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We study the numerical solution of a nonlinear, partial-differential 
equation that describes charge transport in a model of a charge-coupled 
device (CCD). This model differs from previous models in that field-aiding 
of the transfer is taken into account. Although a derivation of the transport 
equation is given, the main emphasis in the paper is on the numerical 
techniques involved, and no actual numbers are presented. Actual numerical 
results based on the techniques developed here can be found in several 
recent design studies. The equation, which is parabolic, has one space 
dimension and one time dimension. Galerkin's method, with standard 
chapeau functions, is used to discretize in space. This results in a very 
stiff system of nonlinear, ordinary, differential equations. To solve these 
equations, we use a first-order backward Euler scheme coupled with 
extrapolation. A number of alternative schemes were tried and found to be 
inadequate. 

I. INTRODUCTION 

In this paper, we study the numerical solution of a nonlinear, partial
differential equation that describes charge transport in a model of a 
charge-coupled device (CCD). The emphasis is on the numerical tech
niques involved, although a derivation of the equation is given. The 
reader is referred to other papers where the solutions are used in device 
theory and design.1 •2 We briefly summarize the physical background 
of the equation first. 
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A knowledge of the dynamics of charge transfer in a CCD is, of 
course, central to a complete understanding of its operation. A calcu
lation of the motion of charge in a CCD, starting from the coupled, 
nonlinear Poisson and charge-conservation equations and taking into 
account the full geometry of the device, has so far proved impossible. 
However, Strain and Schryer3 and, independently, Kim and Lenz
linger4 developed and studied an approximate, one-dimensional model 
of charge transfer in a CCD. The original analysis considered motion 
owing only to diffusion and the mutual repulsion of the charge carriers. 
Field-aided transfer was ignored. Since these original studies, a number 
of other authors have studied the effects of field-aiding. 5- 8 In Refs. 
[), 6, and 8, as in the original papers,3,4 an infinite sink for the charge 
at one end of a cell is assumed. The assumption of an infinite sink 
rules out charge "bunching," which in certain situations is an im
portant effect (for an example of this, see Ref. 1, Fig. 8). In Ref. 7, 
the assumption of an infinite sink is not made. In this paper, we 
extend the original work3,4 to include field-aiding and more realistic 
boundary conditions. Our model can describe both surface9 CCDs and 
buried-channepo CCDs (BCCDS). We do not include the effects of surface 
traps, since the main application! was to BCCDs. We feel the numerical 
scheme described here has advantages over that used in Ref. 7, where 
essentially the same model as ours was used to study surface CCDs, 

with the effect of traps included. Calculations using our methods 
show that BCCDs, which can be fabricated with present technology, 
should be extraordinarily fast and efficient and have reasonable 
charge-carrying capabilities. Transfer times of 1.8 ns are predicted for 
a two-phase device having 10-,um-wide electrodes.! Slower but similar 
results are obtained for surface deviccs. 

Strain and Schryer3 solved, by the method of finite differences, a 
transport equation quite similar to the one we study here. However, 
their method of solution proved inadequate when applied to our 
equation. It is possible to obtain solutions of the transport equation 
as follows. We use Galerkin's methodll with standard chapeau func
tions in space. We treat the time behavior by polynomial extrapolation 
to the limit of the results of a first-order, fully implicit (nonlinear), 
finite difference scheme. Although the equation only roughly models 
the true physical situation, an accurate knowledge of the solution as 
it varies over many orders of magnitude is necessary if it is to be of 
any usc. This requirement makes the numerical solution of the equa
tion difficult. IVlany other schemes were tried, and the above method 
is the only one we found that could solve the problem. 

The equation of charge transport is derivcd in Section II, although 
some more complex details are given in Appendix A. The technique 
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for numerically solving the equation of charge motion is given in 
Section III, with some details in Appendix B. Questions of existence 
and accuracy are discussed in Section IV, along with the use of poly
nomial extrapolation. An outline of the theory of extrapolation is 
given in Appendix C. The method by which initial solutions are 
obtained is the subject of Section V. Finally, in Section VI we discuss 
several other schemes by which we tried to solve the equation of 
charge motion and which failed. 

II. DERIVATION OF THE TRANSPORT EQUATION 

We refer the reader to the literature for a discussion of the principles 
of operation of either surface CCDs 9 or BCCDs. 10 Basically, however, both 
are devices that move packets of charge from under one electrode to 
under another electrode by suitably changing the voltage on the 
electrodes. 

As in Ref. 3, we assume that the charge can be described by a charge 
density q(x, t). Here, x is the distance under the plates (see Fig. 1) 
and t is the time. Then, as we show in Appendix A, the component of 
the electric field along the direction of motion of the charge, which is 
due to the mutual repulsion of the charge, is 

(1) 

The elastance S is assumed to be a constant independent of x and t. 
In all that follows, we use subscripts to denote differentiation; thus, 
qx = aq(x, t)/ax, etc. Equation (1) holds for both surface and buried 

Si 
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z 

Fig. I-Schematic of a CCD showing relation to device of x-coordinate in transport 
equation. 
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channel devices, although the values of S are different in each case. 
Expressions for S are given in Appendix A in terms of the physical 
parameters of the devices. 

Let cp(x, t) be the given driving potential due to the voltages applied 
to the electrodes. For a surface CCD, cp is the electric potential at the 
oxide semiconductor interface, while, for a BCCD, cp is the potential at 
the potential minimum of the buried channel. In most applications, 
we have approximated cp by the potential in the CCD in the absence of 
any mobile charge.12 .13 

The total field along the direction of motion is 

(2) 
The current density is9 

J (x, t) = qp,Ex - Dqx, (3) 

where D is the diffusion constant and p, is the mobility, which we also 
assume to be constant. If we substitute (2) into (3) and make use of 
the Einstein relation D = (kT /e)p, = ap" then 

J (x, t) = - p,[ (a + Sq)qx + qcpx]. 

If we substitute (4) into the charge-conservation equation,14 

qt + J x = 0, 

we get the desired transport equation, 

qt = p,[(a + Sq)qx + qcpx]x. 

(4) 

(5) 

(6) 

The appropriate solution of (6) satisfies an arbitrarily given initial 
distribution of charge q(x,O) and the boundary conditions J(O, t) 
= J (L, t) = O. The boundary conditions state that there is no charge 
flow into or out of the device at either end. L is the length of the device. 

It is convenient to write (6) in terms of dimensionless quantities, 
as in Ref. 3. Let 

r = t/(L2/p,vo) , y = x/L, W = Sq/vo, cI> = cp/vo, {3 = a/vo, (7) 

where Vo is a reference voltage. Then (6) becomes 

(8) 

As it turns out, there seems to be no natural voltage unit in the 
problem (Ref. 3), so we typically pick Vo = 1 volt. 

Physically, the quantity of interest is the total charge present 
between any two points 0 ~ Yl < Y2 ~ 1. This suggests that, instead 
of w(y, r), we consider 

Q(y, r) = 1011 

w(~, r)d~. (9) 
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If we integrate eq. (8) with respect to y from 0 to y and make use of 
the boundary condition J (0, t) = 0, we get 

(10) 

Since the right-hand side of (10) is just proportional to J (y, r), we 
see that QT(I, r) = O. From this last remark and (9), it follows that 
the correct boundary conditions on Q(y, r) are 

Q(O, r) = 0, Q(I, r) = QT = const. (11) 

The appropriate initial condition is determined from w(y,O) by 
setting r = 0 in (9). The transport problem we wish to solve is, 
thus, eq. (10), subject to boundary conditions (11) and given initial 
conditions. This is a much simpler problem than attempting to solve 
(8) for the charge density. 

III. SOLUTION OF THE TRANSPORT EQUATION 

We simplify the notation slightly by setting 

1f;(y, r) = fPy(y, r), 

and note that (10) can be written 

(12) 

1 8 
-(3Qyy - "2 8y (Qy)2 - 1f;Qy + QT = O. (13) 

If we multiply both sides of (13) by a continuous, piece-wise differ
entiable function fey) which satisfies f(O) = f(l) = 0, integrate the 
result from 0 to 1, and integrate the terms containing second deriva
tives by parts, we obtain (letting l' = df/dy) 

101 

{[(3Qy + !(Qy)2Jf'(y) + [-1f;Qy + QTJf(y) }dy = O. (14) 

Equation (14) is the starting point for the application of Galerkin's 
method, because any twice-differentiable function Q(y, r) that 
satisfies (14) for all continuous, piece-wise differentiable fey) satisfying 
f(O) = f(l) = 0 must also be a solution of (13). 

We now discretize in space by introducing a net {Yl, Y2, ... , YN} 
on [0, IJ and a set of standard chapeau functions hey), 1 ~ j ~ N, 
as pictured in Fig. 2 and defined in Appendix B. In all that follows, the 

--~--~~~~--~--~----------------~--~~--~·Y 
Yl = 0 Y2 YN-2 YN-l 1 = YN 

Fig. 2-Discretization of the space interval and the corresponding chapeau functions. 
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net {YI, .. " YN} is assumed to be given and fixed. In terms of the 
basic chapeau functions, we define approximations to the solution and 
external field: 

(15) 

N 

\fey, r) = L 1/Ij( r)fi(y)· (16) 
j=l 

Note that Q(y, r) has been constructed to satisfy the boundary 
conditions, Q(O, r) = 0, Q(I, r) = QT. The functions Qj( r) are yet 
to be determined, but we require that they satisfy the initial conditions 

(17) 

Because of (17), Q(y, r) satisfies the correct initial conditions at the 
mesh points: Q(Yh 0) = Q(Yh 0). We define 1/Ij( r) = 1/I(Yh r), so that 
\f(Yh r) = 1/I(Yh r). 

To determine the N - 2 functions Qj( r), we require that Q(y, r) 
satisfy (14) for each of the N - 2 choices of fey), fey) = fj(Y), 
2 ~ j ~ N - 1, with 1/I(y, r) replaced by \fey, r). This yields a system 
of N - 2 first-order, nonlinear, ordinary differential equations for 
the Qj ( r). This technique has a robust history and has been applied, 
not only to many problems of the same type as (13), but to other 
types of problems as well. The idea is quite simple: Let the approxi
mate solution be a linear combination of the functionsfi, 2 ~ j ~ N - 1 
and then make the left-hand side of (13) orthogonal to each of these 
functions. In geometrical terms, this means making the left-hand side 
of (13) orthogonal to the span of f2, .. " fN-I, denoted by (f2, .. " fN-I), 
in £2[0, IJ in the usual inner product: (f, g) = Jol f(y)g(y)dy. Then, 
crudely speaking, as more points Yj are chosen, (f2, .. " fN-I) spans 
more of £2[0, IJ and the left-hand side of (13) must go to zero as 
N --700, so long as it remains orthogonal to (f2, .. " fN-I). 

If we carry out the substitution of (15) and (16) into (14), with 
fey) = fi(Y), 2 ~ i ~ N - 1, the N - 2 equations result: 
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In (18) Qj(T) = dQj/dT. The values of the integrals appearing in 
(18) are listed in Appendix B. If we define hi = Yi - Yi-l, 2 ~ i ~ N, 
and substitute into (18) the values of the integrals, we get 

(hiQi-l + 2(hi + hH1)Qi + hi+1QHl)/6 
+ Qi-l[ -f3/h i + (1/Ii-l + 21/1.:)/6J + Qi[f3(I/hi + l/hH1) 
+ (1/Ii+l - 1/Ii-l)/6 + CkN-IQT/(hN)2J + QHl[ -f3/hHl 
- (1/Ii+l + 21/1i)/6J + !{ (Qi - Qi_l)2/M - (QHl - Qi)2/M+d 

= Oi.N-l[Q~/(2h~) + QT(f3/hN + 1/IN-l/3 + 1/IN/6)J, (19) 

where Oi.N-l is the Kronecker delta function. These equations hold for 
2 ~ i ~ N - 1 if we let Ql( T) = QN( T) == O. The nonlinear ordinary 
differential-equation initial-value problem given by (17) and (19) 
represents the spatial discretization of (13) and must now be solved 
for the Q j ( T), 2 ~ j ~ N - 1. 

We use a fully implicit finite difference scheme in time (backward 
Euler). Let 

(20) 

for some choice of AT > O. We then let Qj(nAT) be approximated by 
(Qj+1 - Qj)/ AT and set Qj = Qj+t, 1/Ij = 1/Ij+1 in (19). On rearranging, 
we obtain the fully implicit, first-order, finite-difference scheme for 
solving (19) in time: 

Tr1+1Qf~l + Tfl1Qf+1 + Tf3+1Qfll + Ai(Qf+1 - Qf~l)2 
- A H1 (Qfll - Qf+1)2 = Rf+t, (21) 

where 

Tf1+1 = - f3/h i + (1/Ifil + 21/1f+1)/6 + hd(6AT), (22a) 

Tf2+1 = f3(I/h i + l/hH1) + (1/Ifll - 1/Ifil)/6 + (hi + hi+1)/(3AT) 
+ Oi.N-IQT/ (hN )2, (22b) 

Tf3+1 = - f3/hHl - (1/Ifll + 21/1f+1)/6 + hHl/ (6AT), (22c) 

Ai = 1/ (2M), (22d) 

Rf+1 = Oi.N-1[Q~/ (2h~) + QT(f3/hN +1/IRr"t.\/3 + 1/IRr+ 1/6) J 
+ (hiQf-l + 2(hi + hH1)Qf + hH1Qf+1)/(6AT). (22e) 

Equations (21) hold for 2 ~ i ~ N - 1, n = 0, 1, 2, "', with the 
assumption that Q1 = QRr = 0, n = 0, 1, 2, ... and with the initial 
conditions Q~ = Q (Yi, 0), 2 ~ i ~ N - 1. 

We now find the solution of the nonlinear system of eqs. (21) for 
fixed n by an iterative Newton method. We drop the superscript n 
denoting the time step, and for fixed n denote by Qi(rn), 2 ~ i ~ N - 1, 
the mth iterate of the solution of (21). To obtain Qi(m + 1) from Qi(m), 
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we set Qi(m + 1) = Qi(m) + fi(m), substitute this into (21), and 
linearize the resulting equations for the fi(m) : 

{Til - 2Ai[Qi(m) - Qi-l(m)]}fi-l(m) 

+ {TiS - 2Ai+l[Qi+l(m) - Qi(m)]}fi+l(m) 

+ {Ti2 + 2Ai[Qi(m) - Qi-l(m)] 

+ 2Ai+l[Qi+1(m) - Qi(m)]}fi(m) 

= Ri - {Ti1Qi-l(m) + T i2Qi(m) + TisQi+l(m) 

+ Ai[Qi(m) - Qi_l(m)]2 - Ai+l[Qi+l(m) - Qi(m)]2}. (23) 

These equations hold for 2 ~ i ~ N - 1 with fl = fN = o. This is a 
tridiagonal system of linear equations. Reference 15 contains a concise 
analysis and very efficient method of solution for such a system of 
tridiagonal equations. 

In practice, the initial estimate of the solution Qf+l to (21) is taken 
to be Qf from the previous time step. So, if LlT is chosen sufficiently 
small, the Newton sequence generated by (23) should converge and 
do so quickly. 

What we have described so far is a method for discretizing (9) and 
(10) in space and time, giving the nonlinear system of eqs. (21), and 
we have proposed an iterative scheme, given in (23), for solving (21) 
at each time step. In the next section, we study the feasibility and 
accuracy of the method. 

IV. EXISTENCE AND ACCURACY 

We shall show that iteration (23) can be carried out as long as the 
following conditions are satisfied: 

o ~ Q~ ~ Q~ ~ ... ~ Q'lv-2 ~ Q'lv-l ~ QT, n = 0, 1, 2, (24) 

sup 11/t(y, T) I ~ 2
h
{3 , 2 ~ i ~ N. (25) 

[Y'-l,Y.] xeD, 00] i 

These conditions are sufficient to ensure the existence of a solution of 
eqs. (23) for each n. We have not proved it, but in practice they also 
seem to be necessary. These conditions do not show that the iteration 
(23) must converge, merely that it is well defined. In fact, if the initial 
estimate of the solution of (21) is too far off, then in practice the 
Newton sequence given by (23) may well not converge, and it is 
necessary to choose LlT smaller so that Qf provides a better estimate of 
Q~+l t • 

The monotonicity condition (24) on Qf is merely a necessary conse
quence of the definition (9) of Qf, since w(~, T) ~ 0 by definition. The 
mesh restriction (25), however, is apparently new and fundamental. 
In practice, if (25) is violated, even at only one point and by a "small" 
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amount, the solution produced, if any, is highly erratic and non
monotone, and may even be negative. 

We now prove that conditions (24) and (25) imply that the matrix 
of eqs. (23) is strictly diagonally dominant. I6 From this, we can con
clude that the matrix has an inverse,16 so the equations have a solution. 
From (22a) to (22c) and (25), we see that 

Til + Ti2 + Ti3 = (hi + hi+I)/(2f1r) > 0, (26) 
and 

Ti2 ~ (hi + hi+I)/(3f1r) > 0; 

Til ~ h/(6f1r), Ti3 ~ hi+t!(6f1r). 
(27) 

Because of the monotonicity property (24) and the fact that Ti2 > 0, 
it is easy to show that 

f1Ti = Ti2 -I Till-I Ti31 >0 

implies the diagonal dominance of (23) : 

1 Ti2 + 2A i [Qi(m) - Qi-l(m)J + 2A i+I[Qi+I(m) - Qi(m)] 1 

> 1 T il - 2Ai[Qi(m) - Qi-l(m) J 1 

(28) 

+ 1 Ti3 - 2Ai+l[Qi+l(m) - Qi(m) J I. (29) 

To show that (28) is true, we consider the four possible sign combina
tions of Til and Ti3 and use (26) and (27) : 

(i) Tli > 0, Ti3 > 0. 

f1Ti = Ti2 - Til - Ti3 = (hi + hi+I)/(2f1r) 
- 2(Til + T i3) ~ (hi + hi+1)/(6f1r) > 0. 

(ii) Til > 0, Ti3 < 0. 

f1Ti = Ti2 - Til + Ti3 = (hi + hi+1)/ (2f1r) 

2T > hi hi+l ° 
- il = 6f1r + 2f1r > . 

(iii) Til < 0, Ti3 > 0. 

f1Ti = Ti2 + T~l - Ti3 = (hi + hi+I)/(2f1r) 

- 2T. > ~ + hi+l > ° 
~3 = 2f1r 6f1r . 

(iv) Til < 0, Ti3 < 0. 
f1Ti = Ti2 + Til + Ti3 = (hi + hi+1)/(2f1r) > 0. 

This completes the proof of the diagonal dominance of (23). 
We now discuss the accuracy of the spatial and time discretizations. 

It is well known (see Ref. 11) that the Galerkin procedure, using 
chapeau functions, is accurate to 0(h2), where h = maxihi and ° (h2)/h2 

represents roughly an upper bound on Qyy(y, r) over [0, IJ X [0, 00). 
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We shall not go into the proof of such results here. Rather, a heuristic 
but useful analysis of the error is presented. The 0(h2) accuracy, ba
sically, comes from the fact that replacing Q(y, r) by its interpolant, 

results in such a 0(h2) error by using Taylor's theorem on each of the 
intervals [YiJ Yi+l], i = 1, "', N - 1. A similar statement can be 
made about 1/I(y, r) and its interpolant. For the sake of clarity, assume 
that the mesh is uniform with hi == h, i = 2, "', N. Then standard 
finite difference arguments show that (18) is a spatial finite difference 
approximation to a function Q*(y, r) obeying 

(30) 

where 0 involves terms of the form Q;y and its higher-order derivatives, 
am+n/aymarn. Then, intuitively speaking, since Q(y, r) solves (30) to 
within 0(h2) and Q*(y, 0) - Q(y, 0) = 0(h2), we must have Q*(y, r) 
- Q(y, r) = 0(h2). 

Even though (30) is based on the assumption that the spatial mesh 
is uniform, it shows clearly that the hi must be small in any region 
where any of the derivatives (am+n/aymarn)Qyy are large. Physically, 
such regions are precisely those regions where the field 1/I(y, r) is large. 
This makes restriction (25) quite reasonable, since (25) requires a 
smaller spatial mesh where the field 1/1 is large. In fact, we can estimate 
the number of points N v, required by (25), using a variable mesh, in a 
potential rise of v volts: (25) requires that 1/1 change by no more than 
2{3 rov 1/20 (at room temperature) over any mesh interval. Then, for 
example, a potential rise of 5 volts will have rovl00 points Yi modeling 
it. So (25) itself forces a fairly accurate representation of 1/1 and hence, 
indirectly, of Q. 

However, the time mesh is another matter altogether. The time 
difference scheme is only first-order accurate and the local time 
behavior of Q near large values of 1/1 is rather bad. Thus, application 
of (21) to (23) alone to solve the problem gives rather poor results. 
For this reason, we have used polynomial extrapolation to the limit of 
the results of the first-order scheme (23). A brief discussion of the 
extrapolation process is given in Appendix C. Ironically, polynomial 
extrapolation was used because rational extrapolation converged so 
quickly to the solution that it led to very large Ar choices (see Ref. 17 
for the Ar monitoring mechanism) which, in turn, led to iteration (23) 
not converging or taking a very long time doing it. So, even though 
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polynomial extrapolation is "slower" than rational, it is "better" for 
our purpose here. 

V. CALCULATION OF Q(y, 00) 

In most cases of interest, the initial condition for (10) is chosen 
as an equilibrium solution Q(y, 00) corresponding to a time-inde
pendent potential <I>(y). It is convenient in these cases to solve for the 
corresponding w(y, 00) = w(y) and then integrate to get Q(y, 00). 

Setting w,. = 0 in (8) yields 0 = [(w + l3)wy + w<I>yJy, which, when 
integrated twice from 0 to y with the aid of the boundary condition 
J (0, 00) = 0, yields 

w 
F ( w) = w + 13 In Co + cI> (y) = 0 (31) 

for some constant Co. Let Yo be any point in [0, IJ such that w(Yo) > O. 
Then 

C () ( 
cI>(Yo) + w(Yo) ) 

o = w Yo exp . 
13 

(32) 

Thus, given cI>(y) and a single value of w(Yo) > 0, the entire equi
librium distribution w(y) is determined. Note that w(y) > 0 whenever 
ip(y) is finite. 

To find w(y) from (31) we use Newton's method. An initial guess at 
the solution w(O) (y) > 0 is made. The solution is then iterated, the 
(n + l)th iterate being related to the nth by 

w(n+l) (y) 11 + -13-l = <I>(y) + 13 11 - In ( w(n) (y) ) l· (33) w(n)(y) Co 

Since F'(w) = 1 + l3/w > 0 and FI/(w) = - l3/w2 < 0, we see that 
F(w) is a concave, monotone-increasing function for w > O. Thus, the 
Newton sequence generated by (33) will converge to the solution (31) 
no matter what initial w(P) (y) > 0 is chosen. 

Once the W(Yi), Yi in the Galerkin net {Yl, . ", YN} are found using 
(33), Q(Yi) may be found by the trapezoidal rule for integration. This 
is consistent with the representation of Q by the chapeau functions, Q, 
since the trapezoidal rule is exact for chapeau functions. 

VI. ATTEMPTS THAT FAILED 

The first attempt at solving (10) was via the finite difference scheme 
of Ref. 3. It was impractical because the spatial mesh restriction (25) 
appeared there, also, forcing the spatial mesh to be very small in some 
regions, although it could be quite large in others. Since any non
uniformity of mesh size in a central finite difference scheme leads to 
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only first-order accuracy, we were then left with a very fine mesh over 
the entire interval [0, 1]. This required tens of thousands of points in 
the spatial mesh, far too many to be practical. 

After going to Galerkin's method in space, which has second-order 
accuracy even with a nonuniform mesh, the solution of (19) posed 
another problem: It is an extremely "stiff" system of ordinary differ
ential equations, with the coefficients A i ranging typically from 104 

to 1010• This is a reflection of the locally quick time and spatial changes 
in Q(y, T) when 1/1 is large, this fact being transmitted to the hi by (25). 
For this reason, any attempt to linearize (19) between time steps for a 
finite difference scheme in time led to failure-the solution is nowhere 
near linear over reasonable time intervals when 1/1 is large. The symptom 
of this problem, in practice, was that the AT required in the polynomial 
or rational extrapolation process for these linearized schemes was 
extraordinarily small, requiring in one case more than 1010 time steps 
to cope with a single 5-volt potential swing. 

Once a nonlinear approach to the solution of (19) was recognized 
as probably the only route left, the most obvious "accurate" scheme 
to use is a fully nonlinear Crank-Nicholson solution of (19). A small 
digression on this scheme in a simple case is useful here. For the linear 
system of ordinary differential equations, 

u' = Au, (34) 

where u is a vector and A a matrix, the Crank-Nicholson approximation 
to the true solution, u = eATuo, is 

This is based on the approximation18 

eMiT "-' (I + !AAT) (I - !AAT)-l. (35) 

Letting u (nAT) = (u1, ... , uJv) T, this corresponds to the standard 
finite difference formulation of the Crank-Nicholson scheme: 

(uj+l - uj)j AT = !(Aun+l + Aun)j, 1 ~ j ~ N. 

A nonlinear generalization of the above scheme for (19) would have 
an error of the form C(AT)2; however, C is very large. This is most 
easily seen by considering (35) for real AAT very large (positive or 
negative). That relation then states that eAM "-' - 1, which is an 
exceedingly bad approximation. For a "stiff" system, (34) [or (19)J, 
one that has a wide spread in its eigenvalues for A, the above reasoning 
indicates that the Crank-Nicholson scheme would give very poor 
results unless AT is very small. In practice, as before, the symptom of 
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this problem was very small AT choices by the extrapolation routines
the same problem that would have required 1010 time steps in a linear 
scheme would have required "only" 108 with Crank-Nicholson. (In 
this matter, see also Ref. 19.) 

