terminations are unbalanced. These coefficients are given in 
Table 1. The coefficients are defined in eqs. (10) to (13), and the 
interpair capacitances given in the formulas are the capacitances be
tween the pairs shown in Fig. 2. 

III. COUPLING BETWEEN TWO WIRE PAIRS IN A CABLE 

3.1 Transmission line model 

Figure 2 models two wire pairs within a cable of length l. The follow
ing assumptions about a cable are made to construct this model: 

* A second type of balance for noise immunity purposes is a separate but important 
consideration for good telephone network performance. It is defined in Section 4.2. 
However, crosstalk does not enter into establishing its restrictions. 
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(i) The impedance and admittance per unit length of each wire 
pair, the admittances to ground per unit length, etc., are 
constant. 

(ii) The conductance to ground and between wire pairs is negligible, 
i.e., the admittances are purely capacitive. 

(iii) The inductive coupling between pairs is negligible at voice 
frequencies. 

(iv) The impedances per unit length of all wire pairs are equal. 

Let the admittances per unit length between the two circuits be Y 13, 
Y 23, Y 24, and Y 14 connected between conductors 1 and 3, 3 and 2, 2 and 
4, and 4 and 1, respectively, where conductors 1-2 form one twisted 
wire pair and 3-4 form the other pair. The impedances per unit length 
of the four wires are Zl, Z2, Z3, and Z4 and the admittances of wires 
to ground are Y 11l , Y 21l , Y 31l, and Y 41l . The admittances per unit length 
of the wire pairs are Y 12 and Y 34, and the voltages and currents are 
labeled in the figure. 

Consider a differential section of the model of length .1X. It is readily 
seen that the following eight current-voltage relationships hold for 
this differential section: 

VI (X + .1X) = VI (X) - II (X) Z l.1X ( 1 a) 

V2(x + .1x) = V2(x) - I 2(x)Z2.1x (Ib) 

V3(x + .1x) = Va(x) - I3(x)Z3.1x (Ic) 

V 4(x + .1X) = V 4(x) - I 4(x)Z4.1x (Id) 

I 1(x + .1x) = I 1(x) - {V1(x) - V2(x)} Y 12 .1x 
- V1(x) Y 11l .1x - {V1(x) - V3(x)} Y 13 .1X 

- {V1(x) - V 4(x)} Y 14.1X (Ie) 

I 2(x + .1x) = I 2(x) - {V2(x) - V1(x)} Y 12.1X 
- V2(x) Y 21l .1x - {V2(x) - V3(x)} Y 23.1X 

- {V2(x) - V4(x)} Y 24 .1X (If) 

I3(x + .1x) = I 3(x) - {V3(X) - V 4(x)} Y 34.1X 
- V 3(x) Y 31l .1x - {V3(x) - V2(x)} Y 23 .1X 

-{V3(X) - V1(X)}Y13.1X (Ig) 

I4(x + .1x) = I4(x) - {V4(x) - V3(x)} Y 34.1X 
- V4(x) Y 41l .1x - {V4(x) - V2(x)} Y 24 .1X 

. - {V4(x) - V1(x)} Y 14 .1x. (Ih) 

Dividing through by .1x, taking the limit as .1x approaches zero and 
recognizing the definition of the derivative, using assumption 3, and 
writing the resulting eight equations in matrix form, we obtain eq. (2). 
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Fig. I-Longitudinal signal limitations. 

3.2 Transmission line equations 

Equation (2) above can be written in matrix notation as 

where 

[VleX)] v = V 2(x) 
Va(x) , 
V 4(x) 

Z= 

dV 
dx 

dl 
dx = 

[1 

-Zl 

-YV, 

0 0 

~] , [fleX)] 
Z2 0 I = 12(x) 
0 Za 13 (x) 
0 0 Z4 14(x) 

Table I - Average crosstalk coupling coefficients 
for a multipair cable 

Average 
Coefficient Magnitude Formula 

(picofarads) 

CAhMl 7.5 C13 - C14 - C23 + C24 

CL2Ml 65.2 2{C13 + C14 - Cn - C24 1 
CLlAh 64.0 2{C13 - C14 + Cn - C24 1 
CL2Ll 9076.0 4{C13 + C14 + Cn + C24 1 
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are the voltage, impedance, and current matrices, respectively, and, 
using assumption (ii), 

CIo + C12 -C12 -C13 -C14 

+C13 + C14 

-C12 C20 + C12 -Cn -C24 

y =jw +C23 + C24 

-C13 -C23 C30 + C34 -C34 

+C13 + C23 

-C14 -C24 C4U + C34 

+C14 + C24 

is the admittance matrix. Equations (3a) and (3b) are basic transmis
sion line equations describing the voltage-current relationships be
tween wire pairs. We will use them to calculate crosstalk coupling 
between wire pairs. They are more conveniently written as a matrix 
differential equation: 

d~ [i'] = - [~ ~][i'], (4) 

where 0 is a 4 X 4 null matrix. The solution of eq. (4) is straight
forward and is discussed in Appendix A. 

3.3 Crosstalk coefficients tor various coupling modes 

Since there is negligible inductive coupling at voice frequencies, the 
insight to crosstalk coupling can be obtained from the transmission 
line equations involving the admittance matrix only. Rewriting eq. 
(3b) explicitly, we have 

dII/dx Clg + Cl2 -Cl2 -Cn -Cu VI 
+CI3 + Cu 

dI2/dx -CI2 C20 + CI2 -C23 -C24 V 2 

+C23 + C24 

= -jw 
dI3/dx -Cu -C23 C30 + C34 

+CI3 + C23 

-C34 Va 

dI4/dx -Cu -C24 -Cu C4(J + C34 V. 
+C14 + C24 

(5) 

It is clear from eq. (5) that coupling between wire pairs 1-2 and 3-4 
could not possibly occur if the four interpair capacitances C 13, C 14, 

C 23, and C 24 were all zero regardless of the longitudinal imbalance at 
the terminations. Furthermore, inspection of eq. (5) shows that the 
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coupling between the wire pairs is some function of these four inter
wire capacitances. This is seen by observing the contributions to dId dx 
and dId dx from V 3 and V 4, and the contributions to dI 3/ dx and 
dI4/dx from VI and V 2• 

The insight needed to understand why longitudinal excitation and 
longitudinally unbalanced terminations increase crosstalk is obtained 
when eq. (5) is transformed and expressed in terms of the longitudinal 
and metallic voltages and currents, rather than in terms of the con
ductor currents and conductor-to-ground voltages. This transforma
tion is easily made because the longitudinal and metallic voltages and 
currents are linearly related to the conductor voltages and currents. 
If wire pair 1-2 is now denoted as circuit one and wire pair 3-4 is 
denoted as circuit two, then the metallic voltages and currents on the 
two circuits are defined to be 

and 

V 2m = V3 - V 4, 

I - II - 12 
1m - 2 

The longitudinal voltages and currents on the two circuits are 

and 

V - V3 + V 4 
2L - 2 ' 

Expressed in matrix form, these eight equations become 

m] [-I 

1 
o 0] [VIM] 1 o 0 V lL 

0 ~ 1 V 2M 

0 -'2 1 V 2L 

and 

[11M] [! 1 0 

-i] [~l 
-'2 

IlL _ 1 1 0 
12M - 0 0 1 

'2 

I2L 0 0 1 

(6) 

(7) 

N ow, by using eqs. (6) and (7), eq. (5) can be expressed in terms of 
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the longitudinal and metallic voltages and currents as 

dIIM/dx 1 1 0 0 2 -2" 

dllddx 0 0 
= -jw 

1 1 dI2M/dx 0 0 2 -2 

dI 2L /dx 0 0 1 

Cla +C12 --Cl2 -Cl3 -Cl4 1 1 0 0 VIM 2" 

+Cl3 +Cl4 

-C12 C2a +Cl2 -C23 -C24 1 1 0 0 V IL -2 
+C23 +C24 

X 
-C13 -C23 C3a +C34 -C34 0 0 1 V 2M -2 

+Cl3 +C23 

-Cl4 -C24 -C34 C4a +C34 0 0 1 V 2L 2 
+Cl4 +C24 

(8) 

or, performing the matrix multiplications, 

[~lA~~ ~~l = - jw [~~~ ~~: ~~: ~~:l [~~~Il (9) 
dI v.d dx 4 q31 q32 q33 q34 V 2lII ' 

dI2L/dx q41 q42 q43 q44 V 2L 

where the elements of the 4 X 4 symmetric matrix Q in eq. (9) are 
given in Appendix B. 

JHuch useful information can be obtained by simple inspection of 
some elements of Q. First, the derivative of the metallic current in 
circuit one due to the metallic voltage in circuit two is proportional 
to qI3, i.e., the crosstalk coupling loss between the metallic circuits is 
directly related to q13. Thus, the coupling between two metallic circuits, 
i.e., the metallic-to-metallic coupling, is proportional to 

(10) 

This is the capacitance unbalance term first derived by CampbelP and 
used today as one measure of cable quality. Referring again to eq. (9), 
we see that the derivative of the metallic current in circuit one due 
to the longitudinal voltage in circuit two is proportional to q14 and that 
the derivative of the metallic current in circuit two due to the longi
tudinal voltage in circuit one is proportional to q32. In other words, the 
crosstalk coupling from a longitudinal to a metallic circuit is pro
portional to 

CL2M1 = -q14 = 2(C13 + C14 - C23 - C24 ) (11) 
or 
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The subscript L21111 means "from the longitudinal mode in circuit 
two to the metallic mode in circuit one." Also, we can readily see that 
the derivative of longitudinal current in circuit one resulting from the 
longitudinal voltage in circuit two is proportional to q24. In other words, 
the crosstalk coupling between two longitudinal circuits is proportional 
to 

(13) 

Using these four coupling coefficients, it is now possible to compare 
the difference in crosstalk loss between two metallic circuits, a longi
tudinal and a metallic circuit, and two longitudinal circuits. This com
parison was made for one cable and the results are discussed in the 
next section. 

3.4 Comparison of crosstalk using the coupling coefficients 

One good feature of the four coupling coefficients given in eqs. (10) 
through (13) is that they are easily measured. Hence, they provide a 
simple method for comparing the difference in crosstalk between two 
metallic circuits, a longitudinal and a metallic circuit, and two longi
tudinal circuits. To make such a comparison, it is necessary to have 
data on the interwire capacitances, C 13, C 14, C 23, and C 24, for real cable. 
Such measurements were made in 1968 on a 22-gauge, pulp-insulated 
cable manufactured by Western Electric. These measurements were 
made on many different 50-pair binder groups. * The data on inter
wire capacitances were taken for random samples out of the 1225 
possible setst of interwire pair combinations within each binder group. 

Using these data, the average value of the four coupling coefficients 
were calculated and are given in Table 1. These show that, on the 
average, the coupling between two metallic circuits is significantly 
less than the coupling between a longitudinal and a metallic circuit, 
and that the coupling between two longitudinal circuits is by far the 
greatest. Hence, the fundamental reason why terminal longitudinal 
imbalance increases crosstalk is that longitudinal imbalance causes excita
tion of the longitudinal circuit. 

Comparison of the values of the coupling coefficients made so far 
does not provide any quantitative estimate of the amount of the 
differences in crosstalk losses to be expected. Such an estimate can be 
obtained by using the coupling coefficients for individual wire-pair 
combinations to construct distributions of 1000-Hz near-end crosstalk 

* A binder group is a unit of 12, 16, 20, 25, 50, or 100 twisted wire pairs bound 
together within a cable. 

t For a 50-wire pair cable there are n(n - 1)/2 = 50(49)/2 = 122fi possible two
wire pair combinations. The sample sizes ranged from 200 to 600 pair combinations. 
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loss. This was done for the metallic-to-metallic, longitudinal-to
metallic, and longitudinal-to-longitudinal crosstalk loss distributions 
by using the formula given in Ref. 4, 

[
jwCuZo] N l = 20 loglo --8- , 

where C u is the capacitance unbalance, i.e., CM2Ml' C L2M l' or C L2L1 , w is 
the radian frequency in Hertz, and Z ° is the characteristic impedance 
of 22-gauge pulp. The inductive contribution is neglected. The dis
tributions are shown in Fig. 3. The rms crosstalk loss corresponds to 
that loss which would result in the average crosstalk power in watts. 
Consequently, crosstalk power transferred between two circuits with 
crosstalk loss equal to the rms value would be the average crosstalk 
power. The rms values are 105.2-dB loss between metallic circuits and 
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only 83.9-dB loss between a longitudinal and a metallic circuit. Hence, 
the new coefficient C L2M 1 predicts that longitudinal excitation of a 
wire pair in the cable measured causes 21.3 dB (105.2 - 83.9) more 
average crosstalk power in a metallic circuit than metallic excitation. 
Similarly, the rms loss between two longitudinal circuits, predicted by 
CL2L1 , is 49.2 dB, which is 56 dB (105.2-49.2) less than the metallic
to-metallic loss. These results are compared in Section 3.6 to crosstalk 
loss measurements made on another cable. In Section 3.5, these re
sults are compared to results obtained from computer solution of the 
transmission line equations (9), i.e., by simulation of the cable. 

3.5 Numerical solutions 

A second, more difficult method of calculating the crosstalk between 
the various modes is direct solution of the transmission line equations 
on a computer with an appropriate set of boundary conditions. 

A computer program has been written to solve these equations that 
simulates a cable of the same length and identical characteristics of 
the Western Electric cable used to obtain the coupling coefficients. 
Two conditions of interest were simulated on the computer. First, 
metallic excitation by a balanced 1000-Hz signal generator in series 
with a 600-ohm resistance was applied to a pair, denoted the disturbing 
pair, and all other pairs were terminated metallically with 600-ohm 
resistors from tip to ring. Second, the same conditions applied except 
one wire of the disturbing pair was grounded. This resulted in a deg
radation of 14.5 dB in the rms value of the balanced near-end cross
talk loss distribution. 

To compare the degradation in crosstalk obtained by the two 
methods, i.e., coupling coefficients versus numerical solutions, it is 
necessary to note that grounding a wire connected to a signal generator 
produces a longitudinal voltage that is one-half the value of the applied 
metallic voltage. This follows directly from the definitions of longi
tudinal and metallic voltages in terms of the voltage from each wire 
pair conductor to ground, eq. (6) with V 2 = O. Hence, an approximate 
6-dB adjustment must be made when using the longitudinal-to-metallic 
coupling coefficients C L1M2 and C L 2M 1, which predict a 15.3-dB deg
radation in the near-end rms crosstalk loss at 1000 Hz due to ground
ing, as compared to 14.5 dB predicted by the numerical computation. 
This good agreement suggests that the new capacitive coupling coeffi
cients do provide a simple but reliable method of predicting the 
degradation in crosstalk performance for a particular cable when its 
terminations are unbalanced. 
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3.6 Comparison with measured data 

In 1962, measurements of the degradation of near-end crosstalk loss 
caused by grounding one conductor of the disturbing or disturbed pairs 
on randomly selected pair combinations in a 7500-ft length of a 22-
gauge multipair pulp-insulated exchange grade trunk cable were made 
by Bell Laboratories. This was a real working cable between Oceanside 
and Vista, California. All load coils in the section under test here were 
first removed and the cable ends spliced. The results of these measure
ments are shown in Fig. 4. The results reveal, at 940 Hz, * a degradation 
of about 19.4 dB in the near-end rms crosstalk loss when a ground 
was applied to one wire of either the disturbing or the disturbed pairs. 

Since grounding one conductor causes a longitudinal voltage excita
tion that is one-half the metallic voltage, a 6-dB numerical adjust
ment was made on the measurements to predict that the rms cross
talk loss between a longitudinal and a metallic circuit is 25.4 dB worse 
than the rms loss between metallic circuits. This is compared to 21.3 dB 
obtained using the coupling coefficients for the cable discussed in the 
previous section. This 4.1-dB difference may be due to the fact that 
the two cables were not the same, each having different value parame
ters characterizing them as well as different lengths. 

When one conductor of both disturbing and disturbed pairs were 
grounded, the measured rms crosstalk loss was 32.6 dB, as shown in 
Fig. 4. This is the loss between the two longitudinal circuitst and, as 
can be seen, it is 61.5 dB less than this rms loss between the metallic 
circuits. This measured difference compares favorably to the calculated 
difference of 56 dB as shown in Fig. 3. The 5.5-dB difference may be 
due to cable differences. In conclusion, direct crosstalk measurements 
on another cable substantially support the analytical method for 
calculating crosstalk using the coupling coefficients or computer 
simulations. 

3.7 Metallic-to-Iongitudinal conversion because ot wire pair imbalance 

So far, we have analyzed the effect of direct longitudinal excitation 
of wire pairs on crosstalk between pairs. This excitation results when 
longitudinally unbalanced terminations are used. However, now we 
discuss how longitudinal excitation can also result because of "pair 
longitudinal imbalance," which is defined as any lack of symmetry 

* 940 Hz is close enough to 1000 Hz to permit direct comparison with calculated 
results. 

t Referring to the definitions of longitudinal and metallic voltages, it is simple to 
show that the coupling loss for the longitudinal-to-longitudinal mode is the same as 
for both pairs grounded. 
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in the wire pairs with respect to ground or with respect to each other. 
Such asymmetry can cause part of the metallic signal to be converted 
to a longitudinal excitation even when there is perfect longitudinal 
balance at the terminations. 

To understand the causes of wire pair longitudinal imbalance, 
again refer to eq. (9). Perfect pair balance is the condition that exists 
whenever a metallic signal does not excite the longitudinal modes in 
either the disturbing or disturbed wire pair. This requirement can be 
met if and only if 

q21 = q23 = q41 = q43 = O. 

These last four conditions are satisfied if 

C ig = C2g 

C3g = C4g 

C14 = C23 

(14a) 

(14b) 

(14c) 

(14d) 

Equations (14a) and (14b) are necessary since, for example, if Cig 

were not equal to C 2g, there would be a lack of longitudinal symmetry 
in wire pair one even if the terminations were all perfectly balanced. 
Equations (14c) and (14d) imply that equal and opposite currents are 
coupled (metallic-to-metallic crosstalk) from each of the wires in the 
disturbing pair to the disturbed pair preserving the pair symmetry. 

In other words, if the conditions of eqs. (14) are met and all the 
terminations are balanced, then all the currents are strictly confined 
to the metallic circuits. This is not to say that crosstalk cannot occur. 
It means that only one of the three kinds of coupling can occur, i.e., 
from metallic circuit to metallic circuit. In fact, the crosstalk will then 
be proportional to Campbell's capacitance unbalance expression which 
simplifies to 

CM2M1 = C l3 + C24 - C14 - C23 = 2(C 13 - C I4 ). (15) 

Cable data reveal that the capacitances to ground for wire pairs are 
nearly equal, their differences on the average being less than 2 percent 
of their magnitude. The percent differences in the interwire capaci
tances are larger (e.g., 10 percent), but they are much smaller than 
the capacitances to ground. This suggests that metallic-to-Iongitudinal 
conversion of signals due to the cable characteristics alone is small. 
Computer simulation of wire pairs, using eq. (9) and assuming balanced 
terminations, supports this suggestion. To put it another \yay, the 
high quality of manufactured multipair cable used in the Bell System 
ensures excellent pair longitudinal balance. The small imbalance III 
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Fig. 4-940 cycles near-end crosstalk coupling loss measured on 60 pair combina
tions within a 51-pair unit of a DSAC-202 cable (cable length 7500 ft). All grounds 
are applied at measure end. 

the pairs is rarely a significant factor in the contribution to longi
tudinal voltages that degrade crosstalk. Substantial conversion to 
longitudinal modes does occur when there is imbalance at the termina
tions, as revealed by our analysis and, consequently, it is necessary to 
place limits on permissible terminal longitudinal imbalance. 

IV. LONGITUDINAL BALANCE REQUIREMENTS 

Crosstalk energy can reach the metallic mode in the disturbed circuit, 
circuit two, from an applied metallic signal in the disturbing pair, 
circuit one, in three different ways. 

(i) Direct coupling from a metallic signal in circuit one to a 
metallic disturbance in circuit two. 

(ii) Conversion of the metallic signal of circuit one to a longi
tudinal signal in circuit one because of an unbalanced 
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termination * in that circuit, then coupling of the longitudinal 
signal in circuit one to a metallic disturbance in circuit two. 

(iii) Conversion of the metallic signal in circuit one to a longi
tudinal signal in circuit one because of an unbalanced termina
tion, coupling of the longitudinal signal in circuit one to a 
longitudinal signal in circuit two, and, finally, conversion of 
the longitudinal signal of circuit two back to a metallic dis
turbance in circuit two due to an unbalanced termination on 
circuit two. 

The crosstalk described in (i) above is independent of the imbalance 
at the terminations. It is the result of the capacitance unbalance CM2M1 
between the individual wire pairs and there is little more that can 
practically be done to circuits to reduce it. The important thing is to 
make sure that any equipment that is connected at the terminations of the 
cable does not degrade the low levels of crosstalk that currently e:rist by 
introducing longitudinal excitations. 

4.1 Longitudinal balance requirement 

The data on the vulnerability of cable to longitudinal imbalance 
have been obtained by measurements made on two different cables.t 

IVleasurements on the cable in California, with the 6-dB numerical 
adjustment, revealed that longitudinal signals, on the average, cross
talk into adjacent wire pairs with 25.4-dB less coupling loss for that 
cable than do metallic signals. The data on the Western Electric reel 
of cable, used in the newly derived capacitance unbalance formulas, 
showed 21.3-dB less coupling loss for longitudinal signals. 

