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Codes Which Detect Deception 

By E. N. GilBERT, Mrs. F. J. MacWilLIAMS, and N. J. A. SLOANE 

(Manuscript received May 15, 1973) 

We consider a new kind of coding problem, which has applications in a 
variety of situations. A message x is to be encoded using a key m to form 
an encrypted lnessage y = <p(x, m), which is then supplied to a user G. 
G knows m and so can calculate x. It is desired to choose <P ( • , .) so as to 
protect G against B, who knows x, y, and <p(.,.) (but not m); B may 
substitute a false message y' for y. It is shown that if the key can take K 
values, then an optimal strategy for B secures him a probability of an 
undetected substitution ~ K -!. Several encoding functions <P ( • , .) are 
given, some of which achieve this bound. 

I. INTRODUCTION 

The gambling casino has often supplied a vivid and concrete setting 
for problems in probability theory,! stochastic processes,2 hypothesis 
testing,3 information theory,4 and coding theorY,5 and we shall use it 
to describe our problem. 

There are two main participants, the owner of the casino G (stand
ing for good guy) and the manager B (the bad guy). B has been re
porting the daily takings from the slot machines to be less than they 
actually are and keeping the difference for himself. To prevent this, 
G proposes to install in each slot machine a key generator of which he 
possesses an exact duplicate and an encoder which will encrypt the 

405 



day's takings x using a key m to produce an encrypted message 

y = <I>(x, m). (1) 

(See Figs. 1 and 2.) The device will punch y onto a paper tape. At 
suitable intervals B will mail the tape to G, who will calculate x from 
y and m. From time to time G will visit the casino to change the key 
generator. We assume that B knows x and <p(.,.) (but cannot change 
them), and y (which he can change), but does not know m. G knows 
y, m, and <I> ( .,.). 

If B attempts to give G a false message y~, there may be no x' 
satisfying y~ = <p(x', m), and then G will discover B's deception. But 
if B can solve (1) for m, then he can successfully substitute a false 
message x' by giving G the correctly encrypted message y' = <p(x', m). 
The problem is to design <p(.,.) so as to make it as difficult as possible 
for B to deceive G without being caught. 

Clearly, the problem is applicable to other situations (vending 
machines, cash registers, etc.) and in fact was first presented to us by 
G. J. Simmons of Sandia Corporation in connection with monitoring 
the production of certain materials in the interests of arms limitation. 

The problem resembles the one normally encountered in cryptog
raphy in that a key m is used to encrypt a clear text x into an encoded 
form y = <I>(x, m). But there is an important difference. Since B knows 
x already, many of the standard cryptographic codes would allow B 
to recover the key m. 

To prevent B from using (1) to learn the key, G must construct 
<p(.,.) so that (1) has several solutions m. Then B will probably pick 
a wrong key mo and G will discover that B's encrypted mesage y; is 
incompatible with the correct key. As one might expect, to provide 
many solutions to (1) G must use a large number K of possible keys. 

FALSE MESSAGE x' 

r-------l 
I I 
I I 
I I 
I I 

MESSAGE x 

I I 
I I 

................. 1 ~ ENCODER I--rl_..a 

1 1 L _______ .J 

Fig. i-Encoding to detect substitution. 
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MESSAGE KEY ENCRYPTED 
MESSAGE 

~~=-----____ -2 ______ ----~~Y 

Fig. 2-Diagram of a code. 

When B tries to substitute a false message, his probability of escap
ing detection will be called po. The probability Po for an optimal B 
strategy will be called p~. We will show that p~ ~ K-i. Although 
Section IV will construct a code which is best-possible in the sense of 
achieving p; = K-1, this equality can be achieved only by severely 
restricting the number N of possible messages x. More useful codes 
must compromise among three conflicting goals for G: small p;, small 
K, and large N. We give two such codes, one random (Section VII) 
and one systematic (Section VIII). 

Throughout most of this paper we imagine that B has a particular, 
but unknown, false message x' to substitute for x. We assume that x 
is equally likely to be anyone of the N possibilities and that B picks 
x' at random from the remaining N - 1 messages. Then po is an average 
of the probabilities po(x, y, x') of success when B substitutes a given 
x' for given x, knowing y. 

CODES WHICH DETECT DECEPTION 407 



In Section IX, B uses a different strategy. There B is content to 
succeed in any deception. Given x and y, B now picks x' to maximize 
the chance of escaping detection. Merely keeping po small does not 
protect G against this if individual terms Po(x, y, x') are large. With 
proper design, the systematic code of Section VIII still defeats B. 

II. THE AUTHENTICATOR 

A convenient special form for the encryption (1) is 

y = (x; z), (2) 

i.e., y is the clear text x followed by a string z of extra digits or letters. 
Here z is some function of x and m. G will use z to test the received 
message y for authenticity. For this reason z will be called an 
authenticator. 

Although (2) is a special case of (1), nothing is lost by restricting the 
encryption to this special form. Indeed, if some other <I> 0 (x, m) in (1) 
provides a good code, one can always create a code of the form (2) 
by taking z = <I>o(x, y), i.e., 

y = <p(x, m) = [x; <Po(x, m)]. 

Including x as part of y cannot help B; he knows x already. Giving x 
to G explicitly cannot hinder him in detecting a deception by B. Thus 
the new code is at least as good for G as the old one. 

Whether or not to use a code of the form (2) is purely a matter of 
convenience. However, the form (2) has a special property which we 
can now require without loss for all codes. It is that different clear 
text messages Xl, X2 cannot be encoded into the same y, i.e., 

(3) 

holds for all ml, m2 if Xl ;;e. X2. Then a typical code has a diagram like 
Fig. 2 which portrays clear messages x as points in the left column and 
encrypted messages y as points in the right column. The lines directed 
from left to right are labeled by the key names 1, "', K to show how 
these keys encode each x into a y. Because of (3) the encrypted mes
sages y fall into disjoint clusters, each cluster containing all possible 
images of a particular x. 

III. PROBABILITY OF DECEPTION 

B successfully deceives G with probability po ~ K-l just by guessing 
a key mo at random with all K keys equally likely. Better strategies use 
B's knowledge of x and y to restrict his guess to keys satisfying (1). 
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Usually B need not guess mo = m, the correct key. B still succeeds if 

<I>(x', mo) = cI>(x', m). (4) 

In Fig. 2, B would pick mo to be one of 2, 3, 4, 5, or 6; if In = 2 then 
the guesses mo = 2, 4, or 6 all succeed. 

An important qualitative feature of a code is the size of the bundle 
of lines leading from the message x to the encrypted message y in the 
code diagram (Fig. 2). G must make these bundles large enough to 
prevent B from guessing m with high probability. But if the bundles 
are too large, B will succeed often because many keys mo satisfy (4). 
In compromising between the two extreme bundle sizes, G cannot limit 
B to a probability po = 1/ K. In fact, we now show that B can always 
use a strategy which succeeds with probability 

(5) 

In order to prove (5) we will have to place some natural restric
tions on the behavior of G and B. 

(a) B does not attempt to deceive G by replacing x by x' = x. If 
we allowed B that kind of "deception," B could succeed with 
probability po = 1 and (5) would be a weak result. 

(b) All N messages x are equally likely. Although this requirement 
could be relaxed, some condition like it must be imposed to 
forbid G from using one particular message Xl almost exclu
sively. In that case G could let all keys encrypt Xl to the same 
YI but give all other messages x' K distinct encrypted forms. 
B would then have po < K-i but G would receive little 
information from each message. 

(c) Another restriction on G might be that he use the K keys at 
random, equally likely and independent of x. We won't need 
this restriction on G to prove (5). If G uses the keys in any 
other way he only helps B increase po. 

(d) We will prove that (5) holds even if B picks x' at random from 
the N - 1 messages different from x, all equally likely. This 
only strengthens (5) because there may be better strategies 
for B. 

Knowing how the message x, x', and key In are distributed, we can 
compute the joint probability P(x, y, x'). This probability is the weight 
used in averaging po(x, y, x') to get 

po = L, P(x, y, x')po(x, y, x'), (6) 
x,y,X 
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as mentioned in Section 1. The probability Po(x, y, x'), that B succeeds 
in substituting x', knowing x and y, depends on how B uses x, y, x' 
to determine a false encrypted message y~. B knows the function 
<I> ( • , .) and the key distribution. From these, he can compute the 
conditional probability distribution P(y' I x, y, x') of the correctly en
crypted false message y' = <I> (x', m). B maximizes his chance of suc
cess by using a false message y~ which maximizes P(y' I x, y, x'). Then 
B achieves 

Po(x, y, x') = Max P(y' I x, y, x') (7) 
yl 

and maximizes po in (6). Since (7) is optimal for B we give the corre
sponding po value a special name p;. 

As a preliminary to (5) we now relate p; to the average uncertainty 
U which B has about the correctly encrypted false message y'. U is a 
conditional entropy 

U = H(y'lx, y, x') 

~ I P(x, y, x', y') log P(y' I x, y, x'). (8) 
x,y,x ,y 

Lemma: If B chooses y~ to make (7) hold, then 

(9) 

Equality holds in (9) if and only if all the possible encrypted messages y' 
for each (x, y, x') having P(x, y, x) ~ 0 are equally likely and there are 
exactly 2 u such y'. 

The proof does not require restrictions (a), (b), (c), or (d). Use (7) 
to write P(y' I x, y, x') ~ P'o(x, y, x') in (8). Sum on y' and use the 
convexity of the function -log p to get 

U ~ - L I P(x, y, x') log Po(x, y, x') 
x,Y,x 

~ - log L I P(x, y, x')Po(x, y, x'). 
x,y,x 

Now (9) follows from (6). 
The derivation used two inequalities. Both must become equalities 

if equality holds in (9). P (y' I x, y, x') = po (x, y, x') requires all possible 
y' to be equally likely for given x, y, x'. In the convexity argument, 
equality requires all -log po (x, y, x') terms to be equal to U. 

We now bound p; in terms of the uncertainty H(m) associated with 
the choice of key. 
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Theorem 1 : Suppose (7) and restrictions (a), (b), (d) all hold. Then 

(10) 

First note that y' is determined by y' = cf>(m, x') if m, x' are known. 
Then y' contains less information than (m, x') : 

U = H(y'lx, y, x') ~ H(m, x'lx, y, x') = H(mlx, y, x'). (11) 

. But the conditional probability for m given x, y, x' depends only on 
x, y, so (11) becomes 

U ~ H(mlx, y). 
Also, 

H(m) ~ H(mlx) = H(m, ylx) = H(ylx) + H(rnlx, y) 

so (12) provides 

U ~ H(m) - H(ylx). 

But 

U = H (y' I x, y, x') ~ H (y' I x'). 

(12) 

(13) 

Because of constraint (d), x' is equally likely to be anyone of the 
N messages. Then, by (b), x and x' have the same distribution, 
H (y' I x') = H (y I x), and finally 

U ~ H (y Ix) . (14) 

Now compare (13) and (14). If H(ylx) ~ !H(m), then U ~ !H(m) 
follows from (14). If H(ylx) ~ !H(m), then U ~ !H(m) follows from 
(13). In either case, (10) follows from the lemma. 

Remark: The bound (10) implies (5), and in fact reduces to (5) when 
restriction (c) holds. 

IV. PROJECTIVE PLANE CODES 

Since p; is the largest probability of success obtainable by B, a 
code for which equality holds in (10) guarantees G the minimum po 
against optimal behavior by B. This section designs such a code. We 
now assume that G behaves according to (c) of Section III, for that 
will make 

If equality is to hold in (10), all the inequalities used in proving 
Theorem 1 must become equalities. We now review these inequalities 
to obtain requirements on the code. 
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The requirements are most easily stated in terms of the bundles of 
keys in the code diagram, Fig. 2. 

(i) Every pair of bundles, from Xl to YI and X2 to Y2, with X2 ~ Xl, 

have exactly one key in common. 
(ii) Every bundle contains K! keys. 

(iii) There are K! bundles at each x. 

To prove (i), (ii) , (iii), begin with (11) and write H (y'l X, y, x') 
= H (m, x'I x, y, x'). If, for some x, y, x', more than one key m satisfied 
y' = <I>(m, x') then there would be more conditional uncertainty about 
the pair (m, x') than about y'. Thus equality in (11) requires 

(if) Every pair of bundles, from Xl to YI and X2 to Y2, X2 ~ XI, 

have at most one key in common. 

Equality in (9) requires that the keys in any bundle from X to y 
be distributed equally over 2 U = 2IH (m) = K! images y' of any x'. 
Each of these keys leads from x' to a different y' [by (i')]. Then the 
bundle X to y has K! keys, which proves (ii). Now (iii) follows from 
(ii) because there are only K keys. Requirements (ii) and (iii) also 
guarantee H(ylx) = ! log K = !H(m), which is needed for equality 
in (13) and (14). 

To strengthen (if) to (i) consider the K! bundles leaving X and the 
K! bundles leaving x'. There are KLK! = K pairs of bundles. (if) 
permits each pair to have at most one key in common. But each key 
is common to some pair. Since there are K keys, (i) must hold. 

One can find trivial codes which satisfy (i), (ii) , (iii) but which 
have only a few messages x. For instance, the K keys might be arranged 
in a KI X KI square matrix and each row (or column) be designated 
as the bundle for a distinct encrypted form of Xl (or X2). Since this code 
has N = 2 it is not very useful. In order to force N to be large we need 
another requirement. 

Since (i) requires a pair (ml' m2) of different keys to belong to at 
most one bundle, the number of pairs of keys having a common bundle 
is N (~d). This number must be no greater than the unrestricted number 
of pairs of keys (f), so that 

!NKl(K! - 1) ~ !K(K - 1) 

N ~ K! + 1. 

The condition for equality in (15) is 

(15) 

(iv) Every pair (ml' m2) of different keys belongs to exactly one 
common bundle. 
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We now add requirement (iv) in order to have a code with the largest 
possible N. Note that even for this code (15) indicates only about 
half as many message bits as key bits. 

A code satisfying (i), (ii) , (iii), (iv) can be constructed from any 
finite projective plane. Recall that a projective plane is a set of points 
and lines in which: 

(v) Each pair of different lines has a unique point in common, and 
(vi) Each pair of different points belongs to a unique line. 

The most easily visualized projective plane is an infinite one based on 
the surface of a sphere. The lines and points of this projective plane 
are the great circles and pairs of diametrically opposite points on the 
sphere. A well-known technique (see Refs. 6, 7) uses a Galois field 
GF(q), where q is a prime power, to construct a projective plane having 
q2 + q + 1 points and q2 + q + 1 lines. 

The code will be obtained by using certain points and lines of a pro
j ective plane as the names of messages, keys, and bundles. First 
pick any line S to serve a special role. Using the sphere as a model, 
we call S the equator. Points on the equator will represent messages x. 
Points not on the equator will represent keys 111. Lines other than the 
equator represent encrypted messages y (bundles). Each x and 1r1 

determines a unique line (not S because it contains m) which we use 
as the name of y in (1). 

Figure 3 shows the projective plane constructed from GF(2). It 
has 22 + 2 + 1 = 7 points. Six of the seven lines are shown as straight 
lines and the seventh, which we may take as the equator S, is a circle. 

Fig. 3-A projective plane. 
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The three points on S are the messages and the remaining four are 
keys. The six straight lines are bundles, containing two keys each. 

One can easily verify (i) and (iv) using (v) and (vi). Moreover, in 
the projective plane based on GF(q), q + 1 lines pass through each 
point and q + 1 points lie on each line. Each line different from S con
tains one message x and q keys. 

Each x lies on S and on q other lines. Then (ii) and (iii) hold if 

q = K!. (16) 

The equator contains N = 1 + q = 1 + Kl points, as we expect from 
(15), and (iv) holds. When G uses this code, B will know that m is 
one of q keys on the line y. For any x' ~ x, these keys lie on q different 
lines through x' and B has p: = l/q = K-!. 

A Galois field GF (q) exists if and only if q is a power of a prime, 
q = pn. Then (16) requires K to be an even power of a prime: K = p2n 
in this design. 

V. IMPLEMENTATION 

This section simplifies the code of Section IV into a form that is 
easily realized by a logic circuit. 

The usual construction for a projective plane begins by defining the 
points as vectors, having three components taken from GF(q). Two 
vectors VI, V2 are regarded as two names for the same point if they 
differ only by a scalar multiple, i.e., if V2 = aVI for some a E GF(q). 
The zero vector (0, 0, 0) is not used as a point. Lines are sets of points 
satisfying a linear homogeneous constraint. A line L can then be 
described by a nonzero vector L = (a, b, c) with the understanding that 
the points on L are the vectors V = (r, s, t) satisfying 

L·v = ar + bs + ct = O. 

Take the equator to be the line specified by the vector S = (0, 0, 1). 
Then messages x are points having third coordinate zero. By applying 
appropriate scalar multipliers, each x can be written either as (0, 1, 0) 
or as (1, s, 0) with s E GF(q). The remaining points, which can be 
written in the standard form (i, j, 1), are the q2 keys. 

To make the logic circuit as simple as possible we agree not to use 
(0, 1, 0) as a message. There remain N = q = K! messages, all of the 
form (1, s, 0). The q lines through (1, s, 0) all have vectors (-s, 1, c) 
where 

si-j=c 

holds for all keys (i, j, 1) on the line. 
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Only a single element s of GF(q) need be transmitted to specify 
the vector (1, s, 0) and hence x. Likewise, the key input in Fig. 1 
requires only the pair (i, j). The encrypted message y [a line with 
vector ( - s, 1, c) ] can be transmitted just as a pair (s, c). That amounts 
to using c as an authenticator z. The encoder is a computer which uses 
(17) to produce the authenticator value c from the inputs s, i, j. G 
uses a similar computer to test that his received s, c and known i, j 
satisfy (17). 

For example, the code obtained from the proj ective plane of Fig. 3 
IS: 

message key encrypted message 

0 00 or 01 00 
10 or 11 01 

1 00 or 11 10 
01 or 10 11 

Again the code obtained from the projective plane with 13 points 
based on GF(3) = {O, 1, 2} is: 

nzessage 

o 

1 

2 

key 

00,01,02 
10, 11, 12 
20,21,22 

00, 12,21 
01, 10,22 
02, 11, 20 

00, 11, 22 
02, 10, 21 
01, 12, 20 

encrypted message 

00 
01 
02 

10 
11 
12 

20 
21 
22 

Tables for constructing larger Galois fields will be found in Refs. 8, 
9, 10, and circuits for doing arithmetic in these fields in Refs. 10, 11, 
12. A field GF (2b) is convenient if the message originates in binary 
form. Then x and z each consist of b binary digits while 2b digits (b 
for i and b for j) are required for the key. 

VI. BLOCK DESIGNS 

Projective planes are special cases of more complicated structures 
called balanced incomplete block designs (BIBD). The technique used 
in Section IV generalizes directly to produce new codes based on 
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BIBD's. The new codes do not achieve p~ = K-i, but they provide 
good solutions for some new values of K not of the form p2n. 

A (b, v, r, k, A) BI BD is another system of points and sets of points. 
The sets are now called blocks instead of lines. There are v points in 
total and each block contains exactly k points. Each point belongs to 
r blocks and each pair of points is a subset of A blocks. These condi
tions determine the number b of blocks. For bk = vr and r(k - 1) 
= A (v - 1) must hold in a BIBD (Ref. 6, p. 96; Ref. 7, p. 100). 

Examples: 

(1) The projective plane formed from GF(q) (see Section IV): 
b = v = q2 + q + 1, r = k = q + 1, A = 1. 

(2) The affine plane formed from GF (q) (Ref. 7, p. 176) : b = q2 + q, 
V = q2, r = q + 1, k = q, A = 1. 

(3) Many other examples are known: see, for example, Refs. 6, 7, 
13, 14, and recent volumes of the journals Sankhya, Annals of Mathe
matical Statistics, and the Journal of Combinatorial Theory. 

Given any BIBD with A = 1, we may form a code as follows. Pro
ceeding as in Section IV, we select a particular block S to serve as the 
"equator." Points on S will represent messages x. Points not on S 
will represent keys ~. Blocks other than the equator represent 
encrypted messages y (bundles). Each x and m determines a unique 
block different from S which we use as the name of the y in (1). 

There are N = k messages, K = v - k keys, b - 1 encrypted 
messages, and k - 1 keys per bundle. Since A = 1, the k - 1 keys in 
the bundle from x to y belong to distinct bundles leaving x'. Then 
p~ = l/(k -1) = l/(N -1). 

When the BIBD is a projective plane these formulas become again 
K = q2, N = 1 + Ki, and p~ = K-i. For affine planes K = q2 - q, 
N = q < 1 + KI, and p~ = 1/ (q - 1) > K-i. Thus, for given K, the 
affine plane has both smaller N and larger p~ than one would expect 
from the projective plane. The larger p~ should be expected since (ii) , 
(iii) fail. 

To have (ii) , (iii) hold, rand k should be as close as possible. In 
most known BIBD's other than the projective and affine planes, r 
and k are considerably different. For example, consider the BIBD 
with parameters b = 195, v = 91, r = 15, k = 7, A = 1 (number 111 
in Hall's list7). The code obtained from this design has K = 84 keys, 
N = 7 messages, and p~ = 1. For comparison, the proj ective plane 
code based on GF (9) is superior on all counts, having K = 81, N = 10, 
and p~ = l. 

416 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1974 



VII. RANDOM CODES 

The projective plane code in Section IV obtains p~ = K-!, the 
smallest possible value, but it has only N = 1 + K! messages. Codes 
with N» K have more interest. To see how large the corresponding 
p~ might be, this section examines a code constructed at random. Now 
N can be made as large as desired. The main result will be that p~ 
still need not exceed K-i by a large factor. 

The random code will have one free parameter A. Each x is allowed 
A possible encoded forms y. For each of the K keys the y in (1) is 
chosen at random from the A possibilities, all equally likely. The ]( 
choices are made independently. It may well happen that one of the 
A possibilities is never chosen in the K trials. In that case the code 
diagram, Fig. 2, will show fewer than A bundles from x. The code has a 
p~ which depends on the random choices. We will look for the expected 
value E (p:). Specific codes, with the given Nand K and having p~ 
less than this expectation, surely exist. 

All the data about <p(".) that B needs when substituting x' for x 
are contained in a table showing how the encrypted messages y, y' 
depend on the key m. Figure 4 shows a convenient table as an A X A 
array of cells, each cell containing a list of all keys which determine a 
(y, y') pair. Figure 4 corresponds to the pair of messages labeled x, x' 
in Fig. 2. Let v(y, y') be the number of keys in the (y, y') cell. 

Knowing y, B examines the corresponding column in Fig. 4. Since 
the K keys are equally likely, 

P(y' I x, y, x') = v(y, y')/ L v(y, Yl). (18) 
Yl 

The optimal strategy, by which B achieves (7), is to pick y~ to maxi
mize v(y, y'). In Fig. 4 the row y~ intersects the y column in a cell 
with the largest number of keys. There may be k > 1 such cells in 
the y column, in which case B may as well pick one of the k rows 
equally likely, at random. 

E (p~) can now be described as the solution to a distribution problem. 
Imagine that the correct key is key # 1 and that it occupies the cell in 
column 1 and row 1. Distribute the K - 1 remaining keys at random 

,·1 1 2~~~6 1 : 1 

Fig. 4-Table of keys. 
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over the A2 cells. Let pn,k be the probability that the (1, 1) cell con
tains v(I, 1) = n keys, that k - 1 other cells in column 1 contains n 
keys, and that moreover all of the A - k remaining cells in column 1 
contain fewer than n keys. Then 

E(p:) = L k-1pn,k (19) 
n,k 

is the probability that B picks the first row for y;. 
The exact formula for pn,k is cumbersome. It is not hard to simulate 

the distribution experiment on a computer in order to estimate E (P:) 
when K is less than a few hundred. This has been done, but only as a 
check on the simpler approximate calculation which follows. 

When A is large, each key has a small probability A -2 of belonging 
to the cell (y, y'). After a large number K - 1 of independent trials, 
the number v(y, y') of keys in the cell will have approximately a Poisson 
distribution with mean 

A = (K - I)/A2. (20) 

Accordingly, we treat numbers v (y, y') as independent Poisson random 
variables with mean A. The number v(I, 1) is special because we started 
the distribution by placing key # 1 in cell (1, 1); v (1, 1) - 1 is the 
Poisson variable for this cell. Poisson approximation has the dis
advantage that the total number of keys Ly,y' v(y, y') is itself a 
random variable. However, the mean number of keys is K and there 
is high probability that there will be close to K keys if K is large. 
The effect of this approximation should be worse for small K than for 
large K. The Poisson approximation and the simulation do give the 
same E (P:) to within a few percent even for K = 25. 

Table I - E(p~) for random designs 

X= 1 1 1 4 16 K-~ 16 "4 

K = 25 0.47 0.44 0.54 0.2 
64 0.46 0.34 0.32 0.38 0.57 0.125 

100 0.40 0.29 0.27 0.32 0.46 0.1 
256 0.27 0.21 0.19 0.22 0.32 0.06 
400 0.23 0.17 0.16 0.18 0.26 0.05 

1,024 0.15 0.12 0.11 0.12 0.03 
4,096 0.087 0.069 0.062 0.068 0.092 0.015 

10,000 0.062 0.047 0.042 0.046 0.061 0.01 
40,000 0.036 0.026 0.023 0.024 0.032 0.005 

100,000 0.025 0.018 0.015 0.016 0.021 0.003 
1,045,576 0.0084 0.0063 0.0054 0.0055 0.0069 0.001 
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To simplify writing an expression for pn,k, let bn and Bn denote the 
probabilities that a Poisson random variable has value exactly 11, or 
at most n. 

bn = 'Ane-n/n! 

Bn = bo + b1 + ... + bn. 
Then 

(21) 

In (21), bn - 1 is the probability that cell (1, 1) contains 11, keys, 
b~-l B:;~lk is the probability that a particular set of k - 1 other cells 
have 11, keys but all A - k others have 11, - 1 keys or less, and the 
binomial coefficient counts the different sets of k - 1 cells, Now 
insert (21) into (19) and sum on k to get 

E(p;) = t (n/'AA){B:; - B*-d. (22) 
n=l 

Table I gives values of E(p;), computed from (22). For fixed K, 
a broad minimum of E (p;) occurs near 'A = 1. Then (20) shows that the 
minimum occurs when A = K!, approximately. Thus, even when G 
designs his code by random means, he should pick A to make (ii) and 
(iii) of Section IV hold as nearly as possible. 

Although (22) is only an approximate solution to the problem, it is 
also a generating function for the exact solution. Let e (K) denote the 
exact expected value of p; when the number of keys is K. Instead of 
e(K), eq. (22) provides 

i.e., a sum of terms e(K) weighted by the probability that the Poisson 
experiment produces K - 1 keys in addition to key # 1. In principle, 
one could multiply the sum in (22) by exp ('AA 2), expand the result 
into a series in powers of 'A, and identify the coefficient of 'A K-l as 
A2(K-l)e(K)/ (K - 1) !. The result for e(K) is unpleasant and (22) is 
accurate enough. In an experiment to estimate e(64), 2000 trials were 
made for each of 'A = i, 1, 4. The fractions of trials in which B suc
ceeded were 0.31, 0.30, 0.37. 

VIII. SYSTEMATIC CODES 

This section constructs a systematic code with large N by means of 
another generalization of the projective plane code of Section IV. 
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o o 

o 

Fig. 5-Code designed from projective space of dimension M. 

Unlike the random code, which had N as a free parameter, this code 
will specify a particular N. That disadvantage is offset by a smaller 
value of E (p:) and by a more important advantage discussed in 
Section IX. 

Figure 5 will illustrate the code design. Given a field GF (q), one 
can construct a projective space PG(M, q) of dimension M in which 
points are again equivalence classes of nonzero vectors, now having 
M + 1 components. M = 3 in Fig. 5. The number of points is 

f(M) = (qM+I - 1)/(q - 1) = 1 + q + ... + qM. (23) 

Each set of points satisfying a system of M - D independent linear 
homogeneous equations is a D-dimensional subspace PG(D, q) con
taining feD) of the points of PG(M, q). The number of D-dimensional 
subspaces of PG(M, q) isI5 

f(M)f(M - 1)··· f(M - D) 
g(D, M) = f(D)f(D - 1) ... f(O) 

(qM+I - 1) (qM - 1) ... (qM+I-D - 1) 
(qD+I - l)(qD - 1)· .. (q - 1) (24) 

Proceeding as in Sections IV and VI, we again select a particular 
subspace S of dimension M - 1 to serve as the "equator." In Fig. 5, 
S is a projective plane. We again identify messages x with subspaces 
of S. But now S has subspaces of dimension 0, 1, ... , M - 2 and so 
we can specify the dimension 8 of the messages as another parameter of 
the design. In Fig. 5, 8 = 0; another code might use 8 = 1. Given 
M, 8, the number of distinct messages is 

N = g(8, M - 1). (25) 
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Again, the points not in S will be keys. There are 

K = f(M) - f(M - 1) = qM (26) 
keys. 

The key m (a point) and message x (of dimension 8) determine a 
unique (8 + I)-dimensional space which will represent y. Since y 

has f(8 + 1) points and f(8) of them belong to S, y contains f(8 + 1) 
- f(8) = qS+l keys. Now (ii) , (iii) of Section IV need not hold. 
Instead, for each x, the qM keys fall into 

A = qM-S-l 

bundles of 
KjA = qS+l 

keys each. In Fig. 5, A = q2, Kj A = q. 