In all, more than 12 different schemes were programmed and tested 
on this problem, (9) and (10), with the result that only the one de
scribed in Sections II to V is effective for the wide range(of tf; distri
butions required to model both surface and buried-channel CCDs. 
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APPENDIX A 

In this appendix, we derive eq. (1), the fundamental equation of 
the Strain-Schryer model, for the case of a BCCD. We choose coordinates 
as shown in Fig. 3; the x-axis is parallel to the oxide-semiconductor 
interface and the z-axis is directed into the semiconductor. The 
potential in the oxide is <Po(x, z) and the potential in the semiconductor 
is <Pl(X, z). The permittivity of the oxide is €ox, that of the semi
conductor €s, and the thickness of the oxide is o. 

In the special case where all the properties of the BCCD are inde
pendent of x, the potential in the presence of the inserted charge q 
has been calculated by Kent20 and Schryer.21 They showed that the 
value of the potential at its minimum in the buried channel is approxi
mately a linear function of the charge q, <PI = Soq + V o, for all values 

--------------------~----------------.x 

1) 

z 

Fig. 3-Coordinate system involved in calculating the potential of a line charge. 
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of q in the operating range of the device. The elastance So and Vo are 
independent of q but depend on the oxide thickness 0 and the semi
conductor doping, and Vo also depends strongly on the electrode 
potential. 

In the general case, the Strain-Schryer model assumes that the 
field in the x-direction in the channel can be approximated by the sum 
of two terms. The first term is obtained from the above expression for 
<PI by assuming q a function of x and differentiating, 

(36) 

The second term takes into account the field at x resulting from the 
charge at other points x' in the channel. Because of the metallic elec
trodes, the charge at x' will induce image charges that will tend to 
shield the field at x. For this purpose, we first calculate the potential 
of a unit line charge located at x = 0, Z = rJ > 0 in the semiconductor. 
The plane Z = 0 is assumed to be a perfect conductor at zero potential, 
and the oxide and semiconductor are assumed uniform. We can write 
down a solution of Laplace's equation in the form 

f 00 sinh I a I Z . 
<po(x, z; rJ) = -00 rea) I a I etaxda, 0 ~ Z ~ 0, 

<PI(X, z; rJ) = - 4;fS w(x, z; rJ) + f-: s(a)e- 1al (z-6)e iaxda, 

o~z<oo, 

where 

(37) 

(38) 

w(x, z; TJ) = In {x2 + (z - rJ)2} - In {x2 + (z + rJ)2}. (39) 

The function w(x, z; rJ) has the correct singular behavior at x = 0, 
Z = rJ and is harmonic everywhere else in - 00 < x < 00, 0 ~ Z < 00. 

The boundary condition <po(x, 0; rJ) = 0 is satisfied, and the unknown 
functions rea) and sea) must be chosen so that the boundary conditions 

a <Po ( a <PI <Po(x, 0; rJ) = <PI(X, 0; rJ), fox az x, 0; rJ) = fs az (x, 0; rJ) (40) 

are satisfied. It is straightforward to show that 

w(x, 0; rJ) 2 fool I sinh I a I 0 . "L. - e-T/ a etaxuu: 
-00 lal ' (41) 

(42) 

If we substitute (37), (38), (41), and (42) into (40), and Fourier-
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transform with respect to x, we obtain two linear equations for rea) 
and sea). The solution of these two equations yields 

sea) = sin~!I!o jr(a) - _1_ e- fl1al !. (44) 
a 27l'fs 

On substituting (43) and (44) into (37) and (38), we obtain the 
desired result. If we expand rea) and sea) in powers of e- 1a1o, the 
Fourier integrals can be evaluated, and we can express the potential 
as the potential resulting from an infinite array of image charges. Since 
this result is not needed, we do not give it here. 

In the buried-channel case, we need the potential resulting from a 
two-dimensional charge distribution. Let the density of this distribu
tion be p(~, 1]). Then q(x) = f p(x, 1])d1] is the charge appearing in 
eq. (36). Since the potential resulting from the image charges induced 
by a line charge at (~, 1]) in the semiconductor is cp(x - ~, z; 1]), we 
can now write down the second term of the field in the channel as 

Ex2 = - f f aa~1 (x - ~,z; 1])p(~, 1])d~d1]. (45) 

From (38) and (39), 

a CPI ax (x - ~,z; 1]) 

1 [ x - ~ (x - ~) J 
- 27l' f s (x - ~)2 + (z - 1])2 - (x - ~)2 + (z + 1])2 

+ i f-: as(a)e-1al (z-o)eia(x-~)da. (46) 

Since (acpt/ax)(x - ~,z; 1]) is singular at ~ = x, 1] = z, the mam 
contribution to the integral in (45) occurs at this point. We expand 
p (~, 1]) in a Taylor series about x, keep only the linear terms in the 
expansion, and extend the limits of the ~ integral from - 00 to 00. 

Since (a CPt! ax) (x - ~, z; 1]) is an odd function of x - ~, the term 
involving p (x, 1]) vanishes. A straightforward calculation shows that 
the remaining term is 

1 a f (1 1 ) aq - - - (z + 1] - ! z - 1] I)p(x, 1])d1] - 0 - - - -. 
2fs ax fox fx ax 

(47) 

The first integral can be transformed by the mean value theorem: 
J (z + 1] - !z - 1J!)p(x, 1])d1] = (z + 'ij - !z - 'ij!)q(x), where 'ij is a 
point in the interval of integration. In many cases, it is reasonable to 
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replace the factor z + fj - I Z - fj I by a constant 2l, independent of z. 
For such cases, we have 

Ex2 = - J l/ fs + a ( ~ _ 1: )) aq. 1 fox fs ax 

If we combine (36) and (48) we obtain (1), where 

8 = So + (l - a)/fs + a/fox. 

(48) 

(49) 

Here 8 0 must be obtained from a one-dimensional charge-insertion 
calculation,2o.21 and l must be estimated from the above formulas. 

It should be noted that, if we let p(~, 1]) = pU)D(1] - a) in the 
previous derivation, where D(x) is the Dirac delta function, and set 
Y = a, we should get the result of Ref. 3 for a surface device. However, 
in this case, (47) yields a/fox for the correction term, while in Ref. 3 
the correction term is 2a/(fs + fox) Ceq. (4)]. This is because, in Ref. 3, 
in the expansion of the field in terms of image charges, only the first 
image was taken into account. 

APPENDIX B 

In this appendix, we list several results concerning the chapeau 
functions fi(y) : 

fj(Y) = 0, 0 ~ Y ~ Yj-l, 
= (y - Yj-l)/hh Yj-l ~ Y ~ Yh 
= (Yi+l - y)/hi+l' Yj ~ Y ~ Yi+l, 
= 0, Y i+ 1 ~ Y ~ 1, ( 50) 

where hj = Yj - Yj-l. 
We list here a number of elementary integrals that are needed in 

obtaining eqs. (19) from eqs. (18). 

10
1 

(f;)2dy = l/hj + l/hj+1, 

10
1 

f;t;+ldy = - l/hi+l, 

10
1 

(fi)2dy = (h j+1 + hj) /3, 

10
1 

fifi+ldy = hj+l/6, 

101 

(f;)3dy = (h j)-2 - (h j+1)-2, 

10
1 

(f;)2f;+ldy = (hi+l)-2, 
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(51) 

(52) 

(53) 

(54) 

(55) 

(56) 



101 
(f;)2j;_1dy = - (h j)-2, 

10
1 

(fJYj;dy = 0, 

10
1 

jjj;+1!i+1dy = t· 

In all these expressions, j; = djj/dy. 

APPENDIX C 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

In this appendix, we give a brief description of the extrapolation 
method for solving eqs. (19) in time. We used a linearized, backward 
Euler method for solving (19) in time. It is first-order accurate. That 
is, by using a time step of At to go from to to t1 = to + mAt, the result
ing error at t1 is 0 (At). See either Ref. 22 or Ref. 23 for the proof of 
such results. 

However, much much more is known about these methods. In fact, 
Stetter24 has shown, in a very general setting, that processes such as 
the above backward Euler technique give rise to expansions of the 
form 

00 

T(At) = T(O) + L ':j(At)j, (63) 
i=1 

where, for our problem, T(At) is the value of the vector (Qf, .. " QYJ:) T, 

which is the value of our approximate solution at t1 = to + mAt, and 
the 'tj are vectors that depend only upon to and h. Thus, as 
At = (h - to)/m goes to zero or, equivalently, as m goes to infinity, 
T(At) not only converges, with error O(At), to the true solution at t l , 

namely, T(O), but each component of T(At) looks more and more like a 
polynomial in At. The process of extrapolation consists of simply 
computing several values, T(At), T(At/2), "', T(At/p), and then 
passing a polynomial of degree p - 1 through these data points 
corresponding to each component. The value of these interpolating 
polynomials at the origin is the solution T(O), plus terms of order 
(At)p. Here p is called the level of extrapolation. 
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By using polynomial extrapolation to the limit of the result of the 
first-order scheme (21), we generate a process that has an error of 
O[(~t)pJ when p levels of extrapolation are used. This extrapolation 
process is very well described in Ref. 25, and its application to the 
numerical solution of ordinary differential equations is also very well 
described in Ref. 17. It must be stressed that the underlying process, 
Gragg's modified midpoint rule, which Bulirsch and Stoer extrapolate 
in Ref. 17, is not the one we are proposing to extrapolate here. That 
rule is second-order accurate and is actually unstable if the equations 
being solved are stiff. The first-order, linearized, backward Euler 
method we use here is highly stable under extrapolation, even for very 
stiff systems like (19). So Ref. 17 should be read with an eye to using 
extrapolation in solving ordinary differential equations and not to 
those peculiarities that Bulirsch and Stoer introduce to take special 
advantage of the nice properties of Gragg's modified midpoint rule. 
The same technique we have used here to solve (13) was used in Ref. 26 
to solve a similar system. It is of interest that, for both these problems, 
polynomial extrapolation was found to be 15 to 20 percent faster than 
rational extrapolation. This is in contrast to the finding in Ref. 17 
that rational extrapolating is usually the faster of the two, at least 
when extrapolating Gragg's modified midpoint rule. 
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A double-insulator structure consisting of 500 A of vapor-deposited 
Al20 3 and 1000 A of thermally grown Si02 is used as the gate dielectric 
in a beam-lead-compatible, p-channel, MOSFET, silicon-integrated-circuit 
technology. The Al20 a layer, in addition to serving as a sodium barrier 
and thereby providing a self-passivated technology, results in a positive 
flatband voltage shift when compared to an Si0 2 structure. The mechanism 
for this flatband voltage shift is the subject of this paper. 

The major experimental results obtained are (i) a negative charge 
exists near the Al20 a/ Si0 2 interface, its magnitude being independent of 
the Al20 a thickness but inversely proportional to the Si0 2 thickness, 
(ii) the magnitude of the Si0 2/ Si interface charge is inversely propor
tional to the Si0 2 thickness, and (iii) a potentialJ'ump of about 1.25 volts in 
flatband voltage is associated with the addition of the Al20 a layer. 

A physical model is proposed which assumes the existence of a constant 
voltage drop across the Si02 layer during the Al20 3 deposition and a 
corresponding charge buildup at the Si02/ Al20 a interface. 

I. INTRODUCTION 

The threshold voltage of an insulated-gate, field-effect transistor is 
directly dependent upon the properties of the gate insulator. A double
dielectric gate structure consisting of nominally 500 A of vapor
deposited Al20 a and 1000 A of thermally grown Si0 2 is the basis of a 
beam-lead-compatible, p-channel, 1\108FET, silicon-integrated-circuit 
technology. I-a The Ah03 layer serves two functions. First, it is a 
diffusion barrier for light ions, such as sodium, and thus provides a 
self-passivated technology. Second, the AbOalayer shifts the threshold 
voltage of the 1\108 transistor in the positive direction (due to a fiat
band voltage shift). For example, for a (100) oriented, n-type, 10-
ohm-em, silicon substrate, a fiatband voltage of 0.0 volt is obtained 
with the dual-dielectric structure and a titanium metal gate, charac
teristic of the beam-lead metallization system, whereas with just an 
Si0 2 structure the fiatband voltage is -0.8 volt. The more positive 
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flatband voltage capability provided by the AbOa layer implies that 
MOSFET integrated circuits can be fabricated which have low power
dissipation properties and which are more easily interfaced with bipolar 
circuits. 

Many techniques have been used for the deposition of Al20 3 films 
intended for application in an integrated-circuit technology. All of 
our considerations are restricted to Al20 3 films deposited at 900°C 
from an AICIa source, the technique reported by Tung and Caffrey.l 
A brief review is given in Ref. 4 of the other Ab03 deposition techniques 
that have been reported and the electrical characteristics of the films 
obtained. 

The electrical properties of the Ab03/Si02, dual-dielectric, gate 
insulator are quantitatively described in this paper; and, in particular, 
the mechanisms are delineated which cause the positive shift in flat
band voltage. The experimental approach was to do a parametric 
study of the flatband voltage of the dual-dielectric MOS structure, 
the two parameters of interest being the thicknesses of the Ab03 
and Si02 layers. 

Two major conclusions were obtained from the parametric study. 
First, a net negative charge exists near the Ab03/Si02 interface, and 
the magnitude of the charge is independent of Ab03 thickness over the 
range studied, but inversely proportional to Si02 thickness. Second, 
the magnitude of the normal interface charge associated with the 
SiOdSi interface has a component that is inversely proportional to 
Si02 thickness. 

A model explaining the origin of the negative charge at the Ab03/ 
Si02 interface was developed, based on the assumption that the elec
trical conductivity of Ab03 at high temperatures (> 300°C) is much 
greater than that of Si02. As a result, during the high-temperature 
deposition of Ab03, an electric field exists in the Si02 due to the 
Sij Ah03 contact potential difference, and the negative charge at the 
AbOa/Si02 interface terminates this field. 

Recently, Aboaf, Kerr, and Bassous also reported the existence of a 
negative charge at the Ab03/Si02 interface with the magnitude of the 
charge being independent of the Al20 3 thickness and inversely propor
tional to the Si02 thickness. 4 This is consistent with the insulator 
interface charge origin model we proposed5 and implies that this model 
has general applicability in dual-dielectric structures, since they used 
three Ab03 deposition techniques, all different from the technique 
used to obtain the Ab03 films studied in this paper. 

The organization of the paper is as follows. A simple flatband theory 
for dielectric structures is presented in Section II and space-charge 
formation in insulators is discussed in Section III. A theoretical 
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discussion of the Ab03/Si02 structure is given in Section IV and the 
experimental results are presented in Section V. A summary is given 
in Section VI. 

II. FLATBAND CALCULATIONS 

The flatband voltage of an MOS structure is defined as that voltage 
which must be applied to the metal electrode to produce a zero space 
charge or flatband condition in the semiconductor, and it is determined 
by the net charge density existing in the insulator system and the 
various interfacial barrier energies. To calculate the flatband voltage, 
the voltage across the insulators under flatband conditions is calcu
lated from the net charge density using Gauss' law, and to this is 
added the voltage contributed by the various barrier energies. 

Consider the band diagrams of the metal!SiOdSi and metal! Ab03/ 
SiOdSi systems shown in Figs. 1 and 2, respectively. The various 
barrier energies for these systems are defined in the figures. We shall 
assume that at the Si02/Si interface in both structures there is an 
interface charge layer Qss. The net charge density in the bulk of the 
Si0 2 is assumed to be zero and the charge density in the Ab03 is 
denoted by PA (x). Using S.I. to denote the single-insulator system and 
D.I. the double-insulator system, it follows that the voltages across 
the insulators, Vi, due to the charge densities can be written as: 

l TA+Tox dx IX 
- PA(x')dx' 

Tox fA 0 

1TOX+TA Tox + TA - X 
------ PA (x)dx, 

Tox fA 

(1) 

(2) 

where (fox, fA), (T ox, T A) = the dielectric constants and thicknesses 
of the Si02 and Ab03, respectively. In particular, fox = 3.9; fA = 9.0. 

The applied voltage difference between the metal and the semi
conductor, the flatband voltage V FB, for both structures can be 
written as: 

V FB(S,I.) 

V FB(D.I.) 

(Qss/fox)Tox + (CPm,ox - CPB - CPt) 

Vi(D.I.) + (CPm,A + CPu - CPB - CPt)· 

(3) 

(4) 

The insulator-insulator barrier CPii is assumed to be positive if it is as 
shown in Fig. 2. 

Consider the contact potential terms in eqs. (3) and (4). If we let 
Wand X with the appropriate subscripts denote the vacuum work 
functions and electron affinities, respectively, of the various materials, 
and, if we assume that the energy band matching between two different 
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(a) 

Tax 

SILICON METAL 

(b) 

p(x) 

Qss---~ 

o Tax 
SILICON METAL 

(c) 

Fig. l-(a) Cross-sectional view of the metal/Si0 2/Si capacitor structure. (b) 
Band diagram associated with the structure. (c) Plot of assumed charge density 
present in the structure. 

materials is determined entirely by the difference In vacuum work 
functions, that is, 

~m.ox = Wm - Xox and (5a) 

then 

~m.ox - ~B - ~f = (Wm - xox) - (xs - xox) - ~f 
= W m - Xs - ~h (5b) 

~m.A + ~ii - ~B - ~f = (Wm - XA) + (XA - xox) - (xs - xox) - ~f 

= W m - Xs - ~h (6) 

or 
~m.ox - ~B - ~f = ~m.A + ~ii - ~B - ~f = W m - Xs - ~f. (7) 

Note that under this assumption, the contact potential terms are 
independent of the electron affinities of the insulators and dependent 
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Fig. 2-(a) Cross-sectional view of the metal! Ah03/Si0 2/Si capacitor structure. 
(b) Band diagram associated with the structure. (c) Plot of assumed charge density 
present in the structure. 

only on the difference between the metal and semiconductor work 
functions. Thus, if the work-function assumption is valid, an MOS 

system involving a given metal and a semiconductor will have a 
constant flatband voltage after correction for Qss independent of the 
number or nature of the insulators, unless space charge exists in the 
insulators. In other words, if the assumption is valid, a measured 
V FB that changes when the insulators are changed implies space 
charge exists in the insulators. 

III. SPACE-CHARGE FORMATION IN INSULATORS 

In the previous section, the flatband voltage of a dual-dielectric 
MOS structure was calculated assuming a given distribution of space 
charge. The purpose of this section is to discuss one possible model 
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for the origin and spatial location of space charge in insulators, namely, 
the one we feel represents the most likely explanation for much of the 
space charge in the SiOd Ah03 system. In this discussion, we first 
summarize the proposal for space-charge formation suggested by 
Simmons for a metal-insulator-metal (l\IIM) system. 6 Then this model 
is extended and applied to double-insulator systems, in particular those 
using Si02 and A120 3. 

Suppose we form the M1M system shown in Fig. 3a at sufficiently 
low temperatures that no charge transport occurs within the insulator 
and no charge exchange occurs between the insulator and the metallic 
contacts in a time period comparable to the experimental observation 
time. In this case, no space charge can form in the insulator because 
thermal equilibrium will not exist and the potential versus position 
will look as shown in Fig. 3b, where the insulator is represented essen
tially as a wideband insulator with conduction and valence band 
edges. Now assume that the system is heated to a sufficiently high 
temperature that charge transport can occur within the insulator and 
charge exchange can occur between the insulator and the metallic 
contacts in a time period that is short compared to experimental 
observation. In this case, thermal equilibrium will be established and 
there will be two extreme possibilities between which the system will 
equilibrate: either the characteristic length corresponding to a space
charge region at thermal equilibrium in the insulator, the electrostatic 
screening, or Debye length will be large compared to the insulator 
thickness, and the potential versus position will be virtually identical 
to that shown in Fig. 3b; or the Debye length in the insulator will be 
small compared to the insulator thickness, and such space-charge 
regions as shown in Fig. 3c will form near the two metal interfaces. 
In the latter alternative, a well-defined "Fermi level" will exist in the 
bulk of the insulator, as shown in Figure 3c, which will coincide in 
energy with the Fermi level in the metallic contacts in much the same 
way that Fermi levels coincide in a conventional Schottky barrier on a 
semiconductor. Clearly an M1M system in which the Debye length is 
short compared to the insulator thickness at any given time will 
always lie somewhere between the extremes indicated in Figs. 3b and 
3c, depending on thermal history, so that in such an insulator, space
charge regions will always exist in the vicinity of the metallic contacts. 
The magnitude of the charge will depend on the difference in the work 
function of the metal and the insulator and on the degree of thermal 
equilibrium which has been established. 

In the above discussion, it has been assumed that there is no net 
voltage difference across the M1M structure. Very similar arguments 
can be presented for the case where a finite voltage exists between 
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Fig. 3-(a) Cross-sectional view of a metal/insulator/metal capacitor structure. 
(b) Band diagram of the sturcture if the insulator Debye length is assumed to be 
much greater than the thickness of the insulator. (c) Band diagram of the structure 
if the insulator Debye length is assumed to be smaller than the thickness of the 
insulator. 

the two metal contacts; the voltage is either applied or is due to 
differences in the two involved metal/insulator potential barrier 
heights. Assuming an insulator which forms space-charge regions 
that are narrow compared to the insulator thickness, the initial 
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potential diagram is shown dotted in Fig. 4a and the final steady-state 
situation is shown as the solid lines. The only electric field required in 
the bulk of the insulator under steady-state conditions is the ohmic 
field associated with any current injected from the electrodes, typically 
a negligible field. 

Now suppose that the voltage is reduced as shown at t = 0 in Fig. 
4b. Initially, the same space-charge that exists under applied voltage 

METAL INSULATOR 

(a) 

METAL 

Fig. 4-(a) Band diagram of a metal/insulator/metal structure, whose insulator 
Debye length is less than the insulator thickness, depicting the immediate and 
equilibrium band structure in response to the application of an external voltage. (b) 
Band diagram of the same structure depicting the time response of the bands after 
the applied voltage is reduced to zero. 
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will remain. After a time tl at elevated temperature, there will be a 
redistribution of charge as shown, the total amount of charge remaining 
fixed. Finally, if the temperature is further raised or after an additional 
time t2, carriers will be injected from one or both electrodes to bring 
the system to the equilibrium of Fig. 3c. 

The above argument for space-charge formation in insulators is an 
especially powerful one because it invokes well-known concepts. It 
simply applies the concepts of steady state, thermal equilibrium, and 
Fermi level to insulators and shows that the important features of 
space-charge layers in insulators can be described in terms of only one 
parameter, the work function or Fermi level position in the insulator 
at thermal equilibrium. (A more detailed discussion is available in 
the work of Simmons.6) With this as a starting point, it is possible to 
discuss a wide variety of charging phenomena in insulating thin films 
in an intuitively understandable way; and it should provide a basis 
for more quantitative analyses of a number of such effects. In the 
following section, the concepts discussed here are applied to the 
silicon/SiOd AhOa/metal structure with emphasis on the space-charge 
region that builds up near the insulator/insulator interface during 
deposition of the AhOa. 

IV. THE Si02! AI 20 a SYSTEM MODEL 

The concepts of the preceding section can be applied to the double
layer structure shown in Fig. 2 in which the first layer is Si02 and the 
second is AhOa. Previous experimental results have indicated that the 
density of trap levels in thermally grown Si0 2 is sufficiently low that the 
Debye length should be much larger than the typical Si02 film thickness 
of a few thousand Angstroms. 7 This supports the assumption made 
previously that no finite charge density exists in the bulk of the Si02 

film. On the other hand, the trap density in deposited AhOa films has 
been found to be much larger so that it is reasonable to assume that 
the Debye length is small compared to the AhOa film thicknesses that 
we will consider. 8- 1o The Al20 a films of interest are deposited at 900°C. 
The double-insulator system is assumed to be at an elevated tempera
ture during the deposition for a sufficient length of time that thermal 
equilibrium will be established, and under these conditions, the poten
tial diagram versus position will be like that shown in Fig. 5. Since the 
Fermi level in the silicon must coincide with that in the AhOa at 
thermal equilibrium, a contact potential difference will exist that will 
result in (i) an electric field in the Si0 2, (ii) a space-charge region in 
the Si at the Si/Si0 2 interface, (iii) a space-charge region in the AhOa 
at the Si0 2/ AhOa interface, and (iv) zero electric field in the bulk of 
the AhOa film. In addition, depending on the AhOa surface boundary 
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Fig. 5-Band diagram of the Ah03/Si02/Si system in equilibrium at high tem
perature. 

conditions, a space-charge region may exist near the outer Ah03 
surface. 

The important parameter in the SiOd Ah03 system is the total 
potential difference Ve that must build up to align the Fermi levels 
in the silicon and the Ah03. This potential difference will be made up 
of a potential Veo across the Si02 and the drops in potential due to the 
band-bending regions in the silicon near the SijSi02 interface and in the 
Ah03 near the SiOd Ah03 interface, A Vs and A V A, respectively (see 
Fig. 5). That is, 

Ve = Veo + AVs + AVA, 

where the system equilibrium condition is given by 

(EG/2) + CPB + Ve - CPii - CPA = o. 

(8a) 

(8b) 

If it is assumed that the work function argument applies to the 
SiOd Ah03 system, then 

Ve = x~ + CPA - x; - (E G/2), (9) 

where x~ is the Ah03 electron affinity at the deposition temperature; 
CPA is the energy separation between the Al20 3 conduction band and 
the Fermi level in the bulk; x; is the silicon electron affinity; and the 
E a/2 term represents the assumption that the silicon is intrinsic at the 
elevated temperature of interest. 
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Since the electric field in the Si02 is determined directly by the 
potential drop Vco and the oxide thickness Tox, the net charge present 
in the narrow space-charge region at the Ali03/Si0 2 interface is 
given by 

(10) 

Over a wide range of Si02 thickness, L1 Vs and L1 V A will be negligible 
compared to Vc. For example, even assuming that Vco corresponds to 
an electric field in the Si02 of 106 volts/ cm, L1 Vs is less than 0.1 volt at 
900°C. * Thus, eq. (10) can be approximated by 

Qii = (fox/T ox) Vc ~ fox/T ox { x~ + ¢A - x; - (Ea/2)}. (11) 

From eqs. (10) and (11), several interesting properties of Qii are 
apparent. First, its magnitude is relatively independent of the quality 
and reproducibility of the Ah03 provided only that ¢A + x~ is repro
ducible and L1 V A is negligible. The band-bending L1 V A may vary 
markedly from sample to sample depending on the trap density, but as 
long as the space-charge region is relatively narrow so that L1 V A is small 
compared to V c, this variation will have no significant effect. Second, 
the magnitude of Qii varies inversely with the Si0 2 thickness Tox and 
is independent of Ah03 thickness TA • This effect provides a straight
forward and unique prediction of the model that can easily be tested 
experimentally. 

