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Scattering of a Plane Electromagnetic 
Wave by Axisymmetric Raindrops 

By J. A. MORRISON and M.-J. CROSS 

(Manuscript received January 9, 1974) 

This paper gives details of the analytical and numerical procedures used 
to solve the basic problem of the scattering of a plane electromagnetic wave 
by an axisymmetric raindrop. A nonperturbative solution is obtained by 
expanding the scattered and transmitted fields in terms of spherical vector 
wave functions, so that Maxwell's equations are satisfied exactly in the 
regions exterior and interior to the raindrop, and by combining point 
matching with least-squares fitting to satisfy the boundary conditions on 
the surface of the raindrop with sufficient accuracy. 

Numerical results are presented for scattering by oblate spheroidal rain
drops, with eccentricity depending on (and increasing with) drop size, 
for two orthogonal polarizations of the incident wave. The calculations 
were made at 4,11,18.1, and 30 GHz, in the case in which the direction of . 
propagation of the incident wave is perpendicular to the axis of symmetry 
of the raindrop, which is of interest for terrestrial microwave relay systems. 
At 30 GHz, the calculations were also made for the case in which the angle 
between the direction of propagation and the axis of symmetry is 70° and 
50°, since different elevation angles are of interest for satellite systems. 
These basic results were summed earlier over the drop-size distribution to 
calculate the differential attenuation and differential phase shift caused 
by rain, which are of importance in the investigation of cross polarization 
in radio communication systems. 

955 



We also derive the first-order perturbation approximation to the scatter
ing by axisymmetric raindrops that are nearly spherical, which generalizes 
Oguchi's results for spheroidal raindrops with small eccentricity. Some 
simplifications that may be made in his formulas are pointed out. The 
perturbation results serve as a useful check on the least-squares-fitting 
procedure applied to spheroidal raindrops with small eccentricity. In 
addition, considerable improvement is obtained in the closeness of the 
perturbation results to the least-squares-fitting ones, in particular for the 
larger drop sizes, by perturbing about an equivolumic spherical raindrop, 
with appropriate perturbation parameter, rather than perturbing about an 
inscribed spherical raindrop, as did Oguchi. Similar comparisons were 
also made earlier for the rain-induced differential attenuation and differ
ential phase shift, and these quantities were calculated approximately at 
frequencies up to 100 GHz, using the results corresponding to perturbation 
about the equivolumic spherical raindrop. The perturbation results are 
obtained quite inexpensively, whereas the least-squares-fitting procedure is 
very costly. 

I. INTRODUCTION 

In a recent short note, the authors and Chu1 gave calculated results 
of differential attenuation and differential phase shift caused by rain, 
based on scattering of a plane electromagnetic wave by oblate sphe
roidal raindrops. These results are of importance in the investigation of 
cross polarization in radio communications systems. In this paper, we 
give details of the analytical and numerical procedures used to solve 
the problem of scattering by a single raindrop, which were only out
lined in the note. Although the results given in this paper are for 
oblate spheroidal raindrops, the procedures are applicable for axisym
metric raindrops that are not too nonspherical, and calculations could 
be made for raindrops that are more flattened on the bottom than on 
the top, such as for the shapes determined by Pruppacher and Pitter.2 

Two polarizations of the incident wave, designated I and II, are 
considered, as depicted in Fig. 1. The factor e- iwt has been suppressed. 
In the first polarization, the electric field is parallel to the plane con
taining the axis of symmetry of the raindrop and the direction of 
propagation of the incident wave. In the second polarization, the elec
tric field is perpendicular to this plane. The angle between the direction 
of propagation and the axis of symmetry is denoted by a. In terrestrial 
microwave relay systems, a=90° is of main concern, but other values 
of a are of interest for satellite systems. 
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The incident wave induces a transmitted field in the interior of the 
raindrop and a scattered field. In the far field, the quantities of pri
mary interest are the complex forward scattering amplitudes, 3 SI (0) 
and Sn (0). In the two polarizations considered, the polarization of the 
far scattered field in the forward direction is the same as that of the 
incident wave. Also of basic interest are the cross sections of the rain
drop. The total cross sections Q~ and QI1 are given in terms of the real 
parts of the forward scattering amplitudes by eq. (39), where ko is the 
free space wave number. We also calculate the scattering cross sections 
Q~ and Q~I. The absorption cross sections Q~ and Q~I are given in terms 
of the total and scattering cross sections by (38). 

In Section II, we discuss the formulation of the problem of the 
scattering of a plane electromagnetic wave by a single raindrop. 
Spherical coordinates are chosen with polar axis along the axis of sym
metry of the raindrop, and origin interior to it, as in Fig. 2. The scat
tered field is expanded in terms of solutions of the vector wave equa
tion, with wave number ko, which satisfy the radiation condition. An 
analogous expansion is assumed for the transmitted field inside the 
raindrop, in terms of vector wave functions, with wave number kl 
= Nko, which are finite at the origin. Here, N is the complex refrac
tive index of the raindrop. The complex coefficients in the expansions 
are to be determined by satisfying the boundary conditions, namely, 
the continuity of the tangential components of the total electric and 
magnetic fields across the surface of the raindrop. 

In Section III, the incident field is expanded in a (complex) Fourier 
series in the azimuthal angle cpo Because of the axial symmetry of the 
raindrop, the problem can be decomposed and the boundary conditions 
satisfied independently for each term of the Fourier series. In Section 
III, expressions are also given for the forward scattering amplitudes 
and the scattering cross sections in terms of the coefficients in the ex
pansion of the scattered field. In addition, we express the total and 
scattering cross sections for an elliptically polarized incident wave in 
terms of those for the two linearly polarized incident waves under 
consideration. 

In Section IV, we give expressions for the first-order approximations 
to the coefficients in the expansions of the scattered and transmitted 
fields for axisymmetric raindrops that are nearly spherical. These 
results generalize those given by Oguchi4 for spheroidal raindrops with 
small eccentricity. Since our derivation follows closely the one given 
by Oguchi, we omit most details. However, we point out some simplifi
cations that may be made in his expressions. 
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In Section V, we discuss an approximate nonperturbative solution 
to the problem of scattering by an axisymmetric raindrop. For each 
term in the Fourier series expansion in the azimuthal angle cp, the four 
boundary conditions should be satisfied on the cross-sectional bound
ary curve r = R(O), 0 ~ 0 ~ 71', which defines the shape of the rain
drop. Only a finite number of coefficients in the expansions of the 
scattered and transmitted fields is considered. These coefficients are 
determined approximately by requiring the boundary conditions to 
be satisfied in a least-squares sense at a total number of points on the 
cross-sectional curve that is greater than the number of unknown 
coefficients. 

In Section V, we also discuss the advantage of using least-squares 
fitting rather than collocation, in which the total number of fitting 
points is equal to the number of unknown coefficients that are then 
determined by solving a system of simultaneous linear equations. 
After we had completed the calculations for scattering by oblate 
spheroidal raindrops at 4, 18.1, and 30 GHz, a paper was published by 
Oguchi5 in which he carried out similar calculations for ex = 90° at 
19.3 and 34.8 GHz and used collocation for the expansions in terms of 
spherical vector wave functions. At 34.8 GHz, he also used an expansion 
in terms of spheroidal wave functions and truncated the infinite system 
of equations which he derived from the boundary conditions. 

In Section VI, the least-squares-fitting program and some subsidiary 
programs are discussed. The numerical routines used for calculating the 
special functions that enter into the boundary conditions are also 
described. In addition, some indication of the running times involved 
and the storage requirements are given. 

In Section VII, we first discuss the checks that were made on the 
least-squares-fitting program. These include comparison with the Mie 
theory6 of the results of scattering by spherical raindrops at different 
angles of incidence. We also compare extrapolated results for oblate 
spheroidal raindrops with small eccentricity to the first-order perturba
tion results. 

We then discuss our calculations of the scattering by oblate sphe
roidal raindrops, for which the ratio of minor to major semiaxis depends 
linearly on the radius a (in centimeters) of the equivolumic spherical 
drop; specifically, 

alb = (1 - a), ab2 - a3• (1) 

This relationship is similar to that used by Oguchi.4 •5 The rain-induced 
attenuation and phase shift were calculated! for both polarizations by 
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summing the real and imaginary parts of the forward scattering ampli
tudes over the Laws and Parsons drop-size distribution, as quoted by 
Setzer.7 Thus, for rain rates up to 150 milimeters per hour, there are 
14 different drop sizes, (j, = 0.025 (0.025)0.35, to be considered. 

The calculations were done for wavelengths of 7.5, 2.727, 1.6575, 
and 1.0 cm, corresponding to frequencies of approximately 4, 11, 18.1, 
and 30 GHz. The refractive indices N at 20°C were obtained from an 
elaborate fitting equation in a recently published survey8 of available 
measured data (except at 4 GHz, for which older data were used, since 
the calculations at that frequency were made at an earlier date). The 
angle of incidence a was taken to be 90° at 4, 11, and 18.1 GHz, while 
at 30 GHz the calculations were done for a = 70° and a = 50° also. 
The calculated values of the forward scattering amplitudes Sr (0) and 
Srr (0) are given in Tables II to VII, and those of the total cross sections 
Q~ and Q}I and the scattering cross sections Q~ and Q~I are given in 
Tables VIII to XIII. Section VII concludes by discussing some cal
culations using collocation and mentioning some checks on Oguchi's 
calculations at 19.3 and 34.8 GHz. 

In Section VIII, we compare three sets of first-order perturbation 
results with those obtained by least-squares fitting for oblate sphe
roidal raindrops. One set of results corresponds to perturbation about a 
spherical raindrop with radius equal to the length a of the minor semi
axis of the spheroidal raindrop, which was the procedure used by 
Oguchi.4 The other two sets correspond to perturbations about the 
equivolumic spherical raindrop, with different perturbation param
eters that are consistent for small drop sizes. Considerable improve
ment is obtained in the closeness of the perturbation results to the 
least-squares-fit results by perturbing about the equivolumic spherical 
raindrop with the appropriate perturbation parameter. The compari
sons are presented graphically in Figs. 3 to 14. The values of the 
forward scattering amplitude S (0) and the total and scattering cross 
sections Qt and Qs for the equivolumic spherical raindrops are given in 
Tables XIV to XVII. These values are independent of the polarization 
of the incident wave and of the angle of incidence a. 

The three sets of perturbation results for the differential quantities 
Q}~ - Q~ and Im[Sr (0) - Srr (0) ] are compared in Figs. 15 to 23 with 
those obtained by least-squares fitting for oblate spheroidal raindrops. 
Again, considerable improvement is obtained by perturbing about the 
equivolumic spherical raindrop. In a recent short note,9 similar com
parisons were made for the rain-induced differential attenuation and 
differential phase shift. Moreover, these quantities were calculated 
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approximately at frequencies up to 100 GHz, using the two sets of 
results corresponding to perturbations about the equivolumic spherical 
raindrop. The perturbation results are obtained quite inexpensively, 
whereas the least-squares-fitting procedure is very costly. 

The appendices contain some details that it was considered desirable 
to omit from the main text. 

II. FORMULATION OF PROBLEM 

We now consider the problem of scattering of a plane electromag
netic wave by a single raindrop. Suppressing the factor e- iwt , where w 
is the angular frequency, the divergenceless electric and magnetic 
fields E and H satisfy Maxwell's equations1o 

v X E = iw,uoH, v X H = (er - iWE)E, (2) 

where ,uo is the constant permeability, er is the conductivity, and E is 
the dielectric constant. Exterior to the raindrop er = a and E = EO, 

while interior to it er = erl and E = fl. The appropriate boundary con
ditionsll are that the tangential components of the total electric and 
magnetic fields be continuous across the surface of the raindrop. Let 

k2 = W,uO(Wf + ier), (3) 

with Re(k) > O. Then the free space wave number IS ko = W(,uOfO)! 
and the wave number in the raindrop is 

(4) 

where N is the complex index of refraction of water. 
We consider two polarizations of the incident wave depicted in Fig. 

1. We choose Cartesian coordinates (x, y, z) with origin interior to the 

/ 

\t 
Erreiko(xsina + zcosa) 

/ 

"
" EIeiko(xsina + lCOSa) 

Fig. l-Two polarizations of the incident wave. 

/ 
/ 

Sr(O)Er ieikor 

kor 
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raindrop and z-axis coinciding with the axis of symmetry of the rain
drop. The direction of propagation of the incident wave is perpendicu
lar to the y-axis and inclined at an angle a to the z-axis. In the first 
polarization, the magnetic field is assumed parallel to the y-axis and 
the incident fields are given by 

Ei = Er(cos ai - sin ak) exp [iko(x sin a + z cos a)], 

Hi = ~ Ed exp [iko(x sin a + z cos a)], 
WjJ.o 

(5) 

where i, j, and k denote unit vectors parallel to the coordinate axes. In 
the second polarization, the electric field is assumed parallel to the 
y-axis and the incident fields are given by 

and 

Eh = Erd exp [iko(x sin a + z cos a)] 

Hh = -ko Err (cos ai - sin ak) exp [iko(x sin a + z cos a)]. 
wjJ.o 

(6) 

We now consider the problem of representing the scattered and 
transmitted fields induced by the incident wave. It is convenient to 
introduce spherical coordinates (r, e, cp) with corresponding unit vec
tors h, h, and i3 as depicted in Fig. 2. Then the equations 

v X M = kN, VXN=kM (7) 

are satisfied by the spherical vector wave functions, 12 

M (k) = (k) im",[ im plml ( e)·, _ dPh
ml 

(cos e) . ] 
mn Zn resin e n cos 12 de 13 (8) 

and 

Nmn(k) = e<m.l n(n + 1) Zn~~r) pkml (cos e)i. + [Zn~~r) + z:(kr) ] 

X [ 
dPhml (cos e). + hrt plml ( e)·] I. de 12 sin e n cos 13 (9) 

Here Zn denotes a spherical Bessel function13 of order nand Phml de
notes the associated Legendre function14 (of the first kind) of degree n 
and order I m I, where m is a positive or negative integer, and n is an 
integer with n ~ I m I and n ~ o. The prime denotes derivative with 
respect to the argument. As a matter of convenience, we have chosen 
to use complex linear combinations of the even and odd spherical 
vector wave functions. 12 
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~o / 
I "~ /' -- ,'./" ---t/ .,./ / /1':.:::- __ _ 

~ I '''', 
/ - - ¢ ___ r", 

./' I " 
I 

Fig. 2-Cartesian and spherical coordinates. 

Outside the raindrop, the total electromagnetic field is the sum of 
the incident field of the plane wave and the scattered field. The scat
tered field must satisfy the radiation condition and, consequently, in 
view of eqs. (2), (3), and (7), we assume expansions of the form 

and 

00 

Es = - L L [amnM~~(ko) + bmnN~~(ko)J (10) 
m=-oo n!:?;lml 

nr!O 

H8 = iko t L [amnN~~(ko) + bmnM~~(ko)J, (11) 
WJ.l.Om=-oo n~lml 

nr!O 

where the superscript 3 denotes that spherical Bessel functions of the 
third kind, i.e., spherical Hankel functions of the first kind, are used. 
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Thus, in (8) and (9), zn(kor) = h~I) (kor). For kor» 1, 

( _i)nH 
hAl) (kor) /'"<V k eikor, 

or 

so that the expansions in (10) and (11) involve outgoing waves. 

(12) 

Analogous expansions are assumed for the transmitted field inside 
the raindrop except that, since the origin of the coordinate system is 
interior to the raindrop, spherical Bessel functions of the first kind 
must be used so that the field remains finite at r = O. Also, the wave 
number inside the raindrop is kI, as given by (4). Thus, we assume ex
pansions of the form 

and 

00 

L L [cmnMg~(kl) + dmnNg~(kl)J 
m=-oo n~lml 

n¢O 

(13) 

Ht = ikl t L [cmnNg~(kl) + dmnMg~(kl)J, (14) 
WJ.l.Om=-oo n~lml 

n¢O 

where the superscript 1 indicates that Zn (klr) = jn (klr) in (8) and (9). 
The unknown (complex) coefficients amn, bmn, Cmn, and dmn in (10), 

(11), (13), and (14) must be determined from the boundary conditions. 
The surface of the raindrop is given by 

r = R(O), (15) 

where it is assumed that R (0) is a single-valued, continuously differ
entiable function of o. The continuity of the tangential components of 
the total electric and magnetic fields across the surface of the raindrop 
implies that, for r = R(O), 

EJ + E~ = E~, 

HJ + H~ = H~, 

Ei + E~ + ~ ~~ (E 1 + ED = E~ + ~ ~~ Ei, 

H i + HS + 1 dR (H i + HS) Ht + 1 dR Ht 
2 2 R dO 1 1 = 2 R dO 1, 

(16) 

(17) 

(18) 

(19) 

where E j = E ·i j and H j = H ·i j and the incident fields Ei and Hi 
are given by (5) or (6). 
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III. FAR-FIELD QUANTITIES 

Because of the axial symmetry of the raindrop, it is convenient to 
expand the incident plane wave in a (complex) Fourier series in the 
azimuthal angle cp, and we write 

00 00 

Ei= L em(r,O)eim'l', Hi = L h m (r, O)eim'l'. (20) 
m=-oo m=-oo 

It follows from (5) and (6) that 

e~,(r, 0) = EIfm(r, 0), h~(r, 0) 
ko (21) = EI - gm(r, 0) 

WfJ.o 

and 

e~ (r, 0) = Engm (r, 0), h~(r, 0) = -En ~ fm(r, 0), 
WfJ.o 

(22) 

where expressions for fm(r, 0) and gm(r, 0) are derived in Appendix A 
and are given by eqs. (79) and (80). 

If the boundary conditions (16) to (19) are multiplied by e-im'l' and 
integrated with respect to cp from 0 to 271", then a set of four equations 
involving the unknown coefficients amn , bmn , Cmn , and dmn is obtained 
for each m. These equations are given by (81) to (84) in Appendix A, 
where we have used the notations emi = em ·ii and hmi = h m ·ii' It 
follows readily from (21), (22), and (79) to (84) that, for the first 
polarization of the incident wave, 

a~mn = - a~n, 

C~mn = -C~n, 

and for the second polarization 

a~mn = a~n, 
C~mn = C~n 

b~mn = b~n, 
d~mn = d~n, 

b~mn = -b~n, 

dl!:,mn = -d~n. 

Thus, it is sufficient to consider only nonnegative values of m. 

(23) 

(24) 

I t is worth noting that, if the raindrop is symmetrical about the 
plane 0 = 71"/2, i.e., R(7I" - 0) = R(O),O ~ 0 ~ 71"/2, then some further 
reductions may be made. In particular, in the case a = 71"/2, it is found 
that 

and 

a~.lml +2s+1 = 0 = C~,lml +2s+1, 

b~,lml +2s = 0 = d~,lml +2s, 

a~,lml +2s = 0 = C~,lml +2s, 

b~,lml +2s+1 = 0 = d~,lml +2s+1, 

(25) 

(26) 

for s = 0, 1, 2, ... , so that alternate coefficients vanish. Reductions 

964 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1974 



may still be made in the case of a -:;t. 71"/2 by considering the sum and 
the difference of the boundary conditions corresponding to a and to 
a = (71" - a), as shown in Appendix B. We have not utilized these 
reductions in the program for calculating the unknown coefficients, 
since we wanted the program to be applicable to raindrops without a 
meridional plane of symmetry, that is, those raindrops flattened more 
on the bottom than on the top. However, (25) and (26) served as a 
useful check on the program in the calculations for spheroidal rain
drops with a = 7r/2. 

We describe in Section V how we obtain approximate values of (a 
finite number of) the coefficients amn, bmn, Cmn , and dmn, but we now 
turn to the quantities of physical interest. We consider only the far 
scattered field, so that kor » 1. Thus, we restrict our attention to the 
leading term in the asymptotic expansion of the spherical Bessel func
tion of the third kind, as given by (12). Also, it follows that 

hAl) I (kor) ,-...; (-k i)n eikor. 
or 

Then, from (8) to (11), it is found that 

kore-ikorE8 

,-...; ~ "(_ ')n+lj [dPhml 
(cos e), _ im plml ( e)'] 

.t...J .t...J ~ amn de 13 . () n cos 12 
m = - 00 n ~ I m I sIn 

nr!O 

-'b [dPhml 
(cos e), + im plml ( e)'] 1 imrp 

~ mn de 12 sin e n cos 13 e 

and 

(27) 

(28) 

(29) 

Of particular interest are the scattered fields in the forward direction, 
corresponding to e = a, cP = 0, for which, from (76), 

(cos ai - sin ak) = iz, (30) 

From (5), (6), (23), (24), and (28) to (30), it follows that the far 
scattered field in the forward direction has the same polarization as the 
incident wave for either polarization. The forward scattering ampli
tudes are3 

8 r (0) = E1 (cos ai - sin ak), lim {- ikore-ikorE~ IO=a, rp=o} (31) 
r r-> 00 

and 

8 u (0) = ~ j' lim {-ikore-ikorEh IO=a, rp=o} , (32) 
Eu r-> 00 
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Thus, for the first polarization of the incident wave, 

co 
EISI(O) = L L (_i)n-I 

m=-co n~lml 
n~O 

X [ I .~ plml ( ) + bI dPh
ml 

(cos a) ] 
amn sin a n cos a mn da 

and for the second polarization, 

EIISII(O) 
co 

L L (_i)n+2 
m=-co n~lml 

n~O 

X [ II dPh
ml 

(cos a) + bII .~ plml ( )] 
amn da mn sin a n cos a . 

The energy scattered by the raindrop isI5 

(33) 

(34) 

where the asterisk denotes complex conjugate. The calculation of W 8, 
using the asymptotic form of the scattered fields given by (28) and 
(29) and letting r ~ 00, is outlined in Appendix C. It is found that 

W3 = ~ t L n(n + l)(n + 1m!)! (lamnl 2 + Ib mn I2). (36) 
wfJ,okom=-con~lml (2n+l)(n-lm!)! 

The scattering cross section Q8 is defined as the ratio of the scattered 
energy flow to the mean energy flow of the incident wave per unit area. 
Thus,I5 

(37) 

The total (extinction) cross section is the sum of the scattering and 
absorption cross sections, so that 

(38) 

(We note that van de HulstI6 uses the notations Cext, C.ca, and Cab. for 
Qt, Q8' and Qa, respectively.) It is "known"17 that 

Q~ = !~ ReSI(O), QII = !~ ReSII(O), (39) 

so that (38) may be used to determine the absorption cross sections Q~ 
and Q~I. The relations (39) which are consistent with the optical 
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theorem may be verified directly from the relations 

Q
I _ 2wJ.LoW~ 
t - koErE; , (40) 

and the expression for the total energy15 

W t = ~ Re 102r lor [Ei(Hi) * + EHH i )* 

- EJeH3)* - EHHi)*Jr2 sin ederlcp, (41) 

and a few of the details are given in Appendix C. 
Let us now consider an (in general) elliptically polarized incident 

wave that is the sum of the two linearly polarized incident waves 
under consideration; i.e., 

Ei = El + Eh (42) 

Then the scattered electric field is 

(43) 

and, as shown in Appendix C, 

(ErE;Q~ + EnE;IQ~I) Q 8 = --'------:--------;;;--------:;;--:--
(ErE; + EnE;!) 

(44) 

and 

(ErE;Q~ + EnE;IQP) Q t = --'---~:;:------:;:----'-
(ErE; + EnE;I) 

(45) 

Since for polarizations I and II the far scattered field in the forward 
direction has the same polarization as the incident wave, it follows from 
(31), (32), and (43) that the far scattered field in the forward direction 
for the elliptically polarized incident wave is given by 

ie ikOT 

Eslo=a, q>=O '"'" kor [ErSr(O)(COS ai - sin ak) + EnSn (O)jJ. (46) 

Thus, from (39) and (44) to (46), it suffices to calculate Sr (0), Sn (0), 
QJ, and Q1I. The relation between the polarizations of the incident field 
and the far scattered field in the forward direction may be determined 
from (42) and (46), using (5) and (6). 

IV. FIRST-ORDER PERTURBATION THEORY 

Oguchi considered spheroidal raindrops with small eccentricity and 
carried out a perturbation expansion originally determining the first-
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order approximation4 and later the second-order one. IS We have cal
culated the first-order approximation for axisymmetric raindrops that 
are nearly spherical, so that the surface of the raindrop is given by 
r = R(O), 0 ~ 0 ~ 7r, where 

R(O) = a[l + VCT1(O) + ... ], I v I « 1. (47) 

Our derivation follows closely the one given by Oguchi. 4 Since the cal
culations are somewhat lengthy and involved, we merely outline the 
procedure, state the results, and point out some simplifications that 
may be made in the expressions given by Oguchi. 

The incident wave may be expanded in terms of spherical vector 
wave functions,4·19 and the expansions are given by eqs. (116) and (117) 
in Appendix D. These expansions are consistent with those given by 
Oguchi, but the reader should bear in mind that, in addition to using 
the even and odd spherical vector wave functions, Oguchi has as
sumed the time factor e+ iwt , and his waves propagate in the opposite 
direction to ours. Corresponding to (47), the coefficients in the expan
sions (10), (11), (13), and (14) are expanded in the form 

amn = a;g~ + va;;~ + ... , bmn = b;g~ + vb;;~ + ... , (48) 

Cmn = c;g~ + vc;;~ + ... , dmn = d;g~ + vd;;~ + .... (49) 

Appendix D indicates how these coefficients may be determined from 
the boundary conditions (81) to (84). 

The zero-order approximation, with v = 0 in (47), corresponds to a 
spherical raindrop of radius a. We have, for n ~ I m I and n ~ 0, 

(50) 
and 

(51) 

where 

a~n - in+I(2n + l)(n - I m I)! m plml ( ) i{3~n (52) 
Er = n(n + l)(n + Iml)! sina n COSa = Err ' 

(3:nn -in+1(2n + 1) (n - I m I) ! dPhml (cos a) _ ia~n 
Er = n(n + l)(n + Im/)! da - Err ' 

(53) 

and expressions for the quantities an, bn, Cn, and dn (which do not depend 
on the polarization) are given by eqs. (119) to (122) in Appendix D, 
where p = koa and the functions Fn(~) and Gn(~) are defined in (118). 
For a = 0, the coefficients vanish unless I m I = 1, and the well-known 
Mie solution6 is recovered. 
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The first-order corrections to the coefficients are given by 

and 

where 

(54) 

(55) 

(56) 

Y mn = (N2 - 1)p3dn L [C~? jz(N p)J;J - id~?Gz(N p)I;;], (58) 

and 

l~lml 
l~O 

Zmn = -i(N2 - 1)pdn L d~?iz(N p)H-:Z. 
l~lml 
l~O 

(59) 

The quantities H-:Z, 1:3, and J:3 in (57) to (59) involve integrals over 
the perturbation of the raindrop surface from the sphere. Specifically, 

2(n+ 1m!)! Hm m 
(2n + 1)(n - Iml)! nl = Xnl 

== l(l + 1) 107r 
pjml (cos O)Phml (cos 0) sin OCTl(O)dO, (60) 

2n(n + 1)(n + Iml)! 1m _ m 

(2n+1)(n-lm!)! nl-gnl 

== {'If" [ dPjm l (cos 0) dPhml (cos 0) 
Jo dO dO 

m
2 

] + ~O pjml (cos o)p1ml (cos 0) sin OCTl(O)dO, 
sm 

and 

2n(n + 1)(n + Iml)! Jm _ g]m 
(2n + 1)(n - I m I) ! nl - nl 

= {7r [pjm l ( 0) dPh
ml 

(cos 0) - m Jo cos dO 

(61) 

+ dPjmld~os 0) Phml (cos 0) ] CT l(O)dO. (62) 

The above results were obtained after considerable algebra and 
after using the simplifications given in eqs. (125) to (131) in Appendix 
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D. The expressions in (54) to (56) hold for both polarizations of the 
incident wave, and the only quantities therein that depend on the 
polarization are the zero-order coefficients c}g? and d}g?, which enter into 
the expressions given in (57) to (59) and are given by (51) to (53). 
In general, there are infinitely many terms in the sums in (57) to (59), 
but in particular cases there are only a finite number of terms. 

Thus, for a spheroidal raindrop with 

R((J) = a(l - v sin2 (J)-! = a(l + !v sin2 (J + ... ), (63) 

we have (J"1((J) = ! sin2 (J, from (47). The integrals in (60) to (62) may 
be evaluated explicitly, and it is found that Hr:/! and lJa vanish unless 
l = n, n + 2, or n - 2, and J?;J vanishes unless l = n - 1 or n + 1. The 
explicit expressions for these quantities are given by eqs. (137), (139), 
and (142) in Appendix E, in which OZn denotes the Kronecker delta, 
i.e., OZn = 1 for l = n, and 0 otherwise. We have verified that our results 
for the spheroid are consistent with those of Oguchi,4 provided that 
simplifications corresponding to those in eqs. (123) and (127) to (130) 
are made in his expressions, and due allowance is made for the differ
ences in notation. We remark that similar simplifications may be made 
in Oguchi's expressions even in the case in which the permeability of the 
spheroid differs from the free space value. 

As is seen later, it is advantageous to obtain the first-order approxi
mation for a spheroidal raindrop by perturbing about the equivolumic 
sphere, rather than the inscribed sphere as Oguchi4 did. If a is the 
radius (in centimeters) of the equivolumic sphere, then, from (1), 

a = 0,(1 - o,)i, v = 0,(2 - a). 

Hence, from (63), 

R((J) = 0,[1 + 2o,(! sin2 (J - i) + 0(o,2)J 
= 0,[1 + v(! sin2 (J - i) + 0(v2)]. 

(64) 

(65) 

We must now replace p by p = koo, and add terms to the expressions in 
(60) to (62) corresponding to if1 ((J) = - i. It is readily found, using the 
orthogonality relation for the Legendre functions 14 and equations (102) 
and (103), that these additional terms correspond to 

fir:/! = -in(n + l)ozn, 1~ = -iozn, J~ = O. (66) 

We also remark that the use of the perturbation parameter v = 20" 
rather than v as given by (64), generally gives better results for the 
larger drop sizes. 
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V. LEAST-SQUARES-FITTING PROCEDURE 

We now discuss the calculation of an approximate nonperturbative 
solution of the scattering problem. As mentioned in Section III, it is 
sufficient to determine the unknown coefficients for nonnegative values 
of m and then to use the relationships in (23) or (24). For m = 0, 1, 2, 
.. " the boundary conditions in (81) to (84) take the form 

Kmq(O) - L [amnAmnq(O) + bmnBmnq(O) 
n~m 
n~O 

for q = 1, 2, 3, 4 and 0 ~ 0 ~ 7r, where 

iwfJ.O 
K m2 (O) = ko hm3 (R(O), 0), (68) 

1 dR 
K m3 (O) = em2(R(0), 0) + R(O) dO eml(R(O), 0), (69) 

and 

(70) 

The function R (0) describes the shape of the raindrop. The functions 
emj = em ·i j and hmj = h m ·i j are given by (21) or (22), depending on 
the polarization of the incident wave, where expressions for fm(r, 0) 
and gm(r,O) are given by (79) and (80). The functions Amnq(O), 
Bmnq(O), Cmnq(O), Dmnq(O), which do not depend on the polarization, 
involve the spherical Bessel functions of the first and third kinds and 
the associated Legendre functions and the derivatives of each of these 
functions. In view of (4), the argument of the spherical Bessel functions 
of the first kind is complex. 

For each m there are infinitely many unknown coefficients amn, bmn , 
Cmn' and dmn. To obtain an approximate solution, only a finite number 
of coefficients is considered. One procedure is to truncate the sum in 
(67) at n = No, say, and then to satisfy the boundary conditions at 
the points 0 = Olm, l = 1, "', (No - m + 1 - OmO), which are ap
propriately selected, e.g., uniformly spaced in the interval 0 to 7r. This 
was the procedure adopted by Oguchi,5 and it leads to a system of 
simultaneous linear equations for the coefficients. We refer to this pro
cedure, in which the total number of fitting points is equal to the 
number of unknown coefficients, as collocation. 

The method of collocation was used by Mullin et al,2o for the much 
simpler two-dimensional scalar problem of scattering by a perfectly 
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conducting cylinder of smooth contour, which is not a gross perturba
tion from the circular. In this problem, there is only one set of unknown 
coefficients to be determined, namely, that occurring in the expansion 
of the scattered field. Mullin et aI. checked the results for the circular 
cylinder obtained by collocation with the known analytical results and 
also considered elliptic cylinders (with ratio of minor to major axis of 
~, in particular). Before tackling the raindrop problem, we considered 
the same problems as Mullin et aI., but combined point matching with 
least-squares fitting. 

Thus, instead of using collocation, we satisfied the (single) boundary 
condition in a least-squares sense at a larger number of points than the 
number of unknown coefficients in the truncated expansion of the 
scattered field. We found that a significant improvement could be 
obtained in the overall fit of the boundary condition, although the far 
field quantities were not affected as significantly. This is because the 
higher-order coefficients are more significant on the boundary than in 
the far field. However, the accuracy of the lower-order coefficients is 
affected by the goodness of fit of the boundary condition. With colloca
tion, there were much larger errors in the boundary condition (in 
between the fitting points) than with least-squares fitting with a suffi
ciently large number of points. 

Since the fit of the boundary condition for the elliptic cylinder be
comes poorer with increasing eccentricity, we considered it desirable 
to use least-squares fitting rather than collocation for the raindrop 
problem. Thus, in order to approximately satisfy the boundary condi
tions (67), we minimized the quantities 

4 Am N", 

Ll m == L: W mq L: I Kmq(OZm) - L: [amnAmnq(Ozm) 
q=l l=l n=m 

n~O 

for each Tn = 0, ... , M, with respect to the (complex) coefficients a mn, 

bmn , emn , and dmn, where W mq > ° are appropriate weights and Olm are 
appropriate points in the interval ° to 7r. It is assumed that 

(72) 

so that the total number of fitting points is not less than the number 
of unknown coefficients to be determined. In the case of equality in 
(72), least-squares fitting is equivalent to collocation. 

The programs for carrying out least-squares fitting and for calculat
ing the special functions occurring in the functions in (71) with argu-
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ment elm are described in the next section. Actually, more flexibility was 
built into the least-squares-fitting program, allowing for truncation of 
the sums in (67) at different limits for each of the coefficients amn , bmn , 

Cmn' and dmn , and for Am and elm in (71) to depend on q, so that each of 
the four boundary conditions could be fit at different points, and in 
particular at a different number of them. It was anticipated that the 
least-squares-fit subroutine might become overloaded, in which case 
it would be desirable to hold the number of coefficients to a minimum. 
It turned out, however, that the subroutine was able to handle almost 
100 (complex) coefficients without difficulty. Similarly, it might be 
desirable to keep the total number of fitting points to a minimum, and 
hence to use fewer fitting points for those of the four boundary condi
tions that are easier to fit. Again, it was not found necessary to do this 
for the calculations carried out so far. 

For the calculations of this paper we took the weights to be inde
pendent of m and q, i.e., W mq == 1, since it was generally found that the 
difference was tolerable between the magnitudes of the maximum error 
in the fit of each of the four boundary conditions. We at first considered 
factoring out (sin o)m-t, for m ~ 2, from the boundary conditions (67), 
but decided against it since we felt that the absolute, rather than the 
relative, error in the fit of the boundary conditions was important. 
However, because of the presence of this factor, we did experiment 
with unequally spaced fitting points which were closer together in the 
neighborhood of 11' /2. We decided that equally spaced fitting points 
would suffice, provided that enough were used. The total number of 
fitting points was usually taken to be slightly more than twice the num
ber of unknown coefficients, i.e., Am > 2(N m - m + 1 - Omo). 

Generally, N m, the upper limit of n in (71), was taken to be inde
pendent of m, i.e., N m == No, m = 0, "', M. The choice of No and M 
depended both on drop size and on frequency. The choice of M was 
based on the rate of convergence of the outer sums in the expressions 
in (33), (34), and (36) for the far field quantities. On the other hand, 
to ensure the accuracy of the lower-order terms in the inner sums, it is 
necessary to take more terms in n than are really needed in the cal
culation of the far field quantities. A convergence test was carried out 
by doing the calculations for N m = No, (No + 2) and (No + 4). 

VI. NUMERICAL ROUTINES 

The program to compute the complex coefficients amn , bmn , Cmn' dmn , 

the scattering cross section Qs, and the forward scattering amplitude 
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S (0) for the two polarizations of the incident wave is written in Fortran 
IV for a Honeywell 6070 computer. It uses the complex arithmetic and 
math routines (such as sin, cos) written for that system. The program 
is written as a three-part package; the first part consists of a driver 
routine which sets up core storage for the least-squares matrix and 
associated vectors and the following subroutines: 

L2FIT-The main subroutine which computes the elements of the 
complex matrix for input to the least-squares-fitting pro
cedure and controls the other subroutines. 

CLSTSQ-Computes a least-squares fit for a linear system with com
plex coefficients; the algorithm and Fortran routine were 
written by P. Businger of Bell Laboratories. 

BJYNC-Computes the Bessel functions J n(Z), Y n(Z), for Z complex, 
n a nonnegative integer; the algorithm and Fortran sub
routine package were written by E. Sonnenblick of Bell 
Laboratories. 

SBES-Computes the spherical Bessel functions jn(X), Yn(X), x real, 
n a nonnegative integer. 

CSB-Computes the spherical Bessel function jn(Z), Z complex, 
n a nonnegative integer. 

SLEG-Computes the associated Legendre functions P';; (cos 0), m, 
n nonnegative integers. 

The second part of the package is the routine 

SQS-Computes the forward scattering amplitude S (0) and the 
scattering and total cross sections Qs, Qt for both polariza
tions from the least-squares-fit solutions. 

The third part is a computational check on the least-squares fit. It 
consists of a driver routine as in the first part, the function subroutines 
BJYNC, SBES, CBS, SLEG, and the main subroutine 

CHECK-Checks the accuracy of the least-squares computation of 
amn, bmn, Cmn' dmn by using these coefficients to compute the 
boundary fit at points in addition to those used to obtain 
the coefficients. 

The internal computations of all the subroutines except CSB (see 
detailed description below) are done in double-precision arithmetic; 
on the Honeywell 6070 this means 18 digits are used for all computa
tions. The function values (Bessel, spherical Bessel, Legendre), how-
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ever, are returned as single-precision numbers (8 digits), since the 
accuracy of any more digits could not always be guaranteed. 

The main subroutine, L2FIT, sets up the complex matrix to mini
mize the quantities (71). Instead of the limit N m in (71), the program 
actually breaks the summation on n into four parts, using limits am, 
f3m, I'm, Om for the coefficients amn, bmn , Cmn' dmn , respectively; further, 
it replaces the limit "'m in the sum on l with four limits, "'mq. Thus, for 
each m = 0, 1, "', M the matrix equation to be minimized takes the 
form IIA·x - bll ~ 0, where A is an L-by-N matrix with L, N, which 
are both dependent on m, defined as follows: 

4 

L = L "'mq 
q=l 

and 

N = am + f3m + I'm + Om - 4(m. - 1 + OmO). 

Although the basic functions (Bessel, Legendre, and derivatives of 
these) are returned to L2FIT in single precision, the calculations of the 
elements A mnq, B mnq, Cmnq, Dmnq in the least-squares matrix and Kmq 
in the vector of constants, b, are carried out and left in double precision 
for input to the least-squares-minimization program. To facilitate 
changing the raindrop shape and spacing of points on the boundary, 
the quantities fhm and R «()lm) are computed in subroutines called by 
this routine. 

The routine CLSTSQ uses elementary Hermitian (or Householder) 
transformations to compute a linear least-squares solution to the 
equation IIA· x - b" = min. The algorithm is an adaptation of an 
algorithm for a real matrix written by P. Businger and G. H. Golub.21 

The routine CHECK uses the coefficients amn, bmn , Cmn' dmn from 
CLSTSQ as input into the expressions in (67) to compute the fit of 
the boundary conditio~ in between the fitting points as well as at the 
fitting points. The goodness of this fit provides a check on the accuracy 
of the computed coefficients. 

The computation of the elements for the least-squares matrix and 
constant vector requires values of In(x), jn(X), Yn(X), jn(Z), P'!:(cos (), 
where x and () are real, Z is complex, and nand m are nonnegative 
integers. The routine to compute J n(X), BJYNC22 uses a downward 
recursion scheme (compute J N, J N-l, "', J 0) for I x I > 0.1 and uses 
the power series expansion of J n (x) for I x I ~ 0 .1. Comparison of the 
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results of this routine with tables in Abramowitz and Stegun23 for x 
values ranging from ° to 5 yielded complete agreement in all cases. 

The real spherical Bessel functions, jn(X) and Yn(X), are computed 
recursively in the routine SBES using the algorithm of D. S. Drum
heller,24 an improved version of Miller's algorithm. 

Miller's algorithm for jn(X) is: Let gN+I(X) == 0, gN(X) = 10-20 (some 
small fixed number); generate gN-I(X), "', go(x) from the recurrence 
relations, gn-I (x) = (2n + 1)x-1gn (x) - gn+1 (x), satisfied by the 
spherical Bessel functions ;25 compute .io(x) = X-I sin X; normalize ,il (x) 

jo(x) 
= gz(x)._(-) , l = 0, 1, "', N. 

go x 
Drumheller's algorithm generates ascending orders of Yn(X) re

cursively, starting from Rayleigh's formulas25 for Yo(x), YI(X) up to 
some order N, where N is strictly limited only by the relation 

YN(X) ~ max - the largest number the computer can handle 
(for the Honeywell 6070, max ~ 1038). 

Letting 

the algorithm then generates fN-2(X), "', fo(x) recursively, using the 
recurrence relations satisfied by the spherical Bessel functions. Al
though, as Drumheller points out, foex) = jo(x) to some degree of 
precision (determined to a large extent by N), to ensure exactness in 
the lower orders of jn(X) and to shift any error to the higher-order, 
smaller-magnitude terms, we calculate jo(x) exactly and normalize 
ji (x), "', jN(X) as in l\liller's algorithm. We compared these results 
to tables in Abramowitz and Stegun26 and in the U. S. Math Tables 
Project27 for the values of n and the range of x used in the least-squares 
fitting, and the agreement was excellent. 