(27) 

To find p~ consider the matrix, Fig. 4, corresponding to a particular 
pair x, x'. The qS+l keys in a given column y need not be distributed one 
to a row [as in (i) of Section IV]. Each cell in the matrix contains 
all the keys belonging to an intersection between (8 + I)-dimensional 
spaces through x and x'. If x and x' themselves intersect in an r-dimen
sional space x n x' then the cell contains the qr+l keys of an (r + 1)
dimensional space through x n x'. B must choose one of qS+1j qr+l 
= qs-r equally likely rows; his probability of correctly guessing y' is 

po (x, y, x') = qr-s. (28) 

Now (6) and (28) provide 

P; = L h(r)qr-s, (29) 
r 

where her) is the probability that a randomly chosen x' intersects a 
specific x in a space of dimension r. In (29), the range of summation is 
28 + 1 - M ~ r ~ 8 - 1 provided 28 + 1 ~ M. But if 28 + 1 < M, 
as in Fig. 5, then x n x' can be empty. In that case the summation 
(29) extends over -1 ~ r ~ 8 - l. 

We now show 

her) = q(s-r)2g(8 - r - 1, M - 8 - 2)g(r, 8)j 
{g(8, M - 1) - I}, (30) 

which together with (24) and (29) gives p~. The factor g (r, 8) in (30) 
is the number of different r-dimensional subspaces of x; it suffices to 
show that the remaining terms of (30) give the probability that a 
randomly chosen x' intersects x in a particular subspace H of dimen
sion r. Given x, and a subspace H, we can find M basis vectors eo, el, 
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· . " eM for 8 such that eo, el, "', er span H, and eo, el, "', es span x. 
Each x' contains H and so has a basis containing eo, "', er • The re
maining s - r basis vectors of x' can have the form 

M 

Vj = L ~i.jey', 
i=r+l 

i=r+l,"',s, 

in which eo, el, "', er do not appear. In determining ~i.j one must not 
allow x' to intersect x in a space of dimension larger than r. This 
requirement is equivalent to a condition that the partial sums 

M 

v~ = L ~i,jej, 
i=s+1 

i=r+l, "',S, 

of Vi be linearly independent. Then the vi span an (s - r - I)-di
mensional subspace Xo of the (M - s - 2)-dimensional subspace 8° 
spanned by es+l, "', eM. The factor g(r - s - 1, M - s - 2) in 
(30) is the number of ways of choosing xo. Having chosen Hand Xo 

(and hence ~ij for J = s + 1, ... , M), the (s - r)2 numbers 

i = r + 1, "', s; j = r + 1, "', s 

can be chosen in q(s-r)2 ways to specify x' completely. Now the numer
ator in (30) is the number of ways of picking an x' to have an r-dimen
sional intersection with x and the denominator is the number N - 1 
of messages (different from x) from which B chooses x'. 

Now q, M, and s determine N, K, A, p~. Table II gives some of the 
better designs obtained by taking q = 2. These all have M = 2s + 2, 
so that Kj A2 = 1 follows from (26) and (27). For given K, the least 

Table II - Designs with q = 2 

Dimensions Keys Inputs Prob (1! wins) 
M s K N Po 

2 0 4 3 0.6666 
4 1 16 35 0.400 
6 2 64 1,395 0.2222 
8 3 256 200,787 0.1176 

10 4 1,024 1.09 X 108 0.0606 
12 5 4,096 2.3 X 1011 0.0308 
14 6 16,384 2 X 1015 0.0155 
16 7 65,536 6 X 1019 0.0078 
18 8 262,144 8 X 1024 0.0039 
20 9 1,048,576 4 X 1030 0.00195 
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Table 111- Design with q = 2, M = 12, s = 5 

r = dim (x n x') her) po(x, y, x') 

-1 0.3979 0.015625 
0 0.5773 0.03125 
1 0.1204 0.0625 
2 0.00432 0.125 
3 2.9 X 10-5 0.25 
4 3.4 X 10-8 0.5 

p~ was always obtained when K/ A2 = 1; a similar phenomenon was 
encountered with random designs having f.. = 1 [cf. eqs. (20)]. The 
table contains codes having N much larger than K. At the same time, 
p~ is approximately 2/ K!, which compares well with the projective 
plane code. 

IX. CHOICE OF x' 

Until now B had no control over the choice of x'. We treated x' 
as a random variable which B accepts as given. But suppose that B 
has no particular x' in mind; he merely wants to mislead G by sub
stituting any convenient wrong message x'. An optimal strategy for B 
must again achieve (7) but B will select x' to maximize po(x, y, x') for 
each given x, y. 

A code with small p;, for randomly chosen x', may now be a poor one. 
Table III shows more detail about the code with q = 2, M = 12, 
s = 5 in Table II. This code had p; = 0.0308, as computed from (29). 
But some false messages x' intersect x in spaces of dimension r = 4; 
if B substitutes one of these, his chance of success is 0.5 Ceq. (28)]. 

Table IV - Effect of changing field, keeping key size 
approximately fixed 

Field Dimensions Key bits Msg bits 
Prob (B wins) 

K/A2 
q M S log2 K log2 N 

ifr=s-l averaged 

256 2 0 16 1 8.01 0.0039 0.0039 
41 3 1 16.08 41 10.7 0.0244 0.0250 
16 4 1 16 1 16.1 0.0625 0.0078 
9 5 2 15.9 9 19.2 0.1111 0.0137 
7 6 2 16.86 1 25.5 0.1429 0.0058 
5 7 3 16.24 5 28.3 0.2000 0.0096 
4 8 3 16 1 32.5 0.2500 0.0078 
3 10 4 15.9 1 40.5 0.3333 0.0082 
2 16 7 16 1 65.9 0.5000 0.0078 
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The code is good for randomly chosen x' only because B usually has a 
message x' with r = - 1 or O. 

A good code for G must now have po (x, y, x') small uniformly, not 
just on the average. The code of Section VIn achieves this if q is 
large. For (28) shows Po(x, y, x') ~ l/q. Unfortunately for G, in
creasing q has the effect of decreasing N. Then G must compromise, 
picking q small enough to obtain large N but large enough so that 
B's chance of success, 1/ q, is tolerably small. Table IV shows a typical 
tradeoff between Nand l/q. The designs in Table IV all have approxi
mately the same key size K = 216. Table IV shows both probabilities 
of success for B, 1/ q if B makes r = s - 1 and the averaged value 
(29) if B picks x' at random. If one ignores the designs with K/ A 2 ~ 1, 
the averaged probability doesn't change much. To reduce l/q from 
0.5 to 0.1 reduces the message size, log N, by a factor of 3. 
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Queues anS1,ng in buffers due to either random interruptions of the 
channel or variable source rates are analyzed in the framework of a single 
digital system. Two motivating applications are: (i) multiplexing of data 
with speech on telephone channels and (ii) buffering of data generated by 
the coding of moving images in Picturephone® service. 

In the model a source feeds data to a buffer at a uniform rate. The 
buffer's access to a channel with fixed maximum rate of transmission is 
controlled by a switch; only when the switch is closed ("on") is the buffer 
able to discharge. The on-off sequence of the switch is indicated by a 
burst process which is a key element in this paper. In such a process, 
long periods during which the switch stays closed alternate with periods, 
called bursts, during which the on-off sequence is a first-order lYI arkov 
process. The length of a burst is randomly distributed. This is a general
ization of the memoryless burst process considered in an earlier paper.l 
In that paper we gave formulas for the efficient computation of various 
functionals of the queues arising in the system. Now we extend these 
formulas to hold for the generalized class of burst processes. 

I. INTRODUCTION 

In a recent paperl we considered the problem of buffering the output 
of a uniform source whose access to a given transmission channel is 
controlled by a burst process. We gave formulas for efficiently com
puting various functionals of queues that form in such a communica
tion system when the controlling burst process is memoryless. 

In the present paper we generalize the controlling process to one 
which is first-order Markov within a burst. This generalization con
siderably increases the usefulness of the formulas. Consider, for ex
ample, the two motivating applications discussed in Ref. 1: (i) multi-

* The sequence of names was decided by coin tossing. 
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plexing of data with speech on telephone channels2- 6 and (ii) buffering 
of data generated by the coding of moving images in Picturephone@ 
service. 7 For the first application, analysis of data shows2 that it is 
necessary to go to a first-order Markov process to adequately model 
the burst phenomena in speech signals. In the Picturephone applica
tion, although the correlation of data rates within a frame is negligible, 
it is quite significant from frame to frame. 8 For frame-to-frame coding, 
therefore, the present model with memory becomes necessary. 

The system under consideration is shown in Fig. 1. The source emits 
data uniformly at the rate of 1 symbol per unit time. The transmission 
rate of the channel is (k + 1) symbols per unit time, where k is some 
positive integer. The on-off pattern of the switch is indicated by a 
binary burst process: E(j) is either 0 or 1 for j = 0, 1, 2, .... If 
EU) = 0 the switch is closed for the time duration [j, j + 1); other
wise, the switch is open. We assume that there are long periods during 
which E (j) = 0 and that at the end of every such period the buffer is 
empty. The activity separated by such periods we call a burst. We 
assume bursts to be independent of each other, and the burst length 
to have a probability distribution which is either geometric or is a 
weighted sum of geometric distributions. Within a burst, {E (D} is 
assumed to be a homogeneous two-state Markov chain with transition 
probabilities 01 and O2 given by 

o 1 ~ Pro b. {E (j + 1) = 11 E (j) = O} 

O2 ~ Prob. {E(j + 1) = 0IEU) = I}, 

(la) 

j = 0, 1, 2, .... (lb) 

These two parameters completely specify the Markov chain; the 
probabilities of the other two possible transitions are, of course, given 
by 

1 - 01 = Prob. {EU + 1) = OIE(j) = O} 
and 

1 - O2 = Prob. {E(j + 1) = lIE(j) = I}. 

We shall assume that 0 < 01 < 1 and 0 < O2 < 1. If 01 + O2 = 1, E j 

becomes a Bernoulli sequence of independent random variables, which 
is the case treated in Ref. 1. 

In subsequent sections of this paper we will obtain the results sum
marized below. 

In (i), (ii) , and (iii), we assume the switch to be controlled by an 
infinitely long sequence generated by the Markov chain described by 
(1) ; these three results are therefore of interest in situations where the 
distribution of burst lengths is not known accurately. 
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UNIFORM 
SOURCE ~-~I SWITCH f-CHANNEL 

'--------' 

BUFFER 

Fig. 1-Switched communication system. 

(i) We derive a recursive formula for the steady-state distribution 
of buffer content for finite buffers, the recursion being with respect to 
the buffer size, N. 

(ii) Let T(N) be the steady-state probability of a buffer of size N 
being full when the channel is inaccessible. (T(N), therefore, is the 
steady-state probability of a transmission fault.) We show that 

1 1 1 1 - (h - ()2 1 1 - ()1 1 
T(N+k+l) = 1 - ()2 T(N+k) + 1 - ()2 T(N+l) - 1 - ()2 T(N) , 

where (k + 1), as previously defined, is the transmission rate of the 
channel. We show that the steady-state probability of the buffer 
being full is T(N) / (1 - ()2), and therefore satisfies the same recursive 
relation. 

(iii) For a buffer of size greater than N, let F(N) denote the mean 
time to first passage through the level N. We show that F(N) satisfies 
the recursion 

F(N+k+l) 

The next two results are of interest when the distribution of burst 
lengths is well-approximated by a weighted sum of geometric 
distributions. 

(iv) Let G(N) be the probability of overflow for a buffer of size N 
during a burst. Then if the burst lengths have a geometrical prob
ability distribution with parameter p {i.e., Prob. (burst length = i) 
= pi-lei - p)}, we show that 

1 
G(N+k+I) 

This result generalizes to the case when the burst length distribution 
is a sum of geometric distributions. 

(v) We derive a closed expression as well as a recursive formula for 
the mean time for first passage through a level N during a burst 
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conditioned on the occurrence of an overflow. The recursion is with 
respect to N, and the bursts are assumed to be distributed as in (iv). 

(vi) We determine the asymptotic behavior of all the formulas 
in (i) to (v) as N ~ 00. For instance, we prove that, as N ~ 00, 

(1IG(N» rv SN, where s is the unique positive real root of a particular 
polynomial, such that s > II p > 1. 

The closed expressions are all valid for k ~ 1 and N ~ 0, and the 
recursions as stated above are valid for N ~ 0. The recursive formulas 
provide very efficient means for computation of the various functionals, 
particularly in design studies where a whole range of buffer sizes is to 
be investigated. 

1.1 Notation 

Whenever necessary we will use a superscript in parentheses, e.g., 
X(M), to indicate that the quantity corresponds to a buffer of size M 
(or to the level M in a buffer of size greater than M). If x is a vector, 
then the superscript (M) will also indicate that the vector X(M) is 
(M + I)-dimensional with components xfM

), i = 0, 1, 2, ... , M. These 
two uses of the superscript are consistent because the dimensions of 
all vectors defined in this paper are related to buffer size (level) in this 
manner. Whenever the superscript is missing, the standard value (N) 
will be implied. 

We will use lower-case boldface letters to denote column vectors, 
upper-case boldface letters to denote matrixes, and a superscript T to 
denote the transpose. V'[ e '.vill denote by I the identity matrix, by 1 
the vector whose components are all equal to 1, and by ej the vector 
whose jth component is 1 and the rest 0, e.g., e6' = (1, 0, ... , 0). 

II. EQUATIONS OF THE PROCESSES 

Let B (t) be the number of symbols in the buffer at time t. Then for 
a buffer of size N 

B(t + 1) = Max [B(t) - k, OJ if E(t) = ° (2a) 

= Min [B(t) + 1, NJ if E(t) = 1. (2b) 

In the last equation the assumption is that if the channel is inaccessible 
and the buffer is full, then the current source symbol is discarded and 
the buffer remains full. 

In order to study the evolution of the buffer content process, it is 
convenient to introduce two (N + I)-dimensional vectors p (t) 
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= {poet), ... , PN(t)} and q (t) = {qo(t), ... , qN(t)} defined by the 
equations 

Pi(t) ~ Pr {B(t) = i, E(t) = o}, 

qi(t) ~ Pr {B(t) = i, E(t) = I}, 

i = 0, ... , N 

i = 0, ... , N. 

(3a) 

(3b) 

Under the assumption that {E(t)} is the two-state Markov chain de
fined by (1), it is straightforward to show that pet) and q(t) represent 
a 2(N + I)-state homogeneous Markov chain. For 

poet + 1) ~ Pr {B(t + 1) = 0, E(t + 1) = O} 

k 

= L Pr {B (t) = i, E (t + 1) = 0, E (t) = o} 
i=O 

k 

= L Pr {E(t + 1) = OJE(t) = 0, B(t) = i} 
i=O 

X Pr {B(t) = i, E(t) = O} 

k 

(1 - fh) L Pi(t), (4) 
i=O 

where the last step follows from the Markov property of {E(t)}. 
Similarly, 

Pi(t + 1) = (1 - fh)Pi+k(t) + ()2qi-l(t), i = 1,2, ... , N - k, 

= ()2qi-l (t) , i=N-k+I,···,N-I, 
= ()2{qi-l(t) + qN(t)}, i = N. (5) 

Also 
k 

qi(t + 1) = ()l L Pj(t), 
j=O 

i = 0, 

= ()lPi+k(t) + (1 - ()2)qi-l(t), i = 1,2, ... , N - k, 

= (1 - ()2)qi-l(t), i = N - k + 1, ... , N - 1, 

= (1 - ()2){ qi-l (t) + qi (t) }, i = N. (6) 

Equations (4), (5), and (6) can be written conveniently in matrix 
notation as 

pet + 1) = (1 - ()l)Bp(t) + ()2Aq(t) (7a) 

q(t + 1) = ()lBp(t) + (1 - ()2)Aq(t). (7b) 

FORMULAS ON QUEUES-II 429 



Here the (N + 1) X (N + 1) matrixes B and A are defined as 

(k + 1) 
~ 

1 1· . ·1 ° ° ° J 1 1 1 ° B~ - 6. 
1· . 

(8) 

° 1 N - k A= ':0 . ' 
° 1 

N 

Notice that the composite matrix 

(9) 

is stochastic (nonnegative elements and every column sums to 1) and 
independent of t. Equations (7a), (7b) are, therefore, the transition 
equations of a 2(N + I)-state homogeneous Markov chain. 

2.1 Equations for some new probabilities 

For many of the derivations in the succeeding sections (e.g., mean 
first passage time, probability of no overflow, etc.) it is convenient to 
define certain new probabilities ri(t) and Si(t), i = 0, 1, ... , N. Con
sider a buffer of size greater than N and let X (t) be the event 
n;=o {B(s) ~ N}, i.e., the event that B(s) does not exceed N at any 
of the time instants S = 0, 1, 2, ... , t. Then 

riCt) ~ Pr {B(t) = i, E(t) = 0, X(t)}, 

Si(t) ~ Pr {B(t) = i, E(t) = 1, X(t) I-:-

i = 0, ... , N, (lOa) 

i = 0, ... , N. (lOb) 

We define the (N + I)-dimensional vectors ret) and set) with com
ponents {ro(t), ... , rN(t)} and {so(t), ... , SN(t)}, respectively. 

In a manner analogous to the derivation of eqs. (7a) and (7b), 
we can derive recurrence relations giving ret + 1), set + 1) in terms 
of ret), set). Thus, for i = 0, 1, ... , N, 

ri(t + 1) ~ Pr {B (t + 1) = i, E (t + 1) = 0, X (t + I)} 

= Pr{B(t + 1) = i, E(t + 1) = 0, X(t)} 

= (1 - 01) Pr {B(t + 1) = i, E(t) = 0, XCt)} 

+ O2 Pr {B(t + 1) = i, E(t) = 1, X(t)}, (11) 

where the last equation follows from the Markov property of {E (t) } . 
As before, B (t + 1) and E (t) determine the possible values of B (t) 
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and we get 
k 

ri(t + 1) = (1 - ( 1) L rj(t), i = 0, 
j=O 

= (1 - (1)ri+k(t) + 82si - 1(t), i = 1,2, "', N - k, 

= 82si- 1 (t), i = N - k + 1, "', N. (12) 

Comparison of eq. (12) with eqs. (4) and (5) shows that for 
t = 0, 1, "', 

r(t + 1) = (1 - ( 1)Br(t) + 82As(t), (13) 

where A is obtained from A by setting to ° the single nonzero entry 
on its main diagonal, i.e., 

(14) 

Analogously to (13) we can also show that 

s(t + 1) = 81Br(t) + (1 - ( 2)As(t). (15) 

The transition equations (13) and (15), although very similar to 
eqs. (7a) and (7b), differ fundamentally from them in that A, and 
consequently the matrix 

(16) 

are not stochastic. 
We close this section by deriving from (13) and (15) a useful second

order recursion involving s(t + 2), s(t + 1), and s(t). Multiplying 
(13) by 81, (15) by (81 - 1), and adding we get 

81r(t + 1) = (1 - ( 1)s(t + 1) - (1 - 81 - ( 2)As(t). (17) 

From (15), 

s(t + 2) = 81Br(t + 1) + (1 - ( 2)As(t + 1). (18) 

Premultiplying (17) by B and adding to (18) gives 

s (t + 2) = [(1 - ( 1)B + (1 - ( 2)AJs (t + 1) - (1 - 81 - ( 2)BAs (t), 
t = 0, 1, 2, .... (19) 

As we will have to refer frequently to the recursion (19) it is convenient 
to define 

and (20) 
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so that eq. (19) becomes 

set + 2) = Cs(t + 1) + Ds(t), t = 0, 1,2, (21) 

III. INFINITELY LONG SEQUENCES 

When the burst length distribution is not known, useful information 
can still be obtained by considering the behavior of the buffer content 
when the switch in Fig. 1 is controlled by infinitely long sequences 
generated by the IVlarkov chain (1). In this section we derive various 
functionals for such a situation. 

3.1 Stationary distributions for finite butters 

In eqs. (7a), (7b), if we set pet + 1) = pet) = p and q(t + 1) 
= q(t) = q, then the vectors p = {po, "', PN} and q = {Po, "', qN} 
give the limiting distributions 9 as t ---+ 00 of the buffer content process 
defined in Section II. The limiting distributions p, q are thus the solu
tions of 

p = (1 - (h)Bp + 82Aq 

q = 81Bp + (1 - ( 2)Aq 

with, of course, the normalization 

IT(p + q) = 1. 

(22a) 

(22b) 

(23) 

In this section we derive a simple formula for computing the vectors 
p and q for a given buffer size (N + 1) in terms of P and q for a buffer 
of size N. As a first step we simplify the problem by eliminating P from 
eqs. (22a), (22b). MultiplyIng (22a) by 81 and (22b) by (81 - 1) and 
adding gives 

_ ( 1 - 81 ) _ 1 - 81 - 82 -
P - -8-

1
- q 8

1 
Aq. (24) 

Substituting (24) into (22b) gives 

[1 - (1 - ( 1)B - (1 - ( 2)A + (1 - 81 - ( 2)BA]q = O. (25) 

Premultiplying (24) by 1 T and subtracting from (23) gives 

T _ 81 

1 q - 8
1 
+ 8

2 
(26) 

since 1 TA = 1 T. It is important to note that the N + 1 component 
equations in (25) are not independent. Indeed, since 1 TA = 1 TB = 1 T, 
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it is clear that the first equation is just the sum of the rest and may 
therefore be ignored. The remaining N equations are linearly inde
pendent and we can solve them for qo, "', qN-l in terms of qN, and 
then obtain qN from (26). Finally, we can obtain p from (24). 

In carrying out the solution of (25) and (26) in this manner the 
recursion we are looking for becomes obvious if we define the (N + 1)
dimensional vector yeN) with components given by* 

i = 0, "', N. (27) 

[The meaning of the superscript (N) is given in Section 1.1.J Equations 
(25) and (27) give 

ygN) = 1 

(N) _ ()2 
Yl ---

I - ()2 

(N) - Y/~ 
Yi - 1 _ ()2 ' i = 2, "', k 

(N) _ yiN) + 1 - ()l - ()2 (N) _ ()2 

Yk+l - 1 - ()2 1 - ()2 Yl 1 - ()2 

(N) _ YiC!!i + 1 - ()l - ()2 (N) 1 - ()l (N) 

Yi - 1 - ()2 1 - ()2 Yi-k - 1 - ()2 Yi-lc-l, 

(28a) 

(28b) 

(28c) 

(28d) 

i > k + 1. (28e) 

The important fact about (28) is that the superscript (N) is superfluous. 
If N is changed to N + 1, for instance, in (28) we see that 

i = 0, "', N, (29) 

and the last component of y(N+l) is 

Thus the vector y(N+l) is obtained from yeN) by merely appending to the 
components of yeN) one component given by (30). To complete the 
recursion for q (N+l), we note from (26) and (27) that 

(31) 

* Note that q~N) 7"" 0, for otherwise the solution q of (25) is the null vector which 
cannot satisfy (26). 
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and therefore, from (29) and (30), 

1 _ 1 + 01 + O2 (N+l) 
q1"+-ft1) - qW) --01- YN+1 

1 01 + O2 

= qW) + 01 (1 - O2) 

X [yW) + (1 - 01 - 02)yW+1-k - (1 - 01)yW~k]. (32) 

Equation (32) gives qW+-ft1
) in terms of the components of q (N). 

3.2 Probability of transmission fault and of buffer being full 

Frequently it is adequate to determine the variation with buffer 
size of the components pW) and q1N) rather than of the complete dis
tributions p (N) and q (N). Notice that the probability of transmission 
fault T(N) is, by the definition given in Section I, identical to qW); 
and the probability that a buffer of size N is full is clearly pW) + q1N). 
It is therefore of interest to obtain recursions for these quantities 
without having to compute the entire p and q vectors from the re
cursions derived in Section 3.l. 

By premultiplying eqs. (22a) and (22b) by eJ;( ~ (0, 0, ... , 0, 1}) 
we get 

(33) 

or 

ekCp + q) 
T(N) 

1 - O2 ' 
(34) 

l.e., 

1 
P(N) + q(N) = __ .T(N) 

N N 1 - O
2 

• 

It therefore suffices to obtain a recursion for T(N). Suppressing the 
superscript (N) from (28e), and summing over the index i from k + 2 
to N + k + 1, we get 

(35) 

Since T(N) = qW), (31) is used to relate T(N) to {yd. Now substituting 
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the values of {yd given in (28) we obtain 

1 1 1 1 - (}1 - (}2 1 1 - (}1 1 
T(N+k+l) - 1 - (}2 T(N+k) - 1 - (}2 T(N+l) + 1 - (}2 T(N) = 0, 

N ~ 1. (36) 
Equation (36) is the recursion quoted in Section 1. 

3.3 Mean first passage time 

Let N be a positive integer and let the buffer be of size greater than 
N. Let an infinitely long burst start at t = 0, with the buffer initially 
empty, and let F(N) denote the mean time required for the buffer 
content to first exceed N. The manner in which F(N) depends on N 
is a useful guide in designing an adequate buffer, especially when the 
distribution of burst lengths is not accurately known. In this section 
we derive a recursive formula for F(N), the recursion being with respect 
to the level N. 

By definition, the Nth component of the vector s(t) defined in eq. 
(lOb) is the probability that the level N is exceeded for the first time 
at the instant t + 1. Therefore, 

ao 

F(N) = L (t + l)sN (t) 
t=O 

ao 

= eJr L (t + l)s(t). (37) 
t=O 

In the appendix we show that if 'A is an eigenvalue of the matrix de
fined in (16), then I 'AI < 1. This proves the convergence of the series 
in (37). 

We proceed by obtaining an expression for Lt':o (t + l)s(t) by the 
method of generating functions. Let 

b,. ao 
S(z) = L zt+1s(t) (38) 

t=O 

so that 
ao 

S' (z) L (t + l)z ts(t) (39) 
t=O 

and, in particular, 
ao 

S' (1) L (t + l)s(t). (40) 
t=O 
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From the equation, (21), governing the evolution of {s(t)} we find that 

S(z) = [I - zC - z2DJ-l{ZS(O) + z2s(l) - Z2CS(0)}. (41) 

It is shown in the appendix that the above matrix inverse exists for 
all Iz I ~ 1. Following the procedure already outlined [eqs. (39) and 
(40)J we find that 

00 

L (t+ l)s(t) = [1-C-DJ-l[C+2DJ[I-C-DJ-l{ S (0) +s (1) -Cs(O)} 
t=o 

+[I-C-DJ-l{s(0)+2s(l) -2Cs(0)}. (42) 

The resulting expression for F(N), from (37) and (42), is further 
simplified by using the following identities: 

e,£ = ~ 1 T [1 - C - D J, 

and 

Then 

The above expression for F(N) holds for arbitrary initial states of the 
buffer. However, as mentioned in the beginning of this section, in 
deriving a recursive formula for Fun we will assume the buffer empty 
at t = O. In that case, reO) = reo and s(O) = (1 - r)eo with Te[O, 1]. 
Substituting in (43) we get, for this special case, 

We can derive a recursion for the quantity 

(45) 

from which the recursion for F(N) will follow immediately. The pro
cedure is very similar to the one used to derive (36). Thus let 
xT = (Xo, Xl. "', XN) be the solution of 

(1 - C - D)x = eo. (46) 

Then, since IT(1 - C - D) = Ole,£, we get XN = 1/01. We may re-
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place the first of the component equations in (46) by this relation. 
Exactly as in (27) and (28), we find that the components xfN) (i = 0, 
... , N) of the vector X(N) are, in reverse order, the first N + 1 numbers 
Xi in the sequence generated as follows: 

A 1 
Xo = -

fh 
(47a) 

A 1 A 

Xi = 1 _ O
2 

Xi-I, i = 1, ... , k, (47b) 

i > k. (47c) 

Summing (47c) over i from k + 1 to N + k + 1 and noting that 
J<N) = L:f=o Xi, we get 

J<N+k+l) __ 1_ J<N+k) _ 1 - 01 - O2 f(N+O _ 1 - 01 feN) 
1 - O2 1 - O2 1 - O2 

k A 1 k -1 A 1 - 01 - O2 A 

= L: Xk - -1 --0 L: Xi - 1 0 Xo 
i=O - 2 i=O - 2 

1 

where the last step follows from (47a), (47b). However, 

jtN) = {F(N) - (7 - 02)/Od/(01 + O2). 

Substituting in (48) we get 

F(N+k+O = _1_ F(N+k) + 1 - 01 - O2 F(N+l) _ 1 - 01 

1 - O2 1 - O2 1 - O2 

+ 01 + O2 
1 _ O

2 
' N = 0, 1, 2, 

(48) 

(49) 

Interestingly, 7 does not appear explicitly in the recursion (49); it 
does, of course, affect the initial conditions [i. e., the values of F(O), 

... , F(k)] via eq. (44). 
It is interesting to note that the forcing term (0 1 + O2)/ (1 - O2 ) in 

(49) can be eliminated. By direct substitution it is seen that if 01 r= k0 2 

then F~N) - (0 1 + 02)N / (0 1 - k0 2) satisfies the homogeneous recursion 
(49). When 01=k02, the same is true of F(N)- (01+02)N2/k(2-01-02). 

These transformations which reduce (49) to the homogeneous form 
will be of use when we investigate the asymptotics of solutions in 
Section V. 
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IV. BURSTS WITH GEOMETRICALLY DISTRIBUTED LENGTHS 

When information is available concerning the distribution of burst 
lengths we can compute design parameters which are more realistic 
than the quantities T(N) and F(N) discussed in the preceding sections. 
Clearly an event is of consequence only if it occurs within a burst. 
Its probability of occurrence at the tth instant must therefore be 
weighted by the probability that the burst length exceeds t. If the 
distribution of burst lengths is the weighted sum of geometric dis
tributions, i.e., 

Prob. {Burst length = i} 

i = 1, 2, ... ; 0 < Pk < 1, (50) 

then simple recursions can be obtained for such weighted averages. To 
keep the derivations simple we have only treated the case J = 1 
since, as shown in Ref. 1, generalization to higher values of J is straight
forward. In Sections 4.1 and 4.2 we derive such recursions for the 
probability of overflow within a burst and for the mean time to first 
cross a level within a burst. 