If the system is now cooled to room temperature, the conductivity 
of the Ah03 will be reduced to the point where the space-charge 
regions will not move or change under a pplica tion of an electric field 
for long periods of time, and these regions will be effectively frozen in. 
We must consider the two possible space-charge regions in the A120 3, 
one at the AI20 3/Si02 interface, and the other at the outer surface. 
The contributions Vii and Vm, respectively, of these charge layers to 
the flatband voltage is given by (see eq. 2) 

Vii = - rTox+TA [ Tox + TA - x] pii(X)dx = _ TA Qii 
JT~ y y 

(12) 

and 

1TOX+TA [Tox + TA - x] 
V m = - pm (x)dx, 

Tox fA 
(13) 

where Pii(X) and Pm(X) are the net charge densities at the Si02/ Ah03 
and Ah03/metal interfaces, respectively. In the limit where Pii(X) is 
located in a plane at the interface, an effective interface charge density 
Qii is defined by eq. (12). The term V m is a constant independent 

* This can be shown from an integration of Poisson's equation and using the fact 
that at 900°C the intrinsic charge density in the silicon is approximately 1019 em-a. 
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of Tax and T A if pm (x) is a function only of the distance (Tax + T A - X) 

between the charge and the metal. Combining (2), (11), (12), and (13) 
gives for the flatband voltage of the double-insulator structure 

and, for completeness, the flatband voltage of the single insulator 
Ceq. (3)J is 

(15) 

where ¢s = ¢B + ¢f' 

v. EXPERIMENTAL RESULTS 

5.1 Preliminary remarks 

Dual-dielectric MIS capacitor structures with various insulator 
thicknesses were fabricated on n- and p-type silicon substrates with 
resistivities of approximately 10 ohm-cm. For the n-type substrates 
both (100) and (111) orientations were investigated. The Si02 was 
thermally grown at 1100°C using oxygen bubbled through 80°C water 
as the ambient. The Ah03 was vapor deposited on the Si0 2 at 900°C 
from an AlCh source. The details of the Al20 3 deposition process are 
given in Ref. 1. The insulator thicknesses, Tax and T A, were varied by 
varying the growth and deposition times of the Si02 and the Ah03, 
respectively. 

The deposition of the AhOa duplicated exactly the procedure used 
for fabricating integrated circuits. As such, a layer of Si02 was also 
deposited on top of the Ab03, which in the fabrication of integrated 
circuits is used as an etch mask for defining patterns in the Ah03 
film. For our samples, this layer of Si02 was chemically stripped prior 
to any measurements or any further processing. 

One feature that may be important in this study is the method of 
formation of the metal electrodes. Depending on the deposition 
technique used, the samples may be heated for a sufficient time during 
the metal deposition to form a space-charge region at the Ah03/metal 
interface. However, if this induced space charge is reproducible and 
constant from sample to sample and is spatially constrained to a region 
very near the interface, it will only influence the flatband voltage via 
the constant voltage term V m in (14). Experimentally, we shall 
attempt to assure the reproducibility of this possible space-charge 
effect by measuring the MIS structures at room temperature with a 
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mercury electrodeY Several samples were also investigated with 
thermally evaporated titanium-aluminum electrodes. 

Initially, we attempted to vary the Ah03 thickness by etching in 
discrete steps rather than by varying the deposition time. This ap
proach was abandoned because of nonuniform etching of the A120 3 • 

In Fig. 6, scanning electron micrographs are given of the surface of 
the AhOa as deposited and after etching a portion of the layer. lVIicro
scopic thickness variations (±500 A) are evident after etching. Since 
these variations lead to significant errors in the flatband voltage 
measurements, the AhOa thickness was varied only by varying the 
growth time. 

Experimental data for each sample investigated were obtained by 
means of high-frequency capacitance-voltage (C-V) analysis.12 Such 
measurements, obtained using either the mercury probe electrode or 
thermally evaporated titanium-aluminum thin-film electrodes, enable 
one to obtain accurate measurements of the insulator thickness and 

AS DEPOSITED 
TA ~ 1750 A 

12 MIN ETCH-BACK 

TA ~ 500 A 

5 MIN ETCH-BACK 

TA ~ 1250A 

17 MIN ETCH-BACK 

TA~ 0 A 

Fig. 6-SEM photographs depicting the increasing roughness of the Ah03 surface 
as it is etched back using phosphoric acid. 
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the associated flatband voltage. Each data point reported is the average 
flatband voltage calculated from at least three measurements per
formed on each sample. The typical spread in measurements is 0.10 volt. 
When measurements are performed on the double-insulator (AhOa/ 
Si02) structure, a measurement of V FR(D.I.) Ceq. (14) ] is obtained. 
The normalized accumulation capacitance Cacc (farads/cm2), which 
is a measure of the insulator thicknesses, is given by 

Cacc(D.I.) = [ Tax + TA J-l. 
fax fA 

(16) 

When the AhOa is completely etched off and C-V analysis is con
ducted on the remaining single insulator (Si02), then measurements 
of V FR(S,I.) [see eq. (15) ] are obtained. The normalized accumulation 
capacitance in this case yields a measurement of Tax since 

Cacc(S.I.) = T
fax

. 
ax 

(17) 

By combining eqs. (16) and (17), accurate measurements of both T A 

and Tax are obtained. 
I t is possible to obtain independent quantitative values for Qss for 

each sample studied after the AhOa is etched off if the constant term 
(¢m.ax - ¢s) in eq. (14) is known. Measurement of (¢m.ax - ¢s) can be 
accomplished by Si02 etch-back experiments in which V FR(S,I.) is 
measured as the Si0 2 layer is successively thinned by etching in a 
dilute hydrofluoric acid solution. Typical data obtained with a mercury 
probe on four different samples are shown in Fig. 7. As expected, there 
is a linear relationship between V FR(S,I.) and Tax and an extrapolation 
of this relationship back to Tax = 0 indicates that 0.67 volt is the 
appropriate value of (¢m.ax - ¢s) for n-type, 10-ohm-cm Si and a 
mercury electrode. This value is in excellent agreement with previously 
determined values.1a The experiment also provides independent 
verification of the assumption that there is negligible space charge 
in the bulk of the Si02• 

Based upon the value of Qss for each sample, it is possible to charac
terize the flatband voltage shift due to the AhOa. Correcting for the 
Qss term and, additionally, subtracting the constant term (¢m.ax - ¢s) 
from eq. (14), a corrected differential flatband voltage Ll V FR can be 
defined as: 

Ll V FR = V FR(D.I.) - (¢m.ax - ¢s) + Qss [ Tax + TA] 
fax fA 

= (¢m.A + ¢ii - ¢m.ax) + Vc (::)( ~~) + Vm. (18) 
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Fig. 7-Plot of the Hg/SiOdSi flatband voltage for four wafers as a function of 
the Si0 2 thickness. Data obtained from Si02 etch-back experiments on lO-ohm-cm, 
n-type, (100), Si substrates. 

5.2 Results pertaining to Qu 

Experimental values of V FBCD.I.) for the dual-insulator structure 
are plotted in Fig. 8 as a function of the Ab03 thickness T A for a Si02 

thickness of ~ 1200 A on n-type, (100) substrates. These results were 
obtained with a mercury electrode. Although there is considerable 
scatter in the data, it is clear that V FBCD.I.) increases monotonically 
with increasing Ab03 thickness which is in agreement with eq. (14) if 
the sign of Vc is such that a net negative charge exists at the Si02/ Ab03 
interface. The experimental uncertainties in the V F B measurements 
are estimated to be ±0.05 volt. Correcting this data for Qss and sub
tracting CCPm,Qx - CPs), the results are replotted in Fig. 9. This refine
ment technique leads to a considerable reduction in the scatter in the 
data and demonstrates that ~ V FB is a linear function of the Ab03 
thickness TA , as predicted by eq. (18). The linear relationship also 
provides striking evidence that Qii, the negative charge at the Ab03/ 
Si02 interface, is constant from sample to sample for Ab03 thicknesses 
in the range of 500 A to 2500 A if the Si02 thickness is held constant. 
This is in agreement with the postulated model and provides experi
mental verification of the assumption that the Debye length in Ab03 
is small compared to the Ab03 thickness. Given that the Debye length 
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is small compared to 500 A at gOOoe, estimates of A V A assuming 
charge densities in excess of 1018 cm-3 indicate that A V A will be less 
than 0.1 volt and, thus, negligible as previously assumed. 

The data presented so far proves that Qii is negative and a constant 
for fixed Si02 thickness independent of A120 3 thickness. Another 
prediction of our model is that Qii is inversely proportional to the Si0 2 
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Fig. 9-Plot of the corrected differential flatband voltage as a function of the Ah03 
thickness for a constant Si02 thickness (Tox = 1200 A) on n-type, (100), Si substrates. 
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thickness Ceq. (11)]. That this is indeed the case is shown by the data 
presented in Figs. 10 and 11, which were obtained with a mercury 
probe and are for (100), n-type, silicon substrates. In Fig. 10, L1 V FE is 
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Fig. ll-Plot of the corrected differential Hatband voltage as a function of the ratio 
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ratio of AhOa thickness to Si0 2 thickness on n-type, (111), Si substrates. 

plotted versus Ab03 thickness for three different Si02 thicknesses. In 
each case, a linear relationship between ~ V FB and Ab03 thickness is 
obtained, and the increased slope obtained with smaller Si02 thick
nesses indicates that Qii does increase as the Si0 2 thickness is decreased. 
The data of Fig. 10 are replotted in Fig. 11 as a function of T A/ T ox, 
the ratio of Ab03 thickness to Si02 thickness. As expected from eq. 
(18), the ~ V FB versus TA/T ox relationship is accurately represented 
by a straight line over the TA/T ox range investigated (0.5 to 8), 
indicating that Qii is inversely proportional to the Si02 thickness. The 
slope of the straight line in Fig. 11 corresponds to aVe value of 0.88 
volt. * This value for V c was obtained in all the measurements on (100) 
substrates within ±0.1 volt. 

Similar measurements were also performed with (111) oriented, 
n-type substrates. The larger values of Qss inherent in the (111) 
orientation meant that the QS8 correction factor was much larger and, 
hence, the accuracy of the results was somewhat poorer. Results for 
(111) samples are given in Fig. 12, where A V FB is plotted as a function 
of the T A/Tox ratio. Again these data were obtained with a mercury 
probe. The straight line shown in Fig. 12 is a best fit to the data if 
the slope of the line is restricted to correspond to a Vc value of 0.88 volt. 
Considering the possible errors due to the QS8 correction, the straight
line fit of the data in Fig. 12 is good enough to conclude that the 
value of Qii is independent of the substrate orientation for the two 
orientations investigated, (100) and (Ill), and in complete agreement 
with the predictions of our model. 

* For 1000 A of Si0 2, a Vc value of 0.88 volt corresponds to a Qii value of 1.9 X 1011 
charges / cm2• 
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5.3 Results pertaining to Qss 

All of the experimental results presented so far have focused on 
Qii, the charge at the Ab03/Si02 interface. Some interesting facets 
of Qss, the charge at the Si02/Si interface, were also discovered during 
our study and are discussed in the following. As mentioned previously, 
a value of Qss was determined for all samples by measuring the flatband 
voltage V FB(S,I.) of the single-insulator structure after removing the 
Ab03 and then calculating Qss using the (¢m,ox - ¢s) value for the Hg/ 
Si02/Si system as determined in Fig. 7. A plot of V FB(S.I.) versus 
Tox, the Si02 thickness, for n-type, (100) substrates is given in Fig. 13. 
Previous results published in the literature have shown that for single
insulator (Si02/Si) structures, Qss is independent of the Si02 thickness.14 

If this were the case for our structures, we would expect to find a 
linear relationship between V FB(S.I.) and Tox with an intercept on the 
V FB (S.I.) axis equal to (¢m,ox - ¢s) = 0.67 volt. The results given 
in Fig. 13 indicate that this is not the case. Although the data could 
be interpreted as being consistent with a linear relationship, they are 
definitely not consistent with an intercept equal to 0.67 volt. The results 
are more consistent with the supposition that, to first order, V FB(S,I.) 
is independent of T ox. 

A more detailed study of Qss was pursued by preparing samples of 
various Si02 thicknesses (n-type, Si, (l00» and measuring V FB(S.I.) 
for each sample. Approximately 500 A of Ab03 was then deposited 
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Fig. 13-Plot of the Hg probe single-insulator flatband voltage after Ah03 deposi
tion and etch-off as a function of Si0 2 thickness for n-type, (100), Si substrates. 
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on all samples, the Ah03 was removed by etching, and V FB(S.l.) was 
remeasured. Finally, for each of the samples, the Si02 was etched 
back in steps, and V FB(S.l.) was determined as a function of Si0 2 

thickness. The results are given in Fig. 14. 
Prior to Ah03 deposition, the results are consistent with the samples 

having a constant value of Qss independent of Tox, that is, a linear 
relationship exists between V FB (S.l.) and Tox with an intercept equal 
to 0.67 volt. However, after Ah03 deposition, V FB(S.l.) is seen to be 
essentially independent of T ox. Furthermore, if the Si02 is now etched 
back, a linear relationship between V FB(S.l.) and Si02 thickness is 
obtained with an intercept equal to 0.67 volt. In Fig. 14, results of the 
etch-back study are given for only one representative sample, since the 
results obtained on the other samples were similar. 

The conclusion which follows from the results given in Fig. 14 
is that before the deposition of the Ah03, Qss is independent of T ox, 

whereas after deposition, the value of Q88 is changed, the amount of 
change depending upon T ox, the Si02 thickness. This effect is further 
illustrated by the results given in Fig. 15, where Q"8 after Ah03 deposi
tion and etch-off is plotted versus I/Tox for both (100) and (111), 
n-type substrates. For both orientations, the data are seen to fall 
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Fig. 14-Plot of the single-insulator Hatband voltage before and after A1 20 a 
deposition and after final Si02 etch-back, indicating the change in Q88 induced by the 
A120 a deposition on n-type, (100), Si substrates. 
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Fig. IS-Plot of Q88 after AhOa deposition as a function of the Si02 thickness for 
n-type, (100) and (Ill), Si substrates. 

along a straight line consistent with the equation 

Qss = (vofox/T ox) + Qsso. (19) 

The slopes of the two lines in Fig. 15 were taken to be equal to each 
other (vo = 0.38 volt), and it is observed that an excellent fit to the 
two sets of data is obtained with the one Vo value. The background 
charge densities, Qsso, or equivalently the values of Qss for large values 
of T ox are approximately 1.0 X 1011 and 1.0 X 1010 charges/ cm2 for 
<111) and (100) orientations, respectively. For the (100) orientation, 
Qsso is negligible. 

The results presented so far have established that for the double
insulator structure, both Qii and Qss depend on Tox and that these 
dependencies can be written as: 

Qii = fox Vc/Tox 

QS8 - Qsso = foxvo/T ox, 
(20) 

where Vc;"'-J 0.88 volt and Vo ~ 0.38 volt. Thus, the single-insulator 
Hatband voltage after Ab03 deposition can be written as 
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which is consistent with the after-deposition results presented in 
Fig. 14. Considering QS80 as a fundamental property of the SiOdSi 
interface, which is not affected by the Al20 3 deposition, it follows that 
the contribution to the single-insulator flatband voltage, BV FB, induced 
by the portion of Qss that is influenced by the Ah03 deposition is 

BV FB = Vo. (22) 

The voltage drop across the Si02 during the deposition of the Ah03 
is V e, and if this is considered as a stress voltage applied to the Si02jSi 
interface, then 

Ve(stress)jBV FB = a = 2.3. (23) 

It is interesting to note that this result is in good agreement with 
previously published results relating stress voltage to saturated 
flatband voltage shift for SiOdSi structures. Specifically, in Ref. 15 
it was observed that the ratio of stress voltage to saturated Hatband 
voltage shift was given by: 

J 3.33 at 350°C 
a = 12.38 at 450°C. 

(24) 

One implication of the relationship given in eq. 20 for Qss is that for 
(100) substrates, where QS80 is negligible, the flatband voltage of a 
double-insulator structure will be insensitive to a Si0 2 thickness 
variation. Thus, in IVIOSFET integrated circuits with a (100) substrate, 
where a thick Si02 layer is used to inhibit parasitic inversion, the 
contribution of the Qss term to the parasitic inversion voltage will be 
independent of Si0 2 thickness. 

5.4 Results pertaining to p-type substrates 

The substrate conductivity type does not appear directly in the 
model that has been proposed for the magnitude and origin of Qii, and 
all of the results presented so far have been for n-type substrates. Since 
the silicon substrate will be intrinsic at 900°C, the deposition tempera
ture of the Ah03, the voltage drop across the oxide Ve will be the same 
for both n-type and p-type substrates and, thus, Qii at 900°C should 
also be independent of the conductivity type of the substrate. If, 
during the cool down after Al20 3 deposition, Qii is frozen in at a tem
perature at which the silicon is still intrinsic, then the value of Qii 
measured at room temperature should not depend on whether the 
substrate is n-type or p-type. Results obtained with (100), p-type 
substrates are presented below. 

A plot for p-type substrates similar to that of Fig. 11 (for n-type 
substrates) is given in Fig. 16, where .1 V FB is plotted as a function of 
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Fig. 16-Plot of the corrected differential flatband voltage as a function of the ratio 
of Ah03 thickness to Si02 thickness on p-type, (100), Si substrates. The solid line is 
taken from Fig. 11. 

TA/T ox. The solid line corresponds to the linear fit of the data of 
Fig. 11. Although there is general agreement between the results for 
the n-type substrate (solid line) and this experimental data, the large 
amount of scatter in the data must be recognized. Figure 17 is a plot 
of the single-insulator Hatband voltage for the p-type substrates after 
the Ab03 etch-off. The (¢m.ox - ¢s) value was obtained by etch-back 
experiments, as outlined previously. Here again, a large amount of 
scatter in the data is evident. 

The variations in the above sets of data are not random scatter, 
but are due to some mechanism unique to the p-type substrates. In 
Fig. 18, the single-insulator Hatband voltage V FB(S.I.) is plotted as a 
function of TA for n-type samples after Ab03 etch-off, and it is clear 
that no dependence on T A or T ox is evident. In Fig. 19, similar data 
are plotted for the p-type samples and it is evident that in this case 
there is a dependence on T A, but again, no dependence on T ox. For 
both cases, the conclusions regarding T ox are obtained from the points 
in Figs. 18 and 19, which explicitly denote points of constant Tox. 
Although a detailed explanation of this effect cannot be given, it 
is felt that this effect is due to the fact that boron-doped p-type 
wafers were used in the experiment. It is known that boron will greatly 
out-diffuse from a silicon substrate into an Si02 layer in the presence 
of a high-temperature, hydrogen-containing ambient. 16 •17 Additionally, 
the introduction of this impurity into the Si02 may enhance its conduc-
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tivity at high temperature. The net result will be a drop in the effective 
stress voltage Vc across the Si0 2 1ayer as a function of Ab03 deposition 
time * and a lowering of the Q ii and Qss term. 

This hypothesis is consistent with the following data. In Fig. 20, 
distributions of the potential drop Vo due to the induced QS8 term (see 
eqs. 19 and 20) are plotted for both the n-type and p-type (100) 
samples. It is observed that 

(i) Lower voltage drops for p-type samples occur than observed 
for the n-type samples (the lower values are correlated to the 
thicker A120 3 deposition). 

(ii) No zero (or negative) voltage drops occur. 
(iii) The upper range of Vo for the p-type samples (the lowest Si02 

conductivity region), are bounded by the Vo values observed 
for the n-type samples. 

One final point can also be made to support the hypothesis. It is 
possible to calculate Qii values from the experimental data (via eqs. 
10 and 18) if an intercept voltage value (i.e., T A = 0) is assumed; and 
from the experimental data for n-type samples, an intercept value of 

* In all experiments, the Al 20 3 deposition rate was a constant (75 A/min.). 
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n-type and p-type, (100), Si substrates after Ab03 deposition and etch-off. 

1.25 volts was obtained. Additionally, Qss values for each sample may be 
calculated. If the above hypothesis concerning a lowering of Vc is 
correct, then the ratio of Qii and Qss (given in eqs. 20 and 23) should 
be independent of the absolute magnitude of Vc for {IOO) substrates 
in which Qsso is negligible. That is, 

and (25) 
Qii/Qss = a. 

Figure 21 is a plot of Qii vs Qss for both the n-type and p-type samples. 
It is noted that a linear relationship exists for both sets of data with a 

the same for both (a ~ 2.5). The several data points that deviate 
from the linear relation are associated with very small Q88 and Qii 
values, and the deviation is most likely due to small errors in flatband 
voltage measurements. 

5.5 Results pertaining to observed potential jumps 

Extrapolating the linear relationships in Figs. 9, 11, and 12 to 
TA = 0 gives a value: 

(c/>m,A + c/>ii - c/>m,ox) + V m ~ ~c/> + V m ~ 1.25 volts. (26) 
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While the experiments cannot determine the relative contributions of 
V m and f1¢ to the intercept value, it is worth pointing out the conse
quences of the two limiting possibilities. First, if V m is zero, then f1¢ 

is non-zero and equal to 1.25 volts. This implies that the work function 
model for barrier heights must be incorrect (otherwise f1¢ = 0). The 
second limiting possibility is that f1¢ = 0 and V m is non-zero. In this 
case, there must be a 1.25-volt band-bending effect at the outer Ah03 
interface. Although we have not been able to perform an experiment 
that unequivocally separates the contributions of f1¢ and V m to the 
intercept value, it is worthwhile to consider some additional items 
of relevant experimental information. 

First, it was stated previously that all samples are fabricated with a 
deposited Si02 layer on top of the Ah03 layer. An etch-back experi
ment was conducted on the deposited Si02 (using n-type Si, (100), 
T ox = 600 A, T A = 500 A) and the Hatband voltage was measured as a 
function of the equivalent Si02 thickness Teq: 

(27) 