The complex spherical Bessel function, jn(Z), is computed in the 
routine eSB, using an algorithm designed by A. E. Kaplan,28 since 
Drumheller's (or l\liller's) recursive algorithm yields inaccurate results 
for complex arguments with a significant imaginary part. Kaplan uses 
a Taylor series expansion to compute jN(Z), jN-I(Z), with N~ IzI2 
for best results, then uses the backward recursion and normalization 
techniques discussed above to generate jN-2(Z), "', jo(z). The use of 
the Taylor series for "large" complex arguments produces better start
ing values and, therefore, more accurate recursion results than either 
Drumheller's or Miller's algorithm. A "large" complex argument in 
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this case is one such that I z I ~ 9; for I z I < 9, we use Drumheller's 
algorithm directly. In this routine, complex arithmetic is used for all 
internal computations; thus, since the Honeywell 6070 does not have 
double-precision complex arithmetic, all computations are in single 
precision. The accuracy of the results of this routine was checked by 
the following comparisons: 

(i) For z real, they were compared to the spherical Bessel functions 
in Abramowitz and Stegun26 and to results from SBES. 

(ii) For z pure imaginary, they were compared (multiplied by ap
propriate factors) to the modified spherical Bessel functions 
of the first kind in Abramowitz and Stegun.29 

(iii) For z any complex number, they were compared to Rayleigh's 
formulas25 of order 0, 1,2 (a straight computation of Rayleigh's 
formulas produces inaccurate values for higher orders). 

For all values of z (from I z I = ° to I z I = 50) and for order n as large 
as we could compute (or as large as we could compare to in tables or 
formulas), this routine produced answers agreeing in six to eight 
decimal places with the other results. 

The associated Legendre function pr;: (cos 0) is computed directly 
from its series expansion, in powers of sines or cosines, as given by 
L. Robin. 30 It should be noted here that we use the following definition 
for P~(cos 0), 

P m( ) _ ( l)m' m dmp n(COS 0) 
n cos 0 - - sm 0 d (cos 0) m , 

whereas Stratton31 omits the factor (-l)m. Comparison of the results 
of this routine to explicit formulas for m ~ 4, n ~ 7 yielded eight 
places of agreement. Further checks of this routine against tables given 
by S. L. Belousov32 and tables in the U. S. Math Tables Project33 were 
done by S. Hoffberg for the values of m and n used in the least-squares 
fitting; her results also found complete agreement in all cases. 

In the scattering problem, the matrix and vector sizes, as well as 
the highest order needed for the functions, depend on drop size and 
frequency; the sizes required by these parameters are discussed in the 
next section. Here, we give approximate running times for each of the 
three parts of the package and give some feeling for the correlation of 
the least-squares matrix size and the limit max m with the overall core 
storage and run time in the first part. In (71), we generally took N m 

== No, and Am dependent upon No and decreasing with m (for m ~ 1). 
Then the largest matrix size occurs when m = 0, and is thus a function 
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of No alone. Tabulated below are some typical storage and run time 
figures for the least-squares fit. 

Largest Approximate Approximate 
maxm No Matrix Size Storage Run Time (hours) 

6 13, 15, 17 164 X 68 70K 0.13 
7 15, 17, 19 180 X 76 80K 0.2 
8 19,21,23 212 X 92 103 K 0.39 

In each of the above cases, we computed a set of coefficients amn, bmn, 

Cmn , dmn, n = m, "', No (n :¢ 0), for m = 0, 1, "', max m, and for 
each of the three values of No. 

The second and third parts require much less storage because neither 
requires a large storage matrix. The total core requirement to run SQS 
is 12 K; it computes the quantities S(O), Qs, Qt in typical1y less than 1 
second. The third part uses 35 K to do the calculations for 428 rows and 
92 columns (more rows are needed because the boundary fit is checked 
at () values in addition to those used to obtain the coefficients); to 
check the L2FIT results for No = 23 required approximately 0.05 
hours. 

As a final note, we save the coefficients computed from L2FIT on 
magnetic tape. At first, all coefficients were written on tape and the 
second and third parts used the tape as input; this proved very in
efficient, due in part to the high cost of tape usage and in part to the 
fact that we were saving all data generated. We switched to writing 
the data from each run of L2FIT onto a high-speed disc file, using this 
as input to the other two parts; this change resulted in a noticeable 
cost reduction and allowed us to permanently save only the best data. 

Table I - Raindrop parameters for different drop sizes 

a(cm) a(cm) v 

0.025 0.02458158 0.049375 
0.05 0.04831913 0.0975 
0.075 0.07120149 0.144375 
0.1 0.09321698 0.19 
0.125 0.11435330 0.234375 
0.15 0.13459757 0.2775 
0.175 0.15393617 0.319375 
0.2 0.17235477 0.36 
0.225 0.18983822 0.399375 
0.25 0.20637045 0.4375 
0.275 0.22193444 0.474375 
0.3 0.23651206 0.51 
0.325 0.25008398 0.544375 
0.35 0.26262956 0.5775 
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Table II - Forward scattering amplitudes at 4 GHz 
with a = 90 0 for different drop sizes 

d(em) 

0.025 
0.05 
0.075 
0.1 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.275 
0.3 
0.325 
0.35 

SI(O) 

6.9215 X 10-8 - 8.6909 X 1O-6i 
5.8893 X 10-7 - 6.8473 X 1O-5i 
2.2523 X 10-6 - 2.2822 X 1O-4i 
6.3705 X 10-6 - 5.3582 X 1O-4i 
1.5414 X 10-5 -1.0399 X 1O-3i 
3.3841 X 10-5 - 1.7918 X 1O-3i 
6.9433 X 10-5 - 2.8484 X 1O-3i 
1.3555 X 10-4 - 4.276 X 1O-3i 
2.551 X 10-4 - 6.154 X 1O-3i 
4.68 X 10-4 - 8.59 X 1O-3i 
8.45 X 10-4 - 1.170 X 1O-2i 
1.51 X 10-3 - 1.57 X 1O-2i 
2.72 X 10-3 - 2.08 X 1O-2i 
4.9 X 10-3 - 2.7 X 1O-2i 

VII. LEAST-SQUARES-FITTING RESULTS 

SII(O) 

7.3309 X 10-8 - 8.9487 X 1O-6i 
6.5803 X 10-7 - 7.2647 X 1O-5i 
2.6370 X 10-6 - 2.4970 X 1O-4i 
7.7684 X 10-6 - 6.0510 X 1O-4i 
1.9518 X 10-5 - 1.2134 X 1O-3i 
4.4527 X 10-5 - 2.1630 X 1O-3i 
9.5324 X 10-5 - 3.5628 X 1O-3i 
1.9565 X 10-4 - 5.552 X 1O-3i 
3.916 X 10-4 - 8.318 X 1O-3i 
7.77 X 10-4 - 1.212 X 1O-2i 
1. 553 X 10-3 - 1. 735 X 1O-2i 
3.20 X 10-3 - 2.46 X 1O-2i 
6.96 X 10-3 - 3.47 X 1O-2i 
1.63 X 10-2 - 4.8 X 10-2£ 

We begin by discussing the different ways in which the least-squares
fitting program was checked. First, calculations were carried out at 
both 4 and 34.8 G Hz for centered spherical raindrops, corresponding 
to R(O) == a in (15). The results were compared with the calculations 
based on the zero-order solution given in Section IV, corresponding to 
II = 0 in (47). Comparison was made for several values of a and differ
ent values of a, and excellent agreement was obtained for the far-field 
quantities, generally to six or seven significant figures. As expected, 
the far-field quantities are independent of the angle of incidence a. 

Table III - Forward scattering amplitudes at 11 GHz 
with a = 90 0 for different drop sizes 

d(em) 

0.025 
0.05 
0.075 
0.1 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.275 
0.3 
0.325 
0.35 

SI(O) 

4.8189 X 10-6 - 1.8194 X 10-4£ 
5.9423 X 10-5 - 1.4657 X 1O-3i 
3.6151 X 10-4 - 5.0737 X 1O-3i 
1.6675 X 10-3 - 1.2532 X 1O-2i 
6.5377 X 10-3 - 2.5280 X 10-2£ 
2.0109 X 10-2 - 4.0292 X 1O-2i 
3.7203 X 10-2 - 4.7914 X 10-2£ 
4.735 X 10-2 - 5.734 X 1O-2i 
5.958 X 10-2 -7.504 X 1O-2i 
7.67 X 10-2 - 9.68 X 1O-2i 
9.89 X 10-2 - 1.225 X 1O-1i 
1.29 X 10-1 - 1.51 X 1O-1i 
1.67 X 10-1 - 1. 78 X 1O-1i 
2.1 X 10-1 - 2.0 X 1O-1i 

SII(O) 

5.0841 X 10-6 - 1.8734 X 10-4£ 
6.5120 X 10-5 - 1.5555 X 1O-3i 
4.0920 X 10-4 - 5.5577 X 1O-3i 
1.9652 X 10-3 - 1.4186 X 1O-2i 
8.0766 X 10-3 - 2.9419 X 1O-2i 
2.4674 X 10-2 - 4.6783 X 1O-2i 
4.1732 X 10-2 - 5.8328 X 1O-2i 
5.492 X 10-2 - 8.098 X 1O-2i 
7.929 X 10-2 - 1.1621 X 1O-1i 
1.173 X 10-1 - 1.580 X 1O-1i 
1.725 X 10-1 - 2.060 X 1O-1i 
2.51 X 10-1 - 2.54 X 1O-1i 
3.54 X 10-1 - 2.93 X 1O-1i 
4.8 X 10-1 - 3.1 X 1O-1i 
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Table IV - Forward scattering amplitudes at 18.1 GHz 
with a = 90 0 for different drop sizes 

d(cm) 

0.025 
0.05 
0.075 
0.1 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.275 
0.3 
0.325 
0.35 

SI(O) 

4.0158 X 10-5 - 8.1579 X 1O-4i 
6.5425 X 10-4 - 6.7265 X 1O-3i 
5.0674 X 10-3 - 2.3476 X 1O-2i 
2.2608 X 10-2 - 5.1254 X 1O-2i 
5.0374 X 10-2 - 8.0587 X 1O-2i 
8.5403 X 10-2 - 1.2201 X lO- l i 
1.3950 X 10-1 - 1.7392 X lO- l i 
2.1700 X 10-1 - 2.2871 X lO-l i 
3.181 X 10-1 - 2.742 X lO- l i 
4.307 X 10-1 - 2.999 X 1O-1i 
5.390 X 10-1 - 3.089 X 1O-1i 
6'.36 X 10-1 - 3.12 X 1O-1i 
7.22 X 10-1 - 3.20 X 1O-1i 
8.0 X 10-1 - 3.4 X 1O-1i 

SIleO) 

4.2246 X 10-5 - 8.4000 X 1O-4i 
7.1168 X 10-4 -7.1424 X 1O-3i 
5.6959 X 10-3 - 2.5717 X 1O-2i 
2.5696 X 10-2 - 5.7588 X 1O-2i 
5.7722 X 10-2 - 9.6353 X 10-2i 
1.0834 X 10-1 - 1.5714 X lO-'-li 
1.9921 X 10-1 - 2.3098 X 1O-1i 
3.3903 X 10-1 - 2.9883 X 1O-1i 
5.229 X 10-1 - 3.320 X 10-11: 

7.173 X 10-1 - 3.136 X 1O-1i 
8.899 X 10-1 - 2.633 X 1O-1i 
1.038 - 2.14 X 1O-1i 
1.179 - 1.84 X 1O-1i 
1.34 - 1.8 X 1O-1i 

Moreover, the values of the coefficients obtained from least-squares 
fitting were checked against those calculated from (50) and (51), 
subject to (52), (53), and (119) to (122). 

N ext, the least-squares fit was carried out for spherical raindrops 
when the origin of the coordinate system was offset from the center of 
the raindrop, so that 

R(O) = a[o cos 0 + (1 - 02 sin2 O)t]. (73) 

The calculations were done for different values of a, 0, and a, with the 
largest value of 0 being 0.325 at 4 GHz and at 0.2 at 34.8 GHz. As ex-

Table V - Forward scattering amplitudes at 30 GHz 
with a = 90 0 for different drop sizes 

d(cm) 

0.025 
0.05 
0.075 
0.1 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.275 
0.3 
0.325 
0.35 

SI(O) 

3.4513 X 10-4 - 3.7481 X 1O-3i 
6.9873 X 10-3 - 3.1187 X 1O-2i 
4.5783 X 10-2 - 9.5267 X 1O-2i 
1.3415 X 10-1 - 1.8677 X 1O-1i 
2.9755 X 10-1 - 2.8388 X 1O-1i 
5.1727 X 10-1 - 3.3781 X 1O-1i 
7.3731 X 10-1 - 3.4278 X 1O-1i 
9.274 X 10-1 - 3.461 X 1O-1i 
1.1122 - 3.885 X lO- l i 
1.3309 - 4.693 X 1O-1i 
1.601 - 5.57 X 1O-1i 
1.902 - 6.23 X 1O-1i 
2.20 - 6.70 X 1O-1i 
2.49 - 7.3 X 1O-1i 

SIleO) 

3.6235 X 10-4 - 3.8595 X 1O-3i 
7.5859 X 10-3 - 3.3144 X 1O-2i 
5.1071 X 10-2 - 1.0490 X 1O-1i 
1.6165 X 10-1 - 2.1613 X 1O-1i 
3.8979 X 10-1 - 3.2171 X 1O-1i 
6.9041 X 10-1 - 3.3561 X 1O-1i 
9.6534 X 10-1 - 2.7438 X 1O-1i 
1.2001 - 2.302 X 1O-1i 
1.4661 - 2.419 X 1O-1i 
1.8221 - 2.627 X lO-'-li 
2.245 - 2.21 X 1O-1i 
2.662 -1.20 X 1O-1i 
3.06 - 2.4 X 1O-2i 
3.50 + 4 X 1O-2i 
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Table VI - Forward scattering amplitudes at 30 GHz 
with a = 70° for different drop sizes 

d(cm) 

0.025 
0.05 
0.075 
0.1 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.275 
0.3 
0.325 
0.35 

S1(0) 

3.4679 X 10-4 - 3.7610 X 1O-3i 
7.0267 X 10-3 - 3.1417 X 1O-2i 
4.6185 X 10-2 - 9.6618 X 1O-2i 
1.3701 X 10- 1 - 1.9131 X 1O-1i 
3.0867 X 10-1 - 2.9154 X 1O-1i 
5.4041 X 10-1 - 3.4346 X 1O-1i 
7.7133 X 10-1 - 3.4313 X 1O-1i 
9.723 X 10-1 - 3.425 X 1O-1i 
1.1720 - 3.832 X 1O-1i 
1.4123 - 4.621 X 1O-1i 
1.710 - 5.45 X 1O-1i 
2.042 - 6.04 X 1O-1i 
2.38 - 6.46 X 1O-1i 
2.71 -7.0 X 1O-1i 

SIleO) 

3.6200 X 10-4 - 3.8594 X 1O-3i 
7.5553 X 10-3 - 3.3145 X 1O-2i 
5.0856 X 10-2 - 1.0513 X 1O-1i 
1.6133 X 10-1 - 2.1727 X 1O-1i 
3.9039 X 10-1 - 3.2498 X 1O-1i 
6.9413 X 10-1 - 3.4113 X lO-li 
9.7408 X 10-1 - 2.8097 X 1O-1i 
1.2143 - 2.357 X lO-li 
1.4838 - 2.454 X 1O-1i 
1.8412 - 2.678 X lO- li 
2.269 - 2.34 X 1O-1i 
2.699 - 1.41 X lO-li 
3.11 - 4.8 X 1O-2i 
3.56 + 1.5 X 1O-2i 

pected, the far-field quantities are independent of 0, as well as (x, and 
again excellent results were obtained. These calculations provided a 
nontrivial check on the programming of the boundary conditions, 
since dR/dO ¢ O. In addition, they gave some idea of the increase in 
the number of terms in n that is required, a result of the ratio of 
maximum to minimum distance from the raindrop surface to the 
origin, which is necessarily greater than unity for oblate spheroidal 
raindrops. 

As a final check on the least-squares-fitting program, calculations 
were carried out at 34.8 GHz for oblate spheroidal raindrops with small 

Table VII - Forward scattering amplitudes at 30 GHz 
with a = 50° for different drop sizes 

d(cm) 

0.025 
0.05 
0.075 
0.1 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.275 
0.3 
0.325 
0.35 

S1(0) 

3.5101 X 10-4 - 3.7936 X 1O-3i 
7.1265 X 10-3 - 3.1998 X 1O-2i 
4.7204 X 10-2 - 1.0005 X 1O-li 
1.4431 X 10-1 - 2.0284 X 1O-li 
3.3714 X 10-1 - 3.1102 X 1O-li 
6.0012 X 10-1 - 3.5745 X 10~li 
8.5967 X 10-1 - 3.4211 X 1O-li 
1.0888 - 3.278 X lO- li 
1.3247 - 3.580 X lO-li 
1.6145 - 4.252 X 1O-li 
1.974 - 4.91 X 1O-1i 
2.379 - 5.27 X 1O-li 
2.80 - 5.4.5 X 1O-1i 
3.24 - 5.7 X 1O-1i 

SIleO) 

3.6111 X 10-4 - 3.8590 X 1O-3i 
7.4779 X 10-3 - 3.3147 X 1O-2i 
5.0312 X 10-2 - 1.0571 X 1O-li 
1.6054 X 10-1 - 2.2016 X 1O-li 
3.9193 X 10-1 - 3.3329 X lO-li 
7.0369 X 10-1 - 3.5523 X 1O-li 
9.9679 X 10-1 - 2.9777 X 1O-li 
1.2518 - 2.491 X 1O-1i 
1.5306 - 2.520 X 1O-li 
1.8902 - 2.752 X lO-li 
2.327 - 2.58 X 1O-li 
2.785 - 1.87 X 1O-1i 
3.24 - 1.03 X 1O-li 
3.72 - 4 X 1O-2i 
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Table VIII - Total and scattering cross sections at 4 GHz 
with a = 90° for different drop sizes 

a(cm) Q~(cm)2 QI1(cm)2 Q~(cm)2 Q!I(cm)2 

0.025 1.2393 X 10-6 1.3126 X 10-6 8.9950 X 10-10 9.5367 X 10-10 

0.05 1.0545 X 10-5 1.1782 X 10-5 5.5428 X 10-8 6.2399 X 10-8 

0.075 4.0327 X 10-5 4.7215 X 10-5 6.0811 X 10-7 7.2816 X 10-7 

0.1 1.1406 X 10-4 1.3909 X 10-4 3.2922 X 10-6 4.2012 X 10-6 
0.125 2.7599 X 10-4 3.4947 X 10-4 1.2106 X 10-5 1.6500 X 10-5 

0.15 6.0592 X 10-4 7.9725 X 10-4 3.4869 X 10-6 5.0884 X 10-5 

0.175 1.2432 X 10-3 1. 7068 X 10-3 8.4904 X 10-5 1.3303 X 10-4 

0.2 2.427 X 10-3 3.503 X 10-3 1.830 X 10-4 3.088 X 10-4 

0.225 4.568 X 10-3 7.011 X 10-3 3.599 X 10-4 6.567 X 10-4 

0.25 8.38 X 10-3 1.391 X 10-2 6.60 X 10-4 1.309 X 10-3 

0.275 1.51 X 10-2 2.78 X 10-2 1.15 X 10-3 2.50 X 10-3 

0.3 2.71 X 10-2 5.73 X 10-2 1.93 X 10-3 4.7 X 10-3 

0.325 4.87 X 10-2 1.246 X 10-1 3.2 X 10-3 8.8 X 10- 3 

0.35 8.8 X 10-2 2.92 X 10-1 5.2 X 10-3 1.78 X 10-2 

eccentricity, corresponding to v = 0, 0.05, 0.1, and 0.15 in (63). The 
calculations were done for a = 90° and for a = 0.025 (0.025)0.275. 
Corresponding to (48), the total cross section may be expanded in the 
form Qt = Qt(Ol + vQP) + .... Values of QI(l) and QP(1) were obtained 
from the least-squares results by extrapolation and were compared with 
the perturbation values given by Oguchi.4 Unfortunately, there were 
significant discrepancies for the larger drop sizes, the largest error 
being more than 17 percent. Consequently, we did the perturbation 
calcu1ations ourselves and obtained results differing from our extrap-

Table IX - Total and scattering cross sections at 11 GHz 
with a = 90° for different drop sizes 

a(cm) Q~(cm)2 QI1(cm)2 Q~(cm)2 Q!I(cm)2 

0.025 1.1407 X 10-5 1.2035 X 10-5 5.1556 X 10-8 5.4666 X 10-8 

0.05 1. 4066 X 10-4 1.5415 X 10-4 3.2095 X 10-6 3.6172 X 10-6 
0.075 8.5573 X 10-4 9.6863 X 10-4 3.5933 X 10-5 4.3203 X 10-5 

0.1 3.9471 X 10-3 4.6519 X 10-3 2.0259 X 10-4 2.6114 X 10-4 

0.125 1.5476 X 10-2 1.9118 X 10-2 8.1236 X 10-4 1.1302 X 10-3 

0.15 4.7600 X 10-2 5.8407 X 10-2 2.7238 X 10-3 4.0701 X 10-3 

0.175 8.8064 X 10-2 9.8785 X 10-2 7.3803 X 10-3 1.1535 X 10-2 
0.2 1.1208 X 10-1 1.3001 X 10-1 1.559 X 10-2 2.643 X 10-2 
0.225 1.4103 X 10-1 1.8769 X 10-1 2.815 X 10-2 5.325 X 10-2 
0.25 1.815 X 10-1 2.777 X 10-1 4.60 X 10-2 9.76 X 10-2 
0.275 2.341 X 10-1 4.084 X 10-1 7.21 X 10-2 1.701 X 10-1 

0.3 3.05 X 10-1 5.94 X 10-1 1.09 X 10-1 2.84 X 10-1 

0.325 3.95 X 10-1 8.4 X 10-1 1.57 X 10-1 4.5 X 10-1 

0.35 5.0 X 10-1 1.13 2.1 X 10-1 6.5 X 10-1 
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Table X - Total and scattering cross sections at 18.1 GHz 
with a = 90° for different drop sizes 

d(em) Q~(em)2 QfI(cm)2 Q~(em)2 Q~rcem)2 

0.025 3.5118 X 10-5 3.6944 X 10-5 3.7881 X 10-7 4.0173 X 10-7 

0.05 5.7214 X 10-4 6.2236 X 10-4 2.4119 X 10-5 2.7242 X 10-5 

0.075 4.4314 X 10-3 4.9810 X 10-3 2.8514 X 10-4 3.4542 X 10-4 

0.1 1. 9770 X 10-2 2.2471 X 10-2 1. 7668 X 10-3 2.3060 X 10-3 

0.125 4.4052 X 10-2 5.0478 X 10-2 7.1078 X 10-3 1.0013 X 10-2 

0.15 7.4684 X 10-2 9.4745 X 10-2 1. 9966 X 10-2 3.0950 X 10-2 

0.175 1.2199 X 10-1 1.7421 X 10-1 4.3974 X 10-2 7.4834 X 10-2 

0.2 1.8976 X 10-1 2.9648 X 10-1 8.312 X 10-2 1.5229 X 10-1 

0.225 2.782 X 10-1 4.572 X 10-1 1.377 X 10-1 2.640 X 10-1 

0.25 3.766 X 10-1 6.273 X 10-1 1.999 X 10-1 3.888 X 10-1 

0.275 4.714 X 10-1 7.782 X 10-1 2.598 X 10-1 5.028 X 10-1 

0.3 5.56 X 10-1 9.08 X 10-1 3.12 X 10-1 6.00 X 10-1 

0.325 6.32 X 10-1 1.031 3.54 X 10-1 6.89 X 10-1 

0.35 7.0 X 10-1 1.17 3.9 X 10-1 7.8 X 10-1 

alated least-squares results by at most! percent, which is reasonably 
consistent with the error to be expected from the extrapolation. 
Oguchi34 has since redone his calculations, and he agrees with our 
perturbation results. The same good agreement was obtained between 
the extrapolated and perturbation values of SP) (0), SiP (0), Q~(l), and 
Q~I(l) • 

After the least-squares-fitting program had been checked in the 
above manner, we carried out calculations for oblate spheroidal rain
drops corresponding to (63), with a and p given by (64). Here a is the 

Table XI - Total and scattering cross sections at 30 GHz 
with a = 90° for different drop sizes 

d(em) 

I 
Q~(em)2 QfI(em)2 Q~(em)2 Q~I(cm)2 

0.025 1.0986 X 10-4 1.1534 X 10-4 2.8823 X 10-6 3.0581 X 10-6 

0.05 2.2241 X 10-3 2.4147 X 10-3 1. 9542 X 10-4 2.2197 X 10-4 

0.075 1.4573 X 10-2 1.6256 X 10-2 2.5201 X 10-3 3.1009 X 10-3 

0.1 4.2701 X 10-2 5.1454 X 10-2 1.4263 X 10-2 1.9185 X 10-2 

0.125 9.4713 X 10-2 1.2407 X 10-1 4.3818 X 10-2 6.2849 X 10-2 

0.15 1.6465 X 10-1 2.1977 X 10-1 8.9103 X 10-2 1.2903 X 10-1 

0.175 2.3469 X 10-1 3.0728 X 10-1 1.3595 X 10-1 1. 9338 X 10-1 

0.2 2.9521 X 10-1 3.8199 X 10-1 1. 7408 X 10-1 2.4628 X 10-1 

0.225 3.5403 X 10-1 4.6666 X 10-1 2.0731 X 10-1 3.0183 X 10-1 

0.25 4.236 X 10-1 5.800 X 10-1 2.450 X 10-1 3.766 X 10-1 

0.275 5.095 X 10-1 7.146 X 1O~1 2.938 X 10-1 4.710 X 10-1 

0.3 6.05 X 10-1 8.47 X 10-1 3.51 X 10-1 5.69 X 10-1 

0.325 7.01 X 10-1 9.74 X 10-1 4.08 X 10-1 6.62 X 10-1 

0.35 7.9 X 10-1 1.11 4.6 X 10-1 7.6 X 10-1 
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Table XII - Total and scattering cross sections at 30 GHz 
with a = 70 0 for different drop sizes 

a(em) Q~(em)2 Qp(em)2 Q~(em)2 Q~I(em)2 

0.025 1.1039 X 10-4 1.1523 X 10-4 2.9029 X 10-6 3.0582 X 10-6 

0.05 2.2367 X 10-3 2.4049 X 10-3 1.9851 X 10-4 2.2196 X 10-4 

0.075 1.4701 X 10-2 1.6188 X 10-2 2.5867 X 10-3 3.1000 X 10-3 

0.1 4.3613 X 10-2 5.1354 X 10-2 1.4859 X 10-2 1. 9213 X 10-2 

0.125 9.8252 X 10-2 1.2427 X 10-1 4.6292 X 10-2 6.3156 X 10-2 

0.15 1. 7202 X 10-1 2.2095 X 10-1 9.4694 X 10-2 1.3017 X 10-1 
0.175 2.4552 X 10-1 3.1006 X 10-1 1.4482 X 10-1 1. 9599 X 10-1 
0.2 3.0950 X 10-1 3.8653 X 10-1 1.8634 X 10-1 2.5071 X 10-1 
0.225 3.7305 X 10-1 4.7231 X 10-1 2.2389 X 10-1 3.0787 X 10-1 
0.25 4.496 X 10-1 5.861 X 10-1 2.676 X 10-1 3.837 X 10-1 
0.275 5.442 X 10-1 7.223 X 10-1 3.240 X 10-1 4.796 X 10-1 
0.3 6.50 X 10-1 8.59 X 10-1 3.90 X 10-1 5.81 X 10-1 
0.325 7.57 X 10-1 9.91 X 10-1 4.58 X 10-1 6.79 X 10-1 
0.35 8.6 X 10-1 1.13 5.2 X 10-1 7.8 X 10-1 

radius (in centimeters) of the equivolumic spherical drop, and the cal
culations were done for a = 0.025 (0.025)0.35. The corresponding values 
of a and v are given in Table 1. The values taken for the wavelength 
A = 27r/ko were (in centimeters) 7.5,2.727,1.6575, and 1.0, correspond
ing approximately to frequencies of 4, 11, 18.1, and 30 GHz. At 20°C, 
the refractive indices N = 7.884 + 2.184i at 11 GHz, N = 6.859 
+ 2.716i at 18.1 GHz, and N = 5.581 + 2.848i at 30 GHz were ob
tained from an elaborate fitting equation in a recently published surveyS 
of available measured data. Since the calculations at 4 GHz were made 
at an earlier date, the value N = 8.77 + 0.915i, taken from the older 

Table XIII - Total and scattering cross sections at 30 GHz 
with a = 50 0 for different drop sizes 

a(em) Q~(em)2 Ql1(em)2 Q~(em)2 Q~I(em)2 

0.025 1.1173 X 10-4 1.1495 X 10-4 2.9552 X 10-6 3.0584 X 10-6 

0.05 2.2684 X 10-3 2.3803 X 10-3 2.0634 X 10-4 2.2193 X 10-4 

0.075 1.5025 X 10-2 1.6015 X 10-2 2.7560 X 10-3 3.0978 X 10-3 

0.1 4.5936 X 10-2 5.1102 X 10-2 1.6378 X 10-2 1. 9286 X 10-2 

0.125 1.0732 X 10-1 1.2476 X 10-1 5.2632 X 10-2 6.3941 X 10-2 

0.15 1.9102 X 10-1 2.2399 X 10-1 1.0914 X 10-1 1.3308 X 10-1 
0.175 2.7364 X 10-1 3.1729 X 10-1 1.6796 X 10-1 2.0272 X 10-1 
0.2 3.4658 X 10-1 3.9846 X 10-1 2.1846 X 10-1 2.6230 X 10-1 
0.225 4.2166 X 10-1 4.8721 X 10-1 2.6706 X 10-1 3.2371 X 10-1 
0.25 5.139 X 10-1 6.017 X 10-1 3.253 X 10-1 4.021 X 10-1 
0.275 6.283 X 10-1 7.405 X 10-1 3.996 X 10-1 5.009 X 10-1 
0.3 7.57 X 10-1 8.87 X 10-1 4.87 X 10-1 6.09 X 10-1 
0.325 8.9 X 10-1 1.03 5.8 X 10-1 7.2 X 10-1 
0.35 1.03 1.18 6.75 X 10-1 8.3 X 10-1 
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Fig. 3-Comparison of perturbation approximations to the least-squares-fitting 
value of Re Sr(O) at 4 GHz with ex = 90 0 as a function of drop size. 

literature, was used, rather than N = 8.78 + 0.977i. The angle of inci
dence €X was taken to be 90° at 4, 11, and 18.1 GHz, while at 30 GHz 
the calculations were done for €X = 70° and €X = 50° also. 

The calculated values of the forward scattering amplitudes SI (0) 
and Sa (0) are given in Tables II to VII, and those of the total cross 
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sections Q~ and QfI and the scattering cross sections Q~ and Q~I are given 
in Tables VIII to XIII, all rounded in the last significant figure. The 
values of the absorption cross sections Q~ and Q~I follow from (38). 
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Fig. 4-Comparison of perturbation approximations to the least-squares-fitting 
value of Re Sn (0) at 4 GHz with ex = 90 0 as a function of drop size. 
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The accuracy of the least-squares fit of the boundary conditions de
creases with increasing drop size, because of the increase in eccentricity, 
which is why fewer significant figures are given in the tables for the 
larger drop sizes. Except for the smaller drop sizes, for which the results 
could be given more accurately, the number of significant figures 
reflects the degree of convergence of the results, as evidenced by in
creasing the upper limit of n in the least-squares fit by 2 and by 4. The 
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Fig. 5-Comparison of perturbation approximations to the least-squares-fitting 
values of Re 8 1 (0) and Re 8 n (0) at 11 GHz with a = 90 0 as a function of drop size. 
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accuracy of the far-field results is generally at least one order of mag
nitude greater than that of the fit of the boundary conditions for the 
reasons discussed in Section V. We note that the largest drops occur 
only at the heaviest rain rates,7 and then only a small percentage of 
them, so that the lower accuracy of the results for these drops is ac
ceptable when summing over the drop size distribution. 

The number of terms required to obtain the desired accuracy for the 
far-field quantities and to adequately satisfy the boundary conditions 
increases with both drop size and with frequency. At 4 GHz, it was 
found that max m = 4 and max n = 17 were sufficient for the largest 
drop size. For a = 90° at 30 GHz, it was necessary to take max m = 8 
and max n = 23 for the largest drop size. In this latter case, more than 
half the capacity of the Honeywell 6070 computer was used. In some 
cases, it was found that max n or max m could not be increased without 
causing overflow in some of the subroutines, in particular SBES and 
L2FIT. 
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Fig. 6-Comparison of perturbation approximations to the least-squares-fitting 
value of Re 8 I (0) at 18.1 GHz with a = 900 as a function of drop size. 
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To check on the advantage of using least-squares fitting (with ap
proximately twice as many fitting points as unknown coeffioients) 
rather than collocation, we used collocation in several cases at different 
frequencies and for different drop sizes. Our general conclusion is that, 
for the same max m and max n, results may be obtained by collocation 
for the far-field quantities that are almost as accurate as those obtained 
by least-squares fitting. However, there are much larger errors in the 
boundary conditions (in between the fitting points) with collocation 
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Fig. 7-Comparison of perturbation approximations to the least-squares-fitting 
value of Re Sn(O) at 18.1 GHz with a = 90 0 as a function of drop size. 
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than with least-squares fitting. For the larger, more eccentric raindrops, 
some of these errors were of the order of 100 percent, which seem to be 
unacceptable. However, for the smaller raindrops, the errors in the 
boundary conditions with collocation are acceptable. Since the cost 
of carrying out the least-squares fit is less when fewer fitting points are 
used, collocation has the advantage of reducing the cost, although fewer 
terms are required, anyway, to obtain the desired accuracy for the 
smaller raindrops. It is possible that the collocation fit may be improved 
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Fig. 8-Comparison of perturbation approximations to the least-sQuares-fitting 
values of Re S1 (0) and Re Sn (0) at 30 GHz with ex = 90 0 as a function of drop size. 
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by satisfying the boundary conditions at nonuniformly spaced points, 
but we have not investigated this. 

As a check on the point-matching (collocation) results of Oguchi,5 
we carried out the least-squares fitting for a = 90°, at 19.3 GHz for 
a = 0.3 and at 34.8 GHz for a = 0.075, 0.15, 0.225, and 0.3, using 
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Fig. 9-Comparison of perturbation approximations to the least-squares-fitting 
values of Re Sr (0) and Re Srr (0) at 30 GHz with ex = 50° as a function of drop size. 
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values of 1m 8 1 (0) and 1m 8 n (0) at 4 GHz with a = 90 0 as a function of drop size. 
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Oguchi's relationship5 

(74) 

instead of the first relationship in (1). Our results for the forward scat
tering amplitudes are consistent with his point-matching va]ues, but 
they may be given to greater accuracy. Our truncated values for 
a = 0.3 are given below where, in Oguchi's notation,5 
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Fig. ll-Comparison of perturbation approximations to the least-squares-fitting 
values of 1m Sr (0) and 1m Srr (0) at 11 GHz with a = 90° as a function of drop size. 
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Fig. 12-Comparison of perturbation approximations to the least-squares-fitting 
values of 1m Sr (0) and 1m Sn (0) at 18.1 GHz with a = 90 0 as a function of drop size. 
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and the vertical lines indicate where Oguchi truncated his results: 

GHz 

19.3 
34.8 

0.81L30 - 1.8841 i 
0.91718 - 3.7310i 

fh X 103 

0.510 19 - 2.8117i 
10.0646 - 4.71 Oi 

The values taken34 for the wavelength A (in centimeters) were 1.5533330 
and 0.86135810, corresponding approximately to frequencies of 19.3 
and 34.8 GHz, with refractive indices N = 6.5449188 + 2.8104040i and 
N = 5.0487284 + 2.7948416i, respectively. 
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Fig. 13-Comparison of perturbation approximations to the least-squares-fitting 
values of 1m Sr (0) and 1m Srr (0) at 30 GHz with a = 90 0 as a function of drop size. 

ELECTROMAGNETIC WAVE SCATIERING 995 



The main reason for the greater accuracy of our results is that we 
took larger values of max n than Oguchi, who did the point-matching 
at both frequencies for max n = 12 and 14, with max m = max n. For 
{i = 0.3 we took max m = 7 at 19.3 GHz and max m = 9 at 34.8 GHz, 
which were sufficient, and took max n = 21 at both frequencies for the 
least-squares fitting. We also used collocation for {i = 0.3 and max 
n = 12, 14, and 21. For max n = 21 the collocation results differ by 
at most 1 in the last decimal place from the results given above, but 
errors in some boundary conditions were of the order of 10 percent, as 
compared with much less than 1 percent for least-squares fitting. This 
is consistent with our general conclusion discussed earlier in this sec
tion. We point out that the raindrops satisfying (74) are less eccentric 
than those satisfying (1), so that the overall errors are correspondingly 
smaller. For collocation with max n = 14, some errors in the boundary 
conditions were close to 100 percent, which explains why, with point
matching, Oguchi did not give any significant figures for Re P at 
34.8 GHz, for either {i = 0.3 or {i = 0.325. 

Although Oguchi5 gives four significant figures for fV and fh at 34.8 
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Fig. 14-Comparison of perturbation approximations to the least-squares-fitting 
values of 1m S1 (0) and 1m Sn (0) at 30 GHz with a = 500 as a function of drop size. 
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GHz for all drop sizes corresponding to his solution in terms of sphe
roidal wave functions (with modal sums truncated at 9), these values 
are not consistent with his point-matching ones for the larger drop 
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Fig. I5-Comparison of perturbation approximations to the least-sQuares-fitting 
value of Q~I - Q~ at 4 GHz with a = 90° as a function of drop size. 
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sizes. For Ii = 0.3, he gives jh X 103 = 0.06470 - 4.709i, which is in 
fact quite close to our value, but he also gives jv X 103 = 0.9100 
- 3.726i, with real part differing by almost 1 percent from our value. 

N 

] 
'"0 

I 
I:l~ o 

11 GHz,a=90 0 

10-1 

. / 
./ 

10-2 --~--

10-3 

10-4 

/ 
/ 

j/ 

/ 

/" 
/ 

./ 
".. 

/" 

10-5~ ____ ~ ______ ~ ____ ~~ ____ ~ ______ ~ ____ ~ ______ ~ 

o 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

alN CENTIMETERS 

Fig. 16-Comparison of perturbation approximations to the least-sQuares-fitting 
value of Q~I - Q~ at 11 GHz with ex = 90 0 as a function of drop size. 
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VIII. PERTURBATION RESULTS 

In this final section, we compare three sets of first-order perturbation 
results with those obtained by least-squares fitting. The comparisons 
are made graphically in Figs. 3 to 23, since this is much more revealing 
than tabulating the results. The solid curves correspond to least
squares fitting and the dashed curves to perturbation about the in
scribed sphere of radius a, corresponding to the expansion in (63), with 
perturbation parameter v given by (64). The circles and dots corre
spond to perturbation about the equivolumic sphere of radius ti, with 
perturbation parameters v = 2ti and v, respectively, corresponding to 
the expansions in (65). The dots have been omitted in those cases in 
which they would lie very close to the corresponding circle or solid 
curve. Comparisons are made for a = 90° at 4, 11, 18.1, and 30 GHz 
and for a = 50° at 30 GHz. 

The real parts of the forward scattering amplitudes Sr (0) and Srr (0) 
and the first-order approximations to these quantities are depicted in 
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Fig. 17-Comparison of perturbation approximations to the least-sQuares-fitting 
value of QII - Qf at 18.1 GHz with ex = 90 0 as a function of drop size. 
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Fig. I8-Comparison of perturbation approximations to the least-squares-fitting 
value of QI~ - Q~ at 30 GHz with a = 90° and a = 50° as a function of drop size. 

Figs. 3 to 9, while the imaginary parts are depicted in Figs. 10 to 14. 
It should be noted that a logarithmic scale has been used in Figs. 3 
and 4. Thus, at 4 GHz the first-order approximation to the real part of 
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Fig. 19-Comparison of perturbation approximations to the least-squares-fitting 
value of Im[Sr (0) - SII (0) ] at 4 GHz with ex = 90 0 as a function of drop size. 

SII(O), obtained by perturbing about the inscribed sphere, is in error 
by an order of magnitude for the largest drop size. It is seen that the 
best overall approximation is obtained by perturbing about the 
equivolumic sphere with perturbation parameter ji = 2a, and in most 
cases there is a significant improvement over the approximation ob
tained by perturbing about the inscribed sphere as Oguchi4 did. The 
second best overall approximation is obtained by perturbing about the 
equivolumic sphere with perturbation parameter 11 = a (2 - a), and is 
generally much better than the approximation obtained by perturbing 
about the inscribed sphere. The above ordering of the three sets of 
perturbation results is consistent with the order of the geometrical 
errors in the corresponding approximations in (63) and (65) to the 
oblate spheroid. 

Although the comparison is not depicted for some of the smallest 
drop sizes, all three approximations are good for these, since the ec-
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Fig. 20-Comparison of perturbation approximations to the least-squares-fitt.ing 
value of rm[Sr (0) - Sn (0) J at 11 GHz with a = 90° as a function of drop size. 

centricity is small. On the other hand, the approximations obtained 
by perturbing about the equivolumic sphere are remarkably good for 
the largest drop sizes, in view of the fact that neither the eccentricity 
nor the perturbation parameter is small.In particular, these approxi
mations to the imaginary part of SIleO), depicted in Figs. 10 to 14, are 
quite impressive. It is not too surprising that perturbing about the 
inscribed sphere leads to poor results for the larger drop sizes in the 
second polarization. The first-order approximations to the scattering 
cross sections Q~ and Q~I are very similar to those depicted in Figs. 3 
to 9 for the real parts of SI (0) and SIl (0), which are related to the total 
cross sections Q~ and QII by (39). 
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Fig. 21-Comparison of perturbation approximations to the least-squares-fitting 
value of Im[S! (0) - Sn (0) ] at 18.1 GHz with a = 90 0 as a function of drop size. 

For purposes of comparison, the values of the forward scattering 
amplitude S(O) and the total and scattering cross sections Qt and Q8 
for the equivolumic spherical drops are given in Tables XIV to XVII. 
These quantities do not depend on the polarization of the incident 
wave or on the angle of incidence a. As is seen from Tables VIII to XIII, 
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Fig. 22-Comparison of perturbation approximations to the least-squares-fit.ting 
value of Im[SJ (0) - SII (0) J at 30 GHz with a = 90° as a function of drop size. 
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Fig. 23-Comparison of perturbation approximations to the least-squares-fitting 
value of Im[Sr (0) - Sn (0)] at 30 GHz with a = 50° as a function of drop size. 

the value of Q t lies between the corresponding values for the two polar
izations for the oblate spheroidal drop of the same size and similarly 
for the value of Qs. Although this happens to be true at 30 GHz for 
a = 90°, 70°, and 50°, these relations should not be expected to hold 
for all values of a, since for a = 0 ° the cross sections are independent 
of the polarization because of the axial symmetry of the oblate sphe
roidal drop. We have verified that Qt ~ Q~ = QfI and Qs ~ Q~ = Q~I 
for a = 0° at 11 GHz, for a = 0025,0.1, and 0.175. 