4.1 Overflow within a burst 

For a buffer of size greater than N let G(N) denote the probability 
that the buffer content exceeds N (at least once) during a burst. It 
is clear that G(N) also equals the probability that a transmission fault 
occurs (at least once) during a burst, when the buffer size is N. We call 
G(N) the probability of overflow. 

By its definition in (10), SN(t) is the probability that the buffer 
content exceeds N for the first time at t + 1. Therefore, 

00 

G(N) ~ L SN(t) Prob. {burst length ~ (t + I)} 
t=O 

00 

= elt L pts(t). (51) 
t=O 

As proved in the appendix, the matrix in (16) has all its eigenvalues 
strictly within the unit circle. Therefore the series in (51) converges 
for p ~ 1. 
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Multiplying (21) by pt+2 and summing over t from 0 to 00 we get, 
on re-arranging terms, 

00 

(I - pC - p2D) LPtS(t) = s(O) +p{s(l) - Cs(O)} 
t=O 

= [I - pel - 01)BJs(0) + p01Br(0). (52) 

In the appendix we show that (I - pC - p2D) is nonsingular for all 
p ~ 1. Therefore 

As before, specializing to the interesting case of an initially empty 
buffer, i.e., reO) = TeO, s(O) = (1 - T)eO, with Tin [0, IJ, we get 

We can obtain a recursion for G(N) by a procedure almost identical 
to that used in obtaining the recursion for T(N). Note that if zeN) is a 
vector such that 

(I - pC - p2D)z(N) = eo (55) 

then the components of the vector zeN) Iz}{) are, in reverse order, the 
first N + 1 numbers in the sequence Zi, i = 0, 1, 2, "', generated by 
the relations 

Zo = 1 (56a) 

A 1 A 

Zi = p(1 _ O
2

) Zi-l i = 1, "', k, (56b) 

1 A p (1 - 01 - O2 ) A 1 - 01 A 

Zi = p (1 _ O
2

) Zi-l + 1 _ O
2 

Zi-k - 1 _ O
2 

Zi-k-l, 

i > k. (56c) 

The first component equation in (55) then gives 

1 k 
(N) = L 7riZN-i, 
ZN i=O 

N > k, (57) 

where 7ro, "', 7rk are the leading (k + 1) entries in the first row of 
(I - pC - p2D). (The remaining components of this row are null.) 
For N > 2k, each term on the right-hand side of (57) satisfies the 
recursion (56c). Therefore l/z}Jll satisfies the same recursion. From 
(54), since G(N) is proportional to zjf) we find that I/G(N) also satisfies 
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the same recursion, i.e., for N > 2k, 

1 IIp (1 - (it - (}2) 1 
G(N) - p(l - (}2) • G(N-l) + 1 - (}2 G(N-k) 

1 - (}1 1 
1 - (}2 G(N-k-l) (58) 

It can additionally be shown that the above recursion holds for 
2k ~ N > 1, by direct substitution of the initial values of G(N). 

4.2 Mean time for first passage within a burst 

For a buffer of size greater than N, let t denote the time required for 
the buffer content to first exceed N within a burst. Let H (N) denote 
the expectation of t conditional to the hypothesis that the level N is 
indeed exceeded within the burst. (Equivalently, H(N) is the mean 
time taken by a buffer of size N to first overflow within a burst, given 
that an overflow does occur.) Clearly 

00 

H(N) = L (t + l)sN(t)· [Prob. that burst length ~ t + l]/G(N) 
1=0 

00 

L (t + l)sN(t)pl/G(N) 
1=0 

00 

= eJ; L (t + l)p ls(t)/G(N). (59) 
t=O 

A comparison of (51) and (59) shows that 

rl 1 
H(N) = ~ (pG(N» .-~-. 

dp G(N) (60) 

Multiplying (53) or (54) by p and differentiating with respect to p 

we can get closed expressions for H (N) for arbitrary initial state and for 
the buffer initially empty. The resulting expressions are rather un
wieldy. 

We can also use (60) to get a recursion for H(N). Thus let 

Then 

V(N) ~ _1_. 
pG(N) 

H(N) _ d ( 1) 1 
- dp VN 'G(N) 

pU(N) 
---

V(N) , 
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where UCN) ~ (djdp)VCN). Here VCN) satisfies the recursion (58), 
and UCN) satisfies a recursion obtained by differentiating the recursion 
for V CN). Thus 

VCN) 

and 

UCN) 1 UCN-l) + p (1 - (}l - (}2) UCN-k) _ 1 - (}l UCN-k-l) 
p (1 - (}2) 1 - (}2 1 - (}2 

1 VCN) + (1 - (}l - (}2) VCN-k) (63) 
p2(1 - (}2) 1 - (}2 • 

V. ASYMPTOTIC BEHAVIOR 

In this section we discuss the behavior as N ~ 00 of sequences gen
erated by the recursion 

1 - (}l + 1 - (}2 CPN-k-l = ~N, (64) 

with N = k + 1, k + 2, ... and 0 < (}l < 1, 0 < (}2 < 1, and 
o < J.l. ~ 1 the parameter ranges. 

Every recursion derived in this paper can be put into the canonical 
form (64) by simple manipulations; furthermore, all but the recursion 
(63), Section 4.2, correspond to the homogeneous form of (64), i.e., 
~N ::::::: o. In formulas for infinitely long burst (Sections 3.1, 3.2, 3.3) 
the parameter J.l. = 1; in formulas for geometrically distributed bursts 
(Sections 4.1, 4.2) 0 < J.l. = p < 1. 

Due to the linear, time-independent nature of the recursions in (64), 
the behavior of the solutions is determined by the sequence {~N} and 
the roots, Ai, of the characteristic polynomial: 

For the special case J.l. = 1 the relevant properties of the roots were 
derived in Ref. 2. Here we derive the properties for arbitrary J.l. in the 
range 0 < J.l. ~ 1. These properties are summarized in the following 

Lemma: For the range of parameters specified above, (a) C (A, J.l.) has ex
actly two positive real zeros Al and A2 which lie in the ranges [J.l. (1 - (}l) ] 
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Fig. 2-Proof of lemma. 

< (Al)k ;;; J.I. and I/J.I. ;;; A2 < I/J.I.(I - (}2) (the equality signs are un
necessary unless J.I. = 1); (b) * the remaining zeros all satisfy I Ai I k < J.I.. 

Proof: (a) Regardless of the sign of (1 - (}1 - (}2) there are two sign 
reversals in the coefficients of C (A, J.I.). By Descartes' rule, therefore, 
C (A, J.I.) has at most two positive real zeros. On the other hand, suc
cessively setting A = 0, Ak = J.I.(1 - (}1), Ak = J.I., A = I/J.I., A = 1/ 
J.I.(I - (}2) we find that C(A, J.I.) takes on the respective values J.I.(I - (}1), 
J.l.2(}1(}2[J.I.(1-(}I)]t/k, -J.l.(}I(1-J.l.(k+l)/k), -(}2(J.I.-k -J.l.), and J.I.(}I(}2/(1-(}2)' 
Also C(A, J.I.) ~ + 00 as A ~ + 00. For 0 < J.I. < 1, therefore, there are 
exactly two zeros in the respective ranges asserted. For J.I. = 1 further 
examination is required to decide whether one or both of these zeros 
become exactly equal to 1. Noticing that C(I, 1) = 0 and (a/aA) 
C (1, 1) = (}1 - k02, it follows that when J.I. = 1, either Al or A2 or both 
become equal to 1 according as (}l - k(}2 < 0, > 0, or = O. (b) We 
will prove the stronger result that the remaining zeros lie strictly 
within the contour r (Fig. 2) defined by the follmving segments in the 
complex A plane: 

A = Rei (1r/k) o ;;; R ;;; J.l.1/k 

~ < (} < 2",. - ~ 
k = =" k 

To prove this let us define 

C1 ~ J.l.A[(1 - (}2)A k - J.I.(1 - (}1 - (}2)] 

C2 ~ Ak - J.I.(l - (}1) 

(66a) 

(66b) 

(66c) 

(67a) 

(67b) 

• We are tacitly assuming k > 1. For k = 1, C(X, p.) becomes a quadratic with 
both roots positive and real in the ranges given in (a). 
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so that 
C (A, p,) = C 1 - C 2 

= C2(g~ -1). (68) 

We will show that Re[CdC2 - IJ < 0 for all A on the contour r. 
Then by an obvious modification of Rouche's theorem,lO it follows that 
C(A, p,) and C2 each have the same number of zeros within r. As C2 

has k - 1 zeros within r, this proves the lemma. 
To show that Re (CdC 2 - 1) < 0 for all A on r, let us consider 

separately the circular arc defined by (66b) and the radial lines defined 
by (66a) and (66c). 

(i) On the circular arc (66b) straightforward manipulation gives 

[C 1 [2 - p,2+2/k[C2[2 
= - 2()2p,2(2 - ()1 - ()2) (1 - cos k()) ;;; O. (69) 

For p, < 1, therefore, [CdC2 [ < 1, hence Re (CdC2 - 1) < O. 
If p, = 1, this argument remains valid except at points where 
cos k() = 1, for then [CdC2 [ = l. However, if cos k() = 1 and 
p, = 1, we find that CdC2 - 1 = ejO - 1, whose real part 
<0 for 7rlk ;;; () ;;; 27r - 7rlk. 

(ii) On the radial lines (66a) and (66c), 

= p,R (1 - ()2 - Rk + ~(~2 _ ()1) ) cos i-I, 

which is obviously < 0 for Rk ;;; p,. 

(70) 

All the recursions of this paper except (63) correspond to the homo
geneous form of (64), i.e., ~i == O. Solutions of all such recursions are of 
the form 

k 

'PN = L (3iAf', 
i=O 

(71) 

and therefore the asymptotic behavior is governed by 1.. 2, and Al 
when it is equal to l. (In the special case p = 1 and ()1 = k()2, the 
dominant root is repeated and the usual modification must be made.) 
Dropping the subscript i from Ai and (3i we give below an expression for 
the latter in terms of the initial conditions of the recursion, namely 
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(72a) 

where 

Thus, for example, the recursion for the probability of overflow 
Ceq. (58)], with T = 0, in the canonical form (64) has the initial 
conditions <Po = 1, <Pi = 1/[p (1 - 02) Ji, i = 1, 2, ... , k. Also, in this 
case the dominant root of the characteristic polynonial ~2 is the only 
root outside the unit circle in the complex plane. Therefore, 

(73) 

where {3 is obtained from (72) for the appropriate values of <Po, ••• , <Pk. 

It can be easily shown that {3 > O. In (73) (and similarly throughout 
this section) we use the notation I/G(N) t'../ (3~f to mean that 11/G(N) 
- {3~f I < EN, for sufficiently large N, and E < l. 

In a manner similar to the derivation of (73) we can show that the 
probability of a transmission fault (Section 3.2) has the following 
asymptotic behavior 

1 N 01 + 02 
T(N) t'../ a1~2 + 0

1 
_ k0

2 
when 01 < k02 (74a) 

r ')IJ (l\T --L 1 '\ 1 _ IJ. _ IJ. , IJ --L IJ 
t'../ l .... vZ\.L, I .L/ +.L Vi vz J vi 011 vz when 01 = k02 (74b) 

2 - 01 - 02 1 - 01 

(74c) 

In (74), a1 is obtained from the generic formula (72a). We have shown 
that a1 > 0 and, of course, 1 < ~2 < 1/1 - 02. Likewise, the mean 
first passage time (see Section 3.3) is, asymptotically, 
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Finally, 
CX7 > O. (76) 

VI. COMPUTATIONS 

We have written computer programs to recursively compute the 
quantities T(N), F(N), G(N), H(N) as functions of N for specified values 
of (h, 82, k, and p. Figures 3 through 6 are sample illustrations generated 
by these programs for 81 = 0.2 and 82 = 0.1. The asymptotic behavior 
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Fig. 3-Probability of overflow in a burst vs level (fh = 0.2, (J2 = 0.1, k = 5). 
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Fig. 4-Mean time for first passage conditional on overflow vs level «(Jl = 0.2, 
(J2 = 0.1, k = 5). 
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Fig. 6-Mean time for first passage in infinitely long bursts «(h = 0.2, (J2 = 0.1). 

of the various quantities is seen to be in accord with that given by 
eqs. (73)-(76) of the previous section. The dependence on the param
eters p and k also is intuitively reasonable. 

APPENDIX 

(a) We prove the assertion made in the text [immediately following 
eq. (37)] that the eigenvalues of the matrix (16) all lie strictly within 
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the unit circle. Let 

M ~ [ (1 - {h)B - XI 
{hB 

(hA ] 
(1 - ()2)A - XI ' 

(77) 

where I is the identity matrix of order N + 1. Then we must show that 

detM ~ 0, for I X I ~ 1. (78) 

From the defining equations (14) and (18), we notice that the last 
column of A is identically zero. Thus 

det M = - X det M I, (79) 

where M' is obtained from M by deleting its last row and column. Let 
mij, i, j = 0, ... , 2N + 1, denote the elements of M'. Then a theorem 
of Hadamardll states that det M' ~ 0 provided M' is irreducible and 

2N+I 

Imiil ~ P j = L Imijl, (80) 
i=O,i~j 

for all j, with strict inequality for at least one j. The irreducibility 
condition as stated in Ref. 11 is satisfied. To show (80) we note that 

Imnl=IXI andPJ = 1, forj= 1, ···,2N+l, (81) 
and 

I moo I = 11 - ()l - X I , (82) 

Thus except at X = 1, we find that (80) is true with strict inequality 
for j = o. This proves the assertion (78) except for the point X = 1. 
However, for X = 1, det M = ()1(1 - ()2)N which, by assumption, ~O. 

(b) Following eq. (52) we made the assertion that I - pC - p2D is 
a nonsingular matrix for p ~ 1. The proof is as follows. Let 

(83) 

with Mll = (1 - ()1)B - XI, M21 = ()IB, etc. As M21 commutes with 
M ll, an identity of Schur12 states that 

det M = det [MllM22 - M 21M 12]. (84) 

However, straightforward manipulation of the right side of (84) shows 
that 

det M = det (X21 - XC - D). (85) 

Then the assertion follows from (78). 
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Although coherent phase-shift keying (CPSK) is an efficient means of 
transmitting digital signals over carrier systems, it has not enjoyed wide
spread use at microwave and millimeter wavelengths because of the 
difficulty of recovering an accurate reference carrier for coherent detection. 

In this paper, a system is described which requires only a narrow-band 
phase-lock ed-oscillator filter for reference carrier recovery. This is ac
complished by block-coding and decoding the pulse sequence at the ter
minals; the recovery of a baseband timing wave is also facilitated by the 
coding process. It is also shown that: (i) for an arbitrary random input 
sequence, accurate carrier recovery cannot be achieved with just a narrow
band filter, (ii) for the system described, any input pulse sequence is 
acceptable, and (iii) there is a maximum error in the phase of the re
covered reference carrier which can be controlled by choosing the number 
of pulses in the coding block and the bandwidth of the recovery filter. 

I. INTRODUCTION 

Coherent phase-shift keying (CPSK) is one of the most efficient 
means of modulation for the transmission of digital information over 
carrier systems. In particular, CPSK is at least as efficient as frequency
shift keying or differentially coherent phase-shift keying.1- 3 Equally 
important from the point of view of hardware realization, CPSK is 
suited to operation with amplifiers which operate most efficiently in a 
nonlinear regime; this class of amplifiers includes those using traveling
wave tubes, varactor up-converters, and tunnel or IMP ATT diodes 
used as power amplifiers or as injection-locked oscillator amplifiers. 

Traveling-wave-tube amplifiers have been proposed for use in 
satellite repeaters, and there is considerable current work directed 
toward the application of millimeter-wave integrated circuit injection
locked oscillator amplifiers in digital radio and waveguide transmis-
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sion systems.4- 16 The CPSK method described here is suitable for 
those applications. 

For the type of operation envisaged for these systems, the statistics 
of the digital sources are usually unknown. To achieve maximum 
operational flexibility, it was assumed at the outset that the system 
must operate with any input pulse sequence. With this arrangement, 
the statistics of the signal source need not be restricted. 

In the system to be described, the recovery of the reference carrier 
phase-a major problem in CPSK transmission-is accomplished with 
the aid of a block-coding and decoding of the pulse sequence at the 
terminals. This coding allows recovery of the reference carrier with a 
narrow-band phase-locked-oscillator filter. 

Another important problem in digital systems with unrestricted pulse 
sequences is the recovery of the timing wave for use in the regeneration 
process. The same coding process which affords reference carrier 
recovery for all sequences also assures timing wave recovery for all 
sequences. 

In this paper, the block-coding, the reference carrier recovery, and 
the timing wave recovery are described for binary and multilevel 
CPSK systems. 

II. COHERENT DIGITAL PHASE MODULATION 

2.1 The baseband and modulated carrier signal formats 

A diagram of the block-coded CPSK carrier system is shown in Fig. 1. 
Ignoring the block coder for the moment, the input to the radio system 
is a baseband sequence of discrete amplitudes as illustrated by a binary 
"or.nonno Af Ano" onrl '70"''''''' in H'i .... ')0 'T'ho AnO'" <::If'O nArlorl <::I'" n()"'lt:i"lTP 
IV V '1. \A. V.A..&. V v \.J .... '\.J ...... Vtv ~..I...L'-'&. LlV.&.VU .L..L.&. ...... ""'0. _"""_ ..&...&..&."-' '-I ...... '-""-J .......... "" --- ...... - ......,....., .1"-_ .. "" .... 't' ...... 

pulses and the zeros as negative pulses as shown in Fig. 2b; this se
quence is the input to the phase modulator. Although raised-cosine 
pulses are used for illustration, other pulse shapes can also be used. 

An m-Ievel baseband sequence of raised-cosine pulses shown in 
Figure 2b is written 

vet) = Vo L anp(t - nT), (1) 
n 

where T is the pulse interval, Vo the peak pulse amplitude, an = ± 1, 
and 

1 
~ (1 + cos 2;t ) , 

pet) = 

0, 
T 

It I > 2' 
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,--------,\ 

Fig. I-Black-coded CPSK carrier terminals. 

RECEIVER 

OUTPUT 

OUTPUT 
BINARY 

PULSE 
SEQUENCE 

This baseband signal is used to phase modulate a sinusoidal carrier. The 
output of the phase modulator is 

M(t) = Ae cos [Wet + L anP(t - nT)], (2) 
n 

where an = k7r/m, k = ± 1, ± 3, .. " ± (m - 1). The pulse sequence 
of Fig. 2b represents both the baseband signal voltage of (1) and the 
phase modulation in (2). The peak baseband voltage Vo produces a 
peak phase deviation of 7r/2 radians for the binary case illustrated. 

A vector representation of the modulated signal is shown in Fig. 3a. 
The carrier amplitude is Ae and the unmodulated phase of the carrier 

o o 

(a) BASEBAND PULSE SEQUENCE 
AT INPUT TO RADIO SYSTEM 

V 0 0 R 1T /2 Ie T ~ 

o o o 

~~tM MM 1\ 
~~o~ V VV 

-Vo OR -1T/2 

(b) BINARY POLAR CODE 
OF PULSE SEQUENCE 

Fig. 2-Binary polar signal format. 
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Fig. 3-Phase plane representation of a binary signal. 

is zero. When pulses modulate the phase of the carrier the amplitude 
remains constant and the phase follows the modulating signal voltage. 
Trajectories for the positive and negative raised-cosine pulses of Fig. 
3b are shown in Fig. 3a for the binary case. 

It is worth noting that double-sideband suppressed-carrier modu
lators and switched delay-line modulators are sometimes regarded as 
phase modulators. A justification for this interpretation is that the 
pulses are sampled at the receiver only when the phase is at the peak 
value. However, they differ from phase modulators in the amount of 
amplitude modulation that is generated. The trajectory of the double
sideband suppressed-carrier modulation is the vertical axis in Fig. 3a 
between the points A and B; the trajectory of the switched delay-line 
modulation may be intermediate between the vertical trajectory and 
the circular trajectory of a phase modulator. Since future systems are 
expected to have power amplifiers operating in the region of saturation, 
the distortion caused by large variations in amplitude can be avoided 
by restricting consideration to phase modulators. Phase modulators 
suitable for this purpose are described elsewhere.15 

2.2 A description of coherent phase detection 

Let the input to the phase detector of the receiver in Fig. 1 be the 
phase-modulated signal M (t). The phase detector requires a local 
reference signal with the proper phase. This reference signal is written 

R(t) = - 2AR sin [Wet + e(t)], (3) 
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where e (t) is any error in the reference phase. The output of the phase 
detector is the low-frequency part, V R (t), of the product of the input 
signal and the reference signal. 

V R(t) = AcAR sin [L: anP(t - nT) - e(t)]. (4) 
n 

If the phase error, e (t), is zero, and if the output of the phase detector 
is sampled at times t = nT, the output will be ±A cA R accordingly 
as an = ± 1 and the transmitted pulse sequence is recovered. 

If the reference phase error is not zero, the signal output amplitude 
will be reduced by the factor cos e. For example, if e = 7r /4, the base
band pulse amplitude will be reduced 3 dB. An important function of 
the system to be described is to recover the reference phase in such a 
manner that e (t) is small. 

III. REFERENCE CARRIER RECOVERY WITH A PHASE-LOCKED OSCILLATOR 

The reference carrier recovery filter is assumed to be a phase-locked 
oscillator with a locking bandwidth much smaller than the bandwidth 
of the modulating pulse sequence. The analysis presented here applies 
to an injection-locked oscillator or a first-order phase-locked loop; 
the noiseless case will be considered. * 

Let the input signal be 

M(t) = Ae cos [Wet + OCt)]. (5) 

The differential equation describing the locking behavior of a 
negative resistance sine-wave oscillator has been derived in several 
formsp-19 With the present notation the equation is 

de(t) . -----cIt = (w o - We) - ~ SIn [€ (t) - 0 (t)], (6) 

where Wo is the unlocked oscillator frequency, I Wo - We I «we, 2~ is 
the locking bandwidth, and e(t) is the reference phase error. 

Since the oscillator is being used to recover the reference phase, the 
phase error, E (t), should be as small as possible. For this reason it is 
necessary that the locking bandwidth of the locked oscillator be much 
smaller than the bandwidth of the signal, OCt). This assumption, in its 
most usefu1 form, means that ~T« 1. Following Adler, expression (6) 
is rearranged as follows: 

de(t) . -----cIt = ~K - ~sm[e(t) - OCt)], (7) 

* Eisenberg has presented a related analysis which includes additive thermal noise. I6 
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where K = (w o - We)/~. The term K represents any initial difference 
between the free-running frequency of the oscillator and the input 
frequency; in the region of interest I K I < 1. 

Weare interested in deriving an unambiguous reference carrier for 
multilevel digital modulation in which each pulse is time-limited to a 
single interval of duration T. 

8(t) = L anP(t - nT). (8) 
n 

During a single pulse the variation in 8(t) is much larger than the 
variation in e(t) because ~T « 1. Therefore, the phase error at the end 
of the nth pulse can be found by integrating (7) over the nth pulse with 
e(t) held constant at the value of the phase error at the beginning of 
the nth pulse. Writing en = e(nT), we have, from (7) and (8), 

f
(n+l)T 

en+l - en = ~ {K - sin [en - 8(t)J}dl 
nT 

[
sin e f (n+l)T 

= ~T K - T nT cos 8(t)dt 

+ cos en sin 8(t)dt . f (n+l)T ] 

T nT 
(9) 

Each pulse is nonzero in a single interval of duration T so we have 

f (n+l)T f (n+l)T iT 
cos 8 (t)dt = cos anp (t - nT)dt = cos I an I p (x )dx, 

nT nT 0 

and 

f 
(n+l)T f (n+l)T 

sin 8(t)dt = sin anPCt - nT)dt 
nT nT 

= I:: I loT sin I an I p(x)dx. 

Simplifying the notation, we write 
1 {T 

Cn == T Jo coslanlp(x)dx, 

and 

Sn == ~ loT sin I an I p(x)dx. (10) 

Expression (9) becomes 

en+! - en = ~T[K - C n sin en + bnS n cos en]. (11) 

As shown in (10), C nand Sn are functions of the shape of the pulse. 
For the digital signal described by (8) the peak deviation is less than 7r 

radians for any number of levels and, for the class of pulse shapes of 
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interest, 8 n is positive. This is not true of en-it can be positive, nega
tive, or zero. Eisenberg16 has derived C and 8 for several pulse shapes 
of interest. The sign of en has an important effect upon the phase of 
the recovered reference carrier; in order that the recovered reference 
carrier have an unambiguous phase near zero degrees, it will be shown 
that a pulse shape must be used for which en> O. 

For the binary case, (11) can be written 

en+~; en = K - ~C'2 + 8 2 sin (en - bn tan-1 ~ ). (12) 

Let the probability that bn = + 1 be p and the probability that 
bn = - 1 be (1 - p). The average phase, eo, will be such that the error 
due to p positive pulses is equal in amplitude and opposite in sign from 
the error due to (1 - p) negative pulses. From (12) we get 

p [ K - ~C2 + 8 2 sin ( eo - tan-1 g ) ] 
= - (1 - p)[ K - ~C2 + 8 2 sin (eo + tan-l~)] , 

and solving for the average phase, we get 

eo = sin-1 K + tan-1 (2p - 1) ~. (13) 
~C2 + (2p - 1)282 C 

Under the best circuit adjustment, K = 0 and the average phase error 
is given by the second term in (13). When C is positive, the average 
phase is in the first or fourth quadrant and when p = ! the average 
phase is zero. On the other hand, when C is negative, the average phase 
is in the second or third quadrant and when p = ! the average phase 
IS 7f'. 

A switch of the reference carrier phase from near zero to near 7f' can 
happen in a multilevel system. Consider a 4-level system with rec
tangular pulses and peak phase ,~eviations of ±7f'/4 and ±37f'/4. 
Suppose that for a time the pulses alternate between ±7f'/4. From (10), 
C = cos 7f'/4 = 1/Y1 > 0 and the average phase is zero. If the pulse 
sequence then changes to alternate between ±37f'/4, C = cos 37f'/4 
= - IjY1 < 0 and the average phase becomes 7f'. This very undesirable 
situation can be avoided by using pulse shapes for which C > O. In 
the rest of this paper we assume that, in all cases, a pulse shape is 
chosen for which en> O. 

It is highly desirable that the average phase of the reference carrier 
be near zero. This means that in addition to requiring that en> 0, it 
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is also necessary that K ~ 0 and p ~ ! as may be seen from (13). 
The parameter K can be kept near zero by setting the rest frequency of 
the phase-locked oscillator equal to the signal carrier frequency. The 
system is required to operate with any input sequence so it is unlikely 
that p will always be near one-half. The input sequence can be coded
by a block coder to be described in Section V-into a transmitted 
sequence with p = !, thus insuring tan-1 (2p - 1)8/0 ~ O. Even 
with coding, however, the reference phase will fluctuate about zero 
and it is necesssary to insure that these fluctuations do not cause 
substantial degradation in performance relative to the performance 
which would be obtained with a perfect reference carrier. It has often 
been thought that the problem in the recovery of reference phase is 
that the occurrence of long sequences of identical pulses drives the 
recovered phase beyond reasonable limits and that if the sequences of 
pulses were sufficiently random this problem would go away. Random 
sequences are therefore of great interest. In the next section the vari
ance of the reference phase error is derived and the results illustrated 
by an example. 

IV. REFERENCE CARRIER PHASE ERROR FOR RANDOM SEQUENCES 

The differential equation which describes the phase-locked oscillator 
is nonlinear and therefore difficult to solve. We begin by noting that 
(7) can be solved exactly on a pulse-by-pulse basis if the pulses are 
rectangular. For pulses with other shapes an equivalent rectangular 
pulse can be derived. Then, linearizing the equation, and recognizing 
that the phase error is approximately normally distributed, the vari
ance can be estimated for the equivalent rectangular pulses. The binary 
case is considered. 

Let the pulses be rectangular with peak deviation ±On. Then, re-
arranging (7) and setting O(t) = On, we have 

= - D.dt f (n+l)T de(t) f (n+l)T 

nT -K + sin [e(i) - On] nT . 

The solution to the integral on the left can be found in many tables of 
integrals. After some algebra the result can be written 
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where En = E[(n + I)TJ and R = ~1 - K2. Equation (14) is exact 
for rectangular pulses and, if an input sequence of rectangular pulses 
is specified, the exact phase error can be computed. We will estimate 
the variance for a linearized version of (14). When K = 0, (14) can 
be written 

En+I = On + 2 tan-1 ( e-uT tan En ; On ) • 

Approximating the tangent by its argument, 

En+! ~ On(1 - e-AT) + Ene-AT. 

Applying (16) repeatedly we get 
k-l 

En+k ~ Ene-kAT + (1 - e-AT) L On+me-(k-l-m)AT. 
m=O 

When k is large, the phase error is independent of n and becomes 

k-l 
Ek ~ (1 - e-AT) LOme-mAT, 

m=O 

where the pulses have been rearranged to simplify the notation. 

