
THE BELL SYSTEM 

Volulllc 52 Novclllber 1973 Number 9 

Operational Limitations of Charge Transfer Devices 
K. K. Thornber 1453 

A Geometric Theory of Intersymbol Interference. 
Part I: Zero-Forcing and Decision-Feedback Equali-
zation D. G. Messerschmitt 1483 

A Geometric Theory of Intersymbol Interference. 
Part II: Performance of the Maximum Likelihood 
Detector D. G. Messerschmitt 1521 

Adaptive Channel Memory Truncation for Maximum 
Likelihood Sequence Estimation 

D. D. Falconer and F. R. Magee, Jr. 1541 

M llltimode Theory of Graded-Core Fibers 
D. Gloge and E. A. J. Marcatili 1563 

()ptical Fiber End Preparation for Low-Loss Splices 
D. GI~, P. W. Smith, D. L. Bisbee, and E. L. Chinnock 1579 

()verload Model of Telephone Network Operation 
R. L. Franks and R. W. Rishel 1589 

Peakedness of Traffic Carried by a Finite Trunk Group 
With Renewal Input H. Heffes and J. M. Holtzman 1617 

lVf odel Approximations to Visual Spatio-Temporal 
Sine-Wave Threshold Data Z. L. Budrikis 1643 

Contributors to This Issue 1669 

B.S. T.J. Brief: The Accuracy of the Equivalent 
Itandom Method With Renewal Inputs J. M. Holtzman 1673 



THE BELL SYSTEM TECHNICAL JOURNAL 

ADVISORY BOARD 

D. E. PROCKNOW, President, 
Western Electric Company, Incorporated 

J. B. FISK, Chairman ofihe Board, 
Bell Telephone Laboratories, Incorporated 

W. L. LINDHOLM, Vice Chairman of the Board, 
A merican Telephone and Telegraph Company 

EDITORIAL COMMITTEE 

W. E. DANIELSON, Chairman 

F. T. ANDREWS, JR. B. E. STRASSER 

S. J. BUCHSBAUM D. G. THOMAS 

1. DORROS W. ULRICH 

D. GILLETTE F. W. WALLITSCH 

C. R. WILLIAMSON 

EDITORIAL STAFF 

L. A. HOWARD, JR., Editor 

R. E. GILLIS, Associate Editor 

J. B. FRY, Art and Production Editor 

F. J. SCHWETJE, Circulation 

THE BELL SYSTEM TECHNICAL JOURNAL is published ten times a year 
by the American Telephone and Telegraph Company, J. D. deButts, Chairman 
and Chief Executive Officer, R. D. Lilley, President, J. J. Scanlon, Executive 
Vice President and Chief Financial Officer, F. A. Hutson, Jr., Secretary. Checks 
for subscriptions should be made payable to American Telephone and Telegraph 
Company and should be addressed to the Treasury Department, Room 1038, 195 
Broadway, New York, N. Y. 10007. Subscriptions $11.00 per year; single copies 
$1.50 each. Foreign postage $1.00 per year; 15 cents per copy. Printed in U.S.A. 



THE BELL SYSTEM 

TECHNICAL JOURN AL 

Volume 52 

DEVOTED TO THE SCIENTIFIC AND ENGINEERING 

ASPECTS OF ELECTRICAL COMMUNICATION 

November 1973 Number 9 

Copyright © 1973, American Telephone and Telegraph Company. Printed in U.S.A. 

Operational Limitations of Charge 
Transfer Devices 

By K. K. THORNBER 
(Manuscript received November 15, 1972) 

The incomplete transfer of charge and the existence of random noise 
lead to the primary operational limitations of charge transfer devices. 
Owing to the signal dependence of the residual charge, which accumulates 
as a result of the incomplete transfer, signal detection with static detection 
levels becomes seriously impaired before the onset of significant signal 
attenuation or noise degradation. A scheme using dynamic detection levels 
is found to greatly extend the operational range of CT D's and achieves 
the minimum possible error rate for detecting uncorrelated charge packet 
sizes. By contrast, simple coding procedures are found to be ineffective 
in overcoming signal degradation due to incom,plete transfer. Shannon's 
expression for maximum information transmission capacity is trans
formed into an expression for maximum information storage capacity. 
It is found that significantly larger storage capacities are possible with 
CTD's than have been achieved. 

PRELIMINARY REMARKS 

Proposition: Devices Function at Their Limits of Operation 

One has only to design or fabricate a device which "exceeds specs," 
and then, because of his success, receive a set of revised (and more 
demanding) specifications from the systems people to appreciate this 
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very basic principle. Or, if one fixed his goals too low, some clever 
fellow will come along with a new twist which makes full use of the 
device and revolutionizes the industry. On the other hand, devices 
function at their limits of operation and no better. This lies behind 
the widely recognized importance of ascertaining fundamental opera
tionallimitations in the early stages of device development.! 

It is, therefore, the primary objective of this article to discuss the 
operational limitations of charge transfer devices (CTD's). At a time 
when the basic device structure to be developed is still uncertain, and 
with relatively little analysis of the charge transfer process, noise, error 
rates, storage capacities, etc. (and with even less experimental verifi
cation of these analyses), the results of such an article may seem very 
preliminary at best. In some respects this will be the case. However, 
sufficient progress has been made in understanding the operational 
features of CTD's, especially with respect to incomplete transfer and 
noise, that definite limitations can be placed on how large information 
storage capacity and how small (digital) error rates can be made. 

It is my intention to outline CTD operational limitations in rather 
general (even perhaps philosophical) terms and to refer to appendixes, 
existing articles, work in preparation, etc., for mathematical details. 
The results are optimistic to the extent that they indicate how much 
better one can hope to do with CTD's than is commonly envisioned. 
However, at the same time, the results are pessimistic in that it is not 
obvious how one is to achieve this optimum use. Implementing our 
dynamic detection scheme, which results in the minimum possible 
error rate for digital signals, represents, nonetheless, a major step 
towards operating CTD's near full capacity. 

I. INTRODUCTION 

According to a most significant theorem due to Shannon,2 the maxi
mum information transmission capacity C T of any channel is deter
mined by the bandwidth and the signal/noise ratio of the channel. 
With a slight modification this theorem can be transformed into a 
theorem on the maximum information storage capacity C s of any 
channel, in particular of a CTD. This Cs then places an upper limit 
on the number of bits of information which can be stored in an un
regenerated section of a CTD. If we restrict consideration to codes in 
which the size of each charge packet is independent of preceding or 
subsequent packets, we can calculate a minimum error rate and 
specify an optimum detection scheme for digital signals. To obtain 
this result, some knowledge of the signal/noise ratio and the accumu-
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lation of residual charge owing to the incomplete transfer of portions 
of every charge packet is necessary. 

In this paper, in order to establish the minimum possible error rate 
and maximum possible storage capacities attainable with CTD's, it 
will be necessary to first review the way incomplete charge transfer 
determines the attenuation-versus-frequency characteristic and the 
total bandwidth of a CTD. The role of incomplete charge transfer in 
signal degradation will then be discussed. Once the dependence of the 
accumulated residual charge on the preceding signal is understood, 
it is possible to devise a dynamic detection scheme for simple digital 
signals and to compare this with the basic method of absolute-ampli
tude or fixed-threshold detection (static levels). With any form of 
detection, noise will introduce errors. Following a review of CTD 
noise, error rates are discussed. It is found that in the presence of 
noise this dynamic detection scheme attains the theoretical minimum 
error rate. Finally, maximum information storage capacities are calcu
lated using the bandwidth and signal/noise ratio characteristic of a 
CTD. The methods used to obtain specific results are sufficiently 
general that they can be used, for example, to calculate error rates for 
nonoptimal detection schemes. 

II. REVIEW OF INCOMPLETE CHARGE TRANSFER, SIGNAL ATTENUATION, 

AND BANDWIDTH 

As with other electronic devices, signal attenuation and device 
bandwidth are extremely useful concepts with which to discuss the 
maximum storage capacity and minimum error rates characterizing 
the operational limitations of charge transfer devices. In a CTD, signal 
attenuation arises primarily from the incomplete transfer of charge3- 9 

and only secondarily from charge losses, for example, through thermal 
(or other) leakage currents. Let us first consider incomplete transfer, 
then signal attenuation, and finally bandwidth. 

2.1 Incomplete Transfer 

It is clear that the incomplete transfer of charge from one elemental 
cell to the next will lead to signal degradation. 7 ,9 The character of this 
degradation can be ascertained as follows. The charge Qi,t in the ith 
elemental cell at time t will be the charge in the previous cell during 
the previous transfer cycle (of period To) diminished by the charge 
Q~-l,t-To left behind in the (i - l)th cell but increased by the charge 
left behind in the ith cell during the immediately preceding transfer 
Q~,t-To' and also less any charge lost (or gained) during the previous 
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storage, Q~-l,t-To' Thus 

Qi,t = Qi-l,t-To - Q~-l,t-To + Qtt-To - Q~-l,t-To' (1) 

In general, this equation is very difficult to solve since the Q~ and Q~ are 
nonlinear functions of Qi. Nonlinearities, however, are common in 
electronic devices. Taking the usual approach, one makes a small
signal analysis in order to linearize the equations. Thus we write 
Qi,t = qi,o + qi,t, where qi,o is the time-independent (dc) component 
(bias) and qi,t is the small (ac)-signal component. Similarly, Qb and Ql 
can be decomposed into dc and ac components. Substituting these 
into eq. (1) we can obtain two equations, one for the dc terms and one 
for the ac terms. The dc equation can give us the time-independent 
(dc) charge bias level at the output. While knowledge of this may be 
important in some applications, it does not lead to any significant 
operational limitations. Of greater importance is the solution of the 
equation for the ac terms. 

The equation for the ac terms is from eq. (1) 

(2) 

As part of the linearization, one takes q~ = paqi and qi = P{3qi. (a and 
(3 can be calculated from the coefficients of a Taylor series expansion 
of Qb and Ql in terms of q:pa = dQb/dQo and p{3 = dQl/dQo, where 
p is the number of individual charge transfers within an elemental cell 
and Qo is the charge to be transferred.) Substituting into (2) one obtains 
the basic equation for qi,t: 

qi+l,t+To = qi,t - paqi,t + paqi+l,t - P{3qi,t 

which becomes upon taking the Fourier transform 

(3) 

qi+l(w)e iwTo = qi(W) (1 - pa - p(3) + paqi+l(w). (4) 

Up to this point we have linearized eq. (1) and passed to the fre
quency domain, typical procedures in electrical engineering. We pro
ceed to solve eq. (4) by first calculating 

qi+l(W)/qi(W) = 1 - pa -= 'p{3 e- iWTO . 
1 - pae ~WTO 

Then we note that since qi+1(W)/qi(W) is independent of i, it follows 
that qN(W)/qo(w) = [qi+l(W)/qi(W)]N, where N is the number of ele
mentary cells in the shift register. Recognizing that qN(W)/qo(w) is the 
transfer function of the shift register, H(w), one finds that7 ,9 

(5) 
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As discussed in Section 2.2, H (w) can in principle be used to deter
mine qN,t for any given sequence of input charge packets qt-NTo, 

qt-(N+l)To· 

The first factor in H (w) is just the phase delay in the signal present 
even in the limit of perfect transfer (a = (3 = 0). The second factor 
contains a frequency-dependent attenuation and a further phase shift. 
To a good approximation we may write 

H (w) = A (w)e- i 4>(w), 

where the attenuation factor A (w) is given by 

A (w) = e-n!3e-na (I-cos WTo) 

and where the phase factor ¢(w) is given by 

cp(w) = NWTo + na sin WTo. 

(6) 

(7) 

(8) 

(n = N p, the total number of charge transfers in the shift register 
from input to output.) With knowledge of the device transfer function 
H(w), we can discuss the attenuation A (w) and then compute the 
device bandwidth. 

2.2 Attenuation 

The attenuation factor in eq. (7) can be interpreted as follows. The 
first factor results from charge loss. If a fraction {3 of charge is lost 
with each charge transfer, after n transfers the fraction remaining is 
just (1 - (3)n ~ exp (-n(3) (if n{32« 1). Charge loss is clearly fre
quency independent. The second factor results from the incomplete 
transfer of charge. For WTo ~ 0, very-l ow-frequency components, the 
sjze of adjacent charge packets is approximately the same. Thus the 
charge incompletely transferred at site i is nearly compensated by the 
charge incompletely transferred at i + 1. [- paqi + paqi+l ~ 0 in 
eq. (3).J Thus, apart from charge losses, qi+l ~ qi and, hence, low
frequency components are expected to be attenuated very little. Equa
tion (7) bears this out. By contrast, if WTo = 2n-j/ fo ~ 7r (f ~ fo/2 
where fo = l/To is the clock frequency), the attenuation is relatively 
large, exp( -2na). Again referring to eq. (3), f ~ fo/2 implies that 
qi,t and qi+l,t are ,,-,180 degrees out of phase and qi,t ~ - qi+l,t. Thus 
contributions to incomplete transfer add (rather than compensate as 
for low frequencies) and, again ignoring charge loss, eq. (3) predicts 
an attenuation of (1 - 2a)n ~ exp( -2na). Again, eq. (7) bears this 
out. For WTo = 7r/2 (f = fo/4) the attenuation is exp( -na), an inter
mediate case in which the phases of each successive packet differ by 
90 degrees. 
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One further point concerning incomplete transfer should be empha
sized. A charge packet which "loses" a fraction a of its charge in each 
of n transfers might be expected to be attenuated by a factor of 
(1 - a)n ~ exp( -na). However, eq. (7) for A (w) shows how sensitive 
the actual degradation of a packet is to the presence and nature of the 
other charge packets composing the signal. Thus considering one 
"isolated" charge packet can be very misleading. In Appendixes A 
and B we discuss examples of attenuation in the time domain, and in 
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Fig. I-Attenuation versus frequency for CTD's with 2na of 0.2, 2, 4, 5, 8. 
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Appendix C we consider A (w) in more detail. A (w) is plotted in Fig. 
1 as a function of w for several values of na. ({3 = 0.) 

2.3 Bandwidth 

In Fig. 1 we have plotted A (w) for 0 ~ f ~ fo/2, although eq. (7) 
would seem to apply for 0 ~ f. The reason for this is basic. According 
to Shannon's sampling theorem,2 f 0/2, one-half the clock frequency 
(one-half the sampling frequency), is the maximum frequency of the 
signal which can be transmitted. Thus given the clock frequency f 0, 
the maximum band,vidth a CTD can have is fo/2. 

Incomplete charge transfer clearly reduces the effective bandwidth 
of a CTD. This is evident from the attenuation plotted in Fig. 1. 
Normally one defines bandwidth by the size of the range of frequencies 
for which the attenuation A exceeds some fraction 0 < 1. A more 
convenient definition from the point of view of information trans
mission and storage capacity is that the bandwidth B be given by the 
following expression: 

_ (fo/2 /A(1) /2 _ fo -2na 

B - Jo /A(O) /2 df - "2 e Io(2na) , (9) 

where lois a modified Bessel function. Io In Fig. 2, B is plotted as a func
tion of na. A slowly varying function, B decreases as (fo/2)· (47rna)-! 
for na» 1. Thus despite the rapid attenuation associated with 
na ~ 10 (e- IO ~ 0.5 X 10-4 for 1 = 10/4 and e-20 ~ 0.2 X 10-8 for 
f = 10/2), the bandwidth is still approximately 0.09 X (10/2), 9 
percent of its maximum value. The relative insensitivity of {3 to nex 
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Fig. 2-Bandwidth versus no: for a CTD. 
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has an important effect on the maximum achievable CTD transmission 
and storage capacities as we shall see. 

III. THE ROLE OF INCOMPLETE CHARGE TRANSFER IN SIGNAL 

DEGRADATION 

Even though attenuation and bandwidth are frequency-domain 
(and hence analog) concepts, we shall see in Section VII that it is 
these quantities, along with the signal-power-to-noise-power ratio, 
which are needed in order to calculate the maximum information 
transmission and storage capacity for digital as well as analog signals 
in CTD's. Nonetheless, it is still helpful to discuss certain features of 
digital signals in the time domain in order to better appreciate certain 
operational limitations of CTD's. For the next few sections we shall 
ignore charge losses and consider only the much more important effects 
of incomplete charge transfer on the signal. 

Suppose a charge packet of initial size Ql (representing a digital 
"one") follows some sequence of charge packets either of initial size 
Ql or of initial size Qo (representing a digital "zero"). If a is the coeffi
cient of incomplete transfer, then after a single transfer the original 
charge packet has been reduced by a factor of (1 - a), and, after n 
similar transfers, by a factor of (1 - a) n. In addition, the original 
packet picks up some charge left behind by the preceding packets. 
This residual charge we shall refer to as QR, which is in general a func
tion of the preceding signal. Thus the size of the charge packet repre
senting the "one" at the output is given by 

(10) 

A brief analysis of eq. (10) reveals that the primary operational 
limitation imposed by incomplete transfer is the dependence of the 
residual charge Q R on the preceding signal-the preceding sequence 
of zeroes and ones. Neither the attenuation of the size of the charge 
packet per se nor the accumulation of the incompletely transferred 
charge per se playa primary role. For example, suppose that we are 
using a very simple form of absolute-amplitude detection in which any 
charge packet of size Q > Q = (Ql + Qo)/2 is detected as a "one" 
and any packet of size Q < Q is detected as a "zero." Then a one 
preceded by a long string of zeroes will be detected as a zero if nO! > 0.7. 
Thus, under noiseless conditions we shall have a nonzero error rate in 
cases where the signal attenuation is only one-half (see Appendix A). 
On the other hand, the accumulation of incompletely transferred charge 
can be reduced using zero-net-charge coding. As each bit of signal is 
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coded into the same amount of total charge (distributed between two 
packets), the total amount of incompletely transferred charge from 
each bit is the same. Nonetheless, no significant improvement is ob
tained. Indeed, the maximum na for zero errors under noiseless con
ditions remains a strong function of the preceding sequence of charge 
packets (see Appendix B). This result is true for analog as well as 
digital signals, as is clear from the discussion in Appendix C. The 
dependence of the residual charge on the previous signal suggests that 
more attention should be given the detection of the signal rather than 
its coding. This we discuss in the next section. 

IV. THE OPTIMUM DETECTION OF SIMPLE DIGITAL SIGNALS 

Let us suppose that some arbitrary sequence of charge packets of 
size Ql for a "one" and Qo for a "zero" have preceded the charge 
packet which we now wish to detect. The residue or residual charge 
added to the charge packet of interest can be designated QR as before, 
where QR is a function (given in Appendix A) of the preceding signal. 
If the charge packet which we are detecting is in fact a one, then the 
size Q (1) of the packet will be 

Q(I) = (1 - a)nQl + QR. (11) 

If, however, the charge packet is zero, then the packet's size Q (0) will 
be given by 

(12) 

One will clearly optimize the detection (even in the presence of noise) 
if one choses for the detection level Qd of the mean of Q (1) and Q (0) : 

Qd == (1 - a)nt(Ql + Qo) + QR. (13) 

If Q > Qd, we say that we have detected a Ql packet, and if Q < Qd 
we say that we have detected a Qo packet. Because Qd is a function of 
QR which in turn depends on the entire preceding signal, we shall refer 
to this as a dynamic detection procedure. In contrast to Qd given in 
(13), the static detection procedure mentioned in Section III has 
Q8 = Q/ (1 - a), and Q > Qs implies Ql and Q < Qs implies Qo. 

It is shown in Appendix A that under noiseless conditions this scheme 
of dynamic coding is errorfree regardless of the size of na or of the 
nature of the preceding sequence of zeroes and ones. This again illus
trates the role of the dependence of QR on the preceding signal, which 
we noted at the end of Section III. It is shown in Appendix A that 

Q(I) - Qd = (1 - a)n Ql - Qo = Qd - Q(O) (14) 
2 
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as is clear from eqs. (11), (12), and (13) as well. The quantity (Ql - Qo) 
may be referred to as the dynamic range of the device. Thus relative 
to the dynamic detection level, Qd, the signal, Q(I) or Q(O), is attenu
ated as (1 - a) n. [Note that [Q (1) - QdJ and [Qd - Q (0) J are in
dependent of the residual charge Q R. J In the presence of noise, errors 
will clearly be introduced if (1 - a)n(Ql - Qo)/2 approaches the noise 
level. This also shows that, having eliminated the signal-dependent 
residual charge, attenuation now plays an important role in limiting 
device operation. As n increases, this signal attenuation coupled with 
the compounding of noise both reduce the signal-to-noise ratio and 
lead to a reduction in the information transmission and storage 
capacities of the device. However, now it will be for na ~ 4 rather 
than for na ~ 0.7 that attenuation becomes limiting. 