The rain-induced differential attenuation and differential phase 
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Table XIV - Forward scattering amplitude and total and 
scattering cross sections for the equivolumic spherical 

drop at 4 GHz for different drop sizes 

a(cm) 8(0) Qt(cm)2 Q.(cm)2 

0.025 7.1886 X 10-8 - 8.8610 X 1O-6i 1.2871 X 10-6 9.3508 X 10-10 

0.05 6.3247 X 10-7 -7.1195 X lO-si 1.1324 X lO-s 5.9937 X 10-8 

0.075 2.4837 X 10-6 - 2.4204 X 1O-4i 4.4470 X lO-s 6.8450 X 10-7 

0.1 7.1665 X 10-6 - 5.7975 X 1O-4i 1.2832 X 10-4 3.8606 X 10-6 
0.125 1.7619 X lO-s -1.1481 X 10-ai 3.1547 X 10-4 1.4804 X lO-s 
0.15 3.9266 X lO-s - 2.0191 X lO-ai 7.0305 X 10-4 4.4509 X lO-s 
0.175 8.1912 X lO-s - 3.2771 X lO-ai 1.4666 X lO-a 1.1325 X 10-4 
0.2 1.6324 X 10-4 - 5.0244 X 10-ai 2.9228 X lO-a 2.5537 X 10-4 
0.225 3.1562 X 10-4 -7.3913 X 10-ai 5.6511 X lO-a 5.2608 X 10-4 
0.25 6.0030 X 10-4 - 1.0551 X 1O-2i 1. 0748 X 10-2 1.0123 X 1O-a 
0.275 1.1392 X 1O-a - 1.4745 X 1O-2i 2.0397 X 10-2 1.8527 X 1O-a 
0.3 2.1916 X 1O-a - 2.0322 X 1O-2i 3.9240 X 10-2 3.2838 X 1O-a 
0.325 4.3555 X 1O-a - 2.7783 X 1O-2i 7.7985 X 10-2 5.7649 X 1O-a 
0.35 9.1208 X 1O-a - 3.7683 X 1O-2i 1.6331 X 10-1 1.0372 X 10-2 

shift are obtainedl by summing the real and imaginary parts of Sn (0) 
- SI (0) over the Laws and Parsons drop-size distribution.7 In a recent 
short note,9 the three first-order perturbation approximations have been 
compared to the least-squares fitting results for the differential atten
uation and differential phase shift at several different rain rates. The 
same ordering of the overall closeness of the three approximations 
holds for these quantities. Since the perturbation results are obtained 
quite inexpensively whereas the least-squares-fitting procedure is 
very costly, approximations to the differential attenuation and differ
ential phase shift at frequencies up to 100 GHz were obtained by per-

Table XV - Forward scattering amplitude and total and 
scattering cross sections for the equivolumic spherical 

drop at 11 GHz for different drop sizes 

a(cm) 8(0) Qt(cm)2 Q.(cm)2 

0.025 4.9868 X 10-6 - 1.8550 X 1O-4i 1.1804 X 10-5 5.3599 X 10-8 

0.05 6.2648 X 1O-s -1.5238 X 1O-ai 1.4829 X 10-4 3.4733 X 10-6 
0.075 3.8512 X 10-4 - 5.3789 X 1O-si 9.1163 X 10-4 4.0552 X 1O-s 
0.1 1.7992 X 1O-a -1.3547 X 1O-2i 4.2588 X 10-3 2.3883 X 10-4 
0.125 7.1756 X 1O-a - 2.7813 X 1O-2i 1.6985 X 10-2 1.0004 X 1O-a 
0.15 2.2023 X 10-2 - 4.4760 X 1O-2i 5.2132 X 10-2 3.4809 X 1O-a 
0.175 3.9051 X 10-2 - 5.5463 X 1O-2i 9.2438 X 10-2 9.7067 X 10-3 

0.2 5.0153 X 10-2 - 7.3383 X 1O-2i 1.1872 X 10-1 2.1692 X 10-2 
0.225 6.8317 X 10-2 -1:0343 X 1O-li 1.6171 X 10-1 4.2294 X 10-2 
0.25 9.6583 X 10-2 -1.3932 X 1O-1i 2.2862 X 10-1 7.4229 X 10-2 
0.275 1.3508 X 10-1 -1.8178 X 1O-li 3.1976 X 10-1 1.2397 X 10-1 

0.3 1.8972 X 10-1 - 2.2945 X 1O-li 4.4910 X 10-1 2.0165 X 10-1 

0.325 2.6372 X 10-1 - 2.7484 X 1O-li 6.2427 X 10-1 3.1470 X 10-1 

0.35 3.5439 X 10-1 - 3.1001 X 1O-li 8.3887 X 10-1 4.6135 X 10-1 
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Table XVI - Forward scattering amplitude and total and 
scattering cross sections for the equivolumic spherical 

drop at 18.1 GHz for different drop sizes 

a(cm) 8(0) Qt(cm)2 Q.(cm)2 

0.025 4.1444 X 10-5 - 8.3170 X 1O-4i 3.6243 X 10-5 3.9388 X 10-7 
0.05 6.8431 X 10-4 - 6.9938 X 1O-3i 5.9843 X 10-4 2.6138 X 10-5 

0.075 5.3548 X 10-3 - 2.4905 X 1O-2i 4.6827 X 10-3 3.2305 X 10-4 

0.1 2.4004 X 10-2 - 5.5611 X 1O-2i 2.0991 X 10-2 2.0935 X 10-3 

0.125 5.4019 X 10-2 - 9.1780 X 1O-2i 4.7240 X 10-2 8.8579 X 10-3 

0.15 9.7706 X 10-2 - 1.4719 X 10-11: 8.5444 x 10-2 2.6617 X 10-2 

0.175 1.7343 X 10-1 - 2.1684 X 1O-1i 1.5166 X 10-1 6.2646 X 10-2 

0.2 2.8868 X 10-1 - 2.8757 X 1O-1i 2.5245 X 10-1 1.2552 X 10-1 

0.225 4.4398 X 10-1 - 3.3858 X 1O-1i 3.8826 X 10-1 2.1846 X 10-1 

0.25 6.1859 X 10-1 - 3.5216 X 1O-1i 5.4095 X 10-1 3.2834 X 10-1 

0.275 7.8546 X 10-1 - 3.3543 X 1O-1i 6.8688 X 10-1 4.3596 X 10-1 

0.3 9.3560 X 10-1 - 3.0nn3 x 1O-1i 8.1818 X 10-1 5.3377 X 10-1 

0.325 1.0751 - 2.9126 X 1O-1i 9.4019 X 10-1 6.2372 X 10-1 

0.35 1.2136 - 2.8673 X 1O-1i 1.0613 7.1027 X 10-1 

turbing about the equivolumic sphere. However, the results may be 
less reliable at the higher frequencies, particularly at the heavier rain 
rates. I8 

The difference Q~I - Q~, which is related to the real part of Sn (0) 
- SI (0) by (39), is depicted in Figs. 15 to 18, and the imaginary part 
of SI (0) - Sn (0) is depicted in Figs. 19 to 23. We note that, although 
extra first-order correction terms arise in the expansions about the 
equivolumic sphere given in (65), they correspond to a constant change 
in the radius of the drop. Hence, the corresponding increments in the 
forward scattering amplitudes are the same for both polarizations, and 

Table XVII - Forward scattering amplitude and total and 
scattering cross sections for the equivolumic spherical 

drop at 30 GHz for different drop sizes 

a(cm) 8(0) Qt(cm)2 Q.(cm)2 

0.025 3.5549 X 10-4 - 3.8212 X 1O-3i 1.1316 X 10-4 2.9980 X 10-6 

0.05 7.2950 X 10-3 - 3.2466 X 1O-2i 2.3221 X 10-3 2.1254 X 10-4 

0.075 4.8577 X 10-2 - 1.0204 X 1O-1i 1.5463 X 10-2 2.8859 X 10-3 

0.1 1.5024 X 10-1 - 2.0855 X 1O-1i 4.7823 X 10-2 1.7391 X 10-2 

0.125 3.5560 X 10-1 - 3.1825 X 1O-1i 1.1319 X 10-1 5.6317 X 10-2 

0.15 6.3545 X 10-1 - 3.5742 X 1O-1i 2.0227 X 10-1 1.1723 X 10-1 

0.175 9.0831 X 10-1 - 3.2571 X 1O-1i 2.8913 X 10-1 1.8042 X 10-1 

0.2 1.1444 - 2.9371 X 1O-1i 3.6426 X 10-1 2.3403 X 10-1 

0.225 1.3868 - 3.0778 X 1O-1i 4.4142 X 10-1 2.8578 X 10-1 

0.25 1.6859 - 3.5609 X 1O-1i 5.3662 X 10-1 3.4813 X 10-1 

0.275 2.0559 - 3.9425 X 1O-1i 6.5441 X 10-1 4.2750 X 10-1 

0.3 2.4657 - 3.9064 X 1O-1i 7.8486 X 10-1 5.1929 X 10-1 

0.325 2.8763 - 3.5872 X 1O-1i 9.1557 X 10-1 6.1372 X 10-1 

0.35 3.2831 - 3.3474 X 1O-1i 1.0450 7.0680 X 10-1 
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therefore do not affect the difference SIleO) - SI(O). Figures 15 to 23 
show that the approximations to the differential quantities obtained 
by perturbing about the equivolumic sphere with perturbation param
eter ji = 20; are overall remarkably close to the least-squares-fitting 
results and far better than the approximations obtained by perturbing 
about the inscribed sphere. 
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APPENDIX A 

We first derive the expansion of the incident plane wave in a Fourier 
series in the azimuthal angle 'P, as given by (20). The unit vectors in 
Cartesian coordinates are given in terms of those in spherical coordi
nates by 

and 

i = sin 0 cos 'Ph + cos 0 cos 'Pi2 - sin 'Pia, 

j = sin 0 sin 'Ph + cos 0 sin 'Pi2 + cos 'Pi3, 

k = cos Oit - sin Oi 2• 

Also, we have 

(76) 

x sin a + z cos a = resin a sin 0 cos 'P + cos a cos 0). (77) 

But36 for integer values of p, 

2~ !o27r e-ip'l' exp (i~ cos 'P)d'P = ipJ p(~), (78) 

where J p denotes the regular Bessel function (of the first kind) of 
order p. 
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It follows, from (5), (6), (20) to (22), and (76) to (78), using the 
recurrence relations for the Bessel functions,37 that 

fm(r,O) = i m exp (ikor cos a cos 0)[ J m(kor sin a sin 0) sin a 

X (sin Ob - cos Oit) - iJ:n(kor sin a sin 0) cos a (sin Oit + cos Oi 2) 

+ mJ m(kor sin a sin 0) . ] 
k 

. . cos al3 
or smasmO 

(79) 

and 

gm (r, 0) 
_-' ( 'k 0) [ mJ m (kor sin a sin 0) 

- ~ m exp ~ or cos a cos k" 0 
or SIn a SIn 

X (sin Oit + cos Oi 2) + iJ:n (kor sin a sin O)ia ], (80) 

where, as before, the prime denotes derivative with respect to the 
argument, 

From (8) to (11), (13), (14), and (20), the boundary conditions (16) 
and (17), when multiplied by e- imrp and integrated with respect to lP 

from 0 to 211", lead to the equations 

em3 (R, 0) + L amnh~l) (koR) dPhm~~os 0) 
n~lml 
n~O 

_ L bmn [ h~l) (koR) + h~l)' (koR)] ' ~m Ph ml (cos 0) 
n~lml koR sm 0 

n,cO I I 
'" ' (k R) dPnm (cos 0) _ '" d [jn(k1R) + ,I (k R)] 
4..J CmnJn 1 dO 4..J mn k R In 1 

n~ Iml n~ Iml 1 
n,cO n,cO 

and, using (4), 

iWk}LO h m3 (R, 8) + L bmnh~l) (koR) dPhm~~os 0) 
o n~lml 

n~O 

, ~m Phml (COS 0) (81) 
SIn 0 

(82) 
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Similarly, the boundary conditions (18) and (19) lead to 
equations 

em2(R,O) + -R
1 

ddRO emleR, 0) - L amnh~l) (koR)· ~mO Phml (cos 0) 
n~lml SIn 

n,cO 

- L bmnl[ h~l)(koR) + h~l)/(koR)] dPhml(cos 0) 
n~lml koR dO 

n,cO 

+ n(n + 1) dR h~l) (koR) plml ( 0) I 
R dO koR n cos 

= - L CmnJn(klR)· ~mo Phml (cos 0) 
n~lml sm 

n,cO 

- L dmn 1 [ jn(klR) + J~(klR)] dPh
ml 

(cos 0) 
n~lml klR dO 

n,cO 

+ n(n + 1) dR jn(k1R) plml ( 0) I 
R dO klR n cos 

and 

APPENDIX B 

the 

(83) 

(84) 

We consider here the case in which the raindrop is symmetrical 
about the plane 0 = 1r /2 so that 

R(1r - 0) = R(O), o ~ 0 ~ 1r/2. (85) 

Let & = (1r - a). Then, from (21), (79), and (80), it follows that, cor-

1010 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1974 



responding to a, 
e~3(R, 0) = -e~3(R, 1r - 0), 

h~3(R, 0) = h~3(R, 1r - 0), 

[e~2(R, 0) + h ~~ emleR, 0) ] 

[ 
I (R ) 1 dR (1r - 0) I (R ) ] = em2 ,1r - 0 + R d(1r _ 0) eml ,1r - 0 , 

and 

[ h:n2(R, 0) + ~ ~~ h~l (R, 0) ] 

(86) 

(87) 

(88) 

- [ h~2 (R, 1r - 0) + ~ d:C~1r ~ o~) h~l (R, 1r - 0) ] . (89) 

Butl4 

Phml (-cos 0) = (-1)n+1m1pkml (cos 0). (90) 

It follows from (81) to (90) that 

and 

For a = 1r /2, we have a = a, and hence we obtain the relationships 
in (25). 

Similarly, from (22), (79), and (80), 

e~3(R, 0) = e~3(R, 1r - 0), 

h~3(R, 0) = -h~3(R, 1r - 0), 

[e~2(R, 0)+ ~ ~~ e~l(R, 0)] 

[ 
II (R ) 1 dR(1r - 0) II (R )] = - em2 ,1r - 0 + R d(1r _ 0) eml ,1r - 0 , 

and 

[ h~2(R, 0) + ~ ~~ h~l (R, 0) ] 

[ h
Il (R ) 1 dR (1r - 0) hIl (R ) ] = m2 ,1r - 0 + R d(1r _ 0) ml ,1r - 0 . 
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It follows, from (81) to (85), (90), and (93) to (96), that 

C~n + (_l)n+lmlc~\ = 0 (97) 

and 

d~n + (_l)n+lml+ld~n = O. (98) 

For a = 7rj2 we obtain the relationships in (26). 
For a ~ 7rj2 we may consider the sum and the difference of the 

boundary conditions corresponding to a and to a = (7r - a). Then 
the sums (amn + amn), (bmn + bmn), (Cmn + Cmn), and (dmn + dmn) 
and the differences (amn - amn), (bmn - bmn), (Cmn - Cmn), and 
(dmn - dmn) may be determined separately, and these sums and 
differences vanish for alternate values of n, depending on the pol
arization. 

APPENDIX C 

We first consider the calculation of the scattered energy W 8, which 
is defined by (35), by letting r ~ 00. From (29) it follows that 

Ws = lim 1 kor2 rr [7r (IE~12 + IE~12) sinO dO dcp). (99) 
r-+oo 2W#Lo J 0 J 0 

But from (28), 

E~ '" -- L L (-i)n amn ·-. - Phml (cos 0) 
_eikor 00 [m 

kor m = - co n ~ I m I sm 0 
n~O I I 

+ b dPnm (cos 0) ] imtp 
mn dO e (100) 

Substituting (100) and (101) into (99), the integration with respect 
to cp is straightforward. The integration with respect to 0 readily follows 
with the help of the identities 

m /.' [ pi ml (cos 0) dPJ.md;'0s 0) 

+ dPim~~os 0) pJ.ml (cos 0) ]dO = 0 (102) 
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(7r [dPJml (cos 0) dPh
ml 

(cos 0) + ~ plml ( o)plml ( 0)]· OdO Jo dO dO sin20 cos n cos sm 

_ 2n(n + l)(n + Iml)! ~ (103) 
- (2n+1)(n-lml)! Uln, 

where Oln denotes the Kronecker delta, i.e., OZn = 1 for l = n, and 0 
otherwise. Thus, the expression for W 8 given in (36) is obtained. 

We remark that there is no need to let r --7 OC! to obtain this expression 
for Ws. The same result follows from (35) by using the expressions (10) 
and (11) for the scattered field, wherein M~~(ko) and N~~(ko) are 
defined by (8) and (9), with zn(kor) = h~l)(kor). The dependence on r 
is found to vanish, as is to be expected, in view of the Wronskian rela
tionship39 

jn(kor)y~(kor) - yn(kor)j~(kor) = (k~r)2· (104) 

We also remark that the expression in (36) holds quite generally, e.g., 
for scattering from nonaxisymmetric raindrops, since at this point we 
have made no use of the properties of the coefficients amn and bmn. 

We next consider the calculation of the total energy Wt, which is 
defined by (41) . We begin by allowing for a general incident field, 
given by 

and 

00 

Ei = - L L [AmnMg~(ko) + BmnNg~(ko)J (105) 
m=-oo n~lml 

n:;<!,Q 

Hi = iko £ L [AmnNg~(ko) + BmnMg~(ko)J, (106) 
WJ.l.Om=-oo n~lml 

n:;<!,Q 

where the superscript 1 indicates that zn(kor) = jn(kor) in (8) and (9). 
The calculation of W t is similar to that of Ws and it is found, after 
some reductions, that 

- 2r ;.." n (n + 1)( n + I m I ) ! Wt=--Re L.... L.... 
wJ.l.oko m=-oo n~lml (2n + l)(n - Iml)! 

n:;<!,Q 

(107) 

We now consider the incident electric field given by (42), where 
Ei and Eir are given by (5) and (6), respectively. Then (43) holds and, 
from (10) and (11), 

(108) 
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From (5) and (6) and the expansions in (116) and (117), it f9110ws 
from (105) to (107) that 

27r 00 

W t = -- Re 2: 2: (_i)n-l 
wJl.oko m=-oo n~lml 

n~O 

X jE*[ .~ plml ( ) + b dPh
ml 

(cos a) ] 
I amn sin a n cos a mn da 

+ "E* [ dPh
ml 

(cos a) + b . ~ plml ( )] I. 
~ II amn da mn sin a n cos a (109) 

The relations (39) now follow from (33), (34), (40), and (108) by 
setting first En = 0 and second EI = 0, in (109). We also note that, 
from (5), (6), (28), (30), (42), and (109), 

W
t 

= ~ Re[ lim j -ikore~ikOT(~i)*.E81 0=0<, '1'=0 I]' (110) 
wJl.oko r-+oo exp[ -~ko(x sm a + z cos a)] 

We remark that both (109) and (110) hold, subject to (42), (43), and 
(108), for scattering from generally shaped raindrops. 

Finally, we consider the particular case of an axisymmetric raindrop 
given by r = R(O), so that (23) and (24) hold. Thus, 

Hence, from (36) and (108), 

W8 = W~ + W~I. (112) 

Then, from (37), with 

(113) 

we obtain (44). Also, from (23), (24), (l08), and (109), 

W t = W~+ WP. (114) 

Hence, from (40), with 

Q _ 2wJl.oW t 

t - ko(EIE~ + EnE~I) , (115) 

we obtain (45). 

APPENDIX D 

We first give the expansions for the incident wave in terms of spheri
cal vector wave functions. 4 ,19 It is found that 
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(cos ai - sin ak) exp [iko(x sin a + z cos a)] 

and 

f. £. inH(2n + l)(n - 1m!)! 
m=-"ln=lml n(n+1)(n+ Iml)! 

n~O 

X [--!!3:- plml (cos a)Mg~(ko) + dPAmdCOS a) Ng~(ko)] (116) 
SIn a a 

j exp[iko(x sin a + z cos a)] 

- f. f. i n(2n+1)(n-lml)! 
m=-"l n=lml n(n + l)(n + Iml)! 

n~O 

Expressions for the quantities em (r, e) and h m (r, e), defined in (20), 
then follow from (5), (6), (8), and (9). Thus, we may now consider the 
boundary conditions (81) to (84). 

We first multiply (81) by dPJm l (cos e)/de sin e and (83) by im pJml 

(cos e) and add, and then multiply (81) by im pJml (cos e) and (83) by 
dPJml (cos e)/de sin e and subtract, and integrate both these equations 
with respect to e from 0 to 7r. In the zero-order approximation corre
sponding to 11 = 0 in (47), this leads, with the help of (102) and (103), 
to simultaneous linear equations for a;gl and c;gl. Similarly, multiplying 
(82) by dPl ml (cos ()/de sin () and (84) by im pl ml (cos () and adding, 
and multiplying (82) by im pJml (cos e) and (84) by dPJm l (cos e)/de 
sin () and subtracting, and integrating both these equations with re
spect to () from 0 to 7r, we obtain simultaneous linear equations for the 
zero-order coefficients b;gl and d;gl. The solution of these two pairs of 
simultaneous equations leads to the relations (50) and (51), where the 
quantities a mn and f3mn depend on the polarization, as given by (52) 
and (53). It remains to give the expressions for the quantities an, bn , Cn, 

and dn occurring in (50) and (51). 
We define 

Then, with p = koa, it is found that 

[jn(p)NGn(N p) - jn(N p)Gn(p)] 
an = [h (~) (p)NG n (N p) - jn (N p)F n(P)] , (119) 

b - [jn(p)Gn(N p) - N jn(N p)Gn(p)] (120) 
n - [h~l) (p)Gn(N p) - N.in(N p)F n(P)] , 
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and 
Cn = (if p2)[h~l) (p)NGn(N p) - In(N p)F n(P)]-r, (121) 

dn = (i/ p2)[h~l) (p)Gn(N p) - N In(N p)F n(p)]-I. (122) 

In obtaining (121) and (122), we have made use of the Wronskian 
relationship39 

(123) 

Next, considering the first-order terms in ." in the integrated forms 
of the boundary conditions, and making use of (47) to (49), two pairs 
of simultaneous linear equations are obtained for ag~ and cg~ and for 
bg~ and dg~. These equations contain somewhat involved expressions, 
but after considerable reductions they lead to the expressions given in 
(54) to (56), subject to (57) to (62). In particular, use has been made 
of the differential equation satisfied by the spherical Bessel functions,39 

ez;'(~) + 2~z;(~) + [~2 - l(l + l)]zz(~) = o. (124) 

Moreover, from (118) to (124) it follows that 

and 

Jz(p) - aIMI) (p) + CIJI(N p) = 0, (125) 

J; (p) - aIMI)' (p) + N czJ; (N p) = 0, (126) 

G;(p) - azF;(p) + N2czG;(N p) = (1 - N2)czjz(N p), (127) 

N Jz(p) - NbzM I) (p) + dljz(N p) = (1 - N2)d zjl(N p), (128) 

J;(p) - bzMI)' (p) + N 2dzJ;(N p) = (N2 - l)dzGz(N p), (129) 

N p2[G;(p) - bzF;(p) + NdzG;(N p)] 
= l(l + 1)(1 - N2)d zjz(N p). (130) 

We have also used the fact that 

(1r plml ( 8) dPhml (cos 8) . 8 d(J'l d8 = n(n + 1) I"lf)m _ £1m (131) Jot cos d8 sm d8 l(l + 1) ""'nl ;Jnl, 

where ~~ and fJ::l are given by (60) and (61). This result follows directly 
by integration by parts and use of the differential equation satisfied 
by the associated Legendre functions,14 

1 d [. 8 dPhml (cos 8) ] 
sin 8 d8 sm d8 

+ [ n(n + 1) - si:: 8 ]Phml (cos 8) = O. (132) 
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APPENDIX E 

We outline here the calculation of the integrals in (60) to (62) in the 
case 

0"1 (0) = ! sin2 O. (133) 

It is assumed that l ~ Iml, n ~ Iml, l ~ 0 and n ~ O. Integration 
by parts of the expression in (62) leads to 

JJ~ = -m!o1r plml (cos O)phml (cos 0) sin 0 cos OdO 

= -m f~1 xplml (x)phml (x)dx. (134) 

But,14 with p!~! -I (x) == 0, 

(2l + l)xplm l (x) = (l - I m I + l)pl.+! (x) + (l + I m I )PJ~! (x). (135) 

Substituting (134) into (135), and using the relationship l4 

/

1 plml( )plml()d _ 2(n+ Iml)! 
-1 X n X X - (2n + 1) (n _ I m I) ! Oln, 

(136) 

it follows from (62) that 

m -m [(n - Iml) (n + Iml + 1) ] 
J nl = n(n + 1) (2n _ 1) Ol,n-l + (2n + 3) Ol,n+l' (137) 

Next, from (60) and (133), 

X~ = ~ l(l + 1) f~1 (1 - x2)plml (x)phml (x)dx. (138) 

The integral in (138) may be evaluated by using (136) and the recur
rence relation (135), with l replaced by n also. Then, from (60), it is 
found that 

Hm _ n(n + 1) (m2 + n2 + n - 1) 0 
nl - (2n - 1) (2n + 3) In 

(n + 2)(n + 3)(n + Iml + l)(n + Iml + 2) 0 
- 2(2n + 3)(2n + 5) l,n+2 

(n - 2)(n - l)(n - Iml)(n - Iml - 1) 0 (139) 
- 2(2n - 3)(2n - 1) l,n-2. 

Finally, from (61) and (133), 

II::! = ~ L [ (1 - x')' dP!;~ (x) dP~~ (x) + m'p!ml (x)pkm' (x) ]dX. (140) 
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The integral in (140) may be evaluated by using (136) and the relation14 

(2k + 1) (1 _ X2) dPl
ml 

(x) 
dx 

= (k + l)(k + Iml)Plr::1
1 (x) - k(k - Iml + l)PJ/.+\(x). (141) 

Then from (61) it is found that 

mIl m2 n[ (n + 1)2 - m2] 
Inl = 2 n(n + 1) + (n + 1)(2n + 1)(2n + 3) 

+ (n + 1)(n2 - m2»)0 _ (n + 3)(n + Iml + l)(n + Iml + 2) 
n(4n2 - 1) In 2(n + 1)(2n + 3)(2n + 5) 

(n- 2) (n - Iml) (n - Iml - 1) 
X Ol,n-t-2 - 2n(2n _ 3) (2n _ 1) Ol,n-2. (142) 

"'-tVe note that the above results are consistent with the expressions 
given by Oguchi,4 without derivation, for the integrals in (131), (61), 
and (62), subject to (133). 
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Low-loss single- and multimode optical fibers were fabricated solely 
from pure fused silica. Their spectral losses corresponded closely to 
those of unclad fibers drawn from the same material, provided the cores 
of the single-material fiber preform were redrawn under pure conditions. 
The lowest steady-state loss of about 3 dB/km at a wavelength of 1.1 J.Lm 
was obtained with a fiber 130 meters long that had a Spectrosil W F core. 
Experimental numerical apertures agreed excellently with theoretical 
predictions. 

I. INTRODUCTION 

Recently, we introduced an optical fiber that utilizes only a single, 
low-loss material in a unique structural form.! In the single-material 
fiber, the light is guided in a core of arbitrary shape which is supported 
by spoke-like membranes within a protective tubing. The guided 
modes have exponentially decaying fields in the supporting slabs, so 
that for proper design no power is lost to the surrounding tube. For a 
slab of arbitrary thickness, single- and multimode operation can be 
obtained by choosing the proper size of the central core region. In 
practice, though, this thickness cannot be too large if the field ampli
tude is to be sufficiently small at the end of the slabs to result in a 
fiber of reasonable size. 

Theoretical analysis of the single-material fiber has been carried out 
and is presented in Refs. 2 and 3. In this paper, we concentrate on the 
experimental evaluation of the transmission characteristic and bring 
only a summary of those theoretical results that help us to understand 
the experimental data. 

Cross-sectional views of typical single- and multimode fibers are 
shown in Fig. 1. For a unitary aspect ratio, h = w, the rectangular 
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Fig. I-Cross-sectional views of rectangular and cylindrical core, single-mode 
(w X h) and multimode (A X B; D) single-material fibers. 

core of Fig. 1a has single-mode propagation if the condition 

h ~ 2t (1) 

is satisfied.2 This result is based on the assumption that the energy is 
primarily concentrated in the dielectric, and that wavelength A is 
small compared to the slab thickness t: 

A« t. (2) 

For a multimode guide, the wave propagation effects of the slab 
support can be represented by a uniform-index side support having the 
same height as the core and an equivalent index ne = 11,(1 - .6), 
where 11, is the refractive index of the core and .6 is computed from 

(3) 

For a given n and A, the relative refractive-index difference .6 depends 
only on slab thickness. From .6, we obtain the numerical aperture (N A) 
and the modal dispersion, T, 

NA = n-YU = ~ (4) 
2t 

and 
L 

T = - n.6 
c ' 

(5) 

where L is the length of the fiber, and c is the velocity of light in free 
space. The number of modes N for a core of diameter D (Fig. 1) is 
approximately given by 

(6) 
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For all guided modes, the field decays exponentially along the slab. 
The field penetration is the largest for the highest-order mode and 
decays by 1/ e in a length l, where 

l ':::. ~ (7) 
7r 

provided that hand ware large compared to t. 

II. FABRICATION OF SINGLE-MATERIAL FIBERS 

The preforms from which single-material fibers were drawn typically 
consisted of a core rod, a thin, polished plate, and a surrounding thick
walled cladding tube* (Fig. 2). Whereas high-grade synthetic silicas 
were used for core and plate, commercial-grade fused quartz was 
satisfactory for the cladding tube. The core rods were drawn from 
about 7-mm-diameter drawn or polished rods just before assembling 
the single-material fiber preform. To avoid contaminating these rods, a 
CO2 laser or an oxy-hydrogen torch of high purity had to be employed 
for the redraw operation. Copper, with an associated broad absorption 
band centered between 0.8 and 0.9 ,urn, was considered the predominant 
contaminant in less pure systems. 

The core rods were either centered in the cladding tube by means of 
a capillary tube, as indicated in Fig. 2, or they were attached to the 
top end of the plates with high-temperature cement. Support plates 
up to 15 cm long were cut from about O.I-mm-thick polished plates to 
fit into the approximately 6.5-mm interior diameter of the cladding 
tubes (10 mm o.d.). The plates and the inner surface of the cladding 
tubes were cleaned with acetone and hydrofluoric acid and subse
quently rinsed with deionized water. The assembled preform was 
lowered through a moderately hot oxy-hydrogen torch while helium 
was blown through the tube to carry away residual contaminants 
evaporating from the surfaces of the preform elements. The same gas 
was also used as protective atmosphere during the drawing operation. 
The fibers were drawn with an oxy-hydrogen ring-burner with an 
approximate draw-down ratio of 100 to 1. The preform geometry was 
essentially maintained in the drawn fiber, provided we used a proper 
drawing temperature. Temperatures that were too high caused the 
tube to collapse or resulted in slabs that were too short to enable low
loss guidance. Temperatures too low, on the other hand, resulted in 

* For simplicity, the outer supporting cylinder is referred to as the cladding tube 
in the remainder of the text; its different meaning from the cladding of the con
ventional fiber should be kept in mind. 
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Fig. 2-Preform for single-material fibers. 

brittle fibers. Since the core rod is thermally insulated from the heated 
cladding tube, the maximum diameter of the core rods that could be 
drawn without difficulty was about 1.5 mm. To avoid collapse of the 
cladding tube because of excessive heating, a wall thickness of about 1. 7 
mm was selected. This heavy wall thickness also helped to prevent the 
tube from being excessively deformed by the surface tension of the 
slab during the drawing process. Nevertheless, single-mode fibers 
typically have an elliptical cross section because of this force. 

III. SINGLE-MODE, SINGLE-MATERIAL FIBERS 

The single-mode fiber shown in Fig. 3 was drawn from an unclad 
fiber approximate1y 0.2 mm in diameter and a support plate 0.18 mm 
thick. The fiber had a slab thickness of 4 jLm, a total core height h of 

1024 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1974 



50 p.m 

10 p.m 

Fig. 3-Cross-sectional picture of single-mode, single-material fiber. 

6,um, and an approximate width w of 5,um. According to eq. (1), 
single-mode operation was to be expected. While excited with a HeN e 
laser at 0.6328 ,urn, the intensity distribution of the guided wave was 
measured by projecting the field distribution of the fiber end with a 
40X microscope objective lens to a distant target with a pinhole re
cording system (Fig. 4). For larger distances from the core region, the 
intensity in the direction of the slab (y - y') decreases exponentially 
with a 1/ e length of 2.3 ,urn. As shown in Fig. 4, the intensity distribu
tion in the direction perpendicular to the slab could be well approxi-

mated by a cos2 (~~) distribution (x in ,urn). The far-field patterns 
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Fig. 4-Near-field intensity of the single-mode, single-material fiber of Fig. 3. 

corresponding to this near-field distribution are shown in Fig. 5. These 
patterns were taken at a distance of 3.4 cm from the fiber end face with 
a O.25-mm-diameter pinhole detector. Whereas the broad, exponen
tially decaying slab field results in a narrow, far-field pattern, the 
narrow cos2 distribution of the perpendicular plane results in a corre
spondingly broader distribution that has a zero at an angle 00 : 

. 3 A 
SIn 00 = --

2 keff 
(8) 

with keff being the effective height of the near-field distribution. With 
an experimental eo of 11.7 degrees, keff is computed to be 4.7 J,Lm, 
which emphasizes that a substantial part of the energy is propagating 
in the 4-J,Lm-thick slab. 

In addition to this usefully guided field in the core region, we observe 
other types of modes via their radiation patterns. These modes are 
more noticeable when the fiber is shorter (less than about 2 m) and 
straighter. Slab modes typically had a single intensity maximum 
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o 
DEGREES 

Fig. 5-Far-field intensity of the single-mode, single-material fiber of Figs. 3 
and 4. 

perpendicular to the slab, and several maxima and minima in the direc
tion of the slab. For guide lengths in the order of a few centimeters, 
the slab modes are seen to extend to the cladding tube. The first higher 
mode in the direction perpendicular to the slab could be observed for 
slab thicknesses in the order of 5 ,urn. Besides the rapidly decaying slab 
modes, we also observed hollow-dielectric waveguide4 and cladding 
modes. Hollow waveguide modes propagating in the voids of the fiber 
were only excited with low efficiency, and they rapidly decayed within 
a distance of a few decimeters. For accurate loss measurement, it is 
important to leave a sufficient length of fiber at the launching end (in 
excess of 1 m, for example) so that the slab and hollow waveguide 
modes are sufficiently attenuated. Cladding modes can easily be ex
tracted with a matching liquid. 

The single-material fiber losses were measured by breaking off known 
lengths of fiber and measuring the difference between the power levels. 
The fibers were broken by scoring them with a diamond while under 
tension. The fiber end could not be index matched with a liquid to the 
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Fig. 6-Spectrallosses of a single-mode, single-material fiber made from a Spectrosil 
WF unclad fiber on a Suprasil 2 plate. 

detector surface due to the capillary action exerted by the hollow parts 
of the fiber. Using a measuring apparatus described elsewhere,5 the 
spectral transmission losses of the single-material fibers were measured 
between 0.5 and 1.15 J,tm. Minimum losses achieved with a single-mode, 
single-material fiber amounted to about 50 dB/km at 1.06 J,tm (Fig. 6). 
Despite containing a Spectrosil WF core on a Suprasil 2 plate, the 
losses of this fiber were comparatively high since the core rod was re
drawn with a low-purity oxy-hydrogen flame. Furthermore, since for 

Fig. 7-Electron-microscope pictures of the single-mode, single-material fiber. 
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single-mode fibers a substantial portion of the energy propagates in the 
slab, contamination introduced during the polishing process may have 
contributed to the high losses. Electron-microscope pictures of a single
mode fiber are shown in Fig. 7. 

IV. MULTIMODE, SINGLE-MATERIAL FIBERS 

Cross-sectional views of multimode, single-material fibers are shown 
in Figs. 8 and 9. The diameter of the cores typically varied between 20 
and 30 JLm, depending on the size of the core rod and the draw-down 
ratio employed. A representative slab thickness was 2 to 3 JLm, but 
fibers with slabs less than 1 JLm thick and up to 5 /lm thick have also 
been drawn (Fig. 8). To avoid losses via the exponential tail in the 
slab, the required minimum length-to-thickness ratio needed to be 
larger than about a factor of 7. Electron-microscope pictures of the 
interior structure of a multimode, single-material fiber (Fig. 10) 
demonstrated the intimate fusion of the preform parts. 

The N As of the multimode, single-material fibers were typically 
determined at 0.6328 /lm from the diameters of the radiation patterns 
obtained from fibers that were a few meters long. In Fig. 11, the NAs 
of numerous single-material fibers that vary between 0.07 and 0.32 
are compared with theoretical predictions [ eq. (4) ] and excellent agree
ment is realized. Diffraction effects made a determination of the NA 
difficult only for thicker slabs and resulting NAs below about 0.07. It 

(b) 
I-------i 
10 J.Lm 

Fig. 8-(a) Cross section of a large-numerical-aperture, multimode fiber with l-lLm
thick supporting slab. (NAo.6328I'm = 0.32.) (b) Magnified core region. 
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Fig. 9-Cross section of multimode fiber SMF 56 with a Spectrosil WF core on a 
Suprasil W1 slab; core diameter ~ 25 JLm, slab thickness ~ 2.2 JLm, N AO.6328 I'm ~ 0.14. 

is noteworthy that the good agreement between theory and experiment 
enabled us to determine the slab thickness through N A measurements 
derived from the transmitted radiation pattern. The linear increase 
of the NA with wavelength also agrees with theory, as illustrated 
in Fig. 12. Here, a fiber whose N A corresponding to a 2-~m-thick slab 
was 0.16 at 0.6328 ~m, was illuminated by 10-nm bands filtered from a 
xenon arc lamp,5 and the NA was calculated from the 1/100-power
points of the transmitted radiation pattern. Lack of sensitivity limited 
the data acquisition to the intermediate wavelength region shown, but 
HeN e-laser measurements at 1.15 ~m confirmed a linear dependence 
in the whole wavelength range investigated. 

The transmission losses of single-material fibers were expected to be 
identical or lower than those of unclad fibers drawn from the same 
material. Provided that the core rod was drawn in a pure oxy-hydrogen 
flame, as noted earlier, close agreement was indeed realized (see Fig. 
13). Total losses of 10.6 and 10 dB/km were obtained at 0.8 and 
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Fig. lO-Electron microscope pictures of a multimode, single-material fiber. 

1.06 J,Lm, respectively, with a fiber 210 m long that had a Suprasil 2 
core (Fig. 13). The unclad-fiber losses at these wavelengths amounted 
to 7 and 10.5 dB/km. The various absorption peaks visible in the loss 
spectrum of Suprasil 2 are, as in Suprasill, due to its high OR content 
of 1200 ppm. 6 In contrast, only a weak OR band of 3 dB/km appeared 
in the loss spectrum of a multimode, single-material fiber (SMF 56) 
with a Spectrosil WF core on a Suprasil WI slab (Figs. 9 and 14). 
The approximate steady-state losses of this 130-m-long fiber remained 
below the 7.5 dB/km level from 0.75 J,Lm to the end of the spectral 
range investigated, and amounted to 6, 4.5, and 3 dB/km at 0.8, 0.9, 
and 1.1 J,Lm, respectively. 

Approximate steady-state losses were obtained by launching beams 
with different N As into the fiber and by measuring the far- and near
end radiation patterns as a function of the launch N A, in addition to 
the wavelength-dependent transmission 10sses. 7 The losses associated 
with that N A for which the radiation pattern changed least from one 
end to the other can be considered as the steady-state losses. The radia
tion patterns were measured at a wavelength of 0.88 J,Lm, which coin
cides with a resonance peak of the xenon arc lamp. At this wavelength, 
the 1/100-power-point-equivalent N A was 0.2, which agrees with the 
theoretical NA and corresponds to that of a 2.2-J,Lm-thick slab. Whereas 
the NA of single-material fibers increased with wavelength, the NA 
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Fig. 13-Spectrallosses of a Suprasil 2-cored, single-material fiber compared with 
unclad fiber losses. (a) Single-material fiber with 22-JLm-diameter core and 2.2-JLm
slab thickness, L = 210 m. (b) Suprasil 2 unclad fiber with approximately 0.2 mm 
dia; L ~60 m. 

of the launching beam was kept constant during a wavelength scan. 
Hence, the data obtained are increasingly too high at shorter wave
lengths and too low at longer wavelengths relative to the steady-state 
losses at those wavelengths. We can get an estimate of the possible 
error by injecting a beam with a small NA into the fiber. The resulting 
losses are shown as curve b in Fig. 14. Even lower losses were achieved 
when we cooled the aluminum drum on which the fiber was wound 
with dry ice to reduce stress-induced losses (Fig. 14, curve C).8 With 
the new minimum losses at 0.8, 0.9, and 1.1 ,urn amounting to 4, 3.4, 
and 2.6 dB/km, respectively, this curve represents the lowest loss 
spectrum obtained for pure fused silica, and corresponds closely to the 
spectra of the lowest-loss Corning fibers. 9 
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Fig. 14-Spectrallosses of multimode fiber SMF 56 with Spectrosil WF core on a 
Suprasil W1 slab; L = 130 m. (a) Approximate steady-state losses. (b) Losses for 
small-angle excitation. (c) Same as (b) but after stress was relieved by cooling the 
drum. (d) Rayleigh scattering losses of bulk fused silica. 

Total losses of 9 and 3.1 dB/km measured with ReNe lasers at 
0.6328 and 1.15 JLm agree well with the incoherent-source losses. A 
7.8-dB/km loss was obtained at 0.6328 p.m for low-order-mode laser 
excitation. Since scattering losses for this excitation condition 
amounted to 5.1 dB/km, the approximate absorption losses at 0.6328 
p.m were 2.7 dB/km. With the scattering losses at 1.15 p'm amounting 
to 0.7 dB/km, the absorption losses there were 2.4 dB/km. The ab
sorption losses of a different Spectrosil WF bulk sample were measured 
by Rich lO to be less than 1.6 dB/km at 1.06 p.m. 