(15) 

(16) 

(17) 

From (12) it may be seen that the error due to a shaped pulse when 
En ~ 0 is given by 

E ~ fj,T~C2 + S2 sin (tan-1 f) , (18) 

where a pulse of positive polarity is assumed. Comparison of (18) 
with the error in (17) due to the pulse 00 suggests that the equivalent 
rectangular pulse is obtained by letting 

Om = bm~C2 + S2 sin (tan-1 ~) (19) 

in (17) where bm = + 1 with probability p, bm = - 1 with probability 
(1 - p). 

The variance of (17) can be found by straightforward means ;20 

the mean, from (13), and the variance for shaped pulses are: 

S 
J.L ~ tan-1 (2p - 1) C 

0"2 ~ 2 [ ~C2 + S2 sin (tan-1 ~) r fj,Tp(1 - p). 

(20) 

The reference error is approximately normally distributed and the 
probability that the reference phase error will exceed a specified value 
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P( I e I ~ es ) ~ Q ( e
s ~ m ) + Q ( e

s ~ m ). (21) 

These results will be illustrated by an example. Let the pulse rate 
be 100 megabits per second and the locking bandwidth 0.5 MHz. For 
raised-cosine pulses with a peak deviation ±7r/2, 

J.L ~ tan-1 (2p - 1) 
0"2 ~ 2~TS2p(1 - p) 

with S = 0.6021947. For p = !, J.L = 0 and 0" ~ 0.0213 radian rms. 
The fraction of time that the phase error exceeds 0.1 radian is 

P(lel ~ 0.1) ~ 2Q(4.697) = 2.75 X 10-6• 

In some applications, changes in pulse pattern density may occur which 
are reflected in fluctuations in p. In this event the probability of a pulse 
being positive will not be constant at p = ! but will wander slowly 
about this value. Suppose, in the foregoing example, p increases by 
five percent from p = ! to P = 0.525. Then, J.L = 0.05 and 

P( I e I ~ 0.1) ~ Q(0.235) + Q(7.04) ~ 0041. 

Two important conclusions are illustrated by this example. 

(i) For practical circuit parameters, the probability of exceeding 
reasonable phase errors is uncomfortably large even for well
behaved random input sequences. 

(ii) Small variations in pulse pattern density can cause large 
increases in the probability of exceeding reasonable phase 
errors. 

It should be understood that the above example is but one of many 
possible examples; however, the filter bandwidth assumed is a practical 
value for systems operating at millimeter wavelengths. It should also 
be noted that the pulse sequences assumed in the example are highly 
idealized and mayor may not approximate sequences from real 
sources. 

v. THE BINARY BLOCK CODER 

The coder described in this section is a digital adaptation of a coder 
invented by F. K. Bowers.22 

The operation of the block coder will be described with the aid of 
Fig. 4. The block counter is an up/down counter which counts each 
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WORD 1 
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successive block of M pulses in the input sequence and indicates on its 
output terminal whether that block contains more positive than nega
tive pulses. M is an even integer. The output counter is also an upi 
down counter which counts all pulses transmitted and indicates whether 
a surplus of positive or negative pulses has been transmitted since the 
start of transmission. The outputs of the two counters are used in the 
decision circuit to invert or not invert the block of M pulses just 
counted, the decision always being made to equalize the number of 
positive and negative pulses transmitted. 

In addition to the framing pulses, a coding pulse is added to each 
block of M pulses and is used in the receiver to re-invert those blocks 
which were inverted at the transmitter. Figure 4 shows the operations 
of a block coder on a sequence of binary input pulses. In this configura
tion a framing pulse and a coding pulse have been added to each 
block of M input pulses. While a coding pulse is necessary for each 
block of M input pulses, fewer framing pulses can be used if desired. 

The decoding process at the receiving terminal is illustrated in Fig. 5. 
The position of the coding pulses in the input sequence are known 
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Fig. 5-Binary decoder. 
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REMOVAL 

OUTPUT 

relative to the position of the framing pulse. When framing is estab
lished, the coding pulses can be detected and the proper block in
versions made so that the output sequence will be identical to the input 
sequence at the transmitting terminal. 

A detailed analysis of the coding operation reveals the following 
results for M even. 

(i) The output count, and hence the sum of the output sequence, 
cannot exceed ± (1 + 3M /2). 

(ii) At the end of each frame of M + 1 output pulses the output 
count cannot exceed ± (M + 1); whatever the count at the 
end of a frame, the count at the end of the next frame will 
have moved in the direction of zero by a count of at least one. 

(iii) The maximum number of pulses between a zero in the output 
counter and the next zero is (M + 1) (M + 2). 

(iv) The maximum number of identical pulses is 2 + 5M/2 and the 
output count at the end of such a sequence is ± (1 + 3M /2). 

In deriving these properties it is necessary to adopt a convention as 
to the output indicated by the output counter when the count is zero. 
If the count approached zero from the negative side it will indicate 
that a surplus of negative pulses has been sent and the converse is 
true if the zero count is approached from the positive side. Suppose 
the output counter indicates that a surplus of positive pulses has been 
transmitted. The coding pulse is counted as a positive pulse at the 
input counter making an odd number of pulses counted. At the end 
of the frame the input counter indicates that a surplus of positive or 
negative pulses is contained in the block. The block is inverted or not 
so that the output count goes toward zero. Since there is always a 
surplus of at least one pulse in each block, the output counter counts 
toward zero at least one count at the end of every frame; the output 
count can pass through zero in this process. Now suppose that the 
output count is zero and that this count was approached from the 
negative side. The output counter indicates that a surplus of negative 
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pulses has been transmitted. If the next block has all positive pulses, 
the block will not be inverted and the output count will go to (M + 1). 
This is the maximum count which can occur at the end of a frame since 
it has already been shown that at the end of the next frame the count 
must go toward zero by at least one. Property (ii) has therefore been 
demonstrated. 

The example can be continued to demonstrate property (i). Let 
the count be (M + 1) at the end of a frame. At the end of the next 
frame the count cannot exceed M so that the maximum number of 
positive pulses that can be added to the count during the frame is 
M /2. Thus, the maximum count is M + 1 + M /2 = 1 + 3M /2 and 
this is property (i). 

The maximum number of pulses between zeros of the output count 
is found by achieving the maximum count of (M + 1) in the first 
block and reducing the count by the minimum of one in successive 
blocks until zero is reached. There are just (M + 2) blocks necessary 
to reach the next zero and (M + 1) pulses per block so the maximum 
number of pulses between zeros is (M + I)(M + 2). This is property 
(iii). Finally property (iv) is achieved by letting the count at the end 
of a frame be - (M + 1). The next frame has all pulses positive which 
brings the output counter to zero from the negative direction. The 
next (1 + 3M /2) pulses can be positive bringing the total number of 
successive positive pulses to (M + 1) + (1 + 3M /2) = 2 + 5M /2 
as stated. 

When the coder is in operation the transmitted sequence contains 
equal numbers of positive and negative pulses. The resulting average 
phase is given by (13) with p = !. 

. K 
Eo = sln-1 C . 

The fluctuations about Eo can be determined from (17). The number 
of pulses between zeros is (M + 1) (M + 2) and if AT is sufficiently 
small that (M + I)(M + 2)AT« 1, the exponential terms in (17) are 
approximately unity. Then, since the maximum sum of the output se
quence is 1 + 3M /2, an upper bound on the phase error results. 

I Emax I ~ sin-1 I ~ I + AT ( 1 + 3: ) Om, (22) 

where Om is the equivalent rectangular pulse as given in (19). 
A graphic example of the effect of coding is given in Fig. 6. A se

quence of 200 random pulses from the Rand table of random numbers 
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Fig. 6-The effect of coding a random sequence. 



is shown at the bottom of the figure. 23 The sum of these digits, L: n bn , 

is the upper plot. Note that although there are many transitions be
tween positive and negative pulses the sum remains above zero most 
of the time. The slow drift of this sum illustrates the manner in which 
the phase error wanders. 

The same input pulse sequence is shown after coding in a block coder 
with M = 8. The framing and coding pulses are not present. In the 
uncoded sequence the maximum error for t1T = 0.01 is 0.36 radian 
(20.6 degrees) for rectangular pulses with 7r/2 radian deviation, 
whereas the maximum phase error in the coded sequence is 0.06 
radian (3.4 degrees). 

The original sequence in Fig. 6 is not a rare case. As shown, L: n bn 

reaches 36 and the probability of this is 

P2oo(lL: bnl ~ 36) ~ 2Q ( _~) 
n ~200 

~ 2Q(2.54) = 0.011. 

Thus, about one out of a hundred sequences of 200 pulses each has a 
sum at least as great as the one shown in Fig. 6. 

The price paid for the recovery of the reference carrier with a small 
phase error is an increase in the transmission rate by the factor 
(M + l)jM. 

VI. TIMING WAVE RECOVERY 

It has been shown that, by coding the transmitted pulse sequence, 
the reference carrier can be recovered accurately. As shown in Fig. 1, 
the reference carrier is used to drive the phase detector in which the 
baseband pulse sequence is recovered. In a self-timed system, such as 
the one depicted in Fig. 1, it is necessary to recover a timing wave for 
use in regenerating the pulse sequence. Block-coding also helps in this 
process. 

Bennett has shown that a timing wave can be recovered by suitable 
nonlinear operations even if a spectral line at the timing frequency 
does not exist; the method requires a suitable number of transitions 
between signal polarities.24 But the block coding discussed in Section V 
insures that the largest number of pulses between signal transitions 
is 2 + 5M /2. Therefore, the block coding insures the recovery of 
both the reference carrier and the timing wave for any sequence of 
pulses whatever. 

For the sequence of pulses shown in Fig. 6 it is instructive to note 
that, although the sum L: n bn fails to cross the axis for a string of 186 
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pulses, there are frequent transitions between signal states and for 
each transition the timing recovery filter will receive a timing pulse. 24 

There are 98 transitions in all and the maximum number of identical 
pulses between transitions is six. This is typical of the behavior of 
random sequences and is the reason that the recovery of the reference 
phase is usually more difficult than the recovery of the timing wave. 

VII. MULTILEVEL BLOCK-CODED CPSK 

The binary coding scheme described in Section V can be extended to 
4, 8, 16, and higher numbers of levels. In each case the coder operates 
to equalize the numbers of pulses with equal amplitudes and conjugate 
phases. For example, the 4-level coder illustrated in Fig. 7 equalizes 
the numbers of pulses with 7r /4 radian peak deviation and opposite 
signs, and equalizes the numbers of pulses with 37r/4 radian peak 
deviation and opposite signs. The 4-level decoder is shown schemati
cally in Fig. 8. 

Because the multilevel coder equalizes the numbers of positive and 
negative pulses for each pair of level's the computation of bounds on 
the phase error reduces to the binary case. A bound can be computed 
for each pair of levels and the largest bound applies; this will usually 
be the bound computed for the pair of levels with the largest deviation. 

CHANNEL A 
INPUT 

CHANNEL B 
INPUT 

INVERT 
OR 

NOT 
INVERT 

Fig. 7-Four-phase block encoder. 
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Fig. 8-Four-phase block decoder. 

The CPSK system which results from block-coding the input digital 
sequence as described in this paper has the following properties: 

(i) The system places no restrictions on the pulse sequence ac
cepted from the source; any sequence whatever can be 
transmitted. 

(ii) Recovery of the reference carrier at repeater points is ac
complished with a narrow-band filter. 

(iii) A timing wave can be recovered for any sequence of pulses. 
(iv) Any pulse shaping required can be done at baseband. 
(v) The phase-modulated carrier is suited to operation with 

nonlinear amplifiers; in some applications RF filters are not 
required to shape the spectrum. 

The costs of providing these features are: 

(i) A block coder must be supplied at the transmitting terminal 
and a decoder at the receiving terminal. 

(ii) The transmission rate is increased by the factor (M + l)/M 
where M is the number of pulses in the coding block. In 
principle, M can be very large; in practice, it will be limited by 
the frequency stabilities of the RF oscillators used in the 
system. 

(iii) The error rate is increased by the factor 2(1 - Pe) because 
an error in a coding pulse causes M errors in the signal se
quence. This increase in error rate is of little practical im
portance. 
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Stable biasing of multiterminal P NIP N structures to support con
trolled current filaments is proposed. A filament forms when base layer 
spreading resistance is sufficiently high for lateral base voltage drops to 
shut off injection at all but a small interior portion of the structure. For 
elongated parallel stripe ernitter-base configurations, application of a 
magnetic field normal to the current filarnent and stripe axes results in 
lateral displacement of the filament which is detectable through a change 
in the external circuit current flow pattern. This displacement can be 
significantly larger than that of a single-pass Hall deflection, yielding 
high sensitivity. Analysis of an ideal model confirms a substantial im
provement in performance over that of conventional Hall devices, viz., 
a rnanyfold increase in the ratio of short circuit signal current to drive 
current, siJnilar improvement in signal-to-offset ratio, and controllable 
high output impedance making large signal voltages available. Solutions 
for the ideal model are presented for carrier transport in the I region both 
without and with lateral diffusive spread. It is argued that departures of 
actual device behavior fr01n this model are not apt to be important. Possible 
circuit connections and a sample calculation of parameter values for a 
realizable structure are also given. 

I. INTRODUCTION 

The purpose of this paper is to show how PNPN structures can be 
biased stably to support controlled current filaments and to describe 
a sensitive magnetic field detector utilizing this principle in a PNIPN 
structure. PNPN devices are widely used as 2-terminal bistable 
switches1 and as 3- and 4-terminal controlled switches,2 and have also 
been utilized in 4-terminal operation as a linear amplifier. 3 The multi
terminal circuit operation of the PNIPN structure described here forces 
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nearly equal base and emitter currents and thereby suppresses these 
switching and amplifying effects. Stable filament formation properties 
are introduced when significant spreading resistance is incorporated 
in each base layer. For the operating conditions considered, the central 
junction remains in reverse bias and supports counterflowing con
fined streams of both electrons and holes. The shape and position 
of this filament are controlled by fully characterized device and cir
cuit parameteTs, in contrast with previously reported filamentary 
instabilities.4 

lVlagnetic field sensing is made possible because a magnetic field 
applied perpendicular to the filament displaces it laterally and thereby 
produces a signal in the external circuit. The displacement can be 
many times larger than the Hall displacement of either carrier species 
for a single transit of the I region. The I region is incorporated in the 
structure for the purpose of increasing filament length and hence its 
interaction with the magnetic field. The analysis will show that the 
sensitivity of the device can markedly exceed that of an ideal Hall 
effect detector of similar dimensions. Improved sensitivity is per
mitted because the compensating electron and hole streams prevent 
the buildup of a net Hall voltage. For moderate magnetic fields, 
detection is linear, yielding field polarity as well as magnitude. This 
behavior differs strongly from that of previously reported filamentary 
magnetic sensors in which detection is related to precipitous disrup
tion of the filament when the field reaches a sufficient magnitude. 5 

Section II explains how stable multi terminal operation of the 
PNIPN structure can be achieved and how base resistance leads to 
the formation of a controlled current filament. An intuitive picture of 
the magnetic response is then developed. Sections III and IV present 
an analytical treatment of the filament characteristics and the magnetic 
response, respectively. Two cases are considered, transport in the 
intrinsic region without lateral spread and with diffusive spread. 
Section V assesses various effects that may cause actual device be
havior to depart from the ideal operation predicted in Sections III 
and IV, shows possible circuit connections for the device, and pre
sents theoretical performance characteristics for a realizable structure. 
Section VI summarizes the main features of the analysis. Preliminary 
experimental results are presented else\yhere. 6 

II. GENERAL CONSIDERATIONS 

Figure la shows an elementary circuit which causes the emitter 
currents to equal the base currents in an idealized one-dimensional 
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Fig. 1-(a) Four-terminal connection of PNIPN structure. (b) Current loop with 
figure-8 configuration. (c) Terminal 1-2 IT - V T characteristics. 

symmetric PNIPN structure with infinite current gain in each emitter
base configuration. We assume in addition that there is no significant 
recombination in the I region and that electrons and holes have 
identical properties apart from the charge sign. The current, 17', 
supplied by the constant current source in Fig. la, follows a figure-8 
path as shown in Fig. lb. Upon entering emitter P e, the current is 
injected as hole current through base N b and region 1. It arrives on 
base P b where, as a stream of majority carriers, it can exit only through 
contact 4 to battery Vo. Simultaneously, electrons are injected by 
emitter N e to arrive at N b where, as majority carriers, their only path 
is to close the loop through contact 3. It is the direct external con
nection through battery Vo that permits stable conduction of the 
current 217' in the I region. Interruption of this external current would 
force the central junction to become forward biased, corresponding to 
the "on" state of the switching mode. With battery Vo in place, a 
typical terminal characteristic between contacts 1 and 2 is shown in 
Fig. lc. It is single-valued and consists of the characteristic of a 
battery Vo and two diodes, all connected in series. Clearly, any finite 
impedance source connected between these terminals will give dc 
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stable operation. The fact that stable 4-terminal operation of PNPN 
devices is possible has recently been demonstrated.3 

With the addition of a resistance R in series with battery Vo, the 
voltage across the whole structure is reduced by I TR, causing the 
characteristic eventually to bend back into a negative resistance region 
as indicated by the dashed curve in Fig. lc. Stable operation will then 
require a source impedance greater than R. Note that this type of 
voltage turnback is consistent with common-base current gain a 

maintained at or near unity for each emitter-base configuration, 
throughout the negative resistance portion of the characteristic except 
near zero voltage. We have operated a commercial 4-terminal PNPN 
device, as well as an Ebers equivalent pair of transistors, in this 
circuit and have observed a stable negative resistance as depicted 
in Fig. lc. 

Formation of a stable current filament is brought about by base 
spreading resistance in the otherwise ideal PNIPN structure. The 
filament formation mechanism can be understood qualitatively with 
reference to the schematic illustration given in Fig. 2. We retain the 
assumption that the central diode is everywhere in reverse bias and 
that a = I for each emitter-base configuration. This structure is 
explicitly 2-dimensional, having a stripe geometry, and there is as
sumed to be no functional dependence on the third coordinate. With 
the end terminals of each base layer shorted together as shown, the 
current filament will locate itself along the center line of the structure. 
We now trace the temporal evolution toward this state, starting from 
an initial distribution of hole current which is assumed to be uniform. 
Upon arrival on P b, the hole current flow is divided between the base 

Fig. 2-Filament forming structure with multiterminal circuit connection. 
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contacts and, consistent with uniform spreading resistance of the base, 
produces a parabolic voltage profile with its maximum at the center. 
The total injection of electrons from N e must correspond to a current 
I T, but the base voltage profile will not permit this injection to be 
uniform. Because the base-emitter voltage is a maximum at the center 
and because the law governing electron injection is a highly nonlinear 
function of this voltage, the electron current density will peak sharply 
at the center. With only moderate lateral spreading in the I region, 
which is readily attainable,7 electrons arrive at N b with a distribution 
still peaked at the center. Since the average electron must now cross 
a greater length of resistive base than the average hole did in the uni
form distribution, a greater maximum base voltage will be developed 
and the voltage gradient at points away from the contacts will be 
enhanced. This sharper voltage profile will in turn lead to an inj ected 
hole distribution more sharply peaked than the incident electron dis
tribution. The analysis will show that, after a steady state is reached, 
the inj ected distribution of electrons and holes becomes identical. 
Because of the exponential injection law, this steady-state profile will 
become progressively sharper as IT is increased. In particular, when 
the voltage from base center to base contact is 1 V, the ratio of 
current density at the center to that at the edge is exp (qV/kT) ,......, e40 • 

When the filament is highly localized at the center, it is clear that the 
base resistance acts very much like the resistor R in series with battery 
Vo in Fig. la, and that negative resistance from terminals 1 to 2 in 
Fig. 2 will similarly result. 

The sharpest filament profile occurs when the I region is made ex
tremely thin to eliminate the lateral diffusive and/or space-charge 
spread. Although a thick I region is needed for good magnetic field 
sensitivity, previous work on confined electron beams in Si7 demon
strates that highly localized distributions of electrons and holes arriv
ing at the base layers can still be expected. Accordingly, in this paper 
it is assumed that space-charge spreading is negligible for reasons of 
low beam current or electron-hole charge compensation, and diffusion 
will be used to characterize the lateral spread. 

When a magnetic field, is applied into the plane of Fig. 2, the filament 
will move some distance to the right of center, producing an observable 
current unbalance in the external circuit. Such bodily displacement of 
the filament is brought about by the Lorentz force, which by virtue 
of the counterstreaming motion of the electrons and holes causes a 
Hall displacement to the right for both carrier species. If there were 
no effects tending to return the filament to center, the interjection of a 
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unidirectional Hall displacement into each pass of the regenerative 
particle flow loop would translate the filament indefinitely to the right, 
in the manner depicted in Fig. 3a. 

However, when the filament is shifted off-center, a "restoring force" 
is produced. This force is proportional to the displacement of the 
filament from the center, while the Lorentz force remains constant. 
Therefore, an equilibrium position is attained for which the return 
injection maximum is displaced back toward center by an amount 
equaling the single-pass Hall displacement, as indicated in Fig. 3b. 
Further insight into the nature of this equilibrium state can be gained 
from a study of Fig. 3c, which illustrates the relationship between the 
arriving hole current distribution, J p(x), and voltage profile V b(X) in 
base P b• Since the distribution J p(x) is displaced to the right of center, 
it sends more current to the right-hand contact than to the left-hand 
contact because the resistance is less looking to the right. The point 
in the J p(x) profile which divides the leftward from the rightward 
flowing currents must therefore lie to the left of the centroid of J p(x). 

( ELECTRONS 

HOLES)Vifv 
(a) (b) 

x-.... L 

(c) 

Fig. 3-(a) Representation of multipass displacement in the absence of a restoring 
force. (b) Representation as in (a) with restoring force. (c) Illustration of relation 
between hole current profile J p(x) and base voltage Vb (x) for a displaced filament. 
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This division point is, of course, the point of maximum base voltage 
since it is the electric field in the base which causes current conduction 
toward the contacts. In the vicinity of each contact, far from the 
filament, the magnitude of the slope of the V b(X) curve must cor
respond to the total current at that contact. The ratio of these slopes 
is, for the present discussion, adequately characterized by the assump
tion that the straight-line extrapolations intersect at the centroid 
position Xc, as depicted in the figure, and thus correspond to a ratio 
(L + xc) / (L - xc). The leftward displacement of the maximum of 
V b(X) from the J p(x) centroid is therefore determined by the require
ment that the areas under the J p(x) curve to the right and left of the 
division point be in the ratio (L + x c)/ (L - xc). The significance of the 
leJtward displacement Xd is that the return injection profile of the 
electrons peaks at the voltage maximum and is therefore displaced 
leftward from the centroid of the arriving distribution by this amount. 
Equilibrium occurs when Xd is equal to the rightward single-pass Hall 
displacement XH. 

It is apparent that, to within the above approximations, filament 
displacement in the magnetic field must be linear since Xc 0:: Xd and 
Xd = XH. Furthermore, the sensitivity increases with drive current 
because this increase narrows the filament, requiring a larger off-center 
displacement Xc to bring Xd into equality with XH. For narrow filaments 
it is possible for the displacement to be many times larger than XH, 

resulting in a signal current greatly exceeding that of a Hall device of 
similar dimensions. As a practical matter, the short circuit signal cur
rent of devices typified by Fig. 2 will saturate at perhaps ten times 
that of a Hall device, because the sharpness of the profile eventually 
becomes diffusion-limited. However, this does not appear to be a 
fundamental limitation on device sensitivity, as is shown by the ex
ample at the end of Section IV. 

III. DERIVATION OF CURRENT PROFILE AND TERMINAL CHARACTERISTICS 
IN THE ABSENCE OF A MAGNETIC FIELD 

This section presents the calculation of the filament profile in the 
absence of a magnetic field, as well as the device terminal character
istics. It is shown that the shape of the filament can be characterized 
directly in terms of the device parameters in both the absence and 
presence of diffusion. We first consider, in Section 3.1, the highly 
idealized model introduced in the last section, and neglect diffusion 
as well. In Section 3.2 we take into account diffusion, which is the most 
important additional effect present in a real situation. 
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3.1 Fully regenerative solution 

Here we develop the mathematical solution relating the filament 
current profile to the structure parameters and the drive current IT. 
The various voltages and currents entering the analysis are shown in 
Fig. 4, where it must be remembered that the two contacts on each 
base are shorted together as in Fig. 3. The procedure followed starts 
with a consideration of the lower base layer. Employing the continuity 
equation and the base resistance per unit length, r, we derive a general 
relation between the hole current per unit length J pi(X) incident on 
base P b, and the base voltage V b(X) developed with respect to the base 
contacts. From V b(X) and the terminal voltage VeL, we find the emitter
base voltage profile and, through the junction law, the injected return 
electron distribution J nr(X). VeL is ultimately determined by the 
requirement that the total emitter current is IT. We can write a similar 
relation, for the upper base, between the incident electron profile 
J ni(X) and return hole profile J pr(X). In general, the complete set of 
self-consistent equations is then obtained by introducing the appro
priate connection between the incident and return profiles of each 
species. For a symmetrical structure and in the absence of diffusion, 
J nr(X) can be directly equated to J pi(X). A single equation immediately 
results. 

The functional dependence of V b(X) on J Pi(X) can be written in 
the form 

(1) 

where the transfer impedance function Z (x, x') is the voltage response 
at x to a o-function of current incident at X'. It is easy to verify that 
Z (x, x') is given by 

Z(X, x') = r(L - x) (L + x /)/2L, 
= r(L + x) (L - x

/
)/2L, 

x ~ x' 
x ~ x'. (2) 

The other equations required to complete the description of the 
lower emitter-base configuration are the voltage balance equation 

Ve(x) = V b(X) + VeL (3) 

and the junction law 

J nr(x) = J 8 exp [qVe(x)/kT], (4) 

where the constant J 8 has dimensions of current per unit length. 
Equation (4) assumes large injection, i.e., net saturation current is 
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negligible. Although with filamentary conduction this cannot be the 
case everywhere along the junction, the errors involved are unim
portant when high-level injection is achieved in the vicinity of the 
device center. 

Combining Eqs (1) to (4) produces the relation between J pi(X) 
and J nr(X): 

Ireg In [J nr(X)/Js ] = [XL (L - x)(L + x')J pi(x')dx' 2~2 

+ i L 

(L + x) (L - x')J pi(x')dx' 2~2 + ~;t, (5) 

where 
kT 

Ireg == qrL (6) 

is a structural, regenerative current constant and is the amount of 
current necessary to produce a voltage drop kT/q when flowing from 
base center to either base contact. Differentiating (5) yields 

Ireg dJ nr(X) 
- J nr(x) dx 

= 2~2 [I_XL (L + x')J pi(x')dx' - IxL (L - x')J Pi(X')dX'] , (7) 

the right-hand side of which may be identified as 1/ L times the right-
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ward flowing current I pb(X) in P b. Accordingly, we rewrite (7) as 

where 

I pb(X) = :L [f:L (L + x')J pi(x')dx' - IL (L - x')J Pi(X')dX'] 

= ~ [[XL J pi(x')dx' - i L 
J Pi(x')dx' 

(8) 

+ l f~ x' J Pi(X')dX'] . (9) 

Note that 

J .(x) = dI pb(X) 0 

p~ dx (10) 

A single equation in one unknown is obtained by invoking the as
sumptions of symmetry and lack of diffusion: 

J ni(X) = J Pi(X)! b 
J nr(X) = J pr(X) y symmetry, (lla) 

Jni(X)=Jnr(X)!b dOff' -0 
J . ( ) - J () Y 1 uSlOn - . 

p~ x - pr X 
(lIb) 

Clearly, all currents are equal. In particular, J nr(x) = J pi(X), so that 
from (8) and (10) we obtain 

_ I L d2 I b (x) = I ( ) dI b (x) . 
reg dx2 b X dx (12) 

In (12) and thereafter we drop the superfluous subscripts; variable 
I b(X) still refers to the rightward flowing current in P b, and also gives 
the leftward flowing current in N b. 

The nonlinear second-order differential Eq. (12) can be solved as 
follows. Rewriting (12) as 

_ 2LI d21 b(X) = dIHx) 
reg dX2 dx 

and integrating from 0 to x yields 

- 2Llreg[ dI~~x) - dI~~O) ] = n(x) - n(O). (13) 
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By symmetry about the center line of the structure, 

I b(O) = O. 

Upon introducing the maximum value of the current profile, 

_ d1 b(O) 
J o == J(O) - -----;[X 

eq. (13) therefore becomes 

d1b = J o _ ~. 
dx 2L1reg 

Putting (16) into the form 

dx 
2LJ 01 reg - 1~ = 2L1 reg' 

and integrating from -x to x results in 

1 [tanh-l( I b(X) ) 
~2LJ olreg -V2LJ olreg 

( 
I b ( - x) ) ] 2x 

- tanh-
l 

-'2LJ
o
1

reg 
= 2L1 . "v reg 

Again, by symmetry about the center line, 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Using (19) and the property that tanh-ley) is an odd function of y, 
we obtain, after some rearrangement, 

(20) 

From Fig. 4, 

(21) 

Therefore, the current profile peak J 0 can be determined from the ex
ternally imposed drive current I T with the relation 

(22) 

Using this Join (20) gives the functional dependence of the base 
current on position in terms of the drive current and known param
eters of the structure. In Fig. Sa, 21 b (x) lIT is plotted vs. xl L for 
various values of the dimensionless regeneration parameter I Tl41reg. 
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Fig. 5-(a) Position dependence of normalized base current for various values of 
regeneration parameters. (b) Filament current profile normalized to unity peak 
value for the same regeneration parameter values as in (a). 