The definition of longitudinal balance, for application to crosstalk 
performance, is repeated: 

l
eM(f) I BALM-df) = 2010g1o eL(f) , 

where eL is the longitudinal voltage produced when a metallic voltage 
eM is applied at any frequency f. The measurements made on the 
cable in California establish the more stringent longitudinal balance 
requirement, and it shall therefore be assumed that rms longitudinal
to-metallic crosstalk loss is 25 dB less than metallic-to-metallic cross-

* Conversion because of imbalance in the cable itself can be neglected, as discussed 
in Section 3.7. 

t Subsequent to the beginning of this investigation, measurements on the vulner
ability of one other cable to crosstalk because of longitudinal imbalance have been 
made. These measurements do not alter the conclusions reached by using the data 
on the first two cables only. 
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talk loss. This implies that, if a network which is sending a metallic 
signal has a balance of about 25 dB, the longitudinal signal developed 
because of this imbalance may contribute the same amount of cross
talk power to nearby cable pairs as the direct metallic signal applied 
to it. It is not known exactly how the two components of the crosstalk 
produced by metallic and longitudinal signals will add, that is, on a 
voltage basis, a power basis, or somewhere in between. However, a 
longitudinal signal developed because of imbalance is likely to be 
correlated to the metallic signal causing it. Hence, it will be assumed 
that the signals add approximately on a voltage basis. 

What is needed is a balance such that the contribution to crosstalk 
power because of imbalance is small compared to the crosstalk that 
exists when a metallic signal is applied. For illustrative purposes, it is 
assumed that an increase of 1.0 dB is not too noticeable and is thus a 
permissible contribution. In Fig. 5, which shows how two voltages 
expressed in dB are added, it is seen that, in order for the power in a 
signal to be increased by no more than 1.0 dB because of the presence 
of a second signal, the voltage difference must be over 17 dB. Thus, a 
longitudinal balance of approximately 42 dB is required (we will use 
40 dB) to ensure that crosstalk is increased by no more than this 
amount, due to the longitudinal-to-metallic coupling path, type (ii) , 
described at the beginning of Section IV. 

We now show that the crosstalk resulting from the coupling path 
described as type (iii) is less severe and has no bearing in determining 
the balance requirement. To do this requires discussing a second 
measure of balance, that known as longitudinal-to-metallic balance. 

6 

2 4 6 8 10 12 14 16 18 20 

DIFFERENCE BETWEEN TWO VOLTAGES IN DECIBELS 

Fig. 5-Sum of two voltages expressed in decibels. 
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4.2 Longitudinal-to-metallic balance 

In addition to the possibility of severely degrading the crosstalk 
levels already occurring in the telephone network, there is a second 
important reason why high longitudinal balance at the terminations 
must be maintained. This is to reduce the metallic noise resulting from 
power line induction. Here, the disturbing signals are longitudinal in 
nature and, to assure good performance of the user's circuit, the con
version loss from a longitudinal noise signal on his circuit to a metallic 
signal on his circuit must be large. A measure of this conversion loss, 
defined as longitudinal-to-metallic balance, is: 

I 
eL(f) I BALL-M(f) = 2010g1o eM(f) , 

where eL is the applied longitudinal voltage source and eM is the result
ing metallic signal. The balance subscript "L - M" means a conver
sion from an applied longitudinal signal to a metallic signal. It is im
portant to note that the two measures of balance, BALM- L and 
BALL_M, are not equal, i.e., reciprocity does not necessarily apply. 
lVloreover, they are not necessarily correlated. 

Generally, to assure good performance, the minimum balance 
BALL- M of a termination is well in excess of 40 dB over the voiceband. 
Consequently, we use 40 dB as a lower bound on the BALL- M of 
terminations, keeping in mind that this in no way establishes 40 dB 
as the necessary performance minimum. Discussion of that topic is 
outside the scope of this paper. 

Using the assumed minimum bound on BALL- M = 40 dB of termi
nations on the disturbed circuit, it is now shown that the crosstalk 
coupling loss path (iii) is at least 20 dB less than the metallic-to
metallic path and, hence, is not a factor. It is also assumed that the 
balance BALM_L of the terminations on the disturbing circuit is 40 dB, 
determined from the crosstalk requirement because of the coupling 
path of type (ii). Now, since there is approximately 60 dB less cross
talk loss between two longitudinal circuits than between two metallic 
circuits, the difference in the losses between type (i) and type (iii) 
paths is BALM_L (disturbing circuit) - 60 dB + BALL_M (disturbed 
circuit), or at least 20 dB. 

V. REQUIREMENTS ON LONGITUDINALLY APPLIED SIGNALS 

SO far, we have considered how longitudinally unbalanced termina
tions can cause increased crosstalk, because they longitudinally excite 
a wire pair. We have recognized that it is this longitudinal excitation 
that is the fundamental cause of the increased crosstalk, and we have 
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recommended a metallic-to-longitudinal balance, BALM _ L , limit for 
termination of 40-dB minimum to restrict the amount of longitudinal 
excitation produced. However, it is also possible to longitudinally ex
cite wire pairs directly from a voltage source connected between the 
tip and ring of a wire pair and the cable sheath, or ground. Such direct 
excitation must also be limited, because it too causes crosstalk in a 
disturbed metallic circuit in two ways: 

(i) Direct coupling from the longitudinal mode in circuit one to the 
metallic mode in circuit two. 

(ii) Coupling of the longitudinal mode in circuit one to the longi
tudinal mode in circuit two and conversion of energy in the 
longitudinal mode of circuit two to the metallic mode in circuit 
two because of an unbalanced termination in circuit two. 

Since the effect of directly applying longitudinal signals is the same 
as longitudinal signals arising from metallic-to-longitudinal imbalance, 
and since the rms crosstalk loss for this type of signal is on the average 
25 dB less than metallic signals, longitudinal voltage limits should be 
40 dB more restrictive than metallic voltage limits. Figure 1 shows 
the restriction on longitudinally applied voltages as a function of 
frequency. It is based on the restrictions already placed on metallic 
voltages determined by a previous study at Bell Laboratories* and 
the 40-dB restriction determined here. 

VI. SUMMARY 

The following has been accomplished in this paper: 

(i) Three new capacitive coupling coefficients have been derived 
that provide a simple but reliable method of predicting the 
degradation in crosstalk performance for a particular cable 
when its terminations are unbalanced. 

(ii) It has been demonstrated that a metallic-to-longitudinal 
balance requirement of 40 dB or more for any terminations 
connected into network should not noticeably increase the low 
levels of crosstalk that are already present. 

(iii) A requirement has been established on longitudinally applied 
signals that if met should not degrade crosstalk performance. 
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APPENDIX A 

In eq. (4), let T(x) be an 8 X 1 column matrix where 

T = [vex)] lex) 

and let A be an 8 X 8 constant matrix (not a function of x), 

Then 

A=[~ ~]. 

dT(x) 
(IX -AT. 

The solution to this matrix differential equationS is known to be 

T(x) = exp (-Ax) T(O). 

(16) 

(17) 

(18) 

Since the parameters that characterize the line are independent of x, 
it is readily seen by solving eq. (4) that 

where the far-end voltages and currents where x = l are 

[

V 1 (l)] 
VFE = V 2(l) 

Va(l) , 
V4(l) 

and the near-end voltages and currents are 

(19) 

With the eight equations given in (19) and a knowledge of the 
boundary relations at the terminations, we can characterize the model 
of the system at each point in space (x) by a vector pair of voltages 
Vex) and pair currents lex). 

The matrix exponential, 

exp l-[~ ~]z}, 
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may be evaluated in closed form. With a closed-form representation, 
the voltages and currents can be expressed in closed form and more 
complex structures such as spliced cable systems can be simulated. 
The way to explicitly determine the matrix exponential is to use the 
fact that 

Q=-[~ ~] 
satisfies its own characteristic equation (Cayley-Hamilton TheoremS). 
Then 

7 

exp Q = L akQk. 

k=O 

Replacing Q by a diagonal matrix consisting of the eight eigenvalues 
of Q enables us to solve for ai. However, for fairly short unspliced 
cable systems we may use the first few terms in a power series, i.e., 

l2 
exp [ - QlJ = I - lQ + "2 Q2 - ... , 

where I is the identity matrix, to accurately approximate the matrix 
exponential as was done for the cable in the numerical solutions section. 

A.1 Boundary conditions 

For any two wire pairs within a cable, four sets of current-voltage 
relationships exist at the wire terminations. Referring back to Fig. 2, 
we define the near end to be the subscriber side of the loop with its 
termination where x = 0, and the far end, where x = l, to be the 
other termination, possibly a central office. The disturbing pair will 
always be designated wire pair 1-2 with a generator of some kind at the 
near end, and the disturbed pair will be designated 3-4. Suppose the 
generator is two voltage sources each grounded at one end and in 
series with an impedance and the remaining terminations consist each 
of two complex impedances to ground shown in Fig. 2. Then we have 
the eight relations at the boundaries 

VS(l) - ZNE(l, 1)11 (0) 

VS(2) - ZNE(2, 2)12(0) 

V 3(0) -ZNE(3, 3)13(0) 

V 4 (0) -ZNE(4, 4)14(0) 

VI (l) = Z FE ( 1, 1) 11 (l) 
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(20b) 

(20c) 

(20d) 

(20e) 

1249 



V 2(l) = ZFE(2, 2)12(l) 

V3(l) = ZFE(3, 3)13(l) 

V 4(l) = ZFE(4, 4)14(l), 

which may be written in matrix form as 

where 

ZNE = 

ZFE = 

and* 

VNE = -ZNE CNE + VS 

VPE = ZFE CFE, 

[ZNEf' l) 
0 0 

ZNE(2, 2) 0 
0 ZNE(3, 3) 
0 0 

[ZFY,l) 0 0 
ZFE(2, 2) 0 

0 ZFE(3, 3) 
0 0 

VST = [VS(I), VS(2), 0,0]. 

ZNEt,J 
0 
0 
0 

ZFE(4, 4) 

(20f) 

(20g) 

(20h) 

(21a) 

(21b) 

We can solve the 16 equations (19) and (21) and determine VNE and 
CNE. Now we have the model completely characterized by the vector 
pair of voltages Vex) and lex) via the equation 

[n = exp l-[~ ~}}[~Zn 
It should be pointed out that the terminations are not always simple 
impedances to ground. For instance, for a second type of termination, 
where an ordinary telephone set is connected to a wire pair, tip, and 
ring, there is no direct conducting path to ground. If the impedance to 
ground from the tip and ring is assumed to be infinite, then we cannot 
write a simple impedance matrix relating the current to voltage as in 
eqs. (21a) or (21b). As a result, there is a rather tedious but straight
forward rearrangement of eqs. (19) and (21). Finally, a third type of 
termination could be a central office that will also require modification 
of the impedance matrix. All three of these types of terminations have 
been simulated in computer programs. 

* The superscript T means transpose. 
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APPENDIX B 

The elements of the admittance matrix in eq. (13) are given below. 

ql1 = {C lg + C2g + 4C l2 + C l3 + Cl4 + C23 + C24 } 

q12 = q21 = 2{ (C Ig - C2g ) + (C I3 + Cl4 - C23 - C24 )} 

qI3 = q31 = - (C I3 - Cl4 - C23 + C24 ) 

ql4 = q41 = -2(C13 + Cl4 - C23 - C24) 

q22 = 4{ (C lg + C2g) + (C 13 + C14 + C23 + C24 )} 

q23 = q32 = -2(C I3 - Cl4 + C23 - C24 ) 

q24 = q42 = -4(C I3 + C I4 + C23 + C24) 

q33 = {C 3g + C4g + 4C34 + C I3 + C I4 + C23 + C24 } 

q34 = q43 = 2{ (C 3g - C4g ) + (C 13 - Cl4 + C23 - C24 )} 

q44 = 4{ (C3g + C4g) + (C I3 + Cl4 + C23 + C24 )}. 
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M ultiloop feedback has heretofore been ignored as a means of obtaining 
shaped gain amplifiers. In this paper, a theoretical basis is developed for 
using dual ma}or loop feedback amplifiers to obtain shaped power gain 
with input and output reflection coefficient constraints. From the theoretical 
results, practical design procedures can easily be developed and one such 
procedure is discussed. 

The aim of this study was an alternative to the "brute force" termina
tion technique of realizing input and output impedance matches. The 
development is otherwise unique in that it uses no hybrid transformers for 
beta circuit coupling or for realization of the reflection coefficient 
constraints. 

I. INTRODUCTION 

Wideband feedback amplifier design has heretofore mainly been 
accomplished by the use of single major loop feedback techniques. 1

- 4 

Major loop feedback implies that the current or voltage on the input 
to the basic amplifying element is manipulated by the current or volt
age that appears on the output of the basic amplifying element. The 
design concept follows the classical feedback design procedure of 
assuming a unilateral forward amplifying element of voltage gain J.L and 
a feedback path with voltage gain {3. Existing multiloop feedback 
techniques have been primarily concerned with stability considerations 
of "tandem" 5 and minor multiloop2.3 feedback arrangements. 

In many applications, input and output impedance matching of the 
amplifier is necessary. The communications amplifier is one such 
example, since it requires very low levels of signal interference due to 
input or output impedance mismatch. The classical single-loop feed
back techniques offer little help in designing for the impedance match
ing constraint. This is due to the fact that the more loop gain in a 
single-loop feedback circuit, the more extreme (zero or infinite) the 
input and output impedance becomes.1- 3 Two techniques that are 
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used to circumnavigate this problem are "brute force" terminations 
and bridge couplings. 

The brute force approach obtains the impedance match by placing 
a resistor in series with the input (or output) for a feedback amplifier 
with zero input (or output) impedance. A parallel resistor is used for 
the infinite input or output impedance case. 

The use of a balanced resistor bridge is also useful in obtaining an 
impedance match. This is accomplished by balancing the bridge com
ponents with respect to the input (or output) impedance of the feed
back amplifier. The use of a resistive bridge is limited, though, due to 
the excessive resistive losses associated with such a bridge. A useful 
four-port device, which exhibits the same qualities as a resistive 
bridge but with much less through loss, is the hybrid transformer. 6 

The impedance match with this device is obtained by manipulation 
of the two unused port impedances. 7 

Since the hybrid transformer is similar to a bridge, one of the two 
unused ports can be used for the {3 return path. This technique is 
theoretically the best alternative mentioned since a property of such 
a connection is that the impedance match is improved with the 
amount of loop gain.2 This technique has been used to advantage on 
several communications amplifiers. 8 ,9 

The limitations of the above alternatives of obtaining an impedance 
match become evident when other design constraints are investigated. 
For example, the noise figure of an amplifier is degraded by any loss 
that exists on the input to the amplifier. lO Thus, the use of brute force 
or hybrid transformer coupling causes an increase in noise figure. On 
the output side, a loss increases the power requirement on the last 
stage of the amplifier. Even if this is no problem, the resultant in
crease in the distortion may be. This is due to the fact that second
order distortion power increases twice as fast as fundamental power 
and third-order distortion power three times as fast. ll Thus, the losses 
associated with the matching techniques will increase the power re
quirement and reduce the linearity of the overall amplifier. 

The use of the hybrid transformer in the {3 path may also cause a 
stability problem. Since the transformer introduces phase shift, due 
both to the physical length and techniques of construction, their use 
is limited at very high frequencies. 

Investigation into alternative methods of design is therefore de
sirable. To this end, this paper presents fundamental concepts on the 
techniques of using major multiloop feedback in amplifier design. The 
objective is the design of wideband-frequency-dependent gain ampli
fiers with input and output match constraints. The design procedure 
does not use hybrid transformers and attempts to minimize brute 
force termination techniques. 
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In Section II, the basic amplifier element is introduced. The analysis 
that follows is applicable to configurations of active devices that can 
be modeled by this basic amplifier. A circuit form using this basic 
amplifier is then introduced. Matched impedances and gain relation
ships are developed for this circuit form in such a way as to make the 
open loop gain characteristics evident. This paves the way for an 
initial design approach that is independent of the loop gain 
characteristics. 

In Section III, a second circuit form of shunt-series feedback using 
the same basic amplifier is introduced. Matched impedances and gain 
relationships are again developed. The derivations in this section 
exactly parallel those of Section II. 

In Section IV is given the results of the two previous sections to 
demonstrate the procedure used to obtain an initial circuit design for 
a practical amplifier configuration. The configuration treated is that 
of a cascade of N common emitter transistor stages. It is shown that 
for N odd, the results of Section II can be used, and for N even, the 
results of Section III apply. One numerical example is supplied for 
each case. Two appendices provide the calculations used to derive the 
results in Sections II and III. 

II. SHUNT TRANSADMITTANCE: SERIES TRANSIMPEDANCE FEEDBACK 

Each dual-loop feedback amplifier discussed in this paper contains 
three major components: two feedback networks and one amplifying 
element. Each major component is assumed to be made up of any 
number of passive and active elements. Characteristics of importance 
for the amplifying element component are given in Fig. 1; this ab
breviated model is designated a basic amplifier. In this figure, Zx is 
the input impedance and Is is a current-controlled current source. Is 
is given by the product of a frequency-dependent variable k and the 
current through Zx. 

In Fig. 2, the first multiloop feedback circuit form is given. Series 
feedback voltage source aIo sums up the most important characteristic 

! ix 
Is 

INPUT ZX ! + OUTPUT 

kix 

Fig. I-Basic amplifier. 
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10 .--

tix 

Zx 

Zs 

l
v

'" 
-bVo + Is = kix • vol ZL 

- I - - -

Zin' Pin 
-

Pout' Zo Po 

Fig. 2-First feedback form. 

of one feedback network. Shunt current source - b Vo likewise is the 
important characteristic of the second feedback network. Since the 
series feedback voltage source is dependent upon output current, it 
represents a transimpedance feedback. Similarly, the shunt current 
source is dependent on the output voltage yielding a transadmittance 
feedback. Source and load impedances, Z sand Z L, summarize amplifier 
interaction with the driving circuitry and the loading circuitry, 
respectively. 

2.1 Input and output impedance 

Z in and Zout, the input and output impedance, are desired to be 
matched to Zs and ZL, respectively. Thus, Zin and Zout are needed and 
are given by 

Zx + ka 
Zin = 1 +kbZL ' 

Z - Zx + Zs + ka 
out - kbZs . 

If the amplifier gain k is large, then Z in and Zout become 

ak a 
Zin = bkZL = bZL ' 

ak a 
Zout = bkZs = bZs' 

(1) 

(2) 

(3) 

(4) 

For the matched condition, Zin = Z~ and Zout = Z~. Using these condi-

1256 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1975 



tions in eqs. (3) and (4) yields 

Z: = Zin = b; L ' (5) 

* Z a Z L = out = bZ s . (6) 

Substituting (Z~)* = ZL from eq. (6) into (5) yields 

Z* a 
S = b (a* /b*Z~) , (7) 

which implies 

a* (a)* a 
b* = b = lj' (8) 

Thus, conjugate matching yields the requirement that the ratio of 
a to b (or more generally ka to kb) must be real. Given this fact, eqs. 
(5) and (6) are identical, i.e., 

Z:ZL = ZsZ~ = E' (9) 

The imaginary part of Z L Z: is therefore constrained by 

1m {Zd Re {Zs} - Re {Zd 1m {Zs} = O. (10) 

A necessary condition for an amplifier to be absolutely stable is that 
Zin and Zout be passive. 12 This is satisfied when the real parts of Zs 
and Z L are positive. Thus, the imaginary part of Z sand Z L have 
the same sign, implying that if the matched load impedance is capaci
tive (inductive), then the matched source impedance is capacitive 
(inductive) . 

If the reflection coefficient [reflection coefficient p is defined as 
(Z - Z;et)/(Z + Zref)]I3,14 at the input is evaluated (assuming 
Z s = a/bZ~), the following is obtained: 

( 
2ab Re (Z L) )-1 

pin = Pino 1 + zxbZ~ + a k . (11) 

In eq. (11) Pino is the input reflection coefficient when k = O. 
Evaluating the return ratio T (Ref. 2) of the circuit in Fig. 2 with 

respect to the output dependent current source gives 

T = -2ab ~e (ZL) k 
zxbZL + a . 

(12) 

Return difference F (Ref. 2) is defined as 1 - T; thus, eq. (11) can be 
rewritten as 

1 
(13) Pin = Pino F' 
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Therefore, the return loss (20 log II I pi) is improved with increasing 
return difference F. Since the output reflection coefficient is given by 

1 
Pout = Pouto If' ' (14) 

it also realizes the same improvement with increased return difference. 

2.2 Gain equations 

The transducer gain for the circuit in Fig. 2 can be calculated when 
it is assumed that Z 8 = albZ~: 

1 I TI2 
I 8 21 1

2 
= I ab I 11 - T 12 (15) 

Again, T is the return ratio and is given by eq. (12). 
In eq. (15), T is proportional to k. Thus, for large k, 1821 12 goes to 

II I ab I. Therefore, eq. (15) can be rewritten as 

(16) 

where 

(17) 

2.3 Design procedure 

In the derivations given thus far, a definite effort has been made to 
separate the dependence of k. This was done for two reasons: (i) to 
allow an initial design to be effected with k not a variable, and (ii) 
to allow definitive statements to be easily made concerning the effects 
of k. The former can easily be implemented by assuming k = 00. 

In this case of k = 00, eqs. (8), (9), and (17) are relevant. These 
equations are repeated for convenience: 

(~)* = ~ (8) 

ZB Z~ = ~ (9) 

1 
I 8 21C1J 12 = I ab I . (17) 

It should be noted that eq. (8) implies that alb is real, but a and b 
can be complex. I S21C1J 12 in eq. (17) is the maximum available gain 
since it is obtained with the input and output matched. 

In summary, the design procedure given below could be used when 
the desired gain g and impedance matches are known. 
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(i) Choose an arbitrary starting Zs and ZL such that ZsZ~ is real. 
(ii) Substitute a from eq. (9) into eq. (17), yielding 

1 
g = I S 2100 12 = Z sZ;, I b 12 (18) 

Synthesize b such that 

1 
(19) 

There are no constraints upon the phase of b except those that 
may result from stability considerations. 

(iii) Synthesize a such that 

a = bZ.~Z~. (20) 

(iv) The value of k is now obtained by considering the practical 
active devices used to simulate the ideal amplifying element. 
With k known, the return ratio T Ceq. (12)] can be calculated; 
this yields the obtainable impedance match and gain devia
tion, eqs. (13), (14), and (16). If the design objectives are not 
met, the previous calculations should make the necessary 
changes evident, e.g., lower Zs or a higher value of k. 