where TSi02 equals the deposited Si02 thickness. The results of this 

cT 
W 
u 
<I: 
LL. 
a: 
UJ 
I
Z 

UJ 
(:J 
c:: 
<i 
J: 
U 

1012r----------------------~---....., 

-/ 
• 

• 

• 

• 

~~~ . ./. 
. ~p 

• = n - TYPE <100> 

~= p - TYPE <100> 

2~--~~--~-~~~~~--~---~-~-~~. 1010 4 6 8 1011 2 

CHARGE AT Si02-Si INTERFACE, 0ss(OUANTITY/cm2j 

Fig. 21-Plot of Q;;, the charge at the AhOa/Si02 interface, versus Qss, the charge 
at the Si02/Si interface, for both n-type and p-type, (100), Si substrates. 
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experiment are plotted in Fig. 22. It is evident from the linearity of the 
Hatband voltage that no significant charge density is present in the 
bulk of this deposited Si02. It is interesting to note that a positive 
potential jump of 1.22 volts in the Hatband voltage is associated with 
the outer AbOa/Si02 deposited interface (using the Hg metal electrode). 
This value is close to the 1.25-volt potential jump associated with the 
inner AbOa/Si02 (thermal) interface. 

It is straightforward to show that the potential jump observed in 
Fig. 22 is given by 

(28) 

if it is assumed that there is no change in the charge distribution in the 
AbOa film when the deposited Si02 is completely removed, and that 
the barrier height of metal-to-deposited-Si02 is the same as the barrier 
height of metal-to-thermal-Si02. With these assumptions, the con
clusion follows that V m ~ 0 and fl¢ ~ 1.25 volts. 

Second, measurements were also made with titanium-aluminum 
evaporated electrodes. The double-insulator Hatband voltage for this 
metallization system is plotted in Fig. 23 as a function of the AbOa 
thickness TA for a constant Si02 thickness Tox ~ 1200 A (n-type Si, 
(100». It is evident that the scatter in the data is much greater than 
that found for the Hg metallization. Attempts to refine the data proved 
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fruitless due to the additional scatter observed in the single-insulator 
(Si0 2) flatband voltages (see Fig. 24). 

Some general comments can be made, however, concerning these 
data. The scatter in the double-insulator flatband voltage (Fig. 23) 
decreases with descreasing Ah03 thickness, indicating that an un
controlled charging effect must take place in the Ah03 during the 
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metal deposition. Extrapolating to TA = 0 implies 

0.40 V ~ [V FB(D.I.) I TA=O] ~ 0.60 volt. (29) 

The distribution in the single-insulator Hatband voltage V FB(S.I.) can 
be characterized by (see Fig. 24) 

Average V FB(S.I.) = - 0.48 volt 
Standard Deviation V FB(S.I.) = 0.10 volt. 

Thus, a positive potential jump of 0.98 ± 0.14 volt can be associated 
with the addition of the Al20 3 layer. This value is in reasonable agree
ment with the previous potential shift results found for the Hg metalli
zation system. 

Third, in Ref. 4, the authors find on a V FB(D.I.) versus TA plot for 
various Tox values an intercept value of -0.80 volt at TA = o. This 
result, obtained on 2-ohm-cm, p-type, (100), Si substrates, is inter
preted by the authors to be the expected metal-to-silicon work function 
difference when using aluminum electrodes, a conclusion that may not 
be valid since Qss measurements after Ab03 deposition were not 
reported. We shall now show that the results in Ref. 4 are in excellent 
agreement with our results by taking the results we have obtained 
with a Hg electrode and converting them to the results we would have 
obtained if we had used an Al electrode. 

To explicitly denote the use of a Hg electrode, eq. (26) is rewritten as 

and from our measurements on p-type material 

CPHg, ox - CPs = 0.08 V. 

(30) 

(31) 

The difference in barrier heights between Hg and Al on the type of 
Ab03 studied in this paper has been reported by Nigh1S and is given by 

CPHg,A - CPAl,A = 1.7 V. (32) 

Combining eqs. (30), (31), and (32) yields 

(cpAl, A + CPii - CPs) + V m = - 0.37 V. (33) 

The intercept value for T A = 0 predicted by (14) is given by 

Intercept (TA = 0) = (cpAl,A + CPii - CPs) + Vm - QssTox. (34) 
fox 

Using the values vo = 0.38 volt and Qsso = 0 for (100) material in eq. 
(20), and combining eqs. (20), (33), and (34) yields 

Intercept (TA = 0) = - 0.75 V. 
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Thus, our corresponding intercept value for Al electrodes is almost 
identical to that reported in Ref. 4, and. it strongly implies that the 
electrical properties of the different Ab03/Si02 films which determine 
the flatband voltage in MOS structures are identical. More specifically, 
it indicates that the Qss dependence on T ox reported in this paper is 
also true for the structures studied in Ref. 4, and that the value of 
~~ + V m in both cases is the same. 

VI. SUMMARY AND DISCUSSION 

By varying the thicknesses of both insulators in a silicon/SiOd 
Ab03/mercury MOS structure and accurately measuring changes in 
flatband voltage, we have established that a net negative space charge 
exists near the SiOd Ab03 interface, which is spatially constrained to a 
region much less than 500 A thick. The magnitude of this negative 
charge varies inversely with Si02 thickness and is the same for both 
(100) and (111) oriented n-type and p-type silicon substrates. These 
results are consistent with a model for space-charge formation based 
on work by Simmons on metal-insulator-metal structures. 6 At the 
elevated temperature (900°C) of Al 20 3 deposition, the Ah03 is a 
good enough conductor that thermal equilibrium is established. 
Since the electrostatic screening or Debye length in Alz03 at this 
temperature is small compared to the Ab03 thickness of interest, the 
bulk of the A120 3 is at zero electric field, and a Fermi level can be 
defined that must align with the Fermi level in the silicon substrate. 
This requires that a fixed "contact potential", experimentally found 
to be 0.88 volt, must exist across the Si02 at 900°C. The electric field 
associated with this potential generates a net negative space-charge 
layer near the Si02/ Ab03 interface. When the structure is cooled to 
room temperature, the conductivity of the Ab03 reduces to a negligible 
value and the space charge is frozen in. The net negative charge can 
thus be considered to be the charge on the Si0 2 capacitance associated 
with the constant 0.88 volt contact potential. 

When the double-insulator flatband voltage is corrected for the 
independently measured SijSi02 interface charge Qss and the barrier 
heights of the single-insulator system, a corrected differential flatband 
voltage is generated. Extrapolation of this function to zero Ab03, 
thickness reveals a potential jump of approximately 1.25 volts when 
using a mercury electrode. Similarly, a potential jump of approxi
mately 1.0 volt is found with titanium-aluminum electrodes. The inter
facial barrier energies that contribute to these jumps are shown not 
to be derivable from a simple work function argument. 

The large amount of scatter observed in the data where titanium
aluminum electrodes are used, compared to the very consistent data 
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obtained with the mercury electrode, implies that thermal evaporation 
of a metal onto an Alz03 film introduces significant variation in the 
ftatband voltage. This effect is most probably due to a charging 
phenomena that occurs during the transient heating of the sample 
during evaporation. 

Measurements of Q88 made on samples before and after Al20 3 
deposition revealed that during this deposition, the value of QS8 was 
changed. After Ah03 deposition, it was found that Q88 could be written 
as the sum of two terms. One term was a constant background charge 
density that was independent of Si02 thickness and that had the 
values of 1.0 X 1011 and 1.0 X 1010 charges/cm2 for (Ill) and (100) 
oriented substrates, respectively. The other term was orientation 
independent and inversely proportional to the Si02 thickness, indi
cating that it is derivable from a constant contact potential that was 
experimentally determined to be 0.38 volt. Thus, the electric field that 
exists in the Si02 during the deposition of the Ah03 determines not 
only Q ii but also a portion of Q88' 

The proposed charging model was also found to be correct for p-type 
substrates except that an additional effect was uncovered in that the 
effective contact potential decreased with increasing Alz03 thickness. 
This effect may be due to boron penetration of the thermal Si02 layer 
and an associated increased electrical conductivity at high temperature. 

According to the model presented, a contact potential exists across 
the Si02 at the Alz03 deposition temperature, which results in an 
electric field in a direction to drive mobile positive ions away from the 
Si/Si02 interface. This means that if some mechanism exists for either 
removing or immobilizing these positive ions when they reach the 
Si02/ Alz03 interface, the Alz03 deposition is expected to stabilize 
the MIS system against ionic drifts. Such a mechanism may indeed 
be present since Hel, a by-product of the Alz03 formation reaction, is 
known to be an excellent sodium getter. While the importance of this 
electric field in accounting for the stability of the SiOd Alz03 system 
is not presently clear, it seems reasonable to assume that net positive 
charge at the insulator-insulator interface would make it much more 
difficult to remove or immobilize positive ions in the Si02 during 
second insulator deposition, since the positive ions would then tend 
to drift to the Si/Si02 interface. 

Since the presented model for space-charge layer formation at 
insulator-insulator interfaces is relatively insensitive to the nature of 
the deposited insulator, provided the assumption of thermal equi
librium at the deposition temperature is correct, considerations 
similar to those given in this paper for the SiOd Ah03 system should 
apply to other Si0 2/deposited insulator systems. 
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A 1-watt IMPATT diode amplifier has been developed for short-haul 
FM radio relay applications in the 6-GHz common-carrier band. The 
amplifier is used in the new TM-2 system and as part of a retrofit package 
to upgrade the performance of the existing TM-1 system. Amplification is 
provided by a single silicon IMPATT diode which is used in an injection
locked mode. A finned heat sink provides IMPATT diode cooling by 
natural air convection within the radio bay. The diode is expected to have 
a mean life greater than 10 years, and it can be replaced in the field without 
the use of special tools or equipment. This microwave-integrated amplifier 
contains the rf samplers and detectors necessary to monitor both input 
and output rf power levels. The input power monitor also provides an 
input to a power-supply squelch circuit that removes dc power from the 
IMPATT diode if the rf input signal level becomes too low for adequate 
performance. The influence of the system requirements upon the amplifier 
design is described, and data on system performance are presented. 

I. INTRODUCTION 

The IMPATT diode has been developed to the point where several 
watts of cw power can be generated reliably in the microwave fre
quency range. This negative-resistance device used in conjunction with 
a circulator comprises a reflection amplifier suitable as the power 
amplifier in a microwave communications transmitter. In the present 
application, the diode operates in the injection-locked oscillator mode. 
It was demonstrated by Tatsuguchi, Dietrich, and Swan that such an 
amplifier using a single silicon IMPATT diode could meet the basic 
performance objectives of a typical short-haul radio-relay system. l 

The amplifier operates with a nominal gain of 20 dB and a noise figure 
of less than 52 dB. The corresponding system performance is better 
than 22 dBrncO per hop for a 1200-circuit message load. The amplifier's 
system performance is found to be dominated by thermal noise, with 
intermodulation distortion negligible. The dc-to-rf efficiency is 4 
percent. 
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To be useful to the system, the amplifier package also contains rf 
samplers and detectors necessary to monitor the rf input and output 
power levels. The input power-monitor circuit furnishes the input 
information for a power-supply squelch circuit. If the input rf level 
drops low enough so that the locking bandwidth of the amplifier 
becomes small, the power supply is turned off, preventing the IMP ATT 

oscillator from free-running out of the assigned frequency range. The 
dc power is automatically restored when the input rf level returns to 
normal. The amplifier also contains harmonic suppression filters to 
prevent radiation of spurious tones. The amplifier has standard 
WR-159 waveguide input and output ports with VSWRs of less than 
1.07 across the band. 

To be suitable for manufacture, an economical design was evolved 
based on the microwave integrated-circuit techniques successfully 
employed in the TH-3 system by Dietrich.2 The construction consists of 
a thin-film strip-line pattern on a suspended alumina substrate, which 
is mounted in a die-cast aluminum housing, connected to a coaxial 
section containing the IMP ATT diode, the tuning mechanism, and a 
second harmonic filter. In addition, a wide range of tunability had to be 
incorporated to accommodate a wide range of diode parameters, both 
for initial manufacture and field replacement of the diode. Both 
frequency and output power adjustments are provided. All these 
features have been successfully accomplished in the amplifier designed 
for manufacture. 

II. AMPLIFIER DESIGN 

The amplifier design is based upon the use of a single silicon IMPATT 

diode used in a phase-locked oscillator mode. This mode of operation, 
described below, is chosen since it permits the relatively high gain of 
approximately 20 dB to be obtained stably in a single stage. 

2.1 Operating point selection 

The choice of an operating point for the amplifier follows the method 
described by Tatsuguchi et al. l Figure 1 illustrates typical contours 
of constant system thermal noise performance, in dBrncO per hop, 
plotted on coordinates of amplifier output power versus amplifier 
noise figure. The system performance contours shown apply to the 
highest frequency message slot of one particular short-haul FM system 
configuration that is operated at a 1200-message circuit loading. The 
contours assume that a + 10-dBm level signal is available to drive 
the amplifier. This input power level is the minimum value anticipated 
in one of the systems in which this amplifier will be used. The options 
open to the amplifier circuit designer are illustrated on the same figure 
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Fig. I-Contours of constant system thermal-noise performance, in dBrncO per 
hop, plotted on coordinates of amplifier output power versus amplifier noise figure. A 
particular amplifier's performance is indicated by the solid lines at several IMPATT 
diode dc currents. Typical performance obtained on a large sample of amplifiers when 
adjusted for I-watt output power is shown. 

by the superimposed contours of IMPATT amplifier performance at 
various dc power levels. For a given dc power level, the operating 
point is a function of the microwave circuit impedance seen by the 
IMPATT device. The shape of these curves is due to the fact that an 
IMP A TT device becomes noisier as the rf level is increased. From such 
curves, it becomes apparent that operation at the maximum possible 
rf power will result in poor system performance. Optimum performance 
occurs at neither maximum rf power nor minimum noise. It is instruc
tive to note that the optimum performance, i.e., lowest dBrncO 
number, occurs with the largest dc power. The use of high dc powers 
must be tempered by reliability considerations, which generally dictate 
the use of lower powers. 

For this amplifier application, the trade-off between rf output power, 
FM noise, and diode reliability formed the basis of the decision to 
operate at I-watt rf output with 24 watts of dc supplied to the IMPATT 

diode. At this operating point, the diode junction temperature is 
expected to be approximately 200°C in convection-cooled radio bays 
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operating in room ambient temperature up to 50°C. This operating 
point is expected to provide a mean diode life greater than 10 years. 
This reliability is the result of careful device processing combined with 
low thermal impedances both within the diode package and between 
the diode case and ambient air. 

2.2 Oscillator mode 

The IMPATT diode is operated in an injection-locked (phase-locked) 
oscillator mode, shown schematically in Fig. 2. The IMPATT device and 
its associated resonating circuitry terminate one port of a circulator 
in a negative impedance. In the absence of an input signal, a free
running oscillation at frequency fo occurs, which is coupled to the 
output through the circulator. When an appropriate input signal is 
added, the oscillation frequency locks to the input over a band of 
frequencies 2Af, approximately symmetrical about fo. The free
running frequency is adjusted to the desired operating channel. Figure 
2 illustrates the power and phase variations that occur across the 
locking frequency band. The power levels and oscillator external 
Q (Qex) are chosen such that Af is at least 10 times the highest modu
lating frequency. In this way, only the center linear portion of the 
phase variation curve is used, and phase distortion is minimized. 

Since the rf output power is fixed from other considerations (system 
performance and fading margin) and the rf input power available in 

IN 

Po 10-----

IPOS C 

------2·,1,f------
LOCKING RANGE 

f 0 

FREQUENCY 
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fo ~ PLOCK 
~f=- --

Q ex POSC 

Fig. 2-Simplified representation of an injection-locked oscillator. 
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the systems in which the amplifier is to be used is limited, the designer 
is required to provide a circuit of the lowest possible Q. For this 
amplifier, a low Q circuit is provided by the use of a diode circuit 
consisting of a coaxial one-quarter-wavelength transformer plus a 
short section of coaxial line between the transformer and the diode 
that series-tunes the IMPATT diode's capacitance. With this resonator, 
the circuit Q is sufficiently low that Qex is largely determined by the 
IMPATT device itself. 

2.3 IMPATT characteristics 

The IMPATT diode used for this amplifier is an n-type silicon diode 
whose junction side is bonded to a metallized diamond within a copper 
and ceramic microwave pill package.3 The large-signal rf charac
teristics of the diodes are measured near 6 G Hz using the method 
described by Decker et a1.4 The diode wafer admittance is measured on 
all devices at 24-watts dc, with an rf voltage corresponding to the 
diode's operating point in the amplifier. Wafer susceptances are speci
fied at 19.0 millimhos. Tuning is provided to accommodate a range of 
diode susceptances. The wafer Q, defined as the magnitude of the ratio 
of wafer susceptance to wafer conductance, has values that vary by a 
factor of 2.5 to 1. 

2.4 Circuit description 

The requirements of practical radio-relay equipment dictate an 
amplifier circuit somewhat more complex than the simple circulator, 
diode, and resonator shown in Fig. 2. A more complete schematic of the 
amplifier is shown in Fig. 3. The circuit contains three circulators, 
of which the center circulator corresponds to the one shown in Fig. 2. 
Additional circulators with one port resistively terminated are used 
at both the amplifier's input and output to provide isolation from the 
effects of external reflections and to provide input and output return 
losses better than 30 dB. 

The dc power for the IMPATT diode from the current-regulated 
power supply is coupled to the oscillator port of the center circulator 
through a resistor and a band-stop filter tuned to 6 GHz. The resistor 
is used here to provide the high resistive impedance at low frequencies 
that has been shown by Brackett to prevent spurious oscillations.5 

The dc power is isolated from the remaining rf circuit by a series 
capacitor in the main rf circuit adjacent to the band-stop bias filter. 

On the output side of the center circulator, a small sample of the 
amplified output is picked off by a nondirectional coupling probe. 
This sample of the rf output is detected using a point contact diode 
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to provide a dc current for the radio bay meter panel and alarm 
functions. 

On the input side of the center circulator, a sample of the input 
power is taken and detected for bay panel metering and to operate a 
power-supply squelch circuit. The power-supply squelch operates to 
remove dc power from the IMPATT diode if the rf input to the amplifier 
falls below a prescribed level. This effectively prevents free-running 
oscillations by the IMPATT oscillator, whose free-running frequency is 
not sufficiently stabilized to prevent interchannel interference. A 
directional coupler is used for the input coupler to provide a good 
match on the circulator common-arm and to provide, via its 20-dB 
directivity, discrimination against leakage of power generated by the 
IMP ATT diode. 

A band-stop filter is used on the oscillator port of the center circu
lator to prevent second-harmonic energy generated by the IMPATT 

from interfering with the operation of the monitor circuits. A low-pass 
filter is located at the amplifier's output to ensure that all harmonics 
are suppressed. 

III. CIRCUIT FABRICATION AND TUNING 

Most of the circuit is fabricated using the microwave integrated
circuit techniques developed for use in the TH-3 system.2 Film inte-
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grated circuits (FICS) consisting of patterns defined photolithographi
cally on O.024-inch (O.61-mm) thick unglazed alumina are used as a 
suspended-substrate strip-line transmission-line medium. The strip
line circuitry, as well as the amplifier's waveguide input and output, 
are contained in a die-cast aluminum housing, shown in the amplifier 
photograph, Fig. 4. The IMPATT diode and its resonator are contained 
in a short section of coaxial line that projects perpendicularly from the 
housing and is topped by the large, finned heat sink used for IMPATT 

diode cooling. Adjustments are provided on the coaxial section for 
field tuning of frequency and power output. 

3.1 Strip-line circuits 

The layout of the circuitry within the die-cast housing is illustrated 
in Fig. 5 and shown pictorially in Fig. 6. The ceramic substrates are 
located within a narrow channel to avoid multimoding problems. The 
complex substrate shape is fabricated by an automated laser-cutting 

Fig. 4-Complete amplifier. 
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Fig. 5-Arrangement of waveguide and strip-line circuit within die-cast housing. 

technique. 6 The amplifier's full-height waveguide input is shown on 
the right. A thin-film probe transition from the input waveguide to 
the suspended-substrate strip-line couples the input signal to the first 
of the three circulators. This circulator, with one port terminated in a 
thin-film resistor, provides the necessary input isolation. The circulator 
and termination designs follow closely those described by Dietrich,2 
modified to improve the temperature stability. A directional coupler, 
located between the input and center circulators, diverts approximately 
10 percent of the input rf signal to the input detector diode to generate 
the de needed for bay panel metering and power-supply squelch 
functions. 

The remaining input signal is coupled to the oscillator port of the 
center circulator. The series capacitor, which dc-isolates this port, is 
realized by a narrow, meandering, interdigital gap in the thin-film 
conductor. The 6-GHz band-stop bias filter is realized by a high-
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characteristic-impedance line along which, at quarter-wavelength 
intervals, are placed two quarter-wavelength-long open-circuited stubs 
of lower characteristic impedance. The bias circuit is completed by 
a 47-ohm power resistor that is clamped to the aluminum housing to 
maximize heat transfer. Several ferrite beads are placed on the leads 
of this resistor to provide additional stability against bias circuit 
oscillations. 

An open-circuited stub, one-haH-wavelength long at 6 GHz, which 
connects to the oscillator terminal through a thin-film resistor, is 
used to control the circuit impedance at 3 GHz (the subharmonic of 
the 6-GHz band) without adding significant loss or mismatch at 6 
G Hz. 7 This was found to be necessary to eliminate frequency jumps 
during tuning, which occur when the subharmonic impedance is too 
high. 

At the end of the thin-film pattern (coaxial oscillator terminal), 
connection is made, using a bellows, to the center conductor of the 
coaxial line through the top haH of the aluminum housing. 

The amplified rf signal reflected from the IMPATT diode down the 
coaxial line is coupled by the center circulator to the output circulator. 
A small portion of the amplified output is capacitively coupled to the 
output detector circuit to provide the direct current for bay panel 
metering and alarm functions. This nondirectional coupling is approxi
mately 28 dB. The amplified signal passes through the output circu
lator, used as an isolator, and is coupled into a reduced-height wave
guide. Within the reduced-height waveguide, a waffle-iron filterS 
having a low-pass characteristic strips the amplified signal of any 
residual harmonic energy either generated by the IMPATT or contained 
in the input signal. Following the waffle-iron filter, a four-step transi
tion couples the reduced-height waveguide to standard-height WR-159 
waveguide. 

3.2 Coaxial circuit 

A cross section of the coaxial line is shown in Fig. 7. At the bottom, 
just above the bellows contact to the thin-film circuit, is located a 
three-resonator, radial-line, band-stop filter 9 that is tuned to the 
12-GHz second harmonic of the 6-GHz common-carrier band. The 
filter prevents the second harmonic energy generated by the IMPATT 

diode from causing anomalous monitor circuit operation. Appropriate 
steps in the coaxial center conductor in the filter section provide a 
good match across the 6-GHz band. The center conductor tip is 
spring-loaded against the IMPATT diode, which is held centered at the 
upper end of the coaxial section. A large, finned heat sink contacting 
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Fig. 7-Cross section of the coaxial line section. 

the back of the diode provides diode cooling and eliminates the need 
for forced convection. 

IMPATT tuning is accomplished by a movable quarter-wavelength 
coaxial transformer and four capacitive power-adjustment screws 
located radially around the coaxial line at a point nominally an eighth
wavelength from the end of the transformer. The position of the trans
former relative to the IMPATT diode primarily determines the frequency 
of operation. The transformer is moved using a large-diameter knurled 
ring, shown just below the heat sink in Fig. 4. This ring is mechanically 
coupled to the transformer through two slots in the coaxial line. These 
slots are completely covered by the transformer and ring to prevent 
rf leakage. 

The transformer section characteristic impedance is designed to 
produce 1 watt at the amplifier's output port (nearly 1 dB more at the 
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I 
diode's location) with the highest Q diode and with the power adjust-
ment screws adjusted flush with the inner diameter of the coaxial 
outer conductor. For all other diodes that would give greater than 1 
watt with this transformer, capacitance is added using the four power
adjustment tuning screws. When transformed through the coaxial 
circuit to the diode position, the added capacitance appears as an 
increase in the resistive part of the circuit impedance. Increased circuit 
resistance reduces the generated power down to the I-watt level, where 