For sufficiently large drive currents such that this parameter is much 
greater than unity, (22) reduces to 

(23) 
and hence 

(24) 

Since the right-hand side of (24) is just the argument of the tanh func-
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tion in (22), the regeneration parameter is properly approximated by 
(24) for contours of which the slope is small in the vicinity of x = L, 
i.e., the filament does not touch the boundaries. The contours are 
adequately described by 

1 ( IT x) I b(X) ~ 2 IT tanh 4I
reg

'L ' (25) 

which follows upon substituting (23) into (20). 
The filament profile itself is obtained simply by differentiating (20) 

or, for larger IT, (25). We find, respectively, 

J(x) = J. sech' (~~;~;L) (26) 

J(x) = -- sech2 --.- • I?r ( IT x) 
81 reg 41 reg L 

(27) 

Plots of J(x)jJo vs. x/L for the values of I T/4I reg used in Fig. 5a are 
displayed in Fig. 5b. It is evident that, for large values of the regenera
tion parameter, highly localized current flow is obtained. Equation 
(24) shows that this parameter is made large through increase of IT, 
r, or L. However, IregL is independent of L so that from (27) one sees 
that the absolute width of the filament is unchanged by variations of 
L for fixed r. For a given I T the only way to sharpen the filament is to 
increase r. With a high degree of control, the current path is self
contained within an interior portion of the structure. Confined current 
flows without benefit of physical nonuniformity and is furthermore 
independent of overall dimension L. The parameter values necessary 
to produce a ,yell-localized filament can be realized in a practical 
structure, as is demonstrated by the example in Section V. 

We now proceed to calculate the terminal characteristics. The most 
straightforward approach consists of relating J (L) to IT with (26) 
and (22) and using the junction law (4) to relate J (L) to VeL. Recalling, 
however, that (4) applies only at high-level injection, which may not 
be satisfied at x = L, a more trustworthy method must be employed. 
Since (4) is reliable at x = 0, we may utilize it to find Ve(O) from J 0, 
and relate J 0 to IT with (22). Then VeL is determined from (3) and 
(1), where (26) is used in the integral in (1). It is clear that, whatever 
the junction law, J(L) follows VeL, as impressed through the voltage 
balance described above, even if VeL is negative. Hence, with this 
method the errors in calculating VeL are no greater than those in ob
taining J o and Vb(O) with the large injection assumption. When J o 

greatly exceeds the saturation current, these errors are small. 
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From (3) and (4), 

VeL = kTln (JoIJ s) - Vb(O), 
q 

where, in accordance with (1), 

Vb (0) = f-: Z (0, x')J (x')dx'. 

Substitution of (2) and (26) into (29) yields 

V,(O) ~ ~ J.r fL (L + x') sech' (~:;~ .. f )dX' 

+ ~ Jor Io L 

(L - x') sech2 (~;;~g·f )dX' 

~ J.r 1. L (L - x') sech' ( ~:;~g . f )dX' 

= 2 kT In cosh (~JoL ). 
q 2Ireg 

Substitution into (28) results in 

kT 2kT ( (JI") VeL = q In (JoIJ s) - -q-In cosh 'V~ , 

where the definition (6) of Ireg was used. From (31) 

V,L = k: In [J, / J, cosh' ~:;~,]. 

(28) 

(29) 

(30) 

(31) 

(32) 

Together with (22), (32) specifies the terminal characteristics. It is 
usually reliable only for J 0» J s because of the large injection assump
tion. When the regeneration parameter is large, (23) may be introduced 
into (32), yielding VeL directly in terms of IT. 

VeL = 2~T In [IT / 2~2LJ sIreg cosh ( 4~~eg) ] . (33) 

The terminal voltage V T developed by current source IT, as in Fig. 
lc, is 

V T = Vo + Vbuilt-in + 2VeL 

= Vo + Vbuilt-in + 4~T In [IT / 2~2LJslreg cosh (4~:g)]· (34) 
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Fig. 6-Form of terminal IT - V T characteristic based on fully regenerative 
solution. 

For large argument the cosh function can be approximated by an 
exponential, permitting (34) to be rewritten as 

4kT [ IT ] VT = Vo + Vbuilt-in + --In -oJ - rLIT • 
q 4 2JskT /qr 

(35) 

The IT VS V T characteristic is displayed in Fig. 6. It should be ob
served that the asymptotic negative resistance is essentially the same 
as in the structure of Fig. 1. This is evidence of the fact that, with large 
regeneration and a filament strongly confined to the center of the 
structure, regions of the base away from the filament have an effect 
indistinguishable from external series resistors. 

3.2 Diffusion limited solution 

While the regenerative solution of Section 3.2 may well be applicable 
to PNPN structures with a narrow central junction, we must take 
into account the diffusive spread of the carrier streams in the wide I 
region of a PNIPN magnetic field sensor. In the presence of diffusion, 
eqs. (8) and (9) are still valid, but the equality (lIb) between the 
incident and return currents no longer holds. For example, the stream 
of holes J pr(X) injected by emitter P e spreads under the action of diffu
sion while crossing the I region, to arrive at P b with a new broader 
profile J pi(X). An initially spike-like or Gaussian profile arrives as a 
Gaussian, and any other localized distribution also tends toward a 
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Gaussian. This relation can be expressed mathematically by 

J pi(X) = f_: G(x, x')J pr(x')dx', 

where G(x, x') is the diffusion Green's function8 

G(x, x') = ~exp [ -a~(x - X')2] 

(36) 

(37) 

and aD IS the diffusive spreading parameter. Here aD IS given by 

(38) 

where W is the I region width and Vd and D 1 are the drift velocity and 
transverse diffusion coefficient of the carriers traversing it. It is, of 
course, assumed here that the diffusive spread is insufficient to cause 
the carrier stream to contact the boundaries at x = ± L. 

Utilizing the symmetry relations (lla) and substituting (36) into 
(9), we obtain from (8) the equation in one unknown, J rex), 

- Ireg dJd;x) = 2~2 Jr(x) [[XL (L + x')dx' f-: G(x', x")Jr(x")dx" 

-iL 

(L - x')dx' f-: G(x', x")J r(X")dX"] , (39) 

where the species subscript has been dropped. In view of the com
plexityof (39), we attempt only an approximate solution. It is evident 
that such a solution would be most difficult in the parameter range for 
which the diffusive spread and regenerative filament width are com
parable. In the limit of small diffusion, which we shall not consider, 
perturbation theory could be used to find the slight modification pro
duced in the completely regenerative solution. At the other extreme, 
large diffusion, the regenerative mechanism is largely interrupted and 
the incident current profile tends toward a diffusion-controlled 
Gaussian. 

In the case of large diffusion, where the incident current profile is 
Gaussian, we may solve (39) approximately by also parameterizing 
J r (x) as a Gaussian, but with a different spreading parameter. This 
procedure can be justified in the following way. If we had a uniform 
incident current profile, the base voltage developed would be a para
bolic function of x. Then, with the assumed exponential junction law, 
the injected return current is fortuitously Gaussian. This return profile 
will remain Gaussian whatever the form of Ji(x) in the regions external 
to J rex), as long as Ji(x) is reasonably uniform within the region of 
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J reX). Therefore, in situations where the return profile is much nar
rower than the incident profile, J rex) is always well approximated by 
a Gaussian. In the diffusion-controlled case, this narrow Gaussian 
return profile diffusively spreads into the broad Gaussian incident on 
the opposite base, thereby closing the self-consistent loop. 

We assume that 
(40) 

with a r the return profile spreading parameter. Then, after inserting 
(40) and (39) into (36), integration yields 

Ji(x) = aD~O fL exp[ -a~(x - X')2] exp (-a;x'2)dx' (41) 
"J7r -L 

where 
araD 

at == --,==== 
~a; + a~ 

(42) 

is the spreading parameter of the incident Gaussian. In performing the 
integration, it has been assumed that aDL» 1 and arL» 1, so the 
limits may be taken at infinity. We insert the form (41) for (36) 
into the bracket on the right-hand side of (39) and integrate again. 
The result is 

f x (L + x')Ji(x')dx' - fL (L - x')Ji(x')dx' = 2L (X Ji(x')dx' 
-L X Jo 

= -{; L J 0 erf (a iX) . ( 43) 
a r 

Substitution of (40) and (43) into (39) yields 

(44) 

which clearly cannot be satisfied at all x for any spreading parameter 
values. The necessary approximation consists of replacing the error 
function by its first-order power series expansion term valid for small 
aiX. We obtain 

(45) 

Using the normalization of (40), 

J 
_ ITa r 

o - -{; , (46) 
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(45) becomes 

a~ + ata; - (I TaD/2Llreg)
2 

= 0, (47) 
7r 

of which the meaningful root is 

a; = I TaD [ 11 + (aDLlreg )2 _ aDLlreg ] . (48) 
2Llreg-{; 'V -{;I T -{;I T 

For (48) to be accurate requires that the return distribution fall to a 
negligible amplitude at values of x such that the next expansion term 
in erf (aix) beyond the first makes an insignificant contribution in 
(44). Thus, setting x = liar, for which 

the criterion is easily seen to be 

(50) 

This is not really very stringent, because it indicates about 3 percent 
accuracy when the incident distribution is only three times wider than 
the return distribution. A simpler expression for a; than (48) may be 
obtained when the inequality (50) is well satisfied. We may estimate 

the magnitude of the dimensionless ratio aDLlreg/{;I T by applying 
(50) to (48), together with the relation aD ~ ai, which follows from 
(42) and (50) and is used to eliminate ai. Neglecting the departure 
from unity of the bracketed expression in (48), we see that there 
results the condition 

aDLI reg « ~. 
{;I T 2 

(51) 

Therefore, in the diffusion-controlled regime, a; is well approximated by 

(52) 

Surprisingly, the Gaussian parameterization of J rex) yields a solu
tion which, in the absence of diffusion [aD ~ 00 in (47)J, departs only 
moderately from the fully regenerative solution (27). Figure 7 com
pares these solutions for the same value of I T and shows that the Gaus
sian approximation overestimates the peak amplitude by 28 percent 
and is correspondingly narrower. Although the Gaussian therefore only 
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Fig. 7-Comparison of Gaussian approximation in the diffusionless case with fully 
regenerative solution at one value of IT. 

approximately represents the true solution, it demonstrates that we 
can carry the large diffusion approximation well outside its intended 
range of validity without a precipitous drop in accuracy. 

The terminal characteristics in the diffusion-controlled case may be 
found with the same procedure employed for the fully regenerative 
solution. As long as the diffusion-controlled filament remains narrow 
compared to 2L, the asymptotic negative resistance is reduced by the 
factor (1 - l/-{;cx iL) which is close to unity. 

IV. RESPONSE TO A MAGNETIC FIELD 

Section II gave a qualitative explanation of the magnetic response 
of the PNIPN structure. It was shown that unequal leftward and right
ward base currents resulted. Here we calculate this current unbalance 
in the limit of linear response. We define the signal current Is as the 
increase in current flowing out of the right-hand contact of base P b• 

Small signal calculation of Isis simplified because it presupposes that 
the magnetic driving force is negligibly perturbed by the magnetically 
produced changes in current profile. Thus, the terminal response is 
obtained by perturbation theory without a recalculation of the fila-
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ment shape. Again, we neglect and consider the effect of diffusion in 
Sections 4.1 and 4.2, respectively. 

4.1 Fully regenerative case 

With the magnetic field directed into the page in Fig. 2, both the 
downward flowing holes and upward flowing electrons are deflected to 
the right by the Hall displacement 

XH = jLBW, (53) 

which is the same for both carrier species, assuming equal mobilities. 
As a consequence of this deflection, relations (lIb) become 

J ni(X + XH) = J nr(X) 
J pi(X + XII) = J pr(X), 

(54) 

which is applicable as long as the current profiles do not contact the 
boundaries. The symnletry of the structure preserves relations (lla), 
which, together with (54), yield from (8) and (9) 

- Ireg d: Ji(x + XH) = 2~2 Ji(x + XH) [i_XL (L + x')Ji(x')dx' 

- ixL (L - X')Ji(X')dX'] , (55) 

where we have dropped the species subscript. By changing variables, 
(55) can be rewritten 

(56) 

We recognize from (9) that 1/2L times the first two terms in the last 
bracket is I b(X). The last term, furthermore, can be written to first 
order in the magnetic field as 

(57) 
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Therefore, (56) becomes 

d 1 XH 2 
- Ireg dx Ji(x) = L Ji(x)Ib(x) - L Ji(x), (58) 

which, by (10), can be written 

- Ireg d~ Ji(x) = 2~ d~ n(x) - y; J~(x). (59) 

Integration of (59) from - L to L, together with the vanishing of 
J i( ±L), yields 

![n(L) - n( -L)] = XH f-: J~(x)dx. 
From the definition of Is 

IT 
Ib(L) = 2 +Is 

IT 
Ib(-L) = -2+Is. 

Therefore, to first order in Is, (60) becomes 

l
Is = XHfL J~(x)dx/I~. 

T -L 

(60) 

(61) 

(62) 

Since the right-hand side of (62) is by virtue of XH already linear in the 
magnetic field, the unperturbed filament profile may be used for Ji(x). 
We can see from this equation that 1 s/ 1 T will increase for fixed XH 

when the filament profile J i(X) is made sharper. Evaluation for the 
fully regenerative profile (27) results in 

1 s XH IT 
IT = 12L'Ireg ' 

Substitution for Ireg from (6) and for XH from (53) gives 

Is _ /-LBW( q rLIT) 
IT - 2L kT-6-

r-..J /-LBW.( qVb(O)) 
r-..J 2L 3kT ' 

(63) 

(64) 

where /-LBW /2L is the short circuit current ratio of an ideal Hall 
device of similar dimensions and qV b(0)/3kT is a convenient measure 
of the enhancement of the sensitivity with regeneration. V b(O) 
~ rLI T/2 is the center-to-edge base voltage in the absence of the 
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magnetic field and can be on the order of volts, leading to enhancement 
factors in the range 10 to 100. 

4.2 Diffusion limited case 

Putting (9) into (8) and using only the symmetry relation (lla) 
we have, upon dropping the species subscripts, 

- 1reg ddx J rex) = J rex) 2~2 [f:L (L + x')J i(x')dx' 

- fxL (L - x')Ji(X')dX'], (65) 

In contrast with the procedure followed in Section 4.1, it is convenient 
here to integrate (65) from - L to + L at once, to obtain 

o = f L J r(x)d IX (L + x')J i(x')dx' 
L -L 

- f-: Jr(x)dx fxL (L - x')Ji(x')dx'. (66) 

Again, we have assumed the vanishing of the filament profile at the 
boundaries, i.e., J r( ±L) = O. Upon introducing I e(X) defined by 

J ( ) = d1e(x) 
r x dx' (67) 

integration by parts of (66) yields 

o = [!eeL) + !e(-L)]L1T + [le(L) - !e(-L)] 

X f-: xJi(x)dx - 2L f-: !e(x)Ji(x)dx. (68) 

From the second form of (9) and from (61) 

~ f-: xJi(x)dx = I beL) + I b( - L) 

= 218 . 

In analogy with (61), we define 1~ by 

(69) 

(70) 

I e is a construct which can be interpreted as the lateral emitter cur
rent if the emitter, like the base, had contacts at ±L. 1~ is the mag
netically produced unbalance in I e. Substitution of (69) and (70) into 
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(68) results in 

(71) 

This equation is merely a simplified version of the integral of (65). 
To proceed further, it is necessary to introduce explicitly the simul

taneous diffusive spreading and lateral magnetic displacement of the 
carrier stream as it crosses the intrinsic region. Combining (36) and 
(54) leads to the general relation between J i and J r , 

Ji(x) = fL G(x, x')J rex' - xH)dx', 
-L 

(72) 

where G(x, x') is the diffusion Green's function (37). Expanding (72) 
to first order in x H yields 

Ji(x) ~fL G(x, x')J r(x')dx' - XHfL G(x, x') dd J r(x')dx' 
-L -L X 

= fL G(x, x')Jr(x')dx' - XHfL dd G(x, x')Jr(x')dx', (73) 
-L -L x 

where the second form has been obtained through an integration by 
parts with the boundary condition J (±L) = 0, and the relation 
dG/dx' = - dG/dx. Upon substituting (73) into the integral in (71), 
the first term of (73) gives rise to an integral of the form 

9 = f-: Ie(x)dx f~ G(x, x')Jr(x')dx'. (74) 

It is possible to show by successive integration by parts that 

9 = feeL) f-: Ie(x)G(X, L)dx - Ie(-L) f-: fe(x)G(x, -L)dx. (75) 

The vanishing of J r in the vicinity of the boundaries corresponds to a 
nearly constant value of fe(x) in the boundary regions where G(x, ±L) 
has a significant magnitude. By noting the normalization 

we obtain 
f L 1 

-L G(x, ±L)dx = 2"' 

9 = ![I~(L) - I~( -L)] 

= ITI~. 

(76) 

(77) 

Therefore, substitution of (73) into (71) eliminates the I~ term, leaving 

ITIs = - XHfL Ie(X)dXfL dd G(x, x')Jr(x')dx'. (78) 
-L -L x 
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Interchanging the order of integration, integrating by parts with 
respect to x, and utilizing (67) give 

ITIs = - XH[ feeL) f-: G(L, x')Jr(x')dx' 

- fe( - L) f-: G( - L, x')J r(x')dx' 

-f-: f-: J r(x)G(x, x')J r(x')dx dX'], (79) 

Because J rex) and G (±L, x) do not overlap, the first two integrals in 
(79) vanish, yielding the final result 

;; = XII f-: f-: Jr(x)G(x, x')Jr(x')dx dx'/I~. (SO) 

In the limit of no diffusion G(x, x') -+ o(x - x') and (SO) reduces to 
expression (62), but (SO) is valid for arbitrary diffusive spreading. 
For Jr(x) parameterized as a Gaussian according to (40) and using 
(37) and the normalization (46), (SO) becomes 

~; = X H . 2a;LI reg/ I T~ 1 + 2a't/ a;. (Sl) 

In the diffusion-controlled regime characterized by a; as given in (52), 
the radical in (Sl) is approximated by unity, and we find 

(S2) 

The result (S2) can also be obtained from (SO) by letting J rex) -+ I TO (x) 
for which 

Is .1 
IT = xHG(O, 0) = xHaD/"J1I'. (S3) 

The equality of (S2) and (S3) demonstrates that, in the diffusion
controlled regime in which ai/ar need only satisfy (50), the structure 
nevertheless responds to a magnetic field as if the return current 
profile were a very sharp spike. The absence of I T on the right-hand 
side of (S2) indicates that diffusion saturates the magnetic sensitivity 
and, unlike (63), the signal is now only linearly proportional to the 
drive current IT. To compare the diffusion-controlled detector with a 
Hall effect device, we substitute for XH from (53), define the voltage 
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across the I region at the center by 

VB = Vo - 2V b (0), (84) 

and introduce the transverse noise temperature of the carriers defined 
by the Einstein relation 

(85) 
Thus (82) becomes 

(86) 

The expression in parentheses is the sensitivity enhancement factor 
for this case, which should be compared with (64), derived in the ab
sence of diffusion. Equation (86) shows that the sensitivity of the 
diffusion-controlled detector is improved by increasing the central 
bias voltage until carrier heating predominates. At 8 V, the radical has 
a value of approximately 10 for W sufficiently large that Tn'" T. 

Equation (86) seems to suggest that large sensitivity enhancement 
with respect to Hall devices can be achieved by making L / W very 
large. This improvement is, however, illusory because it merely creates 
an unfavorable geometry for the Hall device. A fair comparison is 
possible when the device configurations are nearly square. Although 
in this case an enhancement factor involving only qV B/kT n is indicated, 
this should not be construed as an ultimate limitation imposed by 
diffusion, but rather as a structural limitation. The following example 
will illustrate how, for fixed Wand L, the fully regenerative enhance
ment factor can be obtained within the constraints imposed by diffu
sion. An analysis has been carried out for a structure in which the 
emitters are contacted at ±L and have resistances per unit length 
approaching but less than that of the base layers. It has been found 
that, in the absence of diffusion, emitter resistance broadens the 
filament but does not diminish its off-center displacement or signal 
current when a magnetic field is applied. Since a broader filament is 
less subject to diffusive spreading when diffusion is taken into account, 
the effect of sufficient emitter resistance is to carry the filament forma
tion and magnetic response out of the diffusion-controlled regime 
back into the fully regenerative regime. Therefore, the diffusion limit 
given by (86) would appear to be appropriate only to the structure 
analyzed iIi detail, rather than to be fundamental. 

v. PRACTICAL MAGNETIC DETECTORS 

The previous sections of this paper have established the fundamental 
principles according to which controlled filaments might be produced 
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in PNIPN structures and have analyzed their magnetic sensitivity. 
Certain idealizations were made in order to develop a coherent theory. 
One purpose of this section is to give at least a preliminary account of 
the effect of removing these idealizations, so that we may relate the 
theory to practical devices. Since magnetic response has heretofore 
been characterized solely in terms of the short circuit signal current Is, 
it is also necessary to analyze the behavior of the magnetic detector in 
an actual circuit which presents a finite impedance to the detector 
output. Several realizable circuits are considered. Finally, practical 
design parameters of a particular detector are given and performance 
predictions are made. Because filament formation in these devices 
requires that they be biased into the negative resistance range, there 
may be a tendency for ac instability, notwithstanding their apparent 
stability at dc. The dependence of oscillatory behavior on parasitics 
suggests that, at the outset, only experimental resolution of the stability 
question is feasible. 

5.1 Removal 01 idealizations 

The model developed thus far has been based on the explicit assump
tions of (1) complete structural and electrical symmetry, (2) high 
level injection, (3) infinite current gain, and (4) lateral carrier stream 
spreading in the I region by diffusion only. It has also been implicit 
in the analysis that it is permissible to neglect the effects of lateral 
electric fields in the I region, filament position pinning resulting from 
structural imperfections, and possible modulation of base width and 
conductivity. While a detailed investigation of all these effects is 
beyond the scope of this paper, we shall explain why they are not apt 
to modify greatly the operation described in the previous sections. 

In view of the regenerative nature of the filament, the assumption of 
infinite current gain might appear questionable. In actual fact, it is 
easily shown that for finite, but reasonably large, values of common 
emitter current gain (3, device performance is only slightly degraded. 
We consider first the fully regenerative case, i.e., no diffusion. In the 
absence of a magnetic field we recall from (lla) and (lIb) that Ji(x) 
= J reX). When (3 ~ 00, the base current, and hence the base voltage 
V bao(X), are produced entirely by Ji(x) as given by (9) and (1), re
spectively. For finite (3, there is an additional base current component 
produced similarly by a current profile J r (x)/{3(=J i(x)/{3) which is 
subtractive, and hence reduces the base voltage drop to V b(X) 
= (1 - l/(3)V bao (x). This voltage reduction is the same as would be 
caused by retaining infinite {3 and reducing r from the original value 
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roo to 

(87) 

Assuming now that an increase in the actual base resistance is made to 
compensate for this effect, no modification results in the filament pro
file if the current through the battery is maintained unchanged. To do 
so with finite {J requires an increase in emitter current by a factor 
({J + 1)/ ({J - 1). It is clear that the filament disappears for {J < 1, 
but that for {J » 1 there need only be a small degradation. 

In the diffusion-controlled regime there can be additional significant 
effects of finite (J. When the incident profile is much broader than the 
return profile, we have Jr(O)/Ji(O) = ar/ai > 1. Therefore, in the 
vicinity of the origin, the injection process will give rise to subtractive 
base current components comparable to those produced by Ji(x), un
less {J is sufficiently larger than ar/ ai. The presence of such subtractive 
components lowers the base voltage at the origin, broadening the re
turn profile and self-consistently lowering J r (0) until {J > J r (0) / J i (0) 
is suitably satisfied. Clearly, in the diffusion-controlled regime, finite 
current gain places a limit on the sharpness of the return profile which 
cannot be improved by increase of base resistance, i.e., a r < {JaD if the 
approximation of a Gaussian return profile is retained. Because the 
magnetic sensitivity is only weakly dependent on the return profile 
width if (50) is satisfied, as shown by the comparison of (82) and (83), 
it should only be slightly affected by finite current gain as long as 
{J» ~. 

We now briefly consider several effects that can modify filament 
formation and translation through localized departure from the simple 
theory. Lateral fields in the I region, brought about by the base layer 
voltage, can cause deflection9 of the carrier streams not taken into 
account in the filament analysis. As a result of the symmetry of the 
two emitter-base configurations, there is electrical symmetry about 
the plane midway between the bases. Therefore, the electric field 
streamlines in the I region may converge near midplane, but still 
connect, in 1-to-1 fashion, points on the two base layers lying equi
distant from filament center. Consequently, although the filament may 
tend to neck in at the center, this effect will not by itself give rise to 
additional lateral spreading. Similarly, when the filament is displaced 
off-center by a magnetic field, these lateral fields will not cause a net 
restoring force toward device center. 

Filamentary instabilities characteristically occur at the particular 
cross-sectional location where breakdown is most easily initiated. 5 We 
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have shown that in the present controlled filament formation mecha
nism, nucleation takes place at the center of the structure. It is still 
possible, however, that at other locations pinning points may exist for 
the filament because of structural inhomogeneities such as, for example, 
a locally enhanced injection efficiency. It is convenient to classify 
such inhomogeneities according to their size relative to the filament 
width. Large-scale inhomogeneities, which we shall assume to be 
reasonably weak, should result in only mild distortion of filament shape 
and position. In using the structure as a magnetic field sensor, this 
effect would produce a dc "offset voltage," but not otherwise interfere 
with the magnetic response. On the other hand, intense small-scale 
parameter fluctuations would provide distinct filament pinning points. 
However, in the diffusion-controlled regime this effect should be much 
reduced. Not only does the diffusion introduce an averaging over 
dimensions larger than the inhomogeneity, but the accompanying 
interruption of the feedback loop serves to damp down the multipass 
gain fluctuations. Because of the filament centering force inherent 
in the simple theory, pinning the filament becomes progressively more 
difficult at points away from device center. Ultimately, however, 
the importance of filament pinning will have to be determined 
experimentally. 

In contrast with structurally associated departures from ideal be
havior, localized paraI~eter variations may occur self-consistently in
duced by the filament itself. Under conditions of high current density, 
transport in the base may be modified by increased base width or 
conductivity. It is well known that for transistors operated at high 
currents the base tends to widen. A similar effect here would lead to 
a decrease in the base resistance per unit length r. When there is a 
perfectly compensated filament of electrons and holes in the collector, 
however, one would expect this effect to disappear but, if there is 
diffusive spread of carrier streams, locally perfect compensation is 
absent and some base widening may still occur. A similar local de
crease in r would result directly from the conductivity modulation 
produced by the injected carriers. This effect is readily minimized by 
making the base layer thin, while keeping the same sheet resistance. 
With a thinner base the minority carrier density for a given current is 
lower, while majority carrier concentration is higher. In any event, a 
local reduction in r will broaden the filament, but one would expect 
the change in shape to be more pronounced than the actual change in 
width. Similar modification of the filament profile can be anticipated 

494 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1974 



from the falloff of injection efficiency at extremely high injection 
levels. Io 

We now examine the assumptions of structural and electrical 
symmetry. Structural asymmetries, an example of which is an in
equality of base resistance, is subj ect to technological control and can 
probably be made small. Such asymmetry will invalidate (lla), re
sulting in inequivalent electron and hole profiles, but if reasonably 
small it is unlikely to affect the average filament properties or magnetic 
response. In contrast, the electrical asymmetry is mostly governed by 
the disparity of the electron and hole mobilities which is not con
trollable and may be quite large. An immediate and important con
sequence of such a mobility ratio is inequality of the electron and hole 
Hall displacements. It might appear that, because of this inequality, 
a magnetic field would disrupt the filament by pulling apart the elec
tron and hole streams. Indeed, it has been proposed that the magnetic 
response of a GaAs double inj ection diode can be explained by such a 
mechanism. 5 In the present system, this phenomenon may occur at 
very high magnetic fields but should normally be avoidable, since the 
filament is broader than the single-pass Hall displacement and there 
is no strongly nonlinear pinning point. We have made an analysis based 
on a rigid displacement of the electron and hole current profiles in 
the fully regenerative case which indicates that no strong disruption 
is to be expected. The results show that the coordinate difference 
between centroids of the return distributions is just one-half the dif
ference between their Hall displacements and is therefore much less 
than the off-center displacement. A quantitative measure of the un
balance can be obtained from the ratio of the unbalance of the signal 
currents in the two base layers to their average: 

Isn - Isp = 3Ireg (XHn - XHP) 
Is IT XH ' 

(88) 

where I Sn and I Sp are the signal currents in N band P b, XHn and XHp 
are the Hall displacements of electrons and holes, and Is and x Hare 
the average signal current and Hall displacement. The factor I T/3Ireg 

is recognized from (64) as twice the enhancement factor, and the right
hand side of (88) is therefore much less than unity. 

Another effect of the mobility ratio is the destruction of the inherent 
filament space-charge neutrality, with the result that there will be 
increased lateral space-charge spreading. Qualitatively, the effects of 
space-charge spreading are not greatly different from those of diffusion 
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and therefore the simple diffusion theory should account for its main 
features. Since, unlike diffusion, space-charge repulsion scales with 
filament current, it can be minimized by increasing the base resistances 
so that the necessary base voltage drops can be achieved at low current. 
Another approach is to use a circuit that equalizes the carrier densities 
by equating the electron-to-hole emitter current ratio to the mobility 
ratio, thereby restoring a nearly neutral filament. 