III. CURRENT TRANSFER SHUNT; VOLTAGE TRANSFER SERIES FEEDBACK 

The last multiloop feedback circuit to be considered is shown in 
Fig. 3. In this case, the series feedback voltage source is dependent 
upon the output voltage and thus represents a voltage transfer feed
back. Similarly, the shunt current source is a current transfer feedback. 
The voltage source is given by aVo and the current source by - bIo, 
otherwise Figs. 2 and 3 are identical. 

3.1 Input and output impedance 

The input and output impedances, when evaluated, are given by 

z. = Zx - akZ L 

In 1 - bk ' (21) 

(22) 

For large k, eqs. (21) and (22) become 

a 
Zin = b ZL, (23) 

b 
Zout = - Z s. (24) 

a 
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tv;" 

-bIo 

Zs + Is = kix + 

I aVo l - - -

Z in ,Pin Pout' Zo -
Fig. 3-Second feedback form. 

The conditions of input and output matches yield 

Thus, 

and 

Z* - Z - a Z - a (Z )* _ a ( b)* * 
s - in - Ii L - Ii out - b a ZS' 

Z: Zs a - = ---;jC =_. 
ZL ZL b 

vo t ZL 

I -
Po 

(25) 

(26) 

(27) 

Since alb is real and the real part of Z sand Z L are nonnegative, then 
eq. (27) implies that if Z s is capacitive (inductive) then Z L must be 
inductive (capacitive). 

Input and output reflection coefficients can be evaluated along with 
the return ratio and return difference. The results are shown below 
for Zs and ZL, satisfying eq. (27). 

T = 2kab Re (~L) . (28) 
bz x + aZL 

F = 1 - T. 

1 
Pin = Pino [1; 

bz x - aZL 
Pino = b + Z*' ZX a L 

1 1 
Pouto = 1. Pout = Pouto Ii' = Ii'; 

(29) 

(30) 

(31) 

Thus, as in the case of the first circuit form, the reflection coefficients 
are improved by the return difference. 
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3.2 Gain equation 

When the load and source impedances satisfy eq. (27), the trans
ducer gain for the circuit in Fig. 3 is given by 

18 12 - IS 12 ITI2 
21 - 2100 11 _ T 12 , (32) 

1 
182100 12 

= labl· (33) 

This is the same form as was given in eqs. (16) and (17) ; thus, the same 
statements apply to the above equations concerning improvement 
with feedback. 

3.3 Design procedure 

Initial circuit design can proceed in a manner similar to the first 
case. The term k again is assumed equal to infinity; this yields the 
germane equations summarized below. 

z; a 
ZL = lj. 

1 
I S2100 12 = I ab I . 

(26) 

(27) 

(33) 

The four design steps outlined previously apply except as follows. 

(i) Choose Z 8 and Z L such that Z;/ Z L is real. 
(ii) Substitute eq. (27) into (33) so that 

(34) 

Synthesize b such that 

Ib I 1 
(35) 

(iii) Synthesize a such that 
Z: 

a = ZL b. (36) 

(iv) With k known, the return ratio is obtained from eq. (28). 
Equations (30), (31), and (32) then yield the obtainable impedance 
matches and gain deviation, respectively. 
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IV. DESIGN EXAMPLES 

Results obtained in the last two sections will now be applied to a 
basic amplifier consisting of a cascade of N common emitter transistor 
stages. Transistors will be assumed to be used in a frequency range 
well below cutoff. The first case to be treated is for N odd. 

4.1 N odd 

Consider the circuit given in Fig. 4a. In this circuit, the transistor 
will be modeled by the circuit given in Fig. 4b. The circuit given in 
Fig. 4a will now be converted to the form given in Fig. 2. Z 8 and Z L 

have their obvious counterparts. Zx is given by the impedance from 
base to ground with a10 equal to zero; this is obtained when 10 = 0, 
which can be obtained by setting al (first stage a) to zero. From the 

I 

1 I I 1 

Zs 

(a) 

(b) 

Fig. 4-Design example N odd. 
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transistor model, this is evidently 

Zx = r~ + re + ZE. (37) 

Is is given by the collector current on the Nth transistor when the base 
current on the first is unity. With the cascade of N transistors, this 
yields 

(Xi 
{3. = --' 

~ 1 - (Xi' 
k = {31, "', {3N. (38) 

The term a is given as the value of open circuit input voltage (Z sand 
Z F removed) that exists when Io equals unity. This is given by 

N> 1 

N=1. 

For [{32, "', (3N [» [Z E + r e [, eq. (39) can be approximated by 

(39) 

(40) 

a = ZE, N > 1. (41) 

The last remaining parameter b can be obtained by evaluating the 
Y12 parameter of the network Y, yielding 

b = - (Y12) = - - = -. (-1) 1 
ZF ZF 

(42) 

Loading effects of the Y networks, i.e., Y11, Y22, can be ignored if they 
are sufficiently small. 

As a numerical example, the value of k, Z F, and Z E are calculated 
to yield an input and output reflection coefficient of 0.18 (return loss 
of 15 dB) and a gain to within a factor of 1.26 (1 dB) of P/400, j in 
IVIHz, in the band from 80 to 140 MHz. The remaining parameters of 
the transistors are r~ = 1, and re = 0.173. 

Following the four-step design procedure yields 

(i) Let Zs = ZL = 20, ZsZ~ = 400. 

( .. ) P 1 
n g = 400 = 400 [ b [ 2 

[b[=!=I~1 j ZI 
[ZI[ = j, j in MHz. 

If Z I is chosen as an inductor, then 

[ZI [ = 27r}L = j; thus, 

L = 1/217" J.'H, and 

1 1 
b = 217"jL . = -j" 

.7 .7 
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(,;,,',,') Z Z* b 400b 400 1 400 
""" a = 8 L = = Z, = 27rLfj 

a = 4J
J
?; thus, a can be realized when 

ZE(~a) is a capacitor of value 
1 

C = 27r(400) J-tF. 

(iv) Using eq. (12) and a ~ ZE, the following is obtained: 

T = -2ab ~e (XL) k = (-2 40?~. 20)k/ 
zabZL + a fJ fJ 

-16000k 
T = 8000 + fJ423.4 

[(1.173 + 4JJ) fj 20 + 4JJ] 

j-0.46e-i770k at 80 MHz 
-0.27e-i82°k at 140 MHz. 

For k = 20, 11 - T I = I F I at 140 MHz (the worst case point) is 
given by 11 + 5.4e- i82° I = 11.75 - j5.35 I = 5.63. This reduces the 
reflection coefficient by 1/5.03 = 0.18. Thus, the input and output 
reflection coefficient specification is initially satisfied. 

The gain deviation at 140 MHz is calculated from eq. (15) and is 

IT 12 15.412 
11 - T 12 = 15.6312 = 0.919. 

This implies a gain deviation from nominal of 0.37 dB, and initially 
satisfies the design requirements. 

RS 
20n 

aie• a = 0.95238 

I (21T) (400) Jlf 

Fig. 5-Numerical example N odd. 
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The resulting circuit for N odd is given in Fig. 5. The actual trans
ducer gain, input impedance, and output impedance values for this 
circuit were obtained by a computer-aided design program. I5 A sum
mary of the results is given in Fig. 6. It can be seen from this figure 
that this procedure yields a practical first iteration in the design 
procedure. 

22~--------------------------------------------------~ 

20 

~ 18 
LlJ 
c:c 
U 
LlJ 
o 
~ 
z 
~ 
(:J 

cr: 
LlJ 
U 
=> 
Sl 16 
z 
<! 
cr: 
I-

14 

12 

/ 
/ 

80 

/' COMPUTED INPUT RETURN LOSS 

/' 
/ 

COMPUTED OUTPUT RETURN LOSS 
/' 

100 120 

FREQUENCY IN MEGAHERTZ 

Fig. 6-N odd results. 
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16 

15 

14 
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4.2 N even 

For an even number of transistors, the circuit in Fig. 7 is used. The 
transistor model of Fig. 4b is again used. The evaluation of the param
eters of Fig. 3 follows on the same basis as in the N odd case. Using 
Fig. 7, the calculations are summarized below. 

k= -{31, "',{3N, 

a = ZE + re + (200ZE)/(ZE + 200) 
200 + ZE ZL{32, "', {3N 

{3i » 1, i = 2, "', N, 

(43) 

(44) 

1 ZE 1 «200 (45) 

(46) 

A numerical example is given to show the initial design steps for 
obtaining a maximum input and output reflection coefficient of 0.18 
and a gain to within 1.26 of r (f in MHz), from 80 to 140 MHz. The 
transistor parameters are again r~ = 1 ohm and r e = 0.173. 

The four design steps yield 

(i) Let Z, = ZL = 20, ~~ = 1. 

(ii) g = r = I; 12 

1 2 
Ibl = ] = IZ,I 
IZFI = 2f· 

Let Z F = j2f = .j211" fL, L in ~H 

1 
L = -~H. 

11" 

(iii) b 2 ZE 1 
a = = j211" f L = 200 = j/ 

200 
Thus, ZE = Jf' 

This implies that Z E is a capacitor of value 

1 
C = 21J'(200) J,tF. 
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K+l 

r 

Fig. 7-Design example N even. 

(iv) Using eq. (32), 

T = 2ab Re (ZL) k = 2(1/ Jf)(l/ Jf)20 
bz x + aZ~ (1/ Jf)(r~ + re + 200/ jf) + 20/ Jf 

40 1 0.023e-83°jk at 80 MHz 
T = 200 + 21.173Jf k = 0.015e- 86° jk at 140 MHz. 

For k = -400, /1- T / = / F / at 140 MHz is given by /1 +6e-86° j
/ = 6.1. 

The reflection coefficient is reduced by a factor of 1/6.1 (15.7 dB). 
Gain deviation can be calculated and is equal to 0.95 (0.22 dB) ; thus, 
the initial specifications are satisfied. 

Figure 8 gives the resulting circuit. The results of the computer 
analysis of this circuit are given in Fig. 9. Again the data show that 
the approach yields good results. 

It can be seen in Fig. 9 that the difference in gain is greater than the 
computed 0.22 dB. This is due to the fact that a was taken as Z E/200, 
rather than the term given in eq. (45). A more accurate evaluation 
(denoted by the hatted variables) of a is given as 

a = ZE + re + (200Z E)/(ZE + 200) ~ ZE + ZE 
200 + Z E Z L{3 2 200 Z L{3 2 

"ZE ZE ZE 
a ~ 200 + (20) (80) = 200 (1 + 0.125) = 1. 125a, 

where a was the numerical value previously obtained. Using eq. (33) 
yields 

- 1 1 11 1// 
/ S2100 /2 = I db I = /1.125ab / = 1.125 / ab / = 1.125 S2loo 2. 
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0.833 iel 0.988 ie2 

2n 

Fig. 8-Numerical example N even. 

Again the unhatted quantities were the ones used in the five design 
steps. The factor of 1.125 accounts for an additional 0.51 dB of the 
gain difference. 

In this example, the gain difference can easily be reduced by in
creasing the i3 of the second-stage transistor. This was not done since 
it was desired to keep the i31i32 product at 400. Since i32 is 80, this 
forces i31 to be 5; any high value of i32 results in unrealistic values of i31' 
Nonetheless it is evident that a high i32, "', i3n product is needed for 
an even number of cascade stages. 

V. CONCLUSIONS 

In this paper, the basic characteristics of two forms of major multi
loop feedback have been investigated. The design characteristics 
treated have been input and output impedance and frequency-de
pendent power gain. It has been shown that, with sufficient open loop 
gain, the equations that describe the gain and impedance quantities 
are very simple in nature. An initial circuit-design iteration can easily 
be performed since many complicating variables are eliminated. 

This initial circuit-design concept would be extremely useful in 
a computer circuit analysis-optimization program. Well known is the 
major practical limitation of optimization programs: the obtaining of 
a convergent starting point. For dual-loop amplifiers, this paper offers 
the designer a method of easily finding a good starting point. 

Although not reported here, several frequency-shaped amplifiers 
were actually built using multiloop feedback. The excellent perform-
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Fig. 9-N even results. 

ance of these amplifiers, with respect to input and output matching 
and gain shaping, has precipitated the work reported in this paper. We 
anticipate that future papers will discuss more complicated active 
devices, feedback network loading effects, and feedback network 
synthesis. 

WIDEBAND AMPLIFIER DESIGN 1269 



APPENDIX A 

Shunt Transadmiftance: Series Transimpedance Feedback Calculations 

A.1 Calculation of Z tn 

Thus, 

. Yin = akix 
~x = 

ix(zx + ak) = V in ; 

Vo = - kixZ L. 

Z Yin Zx + ka 
in = lin = 1 + kbZ L 

A.3 Input reflection coefficient calculation 

Zin - Z; Z Zx + ka 
Pin = Z in + Z s ' in = 1 + kbZ L ' 

pin = (1z+ ~k~L - b~L) / (1z+ ~b~L + b~~) 

a 
Zs = bZ~' 

zxbZL + abkZL - a - abkZL 
= ZxbZ~ + abkZ~ + a + abkZ L ' 

Pin = zxb~ + a + abk[2 Re (ZL)] , 

zxbZ L - a 
Pino = Pinl k=O = bZ* + . Zx L a 

Therefore, 

. _ zxbZL - a X (1 + 2ab Re (ZL) k)-l 
Pm - zxbZ~ + a zxbZ~ + a 

= . (1 + 2ab Re (ZL) k)-l 
Pmo zxbZ~ + a . 
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A.4 Return ratio calculation 

Assuming the output current source Isis disconnected and replaced 
by a I-ampere current source, T is given by the current that flows 
through the disconnected current source. 

Is = 1, 

a 
Zs = bZ~; 

A.S Output reflection coefficient 

Zout - Z~ 
Pout = Z + Z ; 

out L 

Z - Zx + Z s + ka. 
out - kbZ

s 
' 

Pout = (
Zx + Zs + ka _ ~)/(Zx + Zs + ka +~) 

kbZs bZs kbZs bZ;' 

Pout = (
Zx + Zs + ak - ak )/(ZxZ; + ZsZ; + akZ; + akZs) 

kbZ s kbZsZ:' 

Therefore, 

( 
ak(Zs + Z;) )-1 a 

Pout = Pouto 1 + zxZ; + ZsZ; ; Zs = bZ~; 

( 
ak (a/bZ~ + a/bZ L) )-1 

pout = Pouto 1 + zx(a/bZ L) + (a/bZ~)(a/bZ L) 

= (1 + kabZL + kabZ~ )-1 
Pouto zxbZ~ + a ' 

( 
2ab Re (Z L) )-1 

Pout = Pouto 1 + bzxZ~ + a k . 

A.6 Transducer gain calculation 

Assume a voltage source of value V s is inserted in series with the 
source impedance Z s in Fig. 2. Let Z s = a/bZ~. PAS will denote the 
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available power from the source and Pout the real power delivered to 
the load ZL. 

PAS = IVs l2 = IV s I2IZLI2Ibl. 
4 Re (Z s) 4 Re (Z L) I a I ' 

V VsZin (V ZX + ka )/( a + Zx + ka ) 
in = Zs + Zin = s 1 + kbZ L bZ~ 1 + kbZ L 

(zx + ka)bZ~ V 
a + kabZ L + (zx + ka)bZ~ s, 

V. - (zx + ka)bZ~ Vs _ (zx + ka)bZ~ __ 1_ V 
In - a + zxbZ~ + 2kab Re (Z L) - a + zxbZ~ 1 - T s 

Yin - alO . kix 10 
Zx = ~x = T = k' 

Thus, 
k 

10 = V· . Zx + ka Ill, 

_ * _ I k 12 Re (Z L) . 2 Pout - 1010 Re (ZL) - Izx + kal 2 I Villi, 

I k 12 Re (Z L) I Zx + ka 121 b 121 Z L 12 I V sl2 
Pout = IZx + kal2 la + zxbZ~12 11 - TI2 

Therefore, 

1821 12 = Pout = I k 12 Re (Z L) I b 121 Z L 121 V 81 24 Re (Z L) I a I 
PAS I a + z xbZ~ 1211 - T 121 V 81 21 Z L 121 b I 

I k 12 Re2 (R L) lab 14 1 IT 12 
= I a + zxbZ~ 1211 - T 12 = I ab I 11 - T 12' 

APPENDIX B 

Current Transfer Shunt: Voltage Transfer Series Feedback Calculations 

B.1 Calculation of Z in 

Yin - aVO Yin + akixZL 
ix= ----

Zx Zx 

Z. = Vin=Zx-akZ L. 
III lin 1 - bk 
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S.2 Calculation of Zout 

. bIoZs aVo ZsbIo - aVo 
~x = 

Zs+zx Zs+zx Zs+zx 

k' - I _ kZsbIo - kaVo. 
~;r - 0 - Z + ' 

s Z;r 

Io(Zs + Z;r - kZsb) = - kaYo; 

Zout = Vo = Zs + Zx - kZsb 
10 -ka 

S.3 Return ratio calculation 

. bI Za V 1 
~x = 0 + Z - a 0 + Z ' Zx a Zx s 

10 = 1, 

. bZ s + ---.!!.Z L . 
~x = 

Zx + Z, ZX + Zs' 

T = ki = kb(a/b)Z~ + a~Lk = 2kab Re (~L). 
Z.r + (alb )ZL bzx + aZ T, 

S.4 Input reflection coefficient calculation 

Z. = ~x - akZL 
In 1 - bk ' Zs = (alb)Z~, 

Pin = ( 
Zx - akZL _ aZL )/( Zx - akZL + ~ z*) 

1 - bk b 1 - bk b L 

(a/b) real; 

_ bz x - abkZL - aZL + abkZL 
- bz x - abkZ L + aZ~ - abkZ~ , 

pin = bz x + aZ~ - abk Re (ZL) , 

bz x - aZL 
Pino = Pinl k=O = b + Z*; 

ZX a L 

therefore, 

( 
2abk Re (Z L) )-1 

Pin = Pino 1 - bz
x 
+ aZ~ . 

S.5 Output reflection coefficient calculation 

Zout - Z~ 
Pout = Z + Z ; 

out L 

Z - Z 8 + Zx - kZ sb 
out - -ka ' 

Zs = (alb)Z~, (a/b) real; 
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Pout = (Z s + : k: kZ sb _ Z~ ) / ( Z 8 + : k: kZ sb + Z L ) 

Zs + Zx - kZsb + kaZ~ 
Zs + Zx - kZsb - kaZL 

Pouto = Poutl k=O = 1, 

( 
2ka Re (Z L) )-1 (2kab Re (Z d )-1 

pout = pouto 1 - (alb)Z~ + Zx = Pouto 1 - aZ~ + bzx . 

8.6 Transducer gain calculation 

Assume a voltage source of value V s is inserted in series with the 
source impedance Zs in Fig. 3. Let Zs = (alb)Z~, alb real. PAS will 
denote the available power from the source and Pout the real power 
delivered to the load Z L. 

I V sl21b I . 
4 Re (Z L) I a I ' 

V. = VsZin = (V Zx - akZL)/(~Z* + Zx - akZ L ) 
In Zs + Zin s 1 - bk b L 1 - bk 

Vs(bz x - abkZ L) 
= * * aZL - abkZL + bzx - abkZL ' 

bz x - abkZ L bzx - abkZ L 1 
V in = VSaZ~ + bzx - 2abkRe (ZL) = Vs aZ~ + bzx X 1 - T' 

V in - aVo . kix 10 Vin + a10ZL 
Zx = tx = T = k = Zx 

Pout = I k 12 Re (Z L) I bzx - abkZ L 12 1 I V 12 
Izx - akZLI2 laZ~ + bz x l2 11 - TI2 s, 

I k 121 b 12 Re (Z L) I V sl2 . 
Pout = ·laZ~ + bZxl211 - T12' 

therefore, 

I S 21 12 = P out = I k 121 b 12 Re (Z L) I a 14 Re (Z L) I V sl2 
PAS I aZ~ + bz x 1211 - T 121 V sl21 b I 

1 I TI2 
= I ab I 11 - T 12 . 
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The load carried by a queuing system under equilibrium conditions is 
the average amount of server usage per unit of time. In telephony, this 
parameter is often evaluated by recording the number of busy servers at 
regular time intervals; these readings are then cumulated and their sum, 
after division by the number of observations, is an unbiased estimate of 
the carried load. The purpose of this paper is to derive exact formulas 
for the computation of the variance of this measurement in systems with 
arbitrary input and departure rates. The results obtained here thus apply 
to a wide class of teletraific models which includes, in particular, the delay
and-loss systems with finite- or infinite-source inputs, exponential service 
times, and arbitrary defection rates from the queue. Problems related to 
computations are also considered, special attention being paid to the 
reduction of both computer time and storage when the number of states is 
large. 

I. INTRODUCTION 

Analysis of the stochastic behavior of traffic measurements is of 
considerable practical relevance, as it provides means for appraising 
field data as well as guidelines for selecting performance standards. 
Load measurements playa central role in this effort, and determina
tion of their accuracy is therefore of particular interest. The present 
investigation yields an answer to this problem for a broad class of 
teletraffic models. 

Whenever statistical equilibrium prevails (and it is assumed to 
throughout this paper), the load carried by a service system is the 
average amount of server usage per unit of time or, equivalently, the 
average number of busy servers at an arbitrary instant. In telephony, 
an estimate of this parameter is often obtained by "switch-counting." 1 

This statistic, which is determined by recording the number of busy 
servers at regular intervals and then by taking the arithmetic mean 
of these discrete observations, is an unbiased estimate of the carried 
load. 
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The variance of this measurement, called hereafter the switch-count 
load to distinguish it from the estimate obtained by continuous observa
tion, was first determined approximately by Palm2 and Hayward! in 
the case of an infinite server group with Poisson input and exponential 
holding times. This result was later extended by Benes,3 who obtained 
the exact variance of the switch-count load for groups of finite sizes 
without waiting positions (loss systems). A further generalization to 
loss systems with recurrent input and exponential service is due to 
Neal and Kuczura.4 Their formal analysis stops, however, with a 
derivation of the Laplace transform of the covariance function of the 
underlying carried-load process. From this point on, they proceed 
numerically, since explicit inversion of the transform appears to be 
difficult in general. 