optimum system performance occurs. This power adjustment is made 
on diodes having low values of Q; the increase in circuit Q because of 
the screw insertion is counterbalanced by the lower diode Q, so that 
the overall external Q is not increased by this power adjustment when 
compared with high Q diodes requiring little screw penetration. 

3.3 Circuit tuning 

The circuitry within the die-cast housing is initially tuned in the 
factory with a 7-mm precision connector located in place of the IMPATT 

diode and heat sink. During the initial tuning, the transformer is not 
installed and the power-adjustment screws are adjusted flush with the 
coaxial-line inner surface. Tuning of all ports of the three circulators 
to better than 30-dB return loss is accomplished across the 8-percent 
common-carrier band. The three ports of the center circulator are 
tuned over a slightly wider band to include the extremities of the 
locking bandwidth of amplifiers operated on the end channels of the 
common-carrier band. 

By matching the diode port of the center circulator to achieve this. 
broadband high return loss, the oscillator circuit Q is essentially 
determined by that of the quarter-wavelength transformer and the 
short section of 50-ohm line from the transformer to the diode. In 
practice, Qex of the oscillator is determined largely by the IMPATT diode 
wafer. The transformer position and power adjustment screws permit 
adjustment in the field of any amplifier to 1 watt on any channel as
signment with any diode. The IMPATT diode is replaceable in the field by 
simply removing the heat sink and inserting a new diode in the coaxial 
line against the spring-loaded center conductor. 

The amplifier cost has been kept low by the use of thin-film inte
gration, casting technology, and laser cutting of ceramic substrates. 

IV. AMPLIFIER PERFORMANCE 

Ten models were constructed in the laboratory, and informatio~ 
was conveyed to the Western Electric Company, who is 'now'produc
ing the unit. Measurements of intermodulation distortion indicate 
that the distortion products are small and that system performance 
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can be accurately predicted on the basis of power output and FM 

thermal noise with no correction for distortion. Performance shown 
in Fig. 1 can be readily obtained using the silicon IMPATT diodes in 
manufacture. A detailed evaluation has been completed of a TM-2 

system in Ohio that includes eight factory-built IMPATT amplifiers. 
Satisfactory operation was noted over a IO-month test period. 

v. SUMMARY 

A I-watt, 6-GHz silicon IMPATT diode amplifier has been developed 
and is being manufactured for use as the transmitter power amplifier 
in short-haul radio systems. The amplifier operates with a nominal 
gain of 20 dB and a noise figure of less than 52 dB. The noise contribu
tion of the IMPATT amplifier is substantially thermal noise, with inter
modulation distortion negligible. The dc-to-rf efficiency is 4 percent. 
The amplifier includes integrated input and output rf power monitors 
and harmonic suppression circuitry. 

The input monitor circuit furnishes the input information for the 
power-supply squelch circuit. If the input rf level drops low enough 
so that the locking bandwidth becomes small, the power supply is 
turned off, preventing the oscillator from free-running out of the 
assigned frequency range. The dc power is automatically restored when 
the input level returns to normal. 

The low cost and reliability of this Il\IPATT amplifier make it an 
attractive rf output device in short-haul applications. 
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Line-of-sight paths are important as VHF radio channels. In a mobile 
radio system, for example, the landscape determines the communication 
possibilities in a complicated way. This paper analyzes a simple model of 
rough terrain to relate statistical terrain properties to line-of-sight paths. 
The model is constructed from conical hills, all the same height, distributed 
at random over the surface of a spherical earth. 

The parameters of the model are the earth's radius a, the density u 
of hills, and the grade g of the hills. Although a simpler planar model is 
obtained by letting a -+ 00, a finite spherical earth is needed for most 
questions. A:ssuming that a base station is located at the peak of a hill, 
the most interesting line-of-sight paths are those from a typical hilltop. 
A large number of statistics of these paths are then derived, usually as 
simple functions of a, u, and g. These include properties of paths to other 
peaks, to the horizon, and to random points on the ground. 

I. INTRODUCTION 

Very-high frequency radio propagation is often said to resemble 
optical propagation. A line-of-sight path provides a good radio channel; 
a path blocked by the terrain does not. With the aid of a topographic 
map, one can determine whether a path QIQ2 is a line-of-sight path. 
Essentially, one must plot the ground elevation profile along the path 
to see whether the ground intersects the straight line segment QIQ2. 
This calculation must include the effect of the earth's curvature. 
Atmospheric refraction is also accounted for by changing the earth's 
radius to a fictitious value. 

Having done the calculation for one path Ql, Q2, we learn little about 
other paths. The region covered by a transmitter at Ql, i.e., the set of 
points Q visible from Ql, would be found by plotting ground elevation 
profiles along views from Ql at every possible azimuth angle. This 
region might represent the coverage of a TV station or of a base station 
in a mobile telephone system. 

This paper analyzes a statistical model to give insight into the way 
coverage regions depend on properties of the terrain. The parameters 
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of the model are the radius a of the earth, a density (J' of mountains 
(or hills) per unit area, and a grade (slope) g of these mountains. 
Many statistical properties of terrain and paths are then derived as 
functions of a, (J', g. These properties are means, or in some cases 
distribution functions, of the random variables that appear in the 
INDEX. Line-of-sight paths from a typical mountain peak receive special 
attention because a peak is the most likely site for a base station. 
Although the exact formulas contain integrals with unwieldy trigono
metric integrands, most of these formulas may be replaced by simple 
expressions, to a very good approximation. The expected area visible 
from a peak and the expected number of peaks visible from a random 
point on the ground are more complicated quantities, leading to 
integrals that are evaluated numerically. 

INDEX 

Altitude-eqs. (6), (7), (8), Table I, Fig. 6. 
Area blocking-eqs. (12), (17) to (20), (23), Table III. 

Visible-eq. (43), Table VII. 
Within horizon-eq. (35). 

N umber of peaks visible: 
From a peak-eq. (26), Table V. 
From a point on the ground-eq. (37). 

Range from a peak: 
To furthest visible peak-eq. (31), Table V. 
To horizon-eqs. (33), (34), Table VI. 
To random visible peak-eqs. (25) to (29), Table IV. 
To random visible point on ground-eqs. (39) to (42), 

Fig. 15. 
Slope-Table II. 

The earth's radius a is an important parameter of the model. 
Although a simpler planar model is obtained by letting a ---+ 00, the 
planar model is inadequate for most statistics of interest. 

With a and (J' fixed, the terrain becomes rougher as g increases. As a 
rule, the model predicts more long line-of-sight paths and larger 
expected visible area for rougher terrains. However, in mobile radio 
these long paths are more important as sources of interference than 
as useful channels. 

II. THE MODEL 

The terrain model will use conical mountains distributed at random 
in a Poisson pattern over the surface of the earth. Begin with a sphere 
of radius a miles (a may be the true radius of the earth, or something 
larger if atmospheric refraction effects are to be taken into account). 
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Place points at random on the surface S of this sphere using a Poisson 
process with density (J" points per square mile. Each Poisson point will 
represent a mountain peak, and so the sphere of radius a will be called 
the peak sphere. 

Each Poisson point P will be associated with a mountain-shaped 
subset M(P) of the interior of the peak sphere. The subsets ]Jf(P 1) , 

M(P 2), ••• for the various peaks will overlap. Take the union of all 
the subsets M (P) to represent the earth. 

The simplest shape for M (P) is the cone consisting of all rays from 
P making angle <e with the inward-pointing normal to S. This cone 
has to be truncated to keep it from extending beyond the peak sphere 
in the direction antipodal to P. The surface of the cone is tangent to 
an inner sphere, concentric with the peak sphere and having radius 
a sin O. Take M (P) to be the inner sphere plus the part of the cone 
that lies between P and the inner sphere. Figure 1 shows M(P) 
shaded. 

With this construction, the terrain consists of conical mountains, 
all having the same height and the same grade g = cot e. There may 
also be flat places where the earth's surface coincides with the inner 
sphere. A flat spot occurs at any point that lies further than (!11' - e) 
radians away from all Poisson points. Flat spots are rare, except when 
the parameters (J", e are chosen to produce widely separated mountains 
having very gentle slope. 

Fig. 1-Construction of M (P). 
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Figure 2 is an elevation contour map for a typical random terrain. 
Some unrealistic features of the model are evident. The conically 
shaped mountains have circular contour lines. The peaks are distrib
uted chaotically instead of being arranged in rows (mountain ranges). 
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Fig. 2-Contour map. The symbols· 8 + 6 - 4: 2 denote altitude levels ordered 
from the peak sphere downward. 
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Figure 3 is a plane cross section through the earth in the same model. 
This figure is more interesting for the present problem because the 
existence of a clear line-of-sight path between two points depends only 
on the shape of such a profile. Note that the elevation curve in Fig. 3 is 
composed of convex arcs (hyperbolas) that join in the valleys between 
mountains. But, at least, the maxima in Fig. 3 have different heights. 
Figure 4 shows random terrain as seen from one of the peaks looking 
out toward the horizon. The nearest and furthest peaks shown have 
ranges of 6 and 150 miles. The parameters were picked to match a 
particular portion of the Alps for which a panoramic photograph was 
also available. The deficiencies of the model are less evident in this 
figure. The curvature of the earth makes it less obvious that all peaks 
have the same height. 

In real terrain, it is sometimes possible to see part of a mountain 
even though the mountain's peak is obscured from view. That cannot 
happen in this model, as will now be proved. Suppose that the view 
of a peak PI is blocked when the eye is at E. Then the line segment 
P IE contains a blocking point B 2 belonging to another mountain 
M(P2). Now consider any other point P of M(P I ). P must lie on some 
line segment Pd, where I belongs to the inner sphere. Figure 5 shows 
the triangle EPd. The segments EP and Bd cross at some point B 
in the triangle. B belongs to the convex set M(P2) because B2 and I 
belong. Then B is a point of M(P2) blocking the view of P. 

By making a -+00, one obtains a planar model of random topography. 
The peak sphere S becomes a peak plane. At a point Q, the land surface 
lies below the peak plane a distance 

y = g Min /I Pi - Q II, (1) 
i 

where the minimization is over all Poisson points Pi. Replacing S by a 
plane simplifies the analysis considerably but, unfortunately, it 
produces a much less realistic model. If Fig. 4 has been drawn for a 
planar model, every peak Pi would have been ·visible. Even worse, 
Section VIII shows that the expected area visible from a peak would 
be infinite. For that reason, the extra complication of a spherical earth 
is really necessary for some questions about line-of-sight paths. 

III. PARAMETER ESTIMATION 

The two parameters (J', g = cot (j can be chosen to fit the model to 
terrain measurements. One might estimate the density (J' by counting 
peaks. A difficulty is that one must then decide how big a hill must be 
to be counted. Surely every bump on the landscape ought not to count 
as a peak. This decision is avoided by using statistical properties of 
the point Q lying below a random point q on the peak sphere. The 
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Fig. 5-M(P 2) blocks all of M(Pl) from view if it blocks Pl. 

altitude and slope of the terrain at Q are two useful random variables. 
Both depend on the angle 'Y = < POQ from Q to the nearest peak P 
(see Fig. 1). Since a circular cap of angle 'Yo on the peak sphere has 
area 21ra2(1 - cos 'Yo), the distribution function for <POQ can be 
written immediately, 

Prob ('Y ~ 'Yo) = 1- exp[- 21ra2u(1- cos 'Yo)]. (2) 

There is no natural sea level in the model, and so it will be con
venient to specify the altitude at Q by giving the depth y, measured 
from S down to the land. If 'Y ~ !1r - e, then ground level coincides 
with the inner sphere, i.e., 

y = a (1 - sin e), 

For smaller angles 'Y, 

y = a[l - sin e/sin ('Y + e)J, 

'Y ~ !1r - e. (3) 

(4) 

as is clear from Fig. 1. These formulas, together with the distribution 
(2) for 'Y, determine the depth distribution, 

Prob {y ~ a[l - sin e/sin ('Y + e)J} 
= 1 - exp [ -21ra2u(1 - cos 'Y)J, 0 ~ 'Y < !1r - e (5) 

Prob {y ~ a(l - sin e)} = 1. 

Although one can easily tabulate the distribution function for y by 
substituting numerical values of 'Y into (5), the distribution function 
is easier to visualize in a limiting case. Since a is a large radius, let 
a -HQ in (5). As one might expect, the formulas tend toward the 
depth distribution function in the planar model, 

Prob {y ~ Y} = 1 - exp [-U1r(Y /g)2]. (6) 

In this limit, u and g enter the distribution only via a single length 
parameter u-!g, which is an index of altitude variability. Thus, altitude 
distribution data alone cannot be expected to supply good estimates of 
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both 9 and (J'. Some simpler statistics are the median, 

Median (y) = (7I'-Qoge 2g2 / (J')! 
= 0.4697 (J'-!g, 

and the moments, 
E(yk) = r(l + !k)(g2/Ir(J')k/2. 

Particularly, the mean is 

y = E(y) = !(J'-!g 

and the standard deviation is 

(7) 

[Var (y)J! = [(71.-1 - 2-2)g2/(J'J! = 0.2683(J'-!g. (8) 

It is also possible to obtain (6) as an exact result for a spherical 
model in which the shape of the mountains is only approximately 
conical. That entails a new choice of the set M (P) in Fig. 1. Define the 
new shape so that the depth becomes 

y = 2ga sin !'Y, (9) 

where again 'Y is the angle to the peak. At P, M (P) comes to a point 
approximating a cone of slope g. At the antipode to P, M(P) has depth 
2ga; then this model requires 9 < !. Now the depth distribution for all 
'Y is again given by (5) but with the left-hand side replaced by 
Prob {y ~ 2ga sin !'Y}. But that is (6), exactly. 

For many values of 9 and (J', the planar approximation (6) to the 
depth distribution (5) is very good. For example, Table I compares 
the planar approximation with some distributions having a = 3959 mi, 
the earth's radius. In the table, the cones have grades 9 = 0.05, 0.1, 
and 0.2 and the density (J' is adjusted to fix the standard deviation in 
(8) at 528 ft (0.1 mi). Table I gives percentiles of the distribution as 

Table I - Altitude percentiles (in feet) 

Spherical Model Planar 

g= 0.05 0.1 0.2 u/g2 = 6.831 u= 0.0171 0.0683 0.2732 

0.1% -1899 -1964 -1980 -1986 
1% -1378 -1421 -1432 -1436 

10% -691 -712 -717 -719 
25% -315 -327 -331 -332 
50% 70 63 62 61 
75% 402 400 399 399 
90% 642 641 640 640 
99% 896 896 896 896 
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altitudes measured upward from a common level, corresponding to the 
depth fj in (7). 

Figure 6 is an altitude distribution for northern New Jersey. It 
was obtained from a topographic map by reading altitudes at 52 
points, 10 km apart in a rectangular grid covering latitudes 40 0 30' 
to 41 0 and longitudes west of 740

• The altitudes ranged from 0 to 
1100 ft. Data for parts of New Jersey further south were not used; the 
topography of New Jersey is too variable for both north and south 
to be well represented by a single simple model. The planar model 
fits the observed points well, except at low altitudes. As an alternative, 
use the spherical model with a = 3959 mi. By taking g = 0.011, one 
obtains a maximum depth (3) near 1100 ft, so that low altitudes can 
be regarded as occurring on the inner sphere. Then (J remains as a 
parameter to adjust for a good fit. 

The parameter g = cot 0 is the grade at mountain peaks. At the 
random point Q, at angle')' away from a peak in Fig. 1, the grade is 
smaller because the normal to the conical surface makes an angle 
!1r - 0 - ')' with the vertical direction QQ. Thus, the grade at Q is 

g' = lcot (0 + ')') = (g - tan ,),)/(1 + g tan ')'), if 0 + ')' ~ !1r 
o otherwise. 

1.0....--------------------......""..0-, 

0.9 

0.8 

0.7 

>- 0.6 
..... 
::i 

~ 0.5 
al 
o 
ex: 
a.. 0.4 

0.3 

0.2 

0.1 

o 

o 

o~~-~-~--~-~--~~-~--~~~--~ o 100 200 300 400 

ALTITUDE IN FEET ABOVE SEA LEVEL 

Fig. 6-Altitude distribution for northern New Jersey. Curve is for planar model 
with peak sphere at 1130-ft altitude and [Var (y) Ji = 400 ft. 
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Table " - Percentiles of Gig 

g= small 0.1 0.2 0.5 

0% -1.0000 -1.0000 -1.0000 -1.0000 
1% -0.9995 -0.9995 -0.9995 -0.9994 

10% -0.9510 -0.9506 -0.9492 -0.9399 
25% -0.7070 -0.7053 -0.7001 -0.6667 
50% 0 0 0 0 
75% 0.7070 0.7053 0.7001 0.6667 
90% 0.9510 0.9506 0.9492 0.9399 
99% 0.9995 0.9995 0.9995 0.9994 

100% 1.0000 1.0000 1.0000 1.0000 

The grade 0 occurs on the inner sphere. This result, together with (2), 
determines the distribution of the grade g'. In most cases, the grade g' 
has high probability of being close to g; one should not expect this 
distribution to fit observed grade data well. 

At q, one might move in a random direction and ask for the slope G 
along the random path through Q. The slope, which depends on the 
angle cp between the path direction and the uphill direction, lies in the 
range - g' ~ G ~ g'. With some simple geometry, one finds 

G = g' cos cp/(l + g'2 sin2 cp)i. 

By using the known distribution for g' and assuming a fiat distribution 
for cp, one can obtain a distribution function for G. This would be the 
distribution of the slopes G se~n in. cross sections like Fig. 3. A simple 
distribution i~ obtained only in the planar model limit, for which 
g~ = g ~'e'oto identically: 

Prob {G ~ tan x} = 1 - 11"-1 arc cos {sin x/cos o}. 

Table II gives the slope distribution in the planar model for several 
values of g. In the limit of. sm.all g, the distribution function for G/g 
tends to'l -11"-1 arc cos G/g. ' . 

IV. BLOCKING REGIONS 

Suppose two points Ql, Q2 are given, representing the positions of 
two aIltennas. In general, Ql, Q2 can lie anywhere' ~bove. the inner 
sphere. A clear line-of-sight path exists betweell Q~ and Q2 :is long as 
the straight-line segment QIQ2 does not intersect any of the sets 
M(P i}. The blocking region for Ql, Q2 is the (open) set of points P on S 
such that QIQ2 i~tersects M(P). T~e area o{ the blocking region enters 
into the probability that a line-of-sight path QIQ2 exists. The advantage 
of the conical mountains M (P) is that blocking regions assume simple 
shapes. 
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The simplest blocking region is one for a pair of points Ql, Q2 both 
on S. If the line QIQ2 intersects the inner sphere, all 1J1 (P i) block the 
path. The blocking region then consists of the entire sphere S. If 
QIQ2 misses the inner sphere, then blocking occurs at a point Q on the 
path QIQ2 if a peak Pi lies too close to Q. If the depth of Q is y, then 
(4) gives the angle 'Y to peaks P such that Q lies on the surface of 
M (P). Then blocking occurs at Q if a circular cap of angular radius 
'Y contains a peak. The pole of this cap is the radial projection q of Q 
onto S. The blocking region for the path QIQ2 is the union of all the 
blocking caps for points Q on the path. These caps are largest midway 
between Ql and Q2, shrinking to points at Ql and Q2. Then the blocking 
region is lens-shaped, as in Fig. 7. 

Figure 7 shows two arcs K, K' which form the boundary of the 
blocking region. The argument that follows shows that K, K' are 
actually arcs of circles. Figure 8 is another view of the peak sphere 
projected directly along the line Ql, Q2. Two planes, 7r and 7r', can be 
drawn through Ql, Q2 and tangent to the inner sphere, say at C and C'. 
These planes project to lines in Fig. 8. The planes 7r and 7r' intersect S 
in two circles, centered at C and C' and both passing through Ql and 
Q2. Since M (P) is the convex hull of P and the inner sphere, 7r is a 
supporting plane of M (P) as long as P lies below 7r (i.e., in the half
space containing the inner sphere). Then M(P) does not block the 
path QIQ2 if P lies below 7r, or below 7r'. The part of S lying above 
both 7r and 7r' appears shaded in Fig. 8. Suppose P belongs to the shaded 
region. Project the triangle C'PC, a subset of M(P), onto the plane 
of Fig. 8. The path QIQ2 projects to a point lying inside this projected 
triangle. Then QIQ2, a chord of S, must intersect the triangle C'PC. 

Fig. 7-Blocking region for two points Ql, Q2 on the peak sphere. 
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INNER 
SPHERE 

Fig. 8-Another view of the blocking region. 

The point of intersection is a point of M (P), which blocks the path. 
Thus, the shaded region, bounded by arcs of the circles S n 7r, S n 7r', 
is the blocking region for QIQ2. 

The area A (Ql, Q2) of the blocking region in Fig. 7 will now be 
expressed as a function of the angle 2p = L Q10Q2. Project the centers 
C, C'in Fig. 8 radially out to c, c' on S. Figure 9 is another view of S 
showing c, c' as the poles of two circular caps bounded by S n 7r and 
S n 7r'. The angular radius of both caps is !7r - 0, as is clear from 
Fig. 8. The chord QIQ2 subtends some angle 2a = L QICQ2 at c. Using 
the spherical sine law in the right triangle Ql, c, !(Ql + Q2), one may 
determine a from 

sin a = sin plcos (). (10) 

The cap with pole c has area 27ra2(1 - sin 0) and the sector included 
within angle 2a has area 

As = 2aa2(1 - sin 0). 

Also, the triangle QICQ2 has area 

AT = (2a + 2{3 - 7r)a2
, 

where {3 = QIQ2C1 = Q2QIC. The sine law may be applied to triangle 
QICQ2 to find {3 

sin {3 = cos () sin 2alsin 2p. (11) 
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Fig. 9-Angles used in deriving area A of blocking region. 

The difference As - AT is !A (Ql, Q2). Thus, 

A (Ql, Q2) = a2(27r - 4(3 - 4a sin e), (12) 

where (10), (11) give a, (3. 
The blocking region is more complicated if Ql, Q2 or both are not 

on S. As in Fig. 7, each point Q on QlQ2 is blocked by peaks lying in a 
circular cap of radius I' given by (4); the blocking region is the union 
of these caps. Let Q;, Q; be the points where the extended line QlQ2 
meets S. The blocking region for QlQ2 is a subset of the blocking 
region for Q;Q;. As shown in Fig. 10, the blocking region consists of 
the caps for blocking at Ql and Q2 plus the part of the blocking region 
for Q;Q; that lies between these caps. The centers of the two end caps 
are the points ql, q2 obtained by projecting Ql, Q2 radially onto S. 

The two end caps have a special role in the blocking. Normally, 
Ql, Q2 are known to lie above ground, and so the two end caps are 
known to contain no peaks. If the ground levels below ql, q2 are known, 
then peaks PI, P 2 must exist somewhere at the appropriate angles 1'1, 
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1'2 away from ql, q2. In Fig. 10, QI, Q2 are assumed to be at ground 
level; then PI, P 2lie on the boundaries of the end caps. The mountains 
M(P I), M(P2) on which QI, Q2lie can themselves block the path QIQ2. 
Thus, in Fig. 10, P 2 blocks the path because it lies in the blocking 
region. To compute the conditional blocking probability for the 
configuration in Fig. 10, one must know both the area of the part of 
the blocking region that lies outside the end caps and also angles </,1, </'2 
that limit where PI, P 2 can lie to cause blocking. In the applications 
that follow, it will suffice to let QI lie at a peak QI = PI and let Q2 be a 
point at ground level. That simplifies Fig. 10 to Fig. 11. 

Let Z2 = L P IOq2, the angular distance along the arc P l q2. The depth 
at Q2 determines the angle 1'2 of the end cap. The sides of the spherical 
triangle P 1q2C are now known, and so its angles {3 = L q2P 1C, 
S 2 = L q2CP I, 71' - </'2 = L P Iq2C are determined. One finds 

t I _ 11 - cos (Z2 - 1'2) + g sin (Z2 - 1'2) ) ~ 
an "2 </'2 - g sin (Z2 + 1'2) - 1 + cos (Z2 + 1'2) 

sin {3 = sin </'2 cos (0 + 1'2) / cos 0 

sin S2 = sin </'2 sin z2/cos 0. 

(13) 

(14) 

(15) 

The blocking area is twice the area of the half of the blocking region 
above the line PIQ; in Fig. 11. That half can be obtained as a sum of 
two parts. One part is a sector of angle 71' - </'2 from the end cap; its 
area is (71' - </'2) (1 - cos 'Y2)a2. The other part is obtained by removing 

c' 
o 

Fig. lo-Blocking region for points Ql, Q2 which are not peaks. 
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Q,= P, 

o 
Fig. ll-Blocking region for Ql = P, a peak, Q2 not a peak. 

the triangle PIQ2C of area «(3 + r2 - CP2)a2 from a sector centered at c. 
The sector has area t2(1 - sin O)a2. These areas may be combined to 
express the area of the blocking region in the form 

A (Ql, Q2) = Ao + A 2, 

where 
(16) 

and 
Ao = (2cp2 cos /'2 - 2(3 - 2t2 sin O)a2• (17) 

A 2 is the area of the end cap and A 0 is the area of the remainder of the 
blocking region. 
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Although the blocking area A (QI, Q2) for the general situation of 
Fig. 9 will not be needed, it can be obtained in the form 

A(QI, Q2) = A(Q;, Q2) + A(QI, Q;) - A(Q;, Q;). (18) 

Note that formulas like (16) and (17) give A (Q;, Q2), A (QI, Q;) while 
(10), (11), and (12) give A(Q;, Q;). Likewise, with a change of sub
scripts, (13) gives CPI as well as CP2. 

These formulas can now be used to obtain the path probability 
P(QI, Q2), the conditional probability that a clear line-of-sight path 
exists between given points QI, Q2. When QI, Q2 are on S, as in Fig. 7, 
P(QI, Q2) is just the probability that the shaded region of area A (QI, Q2) 
contains no peaks. Then 

(19) 

with A(QI, Q2) given by (12). 
The situation in Fig. 11 is more complicated. QI = PI, a peak, and 

Q2 is supposed to lie on the ground. Then the cap of area A2 is known 
to be empty. Two conditions must hold if the entire blocking region 
is to be empty. One is that the peak P 2 of the mountain on which Q2 
lies causes no blocking. Since P 2 is equally likely to be anywhere on 
the boundary of the cap around Q2, there is probability 1 - CP2/7r that 
P 2 does not block the path. The second condition is that the remainder 
of area A 0 of the blocking region is empty. Then 

(20) 

where (13) and (17) give CP2 and Ao. Formula (20) applies as long as 
1'2 < Z2. It is also possible to have 1'2 = Z2. In that case, Q2 lies on the 
mountain M(P1); the path in question runs from the peak QI = PI 
to Q2 along the surface of the cone M(P 1). Whether or not such a path 
is to be considered blocked is a matter of definition. Here M (PI) is 
regarded as an open set so that the path is not blocked. As 1'2 ~ Z2, 
one finds CP2 ~ 0 and Ao ~ 0 so that P(QI, Q2) ~ 1, i.e., (20) con
tinues to give the correct probability in the limit. 

Another limiting situation, 1'2 ~ 0, illustrates an important distinc
tion between Figs. 11 and 7. In the limit A 2 ~ 0 and A 0 becomes the 
area of a lens-shaped region, such as shown in Fig. 7. Then the ex
ponential factor in (20) becomes the path probability (19) for the 
two peaks QI( =P1), and lim Q2. However, (20) contains an extra 