5.2 Magnetic-detector circuit connections 

Up to this point, the response to a magnetic field has been character
ized only in terms of a signal current Is. Here we consider the inter
connection of the detector with a finite load impedance. In the circuit 
of Fig. 2, Is could have been detected only by a perfect ammeter. 
Figure 8 shows a straightforward circuit modification which provides 
terminals for the connection of load resistors, R L • In the absence of 
magnetic field, the voltage and current of the six device terminals, 
and therefore the filament profile, are completely unaltered by the 
addition of the external resistors Rex, provided battery Voo has the 
value 

Voo = Vo + I TRex. (89) 

The magnetic response is most easily understood by adopting an 
alternative view, in which resistors Rex are considered part of extended 
base layers having total effective resistance 2Reff = 2Rex + 2r L. If 
the filament remains sufficiently confined to fall well within the actual 
device boundaries, the whole configuration behaves as if it has a base 
of effective length 2Leff related to Reff by 2rLeff = 2Reff, so that 

L L Rex eff = +_. 
r 

(90) 

When the load terminals are open circuited, i.e., RL ~ 00, the signal 
current for both the fully regenerative and diffusion-controlled case, 
given by (63) and (86) respectively, are unchanged by the change from 
L to Leff. In (63) the product Llreg, and hence Is, is independent of 
L by (6), while in (86) Isis explicitly independent of L as long as 
battery V 00 has been increased in accordance with (89). The open circuit 
voltage V LO is therefore 

V LO = 2RexIs (91) 

and has the polarity given in Fig. 8 (a). When the terminals are short 
circuited (R L = 0), Isis still that given by (63) or (86) and now flows 
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(a) 

Fig. 8-(a) Magnetic field detector circuit with provision for load R L . (b) Load 
line for (a). 

completely through the short as I LO. Within the small signal approxima
tion, the device is linear and we obtain the load line given in Fig. 8(b). 
It is an interesting feature that the output impedance, 2Rex, is given 
solely by the magnitude of external resistors. The apparent ability to 
obtain an indefinite increase in open circuit voltage, by increase of Rex, 
is just a reflection of the fact that battery Voo is correspondingly in
creased in accordance with (89). It is worth noting that, although Is 
has the same value in both the open and short circuited conditions, 
the off-center displacement of the filament, Xc, is unequal in the ratio 
Leff/ L, reflecting the stronger centering force in the case of the short 
circuit. 

A problem encountered with all magnetic detectors is that structural 
nonuniformities result in "offset voltages." If the present structure had 
only a single base layer, the filament would locate itself at the elec
trical center and there would be no offset voltage. It is expected that 
in the actual structure the electrical centers of the two base layers 
will not exactly coincide so that the filament will seek an intermediate 
position. The result will be an offset voltage for each base layer. It 
should be clear that the position of this new electrical center is de
termined only by structural imperfections and will therefore not depend 
on the enhancement factor. Consequently, the ratio of signal-to-offset 
voltage for this device should exceed that for the equivalent Hall effect 
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Fig. 9-Signal-summing offset-nulling magnetic detector circuit. 

device by this enhancement factor. Furthermore, it is possible to 
envision a circuit connection, as shown in Fig. 9, in which the signal 
currents of the two base layers are additive, while their offset voltages 
are cancelled at least to first order. This circuit has a cross connection 
of the two base layers by means of two batteries V Q. It also has the 
interesting feature of displaying terminal characteristics of a nearly 
ideal magnetically controlled current source 21 s. 

5.3 Sample device parameters 

Figure 10 shows a realizable configuration of the magnetic detector. 
It is a planar structure formed on a nearly intrinsic substrate. The 
largest areas are base layers N band P b. Application of reverse bias V Q 

between N band P b depletes the substrate in the intervening region. 
Heavily doped emitters N e and P e are shaped to be completely on 
top of the base layers. This structure, with the dimensions shown, can 
readily be fabricated with current technology and therefore constitutes 
a reasonable choice for initial experiments. It is also assumed that a 
base sheet resistance of 10 kn/D is attainable. With these con
straints the structure is far from optimum, but the performance 
characteristics shown below nevertheless compare favorably with 
other magnetometers. 

With a base sheet resistance of 10 kn/D and a base width of 12.5 /lm, 
we find a resistance per unit length r = 800 n/ /lm. Equation (6), with 
L = 100 /lm, then yields 1reg = 0.312 /lA. For a drive current IT = 10 
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}.LA, the filament profile in the fully regenerative case is found from 
(27) to be 

J (x) = 0.4 sech2 
( 8 L ) }.LA/ }.Lm. (92) 

Referring to Fig. 7, the half amplitude points fall at Xw = ± 0.85L/8 
~ ± 11 }.Lm, so that the filament is indeed much narrower than the 
length of the base. Using (30) the corresponding voltage from base 
center to edge, V b(O), is 0.366 V. This result may be compared with 
the value 0.4 V obtained by assuming a perfectly sharp profile for 
which I T/2 flows through a resistance rL, and indicates that the 
finite filament width gives rise to a less than 10 percent voltage 
reduction. 

Two considerations enter the choice of the battery voltage Vo. First, 
it must be sufficient to fully deplete the substrate material between P b 

and N b. Assuming a bulk resistivity of 5 ld2-cm or better after the 
necessary processing steps, 5 V would be enough to deplete a plane 
parallel structure 50 }.Lm across. Allowing for some extra width necessi
tated by the plane configuration and some margin for being well 
swept out, a voltage Vo = 11 V, corresponding to a drop of r-.J 10 V at 
x = 0, should be just adequate. The second consideration is the diffu-
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Fig. lO-Illustrative example of realizable magnetic detector. 
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sive spread. At x = 0, the average field in the I region will therefore 
be in the neighborhood of 2 k V / cm. This field is insufficient to greatly 
heat the carriers, so that it is justified in (38) to use D 1 expressed by 
(85), with kTn/q ~ kT/q = 0.025 eV. The resulting value of aD is 
0.2 J-Lm-t, for which the half-amplitude half-width of the Green's 
function (37) is 4.16 J-Lm. This value is small compared with the value 
xw = ± 11 J-Lm for the filament and works out to an additional spread 
of only about 12 percent. It is therefore proper to use the fully regenera
tive solution to calculate the magnetic response. 

The regenerative enhancement factor defined in (64) for the above 
parameters works out to a value of 5. This value only specifies the 
enhancement of the short circuit signal current Is over that of an 
equivalent Hall device. The full available output voltage when the 
device is used in the circuit of Fig. 8, however, still depends, by (91), 
on the choice of Rex. Choosing Rex arbitrarily to be 1 MO, adjusting 
Voo according to (89), and using (63) and (91) leads to 

V LO = 22BI T volts, 

which corresponds to a figure of merit of 22 V /GA. This figure of 
merit is of the same order of magnitude as that reported for other 
sensitive magnetometers.ll It is expected that considerable improve
ment can result from proper design. 

VI. SUMMARY 

We have shown that spreading resistance in the base layers of a 
stripe geometry PNIPN structure, with cross section and circuit as 
shown in Fig. 2, leads to a localized current density profile, i.e., a 
filament. If lateral spread of the carrier streams in the I region can be 
neglected, the current density profile is adequately represented by 
eq. (27). A plot of this function appears in Fig. 5b, which shows that 
as the drive current IT is increased, a sharpening of the filament occurs. 
The relevant parameter is the ratio of IT to I reg, where I reg, defined in 
(6), is the amount of base current that would have to flow from device 
center to a base contact to produce a voltage drop kT / q. The numerical 
example given in Section V shows that for a realizable structure a 

. typical value of Ireg is r-..J 0.3 J-LA, so that for IT r-..J 10 J-LA a highly con
fined filament is obtained. When carrier transport in the I region is 
characterized by significant lateral diffusion, the ultimate sharpness 
of the filament becomes limited. For sufficiently large IT it becomes a 
good approximation to represent both the return and incident current 
density profiles by Gaussians: (40) and (41), respectively. Although, 
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as shown by (52), the return profile Gaussian continues to narrow with 
increasing 17" the incident profile saturates to a width determined 
solely by diffusion, i.e., for a r ~ ct:) we have ai ~ aD, where aD is 
given by (38). Using at filament center Vd = J.l.E = J.I. V B/W and the 
definition (85) of the transverse noise temperature, we find a't = 
qV B/4kT n W2. Therefore, the width of the diffusion controlled filament 
is independent of parameters characterizing the lateral extent of the 
structure. 

The small signal linear analysis of the magnetic response of the 
PNIPN structure suggests that it may be regarded as a magnetically 
controlled current source. The principal result of the paper, eq. (62), 
relates the magnitude of the magnetic signal current Is to the drive 
current IT, the single-pass Hall deflection XII, and the incident current 
density profile in the absence of diffusion. Noting that I T/2L repre
sents the average current density (J i (x) and that for any nonuniform 
function (J~(x) > (J i (X)2, we see from (62) that Is/IT will always 
be larger than xH/2L, with the inequality increasing for progressively 
sharper filaments. Since X H /2L is just the ratio of short circuit signal 
current to drive current for an ideal Hall detector of dimensions W 
and 2L, a clear advantage is indicated. A convenient measure of the 
enhancement is given by the factor qV b(0)/3kT in (64), where V b(O) 
is the center-to-edge base voltage in the absence of the magnetic field. 
This factor can be in the range 10 to 100. When lateral diffusion in the 
I region is important, (80) must be used in place of (62). Equation 
(80) involves the return profile J r (x) because J i (x) is explicitly re
lated to J r(x) by the diffusion Green's function. The sensitivity en
hancement still depends on the sharpness of the current density 
profile, but now, as shown by (83), an infinitely sharp return profile 
J r(x) leads to only a finite enhancement factor, given in (86) in terms 
of the fundamental parameters. Depending on the device geometry, the 
enhancement factor can again be of order 10 or more. The parameters 
which enter it are those pertinent to the diffusion-controlled filament 
and do not include r or IT. Although this limiting behavior follows 
directly from the assumption of an infinitely sharp return profile, 
the derivation of (82) and subsequent discussion makes clear that it 
is also descriptive of the sensitivity when the return current profile 
is only moderately sharper than the diffusion-broadened incident pro
file. Because, within the limits set forth in Section V, the PNIPN 
magnetic detector behaves as a magnetically controlled current 
source, its useful output voltage is determined solely by the circuit 
in which it is imbedded. For the circuit of Fig. 8, the device considered 
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in the numerical calculation should have a sensitivity of 22 V /GA 
when driven at IT = lOjlA. 

An important feature of the PNIPN structure is the possible reduc
tion of the offset level which is so troublesome in magnetic sensors. 
There are various ways in which this reduction can be effected. Most 
directly, the offset current, being of geometric origin, is not subj ect 
to the enhancement factor experienced by the signal current, and 
the signal-to-offset ratio is correspondingly improved. Furthermore, 
the addition of matched external resistors, as in Fig. 8, permits ex
ternal control of the offset because such resistors act as extensions of 
the base layers, increasing the effective length of the device and thereby 
making a percentage improvement in the tolerance. A quite different 
approach to offset reduction is represented by the circuit of Fig. 9, 
in which the device incidentally appears to function as a magnetic 
current source. Analysis indicates that in this circuit configuration the 
signal currents in the base layers will be summed in R L , while the offset 
currents will be nulled to first order, i.e., to the extent that they are 
of the same magnitude in each base layer. While the circuit of Fig. 9 
may not itself turn out to be practical, it illustrates that the device 
can provide enough output information to make at least a first-order 
distinction between the signal and offset. 
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We present the constructive design of finite order equalizer filters for 
data transmission systems employing decision feedback equalization. 
Both transmitter design with power constraints and receiver design with 
ambient noise considerations are treated. Expressions for the filter tap 
settings which maximize a signal-to-noise ratio are found for both baseband 
pulse amplitude modulation and quadrature amplitude modulation 
(QA1\II) systems. Design examples are given in a passband equivalent 
(of QAM) formulation for an average toll telephone connection. Neglecting 
the possibility of error propagation, these examples demonstrate that 
decision feedback equalization requires fewer taps for acceptable system 
performance as compared to linear equalization. The problem of post
cursor size in a decision feedback equalized response is treated and shown 
to diminish in importance when a hybrid equalization procedure is 
imposed on the linear tap adJustment. The price one pays for allowing the 
linear filter taps to reduce the postcursor sizes in this hybrid equalizer is a 
lower signal-to-noise ratio. 

I. INTRODUCTION 

The advantage of using a nonlinear device, referred to as a decision 
feedback equalizer, to cancel the tails of pulses whose amplitudes have 
already been estimated in a PAM system has long been recognized. 
Figure 1 depicts the typical system in which the decision feedback 
mechanism has always been envisioned to perform this task. Namely, 
by making decisions on a symbol-by-symbol basis and by knowing 
the channel response precisely, a data system would be designed so 
that postcursor (tails of preceding pulses) lSI could be eliminated 
without the ambient noise penalty that a linear filter or equalizer 
imposes. The tacit assumption being made in any decision feedback 
implementation is that the signal-to-noise ratio is high without 
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Fig. i-Transmitter and receiver filter design. 

equalization, and correct decisions are already being made with high 
probability. 

In this paper we consider the design of finite order nonrecursive 
transmitting and receiving filters which counteract the two remaining 
sources of noise, the precursor tails which are the interfering samples 
of pulses whose amplitudes have not been decided upon, and ambient 
noise, everpresent in a communication system. In addition we seek 
the variation of the signal-to-noise ratio at the moment of decision 
when the sampling time is varied. Along with this variation of the 
criterion of system performance, we are also interested at each sampling 
time in the amount of post cursor lSI noise which the decision feedback 
mechanism is being asked to eliminate. This aspect of our investigation 
yields insight into the feasibility of decision feedback system implemen
tation. It is, of course, possible to design the transmitting and receiving 
filters to achieve "hybrid" equalization between simple linear equali
zation and decision feedback. That is, some of the linear filter's 
degrees of freedom will be used to combat some postcursor lSI, 
although decision feedback is being used. The idea is to reduce the 
possibility that large postcursor tails will be produced by a linear 
filter whose sole job would otherwise be to reduce precursor lSI. 

The system model we choose to work with is a sampled data or 
discrete one. In addition, the channel and the system's transmitting 
and receiving filters are assumed to be of finite nonrecursive type. 
Examples are discussed in a later section which involve voice-grade 
toll telephone channel spectra. These spectra have been reduced to a 
specified Nyquist equivalent bandwidth, both for baseband and 
passband applications. The timing involved in going from continuous 
waveforms to sampled data for these examples has been chosen to 
maximize a signal-to-noise criterion before any filtering is done at the 
receiver. Also, in the demodulation process for QAM, the carrier 
phase angle, if fixed, can be absorbed by the receiver's passband filter 
taps. (For more detail on the system model we use in the following 
sections, see Appendixes A and B.) 
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This paper follows two previous documents1.2 that have dealt with 
asymptotic performance results concerning decision feedback equaliza
tion. In these previous works, the filters assumed in the decision 
feedback equalization scheme were of infinite length. In contrast, we 
focus our attention here on designing filters of finite, implement able 
length and study a channel which is modeled from transmission data 
taken from the 1969-70 Toll Connection Survey of the Bell System. 

II. TRANSMITTER AND RECEIVER FILTER DESIGN (BASEBAND) 

We begin by referring to Fig. 1 and denoting the channel responset 

by {hn}gf. We are seeking nonrecursive filter tap weights {an}b' and 
{bn}b', N« Jvl at the transmitter and receiver, respectively. We note 
the total response through the system is then 

{rn}gf+2N+l = {an}b'*{hn}gf*{bn}b'. (1) 

where * denotes sequence convolution. 
If we decide to sample at time T and cancelt rk, k > T through 

decision feedback, then we can define a signal-to-noise ratio 

(2) 

representing the sampled signal in the numerator and two noise terms 
in the denominator. The first noise term consists of the ambient noise 
which is modified by the receiving filter. [We write b for (b o, b1, •• " bn ) 

in EN+l Euclidean space with (a, b) as the usual inner product and 
Ilb/l 2 = (b, b) the usual norm.] We have assumed that the noise 
samples are independent and of generalized variance§ (1"2 and that the 
input binary stream of symbols is independently and fairly signed and 
of unit magnitude. The second denominator term is a measure of the 
precursor lSI. 

2.1 Filter design by integral adjustment 

If we assume that the transmitter filter is to be optimized indepen
dently from the receiver filter we are then concerned with the 

t Appendix A explains our use of the sampled response {hn I. We suppress the 
constant multiplier liT which converts the Z-l coefficients to time samples (where 
T is the time between samples). 

t We choose to cancel all postcursors. In practice, only a few are cancelled and 
others then become part of lSI term in (2). 

§ By generalized variance we imply that a constant multiplies the true noise sample 
variance. This constant takes into account the sampling speed at which we are 
measuring the signal-to-noise ratio. 
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response: 
(3) 

Define a = (ao, aI, "', aN) and hk = (hk' hk- l , •.• , hk- N). We seek 
the maximum of 

(4) 

subject to the constraint that IIal1 2 = p.2. That is, we place an average 
power constraint on the transmitter. Hence, by constructing the 
quadratic form induced3 by the sum of bilinear forms (hk' a)2, we 
reshape p (N, T, a) into 

(N) (hr, a)2 
p ,T, a = p.-2(a, u2]a) + (a, Qa)' (5) 

where] is the (N + 1) X (N + 1) identity matrix and Q is the 
(N + 1) X (N + 1) positive semidefinite matrix CEk<r hk-ihk - i ) 

o ~ i, j ~ N with h-z == 0, l > O. By use of the Cauchy-Schwartz 
inequality we find readily that the maximum of p(N,T,a) is achieved at 

* _ p.[p.-2U2] + Q]-lh r 

a - 1I[p.-2u2] + Q]-lhrll 

and the maximum is precisely 

(6) 

max peN, T, a) = peN, T, a*) = (hr, (p.-2u?] + Q)-lhr). (7) 
Ila11 2=1'2 

We note that the sequence (ho, hI, .. " hr) is mapped by the vector a* 
into a sequence (g~, g;, .. " g;) which the receiver is now expected to 
process in forming the following signal-to-noise ratio: 

(8) 

where 

Since p (N, T, a*, h) is invariant to any scaling of h, we choose to 
maximize the former with respect to lib II = 1. By the same argument 
which led us to (6) and (7), we find 

* _ [u2] + R]-lg; 
b - II [u2] + RJ-lg;1I 
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and 

where R is the (N + 1) X (N + 1) matrix (Lk<T g;-i g;-i), 0 ~ i, 
j ~ N. Hence, peN, T, a*, b*) in (10) represents the maximum signal
to-noise ratio achievable through the integral or independent adjust
ment of transmitter and receiver filters for a decision feedback system 
committed to sampling at time T and constrained to use nonrecursive 
linear filters of length N + 1. 

The difference between linear equalization and decision feedback 
can be seen readily by observing the denominator terms of the follow
ing signal-to-noise ratio: 

(N b) (gT, b)2 
P ,T, a, = (J211b112 + L (gk, b)2 + L (gk, b)2· (11) 

k<T k >T 

For decision feedback systems, the last term in the denominator 
does not enter the picture because it is assumed it will be eliminated 
without noise penalty. However, in linear equalization, the filter b 
is expected not only to combat precursor lSI but postcursor lSI as 
well, with as little compromise to ambient noise as possible. We can 
rewrite (11) by assuming IIbW = 1 (i.e., scaling irrelevant) 

(N b) (gT' b )2 
P ,T, a, = [((J2J + Rl + R 2)b, bJ' (12) 

where Rl and R2 are, as usual, positive semidefinite channel response 
autocorrelation matrices. Here Rl corresponds to precursor distortion 
while R2 relates to postcursor lSI. We notice that, if we form for 
O~a~l 

(N b) 
(gT, b )2 

pa ,T, a, = [((J2J + Rl + aR2)b, bJ' (13) 

we can continuously vary Pa(N, T, a, b) from the decision feedback 
formulation where a == 0 to the linear equalization case where a == 1. 
Thus, although we implement decision feedback equalization, it is 
possible to design the transmitting and receiving filters so that the 
amount of postcursor distortion is still mildly to strongly influential. 
Of course, a more general formulation of this "hybrid" design tech
nique is possible by retracing our steps back to (11) and forming 

peN, T, a, b) 
(J211b1l 2 + L (Akgk, b)2 + L (Akgk, b)2' 

(14) 

k<T k>T 
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where Ak are (N + 1) X (N + 1) diagonal matrices (obviously 
Ak == I for the linear equalizer case).t 

2.2 Joint optimization of transmitter and filter design (baseband) 

In the individual design of transmitter and receiver filters treated 
in the last section, we were able to find the optimal filters by a simple 
rearrangement of interference terms and applying the Cauchy
Schwartz inequality. We find that for joint filter optimization this 
procedure will be slightly modified and additional steps will be taken 
to arrive at the solution. 

We recall that the total response of the system depicted in Fig. 1 is 

{ r n } 8f 
+2N = {a n } ~ * {l~ n } 8f * { b 11 } ~ 

and the signal-to-noise ratio: 

(N b) 
(e, hr)2 

p ,T, a, = (T211b112 + L (e, hk)2 , 
k<r 

(15) 

(16) 

where e is the 2N + 1 dimensional vedor formed from the sequence 
{an}~*{bn}~ and hk = (hk' hk- 1, "', hk- 2N ). Here again, p(N, T, a, b) 
is seen to be a continuous function of a and b and functionally in
variant to the norm of b. Hence, we constrain our search for the 
optimal b vector by imposing Ilbll = 1. 

The transmitter power constraint was imposed in Section 2.1 by 
Iiall = J.L2. In practical situations, the constraint is more likely to be 
II all ~ J.L2. That is, we want to use only enough power to yield a suffi
ciently high signal-to-noise ratio at the receiver. For example, we 
constrain the receiver filter to be of unit norm since the nonn is not 
going to contribute toward the enhanccrncnt of the signal-to-noise 
ratio at its output. Rather, it will be the transmitter filter power 
output which determines the output signal-to-noise ratio to a large 
extent. A way of solving the joint filter optimization probleln with 
constraints, then, is by permitting the transmitter power level to be 
at that as-yet undetermined level so that the signal power through the 
transmitter, channel, and receiver will be at a prespecified ratio to 
that of the ambient noise. Hence, we have the following optimization 
problem: 

max p(N, T, a, b) 
Ilh*a*bll =1/ 

IIbll =1 

(17) 

t Of course, some constraint must be put on Ak to make the maximization of p 
meaningful. 
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Proceeding as before, we obtain 

(a*b)* = kO( ~HTH + R )-lhT ' (18) 

(where ko is determined from the constraint IIh*a*bll = 11) with 

peN, T, a*, b*) = (hT' (::HTH + R)-lhT ) ' (19) 

where H is the 2M + 1 X 2N + 1 matrix such that H (a*b) = h*a*b 
where h = (ho, hI, h2, ... , hM). The matrix R is formed from the 
L hk-ihk- i terms. Now (18) can be written in its Z-l transfer function 
k<T 
representation. 

(a*b)* (Z-l) = k (1 + alz-l + a2z-2 + ... + a2Nz-2N) 
A (z-I)B (Z-l) = kQl (Z-I)Q2 (Z-l) ... QN (Z-l), (20) 

where k is a determined constant and the Q's are quadratic factors 
with real coefficients. A choice of the quadratic factors for composing 
A (Z-l) and B(Z-l) exists. However, since IIb*II = 1 we are then left with 
a determinable norm for a*. For example, we might choose 

(21) 

Hence, 
A*(Z-l) = IIQI(z-I)II·kQ2(z-I)···Qn(Z-I), (22) 

with norm 
IIA * (Z-l) II = kllQI (Z-l) II II Q2 (Z-l) ... Qn (Z-l) II . 

Regardless of how the quadratic factors are assigned, B*(Z-l) is 
normalized and A * (Z-l) is then left with some norm value which may 
be large or small. The total norm IIa*h*bll, however, was chosen to be 
11 and for each receiver filter chosen from the quadratic factors of (20), 
a corresponding IIA * (Z-l) II results. It is of definite engineering interest 
to seek that quadratic factor combination which minimizes IIA * (Z-l) II, 
but no obvious solution exists for this combinatorial problem. Other 
considerations may come into play at this point which would obviate 
the need for minimizing IIA * (Z-l)". For example, a minimum phase 
requirement for one of the two filters would delineate the two filters. 
Roundoff noise considerations for digital filter implementations might 
also contribute toward selecting one quadratic factor over another at 
the receiver. Cost considerations may warrant the splitting of the 
two filters into equal lengths (N even) so that the number of possible 
quadratic combinations is reduced considerably. In any case, this 
filter-splitting problem is akin to the quadratic factor placement 
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problem in minimizing roundoff noise in digital filter implementations. 
In Appendix D we outline a technique for separating the transmitter 
and receiver filters. 

Of course, it is possible to go through the same generalization on 
postcursor and precursor equalization that we did for the integral 
optimization problems of Section II. We obtain in that case 

peN, T, a*, b*) = [hT' (~HTH + Rl + exR2)-lhT] , (23) 

where 

(24) 

and where Rl (R 2) is the matrix corresponding to precursor (post
cursor) interference terms and 0 ~ ex ~ 1. 

III. PASSBAND FORMULATION 

It is possible to extend the results outlined in the previous sections 
to the passband equivalents of transmitter, channel, and receiver for 
a quadrature amplitude modulation (QAM) system.t The extension 
of results is not without complications, since QAM systems suffer 
from another form of distortion-co-channel interference (CCI). 
Thus, the transmitting and receiving filters will be expected to combat 
not only ambient noise and lSI but also co-channel intersymbol 
interference (CCISI). 

3.1 Integral optimization 

We begin by referring to Fig. 2 which illustrates the QAM system 
with decision feedback. Weare interested in the transmitter and 
receiver filter designs so that a measure of transmission performance 
is maximized. Namely, we seek to maximize a sampled signal-to
generalized-noise ratio similar to that defined in (2). To define the 
terms which will appear in our performance measure, we note that 
the "in-phase" response at the receiver is 

{dP) }cr+2N = {a1P) }b"*[ {MP)} cr*{ bkP)} b" - {h1([)} M*{ bi([~}b"] 
-' {ai([) }b"*[ {hk([) }cr*{ biP)}b" + {h1P)}cr {bia) }b"], (25) 

while the "quadrature" response at the receiver is 

{da)}cr+2N = {a1P)}b"*[{MP)}cr*{b1a)}b" + {hia)}cr*{b1P)}b"] 
+ {a~a)}b"*[{MP)}cr*{biP)}b" - {Ma)}cr*{bi([)}b"]' (26) 

t We will not concern ourselves with the problems of carrier acquisition and timing 
for the QAM system we consider here in discrete form (see Appendix A for a discus
sion of these items). 
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Fig. 2-QAM data system with decision feedback equalization. 

Each channel response has two lSI components, an in-channel inter
symbol interference term and the other due to co-channel interference. 
We notice that the eel is completely eliminated if {biP)} == {Mil)} 
and {bfcll)} == {hfcP)}. However, in our considerations we will always 
assume M» N so that our filters do not have a sufficient number of 
degrees of freedom to eliminate eel (also, this action does constitute 
suboptimal filtering). 

We form the in-phase resultant signal-to-noise ratio for independent 
input channels, independent symbols of unit magnitude with equal 
chance of occurrence and uncorrelated noise samples of variance (J2. 

We first treat the case where the receiver filter is all pass (i.e., b = e, 
the identity vector in the algebra of convolution) 

[(a (p), h~P») - (a (q), h~q») J2 
Ps(N, T, a, b) 

b=e (J2 + L [(a (p), hkP») - (a (q), hfcll») J2 + ... 
k<r 

+ L [(a (q), hfcP») + (a (p), hfcll») J2. (27) 
k~r 

N ow we define 
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and h,. = [h~P), - h~([) J and h~ = [h~([), h~P)J, vectors of 2N + 2 unit 
length. Hence, we can rewrite (27) into 

(28) 

In (27) and (28) we have tacitly assumed that at the receiver each 
channel will "talk" to the other for the purpose of cancelling post
cursor GGISI also. t That is, we have assumed a dual system of decision 
feedback equalization is being implemented. 

The maximization of Ps(N, T, a, b) subject to b = e and IIal1 2 = J.l.2 

leads to a solution similar to that of (6) and (7): 

* _ J.I.[J.I.-2U
2 I + Q + QcJ-1h,. 

a - II[J.I.-2u2J + Q + QcJ-1h,.II 

max peN, T, a, b) = peN, T, a*, e) 
Ila\l2=J.'2 . 

b=e 
J.I.(h,., (J.I.-2u21 + Q + Qc)-lh,.) 

II [J.I.-2u21 + Q + QcJ-1h,.II 

(29) 

(30) 

where Q and Qc are respectively the in-phase and co-channel correlation 
matrices similarly formed, as was the Q matrix of (6). The a* vector 
of (29) separates into a*(p) and a*«([) and the conditionally optimal 
transmitter bandpass filter is completely specified. Following the 
procedure in Section II, we now hold the transmitter design fixed 
at a* and rewrite (25) as 

{dP)}!y+2N la=a* = {b~P)}b"*{ {a;(P)}b"*{MP)}!y} 
{bk([) }b"* { {a;(P) }b"* {M([) }tI} 

- {bk([)}b"*{ {a;«([)}b"*{h~P)}!y} 
- {b~P)}b"*{ {a~«([)}b"*{M([)}!Y} (31) 

{bkP)}b"*{ {giPP)}!y+N - {g~([([)}!y+N} 

- {bi([)}b"*{ {g~([P)}!y+N + {g~P([)}!y+N}, (32) 

where {gkU)}!y+N, u = pp, pq, qp, qq are recognizable from (31). 
We can now write the expression for peN, T, a*, b) as 

[(b (P>, g~P» - (b «([>, g~([» J2 
peN, T, a*, b) = u211bll2 + L [(b(p), gkP» - (b(q), g~([»J2 + ... 

k<,. 
+ L [(b (q), giP» + (b(p), gi([» Jz, (33) 

k~,. 

t Also, we are assuming we will eliminate all postcursor lSI. However, in practice, 
only a few post cursors would be removed. Thus, some postcursor terms would appear 
in the denominator of (28) in that case. 
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where 

and similarly for g~Il). To maximize peN, T, a*, b) subject to IIbll = 1, 
we first form the concatenated vectors of 2N + 2 length: 

b = (b p , b ll), gk = (gkP) , _g~Il», gi = (g11l), g~P». (35) 
Hence 

(36) 

and we proceed to find that 

max peN, T, a*, b) = [gT, (u2J + R + Rc)-lgT] (37) 
Ilbll=l 

achieved at 
b* = (u2J + R + Rc)-lgT 

II (u2J + R + Rc)-lgTil ' 
(38) 

where Rand Rc are channel response correlation matrices of the type 
encountered before. 