To set the dynamic detection level Qd, QR must be realizable. In 
the absence of noise, this is always possible in principle since QR is 
an explicit function of the known, preceding signal. In the presence 
of noise, QR determined by eq. (31) also yields, for most cases of 
interest, nearly optimal detection in spite of the possibility that some 
preceding packets may have been incorrectly detected.ll 

In Section V, we briefly review noise in CTD's and then in Section 
VI we shall see how this dynamic detection scheme minimizes the 
error rate in the presence of noise. This further stresses the importance 
of detection in optimizing the operation of "simply coded" CTD's. 

V. REVIEW OF NOISE 

Noise in charge transfer devices is a fascinating subject which, un
fortunately, can be only highlighted in this section.12- 17 Owing to the 
dramatic time dependence of the current during a single charge 
transfer, the noise generated during a single transfer is quite non
stationary. Since nearly all theories of noise in solid-state devices 
assume that the noise is stationary,18 it is necessary to redo much of 
the theory taking into account the nonstationary aspect. A time
domain analysis has been found to be most convenient, whereas 
standard treatments are carried out in the frequency domain. 

In Fig. 3 the most common sources of noise in CTD's are categorized. 
At the input, one has full shot noise only if the electrons enter the 
source independently (e.g., if generated by the random arrival of 
phonons in an imaging device or if inj ected by an emission-limited 
diode). At the output the nonrandom coupling to the clock line is the 
worst source of distortion in some cases. A distinction14 is made between 
noise generated from transfer processes, typically thermal and trap-
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INPUT TRANSFER STORAGE OUTPUT 
--- ---

SHOT 
THERMAL LEAKAGE CLOCK 
TRAPPING TRAPPING COUPLING 

Y COMPOUNOING ~ 

I 
MODULATION 

CLOCK VOLTAGE FLUCTUATIONS 
CAPACITANCE VARIATIONS 

Fig. 3-Sources of noise for a CTD. 

ping noise, and that from storage processes, typically leakage and again 
trapping noise. We shall return to this distinction shortly. Since a 
charge packet acquires some noise with each transfer-storage period, 
the noise component increases as the packet is transferred from input 
to output. This we refer to as compounding. Finally, the occurrence of 
clock voltage fluctuations in the presence of fabrication variations in 
the individual capacitances leads to a form of modulation noise. This 
type of noise is also compounded. For simplicity we have left out of 
Fig. 3 a number of less important noise sources. 

Let us now return to the important distinction between storage 
process and transfer process noise.14 It should be recalled that a CTD 
shift-register performs two functions simultaneously, the transfer of 
charge and the storage of charge. In Fig. 4 we indicate the basic dis
tinction between the noise generated from these two processes. In the 
case of storage process (SP) noise, the charge fluctuation generated 
during each transfer cycle in each cell is essentially independent of 
that in any other cell. For transfer process (TP) noise this is not the 
case. Conservation of charge implies that if an excess of D.Q is trans
ferred from one storage region to the next, - D.Q is left behind for the 
subsequent charge packet. This introduces a correlation in the noise 
in adjacent charge packets which leads to a suppression at low fre
quencies of the spectral density of TP noise. SP noise, by contrast, 
is uncorrelated and, therefore, the spectral density is flat (white). 
This difference between TP and SP noise is important for analog 
applications of CTD's and is discussed in more detail elsewhere.14 

For digital applications we shall need the ratio SIN of the square 
of the signal charge to the mean-square noise charge at the detector. 
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STORAGE PROCESS ( SP ) NOISE 

L::r---=:J 9---=:J c:=p 
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TRANSFER PROCESS (TP) NOISE 

~------~I ~I ______ ~ ~------~I ~I ______ ~ 
~ '--./' 

~QTP.2 

Fig. 4-The distinction between storage process and transfer process noise. 

From the discussion of Section IV [see eq. (13)] the square of the 
effective signal charge at the detector is (1 - a)2n[(Ql - QO)/2J2. The 
mean-square noise charge t1Q2 can be written 

t1Q2 = t1Qinput(1 - a)2n + t1Q§pH sp(n) + 2t1Q~pH TP(n), (15) 

where t1Qinput is the input noise contribution, t1Q§p the storage process 
noise acquired by a single packet during a single clock period, t1Q~p the 
transfer process noise acquired by a single packet during a single 
charge transfer, (1 - a)2n the attenuation from input to output, 
H sp(n) the compounding factor12 for storage process noise, and 
H TP(n) the compounding factor12 for transfer process noise. These 
compounding factors are approximately equal to n for na « 1; how
ever, for na ;::: 1 they are suppressed12 by incomplete transfer effects. 
For na » 1, H sp(n) ~ (n/7ra)! and H TP ~ (2a)-1, both of which are 
much less than n. Essentially the effect of incomplete transfer is to 
attenuate the accumulated noise as well as the signal. Owing to the 
correlation between the transfer-process noise components,14 H TP 

saturates. For shot noise, AQinput = qQ, where Q is the (mean) total 
signal charge (Ql - Qo). For thermal noise, t1Q~p = jkTC, where T 
is the temperature of the charge carriers and C is the storage capaci
tance. For our purposes here we shall ignore other noise contributions. 
Thus we find 

(16) 
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where LlQ2 is given by eq. (15). Equation (16) is plotted in Figs. 5 
and 6 for a = 10-3 and a = 10-4 for C = 1, 0.1, 0.01, and 0.001 pF, 
for thermal noise only and for thermal and shot noise. We shall use 
eq. (16) in Section VI on error rates and in Section VII on storage 
capacity. 

VI. MINIMUM DIGITAL ERROR RATES 

Noone would operate a CTD under conditions where errors in 
detection could occur even under noiseless conditions. However, in the 
presence of noise it is possible for a "one" to acquire sufficient net 
"negative" noise charge to be detected as a "zero" even under optimum 
conditions. It is the purpose of this section to calculate the probability 
of making a detection error, and to see to what degree the error rate 
(error probability times clock frequency) is minimized for the simple, 
two-level digital coding scheme by using dynamic detection. 

Suppose that an arbitrary charge packet following an arbitrary 
sequence of charge packets would, under noiseless conditions, be of 
size Qs at the output of the shift register. In the presence of noise the 
probability P(Q) that the observed size of the packet is Q within dQ 
is given by 

If we are using only zeroes and ones, then the probability P of detect
ing a certain "one" as a zero is given by 

J
Qd 

PI = -<Xl P(Q)dQ , (18) 

where Qd is the detection level (see Fig. 7). In eq. (18), PI depends 
upon Qs = Q(I) which in turn is a function of the sequence of signal 
charge packets preceding the one [see eqs. (11) and (12)]. To deter
mine the average error probability, PI must now be averaged over all 
possible sequences of signals, in general a very difficult task. 

Let us write eq. (18) in a slightly different form by changing 
variables. 

or 

or 
(19) 
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~------------------------------+-----Qs 

Fig 7.-A charge packet of size Q. under noiseless conditions has a probability 
distribution of P(Q) in the presence of noise. The probability that Q < Qd (that an 
error is made in detection) is the area "under" P(Q) for Q < Qd. 

where, of course, 

(20) 

We desire (PI) = (II), where the brackets "( )" denote averaging 
Q(I) (and possibly Qd) over all possible sequences of ones and zeroes 
[Q(I) = Q(I - a)nQI + QR from eq. (II)J. If Q8 > Qd for all possible 
QR (as it must if errors are to be avoided under noiseless conditions), 
then we show in Appendix D that (P) ~ f{ ([Qd - Q(I)J/(~Q2)1)}. 

In other words, the function f evaluated at the average of its argument 
is a lower bound to the average of the function, the average error 
probability. This permits putting a lower bound on the error rate. 
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If [Qd - Q (1)] is independent of QR, as is the case for the dynamic 
detection scheme discussed in Section IV, then 

(21) 

and the average error probability is at the lower bound. For the 
dynamic detection scheme of Section IV, [Qd - Q(I)] = - (1 - a)n 
X (Q1 - Qo)/2, which implies that 

(22) 

where (S/N) is given in eq. (18). If static detection had been used 
[Qd = Q/ (1 - a)], then the average error probability would always 
exceed the (P 1) given in (22). 

It remains to prove that the optimum (dynamic) detection scheme 
given in Section IV gives the lowest possible error probability for 
simple digital coding. The proof is as follows. We found above that 
for detecting a one the average error probability was at least 

(23) 

(The "lb" stands for lower bound.) Noting the definition of f1 Ceq. 
(20)], we note that we can make (P1)lb smaller by reducing (Qd), 
(Q(l) being already determined. However, we must also consider the 
error probability in detecting a "zero." Proceeding as for a "one," 
we obtain for Po the error probability for detecting a certain "zero," 

Po = fo{ [Qd - Q(O)]/ (LlQ2)i}, (24) 
where now 

fo(y) == iO';) e- x2
/ 2dx/ (27r-)! . (25) 

Also 
(PO)lb = fO{[(Qd) - (Q(0)]/(LlQ2)i}. (26) 

From the definition of fo, we note that we can made (P)lb smaller by 
increasing (Qd), (Q(O) being already determined. Assuming that an 
equal number of "zeroes" and "ones" are used in the simple digital 
coding, then (by symmetry) choosing (Qd) so that (P1)lb = (PO)lb, 
we shall achieve the minimum lower bounds. (P 1) = (PO)lb for 
(Qd) = [(Q(I) + (Q(0)]/2. But for our dynamic detection scheme 

(Qd) = Q(I - a)-l = [(Q(I) + (Q(0)]/2 (27) 

and for our dynamic detection scheme (P1) = (P1)lb and (Po) = (PO)lb. 
Therefore, since (Qd) for the dynamic detection scheme produces the 
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lowest possible lower bounds for error probabilities, and since the error 
probabilities are in fact equal to these lower bounds, no other detec
tion scheme can detect with lower error probability. (It is possible 
that another scheme can do just as well, however, since it is only (Qd) 
and not Qd itself which is the determining factor.) 

It is clear that this theorem places an operational limitation (a 
minimum error rate in detection) and CTD's using simple digital two
level coding. The theorem can be extendedll to the dynamic detection 
of multilevel digital codes. 

VII. MAXIMUM STORAGE CAPACITY 

One use of the CTD is as a memory or storage element. In other 
applications the CTD can be used to shift or to transfer information 
from one location to another. To properly access the operations of 
CTD's in these applications one must calculate the maximum infor
mation transmission capacity and the maximum information storage 
capacity of the CTD. As a result of the work of Shannon, our labors 
are greatly diminished. 

Shannon2 proved a most profound theorem. Let B be the bandwidth 
of a transmission channel, and let SIN be the signal-power-to-noise
power ratio. Then the maximum transmission capacity of the channel 
C T in bits per second is given by 

CT = B log2(1 + SIN). (28) 

This result can be understood for the CTD in the SIN» 1 range 
as follows. The number of levels into which a digital signal can be 
divided and still be detected with reasonably small error is (SIN)!. 
Log2(SIN)! is the maximum amount of information in bits detected 
with each charge packet. fa is the rate at which charge packets are de
tected. Thus fa log2 (SIN) ! = !fo log2(SIN) ~ B log2(1 + SIN) is the 
number of bits of information transmitted per second. (In Section 2.3 
we noted that for na « 1, B ~ fo/2.) Shannon was, of course, much 
more interested in the SIN « 1 range. For this case his theorem implies 
that no matter how noisy the transmission channel may be, it is 
always possible to pass information along it. We shall not make use of 
Shannon's result in this latter range. 

A more interesting quantity from the standpoint of the CTD is the 
maximum information storage capacity. This can be calculated from 
Shannon's Theorem2 as follows. If CT is the number of bits per second 
transmitted, then if one waits a time To equal to the time it takes the 
information to be transferred from the input to the output of the 
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linear medium, the maximum storage capacity in bits C 8 must be 
given by 

(29) 

For a transmission line, To is given by the length of the line divided 
by the propagation velocity. For a CTD, To = Nol fo where No = n/p 
and p is the number of charge transfers per clock period To = 1/ fo. 
Thus for a CTD we find for the maximum information storage capacity 
Cs in bits: 

(30) 

[Strictly speaking, the maximum information storage capacity will 
actually be less than or equal to the Cs given in eq. (30). This is be
cause as S/N decreases, the length of the code word increases.2 How
ever, for a CTD with No storage units, the maximum length of a code 
word is restricted to No. Thus for small SIN, the prediction of eq. (30) 
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may be in fact unrealizable. As our primary concern is for SIN » 1, 
the upper limit of C 8 should be sufficiently accurate. ] 

Knowing No, (B I fo), and (SIN) as functions of n, the number of 
charge transfers, we can calculate Cs versus n to determine the maxi
mum C 8 possible under various circumstances and for what n C 8 is 
maximum. This has been done in Fig. 8 for a = 10-3 and in Fig. 9 
for a = 10-4• In both figures QIC = 10 volts, Q = Ql = 2Qo, and 
storage capacitance C = 1, 0.1, 0.01, 0.001 pF. Also shown is C8 

for two-level and four-level codes. Here n is limited by an n (maximum) 
for each code at the number of transfers beyond which signal degrada
tion due to incomplete transfer would lead to errors in absolute
amplitude detection in the absence of noise. We note (i) that the 
maximum C 8 occurs for n about a factor of three larger than for 
n (maximum) from the examples of simple coding and detection, and 
(ii) that the maximum value of C8 is about a factor of four to five 
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larger than C 8 at n (maximum) for these common digital codes. [It 
should also be noted that C8 at n(maximum) for two-level digital 
coding exceeds Cs at n(maximum) for multilevel coding. This is dis
cussed in more detail elsewhere.19] It is encouraging to note that there 
exists such a margin between what is theoretically possible and what 
can be simply accomplished. From Section VI, however, it appears that 
it will be rather difficult to achieve optimum performance if this be 
desired (or essential). 

VIII. CONCLUSIONS AND RECOMMENDATIONS 

It is not surprising to find that incomplete charge transfer and 
random noise (especially shot and thermal) limit the bandwidth, 
storage capacity, and error rate of CTD's. What is surprising, how
ever, is that the residual charge level QR resulting from the portions 
of charge (preceding the packet of interest) incompletely transferred 
is so strongly signal dependent that signal detection with static detec
tion levels becomes seriously impaired prior to the onset of significant 
signal attenuation or noise degradation. Coding to offset the signal 
dependence of QR is found to be ineffective for the simple examples 
considered. On the other hand, by employing our dynamic detection 
scheme, which adjusts the detection levels to null out the signal 
dependence of the incompletely transferred charge, the operational 
range is significantly extended, limited only by the physically un
avoidable effects of attenuation and noise. It is also shown that no 
detection scheme can be devised with a lower error rate than this 
dynamic detection scheme. 

It might be concluded on the basis of the above result that more 
attention should be focused on detection rather than coding as a 
means of offsetting the worst effects of incomplete charge transfer. 
Noting the results shown in Figs. 8 and 9, however, it is apparent that 
substantial increases in storage capacity are possible with more 
sophisticated coding-decoding schemes. 
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APPENDIX A 

In this appendix the degradation of digital signals is discussed in 
general in some detail. In Appendix B these results are applied to 
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certain specific cases using several simple coding procedures. In 
particular, the signal-dependent residual charge QR is discussed. These 
mathematical details should be of some assistance in understanding 
several equations presented in Sections III, IV, and VI of the text. 
The analysis will be in the time domain. In Appendix C a frequency 
domain analysis is given. 

We shall denote by QN the size of the Nth charge packet at the 
input which precedes the packet of interest by N clock cycles. As in 
the text we shall denote by QR the size of the accumulated residual 
charge originating from the incompletely transferred portions of the 
preceding packets, QN. Mathematically QR is given by7.19 

(31) 

where n is the total number of transfers from input to output and a 
is the coefficient of incomplete transfer for each transfer. [Equation 
(31), as well as eq. (3), are somewhat approximate. To obtain a "pure" 
binomial factor in (31), or equivalently to be able to write a single
transfer equation like eq. (3), one must assume that the actual transfer 
of charge can be approximated by simplified single transfers either on 
a per-cell basis as in (31) or on a storage-region basis as in eq. (3). 
The error involved in this approximation will be of the order of a or 
na2, whichever is larger.J 

The physical significance of (31) is the following. The portion of 
QN which will show up in QR are electrons incompletely transferred 
N times, each time introducing a factor a. The binomial factor gives 
the number of distinct alternative sequences of "transfer" or "no 
transfer" which can lead to a portion of QN contributing to QR. 

Suppose now, as in the first example in Section III, we have a 
packet of size Ql preceded by an infinite string of packets of size Qo. 
Then for Q R one has 

QR(OOO···) = (1 - a)n L aNQo 00 (n+N) 
N=l N 

= - (1 - a)n[1 - (1 - a)-(n+l)JQo . (32) 
Similarly, 

QR(III· .. ) = - (1 - a)n[1 - (1 - a)-(nH )JQl. (33) 

For a Ql following the string of Qo's, the size of the charge packet 
Q[eq. (10)J at the output will equal Q = (Ql + Qo)/2 if n is such that 

(1 - a)nQl - (1 - a)n[1 - (1 - a)-(n+OJQo = (Ql + Qo)/2 
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or if (1 - a)n =! [to within a factor of (1 - a) ~ 1]. Should 
(1 - a)n > !, Q < Q and the one would be detected as a zero. 

In Appendix B we shall discuss more complicated coding schemes to 
see whether QB (31) can be reduced or at least made less sensitive to 
the signal preceding the charge packet of interest. For the present let 
us continue to derive some of the other results stated in the text. 

To cast eq. (13) into a simpler form we proceed as follows: 

Qa = (1 - a)n Ql + Qo + QR 
2 

= (1 - a) nQ + (1 - a) n f (n + N ) aN (Q N - Q + Q) 
N=l N 

=Q[(I-a)n_(I-a)n(I- 1 )]+Q~ (1 - a)n+l 

= Q(I - a)-l + Q~, 
where 

(13') 

Q~ == (1 - a)n t (n + N )aN(QN - Q) . (34) 
N=l N 

The static detection level, Q8 = Q/ (1 - a), actually differs by a 
factor of (1 - a)-l from the Q used in Section III and in the discussion 
following eq. (33). The difference, while insignificant, arises from 
whether one takes Qd to be the average of Ql and Qo, the sizes of the 
charge packets at the input, or whether one takes Qd to be the size 
at the output of an average charge packet [of size Q = (Ql + Qo)/2] 
following a string of similar packets. Thus for such a case 

Qs = Q = Q(1 - a)n + (1 - a)n L (n + N) aNQ 
N=l N 

= Q(I - a)n - (1 - a)n[I - (1 - a)-(n+l)]Q 
or 

Q8 = Q/(I - a). (35) 

To show that by using the dynamic level Qd given by eq. (13) one 
can have zero detection errors in the absence of noise we proceed as 
follows. Using eq. (11) one has at once that 

(36) 

independent of QR. As Ql > Qo, Ql > Q and, therefore, Q(I) - Qa > o. 
Similarly using eq. (12) one finds Qd - Q(O) > o. Thus, in the absence 
of noise, Q (1) and Q (0) are always separated by Qa, and hence no error 
need be made in distinguishing them. 
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APPENDIX B 

In this appendix we use the results of Appendix A to investigate 
what improvement if any is possible in CTD operation by using several 
simple coding procedures. We shall assume noiseless absolute-ampli
tude detection using a static detection level at the average output 
charge level. Equation (31) for QR can be used to calculate the result 
of other coding procedures. 