The scattering losses were measured with a 4-cm-long integrating 
cell built with silicon photo detectors.l1 Highly reproducible data were 
obtained when cladding mode strippers were provided on both sides 
of the cell, and when small droplets of matching liquid were deposited 
on the 4-cm-fiber section in the cell to reradiate the otherwise captured 
cladding power. Scattering losses of 5.5 dB/km were measured at 
0.6328 p.m when the fiber was filled with a mode spectrum correspond-
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ing to the fiber N A of 0.14. This loss value is lower than that reported 
for a recent low-loss Corning fiber,9 and agrees well with the bulk scat
tering losses of 5 to 6 dB/km measured for numerous fused silica 
samples by Tynes. 12 Furthermore, it corresponds closely to a value of 
5.4 dB/km that was computed from Rich and Pinnow's 12.4 dB/km 
loss measured at 0.5145 jLm, using a >-.-4 Rayleigh-scattering dependence 
(curve d in Fig. 14).13 It is noteworthy that particularly at shorter 
wavelengths SMF 56 has approximately the >-,-4 dependence of Ray
leigh-scattering losses. 

Whereas the spectral losses of SIVIF 56 agree closely with the unclad 
fiber losses of a different batch of Spectrosil WF14 (Fig. 15, curve b), 
the unclad fiber losses of the same raw material from which the core 
rod of SMF 56 was prepared were relatively high (Fig. 15, curve a). 
This is attributed to imperfections in the preform rod and accidental 
contamination of the unclad fiber surface. In contrast to an about 
II-dB/km OR peak in the unclad fiber loss curve, the single-material
fiber peak at 0.95 ).tm was a remarkably low 3 dB/km in spite of the 
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fact that an oxy-hydrogen torch was used for the redraw operation. The 
difference must be due to the fact that the core rod was only drawn to 
a diameter of approximately 1.5 mm (compared to the 0.2-mm diam
eter of the unclad fiber), after which it was surrounded with an inert 
atmosphere while it was drawn into the single-material fiber. We 
conclude, therefore, that most of the water in the unclad fiber, and 
possibly still in the single-material fiber, was introduced in the drawing 
process, and that the OR content of the raw material could be as low 
as 1 ppm. 6 

Aside from the water peak at 0.95 j.Lm, the losses of SMF 56 mono
tonically decreased with wavelength. In contrast, the loss spectra of 
other single-material and unclad fibers drawn from silica with low OR 
content exhibit a strong loss band at 0.63 j.Lm. 6 ,14,15 Similarly, the 
0.63-j.Lm band exists in the unclad fiber drawn from the same raw 
material (as shown in Fig. 15, curve a), although to a much lesser 
degree than in other samples evaluated previously. The reason for this 
is unknown. As shown in Ref. 15, the intensity of the 0.63-j.Lm band 
depends, among other factors, on the drawing conditions, and it is 
typically less pronounced in single-material fibers than in related unclad 
fibers. Also, spontaneous annealing of this band has been observed. 

The loss spectrum of a single-material fiber whose Suprasil WI core 
was drawn using standard gases and brass fittings, is shown for com
parison in Fig. 16. The resulting broad loss band centered between 0.8 
and 0.9 j.Lm is believed to be caused by contamination with copper. 16 

Preliminary dispersion measurements performed by Cohen17 with 
single-material fibers up to 210 m long indicate a weak coupling be
tween modes. The maximum pulse dispersion followed closely the 
theoretical prediction expressed by eq. (5). 

Instead of using the rod-plate technique for the preform preparation, 
we can achieve longer preform lengths by using thin-walled tubes as 
supports. A single-mode, single-material fiber created at the intersec
tion of two tubes is shown in Fig. 17. 18 Using three such tubes results 
in three junctions and associated single-mode guides within the same 
cladding tube (Fig. 18). Single- and multicore multimode guides using 
this approach can also be envisioned by supporting one or more core 
rods by a suitable number of tubes. 19 

V. SUMMARY 

Low-loss, single- and multimode optical fibers were fabricated solely 
from pure fused silicas. The single-material fibers consisted of small
diameter rods supported on thin plates in the center of larger-diameter 
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(a) PREFORM 

(DIMENSIONS IN mm) 

1---1 
20 p.m 
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Fig. 18-Multiple-core, single-mode, single-material fiber made by fusing three 
thin-walled tubes. 

protective tubings. The loss spectra of these fibers approached those 
of unclad fibers drawn from the same raw material. Specifically, steady
state losses of a 130-meter-Iong multimode fiber with Spectrosil WF 
core were approximately 6, 4.5, and 3 dB/km at wavelengths of 0.8, 
0.9 and 1.1 ,urn, respectively, with even lower losses existing for low
order mode excitation. Aside from a small 3-dB/km OH band at 0.95 
,urn, the losses monotonically decreased throughout the 0.5- to 1.15-,um 
wavelength range investigated. Scattering losses, measured with HeN e 
lasers at 0.6328 and 1.15,um, amounted to 5.5 and 0.7 dB/km, 
respectively. 

For supporting plate thicknesses varying bet\veen 1 and 4 ,urn, the 
experimental N A of multimode fibers changed between 0.32 and 0.08 
,urn (at 0.6328 ,urn), which agrees excellently with theoretical predic
tions. Similarly, the predicted linear increase of the N A with wave
length was confirmed experimentally. 
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A new method is introduced and used to calculate the statistics of the 
microscopic fluctuations of charge carriers in devices. By expressing the 
fluctuations of the carriers in terms of elementary transfer fluctuations, we 
are able to separate the induced fluctuations from the spontaneous fluctua
tions experienced by such carriers. This enables us to treat correlation 
effects in the dynamical portion of the problem and reserve for the statistical 
portion only well-defined, uncorrelated random forces whose statistics are 
readily calculated. The method includes all important correlation effects as 
well as multiple-decay-time relaxation effects and, thus, it fills a gap in the 
Langevin method as well as in the impedance-field method of calculating 
noise in devices. The method is suitable for treating nonstationary as well 
as stationary noise, and in some cases can be used directly on macroscopic 
problems. We also present a derivation of a recently introduced expression 
for diffusion noise of carriers whose mobility is a nonlinear function of 
applied electric field. This microscopic approach may further illustrate 
the origin, nature, and treatment of fluctuations in devices. 

I. INTRODUCTION 

In this article we describe a very simple means of treating micro
scopic fluctuations in noise theory. The method is simple in the sense 
that it focuses attention directly on the heart of the matter, the 
elementary processes which give rise to device noise. It is also simple 
in the sense that no sophistication in probability theory is used beyond 
an understanding of simple shot noise. Nonetheless, the method is 
rigorous under the rather mild constraint that the fluctuations are 
sufficiently small that the equations governing the noise are linear. 
The method has the added advantage that it can be used nearly as 
easily for nonstationary noise as for stationary noise. We make no 
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claim that this method is an advance in the philosophy of noise; we do 
claim, however, that it is adequate for solving many noise problems 
of practical interest. 

There are two equivalent1 •2 methods of calculating device noise, the 
Langevin3 method (LM) and the impedance-field4 method (IFM). 
Both methods are characterized by an inherent simplification: namely, 
the separation of the task of calculating the spontaneous fluctuations 
of the current carriers in each elemental region of the device, and the 
task of calculating the observable response to these fluctuations at the 
external contacts of the device. The former task, the treatment of the 
microscopic fluctuations, is simplified because in dealing with the 
source of the fluctuations one can focus attention on the statistics of 
the microscopic variations inherent to the local physical conditions, 
which in turn are determined by the (noiseless) state of the device 
during operation. As a result, both the LM and the IFM are primarily 
concerned with the latter task, the coupling of the microscopic fluc
tuations to the macroscopic, observable voltages and currents. This 
task is also well-defined because the influence of the carriers in one 
region of the device on the carriers in another region, and on the 
contacts, has often been studied in detail in attempts to understand 
the dc and ac operation of the device. Thus, it is important to comple
ment the LM or the IFM with the microscopic method described 
below. When this is done, it can be claimed that in most cases, if one 
understands the device sufficiently to calculate its noiseless operation, 
one can calculate the device noise as well. This should be of assistance 
to those tackling the noise in new and/or unfamiliar devices from 
scratch. 

For example, if a device is sufficiently well-understood to be charac
terizable by an equivalent circuit, one can often introduce equivalent, 
random voltage and current sources to simulate the noise in the 
device. 5-8 Using such sources, a circuit designer with little interest in 
noise theory can readily calculate the size of the noise in the circuit 
employing the devices of interest. In a similar way, a person working 
with individual devices may find it convenient to have a simple scheme 
to translate the physical processes with which he is familiar into noise 
sources and to quickly evaluate their effect on the performance of the 
device of interest. 9-1O It is hoped that the method presented here will 
be used in such situations. 

It is important to realize that charge carriers in any device fluctuate 
in response to random forces exerted on them. 3 The response to a 
specific impulse continues in general long after the impulse causing it 
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has ceased, and, in the interim, subsequent impulses will further alter 
the induced fluctuation. In addition, a fluctuation in the distribution 
of one type of carrier can induce fluctuations in the distributions of 
other types of carriers. Thus, whereas the statistics of the spontaneous, 
random forces may be quite simple, those of the carriers can be some
what complicated owing to the correlation between the various in
duced fluctuations. The key to the simplicity of the method presented 
here results from the separation of the correlation effects from the 
statistical problem. These correlation effects are not neglected. Rather, 
they are included in the dynamical portion instead of in the statistical 
portion of the treatment. As it turns out, this results in the primary 
simplification achieved with our method. 

In what follows, we shall use several examples to introduce and 
elaborate our microscopic approach. The first example, the decay of 
charge stored on a leaky capacitor, will motivate the method and 
illustrate how this technique can be used to treat certain macroscopic 
problems as well as microscopic ones. The second example concerns 
transfers between a two-level system. Here correlations are of primary 
importance, and our method is seen to treat these adequately yet 
simply. The third example illustrates how velocity fluctuations can be 
decomposed into transfer fluctuations, which are much easier to treat. 
Complicated scattering mechanisms including multiple decay times, 
which are not normally covered in the usual Langevin3 or impedance
field4 methods, can be handled with relative ease. The fourth example 
considers recombination to illustrate how correlation effects can be 
treated efficiently and effectively. By working in the time domain, we 
can see how the method works for nonstationary9 as well as for station
ary statistics. The statistics are treated in detail in the appendices. 
In particular, a recently used expressionll for the diffusion noise of 
carriers having a nonlinear mobility is derived. 

It is hoped that our discussion will provide, for the nonspecialist, 
further insight into the physical nature and mathematical representa
tion of noise in general. 

II. SOME SIMPLE EXAMPLES 

Since the primary purpose of this paper is to elucidate a general, 
practical approach to solving the microscopic portion of noise problmns, 
it seems best at first to describe this approach in terms of simple 
examples. Although this method is best suited to treat noise at the 
microscopic level, for purposes of illustration we shall commence with 
a macroscopic example. 
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(a) ( b) 

Fig. l-(a) RC circuit in which charge initially placed on the capacitor decays to 
ground through the resistor. (b) Noise equivalent circuit of (a). 

Consider the RC circuit shown in Fig. 1a in which we assume that 
capacitance C is a function C (Q) of the charge Q, which it stores. Let 
us assume that initially (t = 0) a charge of size Q~ is stored on the 
capacitor. Subsequently (t > 0) the charge will decay away through 
the resistor R. In the absence of noise, the charge as a function of 
time Q0(t) satisfies the equation 

(1) 

subject to the boundary condition that Qo(O) = Q~. 
We know, however, that the thermal (Brownian) motion of the 

electrons in the resistor gives rise to a noise current. Thus, rather than 
the uniform charge decay predicted by (1) for noiseless conditions, the 
charge decay is in fact somewhat random. Moreover, the noise is not 
solely governed by the resistor. If, during a time interval, the noise 
current in the resistor is such as to draw too many charges from the 
capacitor, then the voltage on the capacitor will decrease and the 
subsequent current will be reduced. This is just the response of the 
circuit to the noise generated by the resistor. In such a problem, we 
would ordinarily determine the statistics of the noise current i(t) 
associated with the resistance itself, and then determine the fluctua
tions in the charge Q(t) on the capacitor in terms of i(t). We would be 
implicitly assuming, and rightly so, that only the resistor, and not the 
circuit exterior to the resistor, determines the statistics of i(t), the 
thermal noise current generated by the resistor. We would then relate 
QCt) to iCt) using an equation of the form 

~~ = -I(Q) - i(t), 
Q 

I(Q) == RC(Q)' (2) 

(The noise equivalent circuit is shown in Fig. lb.) We would then 
write Q(t) as a sum of its stochastic average Qo(t) and a fluctuation 
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oQ(t) == Q(t) - Qo(t); assume that (OQ(t)2)!« AQ, where 

AQ = (aI/aQ)/(a2I/aQ2); 

and expand eq. (2) to first order in oQ(t), obtaining a nonlinear equation 
Ceq. (1)] for the Qo(t) and a linear equation, 

doQ oQ. 
dt = - T(t) - ~(t), (3) 

for oQ in terms of i(t). In eq. (3) T(t) is defined by 

T~t) == d~ ( RC~Q) ) [Q=Qo(t) • 
(4) 

Solving (3) for oQ (t) in terms of i (t) permits the statistics of oQ (t) to 
be obtained from those of i(t), which for now we assume we know. In 
this way, we can determine the noise associated with the variable of 
interest Q (t) from a knowledge of the noise associated with a more 
simply characterized noise variable i(t). 

The foregoing procedure has one drawback: one must be extremely 
careful, in general, to properly introduce such noise terms as i (t) into 
otherwise noiseless dynamical relations. As we shall see in the examples 
considered below, there is a one-to-one correspondence between the 
transfer processes characterizing the problem of interest and the noise 
terms which one introduces. Thus, if one writes down several coupled
rate equations, each involving several transfer processes, and introduces 
but one noise term per equation, one finds, in general, that these noise 
terms are not simple, being correlated statistically to one another. 
Since, for simplicity, one would desire noise terms to be uncorrelated, 
some care must be used in including them in the rate equations. We 
now outline a procedure in the context of the above example that can 
be used in more complicated problems to insure that such noise terms 
are included properly. 

The decay of charge from capacitor to ground is accomplished by 
transfer of individual electrons. Let ti be the time at which the ith 
electron leaves the capacitor. Then we may write the following kinema
tic relation for the decay of the charge on the capacitor, 

(5) 

where q is the size of an elementary charge. If we consider an ensemble 
of RC circuits of the type shown in Fig. la, in which an initial charge 
of Q~ is decaying, each decay will be characterized by a different set of 
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times {td at which elementary charges leave the capacitors. Each ti, 
therefore, is a random variable whose probability distribution is, in 
general, dependent upon all tj for the preceding events (tj < ti). A 
completely rigorous derivation of the noise would, therefore, involve 
calculating the probability of each such sequence of times {ti}, 
including all correlation effects, and then using these probabilities to 
ascertain the statistics of the noise. Were it not for these correlation 
effects, the li would be independent, and the statistical problem would 
be greatly simplified. 

We shall now recast eq. (5) into a form that greatly simplifies the 
correlation problem by decomposing the current into a spontaneous 
portion d(t) and an induced portion R(t). The spontaneous portion is 
governed by the sources of the noise, and the induced portion is con
trolled by the instantaneous state of the device, in this case the stored 
charge Q(t). Returning to the charge decay problem, we rewrite eq. (5) 
in the following form: 

dQ _ dt - -qR(t) - qd(t), (6) 

where 
(7) 

and where R(t) is the "dynamical" rate of charge loss. By "dynamical" 
rate we mean that R (t) is, in general, a function of (that is, is deter
mined by) the dynamical variables of the problem. In this case, we 
have 

Q(t) 
qR(t) = RC[Q(t)] (8) 

If there is a fluctuation oQ in Q, then a fluctuation oR (t) occurs in 
R (t) also, which in this case is given to first order in oQ (t) : 

qoR (t) = oQ (t) / T (t) , (9) 

where T is defined in eq. (4). Returning to eq. (6), if we write 
Q = Qo + oQ as we did in passing from eq. (2) to eq. (3).1 then we 
obtain an equation for the noise oQ [which corresponds to eq. (3) 
above], 

doQ oQ 
CIt = - T(t) - qd(t). (10) 

In this case, qd(t) corresponds to the noise current i(t) generated by the 
resistor, which, as discussed above, is independent of the oQ associated 
with the capacitor. Thus, del) serves as a statistical driving term. We 
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may calculate oQ (t) in terms of d (t) and from the statistics of d (t) 
determine those of oQ(t). 

Let us return to eq. (7) for a moment to point out why d(t) is to be 
regarded as the spontaneous portion of the current. The - eLi 0 (t - ti) 
term is, of course, the entire current associated with the charge decay. 
The dynamical rate term R (t), however, is a function only of the dy
namical variables of the problem and does not contain noise sources. 
In our example, R(t) involves only the charge Q(t) = Qo(t) + oQ(t), 
where oQ (t) is the charge fluctuation induced by the noise sources 
acting on the device. R (t) does not involve the noise sources them
selves. Thus, if d(t) = 0, oQ, the response, vanishes. Hence, inasmuch 
as d (t) is the difference between the total current and the noiseless
plus-induced portion of the current, it follows that d (t) can contain 
only the spontaneous portion of the current. The advantage of starting 
with eq. (5) and proceeding as we did to eq. (10), rather than attempt
ing to write eq. (2) [or eq. (3)J a priori, will become evident when more 
than one process is involved in the problem. By introducing a diet) 
and Ri(t) for each process i, and noting that each diet) involves only 
spontaneous fluctuations and, hence, must be independent of all the 
other dj, j ~ i, we can readily express the fluctuations of interest in 
terms of the independent statistical driving terms di . 

If we solve eq. (10) for oQ(t), we find that 

oQ (t) = J~~ dt' exp [ - l~ dt" / r (til) ] [ - qd (t')]. (11) 

Often one is most interested in the mean-square fluctuation (OQ2) for 
some time t. From (11) this is given by 

(oQ2(t) = q2 J~~ dt; J~~ dt; exp [- f: dtll/r(t")] 

X exp [ - f: dt"/r(tll)] (d(t~)d(t~). CI2) 

If we know the statistics of d(t) (in this case, those of i(t)/q associated 
with the resistor), we can calculate (d(t 1)d(t2), and hence (OQ2(t). 
Note that, in general, we must also know the noiseless solution Qo(t) 
Ceq. (1), and also see eq. (4)]. For simplicity here, let us assume that 
i(t) is pure thermal noise so that 

q2(d(tl)dCt2) = 2kTGo(tl - t2), 

It follows then that 

G = IjR. 

(OQ2(t) = kTC, (13) 
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the usual result. [Note: (OQ(tl)OQ(t2» = kTC exp (-lt 1 - t21/7). This 
illustrates how eq. (10) maintains the correlation between fluctuations 
at two different times, while the fluctuations themselves are driven by 
a source without correlation, o(t - t').] When we turn to purely micro
scopic processes, we shall find the statistics of d(t) are governed by the 
rate function R (t). 

In what follows, the very important distinction between spontaneous 
and induced fluctuations will be used repeatedly. The advantage of 
this macroscopic example is that the separation between the two may 
be clearly visualized. From the point of view of the RC circuit, fluctua
tions in the current generator are spontaneous and induce fluctuations 
in the charge decay, oQ. In addition, the rate term R(t) is a function 
only of Q and clearly includes only the induced and not the spontaneous 
fluctuations. The reader may find it helpful in subsequent examples to 
refer ba·ck to this simple model to clarify the somewhat more subtle 
distinctions between induced and spontaneous fluctuations at the 
microscopic level. 

We now consider another simple example, this time a truly micro
scopic one. Let us consider two states a and b containing na (t) and 
nb(t) charges, respectively. [These states, for example, might be two 
regions of phase space (dxdv):* one region for (Xa, Va) and one for 
(Xb, Vb), or a might be trapped electrons and b free electrons.] Let us 
assume that charges are flowing to b from a at a rate Rba = Rba (na, nb) 
and to a from b at a rate Rab = Rab(nb, na). If charges leave a and enter 
b at times tbai and leave b and enter a at times tabi, then by analogy with 
(5) we write 

na = - L o(t - tbai) + L o(t - tabi) 
i i 

and 
nb = - L o(t - tabi) + L o(t - tbai). 

i i 

Following the previous example, we rewrite (14) in the form 

na = -Rba(t) + Rab(t) - dba(t) + dab(t) 
and 

where, of course, 
dab (t) == L 0 (t - tabi) - Rab (t) 

i 

(14a) 

(14b) 

(15a) 

(16a) 

* Note that boldface capital letters denote matrices; boldface lower-case letters 
denote vectors. 
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and 
dba(t) == L oCt - tbai) - Rba(t). (16b) 

i 

If we write na = ng + ona, nb = ng + onb, insert into (15), and expand, 
we obtain the following equations for the noiseless quantities ng, ng: 

(17a) 
and 

(17b) 

where 

For the noise ona, onb, we obtain the linear relations 

Mia = - (ORba _ aRab) ana _ (aRba _ aRab) anb 
ona ana onb anb 

- dba(t) + dab(t) (lSa) 

and 

onb = - (ORab _ ORba ) ona _ (ORab _ ORba) onb 
ona ana onb Ona 

- dab(t) + dba(t), (lSb) 

from which ana and onb can be determined in terms of dab and d ba. 
(The linear operators of the form oR/on are evaluated at their noiseless 
values.) Since there are only two states, and since na + nb = constant 
(na + nb = 0), it comes as no surprise that ona(t) = -onb(t); one 
state's loss is the other's gain. Nonetheless, the source or driving terms, 
dab and dba, are independent, and the correlations between ana and anb 
are included in (IS) through the presence of the dynamical terms. Since 
this is an important point, we shall discuss it more fully below. 

If we ignore for the moment the random nature of the flow of charges 
from a to b (and from b to a), then eq. (17) tells us that we have a 
"smooth" continuous flow of charges from a to b at a rate of Rga(t) 
and from b to a at a rate of R~b(t). Noise enters the problem when we 
note (as we have above) that charges are actually transferred at times 
{tbad and {tabi}, the (ensemble) average rate of occurrence of these 
times being Rga(t) and R~b(t). Since Rga(t) and R~b(t) depend only on the 
steady-state solution (ng, ng) to eq. (17), these quantities are not 
affected by the details of a particular set of fluctuations. This means 
that if Rga and R~b govern the statistics of the transfers from a to band 
b to a, then the individual transfer times {tgai }, {t~bi} associated with 
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Rga and R~b must be statistically independent. [If they were cor
related, .then Rga and R~b would reflect this correlation much as do Rba 

and Rab in eq. (15).J In discussing the discharge of the capacitor, we 
pointed out how d (t) acted as a noise source containing only the 
spontaneous fluctuations. Above, we have noted that these fluctuations 
are governed by the average rates RD. This suggests that to calculate 
the statistics of dab and dba, which according to (18) are needed to 
calculate the statistics of ona and onb, we may write the d (t)'s in the 
following form: 

dab (t) = L 0 (t - t~bi) - R~b (t) (19a) 
i 

and 
dba (t) = L 0 (t - tgai) - Rga (t). (19b) 

i 

We stress at this point that for a specific event ({ tabi, tbai}) we need not 
demand that the right-hand sides of (16) and (19) be equal. This is 
because we eventually average the dependence of na and nb on dab and 
dba over all events in calculating correlation functions and spectral 
densities. All that is necessary is that the statistical properties of the 
two forms of dab and dba be the same, at least to lowest order in the size 
of the fluctuations. We shall see below that this is indeed the case. We 
H,re able to calculate simply the statistics of dab and dl-Il because in 
writing (19) we have cast these random variables into a form in which 
the distinction between spontaneous and induced fluctuation no longer 
enters. We can do this because d involves only spontaneous (hence 
independent) fluctuations and, therefore, can be written in terms of 
independent events. 

With independent transfer times, it is straightforward to calculate 
the statistical distributions of dab and dba as given in (19). This calcula
tion is carried out in Appendix A. The autocorrelation functions for 
dab and dba, which are the spontaneous-fluctuation, noise-source terms, 
are given by 

(20a) 

and 
(20b) 

as expected for pure shot noise associated with independent events. 
In addition, if R~b and Rga are independent of time (so that the noise is 
stationary), then the spectral densities of dab and dba are given by 

(20c) 
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and 
(20d) 

The form given dab and dba in eq. (19), or rather their statistical form, 
eq. (20), is the basic assumption that enters our approach. That it is 
valid so long as the fluctuations oR in the rates R = Ro + oR satisfy 

(21) 

may be motivated by the following. If a fluctuation on in n leads to a 
fluctuat.ion oR in R, then the statistics of the immediately following ti 
will be governed by the altered rate. This suggests as a first-order 
iteration in the fluctuation that 

(22) 

However, R = Ro + oR; thus, the error in (20) is of the order of 
oR/ Ro, which we assume to be small. A similar argument applies to 
residual correlation effects among the d's. Thus, so long as (21) is 
satisfied, we expect (20) to be valid to order DR/ Ro. Since we are 
discussing a linear theory, this is good enough for our purposes. 

Returning to (18), assuming stationary noise so that we may use 
Fourier-transform techniques, and representing that the linear opera
tors are simple decay rates for purposes of illustration, we may write 

(23a) 

and 

iwonb = +Dnal Ta - onb/ Tb - dab + dba, (23b) 

which become, upon solving for ona(w) and anb(w) in terms of dba(w) 
and dab (w), 

(23c) 

where 

(23d) 

Since the dab and dba are independent, for spectral densities we obtain 

s~n(f) = sgn(f) = liw + I/TI-2[S~b(f) + Sga(f)] (24a) 

= I iw + 1/ T 1-2(2R~b + 2Rga) (24b) 

- S~~ (f) = - sg~ (f), (24c) 

where the expressions in (24c) are cross-spectral densities (f = w/27r). 
In such a problem as this with transfers permitted only between two 
states, the correlation between ana and onb is maximal. (Introducing 
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more states will lessen the correlation between any two.) Nonetheless, 
the important features of the correlation are clearly obtained in the 
result (24b) : the small-signal decay rate (1/7) is the sum of the separate 
decay rates, and the spectral density is proportional to a full shot
noise term derived from the sum of the noiseless rates (R~b + Rga). 

This example is admittedly very trivial and could have been done 
more easily by other means. In the following sections, the advantages 
of the present method will become evident. Note, however, that there 
was no question as to how to include the driving terms when writing 
down the coupled noise equations (18) and no question regarding the 
independence of these driving terms when it came to calculating 
spectral densities in (24). 

Let us pause before going on to summarize the logic we have used in 
arriving at our method. First we recognized that noise arises owing to 
the randomness in the times at which charge carriers change their 
state. Then for each transfer process, we separated the expression for 
the particle current flowing between any two states into a dynamical
rate term R (t) that includes all induced fluctuations, and a driving 
term d (t) that includes only spontaneous (and therefore independent) 
fluctuations. In this way, we are able to shift the statistical correlations, 
so to speak, out of the statistical term and into the dynamical term. To 
calculate the statistics of our driving term, we noted that since the 
fluctuations were characterized by a mean rate of Ro(t), which depended 
only on the noiseless solution, we could rewrite d(t) in a natural way 
in terms of independent events. [These latter events cannot be coupled 
since their statistics are governed only by Ro(t) and not by preceding 
events.] Although this step represented an approximation, we argued 
that it should be all right for small fluctuations. With the new form 
for d(t), its statistics were readily calculated. Finally, knowing the 
statistics of d and the linear relation between on and d, the statistics of 
on including all correlation effects of interest, which we desire, are 
straightforward to obtain. In the next two sections, we shall carry out 
the above procedure for two examples from start to finish. 

In passing, we make reference to Lax's discussion12 in which he 
showed the basic limitation of any source theory of noise. The heart of 
Lax's argument is that one cannot expect to model on the time scale 
of the duration of a spontaneous fluctuation (during which time the 
system appears to be reversible) by using the essentially irreversible 
dynamics embodied in eq. (18). As for time scales on the order of the 
response time of the carriers to spontaneous fluctuations, however, all 
is well. Thus, as Langevin probably recognized long ago, the price paid 
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for using source terms is small. The whole trick is to include them 
unambiguously. 

III. NOISE IN CHARGE TRANSFER 

The purpose of this section is to stress the insight one can gain by 
starting with the most elementary transfer processes taking place in a 
device. In this case, we avoid making assumptions about the statistics 
of the velocity fluctuations of carriers by calculating them from oc
cupancy fluctuations, which can be understood much more simply 
using our method. For simplicity, we shall ignore correlation effects, 
which in fact are shown to be negligible for the problem we discuss. In 
the next section, which is on recombination, we shall stress correlation 
effects and how they can be dealt with using the microscopic method. 

One of the most basic approaches to the problem of the storage and 
transport of carriers in a device is first to assign a density function to 
each carrier state. For example, na (x, v, t)dxdv represents the number 
of carriers of type a at x with velocity v in the element dxdv of phase 
space. Similarly, nb(x, t)dx represents the number of carriers of type b 
trapped at x in volume dx. In this example, let us ignore trapping and 
recombination effects and focus attention on the transport via scatter
ing of a single type of carrier. This will lead to a general expression for 
diffusion noise which we can compare with the results obtained by 
Langevin and by Shockley et al. using the Langevin method and the 
impedance-field methods, respectively. 

We proceed as follows. If at times tijl a particle is scattered from 
statej to state i, then we have (by analogy with our treatments above) 
that 

(25) 

and 

- L Rji(t) + L Rij(t) - L dji(t) + L dij(t). (26) 
iii i 

The subscripts i, j each designate a particular region of phase space 
dxdv at (x, v). (We do this to simplify the notation.) In (26), dij (t) is 
defined by 

(27) 

It is important to note that we introduce a source term for each 
elementary process, that is, for each transfer process indexed by the 
ordered pair (i, .j). 
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As before, we let ni == n~ + ani, insert into (26), and expand to 
lowest order in oni. The noiseless equation that results in 

(28) 

is just the Boltzmann equation, R~j being a function of n~ and nj. 
Using x, v notation, (28) becomes 

dn(x, v, t) = an(x, v, t) + v. an(x, v, t) + !. an(x, v, t) 
dt at ax m av 

= - f dx' dv'(R(x, v; x', v') - R(x', v'; x, v», 

the more usual form of the Boltzmann equation, where R(I, 2) is the 
average rate at which particles are scattered from 2 to 1. In general, 
R(I, 2) is a function of nl and n2. Usually R(I, 2) is taken to be propor
tional to n2, however. To determine such noiseless quantities as 
mobility, etc., (28) must be solved for the noiseless no(x, v, t). 

The equation for the noise on (x, v, t) = oni obtained from (26) is 

Oni = - L ORji onk + L ORij ank 
i,k onk i,k onk 

- L dji(t) + L dij(t). (29) 
i i 

In general, this is a coupled (linear, integral-differential) equation 
among the ani. [As before, the linear operator aR(n)/on is evaluated 
at its noiseless value by inserting the noiseless solutions n~ of (28).J 
For our purposes here, we simplify (29) by assuming (i) that Rji is a 
function of (and not an operator on) the nk, and (ii) that in (29) we can 
ignore onk where k ~ i. Assumption (i) is in fact the usual situation 
one has with the Boltzmann equation. Assumption (ii) can be made 
plausible in the following manner. By ignoring in (29) onk, k ~ i, we 
are ignoring correlations among the fluctuations oni and onk. Let us 
suppose that the scattering rates between i and k are equal for all 
N (N + 1) (i, k) pairs. Then a fluctuation oni will lead to a onk on the 
order of oni! N. The effect of onk back on state i will be of the order 
onk/ N. Thus, summing over the N states k ~ i, the correlated contribu
tion to oni which we lose by ignoring the onk in (29) is of the order of 
oni/N [=N· (onJN)/NJ, which for large N is entirely negligible. 
While we have assumed that the transfer rates between all i and k 
states are equal, a similar argument applies so long as the scattering 
to a few states is not favored. In this case, the onk dependence of these 
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few states must be included in (29). (We have already considered the 
two-state problem where correlation is largest. In our next example, we 
shall consider recombination in which correlation among several states 
is important.) Finally, we should note that our approximation is not 
equivalent to a relaxation-time approximation, which might be used to 
simplify (28). 

Returning to our example, and based upon the reasoning given above, 
we approximate (29) by 

Oni = - L ORji oni + L ORij oni 
i oni i oni 

- L djl:(t) + L dij(t) (30a) 
.i i 

and 
(30b) 

where 

IjTi(t) == L (ORji _ ORij ) , 
i oni oni 

(30c) 

dHt) == L oCt - tja) - L Rji(t), (3Ia) 
i ,I i 

and 

dHt) == L 0 (t - tijl) - L Rij(t). (3Ib) 
i ,I i 

The superscripts on di, "0" and "e," designate "out" and "in" scatter
ing, respectively. We are able to lump the driving terms together 
in this way because (30a, b) involve only oni and because the residual 
correlation between d~ and d~ is of order 1/ N. 

To proceed further, we approximate (3Ia, b) in the manner discussed 
above [see (I9)J and determine the statistics of O1'/'i. Using the general 
results derived in Appendix A for d and then in Appendix B for 2n as a 
function of d, we find for the correlation function of oni, onj the 
expreSSIOn 

where we have assumed that the noiseless rates R~(in) = LjR~j and 
Rj(out) = LjRji [and therefore Ti defined in (30)J are independent of 
time. One further simplification is often justified. Under the stationary 
conditions taken here to arrive at (32), R~(in) -= R~(out). Furthermore, 
if R.ii depends only on n l : and is directly proportional thereto, it follows 
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that 
RHout)Ti = n~. 

Thus, we find the expected result that 

(oni(t 1)onj(t2» = oijn~e-ltl-t21/Ti. 

(33) 

(34) 

We shall now use this result to determine the statistics of the velocity 
fluctuations of the individual carriers. It is velocity fluctuations rather 
than occupancy fluctuations that are usually taken as basic. We shall 
see, however, that occupancy fluctuations are the more fundamental 
of the two. 

Diffusion noise arises from the velocity fluctuations that a charge 
carrier undergoes owing to its interaction with the material in which it 
is confined as well as with the other carriers. Since the current in a 
device is made up of the linear superposition of the currents carried 
by each carrier, and since each contribution is proportional to the 
velocity of the individual carrier, a calculation of the current correla
tion function (to determine device noise) requires knowledge of the 
velocity autocorrelation function for each carrier. This latter quantity 
we can calculate at once from (34). We proceed in the following manner. 

By definition, the velocity of a carrier is given by 

vex, t) 
f d3v'v'n(x, v', t) 

f d3v'n(x, v', t) 
(35) 

If we recall that n = n° + on, \ve can write (35) in the form v = VO + ov 
to determine that 

and that 

ov(x, t) 

f d3v'v'no(x, v', t) 

f d3v'no(x, v', t) 

f d3v'v'on(x, v', t) 

f d3v'no(x, v', t) , 

(36) 

(37) 

where we have assumed that the total number of carriers within a 
volume element dx remains at the noiseless value. We make this as
sumption only because we are interested here in diffusion noise only 
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and not noise from fluctuations in particle density. It follows at once 
from (34) (assuming stationarity) and (37) that the velocity correla
tion function of interest is given by 

(OVi(XI, t)OVi(X21 t2» 
f d3v'v~v;no(XI' v') 

= O(XI - X2) e-ltl-t2J/T(Xl.Vfl. (38) 
no(xI} f d3v'no(xI, v') 

In (38), i and j now correspond to the components of the velocity 
v = (vx, VY1 vz ). 

When one is dealing with stationary noise, it is morc convenient to 
work with spectral densities than autocorrelation functions. Using the 
standard definitions of the spectral density function,I3 one finds using 
(34) that 

Son (XII VI, X2, V2, f) 

= O(XI - X2)O(VI - v2)4 ioo 
e-tlr(Xl.Vllno(XI, VI) COS wtdt 

_ ~( )~( )4nO(xI,vI)r(xI,vI) 
- U Xl - X2 U VI - V2 1 + 2 2 ( ). w r Xl, VI 

(39) 

It follows that the spectral density of the velocity fluctuations is given 
by 

(40) 

an expression which could have been obtained directly from (38). 
The spectral density given in (40) has several interesting features 

that we shall touch on briefly. Ordinarily for the frequencies of interest 
in devices, w 2r2 « 1, owing to the very rapid carrier-scattering rates. 
In this case (40) reduces to 4 •14 

Sov.ii = O(XI - x2)4D ij/no(xl), 

where Dii is the ij component of the diffusion tensor defined by 

This expression (42) can be derived from (38) by noting that 

ox(t) = f~oo dt'ov(t'). 

(41) 

(42) 
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The diagonal components of D, Dij == Di satisfy 

In this form, we recognize that the first factor is 1nlli(X)/q, while for a 
thermal distribution, the second factor is kT 1m. Here, lli(X) is the 
carrier mobility in the ith direction at x derived using a standard 
Boltzmann equation approach. Inserting into (41), we find the usual 
result for thermal noise, namely that 

In Appendix C we generalize (44) to the case of field-dependent 
mobilities Il(E). The result when an effective temperature T can be 
defined is that 

( 
kT) d[Il(E)E]/ Sov(Xl, X2, f) = O(XI - x2)4 -q- dE no(xl). (44b) 

Weare now in a position to compare the results obtained here with 
those obtained by Langevin 3 and by Shockley et al. 4 using additional 
assumptions. For simplicity, we shall work in one dimension and ignore 
spatial variations. In the Langevin 3 method, one begins by decomposing 
the force acting on each carrier into two parts, a damping force propor
tional to the velocity and a stochastic force of zero mean. The purpose 
of the latter is, of course, to produce the random fluctuations in the 
vel6city. Thus, one writes 

oil = -ovj r + h(t), (45) 

where r = mill q. One then calculates the spectral density of OV in 
terms of that of h, obtaining 

(46) 

If one assumes that SheW) = Sh(O) [white nOIse corresponding to 
totally uncorrela ted h (t)], then since 

(47) 
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one finds that SheW) = 4kT/mT. It follows then from (46) that 

So (1) = 4kTT/m = 4kTJ.£le 
v 1 + W2T2 1 + W2T2 

4 f dvno (v)v2T 

1 + W2T2 

(48a) 

(48b) 

This result agrees with (44) for WT « 1. If, however, we are interested 
in w, for which WT ~ 1, then this result differs markedly from (40), 
which we write as 

(49) 

unless T(V) = T, a constant. This, however, is seldom the case in 
realistic scattering problems. We may rescue the Langevin approach 
if, in place of (45), we pass to the frequency domain to write 

iwov = -OV/T", + h"" (50) 

in which the effective damping 1/ T", is frequency dependent; and now 

(51) 

Again, we choose Sh (f) = Sh (0) and note that as 1 ~ 0 we must obtain 
(48). Thus, Sh(f) = 4kTlmT, where T = T(W = 0). Inserting into (51) 
we obtain 

4kT/mT 
Sov(f) = w2 + liT; 

4 f dvno(v)v2j T 

w2 + liT; 
(52) 

If (52) is equated to (49), one can solve for I/T"" that is, for the ap
propriate damping term to be used in the Langevin equation. This 
illustrates a major defect of the Langevin3 approach, quite apart from 
inserting h", in a rather arbitrary manner. If the appropriate T", is not 
known a priori, one must return to a more fundamental approach such 
as that given above. This is important, for if x", = J.£",E"" then 

J.£w = (e/m)(iw + I/T~)-l = (e/kT) f dvv2n(v)[iw + I/T (v) ]-1. 

Setting T", = T~ does not make (52) equal (49). Thus, the original 
Langevin idea is not internally consistent in general. 
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In developing the impedance-field 4 method, Shockley et al. focus 
attention on the trajectory of a given carrier and on the carrier's 
deviations from its noiseless trajectory. Nonetheless, when it comes to 
writing an expression for the autocorrelation function of the velocity, 
they must postulate an expression equivalent to (38). [See eq. (48) of 
Ref. (4).J In more complicated problems, it seems best to have a 
fundamental approach from which such microscopic correlation func
tions can be derived. For example, were it necessary to include 
correlation between certain pairs of states, several characteristic decay 
times would be present in the correlation expression. These can be 
included in a natural way if we derive OV from eq. (37), as we have done 
here. Using less fundamental approaches, one must often rely on 
analogy and intuition. 

IV. RECOMBINATION-GENERATION NOISE 

Up to this point, we have been concerned with deriving the statistical 
distributions of microscopic variables. From a knowledge of the de
pendence of the macroscopic quantities of interest on these microscopic 
variables, the statistical distributions of the former can be calculated 
from those of the latter. In some cases, e.g., thermal noise in resistors, 
the macroscopic current or voltage spectral densities can be obtained 
very simply using thermodynamic arguments without recourse to 
microscopic methods. We now turn to an example, that of recombina
tion noise, for which the power of treating correlations among fluctua
tions using the microscopic method developed in this paper becomes 
apparent. 

Let us consider the following model of recombination. Let n be the 
number of mobile electrons, p the number of holes, nto the number of 
unoccupied traps, ntp the number of traps containing a trapped hole, 
and ntn the number of traps containing trapped electron, all within a 
unit volume. Recombination occurs when a trap containing an electron 
captures a hole or when a trap containing a hole captures an electron. 
In Fig. 2, we present schematically the eight different processes which 
enter into this recombination-generation model. In Fig. 2, as in the 
equations for the dynamics of this system, the r's represent trapping 
rates, e.g., rton the rate at which electrons (n) are trapped by empty 
traps (to) per electron per trap, and the g's represent release rates from 
the traps per trap. As we shall see, the key to determining the noise 
correctly within this model is to introduce source terms for each of 
these eight processes. 
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Fig. 2-The eight trapping processes contributing to recombination. 

Even before we consider this problem quantitatively, we realize that 
correlations among fluctuations in the various particle densities will be 
complicated. For example, a positive fluctuation on in the number of 
mobile electrons will lead to positive fluctuations in the recombination 
directly via increased trapping in the tp traps and indirectly via in
creased trapping in the to traps, and the increased number of to traps. 
Using our microscopic approach we can deal with these correlations in a 
routine manner. 

The step-by-step application of our method to this problem is carried 
out in some detail in Appendix D. If we make use of the definitions 
on == onl, op == on2, Ol'l,tn = on3, ontp = on4, on = (onI' on2, on3, on4), 
then the cross-spectral density of oni, onj is given by 

(53) 

according to (124a). In (53), Sd is the (4 X 4) cross-spectral density of 
the driving sources given by (124b) and M is the (4 X 4) matrix 
expressmg the induced fluctuations on in terms of the spontaneous 
ones d: 

on(w) = M (w)d(w), (54) 

according to (123). [Note from Appendix D that the vector d == (d l , 

d2, d3, d4) consists of four linear combinations of the eight fundamenta1 
noise driving terms that arise using this method. That these terms are 
mutually correlated can be seen from (124b).] Thus, from (53) we can 
calculate the spectral densities of interest. These include S11 for the 
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spectral density of on, 8 22 for that of op, and 8 12 and S21 for the cross
spectral densities between on and op, all of which contribute to the 
current fluctuations observed at the contacts of the device. Even more 
components of Son are needed to calculate fluctuations in recombination 
radiation, if such results are desired. 