In this paper we are concerned with derivations of exact formulas 
for the variance of the switch-count load in finite systems with arbitrary 
state-dependent input and departure rates. The results presented here, 
therefore, fill a rather large gap, since they apply to a broad class of 
teletraffic models that includes, in particular, the (finite) delay systems 
with exponential holding-time distributions, arbitrary defection rates 
from the queue (if one is allowed to form) and either Poisson or 
quasi-random input (in the latter case, the traffic is generated by a 
finite number of sources that place demands for service at the same 
constant probability rate when free but that do not submit requests 
while being either served or waiting). 

Let N (t), the state of the system at time t, be defined as the number 
of busy devices at that instant (by device, we mean here either a server 
or a waiting position). Let c and d be, respectively, the number of 
servers and the number of devices. 

Unless stated otherwise, we make the following assumptions: 

(i) When N (t) = nand 0 ~ n < d, the probability that a re
quest originates during (t, t + h), h > 0, is of the form Anh 
+o(h), with An > O. 

(ii) The requests which are submitted when all the devices are 
occupied are dismissed and, accordingly, Ad is set equal to zero. 

(iii) When N(t) = nand 0 < n ~ c, the probability that a service 
time terminates during (t, t + h) is of the form Jl.nh + o(h), 
where Jl.n > O. 

(iv) When N(t) = n > c, the probability that either a service time 
terminates or a waiting request defects from the queue is of 
the form Jl.nh + o(h) where Jl.n > 0 and n ~ d. 

(v) When a server becomes free, it is immediately reseized by one 
of the waiting requests if any are present in the system at that 
time. 
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Let N c (t) be the number of busy servers at time t and let cAn be 
the smaller of the two integers c and n. Then 

{

N(t) 
N c(t) = cAN (t) = C 

if N(t) ~ c, 

if N(t) > c, 

and the switch-count load, Ln(T), based on n observations (scans) 
made over [0, T] at times r, 2r, ... , nr, is, by definition, equal to 

where r === Tin. 

n 

n-1 L NcUr), 
j=1 

Let Cov [N c (tl), N c (t2)] be the covariance between N c (tl) and 
N c (t2). Under equilibrium conditions, this covariance depends only on 
I tl - t21 so that 

Cov [N C (tl), N c(t2)] = Cov [Nc(O), N c(lt l - t21)]' 

Hence, the variance of Ln (r), cast in a form that will be convenient 
later, is given by the formula (Ref. 3, p. 137) : 

n 

Var Ln(T) = n-2 L (n - I k I )Rc(kr), (1) 
k=-n 

where 
Rc(kr) == Cov [Ne(O), Ne(kr)] 

= Cov [Nc(O), Ne(lkl r)]. 

It is clear from (1) that the variance of the switch-count load is 
completely determined by the covariance function R e (·) of the carried
load process {N e (t), - 00 < t < 00 }, and therefore much of what 
follows is concerned with expressing R e (·) in the most convenient form. 

The covariance function can be stated at first in terms of the transi
tion probabilities, and the resulting expression can then be reduced 
by taking the structural properties of the process into account. But 
alternate forms can also be obtained by making use of the fact that 
the conditional expectations, E{Nc(t) IN(O) = m}, m = 0, 1, ... , d, 
satisfy simple linear differential equations. The covariance formulas 
obtained by these diverse procedures exhibit distinct features that may 
be exploited in the computations. In all cases, however, Re(t) is ex
pressed as a diagonal, positive-definite quadratic form which reveals 
that Rc ( .) is completely monotonic. 5 

Expressions for the transition probabilities, the covariance function, 
and the variance of the switch-count load are derived in Sections II, 
III, and IV, respectively. The variance of load measurements based on 
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continuous observations can be found in Section IV. Extensions of 
the results of Sections II to IV to reversible Markov processes are also 
considered. Questions of a computational nature are dealt with in 
Section V, while Section VI is concerned with some asymptotic 
properties (d large) of the spectrum of the underlying process. 

The formulas presented here have been programmed and used to 
explore the effects of parameter changes on the variance of the switch
count load. The result of that investigation will appear in another 
paper. 

II. TRANSITION PROBABILITIES 

In this section, we express the transition-probability matrix as a 
symmetric product of vectors and matrices. As becomes apparent later, 
this representation makes it possible to write the variance of the switch
count load in a way that greatly simplifies its evaluation. 

Let pmn (t) be the probability of a transition from state 111 to state n 
in time t: 

Pmn(t) == Pr [N(t) = nIN(O) = m], 111, n = 0, 1, "', d. 

These transition probabilities satisfy the following system of 
differential equations: 

d dt pmO = J..Llpml - AOpmO, 

1 ~ n < d, 

d di pmd = Ad-lPm,d-l - J..Ldpmd. (2) 

Let 

-AO AO 

J1.I - (AI +J1.I) Al 

J1.d-l - (Ad-l +J1.d-I) Ad-l 

J1.d -J1.d 

and 
m,n=O,I,"',d, 

be the transition-probability matrix. Capital and lmver-case bold-face 
letters are used exclusively to designate matrices and vectors, re
spectively. 
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With this notation, the system of differential equations (2) becomes 

t ~ 0, (3) 

so that, for k = 1,2, ... , 

dk d k- 1 

dtkPd(t) = dtk-lPd(t).Ad, t ~ O. (4) 

It follows from our assumptions that if the system is in state m at 
time zero [N(O) = m], then limt~O Pmm(t) = 1 and limt~O Pmn(t) = 0 
for n ~ m. Hence, with Id the identity matrix of order d + 1, the 
initial conditions take the following form: 

Pd(O) == lim Pd(t) = ld. 
qo 

and by (3) and (4) we therefore have 

lim ddt: Pd(t) = A~. 
t~O 

(5) 

The initial conditions state that Pd (·) is right-continuous at t = 0 and 
imply that Pd (·) is continuous for all t > O. By (3) and (4), all the de
rivatives of P d ( .) exist for t > 0, and by (5) they are also right
continuous at t = O. An application of Taylor's theorem then yields 
(Ref. 6, pp. 240 ff.) 

00 1 
Pd(t) = exp (At) = k~O k ! A~tk, t ~ O. (6) 

The elements of Ad situated immediately either above or below the 
diagonal are all strictly positive and so Ad can be symmetrized. In
deed, let 

with 

00 = r and ~ = r ( jJ.1jJ.2 ••• jJ.m )1 _ t -i 
Um - ~ "\"\ "\ - "Pm , 1\01\1 ... I\m-1 

m = 1, ... , d, 

where (i) r is a nonvanishing but otherwise arbitrary constant, (ii) 
the pm are the equilibrium state probabilities, and (iii) ~ = rp3. 
Without loss of generality, we can-and shall-set r = P3 so that 
~ = 1 and 

Ddl = diag CpA, pi, ... , p~]. (7) 

It is easy to verify that 
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is symmetric, its nonvanishing elements being 

Smm = - (Xm + JLm), m = 0, 1, "', d, (Xd = 0), 
Sm,m+l = Sm+l.m = (XmJLm+I)!, m = 0, 1, .. " d - 1. 

Hence, by (8) we have 

k = 0, 1, 2, ~ .. (9) 

and, by (6), 
co 1 

Pd(t) = Dd·exp (Sdt) ·Di l = L 'I (D d· S~·Dil)tk. (10) 
k=O k,' 

The representation of Ad in terms of the symmetric tridiagonal matrix 
Sd entails substantial formal simplification of the final results. And it 
is also particularly convenient computationally, since the determina
tion of the characteristic values of Ad (which are needed for an exact 
solution) is best carried out after symmetrization. 

The matrices Ad and Sd clearly have the same characteristic values, 
ro, rl, "', rd. But Sd is symmetric and is therefore unitarily similar to 
the diagonal matrix 

Cd == diag [ro, rl, "', r d]. 

This means that an orthogonal matrix Bd exists such that 

Sd = B~·Cd·Bd, Bd·B~ = B~·Bd = I d, (11) 

where B~ is the transpose of B d• 

But Sd is also tridiagonal, and its off-diagonal elements never vanish. 
Hence, Sd is nonderogatory and its characteristic values are necessarily 
distinct (Ref. 7, p. 26). The elements in the nth column of B~ are then 
the components of the (uniquely deJined) normalized characteristic 
vector associated with the nth characteristic value rn(n = 0, 1, .. " d). 

We now substitute (11) into (10). This yields 

so that 

Pd(t) = t ~ (Dd·B~·C~·Bd·Dil)tk, 
k=O k! 

Pd(t) = Dd·B~·exp (Cd·t)·Bd·Di l 

= Dd.B~.diag [e rot , eTlt , "', erdt]·Bd·Dil. (12) 

We note now that all the row sums of Ad vanish and one of the 
characteristic roots, ro, say, must therefore be equal to zero. Further
more, known extremal properties of the characteristic values can be 
used to show that rl, r2, .. " rd are negative. It is also readily seen that 

p~!) == (p~, pi, "', p~)' 

is the characteristic vector of Sd that corresponds to the vanishing 
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characteristic root roo Indeed, let ed and Od be the (d + 1) dimensional 
(column) vectors whose components are all equal to 1 and 0, respec
tively. Then, since Ad' ed = Od, we have, by (8) and (7), 

Dd·Sd·Dil·ed = Dd,Sd,pa!) = Od. 

But none of the diagonal elements of Dd vanishes and the relation 

Dd,Sd,pa!) = Od 

can hold if and only if Sd' pa!) = Od. Thus, pa!) is the characteristic 
vector associated with roe = 0), a fact that may be of relevance in the 
computations, as a comparison of pa!) with Dil provides an accuracy 
check for the method used to determine the characteristic vectors. 

In the derivation of formula (12), advantage was taken of the fact 
that the transition-rate matrix Ad is symmetrizable. It is worth 
noting that this relatively simple expression for P d is a consequence of 
this property, and therefore holds for all (and actually only for) 
reversible Markovian processes with finite state spaces. Indeed, by 
definition, the class of these processes-which includes those of the 
birth-and-death type-is fully characterized by the following condi
tions (Refs. 8 and 9) : 

PmPmn(t) = PnPnm(t), m,n=O,l,"',d, 

or, equivalently, by the single relation: 

Di2'Pd = P~·Di2. 

Hence (12), written in terms of Sd, implies that 

Di2'Pd = Dil·exp (Sdt)·Dil 
= (Dil . exp (Sdt)· Dil)' = p~. Di2, 

and (14) is therefore satisfied. 

(13) 

(14) 

Conversely, we show next that (14) is a sufficient condition for 
(12) to hold. 

Pre- and post-multiplication of (14) by Dd yield 

Dil·Pd·Dd = Dd·P~·Dil. (15) 

Substituting the expansion of P d as given by (6) into (15), and perform
ing the multiplications by Dd and Dil under the summation sign 
(which is clearly legitimate), we obtain: 

£. 1, (Dil·A~·Dd)tk = £. ...!, (Dd' (A~)' ·Dkl)tk, 
k=ok. k=ok. 

t "?; 0. 

However, this relation cannot be satisfied unless 

Dil·Ad·D d = Dd·A~·Di\ 
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so that, by transposition, 

(Dil·Ad·Dd)' = Di1·Ad·Dd. 

This means that Ad is symmetrizable by pre- and post-multiplication 
by Di l and D d, respectively, and (12) then follows as shown earlier. 

Under the assumption that the process is reversible and that all the 
states communicate with each otherlO (i.e., Pmn(t) > 0, m, n = 0, "', 
d, t > 0), the characteristic roots of Ad are necessarily simple. (Note 
that Ad, and hence Sd = Dil·Ad· Dd, need no longer be tridiagonal.) 
This can be proved as follows. 

The matrix Sd is symmetric and can therefore be tridiagonalized by 
a method from Householder (Ref. 7, pp. 152, 153, 290-293, and 343). Ac
cording to this procedure, the tridiagonalization of Sd is achieved by 
successive right and left multiplications by symmetric orthogonal 
matrices, U I, U 2, "', U d-I, of the form 

U r = Id - 2w r ·w;, 
where W r is a suitably chosen d + 1 dimensional (column) vector 
whose first r components are zero. (All the U r are of order (d + 1) 
and U~ = I d, r = 1, 2, "', d - 1.) A direct application of the results 
derived in Ref. 7, above, shows that Sd admits of the following repre
sentation: 

Sd = UI, U2 • •• , • Ud-I,Td· Ud- l , " •• U2 , UI , 

where T d is a symmetric tridiagonal matrix of order d + 1. 
Let Oij be the elements of T d, 

We are now faced with two possibilities. Either Oi,i+l = Oi+l,i ~ 0 
for i = 0, 1, "', d - 1, or there is an index j( <d) such that OJ,j+l 
= (}j+l,i = 0 so that 

(16) 

In the first instance, all the characteristic roots of Sd, and hence of 
Ad, are distinct (Ref. 7, p, 26), To complete the proof, it is therefore 
sufficient to show that the second contingency cannot occur when all 
states communicate with each other. To this end, we proceed in
directly, We assume that (16) is satisfied for some j < d and show 
that some states then do not communicate with others. 

When (16) holds for j < d, we have, for any k ~ 0, 

(17) 
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The first row in Dd is (Po!, 0, "', 0) and the elements in the first 
column and first row of each of the U /s are zero except for their first 
component, which is always equal to 1. Hence, 

(1,0, ",,0) ·Dd • UI • •••• Ud- l = (Pol,O, ",,0). (18) 

Similarly, since the U r's are symmetric, we have 

Ud- l • ••• ·UI·Dd l
. (1,0, ",,0)' = (pA, 0, ",,0)'. (19) 

Hence, by (17) to (19), 

Poo(t) 

(20) 

where Odk
) is the element belonging to the first row and first column 

of T~. 
Let amn and Smn, m, n = 0, 1, "', d, be the elements of Ad and Sd, 

respectively. Under the present assumptions, amn · anm ~ ° and 
Smn = (a mn · anm)!, 111, n = 0, 1, "', d, m ~ n. The elements in the 
first r rows and columns of Sd are therefore uniquely determined by the 
elements in the first r rows and columns of Ad. Similarly, the vector W r 

depends only on the components, Smn, of Sd for which either m ~ r - 1 
and n = r - 1, "', d or, by symmetry, n ~ r - 1 and m = r - 1, 
.. " d (Ref. 7, pp. 290 ff). Consequently, the elements of T~ (which are 
all obtained after j - 1 steps) depend only on the elements of the 
first j + 1 rows and columns of Ad. This implies that the transition 
probability Poo(t), as given by (20), is independent of the rates amn, 111, 
n > j. However, the process being Markovian, this can only be true 
if Pom(t) = ° for m > j which means (since, by assumption, j < d) 
that state ° does not communicate with states j + 1, "', d, as was to 
be proved. 

III. COVARIANCE FUNCTION 

3.1 First version 

The covariance function of the carried-load process is, by definition, 

d 

Re (t) == L (c" n)· (c " m)pnpnm (t) - M~l 
m,n=O 

d 

L (c" n)· (c " 111)pn[pnm(t) - Pm], 
m,n=O 

where 
d 

Mel == ENe(O) = L (C " n)Pn. 
71=0 
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However, if "( is an arbitrary constant, the covariance of the process 
{Ne(t) + ,,(, t ~ O} is also Re. Hence, with the notation 

pn = (c 1\ n) + ,,(, n = 0, 1, "', d, 

we also have 
d 

Re(t) L PnPmpn[Pnm(t) - Pm]. (21) 
m,n=O 

Let 

and 
Gd(t) == [pnm(t) - Pm]. 

The matrix Pd can be obtained by letting t ~ 00 III (13). Hence, 

1\ = Dd·B~·diag [1,0,0, "', O}Bd·Di l 

and 
Gd(t) = Pd(t) - Pd 

= Dd·B~·diag [0, erlt, "', erdt}Bd·Dil. 

We now introduce two auxiliary row vectors: 

r~ == (po, PI, "', Pd), 

Then the coefficient of erit in the linear form 

S~·Gd(t) ·rd = s~·Dd·B~·diag [0, erlt, "', erdt}Bd·DiIrd 

is the same as the coefficient of erit in (21), and we may conclude that 

Re(t) = s~·Dd·B~·diag [0, erlt, "', erdt}Bd·Dil·rd. 

With the notation 

we have 
and 

so that 
Re(t) = q~·Bct·diag [0, erlt, "', erdt}Bd·qd (22) 

or, alternatively, 
d 

Re(t) = L b~erit (23) 
i=1 

with bi the ith component of the row vector q~. B~. This last expression 
shows that the coefficient of erit in either (22) or (23) is necessarily 
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nonnegative. Furthermore, since all the 1'/S (i = 1, "', d) are nega
tive, we also have 

t ~ 0, k = 0, 1, "', 

and Rc is therefore completely monotonic over [0, 00).5 
If we now set 'Y = - c, the last d - c components of qd are equal 

to zero, and so the determination of Rc by means of (22) necessitates 
only the computation of the first c components of the characteristic 
vectors. Formula (22) is therefore often well-suited to the case of delay 
systems. But unless the number of waiting positions exceeds the 
number of servers, greater reduction of the computations can be 
achieved by means of the formulas derived below. 

In the preceding derivation, the p's are independent of the arrival 
and departure rates, and the formulas of this subsection therefore hold 
for arbitrary, reversible, lVlarkov processes with finite state spaces. 
In contrast, the results of the next subsection are restricted to birth
and-death processes. 

3.2 Alternative forms 

Multiplying the nth equation in (2) by (c A n) and then summing 
with respect to n (0 ;:2; n ;:2; d), we obtain, after rearranging and 
canceling terms, 

d d c-l c 

n~o (c A n)· dt pmn = n~o Anpmn - n~l }.tnpmn. (24) 

But 
d 

L (C A n)Pmn(t) = E{Nc(t) IN(O) m}, 
n=O 

so that, by (24), 

d 
JjE{Nc(t)IN(O) = m} 

c-l c 

L Anpmn - L }.tnpmn. (25) 
n=O n=l 

Adding and subtracting KE {N c (t) IN (0) = 111} on the right-hand 
side of (25), we obtain 

d 

KE{Nc(t) IN(O) = m} + L P~(K)Pmn, 
n=O 

111 = 0, 1, "', d, (26) 

if n = 0, 1, "', c - 1, 
if n = c, 

if n = c + 1, "', d. 

(J.l.O = 0), 

(27) 
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In the preceding formulas, K is an arbitrary real number that may 
be positive, negative, or null. We see later that the covariance formulas 
can occasionally be simplified by appropriate choices of K. 

Taking the initial conditions, 

E{Ne(O)IN(O) = m} = (c 1\ m), o ~ m ~ d, 

into account, the solution of (26) is 

E{Ne(t) IN(O) = m} 

= (c 1\ m)e Kt + it eK(t-u) [ nto P~(K)pmn (u) J . du (28) 

so that 

d 

Re(t) == L (c 1\ m)PmE{Ne(t) I N(O) = m} - M~l 
m=O 

= M eze Kt - M~l 

+ fot eK(t-u) m~o (c 1\ m)Pm [n~o p~(K)Pmn(U)] ·du, 

where Me2 == EN~(O). By means of (13), the preceding relation can 
be expressed in a much more convenient form: 

Re(t) == Me2e Kt 
- M~l 

+ re eK(t-u) f P~(K)pn [t (c 1\ m)Pnm(U)] ·du Jo n=O m=O 
= M e2e Kt - M~l 

(29) 

N ext, substituting (28) into (29), we obtain 

d 

Re (t) = M e2eKt - M~l + te Kt L (c 1\ n)· p~(K) . pn 
n=O 

Let R: be the Laplace transform of Rc and P~m that of Pnm. The pre
ceding relation then yields 

R* ( ) M e2 M~l 1 ~ ( ) * ( ) c S = -- - - + £.... C 1\ n . Pn K • pn 
S - K S (s - K)2 n=O 

+ ~ *() * ( ) P:m(s) 
n.~O Pn K . Pm K 'pn (S _ K)2' 

We know, however, that Pnm(t) is of the form 

d 

pnm(t) = pm + L 'YnmieTit , 
i=l 
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so that 
d d 

Re(t) = L (c 1\ n)· (c 1\ m)Pn L 'YnmieTit
• 

m,n=O i=l 

This implies that the only poles of R; are ri, i = 1, ... , d, and that 
limt-+oo Rc (t) = 0. Taking these two facts into consideration, we see 
at once that (30) reduces to 

provided K ~ ri, i = 1, 2, ... , d. And referring back to the derivation 
of (22), it is readily seen that 

where 
[q~(K)]' == [.o~(K)·p3, ... , p~(K)·pl]. 

The modifications needed when K is equal to one of the characteristic 
roots are immediate. Let 

diag(j) [ao, aI, ... , ad] 

be the diagonal matrix obtained by setting the jth diagonal element of 
diag [ao, aI, ... , ad] equal to zero. Then if K = rj we must have, with 
some as-yet-undetermined constant a and CT~ the variance of N e (0), 

Re (t) = (CT~ + a)e Kt 

+[q~(K)J'·B~·diag(j) 0, Z = 1, ... , d ·Bd·q~(K). [ 
e

rit
. ] 

(ri - K)2 , 

But Re (0) = CT~, so that 

a = - [q~(K)]'·B~·diag(j) [0, (ri - K)-2, i = 1, ... , d}Bd·q~(K). 