In Table I, I have enumerated four simple means of representing 
or coding a digital zero (0) and a digital one (1) using charge packets. 
The first is just to represent a 0 by a Qo packet and a 1 by a Ql packet. 
As calculated in Appendix A [see following (33)], a Ql following a 
long string of Qo's [example" (a)"] will be detected as a Qo if na > 0.7. 
This is the "nO'. Limit" entry in the table. Finally, the size of the Ql 
packet is attenuated as exp ( - na) as stated. For this coding a second 
example, "(b)," is given-a· .. QIQOQIQo ... sequence. In this case 
QR is always sufficiently large for a Ql and sufficiently small for a Qo 
that under noiseless conditions Q (1) > Q and Q > Q (0) for any nO'.. 
However, as noted in Section 2.2, such a signal is attenuated as 
exp( -nO'.) attenuation. 

One might hope that by preventing QR from becoming much differ-

TABLE I-FoUR SIMPLE MEANS OF REPRESENTING DIGITAL 

ZEROES AND ONES USING CHARGE PACKETS 

Example Represen ta tion no: Limit* Attenuation 

0 1 
Qo Ql 

(a) 1000 ... 0.7 e-na 

(b) 1010 ... 00 e-2na 

QoQo QIQl 

(a) 1000 ... (1) 0.7; (2) 1.67 e-na 

(b) 1010 ... (1) 0.79; (2) 2.4 e-na 

QIQO QOQl 

(a) 1000 ... (1) 00; (2) 0.8 e-2na, e-na 

(b) 1010 ... (1) 2.36; (2) 0.785 e-na 

Q Qo Q Ql 

(a) 1000 ... (1) 0.4; (2) 0.5 e-na 

(b) 1010 ... (1) 1.6; (2) 3.1 e-na 

* The notation (1) refers to the first of the two packets forming a bit, and (2) refers 
to the second. 
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ent than Q, one could increase the na limit. In Table I three possi
bilities are given. The first consists merely of coding 0 into two ad
jacent Qo packets and 1 into two adjacent Ql'S. If one detects the 
second of the two Ql packets in sequence (a), the nO'. limit is increased 
to 1.67. For sequence (b) detecting the second Ql now has an nO'. limit 
of 2.4 while the signal is attenuated as exp ( - nO'.). How much of an 
improvement this offers, however, is questionable. To store the same 
amount of information n must be doubled reducing the 1.67 to an 
effective 0.835. To maintain the same information rate, fo, the clock 
frequency must be doubled. This will increase a: if a is doubled, then 
the 1.67 limit, already reduced to 0.835, will be reduced further to 
about 0.42. Compared with the 0.7 limit of the simplest code, this is 
rather unfavorable. One compensation is that having two packets to 
detect rather than just one can be used to reduce the error rate in
duced by noise. However, one can do better, as the following example 
illustrates. 

The third example in Table I is the zero-net-charge code. Here a 0 
is coded as a Qo packet followed (in time) by a Ql packet. (In the 
register shifting from charge left to right this is represented as QIQO') 
A 1 is coded as QoQl. The advantage of this procedure is that each 
pair, whether coding a 0 or a 1, contains the same amount of charge, 
2Q. This prevents a buildup of charge in QR. The most demanding 
test is sequence (b) in which the nO'. limit is 2.36. This is a significant 
improvement over the 1.67 limit in the previous example. However, 
if one takes into account that to contain the same amount of infor
mation n must be doubled (as now each bit requires two charge packets) 
and that the clock frequency must be doubled to maintain the same 
data rate (which will increase a), one realizes that really very little 
has been achieved by increasing the upper limit on nO'. from nO'. < 0.7 
to nO'. < 2.4 (2.4/4 = 0.6). Other straightforward modifications of the 
basic 0, 1 code, of course, suffer from the same fault. Thus to achieve 
any improvement it is necessary that one still must be able to take 
advantage of the possibility of detecting both charge packets to do 
better than the simplest code. The reason for the failure of the zero
net-charge code in terms of frequency-domain concepts is given in 
Appendix C. 

One final example is to follow the Qo or the Ql with an intermediate 
packet of size Q. As seen in Table I, sequence (a) puts an nO'.-limit of 
0.5, which is inferior to the other codes. This attempt to reduce 
I QB - Q I by following Qo or Ql with a Q packet to "average" out the 
incompletely transferred charge is thus seen to be ineffective. 
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APPENDIX C 

It is quite informative to briefly discuss in the frequency domain 
the effects of various digital coding schemes on the character of the 
signal. 7 ,9 

In Section 2.1 we noted that incomplete charge transfer leads to a 
frequency-dependent attenuation A (w) given by 

A(w) = exp[ -na(1 - cos WTo)] (37) 

for {3 = 0 in eq. (7). A (w) is plotted in Fig. 1 for various values of na. 
As discussed in Section 2.2, low-frequency components (f« fo/2) 
suffer very little attenuation, whereas components with frequency near 
half the clock frequency (f ~ fo/2) are attenuated by exp( -2na), a 
large attenuation for na ~ 3. 

One can offset this high-frequency attenuation by the following 
scheme. If one takes every other charge packet and replaces it by a Ql 
if it originally was a Qo, and by a Qo if it originally was a Ql, then 
relative to Q one essentially mUltiplies each packet in turn by + 1, -1, 
+1, -1, +1, -1, .... This has the effect of converting the spectrum 
of the signal from F (f) to F (fo/2 - f): the f = 0 component is 
attenuated as A (fo/2) and the f = fo/2 component as A (0). To better 
preserve the entire signal, one can sum the outputs of a register with 
attenuation A (f) and a register with attenuation A (fo/2 - f). The 
ratio of maximum attenuation to minimum attenuation is thus im
proved from exp( -2na) to 2 exp( -na)/[1 + exp( -2na)]. However, 
distortion near f = fo/4 is still significant for na > 2. 

To see the effect of the zero-net-charge coding scheme on the signal, 
consider this example. If the clock frequency is fo, the maximum fre
quency the CTD can carry is fo/2. However, if two charge packets 
are devoted to each 0 or 1 as in the second through fourth examples 
in Table I, then the bandwidth is reduced to fo/4. If the second ex
ample is chosen, then the band extends from f = 0 to f = fo/4; if the 
third example (zero-net-charge coding) is chosen, then the band ex
tends from f = fo/4 to fo/2, the lower-frequency components of the 
signal being carried at the higher frequencies and vice versa. If 
amplified by exp ( +na), the ultimate effect of incomplete transfer on a 
signal coded using zero-net-charge coding is seen to be essentially the 
same as that on a signal coded using the second example. What is most 
striking, however, is that by reducing the clock frequency by a factor 
of two and using simple coding, one reduces na by a factor of four, 
greatly reducing the attenuation. 
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By examining the effect of other coding schemes on the spectrum 
of the signal, and by taking into account the frequency-dependent 
attenuation accompanying charge transfer in CTD's it is possible to 
ascertain whether an improvement in (noiseless) detection will be in 
fact real or only apparent. 

APPENDIX D 

In noise, detection, and communication theory one often encounters 
an integral of the form 

leA) = f_~A e- x2
/
2dx/(27r)i , (38) 

where A > O. This expression, while extensively tabulated numeri
cally, is difficult to work with analytically. In this appendix we shall 
(i) bound leA) between two simple analytic functions of A which 
differ by only a factor of 2, and (ii) prove that (I(A» ~ 1(A» for 
A ~ O. 

(i) Bounds on I(A): 

In Fig. 10 we illustrate the motivation for our approximations. 
leA) is the area under the Gaussian for x = - 00 to x = - A. If 
we draw a line tangent to the Gaussian at x = - A and extend the 
line from x = - A to the x-axis as shown, the area of the triangle 
formed by this tangent, the x-axis, and the vertical line x = - A is 
clearly less than leA). Similarly, if an exponential curve [B exp( +Cx)] 
also tangent to the Gaussian at x = - A and decaying to the left is 
drawn, then the area between this curve and the x-axis for x ~ - A 
is clearly greater than leA). Thus, if we calculate these two areas, we 
will have an upper and lower bound on leA). (These curves will 
clearly not cross the Gaussian if A ~ 1, the inflection point of the 
Gaussian.) 

To calculate the areas we proceed as follows. The slope of exp ( - x2/2) 
at x = - A is A exp( -A2/2), and of course its value at x = - A is 
exp ( - A 2/2). Thus the equation of the tangent is 

y(x) = exp( -A 2/2) + A exp( -A 2/2) (x + A) (39) 

(which is zero for x = - A - I/A, f( -A - I/A) = 0) and of the 
exponential is 

y(x) = exp[ -A 2/2 + A (x + A)]. (40) 
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-A o x 

Fig. 10-Approximating the area under a portion of Gaussian curve by bounding 
the area between that of a right triangle (whose hypotenuse is tangent to the Gaussian 
at x = - A) and by the area under an exponential (also tangent to the Gaussian at 
x = - A). 

Thus computing the appropriate areas we find that if A ~ 1 then 

Dj2 < (27r)ll(A) < D, (41) 
where 

D = exp( -A2/2)/ A. (42) 

Such bounds are very useful in calculating error rates, where one is 
seldom interested in accuracy better than a factor of two, and where 
upper and lower bounds are often very useful. 

(ii) (l(A) ~ l(A»), A ~ 0: 

To evaluate (l(A) is clearly very difficult even under the simplest 
of probability distributions of A, whereas l(A») is generally very easy 
to compute if (A) is known. l(A») can then be used as a lower bound 
for the more interesting (l(A). We shall now prove the above in
equality. (This result is reasonably well known. 2o The proof is given 
here for completeness.) 

leA) is a function of A. According to the mean value theorem we 
may write 

_ dll 1 d2l1 2 leA) - l(A») + dA (A) (A - (A») + 2dA2 A' (A - (A») , (43) 
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where A' (A) lies between A and (A) and depends on A. Thus we may 
write 

(l(A) = 1(A») + ~ <d~~IAI(A) (A - (A»)2). (44) 

Now then 

(45) 

which is zero or larger for A ~ 0. Thus if we are averaging A over a 
probability distribution peA) for which P (A < 0) = 0, then 
A' (A) ~ 0, and, consequently, the second term on the right-hand 
side will be zero or greater. Hence it follows that 

(I(A) ~ I(A»). (46) 

In Section VI this inequality is used to put a lower bound on the error 
rate for detecting digital signals. 
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A Geometric Theory of Intersymbol 
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A linear-space geometric theory of intersymbol interference is intro
duced in this paper. An equivalence between the structure of intersymbol 
interference and a wide-sense stationary discrete random process is 
demonstrated and exploited to demonstrate the equivalence of zero-forcing 
(decision-feedback) equalization to minimum mean-square error linear 
interpolation (prediction) of a random process. This equivalence is used 
to quickly derive the properties of these equalizers and give them additional 
geometric interpretation. Results from prediction theory are used to 
develop practical computational methods of determining the tap-gains of 
the infinite equalizers for both rational and nonrational channel power 
spectra. Finally, the theory of reproducing kernel Hilbert spaces is used 
to develop a theory of equalization for nonstationary channels with non
stationary noise. 

1. INTRODUCTION 

The analysis of digital communication systems from a geometrical 
viewpoint-the viewing of waveforms as points in a signal space and 
the identification of cross-correlation with the formation of an inner 
product-is by now well established. To a large extent, this approach 
has been popularized by the book of W ozencraft and J acobs. 1 However, 
when it comes to analyzing systems with intersymbol interference, 
frequency-domain techniques have almost exclusively been relied upon. 
The purpose of this paper is to consider pulse-amplitude modulation 
(PAM) systems with intersymbol interference from a geometric 
standpoint, and more specifically to develop a geometric theory of 
equalization. 

1483 
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Consideration of the geometric structure of intersymbol inter
ference leads immediately to the observation of a striking correspond
ence to the theory of minimum mean-square error (MMSE) linear 
estimation of a wide-sense stationary discrete-parameter random 
process. The fact that the latter subject is almost exclusively treated 
by geometric methods2 ,3 is further impetus for this approach to 
equalization. 

The theories of linear zero-forcing equalization and decision-feedback 
equalization are well established. The properties of linear equalization 

n(t) 
" h(t - kT) 

I 

r(t) L!~!F~-{ 1L_~_!-(_~_) -1pr ~ 
(a) 

(b) 

__ r_(t_)~,-_h_(-_t_)~~>-~~ H*(w) I~ , , 

SUM 

(c) 

(d) 

Fig. l-(a) Communication system model. (b) Matched-filter receiver. (c) Zero
forcing equalizer. (d) Decision-feedback equalizer. 
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are summarized by Lucky, et al.,4 while the present state of knowledge 
of decision-feedback equalization is summarized by Monsen 5 and 
Price. 6 The primary analysis tools which have been used are the cal
culus of variations in the case of linear equalization and Toeplitz forms 
in the case of decision-feedback equalization. 

In this paper, the geometric approach enables us to treat the two 
types of equalization simultaneously using the same mathematical 
framework, in which the relationship between them becomes very clear 
and many of their known properties are given an additional geometric 
interpretation. Many of the results follow directly from the theory of 
MMSE estimation. In addition to the unification and reinterpretation 
of previously known results, the geometric approach leads to exten
sions of the theory in several directions. Among these are the deriva
tion of an orthogonal expansion in Section 2.4 which is useful in many 
problems involving intersymbol interference, the development of 
practical iterative techniques for determining equalizer tap-gains 
(the infinite case) in Section 3.4, the extension of the theory of equali
zation to nonstationary noise and a time-varying channel in Section 
IV, and numerous results on the minimum distance problem associated 
with the performance analysis of the Viterbi algorithm maximum 
likelihood detector in a companion paper. 7 

This paper together with a companion one7 expand upon an earlier 
talk. 8 Readers desiring a limited and short treatment of this subj ect 
may wish to refer there. The geometrical approach to intersymbol 
interference was also employed to a limited extent in the author's 
thesis. 9 

1.1 Problem Statement 

We will consider the detection of a sequence of digital data digits, 
B k, each assuming one of a finite and predetermined number of levels, 
from the reception 

N2 

ret) L Bkh(t - kT) + net) (1) 
k=Nl 

as determined from the communication system model of Fig. 1a. It 
will be assumed initially that net) is white Gaussian noise (this assump
tion will be relaxed in Section IV). t A simple matched-filter receiver 
for the reception of ret) is shown in Fig. lb. In the first of two equiv
alent formulations of this receiver, the reception is cross-correlated. 

t The assumption of Gaussian noise is not necessary for the majority of results to 
follow, and in particular those which involve only second-order statistics of the noise. 
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with h(t - kT) and the decision on Bk made by applying a series of 
thresholds to the result; in the second formulation the cross-correlator 
is realized as a filter with impulse response h ( - t) (commonly called a 
matched filter) whose output is sampled at t = kT. The matched
filter receiver is optimum when there is no intersymbol interference, 
but in the presence of intersymbol interference the matched filter will 
respond to more than a single data digit and the performance of the 
receiver will be degraded. 

When there is intersymbol interference, a common approach is to 
build a linear filter, called a zero-forcing equalizer (ZFE), which re
sponds to only a single time-translate of h(t) (this can only be approxi
mated in practice). The most common form of this equalizer, shown 
in Fig. lc, is a matched filter followed by transversal filter (MFTF). 
As N ~ 00 the tap-gains of the transversal filter can be chosen such 
that the threshold input is a function of only a single data digit. It is 
important to note for future reference that the MFTF can also be 
modeled in the manner of Fig. Ib as a cross-correlation of r(t) with a 
linear sum of time translates of h(t), 

N 

L amh(t - mT). 
m=-N 

The decision-feedback equalizer (DFE) embodies a slightly different 
philosophy in which the DFE forward filter is allowed to respond to 
past (but not future) translates at h(t); the residual interference from 
past data digits is then subtracted out prior to the decision threshold 
using past decisions. A realization of the DFE using again the MFTF 
approach is shown in Fig. Id. The tap coefficients are now chosen to 
null the response to future data digits; this can be accomplished as 
N~ 00. 

The shortcoming of both the ZFE and DFE is that their linear 
filters remove intersymbol interference without regard to the effect 
on the noise; the result is that in eliminating the intersymbol inter
ference (or a portion thereof) they necessarily enhance the noise. t It 
seems clear intuitively that since the DFE eliminates interference 
from only future data digits, it has more degrees of freedom than the 
ZFE and should therefore be capable of less noise enhancement. A 
proof that this is always the case has been given by Price ;6 his method 
was to determine an explicit formula for the DFE SIN ratio using 

t In addition, the DFE is susceptible to decision errors. The effect of errors will 
not receive consideration here. 
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Toeplitz form theory and compare it with the known SIN ratio of the 
ZFE.4 Additional interpretation of this result will be given in Section 
3.1. 

A review of some requisite material on linear spaces and MMSE 
linear estimation is given in Sections 2.1 and 2.2. Readers familiar 
with this material are nevertheless urged to scan these sections for 
notation to be employed in the remainder of the paper. The ZFE and 
DFE are reformulated in Section 2.3. In Section 2.4 the relationship 
between intersymbol interference and MMSE estimation is discussed, 
and a useful orthogonal expansion arising out of this relationship is 
derived in Section 2.5. 

Section III develops a geometric theory of the ZFE and DFE. 
Conditions necessary and sufficient for the existence of these equalizers 
are given in Section 3.1, their performance is discussed in Section 3.2, 
a useful property of the DFE with regard to its output noise sequence 
is interpreted in Section 3.3, methods of calculating the tap-gains are 
derived in Section 3.4, and the relationship between finite and infinite 
transversal filter equalizers receives consideration in Section 3.5. 

Sections II and III are concerned with additive white noise ex
clusively. Section IV extends the theory to colored Gaussian noise, 
nonstationary Gaussian noise, and a time-varying channel using the 
theory of reproducing kernel Hilbert spaces (RKHS). 

II. AN EQUIVALENCE TO DISCRETE RANDOM PROCESSES 

The structure of the intersymbol interference in (1) will now be 
shown to have an equivalence to a wide-sense stationary random 
process. The starting point will be a quick review of linear spaces and 
of linear mean-square error (MMSE) estimation of a random process. 

2.1 Hilbert Space N otation10 

An inner product space oC consists of a linear space together with a 
defined inner product (x, y) between two elements x and y. All spaces 
in this paper are Hilbert spaces, which consist of an inner product 
space satisfying an additional closure property (specifically, the limits 
of Cauchy sequences must be in the space). The inner product induces 
a norm, or "length" of a vector, 

//xll ~ (x,x) (2) 

and the notion of the distance between two vectors, /Ix - y/l. The 
geometrical interpretation of these quantities is illustrated in Fig. 2. 
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k-- <X,y> _~ 
\IX 1\ 

Fig. 2-Interpretation of inner product, norm, and distance. 

A subspace of .,c is any set of vectors which itself constitutes a linear 
space. If Xk, k E I is a countable or finite sequence of vectors, then 
we denote by M (Xk, k E I) the closure of the subspace consisting of 
all finite linear combinations of elements of the set {Xk' k E I} and 
call this the subspace spanned by the Xk'S. It is convenient to think 
of elements of M (Xk, k E I) as convergent (possibly) infinite sums 
of the form 

even though in some obscure cases not all elements can be expressed 
in this way. 

In many minimization problems it is desired to find the element 
of some closed subspace M which is closest to a vector y; the resulting 
element is called the projection of y on M, is denoted by P(y; M), 
and satisfies the orthogonality property 

{y - P (y ; M), x) = 0 (3) 

for all x E M. t The geometric interpretation of (3) is shown in Fig. 3 
for a one-dimensional subspace spanned by X; for this case the pro
jection must be a scalar times x and the validity of (3) is apparent. 

2.2 Review of Linear Mean-Square Interpolation and Prediction2 ,3 

We will now quickly review the theory of linear mean-square 
estimation of a random variable. 

The set of random variables with zero mean and finite variance is a 
linear space, since the sum of any two such random variables itself 
has these properties. This set is also a Hilbert space with inner product 

(X,Y) = E(XY), (4) 

t When, as in (3), a vector is orthogonal to every vector in M, it is said to be 
orthogonal to M. 
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, <~x> x 
'P(y,M (xl)= TxT N 

Fig. 3-Projection on subspace spanned by x. 

where E ( .) denotes expected value. It is standard to suppress the 
sample space dependence of a random variable as has been done in (4) 
because the geometric properties (inner product and norm) are deter
mined by the value of the random variable on the whole sample space; 
that is, by its statistics in their entirety. 