We should stress that (53) contains all correlation effects (through 
Sd) and all relaxation effects (through M and M*) contained in this 
problem. If certain trapping or release rates are small relative to others, 
the contribution of such processes to Sd can be neglected; if M can be 
characterized by a single time constant T, MM* becomes proportional 
to (w2 + 1/ T 2)-1, as is usually assumed.s The point to be made is that 
with no additional effort of a statistical nature we can solve device
noise problems which contain rather complicated statistical correla
tions. The key is to put the correlations in the dynamics of the problem 
of interest, thereby keeping the statistics simple. 

Finally, the reader is cautioned against making a normal mode 
analysis of the linearized noise equations and then introducing a 
noise-source term for each normal mode, since such terms will not be 
statistically independent in general. We note in concluding that, in 
obtaining (53), nowhere did we have to make use of normal-mode 
analysis. 

V. CONCLUSION 

In this paper we have discussed a straightforward, microscopic ap
proach which can be used to calculate the statistical fluctuations ac
companying any transfer process. Since nearly all charge-carrier ve
locity fluctuations can be characterized in terms of transfer processes, 
we, therefore, are able to calculate the statistics of the velocity fluctua
tions from those of the transfer fluctuations. Knowledge of the velocity 
fluctuations is often all the microscopic information that is needed to 
insert into the Langevin method or the impedance-field method to 
calculate device noise. (These methods explain in great detail how to 
convert velocity fluctuations into observed current and voltage fluctua
tions.) In so doing, we are able to insure that all important correlation 
effects and relaxation effects are included in the results. We further 
simplify the statistical portion of the calculation by separating .the 
spontaneous from the induced fluctuations, and expressing the statistics 
of the latter in terms of the former. In this way, we have to calculate 
the statistics of only the uncorrelated, spontaneous fluctuations from 
probability theory, while the more complicated statistics of the induced 
fluctuations can be obtained directly from those of the spontaneous 
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type. The correlation effects are thus shifted from the statistical portion 
of the problem to the dynamical portion. We have included (in Ap
pendix C) a derivation of an important result for the diffusion noise of 
"hot" charge carriers, that is, for charge carriers whose mobilities are 
field dependent. As the method developed here is readily generalized 
to nonstationary noise, our results will be used extensively in treating 
noise in charge-transfer devices. 
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APPENDIX A 

In this appendix, we consider in detail a single elementary random 
process and calculate its statistical distribution. As we have shown in 
the text, many complicated random processes can be decomposed into 
simpler processes of the type considered here. Once the statistical 
distribution of these simpler processes is understood, one can determine 
the distribution of the more complicated process of interest. In the 
text, we have focused attention on autocorrelation functions, and on 
how to distinguish the autocorrelation function of a complicated 
process from those of the simpler processes of which it is composed. 
In Appendix B, we show how to obtain distribution functionals of 
complicated processes from those of simpler ones. 

The random variable whose statistics we seek is 

d(t) = L oCt - ti) - Ro(t), (55) 
i 

where Ro(t) (a specific function of time) is the mean rate of occurrence 
of the ti at time t. In other words, the ti are independent random vari
ables, each specifying the time at which an independent random event 
occurs. To be a meaningful construct, it is necessary that Ro(t) satisfy 

(56) 

that is, that the characteristic time in which Ro(t) changes is much 
longer than the average time necessary for an event to occur. If (56) is 
satisfied, many events will almost surely occur in time intervals during 
which Ro(t) changes only by a small amount. During these intervals, 
the statistics of the ti will be Poisson with mean rate Ro(t). 

In probability theory, one often works with distribution functions. 
Thus, if a random variable x has a probability of Px (Xl)dxl at xI, that 
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x is in dXl, then the distribution function qp(k) of Px(x) is defined by 

qp(k) = f_: dxeikxpx(x). (57) 

Since 

(58) 

it is clear that qp(k) contains as much information about x as does 
Px(x). What is important is that it contains this information in a more 
convenient form, since, for example, all moments of x can be obtained 
at once from qp(k) by suitable differentiations with respect to k. 

Here, we shall calculate the distribution functionap5 Qd(k(t» of 
d(t) defined by 

Qd[k (t) ] = < exp (i 1:2 dtk (t)d (t) ) > ' (59) 

where the brackets denote averaging over the probability distribution 
of d(t). Rather than use the form of d(t) given in (55), let us use instead 
the form 

d(t) = L: J(t - ti) -Ro(t), (60) 
i 

where J(t) is a function of t satisfying 

f_: dtJ(~) = 1. (61) 

Equation (59) then becomes 

Qd[k (t) ] = < exp [i 1:2 dtk (t) ( ~ J(t - ti) - Ro(t) ) J). (62) 

Let us now evaluate this average. 
To determine Qd[k (t) ] we note the following. 

(i) Ro(t) is a specific function of time and, hence, 

exp ( -i 1:2 dtk(t)RO(t») 

can be factored out of the brackets. 
(ii) The ti are independent and, hence, the average of the exponen

tial in L:d(t - ti ) can be factored into products of averages of 
an exponential in each J(t - ti), each of the n averages being 
equal to all the others. 

(iii) The probability that n events occur in the interval tl < t < t2 
is Poisson. 
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From these three considerations, it follows that 

Qa[k(t)] = exp ( -i 1:2 dtk(t)RO(t») 

X n~oPn [(exp (i 1:2 dtk(t)J(t - ti»))]n, (63) 

where P n is given by 
(64) 

and A is given by 

(65) 

To evaluate the average in (63), we note that the probability that ti 
occurs in dt' at t' is Ro (t')dt' / A. Thus, 

(exp (i 1:2 dtk(t)J(t - ti») > 
= ~ 1:2 dti exp (i 1:2 dtk (t)J(t - ti) ) Ro(ti). (66) 

Inserting this into (63) and carrying out the sum on n, one obtains 
finally for Qa[k (t)] 

Qd[k (t)J ~ exp {(' dt'R'(t') [ exp (i {' dtk (t)f(t - t') ) - 1 ]) 

X exp ( -i 1:2 k(t)RO(t)dt). (67) 

We note from (59) that if k(t) = 0, then Qa should equal 1. Since 
(67) satisfies this condition, we are assured that Qa[k (t)] is properly 
normalized. As we shall see in Appendix B, from (67) we can calculate 
the distribution functional of nearly any function of d(t). 

It often happens that the particular process of interest involves 
numerous events, each of which contributes only a very small portion 
to the total fluctuation. In this case, we can expand the exponential in 
J(t - t') to quadratic order, obtaining for Qa[k (t)] 

Qa[k(t)] = exp [ - ~ 1:2 dt'Ro(t') (1:2 
dtJ(t - t')k(t) )2], (68) 

where we have assumed that J(t) is of sufficiently short duration that 

(69) 

MICROSCOPIC FLUCTUATIONS IN NOISE THEORY 1065 



Recalling finally that J(t - t') = 0 (t - t') for the d (t) of (55), it follows 
that 

Qd[k (t) ] = exp ( - ~ 1:2 dtk (t)k (t)Ro(t) ) . (70) 

In the text, we made repeated use of the autocorrelation function of 
d, (d(tl)d(t2». This we may calculate from (67) with J(t) = oCt), or 
from (70), the results being the same. To do this, we note that from (59) 

(71) 

Thus, from (70) we readily find that 

(72) 

Although (67) is our most general expression for the statistics of d (t), 
(72) is usually all that is needed in noise calculations for devices. In 
simplest terms, it is the autocorrelation of the (shot) noise associated 
with the process of which dCt) represents the source term and Ro(t) 
the average rate at time t. It is the building block from which most 
device noise can be constructed. For stationary processes, R°(tl) = Ro, 
a constant depending on the noiseless solution. The spectral density 
of d under such conditions is a useful concept and is given by 

(73) 

APPENDIX B 

In this appendix, we show how to obtain the distribution functional 
of a statistical process composed of a number of simple independent 
processes of the type discussed in Appendix A. Suppose that the process 
of interest, on(t) == net) - no(t), is a linear functional of a number of 
d(t), {diet), 1 ~ i ~ mI. Then 

(74) 

Since on is linear in the di, we can write 5" n in the form 

m 

5"n = L 5"ni[di (t), tJ. (75) 
i=l 

The distribution functional Qn[k(t)J of on(t) is then given by 
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Qn[k(t)] = (exp (i 1:2 k(t)ffndt) (76) 

= E. (exp (i 1:2 k(t)ffni[di(t), t]dt) (77) 

== fr Qni[k(t)], (78) 
i=l 

where (77) follows from the independence of the di . 

A typical functional dependence of on(t) on diet) is 

on(t) = f ai (t dt' exp (- re dt"/Ti(t"») diet'). (79) 
~=1 J tl J t' 

It follows from (78) that Qni[k (t)] is given by 

Q7Ii[k(t)] 

= (exp [i f: 2 

dtk(t) f: dt'aidi(t') exp (- f,t dt"/Ti(t"»)]) (80) 

= (exp [i f: 2 
dtaidi(t) ft2 dt'k(t') exp (- ft' dt"/Ti(t"»)]) (81) 

= Qdi [ai ft2 dt'k(t') exp (- f t' dt"/Ti(t") ]). (82) 

If we use (70) for Qdi, then we find that 

Qni[k(t)] = exp [ - ~ 1:2 dt f:2 
dt'k (t)k (t')Fi(t, t') ] , (83) 

where 

F i(t, t') = a~ exp [- (T~aX dt" / Ti (t")] 
JTmln 

X f~min dT RH T) exp [ - 2 i Tmin dt" / T i (t")] (84) 

and where Tmax = max(t, t'), Tmin = min(t, t'). Inserting (83) into (78) 
determines Q 71 as desired. 

From Qn we can determine the autocorrelation function of net). 
First, we note from (74) and (76) that 

(on(h)on (t2» 
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Using (78) and (83) this becomes 

(on(t1)on(t2» = L Fi(t1, t2), (86) 
i 

where Fi is given in (84). 
If Ti and R~ are independent of t, an interesting result is obtained. 

By performing the integrations in (84), it follows at once that 

Fi(t1, t2)/a~ = (R~Td2) exp (-lt2 - t11/Ti), (87) 

where the correlation of the fluctuations contributing to on is readily 
apparent. Expression (87) occurs often in the theory of stationary 
processes. [Note in (87) that in the limit Ti -70, F;'(t1, t2)/a~ approach 
R~o (t2 - t1) as expected from (72). ] 

APPENDIX C 

Fluctuation-Dissipation Theorem 

Relations between different physical phenomena have always at
tracted considerable interest, and justifiably so. No exception is the 
Einstein relation between the mobility p, and the diffusion coefficient D: 

qD 
p, = kT' (88) 

In this expression, p, relates the carrier's velocity v to the electric field 
E acting on the carrier according to 

v = p,E, (89) 

and D relates the mean-square distance which the carrier diffuses in 
equilibrium to the time t in which it has been diffusing according to 

(90) 

Although usually not emphasized, all derivations of (88) are based on 
small fluctuations from equilibrium (in the absence of driving forces). 
In the presence of driving forces, one must be careful to use the ap
propriate small-signal quantities when relating diffusion to transport. 
One of the purposes of this appendix is to explain how this can be done 
in some cases. 

It is very important at the outset to understand the physical origin 
of the Einstein relation, as well as that of the more general fluctuation
dissipation theorem16- 18 (FD theorem). This is especially important 
for noise theory since it often enables one to express fluctuation proper
ties in terms of transport properties. This is a valuable aid since trans
port properties have already been carefully studied in attempts to 
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understand the noiseless behavior of the device. In addition, an under
standing of how the microscopic noiseless motion of a single carrier 
contributes to the noiseless device current can be carried over at once 
to calculating how the microscopic fluctuations contribute to the device 
noise. Thus, we ask the question, Why are fluctuations and dissipation 
so closely related? 

What is the physical origin of the fluctuations undergone by charge 
carriers? The answer clearly lies in the scattering of all sorts that such 
carriers experience within the material. What is the physical origin of 
the damping force experienced by charge carriers? The answer clearly 
is the same. This connection may be phrased in several ways. A fluctua
tion corresponds to the response of the carrier to a random force. The 
velocity-field dependence is a similar relation of response to applied 
force. Alternatively, under steady-state conditions, the average gain 
in the energy of a carrier from the material due to fluctuations must be 
dynamically balanced by the loss of energy due to damping. The gain 
and loss are, therefore, closely linked. Still another way of seeing the 
connection is to note that a fluctuation is a departure from equilibrium, 
such as when a small, disturbing probe force is applied to the system. 
However it is viewed, a close connection between fluctuation and 
dissipation must clearly exist, which we shall derive below. 

In the impedance-field4 method, we arrive at the following equation 
for the voltage spectral density of the device in terms of the elementary 
thermal-velocity fluctuations of the carriers: 

where q is the elementary carrier charge, n(x) is the carrier density, 
ZNx is the impedance field between the contact at N and the field point 
at x, and 

Sv(x, f) = 4Dx(OVi' f) = 4Re 10
00 

eiwt(ovi(t)OVi(O»dt (92) 

is the velocity spectral density in the ith (= x, y, z) direction. [See 
eqs. (54), (56), (27), (28), and (35) of Ref. 4.J The quantity Dx(OVi, f) 
is also referred to as the diffusion of OVi at frequency f in the region of 
x for a single carrier. In discussing the impedance-field method for the 
case of v = J.LE, where J.L is a constant, it is found that 
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for f much less than the scattering frequency. In what follows, we use 
the FD theorem to prove that if J.L = J.L (E) = v (E) / E and if an effective 
temperature T can be defined, thenll 

D (0 f) = (kT) d[J.L(E)E]. 
x VX

) q dE (94) 

[Intuitively, (94) follows from (93) if we recall that fluctuations in 
velocity result from spontaneous fluctuations in the electric field, and if 
v = veE), then ov = [dv(E)/dE]·oE = (d[J.L(E)E]/dE)·oE.] In the 
Langevin3 method, diffusion noise enters through a spectral density of 
the form 

(9.5) 

where again Dn is the diffusion constant, as defined in (42) for fre
quencies much less than the scattering frequency. Noting how (42) 
is related to (OV(tl)OV(t 2), we note that, once we have shown that (94) 
is true, it will follow at once that 

S ( 'f) - 4 2 ( ) k T d (J.LE) ~ ( ') h X, X , - q n x q dE U x - x . (96) 

The first quantum-mechanical derivation of the FD theorem is 
usually attributed. to Callen and Welton. 16 This subject has subse
quently been treated in greater detail in Refs. 19 and 20. For the sake 
of completeness, we shall rederive the FD theorem here primarily for 
the purpose of calling attention to its application to cases of steady
state but nonequilibrium conditions. We conclude this appendix with 
the derivation of more general relations for fluctuations and dissipation 
valid for any energy distribution (especially nonthermal) of the states 
of the system. These relations show how closely the two are related 
even under nonthermal conditions. 

Let us suppose that we have some system ·which can be described 
by a Hamiltonian Hs, which includes applied electric and magnetic 
fields giving rise to currents, etc. Let f i be an operator whose expecta
tion value we seek as a function of time in response to a unit impulse 
in a probe force ii, which enters the total Hamiltonian II according to 

(97) 

where fj is another operator. Then the FD theorem states that 

Ii 1 + exp (-(3liw) 
Re [Kij(W)] = 1m [X i.j (w)] "2 1 _ exp (-{3liw) , (98a) 
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where (3 = 1/ kT, T is the effective temperature of the system, if such 
can be defined, 

Kii(W) == 10
00 

dtkii(t)eiwt, (98b) 

kii(t) == t(Ui(t), Yj(O)J+) = t(Yi(t)Yj(O) + Yj(O)Yi(t», (98c) 

Xij(W) == f-: dtxij(t)e iwt , (98d) 

and Xij(t) is the impulse response of Yi to the unit impulse fi in (97). 
From (98b, c) it is clear that 4 Re [ICj(w)J = Sij(f), the cross-spectral 
density between ri and rh whereas from (98d) it follows that 
1m [Xij(W)J is the absorption through ri of the energy put into the 
system via the coupling (interaction energy) - firj-

Returning for the moment to (92), we note that if we let Y i = Yi 
= OVi = ox (for i= x), in the classical limit (n ~ 0), we obtain from 
(98a) 

Sv(X, f) = 4 1m [Xx:c(w)JkT/w. (99) 

After we derive (98a), we shall show that for w much less than the 
scattering frequency 

Xii:(W) = iWJ.Lac/q, (100) 

where J.Lac = d[J.L (E)EJ/ dE. The important result (94) then follows at 
once. 

We shall derive (98a) by evaluating Kii(W) and Xii(W) and com
paring the results. By definition 

where we assume the impulse occurs at t = O. Clearly Xii (t) = 0, t < O. 
Thus, 

Xii(W) = ~ roo dte iwt L: (ll Yi 1 m)(m 1 Yj Il)(e-J3El - e-J3Em ) 
"It Jo lm 

X e-i/h(Em-EOt/L: e-J3El , (102) 
I 

which follows if we assume that the system described by Hs can be 
characterized by a temperature T. This insures that the probability 
that the system is in eigenstate Y;n with eigenenergy En is 
exp (-(JEn)/N, where N is the normalization factor used in (102). 
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Performing the integration on t, we obtain 

Xij(W) = L (e-fJEl - e-fJEm)(ll Yi I m)(m I Yj Il) 
1m 

x (-l)[hw - (Em - Ez) + ie]-1/N, (103) 

and, finally, taking the imaginary part we find that 

1m [Xij(W)] 

= 7r L (e-fJEl - e-fJEm)(lIYilm)(mIYill)8[hw - (Em - Ez)]/N. (104) 
1m 

If now we compare the definition of kij(t) (98c) with (101), it follows 
at once from making the appropriate changes in (103) that 

Kij(W) = 2h. L (e-fJEl + e-fJEm)(lIYilm)(mIYjll) 
~ lm 

X (-I)[hw - (Em - Ez) + ie]-1/N. (105) 

And upon taking the real part of (105), 

h 
Re [Kij(W)] = 7r 2-- L (e-fJEl + e-fJEm) 

lm 

X (lIYilm)(mIYjll)8[hw - (Em - Ez)]/N (106) 

is obtained. In (104) and (106), we may replace Em in the exponent by 
(E z + hw) owing to the presence of the delta function. This then 
permits the factor [1 - exp (- (3hw)] to be pulled out of the sum in 
(104) and [1 + exp (-(3hw)] to be pulled out in (106). The FD 
theorem (98a) follows at once. 

To derive (100), we must look more closely at the exact response 
X~i of Yi to a general time dependent fi in H = Hs - iij. If H is the 
Hamiltonian, then 

(107) 

where pet) is the density matrix of the system at time t. The density 
matrix pet) at t can be obtained from that at t1 according to 

pet) = pet, tl)p(tl)Pt(t, t1), 

where the propagator pet, t1) is defined by 

pet, t1) = exp ( - ~ f: drHT ) , 

(108) 

(109) 

and where we are using the Feynman21 ordered-operator notation. [If 
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tl is prior to the turning on of f and the system can be described by an 
effective temperature T, then p(t l ) = exp (-(3Hs).] 

The specific problem in which we are most interested is the case 
where ri, ri represent velocity fluctuations from the expectation value 
of the velocity Vo of a carrier under the influence of an electric field of 
arbitrary strength contained in Hs. Let us place ourselves in a reference 
frame drifting with velocity Vo. In such a frame, we may calculate 
either the velocity fluctuations kix (t) from the noiseless motion or the 
response Xii(t) to a probe force fi. If we were applying a small, ac 
electric field e(t) to the carrier, then H = Hs - qe(t)x, where x is the 
position operator corresponding to the x coordinate (in the drifting 
frame). Also, we know that the velocity response to such a field is 
given by 

ov(t) = [dv(E)/dE]e(t) (110) 

or, taking Fourier transforms, 

ov(w) = {d[J.L(E)E]/dE}e(w), (111) 

since veE) = J.L(E)E, J.L being the mobility. However, Xix(W) arises 
from the velocity response to H = Hs - f(t);;. We can relate f(t) to 
e(t) if we note that from (109), f(t) enters in the form 

exp ( - ~ f: dTf(T)X) = exp ( - ~ f: dT( -)j(T)X) , (112) 

where we can take f(t) = 0 for simplicity. Thus, qe(t) = - jet), or 
qe(w) = iwf(w). Also, using (111), we obtain 

Xi" (w) == ov(w) = ov(w) iw = d[J.L(E)E] iw 
x few) e(w) q dE q 

= iWJ.Lac/q, (113) 

which proves (86). Our principal result (94) is therefore demonstrated. 
We promised that we would conclude with more general relations for 

fluctuations and dissipation valid for any probability distribution of 
the eigenstates of a system according to eigenenergies. We proceed as 
follows. 

Let the (normalized) probability that the system be in a state of 
eigenenergy E be f(E). Choose the scale of energy such that the lowest 
eigenenergy is zero (0). Take the Laplace transform of f(E) to obtain 

F(s) = !oC'J dEf(E)e-8E (114a) 
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and, of course, 
1 jO+ieo 

feE) = -2 . dseBEF(s). 
7r'L u-ieo 

(114b) 

[For a thermal distribution, feE) = exp (-{3E)/N and F(s) = 
(s + (3)-l/N.] It follows from (104) and (106) that 

2 1 l u
+

ieo 

J=: Re [Kii(W)] = -2' . dsG(s, w) (1 + eB/iw) 
n 7r'L U-teo 

(115a) 

and 
1 l u

+
ieo 

1m [Xii(W)] = -2 . dsG(s, w) (1 - eB/iw), 
7r'L u-ieo 

(115b) 

where 

G(s, w) == 7rF(s) L eBEz(lJfiJm)(mJfiJl)o[hw - (Em - E l )]. (115c) 
lm 

The difference between (115a) and (115b) consists of only one sign: 
plus in (115a), minus in (115b). For the special case of a thermal 
distribution, this sign difference yields the ratio factor that appears in 
(g8a). In general, while such a simple relation between Kii and Xii is 
no longer valid, it is clear from (115) that fluctuations and dissipation 
have a common origin. These are the more general relations we 
promised. 

APPENDIX D 

The purpose of this appendix is merely to carry out the routine 
mathematical steps necessary to arrive at the spectral densities of 
recombination-generation noise. These results are referred to in Section 
IV. 

We proceed as follows. We can abbreviate our exposition since we 
have been through the necessary steps several times in the previous 
sections. The steps are as follows: 

(i) Write the microscopic kinematic equations: 

dn 
dt - - ~ oCt - tton(m)] - ~ oCt - ttpn(m)] 

+ L oCt - tntn(m)] + L oCt - tnto(m)], (116a) 
m m 

dp 
dt = - ~ oCt - ttop(m)] - ~ oCt - ttnp(m)] 

+ L oCt - tptp(m)] + L oCt - tpto(m)], (116b) 
m m 
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+ L o[t - tton(m)] - L o[t - tntn(m)] 
m m 

- L o[t - ttnp(m)] + L o[t - tpto(m)], (116c) 
m m 

d~t = - ~ o[t - ttpn(m)] + ~ o[t - tnto(m)] 

+ L o[t - ttop(m)] - L o[t - tptp(m)], (116d) 
m m 

(ii) Rewrite in terms of sources and responses: 

dn 
dt -rtonnton - rtpnntpn + gntnntn + gntonto 

- dton - d tpn + dntn + dnto, (117a) 

dp 
dt = -rtopntoP - rtnpntnp + gptpntp + gptonto 

- dtop - dtnp + dptp + dpto, (117b) 

dntn & = rtonnton - gntnntn - rtnpntnp + gptonto 

+ dton - dntn - dtnp + dpto, (117c) 

dntp _ at - - rtpnntpn + gntonto + rtopntoP - gptpntp 

- d tpn + dnto + dtop - dptp, (117d) 

where a typical d function is defined as 

dton == L 0 (t - tton) - rtonnton 
m 

and is equivalent for small fluctuations to 

dton = L 0 (t - t?on) - r?onn?on°. 
m 

(lISa) 

(llSb) 

(iii) Write each variable as the sum of a noiseless contribution and a 
noise contribution, and linearize (117) to obtain the following nonlinear 
equations for the noiseless solution: 

riO = -rtonn?on° - rtpnn?pn° + gntnn?n + gnton?o, (119a) 

pO = -rtopnt~pO - rtnpn?npo + gptpn?p + gpton?o, (119b) 
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n?n = rtonn?on° - gntnn?n - rtnpn?nPO + gpton?o, 

n?p = -rtpnn?pn° + gnton?o + rtopn?opO 
- gptpn?p, 

(119c) 

(119d) 

(11ge) 

and to obtain the following linear equations for the noise solution: 

on = -rton(nfoon + ontono) - rtpn(n?pon + ontpno) 
+ gntnontn + gntoonto - dton - d tpn + dntn + dnto, (120a) 

op = -rtop(nfoop + Ontopo) - rtnp(n?nOP + Ontnpo) 
+ gptpontp + gptoonto - dtop - dtnp + dptp + dpto, (120b) 

ontn = rton(nfoon + ontono) - gntnontn - rtnp(n?nop + ontnpo) 
+ gPtoonto + dton - dntn - dtnp + dpto, (120c) 

ontP = -rtpn(n?pon + Ontpno) + gntoonto + rtop(nfoop + Ontopo) 
- gptpontP - dtpn + dnto + dtop - dptp, (120d) 

onto = -ontn - ontp. (120e) 

(iv) Finally, solve (120) for on, op, ontn, ontp, and onto in terms of 
dton, .... This latter step involves solving five equations for five un
knowns. If we are interested in the stationary solution to (119) 
(no = po = nfn = n?p = 0), then the coefficients of the on, op, ... 
(120) are independent of time and a Fourier analysis of (120) is most 
expedient. Using (120e) to eliminate onto, one obtains the following set 
of equations: 

iwon = -Rnon + Rntnontn - Rntpontp + d l , (121a) 

iwop = -Rpop - Rptnontn + Rptpontp + d2, (121b) 

iwontn = -RtnOntn + Rtnnon - Rtnpop - Rtntpontp + d3, (121c) 

iwontp = -Rtpontp - Rtpnon + Rtppop - Rtptnontn + d4, (121d) 

where 

and 

dl == -dton - dtpn + dntn + dnto, 

d2 == -dtop - d tnp + dptp + dpto, 

d3 == dton - dntn - dtnp + dpto, 

d4 == -dtnp + dnto + dtop - dptp. 

(122a) 

(122b) 

(122c) 

(122d) 

By combining the coefficients of the on, op, ... in (120), the reader can 
determine the R n, R p, ... rates in (121). For example, Rn = rtonn?o 
+ rtpnnfp, etc. The important point to be made here is that the dl , d2, 

da, d4 are correlated, that is, they are not mutually independent. Thus, 
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one cannot a priori introduce independent ell, d2, da, d4 into equations 
of the form of (121) at this stage of the calculation. Using our micro
scopic approach, however, these source terms and their correlations 
arise in a well-defined manner. 

If we let on === on I, op === on2, ontn === ona, ontp = on4, on === (onl' on2, 
ona, on4), d === (ell, el2, ela, d4), then (121) can be written in the form 

iwlon = Ron + d (123a) 

and solved for on at once: 

on(w) = M (w)d (w), (123b) 
where 

M (w) === (iwI - R)-l. (123c) 

The cross-spectral density of oni, onj is then given by (w = 2n-j): 

S~f(f) = L Mik(W)S~I(f)MI;(W), (124a) 
kl 

where S~l(f) is the cross-spectral density of elk, d l : 

and 

[ 

S10n + S1pn ~ S~tn + S~to 

-S1on-S~tn 
S1pn+S~to 

-S1on-S~tn 
S1np+S~to 

o 
S10p + S1np + S~tP + S~IO 

S1np+S~to 
-S1op-S~tP 

S~n + S~tn + S1np + S~to 
o 

Ston = 2rtonn°, stop = 2r toppo, S1pn = 2r tpnn°, 

Stnp = 2rtnppo, S~tn = 2gntn , S~tP = 2gptP' S~to = 2gnto, 
sgto = 2gpto 

(124b) 

from (73). Using (123b, c) and (124a, b), the cross-spectral density of 
oni, onj including all correlation effects can be readily calculated. Of 
greatest interest are the spectral densities of on and op given by S~Hf) 
S~~(f), and of on, op given by S1~(f) = S~Hf). These are the terms in
volving mobile carriers, which contribute to the current fluctuations 
seen at the contacts of the device. It should be clear that trapping can 
be treated by using an approach similar to the above. 

There is little point in carrying out the algebra implicit in (124a). 
Evaluating the inverse of the 4 X 4 matrix in (123c) and carrying out 
the sum in (124a) can be done readily, although it is somewhat tedious. 
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What we have accomplished is to express the cross-spectral densities of 
the electrons, holes, and various trapping states in terms of known, 
easily calculated, cross-spectral densities of the source-driving terms. 
And in so doing we have included all important correlation effects in a 
very natural way. 
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T he influence of a lossy jacket on the curvature losses of a bent optical 
waveguide is studied for the special case of the TE l1wdes of a slab wave
gU1:de. This paper presents an approximate theory of curvature losses of 
the TE modes of dielectric slabs that can be used to obtain nwnerical 
answers with the help of a computer. lVe conclude that the presence of a 
jacket can increase the curvature losses very substantially. A jacket whose 
refractive index is larger than that of the waveguide cladding is most 
effective in increasing cladding losses. It is advisable to keep a ,jacket at a 
safe distance from the waveguide core. 

I. INTRODUCTION 

To avoid crosstalk between adjacent fibers in a cable and also to 
suppress unwanted cladding modes, optical fibers for communication 
purposes need lossy j ackets. 1 Each fiber thus consists of a core of 
refractive index nl and a cladding with index n2. Since core and cladding 
are made of low-loss materials, we consider nl and n2 real constants. 
The refractive index of the lossy jacket is considered complex: 

(1) 

The negative sign is necessary since we use the time dependence 

(2) 
for the optical waves. 

The guided-mode fields decrease in intensity exponentially with 
increasing distance from the fiber core. At the boundary between the 
cladding and the lossy jacket, the intensity of the modes should de
crease to insignificant values. If the cladding is too thin, so that the 
modes arrive at the cladding-jacket boundary with appreciable field 
intensities, considerable amounts of power would be dissipated in the 
lossy jacket, resulting in intolerably high waveguide losses. The de-
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signer must provide for a cladding of sufficient thickness to keep the 
fiber losses low. 

So far, we have considered a fiber that is perfectly straight. How
ever, an advantage of optical fiber systems is that light transmission is 
maintained as the fiber is curved. Since curvature of the fiber axis 
distorts the shape of the guided modes,2 it is necessary to study the 
effect of the lossy jacket in the presence of fiber curvature. A curved 
fiber radiates a certain amount of power even if its cladding extends 
infinitely far from the core.2,3 The amount of radiated power is modified 
by the presence of the lossy jacket. 

It is the purpose of this paper to investigate the influence of the 
lossy jacket on the curvature losses of optical waveguides. Because of 
the complexity of the problem, we use the TE modes of the symmetric 
slab waveguide as a model. 

The following sections are devoted to the derivation of the theory. 
Readers not interested in the theoretical details are advised to turn to 
Section VI, on numerical examples. 

II. OUTLINE OF THE METHOD OF SOLUTION 

A curved slab waveguide with lossy jacket is schematically shown 
in Fig. 1. The core with refractive index nl has the full width 2d. The 
center line of the core is curved with radius of curvature R. The clad
ding with index n2 has the thickness D - d. The refractive index of 
the jacket is assumed to be a complex quantity. A straightforward 
solution of this problem would involve writing down solutions of 
Maxwell's equations in the five different regions of the structure. 
These solutions can be expressed in terms of cylinder functions. The 
waveguide modes are obtained by joining the solutions in the different 
regions with the help of boundary conditions. This straightforward 
procedure is not practical for the determination of the fiber losses. To 
understand the difficulty, we must consider that the cylinder functions, 
expressing the solutions of }Vlaxwell's equations, have very large order 
numbers and arguments that are of the same order of magnitude as 
the order numbers. The problem consists in finding the order number as 
a solution of an eigenvalue problem. Since we expect to compute the 
waveguide losses, the order of the Bessel functions must be a complex 
quantity. We are thus faced with solving a determinantal equation 
whose elements are cylinder functions of very large complex order. 
Cylinder functions of this type cannot be computed with the help 
of power series expansions. The functions must be obtained from 
approximate asymptotic expressions. The solution of the complex 
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JACKET __ 

Fig. I-Schematic of the bent slab waveguide with lossy jacket. The z-axis is 
directed normal to the plane of the figure. 

transcendental eigenvalue equation thus not only is a difficult numerical 
task, but also may be expected to yield poor accuracy since we expect 
the imaginary part of the eigenvalue (the order number of the cylinder 
functions) to be small so that it could be obtained with high accuracy 
only if the functions themselves are known to high precision. 

Since the straightforward approach seems to present an almost 
insurmountable obstacle, we use a different approach. Instead of 
solving the problem sketched in Fig. 1, we begin by solving the simpler 
problem that results if we let D ~ 00. The exact solution of the bent 
slab with infinite cladding thickness still results in a complex eigen
value, since radiation losses occur. However, we are not interested in 
computing the radiation losses at this point and modify the eigenvalue 
equation so that its imaginary part is neglected. We are now left with 
a relatively simple eigenvalue problem. It is still necessary to compute 
cylinder functions of large order and argument. But since only a real 
eigenvalue is computed with the help of real cylinder functions, the 
usual asymptotic approximations of the cylinder functions can be used. 

The next step of our approximate procedure consists in determining 
the reflection and transmission coefficients of a cylindrical wave im-
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pinging on a cylindrical dielectric interface. Once this problem is 
solved, we apply its solutions to the evanescent field tail of the guided 
wave in the cladding. In this way, we obtain approximate field ex
pressions for the field reaching into the lossy jacket. It is now a simple 
matter to calculate the amount of power flowing from the guided mode 
into the lossy jacket and to use it to determine the waveguide losses. 

In the following sections, we outline the mathematical details of our 
approximate procedure. The only difficulty encountered consists in 
producing the cylinder functions of large order and, at least inside 
the lossy jacket, of complex argument. 

III. BENT SLAB WAVEGUIDE WITH INFINITELY WIDE CLADDING 

We are interested in the TE modes of the curved slab. Using the 
coordinates indicated in Fig. 1, we can express the z component of the 
electric field in the three regions as 

o < r < al 

al < r < a2 
a2 < r < 00. 

(3) 

The z coordinate is directed perpendicular to the plane of the figure. 
The Bessel and Neumann functions of order v are J v and N v. The free 
space propagation constant is defined as 

21r _r
k = ~ = W'\JEO/JO. (4) 

The rand ¢ components of the magnetic fields are obtained from the 
Ez component by differentiation.4 

-iaEz 
H",=--· 

W/Jo ar 

(5) 

(6) 

The remaining field components E r , E"" and Hzvanish. Since the waves 
travel along the curved slab in ¢ direction, we can define the propaga
tion constant of the guided mode 

(3 = ~. (7) 

The requirement of continuity of the Ez and H", components at the 
core boundaries r = al and r = a2 lead to the determination of the 
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amplitude coefficients 

A = nlJV(Xll)N~(Xll) - nlJ~(Xll)Nv(Xll) B 
n1J v(X21)Nv(Xll) - n2J v(X21)Nv(Xll) , 

(8) 

C = - nlJv(X21)J~(Xll) - n2J~(X21)Jv(Xll) B 
n1J v(X21)N;(Xll) - n 2J:(X21)N v(Xll) , 

(9) 

and 

(10) 

The definition 
(11) 

was used. The prime indicates the derivative of the functions with 
respect to the argument. 

The Bessel and Neumann functions are real. The Hankel function of 
the second kind appearing in (3) and (10) is complex, 

(12) 

Because of the complex value of H~2), the eigenvalue equation (that 
results from the requirement that the determinant of the equation 
system for the determination of A, B, C, and F vanish) is itself com
plex, leading to complex solutions for 11. However, for well-guided 
modes we have 

11 > n 2ka2» 1. 

The inequality (13) results, in turn, in 

IJ,,(X22) 1 « 1 N v(X22) I· 

(13) 

(14) 

The Hankel function is thus predominantly imaginary with a very 
small real part. By replacing the Hankel function with the approxi
mation 

H~2) = -iN v (15) 

in (3) and (10), we obtain the real eigenvalue equation 

[n2Jv(xll)J~(X21) - n1J v(x21)J:(Xll)] 
X [n1N v(x22)N;(X12) - n2N~(x22)Nv(X12)] 
+ [n1J v(x21)N:(Xll) - n2J~(x21)Nv(Xll)] 

X [nlJ~(x12)Nv(X22) - n2J v(x12)N:(X22)] = O. (16) 

This eigenvalue equation has real solutions of 11 ignoring radiation 
losses caused by waveguide curvature. However, the mode problem 
that we have formulated describes the distorted fields in the curved 
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waveguide accurately. The curvature losses are obtained later by ac
counting for the amount of power that is lost in the form of radiation. 

The power carried by the modes can be expressed as 

p = _1 lA2 [(J aJ" _ J aJV+1) + J2]X21 
4 X v+1 a v a v 

Wj.Lo 11 11 0 

+ B2 [(J aJv _ J aJV+1) + J2]X21 
X v+1 a va" 

11 11 Xu 

C [( 
aN v J aN v+1 ) J N ] X12 + 2B x J v+1 Tv - v a;- + v v Xu 

+ C2 [(N aNv _ N aNv+1) + N2]X12 X v+1 a v a v 
11 11 Xu 

+ IFI' [x (N >+' iI~' - N, iI~;+1) + N; IJ (17) 

The notation [ ]~~ indicates that the value of the bracket evaluated 
at Xl must be subtracted from the expression evaluated at X2. Since the 
ratios of the amplitude coefficients are real quantities, A, B, and Care 
assumed real. However, with approximation (15), F becomes imagi
nary. The contributions of the lower limit 0 of the first bracket and of 
the upper limit 00 of the last bracket may be neglected since the fields 
decrease rapidly with increasing distance from the waveguide core. 

IV. REFLECTION AND TRANSMISSION OF A WAVE AT A CYLINDRICAL 
INTERFACE 

Our solution of the mode problem of the bent slab waveguide 
ignored radiation losses caused by the curvature and losses resulting 
from the presence of the lossy jacket. We calculate these losses by 
accounting for the outflow of power from the curved waveguide. To 
obtain expressions for the power outflow, we study the problem of a 
cylindrical wave that is impinging on a cylindrical interface between 
two dielectric media. 

Ignoring, for the moment, the presence of the waveguide core and 
the jacket region that contains the center of curvature, we consider 
a cylindrical wave in the region to the left of the interface between the 
media with refractive indices n2 and n3, 

Ez = [GH~2) (n2kr) + IH~l) (n2kr) ]e- iv
<!> R + d < r < R + D. (18) 

According to time dependence (2), the Hankel function of the second 
kind describes the incident cylindrical wave, while the Hankel function 
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of the first kind belongs to the reflected wave. Inside the jacket we 
have a transmitted wave 

r> R + D. (19) 

The corresponding magnetic field components follow again from (5) 
and (6). Continuity of the Ez and He/> components is achieved if the 
following relations hold between the three amplitude coefficients: 

and 

with 

I = naH~2) (Y2)H~2)' (ya) - n2H~2)' (Y2)H~2) (ya) G 
n2H~1)' (Y2)H~2) (ya) - naH~2)' (Ya)H~l) (Y2) 

K = n2H~1)' (Y2)H~2) (Y2) - n2H~1) (Y2)H~2)' (Y2) G 
n2H~1)' (Y2)H~2) (ya) - naH~l) (Y2)H~2)' (ya) , 

(20) 

(21) 

(22) 

It remains to relate the amplitude G to the amplitude F of the evanes
cent field tail of the guided mode in the curved slab. Our treatment is, 
of course, not exact, since multiple reflections of the wave between core 
and jacket are ignored. However, if the refractive index differences 
remain small, multiple reflections are unimportant. Furthermore, the 
field intensity decays exponentially with increasing distance from the 
waveguide core. The incident wave GH~2) (n2kr) is, thus, an evanescent 
wave in most cases so that the effect of the core cladding boundary on 
this wave is only very slight. Whether the incident wave is an evanes
cent or a propagating wave depends on the distance between core and 
jacket. If this distance is small, the guided mode field behaves pre
dominantly as an evanescent wave. If the distance between core and 
jacket is large, the evanescent wave has converted itself to a traveling 
wave before the jacket is reached. Our approximate procedure works 
in either case for most cases of practical interest. 

To obtain the relation between the amplitude G and the amplitude 
F of the guided wave, we consider the field in the immediate vicinity 
of the core boundary and equate the fields (3) and (18) 

(23) 

It was explained earlier that we may approximate the Hankel function 
of the second kind by (15). Likewise, we use the approximation 

H~l) = iN p. (24) 
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Using (15) and (24), we obtain from (23) 

F 
G=--z' 

I-a 
(25) 

The ratio ZIG is given by (20). We thus have determined the amplitude 
of the wave that is incident on the jacket (at least approximately) 
and can now compute the amount of power that is carried into the 
jacket. 

V. CALCULATION OF THE LOSSES 

The amount of power outflow in r direction per unit length along 
the waveguide axis (and also per unit length in z direction) is given by 
the r component of the Poynting vector 

(26) 

If we denote by a the amplitude attenuation coefficient of the guided 
wave, we obtain the power attenuation coefficient 2a from the relation 

2a = Sr. 
p (27) 

This relation holds since P is by definition the amount of power carried 
by the guided mode per unit length (in z direction). Using (6), (19), 
and (26) we obtain 

2a = .J1;. 1:~2 1m {n:H!') (y.)H!')'*(y,) I· (28) 

The asterisk indicates complex conjugation and 1m ( designates 
that the imaginary part of the complex expression in brackets is to be 
taken. The argument Y3 is defined by (22). 

A small amount of power also flows into the jacket on the other side 
of the waveguide, the side facing the center of curvature. However, 
for reasonably strongly curved guides, this power outflow is orders of 
magnitude smaller than the power outflow included in (28) so that we 
may safely neglect it. 

The solution of the loss problem is now reduced to a determination 
of the cylinder functions appearing in our equations. We evaluate 
(28) by using (8) through (10), (17), (21), and (25). The order of the 
cylinder functions is determined as a solution of the eigenvalue equa-
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tion (16). As stated earlier, our method has the advantage that no 
complex eigenvalue equation need be solved. Owing to the difficulty 
of computing accurate values for the cylinder functions of large com
plex order and large complex argument, a direct determination of the 
losses with the help of the complex eigenvalue equation is hard to 
achieve. Our method is straightforward in principle. We only face the 
computational difficulty of determining the cylinder functions of large 
real order and, at least for some functions, of large complex argument. 
However, our present method does not require knowledge of these 
functions to extreme accuracy. 