Hence, 

Re(t) = CT~eKt + [q~(K)J' ·B~·diag(j) [0, ~~iit = :;;, i = 1, ... , d] 

.Bd·q~(K). (32) 

It should be noted that (32) is valid even if K ~ ri, i = 1, ... , d, 
and that it should be used in the computations [rather than (31)] 
whenever K is "close" to one of the characteristic roots so as to avoid 
accuracy losses (see below). Since K is arbitrary, one could always 
choose it so that it is not "close" to any of the characteristic roots. 
But, as shown next, it is often preferable to select it in such a way as 
to reduce the amount of computation, and this, in turn, may dictate 
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the use of (32). As we have seen, 

[ 
ent erdt] 

Rc(t) = [q~(K)J' ·B~·diag 0, ( )2' ... ·Bd·q~(K). rl - K ' (rd - K)2 

But, as noted previously, pa!) is the characteristic vector associated 
with the vanishing root (ro), so that 

[ 
ent erdt ] 1 

(pa!»' . B~· diag 0, (rl _ K)2' ... , . B d • pa2
) = o. (rd - K)2 

Consequently, (31) remains valid for all [q~(K)J' of the form 

{[p~(K) + l'}pA, ... , [p~(K) + l'}p~J, 

(33) 

where l' is an arbitrary constant. [The same remark, of course, also 
applies to (32).J 

We are therefore always at liberty to add the same constant to all 
the p~(K)'S. Under some circumstances, this degree of freedom, together 
with the one provided by the introduction of K, can be used to reduce 
the dimension of B' and B: entire rows in B' and the corresponding 
columns in B can be set equal to zero without affecting the computation 
either of (31) or (32), or of the variance of the switch-count load. It 
is relevant to note here that this reduction would be largely illusory 
were it not for the fact that the normalized components of any of the 
characteristic vectors can be obtained without having to compute 
other components of that vector (see below). 

According to the result of Section 3.1, the covariance can always be 
cast in a form that involves only the first c components of the character
istic vectors. But when the input and departure rates for ° ~ n < c 
are linear in n, the covariance can also be expressed in terms of the 
last d - c + 1 components of these vectors. Indeed, the rates are 
then of the form 

so that 

Xn = Xn + X', 

J..Ln = J..Ln + J..L', n=0,1,···,c-1, 

Xn - J..Ln = (X - J..L)n + (X' - J..L'). 

Hence, with K = X - J..L and l' = J..L' - X', (27) yields 

{ 
° if n = 0, 1, ... , c - 1, 

p~(X - J..L) = (J..L - X)c - J..Lc + J..L' - X' if n = c, 
(J..L - X)c + J..L' - X' if n = c + 1, ... , d. 

For the random (Poisson) and the quasi-random inputs, the p's take the 
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following simple form whenever the service time is exponential with 
mean 1. 

(i) Random input (An = a, n = 0, 1, ... ): 

P~(-I)={~a 
c-a 

if n = 0, 1, ... , c - 1, 
if n = c, 
if n = c + 1, ... , d. 

(ii) Quasi-random input [N sources, An = (N - n)A, 
n = 0, 1, ... , N]: 

p~[ - (1 + A)] = {~c - N)A 
c + (c - N)A 

if n = 0, 1, ... , c - 1, 
if n = c, 
if n = c + 1, ... , d. 

From the preceding developments, we see that the p's can be chosen 
in such a way that the number of components of the characteristic 
vectors needed to express Rc is the smaller of the two integers c and 
d - c + 1. In particular, in the case of loss systems, only the (c + l)st 
component of each vector is needed. 

The parameters K and 'Y can also be chosen so that only the first 
c + 1 components of the characteristic vectors actually enter in the 
expression of Re. This will be the case if we set K = J.lc-l - AC-I and 
'Y = c(J.lc-1 - Ac-I). 

In Ref. 3, the derivation of the covariance function for loss systems 
[d = c, N c (t) == N (t)] with Poisson input and exponential service 
time makes use of the differential equations 

d 
dtE{N(t)IN(O) = m} = - E{N(t)IN(O) = m} +a[1 - Pmc(t)], 

111 = 0, 1, ... , c. 

These equations appear here as that particular instance of (26) for 
which K = - 1, An = a, n = 0, 1, ... , c - 1, and J.ln = n, n = 1, ... , c. 
Note also that now L~:5 Pmn(t) = 1 - Pmc(t). But we stress that, in 
Ref. 3, the determination of the covariance relies on known recurrence 
relations between the so-called "sigma" functions (Ref. 3, pp. 129 and 
143 ff.) ; the more general problem considered in the present paper is 
not as readily amenable to such a treatment because of the greater 
complexity of the expressions that would now have to be used instead 
of the sigma functions. As \ve have seen, however, relatively simple 
formulas for Rc can be obtained without extensive algebraic develop
ments as long as the underlying process is reversible. 
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IV. VARIANCE OF THE SWITCH-COUNT LOAD 

The variance of the switch-count load is now readily obtained. 
Depending on which expression we select for Rc, we have either 

(i) Var Ln(T) 

n 

= n-2 L (n - Ikl)Rc(kr) 
k=-n 

= n-2.q~.B~·diag [0, k~n (n - Ikl)eTilklt, i = 1, "', d] 
·Bd·q:(K), (34) 

with 
q = (pop3, "', Pc-lPLl, 0, .. " 0), or 

. [n eTiI kl t. ] 
·dlag 0, L (n-1kl)( .. _ )2,t=I, ... ,d 

k=-n 1, K 

. B d • q:(K), (35) 

with K ~ ri, i = 1, "', d, or 

(iii) Var Ln(T) = n-2{(T~ - [q:(K)]' ·Bd 

·diag W [0, (ri - K)-2, i = 1, "', d}Bd·qd} 

. t (n - I k l)e KI kl r + n-2[q:(K)]' . B~ 
k=-n 

where K ~ ri for i ~ j. 
We now make use of the following identity (Ref. 3, p. 137): 

k 1 - e-2nu 

L (n - Ikl)e-2Iklu = n·cothu - ·csch2u. 
n=-k 2 

By means of this relation, (34) to (36) can also be written as 

(34a) 
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i= 1, "',d; (35a) 
and 

Var Ln(T) 
=n-l{(T~-[q:(K)]'·B~·diag(j) [0, (ri-K)-2, i=l, "', d}Bd·q:(K)} 

. {cath ( - ;<) - 1 -;:"". csch' ( -;K ) 1 + n-l • [q:«)]' ·B; 

. diag U) [0, 1 1 coth ( - Tri) _ 1 - e
nTT

; 

(ri - K)2 1 2 2n 

·csch' ( -;ri 
) 1 ' i = 1, ... , d lB .. q~(K), (36a) 

where K ~ ri for i ~ j. 
Let VarLrfJ(T) == limnO+ rfJ VarLn(T) be the variance of the load 

measurement obtained by continuous observation of the number of 
busy servers. If we replace T by Tin in (34a) to (36a) and then let n 
tend to infinity while keeping T fixed, we obtain the following formulas: 

Var LrfJ(T) = - ~.q~.B~ 

·diag [0, ~ (1 + 1 -;r:riT) , i = 1, "', d] ·Bd·qd, (34b) 

Var LrfJ(T) = - ~ [q:(K)J'·B~ 

·diag [0, ( 1 )2 (1 + 1 -; eriT
), i = 1, "', d].Bd.q:(K), 

ri ri - K ri 

K ~ ri, i = 1, "', d, (35b) 

and 

Var L~(T) = ~ {(T~ - [q:(K)]' ·B~ 
. diag(j) [0, (ri - K)-2, i = 1, "', dJ 

B *()} 1 ( 1 - e"T ) 2 [ *( )J' ' . d . qd K ~ 1 + TK - T qd K . Bd 

.diag(j) [0, ( 1 )2 (1 + 1 -; er;T) , i = 1, "', d] ·Bd·q:(K), 
ri ri - K ri 

K ~ fi for i ~ j. (36b) 
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We note that the formula for the variance of sums of dependent 
random variables makes it possible to compute the covariance between 
load measurements performed over distinct time intervals. Indeed, 
consider for instance a sequence of load measurements over the 
intervals (0, T], (T, 2T], (2T, 3T], .... Let L~i) (T) be the switch
count load over the ith interval (i = 0, 1, ... ), Sn(t) = n2Ln(t), and 
r ~i) == Cov [L~O) ( T), L~i) ( T)]. Then 

Var Sn(k+l{(k + l)T] = (k + 1) Var Sn(T) 
k 

+ 2 L (k + 1 - i)n2rAi
) (T) 

i=l 

and 

(k + 1)2 k + 1 
2 Var Ln(k+l)[(k + l)T] - -2- Var Ln(T) 

k-l 

- L rAi) (T). 
i=l 

The preceding formulas may be used to determine the r Ale) (T) re
currently. But the results of such computations shall be exact only if, 
for some choice of the time origin, all the scanning instants are multiples 
of T. 

We conclude this section with the remark that the variance formulas 
(34), (34a), and (34b) are valid for arbitrary reversible Nlarkov pro
cesses with finite state spaces. 

v. NUMERICAL CONSIDERATIONS 

The exact variance formulas of the preceding section are very well 
suited to electronic computation and are easily programmed since, 
apart from straightforward evaluations of hyperbolic functions and 
simple products of matrices and vectors, they only involve the deter
mination of characteristic values and vectors for which powerful sub
routines are readily available. The fact that Sd is symmetric and tri
diagonal (or reducible to tridiagonal form by an orthogonal similarity 
transformation) allows us to use the subprogram TQL2, which is par
ticularly efficient under the present circumstances (Ref. 11, pp. 227-
240). Without going into details, we mention here only that this sub
program is based on the so-called QR-algorithm and relies on the con
struction of a sequence of symmetric tridiagonal matrices, s~n>, 
n = 1, 2, "', unitarily similar to Sd, which converges to diag [0, rl, 

r2, "', rd]. At the nth iteration s~n) is expressed as a product of an 
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orthogonal matrix Q~n) and a lower-triangular matrix L~n): 

In Ref. 11, this decomposition is carried out by the Givens' triangular
ization in which the Q~n)'s are expressed as products of simple plane 
rotations (Ref. 7, pp. 239-240). 

The (n + l)st iterate of Sd is then given by 

whose unitary ·similarity to s~n) (and hence to Sd) follows from the 
relation 

L~n) . Q~n) = (Q~n))'. s~n) . Q~n). 

This method avoids the numerical difficulties frequently associated 
with the computation of the zeros of the characteristic polynomial. 

As shown in Ref. 11, p. 228, 

Q~n) = R~n) . .... R2), 

where Rdi
) IS of the form: 

1 

1 

1 

(37) 

f- row i. (38) 

According to Ref. 11, p. 231, the matrix B~ (whose columns are the 
characteristic vectors of Sd) is given "almost to working accuracy" by 

(39) 

where n (~30) is the number of iterations needed for the (numerical) 
symmetrization of Sd. Taking (37) to (39) into account, it is then 
readily seen that the elements of B~ can be determined row by row 
which, as we have remarked earlier, is a desirable feature in the present 
context. 

Computations have been carried out for systems having as many as 
400 devices (and hence transition-rate matrices of order 401) to deter
mine the numerical accuracy of the approach described in the preceding 
sections. Checks were performed by comparing the value of Var Ll (T) 
obtained by means of (35a) or (36a) with the corresponding O"~, which 
can be calculated directly and independently from the equilibrium 
state probabilities. These two quantities, which are theoretically equal, 
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turned out in all cases to agree to at least 10 decimal places with the 
greatest difference occurring when d was largest. Hence, our procedure 
indeed yields very accurate results for the type of systems that are 
likely to occur in practice. But when d is large, the storage require
ments and the amount of computations become critical. It is therefore 
always important to select K and 'Y in such a way as to minimize the 
number of B' rows that actually enter into the computations. (It 
follows from earlier remarks that this number, for proper choice of K 

and 'Y, never exceeds the integral part of (d + 1)/2.) Further reduction 
can also be achieved by excluding the states whose probabilities of 
occurrences are so small that neglecting them will not materially affect 
the final results. In this connection, we make the following remarks. 

The variance of the switch-count load is perturbed by at most 

[p ~(K) J2. Pi' (T~ 

if Pi is set equal to zero in the particular formula used to evaluate 
Var Ln (T). Hence, since 

Var Ln(T) ~ (T~/n, 

we always have the following upper bound for the relative error, €i, 

induced by setting Pi equal to zero: 

j = 0, 1, "', d. 

For a given relative accuracy of Var Ln(T), these inequalities make it 
possible to determine ahead of time whether some components of the 
characteristic vectors can be "safely" eliminated from the computa
tions. In large systems, the gains achieved by such a reduction may be 
quite substantial, as either low occupation states [N (t) smallJ and/or 
high occupation states [N(t) largeJ have then frequently very small 
probabilities of occurrences. 

Computations could be arranged to determine only those character
istic roots that -are required to reach a given degree of accuracy 
[plus those needed to compute B d • q~(K)]. This is rather readily 
achieved in loss systems with Poisson input and exponential service 
times since, in this case, the coefficients b~ of 

coth -- - . csch2 --( -Tri) - 1 - enrTi (-Tri.) 
, 2 2n 2 

m the variance formulas of Section 3.1 are then monotonically de
creasing as I r i I increases: 

i, j = 1, "', d. 
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But, in general, one would encounter an additional difficulty, namely, 
that the b~'s do not have the monotonicity property alluded to above 
and may actually fluctuate widely. This is illustrated in Fig. 1, where 
the roots are assumed to be indexed in order of increasing magnitude 
and the ordinates are the corresponding b1's, normalized in such a way 
that maXi b~ = 1. 

The computations should be based on (3.5a)-(36a) or on (35b)-(36b) 
in the case of continuous measurements-as these formulas provide 
us with all the flexibility needed to cut down both storage space and 
computation time. When choosing between (3.5a) and (36a) or between 
(35b) and (36b), one should keep in mind that, for K close to ti, the 
difference ri - K may not be determinable \vith enough precision to 
allow accurate computation of Var Ln(T). This is shmvn ih Table I 
where K = - 1 and r1 is the root of smallest positive absolute value. 
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Table I - Loss system, 80 servers, Poisson input, 
exponential service 

Offered Var L 1 (T) 
Load in 1 + rl (T c2 

Erlangs Formula (36a) Formula (35a) 

10 1.09 X 10-13 10.000000 10.000000 0.034614 
20 -9.90 X 10-13 20.000000 20.000000 0.013173 
30 -1.14 X 10-11 30.000000 30.000000 20.891365 
40 -3.38 X 10-6 39.999986 39.999986 39.999926 

(N ote that the last two columns of this table should be equal and that 
errors of the same magnitude would arise if one were to use (18) of 
Ref. 3.) In all our computations, we have madeuse:of(35a) and (36a) 
whenever I K - ri I < 10-4 for some i. This bound for I K - ri I is both 
large enough to ward off appreciable accuracy losses and small enough, 
under prevailing conditions, to be satisfied by only ?ne root. 

VI. REMARKS ON INFINITE SYSTEMS 

It is known that infinite systetris can be regarded 'as limits of finite 
ones,12 and it is therefore of practical interest to have information 
concerning the spacing of the characteristic values as the dimension, 
d, of these approximating systems becomes large. Indeed, as d increases, 
computational difficulties may arise because of-alack of separation 
between these roots. Such problems would 'certainly come up sooner 
or later if the spectrum of A == limd-.+ooAd happens to be dense over 
some interval as, for instance, in the case of a single-server queue with 
Poisson input, exponential service time, and unlimited waiting room 
(Ref. 12, pp. 365-366). Infinite systems with well-separated roots do, 
of course, also occur. As an example of this type, we mention the 
systems with an infinite number of servers, Poisson input, and ex
ponential service which often provide useful idealizations. (In this 
case, as is well known, the nonvanishing characteristic r<;>ots are the 
negative integers, -1, -2, -3, " .. ) Other examples of systems with 
discrete spectra are given in Ref. 12, where sufficient conditions for 
this to occur are discussed in some details; but in all these instances 
the An and J.l.n both increase as nV for some v > O. This condition is un
likely to be satisfied in. queuing systems; generally, in this particular 
area, the arrival and the departure rates remain bounded: 

o ~ J.l.n ~ M < 00, n = 0, 1, .... ( 40) 

As briefly described below, these inequalities imply the existence of 
definite bounds for the spectrum of A. 
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Consider an infinite system, and let A be its (infinite) transition-rate 
matrix. Let Ad be the matrix obtained by retaining only the elements 
belonging to the first (d + 1) rows and columns of A and then setting 
Ad equal to O. Let r dO ( = 0) > r dl > ... be the characteristic roots of 
Ad. Then, under conditions (40) it can be shown that, for any k ~ 0: 

(i) I rdk I < A + M for d sufficiently large, 

(ii) I rd,d-k I < 2(A + M) for d ~ k. 

Either of these two inequalities implies that the characteristic roots 
do not remain separated as d ---+ 00 whenever (40) is satisfied. Under 
the more stringent requirements that (40) holds and that 

lim An = A, lim}J.n = M, 
n-+oo n-+oo 

more precise statements can be made, namely, that, for all k's and d's, 

Irdkl < ({A + {M)2 

and that the spectrum of A always comprises a closed interval, viz., 

(In addition to n, the spectrum of A may also include a finite number of 
roots in [- ({A - {M)2, OJ.) But it turns out (as will be shown 
elsewhere) that, as d increases, the characteristic roots of Ad fill n 
rather "evenly"; furthermore, for practical accuracy levels, large 
values of d are needed only when the length of n tends to be relatively 
large (a circumstance corroborated by extensive computations). 
Hence, within the present framework, it appears that root-spacing is 
not likely to be critical except in the improbable event that extreme 
precision is required. 
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A carbon transmitter model is presented, the purpose of which is to serve 
as a tool for computer-aided analysis of telephone set transmission 
characteristics. The derivation of the model is based upon the physical 
theory of the device. The parameters in the model are evaluated by com
paring the analytically derived expressions for the device characteristics 
to the measured characteristics of a typical device. Because these param
eters are related to the physical theory, the model not only serves its de
sired practical end, but also serves as a vehicle whereby an understanding 
is obtained of the relationship between device characteristics and physical 
theory. 

I. INTRODUCTION 

Computer-aided optimization of the transmission characteristics 
of telephone sets requires that accurate models be obtained for all 
transmission-related telephone set components. A carbon transmitter 
model has been derived for this purpose. This model has been used 
in a telephone set transmission analysis computer program, and good 
agreement between computed and measured transmission charac
teristics was obtained. 

The de V-I characteristic of the carbon transmitter is nonlinear. 
This nonlinearity must be taken into account in the dc model so that, 
in the transmission analysis program, the operating point of the 
transmitter can be determined, as well as the operating points of any 
nonlinear telephone speech network components, e.g., silicon carbide 
varistors. Thus, the dc model is a voltage-dependent resistance. 

The ac model is similar to that of a vacuum-tube triode, consisting 
of a Thevenin-equivalent resistance and voltage source. The voltage 
source is dependent on the amplitude of the force acting on the carbon 
granules because of the acoustic excitation of the transmitter. This 
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force is in turn the output of a filter which represents the transmitter 
structure itself. The input to the filter is the acoustic sound pressure. 
This filter can be represented by an electrical equivalent circuit,! the 
derivation of which is straightforward. However, it is the charac
terization of the effects taking place within the carbon chamber which 
is of primary interest here. The filter is represented simply by its 
measured frequency response. 

Values for the various parameters of the model were determined 
by comparing the expressions derived analytically for the charac
teristics of the transmitter to the measured characteristics of a typical 
device. All measurements were made with the transmitter face in a 
vertical plane, in a telephone handset, and in a position relative to the 
artificial mouth as specified in IEEE Standard 269-1971.2 Also, the 
transmitter was mechanically and acoustically conditioned prior to 
the measurements. The acoustic conditioning signal was swept be
tween 300 and 3300 Hz at a rate of six sweeps per second and fre
quency-weighted corresponding to the average sound pressure spec
trum of continuous speech, and had an average sound pressure level 
of 94 dB (re 0.0002 dyn/cm2). The conditioning signal was applied 
for 3 s. 

II. DC MODEL 

As shown in Fig. 1, the dc V-I characteristic of the carbon trans
mitter is nonlinear. Goucher3 attributed the nonlinearity to the effect 
of joule heating on the contact resistance between carbon granules. 
Later, Mol,4 disputing Goucher, attributed the nonlinearity to the 

Ul 
f-

c5 4 
> 
~ 
w 
t!J « 
~ 
o 
> 2 
u 
o 

o 0.02 0.04 0.06 0.08 0.10 

DC CURRENT IN AMPERES 

Fig. I-Direct-current V-I characteristic. 
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effect of electrostatic forces between carbon granules. On this basis, 
he derived an expression for the dc transmitter resistance as a function 
of voltage and found it to agree fairly well with measured transmitter 
resistance. However, Mol's expression for the dc voltage dependence 
of the resistance variation when an acoustic signal acts on the trans
mitter agrees rather poorly with measurement. This casts doubt on 
the electrostatic force theory. In fact, experimental results indicate 
that the effect of electrostatic forces between carbon granules is 
negligible. These experiments are described in Appendix A. On the 
other hand, a more recent study of the theory of electric contacts 
tends to support Goucher's theory. Holm5 treats the subject of the 
effect of joule heating on contact resistance extensively, and his 
results will be applied to the derivation of the transmitter model. 

As will be seen, the nonlinearity of the V-I characteristic cannot 
be accounted for entirely by the effect of joule heating on contact 
resistance. The effect of the thermal expansion of the carbon chamber 
due to joule heating must also be considered. This effect is readily 
demonstrated experimentally because of the relatively long time 
constant involved. If the transmitter current is changed abruptly, a 
slowly decaying voltage transient is observed, owing to the hysteresis 
associated with the expansion of the carbon chamber. The time 
constant is approximately 1 s. 

A cross section of the Tl transmitter is shown in Fig. 2. The carbon 
chamber consists of a movable dome electrode connected to a fixed 
conical back electrode by a flexible, nonconducting chamber closure. 
According to the results of Fritsch's analysis 6 of the thermal response 
of the transmitter structure, the transient effect is due primarily to 
the expansion of the dome electrode. As the dome electrode expands, 
it compresses the carbon granules, lowering their resistance. Fritsch 
called this effect "thermal packing." Of course, after the transient 
has decayed, the transmitter can be reconditioned to unpack the 
granules. However, following the reconditioning, a new thermal 
equilibrium will be established so that some degree of thermal packing 
will still occur. This effect, as well as the effect of joule heating on 
contact resistance, must be included in the model. An understanding 
of these effects is based on a consideration of the factors affecting 
the resistance of a single carbon contact. 