Consider now the following interpolation problem: Suppose that a 
sequence of zero-mean random variables X k, - 00 < k < 00, with 
finite variances are given and it is desired to estimate X 0 based on the 
observation of X k , k ~ O. If the estimate is further stipUlated to be 
linear, it is the same as requiring that it be an element of M(X k, k ~ 0). 
Suppose that the estimate go is to be chosen in such a way that the 
mean-square error between X 0 and the estimate is minimized: 

A min E(Xo - gop. 
XoEM(Xk,kr!O) 

(5) 

From (4) and the previous section, the MMSE linear interpolator is 

go = P[Xo, M(Xk, k ~ O)J, (6) 

the projection of Xo on M(Xk, k ~ 0). 
A second estimation problem which will be of interest is the pre

diction of X 0 based only on X k, k > 0 (an anticausal prediction). The 
MMSE linear predictor is the projection of Xo on the subspace 
spanned by X k, k = 1,2, "', denoted by P[Xo, M(Xk, k > 0)]. 

2.3 Zero-Forcing and Decision-Feedback Equalization 

We are now prepared to restate the problem of determining the ZFE 
and DFE filters in a linear space context. It will be assumed that the 
basic pulse h(t) in (1) has finite energy (i.e., is square integrable), 

(7) 

The set of waveforms which satisfies (7) is a linear space, which we 
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denote by L 2• L2 is also a Hilbert space with inner product 

(x, y) = f-: x(t)y(t)dt (8) 

for any two L2 waveforms x(t) and yet). For the same reason that the 
sample space dependence of a random variable was suppressed in (4), 
the time dependence of the waveforms x (t) and y (t) has been sup
pressed on the left side of (8): it is the entire time waveform which 
determines the geometric properties. 

The class of filters t which will be considered will be limited to those 
which can be modeled as an inner product (or cross-correlation) of the 
reception ret) with some L2 waveform. A ZFE is a filter corresponding 
to a waveform gk(t) which does not respond to any translate of h(t) 
except h(t - kT), 

f-: h(t - mT)gk(t)dt = 0 , m ~ k, (9) 

but does respond to h(t - kT), 

!_: h(t - kT)gk(t)dt ~ 0 , (10) 

in order that there be a signal on which to base the decision. It is 
evident that if go(t) satisfies (9) and (10) for k = 0, then they are also 
satisfied by gk(t) = goCt - kT) for k ~ o. Written in inner product 
notation, (9) and (10) become 

(hk' go) = 0, 

(ho, go) ~ 0, 

k ~ 0, (11) 

(12) 

where we have written hk for h(t - kT). The analogous condition for a 
DFE forward filter is 

(hk' go) = 0, 

(ho, go) ~ o. 
k > 0, (13) 

(14) 

The forms of the ZFE and DFE in this symbolic notation are shown 
in Figs. 4a and b. The output of the linear filter is a function of B k 

(a single data digit) for a ZFE and B k-m, m > 0 (all past data digits) 
for a DFE. The tap-gains of the feedback transversal filter storing 
past decisions for the DFE are equal to the responses of go to previous 
pulses, (go, h_m ), m > 1. 

t In the case of the DFE, we refer only to the forward filter. 
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dtl-1 "It} ~ OA } __ B_k<_9_0_' h_o>_+ _<_9k_,n_> __ -IL..-_-y-__ -' 

<r,9k>-

Bk (a) 

~=kT} r(t) 
90(-t) ::-

<r,9k>--

(b) 

Fig. 4-Symbolic representations of the two equalizers: (a) zero-forcing equalizer j 
(b) decision-feedback equalizer. 

2.4 A Congruence Relationship 

Two Hilbert spaces which display an identical geometrical structure 
are said to be congruentll or unitarily equivalent. lO Specifically, in 
order for two Hilbert spaces to be congruent, there must exist between 
them a one-to-one and onto linear mapping which preserves norms 
and inner products. Although the elements of two such spaces may be 
quite different entities, when considered as elements of their respective 
Hilbert spaces they have the same geometrical structure. 

Define the autocorrelation function of the pulse sequence, 

Rk = (hm, hm+k). (15) 

It follows from the inequality 

o ~ II r: amhkm\ 12 = f r: amanRkm-kn 
m=O m=On=O 

that {Rd is a nonnegative definite function. Therefore, there exists 
a second-order discrete random process {X k} which has autocorrela
tion R k, 

(Xm, X m+k) = E(Xml X m+k) 

= R k • (16) 
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For the random process defined in (16), M(hk' k E I) andM(Xk, k E I) 
are congruent through the obvious mapping 

(17) 

which is a unitary linear transformation. To verify this, observe that 
the mapping is linear, preserves norms, 

N N 
= L L CXmCXnRkm-kn 

m=l n=l 

and preserves inner products by an equally simple derivation. 

(18) 

The mapping of (17) is only defined for finite sums. When I is an 
infinite set, ct> can be extended to all of M (hk' k E I) by taking limits 
in the mean. For any f E M (hk, k E I) there exists a sequence {f k} , 
each consisting of a finite sum of the form of (17), such that fk ~ f. 
Since ct>(!k) is a Cauchy sequence from (18) ,we define ct>(f) as the 
limit of ct>(!k), which is in M(Xk, k E I) by completeness. 

There is an additional congruence which is useful. From the defini
tion of Rk in (15), we see that 

1 f 7r 'T = - R(w)e iwkT , 
21r -7r/T 

(19) 

where 

t:.. 00 I ( 21r) 12 R(w) = m~oo H w + m T 

(20) 
n=-oo 

where R(w) is an equivalent power spectrum of the channel. From (16), 
R (w) I T is the power spectrum of the random process { X k }. Let 
L2 ( -1r/T, 1r/T; R) denote the Hilbert space of all complex-valued 
Lebesque measurable functions few) with domain I w I < 1r IT which 
satisfy 

1 f 7r
IT II few) 112 = 21r -7r/T I few) 12R (w)dw < 00 (21) 
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with the obvious definition of the inner product. A frequently invoked 
congruence is between M(Xk, - co < k < co) and L 2 ( -7r/T, niT; R).2 
By implication, L 2(-7r/T, 7rIT; R) and M(hk, - co < k < co) are 
also congruent through the mapping 

(22) 

as is readily verified. 
In the remainder of this paper, the congruence demonstrated in this 

section will be exploited to demonstrate that many available results 
on MMSE interpolation and prediction theory are directly applicable 
to the equalization problems posed in Section 2.3. 

2.5 An Orthogonal Expansion 

The congruence relation of Section 2.4 will be used in this section to 
establish an orthogonal expansion in M (hk' - co < k < co) which 
will be particularly useful in the sequel. 

Define the element 

(23) 

which is the difference between a translate of h(t), hk' and its pro
jection on the subspace of translates to its right. It will be shown later 
that this element is of particular significance to the DFE. For the 
moment, however, note that et is equivalent to the MMSE prediction 
error of X k based on X m , m > k, since the projection is the optimum 
linear predictor. It is well known3 that the successive prediction errors 
of a random process are uncorrelated random variables. The equiv
alent statement relating to et is that 

(et, e;t) = IIetl1 2om,n (24) 

and it is an orthogonal sequence. t This is readily demonstrated directly 
by noting that et is orthogonal to M(hk, k ~ m), which contains e;t 
for n > m. Hence, (24) follows for n > m and by symmetry for n < m 
also. 

From (24) it follows that as long as 

Iletll > 0 (25) 
the sequence 

Wn £ e;t Illetll, - co <n< co, (26) 

is an orthonormal set in L 2• The significance of (25) is that the equiv-

t The norm of et is independent of k since et is a time translate of ed. 
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alent random process must not be linearly predictable with vanishing 
mean-square error (in the language of Ref. 3, p. 564, X k must be 
"regular," or "nondeterministic"). 

Expanding h n in a Fourier series in W n , 

hn = Un + Vn 

m=-<Xl 

Cm ~ (Wn+m, hn) = (Wm, ho) 

(Vn, wm) = 0, - 00 < n < 00, - 00 < m < 00, (27) 

where Vn is the remainder. Equation (27) can be simplified by observing 
that 

m <0, 
since ho E M(hk, k ~ 0) and Wm is orthogonal to M(hk, k ~ m + 1), 
which contains M (hk' k ~ 0) when m < 0. In addition, it can be shown 
(Ref. 3, pp. 571-575) that Vn = 0, since the spectrum under consider
ation here is absolutely continuous. t Thus, (27) reduces to 

<Xl 

hn = L: CmW n+m 
m=O 

(28) 

The expansion of (28), which is used in the theory of linear prediction,2 ,3 

is similar in spirit to a straightforward Gram-Schmidt orthogonaliza
tion process, but is much more useful in that the coefficients of the 
expansion are independent of n. The main shortcoming of the expan
sion (28) is requirement (25). 

The formula for Cm given in (27) is not very useful in explicitly 
evaluating the coefficients of (28). A more useful method of evaluation 
is to observe that it is a spectral factorization problem. Defining the 
bilateral z-transformt of the autocorrelation, 

co 

R*(z) = L: RmZm, (29) 
m=-<Xl 

we claim that 
co co 

R*(z) = L: cnZn L: cnZ-n, (30) 
n=O n=O 

t This is by virtue of the fact that integral (21) is in terms of R(w)dw; i.e., the 
underlying measure is presumed to be absolutely continuous with respect to Lebesque 
measure. 

t Note that we define the z-transform in positive powers of z. 
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where the Cm are given by (28). To show (30), first calculate R j from 
(15), 

co co 

= L L CmCn(W m, Wj+n) 
m=O n=O 

If CnCn+h 
n=O 

co 

L CnCn+h 
n=-j 

j < o. 

Similarly, the right side of (30) can be manipulated, 

00 00 00 00 00 00 

(31) 

L L CnCmZ n- m = L L CnCn+mZm + L L CnCn_mZ- m, (32) 
n=O m=O m=O n=O m=l n=-m 

and comparing (31) and (32), (30) is established. The representation 
of (30) is not unique. However, Doob (Ref. 3, p. 160) shows that 
the coefficients of (27) uniquely satisfy (30) when the additional 
conditions 

IZI < 1, (33) 

ao 

L: c~ < 00 (34) 
n=O 

are required. t The necessity of (34) is obvious from (27), while the 
reason why (33) is needed is that otherwise (30) could be satisfied 
on the unit circle by another sequence with a larger zeroth term, 
contradicting the fact that 

Co = liet". (35) 

Equation (35) follows from the observation that M (hk' k ~ n) = 
M(Wk, k ~ n) and thereforeP[h n, M(hk, k ~ n + I)J = L;;=l CmW n+m 

or 
(36) 

A simple example will serve to illustrate (30). Suppose h(t) has an 
exponential autocorrelation with 

O<A<l. (37) 

t Of course, condition (25) is also required. 
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Direct calculation of (29) reveals that 

1 - A2 
R*(z) = (1 - AZ) (1 - A/Z) 

which is in the form of (30) with 

cn =-Vl-A2An. 

(38) 

(39) 

The validity of (39) can be demonstrated directly for this simple 
example by noting that 

(40) 

(as can be verified by showing that et is orthogonal to hm, m ~ k + 1) 
and thus 

From (28), 

agreeing with (39). 

hm - Ahm+l 
Wn = IIhm - Ahm+ll1 

hm - Ahm+1 
-VI - A2 

Cm = (ho, wn ) 

=-vl-A2Am 

(41) 

(42) 

The procedure for higher-order rational spectra is equally simple. 
From (29) and the fact that Rm is real and even (R_ m = Rm), it 
follows that 

R* (z) = R* ( ~ ) . (43) 

Thus, for every zero ai and pole bi of R*(z), at- l and bi-
l are also a 

zero and a pole respectively. Thus, R* (z) can be written in the form 

(44) 

so that from (30) 

(45) 

where (33) has been insured by the choice of zeros in (45). 
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When R* (z) is not rational, a more general method of determining 
the coefficients of (28) is required. For this purpose, we use the equiv
alent power spectrum of (20). The first form in (20) is the one re
quired for analytically determining C(z), whereas the second form is 
the one which would usually be used in numerical calculations. The 
relationship of R (w) to R* (z) is, of course, 

R(w) = TR*(e iwT), (46) 

the evaluation of R* (z) on the unit circle. The equivalent of (30) for 
R(w) is 

R(w) = I t CkeiwkTl2. 
T k=O 

(47) 

Intuitively, (47) requires the expansion of -VR(w)/T, with an arbitrary 
phase characteristic, in a complex Fourier series with only positive 

frequencies. Following Doob (Ref. 3, p. 161), expand log -VR(w)/T 
in a Fourier series, 

(48) 

This is always possible because, as will be demonstrated later, in order 
for (25) to be satisfied, it is necessary and sufficient that log R (w) be 
integrable. Define 

and note that 

We claim that 

satisfies (47), since 

00 

g(z) = ro + 2 L rkzk 
k=l 

C(z) = e(J(z) 

I C(e iwT) I = exp[Reg (eiwT)] = ~R~). 

Equation (33) is also satisfied since g(z) is analytic for I z I < 1. 

(49) 

(50) 

(51) 

Equation (51) is an analytic solution to the problem initially posed, 
but a practical means of applying it numerically is required. It is 
shown in Appendix A that the Fourier coefficients of (48) can be 
calculated efficiently and accurately using the fast Fourier transform 
(FFT) algorithm. The second difficulty is in determining C(z) from 
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g(z) in (51). This is easily resolved by noting that 

Cm = - - C(z) 1 d
m 

I 
m! dz m z=o 

m ~ 0 

m ~ 1 (52) 

Co = ero 

and applying Leibniz's differentiation rule 

to the product 

d
n 

C(z) = d
n
-

l 
(eo(Z) dg(z») 

dz n dz n- l dz 

= n-l (n - 1 ) dn-mg(z) dmC(z) 
~o m dz n

-
m dz m 

and, setting z = 0, 

2 n-l 
Cn = - L (n - m)rn-mcm, n ~ 1. 

n m=O 
(53) 

Equations (52)-(53) give us a practical recursive method of determining 
the coefficients of (28) when the channel spectrum is not rational. 

III. GEOMETRIC THEORY OF THE ZERO-FORCING AND DECISION-FEEDBACK 

EQUALIZERS 

The zero-forcing equalizer (ZFE) and decision-feedback equalizer 
(DFE) have been introduced in Sections 1.1 and 2.3. In this section, 
we will describe fully the characteristics of these equalizers in the 
context of the geometric structure developed in Section II. 

3.1 Conditions for the Existence of the ZFE and DFE 

The existence of a ZFE and DFE will now be related to the inter
polation and prediction of the equivalent random process defined in 
Section 2.2. This relationship will then be used to obtain directly the 
known conditions for their existence. 

The first observation is that the subspaces M (hk' k ~ 0) and 
M (X k, k ~ 0) are identical, as are the subspaces M (hk' k > 0) and 
M(Xk, k > 0). The element 

eo = ho - P[ho, M(hk, k ~ O)J (54) 
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is the same as the interpolation error vector defined in Section 2.2, 
(X 0 - X 0), while the prediction error vector is the same as 

eit = ho - P[ho, M(hk, k > 0)]. (55) 

These two vectors are likely candidates for a ZFE and a DFE because 
they are orthogonal to the subspaces M (hk' k ~ 0) and M (h k, k > 0) 
respectively [see Section 2.1 and eq. (3)]. Hence, they satisfy (11) 
and (13) respectively. To verify that they are indeed a ZFE and a DFE, 
conditions (12) and (14) must be checked. Noting that eo is orthogonal 
to M(h k , k ~ 0), we have 

(eo, ho) = (eo, ho - P[ho, M(hk, k ~ O)J) 

= Ileol1 2 

by definition (54). Similarly, it follows that 

(eit, ho) = Ileitl1 2
• 

(56) 

(57) 

Thus, we see that a necessary and sufficient condition for eo (eit) to be a 
ZFE (DFE) is that Ileoll > 0 (Ileitil > 0). By definition, the projection 
of ho on a subspace is the element of that subspace which is at a mini
mum distance from ho, and hence Ileoll and Ileitil are the minimum 
distances between ho and M (h k, k ~ 0) and M (hk' k > 0) respectively. 
Since Ileoll can only vanish if ho E M (hk' k ~ 0), and similarly 
for Ileitll, it follows that eo (eit) is a ZFE (DFE) if and only if 
ho EE M (hk' k ~ 0) [ho EE M (hk' k > 0)]. Physically, these conditions 
mean that h(t) must not be representable as an infinite weighted sum 
of a subset of its own translates. Geometrically, it is evident in Fig. 5 
that, as long as lIeoll > 0 (or lieitll > 0), eo (or eit) will have a com
ponent in the direction of ho and the equalizer will have a response 
to the desired signal. 

M(hk,k*O) 

OR 
M (h k, k >0) 

Fig. 5-Geometric interpretation of the zero-forcing equalizer and decision-feed
back equalizer. 
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The weighting functions (54)-(55) can, under reasonable conditions, t 
be written in the form of a convergent linear sum of translates of ho, 

(58) 

(59) 

for some coefficients at. This demonstrates that these two elements 
are just the matched filter followed by transversal filter (MFTF) 
discussed in Section 1.1. It will be shown in the next section that the 
MFTF has particular significance, in that it maximizes the SIN ratio. 

In general, there will be many ZFE's and DFE's other than (58)-(59). 
An example of a different ZFE is the element 

h~ - P[h~, M(hk, k ~ O)J 
for any h~ such that 

(h~, ho) ~ 0 

h~ EE M(hk, k ~ 0). 

An interesting question that arises is, then, whether there ever exists 
a ZFE and DFE when their corresponding MFTF's do not exist. To 
see that the answer is no for the ZFE (the proof for the DFE is 
identical), note that if ho E M(hk, k ~ 0), then any go orthogonal to 
M(hk, k ~ 0) is also necessarily orthogonal to ho.~ Thus, we have 
proven the following theorem: 

Theorem 1: The following five statements are equivalent: 

1. ho EE M(hk, k ~ 0) [ho EE M(hk, k > 0)]. 
2. IIeoll > 0 [IIetll > 0]. 
3. There exists a ZFE [DFE]. 
4. There exists a ZFE [DFEJ of the form of eq. (54) Ceq. (55)J, the 

MFTF. 
5. The random process defined in (16) cannot be linearly interpolated 

[predictedJ with vanishing mean-square error. 

The fifth condition of Theorem 1 follows from our earlier identification 
of eo and et as the interpolation and prediction errors, respectively, 
of the equivalent random process. This observation also enables us to 
pull from the literature formulas for the norms of eo and et. The follow-

t This will be discussed fully in Section 3.5. 
~ We also make use of the trivial observation that any go satisfying (11) is orthog

onal to M (h k, k ¢ 0). 
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ing corollary follows directly from the known formulas for the inter
polation and prediction errors of a random process,2.3 

[ 
T2 J7r

IT ]-1 l/ eol1 2 = 2- R-1 (w)dw 
7r -'/fIT 

(60) 

l/etll 2 = ~ exp [ :: [7r;/: log R(w)dw ] . (61) 

Corollary 1: A ZFE [DFE] exists if and only if R-1(W) [log R(w)] is 
integrable. 

Both conditions relate to the fashion in which R (w) vanishes. In 
particular, both require that R(w) vanish on at most a set of measure 
zero. The relationship of (60) and (61) will be discussed more fully 
in the sequel. 

It should be noted also that (61) follows directly from the orthog
onal expansion of Section 2.5. From (35) we know that l/etl/ 2 equals 
c5, while (52) gives a relation for co. When the Fourier series of (48) 
is inverted and ro is substituted into (52), (61) results. 

3.2 Performance of the Equalizers 

It will now be shown that the MFTF among all ZFE's and DFE's 
maximizes the SIN ratio and minimizes the error probability in white 
Gaussian noise. The derivation will be a simple application of the 
Schwarz inequality. 