factor (1 - CP2/7r) which approaches !, not 1. This disagreement 
between (19) and (20) is explained as follows. From a point Q2 near a 
peak P 2, one can look over a 180-degree view; the mountain M(P2) 

blocks the other 180 degrees. Then the factor! in (20) is needed to 
account for possible blocking by M(P2). But exactly at the peak 
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Q2 = P 2, the mountain 1\,£ (P2) no longer interferes in any direction. 
Then no factor! is needed in (19). The discontinuity in P(Q1, Q2) as 
Q2 ~ P 2 could be avoided by assuming that the antenna location Q2 
lies at some known positive height h above ground. 

v. PATHS BETWEEN PEAKS 

The simplest blocking regions were for paths Q1Q2 with both end 
points on mountain peaks. The path probability P(Q1, Q2) in (19) can 
now be used to derive some interesting properties of peak-to-peak 
paths. In this section, Q1 will be a given peak Pl. Q2 will be another 
peak selected at random. An element of area dA (Q2) on the peak 
sphere S has probability adA (Q2) of containing a peak Q2. Then 
ap(Q1, Q2)dA (Q2) is the probability that the element contains a peak 
Q2 which is visible from Q1. 

Let d(Q1, Q2) denote great circle distance between Q1 and Q2. Let 
:Z;k (d) denote the random variable which is the sum 

:Z;k(d) = L d(Q1, Pi)k (21) 
i 

of kth powers of distances from Q1 to all other visible peaks Pi lying 
within distance d[d(Q1, Pi) ~ d]. The element dA (Q2) contributes a 
term d(Q1, Q2)k to :Z;k(d) with probability ap(Q1, Q2)dA (Q2). Thus, the 
expected value of :Z;k(d) is 

where the integral extends over all points Q2 in the cap d(Q1, Q2) ~ d. 
Another random variable :Z;k is a sum like (21) extended over all 
visible peaks, at any distance from Q1. The mean E(:Z;k) is an integral 
(22) over the entire sphere. Evaluating (22) will give the mean number 

Table III - Blocking area A(Ql! Q2) in square miles, as given by 
exact and approximate formulas (12) and (23) with 

range d(Qb Q2) = 100 miles 

Grade g Exact Approximate 

0.01263 7887.7 3333.1 
0.02 2430.9 2104.9 
0.05 857.6 842.0 
0.1 423.2 421.0 
0.2 210.2 210.5 
0.5 84.1 84.2 
1.0 42.0 42.1 
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of visible peaks EC~o) and other information about the distances to 
visible peaks. That could be done numerically, using (10), (11), (12), 
and (19). However, the approximation that follows simplifies the 
evaluation. 

The approximation is one which holds when a is so large that angles 
2p between visible peaks can be considered small. The planar model 
has A(Ql, Q2) = 0 and P(Ql, Q2) = 1, which is too rough to make 
sense in (22). Instead, the first nonzero term in a series for A (Ql, Q2) 
in powers of p will be used. Expansion of the exact formulas (10), (11), 
and (12) is laborious but straightforward: 

a = p(I + g2)!jg + p3(1 + g2)ij(6g3) + 0(p5) 

f3 = !7r - pjg - (2g2 + I)p3j(6g3) + 0(p5) 

A(Ql, Q2) = a2(2p)3j(6g) + 0(p5). 

= r3 j (6ga) + ... , 
where r = 2ap is the great circle distance d(Ql, Q2). 

For a simpler, more intuitive, derivation, one may find the size of 
the circle about a typical point q along the path Ql, Q2 in Fig. 7. If z is 
the great circle distance from Ql to q, then the ground level below q 
lies at depth y satisfying 

(a - y) cos (z - !r)ja = a cos !rja 

or 
y = z(r - z)j(2a) + .... 

The radius a"( of the circle about q is approximately yjg, and the 
blocking area is approximately 

as before. 

A (Ql, Q2) = for a"(dz 

for z(r - z)dzj (2ag) 

A(Ql, Q2) = r3j(6ga) + ... , (23) 

From the form of the series used in deriving (23), one may predict 
that the rate of convergence is determined by the ratio pjg. Table III 
shows that (23) does give a better approximation for large g than for 
small. In Table III, a = 3959 mi; a large range, 100 mi, was used for 
a severe test of the approximation. At grades g smaller than 0.01263, 
a 100-mi path between peaks is blocked by the inner sphere. The small 
pjg condition is another way of requiring that the path QIQ2 clears 
the inner sphere by a safe margin. 
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Now use the approximation (23) for A(Ql, Q2) in (19) to evaluate 
the integral (22) for the expectation [~k (d) J: 

(24) 

where 
D = (6ag/o-)i. 

The integral in (24) may be expressed in terms of the incomplete 
gamma function, 

E[~k(d)J = (27ru/3)Dk+2{r[(k + 2)/3J - reek + 2)/3J, (d/D)3}, 

or the x2 distribution function, 

where 
x2 = 2(d/D)3 

and the number of degrees of freedom is 

v = 2(k + 2)/3. 

Although the approximation (23) becomes poor at long ranges, the 
integrand is very small there. Thus, (24) can be expected to hold even 
for long ranges. In particular, the expectation E (~k), for visible peaks 
of all ranges, may be approximated by letting d ~ 00 in (24) : 

(25) 

For the special value k = 0, (25) gives the mean number of peaks 
visible from Ql: 

E(~o) = 7rUD2r(5/3) 
= 9.3645(a2g2u)1 

= 2344(g2u)1 if a = 3959 mi. (26) 

Note, as predicted earlier, that the mean number of visible peaks 
tends to infinity in the limit of large a (planar model). When k = 1, 
(25) simplifies to 

(27) 

As u increases, (26) shows that the mean number of visible peaks 
increases, but (27) shows that the mean sum of distances to visible 
peaks remains unchanged. This indicates that visible peaks tend to 
be closer for large u than for small. One way to define a range for a 
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"typical" peak is to form the ratio 

DI = E("1:.I)/EC~o) = D/1'(2/3) 

= 0.738487D 

= 1.34190 (ag/u)i. 

VI. RANGES BETWEEN PEAKS 

(28) 

One might ask for a probability distribution for the range d from 
a peak PI to a randomly chosen visible peak P ~ Pl. The random 
process for choosing a peak must be specified with care. Perhaps the 
most natural process would be this. Construct a random landscape 
and choose a peak P from the set of "1:.0 visible peaks, all peaks equally 
likely. Then ask for the probability that P is one of the "1:. o(d) peaks 
within range d of Pl. Given a landscape, the conditional probability 
that P is within range is "1:. o(d)/"1:. o. Then the unconditioned probability 
is E["1:.(d)/"1:. oJ. Unfortunately, the expectation is hard to obtain [there 
is also a question of giving an appropriate meaning to "1:. o(d)/"1:. o when 
"1:. o(d) = "1:.0 = OJ. 

By using a different random process, one obtains a simpler distri
bution. Construct a trial random landscape and pick one of the peaks 
P at random, this time from the set of all peaks on the entire sphere S. 
P may not be visible. If not, discard that trial and construct a new 
landscape. Continue constructing landscapes and choosing peaks until 
the chosen point P is visible. Then ask for the probability p (d) that 
P lies within range d. 

To determine p (d), note that the total number of peaks on the entire 
sphere has the Poisson distribution with mean 47ra2u. The argument to 
follow assumes that this number is large, so that the number of peaks 
actually obtained is almost always very close to its mean value. Then 
the probability that P is visible is E("1:. 0)/(47ra2u). If q["1:.o, "1:. o(d)J is the 
joint probability for "1:.0 and "1:. o(d) in each trial, then q["1:.o, "1:. o(d) J"1:. o/ 

(47ra2u) is the probability that a trial has "1:.0 visible peaks, "1:. o(d) within 
range d, and that P is visible. The joint probability for the numbers "1:. 0, 
"1:. o(d) of the landscape, selected when P is visible, is q'["1:.o, "1:. o(d) J 
= q["1:.o, "1:. o(d)J"1:. o/E("1:. o). The probability that P lies within range d 
is obtained as a sum over "1:. o(d) and "1:.0 

p(d) = L q'["1:.o, "1:. o(d)J"1:. o(d)/"1:. o 
= E["1:. o(d)J/E("1:. o) 

p(d) = 1 - 1'[2/3, (d/D)3J/1' (2/3), 

the last line following from (24). 

(29) 

It is clear from this derivation that the second random process 
tends to select random landscapes with larger "1:.0 than the landscapes 
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Table IV - Probability p(d) = E(~o(d))/ E(~o) that a randomly 
chosen visible peak lies within range d 

diD 

0.25 
0.30211 
0.48595 
0.5 
0.72212 
0.75 
1 
1.20507 
1.32182 
1.5 
1.55886 
1.81350 
2 

Probability 

0.06880 
0.1 
0.25 
0.26361 
0.5 
0.53050 
0.77518 
0.9 
0.95 
0.98440 
0.99 
0.999 
0.99983 

of the first process. However, ~o may be expected to have a highly 
peaked distribution, in which case ~o is nearly always close to E(~o). 
Then q(., .) and q' (', .) are nearly the same, and (29) is also a good 
approximation to the range distribution for the first random process. 

Equation (29) provides numerical values for the range distribution 
in Table IV. 

Another random variable of interest is the range to the furthest 
visible peak. Even the expectation of this maximum range is hard to 
derive. However, a simpler "typical" maximum range is the range dm 

such that the expected number of visible peaks with ranges d > dm is 
just !. Then dm satisfies 

(30) 

and (24) shows that 

r~ u-1 exp (-u)du = 3/(47ruD2). 
J(d m ID)3 

(31) 

Table V - Mean number of visible peaks E(:.so) and range dm 

such that E(~o-~o(dm)) = Y2 

aD2 a 2g2q E(T,o) dmlD 

3.11 0.84 8.8 1.30 
5.69 5.12 16.1 1.40 

11.3 40.1 32.1 1.50 
24.5 409 69.5 1.60 
58.4 5528 165.6 1.70 

153.6 100572 435.5 1.80 
450.5 2.54 X 106 1278 1.90 

1477 8.95 X 107 4189 2.00 
5447 4.49 X 109 15448 2.10 
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Table V gives numerical values of dm/D as a function of UD2 
= (36a2g2u) 1. E(};o), which also depends on UD2 as shown by (26), 
also appears in the table. Note that dm is not just a function of a single 
product of powers of a, g, u; it has a more complicated form (ag/u)l 
X function (a2g2u). 

The integral in (31) is a rapidly decreasing function of dm/D. Then 
the numbers in Table V would not change much if dm were redefined 
with the term! in (30) replaced by any other number of the same order 
of magnitude. For the same reason, dm can be expected to be a good 
approximation to the mean range to the furthest peak. 

VII. THE HORIZON 

The approximation (23) will now be used to derive properties of 
the range from a peak P l to the horizon at a random azimuth angle. 
The range to the horizon is a more interesting random variable than 
the range to a random visible peak. As has been noted, it is not always 
clear what to count as a peak in a real landscape. But the horizon 
has no ambiguity. 

Look from P l with a fixed azimuth angle. One sees only sky at high 
elevations and ground at low elevations. The horizon point is the limit
ing point at ground level which has the highest elevation angle. The 
distance z from P l to the horizon is the range of interest here. 

Figure 11 will now be used to derive the conditions under which Q2 
is the horizon point, as seen from a peak Pl. If Q2 is the horizon point, 
the entire straight line path PlQ; in Fig. 11 must intersect the ground 
only at Q2. Then the entire lens-shaped blocking region for Q; must 
contain no peaks. But the depth at Q2 determines the circle on which 
a peak must lie. This circle appears in Fig. 11 inside the (open) blocking 
region. The only place that this peak can be now is on the boundary 
of the blocking region at one of the points of tangency T, T'. 

Figure 11 shows the usual situation in which the horizon point is 
not on the inner sphere. There is small probability that Q2 is on the 
inner sphere. In that case, q2 is at angle !71" - f) away from Pl, the 
centers c, c' coincide with q2, and the blocking region is bounded by the 
circle through P l with center q2. There is no second peak on the bound
ary of the blocking region; Q2lies on M(P l ). 

To find the probability distribution for the horizon range, one may 
first find the joint distribution for that range and the range r to the 
intersection point Q;. Since r is the largest range for which the corre
sponding blocking region is empty, the probability distribution func
tion for r is Per) = 1 - exp [ - uA (P l , Q;)]. In this derivation, the 
approximation (23) will be used to write 

Per) = 1 - exp [- (r/D)3]' 
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Figure 12.shows Q; lying at a range between rand r + dr, an event 
of probability dP(r). Given this position for Q;, the band between the 
boundaries of the blocking regions at rand r + dr contains the peak 
on which the horizon point lies. The shaded part of this band is the 
region in which the peak must lie so that the horizon point Q2 will 
have range Z2 ~ z. The conditional probability function for the horizon 
range is just the ratio of the area of the shaded part of the band to the 
total area of the band. To simplify that calculation, one may replace 
the dotted line by a great circle that crosses PIP; at right angles. That 
approximation leads ultimately to the conditional distribution 

Prob {horizon range ~ zlr} = (z/r) 2, 0 ~ z ~ r. (32) 

The details are omitted because the result can almost be guessed 
immediately from the roughly triangular shapes of the two parts of the 
shaded region. 

N ow the unconditional probability distribution for the horizon range 
is obtainable from (32) by integrating 

Prob {horizon range ~ z} 

foz dP(r) + i~ (z/r)2dP(r) 

(z/D)2r[\, (Z/D)3] + 1 - exp [ - (Z/D)3]. (33) 

Table VI gives numerical values. 

\ 
\ 

Pl~--------------------~--------~~o--pr+dr 

Fig. 12-Horizon at range ~ z. 
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Taqle VI - Distribution function for range z to the horizon 
looking from peak PI with a random azimuth angle 

z/D 

0.21417 
0.25 
0.35618 
0.5 
0.56305 
0.75 
0.79977 
1.0 
1.02324 
1.15749 
1.25 
1.40527 
1.5 
1.67110 

Probability 

0.1 
0.13625 
0.25 
0.42355 
0.5 
0.70432 
0.75 
0.88853 
0.9 
0.95 
0.97109 
0.99 
0.995247 
0.999 

The moments of the horizon range z are easy to find. From (33), the 
probability density for z is 

2z i~ r-2dP(r). 

The kth moment of z is 

E(Zk) = 2 fo~ ZHl i~ r-2dP(r)dz 

= [2/(k + 2)JE(rk). 

The last line is obtained by integrating by parts. The expectation on 
the right is another integral that can be evaluated in the manner of 
(24) and (25). The final result is 

E(Zk) = 2Dkr[1 + (k/3)J/(k + 2). (34) 

Equation (34) with k = 2 is particularly interesting. If z( cp) is the 
range to the horizon when looking with azimuth cp, then the mean 
area within horizon range is 

E(area within horizon) = E (~ 102
11" Z2( cp)dcp ) 

= 7rE(z2) 
= !7rr(5/3)D2 
= 1.41803D2. (35) 

This expectation is only an upper bound on the mean area visible. 
For, as is clear in Fig. 4, there are points within horizon range that are 
obscured from view. 
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It is interesting to compare Tables IV and VI. At any given proba
bility level, the range to the horizon is smaller than the range to a 
randomly chosen visible peak. This may be surprising at first. How
ever, each visible peak is itself a point on the horizon. As seen in Fig. 4, 
the horizon consists entirely of small line segments extending down the 
sides of the mountains from the visible peaks. The line segments for 
distant peaks tend to subtend smaller azimuth angles than the seg
ments for nearby peaks. Picking an azimuth at random, one is more 
likely to find the horizon point on one of the nearby visible peaks 
than on one far away. 

Another expectation that exhibits the same effect is the mean 
azimuth angle between the horizon point and the peak of the mountain 
on which the horizon point lies. The ranges z and r determine this 
angle. Without belaboring the details, one can approximate this angle 
by its tangent and make the further approximations by which (33) 
was derived. The expected angle is found to be 

E(angle) = E[(r - z)/(2ag)] 
= r(4/3)D/(6ag). 

That result can be stated in a more illuminating way: 

E(~o)E(angle) = 71'r(4/3)r(5/3) 
= (271'3-~) (271') 
= 0.40306(271'). 

By contrast, if E (~o) peaks were evenly distributed in azimuth with 
angular separation 271'/ E (~o), one would obtain 

E(~o)E(angle) = 0.25(271'). 

The larger factor 0.40306 again occurs because of the variability of the 
angles which visible mountains subtend on the horizon. 

VIII. COVERAGE AREA 

The coverage set for a point P is the set of points Q such that a line-of
sight path PQ exists. In VHF radio applications, the coverage set of P 
is the set of points Q to which an antenna at P can radiate a strong 
signal. This section will estimate the mean coverage area C, the expected 
area of the coverage set for P = Pl, a peak. 

The coverage set can have a very complicated shape. Figure 13 
shows one coverage set. In Fig. 13, the peaks are not in a Poisson 
pattern; to simplify the drawing, the peaks were located at points of a 
regular lattice. The coverage set contains the entire mountain on 
which P lies plus parts of adjacent mountains. These points alone 
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Fig. 13-A coverage set. 
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constitute a hexagon of area 41 u. In addition, the coverage set contains 
many smaller isolated patches on more remote mountains. These 
small patches can be so numerous that they represent most of the 
coverage area. 

If Fig. 13 represented the coverage set of a base station in a mobile 
radio telephone system, the station would only serve the hexagon of 
area 41 u. The other small patches would lie in the service areas of 
other stations, and so these patches would represent places where the 
given station can interfere with other stations. 

As in Fig. 11, let Pi be a given peak and Q2 another point at ground 
level. Suppose the distance r from Pi to Q2 is known, i.e., the angle 
z = ria in Fig. 11 is given. Let fer) denote the probability that a 
line-of-sight path P 1Q2 exists. Since an element of area dA (Q2) at Q2 
belongs to the coverage set of Pi with probability f(r)dA (Q2), the 
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mean area covered is 

Before attempting to evaluate fer) and C, the integral (36) will be 
given a second interpretation. N ow consider Q2 at a fixed location 
and count the number of peaks visible from Q2. The probability that 
an element of area dA (PI) contains a peak PI visible from Q2 is 
uf(r)dA (PI). Then the mean number of peaks visible from Q2 is 

E(visible peaks) = u f f f(r)dA (PI) 

= 21ra2u f f fer) sin z2dz2 

= uC. (37) 

Equation (37) can be used to derive very simple bounds on C. 
Clearly, more peaks are visible from a point Q2 at high altitudes than 
at low. If Q2 were itself a peak, the mean number of visible peaks 
would be E (2;0), given by (26). But Q2 has probability zero of being 
exactly at a peak. If Q2 is at any slightly lower altitude, Q2 is on the 
side of a hill which obscures 180 degrees of the view from Q2. Thus, 
E(visible peaks) ;£ !E(2;o), and (37) shows 

C ;£ E(2;0)/(2u). (38) 

Curiously, the right-hand side of (38) is exactly the mean area within 
the horizon as given by (35). Then (38) is a bound that was obtained 
in Section VII. 

At the other extreme, Q2 might be on the inner sphere, where no 
peak is visible. In most cases, that event will be so unlikely that it 
will be safe to say that the worst reasonable possibility is that Q2 is 
down in a valley near the point where three mountains meet. Here, 
the three mountain peaks are visible and so one concludes C ~ 3/ u. 

To obtain fer), and hence C, recall that (20) is a formula for the 
path probability P(QI, Q2), depending on the altitude y at Q2. To get 
fer) one may average P(QI, Q2) over y (or "(2). This average may be 
expressed as a sum of two terms which account for the possibilities 
that Q2 belongs to the same mountain M(P1) as QI or to a different 
mountain. 

In Fig. 11, if "(2 = Zz, then Q2 lies on the mountain M(P1). This 
event has probability exp { - 21rua2(1 - cos Z2)}. The path probability 
P(Ql, Q2) = 1 if r ~ (!1r - ())a. If r > (!1r - ())a, then Q2 lies on the 
inner sphere, the path P 1Q2 is blocked, and P(QI, Q2) = o. 
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If '1'2 < Z2, then Q2 lies on a different mountain M(P2). This possi
bility contributes a second term to fer), 

i:~Op(Ql' Q2)d{1 - exp (-O"A 2)}, 

where A2 and P(Ql, Q2) are given by (16) and (20). 
For r ~ (!11" - O)a, the two terms combine into 

fer) = exp {- 211"0"a2(1 - cos Z2) } 

+ i:~o (1 - <pd1l") exp [ - O"(Ao + A 2)]O"dA 2, (39) 

where (16) and (17) provide A 2, Ao. A similar formula applies when r 
is larger, but fer) is very small at such large ranges. 

One could findf(r) to any desired accuracy by evaluating the integral 
in (39) numerically. Instead, (39) will be replaced by a simpler approxi
mate formula. Since a is large, the first term of (39) is approximately 
exp (- 0"1I"r2) ; also, A2 = 1I"X2 where x = a'Y2. The approximations to <p 
and Ao which follow are not uniformly good but are intended to apply 
in situations that contribute most of the coverage area C. Except at 
very short ranges r, a typical blocking region is more elongated than 
that shown in Fig. 11. Figure 14 is more typical. Then <P2 = !11", 
approximately. With that approximation, the shaded region in Fig. 14 
has area Ao + !A 2. It consists of a triangle, of area xr, and two extra 
lens-shaped pieces. The two extra pieces can fit together into one lens 
of exactly the shape of the blocking region for two peaks at separation 
r. Then the two extra pieces combined have area r 3/(6ga), as in (23). 
Now the exponent 0" (A 0 + A 2) in (39) is approximately (r /D)3 + !1I"0"x2. 

To substitute these approximations into (39), write 

Y = 0"1I"r2 

X = r3/(6ga) = (r/D)3 = [r(5/3)Y/E(~o)]1 
(40) 

Fig. 14-Approximation of Ao and cp2. 
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and then 

fer) = exp (- Y) + 7rU exp (-X) lor exp {-uxr - lU7rr2 }rdr 

fer) = exp (- Y) + exp (-X) {1 - exp (- Y[l + 7r-I])} 

+ exp (-X + lY/7r2
) (2Y/7r)! 

X {erf (Y![1 + 7r-I ]) - erf (Y!/7r)}. (41) 

Figure 15 shows curves of fer). The ordinate Y! = (u7r)!r was used 
as a convenient normalized range. It may be interpreted as the square 
root of the mean number of other peaks within range r of Pl. As (40) 
shows, the parameter E(~o) enters into fer) through the variable X. 
The fer) curves for different values of E(~o) lie close together at short 
ranges. As the range increases, fer) falls more sharply for small E(~o). 
There is a limiting curve, as E (~o) ~ 00, which is obtained from (41) 
by setting X = O. As (40) shows, X = 0 also corresponds to the limit 
a ~oo ; i.e., this limit represents the planar model. 
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Fig. I5-Probability f(r) that a random point at ground level is visible from a peak 

r miles away. 
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Table VII - Mean coverage area C 

25 
50 

100 
200 
400 
800 

1600 

fTC 

8.3 
12.2 
17.3 
23.5 
30.6 
38.6 
47.4 

The approximations which led to (41) are poor when r is small. 
Fortunately, the planar model is good for smaller r. The curve labeled 
"exact (planar)" in Fig. 15 was obtained by a numerical integration, 
using an exact equation (39) for the planar model. The planar curve 
crosses the 0.5 probability level at Y! = 2.3. Then r = 1.3u-! is the 
range at which the odds of finding a clear path are even. 

The behavior of fer) for large r can be obtained by replacing the 
error functions in (41) by their asymptotic expansions. The leading 
terms are 

fer) '" exp (- Y) + 1r2y-l exp (-X). (42) 

In Fig. 14, the fer) curve starts to depart from the limiting curve at 
values of Y near E (~o). For larger Y, the factor exp (- X) in (42) 
becomes small rapidly. In the planar model, exp (- X) = 1 for all Y; 
(42) then shows that fer) '" 1r2/Y = 1r/(ur2). 

To good approximation, the integral (36) for the mean coverage 
area can be replaced by 

(43) 

The main contribution to C in (36) comes from the range 0 ~ r 
~ (!1r - v)a, in which (39) holds exactly and (41) approximately. 
Then (41) will be used for fer) in (43) and, since fer) -70 rapidly for 
larger r, the range of integration has been extended to 0 ~ Y < 00. 

Since (40) and (41) express fer) in terms of Y and the single param
eter ECJ:,o), (43) shows that uC is a function of E(~o) only. Table VII 
gives values of this function, obtained from (41) and (43) by numerical 
integration. These values also represent mean numbers of peaks 
visible from a random point on the ground, as (37) showed. 

In Table VII, uC appears to be a slowly increasing function of 
E(~o). As E(~o) -700, the model becomes planar and thenf(r) '" 1r2/Y. 
Then (43) shows uC -700 in the planar model limit. 
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Two computer-aided algorithms for the design of all-pass digital filters 
are presented. The first technique is based on a linear programming ap
proach to solving the approximation problem posed by the minimax design 
of an all-pass digital filter. A new iterative algorithm with stability con
straints is offered for direct form design. The second technique implements 
a gradient search for those quadratic factors of an all-pass transfer function 
that lead to a locally optimal approximation (in the least-squares sense) 
of a desired phase function. New initial guess procedures and the parame
terization of linear-phase offset enhance the least-squares design procedure. 
Examples illustrating the result of both procedures are included. 

I. INTRODUCTION 

The increasing availability of digital signal processors such as those 
described in Refs. 1 and 2 has generated much interest in the algo
rithmic design of digital filters. One particular class of recursive 
digital filters commonly referred to as all-pass digital networks has 
an important and interesting design problem associated with it. That 
is, the design objective for this type of filter involves the following 
transfer function 

Because of the relationship between numerator and denominator 
polynomials, the number of degrees of freedom in filter design has 
been reduced to N from the usual 2N. Since the magnitude function 
of H(Z-l) is precisely 1.0 on the unit circle, the design problem is 
focused directly on the phase variation of H(Z-l). The importance of 
this design problem does not arise from an academic viewpoint. 

There are signal processing applications in which an influential 
factor in signal fidelity is the amount of phase distortion present in 

767 



"(t) f\ 
7'7 V /'.r 

(a) (b) 

Fig. l-(a) Original pulse. (b) Phase-distorted pulse. 

the medium. The effects of phase distortion in communication systems 
are illustrated in Refs. 3 and 4. Apart from nonlinear phase equalization 
applications, all-pass networks can be used to provide a constant 
phase shift over a specified frequency band or bands. The Hilbert trans
former commonly found in bandpass modulation systems is just one 
example of this application. In constructing phased arrays in radar 
and seismic research, constant phase shifters are also found to be 
useful. 5,6 Figure 1 illustrates how a constant phase offset can shape 
(or distort) the impulse response of a system where J(t) and J*(t) 
differ by a constant phase offset of 7r /2. A constant phase shift of any 
amount besides an odd multiple of 7r /2 will produce a pulse with a 
single large lobe. Equalization of this type of distortion is again 
possible by all-pass networks. 

Previous work7 has addressed the envelope delay design problem. 
In many cases, this is sufficient but, as seen above, there are applica
tions where the phase function must be treated directly. 

Our design techniques are for all-pass structures where the design 
criteria stem from the phase function directly. The first technique, 
described in Section II, is a new method for designing all-pass networks 
using linear programming. This approach allows for fast (at least 
quadratic), always convergent design of phase networks. For the 
first time, stability can be treated directly in the design procedure. 
The second algorithm is based on a gradient search procedure on a 
least-squares criterion. The basic approach is analogous to those 
described in Refs. 7 to 9. The all-pass structure reduces the number 
of variables and simplifies the gradient calculations. In addition to 
developing the algorithm, we provide initial guess procedures and 
linear-phase offset parameters that enhance the algorithm. These 