In two limiting cases, the attenuation formulas for the curved slab 
waveguide are known. For a straight slab with lossy jacket, we use 
eq. (10.3-14), p. 420, of Ref. 4. 

with 

and 

8K21'3 1m (p) e-2-y (D-d) 
2a = ~--~~~~--~----~ 

{1 (1 + I'd)(K2 + 1'2) 1 I' + P 12 

K2 = nik2 - {12, 

1'2 = {12 - n~k2, 

(29) 

(30) 

(31) 

(32) 

The propagation constant (1 is obtained as a solution of the eigenvalue 
equation 

tan Kd = ! 
K 

(33) 

for even modes and from 

tan Kd = 
K 

(34) 
I' 

for odd modes. 
For a curved slab without lossy jacket but infinitely wide cladding, 

eq. (9.6-27), p. 404, of Ref. 4 is available, 

2", = P(l + 'Y~rc .. + 'Y') e'" exp ( - : ;: R I· (35) 

If we use the eigenvalue {1 obtained from (33) or (34), we obtain good 
results only for single mode guides or for very large radii of curvature. 
Better agreement with numerical evaluations of (28) is obtained if we 
use solutions of the eigenvalue equation (16) and calculate {1 with the 
help of (7) and the other parameters from (30) and (31). 
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VI. NUMERICAL EXAMPLES 

The principal problem of evaluating the formulas of our theory con
sists in generating the Bessel function of large real order and large 
(sometimes) complex argument. The Hankel functions can be ex
pressed in terms of Bessel and Neumann functions. These latter func
tions are approximated by using the asymptotic formulas (9.3.7) 
through (9.3.17) on p. 366 of Ref. 5 and eqs. (9.3.23) and (9.3.24) on 
p. 367 of the same reference. It is not stated clearly in any reference 
book on Bessel functions that these asymptotic formulas are valid for 
complex arguments. [This statement refers to the functions given by 
(9.3.7) through (9.3.17).J However, the first terms of these expressions 
can easily be derived either by using the integral representation of 
Bessel and Neumann functions and the method of steepest descent or 
[for Jp(x) with v > xJ by using approximate solutions obtained di
rectly from the differential equation. Either method clearly holds also 
for complex arguments. It may be that the convergence behavior and 
the error estimates available for real arguments may not apply to 

2.5r----,-----------r--------..,.,.----..., 

2.0 

0.5 

n1 =1.5 

n2=1.49666 

kd = 174.533 

o~ __ ~~ ___ ~ ____ ~ ___ ~~ ____ ~~:-~»_ 
-1.5 -1.0 -0.5 o 

(r-Rl/d 
0.5 1.0 1.5 

Fig. 2a-Normalized Ez component of the first guided mode for different radii of 
curvature. The refractive indices are nl = 1.5, n2 = 1.49666, kd = 174.533. 
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Fig. 2b-Distribution of the electric field for four guided modes, n = 1, 2, 5, and 
9 for Rid = 1000. 

complex arguments, but at least the first terms of the asymptotic 
formulas can be justified for functions with complex argument. For 
this reason, these formulas were used even if the argument of the 
cylinder functions is complex. This procedure appears even more valid 
when we consider that in all cases of practical interest the phase angle 
of the complex argument remains very small. 

The derivatives with respect to the order number were generated 
by taking the derivatives of the asymptotic formulas. Our method of 
generating the necessary cylinder functions seems justified by the 
excellent agreement that was obtained with formulas (29) and (35) in 
all instances where such agreement could be tested. 

Since the arguments of the cylinder functions are of the form nkr, 
there are practical limits to the size of the radius of curvature of the 
waveguide axis. For ratios of R/ d in excess of 1000, exponent overflow 
was encountered in the numerical calculations so that the limiting case 
of a straight slab could not be approached very closely. 

The distortion of the field distribution caused by waveguide curva
ture is dramatically evident from the curves of Figs. 2(a) and 2(b). 
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Figure 2 (a) shows the shape of the normalized Ez component of the 
lowest order mode, labeled n = 1, for several values of R/ d. The curve 
for Rid = 00 was obtained from eqs. (8.3-9), (8.3-12), and (8.3-18) 
of Ref. 4. It is apparent that the core cladding boundary on the side 
facing the center of curvature does not contribute to guiding the 
lowest-order mode in case of sharp bends. It is also evident that sub
stantial mode conversion must result if a curved waveguide section is 
joined to a straight waveguide without tapering the curvature. Finally, 
we see from the figure that the field is forced far deeper into the cladding 
region by the waveguide curvature so that it tends to interact more 
strongly with the lossy jacket. 

Figure 2(b) shows the distribution of the Ez fields for several modes. 
Both figures were drawn for the following parameters: nl = 1.5, 
n2 = 1.49666, kd = 174.533. The important V parameter defined by 

(36) 

assumes the value V = 17.46. The straight slab is thus able to support 
11 TE modes. Figure 2 (b) shows plots for the modes n = 1, 2, 5, and 
9. We see that the higher-order modes occupy more of the available 
space inside the waveguide core. The period of oscillation becomes 
shorter toward the side of the core opposite the center of curvature. 
However, the field amplitudes are largest on the side nearest the center 
of curvature. 

With regard to the normalization used for the electric field 
component, 

(37) 

we must remember that the parameter P stands for the power carried 
by the slab waveguide per unit length (in z direction). 

All numerical examples discussed (with the exception of Fig. 12) 
are based on the waveguide parameters given above. The propagation 
constants (3 obtained from (16) and (7) are listed in Table I for all TE 
modes that can be supported by the guide for R/ d = 300, 1000, and 
00. The values for Rid = 00 were obtained from the eigenvalue equa
tions (33) and (34) for even and odd TE modes of the straight slab 
waveguide. The table shows that the number of guided modes decreases 
as the curvature of the guide increases. 

Figure 3 shows the normalized loss coefficient 2ad as a function of 
d/ R for several modes of a slab without jacket. The horizontal dotted 
lines appearing in this and all subsequent figures indicate the level of 
1 dB/km and 10 dB/km loss for a guide with the slab half width 
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Fig. 3-Curvature losses of a slab with infinitely thick jacket as a function of the 
inverse radius of curvature for several TE modes. The refractive indices are nl = 1.5, 
n2 = 1.49666, kd = 174.533. 

Table I -- Values of the normalized propagation constant 
f3nd for all the TE modes of a curved slab 

(nl = 1.5, n2 = 1.49666, kd = 174.533) 

{3nd 
n 

Rid = 300 Rid = 1000 Rid = 00 

1 262.461 261.958 261.795 
2 262.270 261.870 261.783 
3 262.111 261.797 261.762 
4 261.840 261.734 261.732 
5 261.498 261.676 261.694 
6 261.621 261.648 
7 261.569 261.594 
8 261.513 261.532 
9 261.436 261.463 

10 261.381 261.386 
11 261.224 261.303 

BENT OPTICAL WAVEGUIDE WITH LOSSY JACKET 1091 



d = 25 J,Lm. It is apparent how very strongly the curvature losses 
depend on the radius of curvature of the waveguide axis. The losses 
in decibels are obtained by dividing the numerical values, that are 
read off the vertical axis of the figure, by the slab half width d and 
multiplying by 4.34 (to convert the result to decibels). 

For a comparison with formula (35), we state that the loss value of 
the lowest-order mode for dj R = 0.001 is 2ad = 3.41 X 10-19 as 
computed with the help of the theory presented in this paper. From 
Table I we find for n = 1, {31d = 261.958, so that from (31) we obtain 
-yd = 19.695. If we try to compute K2 from (30) we find a negative 
value. Therefore, we use the far-from-cutoff approximation Kd = 7r/2. 
Using these values in (35), we find 2ad = 3.37 X 10-19 in excellent 
agreement with the value obtained from our theory. For the high loss 
values appearing in Fig. 3, the agreement is not as good. 
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Fig. 4-Curvature losses in the presence of a lossless jacket. The normalized clad
ding thickness is (D - d)jd = 0.3 and the refractive indices are ni = 1.5, 
n2 = 1.49666, kd = 174.533, n3r = nI, nSi = O. 
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Fig. 5-Curvature losses in the presence of a lossless jacket. The normalized 
cladding thickness is (D - d)/d = 0.5 and the refractive indices are nl = 1.5, 
n2 = 1.49666, kd = 174.533, n3r = nt, n3i = O. 

To gain insight into the effect that the jacket has on the curvature 
losses, we have plotted the loss values that result if we use a lossless 
jacket whose refractive index equals that of the waveguide core. Even 
though the lossless jacket does not dissipate power, it causes the portion 
of the evanescent field tail reaching the jacket to turn into a propagat
ing wave and thus to radiate away. Figures 4 through 6 show the 
curvature losses in the presence of the "high-index" jacket as a func
tion of d/R for several modes and for different values of the relative 
cladding thickness CD - d)/d. Comparison of Figs. 3 and 4 shows 
clearly the dramatic increase in the curvature losses for a thin cladding 
with CD - d)/ d = 0.3. As the cladding becomes thicker, the influence 
of the jacket decreases, as seen in Fig. 5. The upper parts of the curves 
in Fig. 6 already coincide with the curves of Fig. 3 for an infinitely 
thick cladding. In this case, the field detaches itself from the guide 
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Fig. 6-Curvature losses in the presence of a lossless jacket. The normalized 
cladding thickness is (D - d)jd = 0.7 and the refractive indices are nl = 1.5, 
n2 = 1.49666, kd = 174.533, n3r = nl, n3i = o. 

inside the cladding so that the jacket no longer converts an evanescent 
field tail into a radiation field, but simply modifies the radiation field 
in an almost imperceptible way. These curves show that it is very 
necessary to maintain the "high-index jacket" at a sufficient distance 
from the waveguide core. 

The dotted lines in these and all following figures are estimated 
curves. We pointed out that the computer program fails to function 
for very large values of R/ d. The solid lines are the results of the 
numerical evaluation of our theory. The end points of the dotted 
curves at d/ R = 0 were computed from (29). The region between 
d/ R = 0 and d/ R = 0.001 was bridged by the estimated dotted lines. 

The curves for mode 8 shown in these and subsequent figures have 
a special meaning. We want to use our slab model to gain information 
about round fibers. If we consider a fiber with core radius a = d and 
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the same refractive indices used for the slab, the total number M of 
fiber modes is proportional to the square of the total number N of slab 
modes, M = KN2. It is instructive to consider fibers capable of trans
mitting at least half their total number of guided modes. The corre
sponding number of slab modes is N' = N /V2. With our numerical 
values we have a slab supporting N = 11 modes. N' = 11/V2 = 8 is 
thus the mode number that corresponds to half the total number of 
fiber modes. If the losses of mode n = 8 are just tolerable, but all 
higher-order modes suffer too much loss, we know that we have found 
operating conditions that would cause half the total number of fiber 
modes to be lost. For this reason, we have included mode n = 8 in 
our figures to be able to estimate the conditions that would allow half 
the fiber modes to be transmitted. Figure 4 shows that only a very 
small number of modes can propagate with low losses in a fiber whose 
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Fig. 7-Curvature losses in the presence of a lossy jacket. The normalized cladding 
thickness is (D - d)/d = 0.3 and the refractive indices are nl = 1.5, n2 = 1.49666, 
kd = 174.533, naT = n2, n3i = 10-4• 
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core thickness is D - d = 0.3d. For D - d = 0.5d, we see from Fig. 5 
that more than half the fiber modes would suffer losses in excess of 
10 dB/km even in the straight guide. This estimate is based on a jacket 
with large refractive index, n3r = nl. For jackets with lower index, 
the losses would be reduced. But to be on the safe side, it seems ad
visable to design a jacket so that it does not cause excessive loss even 
in the worst possible case. The conditions corresponding to Fig. 6 
show that well over half the fiber modes are transmitted with low loss 
as long as dj R < 0.0004. 

Figures 7 through 9 apply to the case of a jacket with a refractive 
index whose real part is matched to the cladding, n3r = n2 = 1.49666. 
The imaginary part of the jacket index is nri = 0.0001. This modest 
value of the imaginary part of the refractive index results in a plane 
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Fig. 8-Curvature losses in the presence of a lossy jacket. The normalized cladding 
thickness is (D - d) / d = 0.5 and the refractive indices are nl = 1.5, n2 = 1.49666, 
kd = 174.533, n3r = n2, n3i = 10-4• 

1096 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1974 



10-3~-----r--~~T-~---'----------~--__________ ~ 

10- 4 

10- 6 

10- 7 

10- 8 

10- 9 

I 
I 
I 

n=81 
I 
I 
I 
I 
I , , 
I 
I , , , 
I I 
J , 

-L-+ , , , , 
I I 
I , ,-
I 
I 
I 
I 
I 
I 

O-d = 07 
d . 

n1=1.5 

n3r =n 2= 1.49666 

n3i =10- 4 

kd = 174.533 

10-10~~~~~ __ ~~ ______ ~ ______ ~ ______ ~ ______ ~ 

10~ 
km 

1~ 
km 

o 0.001 0.002 0.003 
d/R 

0.004 0.005 0.006 

Fig. 9-Curvature losses in the presence of a lossy jacket. The normalized cladding 
thickness is CD - d)jd = 0.7 and the refractive indices are n] = 1.5, n2 = 1.49666, 
kd = 174.533, n3T = n2, n3i = 10-4• 

wave loss in the jacket material that is given by 

(38) 

For our particular example, we have 2ajacketd = 0.035. For d = 25.um, 
this cladding loss amounts to 61 dB/em. 

Comparison of Figs. 7 through 9 with Fig. 3 for the case of the 
infinitely thick cladding shows that the lossy jacket has a considerable 
influence if it is located too close to the waveguide core. However, even 
for (D - d) / d = 0.5, its influence on the curvature losses is only slight 
and all but vanishes for (D - d)/d = 0.7. 

A lossy jacket with n3r < n2 has only a very slight influence on the 
waveguide losses, since the evanescent field tail decays even more 
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rapidly in a medium of low refractive index. Therefore, no curves are 
provided for this case. 

Figures 10 and 11 show the influence of the imaginary part of the 
refractive index of the jacket on the curvature losses. Figure 10 applies 
to the lowest-order mode, n = 1, and shows the dependence of the 
curvature loss on the logarithm of n3i for R/ d = 500 and R/ d = 1000. 
It is apparent that the dependence of the loss on n3i is linear in regions 
of the curve that are dominated by the losses in the jacket. For very 
small values of n3i, the losses of the jacket become immaterial and the 
curves approach asymptotically the curvature loss of a waveguide with 
lossless, infinitely thick cladding. 

The two curves in Fig. 11 dramatize this behavior. For R/ d = 1000, 
the losses of the third mode are still dominated by the loss of the 
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Fig. lO-Dependence of the curvature losses of the first mode on the imaginary 
part of the refractive index of the jacket material. The normalized cladding thickness 
is (D - d)/d = 0.3 and the refractive indices are nl = 1.5, nz = 1.49666, 
kd = 174.533, n3r = nz. 
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Fig. ll-Dependence of the curvature losses of the third mode on the imaginary 
part of the refractive index of the jacket material. The waveguide parameters are 
the same as in Fig. 10. 

jacket. For R/ d = 500, the field already radiates away in the space 
between core and jacket so that the losses are independent of the 
power dissipation in the jacket. Both figures are drawn for 
CD - d)/d = 0.3. 

Finally, we discuss briefly a slab waveguide supporting N = 24 TE 
modes. We use once more kd = 174.533 and nl = 1.5, but choose the 
cladding index n2 = 1.485. Figure 12 shows loss curves as functions 
of d/ R for the mode n = 17 for several values of the cladding thickness 
D - d. The jacket is of the "high-index" type, with n3r = nl since this 
condition results in high losses. Mode n = 17 separates the corre
sponding modes of the fiber in equal halves. We see from Fig. 12 that 
even for a straight guide half the fiber modes have losses in excess of 
5 dB/km if the cladding thickness is D - d = 0.3d. For D - d = OAd, 
the losses of the straight guide are reasonably low; they become im-
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Fig. 12-Curvature losses in the presence of a jacket with n3r = nl for mode 
n = 17 of a slab supporting 24 TE modes. The other parameters are nl = 1.5, 
n2 = 1.485, kd = 174.533. 

portant for d/ R > 0.0015. The larger index difference of this example 
has the effect of allowing us to use a slightly thinner cladding and 
lower radii of curvature compared to the previous case with 
n2 = 1.49666. 

VII. CONCLUSIONS 

The presence of a jacket can increase the curvature losses of dielectric 
optical waveguide. It is thus important to keep the jacket sufficiently 
far from the waveguide core. The worst possible case is that of a jacket 
whose refractive index is slightly higher than the index of the cladding. 
However, we see an increase of the curvature losses caused by the 
power dissipation in the lossy jacket even if the real part of the index 
of the jacket is equal to the cladding index. 
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A first indication of trouble can be obtained by computing the losses 
caused by the presence of the jacket from formula (29) for a straight 
slab waveguide. (A corresponding formula for the REIn modes of the 
round optical fiber can be found in eq. (10.4-22), p. 426, of Ref. 4.) 
Even if the presence of a lossy jacket does not seem to increase the 
losses of the straight guide above a certain tolerable level, it is im
portant to keep in mind that waveguide curvature will increase the 
values of the loss coefficient by orders of magnitude for sufficiently 
tight bends. 

The discussion of curvature losses in the presence of a lossy jacket 
was based on considering TE modes of a slab waveguide. The general 
behavior of the losses is expected to be the same for round optical 
fibers. Since experience has shown that even the numbers obtained 
from a slab model give the correct order of magnitude for round fibers, 
the numerical example discussed in this paper may be used to estimate 
the curvature losses of a round fiber with lossy jacket. 
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This paper analyzes a block-coding scheme designed to suppress 
spectral energy near f = 0 for any binary message sequence. In this 
scheme, the polarity of each block is either maintained or reversed, de
pending on which decision drives the accumulated digit sum toward zero. 
The polarity of the block's last digit informs the decoder as to which deci
sion was made. 

Our objective is to derive the average power spectrum of the coded signal 
when the message is a random sequence of + 1 's and -1' s and the block 
length (M) is odd. The derivation uses a mixture of theoretical analysis 
and computer simulation. The theoretical analysis leads to a spectrum 
description in terms of a set of correlation coefficients, {pq}, q = 1,2, etc., 
with the p/ sfunctions of M. The computer simulation uses FFT algorithms 
to estimate the power spectrum and autocorrelation function of the block
coded signal. From these results, {pq} is estimated for various M. A 
mathematical approximation to pq in terms of q and M is then found which 
permits a closed-form evaluation of the power spectrum. Comparisons 
between the final formula and simulation results indicate an accuracy of 
±5 percent (±O.2 dB) or better. 

The block-coding scheme treated here is of particular interest because of 
its practical simplicity and relative efficiency. The methods used to 
analyze it can be applied to other block-coding schemes as well, some of 
which are discussed here for purposes of comparison. 

I. INTRODUCTION 

1.1 Block coding 

In its most general meaning, block coding consists of dividing a 
digital sequence into time-contiguous blocks and performing a sepa
rate coding operation on each block. In actual usage, the term is 
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most often applied to cases in which both the original and block
coded sequences are binary and the coding serves either (i) to enable 
error detection and/or correction or (ii) to shape the digital sequence 
spectrum. 

The most widely used spectrum-shaping codes are those that sup
press the energy near zero frequency. This suppression enables the use 
of transformers and ac-coupled amplifiers in processing the digital sig
nal and, in modulation applications, provides for a null region near the 
carrier frequency to facilitate carrier extraction. Our concern here is 
with this kind of block coding. 

In particular, we examine a block-coding approach invented (in 
analog form) by F. K. Bowers.l The digital version of this scheme has 
been treated separately by Carter2 and Pierce,3 and implemented 
recently by Ruthroff and Bodtmann.4 ,5 The scheme can be used with 
blocks of either odd or even length (M), but our attention here is con
fined to odd M. Our objective is to derive the average power spectrum 
of a sequence so coded when the original message sequence is totally 
random. This problem has been partially studied by Rice6 for the same 
block coding with M even (to which case our method of analysis is 
equally applicable), and by Slepian7 and Franklin and Pierce8 for 
other dc-suppressing block codes. Results for some of these case s are 
given later. 

1.2 Description 

Unless otherwise specified, the term block coding means the process 
we describe here, with the aid of Figs. 1 and 2. 

The original sequence of binary digits is divided into blocks of length 
(M - 1), and a + 1 digit (the so-called code digit) is added to the end 
of each block (Fig. la). A resettable counter measures the digit sum 
Ak in each block k, omitting the code digit if M is even and including 
that digit if M is odd. In either case, this count can take on only odd 
values. It is compared with the sum over all previous output digits, 
B k, and a decision is made as follows: If Ak and Bk have the same 
polarity, all pulses in block k are inverted; if Ak and Bk have opposite 
polarity, the pulses in block k are unaltered; and if B k = 0, its polarity 
is taken to be that of its most recent nonzero value, i.e., B k - 1 , or B k - 2, 

etc. * In the decoder, each received block is inverted if the polarity of 

* There are other ways to resolve the case Bk = 0 (~.g., by random decisions, 
as suggested by Rice), and the ultimate choice should be dictated by practical 
considerations. 
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/-------- - T·CODE DIG ITS --., - -- - - -----., 

I { \ ~ 

1 1 I 1 I I 1 
(k-3) M I I I I (k-2) M I I I (k-1) M I I kM 

" I /" I /" I / 

o 

BLOCK k-2, COUNT Ak_ 2 BLOCK k-l, COUNT Ak_ 1 BLOCK k, COUNT Ak 

(CODE DIGITS OMITTED FROM BLOCK COUNTS IF M IS EVEN) 

(a) INPUT SEQUENCE 

l:~~~~~:~~~,--~~~~~B'~ ____ --~~]M I I 1 
o (k-~ M I I I I (k-2) M I r I I kM 

, I /, I /, I / 

BLOCK k-2, (NO INVERSION) BLOCK k-l, (INVERSION) BLOCK k, (NO INVERSION) 

(b) OUTPUT SEQUENCE 

Fig. I.-Sample input and output digital sequences. 

m 

m 

the recovered code digit is negative and is not inverted if that digit is 
positive. 

Figure 2 depicts the logical process just described and is a simplified 
diagram of how block coding is actually implemented. The identifica
tion of the code digit in the decoder is accomplished with the help of 
framing, which is not depicted (or treated) here. The penalties in this 
form of block coding are a 100/ M-percent reduction in information 
rate and twofold increase in the random error rate. 

*Ck = MOST RECENT NONZERO Bk 
DECISION:* 

_----~~ IF AkCk<OI+o----
NOT IF AkCk >0 

Fig. 2-Coding process. 

CODED 
OUTPUT 
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1.3 Scope of the paper 

It is easy to see that the accumulated sum of the output digits at the 
end of any block is limited in magnitude to M (i.e., I Bk I ~ _Ll1) , and 
that the magnitude of this sum at any instant in time is limited by 
(3M - 1)/2 if Al is odd and 3MI2 if 111 is even. For this reason, the 
output sequence has no spectral energy-either discrete or con
tinuous-at f = O. At the same time, the total sequence "power" is 
unchanged by the coding, since every digit has the same "energy," 
regardless of polarity. * Obviously, then, the suppressed energy near 
f = 0 is redistributed over the rest of the frequency range, and it is 
of more than passing interest to know how. 

The answer, of course, depends on the nature of the message se
quence being encoded. In this study, we assume a totally random se
quence (all digits independent, with equally likely polarities) and 
derive the block-coded signal spectrum for odd values of M. The 
derivation uses a mixture of theoretical analysis and computer simula
tion and leads to a closed-form expression for the spectrum which com
pares quite favorably with simulation data. Section II gives the purely 
theoretical part of the derivation, Section III describes the simulation 
study, and Section IV gives the final result and some examples. 

II. ANALYSIS 

2.1 General form of the spectrum 

We represent the uncoded message sequence as a binary stream of 
pulses at a rate liT, 

00 

L anp (t - nT), (1) 
n=-oo 

where 
an = + 1 or -1 with equal probabilities, 

anam = 1
1 if n = m 

o if n ~ m, 
(2) 

and p (t) is a pulse centered on [0, TJ of arbitrary shape, area T, and 
Fourier transform P (f). The first step in the coding consists of opening 
up a one-pulse slot after every M - 1 message pulses and injecting a 
positive pulse, +p(t). The new sequenc~, with positive code pulses 

* In the ensuing analysis, the digital sequence of Fig. 1 is replaced by a pulse stream 
at a rate liT, with each pulse having an area of magnitude T. 
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every M time slots, is then block coded to produce an output signal 

00 

so(t) = L bnp(t - nT). (3) 
n=-oo 

It is the average power spectrum of so(t) that we wish to evaluate. 
We define the autocorrelation function of the coded signal to be 

R(T) = T~ir;!, 12~0 1-:0 80 (t)80 (t + T)dtl (4) 

and the average power spectrum to be the Fourier transform of R (T), 

S(f) = ~ {R( T)} = f-: R(T) exp (- jWT)dT. (5) 

To simplify the derivation of S (f), it is convenient to express So (t), 
eq. (3), as the convolution 

80 (t) = L~~. bno(t - nT) l,p(t), (6) 
I 

suet; T) 

where 0 (t) is the unit impulse function. It is now obvious that S (f) is 
the product 

S(f) = Su(f; T) IP(f) 1
2
, (7) 

where Su(f; T) is the average power spectrum of suet; T) in (6), and 
P(f) is the Fourier transform of p (t). 

We can obtain Su(f; T) by applying (4) and (5) to suet; T). In so 
doing, we make use of the fact that the convolution between two unit 
impulse functions separated by mT seconds is a unit impulse function 
oCt - mT). It is then easy to show that 

(8) 

where bnb n+m is an average over the sequence ensemble and the 
bracketed term is the further averaging over the time position of bn • 

Because Ru (T; T) is a sequence of uniformly spaced impulses, Su (f; T) 
is periodic in frequency with a repetition intervall/T. The shaping of 
this spectrum by the nonperiodic pulse spectrum function 1 P (f) 12 
leads to the overall spectral characteristic of the block-coded signal. 
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2.2 Analysis of Ru(r; T) 

This analysis is aimed at simplifying Ru (T; T), eq. (8), by finding a 

description for bnbn+m and its average over n. To do this, we make two 
important observations about the block-coded binary sequence {b n }: 

(i) The 2M possible digital sequences within each code block of 
{b n } are equiprobable, even though the last digit is a code digit. 

(ii) The correlation between bn and bn+m depends only on the num
ber of blocks separating these two digits, i.e., on the number (q) 
of code digits in the interval en, n + m). 

The first observation is easily proved: The first M - 1 digits of each 
block at the coder input, which are assumed to be totally random, form 
one of 2 M - 1 equiprobable sequences. With the addition of the + 1 code 
digit, there are still only 2 M - 1 realizable sequences per block. The 
possible inversion of the block by the coder, however, produces another 
2M- 1 realizable sequences (the original 2M-l sequences with -1 instead 
of + 1 for the last digit), leading to a total of 2 M. Further, since the 
probability of a block inversion is ! for a random input sequence, the 
2M realizable output sequences are equiprobable. The significance of 
this is that {b n } is statistically the same as if all M digits in each input 
block were derived by random selection. 

The second observation depends on the first. For in the absence of 
block inversions and with all input digits randomly derived, there 
would be no correlation between any two digits of the digital stream. 
Any correlations in the block-coded sequence, therefore, are due solely 

to the inversions. It follows that bnbn+m depends, at most, on the num
ber of possible block inversions (or code digits, q) between bn and bn+m • 

We conclude that Ru (T; T) can be expressed in terms of a set of 
numbers {pq}, pq being the correlation between any two digits having 
q code digits between them. * To reduce (8) to such a representation, we 
first observe that, if I m I = lM + p, where 1 ~ p ~ M, then q is 
either l or l + 1, depending on the position of bn within the block con
taining it. By letting n vary from the first to the last block position, we 
can see that q = l for a fraction [(M - p)/MJ of all possible positions, 
and q = l + 1 for a fraction (p / M) of all possible positions. We can 
therefore express the bracketed quantity in (8) as 

[1~ 2~ n=~N bnbn+m ] = ( M ;; P) pz + (It ) PZ+1' (9) 

* It is obvious that po = 0, because any two digits in the same input block are 
taken to be uncorrelated, and this fact is not altered by the coding. 
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P 4 

where 

f! 2 

R(m; M) 

f! 
2 

Fig. 3-Representation of R(m; M). 

l to • • Iml = greatest mteger In M . 

Since p = I m I - lM, the right side of (9) can be re-expressed as 

R ( . M) == (l + I)M - I m I + I m I - lM 
m, M PI M PI+ 1' 

with l related to m and M by (10). 

(10) 

(11) 

It is clear from the statistical symmetry of the b's in (9) that 
R( -m; M) = R(m; M), and (11) reflects this fact. It is also clear 
from (9) that R (0; M) = 1. We can thus express Ru ( r; T) in (8) as 

Ru(r; T) 

= ~ [o(r) + m~l R(m; M) {o(r + mT) + o(r - mT)} l (12) 

Although the mathematical description for R(m; M), eq. (11), seems 
complicated, it has the very simple graphical interpretation shown in 
Fig. 3. The value of R(m; M) for q complete block separations (i.e., 
m = ±qM) is just Pq, * and the variation between m = qM and m 
= (q + I)M is a linear progression from Pq to Pq+l. This result can 
now be used to derive Sue!; T). 

* The one exception to this is the singular case q = 0, where R(m = 0; M) = po + 1, 
with po = o. 
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2.3 Expression tor suet; T) 

If the lines in Fig. 3 are envisioned as impulses of area I/T separated 
by T seconds, then S u (f; T) can be found as the Fourier transform of 
this sequence. The algebra is straightforward but somewhat tedious, 
and so we give just the final result: 

( 1 [ ( sin M w T /2)2 00 ] 

Su f; T) = T 1 + 2M M sin wT/2 q"f
1 

pq cos wlYIT . (13) 

The periodicity of this function, with repetition interval 1/ T, is easy 
to see. The pq's are functions of M so that a complete description of 
Su(f; T), and thus of S(1) as given by (7), reduces to knowing the 
array of functions {pq(M)}. Unfortunately, there is no apparent way 
to determine these functions from purely theoretical considerations. 
One useful bit of information, however, is that Su (0; T) = 0 by virtue 
of the block coding.' This being the case, we see from (13) that 

00 1 
L pq(M) = - -. 

q=l 2M 
(14) 

Beyond (7), (13), and (14), we have little information about the 
block-coded signal spectrum on theoretical grounds. Using the methods 
of computer simulation, however, it is possible to estimate the pq's 
for various M, and to seek functional descriptions for them that permit 
a closed-form evaluation of (13). This task constitutes the remainder 
of the development. 

III. SIMULATION STUDY 

3.1 Computer programs 

The computer programs used to derive {pq(M)} empirically are 
depicted in Fig. 4. The routine called BLOCK generates random se
quences {an} having the properties described by (2) and, for specified 
M, converts them into block-coded sequences {bn} by emulating the 
logic in Fig. 2. These coded sequences are supplied on demand to the 
main program, labelled SIMULATION. 

The SIMULATION program operates in the following manner: In 
each of NT trials, it accepts an N-term sequence from BLOCK and 
performs an N-point discrete Fourier transform (DFT9), producing 
complex spectral samples at f = k/NT, k = 0, N - 1. The squared 
magnitude of the kth sample (normalized by N) represents a one-trial 

* This is so because the long-time integration of the coded sequence is bounded in 
magnitude (specifically, by 3M /2). 
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INPUTS 
N, NT' M 

BLOCK 

,--------------, 
I START: I 

j = 0 Wk = 0, k = 1, N I 

SELECT 
SUBSEQUENCE 

ibn} = (b j ,b j+N_ 1) 

SIMULATION 

Fig. 4-Computer simulation program. 

I Sk} 
PLOT 

estimate of TSu(f = k/NT; T). These estimates for the NT trials are 
averaged to produce the array {Sd, k = 0, N - 1. This procedure is 
made efficient by implementing the DFT's with fast Fourier transform 
(FFT) algorithms. lO To maximize efficiency, N is constrained in all 
simulations to be an integral power of 2. 

The full benefit of the multitrial averaging is obtained by enforcing 
statistical independence among the NT sequences supplied by BLOCK, 
and also by effectively randomizing the time phase of the sequences 
analyzed. The latter is accomplished by means of the function labelled 
"SELECT SUBSEQUENCE ... " (Fig. 4), which causes the starting 
time of the analyzed sequences to vary uniformly among the M possible 
positions within a block. To accommodate this feature, the independent 
sequences supplied by BLOCK have a total length N + NT - 1 or 
greater. 

There are three output arrays produced in the SIMULATION pro
gram. One is {Sd, which approximates TSu(f; T) at the N frequencies 
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k/NT, k = 0, N - 1. This array is applied to the PLOT routine, Fig. 
4, where it is plotted on the same graph as the mathematical function 
given by (28). This function is derived using numerical parameters 
extracted from {Rm}, the inverse DFT of {Sd, which is the second 
output array, Fig. 4. The elements of this array represent estimates of 
R(m; M), i.e., Rm == R(m; M), and they are applied to the COMPUTE 
routine to produce estimates of Pq, i.e., the array {Pq}. These are the 
quantities used to derive (28) from (13). To evaluate the accuracy of 
these estimates, the COMPUTE routine also produces the array {u q}, 
where U q is the approximate rms error in ,Qq. The computation of {u q} 
involves the array {RA2

)}, the inverse DFT of {S%}, which is the third 
output of the SIMULATION program. The formulas relating {R m }, 

{p q}, {RA2
)}, and {u q} are presented in Section 3.3. 

3.2 Choices of N and NT 

The difference between the computer-derived spectral sample Sk 
and the quantity it approximates, TSu(k/NT; T), contains two dis
tinct components, (i) a deterministic error due to the finiteness (N) of 
the sample length and (ii) a random error due to the finiteness (NT) 
of the number of independent simulations. Similar remarks apply to 
the difference between Rm and R (m; M). We now apply these considera
tions to the choices of Nand NT. 

Because N is finite, the normalized spectrum estimated by the com
puter program is not TSu(f; T), but the convolution between 
TSu(f; T) and the function 

F(f) = NT( sin 7rN f T )2. (15) 
7rNfT 

Thus, Sk is an estimate of the quantity 

Since the area of F (f) is unity, the approximation of TSu (k/ NT; T) 
by TS~(k/NT; T) is very good if TSu(f; T) changes negligibly over 
the main lobe of F(f - k/NT). The difference is the deterministic 
error in Sk; the inverse DFT of the k-sequence of these errors gives 
the deterministic errors in the estimates of R (m ; M). 

By considering the interference between the peak of T S u (f; T) 
(which occurs near f = 1/4MT) and the sidelobes of F(f) (which 
decrease as 1/ P), we have determined a rule of thumb for which worst
case deterministic errors are negligibly small. The rule constrains N 
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to the region 
N~100M, (17) 

a constraint we have used throughout this study. 
The random errors in estimating R (m; M) also decrease with in

creasing N, as we shall see in Section 3.3. This consideration, added to 
(17) and the requirement that N be an integral power of 2, has helped to 
shape the final choices of N for different values of JIll. Typically, we 
have used N = 512 for M = 3, N = 2048 for M = 9, and N = 4096 
for M = 17. 

We shall also see in Section 3.3 that the random errors in estimating 
Su (f; T) and R (m ; M) decrease with increasing NT. For example, the 
fractional rms error in Sk is accurately given by Ij-vNr. In deriving 
estimates for R(m; M), we have used 400 trials to achieve the ac
curacies desired, while, to obtain precise spectral estimates for com
parison with the final formula, we have used 1600 trials (corresponding 
to ± 2.5 percent accuracy). 

3.3 Analysis of computer results 

The simulation estimates of R (m; M) for m > 0 and M = 3, 9, and 
17 are given by the points in Figs. 5, 6, and 7. The existence of straight
line variations between m = qM and m = (q + I)M for q = 0, 1, 2, 
etc., as predicted by the analysis of Section II, is evidenced here. The 
deviations of the points from straight lines are due to statistical fluc
tuations in the finite simulation, and the straight lines shown are 
derived from the points by least-squares techniques. The pertinent 
error analyses and estimation procedures used to obtain these straight 
lines and further data reductions are now summarized. We assume 
from here on that deterministic errors are made negligible by the 
choice of N, i.e., that all errors in Sk and Rm are random errors due to 
finite NT. Table I lists the symbols to be used. 

3.3.1 Error correlations 

We now establish the error correlations OkOZ and €m€p with the aid of 
the definitions in Table 1. As N becomes very large, the real and 
imaginary parts of Uk become more and more like independent gaussian 
variates (central limit theoremll), and we assume this to be the case 
here. The importance of this assumption is that the definitions of Ok, 
Sk, and Sk in Table I can then be used to obtain 

IT = 1 UkU~ 12. (18) 
k Z N2N

T 
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-0.08 

-0.10 

-0.12 

-0.14 

Rm 

0.01 

11M 

• SIMULATION RESULTS 

STRAIGHT-LINE FIT TO POINTS 

Fig. 5-Simulation results for M = 3 (N = 512, NT = 400 trials). 

Or-------~---------+--------~~------~------~~--------+m 

0.01 

0.02 

0.03 

M 2M 5.M 

SIMULATION RESULTS 

STRAIGHT-LINE FIT TO POINTS 

Fig. 6-Simulation results for M = 9 (N = 2048, NT = 400 trials). 
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0.005 

M 

-0.005 

-0.010 

-0.015 

-0.020 

. . 
2M 4M 5M 

SIMULATION RESULTS 

STRAIGHT-LINE FIT TO POINTS 

Fig. 7-Simulation results for M = 17 (N = 4096, NT = 400 trials). 

Clearly, ~ = (Sk)2/N T, i.e., the rms error in estimating Sk is Sk/...fii;. 
Unfortunately, OkOZ for l ~ k is not zero for the block-coded signal 
under study. Nevertheless, these correlations are found to be suffi
ciently weak (particularly as / k - l/ increases) that we can ignore 
them without any first-order effects on the results. The benefit of this 
is a considerable simplification in the mathematics. Accordingly, we 
shall assume that 

(19) 

Table I - Symbols used in error analysis 

Symbol Meaning 

{uk!, k = 0, N - 1 DFT of {b n J, n = 0, N - 1 
Sv.(f; T) Average power spectrum of infinitely long block-coded signal 
Sk Simulation estimate of Sv.(f = kT/N; T): Sk = Ave(lukI 2/N) 

&0 
Ok 
R(m; M) 

Em 

Limiting value of Sk as NT ~ 00: &c = IUkI 2/N 
Random error in Sk: Ok = Sk - Sk 

NT 

Coefficient, at separation m, of autocorrelation function of 
block coded signal 

Simulation estimate of R(m; M): {Rm} = IDFT{Skl 
Random error in Rm: Em = Rm - R(m; M) = IDFT{od 
Exact, estimated values of R (m = qM; M) 
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To establish Em Ep, we begin with the fact that {Em} is the inverse 
DFT of {(h}. Using (19) and a modest amount of manipulation, we can 
then show that 

EmEp = N~ T ~IDFT{ (y&)2} I m+~ + IDFT{ (~)2} lim-pi]. (20) 

R;;+p Rf~-pi 

In the SIMULATION program (see Fig. 4), the array {R~2)} is esti
mated by computing the inverse DFT of {S~}, and is then used to 
determine the rms errors in the estimates for pq(M). 

3.3.2 Estimations of pq(M) 

Given the simulation estimates {R m }, an obvious way to estimate 
pq(= R(m = qM; M)) is by pq = Rm=qM. However, the values of Rm 

for m = qM - 1, qM - 2, ... qM - (M - 1) can be included to 
yield more accurate estimates of Pq, as the following analysis shows. 

Using Table I and Fig. 3, we can express Rm in the general form 

Rm = Pq-l + pq ~q-l [m - (q - l)MJ + Em; (q - l)M < m ~ qM 

q = 1, 2, etc. (21) 

Now suppose that we estimate pq as a linearly weighted sum of Rm 

over [(q - l)M + 1, qM]. Using the substitution m' = m + (q - l)M, 
this sum can be written as 

M M 
pq = L wmRm' = Pq-l L Wm 

m=l m=l 
_ M M 

+ pq Pq-l '"' + '"' 
M £..J m,wm £..J WmEm" 

m=l m=l 
(22) 

This estimate is made unbiased by choosing {w m } so that 

~ 1 Arbitrary, q = 1 d ~ M 
£..J Wm = an £..J mWm = . 

m=l 1, q > 1 m=l 
(23) 

(For the singular case q = 1, there is no constraint on LWm because Po 

is known to be zero.) To see how to choose {wm } (m = 1, M) within 
these constraints, we combine (20), (22), and (23) and obtain the 
following mean-square error for pq: 

To a first approximation, the dominant component of <T~ is 2Rd2
) (L w~) / 
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Table II - Estimates of pq{M) 

""-M 3 5 9 13 17 
q""- (u== 3.1 X 10-3) (u == 1.8X 10-3) (u == 1.0X 10-3) (u== 6.1 X 10-4) (u == 5.3 X 10-4) 

-
1 -0.06321 -0.04787 -0.03098 -0.02271 -0.00172 
2 -0.14363 -0.06625 -0.02870 -0.01751 -0.00128 
3 -0.01754 -0.00632 -0.00168 -0.00140 -0.00081 
4 0.07654 0.02712 0.00659 0.00398 0.00212 
5 0.01431 0.00515 -0.00018 0.00024 0.00066 
6 -0.04212 -0.01120 -0.00198 -0.00077 -0.00091 
7 -0.01074 -0.00200 -0.00075 0.00075 -0.00041 
8 0.02653 0.00701 0.0 0.00002 0.00103 
9 0.00546 -0.00018 0.00069 0.00039 0.00088 

10 -0.01244 -0.00483 -0.00026 0.00069 0.00020 
11 -0.00600 -0.00040 -0.00016 -0.00009 -0.00050 
12 0.01124 0.00185 -0.00103 0.00017 0.00061 
13 0.00275 0.00143 0.00183 0.00024 -0.00031 
14 -0.00471 -0.00096 0.00009 0.00032 -0.00017 
15 -0.00062 0.00022 -0.00008 0.00003 0.00018 
16 0.00038 0.00200 -0.00062 0.00061 0.00027 
17 0.00171 0.00016 0.00013 -0.00023 0.00017 
18 0.00027 -0.00407 -0.00087 -0.00050 0.00004 
19 0.00254 -0.00134 0.00039 0.00047 -0.00019 
20 0.00024 0.00201 0.00057 0.00051 0.00024 

NN T, because I RA2
) I tends to be small for n ~ O. Using this fact, an 

approximate least-squares approach is to derive the sequence {w m } for 
which LW~ is a minimum within the constraints of (23). Using Lagran
gian multipliers, it is straightforward to show that the solution is 

Wm = 1-! + M(~~ 1) q > 1 

6m 
(m=l,M) (M + I)(2M + 1); q = 1. 