Assume that the additive noise in (1) is white and Gaussian. Then 
the decision axis which is applied to a threshold is, for the ZFE, 

(62) 

where (go, n) = no is a Gaussian random variable with mean zero and 
varIance 

(63) 

and N 0/2 is the two-sided spectral density of the noise. The minimum 
probability of error decision strategy is then to apply (go, r) to a series 
of M - 1 thresholds, with the specific thresholds depending on the 
probability law on B k • For any such law and series of thresholds the 
probability of error will be a monotone decreasing function of the 
SIN ratio, which is proportional to 

(64) 
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since (go, n) is a zero-mean Gaussian random variable with variance 
proportional to Ilgol12. Noting from (11) that go is orthogonal to 
P[ho, M (hk' k ~ 0) ] whenever go is a ZFE, (64) can be rewritten 

SIN ex: (go, eo)2 < lie W 
IIgoW = 0 

(65) 

by the Schwarz inequality, with equality if and only if go equals eo 
(the MFTF) within a mUltiplicative constant. Thus, the MFTF, 
among all ZFE's, maximizes the SIN ratio. By the same method an 
identical result can be demonstrated for the DFE, if it is assumed 
that the decision-feedback mechanism correctly cancels the tails of 
earlier pulses. 

The preceding derivation, which is a generalization of the Schwarz 
inequality derivation of the matched filter, has the geometric interpre
tation of Fig. 6. In writing (65), the maximization of (64) is restricted to 
those go which lie in the hyperplane orthogonal to P[ho, M (hk' k ~ 0)]. 
Since every ZFE is also orthogonal to this vector, it follows that the 
hyperplane so described contains the set of all ZFE's. However, the 
maximization over elements of the hyperplane does not guarantee a 
result which is a ZFE. The vector in the hyperplane which has the 
greatest component in the direction of ho per unit length is evidently 
the one which lines up with eo, as verified by (65). Fortunately, this 
vector also turns out to be a ZFE, so that the maximization is complete. 

An additional observation relative to (65) is that the maximum 
SIN ratio is proportional to IIeoll2 for the ZFE and l!etll 2 for the DFE. 
The maximum SIN ratio is therefore directly proportional to the mean
square interpolation and prediction errors of the equivalent random 
process. Thus, the maximum SIN ratios of the ZFE and DFE are 
given by (60) and (61) respectively, while the factor by which the 

Fig. 6-S/N ratio maximized by the MFTF. 
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Fig. 7-Geometric interpretation of eq. (66). 

SIN ratio is reduced relative to an isolated pulse with matched filter 
detection is obtained by dividing by R o, the isolated pulse energy. 

Price6 derived (61) by a different method and used the geometric 
mean inequality for integrals to show from (60) and (61) that 

(66) 

This important result implies that (i) the SIN ratio of the DFE MFTF 
always exceeds that of the ZFE MFTF, t and (ii) a DFE exists when
ever a ZFE exists [the contrary is not true, as demonstrated by the 
important example of algebraic zeros in R(w)6]. Using the geometric 
method we have developed, two interpretations of (66) can be given. 
First, it is intuitively apparent that the mean-square interpolation 
error of a random process will be smaller than the mean-square pre
diction error, because an interpolation is based on more information; 
similarly, there will be some processes for 'which interpolation, but not 
prediction, with zero mean-square error is possible. Second, since 
M(h k, k ~ 0) contains M(hk, k > 0), the distance between ho and 
M(h k, k ~ 0) (equal to I/eol/2) must be smaller than the distance be
tween ho and M(hk, k > 0) (equal to //etl/ 2). This second interpreta
tion is a rigorous way of establishing (66) by a method more direct 
than the integral inequality. It has the geometric interpretation of 
Fig. 7, where the distance between a vector ho and the larger subspace 
(the x-y plane) is less than between ho and the subspace it contains 
(the x axis). 

The performance of the ZFE and DFE can be evaluated for any 
particular channel spectrum using (60)-(61). In particular, (60)-(61) 
can be evaluated in closed form for rational spectra. A different ap
proach, which allows us to evaluate the tap-gains of the equalizers 
as well, will be pursued in Section 3.4. 

t This result neglects the effect of decision errors on the DFE. 
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3.3 On the DF E White Output Noise Property 

As observed by Price,6 the DFE forward filter is identical to the 
"whitened matched filter" employed by Forney12 as the first element 
of his maximum likelihood detector. The property of this filter which 
is essential to Forney's application is that the noise sequence at the 
filter output is uncorrelated. As with the other properties of this filter, 
this one has a simple explanation in terms of the relationship to linear 
prediction. 

Identifying et as ed (t - kT), the noise sequence at the DFE for
ward filter output is (eit, n). Since n (t) is white noise, this sequence 
will be uncorrelated if and only if 

(et, e;t) = 0, m~n. (67) 

The validity of (67) and an interpretation of this result in terms of 
the uncorrelated nature of the successive prediction errors of a random 
process has already been given in Section 2.5. 

3.4 Determination of Tap-Gains 

In this section, we will use the orthogonal expansion of Section 2.5 
to derive methods of determining the tap-gains of the forward and 
feedback filters of the MFTF DFE. For comparison purposes the 
well-known relation for the tap-gains of the ZFE will also be briefly 
developed. 

If we write the weighting response of the MFTF ZFE as 

co 

aoeo = L akhk, (68) 
k=-co 

where the tap-gains of the transversal filter are ak, - 00 < k < 00, 

condition (11)-(12) becomes 

(eo, hm ) = Ileoll2om,o 

Taking the bilateral z-transform of (69), 

aolleoll 2 = A (z)R* (z), 

where A (z) is the z-transform of the tap-gains 

A (z) ~ L akzh. 
k 

(69) 

(70) 

(71) 
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Thus, from (70), 
A ( ) = aollroll2. 

z R*(z) (72) 

This filter is illustrated in Fig. 8a. When h(t) is applied to the input 
of a matched filter and the output sampled at a rate of liT, the output 
has z-transform R*(z). The transversal filter weighting response has a 
z-transform proportional to R*(Z)-l, so that the output is consistent 
with (69). 

The SIN ratio of the ZFE, given by (60), is readily derived from 
(72). Writing the relation for tap-gain zero, 

ao = _1_ f A (z) dz = aolleo//
2 f ~ . (73) 

2n-j z 27T-j zR* (z) , 

and solving for lIeol/2, we immediately get (60) using (46). 
As an example, for the exponential autocorrelation of (37), (72) 

becomes 

A(z) = aolleoll2 [- 1 ~ A2 Z-
1 + ~ ~ ~: - 1 ~ A2Z] (74) 

from which we get 
1 - A2 

lIeol/2 = 1 + A2 

aoA 
- 1 + A2 

/k/ > 1, 

(75) 

a result derived by Tufts13 by another method. This example points 
out that it is not ever necessary to actually evaluate (60) when the 
channel spectrum is rational, but rather the performance can be 
obtained by equating the zero-order tap-gains of (72) in the manner 
of (73). 

The situation with the DFE is only slightly more complicated. In 
this case the DFE filter is 

(76) 

where only taps on one side are involved. Substituting from (28) and 
(36), 

= f: Wm f: atcm-k, (77) 
m=O k=O 
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hlll--1 
'\ 

''-_~I _---J/ 

MATCHED 
FILTER 

h(-t) ~ H*(w) 

/ 
I 

MATCHED 
FILTER 

(a) 

R*{z) ~ 
C(1/z) 

, 
I 

''---''-I-~/ 

/ 

TRANSVERSAL 
FILTER 

COC(z) 

+ 

FORWARD TRANSVERSAL 
FILTER 

''-----.-1 ---' 

(b) 
FEEDBACK 

FILTER 

Fig. 8-Spectral representations of the MFTF zero-forcing equalizer (a) and 
decision-feedback equalizer (b). 

and equating coefficients, 

f atcm-k = {atco, 
k=O 

0, 

m=O 

(78) 

m > o. 
From (78) we get a recursion relation for the tap coefficients which is 
useful for nonrational spectra, 

1 m-l 
a;!; = - - :E atcm-k, 

Co k=O 

and a z-transform relation which is useful for rational spectra, 

+ A +( ) = ao Co 
z C (z) , 

(79) 

(80) 

where A +(z) is the z-transform of the tap-gains of (76). Performing 
(80) again for the autocorrelation of (37), 

A+(z) = at(l - Az) 

liet 112 = C5 = 1 - A 2 
(81) 

which is consistent with (40) and is larger than Ileol/2 by a factor of 
(1 + A2). As with the ZFE, the performance of the DFE can be 
determined for rational spectra without the explicit evaluation of (61). 

The comparison of (80) with (72) is interesting, in that they are 
identical except for the fact that in (80) C (z) is substituted for R* (z) 
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in (72). The annulus of convergence of A (z) will always include the 
unit circle, since R* (z) converges in an annulus containing the unit 
circle. Similarly, C(z) is analytic and nonzero in a region containing 
the unit disk, and hence A +(z) will have only positive powers of z 
and converge in a region containing the unit disk. Note that these 
properties of A +(z) are critically dependent on (33) being satisfied. 

The spectral factorization method of determining the tap-gains of 
the DFE was given by Monsen5 for rational spectra. Price6 gave a 
formula valid for arbitrary spectra, but it is difficult to evaluate 
numerically. Since (79) is valid for arbitrary spectra, the method 
presented here represents a synthesis of the appeal and computational 
simplicity of the spectra factorization method with the generality of 
Price's Toeplitz form result. 

We also need the tap-gains of the feedback filter for the DFE. 
From Fig. 4, the required feedback tap-gains are given by (ed, h_ n ), 

1 ~ n < 00. From (36) and (28), 

= Co Cn. (82) 

Thus, the frequency response of the feedback filter is given by 

ao 

L bmzm = co[C(z) - co]. (83) 
m=l 

The z-transform representation of the DFE just derived is illustrated 
in Fig. 8b. When an isolated pulse h(t) is applied to the matched filter, 
the sampled output has z-transform R*(z). The transversal filter 
multiplies by A+(1/z) = co/C(l/z), as can be verified from (76). t The 
z-transform of the forward transversal filter output is coC(z) because 
of (30), which verifies the causal response which is characteristic of 
the DFE. The output of the feedback filter of (83) is then subtracted, 
to yield (hopefully) a delta function response c5. The reader can verify 
that when the threshold is replaced by a gain of 1/c5 (the noise-free 
case) the response is as represented. 

3.5 Finite Transversal Filter Equalizers 

The previous sections have considered the rather idealized case of 
infinite transversal filter equalizers. Since only finite equalizers can 

t This is because (76) is not in the form of a convolution sum. This distinction was 
not relevant to the ZFE due to the symmetry of that filter. 
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actually be implemented, the important question arises as to when 
and in what sense the infinite equalizer can be approximated by a 
finite one. 

We have already seen in the example of the exponential autocor
relation that the infinite equalizer can degenerate into a finite trans
versal filter for some channel spectra. This will happen whenever A (z) 
and A +(z) are finite polynomials in z. From (72) and (80) we see that 
this will occur whenever R* (z) is a rational function which has no 
zeros (only poles). When the spectrum is not rational, or is rational 
with zeros, it will be necessary to approximate the infinite MFTF. 

It is straightforward to generalize the results of Sections 3.1 and 
3.2 to subspaces spanned by a finite number of translates of ho• In 
particular, if we replace the criteria of (11) and (13) by 

(h k , go) = 0 

for the ZFE and 

-N ~ k ~ N, k¢O (84) 

(85) 

for the DFE, we are left with the consideration of the finite dimen
sional subspaces M(h k , -N ~ k ~ N, k ¢ 0) and M(h k , 1 ~ k ~ N), 
which we will write as M Nand Mt respectively. Then the MFTF 
equalizers which satisfy (84) and (85) are similar to (54) and (55), 

eo(N) ~ ho - P(ho, M N) 

et(N) ~ ho - P(ho, Mt). 

(86) 

(87) 

It is straightforward to see that Theorem 1 can be replaced by the 
following version: 

Theorem 2: The following four statements are equivalent: 

1. ho EE MN [ho EE Mt]. 
2. Ileo(N)1I > 0 [IIet(N)1I > 0]. 
3. There exists a ZFE [DFEJ in the restricted sense of (84) [(85)]. 
4. There exists an MFTF ZFE [DFEJ in this restricted sense. 

The question of when it can be asserted that IIeo(N) II > 0 and 
Ilet (N)" > 0 deserves consideration. The condition that ho E Mt re
quires that coefficients {am, 1 ~ m ~ N} exist which satisfy 

(88) 

This occurrence will be precluded if the set {h m , - 00 < m < oo} is 
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linearly independent. Similarly, linear independence is sufficient for 
a ZFE to exist in the sense of (84). The following lemma, which is 
proven in Appendix B, establishes sufficient conditions for the linear 
independence of {hm, - 00 < m < oo}: 

Lemma 1: The following two conditions are sufficient for the linear in
dependence of {h m , - 00 < m < oo}: 

1. /Ieo/l > 0 or /let II > O. 
2. There exists an interval [a, b], a < b, suchthatR(w) > 0, wE [a, b]. 

The first condition of Lemma 1 satisfies our intuition that if an infinite 
MFTF ZFE or DFE exists then the finite MFTF version should also 
exist. The second condition assures us that the finite equalizers also 
exist under much weaker conditions. 

The following theorem establishes a relationship between the finite 
and infinite equalizers, and is proven in Appendix B : 

Theorem 3: As N ~ 00, /leo(N)/l2 is monotonically decreasing and 
approaches/leo/l 2, and likewise for et(N). Furthermore, Ijeo(N) - eo/l 2 ~ 0 
and lJet(N) - et/l2 ~ o. 
The primary conclusion of Theorem 3 is that the infinite equalizer 
can be approximated with arbitrary accuracy (in the sense of L2 
convergence) by a finite equalizer. In addition, it asserts that the 
SIN ratio of this finite equalizer is greater than that of the infinite 
equalizer; however, this desirable property may be entirely or partially 
offset by any residual intersymbol interference. 

Each member of the sequence of equalizers guaranteed by Theorem 
3 has different tap-gains, because the projection on a different sub
space is being taken with each N. A more aesthetically pleasing ap
proximation results when (58) and (59) are valid, for then 

Ilho - ki;N akhk - eoll ~ 0, 

Ilho - fl athk - etll ~O, 

(89) 

(90) 

by the definition of convergence of the infinite sums in (58)-(59). 
Each succeeding equalizer defined by (89)-(90) is obtained by adding 
an additional tap, without changing the other tap-gains. As observed 
by Doob (Ref. 3, p. 564), a convergent sum of the form of (58)-(59) 
does not always exist; the following theorem gives sufficient conditions 
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for the validity of (58)-(59) which are generally satisfied in practical 
problems: 

Theorem 4- t: If there exist constants Kl and K 2, 0 < Kl ~ K 2, such 
that Kl ~ R(w) ~ K 2, Iwl < rr/T, then convergent expansions of eo and 
ed of the form of (58)-(59) exist. Furthermore, the coefficients of the 
expansions are unique. 

This theorem is proven in Appendix B. The question of uniqueness 
of the tap-gains of the DFE is one which was not answered by Price. 6 

Finally, the white output noise property of the MFTF DFE also 
extends to a finite MFTF DFE in the following sense: If the reception 
of (1) extends from N 1 to N 2, where N 2 (but not necessarily N 1) is 
finite, then the D FE defined by 

et = hk - P[hk, M (hm, k + 1 ~ m ~ N 2) ] 

will have white output noise samples. This fact is easily verified from 
the same containment of subspaces that was used in the proof for the 
infinite case. 

IV. EXTENSION TO NONSTATIONARY NOISE AND CHANNEL 

The previous sections have considered only the case where the 
additive noise is white. The extension to colored Gaussian noise can 
be handled in a straightforward fashion with the addition of a whiten
ing filter. In this section we will generalize the ZFE and DFE to the 
case of arbitrary nonstationary second-order Gaussian noise (which 
includes colored Gaussian noise as a special case) using the techniques 
of reproducing kernel Hilbert space (RKHS).l1 Although the cases 
for which the corresponding RKHS can be characterized explicitly 
correspond generally to those cases which can be handled by other 
techniques, the RKHS approach does allow us to treat all cases 
simultaneously and concisely. In addition, it enables us to generalize 
simultaneously to an arbitrary nonstationary channel (to be precise, a 
channel which is changing in time in a deterministic and known fashion) 
with no additional complications. Perhaps the most interesting out
come of this effort will be the observation that the DFE white output 
noise property (discussed in Section 3.3) remains valid in this general 
case. The result is an interesting generalization of Forney's whitened 
matched filter .12 

t Theorem 4 remains valid under the weaker hypothesis that 0 < ess inf R(w) 
and ess sup R(w) < 00. 
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To this end, modify (1) to 
N2 

ret) = L Bmhm(t) + net), (91) 
m=Nl 

where, as before, N 1 and N 2 can be infinite. The noise will be assumed 
to be Gaussian with arbitrary autocorrelation 

K(t, s) = E[n(t)n(s)J. (92) 

The subscript m on hm(t) indicates that the received pulses need not 
be translates of the same elementary waveform. The reception will be 
termed channel stationary when 

hm(t) = h(t - mT) 

and noise stationary when 

K(t, s) = K(t - s). 

We denote by L2(n) the subspace of the Hilbert space of square 
integrable random variables spanned by net), - 00 < t < 00. This 
subspace is entirely analogous to M (X k, - 00 < k < 00) defined 
earlier, except that the underlying parameter t is continuous. The 
following lemma is applicable:11 

Lemma 2: Let H(K) consist of all functions g(.) of the form 

g(.) = E[n(·)UJ (93) 

for some U E L2(n). Then H(K) is a Hilbert space with inner product 

(g, g)H(K) = EI U12. (94) 

The mapping if;: L2(n) ~ H(K) defined by (93) is a congruence 
which maps net) into K ( ., t). 

The Hilbert space H (K) defined by Lemma 2 is known as the re
producing kernel Hilbert space with reproducing kernel K. It is 
straightforward to show from (93) and (94) that H (K) has the 
properties 

K(·,t)EH(K), - 00 < t < 00, 

(g(.), K(·, t»H(K) = get), g E H(K). 

(95) 

(96) 

It can be shownll that for any symmetric positive-definite kernel K 
there exists a unique Hilbert space satisfying (95)-(96). 

The inverse of g ( .) under if; is usually given the suggestive notation 

(g, n)H(K) ~ if;-l(g) (97) 
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even though n EE H (K) with probability one and therefore (97) can
not be given an interpretation as an inner product. 

It will be assumed that hm (t) E H (K), since otherwise the detec
tion problem is singular. t 11 In nonstationary noise the space H (K) 
takes the place of L2 in the earlier white noise problem. Accordingly, 
we restrict the class of filters under consideration to H (K) inner 
products with elements of H(K). Thus, a filter can be written in the 
form 

N2 

(g, r)H(K) = L Bm(g, hm)H(K) + (g, n)H(K), (98) 
m=-Nl 

where the noise term in (98) assumes the special meaning of (97). 
Analogously to (15), we define the pulse autocorrelation 

(99) 

When the reception is noise and channel stationary, R (m, n) is a func
tion of the difference of its arguments, as in (15). In general, however, 
it is an arbitrary symmetric positive definite function defined for 
Nl ~ m, n ~ N2.t 

In the white noise case, we saw that the subspace of L2 spanned by 
translates of h(t) was congruent to the subspace of second-order 
random variables spanned by a wide-sense stationary random process. 
In the nonstationary noise case, the subspace of H (K) spanned by 
hm, N 1 ~ m ~ N 2, is congruent to the subspace of the second-order 
random variables spanned by a possibly nonstationary second-order 
random process. In the white noise case the theory of minimum mean
square error estimation of a wide-sense stationary random process was 
relevant; in the present case the random process becomes nonstation
ary. As before, the ZFE and DFE have interpretations as interpolation 
and prediction errors of the corresponding random process with auto
correlation R(m, n). However, rather than pursue these correspond
ences further (in view of our results for the white noise case they are 
obvious), we will directly pursue the theory of the ZFE and DFE 
for the detection of B m , N 1 ~ m ~ N 2, from r(t) in (91). 

t A singular detection problem is one in which a decision can be made which is 
correct with probability one. 

t The positive definite property follows from the inequality 

o ~ II f OimhkmI11(K) = f f OimOinR(km,kn). 
m~ m~ n~ 
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The theory of Section 3.1 remains valid if the subspaces M (hm, mEl) 
are considered as subspaces of H (K) rather than L 2• t As before, the 
condition which is necessary and sufficient for the existence of a ZFE 
or DFE is that 

hk EE M(hm, mEl). 