2.1 Effect of contact force on contact resistance 

The contact resistance between two carbon granules is related to 
the magnitude of the force pressing the granules together by the 
expression: 
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Fig. 2-Cross section of Tl transmitter. 

where P is the contact force and K and 'Yare constants. Equation (1), 
which is generally valid for electric contacts, was shown by Goucher3 

to be valid for carbon granules, based on direct measurement of 
contact resistance and force. Later, this equation was indirectly shown 
by Joscheck7 to be valid based on measurements of the bulk resistance 
of carbon granules as a function of the filling height of the granules 
in the measurement chamber. 

In the carbon chamber in the Tl transmitter, the significant forces 
acting on the carbon granules are the gravitational force resulting 
from the weight of the granules themselves, the force resulting from 
the thermal expansion of the dome electrode, and, when the trans
mitter is acoustically excited, the force resulting from the acoustic 
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pressure acting on the diaphragm and dome electrode. Because of the 
random orientation of the contacts throughout the chamber with 
respect to the directions of the applied forces, the contact force and, 
hence, the contact resistance will also vary randomly. However, 
because of the large number of contacts involved, the random variation 
in contact resistance can be ignored. Only the larger overall gradients 
in bulk resistivity will be considered. 

For simplicity, an approximate chamber geometry is assumed in 
which the two electrodes are concentric hemispheres. A spherical 
coordinate system is defined such that the hemispherical chamber 
walls lie at constant radial distances from the origin, the inner and 
outer radii being designated a and b, respectively. The component of 
contact force resulting from the weight of the granules themselves is 
represented by Pg(r, fJ, ¢). The component resulting from the 
thermal expansion of the dome electrode, being proportional to the 
power dissipated by the transmitter, is represented by (V2/R) 
Pd(r, fJ, ¢), where V and R are the transmitter dc voltage and resistance, 
respectively. The component resulting from the acoustic excitation 
of the transmitter, being a function of time as well as of the spatial 
coordinates, is represented by L1P(r, fJ, ¢, t). 

Equation (1), therefore, becomes 

rk(r, fJ, ¢, t) = K[Po(r, fJ, ¢) + (V2/R)Pd (r, fJ, ¢) 

+ L1P(r, fJ, ¢, t)]-'Y. (2) 

It will subsequently be seen that, for normal speech signal levels, 
L1P is small enough compared to the static components of contact 
force that its effect on the dc component of contact resistance is 
negligible. Thus, the relationship between the dc contact resistance 
and the contact force is 

Although a change in dc transmitter resistance is observed when 
acoustic excitation is applied to the transmitter, this is judged to be 
due to the effect of the acoustic excitation on the state of compactness 
of the carbon granules rather than to the effect of the nonlinearity 
of the contact resistance-contact force characteristic. The effect of 
acoustic excitation on the state of compactness of the granules will be 
discussed further. 

2.2 Effect of joule heating on contact resistance 

According to Holm's analysis 5 of the effect of joule heating on 
contact resistance, if certain assumptions regarding the temperature 
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dependence of the electrical resistivity and the thermal conductivity 
of the contact members are satisfied, then the effect of joule heating 
can be accounted for by multiplying the contact resistance by the 
factor 

11(Vk) = [B + (1- B)(Ak/Vk) tan-l (Vk/Ak)]-I, (4) 

where V k is the contact voltage and Ak and B are constants. Since 
the random variation in contact voltage is of no concern in the model, 
Vk is considered to be the average contact voltage, which is propor
tional to the total transmitter voltage. Then 

11 (V) = [B + (1 - B)(A/V) tan-1 (V / A) ]-I, (5) 

where A is also a constant. 
The assumptions upon which the derivation of eq. (4) IS based 

are that the thermal conductivity satisfies 

'/\ = '/\0(1 + (3f1T), (6) 

and the electrical resistivity satisfies 

p = po(1 + Ef1T)/ (1 + (3f1T), (7) 

where po, '/\0, E, and (3 are constants, and f1T is the change in tempera
ture because of joule heating. Apparently, these assumptions are 
valid in this case because of the excellent agreement between eq. (5), 
using the values for A and B, listed subsequently, and the measured 
data presented by Hufstutler and Kerns 8 for the resistivity of granular 
carbon contained in a quartz test chamber having a negligible thermal 
expansion coefficient. This implies that, aside from the effect of 
chamber expansion, the effect of joule heating on contact resistance is 
alone sufficient to account for the nonlinearity of the V-I characteristic. 

Now, if eqs. (5) and (3) are combined, the expression for the dc 
contact resistance becomes 

2.3 Total dc resistance 

If rk(r, (), cf» is the contact resistance and there are n contacts per 
unit length, then the resistivity of the carbon granules is rk(r, (), cf»/n, 
where rk(r, (), cf» is given by eq. (8). Then, for the approximate chamber 
geometry which has been assumed, the total dc transmitter resist
ance is 

R = l b 

. dr 
a r2107r !o7r [n sin cf>/rk(r, (), cf» ]dcf>d(} 

(9) 

The mean value theorem can be applied to perform the integrations 
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wit.h the result 

where 
Ro = K(b - a)/[n7r2t 2 sin (fjPo"t(t, 0, (fj)], 

a = Pd(t, 0, (fj)/Po(t, 0, (fj), 

(10) 

(11) 

(12) 

and where t, 0, and (fj are constants, being the coordinates of some 
point within the chamber. Note that Ro is the limiting value of R as V 
approaches zero, and that a V2/ R is the average ratio of the component 
of contact force due to thermal expansion of the carbon chamber to 
the component of contact force due to the ,veight of the granules 
themselves. Although R is not expressed as an explicit function of V, 
a solution to eq. (10) can be obtained using iterative techniques easily 
implemented on the computer. Values for the parameters R o, a, A, B, 
and l' will be determined by fitting eq. (10) simultaneously with 
equations for the transmitter ac resistance and open circuit output 
voltage to measured data. The ac resistance and open circuit output 
voltage will now be considered. 

III. SMALL-SIGNAL AC RESISTANCE 

Over the range of frequencies of interest for speech transmission, 
the transmitter ac impedance is purely resistive. However, as is 
obvious from Fig. 3, the ac resistance is not the slope of the dc V-I 
characteristic except in the limit as V approaches zero. This is ex
plained by the fact that, because of the large hysteresis effect, the 
thermal expansion of the dome electrode cannot follow the ac signal, 
at least not at frequencies above a few hertz. Thus, the difference 
between the ac resistance, which is not affected by the thermal expan
sion of the dome electrode, and the slope of the dc V-I characteristic, 
which is affected, increases as the power dissipated by the transmitter 
increases. 

Because the thermal expansion of the dome electrode has no effect 
on the ac resistance, the ac resistance is the slope, not of the actual 
V-I characteristic, but of the V-I curve defined by setting the term 
equal to zero which accounts for the expansion of the dome electrode. 
This is the curve defined by 

I = V /[R o1] (V)], (13) 

where Ro and 1](V) are defined by eqs. (11) and (5), respectively. Thus, 
the ac resistance is given by 

rae = Ro1]2 (V) / [1](V) - V d~ 1] (V) ] 

= Ro(A2 + V2)/(A2 + BV2). (14) 
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It has been assumed that the ac signal level is low enough so that 
there is no significant joule heating effect due to the ac signal. This 
assumption is valid for signal levels typical of speech transmission. 
For higher signal levels, the ac joule heating effect will cause the ac 
as well as the dc resistance to decrease, as is easily verified 
experimen tally. 

At frequencies low enough that the period of the ac signal becomes 
significant compared to the time constant associated with the thermal 
response of the dome electrode, the transmitter ac impedance exhibits 
a reactive component due to the effect of the thermal hysteresis. 
Figure 4, drawn from a photograph of a storage oscilloscope trace, shows 
the effect of the thermal hysteresis in the response to a sinusoidal 
driving voltage at a frequency of 0.2 Hz for four different operating 
points. The effect becomes greater as the dc bias increases, as would 
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be expected since the expansion of the dome electrode is proportional 
to the power dissipated by the transmitter. An expression for the low
frequency transmitter impedance that accounts for this effect is 
derived in Appendix B. For frequencies greater than approximately 
10 Hz, the reactive component of the transmitter impedance becomes 
negligible, and the expression derived in Appendix B reduces to the 
expression given by eq. (14). 

IV. OPEN-CIRCUIT OUTPUT VOLTAGE 

When the transmitter is acoustically excited, the contact force will 
vary owing to the effect of the acoustic pressure acting on the dia
phragm and dome electrode. The variation in the contact force at the 
point (r, 0, cf» is designated .6.P(r, 0, cf>, t). Then the resistance will 
vary by an amount .6.R (t) such that 

R + .6.R(t) = R 017(V)[l + a V2/R + .6.P(t)]-'Y, (15) 

where 
.6.P(t) = .6.P(f, 0, ¢, t)/Pg(f, 0, ¢). (16) 
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The transmitter voltage will change by an amount Ll V (t) where, if 
the transmitter current I is held constant, 

V + AV(t) = I[R + AR(t)]. (17) 

Then 
Ll vct) = IARCt) 

= VARCt)/R, (18) 

which is the ac open-circuit output voltage. From eq. (15), 

AR(t)/R = [1 + AP(t)/(1 + aV2/R)]-'Y - 1, (19) 

so that 

AV(t) = V{[1 + AP(t)/(1 + aV2/R)]-'Y - I}. (20) 

Although this is a nonlinear relationship, AP(t) will be found to be 
small enough compared to 1 + a V2 / R at normal speech levels so 
that a linear approximation is justified. Thus, 

AV(t) ~ - 'YVAP(t)/(1 + aV2/R). (21) 

Note that eq. (21) is -"I V multiplied by the ratio of the dynamic 
to the static forces acting on the carbon granules. 

V. EVALUATION OF MODEL PARAMETERS 

The parameters Ro, a, "I, A, B, and AP(t) were evaluated using 
an iterative optimization computer program to fit eqs. (10), (14), 
and (21) simultaneously to measured dc resistance, ac resistance, and 
open-circuit output voltage, respectively, the latter being measured 
at a frequency of 1 kHz with a sound pressure level of 94 dB (re 
0.0002 dyn/cm2). The measurements were performed on a Tl trans
mitter considered to be a typical unit. The resulting parameter values 
are listed in Table 1. Of course, transmitter characteristics are subject 
to such factors as aging, temperature, conditioning, orientation, and 
manufacturing variations. The values of the parameters in eqs. (10), 
(14), and (21) will vary accordingly. 

Table I - Parameter values 

Parameter 

Ro 
ex 
'Y 
A 
B 
b.P(rms) 

Value 

111.0 
0.94 
0.43 
7.12 
6.65 
0.20 
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Fig. 5-Direct-current resistance characteristic. 

Equations (10), (14), and (21), with the parameter values listed in 
Table I, are plotted in Figs. 5, 6, and 7, respectively, along with 
measured data points. The agreement between calculated and measured 
data is judged to be within the limits of measurement error. 

VI. INPUT-OUTPUT AND FREQUENCY RESPONSE CHARACTERISTICS 

To complete the model, the input-output and frequency response 
characteristics of the transmitter must be specified. The input-output 
characteristic is nonlinear owing to the effect of the acoustic excitation 
on the compactness of the carbon granules. As the acoustic signal 
level increases, the carbon granules are agitated into a less compact 
state and the mechanical impedance of the granules decreases. There
fore, the transmitter efficiency increases as the acoustic signal level 
increases, resulting in an input-output characteristic having a greater-
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than-unity slope. Because of this effect, the transmitter is able to 
discriminate against distant sounds, and thereby reduce interference 
resulting from background noise. However, the weak components in a 
composite signal such as speech are not discriminated against, since 
the compactness of the carbon granules, which is controlled by the 
strong components, is the same for all components of the signal. 
Therefore, the nonlinearity of the input-output characteristic does not 
affect the components of individual speech sounds, and the compact
ness of the carbon granules varies only as the overall energy content 
of the speech signal varies. 

As discussed by Bryant,9 the frequency response of the transmitter 
is related to the nonlinearity of the input-output characteristic, since 
it also depends on the mechanical impedance of the carbon granules. 
This implies that the frequency response depends on the nature of the 
input signal. The response to a swept frequency sinusoidal signal is 
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somewhat different from the response to a speech signal. (For further 
discussion, see Ref. 9.) 

For the purposes of the model, a continuous, random, speech input 
signal is assumed. Accordingly, the nonlinearity of the input-output 
characteristic is ignored, and the frequency response is measured as 
suggested by Bryant. The response is shown in Fig. 8 plotted relative 
to the I-kHz output level. This is the response of the transmitter 
structure itself to the acoustic input signal, or, in the model, the 
response of the input filter. In the computer program, the filter response 
was stored as a table of values at discrete values of frequency. 
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VII. CONCLUSION 

A carbon transmitter model has been presented. The physical theory 
upon which the model is based is supported by the close agreement 
between the calculated characteristics of the model and the measured 
characteristics of an actual device. Thus, it can be concluded that the 
nonlinearity of the dc V-I characteristic is due primarily to the effect 
of joule heating on contact resistance and to the effect of the thermal 
expansion of the dome electrode due to joule heating. The effect of 
electrostatic forces is negligible. Furthermore, the difference between 
the ac resistance and the slope of the dc V-I characteristic is due to 
the hysteresis associated with the thermal expansion of the dome 
electrode. Finally, the relative resistance change due to the acoustic 
excitation of the transmitter decreases as the dc voltage increases 
due also to the effect of the thermal expansion of the dome electrode. 
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APPENDIX A 

In this appendix, the question is considered of whether electrostatic 
forces between carbon granules have a significant effect on transmitter 
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Fig. 9-Phase of diaphragm displacement resulting when transmitter output is 
driven by sinusoidal ac voltage. 

characteristics. Two experiments, the results of which indicate that 
they do not, are described. In both experiments, the transmitter 
output is driven with a sinusoidal voltage, i.e., as if the transmitter 
were a receiver. It is observed that, if the transmitter is driven hard 
enough, an audible signal is generated. Approximately 2-V rms is 
required for the signal to be audible at 1 kHz. This phenomenon could 
be the result of attractive forces between carbon granules owing to 
electric fields or the result of thermal expansion, presumably of the 
carbon granules, since the thermal inertia of the dome electrode and 
diaphragm is too large for their thermal response to follow the instan
taneous voltage at frequencies above a few hertz. The results of the 
two experiments which are now described indicate that the forces are 
due to thermal expansion of the carbon granules. This effect is insignifi
cant compared to the predominant thermal effects that are accounted 
for in the model. 

In the first experiment, the phase of the dome electrode displacement 
was measured. An outward displacement, in phase with the square 
of the driving voltage at frequencies far enough below resonance so 
that the mass of the system can be ignored, would indicate that the 
force was due to thermal expansion, while an inward displacement 
would indicate that the force was due to electric fields. The displace
ment was measured using an optical proximity detector. A small mirror 
was mounted on the dome electrode to provide a flat reflecting surface 
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for the detector. This was necessary to obtain measurable detector 
output, the displacement being very small. The phase of the outward 
displacement relative to that of the square of the driving voltage is 
plotted as a function of frequency in Fig. 9. The phase angle ap
proaches zero at low frequencies, indicating that the force acting on 
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mitter output is driven by sinusoidal ac voltage. 
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the dome electrode is due to the thermal expansion of the carbon 
granules. 

Since this is the case, the acoustic sound pressure level should be 
proportional to the power dissipated by the transmitter rather than 
the square of the voltage, as would be the case if the forces were due 
to electric fields. (Power is not proportional to the square of the 
voltage, since the resistance is a function of voltage.) This was verified 
by the second experiment, the results of which are plotted in Figs. 10 
and 11. 

APPENDIX B 

In this appendix, an expression is derived for the low-frequency 
impedance of the transmitter, taking into account the effect of the 
thermal expansion of the carbon chamber. 

If the transmitter current is changed abruptly by an incremental 
amount ~I, the displacement of the dome electrode due to the addi
tional power dissipation will lag behind the change in current due to 
the thermal hysteresis. According to Fritsch's analysis,6 the transient 
can be expressed as an infinite sum of decaying exponentials. Thus, 

00 

~ V (t) = (m + L: kie-tITi)~Iu(t), (22) 
i=l 

where 1n is the slope of the dc V-I characteristic and where k i and Ti 
are constants. Because the initial change in voltage must be rac~I, 

00 

L: k i = rae - m. 
i=l 

(23) 

In the frequency domain, 
00 

~V(s) = [m + L: kis/(s + l/Ti)J~I/s, (24) 
i=l 

from which 
00 

Z(s) = m + L: kis/(s + l/Ti). (25) 
i=l 

As pointed out by Fritsch,6 the infinite series solution converges too 
slowly for practical evaluation. A practical expression for ac impedance 
can be obtained by assuming a single time-constant approximation 
for the transient response. Then 

Z(s) ~ 111 + ks/(s + l/T), (26) 
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where T is the effective time constant and 

k = rae - m. (27) 

If eq. (27) is substituted into eq. (26), then 

Z(s) ~rac(s + m/racT)/(s + 1fT). (28) 
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An offset paraboloidal reflector illUlninated by a balanced feed horn 
constitutes an efficient launcher for coupling microwaves into quasi
optical beams. Measurements on a launcher with low blockage show low 
cross polarization. The amplitude, phase, and polarization characteristics 
are predicted by two gaussian beam modes, and the resulting formulas 
are found to agree well with measurements at 19 and 28 GHz. For example, 
with increasing offset angles, the ratio of the maxirnum cross-polarized 
signal in the radiation pattern to the on-axl:s co-polarized signal is ob
served to vary fronl - 44 to - 37 dB, within 1 dB of the predicted variation. 

I. INTRODUCTION 

At millimeter wavelengths, normal waveguide losses become too 
large in many applications; for example, long lengths of waveguide 
are required in satellite earth stations between the transceiver and 
the reflector antenna focus. To reduce these losses, one may use quasi
optical beams that employ reflectors or lenses for refocussing at 
various intervals, thereby confining the beam within a geometric 
tube with no (lossy) guiding walls. To couple the circuit components 
to these beams, it is desirable to provide a beam launcher that has 
quasi-gaussian amplitude over the aperture, low loss, good polarization 
purity, and high return loss. 

Offset reflectors provide high return loss, i.e., they are well matched, 
because the radiation field of the illuminated aperture bypasses and, 
therefore, does not reenter the feed horn.l If the reflector is made large 
so that the level of the feed-horn illumination at the edge of the 
reflector is low, spillover and diffraction losses are small. Also, since 
the feed horn does not block the aperture of the reflector, blockage 
losses are negligible, and the radiation patterns are unaffected. But 
cross polarization can be serious with offset reflectors, as pointed out 
in Ref. 2; however, by choosing a small offset angle the cross polariza
tion can be held to acceptable levels throughout the beam. 

Here, the far-field properties of an offset paraboloidal reflector 
(Fig. 1) are investigated. Section II describes the radiation charac-
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Fig. 1-0ffHet launcher. The 76-cm (:30-in.) diameter reflector is a numerically 
machined section of a paraboloid. Reflector focal length is 1 Ui.7 em and it is fed, in 
this instance, by a 28.il-GHz dual-mode horn with a polarizer. 

teristics of the dual-mode feed horns, the experimental setups, and 
the measurements of the far-field properties of the complete launcher. 
Section III provides the theoretical formulas showing that the radiation 
performance of offset launchers can be well characterized in terms of 
gaussian modes. 

Specific applications of this type of launcher are in feeding Casse
grainian antennas of the type discussed in Ref. 1, and in launching 
and collecting beams on Hertzian cable transmission lines. 3 

II. MEASUREMENTS 

2.1 Dual-mode feed horns 

The dual-mode feed horn designed to feed the offset launcher of 
Fig. 1 is shown in Fig. 2a. The input section generates the TEll and 
TMll modes in a circular waveguide by means of a conical step in the 
waveguide.4 This section slides in the input waveguide so that the 
length from the step to the horn aperture, the "drift space," may be 
adjusted to co-phase the TEll and Tl\lll modes to provide zero current 
at the edge of the aperture (minimizing the side lobes and symmetrizing 
the pattern). The small horn taper angle of 7.121 degrees was chosen 
to prevent disturbing the TEll and Tl\1ll modes, and to provide a 
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Fig. 2-(a) Cross-sectional view of the dual-mode feed-horn design used for the 
offset launcher of Fig. 1. (b) Profile of measuring range. (c) Launcher schematic. 

small aperture phase error [e = (271"/>-') (D2/8L) = 71"/2 radians] without 
making the horn too long. 

The azimuth radiation patterns of 28.5-GHz dual-mode feed horns 
for horizontal, vertical, and 45-degree polarizations, along with the 
associated cross polarizations for each case, as measured in an anechoic 
chamber, are shown in Fig. 3. Figure 3a shows the results obtained 
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(a) 

Fig. 3-The 28.5-GHz dual-mode feed-horn radiation patterns for the principal 
and 45-degree polarizations. Included are the corresponding cross polarizations: (a) 
without polarizer on dual-mode feed; (b) with polarizer on dual-mode feed. 

without a polarizer on a horn. Note that the cross polarization for the 
45-degree polarization condition has peaks of about - 28 dB at angles 
of about ±8 degrees. (This behavior of dual-mode horns is predictable; 
superior cross-polarization performance is obtainable from hybrid-
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48 

mode horns.) One can also see that, even though the quarter-wave
length aperture error fills in the first null in the feed-horn pattern, a 
shoulder appears at about - 20 dB relative to the on-axis value for 
the case of horizontal polarization. At least 30 degrees of the feed 
pattern illuminates the reflector of the launcher (resulting in about 
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a 20-dB taper at the edge of the reflector in the principal polarization). 
Thus, the cross-polarization maxima in Fig. 3a also illuminate the 
reflector. However, as shown in Fig. 3b, when a grid polarizer is used 
on the dual-mode feed horn, the cross polarization for the 45-degree 
condition is reduced to a very acceptable -45-dB level. Also, with a 
polarizer on the horn, cross polarization for polarization in the principal 
planes is essentially nonexistent. Since one of the main purposes of the 
experiment is to measure the cross polarization generated by the 
offset reflector, as discussed in the next section, the feed horn per se 
must therefore be devoid of cross-polarized components. For that 
reason, the feed horn was equipped with a polarizer (patterns of Fig. 
3b) for all ensuing measurements. 