(25) 

We assume that, for practical purposes, (25) represents the least
squares coefficient array for the error given by (24). It was used in the 
COMPUTE routine of Fig. 4 to obtain {pq} [based on (22) and the 
estimates {Rm} ] and to estimate {O" q} [based on (24) and the estimates 
of {RA2

)}]. 

The results are shown in Table II for several values of M and for 
q = 1, 20. It is found that O"q is fairly constant with q, except for 0"1, 

which tends to be lower by 10 to 30 percent. The quantity 0" in each 
column heading of Table II is the average of the computed O"/s from 
q = 2 to q = 20. * These rms errors are lower than those obtained 

* Note that, for all M, pq is in the simulation "noise" (i.e., I pq I ~ u) for q ~ 20. 
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by estimating pq as Rm=qM [which is equivalent to using {wm} 

= (0, 0, ... , 1)], the improvement factor increasing with M and 
having a value near 2.5 for M = 17. 

3.4 Reduction to mathematical descriptions 

From the data of Table II, a useful and valid description for pq (M) 
can be shown to be 

A (M) == Aq + Bq 
pq M M2' (26) 

where A q and B q are functions solely of q. For each q, raw estimates of 
Aq and Bq are derivable from the pq values at any two values of M. To 
satisfy (14) for all M, however, it is necessary that these estimates be 

-0.1 

-0.2 
Aq = -0.3225 1 _0.171O.2)q;21 

q=l qEVEN 

q-SI q-7 
+005(-2/3)"'2 + 0.~5 (-2/3)~1 

q >6, EVEN q> 6,ODD 
-0.3 

0.8 

0.6 

0.4 

0.2 

-0.4 
Bq = -1.81 +0.101 +0.441 

q=O q=l q=2 
-0.6 

q q-l 

+1.8(-2/3) '21 +0.30(-2/3)21 

q EVEN q ODD -0.8 

Fig. 8-Possible solutions for {Aql and {Bql. 
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refined to satisfy 
C() 1 

.E Aq = - 2M' 
q =1 

C() 

.E Bq = O. (27) 
q=1 

Moreover, these refined estimates should express A q and B q in mathe
matical forms that will permit a closed-form evaluation of (13). One 
possible solution that satisfies all these requirements is Fig. 8. Using 
these results in (26) and comparing with the values in Table II, agree
ment is found to be quite good: Nearly all the new estimates of pq 
obtained in this way lie within a standard deviation (±a) of the tab
ulated values; also, the values of pq for q > 20 lie within ±a about 
zero, decaying in magnitude with q as expected from physical reasoning. 

IV. FINAL RESULT AND EXAMPLES 

4.1 Expression for Suff; T) 

Combining Fig. 8 with (26) and (13), it is possible to obtain a 
closed-form expression for Sue!; T). Once again, the algebra is tedious 
but straightforward, so we merely state the result: 

(
sin (MwT /2) )2 

TSu (!; T) = 1 - M sin (wT/2) F(wT; M), (28a) 

where 

F(wT; M) = 0.645 cos (MwT) - 0;8 cos (2MwT) 

_ 085 cos (2MwT) - 0.2 ______ 1---;--~-=:-
. cos (2MwT) - 2.6 13 + 12 cos (2MwT) 

X [ ! [-7.2 + 6.4 cos (MwT) - 10.8 cos (2MwT) 

+ 0.6 cos (3MwT)] + 0.05[12 cos (4MwT) + 2 cos (5MwT) 

+ 18 cos (6MwT) + 3 cos (7MwT)]]; M odd. (28b) 

Rather than do an error analysis of this result (e.g., based on the a's 
in Table II), we have compared this formula with fresh simulation 
results for {Sd based on 1600 trials (±2.5 percent rms error). The 
PLOT routine shown in Fig. 4 plots the simulation data as points and 
plots the formula as a solid line. Figures 9 through 13 give the results 
for M = 3, 5, 9, 13, and 17. Given the rms errors of the simulations 
and the scatter about the solid curves, we estimat.e from these com
parisons that the formula is accurate to within ±5 percent (±0.2 dB) 
or better for all M and w. The accuracy is especially good in the all-
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important rising portions near f = 0, where the simulation points are 
seen to lie very close to-or within the line thickness of-the solid 
curves. 

4.2 Comparison with even-M block code 

It is tempting to extrapolate the new formula to the case of even M, 
although Fig. 2 warns us that the coding schemes for odd and even M 
are qualitatively different. Figure 14 shows simulation points, along 
with a solid curve derived from the new formula, for M = 4. Figures 
15 and 16 do the same for M = 8 and 16. Although Nand NT are 
lower in these simulations, the consequent increases in the deterministic 
and random errors do not account for the observed discrepancies. It 
is concluded that the new formula is not accurate for low even values of 
M, but that its accuracy improves as M increases to large even values. 

2.8 

2.4 

2.0 

i= 
1.6 

::J 
CJ) 

I-

1.2 

0.1 0.2 

I M = 3 I 

.: ..... ';:: SIMULATION RESULTS 

-- FORMULA 

0.3 
fT 

0.4 0.5 

Fig. 9-Comparison of formula with simulation results for M = 3 (NT = 1600). 
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Fig. 10-Comparison of formula with simulation results for M = 5 (NT = 1600). 
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Fig. l1-Comparison of formula with simulation results for M = 9 (NT = 1600). 
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Fig. 12-Comparison of formula with simulation results for M = 13 (NT = 1600). 

4.3 Comparison with zero-disparity code 

A different kind of block-coding scheme is one in which M is even 
and each block is constrained to have an equal number of positive and 
negative digits. 2 For a given M, this so-called zero-disparity code is 
less efficient in information rate than the one studied here (see Franklin 
and Pierce8), but has superior spectral properties, as we now show. 

For the zero-disparity code, Franklin and Pierce show that TSu(f; T) 
is Mj (M - 1) times the function (28a), with F(wT; M) replaced by 1. 
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Fig. 13-Comparison of formula with simulation results for M = 17 (NT = 1600). 
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Fig. 15-Comparison of formula with simulation results for M = 8 (NT = 400). 
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Fig. 16-Comparison of formula with simulation results for M = 16 (NT = 400). 

For f ~ 1/2T and M ~ 4, this result can be represented to within 0.3 
dB as follows: 

M - 1 TS (f' T) == 1 _ (sin (MwT/2))2 
M u, MwT/2' (29) 

This function is shown (dashed curve) in Fig. 17 and compared with 
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Fig. 17-Comparisons with zero-disparity block code. 
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Fig. IS-Block-coded signal spectrum for various pulse shapes (M = 9). 

2.0 

some corresponding results for the block code studied here. The latter 
results, based on the new formula, are for M = 5, 9, and 17. The 
suppressed energy near f = 0 is seen to be redistributed to higher fre
quencies (and in a more uniform way) by the zero-disparity code, 
permitting more relaxed requirements on ac-coupled processing stages 
for a given M. If the quantity held fixed is information rate, however, 
the zero-disparity code must use a larger value of M for which its 
spectral superiority all but vanishes. 

4.4 Effects of pulse shape 

The overall spectrum of the block-coded signal must take into ac
count the spectrum of the pulse shape p (t). Figure 18 gives some results 
for S(f), (7), for the case M = 9. The relative differences due to pulse 
shape are identical to those that occur without block coding. The effect 
of the block coding is to force spectral nulls near f = niT, (n = 0, 1, 2, 
etc.) and "bumps" within ± 1/4MT of each null. 

V. CONCLUSION 

The general analysis of Section II leading to (7) and (13) applies to 
a wide class of block-coding schemes aside from the one treated here. 
The simulation/analysis procedures described in Section III can like-
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wise be applied to these schemes to find the pq's. Unfortunately, the 
computer costs involved in accurately estimating the pq's and com
paring the resulting formula with simulation data can be quite high. 

Aside from computer cost considerations, a strictly theoretical solu
tion to this kind of problem would be more accurate and provide more 
insight into the correlation factors influencing this kind of random 
process. Although qualitative explanations can be given for the os
cillating behavior of pq with q (Table II), the approach described here 
requires and offers little insight into such phenomena. 

In strictly practical terms, however, the result of this study provides 
a spectrum description which is quite accurate and fairly simple to 
use. For studies involving the passage of block-coded signals through 
ac-coupled amplifiers, or carrier extraction from signals modulated 
with block-coded sequences, such descriptions are highly useful. 
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An Algorithm for Locating the Beginning and 
End of an Utterance Using ADPCM 

Coded Speech 

By L. H. ROSENTHAL, R. W. SCHAFER, and L. R. RABINER 

(Manuscript received December 10, 1973) 

We describe a simple algorithm for locating the beginning and end of a 
speech utterance. The algorithm is based on the fact that the code words 
for an adaptive differential (ADPCM) representation of speech exhibit 
considerable variation among all quantization levels during both voiced 
and unvoiced speech intervals while, because of a constraint on the 
minimum step size, during silent intervals the code words vary only 
slightly within the smallest quantization steps. 

The use of the algorithm is illustrated for automatically locating the 
beginning and end of vocabulary entries for a computer voice response 
system. 

I. INTRODUCTION 

The need to automatically locate the beginning and end of a speech 
utterance frequently arises in speech processing for automatic speech 
recognition and speaker verification. We have also encountered this 
problem in implementing an automatic vocabulary preparation scheme 
for a multiline computer voice response system.1 Since our solution 
to the problem of automatically locating the endpoints of an utterance 
is based on some unique properties of the adaptive differential PCM 
(ADPCM) representation of speech waveforms,2 we must first discuss 
the fundamentals of ADPCM waveform coding. 

II. ADPCM SPEECH CODING 

Two characteristics of speech signals that are of concern in digital 
coding are the wide range of amplitudes of speech sounds and the 
redundancy of the speech signal. The ADPCM coder depicted at the 
top of Fig. 1 is based on a conventional differential PCM structure 
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ADAPTIVE 
QUANTIZER 

x(n) + + ~_o(n_)~ I-__ o .. (n_)_~ SPEECH IN /" 

y(n) = a-;((n-1) ...... ---; 

ADPCM CODER 

------t--------.. o(n) 

Fig. I-Adaptive differential PCM (ADPCM) coder showing adaptive quantizer. 

with a first-order fixed predictor in the feedback loop. To remove 
some of the redundancy, we form the difference between the 
input speech sample, x(n), and an estimate of the input, yen). If the 
estimate of the input is good, then the difference should be small and, 
thus, more accurately represented by a fixed number of bits than the 
input samples. The difference signal is quantized and encoded for 
transmission or storage in a computer memory. An approximation to 
the input speech, x(n), is reconstructed by adding the quantized 
difference to the estimate yen). The next estimate of the input speech 
is obtained by linear prediction based on the previous value of the 
reconstructed signal, x (n - 1). 

The difference signal, although somewhat less redundant, still has a 
wide range of amplitudes. To make most efficient use of the quantiza
tion levels, the peak excursion of the signal should be matched to the 
range of the quantizer. Thus, for low-level signals such as fricatives, 
the absolute amplitude value of the step size should be small compared 
to that required for high-level voiced sounds. In our hardware im
plementation, we use a four-bit or 16-level quantizer; however, for 
simplicity we show a three-bit quantizer at the bottom of Fig. 1. 
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The block labelled LOGIC monitors the coded output and provides 
for adaptation of the step size on the basis of the most recent quantizer 
output. For example, if the previous code word corresponds to one of 
the extreme levels, the quantizer is overloaded and the step size should 
be increased. On the other hand, if the previous code word corresponds 
to one of the lowest levels, the step size should be decreased. The step 
size ~ (n) satisfies the following equation: 

~(n) = M ·~(n - 1), 

where M > 1 if it is determined that the step size should increase and 
M < 1 if the step size should decrease. The details (see Ref. 2) of 
implementing such an adaptation strategy need not concern us here, 
except to note the rather important fact that there are strong practical 
reasons for imposing limits on how large or how small the step size 
may be; i.e., the step size satisfies the equation 

~min ~ ~(n) ~ ~max. 

The step-size adaptation acts effectively to compress the amplitude 
variations so that the quantizer treats low-level unvoiced speech 
signals much the same as high-level voiced speech signals. The objective 
is that each quantizer level be used a significant portion of time 
regardless of the absolute amplitude level of the speech. However, 
when the input amplitude is on the order of the minimum step size, 
the adaptation logic insures that the step size will seek its minimum 
value and the difference signal will then fall within the very lowest 
quantization levels. Thus, when no speech is present at the input, it 
is expected that the code words will vary only slightly. It is this feature 
of ADPCM speech coding that is the basis of our endpoint location 
scheme. 

III. THE ENDPOINT LOCATION ALGORITHM 

Figure 2 shows a typical code-word sequence at the beginning of a 
word. Since the sampling rate is 6 kHz and there are 256 samples per 
line, each line corresponds to roughly 40 milliseconds of the signal. We 
note that, for the top line and most of the second line, the code words 
show little activity, remaining for the most part within the middle four 
quantization levels. This first part of the sequence corresponds to 
silence. However, at the end of the second line and then for the 
remaining two lines, the code-word sequence fluctuates much more 
rapidly and with greater amplitude. This segment corresponds to 
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Fig. 2-Code-word sequence for the utterance /0/ showing coded silence followed 
by voicing. 

voiced speech, as is evident from Fig. 3, which shows the decoded 
speech waveform corresponding to the previous code-word sequence. 

These properties of the ADPCM representation of speech are re
flected in what we call the code-word energy, defined as the sum of 
squares of the code words over a 101 samp]e, or 16-millisecond window 
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Fig. 3-Decoded speech waveform corresponding to code-word sequence of Fig. 2. 
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centered around the current sample. That is, the code-word energy 
E(n) is 

n+50 

E(n) = L [c(i) - 7.5J2. 
i=n-50 

In our hardware implementation (see Ref. 2), the largest negative 
quantization level is represented by the binary code word 0000, while 
the largest positive quantization level is represented by the binary code 
word 1111, or the decimal number 15. Thus, 7.5 is subtracted from the 
code words to make the dc level of the code words equal to zero. We 
have found that performance is only slightly degraded if 1 c(i) - 7.51 
is used instead of [c(i) - 7.5J2. The use of only the magnitude leads 
to simplifications in hardware implementations of the algorithm. 

Using either of these definitions of code-word energy, the endpoint 
location algorithm is as follows. The code-word energy is computed at 
each sample and compared with a threshold which is set midway 
between the measured energy of silence and the average for speech. 
When the code-word energy exceeds this threshold for 300 consecutive 
samples or 50 milliseconds, the point at which the energy first exceeds 
the threshold is recorded as the beginning of an utterance. The energy 
comparison is continued, and when the code-word energy falls below 
the threshold for 1000 consecutive samples, or 160 milliseconds, the 
point at which the energy first falls below threshold is recorded as the 
end of the utterance. The 160-millisecond criterion ensures that a stop 
consonant within a word or phrase.}Vill not be mistaken for the end 
of the utterance. 

An example of the operation of the above algorithm is illustrated 
by the sequence of waveforms in Figs. 4 to 9. Figure 4 shows the 
sequence of code words for the beginning of the word /three/. The left 
half of the first line shows very little code-word variation and cor
responds to low-level tape noise. The right half of the first line and the 
next two lines, corresponding to the initial fricative /th/, show 
markedly greater variation, as does the last line which corresponds to 
the beginning of voicing. The marker in the middle of the first line 
denotes the beginning point as located by the algorithm just described. 
Figure 5 shows the code-word energy plotted as a function of time. The 
marker again denotes the point at which the energy exceeded threshold 
and remained above for at least 50 milliseconds. Note that the code
word energy is roughly the same for both the voiced and unvoiced 
segments, while it is significantly lower when no speech is present. 
These assertions are confirmed by Fig. 6, which shows the actual 
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Fig. 4-Code-word sequence for the beginning of the utterance /three/. 
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Fig. 5-Code-word energy for the code-word sequence of Fig. 4. 
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Fig. 6-Decoded speech waveform corresponding to the code-word sequence of 
Fig. 4. 
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Fig. 7-Energy of speech waveform of Fig. 6. 
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Fig. 8-Code-word sequence at end of the utterance /three/. 

speech waveform represented by the previous code-word sequence. We 
see the beginning unvoiced segment and the following voiced segment. 
The actual beginning of the word is not nearly as evident as in the code
word sequence. Figure 7, which shows the energy of the speech wave
form, emphasizes the fact that the simple algorithm that we have 
proposed would not be effective when operating upon uncoded samples 
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Fig. 9-Decoded speech waveform corresponding to the code-word sequence of 
Fig. 8. 
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of the speech waveform. Figure 8 shows the code-word sequence at the 
end of the word /threej. Also shown is the automatically determined 
endpoint; i.e., the point at which the code-word energy first fell below 
threshold and remained below for a period of 160 milliseconds. Figure 9 
shows the corresponding decoded speech waveform. The endpoint, 
which was clearly in evidence in the code-word sequence, is much less 
prominent in the speech waveform itself. 

IV. CONCLUSION 

This scheme was tested on a large number of typical entries for a 
voice response vocabulary with no errors. Auditory and visual inspec
tion indicated no evidence of shortening or inclusion of extra silence for 
any of the words. The performance of this simple scheme has allowed 
us to implement a completely automatic system for cataloging words 
for a computer voice response system.1 
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Combining Intraframe and Frame-to-Frame 
Coding for Television 

By J. o. LIMB, R. F. W. PEASE, and K. A. WALSH 

(Manuscript received October 9, 1973) 

A method of frame-to-frame coding is proposed in which the changes 
from one frame to the next are first detected and then transmitted as an 
intraframe coded signal rather than as frame-to-:-frame differences. A coder 
was constructed to test the proposal using DPCM for the intraframe 
encoding. 

Three aspects of the coder design presented particular problems. They 
were: 

(i) Movement detection (as a result of the increase in frame-to-frame 
noise caused by the intraframe coding). 

(ii) Smooth reduction of bit-rate and picture quality so as to take 
advantage of the reduction in spatial quality that a viewer tolerates 
when areas are moving fast. 

(iii) Control strategy for linking the operation of the buffer, the move-
ment detector, and the operating state of the coder. 

The coder gave good picture quality at a transmission rate of 1.5 megabits 
per second (0.75 bit per picture element), except in extreme situations 
where the moving area covered almost the entire screen. The performance 
is described in detail at bit rates of 2.0, 1.5, and 0.5 megabits per second. 

The experimental coder has a number of desirable properties from an 
overall systems point of view when compared with transmission of frame 
differences. These irl:clude high tolerance to transmission errors and small 
frame storage requirements. 

I. INTRODUCTION 

More than forty years ago it was first realized that channel capacity 
requirements could be significantly reduced by transmitting only those 
parts of a television signal that represent the changes from one frame 
of an image to the next. l However, only recently technology has been 
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available to store a complete frame of video information to enable such 
a system to become practicable.2 ,3 

In addition to the high correlation from frame to frame (temporal 
correlation), quite high correlation also exists from line to line and 
between adjacent elements along a line. It is these spatial forms of 
correlation which have been most widely exploited in coding television 
signals. For example, within a single frame we can switch between 
previous element prediction and previous line prediction, depending 
on whether there is more horizontal or more vertical similarity between 
adjacent picture elements.4 Similarly, in frame-to-frame coding the 
element in the previous frame corresponding to the element being 
encoded is a good prediction when an object is moving slowly, whereas 
a spatially adjacent element in the same frame is a better prediction 
of the current element when the obj ect is moving fast. 

In an ideal situation, it is easy to determine the changeover point at 
which the element difference is smaller than the frame difference. 
Consider an image moving horizontally at a constant speed of one 
picture element per frame period (pef). This speed is quite slow; it 
would take about 8 seconds for an object to cross from one side of the 
screen to the other. During one frame an element moves so as to occupy 
the position occupied by the element adjacent to it in the previous 
frame. Consequently, at this speed the element-difference signal equals 
the frame-difference signal: at greater speeds the frame-difference 
signal is larger. 5 

One early scheme for frame-to-frame coding, called Conditional 
Picture-Element Replenishment, updated the changed picture elements 
with a new PCM value.3 We refer to this as CR/PCM coding. The 
efficiency of this, scheme can be improved significantly by transmitting 
the difference between a stored reference frame and the new frame 
(CR/FF). The changes can be transmitted with little more than four 
bits per element, on the average, rather than between six and eight 
bits for PCM transmission. 6 

In conditional replenishment (CR) schemes, data are generated at 
a very uneven rate, and therefore it becomes necessary to use a buffer 
to smooth the peaks if a constant transmission bit rate is required. In 
general, while the buffer can smooth data within the field, it is not 
practicable to smooth from one activity peak to the next because the 
size of the buffer would need to be very large. * Further, in the video-

* For example, if a movement lasted for a duration of 1 second, between 3 and 6 
megabits of data could easily be generated, most of which would need to be stored 
(Ref.,7). 
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telephone situation, the signal delay inherent in a large buffer becomes 
intolerable to a user. Consequently, the efficiency of a coding scheme 
is highly dependent on the peak data generation rate. However, the 
coding of moving areas by intraframe techniques becomes more effi
cient with faster movement. This is in contrast to most other frame-to
frame coding schemes in which the efficiency decreases with the speed 
of movement. There are other advantages to coding the moving parts 
as an intraframe signal: 

(i) In many video-telephone situations, only the intraframe coded 
signal is available and, in general, transmitting the intraframe 
signal minimizes requantization effects. 

(ii) Such a scheme lends itself very well to economizing on frame 
storage requirements by storing only intraframe differences. 

A conditional replenishment system using intraframe coding of the 
changed parts of the signal (CR/IR) was first demonstrated in 1970.8 

This paper describes that system and subsequent improvements as
sociated with movement detection and the control strategy. Related 
work is described by Wendt9 and Kanaya is currently investigating 
a CR/IR type system.10 

The concept of CR/IR coding is illustrated in Fig. 1. The output of 
an intraframe coder is stored locally in a frame-memory loop. If a 
significant difference is detected between the input signal and the 
decoded version of the stored signal, the two switches move to position 
1 and new data are entered into the frame memory and at the same time 
transmitted to a frame memory at the receiver. It is also necessary to 

INPUT VIDEO 
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LINE AND ELEMENT 
ADDRESSES AND 

SYNCHRONIZATION 

2 t 
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Fig. I-Basic concept of the conditional replenishment intraframe (CRjIR) 
coder. 
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transmit addresses so that the receiver can insert the coded signal in 
the correct place. 

Figure 1 is deceptively simple, and a large combination of techniques 
is needed to implement such a coder successfully. However, the con
figuration we describe should not be regarded as a complete system, 
but rather as the result of an experiment, first, to evaluate the feasi
bility of transmitting an intraframe-coded signal in moving areas and, 
second, to explore methods of varying and controlling the horizontal 
accuracy with which the intraframe signal is coded. 

A brief description of the CRjIR coder is given in the next section, 
while more details are given in the appendix, Section A.I. Section III 
describes the performance of the coder and Section IV discusses, first, 
some additional techniques which could be used for further improve
ment and, second, some implications of CRjIR coding for overall 
system design. 

II. DESCRIPTION OF CONDITIONAL REPLENISHMENT INTRAFRAME CODING 
TECHNIQUES 

2.1 Switching between "stationary" and "moving" signals 

Let us be specific and assume that the intraframe coder is a differ
ential quantizerll (differential pulse-code-modulation coder). The 
scheme of Fig. 1 works satisfactorily if the switch is operated (closed or 
opened) only when the digital value of the decoded form of the coded 
signal is the same at both the output of the frame memory and the 
output of the intraframe coder. If this condition is not met, an error 
term is added to the coded signal which is equal to the difference be
tween the decoded value of the two signals incident at switch 1 at the 
instant of switching. This would result in a streaky picture with streaks 
similar to those produced by transmission errors. Figure 2 illustrates 
this lack of tracking between the intraframe coder and the CRjIR 
decoder when the switches of Fig. 1 change position to accept new data. 

To permit the switches to change position only when there is no 
difference (or a very small difference) between the decoded values of 
the two signals arriving at switch 1 (Fig. 1) would be very restrictive 
and would probably result in a significant increase in the area to be 
transmitted, particularly if the input signal is at all noisy. 

This difficulty is overcome with the configuration of Fig. 3. * The 
switch now handles normal (accumulated PCM) values rather than 

* Notice that the input to the coder is in intraframe coded form. We imagine the 
CR/IR coder as being one stage of a hierarchy of coders in which each stage would 
probably be at different physical locations (Section 4.2). 
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Fig. 2-Waveforms showing operation of conditional replenishment coder of Fig. 1. 
(a) Dotted line: Decoded value of stored signal (in frame memory) ; solid line: New 
incoming signal which is shifted to the right in the moving area because of a change 
in position of subject. (b) Solid line: Output of conditional coder of Fig. 1. Notice 
the offset at the instant of switching caused by addition of a new element-difference 
signal to the old (stored) decoded signal; dotted line: Desired representation of the 
combined input and stored signals. 
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Fig. 3-(a) Diagram of the CR/IR coder. Notice the change from Fig. 1: Coder 2 
and decoder 2b are added to the loop so that the offset problem shown in Fig. 2 is 
eliminated. (b) Diagram of intraframe coder (DPCM). 
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differential values, and the signal is recoded before it is stored in the 
frame memory. While there is no detected movement, the signal 
circulates through the frame memory, decoder, and coder without 
change. If the switch changes position while the PCM values entering 
switch 1 are identical, then the coded signal will not be changed after 
passing through decoder 1 and being recoded (i.e., the signals at A 
and D will be the same). On the other hand, if the switch changes when 
the two PCM values are different, a small amount of recoding noise 
will occur while the new signal is corrected. 

The operation of Fig. 3 is probably best appreciated by a numerical 
example shown in Table 1. Let us assume a five-level differential 
quantizer with decision levels ±1, ±4, and representative levels 0, 
±2, ±6 (see, for example, Ref. 12). 

If row A represents the input to decoder 1, then row B represents the 
output given that the value of the accumulator is 32 before decoding ... 
Let C represent decoder 2b output. Row D represents the output of 
intraframe coder 2 and is the same as the output from the frame 
memory before decoding up to the point that the switches change from 
position 2 to position 1. Row E is the accumulated value of D and 
represents the signal at the receiver. Just before switching, the differ
ence between the two values Band C at switch 1 is 6. After switching, 
the input to intraframe coder 2 is 44 (signal F, Fig. 3(b)), while the 
value in the accumulator is 36 (signal G). The difference is +8 which 
is coded as a 6 (therefore, E is 42). Coding continues with B = F as 
the input and row D as the coder output. On the fourth sample after 
switching, the two signals Band E are the same, and signals A and D 
will remain locked together until the switch returns to position 2. 
Thus, the coding noise at the switching point is confined to three 
samples and has the values -2, +2, +2 (obtained by subtracting 
row B from row E). The time to lock in depends on the quantizing 
characteristic, the input waveform, and the amount of difference at 
the instant of switching; in many instances, lock-in is immediate. The 
average lock-in time for the quantizer used in this study was measured 

.. We are dealing with many different types of signals in connection with the 
differential quantizer, and it is important to have a clear description of the terms 
used. A signal can be either analog or digital (i.e., PCM). The signal will be called 
"normal" (e.g., normal digital) if it is directly related to the amplitude of the video 
signal (signals Band C of Fig. 3(a)). Similarly, a signal will be called differential if 
it is directly related to some form of difference-signal (signals A and D of Fig. 3(a)). 
A standard 8-bit PCM signal will be referred to as a normal digital signal. A signal 
that has passed through both a differential coder and decoder will be called 
normal-differentially-quantized (signal B of Fig. 3(a)), while if it has only passed 
through the coder it will be referred to as a coded-differential signal (signals A and 
D of Fig. 3(a)). 
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Table I - Numerical example of the operation of the coder 
shown in Fig. 3 

Successive Picture Elements in Horizontal Direction 

A +2 +2 0 +6 +2 +2 -6 0 0 +2 
B 32 34 36 36 42 44 46 40 40 40 42 
C 32 34 36 36 36 X X X X X X 
D +2 +2 0 0 +6 +6 -6 -2 0 +2 
E 32 34 36 36 36 42 48 42 40 40 42 

i 
Switching Point 

at 0.11 element per transition of switch 1 (Fig. 3(a)) for the case when 
there was virtually no movement and the small amount of updating 
that was occurring was triggered primarily by noise. Where there was 
a significant amount of movement, the average lock-in was 0.30 ele
ment. * A similar lock-in time is required when the switch 1 moves from 
2 to 1 (return to stored signal). 

2.2 Moving area detection 

Accurate detection of changed areas within the picture is important 
for efficient coding. This is straightforward when working with a high
quality digital signaU3•6 However, as can be seen from Fig. 3, we are 
detecting the changed areas from a signal that has been intraframe 
coded and is therefore relatively noisy, partiCUlarly at edges where the 
coarse outer levels of the differential quantizer are used. This means 
that more sophisticated movement-detection techniques are required 
to obtain adequate detection. Reference 14 derives some correlation 
properties of the types of frame-difference signals generated in condi
tional replenishment encoding and Ref. 15 describes the implementa
tion of a previous design. The movement detection used in this study 
is similar in principle to that described in Ref. 15. The difference 
between the stored frame and the current frame is: (i) spatially and 
temporally filtered; (ii) applied to a varying threshold which is under 
control of a modified element-difference signal (this compensates for 
the larger errors introduced in high-detail areas by the differential 
quantizer) and (iii) "blocked-in," an operation which both produces 
a more contiguous moving area and rejects small isolated changes. 

* These figures were obtained with the coder control circuit locked in mode 1 for 
the first figure ("no movement") and mode 2 for the second figure ("movement"). 
See Section 2.4 for a description of the various operating modes. We suspect that the 
short lock-in times result partly from the fact that the second representative level is 
twice the value of the first (see Table IV). 
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Specific details of the movement-detector used for this study are given 
in appendix Section A.2. 

2.3 Reduction of resolution 

As the speed of a moving object increases, the resolution of the 
resulting image in the direction of movement decreases because of the 
light-integrating action of the camera target. For horizontal move
ment, this in turn reduces the amplitude of the element-to-element 
differences, and the entropy of the associated intraframe coded signal 
decreases. Figure 4 is a picture of the unquantized element-difference 
signal of a moving object against a stationary background at two 
different speeds. The reduction in contrast is quite obvious in the 
moving area as the speed goes from one-half element per frame to four 
elements per frame. 

Although it appears that the eye can detect smearing of the picture 
because of camera target integration, an observer is reasonably tolerant 
of this type of degradation and, in fact, we would like to take the 
process a little further. As we can see from Fig. 4 (see also Ref. 14), 
the effect of target integration is to reduce the bandwidth of the spatial 
signal in moving areas; this, in turn, reduces the first-order entropy of 
the coded signal. But relying solely on the first-order entropy reduction 
of the intraframe coded signal at full sampling rate does not take full 
advantage of the redundancy in the signal at high speeds, when the 
signal is essentially oversampled. * 

Smoothly reducing the sampling rate as the speed increases would be 
very effective but is impracticable. Switching to a submultiple of the 
sampling rate is quite practicable, but the difference in picture quality 
in going from the full sampling rate to half sampling rate is quite large, 
especially for differential quantization. Thus, the change in quality at 
the instant of switching is noticeable. 

A coding technique called receiver-model coding was developed 
partially for this applicationY It enables properties of the observer to 
be incorporated into the coding process. A particularly simple form of 
receiver-model coding (referred to as "level variable sampling" in 
Ref. 18) is 2: 1 horizontal conditional subsampling, in which every 
second point in the picture is differentially quantized in the normal 
manner. The alternate points (conditional points) are extrapolated 
from the previous point (zero-order hold) unless the error incurred by 
so doing exceeds a predetermined threshold (in which case, they are 

* The results of Bobilin show how rise-time and edge-busyness change as the ratio 
between sample rate and bits per sample (for DPCM) is altered (Ref. 16). 
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(a) 

(b) 

Fig. 4-Reduction in amplitude of element differences with increase in speed. (a) 
Head moving at a speed of 0.5 pefs. (b) Head moving at a speed of 4.0 pefs. Reduction 
is caused by integration of light falling on camera target for duration of one frame. 
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also differentially quantized in the normal manner). When the thresh
old is low, nearly all points are coded normally. As the threshold is 
increased, more and more conditional points are extrapolated until, if 
the threshold is high enough, the signal is effectively subsampled. To 
have a bit-rate advantage with horizontal conditional subsampling, 
we need to use a variable-length code since information is transmitted 
about all points, including the conditional points unless the signal is 
fully subsampled (see appendix Section A.3.1). 

The coder used in this study did not have a continuous threshold 
control, but could be switched to give one of five "operating states" 
starting with normal differential quantization and going to 4: 1 hori
zontal subsampling, which gave a picture quality that was scarcely 
adequate even in very fast moving areas. 

2.4 Control strategy 

There are two different ways in which the data-generation rate may 
be reduced. One is by reducing the accuracy and resolution with which 
the moving area is coded as described above. The other method is to 
reduce the size of the moving area by demanding that the difference 
(measured in some way) between the stored signal and the incoming 
signal in a given area be larger before that area is regarded as moving. 
Raising the criteria for movement detection is most effective for areas 
that are moving slowly. 

Two possible control strategies are; 

(i) Use a measure of the speed of the moving object in the picture to 
reduce the resolution and, therefore, the data generation rate in 
the moving areas, but not so much that picture quality will be 
significantly affected. Data may still be generated at a rate that 
exceeds the channel rate, especially when large areas are moving 
slowly. 

(ii) Use a measure of the buffer fullness to reduce the resolution and 
size of the moving area. * 

At the time of this study, a speed-measurement circuit was not 
available and so the buffer alone was used to control both the spatial 
resolution within' the moving area and the size of the moving area. t 

* These types of control are quite different in effect (Ref. 7). 
t Some relatively simple techniques for determining the approximate speed of the 

moving area are currently being evaluated by the first author and J. A. Murphy of 
Bell Laboratories. 
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Table II - Bit-rate control modes-summary of the bit-rate 
reduction techniques for each mode 

Level Variable Sampling 
l\foving Area Detector Single Po in t 

l\Iode 
(Section A.3.1) 

Threshold Select Threshold 

(Section (Section A.3.2) (Section 

A.3.4) Levels deleted 2: 1 4: 1 A.3.2) 

----

±1 ±1 and ±2 All All 1\ 1'2 1'3 1'4 1\ Lmv High 
------------------

I X X 
2 X X X 
3 X X X 
4 X X X 
5 X X X 
6 X X X 
7 X X X 

I 

8 Frame Repeat 

Feedback from the buffer progressively reduces spatial resolution 
and increases thresholds for moving area detection in a sequence of 
eight steps \vith the last step being the prevention of all updating. 

We have built a system based on the scheme of Fig. 3 using a simu
lated buffer with the buffer-control strategy described above. The 
equipment is described in detail in the appendix, and the feedback 
modes are summarized in Table II. The experiments carried out and 
the results obtained are described below. 

III. EXPERIMENTS AND RESULTS 

The functional blocks of the coder interact in a complex manner, 
making it difficult to evaluate the separate contribution of each block. 
Furthermore, transitions between modes can occur very rapidly so 
that in certain instances the coder may oscillate between adjacent 
modes at line rate. We first report the performance (picture quality 
and bit rate) of the operating states applied to the whole picture (with 
no movement detection or feedback control). Next, we describe the 
additional effect of movement detection still without feedback control. 
Finally, we describe the performance of the overall coder at different 
transmission rates. 

A head-and-shoulders view was used with the subject covering 
slightly less than half of the viewing area. Thus, with the size of the 
subject constant, varying the speed at which he or she moved across 
the screen varied the data rate. The subject was wearing relatively 
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low-detail clothing; when high-detail clothing is worn, the data rates 
are a little higher. 

3.1 Resolution reduction: effect of changing operating states 

Table IlIa shows the performance of the coder with the various 
operating states applied to the whole of a stationary picture. The bit 
rate represents the amplitude bits per picture element and, of course, 
does not include addressing, etc. There is a bit-rate reduction of 45 
percent in going from full sampling to 2: 1 sampling accompanied by a 
gradual decrease in picture quality. 

3.2 Effect of moving area detector 

To show the effect on bit rate of each mode (described in Table II), 
the speed of a subject was chosen so that when only mode 1 is used 
(feedback-control inhibited and manually selecting mode 1), the bit 
rate needed for transmission was approximately 2.0 megabits per 
second. While the subject conditions are kept constant, each remaining 
mode was manually activated and the resulting bit rate recorded 
(Table IIlb). Here the bit rate is a total system bit rate (appendix 
Section A.3.3). There is about a 10: 1 drop in average bit rate in going 
from mode 1 to mode 7. The reduction in bit rate in going from mode 2 
to mode 3 and from mode 5 to mode 6 is a result only of a reduction in 
the moving area (see Table II). These measurements are not an exact 
indication of the bit-rate reduction of each mode, since in actual 

Table Ilia - Bit rate and picture quality for each operating 
state with movement detection disconnected 

(coding applied to whole picture) 

Operating 
State 

1 

2 

3 

4 

5 

Bit Rate 
Level Deletion (bits/picture 

element) 

None 3.07 

Level ± 1 2.58 

Levels ± 1 and 2.36 
±2 

2: 1 subsampling 1.69 

4: 1 subsampling 0.89 

Picture Quality 

Very good. Limited only by the 
quantization process. 

Very good. There is a just-noticeable 
increase in noise in areas having 
fine detail and low contrast. 

Good. The increase in random noise 
is more noticeable than state 2, and 
some fine detail with low contrast 
is lost. 

Fair. Sharp edges become serrated 
and fine detail is blurred. 

Poor. 
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Table Ilib - Bit rate for each control mode 

Mode 1 2 3 4 5 6 7 

Bit rate 
(Mbits/s) 2.01 1.60 0.88 0.80 0.64 0.46 0.19 

operation the speed and size of the moving area would be different for 
each mode. 

3.3 Performance at different transmission rates 

3.3.1 Performance at 1.5 megabits per second 

Table lIIc gives the performance of the system operating at a trans
mission rate of 1.5 megabits per second. To enable detailed observation 
and measurement of the effect of each mode, the coder was locked to 
each mode. Then the picture quality and amplitude bits per trans
mitted element were recorded for the type of movement appropriate 
to that mode. The picture quality depends strongly on the size of the 
moving area; as noted, the moving subject filled approximately half 
the picture. With smaller moving areas, the higher modes are used less 
frequently and the picture quality is better; the situation reverses in 
larger moving areas. In the table, conversational movements are con
sidered movements of the face and gentle head movements. The X 
denotes that these modes cannot be activated only by side-to-side 
body motion. 

3.3.2 Performance at 2.0 megabits per second and 500 kilobits per second 

With the coder operating normally, the picture quality was observed 
at transmission rates of 2.0 megabits per second and 500 kilobits per 
second. 

At 2.0 megabits per second, very slow (1 pef) to moderate (3 pef) 
side-to-side movements cause mode 1 to be used continuously. This 
provides good picture quality and also good moving area detection. 
Only during very fast motion does mode 3 come into use, which 
reduces the accuracy of the moving area detection and subsampling 
on the inner pair of levels. lVIode 5 is used only for violent changes such 
as panning the camera or walking in front of the camera. The noticeable 
defect is a coarse structured effect in the moving areas produced by 
the 2: 1 subsampling and the reduced accuracy of the moving area 
detector. 
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1 3.3 

2 2.9 

3 -

4 2.2 

5 1.7 

6 -

7 -

-

Table Illc - Picture quality and bit rate for each control mode 
at 1.5 megabits per second 

Mode Activated by 
Buffer Level 

Speed of 
(fraction Picture Quality 

Type of of full 
Movement capacity) 

(pef) Movement 

<~ Normal con- <k Very good. Slight increase in edge noise at very slmv speeds be-
versational cause of movement detector. Picture quality is better than 

with normal DPCM because the quantizing noise is less visi-
ble when it is "frozen." 

1-1 Active con- I Good. A higher moving area detector threshold is chosen, and 2 8 
versational thus the area detected is reduced. The result is a slight increase 

in low detail noise. 

3 Active con- I Fair. A higher threshold and the elimination of temporal feed-:( 

versational back cause some low detail areas in motion to appear some-
with hand what contoured or "patchy." These effects are only margin-
and arm ally noticeable. 
movements 

5 Very active 3 Fair. The threshold is the same as above; however, the added s 
body, hand, noise caused by the level variable sampling causes movement 
and arm detection to become slightly worse. 
movements 

X Violent motion 1 Acceptable. The threshold remains the same, but the added 2" 
or standing noise of the sampling and the FOS inhibit (see section A.3.1) 
up in front reduce movement-detection accuracy. Also, at some speeds 
of camera ! (multiples of 2 pe£) the sampling produces a striped structure. 

X Motion such as 5 :Marginally acceptable. A higher threshold is chosen which pro-s 
walking in duces a noticeable dirty window effect. 
front of 
camera 

X Motion such 7 Poor. s 
as panning 
the camera 

-



With the transmission rate limited to 500 kilobits per second and 
the subject in very slow side-to-side motion (0.5 pef) or in normal con
versational movements (i.e., gentle lip and head movements), the 
system uses only the first four modes and the quality picture is still 
good. At a speed of 1 pef, modes 5 and 6 are used in which 2: 1 sub
sampling is employed and the movement-detector uses the higher 
thresholds. The result is a slightly more noisy picture with the move
ment detector producing either a "dirty window" or a patchy effect. 

At a speed of 2 pefs, mode 6 is mostly used. At this point the picture 
quality is probably unacceptable with the major degradations being: 
(i) the coarse structured effect caused by poor movement detection, 
(ii) the noisy edges caused by the 2: 1 subsampling, and (iii) the 
general increase in noise. 

At a speed of 3 pef, mode 7 is used more frequently and the picture 
becomes unacceptable, with the major degradations being poor moving 
area detection and a "column" effect produced at some speeds by thp, 
4: 1 subsampling. 