The analogs of the MFTF versions of the DFE and ZFE are the ele
ments given by (54) and (55), except that now we must work with ek 
and e;t instead of eo and eft (ek is no longer necessarily simply a time 
translate of eo, etc.). A derivation similar to that given in Section 3.3 
establishes that ek and et maximize the SIN ratio as before. In par
ticular, when the filter of (91) is restricted to be a ZFE, (91) becomes 

{g, r)H(K) = Bk{g, hk)H(K) + {g, n)H(K) 

and the SIN ratio is proportional to 

SIN {g, hk)kcK) { ) 
ex: { ) ~ eo, eo H (K) g, g H(K) 

since the variance of the noise term in (100) is, from (97), 

E/ {g, n)H(K) /2 ~ E/vr1 (g) /2 
= {g, g)H(K) 

(100) 

(101) 

through the congruence established in Lemma 2. Equation (101) 
demonstrates that the MFTF ZFE maximizes the SIN ratio, and the 
same result follows for the DFE by the same method. 

A general equation can be given for the projection element required 
for the MFTF. This equation is entirely analogous to a result of 
Parzenll for stochastic estimation. To this end we require a lemma 
which is a restatement of Lemma 2: 

Lemma 3: Let H(R) consist of all functions f(m), mEl, of the form 

(102) 

for some F E M (hm, mEl). Then H (R) is the RKH S with reproducing 
kernel R(m, n), m,n E I, and has inner product 

{f, f)H(R) = {F, F)H(K). (103) 

The mapping if>: M (hm, mEl) -7 H (R) defined by (102) is a con
gruence which maps hm into R(·, m). 

t We use I as a set of indices to avoid repeating the equations twice. For the ZFE, 
I = [NI, k - IJU[k + 1, N2J and for the DFE I = [k + 1, N2J. For the infinite 
case, N 2 = - N 1 = 00. The digit B k is being detected. 
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The reader might find it instructive to verify from (102)-(103) 
that the RKHS properties hold for H(R), 

R(·,n)EH(R), 

(f(·), R(·, n)H(R) = fen), 

(104) 

(105) 

where f(·) E H(R). 
The problem we want to attack is finding the projection P of some 

vector Q on M (hm, mEl) (later we will let Q = hk). From (3) we 
have 

(Q - P, hm)H(K) = 0, mEl (106) 
or 

(P, hm)H(K) = PQ(m), mEl, (107) 
where 

pQ(m) ~ (Q, hm)H(K), mEl. (108) 

In (107), pQ(m) is a known function and P is to be determined. Assum
ing for the moment that pQ E H(R), from Lemma 3 we see that PQ 
is the image of P under the congruence ¢, and hence 

(109) 

which is the solution we desire. Using the congruence properties of ¢, 
the length of Q - P is 

IIQ - ¢-l(PQ)II~(I() = IIQII~(K) - 2(Q, ¢-l(pQ)H(K) + 1I¢-l(PQ)II~(K) 
= IIQII~(K) - IIPQII~(R). (110) 

Establishing that in fact pQ E H(R) is straightforward. Note that 

pQ(m) = (Q, hm)H(K) 

= (Q - P, hm)H(K) + (P, hm)H(K) 
(111) 

which implies that pQ E H(R) by Lemma 3 since P E M(hm, mEl). 
Replacing Q by hk in (109), we get the desired projection 

P[hk, M(hm, mEl)] = ¢-l[R(k, .)] (112) 

The ZFE and DFE are obtained by letting I equal the appropriate 
set. The SIN ratios of the receivers are proportional to, from (101) 
and (110), 

(113) 

The RKHS approach has reduced the problem to that of finding 
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RKHS inner products. In some cases these inner products can be 
explicitly characterized, while in all others they can be determined 
by convergent iterative techniques.ll 

We can also quickly show that the DFE white output noise property 
discussed in Section 3.3 generalizes. From (98), the noise samples at 
the filter output are 

nk = (e;t, n) H(K) 
= 1f;-l(e;t) 

by definition. From (114) and Lemma 2, 

E(njnk) = E[1f;-l(et)1f;-l(e,t)] 

= (ef, e,t)H(K) 

= 0, .f ~ k 

by the same reasoning as before. 

(114) 

(115) 

Finally, it is instructive to demonstrate that this RKHS formu
lation reduces to the whitening filter approach when the reception is 
noise and channel stationary. Assume that 

1 100 

K(t, s) = - eiw(t-s)N(w)dw, 
27r -00 

(116) 

where N (w) is uniformly bounded and never vanishes. Under these 
conditions we claim that H (K) consists of all integrable get) with 
Fourier transforms G(w) which satisfy 

(117) 

To verify this, properties (95)-(96) must be checked. Equation (95) 
is valid since N (w) is integrable, while (96) follows from 

(g(.), K(·, t»H(K) = - G(w)[e-JwtN(w)]* -- dw 1 100 

• 1 
27r -00 N (w) 

1 100 

= - G(w)eiwt dw 
27r -00 

= g(t), (118) 

where (*) denotes complex conjugation. From (117), the H(K) inner 
product consists of a filter with frequency response N-l(W) (which is 
the whitening filter) followed by an ordinary L2 inner product, and is 
therefore consistent with the whitening filter formulation. 
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v. CONCLUSIONS 

This paper has presented a unified and rather thorough treatment 
of the ZFE and DFE. In a companion paper,7 the geometric model of 
intersymbol interference developed here will be used to study the 
minimum distance problem encountered in the performance analysis 
of the maximum likelihood detector12 and in evaluating a lower bound 
on the performance of any receiver.14 It is shown there that a canonical 
relationship exists between the minimum distance and the performance 
and tap-gains of the MFTF DFE. 

No performance example comparing the DFE and ZFE on a channel 
of practical interest has been given in this paper in order that the 
maximum likelihood detector may enter into the comparison. In Ref. 7 
the performance of three receivers is calculated for a channel whose 
loss in dB increases as the square-root of frequency. This channel is 
an excellent model of coaxial cable and some types of wire-pairs. 
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APPENDIX A 

The purpose of this appendix is to derive an approximation to the 
Fourier coefficients of (48) in terms of discrete Fourier transform 
(DFT), which can be efficiently evaluated using the FFT algorithm. 

Define a normalized function 

R( 27r /-.) 
F(/-') = log T 

T 
(119) 

so that 
1 j! r n = - e-in27rA F (/-.)d/-.· 
2 _?; 

(120) 

Approximating the integral by a summation, 

in ~ ~ Nil F (/-.o + ~ - !) e- in27r (AO+k/N-!) 
2N k=O N 2 

= ! e-in27r(AO-!)! Nil F (/-.o + ~ _ !) e- i27r (kn/N), 
2 N k=O N 2 

(121) 

where the sum on the right is a discrete Fourier transform. 
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In order to determine the effect of this approximation, substitute 

!F (X) = :E rke ik27rA 
k 

into the approximation equation (121) to yield 

co 1 N-l 
in = :E r m -- :E ei (m-n)27r'(Ao+kIN-!) 

m=-co N k=D 

(122) 

(123) 

Thus, the approximation of (121) yields the desired Fourier coefficient 
plus the sum of alias terms. N must be larger than the number of co
efficients to be evaluated and large enough that the alias terms rn+lN 

are small. In practice, N ~ 5,000 can be achieved with modest amounts 
of computer time using the FFT algorithm. 

APPENDIX B 

Proofs of Theorems 

Proof of Lemma 1: Since //etI/ 2 ~ //eoI/ 2 it suffices to show that //ed-II > 0 
implies that {hm, - 00 < m < oo} is linearly independent set. To this 
end, assume that 

(124) 

To show that al = 0, assume to the contrary that al ~ 0 and note 
that 

o = /al/21Ihkl + m~2 :~ hkml12 ~ /ad 2//et// > o· (125) 

This contradiction establishes that al = o. Continuing by induction 
in the same fashion, it can be shown that am = 0, 1 ~ m ~ N. 

To show that the second condition of Lemma 1 implies linear 
independence, we use a proof similar to Tuft's.13 By the congruence of 
(22), (124) is equivalent to 

f 7r
'

T 1 N 12 :E ame-iwkmT R(w)dw = 0 , 
-7rIT m=l 

which implies that the integrand is zero almost everywhere on [a, b]. 
This is impossible unless am = 0, 1 ~ m ~ N, since otherwise 

I
f: ame-iWkmT!2 

m=l 
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has at most a finite number of algebraic zeros on [a, bJ and R (w) is 
strictly positive. 

Proof of Theorem 3: We will prove the result for the ZFE; the proof 
for the DFE is identical. Since for N ~ M 

M(hk, Ikl ~ N, k ~ 0) C M(hk, Ikl ~ M, k ~ 0) C M(hk, k ~ 0), 

the inequality 
Ileoll ~ Ileo(M) II ~ Ileo(N) II 

follows. Hence Ileo(M) W must approach a limit, 

lim lIeo(N)11 ~ Ileoli. 
N-+oo 

Denote by the shortened notation P the projection of ho on M(hk, k~O) 
(so that eo £ ho - P). Since P E M(hk, k ~ 0), there exists a se
quence l' n E M (hk' I k I ~ n, k ~ 0) such that l' n ~ P and we have 

Ilho - I'nW = Ileol1 2 + liP - I'nI12. 
For any e > 0, there exists an N (e) such that 

Ilho - I'n112 ~ Ileol12 + e 

for n ~ N(e), and since Ileo(n)112 ~ Ilho - I'n112 we have 

IleoW ~ Ileo(n) W ~ lIeoll2 + e, 

which establishes that Ileo(n)11 ~ lIeoll. The remainder of the proof 
follows that of the projection theorem. By the parallelogram law, 

Ileo(N) - eoll2 = 21I eo(N) W + 21leoW - Ileo(N) + eo112, 
but defining P(N) = P[ho, M(hk, Ikl ~ N, k ~ O)J 

Ileo(N) + eoW = Ilho - P(N) + ho - PW 

= 411ho - P(N~ + P 112 ~ 411eo11 2, 
we have 

Proof of Theorem 4-: From (22) we have 

II N 112 1 j7r'IT I N 12 L {3mh km = -2 L {3me-iwkmT R(w)dw· 
m=l 7r -7r'/T m=l 



GEOMETRIC THEORY OF INTERSYMBOL INTERFERENCE, I 1519 

A standard result of Toeplitz theory asserts that 

~t~, l~mI2} ess inf R(w) ~ II m~' ~mhk II' 
VII ~ I J, I~ml'} ess sup R(w)· 

The conclusions of the theorem then follow from Theorem 5.17.18 of 
Ref. 10. 
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Ina companion paper,I a geometric approach to the study of intersymbol 
interference was introduced. In the present paper this approach is applied 
to the performance analysis of the V iterbi algorithm maximum likelihood 
detector (MLD) of Forney.2-4 It is shown that a canonical relationship 
exists between the minimum distance, which Forney has shown determines 
the performance of the M LD, and the performance and tap-gains of the 
decision-jeedback equalizer (DFE). Upper and lower bounds on the 
minimum distance are derived, as is an iterative technique for computing 
it exactly. 

The performances of the MLD, DFE, and zero-forcing equalizer (ZFE) 
are compared on the -{j channel representative of coaxial cables and some 
wire pairs. One important conclusion is that, previous statements not
withstanding,2,4 even the M LD experiences a substantial penalty in SIN 
ratio relative to the isolated pulse bound on this channel of practical 
interest. 

1. INTRODUCTION 

Forney2,3 has detailed the Viterbi algorithm version of the maximum 
likelihood detector (MLD) of digital sequences in the presence of 
intersymbol interference. He asserts that the probability of bit error 
of the MLD in additive white Gaussian noise can be bounded at high 
SIN ratios in the form 

KLQ (d;;n) ~ Pe ~ KuQ (d;;n ), (1) 

where KL and Ku are constants, Q is the Gaussian distribution 
1521 
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function, 

Q(x) = - e- y2
/ 2 dy , 1 100 

~ x 
(2) 

dmin is the minimum distance between any two transmitted signals 
(it will be defined more fully in Section 2.2), and (7"2 is the noise variance. 
For comparison purposes, the probability of error for a matched filter 
receiver in the absence of intersymbol interference is 

(3) 

where Ro is the energy of an isolated pulse [(1) reduces to (3) in this 
case]. 

Forney also asserts that the lower bound of (1) is also a lower bound 
on the error probability of any receiver.4 Thus, the MLD achieves, 
within the multiplicative constant Kul K L , the minimum probability 
of error attainable by any receiver at high SIN ratios, and, in a very 
fundamental sense, the quantity 

d~lnlRo 

is a measure of the effective decrease in the SIN ratio (relative to the 
detection of an isolated pulse) resulting from intersymbol interference. 

The determination of the quantity d~ln (known as the "minimum 
distance problem") is therefore a very important one for, even if the 
implementation of the MLD is not contemplated on a particular 
channel, d~ln is a measure of the potential performance which can be 
obtained using receivers of arbitrary complexity. Unfortunately, on 
channels with severe intersymbol interference, the exact analytical 
determination of d~ln does not appear feasible because of the nonlinear 
nature of the problem. 

The minimum distance can be determined numerically by the 
"brute force" technique of calculating a sequence of converging upper 
bounds. A shortcoming of this method is that it gives no assurance 
as to when convergence to the desired accuracy has occurred. In 
addition, it gives no insight into the nature of diiun and its relationship 
to the intersymbol interference or to the performances of other 
receivers. 

In this paper, we attack the minimum distance problem using a 
geometric theory of intersymbol interference developed in companion 
papers. l •G A canonical relationship will be shown between d~ln and the 
decision-feedback equalizer (DFE). This relationship will be exploited 
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to derive simple lower and upper bounds on d~ln in terms of the tap
gains of the DFE transversal filter and the SIN ratio performance of 
the DFE. In addition, an iterative procedure will be derived for the 
calculation of d~ln to any desired accuracy using a sequence of con
verging upper and lower bounds on d~in. The lower bounds give us a 
measure of the degree of convergence and enable us to terminate the 
calculation when the desired accuracy is assured. 

After consideration of the minimum distance problem in Section II, 
the performance of the zero-forcing equalizer (ZFE), DFE, and MLD 
is compared on a channel of practical interest in Section III. 

II. PERFORMANCE OF THE MLD 

The minimum distance problem will now receive consideration. The 
first step is to briefly review the notation of a companion paper.l 

2 .1 Notation 

The reception from a PAM communication channel takes the form 

ret) = L Bkh(t - kT) + net), (4) 
k 

where each Bk assumes one of a finite number of predetermined values 
(the data being transmitted), h(t) is square-integrable (element of 
L2 ), * and net) is white Gaussian noise. 

When we denote h(t - kT) as an element of L2 by hk' M(hk, k E J) 
is the smallest closed linear subspace of L2 containing all finite linear 
combinations of elements of the set {hk' k E J}. The proj ection of a 
vector x on M (hk' k E J) is denoted by P[x, M (hk, k E J)]. The for
ward matched-filter transversal-filter combination of the DFE cor
responds to the L2 inner product of the reception ret) with the element 

et ~ hk - P[hk, .Llf(hm, 1n > k)] (5) 

and is orthogonal to the subspace M(hm, m > k). The quantity 

l/etl/2 
IC:' 

where 
(6) 

* We denote by L2 the space of square integrable waveforms with inner product 

(x,Y) = i: x(t)y(t)dt 

and norm IIxl12 = (x,x). 
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is the effective decrease in SIN ratio relative to an isolated pulse for 
the DFE. Thus, Iktl12 plays the same role for the DFE as d~ln plays 
for the MLD. 

The sequence of vectors {Wk fE et I II et II} is an orthonormal sequence 
in L 2, and hn has the orthogonal expansion 

C() 

hn = L C mWm+n, 
m=O 

(7) 

where the coefficients {Cm } can be determined by the method of 
Ref. 1 for channels with either a rational or nonrational spectrum. 
In particular, we have 

Co = lIetll. (8) 

Of course, it is apparent that (7) is valid only as long as lIetll > 0, 
which is true if and only if a DFE exists. 

2.2 Interpretation of the Minimum Distance 

The MLD described by Forney2 consists of a combination of a 
matched filter followed by a causal or anticausal transversal filter, 
the combination of which he calls a "whitened matched filter," 
followed by a dynamic programming algorithm known as the Viterbi 
algorithm.3 The whitened matched filter forms a sequence of sufficient 
statistics for the detection of the data digits and has independent noise 
samples at the output. As pointed out by Price,6 the anticausal 
whitened matched filter is identical to the forward linear filter portion 
of the DFE. 

The signal at the output of the whitened matched filter (or DFE 
forward filter) isl 

C() 

rk = C5B k + L COCmB k- m + nk, (9) 
m~l 

where nk is a noise sample. The DFE forms the quantity 

r~ = rk - t CoCm13k- m (10) 
m=l 

and applies it to a decision threshold to determine the estimated digit 
13k • The MLD detector, on the other hand, assumes that the sum in 
(9) is truncated to M terms and determines the sequence {13d so as 
to minimize 

(11) 
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Thus, the two receivers perform similar functions on the same sufficient 
statistics rn , the major differences being the greater complexity of the 
MLD and the susceptibility of the DFE to decision errors. We will 
now demonstrate the less obvious conclusion that the perfonnance of 
the MLD is closely related to the DFE as well. 

The minimum distance, d~ln' is defined as2 

(12) 

where the infimum is over all error sequences (€o, "', €N) and all N. * 
Each €k assumes the value + 1, -1, or zero (for simplicity, the binary 
case with B k = 1 or 0 is considered). Thus, dmin is the minimum 
distance in L2 between two signals in the signal set. It is apparent that 

(13) 

since Ro corresponds to €n = 0, n > O. Thus, d~nIRo, which is the 
SIN ratio penalty, is a number between zero and unity as it should be. 

It is apparent in (12) that without loss of generality we can choose 
€o = 1 and write 

d~n = inf Ilho + n~l €nhnI1
2
. (14) 

The sum in (14) is an element of M(hk, k ~ 1), and the minimization 
in (14) is an attempt to find the element of M(hk, k ~ 1) with manifold 
coefficients (+ 1, -1, 0) which is closest (in £2 metric) to ho• We know 
that the closest element without the restriction in coefficients is the 
projection of ho on M(hk, k ~ 1), P[ho, M(hk, k ~ 1)]. Thus, in
tuitively, d~ln is determined by how closely the projection can be 
approximated by an element with restricted manifold coefficients. To 
formalize this intuition, add and subtract the projection from (14) and 
utilize (5), 

d~ln = inf Ilet + P[ho, M(hk, k ~ I)J + El €nhnl12 

= //etW + inf /lP[ho, M(hk, k ~ I)J + El €nhnI12, (15) 

where the fact that et is orthogonal to M (hk' k > 0) has been used 
to eliminate the cross-product in (15). The most immediate conse
quence of (15) is that 

(16) 

* In most cases of interest, the infimum will be achieved for finite N. 
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We have thus succeeded in proving formally what should be obvious 
from considerations of the relative complexity of the two receivers: 
The effective SIN ratio of the MLD always exceeds that of the DFE 
(and hence ZFEl). * The second consequence of (15) is the formaliza
tion of our intuition through the assertion that the amount by which 
the SIN ratio of the MLD exceeds that of the DFE is governed by the 
coarseness of the best approximation to the projection by the element 
with restricted coefficients: The poorer the approximation, the better 
the SIN ratio of the MLD. 

Writing the projection in the form 

P[ho, M(hk, k > O)J = (17) 

we note that the a;k are the tap-gains of the DFE forward transversal 
filter, and rewrite (15) as t 

d~ln = IIetll2 + inf II '£1 (fn - at)hnI12. (18) 

Equation (18) shows the fundamental relationship between the 
minimum distance, the effective SIN ratio of the DFE (in the form 
of lIetW), and the tap-gains of the DFE transversal filter. In particular, 
we can assert that d~in = IIetl1 2 if and only if the tap-gains are all + 1, 
-1, or zero. 