3.2 Joint optimization 

To jointly optimize the transmitter and receiver passband filters, we 
follow virtually the same procedure found successful for the baseband 
case. A comparable factorization problem arises here, for which only a 
combinatorial solution seems to exist. 

The in-phase and quadrature responses through a passband trans
mitter, channel, and receiver are given by 

{dP)}r+2N = {hkP)}r*({akP)}(i*{biP)}(i - {akll)}(i*{bill)}(i) 
- {Mil)} ~f * ({ aiP)} (i * {bill)} (i + {akll)} (i * {biP) } (i) (39) 

{dQ)}gf+2N = {hiP)}r({a(p)}(i*{b(q)}(i + {a(q)}(i*{bgP)}(i) 
+ {MQ)}r*({akP)}(i*{bkP)}<i - {akll)}(i*{biQ)}(i). (40) 

Rewriting (39) and (40) in terms of a combined passband filter with 
responses c(p) = {dP)}gN and c(q) = {dQ)}5N: 

{rkP)}r+2N = {MP)}r*{cip)}gN - {MQ)}r*{dll)}gN (41) 

{rkQ)} r+2N = {MP)}~f*{dQ)}5N + {MQ)}tf*{dP)}5N, (42) 

we form the augmented vectors c = [c(q>, c(p)], 
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and 
hf = (Mil), Ma.!..l1 ... , Ma.!..2N, Mt>, ... , MP22N), Mn) = 0, k < 0, n = p,q. 

Our signal-to-noise ratio becomes for the in-phase channel: 

(N) (c, hT)2 
p ,T, C = (]"211b112 + (Rc, c) + (Rec, c)' (43) 

where Rand Re are the now-familiar channel correlation matrices and 
b = (b(p), b(q»). It is easy to show that the norm of the receiver filter 
is irrelevant in the maximization of p (N, T, c). Hence, we choose 
lib II = 1. We now specify the amount of signal power TJ2 we will need 
at the receiver upon choosing the optimal filters. That is, 

M+2N 

L 1 (hk, c) 12 + 1 (hf, c) 12 = TJ2. (44) 
k=O 

But (44) can be rewritten 

(45) 

where Q is a sum of two correlation matrices. Hence, (43) then yields 
the problem: 

(c, hT)2 
max 
IIbll =1 (]"2(QC, c) + (R ) + (R ) 

(Qc,c) =1]2 TJ2 C, C eC, C 

to which the solution is 

( 
2Q )-1 

C* = k UTJ2 + R + Re hT 

and 

peN, T, c*) = [hT' (u;? + R + Re)-1hT ]. 

(46) 

(47) 

The constant k is determined from the constraint that (Qc, c) = TJ2. 

Since c = (C Cq ), C Cp ») and the vectors (a Cp ), a Cq ») and (b(pl, b(q») all 
make up c (p) and c (q), we encounter a factorization problem. We can 
choose (b(p), b(q»), normalize the receiver filter, and then are left with 
the transmitter filter which has a given norm. This norm is then the 
transmitter power required to produce TJ2/ (]"2 generalized signal-to
noise power at the receiver. 

IV. EXAMPLES 

To illustrate the difference in performance between decision feedback 
and linear equalization, we have taken a telephone DDD toll connec-
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tion as a linear channel model. Specifically, we would like to know the 
difference in performance on a telephone connection when both linear 
and decision feedback equalization schemes are constrained to use a 
finite number of taps. For comparison, we compute the performance 
asymptotes (infinite number of taps) for each equalization scheme 
(see Appendix C) realized when an infinite number of taps are available. 
We ask whether it is possible to approach these asymptotes with a 
reasonable (implementable) number of taps. Another point which is 
raised in every implementation of decision feedback equalization is 
that of postcursor size. If a mistake in symbol identification is made, 
then the subtraction, for example, of an erroneously signed postcursor 
may lead to a burst of errors if the postcursor size is large. We illustrate 
the postcursor sizes for a passband decision feedback equalization 
system operating on an average telephone connection. 

Figure 3 illustrates the magnitude characteristic of the average 
DDD toll telephone connection as measured in the 1969-70 Toll 
Connection Survey of the Bell System. The corresponding delay 
characteristic follows a parabolic shape and has been numerically 
integrated to yield a phase curve. As discussed in Appendix B, the 
bandpass channel parameters have been calculated for various carriers 
and various flat Nyquist spectral widths assumed at the transmitter. 
The spectral width was controlled by superimposing a cosine rolloff 
(400-Hz width centered at the Nyquist frequency) on the in-phase 
and quadrature spectra. Figures 4 and 5 show typical passband spectra 
computed for this channel. When this decomposition of the bandpass 
channel into in-phase and quadrature responses is achieved, it is 
possible to compute the performance asymptotes for linear and decision 
feedback equalization given in Appendix C. The result of these compu
tations is shown in Table 1. It is seen that performance decreases 
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Fig. 3-A verage amplitude characteristic for toll telephone connection (from 
1969-70 Toll Connection Survey data). 
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Fig. 4-Quadrature amplitude characteristic for average toll telephone connection. 

with data rate and slightly with increased carrier frequency. The gap 
between decision feedback and linear equalization widens as speed 
is increased. For all computations, we have kept the total transmitted 
power through the channel fixed at -12 dBm, whereas the noise power 
spectral density was kept at that level corresponding to total noise 
power of -48.3 dBm over a 0-3000 Hz bandwidth. This noise level 
is 3 dB weakert than the average noise power measured in the 1969-70 
Toll Connection Survey. 

A finite length receiving filter was increased in length until perform
ance was reasonably close to the asymptote given in Table I for that 
speed and carrier. Figure 6 illustrates the difference in performance 
between decision feedback and linear equalization. It is seen that less 
than half the number of taps are required by the decision feedback 
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Fig. 5-In-phase amplitude characteristic for average toll telephone connection. 

t Noise level was made weaker only for computational convenience. 
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Table 1- QAM transmission asymptotic SNR in dB for average 
toll telephone connection 

Noise at receiver - 48.3 dBm; transmitted power -12 dBm 

Carrier = 1650 Hz Carrier = 1700 Hz Carrier = 1800 Hz 
Rate in 

Baud/ch. 
L.E. D.F. M.F. L.E. D.F. M.F. L.E. D.F. M.F. 

------------------------
2400 31.4 31.9 32.1 30.7 31.6 31.9 29.2 30.9 31.6 
2600 31.3 31.5 31.7 31.1 31.3 31.5 30.5 30.9 31.2 
2800 27.3 30.4 31.1 28.5 30.2 30.9 28.8 29.9 30.5 
3000 27.8 29.8 30.6 27.8 29.6 30.4 25.5 28.7 29.9 
3200 25.5 29.0 30.1 25.1 28.6 29.9 19.4 27.4 29.4 

L.E. = Linear equalization asymptote. D.F. = Decision feedback asymptote. 
M.F. = Matched filter bound. 

equalizer to achieve a level of performance close to the asymptote. 
In addition, the linear equalizer even with its 36 tap length per channel 
could not keep an acceptable performance level when the data speed 
was increased to 3200 symbols/ s/ channel. On this basis, the premise 
that decision feedback equalization has significant advantages over 
linear equalization may be too readily accepted. For, if we examine 
postcursor sizes on one of these equalized bandpass channels, we can 
see that the high signal-to-noise ratio offered by decision feedback 
does not come without penalty. Figure 7 illustrates sample sizes of a 
toll telephone channel equalized with a 16-tap (8-feedback) decision 
feedback equalizer. The precursors, or samples before the main sample 
peak, are too small to be seen on this scale. However, it is clear that 
the postcursor adjacent to the signal sample, which is greater than 
half the latter's size, presents a problem. Should a decision error occur, 
the next signal sample could have its polarity reversed, since more 
than twice its strength could be subtracted out by the decision feed
back processor. Thus, error propagation is possible with only a single 
mistake providing the ignition. Let us recall the hybrid equalization 
scheme discussed in Section II. We note in Fig. 8 that, for an alpha 
value of 0.01, we diminish the size of the large postcursor and more 
evenly distribute the heights of all the postcursors to be subtracted 
by the decision feedback processor. It is now apparent that no one 
postcursor is large enough to reverse the polarity of the signal should 
a decision error occur. It will take several consecutive decision errors, 
for example, before this can happen now. However, we lose 1 dB in 
signal-to-noise ratio for this example when we opt for this mitigation 
of the postcursor size problem. Of course, a trade-off exists between 
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Fig. 6-Performance of finite equalizers for average toll telephone connection. 

the loss in signal-to-noise ratio and reduction of post cursor size by 
means of this method. 

V. SUMMARY 

We have treated the design of finite length transmitting and 
receiving filters for a data system employing decision feedback 
equalization. Our purpose here was to examine the difference in 
performance between linear and decision feedback equalization on 
a given data channel. Sequential and joint optimization of trans
mitting and receiving filters were treated for an all-Nyquist equivalent 
data system. Although the solutions for the optimum tap settings 
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Fig. 7-Postcursor size problem and mitigation. 

TIME 

....... 
TIME 

and signal-to-noise ratio were derived in general terms, applying the 
results to the spectrum of a toll telephone connection was of special 
interest. For this channel example, it was found that fewer filter taps 
were required for decision feedback equalization to achieve a reason
able performance level. The problem of postcursor size for an overall 
response of a passband decision feedback equalized system can be 
mitigated by a hybrid equalization scheme. The price for allowing the 
linear filter taps to diminish the postcursor sizes in this hybrid equalizer 
is a lower signal-to-noise ratio. 

APPENDIX A 

Details about the discrete channel model 

The lowpass filters in the AID or D I A conversion process shown in 
Figs. 1 and 2 delimit the channel frequency band which supports data 

ALPHA = 0.01 
LOSS IN SNR: 1 dB 

IN-PHASE RESPONSE 

QUADRATURE RESPONSE _ ===r 

Fig. 8-Total impulse response hybrid equalization. 
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transmission. Hence, the channel can be seen as a bandlimited medium 
and can also be reduced to discrete form for M sufficiently large: 

M T 
H(f) = " =- hn e-fn21rfT I fl < 

~o = 2' 

where T is the data symbol interval or 1/2T is the Nyquist frequency. 
The point here is that {h n } is dependent on the timing chosen for 
this reduction. Obviously, a timing exists which maximizes a signal
to-noise ratio, for example, of the unequalized response. We have 
found by experimentation that this timing was an excellent approxi
mation to the timing which leads to a maximum signal-to-noise ratio 
after equalization. 

For a bandpass channel, the decomposition into discrete form takes 
place in two steps. First, a carrier frequency is chosen, and in-phase 
and quadrature spectra are then computed. A constant carrier phase 
is then a variable parameter. However, it is easily shown that this 
carrier constant can be absorbed by either the demodulation process 
or the passband equalizer tap settings. 

It is important to recall that the time samples of the spectrum 

M 
H (f) = L hn e-jn21rfT 

n=O 

are {f· hn }gf. Hence, in the formation of the signal-to-noise ratio: 

h~ 

we form the generalized variance parameter (J2T2 where (J2 is the noise 
sample variance. This accounts for this transformation from Fourier 
coefficients {hn}r to time samples {l/T· hn}r. 

APPENDIX B 

Channel data from 1969-70 toll connection survey 

The average loss and delay measurements of over 600 toll voice
grade connections made in a 1969-70 survey are recorded in Ref. 4. 
For our channel model, interpolative curves were constructed from 
the average survey measurements made on 20 frequencies. A linear 
loss slope was appended at the lower frequency end to extrapolate loss 
down to zero frequency. The slope of the loss curve in decibels at the 
lowest measurement frequency (200 Hz) was used for this extrapola-
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tion. A constant was added to the integrated delay curve to achieve 
zero phase at zero frequency. 

Passband responses at several carrier frequencies were then formu
lated from the interpolated baseband data. An impulse response was 
calculated for each in-phase and quadrature channel. Timing for the 
two channels was chosen to maximize the squared sampled signal to 
mean square lSI and eeISI before the receiver filter. One hundred 
eight Nyquist samples ( {h~P) } A7!0 and {hAq) } 1/9) represented each 
passband channel. 

APPENDIX C 

Asymptotic MSE as derived by Fa/coner-Foschini 2 

We list here the formulas for the MSE as achieved by linear equali
zation and decision feedback for passband systems (here, independent 
binary ± 1 transmission is assumed with N 0/2 input noise spectrum). 

/
1/2T (XO(f) )-1 

(MMSE) linear = T -N + 1 df 
-1/21' 0 

(48) 

(MMSE)df = exp \ l' f::,TT log ( X~:) + 1 fdf} , (49) 

where 

Xo(f) = ~ ~ IG1(f +~) + )·G2(f + ~)12 

X IC1(f +~) + )·C2(f + ~)12. 
The passband transmitter and channel characteristics are denoted 
by G1 + J·G 2 and C 1 + J·C 2, respectively. For comparison purposes, 
it is simple to show that the matched filter bound is 

I /1/2T (Xo(f) ) }-1 
(Ml\1SE)mf = T -1/2T N--;- + 1 df . (50) 

It is of interest to note that we can prove that expressions (48), (49), 
and (50) follow the sequence 

(48) ~ (49) ~ (50) 

by invoking Jensen's Inequality for the logarithm as the concave 
function. It is clear that, for the ideal channel and transmitter, i.e., 
Xo(f) == liT, we have 

1 
(MMSE)linear = (MlVISE)df = (MMSE)mf = 1 + (N

o
T)-1· 
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APPENDIX D 

A technique for separating transmitter and receiver filters 

We wish to determine that factorization of 

N 

A (z-l)B(z-l) = II Qn(Z-l), 
n=O 

which minimizes IIA (Z-l) II while liB (Z-l) II = 1. Each 

is a quadratic factor. We assume no real roots occur, although the 
extension of the technique we present here to include real roots IS 

obvious. Now 

IIQn (Z-l) 112 = I_it I Qn (e- i271"JT) 1
2dJ = 1 + (a1nl)2 + (a~nl)2. 

We notice that, upon choosing B (Z-l) 
NnUNA = to, 1,2, ... , N}), then 

II Qnk(Z-l) (where 
nkENB 

IIA(z-l)11 = II II Qnk(Z-l) II II II Qnm(z-l)ll. (51) 
mENB nmENA 

Thus, what we really want to do is select a partition of the Qk factors 
so that the product of the norms of the partition factors is minimized. 
Much like the quadratic factor partitioning problem in digital filter 
implementation for minimizing roundoff noise, the only method for 
obtaining the global minimum of IIA (Z-l) II seems to be the formation 
of all possible combinations of quadratic factors. When N is large, 
say, 20, this combinatorial method is time-consuming even when the 
filters are forced to be of the same order. 

A technique for constructing the partition which sequentially 
minimizes IIA (Z-l) II is first begun by reordering the quadratic factors by 
norm {Qnzl~o. We think of the two norms of (51) as bins, and we 
sequentially fill those bins with quadratic factors. We insert one of 
two quadratic factors of largest norms into the first bin and the second 
factor into that same bin. We evaluate the norm of the first bin and 
now compare it to the product of the norms of the individual factors. 
Whichever placement results in smaller norm product, we choose as 
our partition initialization. Thus, at the end of the first step we have 
either 

bin 1 bin 2 

IIQn1Qn211 11111 
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or 
bin 1 bin 2 

IIQnlll IIQn211, 

depending on which product is smaller. The next factor, Qn 3 , is brought 
into the current partition and the products again are tested as to 
whether Qn3 minimizes the product when placed in bin 1 or bin 2. 
The process continues until all quadratic factors are placed into 
either bin. 

This procedure has been programmed and tested on actual filter 
quadratic factors. It has been our experience that the resulting factori
zation was close to the optimal one. To cite an example: Ten quadratic 
factors were randomly placed into two bins 500 times. The product 
of the norms of the two bins' contents ranged from 0.584 to 1183.33. 
The partition which our procedure yields for this set of quadratic 
factors had the product value of 0.646. Only 36 of the 500 partitions 
yielded smaller products. But little could be gained by using any of 
these 36 partitions. However, the worst partition was four orders of 
magnitude away from the outcome of our procedure. This is possibly 
what is most important, namely finding a partition very far away 
from the worst one. 
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This paper develops the properties of the Erlang loss function, B(N, a), 
used in telephone traffic engineering. The extension to a transcendental 
function of two complex variables is constructed, thus permitting the 
methods of complex analysis to be employed for the further study of its 
properties. Exact representations, Rodrigues formulas, and addition 
theorems are given both for the loss function and for the related Poisson
Charlier polynomials. Asymptotic formulas and approximations are 
developed for the loss function and also for its derivatives. A table of 
coefficients is included which, together with one of the asymptotic formulas, 
permits computation of B(N, a) by simple means even when the number 
of trunks, N, is very large. This same table is used to obtain aB(x, a)/ ax. 

I. INTRODUCTION 

The Erlang loss function 

aNI N aj 

B(N, a) = N I .L-:-; 
• J =0 J . 

(1) 

is fundamental to the study of telephone trunking problems. A. K. 
Erlang1 used B (N, a) to express the probability that a call, which is a 
member of a Poisson stream of parameter a, arriving at a group of N 
telephone trunks will be rejected. Later studies of trunking problems 
have shown the desirability of enlarging the scope of applications of 
the loss function. For example, the consideration of trunk groups with 
nonintegral number of trunks arises in determining the equivalent 
number of trunks in Wilkinson's "equivalent random method." 2 

Methods for accomplishing the computation by interpolation are given 
by Rapp3 while continued fraction procedures for accurate computa
tion are given by Levy-Soussan4 and Burke. 5 Derivatives with respect 
to N and a arise in optimal trunk group size apportionment problems. 
See, for example, Akimaru and Nishimura6 •7 who studied such models 
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and prepared tables of derivatives. In some investigations, rapid and 
accurate approximate computations of B(N, a) for very large trunk 
groups are needed. This occurred in the study of certain satellite 
telephonic communication problems. 8 ,9 The need thus arises of en
larging the definition of B(N, a) as given in (1). Of course, that is done 
implicitly in the above investigations. It has been customary to extend 
the definition of B(N, a) by use of an integral formula (Theorem 3) 
ascribed to Fortet. This integral formula is used in (23) to define a 
transcendent, B (z, a), for complex z and a. The extension to the complex 
plane in both z and a permits the powerful methods of complex analysis 
to be applied for obtaining exact, asymptotic, and approximate 
representations. 

It is the purpose of this paper to provide an investigation into the 
properties of B(z, a) with the object of generalizing known results, 
obtaining new results, and presenting practical methods for application 
to the class of problems outlined above. 

Part II derives exact relations satisfied by B(z, a). Similar relations 
for the related Poisson-Charlier polynomials, Gj(z, a), are derived in 
the appendix. These relations provide efficient means for exact com
putation; thus, Theorems 1 and 2 constitute a practical method of 
computing B (N, a) to a prescribed accuracy for isolated computa
tions. Similarly, the use of Theorem 5 enables one to compute B (z, a) 
even for nonintegral number of trunks. Theorem 6 may be similarly 
employed. The relationship of B(z, a) and Gj(z, a) to Whittaker func
tions as given in Theorems 7 and 24 is the key for linking up these 
functions with the more well-known functions of applied mathematics, 
i.e., hypergeometric functions and Laguerre polynomials. The Rod
rigues Theorems 8 and 22 are useful for the evaluation of integrals 
of the form 

(2) 

and, as in the case of Theorem 22, for obtaining an integral representa
tion. The addition Theorems 9, 10, 26, and 27 yield group-theoretic 
structure information which is useful for simplifying formulas contain
ing these functions, and for the evaluation of integrals. The evaluation 
of an integral, by means of generating functions and Theorem 10, was 
done in Part IV to obtain ultimately an approximate formula for 
aB(x, a)/ ax. A general use of the exact relations is to serve as a spring
board for asymptotic and approximate results and also for their error 
estimations. This is well illustrated in Part III of the paper. 
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The asymptotic expansions of Part III are also representations of 
B (z, a) but, unlike those of Part II, when used as approximate formulas 
for computation they cannot yield results of arbitrarily high accuracy, 
i.e., the accuracy depends on specific values of parameters. Theorem 
11 is particularly useful for computation when I z/a I is small. It may 
be used for the computation of B (z,a) for fractional number of trunks 
by computing B (z, a) for 0 < z < 1 and then using the recurrence 
formula of Theorem 4. Theorem 11 includes well-known asymptotic 
results, e.g., 

B - - a = &ea (1 - erf -(G,) f'-' 1 - - a-I + - a-2 
( 

1 )-1 1 1.3 
2' 2 22 

a~ 00, (3) 

B( -1, a)-1 = - aeaEi ( -a) f'-' 1 - a-I + 2! a-2 

- 3 ! a-3 + . . . , a ~ 00. 

An undesirable feature of many methods of computing B(x, a) is the 
dependence of the computational effort, e.g., time of computation, on 
the value of x; thus, the larger the value of x the greater the computa
tional effort. Theorem 14 overcomes this defect; the computational 
effort is independent of the size of x. Theorem 14 is easily usable even 
with a desk machine regardless of how large x is. The accuracy, how
ever, depends on x and a parameter c. For fixed c the accuracy improves 
with increasing x. When x is fixed, the accuracy deteriorates when c 
is large and negative but greatly improves as c is increased. To facilitate 
the use of Theorem 14, Table I gives required coefficients, namely, 
ao(c), al(c), a2(c). To use the table, one computes 

(4) 

then 

(5) 

Possibly, one should comment that the range of values of x, c for 
which (5) is accurate is not as important as the fact that it is accurate 
over a wide range of values of B(x, a), that is, values encompassing 
the ranges of most applications. For quantitative limitations, see Fig. 
1. A method of obtaining aB(x, a)/ax based on Theorem 14 is given 
in Part IV. This uses the formula 

aB(x, a) "-' _ B(x, a)2 (a
o 

_ ~) 
ax 2-{;; x 

- x i;, a R(x, a) 1 ~ - 1 + R(x, a) I- (6) 
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Table I - Coefficients for evaluation of B(x, a) and aB(x, a)/ ax 

c* ao a1 

-3.0 225.3 2032 
-2.9 167.7 1367 
-2.8 126.0 925.4 
-2.7 95.63 630.5 
-2.6 73.28 432.2 
-2.5 56.70 298.0 
-2.4 44.29 206.7 
-2.3 34.92 144.1 
-2.2 27.80 100.9 
-2.1 22.33 71.07 
-2.0 18.10 .50.27 
-1.9 14.80 35.71 
-1.8 12.21 25.49 
-1.7 10.16 18.27 
-1.6 8.521 13.15 
-1.5 7.205 9.522 
-1.4 6.139 6.936 
-1.3 5.271 5.090 
-1.2 4.557 3.772 
-1.1 3.968 2.830 
-1.0 3.477 2.159 
-0.9 3.066 1.682 
-0.8 2.721 1.344 
-0.7 2.428 1.108 
-0.6 2.178 0.9435 
-0.5 1.964 0.8318 
-0.4 1.780 0.7580 
-0.3 1.620 0.7112 
-0.2 1.481 0.6840 
-0.1 1.360 0.6705 

0 1.253 0.6667 
0.1 1.159 0.6696 
0.2 1.076 0.6771 
0.3 1.002 0.6877 
0.4 0.9357 0.7000 
0.5 0.8764 0.7135 

a-x 
Calculate c = ....rx ,then 

a2 

13726 
8536 
5334 
3348 
2111 
1336 

848.1 
540.2 
345.0 
220.7 
141.4 
90.70 
58.17 
37.28 
23.86 
15.23 
9.692 
6.141 
3.872 
2.430 
1.519 

0.9486 
0.5960 
0.3816 
0.2540 
0.1804 
0.1398 
0.1187 
0.1089 
0.1052 
0.1044 
0.1048 
0.1052 
0.1052 
0.1045 
0.1031 

c* ao 0,1 a2 

0.6 0.8230 0.7274 0.1011 
0.7 0.7749 0.7414 0.0985 
0.8 0.7313 0.7552 0.0954 
0.9 0.6917 0.7686 0.0920 
1.0 0.6557 0.7814 0.0883 
1.1 0.6227 0.7937 0.0845 
1.2 0.5926 0.8053 0.0806 
1.3 0.5649 0.8163 0.0767 
1.4 0.5394 0.8267 0.0729 
1.5 0.5158 0.8364 0.0691 
1.6 0.4940 0.8455 0.0654 
1.7 0.4739 0.8540 0.0619 
1.8 0.4551 0.8619 0.0585 
1.9 0.4376 0.8694 0.0552 
2.0 0.4214 0.8763 0.0521 
2.1 0.4062 0.8828 0.0492 
2.2 0.3919 0.8889 0.0464 
2.3 0.3786 0.8946 0.0438 
2.4 0.3661 0.8999 0.0413 
2.5 0.3543 0.9049 0.0390 
2.6 0.3432 0.9095 0.0368 
2.7 0.3327 0.9139 0.0347 
2.8 0.3228 0.9179 0.0328 
2.9 0.3134 0.9218 0.0309 
3.0 0.3046 0.9254 0.0292 
3.1 0.2962 0.9287 0.0276 
3.2 0.2882 0.9319 0.0261 
3.3 0.2806 0.9349 0.0247 
3.4 0.2734 0.9377 0.0234 
3.5 0.2666 0.9403 0.0222 
3.6 0.2600 0.9428 0.0210 
3.7 0.2538 0.9451 0.0199 
3.8 0.2478 0.9473 0.0189 
3.9 0.2421 0.9494 0.0179 
4.0 0.2367 0.9514 0.0170 

aB(x, a) ~ _ B(x, a)2 (ao _ ~) _ x + a B(x a){~ _ 1 + B(x a)}' 
ax 2..JX x 2x 'a ' 

* Standardized offered load. 

It is appropriate to mention, at this point, another method of approxi
mating B(x, a) by means of a formula whose computational effort 
is also independent of x and which, similarly, is applicable over a wide 
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range of values of B(x, a). This method is described in Refs. 10 and II. 
A comparison of this method with that of Theorems 1 and 2 is given 
at length in a report by S. Miller. 9 

Derivatives and inequalities on derivatives are given in Part IV. 
Theorem 15 extends the well-known derivative formula for B (x, a) 
with respect to the real variable a. Theorem 17 provides an accurate 
approximation for aB (x, a)/ ax. Empirically, the accuracy seems to hold 
to four significant figures or better over a very wide range of values 
of x and a. Of significance is the corollary which shows that the ap
proximate value obtained is always too small. If a quick appraisal of 
the derivative is desired, Theorem 18 may be used. The logarithmic 
convexity properties of B(x, a) given in Theorem 19 provide the useful 
bounds of the corollary on the second derivatives. Also an application 
is given to the logarithmic interpolation of Theorem 20. This is very 
useful when, for example, one wishes to compute B (x, a) for x be
tween consecutive integers, say N, N + 1, and for which B(N, a), 
B(N + 1, a) are known. An extension of this idea is provided by 
Theorem 21 which permits accurate computation of B (x, a). 

It may be remarked that generally relations, representations, and 
asymptotics for B (z, a)-l are simpler in structure than those for 
B (z, a) and may provide greater numerical accuracy in computations. 
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II. CONVERGENT REPRESENTATIONS 

The study of telephone trunking problems, whether in equilibrium or 
transient condition, or even nonstationary,12 engenders the Erlang 
loss function, B(N, a), which initially arises in the form13 

aN / N a
j 

B(N, a) = N' .L ~ , 
• J =0 J . 

N ~ 0 (integral), a > o. (7) 

For these reasons and for the purposes of studying certain forms arising 
in queuing theory related to B(N, a) and also for the facilitation of 
numerical evaluation, it is useful to represent the loss function in 
diverse ways. 

The numerical computation of B(N, a) as given in (7) is awkward 
when a and N are large since then both numerator and denominator 
are large. A form well adapted to numerical work is 

N 
B(N, a)-l = L NWa- j , 

j=O 

NCO) = 1, NW = N(N - 1)· .. (N - j + 1) U > 0), 

which follows from 

(8) 

N N' N N' N 
B(N, a)-l = L ~ a j - N = L .. , a- j = L N(j)a- j • (9) 

j =0 J . j =0 (N - J) . j =0 

A modified form of (8) is given in Theorem 1. 

Theorem 1: 
v-I 

B(N, a)-l = L N(j)a- j + N(v)a-vB(N - v, a)-I, 
j=O 

Proof: Since 

one has, from 

v-I N 

B(N, a)-I = L NWa- j + L NWa-j, 
j=O .i=v 

N N-v N-v 

v ~ o. 

L NU)a- j = L N(j+v)a- j- v = N(v)a- v L (N - v) (j)a- j 

j=v j=O j=O 

= NCv)a-vB(N - v, a)-I. 