IV. DISCUSSION 

The above experiments are only a start in investigating the tech
niques of CR/IR coding. However, even at this stage we can see the 
encouraging performance for fast moving scenes. For example, at a 
transmission rate of 2 megabits per second, motion such as panning 
the camera only invokes mode 5; i.e., neither 4: 1 subsampling nor the 
highest levels of the movement detector are used. In a previously 
described CR/FF coder, motion such as panning the camera invoked 
frame repeating. 6 Further work is needed to examine related tech
niques that could significantly improve coder performance. One ex
ample is an evaluation of intraframe coding techniques that are more 
efficient and better suited to CR/IR operation. In addition, we should 
investigate the application of known frame-to-frame coding tech
niques; we discuss some of these below. 

4.1 Add-on techniques 

The vertical resolution can be reduced by transmitting only alternate 
lines in each field and filling in the missing lines by vertically averaging. 
In this study, the horizontal resolution was reduced by up to a factor 
of 4. This is inferior to spreading the resolution reduction more equally 
between the vertical and horizontal dimensions. A horizontal resolution 
reduction of 4: 1 is acceptable in very fast moving areas, but if the 
mode is invoked at lower speeds, for example, where the camera is 
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Fig. 5-Merli scan path in which elements are taken alternately from adjacent scan 
lines. Picture elements are processed in quads. 

being panned slowly, then serious degradation results. One method for 
smoothly reducing the resolution in both dimensions by a combined 
factor of 4 would be to apply receiver-model coding to the Merli 
scanning algorithmy,19 In this coding scheme two adjacent scan lines 
are coded simultaneously by following the notched path of Fig. 5. 
The elements are processed in quads with the number 1 elements 
always coded with full precision. An attempt is made to represent the 
number 2, 3, and 4 elements as linear interpolations based only on the 
number 1 elements. The interpolation error is calculated and filtered 
to approximate the liminal vision of the human observer. If the filtered 
error signal at a particular point exceeds the allowed threshold for a 
given quality, then the point is updated. 

As the threshold is raised, fewer conditional elements (numbers 2, 
3, and 4) are transmitted. If the threshold is raised far enough, a 4: 1 
subsampled picture is obtained with a reduction of 2: 1 in both the 
vertical and horizontal directions. Horizontal subsampling reduces the 
number of amplitude bits that have to be transmitted without affecting 
the number of address bits or line synchronizing bits. * By using the 
Merli algorithm, on the other hand, the line address and synchronizing 
bits would be almost halved since a line now contains twice as many 
elements as it previously did. 

Conditional-vertical subsampling is a technique that is applied from 
field to field. Alternate fields are obtained by a four-way average of 

* Actually, one bit could be dropped from the address word when 2: 1 subsampling 
is used. 
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FIELD k+3 

Fig. 6-Four-way averaging in which alternate fields are not transmitted. At the 
receiver, the mi&sing fields (even-numbered fields) are replaced by a four-way average 
of elements in the adjacent fields. 

samples in the immediately preceding and succeeding fields as shown 
in Fig. 6. Should the average fail badly for a particular element, then 
an additional correction signal may be transmitted, depending on the 
quality that is required. This four-way field averaging reduces both 
spatial and temporal resolution by a small amount. 20 

lVlore severe temporal averaging can be employed by using what 
may be called conditional frame-to-frame subsampling. Such tech
niques are most useful where large areas are moving slowly, the par
ticular condition which is handled poorly by the CR/IR coder and 
quite easily by the CR/FF encoder. However, if there is a significant 
reduction in temporal resolution, it is important that it be under the 
control of a speed-indicator circuit so that it can be switched out when 
the speed starts to increase. 

4.2 System implications 

In a practical visual communication system, transmission links will 
vary greatly in length. As a consequence, on short links a simple 
inexpensive coder would be appropriate, whereas on longer links more 
expensive frame-to-frame encoding might be suitable. Now in a com
plex switched system, we may well want to pass through a number of 
digital links in tandem, some being short and others long. Thus, it is 
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important to have a family of coders that are compatible in the sense 
that they can operate in tandem without unduly degrading the system. 
We could envisage at least four stages of coding: (i) a simple differential 
quantizer stage; (ii) a more efficient intraframe encoder using a vari
able-length code on the output of 1; (iii) an interframe coding stage 
and (iv) a channel-sharing stage where a number of users share a high 
capacity channel, trading on the fact that there is a low probability 
of all users being active simultaneously (as in TASI). 21,22 The condi
tional intraframe coder is well suited for this type of multistage tandem 
operation. As we have seen, the frame-to-frame coding stage does not 
add quantizing noise to the signal except in elements adjacent to the 
points of switching between stationary and moving areas or when 
feedback from the buffer decreases the accuracy of the intraframe coder 
in the storage loop. If the signal is converted back to the intraframe 
form and frame-to-frame encoded for a second time, then the second 
frame-to-frame encoding will give a signal that is identical to the first 
frame-to-frame encoding if one prerequisite is met: the position of the 
switching points between moving and stationary areas are indicated 
in the intraframe signal. This would increase the intraframe data rate 
by approximately 2 percent. 

If an improvement is made in the performance of the intraframe 
encoding stage, this improvement will carry right through to the frame
to-frame channel-sharing stages. * 

The fact that an intraframe coder is connected to a CR/IR coder will 
tend to affect the type of algorithms that we employ in the intraframe 
stage. For example, techniques that complicate the encoder design but 
require a simple decoder will be preferred because there are more 
decoders in the system than there are encoders (see Fig. 3). Notice that 
the conditional horizontal subsampling studied here requires no modifi
cation of the decoder design. 

4.2.1 Feedback control 

The different coding stages of the overall coding hierarchy would 
normally be at different switching offices. This almost certainly rules 
out any feedback from onc stage to a previous stage of coding, since to 
incorporate feedback would considerably increase the overall com
plexity. For this reason, the feedback control to achieve level-deletion 
was kept within the frame-to-frame coder (Coder 2 of Fig. 3) rather 

* Of course, changes in the intraframe encoder may well necessitate changes in the 
encode and decode blocks of the frame-to-frame coder. 
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than operating on the primary encoder. There are two consequences of 
this restriction for the simple type of receiver-model coding employed 
here. First, the effective threshold used to delete components must 
jump from decision-level to decision-level rather than increase smoothly 
because by precoding the signal in the primary encoder the element-to
element changes are restricted to the small set of values allowed by the 
differential quantizer. Second, there is a small increase in coding noise 
since the two tandem intraframe encodings are different when level
deletion is used in coder 2. In practice, however, the smoothness of 
control is quite adequate. * The increase in coding noise when compared 
with feedback to the primary encoding stage is just noticeable in a 
stationary picture but is virtually impossible to detect in the operation 
of the overall system. 

Recoding noise resulting from feedback control could become a 
problem with, for example, higher quality systems. However, there are 
intraframe coders that would virtually eliminate the problem. These 
coders transmit two or more separate signals which represent different 
components of the signal so that when one component is deleted the 
coding of the other component is unaffected. In one system of this 
type,23,24 every second sample is transmitted as PCM or DPClVI and 
the alternate samples are transmitted as a correction signal between 
an estimate based on the first set of signals and the actual input. Thus, 
the correction signal may be deleted without interfering with the 
coding of the main signal. Another example of such an encoding is the 
Hadamard transformation applied to a small block of picture ele
ments ;25 higher-order components can be deleted without interfering 
with the decoding of the lower-order components. 

4.2.2 Error performance 

In achieving the improved performance of CR.jFF coding over 
CR/PCM coding, certain system advantages were lost. These ad
vantages are partially regained with CR/IR coding. Consider, first, 
the effect of transmission errors on picture quality. 

Since a separate interframe decoder has not been constructed, 
experiments on the behavior of the CR/IR coder-decoder in the 
presence of channel errors have not been possible. However, some 
intuitive predictions can be made by considering the effect of different 
types of errors. 

* We only used two intermediate steps (level ±1 delete, level ±1 and ±2 delete) 
out of a possible six. 
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If an amplitude word (as distinct from an address word) is in error, 
a noise streak will be introduced into the picture which will probably 
extend to the end of a line unless predictor leak is used. When there is 
a lot of movement there is a high probability that the error will be 
eliminated in the next frame since, by the usual nature of movement, 
the segment in error will likely be updated in the next frame and the 
updated segment builds only on information in the corresponding line 
of the stored frame to the left of the segment. With no movement or 
slow movement, there is much less chance that a segment in error will 
be "written over" in the next frame and the line in error would persist 
in the picture. 

The signal can be made significantly more robust by transmitting a 
six- or seven-bit normal digital signal value at the start of a segment 
along with the addressing. In this way, updated segments would not 
build on the past values in any way. Based on an average of three 
segments per line, the additional amplitudes would require 0.145 
megabit per second. The transmission of the additional values would 
terminate the eff'ect of transmission errors already introduced and, by 
comparing the amplitude with the decoded value, errors could be 
detected. Once detected, substitution techniques could replace the 
line in error with a best estimate. This estimate would then last until 
the area was again updated. If, instead, the moving area addressing 
information is in error, then a large unpredictable section of a line will 
be in error. The effect of an error in the element address will be similar 
to an amplitude error, but on the average should affect a larger section 
of line. 

In a practical system, we would want to send the line address word 
very securely and the start-of-frame word even more securely. The 
latter poses no problem since, as it occurs so rarely, it requires a 
negligible increase in bit rate to assign a large number of bits to the 
word. 

It is interesting to consider what would happen if both frame and 
line synchronization were completely lost. Assume the receiver was 
aware of the loss and that it reset the frame memory to zero. Then, as 
soon as the person moved at the transmitting end the area in movement 
would be relayed faithfully to the receiver and the background would 
be inserted in the newly revealed area. 

Although no experiments have yet been performed to determine 
channel error response, it appears that by transmitting an amplitude 
word before the start of each moving-area segment and using error 
detection and substitution techniques, the conditional intraframe en-
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coder could be made to give acceptable performance at error rates as 
high as 10 or 20 per frame (an error rate of 2 to 4 X 10-4). Forced 
updating would probably not be necessary. 

4.2.3 Data interleaving 

Data interleaving is a scheme for using the frame memory to achieve 
a degree of smoothing of the coded data, thus considerably reducing 
the size of the buffer store required or eliminating it altogether. 26 It 
has been shown that, unless a very large buffer is used, the main 
smoothing effect is already achieved with a buffer large enough to 
smooth the irregular data over a field. 7 A 4: 1 interleaving of data is 
achieved, for example, by transmitting lines in the order 1, 65, 33, 97; 
2, 66, 34, 98; 3, 67 .... Now if the signal stored in the frame memory 
can easily be converted to the coded transmission signal, then taps can 
be placed on the frame memory and the data can be transmitted in an 
interleaved manner. Two examples of coders in which the signal is 
stored in the frame memory in a form similar to the transmitted signal 
is the CR/PCM coder and the CRjIR coder. Note, however, that the 
frame memory stores the whole picture and we need to know which 
components are to be transmitted. This information would have to be 
included in the stored signal and would probably result in a 5-percent 
increase in the size of the frame memory. If a four-bit word were used 
to represent the differential signal, one combination could be reserved 
to denote a change, either from a nonupdated to an updated segment 
or in the reverse direction. 

Data interleaving is shown applied to the CR/IR coder and decoder 
in Fig. 7. Code words are inserted at the coder to denote changes be
tween updated and nonupdated segments before the signal is stored in 
the frame memory; these words are disregarded by the local decoder. 
Switch A selects lines according to the required sequence and the 
moving area selector interprets the marker words and selects those 
segments for transmission that have been newly updated. The main 
decoder loop [Fig. 7(b)] operates on the data just as it is received; 
that is, the signal in the frame memory is stored in interleaved form. 
The signal is de-interleaved and decoded in order to obtain an output. 

Notice that such a scheme would not work if the intraframe algo
rithm operated on more than one line at a time since the decoder is not 
processing consecutive lines. Such a restriction would not apply to the 
vertical processing of the Merli algorithm where a line, in essence, is 
twice as long as a normal line. 
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Fig. 7-Data interleaving applied to the CRjIR coder. Data interleaving reduces 
buffer size by shifting much of the smoothing operation from buffer to frame memory. 
Note that data in the decoder frame memory are in interleaved form. 

4.2.4 Channel sharing 

Haskell has simulated a channel-sharing and buffering scheme in 
which a number of encoder outputs are combined and transmitted over 
one high data-rate channel with one large buffer.22 He shows that in 
this way the channel requirements are more than halved when 20 
encoder outputs are combined. In an actual system, in the unlikely 
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event that a large number of users were simultaneously active, there 
would be feedback from the channel-sharing circuit to the encoders 
to reduce the data-generation rate by reducing picture quality in some 
manner. Although this would occur very rarely, the situation must be 
accommodated since we cannot arbitrarily discard data without 
seriously affecting picture quality: to ensure that the situation never 
occurs could require a significant increase in channel rate. * 

Ideally, we would like to insert channel-sharing at multiple points in 
the transmission path, and these points may be quite remote from the 
encoder.22 In this situation, feedback from the channel-sharing stage 
to the frame-to-frame coder would considerably complicate the overall 
system design. However, the CR/IR coder would enable data to be 
discarded with little effect on picture quality, since each new segment 
does not build on the past coded signal (assuming that a starting 
amplitude is transmitted with each segment as discussed in Section 
4.2.2). 

Thus, if overload of the channel-sharing stage were imminent, the 
whole line could be deleted except for the line addressing word (required 
for receiver synchronization) and a further special code word that 
would be inserted to inform the receiver that the line had been deleted. 
The receiver would then make a best estimate of the missing line based 
on the signal that it already has and the current control mode of the 
receiver (see, for example, Ref. 27). The line would be corrected by 
normal updating of the moving area. One would like to use a channel
sharing strategy that fairly evenly distributes deleted lines among the 
updated lines of all users and thus minimizes the possibility of deleting 
consecutive lines from one source. 

4.3 Comments on conditional element-difference vs. conditional 
frame-difference coding 

As mentioned in the introduction, transmission of element differ
ences and transmission of frame differences are complementary in many 
ways. When transmitting frame differences, it is easier to control 
smoothly the temporal resolution since we are working directly with 
frame differences. We can still achieve a similar result when trans-

* The results of Haskell indicate that the variation in channel-rate requirements is 
only about 10 percent for 20 sources. However, there are a number of reasons why 
the variation could increase significantly in an actual system: (i) Channel-sharing 
schemes which minimize the buffering requirements would increase the variation. 
(ii) The interframe coders feeding the channel-sharing unit may be of different types. 
(iii) The channel-sharing unit may be designed for fewer sources or may have priority 
channels with different types of signal (e.g., data). 
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mitting element-difference signals: essentially the same signals as for 
frame-difference transmission are available to the transmitter on which 
to base a decision as to how elements should be coded. Similarly, it is 
easier to smoothly control spatial resolution when transmitting element 
differences, although we can achieve similar ends with frame-difference 
transmission (e.g., the horizontal subsampling used by Candy et al.).6 
Probably of most importance is the effect on the overall system of using 
one type of signal or another. 

One tempting technique would be transmission of a frame difference 
in stationary or slowly moving areas and an element difference in fast 
moving areas or transmission of an element-difference-of-a-frame
difference.9 Either method would tend to increase complexity as
sociated with system considerations such as recoding, error mitigation, 
and channel sharing. It is also interesting that Wendt's results suggest 
to him that transmission of an intraframe coded signal is preferable 
to either transmission of a frame-to-frame coded signal or transmission 
of both signal types. 

V. SUMMARY 

We have described techniques for frame-to-frame coding in which 
the moving areas are transmitted as an intra frame coded signal (rather 
than as a PCM or frame-to-frame difference signal). This approach 
permits the intraframe encoding to efficiently adapt to the spatial 
resolution requirements of the moving area as the speed of an object 
changes. A coder has been constructed which uses a differential quan
tizer (DPCM coder) as the intraframe coder, and a strategy was 
developed for merging the new differentially quantized signal from the 
moving area with the old differentially quantized and stored signal 
from the stationary area with only transient error. 

Because of inherent noise in the input signal and the error introduced 
in the initial coding, adequate detection of moving areas requires 
relatively complex processing involving a nonlinear, time-varying filter 
with an impulse response that extends temporally and spatially. The 
bit rate is kept within the capacity of the channel by feedback from 
the buffer to both the intraframe coder and the movement detection 
logic. As the buffer fills, the feedback reduces the accuracy of the 
intraframe encoding (and hence the bit rate) in four steps by a method 
referred to in an earlier paper as "level-variable sampling."ls The 
feedback to the movement detector involves changing not only the 
level of significant frame-to-frame difference but also the parameters of 
the spatio-temporal filter contained in the movement detector. 

1160 THE BELL SYSTEM TECHNICAL JOURNAL. JULY-AUGUST 1974 



The experimental study used a head-and-shoulders view occupying 
slightly less than half the field of view and a visible raster size of 255 
lines by 220 elements. For a bit rate of 1.5 megabits per second, the 
picture quality sank below "fair" only for motion covering the entire 
field such as occurs when the subject stands up in front of the camera. 

Transmission of an intraframe coded signal in the moving area leads 
to a number of advantages from the overall systems point of view when 
compared with the transmission of frame differences. By starting each 
transmitted segment within a line with a PCM value, updating be
comes independent of previously transmitted data. Thus, errors will 
not propagate from frame to frame within the moving area. This also 
has implications for sharing a high-rate channel with a number of 
users where it would occasionally be necessary to delete segments of 
data. The signal is stored in the frame memory at the coder and decoder 
in intraframe coded form. This means that the frame memory need be 
only approximately half of that required to store the PCM signal. 
Further, since the stored signal can be simply converted to the fOfln 
of the transmitted signal, we can use the data-interleaving technique 
to significantly reduce buffer requirements. 
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APPENDIX 

Description of Conditional Replenishment Intraframe (CRIIR) Coder 

The picture format used in this study is similar to that used in the 
Picturephone® visual telephone system. There are 271 lines per frame, 
of which 255 are visible; 248 elements per line, of which 223 are visible; 
and 30 frames per second with 2: 1 interlace. 

The coding system that has been simulated consists of two parts, 
the primary intraframe encoding stage which is an element-differential 
quantizer and the secondary encoding stage which uses interframe 
techniques (Fig. 8). The output signal from the primary encoding stage 
is in normal differentially quantized form rather than coded differential 
form, thus avoiding the need for an additional decoder before the 
secondary encoder. 
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Fig. 8-Configuration of experimental CR/IR coder system. 

A.1 Primary intraframe coder 

The encoder used in this loop is an II-level element-differential 
quantizer whose input, for our purposes, is a normal eight-bit digital 
(PCM) signal from an AID converter, but in other respects is similar 
to that described in Ref. 12. In an actual system, the input would be 
analog rather than digital, but for experimental purposes it is more 
convenient to work with the digital signal. As shown in Fig. 9, it 
contains a decoder section whose output is the normal differentially 
quantized signal. 

In the experiments to be described here, the accumulator loop has 
no "leak." However, the integrator is reset to a fixed value at the 
beginning of each line. The quantizer decision and representative levels 
are given in Table IV. 

A.2 Movement detection 

Since the outputs of decoder 1 and decoder 2b (Fig. 3) are separated 
in time by exactly one frame, they are used to form a frame-difference 
signal. * Frame differences caused by noise (negatively correlated in 
the moving area)14 can be separated from those caused by motion 

NORMAL 8-BIT 
DIGITAL SIGNAL 

NORMAL I 
DIFFERENTIALLY 

ELEMENT 
DIFFERENCE 
SUBTRACTOR 

----------, 

I 

QUANTIZED I 
SIGNAL L DECODER I __________ ----1 

CODED 
DIFFERENTIAL 

SIGNAL 

Fig. 9-Differential quantizer (DPCM coder) used as primary intraframe coder. 

* For convenience, the term "frame difference signal" will be used, although it is 
actually the difference between a stored frame and a new frame, both of which have 
been differentially quantized. 
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Table IV - Quantizer level settings used by differential quantizer 

Level No. Decision Level Representative Weight 
(out of 256) (out of 256) 

0 0 
2 

± 1 inner levels 4 
6 

±2 8 
12 

±3 16 
22 

±4 28 
36 

± 5 outer levels 44 

(mostly positively correlated) by employing various spatial and 
temporal filtering operations. In addition, certain compensations are 
made for the nonlinear nature of the coding noise. 

A block diagram of the moving area detector used in this experiment 
is shown in Fig. 10. The frame-difference signal is first fed to a spatial 
filter which provides a simple average over four adjacent elements 
along a line (4 X 1 filter). Temporal, single-pole filtering is then pro
vided by placing the spatial filter in a feedback loop with a field delay. 
Since noise in the frame-difference signal is negatively correlated only 
in the updated area,14 we would like to use temporal low-pass filtering 
only when updating occurs. This is achieved by closing the feedback 
loop (via switch 1) only when movement is detected. Since it would be 
expensive to delay a six-bit signal for the duration of one field, a 
different method was used. A three-bit dither signal was added (adder 
1) to the output of the 4 X 1 spatial filter and the resulting sign-bit 
was used as a one-bit representation of the signal. * The field-delayed 
signals from the line above and below the current line are added and 
then assigned a "value" or "weight" before being added (adder 3) 
back into the frame-difference signal. The loop-gain, or the amount of 
temporal filtering, is controlled by means of the weighter. The spatio
temporal impulse response of this filter is rather unusual, spreading 
vertically as well as temporally and horizontally because a field delay, 
rather than a frame delay, is used (see Fig. 11). 

The output of the spatio-temporal filter is then converted from 2's 
complement to sign-magnitude form (Fig. 10). A modified version of 

* Other more complex one-bit representations could have been used; one-bit 
companded delta modulation, fom-hit PCM samples at one-fourth of the sample rate. 
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Fig. lO-Diagram of the moving area detector. The detector first filters the frame
difference signal spatially and temporally and then applies compensation for intra-
frame coding noise. The filtered signal is tested against one of several thresholds, and 
the resulting binary signal is blocked in using the N 1M circuit. The output is used 
to select moving areas of the picture for transmission. 

the coded-differential signal is added (adder 4) to the output of the 
sign-magnitude converter.I5 The purpose of this signal is to compensate 
for areas of the picture where more coding noise is likely to appear, 
namely at sharp edges where the outer decision levels of the quantizer 
are used. 

N ext, the output of adder 4 is fed to a circuit consisting of several 
thresholds. One of these thresholds is then chosen (depending on the 
bit-rate control strategy being used) as the input to an N 1M circuit. 13 

The function of the N 1M circuit is to block in the moving area; that 
is, adjacent but noncontiguous points along a line are joined together 
to form one longer segment. In this way, the overall data rate is 
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Fig. lla-Impulse response of the spatio-temporal filter used in the moving area 
detector. The impulse response is a function of three dimensions, and the figure shows 
the response only in the vertical and temporal directions. The upper figures represent 
the area under the horizontal impulse response for each affected line in five fields. 
The lower (bracketed) figures represent the maximum value of each horizontal 
impulse response. 
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Fig. llb-Horizontal impulse response of the spatio-temporal filter shown in Fig. 
lla. The waveshape is given for line 0 and line 1 for each field of Fig. lla. 
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reduced since each segment, however short, is allocated a 12-bit start
stop code, whereas the number of bits required to specify the amplitude 
of an element may be only 1 or 2. 

By using the above-mentioned filtering techniques, large moving 
areas are easily detected; however, small isolated moving objects cause 
frame differences that, because of their short duration, are filtered out. 
Small moving objects of high contrast are detected by thresholding the 
unfiltered frame-difference signal with a large threshold value. The 
threshold signal is combined logically with the main signal path in the 
N 1M circuit. The output of the N 1M circuit is the final output of the 
moving area detector and controls the selection and transmission of 
new data (switches 1 and 2, Fig. 3). 

A.3 Bit-rate control 

The data-generation rate is matched to the transmission-bit rate by 
monitoring the level of fill of the transmission buffer and then applying 
controls to reduce the data-generation rate accordingly, These controls 
are applied to two parts of the system: the secondary element-differ
ential encoder and the movement detector shown in Fig. 12. 

A.3.1 Coder control 

To reduce data in the encoder, a technique referred to as level
variable sampling is usedy,18 The filtered energy in the error signal is 
important to the visibility of the quantizing error. Thus, close spacing 
of the inner levels insures that, where the input signal is fairly constant 

i BUFFER SIMULATOR i THRESHOLD 
CIRCUITRY 

T, T2T3T4T5T6T7Ts 

TO LEVEL INHIBIT CIRCUIT (SEE FIG.131 !!!!!!!! ALSO TO FRAME DIFFERENCE INHIBIT 
(GATE A IN FIG.l01 

TO THRESHOLD SELECT 
(POINT A IN FIG.lO I LOGIC 

FOR 
CODER CONTROL 

TO SINGLE POINTS THRESHOLD SELECT AND 
(POINT B IN FIG.l01 MOVEMENT DETECTION 

CONTROL 

TO DITHER INHIBIT 
(GATE B IN FIG.l01 

Fig. 12-Bit-rate control system. The system selects one or a combination of 
several bit-rate reduction techniques, depending on the level of the buffer simulator. 
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Fig. 13-Level-variable sampling. One or more of the coded differential level pairs 
is inhibited on every alternate element or, as an extreme measure, the signals are 
inhibited on three out of every four elements. 

(low-detail area), the output signal will approximate the input very 
closely. However, such precision is not needed on every picture ele
ment. Consequently, the inner levels can be used less frequently than 
the outer levels. 17 

Figure 13 shows how level-variable sampling is performed. If, for 
example, we subsample just the inner pair of levels, Ll is inhibited on 
every alternate element along the line. The effect of inhibiting a level 
is to change the quantizer scale, for that element, from an II-level to a 
9-level quantizer, as shown in Fig. 14. Two steps are taken to minimize 
the visibility of the resulting distortion: the subsampling pattern is 
synchronized to the horizontal rate; the pattern is staggered (by one 
element for 2: 1 and two elements for 4: 1 subsampling) so that sub
sampled elements are offset relative to the subsampled elements of the 
lines above and below (which are in the other field). 

Control of the amount of data-rate reduction is achieved by switch
ing between five different coder states. They are: (i) full sampling; (ii) 
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Fig. 14-Change in quantizer scale because of level variable sampling. Inhibiting 
the inner pair of coded differential levels (±1) changes the quantizer characteristics 
to that shown by the short dashed line. Inhibiting the two inner pairs of levels changes 
the characteristics to that shown by the long dashed line. On the elements in which 
no level inhibition takes place, the quantizer scale returns to normal (solid line). 

subsampling on only the inner pair of levels (levels ± 1); (iii) sub
sampling on the inner two pairs of levels (± 1 and ±2); (iv) sub
sampling on all levels at a 2: 1 rate; (v) subsampling on all levels at a 
4: 1 rate (1 element in 4 is sampled). A description of the variable 
word-length coding and the efficiencies achieved is given in Section 
A.3.3. 

Subsampling introduces additional noise into the coding operation, 
particularly on the elements that are not sampled. This makes detection 
of the moving area more difficult especially since the signal from the 
primary coder is not subsampled. This problem is partially alleviated 
by setting the frame difference signal to zero on the unsampled ele
ments by means of gate A in Fig. 10. 
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A.3.2 Movement detector control 

As shown in Fig. 10, the movement-detector circuit generates a 
filtered frame-difference signal. Moving areas are detected by testing 
to see if the amplitude of this signal is above a certain threshold. By 
raising that threshold, less area will be detected as moving and less 
data will have to be transmitted. This is done, however, at the expense 
of reducing the quality of the picture in moving areas. Five different 
thresholds are used, as shown in Table II, so that the data rate can be 
reduced gradually. 

Two other methods are used to reduce the amount of area detected 
by the movement detector: first, the feedback from the temporal filter 
is inhibited by gate B and switch 1 in Fig. 10, and second, the number 
of single points in the moving area is reduced. 

The combined effect of the movement-detector controls is to grad
ually reduce the data rate and also to adapt the movement detector as 
the speed of movement increases so as to maximize its efficiency. 
Normally, when the subject is moving slowly, the amount of data 
being generated is small and the first mode of the movement-detector 
is used [i.e. (i) temporal filtering and (ii) low single-point threshold]. 
As the speed increases, the higher modes are used; the feedback from 
the temporal filter is inhibited, the filtered threshold is raised, and the 
single-point threshold is raised. Notice that the frame-difference signal 
resulting from faster movement is also larger. 

A.3.3 Buffer simulator 

A buffer simulator circuit was built to simulate operation at many 
different data rates. It is assumed that a variable-length code is used 
to transmit the coded differential signal. The lengths assigned to each 
classifier output are given in Table Va. Notice that the code changes 
depending on the particular coding mode that is being used. For 
example, for the mode where levels ± 1 are deleted on alternate samples, 
the fully coded samples use code D with a maximum code-word length 
of 4 bits, whereas the alternate samples use code B with a maximum 
code-word length of 5. 

Because the quantizer level usage changes from picture to picture, 
the codes of Tables Va and Vb will not always be optimum. In order to 
determine what could be gained by paying more attention to the code 
assignment (e.g., an adaptive strategy), we have calculated the effi
ciency of these codes for two different head-and-shoulders scenes. The 
entropy, bit rate, and efficiency for codes A, B, and C in one case and 
code D in another are given in Table VI. The results are given for four 
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Table Va - Four variable-word-Iength codes used 
in the CR/IR code 

Code Word Length 
Level 

Code A Code B Code C Code D 

0 1 1 1 3 
±1 3 - - 3 
±2 4 3 - 3 
±3 5 4 3 4 
±4 6 5 4 4 
±5 6 5 4 4 

Table Vb - The particular code used by each 
bit-rate control mode 

Modes 2,3 Mode 4 
Levels ± 1, ± 2 Levels ± 1 Delete Delete 

Model Modes 5,6,7 
Full Sampling 

Con-
2: 1 and 4: 1 

Uncon- Uncon- Con-
ditional ditional ditional ditional 
Samples Samples Samples Samples 

Code A Code D Code B CodeD Code C Code D 

modes corresponding to (see Table II): (i) full sampling; (ii) deletion 
of levels ± 1 ; (iii) deletion of levels ± 1 and ± 2; and (iv) 2: 1 sub
sampling. The asterisk denotes the codes that are actually used in the 
implementation. Picture X has somewhat more detail than picture Y. 
It would have been slightly more efficient to use code D for mode 1 
rather than code A for these particular pictures. 

The entropies are rather high for an 11-level differential quantizer. 
The reason for this in mode 1 is that the moving area detector will 
update moving edges and highly detailed areas more frequently than 
low-detail areas, resulting in higher usage of the outer levels which, 
in turn, increases the first-order entropy. For the other modes, the 
tendency for the entropy of the unconditional picture elements to 
increase because of the deletion of levels on the alternate elements is 
almost balanced by the reduction in the amplitude of the element-to
clement difference caused by camera integration. 

In all cases except one, the efficiency of the variable-length code is 
greater than 90 percent. For the conditional elements in mode 4, the 
distribution is very peaked and the entropy is less than 1 bit per 
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Table VI - Entropy, bit rate, and efficiency for pictures X and Y 

CodeA,B,C Efficiency Efficiency Mode Scene Entropy (as appli- CodeD 
cable) (%) (%) 

X 2.946 3.246* 90.8 3.057 96.4 
1 

Y 3.146 3.433* 91.6 3.297 95.4 

X 3.072 3.517 87.3 3.277* 93.7 
Unconditional 

y 3.344 3.847 86.9 3.396* 98.5 
2 

X 2.080 2.147* 96.9 3.067 67.8 
Conditional 

y 2.551 2.727* 93.5 3.210 79.5 
--

X 2.987 3.105 96.2 3.004* 96.2 
Unconditional 

y 2.972 3.304 90.0 3.253* 91.4 
4 

X 0.822 1.301 * 63.2 2.854 28.8 
Conditional 

y 0.866 1.286* 67.3 3.000 28.9 

X 3.146 3.752 83.8 3.383* 93.0 
5 

Y 3.157 3.449 91.5 3.309* 95.4 

* Code used in implementation. 

element. To improve efficiency, it would be necessary to code elements 
in groups rather than singly. However, in this case the overall gain 
would be small. 

The heart of the buffer simulator is an accumulator loop. For each 
transmitted sample the accumulator is incremented by an amount 
equal to the length of the corresponding code word. In addition, a count 
of 12 is added every time a new segment is transmitted to the receiver; 
this could be eight bits for a start-of-run address and four bits for an 
end-of-run code word. A count of 12 is also added to the accumulator 
at the start of each line to permit the decoder to synchronize at the 
start of line. No allocation is made for a start-of-frame code word (if 
a 50-bit code word were used, we would have to say that we are 
operating at 1.503 megabits per second rather than 1.500 megabits per 
second). The accumulator is decremented at a constant rate depending 
on the particular transmission rate that is being simulated. Thus, the 
output of the buffer simulator shows how full a buffer would be if it 
were actually used to transmit data to the receiver. 

A circuit similar to this is used to monitor the data-generation rate. 
The accumulator is incremented with the same signal as the buffer 
simulator, but at the end of each line the contents are strobed into a 
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commercial counter which enables us to integrate the data-rate count 
over any desired period. 

A.3.4 Bit-rate control system 

The bit-rate control system (Fig. 12) monitors the buffer simulator. 
The output range of the buffer is divided into eight regions, and a 
control mode is selected depending upon which region the buffer is in. 
Each mode uses a combination of the two previously described bit
rate reduction techniques (i.e., coder control and movement-detector 
control). The function of each mode is given in Table II. 

In the lower modes, little or no level-dependent sampling occurs and 
the movement detector uses a low threshold. The movement detector 
completely covers the moving areas, but may also respond to a small 
amount of residual noise so that some stationary areas of the picture 
may also be detected. The result is that for limited subject activity a 
relatively large amount of data is generated and, correspondingly, the 
quality is little different from the primary encoder output. 

As the buffer level increases, the intermediate modes (modes 2 to 4) 
are used. In these modes, level-variable sampling is used on the inner 
one or two pairs of levels; the moving-area detector operates on a 
higher threshold. As the buffer level increases further, the high modes 
(modes 5 to 7) are used. Subsampling is used on all classifier levels: at 
first in a 2: 1 ratio and then finally (in mode 7) in a 4: 1 ratio. The 
moving area detector coverage is reduced in two ways: first, the single 
point threshold is raised so that fewer single points are detected; 
second, in each consecutive mode the moving area detector threshold 
is raised. Normally, when the high modes are used it is because the 
subject is moving fast. Under these conditions the effects of these bit
rate reduction modes is somewhat masked because of the nature of 
human vision. Furthermore, since large frame-difference signals are 
generated, the moving area can still be accurately defined even though 
high moving-area-detector thresholds are used. 

If the buffer level continues to rise, transmission of data is stopped. 
In this case, the receiver repeats the information from the previous 
frame (stored in its frame memory) until such time as the transmitter 
buffer level reduces sufficiently to allow new data to be transmitted. 
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Stripline Downconverter With Subharmonic Pump 

I. INTRODUCTION 

By M. V. SCHNEIDER and W. W. SNELL, JR. 

(Manuscri pt rece ived Apri I 19, 1974) 

The process of frequency conversion and its applications are well 
known and have been extensively treated in the literature.1- 3 The 
conversion is usually performed by pumping a nonlinear resistive or 
reactive element embedded in a linear network and by extracting the 
sum or difference frequencies that are generated by the signal and the 
pump frequency. The purpose of this Brief is to describe a novel 
thin-film converter* which has the following properties: 

(i) The pump frequency required for efficient upconversion or 
downconversion is a submultiple of that needed in conventional 
frequency converters. 

(ii) The circuit does not require a dc return path. 
(iii) The separation of the signal and the pump frequency is readily 

obtained and the loss in the signal path is small. 

The new converter consists of two stripline filters and two Schottky 
barrier diodes, which are shunt mounted with opposite polarities in 
a strip transmission line. The conversion loss measured at a signal 
frequency of 3.5 GHz is 3.2 dB for a pump frequency of 1.7 GHz and 
4.9 dB for a pump frequency of 0.85 GHz. The circuit looks attractive 
for use at millimeter-wave frequencies where stable pump sources with 
low FM noise are not readily available. 

* After the manuscript for this Brief was completed, it was learned that M. Cohn, 
J. E. Degenford, and B. A. Newman at Westinghouse Electric Corp., Baltimore, 
Md., have begun independent work along similar lines. 
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Fig. I-Microstrip conductor pattern on quartz substrate in a metal channel. 
The diode pair is shunt mounted with opposite polarities to the ground on opposite 
sides of the strip transmission line. 

II. DESCRIPTION OF STRIPLINE CIRCUIT 

A top view of the stripline conductor pattern used in the down
converter is shown in Fig. 1 and a cross-sectional view is shown in 
Fig. 2. A strip transmission line is used because the conversion from 
the hybrid TEM mode to the first-order waveguide mode (longi
tudinal section magnetic mode) is substantially reduced compared to 
the conversion obtained with other transmission line circuits such as 
microstrip lines.4 This approach eliminates noise contributions from 
undesired bands near the harmonics of the pump frequency. 

The conductor pattern consists of a 50-ohm line section at the 
signal input, a half-wavelength resonator for the bandpass filter, a 
five-element low-pass filter, and a 50-ohm line section for the pump 
input and the IF output. Two Schottky-barrier diodes with opposite 
polarities are connected to the section between the filters at opposite 

L ----- a=325cm----- J 
--- - - --3.89cm --- - - --

Fig. 2-Cross-sectional view of shielded stripline with symmetrically suspended 
quartz substrate and stripline conductor. 
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Fig. 3-Photograph of downconverter showing top view of strip line conductor 
pattern in rectangular channel. The characteristics of the band-pass filter, the 
low-pass filter, and the diode pair are displayed at the bottom of the photograph. 

sides of the stripline conductor. Coupling to undesired waveguide 
modes above the cutoff frequency of the metal channel is suppressed 
because the electric field vectors in the top and the bottom section of 
the striplinc are of opposite polarity as indicated in Fig. 2. A photo
graph of the downconverter is shown in Fig. 3. The figure also shows 
the measured transmission characteristics of the stripline band-pass 
filter and low-pass filter, and also the current-voltage characteristics 
of the diode pair. The current-voltage characteristics of the diode 
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pair are symmetrical with respect to the origin. This results in a 
current waveform that has only odd-order harmonics and a con
ductance waveform with even-order harmonics. The second feature 
combined with the low conversion to waveguide modes results in a 
converter that has a good conversion loss and a low noise figure for 
subharmonic pumping 

III. PERFORMANCE OF STRIPLINE CONVERTER 

The measured single-sideband noise figure for the stripline converter 
of Fig. 3 is plotted in Fig. 4 as a function of the signal frequency Ws 

for m = 2 and m = 4, where m is the harmonic integer defined by 
m = (Wsignal ± WIF)/Wpump • The noise figure of the IOO-MHz IF ampli
fier is 1.7 dB. The total single-sideband noise figure, including the IF 
amplifier noise at a signal frequency of 3.455 GHz, is 4.9 dB for m = 2 
and 6.6 dB for m = 4. The corresponding conversion loss is 3.2 dB 
for m = 2. This result approaches the theoretically predicted loss of 
2.1 dB for the diode pair with a series resistance Rs = 2 ohms and a 
zero bias capacitance of Co = 0.45 pF for each diode. 5 

The new harmonically pumped stripline circuit can be readily 
scaled to higher microwave frequencies and particularly to millimeter
wave frequencies where solid-state oscillators are only available at 
subharmonics of the local oscillator frequency. The basic design 
principles discussed in this paper can also be applied to other con-
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Fig. 4-Single-sideband noise figure including IF amplifier noise for downconverter 
pumped at the second subharmonic (m = 2) and the fourth subharmonic (m = 4). 
The noise figure of the lOO-MHz IF amplifier is 1.7 dB. 
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verters in the electromagnetic spectrum, such as upconverters, har
monic generators, and parametric amplifiers. 
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Fiber Ribbon Optical Transmission Lines 

By R. D. STANDLEY 

(Manuscript received April 2, 1974) 

This brief proposes the use of fiber ribbons consisting of a linear 
array of fibers embedded in a thin, flexible supporting medium as 
components of a cable for fiber transmission systems. With the pro
gress that has been made in drawing low-loss fibers, the physical form 
used to cable the fibers has become a truly relevant problem and is 
presently being pursued at several laboratories. 

Figure 1 shows some of the structures of interest. The value of rib
bons in a transmission cable was initially conceived as relating well to 
planar technology for connector and repeater circuitry fabrication. A 
natural layout for repeater electronics is an input consisting of a linear 
array of detectors with a similar emitter array for the output. 

Fiber ribbons should also be easier to handle than conventional 
bundles. In the event of cable breakage, the ribbon resolves the prob
lem of fiber identification; coding is simple. Ribbons may be easily 
stacked to form higher-capacity cables. The geometry lends itself well 
to connector design. For example, suppose the supporting medium to 
be some sort of plastic. To make fiber separation easy, we cut the 
ribbon, then we dissolve a portion of the supporting medium to free 
the fiber ends. The ends are then placed in the connector, which is 
finally recoated with the plastic. 
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Fig. I-Some fiber ribbon structures. 

STACKED RIBBON CABLE 
(COLOR CODED) 

Many forms can be envisioned for the connector. For example, con
sider a glass plate whose refractive index is less than that of the fiber. 
Using conventional photolithographic techniques, one can etch chan
nels in the glass. The fibers may then be placed in the channels and 
covered with a second glass plate or a plastic similar to the ribbon 
support. The output end of the connector can be polished to clean up 
the fiber ends if necessary. 

Finally, the manufacture of ribbons should be straightforward. Two 
methods are described in the literature.1 ,2 

As stated previously, the purpose of this brief has been to describe 
concepts of fiber ribbon transmission line accessories. It is recognized 
that practical difficulties will ensue when attempting to reduce any of 
the concepts to the hardware stage. For example, mechanical toler
ances, which will generally be dependent upon the fiber core diameter, 
are of prime importance in any hardware for any fiber optic transmis
sion line. However, we believe that the naturally planar form of the 
fiber ribbon, associated connectors, and circuitry described above 
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Fig. 2-Grooved lucite planar connector for fiber ribbon transmission line. 

would permit excellent dimensional control. Experimental work would 
be necessary to define quantitative limits. 

Some years ago we did experiments on fiber connectors having 
the form shown in Fig. 2. Here grooves were hot-pressed into lucite 
blocks using fibers of the same size as those to be mounted as templates. 
Fibers were then inserted into the grooves and held in place by cement. 
Typical loss achieved upon disassembly and reassembly was 1 dB ± 0.5 
dB, which was considered acceptable for such a crude structure. In 
another experiment, one lucite block was made mechanically movable 
to form a single-pole, double-throw switch; loss variation upon operat
ing the switch was again about 1 dB. 

The prospects for near-term use of optical fibers in communications 
systems are indeed good; what is hoped is that the above concepts 
will stimulate others in the pursuit of a useful and economic cabling 
method and, thus, lead to a more rapid application of fibers in practical 
systems. Recently, a method was proposed for splicing fiber ribbons of 
the type described above.3 
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