The dot-dash curves in Fig. 3b show that the feed-horn pattern 
is well approximated down to about -20 dB by a gaussian beam 
[eqs. (8) and (9)]. The 10-dB half angle, Or., used in the gaussian beam 
approximation, is 9 degrees. 

The radiation patterns for the 19-GHz dual-mode feed horn are 
essentially the same as in Fig. 3. Significant cross-polarization levels 
were also observed at this frequency, but, using the polarizer, the cross 
polarization is reduced to a very acceptable level (~ - 50 dB). 

2.2 Antenna measuring range 

A profile of the antenna range used for measuring the offset launcher 
is shown in Fig. 2b. To determine the cross-polarization characteristics 
at the range, a gently tapered pyramidal horn with a 15- by 15-cm 
aperture equipped with a wire grid polarizer (to eliminate any cross 
polarization caused by the horn itself) was used as the source. A 
standard gain horn \vith a similar polarizer was used as the receiver 
on the antenna azimuth-elevation positioner. These measurements 
show the cross polarization introduced by the range to be very small; 
in the range of interest, i.e., within ±3 degrees of the axial direction, 
it is of the order -47 dB. 

2.3 Offset launcher measurements 

Figure 1 is a photograph of one of the offset reflectors, along with its 
supporting structure. The reflector is illuminated by a 28.5-GHz 
dual-mode feed fitted with an etched grid polarizer as discussed in 
Section 2.1. 

At 28.5 GHz, the far-field patterns in the principal and 45-degree 
polarizations, along with the associated cross polarizations for the 
offset launcher fed by a dual-mode horn with polarizer, are as shown 
in Fig. 4. Note the shoulders rather than sidelobe structure for the 
co-polar patterns. Although the shoulders in the launcher pattern are 
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Fig. 4-Far-field radiation patterns of the principal and 45-degree planes for the 
offset launcher at 28.5 GHz with polarizer on horn. Theoretical (gaussian-beam) 
calculations are also included. 

also apparent in the feed-horn patterns (compare the vertical polari
zation patterns of Figs. 3b and 4), this is not always the case. For 
example, the launcher pattern for horizontal polarization exhibits 
prominent shoulders (Fig. 4), whereas the corresponding feed-horn 
pattern (Fig. 3b) does not, Furthermore, the shoulders in the launcher 
patterns are at about the -24 dB level, while those in the feed-horn 
pattern are at about - 20 dB. Most likely, the shoulders in the launcher 
patterns are due to the phase errors in the illumination which are 
caused by the finite taper length of the conical feed horn. 

OFFSET LAUNCHER 1325 



At 19.04 GHz, the co-polar and cross-polarization radiation patterns 
for the offset launcher are as shown in Fig. 5. Excellent symmetry is 
observed in the cross-polarization patterns even at this -40-dB 
level. Both Figs. 4 and .5 include the theoretical curves discussed in 
the next section. 

One can see from the configuration of Fig. 1 that there is a 
possibility of a small amount of blockage by the feed and its mount 
(and subsequent cross-polarization effects) when the launcher is 
scanned upward in elevation. To examine this, a set of azimuth scans 
for various elevation settings was made at both 19.05 GHz and 28.5 
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Fig .. 1-Far-field radiation patterns of the principal and 45-degree planes for the 
offset launcher at 19.05 GHz. Dual-mode feed is equipped with polarizer on horn. 
Theoretical (gaussian-beam) calculations are also included. 
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GHz; the increase in cross polarization due to blockage ,yas found 
to be negligible in both cases. 

One may with justification raise the question as to why the cross 
polarization of the offset launcher, shown in Figs. 4 and 5, evidences 
values of the order of 38 dB even with a feed that has negligible cross 
polarization. There is an inherent depolarization introduced by an 
offset reflection surface,2 which increases if eo, the angle between the 
feed axis and the reflector axis, is increased. Figure 6 shows the experi
mental results obtained by varying eo between 12 and 26 degrees; 
the ratio of the maximum cross-polarized signal in the radiation 
pattern to the on-axis co-polarized signal correspondingly varies from 
-44 to -37 dB at both frequencies. Note that the ordinate of Fig. 6 
is the average of the peaks of cross polarization obtained from an 
azimuth scan of the launcher; they should not be misinterpreted as 
on-axis values which, of course, are much lower. In the following 
section, we show that calculations based on gaussian-mode theory 
provide good agreement with the measured data; the theoretical 
result is shown by a solid curve in Fig. 6. 

III. THEORY 

3.1 Cross polarization in the aperture 

An approximate method for computing the cross polarization due 
to the offset angle eo consists of applying geometric optics to compute 

Fig. 6-Plot of cross-polarization peaks at 19.0.:5 and 28.5 GHz introduced by the 
reflector itself as a function of offset angle, 00. Data are obtained by scanning the 
launcher in azimuth. Gaussian-mode theory is shown by the solid line. Incident 
polarization is horizontal. 
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the reflected field in the aperture from that radiated by the feed horn. 
The aperture field is then decomposed into two gaussian-beam modes 
to predict the far field of the offset launcher; this is a logical procedure 
because dual-mode horns produce an illumination that is approxi
mated by a gaussian beam (see Fig. 3b). 

The geometry of the offset launcher is shown in Fig. 7a. The dual
mode feed horn approximately provides "balanced feed" polarization4 

with respect to the coordinates (x', y', and z') aligned with the horn 
axis which is tilted at angle 00 from the reflector axis. The field radiated 
by the feed horn is given by 

f ' (0' ¢') 
Efl = (0' sin ¢' + c$' cos ¢') .~ , 

r 
(1) 

where f' (0', ¢') is an arbitrary function of 0' and ¢', and r', 0', and q/ 
are the usual spherical coordinates associated with the feed (see 
Fig. 7b). The caret indicates a unit vector. In eq. (1), the expressions 
corresponding to "vertical" polarization are used; identical results 
are obtained for "horizontal" polarization. ["Vertical" and "hori
zontal" are used in the sense that the polarization of the field in the 
aperture of an axisymmetric paraboloidal reflector coaxial with the 
feed-horn axis would be vertical or horizontal when the feed-horn 
polarization is as given in eq. (1).J5 

The axis of the paraboloidal reflector shown in Fig. 7 a is co-linear 
with the z axis. An aperture field with no cross polarization would, 
therefore, result if the feed illumination were given by 

(2) 

where r, 0, and ¢ are the usual spherical coordinates associated with 
the x, y, Z coordinates of Fig. 7a, i.e., the coordinates of a feed horn 
whose axis is aligned with the reflector axis. Theoretically, it is possible 
to hypothesize an asymmetric "balanced" feed whose axis is aligned 
with the reflector axis, giving the polarization of eq. (2), but whose 
amplitude distribution is offset to illuminate the reflector as would 
the amplitude distribution of a tilted symmetric "balanced" feed. 
Simple means (excluding multiple reflectors, etc.) are not known for 
the construction of such an asymmetric "balanced" feed. Therefore, 
in applications, one must approximate an asymmetric "balanced" 
feed horn with a tilted "balanced" feed horn; the cross polarization 
thereby introduced is calculated below. 

Using geometric optics, we assert that if the polarization of a ray 
incident on the reflector from the feed is rotated by a given angle 
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Fig. 7-(a) Launcher geometry. (b) Spherical coordinates. (c) Spherical triangle. 

around the ray vector, then the polarization of the field of the corre
sponding ray in the reflector aperture is rotated by that same angle. 
By geometric optics, the intensity of the field in the aperture along a 
ray is the same as the intensity of the field incident on the reflector 
from the feed at its focus. Thus, the cross polarization in the aperture 
relative to the peak in-line polarization in the aperture can be com
puted by projecting the field of a tilted "balanced" feed horn, incident 
at any point on the reflector, onto the cross-polarized asymmetric 
"balanced" field at the same point and dividing by the peak in-line 
field of the tilted "balanced" feed horn; i.e., 

c(e', ¢') 
Efl'[O(- cos¢) + ¢sin ¢J 
Efl'[O sin ¢ + ¢ cos ¢Jlpcak 

(3) 
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Performing the scalar products indicated in eq. (3) yields 

C(O', ¢') = sin (¢ - ¢' + T)f'(O;, ¢') 

.[cos (¢ - ¢' + T)f'(O'~ ¢')I J-1, (4) 
r peak 

where T is the angle between the primed and unprimed spherical 
angle coordinates shown in Fig. 7c. The angle, ¢' - ¢ - T, is equal 
to the area, A (called spherical excess), of the spherical triangle shown 
in Fig. 7c and is related to the offset angle, 0o, and the primed (feed 
horn) coordinates by the formula 6 

A = ¢' - ¢ - T = 2 arctan 

The feed-horn amplitude pattern, J', is approximately uniform in 
¢' and maximum on axis (as for a corrugated or a dual-mode feed 
horn), and r', the distance from the feed to the reflector, is relatively 
constant over the region in which the cross-polarized field is a signifi
cant fraction of the peak in-line field. In this case, the cross-polarization 
amplitude can be approximated by 

C( I '). • Af'(O') o ,¢ = - sm i' (0) . (6) 

For a given 0', the ¢' which maximizes A and the cross polarization is 

¢~ = arcsin (tan ~ tan; ) . (7) 

For offset angles, 0o, less than or equal to 90 degrees and 0' less than 
30 degrees, which covers the case of interest, ¢~ is less than 16 degrees. 
This leads us to approximate ¢~ by 0 degrees, which results in a 
particularly simple yet accurate formula for the peak cross-polarization 
amplitude ratio, C, as will be shown. C is the ratio of the maximum 
cross-polarized amplitude to the maximum in-line polarized amplitude. 

For dual-mode and corrugated horns, the pattern is approximated 
by a gaussian beam,7 

f' (0') = e-aO
'\ 

where a is related to the 10-dB half-angle beamwidth, Oe, by 

In 10 
a=--' 

20} 
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Approximating ¢:n by 0 degrees, we have the following relation 6 for a 
right spherical triangle (Fig. 7c) : 

. 4 sin 00 sin Of 
sIn ~ = 

1 + cos 00 cos Of 

Since we are interested in small Of, 

and eq. (6) becomes 

Of sin 00 sin A = ---
I + cos 00 ' 

sin 00 Of e-aO 12 

1 + cos 00 • 

(10) 

(11) 

(12) 

By differentiating eq. (12) to locate the angle which maXImIzes 
C(8f

, ¢:n), we find 

and 

Ca == 

80 
Oe tan 2 

-ve In 10 

(13) 

(14) 

As mentioned above, C is the ratio of the maximum cross-polarized 
amplitude to the maximum in-line polarized amplitude. The subscript 
a indicates that the ratio is of the maxima found in the reflector 
aperture. If we denote by OT the half-angle of the gaussian beam 
approximation to the feed-horn pattern, where the power is T dB 
below that on axis, then eq. (14) becomes 

. 00 no 
Ca = - OT tan 2 'VeTIilIO' (15) 

By comparing eq. (14) with the exact formula for gaussian beams, 
eqs. (6), (7), and (8), eq. (14) is found accurate to within 0.1 dB for 
all offset angles, 00 , less than or equal to 90 degrees and all 10-dB 
half-beamwidth angles, Oe, less than or equal to 45 degrees. The 
maximum value of C in the exact formula was found by trial and error 
with the aid of a calculator. 

The above calculations give the cross polarization in the reflector 
aperture; as will be shown in the next section, eq. (14) is also a good 
approximation for the far field in most cases. 

3.2 Two-mode approximation to the aperture field 

After reflection from the offset reflector, the gaussian beam from 
the horn is converted into two gaussian beam modes in the aperture: 
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a fundamental mode with the in-line polarization (denoted Eoo) and 
a higher-order gaussian beam mode which includes the cross polariza
tion (denoted EOl)' Depending on the polarization of the feed horn, 
the polarization of the fundamental and higher-order modes vary 
as shown in Fig. 8. For an arbitrary balanced feed polarization, a 
superposition of the two polarization cases shown in Fig. 8 can be made. 

The expressions for the gaussian beam modes are7 

(i) Fundamental mode: 

Eoo = (H "" + V ",,)Woo 1 'k" p2 ooX ooy - exp -.7·z --2 
1000 'Woo 

+ j [ arctan ( ~~~o ) (16) 

(ii) Higher-order mode: 

E I V ("" ""') H ("" . "" ) lV2pWOI 01 = 01 X cos a - y sm a - 01 X sm a + y cos a --2-
'1,/.,'01 

. exp 1- jkz" - P: + .i[2 arctan ( 2z': ) - kp2 ] j. (17) 
1001 kWOl 2Rol 

I 1 11 + J"- \\ )! \( 
Eoo + EOI ETOT 

FUNDAMENTAL HIGHER ORDER TOTAL 

(a) 

W -----.. 
+ ....------... ----- -

Eoo + EOI ETOT 

FUNDAMENTAL HIGHER ORDER TOTAL 

(b) 

Fig. 8-Two-mode decomposition of aperture field (polarization looking in positive 
z direction, i.e., looking at the reflector). (a) Feed horn vertically polarized. (b) Feed 
horn horizontally polarized. 

1332 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1975 



H 00, V 00 and HOI, VOl are the phasor coefficients for horizontally and 
vertically polarized feeds. The subscripts refer to the standard TE1\I 00 

and TE]Vl ol mode notations of Ref. 8; p, a, and z" are cylindrical 
coordinates, with z" denoting the distance along the beam axis from 
the beam waist. At the beam waist, the radius of curvature of the 
phase front, R, is infinite, and the field varies, with increasing distance, 
p, from the axis at a rate determined by w. For the fundamental mode, 
the field decreases to the lie value at p = Woo. For the higher-order 

mode the field is maximum at p = wodV1 and decreases to {2/e of 
that value at p = W01. Away from the beam waist, z" ~ 0, the field 
amplitude varies with p at a rate determined by tv instead of w, and 
the phase front has a finite radius of curvature, R. tv and R are given 
by8 

~ (2Z")2 10 = W 1 + kw2 , (18) 

and 

(19) 

Both modes have a characteristic exponential attenuation with 
distance from axis, e-

p2
/w \ and a spherical wave front near the axis at 

constant z", denoted by the term, e-jkp2/2R. Passing through a beam 
waist, the on-axis phase advances by 7r for the fundamental mode and 
27r for the higher-order mode (relative to the plane-wave retardation, 
e-Jkt"). Thus, if the cross polarization and the in-line polarization 
are in phase at the beam waist (normally near the reflector aperture), 
they will be in phase quadrature at large distances from the beam 
waist (the far field). This phase quadrature relation gives rise to a 
beam shift with circular polarization as described in Ref. 2. 

The choice of eq. (17) as the appropriate higher-order mode is based 
on its ability to approximate simultaneously both the cross polariza
tion and the "space" taper (amplitude asymmetry from top to bottom 
of dish) of offset reflectors. 

The in-line and cross-polarized fields in the aperture of the offset 
launcher of Fig. 1 were computed exactly by means of eq. (3); the 
resulting field-amplitude contours are shown in Fig. 9. In the aperture 
plane, the in-line and cross-polarized fields are in phase. Thus, the 
corresponding gaussian beam modes have their beam waists at the 
aperture and are in phase. This implies that the total field is linearly 
polarized everywhere in the aperture, and the direction of polarization 
varies in a manner determined by the ratio of the in-line and cross
polarized fields. 
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KEY: SOLID CURVES = GEOMETRIC OPTICS WITH FEED-HORN PATTERN OF eq. (8) 
DASHED CURVES = GAUSSIAN - BEAM MODES 

10cm 

-40 dB 

o i 
j 

I 

/ 

..:----~._/ /' ...... - ---' / 

/ 
/' 

/~--EDGE OF 
/ REFLECTOR 

~//'" 
__ .... CROSS - POLARIZATION 

-- CONTOURS 
F = 115.7 em 

76-cm DIAMETER APERTURE 

Fig. 9-Amplitude contours for the example reflector shown in Fig. 1. 

The gaussian beam fields required to match the exactly computed ap
erture fields are found by first choosing a fundamental mode centered 
on the aperture with beam waist radius woo such that it decreases 
8.686 dB in power at the same radius as does the computed in-line 
polarized field, both being normalized to unit amplitude on axis. 

With these criteria and the approximation that 1" is nearly constant 
over the reflector, 

r' == 1'0 = F sec2 (~) , (20) 

the parameters of the fundamental mode are determined as follows. 
The radius, PIle, at which the field drops to lie times its on-axis value 
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is found in the direction a = O. (Note that PII e is larger in the a = - 7T" /2 
direction and smaller in the a = 7T"/2 direction due to the space taper 
in these directions. Thus, PIle, as determined from the a = 0 direction, 
approximates the average PIle over all directions.) 

(21) 

where, from the gaussian approximation for the feed-horn pattern, 

(22) 

For unit amplitude on-axis, eq. (16) requires (we restrict our dis
cussion here to the vertically polarized case; the horizontally polarized 
case yields identical expressions) 

VOO = 1. (23) 

The higher-order mode parameters are found from the cross-polari
zation characteristics. Since the cross polarization is maximum at O~, 
we have, from eq. (13), 

WOI = 2V2ro sin (!O~) = 2V2ro sin ( ~). (24) 
2 In 10 

By comparing eqs. (24) and (21), it is seen that, for small Oe, WOI == Woo. 
The amplitude of the higher-order gaussian beam mode is given 

by the maximum cross-polarization amplitude ratio (C a ). From eqs. 
(14) and (17): 

00 
Oe tan 2 

VOl = -----::==-
~ln 10 

(25) 

The phase of the higher-order mode follows from the fact that at the 
beam waist the in-line and cross-polarized fields are in phase. 

Using eqs. (21) through (25), the gaussian beam mode approxi
mations to the aperture fields, plotted as dashed contours in Fig. 9, 
compare favorably with those obtained by geometrical optics (solid 
contours). 

3.3 The far fields 

The parameters of the gaussian beam modes being thus determined, 
it is possible to compute the in-line and cross-polarized fields at any 
position in the main beam of the field radiated from the reflector. 
The far field is of particular interest, 

" kw
2 

(26) z »2' ' 
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allowing eqs. (18) and (19) to be approximated by 

2z" 
10 == - and R == z". kw 

Also, if the beamwidth is small, 
2 

T == ~ (Z")2 + p2 = z" + L. fh == ~ . 
J 2z" , z" 

From eqs. (16) and (17), the in-line field is therefore given by 

lEv == '-"-,- 11 00w6o exp --f jke-ikrf[ (02 
) 

21 J 1/;00 

- jv1V 01W 5l :~1 (sin a) exp ( - :il ) ] 
and the cross-polarized field by 

, lee- jkrf 
2 OJ ( OJ) Ell = - -2-' -v11101W01 ~ (cos a) exp - .1,2 , 

1 J 'Y01 'YOl 

for the "vertically" polarized feed. We have defined 

2 2 
1/;00 g -- and 1/;01 ~ --, 

lewoo kWOl 

the angular beam radii in the far field. 

(27) 

(28) 

(29) 

(30) 

(31) 

The CJ from eqs. (14), (23), (25), (29), and (30), where the subscript, 
j, indicates the far-field maximum cross-polarization amplitude 
ratio, is 

C - . VOl (W 01)2 _ C (W 01 )2 J-7-- - - a - • 
. VOo-{C WOO WOO 

(32) 

Thus, the far-field C is j(wodwoO)2 times that in the aperture and 
occurs in the azimuth plane at an angle 

1/;01 v1 . 
v1 = leWOl radIans. (33) 

As mentioned above, for small feed beamwidths, Oe, 

WOl == Woo, (34) 

so the far-field C is approximately equal to that of the aperture, and 
the peak cross-polarization lobe occurs at approximately the - 4.34-
dB level of the main beam. 

A comparison of the experimental and theoretical far-field patterns 
for in-line and cross-polarized fields from the offset launcher of Fig. 1 
at 28.56 GHz and 19.04 GHz are shown in Figs. 4 and 5. The main 
discrepancy between theory and experiment are the shoulders on the 
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sides of the experimental pattern at a level of about - 24 dB not 
present on the sides of the theoretical main beam. As mentioned in 
Section 2.3, the shoulders are probably due to phase error in the horn 
aperture which is not in the gaussian feed pattern assumed in the 
theory. 

3.4 Truncation effects 

The effect of truncating the aperture of the launcher at various 
circular contours of the fundamental mode can be computed. Let the 
radius of the aperture at the truncation be c. Then the taper at the 
trunca tion is 

T = (ln2~0) ( :00 y. (35) 

The radiation integrals in the x", z" plane (where the cross-polarization 
is largest) for the fundamental mode and higher-order mode are 

Eooj = foc pdp fo27r dex Voo exp [ - ( :00)2 - Jkp cos ex sin Of]' (36) 

and 

E 01j = (C pdp (27r da VOl V2p 
Jo Jo W01 

. exp [ - ( :01 Y - jkp cos ex sin Of ] cos ex cos Of. (37) 

From eq. (36), the in-line polarization far-field on-axis is 

EOOj(Of = 0) = 7rVOOW6o[ 1 - exp ( - ;;0)]· (38) 

The cross-polarized far-field pattern from (37) IS, letting cos Of == 1, 

E == J7r V 01W 51 1(0 ) 01j {i f , (39) 

where 
(C/WOl 

I(Of) ~ 2-{:2e Jo t2e-t2J1(tkwOl sin Of)dt, (40) 

and J 1 (x) is the first-order Bessel function of the first kind. From eqs. 
(34) and (35), choosing the taper, T, determines I(Of). Numerically 
integrating eq. (40), the peak value, I p , of I(Of) and the location, 
Ofp , at which I (Of) is maximum were determined for various tapers, T. 
The resulting far field Cf relative to that of an infinite aperture, 

- 20 10glo ( g;oo) = - 20 10glo (1 _ ~!:C2/W200 ) , (41) 
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is plotted in Fig. 10 along with the angular position, ()jp, of the peak 
in the cross-polarization lobe relative to that, ()jpX!, of an infinite 
aperture. Notice that the effect of truncation is to reduce the cross
polarized signal relative to the co-polarized signal (higher Cj ) and to 
move the cross-polarization lobes out to larger angles off-axis. Further
more, these truncation effects depend only on the truncation taper 
and are essentially independent of the offset geometry. 