2.3 Bounds on the Minimum Distance 

Equation (18) can be used to derive bounds on d~in in terms of the 
DFE tap-gains. From the identityt 

II f (fn - at)hnl12 = (ek - at)21lhk + f. en = at hn112, (19) 
n=1 n=1 ek ak 

n,c.k 

k = 1 
(20) 

k > 1, 

* We are tempted to argue that (16) is implied by the assertion in Ref. 2 
that the MLD achieves the lowest effective SIN ratio of any receiver. However, 
that is not the case, because of the effect of decision errors on the DFE. The effective 
SIN ratio of the DFE could be higher than that of the MLD, and yet the DFE could 
have at the same time a higher error probability because of error propagation. 

t We have taken the liberty of writing a sum over infinite error sequences, where 
it is understood that the infimum is only over error sequences with a finite number 
of nonzero terms. 

tIn (19) it is assumed that (10k - at) ~ O. When 10k - at = 0, (20) is trivially 
satisfied. 
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SInce 

is an element of M(hm, m ~ k). In (20), eo is the ZFE filter defined in 
Ref. 1, 

I:'::. eo = ho - P[ho, M(hk ,k ~ O)J. (21) 

In addition, if we define Amin (N) and Amax (N) as the minimum and 
maximum eigenvalues of the correlation matrix 

1 ~ m,n ~N, 

then we can assert that 

N 

~ Amax(N) L (IOn - a;t)2. (22) 
n=l 

A standard Toeplitz form result7 asserts that* 

lim Amin(N) = -T
1 

ess inf R(w) 
N-->oo 

lim Amax(N) = -T
1 

ess sup R(w). 
N-->CIJ 

Applying (18), (20), and (22), we get three lower and one upper bound 
on d~ln in terms of the tap coefficients of the DFE, 

j
l/et l/2 min (101 - at)2 

d~n ~ //et// 2 + l/eol/2 mi~ (10k - at)2, k > 1 
fk 

~ {ess inf R(w)} 1~ f;::.i~fN n~l (IOn - at)2 

d~ln ~ l/etl/ 2 + ~ {ess sup R(w)} J~ fl~i.~N n~l (IOn - at)2. (23) 

In addition, an upper bound can be obtained by substituting any error 
sequence into (18); a reasonable choice is 

{

+1' 
10k = 0, 

-1, 

at < -! 
-! < at <!. 
at> ! 

(24) 

* For all practical purposes, "ess inf" and "ess sup" can be replaced by "min" 
and "max," respectively. 
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These five bounds can be useful in estimating the penalty in SjN 
ratio for the MLD. They all require the existence of a DFE and 
require that the projection can be written as the convergent sum of 
(17). * The second and third bounds of (23) are an improvement on 
(16) only when the increasingly stringent requirements that a ZFE 
exist (JJeoJJ > 0) and R(w) be uniformly bounded away from zero 
(almost everywhere) are imposed. The requirement of the upper 
bound of (23) that R(w) be uniformly upper bounded (almost every
where) will generally be satisfied in practice. All the bounds require 
a pointwise minimization over error sequences, a task much simpler 
than minimizing (12) directly. 

As a simple application of these bounds, consider the exponential 
autocorrelation 

O<A<l. 
Then we have1 •2 

0< A ~! 
d~ln = 

{

I, 

2(1 - A), ! < A < 1 
JJeoW = (1 - A2)j(1 + A2) 

JJetw = 1 - A2 

at = - A, at = 0, 

The first and third bounds of (23) become 

{

I - A4 

d!.n;;; (1 _ A') (2 + A' - 2A): 

{

I - 2A3j(I + A), 

d~ln ~ 2(1 _ A)(I + A2)j(1 + A), 

and the upper bound of (23) becomes 

k > 1. 

0< A ~! 

! < A < 1 

0< A ~! 

! < A < 1 

I+
1

_
A

, 

J 
2A3 

0< A ~! 

d2 <: 

min = 1 2(1 _ A2), !<A<1. 

(25) 

(26) 

(27) 

(28) 

(29) 

These bounds are plotted in Fig. 1. The upper bound of (24) is equal 
to d~ln and is not plotted. 

* If the projection of ho on P(hk, k ~ 1) cannot be written in the form of (17), 
the bounds of (22) to (24) can be fixed up by considering the projection on P (hk' 
1 ~ k ~ N) and taking limits as N ~ ex). The tap-gains will then be a function of N, 
and the process will be more difficult. 
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Fig. 1-Bounds on d~in for an exponential autocorrelation. 

The bounds just determined have the disadvantages that (i) they 
require calculation of the DFE tap coefficients and (ii) they do not 
give precise results on d~ln' The exact value of d~ln can be determined 
numerically by the direct minimization of (12); by letting N ~ 00 

while exhaustively minimizing over error sequences, we get a sequence 
of upper bounds on d~ln which approach d~ln monotonically. The 
obvious difficulty with this method is that the number of error se
quences which must be checked grows as 3N , and the computational 
effort soon becomes unreasonable. What happens in practice is that 
the true minimum is achieved for a finite (and small) N. However, 
unless we have some method of determining when the true minimum 
is reached, there must always remain a degree of uncertainty as to 
whether the true minimum has been reached. 

Our approach to this computational problem will be to derive a 
sequence of lower bounds on d~ln which also approach d~ln monotoni
cally. We can then halt the process at a value of N where the upper and 
lower bounds are close enough to ensure knowledge of ~In within the 
desired accuracy. To this end, we will utilize the orthogonal expansion 
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of (7). Substituting (7) into the sum of (12), 

where 

00 00 00 

L Enh n = L En L CmWn+m 
n=O n=O m=O 

m 

13m = L EkC m-k· 
k=O 

Then, because the {w n } are orthonormal, 

(30) 

(31) 

(32) 

It appears that we may have made life more difficult for ourselves, 
because even when we substitute a finite sum on the left of (32) we 
must still evaluate an infinite sum on the right. However, note that 
since the terms in the sum are positive, 

(33) 

where the sum on the right is always finite and is in terms of a finite 
length error sequence (EO, "', EN). Hence, 

N 
cPmln ~ min L {3; 

EI," ',EN n=O 
EO =1 

(34) 

and, furthermore, the right side of (34) approaches the left side 
monotonically as N ~ 00. 

The minimization of (34) is no more or less difficult to perform than 
that of the direct minimization of (12). It does require the existence 
of a DFE and evaluation of the coefficients {Cm}. A reasonable pro
cedure is, at each stage of N, to minimize the right side of (34) to 
obtain a lower bound on d~ln and substitute the minimizing sequence 
into (12) to obtain the upper bound * on d~ln' When the lower and 
upper bounds are sufficiently close, the process can be terminated. 

* Note that any sequence substituted into (12) yields an upper bound on d~im 
and the one which minimizes (34) is as good as any. On the other hand, only the 
sequence which minimizes (34) yields a valid lower bound, so it must be minimized. 
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The minimization of (34) can be assisted slightly by dynamic 
programming. Defining 

we note that 
N 

N 
mIn L !3~, 

Em," ',EN n=m 

mIn L!3~ = min [!N-2(El) + !3iJ 
EI," ',EN n=1 El 

with a recursion relation for !N-m (El' "', Em-I), 

N 

mIn L!3~ 
Em_I," ',EN n =m-l 

= min [min f!3; + !3'?n-I] 
Em-l Em" 'EN n=m 

(35) 

(36) 

= min [!N-m(El' .. Em-I) + !3~-I]. (37) 
Em-l 

Because there is no possibility of using forward dynamic programming 
in this case, the savings in computation for this method is not too 
spectacular. Each !3n must still be evaluated for 3N error sequences; 
the savings is in eliminating the need for summing !3; for most of the 
combinations of 3N error sequences. 

We note in passing that using the FFT algorithm to reduce the 
computat~onal effort in the convolutional sum of (31) is a possibility. 
However, the 3N sequences for which it must be evaluated becomes a 
limiting factor long before the savings of that method becomes 
substantial. 

In the foregoing discussion, the existence of a DFE has been re
quired [that is, lIetll > 0 or equivalently log R(w) is integrable, where 
R(w) is the equivalent power spectrum of the channeP]. When log R(w) 
is not integrable (as when it vanishes on an interval), there does not 
appear to exist an expansion of the type (31) to (32). What can be 
done is to use the Gram-Schmidt expansion of the form 

m 

hm = L (hm, Wk)Wk, 
k=O 

(38) 

where Wk is the orthonormal sequence obtained from {hd by the usual 
Gram-Schmidt orthonogalization procedure. This expansion merely 
requires that {h k } be linearly independent, which is guaranteed by the 
existence of an interval on which R (w) does not vanish. I From (38), it 
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follows that 

oc; 00 m 

:E Emhm = :E Em :E (hm, Wk)Wk 
m=O m=O k=O 

(39) 

00 

(3k = :E Em(hm, Wk). (40) 
m=k 

The key point is that the summation in (40) is infinite, so that evalua
tion of the lower bound of (34) is now necessarily over infinite error 
sequences. The finite sum in (31) results from the form of the expan
sion (7) in which h n is expanded in terms of all future Wk'S, and this 
expansion is in turn dependent on h n not being an element of 
M(hk , k > n). Thus, when a DFE does not exist there appears to be 
no alternative to evaluating a sequence of upper bounds to d~ln ob
tained by a finite sum approximation without the benefit of lower 
bounds to measure the degree of convergence. 

III. THE PERFORMANCE OF THREE RECEIVERS ON THE ~ CHANNEL 

Results of a calculation of the performance of the MLD, DFE, and 
ZFE will now be reported for the ..J7 channel, for which the attenuation 
in decibels increases as the square root of frequency. The ..J7 channel 
is a good approximation to coaxial cable, as well as to some cables 
consisting of wire pairs, and for this reason it is of great practical 
interest. 

Many present high-speed digital transmission systems use some 
form of linear equalization, and their performance will be reasonably 
well approximated by that of the ZFE. Thus, the comparison between 
the ZFE and the MLD gives us an indication of the size of the gap in 
performance between common transmission systems in use today and 
what could theoretically be achieved by much more complex receiver 
designs. * The comparison with the DFE is much less interesting, be
cause the susceptibility of the DFE to decision errors is not included 
in the present analysis and, as will be shown shortly, is of such a 
magnitude on the ..J7 channel as to essentially invalidate the perfor
mance estimate we calculate. 

* This comparison is, of course, very idealized. The only impairment we consider 
is additive Gaussian noise. 
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Fig. 2-Performance of three receivers on the -{j channel. 

The power spectrum of the ~ channel is given by 

/H(w)/2 = 27rK2Roe-2K-Vw, 

70 

(41) 

where H (w) is the frequency response of the channel and K is a 
parameter proportional to the line length. The usual convention is to 
designate the loss at the half-baud rate (w = 7rIT) , 

(42) 

in which case 

fT 'Y 
K = \f -; 20 log e . (43) 

The effective penalties in SIN ratio relative to the isolated pulse 
bound can be calculated for the ZFE and DFE using the methods of 
Ref. 1, and for the MLD using the methods developed in Section 
II. The result is shown in Fig. 2 for the range of 'Y of practical interest. 
Most high-speed transmission systems in use today have a 'Y less than 



1534 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973 

about 65 dB because of limitations in the maximum gain which can 
be incorporated into a repeater without excessive coupling of the 
output back into the input. 

One interesting feature of Fig. 2 is that even the lVILD has a sub
stantial SIN ratio penalty (15 dB) on the -{j channel. Thus, Forney's 
statement3 that on most channels intersymbol interference does not 
have to lead to a significant degradation in performance does not apply 
to channels with very severe intersymbol interference, such as are 
commonly used in high-speed transmission systems. 

The value of d~ln' valid for Fig. 2, as well as many other examples 
considered by this author and Forney,4 is 

(44) 

where Rk is the autocorrelation of the received pulse. * An approxima
tion to (44) valid for large 'Y is derived in Appendix A and plotted in 
Fig. 2 as a dotted line. Approximations to the SIN ratio penalty of 
the ZFE and DFE are also derived in Appendix A and plotted in Fig. 
2. An intuitive interpretation of eq. (44) is given in Appendix B. 

As an illustration of the speed of convergence of (34), the sequence 
of upper and lower bounds is illustrated in Fig. 3 for a -{j channel with 
'Y = 60 dB. These bounds are within 1 dB for N = 1 and 0.5 dB for 
N = 3. Thus, convergence is very rapid, even for severe intersymbol 
interference. 

A word of caution is in order with respect to the curve for the DFE 
in Fig. 2. This curve does not take into account the effect of decision 
errors on the performance of the receiver. The DFE subtracts, prior to 
the decision threshold on data digit B k, the quantity 

(45) 

where Bk- m is the receiver's previous decision on Bk- m and bm is the 
tap-gain of the DFE feedback filter. The resulting quantity which is 
applied to the threshold isl 

co 

boBk + L bm(Bk- m - Bk- m) + nk, (46) 
m=l 

where nk is a noise sample. Whenever the bm's are large with respect 
to bo, a single decision error will likely cause many more errors. The 

* This corresponds to the error sequence (1, -1, 0, 0, ... ) or, in the notation of 
Forney, (1 - D). 
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Fig. 3-Convergence of lower and upper bounds on d~in (...jJ channel with l' = 60 dB). 

coefficients of (46), given by (9), are tabulated in Table I for several 
values of 'Y. 

Needless to say, the situation is hopeless for the large 'Y; the effect 
of a single decision error will be major and will last for a long time. 
Even for 'Y = 20, the reduction in noise margin resulting from a pre-

TABLE I-COEFFICIENTS Oli' THE DFE FEEDBACK FILTER (bm ) 

m bm 

l' = 20 l' = 40 l' = 60 

0 1 1 1 
1 0.61 1.4 2.2 
2 0.36 1.3 2.8 
3 0.25 1.1 2.9 
4 0.18 0.94 2.9 
5 0.14 0.80 2.8 

10 0.06 0.42 1.9 
47 0.006 0.06 0.38 

174 0.001 0.009 0.06 
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vious decision error will be significant for five or ten subsequent 
decisions. We must conclude, then: that Fig. 2 will not be representa
tive of the true performance of the DFE, and further that the DFE 
may not be a suitable receiver for the {j channel *. 

In terms of repeater spacing and baud rate, Fig. 1 can be interpreted 
in two ways. If the ZFE is replaced by an MLD, the same level of 
performance can be maintained while either increasing the repeater 
spacing with a constant baud rate or increasing the baud rate with 
the same repeater spacing. To illustrate this, consider the example of a 
ZFE operating at a given level of performance on a {j channel with 
'Y = 40 dB. Then 'Y can be increased to 60 dB at the same effective 
SIN ratio. This corresponds to a 50-percent increase in repeater spac
ing at a constant baud rate (since 'Y goes up linearly with the repeater 
spacing). However, since the repeater spacing has increased, the trans
mitted power must also be increased by 3.5 dB to maintain a constant 
isolated pulse energy at the receiver.t 

If the repeater spacing is held constant, an increase in baud rate by a 
factor of (1.5)2, or 125 percent, will also result in a 50-percent increase 
in 'Y. Here too, the average (but not peak) transmitted power is in
creased by 3.5 dB. 

The conclusion of these results is that there is a fairly large gap be
tween the performance of linear equalizers and the theoretical limit 
on the {j channel. It is probably fair to say, however, that practical 
constraints on repeater complexity, speed of operation, and gain makes 
the attainment of a substantial portion of this potential improvement 
on high-speed transmission systems very difficult, at least for the 
present. Such is not the case for low-speed applications, such as voice
band data, where the implementation of the MLD can be contemplated 
on the basis of existing technology. 

IV. CONCLUSIONS 

In this paper, the minimum distance measure has been interpreted 
geometrically, related to equalization (the decision-feedback equalizer 
in particular), and bounded in several ways. A practical numerical 
technique has been developed for calculating the minimum distance 
without considering unnecessarily long error sequences. 

* TomlinsonB has invented a method of avoiding the error propagation problem by 
subtracting out interference from past data digits in the transmitter. 

t The received pulse energy is proportional to ,),-2, so that the peak and average 
transmitted power must be increased by 20 log(60j40) = 3.5 dB. 
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Numerical results for the ..fj channel reveal that the penalty in SIN 
ratio relative to the isolated pulse bound for the MLD can be sub
stantial for this channel, and that the gap in performance between the 
MLD and linear equalization is also substantial. The latter suggests 
that further attempts at finding receivers without the complexity of 
the Viterbi algorithm MLD but which nevertheless improve on the 
performance of linear equalization might well be fruitful. The decision
feedback equalizer does not appear to fit this bill because of its serious 
error propagation problem when confronted with intersymbol inter
ference as severe as that found on the {J channel. 

APPENDIX A 

A utocorrelation of the {J Channel 

From (41), the autocorrelation is 

1 foo Rk = - 1 H (w) 12 cos (wkT)dw 
7r 0 

= 4K;Ro 1000 
x exp ( - ~ x ) cos (kx2)dx. (47) 

Integrating by parts with u = exp ( - ~ x ) and dv = x cos (kX2)dx, 

we get 

R - 4K3 Ro (00 (2K). 2d 
k - (k T)! } 0 exp - -{kT x SIn x x, 

which is given in terms of the Fresnel Integral,9 

R. = ~~~;~o m -c (.J~T~)] cos (~;) 

where 

+ [~- S (~~)] sin (~;)}, (48) 

C(x) = loX cos (~ y2) dy 

S (x) = lox sin (~y2) dy . 

An accurate approximation to Rl valid for large 'Y is easily obtained 
from (47) by substituting the first two terms of a Taylor series for 
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where 

Hence 

and 

2K 
(3 =-. 

{if 

2 (Ro - R 1) r--J 

- 10 log Ro = 40 log 'Y - 56.2. 

(49) 

(50) 

Approximations to Ileo/l2 and lIetll 2 can also be derived by assuming 
that H(w) = 0, Iwl > 7r/T, or equivalently that IH(w) 12 = R(w). 
The resulting SIN ratio penalties are 

- 10 log lIeoll2/ Ro r--J 'Y + 25.15 - 30 log l' (51) 

- 10 log lIetW/Ro r--J i'Y + 15.76 - 20 log l' . (52) 

Equations (50) to (52) are plotted in Fig. 2 as dotted lines. 

APPENDIX B 

Interpretation of Equation (.44) 

It is straightforward to show that whenever 

we have 

Noting that 

RI > 05 
Ro= . 

RI = (ho, hI) = IIhol/llh l ll cos 0 
= Ro cos 0, 

where 0 is the angle between ho and hI, eq. (53) becomes 

o ~ 60°. 

(53) 

(54) 

(55) 

The geometric interpretation of (55) is shown in Fig. 4, where it is 
seen that (54) is satisfied until 0 = 60°, when the triangles become 
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Ro 

Fig. 4-Geometric interpretation of eq. (44). 

equilateral. As long as (55) is satisfied, ho - hl is a shorter vector than 
ho• 

In the case of the {] channel, Rl/ Ro is very close to unity. Thus, 
ho - hl is a very short vector. Although it will certainly not always be 
the case, a plausible explanation for the fact that longer error sequences 
do not yet yield a shorter vector is that the addition of other translates 
of hk (such as ±h2) adds further components in other dimensions. 
Presuming that it does not reduce the component in the ho - hl plane, 
it can then only increase the length of the total vector. 
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Adaptive Channel Memory Truncation 
for Maximum Likelihood Sequence 

Estimation 
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Maximum likelihood data sequence estimation, implemented by a 
dynamic programming algorithm known as the V iterbi algorithm (V A), 
is of considerable interest for data transmission in the presence of severe 
intersymbol interference and additive Gaussian noise. Unfortunately, the 
required number of receiver operations per data symbol is an exponential 
function of the duration of the channel impulse response, resulting in 
unacceptably large receiver complexity for high-speed P AM data trans-
mission on many channels. ' 

We propose a linear prefilter to force the overall impulse response of 
the channel/prefilter combination to approximate a desired truncated 
impulse response (DIR) of acceptably short duration. Given the duration 
of the DIR, the prefilter parameters and the DIR itself can be optimized 
adaptively to minimize the mean-square error between the output of the 
prefilter and the desired prefilter output, while constraining the energy in 
the DIR to be fixed. 