The formula of the theorem follows from (11) and (12). 
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Corollary: The case v = 1 implies the known14 difference equation 

1 
B(N, a) = N 

1 + aB(N - 1, a) 

R. Franks suggested using the value of Ev(N, a) defined by 

Ev(N, a) = 1/;i;: NU)a- j (13) 

to approximate B(N, a) in which, for any small number 17 > 0, the 
index v is chosen so that 

(14) 

Theorem 2 bounds the error of the method. 

Theorem 2: 

Proof: From Theorem lone has 

1 -
Bv(N, a)-1 + N(v)a-vB(N _ v, a)-1 = B(N, a) ~ Bv(N, a). (15) 

Thus 
B(N,~ 1 
Bv(N, a) 1 + N(v)a-vBv(N, a)B(N - v, a)-I· 

(16) 

Since N(v)a- v is strictly monotone increasing as a function of N, (8) 
shows that 

B(N + 1, a) < B(N, a) 
for all N ~ 0; thus 

and hence 

B(N, a) > 1 
Bv(N, a) = 1 + 17Bv(N, a)B(N, a)-1 ' 

B(N, a) ~ 1 - 17. 
Bv(N, a) -

The theorem follows from (15) and (19). 

(17) 

(18) 

(19) 

An integral representation, ascribed to Fortet,15 may be obtained for 
B(N, a). 

Theore11l., 3: 
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Proof: From the Eulerian integral 

Io~ e-avyldy = r(Z + l)a-l- l , Z> - 1, (20) 

one obtains 

N(j)a- j = a ( ~) Io~ e-aVyjdy. (21) 

Use of (8) now yields 

B(N, a)-I = a r~ e-av f (IY.) yidy = a r~ e-aY (l + y)Ndy. (22) 
J 0 J =0 J J 0 

The integral representation now permits extending B(N, a) into 
the complex plane with respect to both Nand a. One defines 

(23) 

in which z, a may both be complex. Clearly, B(z, a)-I is an entire func
tion of z for Re a > 0 (Re designates "real part"). The symbols N, a 
will be used for nonnegative integers and positive reals, respectively. 

A generalization of Theorem 1 is given in Theorem 4. 

Theorem 4: 
v-I 

B (z, a)-l = L z(i)a- j + z(v)a- v B (z - v, a)-I, 
i=O 

Proof: Integration by parts of (23). 

Rea> o. 

It is of interest to investigate the relationship of B (z, a) to the func
tion 

a Z 

1/;(z, a) = e-
a 

r(z + 1)' (24) 

which is an extension of the Poisson distribution function, 1/;(N, a), 
with parameter a. The function 1/;(N, a) is a good approximation to 
B(N, a) when a is much less than N. Exact relations between B(z, a) 
and 1/;(z, a) are given in Theorems 5 and 6. These relations provide 
convenient means of calculation of B(z, a) for general z, a; e.g., in 
trunk group blocking problems when a nonintegral number of trunks 
is considered. 

Theorern 5: 
00 as 

B(z, a)-l = 1/;(z, a)-l - S~l (z + 1) ... (z + s)" 

532 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1974 



The series converges uniformly everywhere in Re z > - 1, Re a > o. 
Proof: Let u = 1 + y in (23), then 

(25) 

hence, 

and 

(27) 

To exhibit the integral in (27) as an inverse factorial series, consider 
the beta function integral 

t uX-1(1 _ u)y-1du = r(x)r(y) 
Jo r(x+y) 

which yields the special case (8 ~ 0 integral) 

t 8! 
Jo u

Z

(1 - u)8du = (z + 1)··· (z + 1 + s)" 

Use of the expansion 
00 as 

ea (1-u) = L , (1 - u)·~ 
8=0 8 . 

(28) 

(29) 

(30) 

in (27) and subsequent use of (29) yield the result of the theorem. 
The Mittag-Leffler expansion for the integral of (27) leads to 

Theorem 6: 
00 as 

B (z, a) -1 = 1/1 (z, a) -1 + ea L (-1) S ( _ 1) '( + )" 
8 =1 S . S Z 

Conditions of convergence are the same as in Theorem 5. 

Proof: The expansion 

used in (27) leads immediately to the required result. 

(31) 

Whittaker functions,16 Wk,m(z), playa useful role in the discussion 
of B (z, a) and of Poisson-Charlier polynomials to be introduced later. 
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They may be introduced by 

e-!zzk roo ( t ) k-Hm 
W k.m(Z) = r(! _ k + m) Jo e- t 1 + Z t-k-Hmdt. (32) 

Re (! - k + m) > 0, I arg z I < 7r. 

Theorem 7: 

Proof: Let t = ay in (23), then 

B(z, a)-l = 1000 

e- t (1 + ~ )Zdt. (33) 

The required result follows on comparison with (32). 
A Rodrigues type of relation for B(N, a)-l may be obtained from 

Theorem 3. 

Theorem 8: 

d M 
B(N + M, a)-l = (-l)Maea daM[e-aa-1B(N, a)-l]. 

Proof: From Theorem 3, one has 

(34) 

(35) 

The formula for B (N + lVI, a)-l now follows on multiplication by aea. 

Corollary: 

Additional formulas for B (z, a)-l (as a function of a) provide con
venient means of computation for values of a near some fixed point. 
Two such formulas are given in Theorems 9 and 10. 

Theorem, 9: 

B(n, a + t)-l = 1 + - L B(n - v, a)-l - . ( 
t )-n n (n) (t )V 
a 1'=0 v a 
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Proof: The function Sn(a) given by 

(36) 

is an Appell polynomial, that is, 

dSn(a) = S () 
da n-l a . (37) 

Thus the Taylor expansion for S n (a + t) can be written in the form 

One obtains from (7) 

B(n,a)-l = n' a-nSn(a) 

and hence the theorem follows on substitution into (38). 

Theorem 10: 

( t) <Xl (-1)v 
B (z, a + t)-1 = 1 + ~ et v~o -11-'- B (z + II, a)-ltv, 

Re a > 0, I t I < Re a. 

Proof: Let 

then, from (23), 

d: l(z, a) = ! ein IoCfJ e-a(Hy) (1 + y)zdy, 

= - ein IoCfJ e-a(Hy) (1 + y)z+ldy, 

(38) 

(39) 

(40) 

= l(z + 1, a), (41) 

and hence 

d v 

d
- l(z, a) = l(z + II, a). 

a V 
(42) 

Thus, by Taylor's formula, 
<Xl tv 

l(z, a + t) = L -, l(z + II, a). 
v=O"" • 

(43) 

Substitution of (40) into (43) yields the required result. One has 

l(z + II, a) = ei(z+v)1r fuCfJ e-a(Hy) (1 + y)z+vdy, (44) 
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hence the terms of (43) are O[(t/Rea)vvRez]. The stated convergence 
criterion now follows. 

III. ASYMPTOTIC EXPANSIONS 

Particularly simple and convenient forms for theoretical and numer
ical applications may be obtained by examining asymptotic expansions. 

Theorem 11: 
00 

B(z, a)-1 I"o.J :L z(v)a-v, a -t 00, I arg a I < 7r. 
v=O 

Proof: The asymptotic expansion for W k,m(Z) is16 

Wk,m(Z) I"o.J e-hzk 

X f 1+ '£ [m2- (k-!)2J[m2
- (k-,!):}. ·[m2

- (k-V+!)2Jj, 
1 v=l v.z 

Z -t 00, I arg Z I < 7r. ( 45) 

Substitution of the parameter values given by Theorem 7 establishes 
the result. 

It should be remarked that the error, when using the partial sum 
:L!:A z(v)a-v to approximate B(z, a)-I, does not exceed I a II z(k)a-k I / 
Re a provided Re z ~ k, Re a > o. This follows directly from Theorem 
4 and (23). 

For large z, one has 

Theorem 12: 
co a8 

B(z, a)-1 I"o.J y;(z, a)-1 - S~l (z + 1) ... (z + s) , 

Z -t 00, I arg z I < 7r /2, uniformly in any bounded region of the a-plane 
for which Rea > O. 

Proof: The representation of Theorem 5 is used. One must show 

n as 

B(z, a)-1 - y;(z, a)-1 - S~l (z + 1) ... (z + s) 

= 0 ( (z + 1) .~n. (z + n) ); (46) 

that is, 

lim :L. a
s
-

n 
= O. 

z-+co s>n (z + n + 1)· .. (z + s) 
(47) 
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Let Re z = x, then one has 

18~n (z + n +a;~~ . . (z + 8) I 

~ X=n I a I 8-n (X + n + 1 ~ ... (x + 8)' ( 48) 

Let v = x + nand l = 8 - n, then the dexter of (48) is 

00 [a 11 
l~l (v + 1)· .. (v + l) . 

(49) 

Use of (29) and (30) on (49) yields 

I 
L a

8

-

n I ~ I a I f01 e1al O-u)uvdu j (50) 
s>n (z + n + 1)· .. (z + s) J ( 

thus 

I 
as-n I lale1al 

8~n (z + n + 1)· .. (z + 8) ~ V + 1 ~ 0, 
v ~ 00. (51) 

The theorem is proved. 
Useful asymptotic formulas are obtained when both a and i have 

infinite limits but approach infinity in a fixed ratio, that is, a = ez, e 
fixed. The cases e > 1, e = 1 are discussed by A. Descloux17 for large· 
real z. Theorem 13 generalizes the result for e > 1 to complex z and 
provides the structure of the coefficients for the complete expansion. 
The case e = 1 is obtained as a corollary to Theorem 14.where the 
result is also generalized to complex z. 

Theorem 13: 

00 

B(z, ez)-l r-../ L glZ-l, 
1=0 

z ~ 00, I arg z I < ~, e > 1, 

( 
e d)l e 

g 1 = e - 1 de e - i . 

Proof:* One has, from (23) 

B(z, ez)-l = ez Ioo/J e-CZY (1 +~iJ)~dy. . (52) 

\ 

* The author wishes to thank C. L. Mallows for this proof, which replaces a nluch 
longer proof originally supplied by the author. 
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Defining the function h (y) by 

h (y) = ey - In (1 + y), (53) 

one may write, since h(O) = 0, h( 00) = 00, and hey) is monotonic 
increasing, 

B(z, ez)-l = z (rfJ e-zh(y) e(l + y) dh. (54) 
Jo e(l + y) - 1 

The factor e(l + y)/[e(l + y) - 1J is now expanded in powers of h 
as follows: 

e(l + y) co hl 
(1 +. ) - 1 = L -z' gl. e Y l=O • 

(55) 

A theorem on Abelian asymptotics for Laplace transforms18 and (54), 
(55) yield the asymptotic behavior of B (z, ez)-l for z-t 00, I arg z I < 7r/2; 
thus, 

00 

B (z, ez)-l t'.J L glZ-l. 
l=O 

The coefficients gl may be evaluated as follows. Let 

and 

then 

w = e - In e, 

e 
k(w) =-

e - l' 

(56) 

(57) 

(58) 

e(l + y) 
k(w + h) = k[e(l + y) - In e(l + y)J = e(l + y) _ l' (59) 

Thus, Taylor expansion yields 

e(l + y) co h1 ( d )l 
e(l + y) - 1 = l~O TI dw k(w). (60) 

One has 
d e d 

dw = e - 1 de' (61) 

hence 

- k(w) = --- -- = gl. ( d )1 (e d)l e 
dw e - 1 de e - 1 

(62) 

The following formula is obtained directly from Theorem 13. 

B(z CZ)-l t'.J _c_ _ e ! + 2e
2 + e ! (63) 

, e - 1 (e - 1) 3 z (e - 1) 6 Z2 • 

The evaluation and behavior of B (z, a) for a in a neighborhood of z 
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is often of interest; accordingly, the function B (z, z + C.yz)-l will be 
considered for z ~ 00 ; c is a fixed real number. 

Theorem 14: There exists a representation of the fonn 

in which 

00 

B (z, z + c.yz) r-..J L aj(c)z-U-1)/2, 
j=O 

7r 
Z ~ 00, I arg z I <"2' creal, 

ao(c) = e1c2 i oo 

e-! u2du, 

2 1 1 
al(c) = :3 + :3 c2 

- 3 c3ao(c), 

() _ 15 73+ 1 +(16+ 1 4+ 1 ) () a2 c - - 18 c - 36 c 12 c 18 c 4; c 12 ao c . 

Proof: From (23), one has 

B(z, z + C.yz)-l = (z + c.yz) 1000 

e- cz+cv'Z)u(1 + u)zdu, (64) 

larg zl <~. 
2 

Let u = v/~, then 

B(z, z + C~)-l = 1000 

e-C!v2+cv )h(v, z)dv, 

h(v, z) = e!v2-v'Zv (1 + ~)z (~ + c). 
(65) 

Let K be a positive constant, then, for I v I ~ K, h (v, z) clearly possesses 
an asymptotic development in ~ uniformly in v; thus, 

00 

h (v, z) r-..J L bj(v, c)z-Cj-1)/2, 
j=O 

(66) 

in which the coefficients bj(v, c) are polynomials in v. In particular, 

bo(v, c) = 1, 

bl (v, c) = ~ v3 + c, (67) 

b( ) _13 1 4+ 1 6 2 v, C - 3" cv - 4; v 18 v . 
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Since 
(68) 

for each k > 0 and any c, termwise integration of (66) leads to the 
required asymptotic expansion. Thus, letting 

one has 

aj(c) = 1000 

e-<!v2+cv)b j (v, c)dv, 

00 

B(z, z + C~)-l 1"'./ L aj(c)z-U-l)/z. 
j=O 

(69) 

(70) 

The formulas for ao(c), a1(c), az(c) stated in the theorem are obtained 
by evaluation of (69) using bj(v, c) as given in (67). 

Corollary: 
-1 r;z 2 1 r;;: 

B(z, z) 1"'./ 'V 2: + 3 + 12 'V2z' 
z-'>oo, larg zl < ~. 

2 

Proof: The result is obtained from Theorem 14 with c = O. 
This theorem helps explain the phenomenon of the efficiency of 

large trunk groups since even when a > x, B(x, a) is small as long as a 
is in a small neighborhood of x; thus, Theorem 14 shows that 
B(x, x + c--JX) 1"'./ l/ao-{X, x -'> 00. 

Theorem 14 shows that the parameter c may be viewed as a standard
ized offered load measuring the deviation of a from x in units of -{X. 
The value of this viewpoint is derived from the very simple approximat
ing form for B (x, a) ; thus, 

az 
B(x, a)-l ~ ao-{X + al + -rx. (71) 

An application of this is to the computation of aB(x, a)/ax given in 
(92). Another advantage is the capability of computing B(x, a) by 
means of a single-entry table against the standardized offered load c 
rather than the usual double-entry table against x and a. 

Table I gives the values of ao(c), al(c), az(c) for -3 ~ c ~ 4 in 
steps of 0.1 with the intention of covering a practical range of values 
of B(x, a). As an illustration, it is desired to compute B(400, 378). 
Use of (71) with c = - 1.1 gives the result 0.0122 correct to the last 
figure. If C does not appear in the table, then interpolation is used. For 
example, to compute B(400, 377.6) for which c = - 1.12 linear inter-
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polation in the table of coefficients and use of (71) yields 0.0118 cor
rect to the last figure. The method, of course, is valid even when the 
number of trunks is nonintegral. Consider, for example, B (400.34, 
420) for which c = 0.98463. The result obtained by linear interpolation 
in the table is 0.0713 correct to half a unit of the last figure. 

The accuracy deteriorates when x is decreased or when c is large and 
negative. Thus, for B (10, 8), one obtains 0.12144 as against the correct 
value 0.12166. In this case c = - 0.6325 is not too disadvantageous. 
The case B(10, 5) for which c = - 1.58114 yields a much greater 
error, namely, 0.0256 as against the correct value 0.0184. This error 
occurs, however, for a small trunk group where exact calculation is 
quite feasible. To aid the delineation of suitable regions of (e, x) for 
which the table is accurate, a curve is given in Fig. 1 defining 5-percent 
error. When a computation is made from the table using any point 
(e, x) in the unbounded, unshaded region, the error incurred will be 
less than 5 percent of the true value of B(x, a). 

IV. DERIVATIVES AND INEQUALITIES 

It is desired to obtain formulas for the derivatives of B (z, a), with 
respect to z and a. 

Theorem 15: 

iJB~~ a) ~ 1; -1 + B(z, a) ) B(z, a), Rea> O. 

Proof: From (23), one has 

(72) 

hence, 

aB(z a)-1 1 
a' = - B(z, a)-1 - B(z + 1, a)-1 + B(z, a)-I. (73) 

a a 

Use of Theorem 4 provides the relation 

aBC:, a)-1 = _ ~ B(z, a)-1 - 1 + B(z, a)-I. (74) 
a a 

Since 
aB (z, a)-1 = _ B ( )-2 aB (z, a) 

aa ~a aa' (75) 

the result of the theorem follows from (74). 
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For the purpose of obtaining an approximate formula for the deriva
tive with respect to z, consider 

feu) = aB(x, a)e-au (1 + u)x (76) 

in which a > 0, x > 0, and for which, by (23), 

Io~ f(u)du = 1. (77) 

It is convenient to introduce the random variable t with density func
tion feu). The power moments J.1.T defined by 

J.1.T = Et T, r > 0 (integral), (7S) 

are given in the following theorem. 

Theorem 16: 

J.1. T = B (x, a) lt~ (- 1) r-Z ( ~ ) B (x + l, a )-1. 

Proof: Define a generating function cp(t) by 

then, since 

(a - t)B(x, a - t) lor/.) e-(a-t)u(1 + u)xdu = 1, (SO) 

one has 

(t) _ aB (x, a) 
cp - (a - t)B (x, a - t) 

(SI) 

Use of Theorem 10 in (SI) provides the expansion 

cp (t) = B (x, a)e-t £. B (x + ;' a)-1 tT. 
r=O r. 

(S2) 

Since 

cp(t) = f. J.1.r tr, 
r=O r! 

(S3) 

the coefficient of tr in the expansion of (S2) in powers of t yields the 
required result. Thus 

_ , r (-I)r-Z B(x + l, a)-1 
J.1.r - B (x, a)r. L ( _ l) , l' 

l=O r . . 
(S4) 

and the formula of the theorem follows. 
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Corollary: The central moments aT are given by 

Proof: The same as for Theorem 16 but considering the function 
e-iJlt¢(t) instead of ¢(t). 

An approximation to aB(x, a)/ ax may now be obtained. 

Theorem 17: 

_ -1 aB (x, a) _ _ 1 az 
B(x, a) ax - In (1 + J.Ll) 2 (1 + J.Ll)2 

1 a3 1 
+ 3" (1 + J.Ll)3 - 4 a4(), O<()<1. 

Proof: From (23) and (76), one obtains 

-B(x, a)-1 aB~; a) = E In (1 + ~). (85) 

Since, by use of the mean value formula, 

1 1 1 
In (1 + ~) = In (1 + J.Ll) + 1 + J.Ll (~ - J.Ll) - 2 (1 + J.Ll)2 (~ - J.Ll)2 

+ ~ (1 ~ J.Ll)3 (~ - J.Ll)3 - ~ ()(~ - J.Ll)\ 0 < () < 1, (86) 

one has, from (85) and the corollary to Theorem 16, the required 
result. 

Corollary: 

-1 aB(x, a) 1 az 1 a3 
-B(x,a) ax <In(1+J.Ll)-2(1+J.Ll)z+3"(I+J.Ll)3 

Proof: The error term of Theorem 17 is omitted. 
For ready reference the following formulas are given in which 

B = B(x, a), Bl = B(x + 1, a), Bz = B(x + 2, a), B3 = R(x + 3, a), 
B4 = B(x + 4, a). 

J.Ll = - 1 + BB I \ 
az = (J.Ll + 1)2 - 2(J.Ll + I)BBl l + BB:;\ (87) 
a3 = - (J.Ll + 1)3 + 3(J.Ll + 1)2BB11 - 3(J.Ll + I)BB:;1 + BBa\ 
a4 = (J.Ll + 1)4 - 4(J.Ll + 1)3BB l l + 6(J.Ll + I)ZBB:;1 

- 4(J.Ll + I)BBa l + BB:!I. 
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The evaluation of B1l, B;\ B3\ Bi l is facilitated by successive use 
of Theorem 4. 

An alternative method of obtaining aB(x, a)/ ax is based on Theorem 
14. Let 

f(x, c) = B(x, a), 

then, from Theorem 14, 

a = x + c~, 

af(x, C)-l _, _ 00 J. - 1 ,- L -- aj(c)x- u+l)/z, 
ax j=O 2 

hence, 

af(x, C)-l ~ _1_ J ao(c) _ az(c) ). 
ax 2~ 1 x 

(88) 

(89) 

(90) 

Thus, the computation of af(x, c)/ ax is easily accomplished with the 
help of Table I and the formula 

af(x, c) = _ f(x C)2 af(x, C)-l ~ _ B(x, a)2 J ao(c) _ az(c) ). (91) 
ax 'ax 2~ 1 x 

One now has 

aB(x, a) = af(x, c) _ aB(x, a) (1 + _c_). (92) 
ax ax aa 2~ 

A simple upper bound on -B(x, a)-l[aB(x, a)/ax] is given in the 
following theorem. 

Theorem 18: 
aB(x a) 

- B(x, a)-l a; < In (1 + f..Ll). 

Proof: Since the function - In (1 + u) is convex for u ~ 0, the re
quired inequality follows from Jensen's inequality, namely, 

g(E~) ~ Eg(~) (93) 

valid for functions g(x) convex over the range of the random variable 
~, and (85). 

A function g(x) > 0 is said to be log-convex over a set if In g(x) is 
convex over the set. It is known19 that the sum of log-convex functions 
is log-convex and hence that the integral of a log-convex function with 
respect to a parameter is log-convex provided the function is log-convex 
for every value of the parameter. Since a necessary and sufficient 
condition that a twice-differentiable function be convex is the non
negativity of its second derivative over the corresponding set, one 
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derives the inequality 
g"g - g'2 ~ 0 (94) 

as a necessary and sufficient condition that g > 0 be log-convex. One 
now has 

Theorem 19: B(x, a)-I, [aB(x, a)]-l are log-convex functions of x and 
of a, respectively, for a > 0 and all x. 

Proof: The results are immediate from (23) and the observations that 
(1 + u)z is log-convex as a function of x for u ~ 0, and e-au is log
convex as a function of a for u ~ o. 

Corollary: 

B( ) a2B(x, a) < [aB(X, a)]2 
x, a ax2 = ax ' 

B( ) [2 aB(x, a) + a2B(x, a)] < [B( ) + aB(x, a)]2. 
a x, a aa a aa2 = x, a a aa 

Proof: Use of (94). 
An immediate application of Theorem 19 is to the logarithmic inter

polation of B(x, a), that is, linear interpolation of In B(x, a). 

Theorem 20: Let a, b, p, q > 0, p + q = 1, then 

B(x, a)PB(y, a)q ~ B(px + qy, a), 
[aB(x, a)]p[bB(x, b)]q ~ (pa + qb)B(x, pa + qb). 

Proof: Jensen's inequality applied to -In B(x, a) and -In [aB(x, a)], 
respectively. 

An extension of the result of Theorem 20, for the purpose of obtain
ing an approximate formula for B (x, a) when x is not an integer, may 
be derived from the corollary to Theorem 16. Let N = [x],5 = x - N, 
and a r be the central moments computed for the density function 

f(u) = aB(N, a)e-au (1 + U)N, (95) 
then one has 

Theorem 21: 

B(x, a)-l = B(N, a)-l,%: ( ~) a r (1 + JJ.l)6-r + B(N, a)-l (~) akO, 

k even, I ° I ~ l. 
Proof: Let ~ be the random variable with density function feu), then 

B(x, a)-l = B(N, a)-IE(1 + ~)6. (96) 
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(97) 

the result follows from (96) and the corollary to Theorem 16. 
A useful special case of Theorem 21 is 

B1-oB1° 
B(x, a) "-' 1 ( B2 ) 

1 - - 0(1 - 0) _1 - 1 
2 BB2 

(98) 

in which 

B = B(N, a), B1 = B(N + 1, a), B2 = B(N + 2, a). (99) 

V. CONCLUSION 

Further investigations would be desirable; for example, one would 
like to know the contour function g (z) for which B[z, g (z) ] is constant. 
Truncation error formulas for the asymptotic expansions of Theorems 
13 and 14 would be useful; also, the general structure of the coefficients 
aj(c) of Theorem 14 should be determined. Asymptotic formulas of 
various types should be obtained for Gj(z, a) similar to those given for 
B (z, a). These formulas may then be used to obtain asymptotic results 
for its zeros which are needed in many transient· and time-variable 
blocking analyses. 
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APPENDIX 

The function B(z, a) is related to the Poisson-Charlier poly
nomials20- 22 much used in telephone traffic studies. Let 

Y;o (z, a) = Y; (z, a), 

dj 

Y;j(z, a) = d-; y;(z, a), . 
a' 

then the Poisson-Charlier polynomials, Gj(z, a), are defined by 

Y;j(z, a) = y;(z, a)Gj(z, a). 
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The Taylor expansion 

(102) 

yields the generating function23 

( 
t )Z 00 ti 

e- t 1 + - = L Gj(z, a)~. 
a j=O J. 

(103) 

Thus, explicit formulas for Gj(z, a) are 

Gj(z, a) = j) t (-l)v ( .- Z ) a~ 
a v =0 J --c- v v. 

t (-l)j-V ( j) v! a-V ( Z ) . (104) 
p=O v v 

The first few polynomials are 

Go(z, a) = 1, 
1 

G1(z, a) = - (z - a), 
a 

1 
G2 (z, a) = 2 [Z2 - (2a + l)z + a2], 

a 

1 
G3 (z, a) = 3 [Z3 - 3(a + 1)z2 + (3a2 + 3a + 2)z - a3]' 

a 

A recurrence relation derived from (103) is 

(105) 

z-j-a j 
Gj+I(Z, a) = Gj(z, a) - - Gj-l(z, a). (106) 

a a 

The polynomials, Gj(z, a), possess many properties analogous to 
those of B (z, a)-I. A Rodrigues formula is given in 

Theorem 22: 
die 

Gj+k (z, a) = a-Zea dak [e-aazGj(z, a)]. 

Proof: One has from (100) 
dJ.. 

Y;j+k(Z, a) = dak Y;j(z, a), (107) 

and hence 
dk 

Gj+k(Z, a)y;(z, a) = dak [y;(z, a)Gj(z, a)]. (108) 

The result follows on use of (24). 
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Corollary: 

Proof: 
Go(Z, a) = 1. (109) 

An integral representation for Gj(z, a) is given in 

Theorem 23: 

Gj ( -z, a) = (-l)i rc:) 10
00 

e-aY (l + y)jyz-1dy, 

Rea> 0, Re Z > O. 

Proof: From (20), one has 

(110) 

Substitution of (110) into the corollary of Theorem 22 yields the result. 
Theorem 23 permits obtaining a Wittaker function representation. 

Theorem 24: 

Proof: Comparison of Theorem 23 with (32) and replacement of - Z 

by z. 
The representation of Theorem 24 remains valid, by analytic con

tinuation, even outside the region of convergence of the integral of (32). 

Corollary 1 : 
B(N, a)-l = (-l)NGN( -1, a). 

Proof: Comparison of Theorems 7 and 24. 

Corollary 2: 

Proof: Substitution of the representation of Theorem 24 into the re
currence relation 24 

Wk,m(Z) = ~WTc-!,m-t(Z) + (! - k + m)Wk-1,m(Z) (111) 

yields the result. 
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Corollary 3: 

Proof: Same as for Corollary 2, except the following recurrence rela
tion is used: 

A representation of Gj(z, a) in terms of B(z, a) is given in 

Theorem 25: 

_ _ N+j-l a j dj
-

1 1 
GN ( - j, a) - (1) (j _ 1) ! daj- 1 O'.B(N, a) 

Proof: From (23), 

and Theorem 23, 

GN(-j,a) 

1 r~ 
aB(N, a) = J 0 e-aY (1 + y)Ndy, 

one has the result on use of 

(113) 

(114) 

(115) 

The Poisson-Charlier polynomials possess addition formulas similar 
to those of B (z, 0'.)-1 as given in Theorems 9 and 10. 

Theorem 26: 

Gj(z, a + t) = (1 + ~ )-j t (j) Gj_,,(z, a)( -I)" (£ )". 
a ,,=0 v a 

Proof: Use of (103) shows that the system of functions 

[ (~. ~)j ] O'.jGj(z, a) 

has the generating function eat (1 - t)z, and hence25 form an Appell 
system with respect to a, thus, 

d [ (-I)j. ] (-I)j-l._ 
da ]I a1Gj (z, a) = (j _ 1) ! a1 IGj_1(Z, a). (116) 

The Taylor expansion of [( -1)j/ j !J(a + t)jGj(z, a, + t) in powers of 
t now yields the required result. 
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Theorem 27: 

( 
t )-Z 00 tv 

G,,(z, a + t) = 1 + - et L Gj+II(Z, a) " 
a 11=0 V. 

The series is permanently convergent. 

Proof: Use of (107) and Taylor's expansion yields 

00 tv 
1f;,,(z, a + t) = L ,1f;j+II(Z, a). 

11=0 V. 
(117) 

The result is now obtained from (101) and (117). Since, from (104), 

Gj(z, a) ~ ( ~ )j , j~ 00, (118) 

the convergence is permanent. 
An asymptotic expansion is given by 

Theorem 28: 

I j j<V)Z(II) l 
G,.(z, a) ~ (-l)j 1 + :;0 (-1)11 ~ , 

Proof: The result is obtained directly from (104). It may also be ob
tained from Theorem 24 and (45). 
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