Figure 11 shows C j as determined from the gaussian beam formulas 
for a wide range of offset reflector geometries indicating an infinite 
aperture (no truncation) and the aperture truncated at a 10-dB taper. 
With the infinite aperture, the C j from the gaussian beam theory are 
within 0.2 dB of the cross polarization in the aperture, Ca (not shmvn), 
for all geometries on the figure. When the aperture is truncated at the 
10-dB level, C j is, from Fig. 10, 2.2 dB smaller than that for the 
infinite aperture, as is also seen from the dashed curve in Fig. 11. 
These dashed curves agree with cross polarization obtained by nu
merically computing2 the radiation integral over the aperture field 
found by geometrical optics proj ection of the radiation pattern of a 
dual-mode feed horn. 

Using eqs. (14) and (32), the maximum cross-polarization levels 
as a function of offset angle were computed for the precise geometry 
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Fig. lO-Effect of aperture truncation on cross-polarization pattern. 
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of the offset launcher of Fig. l. The factor (wOdWOO)2 which converts 
aperture cross polarization to far-field cross polarization is only l.0004 
(i.e., 0.008 dB). The 10-dB half angle, ee, of the feed-horn gaussian
beam approximation (discussed in Section 2.1) is 9 degrees. The 
calculated cross polarization is compared with the measured cross 
polarization as a function of offset angle in Fig. 6. The theory appears 
to be in good agreement with the measurements at both frequencies. 

IV. CONCLUSIONS 

It has been demonstrated that an offset launcher can provide low 
cross polarization and a low-sidelobe symmetrical beam when fed 
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with a suitable horn at a small enough offset angle. Simple formulas 
for the far-field performance of the launcher are derived in terms of 
two gaussian modes; comparison with measurements at 19 and 28 
GHz shows good agreement. The maximum cross-polarization ampli
tude ratio is found to change little from aperture to far field. Offset 
reflector geometries have also been useful for multiple-beam 
applications.9 •1o 
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Forney's asymptotic upper bound for per-bit error probability in the 
detection of pulse-amplitude-modulated digital data in the presence of 
additive white gaussian noise was obtained for the case where the dura
tion of the intersymbol interference is bounded. In this paper, we show the 
validity of Forney's bound under much weaker assumptions that allow 
unbounded intersymbol interference. 

I. INTRODUCTION 

We consider the situation where a data sequence ao, .. " aN-l of ±l's 
is transmitted via pulse amplitude modulation as Lr:~OI h(t - kT)ak 
and received in the presence of additive white gaussian noise with one
sided spectral density (J"2. In a recent series of papers, Forney,! 
Foschini,2 and lVlaz03 developed an asymptotic (as (J"2 -+ 0) upper 
bound on the error probability per data bit P e: 

< 1 d
2

(h) l P e = exp - 4(J"2 [1 + o(l)J , (1) 

where d (h) is the minimum £2 distance between distinct modulated 
pulse sequences. This bound holds under the strong assumption that 
the pulse h(t) is supported on finite interval. 

In this paper, we show that (1) is valid for a considerably wider class 
of h (t). Roughly speaking, our assumptions are little more than that 
h (t) is in £1 ( - 00, 00) and £2 ( - 00, 00), and that H (f), the Fourier 
transform of h(t), does not vanish on an interval. The precise conditions 
on h(t) under which (1) holds are given below. In particular, (1) is 
valid when H (f) is a rational function. 

In Section II we give a precise statement of our results, and the proof 
follows in Section III. 

II. FORMAL STATEMENT OF PROBLEM AND RESULTS 

In this section, we give a precise statement of the problem and the 
results that were stated informally in Section I. 

We begin with some definitions. We denote N vectors by boldface 
superscripted letters, and components by subscripted letters, e.g. 
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u"" = (Uo, ... , UN-I). When the dimension N is clear from the context, 
we omit the superscript. Define the sets aN, at,k, aN,k by 

aN = {UN: Uj = ± 1, 0 ~ j ~ N - I}, 

at,k= {UN:Uk= +1,uj= ±1,j~k}, 

aN,k = {u N : Uk = - 1, Uj = ± 1, j ~ Ii:}. 
(2) 

Of course, aN = at,k U aN,le. Again, when N is clear from the context, 
we write aN = a, at,k = at, aN,k = a;:. 

Next, let J(t), yet), and - 00 < t < 00 be real-valued measurable 
functions. The inner product of J and y is denoted by 

(J, 0) = i: J(t)O(t)dt, (3a) 

and the norm of J is 

IIJII = ((J, f»)! = (/-: f2(t)dt)!. (3b) 

For a vector UN E aN, and J(t), - 00 < t < 00, a real-valued function, 
let the function h*u = s be defined by 

N-I 
set) = L J(t - kT)Uk, 

k=O 

where T > 0 is a fixed parameter. 
We are concerned ,vith the following modulation scheme. Let 

aN = (ao, ... , aN-I) E aN denote the data to be transmitted. Assume 
that all the 2N vectors in aN are equally likely. The transmitted signal 
is the function h*a N, where the pulse h (t) is a fixed function for which 
Ilh II < 00. The received signal is 

yet) = (h*aN)(t) + z(t), - 00 < t < 00, (4) 

where z(t) is a sample from a white gaussian noise process with zero 
mean and one-sided spectral density (T2. 

The decoder associates with the received signal y, a vector 
D (y) = aN E aN. Corresponding to a given decoder function D, let 
the bit error probability be 

1 N-l 

PeN(D) = ]if k~O Pr {ak ~ ak}. (5) 

Also, define the optimum error probability 

(6) 

We are concerned here with the asymptotics of P:N(h, (T2), as (T2 ~ 0, 
i.e., as the signal-to-noise ratio approaches infinity. Accordingly, define 

EN(h) = - lim inf (T2log P:N(h, (T2), (7a) 
0- 2 ->0 
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so that, as (]"2 -----7 0, 

P:N(h, u') ~ exp 1- E:;h) [1 + o(l)J I· (7b) 

N ext, consider a particular decoder that is of special interest here
the maximum-likelihood decoder, denoted D h • In the present problem, 
Dh(y) can be taken to be that ti E aN such that for all u E aN, 
u ~ ti, 

(8) 

where Yl is the projection of y onto the subspace of £2( - 00, 00) 
spanned by the signals h*u, u E aN. With probability 1, (8) will be 
satisfied for some ti E aN. 

Now, subject to the condition that h(t) has finite support, i.e., there 
exists a to > ° such that 

h(t) = 0, for I t I > to, (9) 

Forney,! Foschini,2 and Mazo3 have shown that E(h) ~ d2 (h)j4, where 
the "minimum distance" d(h) is defined by 

d(h) = lim inf mIll I!h*u - h*vl!. 
N-+co U,VEaN 

(10) 

Ur!V 

Thus, as (]"2 -----7 0, 

P:N(h, u') ~ exp 1- ~~) [1 + o(I)J I· (11) 

Inequality (11) is established by showing that the error probability 
for the maximum likelihood decoder, PeN(Dh), is overbounded by the 
right member of (11). This is done by writing (this is not as difficult as 
it looks) 

1 N 
PeN(Dh) = - L L 2-(N-l) Pr {Dh(y) E aN,kly = h*u + z} 

N k=l uE at,k 

1 
= ltT L L 2-(N-l) Pr { U {Dh(y) = v} Iy = h*u + z} 

1.'1 k U E at v E ak 

~ 1:... L L 2-(N-l) 
N k uEat 

·Pr{ U {IlYl-h*ull~IIYl-h*vll}ly=h*u+z} 
yEai'" 

(12) 

Relation (12) is valid for any h(t). Subject to condition (9), it is then 
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shown that, as (7"2 ~ 0, 

o/N(h, U') ~ exp 1- d:~) [1 + 0, (1) J) , (1:1) 

where 01(1) does not depend on N. Thus, since P;N ~ PeN(D h), (11) 
holds. Further, the 0(1) term in (11) does not depend on N. An 
interesting by-product of these results is that the performance indi
cated in (11) is achievable via the decoder Dh • This decoder can be 
instrumented (using the Viterbi algorithm) with a complexity which 
remains bounded as N ~ 00 • 

We now drop the assumption that h (t) has finite support. Instead, 
we assume that Ii (t) satisfies the following conditions: 

(i) There exists a nonnegative £1 function (Jo(t), i.e., 

f-: (Jo(t)dt < 00, 

such that 
I h(t) I ~ go(t), 

and such that go is monotone in I t I. 

(ii) Let 

-00< t <00, 

-00<1<00 

(14) 

(1J)) 

be the Fourier transform of h(t). By (i), f I h(t) I dt < 00, so that H(f) 
is well defined for all f. We assume that there exists a nonnegative £1 
function G1(f) which is monotone in I fl, such that 

IH(f) 12 ~ G1 (f), - 00 < f < 00. (16) 

(iii) Let the "folded spectrum" of h be 

1 

° < 1 < -. = = T (17) 

We show in Appendix A that 8(f), ° ~ f ~ liT, is finite and con
tinuous. We assume that 8(f) > 0, ° ~ 1 ~ liT. Let 

m = min 8(f) > 0, (18) 
O;2j ;21/T 

where the existence of the minimum follows from the continuity of 
8(f) on the compact interval [0, liT]. 

Remarks: 

(1) Condition (i) is just slightly stronger than simply requiring h 
tobein£l(- 00, (0). Condition (14) forcesh(t) to go to zero as It I ~oo 
in a "well-behaved" manner. Condition (1:i) imposes a similar condition 
on IH(f)12. 

(2) For the very important special case where H (f) is a rational 
function, i.e., H(f) = P(i2'lf-j)/Q(i27rf), and P, Q are polynomials 
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with the degree of P < degree of Q, then conditions (i) and (ii) are 
satisfied. Since H(f) has only a finite number of zeros, condition (iii) 
is also satisfied. 

(3) Suppose that H (f) has no more than a countable number of 
zeros, but that 8(f) = 0 for some f E [0, liT]. It is easy to see that 
some arbitrarily small change in T will cause 8 (f) to be strictly 
positive for all f E [0, liT]. Thus, condition (iii) is not especially 
restrictive. 

We now state our main result, the proof of which is in Section III. 

Theorem 1: Let h satisfy conditions (i), (ii), and (iii) above. Then, for 
all e > 0, there exists a TO = To(e) sufficiently large so that, for all 
T > TO, 

where 

{

II (t), 
II r (t) = 

0, 

It I ~ T, 

(19) 

It I > T, 

is the truncated version of h(t). The quantity TO does not depend on N. 
Since hT has finite support, we conclude from Theorem 1 and (13) 

that, for all e > 0 and T sufficiently large, 

P;N(h, 0-2) ~ PeN(D hr) 

< 1 d
2
(h T

) [ ( )]1 = exp - 40-2(1 + «:)2 1 + 02 1 , (20a) 

[where 02(1) is independent of NJ so that 

EN(h) = - lim inf 0-2 log P;(h, 0-2) ~ d
2
(h T

) (20b) 
<12->0 4(1 + e)2 

We show in Appendix B that 

as T --700, 

so that letting e --7 0 and T --700 in (20b) yields 

EN(h) ~ d2~~) . 

We state this as 

(21) 

(22) 

Corollary 2: Let h satisfy conditions (i) to (iii) above. Then, as 0-2 --7 0, 

P:N(h, q2) ~ exp 1- d:~~) [1 + o,(l)J I ' 
where 03 (1) is independent of N. 

We conclude this section with a remark concerning the relationship 
of the bound of Forney et al. (11) with the result of Corollary 2. We 
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can rewrite (11) as 

P;N(h,0-2) = Kl(to, 0-2)e- d2 (h)/2u\ 

and the bound of Corollary 2 as 

P;N(h, 0-2) ~ Kz(llhll l, Ul, (J2)e- d2 (h)/4u 2
• 

(23) 

(24) 

Here, we made explicit the dependence of K 1 on the support interval 
to of h(t) [see (9)J, and the dependence of K2 on Ilhlll' the £1 norm 
of h, and on m = min 8(f). Both Kl and Kz increase in 1/0-2 slower 
than ed2 (h)/4u 2

• But Kl(to, 0-2 ) -'tOO as to-'too, and Kz(llhlh, 111, 0-2 ) -'tOO, 

as Ilh III -'t 00 or as m -'t 0. Thus, although it might seem reasonable 
to assume that all h (t) satisfy (9) for some to, the bound of (23) depends 
on that to and becomes meaningless as to -'t 00. Similarly, although 
it might be reasonable to assume for any h(t) that Ilhlh < 00 and 
m = min 8 (f) > 0, the bound of (24) depends on these quantities 
and also becomes meaningless as Ilh Ih -'t 00 or 111 -'t 0. Therefore, both 
bounds have their limitations; the new one, however, is considerably 
less limited. 

III. PROOF OF THEOREM 1 

Let h satisfy (i) to (iii). Let h r (t) be as defined in (19), and let 
hr(t) = h(t) - hr(t), i.e., 

- () J 0, I t I ~ T, 

h r t = 1 h (t), I t I > T. 
(25) 

Then, if the data sequence is u E aN, the received sequence IS 71 

= h*u + z = hr*u + 2, where 

2 = z + hr*u. (26) 

Following the same steps as in (12), we obtain 

1 PeN(D hT) ~ -,- L L 2-(N-l) 
N k uEat 

Pr U {(2, hr*(v - u» ~ !llhr*(v - u) II L (27) 
vEak" 

where 2 is given in (26). 
We will show that, for arbitrary € > 0, there exists a To = TO( €, h) 

(TO independent of N), such that for T ~ TO, the event 

{ (2, hr* (v - u» ~ ! Ilh r* (v - u) 112} 
(1 + €) 

C{ (Z, hr*(v - U» ~ 2 Ilhr*(v - u)112}, 
(28) 

for all u E at, v E ak . Substituting (28) into (27) yields, on com
parison with (12), 

PeN(D hT) ~ 1/;N[h r, 0-2 (1 + €)2], 

which is Theorem 1. It remains to establish (28). 
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Relation (28) will follow immediately when we show the existence 
of a TO( f, h) such that, for T ~ TO and all u, v, 

If (29) holds, the event in the left member of (28) 

{(z, hT*(v - u») ~ tllhT*(v - U)1I2} 

= {(z, hT*(v - u») ~ tllhT*(v - U)1I2 - (hT*u, hT*(v - u»)} 

(29) 

~ 1 (z, h,.(v - u» ~ 1 ~ '1Ih,'(v - u) II')' (30) 

which is the right member of (28). Thus, it remains to establish (29). 
Let W = (wo, ... , WN-I) = v - u. The entries of ware 0, ±2. 

Also set q = hT*u, and r = hT*w. Then 

I (hT*u,hT*(v - u»)1 = l(q,r)1 ~ f-: Iq(t)llr(t)ldt 

~ [_ oos~p< 00 I q(t) I] i: I dt) I dt. (31) 

Consider 

i: Idt) Idt = f-: I:~: hT(t - kT)Wk/dt 

~ 2t IWkl i: Ih1'(t - kT) Idt ~ IIhlll :~: IWkl, (32) 

where IIhlll = flh(t) Idt < 00, by condition (i). 
We obtain an upper bound on L I Wk I as follows. Since Wk = 0, ±2, 

we have L IWkl = t L w%. Now, let H T(f) = f~oo hT(t)e i27rftdt be 
the Fourier transform of hT(t), and let 

0 <f<1 = = T (33) 

be the corresponding folded spectrum. Then, from Parseval's theorem, 

IIrll2 = IIhT*w1l 2 = f-: IH TCf) 121 ~ Wkei27rkTfl2df 

1c
1lT 

= STCf) I L Wkei27rkTfl2df 
o k 

~ [ inf S T Cf)] tIT I L Wkei27rkTf 12df 
O~f~l/T Jo 

= [inf ST(f)] L w~ = [inf STCf)] L IWkl·2. (34) 
f k f 

Therefore, 
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Combining (31), (32), and (35), we have 

l(q,r)1 ~ [ sup Iq(t)I][ inf ST(f)]-ltllhlhllrI\2. (36) 
-oo<t<oo O;;;'/;;;'l/T 

Now, we show in Appendix A that 

lim inf [ inf S T(f)] ~ 111 > 0, (37) 
T-+OO 0;;;'/ ;;;'l/T 

where m = min S(!) > ° [see condition (iii)]. Further, using condi
tion (i) [particularly the monotonicity of go(t)], we have 

N-l 

1 q(t) IlL hT(t - kT)Uk 1 ~ L IhT(t - kT) 1 
k k=O 

00 

~ L 1 h T (t - k T) 1 = L 1 h (t - k T) 1 
k= - 00 k:lt-kTI ~T 

00 

~ L go(t - kT) ~ L [goer + jT) + go( -r - jT)] 
k:lt-kTI ;:;T j=O 

1 ftO 1 ItO ~ -'}1 go(t)dt+-
T 

go(t)dt ~ 0, as r ~ 00. 
T-T --r+T 

(38) 

Combining (:36), (37), and (38), we obtain 

1 (q, r)1 = 1 (hT*u, hT*(v - u»)1 ~ 0 
I\rl\2 I\hT*(v - ul\2 ' 

as r ~ 00. This is equivalent to (29), so that the proof of Theorem 1 
is complete. 
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APPENDIX A 
The Folded Spectrum S(f) 

We first show that S(!) as given in (17) is always finite, i.e., the 
series in (17) converges for all f E [0, liT]. From condition (ii) , 
using the monotonicity of G1, 

+ T f.tO G1 (x)dx ~ 0, as no ~ 00, (39) 
no-lIT 

SO that the series in (17) converges. 
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To establish the continuity of 8 (f), \vrite 

8(1) = L IH(f+ _T
n )12 + Hno,f), 0 ~f ~ liT. (40) 

Inl ~no 

For arbitrary 0, 0 ~ f ~ liT, 

/8 (f) - 8 (f + 0) I ~ 1 n ~no [ 1 H (f + ¥ ) 12 - 1 H (f + 0 + ~ ) 12] 

+ I Hno, f) I + / Hno, f + 0) I. (41) 

Now since h(t) E £l( - 00, 00), H(f) is continuous. To make the 
right member of ineq. (41) ~ E, first let no be sufficiently large so that 
the last two terms of the right member of ineq. (41) ~ E/2; then 
choose /0/ sufficiently small so that the first term of the right member 
of inequality (41) ~ E/2. This establishes the continuity of 8 (f). 

We next verify (37), which concerns ST(f). Since hT is in£l( - 00, (0), 
H T(f) exists for all f E (- 00, 00). Thus, 8 T(f) as defined in (33) is 
meaningful, though perhaps infinite on a set of measure zero. With 
Hno f) as in (39), \vrite 

ST(f) - 8(f) = n=~ oe IH T(f + ~) 12 - n=~ oe IH(f + ~) 12 

~ Inl~no [IH T(f + ¥ ) 12 -IH(f + ~ ) 12] - Hno, f). (42) 

Now let E > 0 be arbitrary. From (39) we can choose no sufficiently 
large such that Hno, f) ~ E/2, for f E [0, liT]. With no so chosen, 

Now let jj T(f) be the Fourier transform of hT. Then 

/ H (f) I = / H T (f) + jj T (f) / ~ I H T (f) I + I jj T (f) /. 

Therefore 

I H (f) /2 ~ I H T (f) /2 + 2/ H T (f) / I jj (f) / + / jj T (f) /2 

~ /HT(f) 12 + 211hTlll11hTIl1 + IIhTlli, 
where II 1/1 denotes £1 norm. Since IIhT 1/1 ~ 0, as T ~ 00, if T IS 

sufficiently large, then 

E 1 
~ - -. ( )' f E (- 00, 00). ( 44) 

2 2no + 1 

Inequalities (43) and (44) imply that, for all E > 0, there exists a 
TO(E) such that for all T ~ TO(E), 

1 
ST(f) ~ S(f) - E, 0 ~ f ~ T· (45) 
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Thus, for T ~ To(e), 

inf S r (f) ~ inf S (.f) - e = 171 - e. ( 46) 
O~f~l/T O~f~l/T 

Letting T ---7 00 and e ---7 0 in (46) yields (37). 

APPENDIX B 

Convergence of the Minimum Distance 

In this appendix, we shall verify (21), i.e., 

d(h r) ---7 d(h), as T -7 00. (47) 

From the definition of d(h r) (10), for arbitrary e > 0, ,ve are assured 
of the existence of a w = u - v such that u, v E aN, and 

Ilhr*w II ~ d (h r) + e. 

Repeating the steps in (34), we obtain 

From (37) we can choose T sufficiently large so that. 

inf S r (.f) ~ 171. . 
f 

Hence, for such a choice of T, 

Now 

d(h) ~ Ilh*wll = Ilhr*w - hr*wll ~ Ilhr*wll + Ilhr*wll 

(48) 

(50) 

(51) 

~ d(h r) + e + Ilhr*wll. (52) 

Since 

we have, with T large enough to satisfy (51), 

Ilhr*wll ~ L IWklllhrl1 = IlhT11 L \1Okl ~ I~TII [d(hT) + eJ2. (.13) 
k k ... 171 

Combining (52) and (.53) yields for T sufficiently large (and e > 0 
arbitrary) 

(f>4) 
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Letting T ~ 00 and f ~ 0 yields 

d(h) ~ lim inf d(hT)' (55) 

The identical argument with hand hT reversed yields for all T > 0, 
f > 0, 

so that (letting T ~ 00, f ~ 0) 

lim sup d(hT) ~ d(h). (56) 

Inequalities (55) and (.156) yield (47) or (21), completing the proof. 
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