initial guess procedures are new noniterative filter designs that can 
serve as excellent all-pass approximations in their own right. 

II. A LINEAR PROGRAMMING APPROACH 

A need for fast, reliable design of all-pass digital filters has been 
shown in the previous section. Linear programming techniques have 
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been found to be useful in rational function approximationslO •ll and 
have been applied to the magnitude-only design of digital filters.12.13 
Here we show how the all-pass structure in digital filters can be trans
formed into a problem that can be handled by linear programming 
techniques also. As we shall see, the rational function differs from the 
magnitude-only case. Most importantly, this technique allows the 
question of stability to be handled directly in the design procedure. 
Other techniques that consider the phase or envelope delay variation 
of the digital filter (see Refs. 7 and 9 and Section III of this paper) 
deal with stability with a more heuristic approach. 

To develop the linear programming design method, we first recall 
that the all-pass transfer function is 

P(Z-I) bN + bN_1Z-1 + bN_2Z-2 + '" + boz-N 
H(Z-I) = Q(Z-I) = bo + b

1
z-1 + ... + bNz-N (Ia) 

z-N(bNzN + bN_1ZN- 1 + ... + bo) 
(bNz-N + bN_1Z-N+1 + ... + bo) 

(Ib) 

Hence, the phase function of (1) on the unit circle is 

( 
N P(Z-I»)/ - _ 2 [Q( -1)JI cJ> z Q( -1) - cJ> z Izl=1. 

Z IZI=1 
(2) 

From (2) we note that the phase variation of H (Z-I) is equivalent 
(modulo a constant multiplier and an N sample delay term) to the 
phase of Q(Z-I). Henceforth, we address the problem of synthesizing 
Q(Z-I). The phase variation of Q(Z-I) on the unit circle is 

tan cJ>[Q(Z-I) ] Ilzl=1 = Imag [Q(e- i211"/) J/Real [Q(e- i21r1)]. (3) 

Further, 

Our design criterion is chosen to be 

min max ID(fn) - RS(f(fn» I 
{bk} n n 

n=O,I,2,···,M, 

where D(!) is the tangent desired phase function and M is a number 
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of frequency points· (»N) chosen to ensure adequate approximation 
over a subinterval of If I ~ !, namely, 0 < fo < it· .. < fM < !. We 
recall that the desired phase function has been scaled down by -! 
because of the factor of - 2 appearing in (2) and will have a delay of N 
samples inherent in its design by the Z-N factor of (lb). It is important 
to note here that the norm is applied to the tangent of the desired 
phase function instead of the desired phase function itself. t 

If we prevent S(n from assuming the value zero, we seek the 
minimum value of ll., 

(5) 

Using the differential correction idea of Ref. 10, we expand the right
hand side of (5) in an iterative form: 

The intention is to iterate toward those values of {b j } that minimize ll.. 
The subscript k indicates the kth iteration. We then have, from (5) 
and (6), 

ID(fn)S(fn) - R(fn) I - ll.kS(fn) - (ll. - ll.k)Sk(fn) ~ 0, 

which translates into a familiar pair of equationslO 

[D(fn) + ll.kJS(fn) - R(fn) + (ll. - ll.k)Sk(fn) ~ 0 (7) 

[-D(fn) + ll.kJS(fn) + R(fn) + (ll. - ll.k)Sk(!n) ~ O. (8) 

Substituting the series forms for R(!n) and S(fn), we have 

N 

L {[D(fn) + ll.kJ cos 211')in + sin 211'jfn}b j + (ll. - ll.k)Sk(!n) 
j=l 

N 

L {[ -D(!n) + ll.kJ cos 211')in - sin 211'jfn}b j + (ll. - ll.k)Sk(!n) 
j=l 

where bo == 1 is the normalization made. We have in (9) and (10) an 
over-determined set of 2M equations in N + 1 variables. The objective 
is to minimize ll., one of the variables. It would seem that the condition 
S(!n) > 0 would be necessary to solve (9) and (10). But the phe-

* An extension into a weighted criterion can be handled, but is suppressed in this 
presentation. M was chosen to be in the range 4N (N large) ~ M ~ ION (N small) 
in our implementation of the algorithm. 

t Therefore, the nonlinear nature of the tangent transformation may inhibit 
designs in the neighborhood of 7r. 
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nomenon experienced in Ref. 10 occurs here also. That is, if Skein) > 0, 
o ~ n ~ M, then Sk+l(!n) > 0, 0 ~ n ~ M, also. 

Standard linear programming techniques can now be used on (9) 
and (10) to iterate toward a minimum ~. However, no restriction has 
been made on the locations of the zeros of Q (Z-I). Now there exist 
sufficient conditions for stability that can be written as linear con
straints. We have looked at two of these, e.g., a restriction that 
b1, b2, ••• , bN of (1) form a monotonic sequencel4 or the restriction that 
the sum Lf=o bk cos 27rk! > 0, viE [0, ! ]'15 (The formulation of the 
linear programming problem gives us this condition on the subset 
of [0, !J over which we are approximating.) For an example of a filter 
designed using this technique and the latter constraint to assure 
stability, refer to Fig. 2. Curve B is the sixth-order approximation to 
Curve A (only approximated over [0.075, 0.425J). 

However, the filter designer may decide that these types of con
straints are too restrictive for his particular applications. Nonlinear 
stability constraints, such as those found in Ref. 14, Chapter 3, can 
be included via the cutting planes algorithm,16 but this may require 
excessive computation times. Another suggestion involves interrupting 
the standard simplex method for solving the linear programming 
problem after each iteration. We may then further constrain the b 
vector used in the next basic feasible solution to a choice (i.e., some 

(/) 

z 
<t 
Ci 
<t 
a: 
w 
(/) 

<t 
I 
a.. 
w 
I-
~ 
...J 
0 
(/) 
CD 
<t 

3.2 

2.8 

2.4 

2.0 

1.6 

1.2 

0.8 

0.4 

0 

(/) 

::i: 0.048 

~ 0.040 

~ 0.032 

~ 0.024 
a: 
w 0.016 
w :2 0.008 
I 
a.. o 

0.1 

ERROR FUNCTION 

0.1 0.2 0.3 0.4 0.5 

0.2 0.3 

FRACTION OF THE NYQUIST RATE 
NORMALIZED FREQUENCY 

0.4 0.5 

Fig. 2-Sixth-order approximation using linear programming method. 
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Fig. 3-Phase error vs bandwidth for various orders of Hilbert transformers. 

"maximum") from among those vectors that would result in a stable 
filter in addition to the normal improvement of an object function. 

Using the standard formulation of the problem with no additional 
constraints or techniques necessary to assure stability, we were able 
to design many Hilbert transformer filters. * Figure 3 shows the relation
ship between the maximum error (recall that the tangent of the 
desired function is approximated) and a bandwidth (the filters were 

* FIR designs of Hilbert transformers are well documented (see Ref. 17). There, 
gO-degree phase is guaranteed, and the magnitude of 1.0 is approximated. 
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Fig. 4-Tenth-order Hilbert transformer. 

designed· over [j, 0.5 - f], f = 0.075, 0.05, "', 0.225) for various 
orders of filters N = 4, 6, 8, 10. The log of the maximum error is given 
in the figure. 

The minimax approximation formulated here is performed on the 
tangent of the desired phase and not on the desired phase itself. For 
very good approximations, however, no penalties seem apparent. We 
have briefly looked at methods to design minimax phase approxima
tions based on the algorithm we have presented here. Our conclusions 
are that a two-stage design algorithm is required to iteratively locate 
a proper weight function that will "prewarp" the "tangent" design 
so that the weighted "tangent" design is minimax and the phase 
approximation is itself equiripple. 

Figure 4 illustrates the effect of the tangent transformation in this 
design procedure. In this figure, we see the phase of the resultant 
design (and its error function). This is a 10th order approximation to a 
90-degree phase shift over [0.05, 0.45]. While the design guarantees 
a minimax solution (equiripple) to the tangent, we can see that the 
resultant phase approximation is not exactly equiripple. t We have not 

• Each design only required a few (e.g., 5) iterations. 
t We can see from Fig. 2 that the effect that the tangent transformation has on 

the error curve also depends on the values of the desired function. 
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implemented an algorithm to find the minimax solution to the phase, 
since, for our needs, the improvement in the phase approximation from 
the method outlined here did not seem to justify the use of a modified 
algorithm. 

III. A GRADIENT SEARCH TECHNIQUE FOR LEAST-SQUARES DESIGN 

The next design algorithm we describe involves the computation of 
the gradient vector relative to the set of coefficients in a product of 
quadratic factors. The transfer function of an all-pass digital filter, 
expressed as a product of second-order sections, is: 

(11) 

The least-squares form 

(12) 

will be used as a measure of the approximation error from the desired 
function D (f) on the set of frequency samples {fk} f. Here, w (f) 
denotes a nonnegative weighting function. A. G. Deczky has also 
considered gradient techniques applied to the least-square design of 
all-pass digital filters. 7 In that paper, the emphasis was on envelope 
delay design. However, as shown in Section I, there are applications 
where envelope delay approximations are not adequate. Specifically, 
there are cases where phase distortion (e.g., constant phase offset) 
must be eliminated with an all-pass structure. 

Our design algorithm stems from familiarity with Ref. 8, which 
considers magnitude-only designs. With the least-squares criterion, 
the cascade second-order section form can be used. The advantage 
is that coefficient accuracy problems are minimized. As an alternative 
to the linear programming approach considered in Section II, this 
least-squares approach also enables one to more easily control the 
linear-phase offset permitted in the design. However, a disadvantage 
of the least-squares approach is that stability of the designed filter 
cannot be handled directly. Stability is obtained by confining the 
gradient movement to within the unit circle. This constraint may 
increase the likelihood of reaching an unsatisfactory local optimum. As 
we see later, there are initial guess procedures that provide excellent 
approximations to the desired phase function which, through the design 
algorithm, increase the likelihood of reaching a satisfactory local 
optimum. 
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3.1 Gradient calculations 

We find the entries of the gradient vector are 

aE L a Ang H(e-i27rfk) 
a{3

• - - 2 2: [D(fk) - Ang H(ei27rfk)Jw(fk) . (14) 
• k=l a{3i 

Here we define ~(f) = Ang H(e-i27rf) = tan-1I(f)/R(f), where 
I(f) = Imag H(e-i27rf) and R(f) = Real H(e-i27rf). We seek 

a~~) = R(f)I~(f) - I(f)R~(f) 

a~~) = R(f)Ip(f) - I(f)Rp(f), 

where prime (') denotes the partial derivative relative to the subscript. 
After some algebra, we find 

(15) 

1 ~ i ~ M, (16) 

where Fi(f) = 11 + aie-i27rf + (3ie-i47rf 1-2• Finally, (13) and (14) can 
be simplified for 1 ~ i ~ M to 

:! = - 4(1 - (3i) t: [D(fk) - ~(fk) JFi(fk)W(fk) sin 2'lIJk (17) 

:: = - 4 t: [D(fk) - ~(fk)JFi(h)w(fk)(sin47rfk + aisin 27rfk). (18) 

The minimization of E in (12) then proceeds with an iterative algorithm 
that is based on the formula 

(19) 

where c (n) is the coefficient vector (aI, {31, a2, {32, .• " aM, (3M) at the 
nth iteration, En is the nth step size in the coefficient adjustment, An 
is a positive definite matrix at the nth step (== I in the case of the 
steepest descent algorithm) and (V E) n is the gradient vector whose 
entries are given by (17), (18) at the nth iteration (we use the Fletcher-
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Powell algorithm). An initial guess procedure is required to start an 
iterative algorithm such as that of (19). 

3.2 Initial guess procedures for all-pass networks 

Convergence to a local minimum at which the approximation to a 
desired phase function is satisfactory can be made easier if a good 
initial guess is provided to c(O) of (19). A desired feature of an initial 
guess procedure is that it be simple in nature. After all, excessive 
computation and effort should not be expected in simply starting a 
complex algorithm. In this section, we consider two procedures in 
which only a linear set of equations need be solved to obtain initial 
values for {bdf=o of (1). The value of having several initial guess 
procedures is that the designer may want to exercise his algorithm 
from multiple starting points to choose the best from a set of local 
optima. The following initial guess procedures operate on the direct 
form of H(Z-l) (1) which can be factored to the cascade form (11). 

3.2.1 Tangent approximation by Gauss' method 

From (4) in Section II we know that a desired phase function can 
be approximated by considering a monotonic function of the phase, 
namely the tangent. Hence, 

tan ¢(f) 

N 
:E bk sin 27rkJ 
k=l 

- N 
:E bk cos 27rkJ 

k=O 

(20) 

is the approximating function of the tangent of half the desired phase. 
If we require the estimates of the desired phase tangent [tan ¢d(f) ] to 
be "good" at a number of frequencies, we then have the following 
equations: 

N N 
tan ¢d(fo) :E bk cos 27rJo - :E bk sin 27rkJo = ro 

k=O k=l 

N N 
tan ¢d(!I) :E bk cos 27rk/I - :E bk sin 27rk/I = rl 

k=O k=l 

N N 
tan ¢d(f M) :E bk cos 27rkJM - :E bk sin 27rkJM = rM. (21) 

k=O k=l 

If {rnlr were all zero, then the approximation would be exact. The 
objective then is to minimize :E~=o r;, where M > N. This problem 
IS a least-squares minimization problem for which the solution is 
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derived from solving a set of normal equations: 

or 

where 

[

(aI, al) (aI, a2)' .. (aI, aN) 
(a2, al) (a2, a2)' .. (a2, aN) 

· . · . · . 
(aN, al) (aN, aN) 

Ab = e, 

an = (tan ¢d(!O) cos 27rn!o - sin 27rn!o, 
·tan ¢d(!I) cos 27rn/I - sin 27rn!l, 

(22) 

·tan ¢d(!M) cos 27rn!M - sin 27rn!M) n = 1,2, "', N 

and 

Let 

d = [- tan ¢d(!O), - tan ¢d(!I), .. " - tan ¢d(!M)] 

b = (b l, b2, "', bN) and e = [(aI, d), "', (aN, d)]. 

__ ~(r*, r*) 
Pmax = O~~:M {lr:l} and P - M' 

where r* = (r~, r;, .. " r~), the residual values after the least-squares 
approximation. If pmax - P is large (it is always positive), then a 
Chebyshev approximation may be desirable. IS 

3.2.2 Tangent approximation in Chebyshev sense 

It is well known that the minimax solution to (21) requires solving 
an appropriate subsystem of N + 1 equations. Further, the minimax 
solution of N + 1 inconsistent equations can be effected by examining 
the least-squares solution to the same set of equations and proceeding 
to solve a set of N linear equations. I9 

For our purposes here, an effective method of obtaining an initial 
guess for the iterative procedure implied by (19) is that of choosing 
M = N and obtaining the minimax solution to (21). This can be done 
by solving (22) for b = (bl, b2, •• " bN ) and then evaluating (21) for 
the residuals r~, r;, .. " r;". The minimax solution to (21) is then given 
by the linear set of equations 

Bb = (1, (23) 

where B = (b jk ), N + 1 by N matrix with bjk = tan ¢d(fi) cos 27rkfj 
- sin 27rk/i, (1 = ~:[sign (ro), sign (rl), "', sign (rN)], and 
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It may be noted that only N of N + 1 equations are used in the solu
tion of (23). 

3.2.3 Discussion 

It should be noted that no constraint has been made on the initial 
guess procedures of A or B to ensure that the resulting digital filter 
is stable. In fact, if 2:';=0 bk cos k27rf should ever change sign in If I ~ ! 
or at least in the subinterval of approximation [fo, f M], then the 
transition from (20) to (21) is not really valid since a division by zero 
is implied. Should 2:';=0 bk cos k27rf be strictly positive over If I ~ !, 
then stability results. 5 (The interesting point is that stability can 
result even if the cosine series does change sign in I f I ~ !). However, 
the point to remember is that the resulting initial guess may be 
unstable. In our experience, we have not encountered any serious 
problems using these initial guess procedures. 

We must further remark that the inherent N sample delay present 
in these approximations [see (2)] could present a problem when 
designing filters with M ~ N sample delays. However, we feel, 
intuitively, that since some delay is unavoidable, a delay of the order 
of the filter will not, for most applications, be overly restrictive. 

The last point to consider is that the initial guess procedure of Sec
tions 3.2.1 and 3.2.2 obtains a direct form estimate of the digital filter 
coefficients. What is really required for c(O) of (19) are quadratic factors. 
We remark that we make the transition from the direct form estimate 
of (20) to quadratic factors by using a Bairstow quadratic factoriza
tion routine. 

3.3 Some considerations for least-squares design 

Often the engineering systems requirement of a digital filter can 
tolerate a linear-phase offset. While the systems engineer cannot 
always adapt to an arbitrary delay, there will usually be a range of 
delays permissible to him. How then can a designer incorporate these 
relaxations into the design mechanism? One technique for doing this 
is to add an acceptable delay to the desired function to create a new 
desired function and proceed from there. By designing filters for each 
of the permissible delays, one can choose from among the delays and 
their associated errors to decide which filter to implement. 

In Fig. 5 we can see the error function of a sixth-order filter* (B) 

* We have not tested the limit of the order of filters that can be designed by this 
method, but we have obtained a twentieth-order approximation (20-sample delay) 
to the desired function in this example. Quality initial guess procedures help us do 
this without excessive computation times. 
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Fig. 5-Error curves for initial and final sixth-order Hilbert transformer designs. 

designed for a delay of six samples. The desired function is a 90-degree 
phase shifting filter with the approximation having weight 1 on 
[0.08, 0.41J and 0 otherwise. Note the quality of the initial approxi
mation (A) using the first initial guess technique outlined in Section 
3.2. Of course, the disadvantage of presetting the delay is obvious; 
the choice of the optimal delay from those that are acceptable is not 
automatic but requires a separate design for each delay. However, 
eq. (12) can be expanded to include delay as parameter A 

E = L [D(!k) - Ang H(e-j27rlk) - A2·71'!kJ2W(!k). 
k 

An optimal A can be found analytically at each step in the gradient 
search and at convergence A will represent the amount of delay which, 
in conjunction with the filter, produces the best design. * Of course, we 
cannot expect that this delay will represent an integral number of 
samples or even a delay that the designer can tolerate. Figure 6 shows 
a desired function (A) (this curve is only shown where the weight of 
the approximation is nonzero) and its fourth-order approximation (B), 

* It is possible to include a constant phase angle as parameter B similar to the A 
used here. In such a case, our procedure becomes an envelope delay design technique. 
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0.5 

which is by solving for optimal A. Allowing for arbitrary delay, the 
algorithm obtained this optimal design with a 4.1-sample delay. 

We can offer an heuristic solution to guarantee integer delays in an 
automatic fashion; namely, at each step (that is, at each calculation of 
A), the nearest acceptable delay· is used to replace A in the algorithm. 
This, of course, places a serious strain on optimality, although it does 
permit an automatic design procedure. 

As a footnote to this algorithm, we remark that there is a tendency, 
when working with procedures for designing filters in the cascade 
form, to use a previous optimal design of order n as the initial starting 
point in the design of filters of order n + 2. In the case of magnitude
only design, this is easily implemented since the appended second-order 
section can be initialized with magnitude 1. However, in the all-pass 
presentation there does not exist any second-order section that can be 
added which does not distort the overall phase when using a previous 
optimal design of order n to provide the initial guess for a design of 
order n + 2. And so the user of this algorithm must consider the effect 
of the appended second-order section if he does not want to obviate 
the value of a previous design toward providing an initial guess. 

* Nearest in the sense of greatest reduction of (12); "acceptable" here means 
"integer." 
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Theeffeet of small, periodic phase errors upon transmission between 
two coaxial, circularly symmetric apertures is considered when the aperture 
phase distributions are confocal and the amplitude distributions are 
gaussian. The results are applicable to loss calculations in beam wave
guide systems with imperfect lenses. When the periods of the phase errors 
are less than one-half the aperture radii, the total loss is approximately 
! (fJi + fJ~), where fJ 1, fJ 2 are the peak phase errors (in radians) on the 
apertures. Phase errors with periods greater than the aperture diameters 
are found to cause comparatively little transmission loss. 

I. INTRODUCTION 

The use of beam waveguide! systems for the transmission of informa
tion, 2 or for the transmission of power,3 necessitates the design of lenses 
(or cylindrical refiectors4) as focusing elements. In the design of these 
elements, it is desirable to estimate the degradation in performance 
caused by surface profile errors. Such degradation results in trans
mission loss and, in a communications system, will contribute to 
interference. Typically, the profile errors are associated with machining 
operations and, for lenses with circular symmetry, these errors are 
frequently circularly symmetric. The principal effect of the errors 
is to impart small, circularly symmetric phase perturbations to the 
field distribution adjacent to the lenses. The purpose of this paper 
is to calculate the reduction in transmission, caused by phase errors of 
this type, in a simple system comprising two coaxial, circular apertures 
as shown in Fig. 1. The field distributions on the apertures may repre
sent the fields in the aperture planes of two antennas or the fields on 
adjacent lenses in a beam waveguide system. 

In the absence of phase errors the transmission between coaxial 
apertures has been extensively studied by Kay,5 Borgiotti,6 Heurtley,7 
and others, with the principal objective of determining that aperture 
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field distribution which maximizes the transmission. When the aperture 
separation is greater than some minimum, it has been found that this 
field distribution corresponds to that of the lowest order mode in an 
open, confocal resonator.8 The phase distribution appropriate to this 
mode is obtained when the phase fronts on the apertures are confocal, 
i.e., are spherical with the center of curvature at the center of the 
other aperture. The appropriate amplitude distribution is well approxi
mated9 by a gaussian curve. For this (optimum) distribution, the 
transmission between the apertures can attain surprisingly high values 
even when the apertures are separated by many aperture diameters 
(see Refs. 5, 6, and 7). Although the effect of periodic and random 
phase errors upon antenna gain and side lobe level has been investi
gated by several authors,lO.n little information appears to be available 
regarding transmission between two apertures when each has phase 
errors. In the case of transmission between two reflector antennas, 
Chu12 has obtained an upper bound for the loss resulting from those 
phase errors produced by displacement of the feeds from the reflector 
foci. Yoneyama and Nishida13 have considered transmission through 
a two-dimensional, confocal beam waveguide consisting of lenses with 
random phase errors. We compare their results to those of the present 
study later in this paper. 

In the following section the total transmission loss in a confocal 
system, with small phase errors on apertures with arbitrary ampli
tude distributions, is expressed in terms of the losses associated with 
each aperture when the other is free from phase errors. In the next 
section explicit expressions are derived, for two cases of practical 
interest, when the phase errors are sinusoidal and when the aperture 
amplitude distributions are gaussian. These expressions are then 
discussed and compared with results from the literature. 
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II. TRANSMISSION BETWEEN CONFOCAL APERTURES WITH 
PHASE ERRORS 

Consider the circular apertures AI, A2 of radius aI, a2 which are 
separated by a distance d > aI, a2, as in Fig. 1. It is assumed that the 
apertures are focused at each other such that the tangential electric 
fields in the apertures, when each is transmitting in the absence of the 
other, have the quadratic phase variation 

&i(r~) = Ei(r;) exp (J ~f) , i = 1, 2, (1) 

where the r; are radial coordinates in the apertures. In the absence of 
phase errors the Ei(r;) are real. If interaction is neglected, the trans
mission between the apertures is readily found 7 •12 from the results of 
HuH and K ay5: 

(2) 

where 
(3) 

and 

D = ~2 [101 

IEI(rl) 1
2r l dr l 101 

IE2(r2) 12r2dr2]' (4) 

In these expressions the ri are normalized so that ri = r;/ai. The 
Fresnel number n = kaladd, with k the wave number, and J 0 is the 
Bessel function of order zero. In the special case when the aperture 
separation is much greater than the aperture diameters, we see that 
n « 1 and that the aperture phases are uniform, i.e., &i(ri) = Ei(ri). 
Substituting the small argument approximation for the Bessel function, 
x « 1, J o(x) ~ 1, eq. (2) then reduces to the familiar Friis trans
mission formula15 

AfAi 
T = (Xd)2' n« 1. 

The effective aperture areas A~ are defined by 

e _ 21 10
1 

&i(r)rdr 12 
Ai - 21ra i 1 ,~ = 1, 2, 

10 I &:(r) 12rdr 

(5) 

(6) 

e.g., in the case of uniform illumination, &i(r) = 1 and A~ = 1ra~. 
The far-field transmission, T in (5), is also expressible in terms of the 
gains (G) of the apertures A I and A 2 : 

n« 1, (7) 
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where 

i = 1,2. (8) 

Returning now to the discussion of phase errors, suppose that the 
phases in the apertures depart from the ideal (confocal) distributions 
by amounts CPI(rl) in Al and CP2(r2) in A 2. The transmission T12 between 
the apertures in the presence of these phase errors is, from (2), 

Tl2 = ~ 110
1 

10
1 

Fl2 exp [j(CPI + CP2)]drldr212, 

where the CPi(ri) are abbreviated to CPi. T12 is expressible as 

Tl2 = To - dT12, 

(9) 

(10) 

where To is the transmission in the absence of phase errors and dT12 
is the loss resulting from the phase errors. Let 

i = 1,2 (11) 

be the transmission between the apertures when there is a phase error 
on only the aperture Ai. From Appendix A we then find 

(12) 

where 

dTi = b [10
1 

10
1 

F12drldr2101 10
1 
Fl2cp~drldr2 

-{f f F12<i>'drldr,j'] , i ~ 1,2, (13) 

R = ~ [10
1 

10
1 

F 12drldr2101 10
1 

F 12CPICP2dr1dr2 

- 10
1 

10
1 

Fl2CPldrldr2101 10
1 

F12CP2drldr2]. (14) 

Equation (12) states that the total loss incurred by (small) phase 
errors CPl(rl) and CP2(r2) on confocal apertures AI, A2 is approximately 
equal to the sum of the losses associated with each aperture when the 
other is free of phase errors together with the term R. In the next 
section we evaluate the expressions for dTi and R when the aperture 
amplitude distributions are gaussian. 

III. GAUSSIAN APERTURES 

In the case of gaussian amplitude distributions, Ei(ri) = exp (-air~). 
To simplify the analysis we assume the ai to be sufficiently large that 
the upper limits in the integrals may be extended to infinity. The 
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transmission To in the absence of phase errors may now be obtained 
from (2), (3), and (4) by noting16 

to give 
16n2ala2 To = -----

(n2 + 4al ( 2)2 , 

(15) 

1, = 1,2. (16) 

Apart from differences in notation, this expression is identical to the 
corresponding result obtained by Kogelnik17 for the coupling of 
(fundamental) gaussian modes. We find 

To = 1 when n = 2~ala2' (17) 

i.e., within the approximation exp (-ai) «1, there are optimum 
amplitude distributions that will ensure complete power transfer 
between the apertures for a given n. A detailed analysis,9 or numerical 
integration, indicates this to be a satisfactory approximation when 
ai ~ 2.3, i = 1, 2. For example, when al = a2 = 2.36, the exact9 

results for identical apertures are To = 0.9931, n = 5.00, and the 
approximate results are To = 1.00, n = 4.72. From (6), the effective 
aperture area, A~, of a gaussian aperture is 

i = 1,2. (18) 

As expected from physical considerations A ~ decreases as ai increases, 
i.e., as the aperture field becomes more concentrated about the aperture 
center. 

In the case of transmission with circularly symmetric, periodic phase 
errors, we take 

i = 1,2, 

where (19) 

{3i is the peak value of the error in radians (with Oi the peak profile 
deviation) and li is the period of the error. For errors of period much 
greater than the circumference of the apertures, 'Yi« 1 and then, in 
(9), ¢i(ri) ~ {3i, i = 1,2. It follows, therefore, that T12 = To, i.e., 
to this order of approximation, small, slowly varying, circularly 
symmetric phase errors do not affect transmission between the aper
tures. In the general case of small errors, the transmission loss tl.T12 
for gaussian apertures is found from (12) with (13) and (14) by 
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substituting for the Ei(ri) and CPi(ri). From Appendix B, we have 

i = 1,2, (20) 

where 

(21) 
, 

I'i = I'i 

and 

~(x) = exp (_X2) fox exp (T2)dT (22) 

is the (tabulated) Dawson integraP8 The indexj = {il when i = {~}. 
The term R in (14) may be evaluated approximately in two cases 

of practical interest. In the first of these, the apertures are sufficiently 
far apart that n« 1 so that JO(nr1r2) ~ 1 in (3). F12 is then separable 
in functions of r1 and r2 and hence, from (14), R = O. For this case, 

(23) 

i.e., the total loss is approximately the sum of the losses associated 
with each aperture when the other aperture is free of phase errors. 
The total loss is given by (20) and (23) in which I' ~ simplifies to 

n« 1. (24) 

It is noted from (7) and (11) that 

ATi tl.G~ 
To = Gi ' 

n «1, i = 1, 2, (25) 

where G~ = Gi - tl.G~ is the gain of aperture Ai with the phase error 
CPi. Hence, (20) with (24) gives the fractional reduction in gain of the 
aperture Ai resulting from a (small) periodic phase error. 

The second case of practical interest arises when the amplitude 
distributions on the apertures are optimized in accordance with (17) 
such that, in the absence of phase errors, the transmission is unity. 
From Appendix C, the term R in (12) is negligible in this case provided 
1'1, ')'2 » n = 2~a.1a.2, i.e., the periods (li) of the phase errors satisfy 

and (26) 

The transmission loss, tl.T12, between the apertures is then the sum of 
the losses associated with each aperture as given by (23). This result 
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implies that the transmission through a sequence of confocal lenses, 
each with small phase errors of period satisfying (26), may be obtained 
by calculating the transmissions associated with each lens in the absence 
of phase errors on the other lenses. Furthermore, (23) indicates that 
it is not possible to compensate for such phase errors on one lens by 
introducing phase variations on an adjacent lens. When (26) is satisfied, 
the Dawson integrals in (20) may be replaced by the first terms of the 
asymptotic expansion (44) to give 

i = 1,2. (27) 

I t is of interest to note the physical significance of the condition 
(26) for the validity of the approximate forms (23) and (27). As 
expected from the theory of diffraction gratings, a circularly symmetric, 
periodic phase perturbation on a circular aperture generates19 two 
additional side lobes in the aperture radiation pattern. If the period of 
the phase perturbation is l, then the two side lobes are symmetrically 
located about the main beam at an angle (J = sin-1 (X/l). Consider 
now the two apertures of Fig. 1 with phase errors of period II in 
Al and l2 in A 2. If the apertures are sufficiently far apart the side 
lobes, due to the phase error II in A 1, will not intercept A 2 provided 
sin-1 (X/lt) » tan-1 (add), i.e., for small angles, h « Xd/a2. Similarly, 
the main beam of Al will not couple energy to the side lobes of A2 
provided l2 « Xd/ al. The condition (26) implies, therefore, that energy 
is coupled from A 1 to A 2 via the main beams alone. 

Figure 2 shows the transmission, as a function of I' = 1'1 = 1'2, 

between two identical apertures as obtained by numerical integration 
of (9) with (19), and as obtained from the approximate result (23) 
with (27). The upper curve in the figure applies for a = 4, n = 8, 
{3 = 0.36 and the lower curve for a = 2.36, n = 5, (3 = 0.18. In the 
absence of phase errors To = 1 for these (optimum) distributions. The 
dashed lines correspond to the. approximation (23) with (27). As 
anticipated earlier, the transmission is essentially unaffected by phase 
errors of large period, e.g., when I' ;S n/2, i.e., l ~ 2Xd/a. The approxi
mate form (23) with (27) is seen to be within about 1 percent of the 
exact result when I' ~ 2n, i.e., l ;S Xd/2a. As an illustrative example, 
consider a beam waveguide system of the type described by Arnaud 
and Ruscio2 with X = 3 X 10-3m, d ~ 80m, a ~ 0.5m. The parameters 
of this system correspond to those of the lower curve in Fig. 2. Substi
tution shows that small, circularly symmetric phase errors of period 
l ~ 2a on the lenses will cause negligible transmission loss, and that 
the approximation (23) with (27) is applicable for phase errors of 
period l ;S a/2. 
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IV. COMPARISON WITH PREVIOUS RESULTS 

50 

To conclude this discussion on the effects of phase errors, we briefly 
compare the preceding results with the work of others. An expression 
for the gain (G') of an aperture with small, periodic phase errors was 
given in (25). Consider the special case in which the period of the phase 
error is much less than the dimensions of the effective aperture, i.e., 
l « W. From (18) and (19), this implies 'Y » -{;; so that the Dawson 
integrals in (20) with (24) may be replaced by the large argument form 
(44) to give, with (25), 

(28) 

where G is the gain in the absence of phase errors. Since this result 
depends only upon the magnitude {3 of the phase error, it is anticipated 
that it may apply to random phase errors with correlation lengths 
that are small compared with the dimensions of the effective aperture. 
Ruzell has examined the reduction in aperture gain caused by such 
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random errors and we compare (28) with his results. In the particular 
case of a sinusoidal surface error of rms value e on a parabolic reflector 
antenna, we have {3 = ko = 2V2ke. From (28), the gain with this small 
phase error is 

G' [( 47re )2] G ~exp - T . (29) 

This expression, derived here for a sinusoidal phase error, is identical 
to that obtained by Ruze in the case of a random error. As noted in 
Section I, Yoneyama and Nishida13 have examined the effect of random 
phase errors on lenses in a two-dimensional, confocal, beam waveguide 
system. Their approach is based on the concept of a statistical beam 
mode and this leads to a description of the field distribution, and 
transmission loss, in terms of an integral equation. A computer was 
used to solve the integral equation by numerical iteration from the 
solution in the absence of phase errors. It is interesting to find that 
the conclusions of their study, of a two-dimensional system with 
random errors, are similar to those obtained here for transmission 
between circular apertures with periodic phase errors. In particular, 
it was found that the transmission was not appreciably affected by 
phase errors with large correlation lengths and that the loss for a 
given error tended to a constant value for increasingly small corre
lation lengths. 

v. CONCLUSIONS 

We have examined the effect of small, periodic, radial phase errors 
upon transmission between two coaxial, circularly symmetric apertures 
with confocal phase distributions. Two cases of practical interest have 
been considered when the amplitude distributions on the apertures 
are gaussian. In the first of these the apertures are widely separated 
with phase errors of arbitrary period. The total loss is then the sum of 
the losses associated with each aperture and is given in terms of 
tabulated Dawson integrals. This result reduces to a known form 
when the periods of the phase errors are sufficiently small. The second 
case of interest applies to transmission through a beam waveguide 
system with imperfect lenses. When the periods (li) of the phase errors 
on the apertures satisfy li ;S ai/2, (i = 1, 2), where ai is the aperture 
radius, the total loss resulting from phase errors is approximately 
!({3i + (3~), where {31, {32 are the peak phase errors in radians on the 
two apertures. A comparison, based on numerical integration, shows 
this to be within about 1 percent of the exact result in a typical case. 
Phase errors with periods li ~ 2ai (i = 1, 2) have comparatively little 
effect upon transmission. 
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APPENDIX A 

Derivation of (12) 

For small phase errors, (~1 + ~2) «1 and the exponential in (9) 
may be expanded to second order. Recalling that the Ei are real, i.e., 
F 12 is real, we then find 

T12 ~ t [ {J,' J,' F 12 [1 - !(</>. + </>,)']dr.dr, r 
+ {J,' J,' F12 (</>.+ </>,)dr.dr,} ']- (30) 

Expanding the first bracket and noting that 

1 {J,' J,' F 12 (</>. + </>,)'dr.dr, r ;,:; (</>. + </>,)l" .. T o, (31) 

where (~1 + ~2)max is the maximum value of (~1 + ~2), we have, to 
second order in ~1, ~2, 

(32) 

where 

AT12 ~ b [10
1 

10
1 

F 12dr1dr2 10
1 

10
1 
F12(~1 + ~2)2drldr2 

- {f.' J,' F12 (</>. + </>,)dr.dr,} '} (33) 

Expanding the brackets gives (12) with (13) and (14). 

APPENDIX B 

Derivation of (20) 

Substituting Ei(ri) = exp (-air~), ~i(ri) = [3i cos ()'iri) (i = 1,2) 
into (13) with (3) and (4) gives, with (15), 

where 

i = 1,2, 

I 1()'i) = fo<J'J exp (-7]r2) cos2 ()'ir)rdr, 

12 ()' i) = fo<J'J exp (-7]r2) cos ()' ir )rdr 
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(35) 

(36) 



and 

(37) 

with j = {i} when i = O}. Expanding cos2 (')'ir) and integrating: 

(38) 

Integrating by parts, 

I 2( ')'i) = ;rJ [ 1 - ')'i looo exp (- rJ r2) sin (')'ir)dr ] ' (39) 

which is expressible18 in terms of the (tabulated) Dawson integral, i.e., 

(40) 

where 

~(x) = exp (- x2) loX exp (T2)dT. (41) 

From (34), (38), and (40), we then obtain (20) and from (19) and (37) 
we obtain (21). 

APPENDIX C 

Approximate Evaluation 01 R in (14) 

We derive an approximate expression for R when ')'1, ')'2» n. It is 
assumed that the amplitude distributions on the apertures are opti
mized such that To = 1 with n = 2~ala2, where aI, a2 ~ 2.3. Consider 
the integrals in (14): Extending the integration limits to infinity and 
substituting Ei(ri) = exp (-airi2), i = 1, 2 gives, with (3), (4), 
and (15), 

1 
D=-· 

4n4 

Similarly, substituting CPi = {3i cos (')'iri) and using (15) and (40), 

(42) 

(43) 

Since ')'1 »n, the Dawson integral may be replaced by the first two 
terms of the asymptotic expansion,20 

~(x) t'..I ~ [1 + f. 1.3··· (2m - 1) ] 
2x m =1 (2X2)m , x» 1, (44) 

to give 

(45) 
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Further, 

10
1 

10
1 

F 12CPICP2dr1dr2 = f31{32 10
1 

exp (-alri)rl COS ('Ylrl) g (rl)drl, (46) 

where 

g(rl) = Io~ exp (-a2r~)JO(nrlr2)r2 cos ('Y2r2)dr2. (47) 

Substituting the integral representation of the Bessel function 

1 f1l" J o(x) = - cos (x sin O)dO, 
1f' 0 

(48) 

interchanging orders of integration and expanding the cosine product, 

(49) 

where 

1(0) (50) 

From (40), 

1(0) = 2~ [1 - .~ (1'2 + nrl sin 0) 
a2 'Va2 

.:D L~ (")'2 + nT, sin 8) II (51) 

Since 1'2 »n, both Dawson integrals in (49) may be replaced by the 
large argument form (44) to give 

g (rl) ';::d 1(0) ';::d - 1'2"2. 

Evaluating (46) by (40) and using (44), 

Substituting for the integrals in (14) and reducing (20) then gives 

R f31f32 8n2 

flTl + flT2 ';::d - f3i + f3~ 'Yi'Yf 

But 1f31f32/(f3i + f3~) I ~!, i.e., 

I R 1< (~)2. 
flTl + flT2 = 'Yl'Y2 

Since 'Yl'Y2» 2n, (55) is much less than unity and so, from (12), 

flT12 ';::d flTl + flT2. 
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(56) 
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Methods from group theory and combinatorics are used to prove the 
(Slepian-Duguid) rearrangeability theorem for Glos' three-stage network. 
The nr-permutations realizable in such a network can be represented as a 
product Gcp -lH cpG, where G, H are subgroups realized by stages and 
cp is the special cross-connect field used in making frames. Thus, rearrange
ability can be cast as G cp-lH cpG = Snr = symmetric group of degree nr. 
Since it is an elementary theorem that a permutation group containing all 
transpositions is symmetric, it is enough to show that the product G cp-l H cpG 
is closed under multiplication and contains all transpositions. We prove 
that closure of the product is equivalent to a property of suitable partitions: 
existence of systems of common representatives. This property, formulated 
by J. B. Kruskal, is a consequence of Hall's theorem on distinct representa
tives. It is easily seen that Gcp-lH cpG contains all transpositions, so the 
Slepian-Duguid theorem follows. 

I. INTRODUCTION 

In this paper we continue the exploration begun in previous workl - 3 

of the relationships between permutation groups and connecting 
networks that are made of stages, frames, and cross-connect fields. 
Our results concern a well-known theoretical result of this area, the 
Slepian-Duguid theorem, which states that Clos' three-stage network 
with square switches is rearrange able, i.e., realizes any permutation. 
Since the permutations realizable by a stage form a special kind of 
subgroup, the theorem has been viewed in terms of group theory as a 
factorization of the symmetric group Snr of degree nr into a product of 
three subgroups or, alternatively, into a product of two mutually 
inverse double cosets.3 

We further illuminate this basic rearrangeability theorem by giving 
it as nearly group-theoretic a proof as we have been able to find. This 
proof starts from the known characterizationl of the nr-permutations 
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realizable by a Glos' three-stage network as a product G cp-lH cpG, 
where G, H are subgroups realized by stages and cp is a "canonical" 
cross-connect field. It then shows that this product is closed under 
multiplication, and that it contains all nr-transpositions, whence 
immediately, by an elementary theorem, that it contains any nr
permutation, i.e., that Snr = Gcp-lH cpG. 

In the course of this proof we show that the basic combinatorial 
backbone of the rearrange ability theorem is really the existence of 
systems of common representatives (SCRS) for pairs of partitions. 
Since, in apparent contrast, Duguid's original proof4 used Hall's 
theorem on systems of distinct representatives (SDRS) of subsets, we 
have also sought to clarify just how the rearrangeability result depends 
on Hall's theorem. The contrast above is apparent only because there 
are standard ways of proving SCR results from SDR results. In the 
present context, the two approaches are equivalent and lead to the 
same results. However, the SCR formulation is closer to the group
theoretic aspects than is Duguid's original SDR proof: it provides an 
SCR property that is a consequence of Hall's theorem and is necessary 
and sufficient for the product G cp-l H cpG to be closed. The property 
was first formulated by J. B. Kruskal in unpublished notes about 
rearrangeable networks dating from 1964. 

II. SETTING AND FORMULATION 

We now sketch the group-theoretic interpretation of the Slepian
Duguid theorem in some detail, as has been done in earlier work. 3 

Figure 1 shows Glos' three-stage network, composed of three sym-

nxn 

G 

LAST STAGE 

/ 
/ 

/ 

op-l 

/ 

CROSS-CONNECT 
FIELD op-l 

H 

MIDDLE STAGE 

nxn 

G 

FI RST STAGE 

Fig. l-Grp-lH rpG describes the permutations realizable by elos' three-stage 
network. 
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• 

• 

D 
Fig. 2-Getting transpositions in G ",-lH rpG: terminals on different outer switches. 

metrically placed stages interconnected by the "canonical" cross
connect field cp and its inverse. Each stage can realize precisely those 
permutations from a certain subgroup of Snr, depending on the size 
and number of switches in the stage. The r n X n switches of each 
outer stage realize a subgroup G isomorphic to (Sn)r, viz., all those 
that permute the sets {kn + 1, kn + 2, "', (k + l)n}, k = 0, .. " 
r - 1, within themselves. A similar statement holds for the center 
stage, but with nand r interchanged, to define a subgroup H isomorphic 
to (Sr) n. 

Thus, if we think of the network in Fig. 1 as acting from right to 
left, and if we interpret composition of permutations as left-multipli
cation of the inner permutation by the outer, then the permutations 
realizable by Glos' three-stage network with square switches are 
precisely those in the complex 

The Slepian-Duguid theorem says that this complex is exactly the 
symmetric group Snr of degree nr. We note for future reference that 
all transpositions are realizable; this can be seen from Figs. 2 and 3, 
in which the remaining terminals (not shown) are connected through 
to "themselves," as is possible and indeed necessary to realize a 
transposition. 

D D 
Fig. 3-Getting transpositions in G",-lH ",G: terminals on same outer switch. 
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III. SYSTEMS OF DISTINCT REPRESENTATIVES 

Let X be a set, and Xl, .. " Xm finite subsets of X. We make the 
following definition. 

Definition 1: Elements Xl, "', Xm from X form a system of distinct 
representatives (SDR) of Xl, .. " X m iff Xi E Xi and Xi ~ Xj if i ~ j, for 

i, j = 1, "', m. 

Hall's theorem5 gives a necessary and sufficient condition for the Xi 
to have an SDR, thus: 

Theorem 1 (Hall): Xl, .. " Xm have an SDR iff for k = 1, .. " m, the 
union of any k Xi has at least k elements. 

This result was used by Duguid in his proof of the rearrangeability 
of Clos' network with square switches. It enabled him to decompose 
any permutation into a union of submaps each of which, in switching 
terminology, carried exactly one terminal on each input switch onto 
images that were spread over all the output switches. These submaps 
could then be accommodated, one each on a middle switch. 

IV. SYSTEMS OF COMMON REPRESENTATIVES 

LetP = {Pd andQ = {Qd be partitions of a set X with IPI = IQI· 

Definition 2: A subset E C X is called a system of common representa
tives (SCR) for P and Q iff 

IE n Pil = 1, 
IE n Qjl = 1, 

Ryser6 gives an SDR argument to prove a necessary and sufficient 
condition for two partitions as above to have an SCR. In the cases of 
interest to us here, a sufficient condition can be given in a particularly 
simple way. We make 

Definition 3: Q is an (r, n)-partition iff I Q I = r, and I Qi I = n for 
Qi E Q. An (r, n)-partition of X is one into r sets each having n elements. 

We use substantially Ryser's argument6 to prove the following 
special case (Theorem 2.2, p. 51, of Ref. 5) of his result: 

Theorem 2: Let P, Q be (r, n)-partitions of X. Then P and Q have an seR. 

Proof: For j = 1, "', r, let Aj = {i:Pi meets Qj}. Take any union of 
k of these sets, Air U ... U A h , and observe that Qir U ... U Qjk 
has precisely nk elements in it. Hence, at most r - k integers in the 
range 1, .. " r fail to be in some Air, .. " Aik- Thus, 

IA·U···UA·I>k Jl Jk = , 
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so, by Hall's theorem, {Ai} has an SDR {ii}, and P ij n Qi ~ ~. Hence, 
P and Q have an SCR. 

v. ORTHOGONAL PARTITIONS 

We now prove a property of partitions that will later turn out to be 
equivalent to the closure of the permutations realizable by Clos' 
network. 

Definition 3: Partitions P, Q are orthogonal, written P ..L Q, iff PiE P 
and Qj E Q imply IP i n Qil = l. 

Remark: If P ..L Q, and 7r is a permutation, then 7rP ..L 7rQ. 

The next result was first given by J. B. Kruskal. 

Theorem 3: If P, R are both (r, n)-partitions, then there is an (n, r)
partition Q orthogonal to each of P and R. 

Proof: By Theorem 2, P and R have an SCR Ql. Remove all elements of 
Ql from the Pi and the Qi to give new (r, n - I)-partitions P' and Q'. 
Repeat to find Q2, Q3, ... , Qn, and then take Q = {Qd. 

It is convenient to have notations for three special partitions which 
arise naturally from the switching applications we are making. Clearly, 
the inlets (or outlets) of the network in Fig. 1 can be partitioned 
according to what last (or first) stage switch they are on. Similarly, 
the "wires" of the cross-connect fields between the stages can be 
partitioned according to what middle switch they impinge on. Accord
ingly, we define the (r, n)-partition S (by "outer" switches) as 

S = {S;', j = 1, ... , r}, Sj = {k: (j - I)n < k ~ jn}, 

and the (n, r)-partition M (by "middle" switches) as 

M = {M· J. = 1 ... n} J, , , , M j = {k:(j - I)r < k ~jr}. 

It is also convenient to partition by terminal position on outer switches, 
so we define the (n,r)-partition T by T = {T;',j = 1, ···,n} with 

T j = {k: k = ln + j for some 0 ~ l ~ r - I}. 

The canonical cross-connect field is defined by 

cp:j ~ 1 + [ j : 1 ] + r[(j - 1) mod nJ j = 1, 2, ... , nr. 

The following properties can be verified: cpT = M, S ..1 T. Intuitively, 
cp takes the jth terminal on the ith switch into the ith terminal in the 
jth switch. 
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VI. CHARACTERIZATION OF REALIZABLE PERMUTATIONS 

The next theorem will give a necessary and sufficient condition on a 
permutation 7r to be realizable in Clos' network, i.e., to belong to 
G<p-1H <pG. We start with a lemma. 

Lemma: Let P be any (r, n)-partition. If there is an (n, r)-partition R 
such that 

P -L R -L S, 

then there exists an element g E G such that 

<pgP -L M. 

The practical import of this result is as follows: Consider a frame of 
r n X n switches followed by n r X r switches, with the canonical 
cross-connect field <p in between (Fig. 4); then, under the hypothesis 
there is a setting of the right-hand switches (i.e., the r n X n), which 
has the effect of connecting each set of P to some terminal on every 
switch of the left-hand stage of n r X r, i.e., it images each Pi so as to 
reach every left switch (exactly once). 

Proof of lemma: Let R = {Ri\}' Each Ri is simultaneously an SDR of P 
and one fot S. Thus, if we connect the terminals of Rl to the first 
left-hand stage switch, we will have used up one terminal from each 
P-set and also one from each switch on the right. This procedure can 
be repeated with Rz, Ra, •• " Rn to give the result. Evidently, this set of 
connections defines an element g E G such that each set of <pgP is 
spread over the left-hand stage switches, i.e., such that <pgP -L M. 

Theorem 4: 7r E G<p-1H <pG iff there is an (n, r)-partition R such that 

S -L R -L 7r-1S. 

IMAGING OF P ONTO LEFT-HAND SWITCHES 

r x r nxn 

.~ ....... 

\. 
, ......... EACH SET OF 'l'gP IS SPREAD 

OVER LEFT STAGE SWITCHES 

.... p ISAN 
( r, n )-PARTITION OF 
THESE INLETS 

Fig. 4-Import of the lemma. 
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EACH SET OF ..,93-1S 
IS SPREAD OVER THE 
MIDDLE SWITCHES 

..,-1 

1 
/ 

EACH SET OF ..,91S 
ISSPREAD OVER THE 

/' MIDDLE SWITCHES 

Proof: Let M be the partition of nr by middle switches, i.e., the (n, r)
partition consisting of the n sets 

{Jr + l,jr + 2, "', U + l)r} J = 0, 1, ... , n - 1, 

and note that hM = M for h E H. Suppose now that 7r E Gcp-IH cpG 
with 7r = g3 cp-lg2 CPgI and gI, g3 E G, and g2 E H. It can be seen from 
Fig. 5 that each set of cpgilS is spread over all the middle switches. 
Similarly, each set of cpgIS is spread over the middle switches. Combina
torially, and without the help of pictures, these facts follow from 
cpT = M, from gS = S for g E G, and from S ..1 T, and they can be 
rendered as 

cpgIS..l M 
cpgilS..l M. 

It follows from the observation above that g2M = M, and thus, by 
the remark after Definition 3, 

g2 cpgIS ..1 M ..1 cpgilS, 

whence 
7rS ..1 g3 cp-IM ..1 S 

or 
S ..1 gIlcp-lgilM ..1 7r-1S. 

For R, we take gIl cp-lgi1M, and the necessity is proved. 
For the sufficiency, we use the lemma, according to which the 

hypothesis implies that there is an element gi E G such that 

cpgl7r-1S ..1 M. 

Thus, in Fig. 5, by setting up gi in the right-hand stage, we can connect, 
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for each j = 1, .. " n, the terminals of 7r-1Sj, one each to a middle 
switch. It remains to define g2 for the middle stage by collecting those 
destined for SI, S2, "', and g3 for the left-hand stage by distributing 
within each of the sets SI, S2, ... in the left-hand stage. This is done 
precisely as follows: Define g2 by switching a terminal l to third stage 
switch j iff 

l E cpgl7r- 1Sj. 

It follows that cp-lg2 cpgl7r-1Sj = Sj. Then define g3 by switching, within 
each final switch, cp-lg2 cpgl7r-1i to i. Then 7r = g3 cp-lg2 cpgl E G cp-IH cpG, 
as was to be proved. 

VII. CLOSURE AND FACTORIZATION 

Theorem 5: Gcp-IH cpG is closed under multiplication iff, for any two 
(r, n)-partitions P, Q, there is an (n, r)-partition R such that P 1- R 1- Q. 

Proof: Let P, Q be given (r, n)-partitions. If Gcp-IH cpG is closed, then 
it is a group that contains all transpositions, and so equals S nr. Hence, 
there exist permutations 7rl and 7r2 such that 

Since Gcp-IH cpG is closed, it is clear that 7r27rl belongs to it. By Theorem 
3, or by inspection of Fig. 5, with 7r = 7r27r1, we see there is a partition 
N such that 

that is, 
7r1S 1- 7rlN 1- 7ri

I
S. 

For the requisite partition R, take 7r I N, and the necessity is proved. 
For the sufficiency, let 7r1, 7r2 E Gcp-IH cpG, and let P = 7r I S, 

Q = 7ri
l
S. Then, by the hypothesis, there is an (n, r)-partition R 

such that 
P1-R1-Q; 

that is, 
7r1S 1- R 1- 7ri

i
S 

S 1- 7rliR 1- (7r27rl)-lS. 

Hence, by Theorem 4, 7r27rl E Gcp-IH cpG, and we have proved that 
G cp-l H cpG is closed. 

Theorem 6 (Slepian-Duguid): 

Snr = Gcp-IH cpG. 

Proof: Immediate from Theorems 3 and 5, since the right-hand side 
contains all transpositions and is closed. 
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VIII. FURTHER PROBLEMS AND COMMENTS 

Since H is a group, it follows that cp-lH cp is also a group, one conju
gate to H, and that the Slepian-Duguid theorem can be cast as a 
decomposition 

Snr = U G7rG 
7rE",-lH", 

into disjoint double cosets, similar to the classical Frobenius7 de
composition. It is tempting to expect some sort of connection with 
Frobenius' theorem here. One can speculate, in particular, that there is 
a proof of the Slepian-Duguid theorem from Frobenius', obtained by 
specializing the requisite cosets to those of the form G7rG with 7r in the 
conjugate cp-lH cp, and showing that only these need be considered. 

In conversation, Richard Stanley has indicated that, in another 
problem, also concerned with showing that a certain set of generated 
permutations was all of Snr, he had used the known result that a 
primitive group containing a transposition is a symmetric group. His 
remark stimulated our original approach to a "group-theoretic" proof 
of the rearrangeability theorem: one easily shows that, if Gcp-lH cpG is 
a group, then it is a primitive group containing a transposition; the 
problem then became to show that it was closed, a property that 
turned out to be equivalent to Kruskal's orthogonal partitions result 
(Theorem 3). Since closure was by comparison difficult to prove, and 
since it became clear that Gcp-lH cpG contains all transpositions, the 
simpler proof presented here could be used, making the original side 
trip via primitive groups gratuitous. Stanley's idea, however, is still 
a possible proof method for other networks that lead to less trans
parent groups of realizable permutations. 
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