In this work we show that the minimum mean-square error can be 
expressed as the minimum eigenvalue of a certain channel-dependent 
matrix, and that the corresponding eigenvector represents the optimum 
DIR. An adaptive algorithm is developed and successfully tested. The 
simulations also show that the prefiltering scheme, used together with the 
V A for two different channel models, compares favorably in performance 
with another recently proposed prefiltering scheme. Limiting results for 
the case where the prefilter is considered to be of infinite length are obtained; 
it is shown that the optimum DIR of length two must be one of two possible 
impulse responses related to the duobinary impulse response. Finally we 
obtain limiting results for the case where the transmitting filter is optimized. 

1541 
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I. INTRODUCTION 

Forney! has recently proposed a receiver structure for a communi
cation system operating over a known time-dispersive channel with 
little loss in performance due to intersymbol interference by using 
maximum likelihood sequence estimation, or the Viterbi algorithm 
(VA).2 This has resulted in much attention being given to practical 
methods of applying his results. Magee and Proakis3 proposed the use 
of the VA directly in conjunction with a channel estimator. This 
approach can result in a receiver too complex for practical use because 
the complexity of the VA depends exponentially on the duration of the 
channel impulse response. 

In particular, if the impulse response of the channel has an effective 
duration of T seconds and if an L-level PAM system transmits liT 
data symbols per second, the number of operations per received symbol 
is proportional to LT/T. For channels such as voiceband telephone 
channels, the bandwidth of which is used efficiently, typical values of 
TIT may be between about 20 and 200, making direct application of 
the VA infeasible. 

Thus, it seems clear that effective practical application of the VA 
or of related techniques involves a compromise between optimum 
performance and receiver complexity. The complexity-limiting ap
proach we take here is to use a linear prefilter at the receiver to 
"condition" the overall sampled impulse response seen by the VA so 
that it is significantly different from zero over only a small number of 
samples, and any remaining intersymbol interference is considered to 
be noise. Additional joint optimization of the transmitting filter is 
also treated, but would be much harder to implement in a real system. 

The simplest example of a prefilter is a linear equalizer, which yields 
an approximate overall impulse response of just one sample. Another 
example of prefiltering for a different purpose is the linear portion of a 
decision-feedback equalizer; in that case the initial sample of the de
sired overall impulse response is required to be large relative to the 
additive noise. 

In any application of prefiltering to approximate a desired impulse 
response (DIR), the DIR itself and the prefilter should be chosen to 
minimize the error due to noise and to the difference between the DIR 
and the actual impulse response that is achieved. The latter error re
sults from intersymbol interference components outside the interval 
accounted for by the DIR samples as well as from errors in approxi
mating the DIR inside the time-limited interval. This error could be 
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eliminated by using a zero-forcing criterion at the cost of additive 
nOIse. 

Qureshi and Newhall4 have recently proposed a receiver incorporat
ing prefiltering with the VA. They use a mean-square error (MSE) 
criterion to force the overall response of the channel plus the linear 
equalizer to approximate a truncated version of the channel pulse re
sponse. In order to decode, the VA assumes this truncated response, 
resulting in much simplified processing. There is no effort made in 
Ref. 4 to optimize the desired truncated response. It is the purpose 
of this paper to see how this desired response can be chosen to minimize 
MSE and to show that this receiver structure can be made adaptive. 

In Section II we formulate the MSE-minimization problem, assum
ing a fixed number of samples in the DIR and in the impulse response 
of the prefilter. The minimum achievable MSE is the minimum eigen
value of a certain channel-dependent matrix. In Section III we indicate 
how the prefilter tap coefficients and the samples of the DIR can be 
determined adaptively by a gradient algorithm based on the MSE 
minimization. Section IV is a study of the limiting situation in which 
the tapped delay line prefilter consists of an infinite number of taps 
and it is preceded by a matched filter. Compact expressions for the 
prefilter impulse response, DIR, and minimum MSE are derived, 
which lend further insight. Section V describes the results of computer 
simulations of an adaptive prefilter/VA receiver structure, including 
comparison of the receiver with that described in Ref. 4 and with per
formance lower bounds. Section VI presents performance calculations 
for the prefilter/VA system, a decision-feedback equalizer, and a 
linear equalizer for a particular channel. Plots of minimum MSE 
versus bit rate for each of the three types of receiver structures are 
shown. Section VII considers asymptotic transmitter optimization. 

n. OPTIMIZATION OF THE RECEIVER 

The channel model and the preliminary receiver processing are 
shown in Fig. 1. The channel is modeled as a linear continuous filter 
with additive white Gaussian noise. It has been shown by Forneyl 
that the channel can then be followed by a matched filter, symbol 
rate sampler, and noise whitening filter with no loss of information. 
Alternatively, the reader may assume that the channel is band
limited and symbol rate sampling can be used with no information loss. 

Due to these considerations, the discrete-time model of Fig. 2 was 
adopted with the additional assumption that the channel pulse re-
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sponse is time-limited. The noise sequence {nk} is additive, uncor
related, and Gaussian with variance (72. Note that a discrete-time model 
with uncorrelated noise samples also results from the commonly used 
but nonoptimum expedient of passing the received signal through a 
flat Nyquist band-limiting filter prior to sampling. * 

The proposed receiver structure is shown in Fig. 3. The received 
sequence feeds a linear tapped delay line filter whose function is to 
shorten the overall impulse response length. The filter has L( =2M +1) 
taps which are chosen in the manner to be described later. The output 
of this filter feeds the Viterbi algorithm which detects the information 
sequence. 

* Although a white noise model was used throughout, the correlated noise case 
can be considered in a similar manner. 
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The Viterbi algorithm makes decisions on the assumption that the 
DIR {qdf:!;;o is the actual overall channel response. The value of LL 
(the length of the DIR) is much less than 2N + 1 (the length of the 
actual channel response). LL is chosen to make acceptable the com
plexity of the Viterbi algorithm while taking a small noise penalty 
in the linear preprocessing. * An error signal is formed by feeding the 
information sequence estimate through the tapped delay line repre
senting the desired channel response. This forms the desired truncated 
channel received sequence which is then compared with a delayed 
version of the actual linear prefilter output to form an error sequence. 
It is this error which is to be minimized since it represents a sum of 
the additive noise, and the difference between the desired and actual 
overall impulse responses. 

If the sampled channel impulse response, sequence of information 
symbols, and sequence of uncorrelated noise samples are represented 
respectively by {hdl~-CO' {Illz~-co, and {ndl~-co, then the kth dis-

* Obviously if LL is allowed to be very large, the DIR can closely approximate a 
delayed version of the original channel impulse response, and there is no significant 
noise penalty, since the prefilter simply approximates a delay tine. 
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crete channel output is 
(1) 

Then if the vectors P+ == (P-M, "', po, ... PM) where + indicates 
transpose and Q+ == (q 0, .. " q LL) represent the tap coefficients of the 
prefilter and the DIR respectively, the error in the kth interval is 

M LL 

ek = L plrk-l - L qzl k-l· (2) 
l=-M l=o 

In order to simplify the following equations, it is assumed that the 
information sequence is uncorrelated (I kI j = Okj) and that the in
formation sequence estimate equals the information sequence. Sub
stituting (1) into (2) and averaging ei we get 

eI == ~ = P+AP + Q+Q - 2P+HQ, (3) 
where 

H = ho .. ·hLL (4) 

h_M •• ·h-M+LL 

is an L X (LL + 1) matrix and A is an (L X L) channel covariance 
matrix with elements aij = rirj. 

First, the error is minimized with respect to the prefilter by taking 
the gradient with respect to the taps {Pi} and setting it -equal to zero. 
The taps {qi} are constrained to be nonzero. 

aeJ. 
ap = 2AP - 2HQ = 0 (5) 

and therefore 
P opt = A -lHQ. (6) 

The interpretation-thus far-is that some desired (and truncated) 
channel response is chosen; and the linear prefilter taps are chosen to 
force the overall response to this with a minimum MSE. The question 
of what this desired response should be naturally arises. If a fixed 
length is assumed for this desired response, the desired response can 
be optimized in the sense of minimizing MSE. Substituting (6) into 
(3), one obtains 

eJ. = Q+[I - H+ A -lHJQ, 

where I is the identity matrix. 

(7) 
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Since & ~ 0, this is a positive definite quadratic form in Q which 
depends only upon Q and the channel characteristics. This can be 
minimized by choosing Q to be the eigenvector with the minimum 
eigenvalue of the matrix [1 - H+ A -lH]. The constraint 

Q+Q = 1 (8) 

is necessary to avoid the trivial case of no MSE. The trivial case cor
responds, of course, to no transmission through the channel. 

It should be noted that when the MSE is minimized a reasonable 
definition of the signal-to-noise ratio (SNR) seen by the Viterbi 
algorithm is maximized. This is true because {qi} is considered to be 
the effective channel pulse response, constrained to unit energy; the 
additive noise plus any residual intersymbol interference is the effec
tive noise seen by the algorithm. Since this noise is equal to the MSE 
which has been minimized, the SNR has been maximized. 

In summary, to minimize the MSE and thus maximize the SNR 
seen by the VA receiver, choose 

Qopt = eigenvector of [1 - H+A-IH] corresponding to its 
minimum eigenvalue, (9) 

P opt = A-IHQoPt, (10) 

and then 
~ min = min eigenvalue of [1 - H+A-IH]. (11) 

III. AN ADAPTIVE ALGORITHM FOR OPTIMUM RECEPTION 

In order to make the receiver structure practical, the procedure of 
choosing the {Pi} and the {qi} must be made adaptive since the channel 
pulse response will not usually be known prior to the start of trans
mission. An algorithm to choose the taps adaptively will now be 
described. 

Consider the conditions for the optimum operating point of this 
receiver to be reached. The condition that the gradient with respect 
to P be equal to zero is easily implemented by using the products of 
sampled values of quantities in the receiver as noisy estimates of the 
required cross correlations, assuming the data sequence is known or 
has been correctly estimated by the receiver. Thus, 

(12) 

where p(r) is the set of tap values at the rth iteration, .11 is an adjust
ment parameter which controls accuracy and speed of convergence, 
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R (r) is a vector of the received samples contained in the linear pre-
processing filter, and er is the error in (2). p(r+l) is thus the new 
estimate of the {Pi} taps, and when a steady state is reached a noisy 
unbiased estimate of these taps is obtained. Note that the value of P 
implicitly depends on the value of Q through the er terms. 

The algorithm to obtain the Q taps is not so easily obtained. Consider 
the unconstrained gradient with respect to the Q vector. If a noisy 
estimate of the required cross correlation is used, then the recursion 
for the unconstrained gradient algorithm is 

(13) 

where !(r) is a vector of the information symbols contained in the 
channel reference filter. If (12) and (13) are followed without a con
straint at each iteration, then the trivial solution results. The algo
rithm is therefore modified so that the Q vector is renormalized at 
each step. That is, 

Q (r+l) = Q (r) + A2er!(r) (14) 

Q,r+l) 
Q (r+l) = --=_-=-----:,.,---_ 

(Q (r+l»)+( Q (r+l)) 
(15) 

By following the combined algorithm of (12), (14), and (15), a sta
tionary point in P will be reached, and the energy in Q will be con
strained to one. 

N ow consider the noiseless unconstrained gradient of ~ with respect 
to Q. Then 

iJe2 
aQ = 2Q - 2H+P· (16) 

Consider P to be in the neighborhood of the correct solution (6) with 
respect to Q (that is, P is adjusted more quickly than Q). Then (16) 
becomes 

a"C2 
- = 2Q - 2H+A-IHQ· 
aQ 

(17) 

Thus the gradient algorithm, in terms of the actual matrix quantities, 
becomes 

Q (r+l) = Q (r) _ l.A2 a~ 
2 aQ(r) 

= Q(r) - !A2(2Q(r) - 2H+A-IHQ(r») 

= A 2H+A-IHQ(r) + Q(r)(1 - A2) (18) 

and then Q (r+l) is renormalized to form Q (r+l). N ow note that if 
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.12 = 1 this corresponds exactly to the method of Vianello and Stodola5 

for determining the maximum eigenvalue and corresponding eigen
vector of H+A-IH. Since the maximum eigenvalue of H+A-IH cor
responds to the minimum eigenvalue of (I - H+ A -lH) this technique 
will converge to the minimum MSE. This method will fail only when 
the starting vector Q (1) is exactly orthogonal to the desired solution. 
Since the algorithm actually used (14)-(15) deals with noisy estimates 
rather than the exact expressions, the noise will prevent the case of 
the algorithm becoming stuck on a vector orthogonal to the solution. 

In the practical case it is not possible to choose .12 to be one because 
when the noisy estimates are used the algorithm will amplify the 
noise and diverge. Actually, .12 will be much smaller than one. Again 
looking at (18), one can see that a steady state is reached when Q 
becomes nonrotating with respect to the transformation. This occurs 
when Q is the maximum eigenvalue of H+A-IH (i.e., the maximum 
eigenvalue will dominate as in the method of Vianello and Stodola). 
Thus, the unique solution for Q has been obtained. 

IV. LIMITING RESULTS 

We now study the limiting situation where the prefilter is allowed 
to be any general linear filter with impulse response pet), while the 
desired impulse response {qm}~~o is still finite. In addition we assume 
that the additive noise on the channel is white, with double-sided 
power spectral density N 0/2. 

In this case we wish to minimize the mean square of the sampled 
error 

/

00 U 

ek = -00 p(T)r(kT - T)dT - z~o qz!k-l, (19) 

where 
00 

r(kT - T) = L h(kT - IT - T)Il + n(kT - T) (20) 
l=-oo 

is the received signal. 
The MSE is then 

e2 = z=~r/J f-: f_: p (Tl)p(T2)h(lT - Tl)h(lT - T2)dTldT2 

+ ~o f-: p(T)2dT - 2zE ql i: p(T)h(lT - T)dT 
LL 

+ L qr· (21) 
Z=o 
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Using a simple calculus of variations argument to minimize MSE 
with respect to the prefilter impulse response pet), we get the following 
integral equation defining the optimum pet). 

N u ~ -i pet) = z"fo qzh(lT - t) - l=~~ Szh(lT - t) , (22) 

where 

Sz = f-: p( r)h(lT - r)dr (23) 

is the overall sampled impulse response of the channel and prefilter. 
Note that we would hope for 0 ~ l ~ LL, Sl ~ ql and for l < 0 and 
l> LL, Sz~o. 

Equation (22) tells us that the optimum prefilter structure is a 
matched filter with impulse response h ( - t), followed by an infinite
length tapped delay line whose tap gains {pz} are given by (22) and 
(23). 

(24a) 

where 

¢m = f-: h(mT - r)h( - r)dr = ¢-m (24b) 

is the channel's sampled covariance function, and where we later 
require that {ql} is nonzero only for 0 ~ l ~ LL. We remark that the 
development so far is analogous to that of Berger and Tufts6 for the 
case LL = o. Equation (24) may be solved in terms of z-transforms. 
Defining 

00 

q(z) == I: qmzm 
m=-OO 

00 

p(z) = I: Pmzm 
m=-oo 

00 

¢(z) = I: ¢mzm 
m=-oo 

we can take z-transforms of both sides of (24) and solve for p(z). 

p(z) = q(z) , 
¢(z) + No 

2 

(25) 

where we have used the fact that ¢(z) = ¢(Z-l) since the sequence 
{ ¢l} is symmetric about l = o. 
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Using (25) we get the z-transform of the autocovariance sequence 
of the {ed, when the tap coefficients {Pn}~r» are chosen to minimize 
the mean-squared error. Defining Em = ekek+m and E (z) = L~= _ r» Emzm 
we have 

E(z) = No q(Z)q(Z-l) . 

2 ifJ(z) + No 
2 

(26) 

We now minimize ~ = Eo with respect to the desired impulse response 
samples {qn}~~o, under an appropriate energy constraint. Taking the 
inverse transform of E(z) we have 

where 
q(e iwT) = qo + qleiwT + ... + qLLeiwLLT. 

Defining the LL + 1 dimensional vector Q+ = (qo, ql, 
can rewrite (27) as a quadratic form 

Eo = Q+RQ, 

(27) 

qLL) we 

(28) 

where R is a square matrix of dimension (LL + 1) whose i-jth element 
IS 

NoT j7rIT eiw(i-i)T 
rij = -- dw' 

47r -7r/T ( , T) + No ifJ eJW -
2 

(29) 

Note that ifJ(e iwT) is the discrete Fourier transform of an autocovari
ance sequence, and hence is an even, real, positive function of w. Thus 
r ii = r ii is a real function of / i - J'/, and so R is a positive definite 
symmetric Toeplitz matrix. 

Minimization of Eo under the energy constraint / Q /2 = 1 is then 
accomplished by making Q that normalized eigenvector of R cor
responding to its minimum eigenvalue. The matrix R is evidently the 
limiting case of the matrix I - H+ A -IH for the finite-tap reCelver 
[displayed in expressions (7) through (11)]. Then 

(30) 

To recapitulate, the minimum is taken over the set of tap-coefficients 

{Pn};'=-r» and {qn}*~o under the constraint L*~o q; = 1, 
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which can be expressed as 

T f 1r
IT - I q(e iwT) 1

2dw = 1. 
271" -1rIT 

Thus, from (27) we have the lower bound 

'\ (R) - E - 2" > No 
1\ m in - 0 - emln = 2 --s-u-p-----;(-cp-( e-iW-T-)-+---:_N=-=--o ):-

-1r/T ~w ;$:.1r/T 2 

1 
(31) 

Now cp(e iwT) is the discrete Fourier transform of the sequence {CPn} 
defined in terms of the channel's impulse response by (24b). Thus, if 
the channel's transfer function is denoted by 

H (w) = £00 h(t)e-iwTdt , 

cp(e iwT) = - L H w + - . 1 00 1 ( 2n71") 12 
T n=-oo T 

(32) 

The term cp(e iwT) can be interpreted as the channel's "folded" power 
spectrum.7 

When LL + 1, the number of components in the desired impulse 
response {qn}~~01 is relatively small, say less than 10, the minimum 
eigenvalue and corresponding eigenvector of R can be evaluated with
out difficulty. For much longer values of LL, the lower bound (31) 
which is easily computed using (32) may be quite tight. A particular 
case of interest is where LL = 1. Then R has the form 

and 

where 
2wT 

NoT 1rIT cos T 
ro + rl = -- f N dw 

271" -'KIT cp(e iwT) + _0 

2 

(33) 

and 
. 2wT 

NoT 1rIT SIn """2 
r 0 - rl = -- f dw· 

271" -'KIT cp(e iwT) + No 
2 

(34) 
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The normalized eigenvectors (optimum (q o,ql)) corresponding to the 
eigenvalues ro + rl and ro - rl are respectively (1/V2", 1/V2") and 
(1/V2", -1/V2"). 

Thus, we have the curious result that the optimum desired impulse 
response of length two is one of only two possible forms, depending 
only on whether the channel's folded power spectrum is such that 
(33) or (34) is smaller. For example, if the channel's folded power 
spectrum has a single minimum near the band edge, w = 7r / T, the 
best choice for (qo,ql) would be (1/V2", 1/V2") since cos2 (wT)/2 has a 
zero at the band edge. However, if the channel's folded power spectrum 
has a single minimum near zero frequency, the best choice for (qo,ql) 
would be (l/V2", -1/V2"), since sin2 (wT)/2 is zero at w = o. These 
two cases are illustrated in Fig. 4. 

It is interesting to point out that the two possible optimum desired 
impulse responses (1/V2", 1/V2") and (1/V2", -1/V2") are reminiscent 
of duobinary and partial response impulse responses. 8 

V. PERFORMANCE OVER SIMULATED CHANNELS 

In order to observe performance obtainable from this receiver struc
ture, the arbitrary discrete time channels shown in Fig. 5 were used. 
Figure 6 shows the results of the simulations performed with the 
receiver developed here and that of Qureshi and Newhall on these 
channels. Underlined in Fig. 5 are the desired response used for the 

CASE 1 

CASE 2 

CHANNEL'S FOLDED 
POWER SPECTRUM 

11" 

T 

11" 
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OPTIMUM DIR 

[qo' q,l 

1 

~ o T 

-1 

-!2 
-11" 

T 

POWER SPECTRUM 

1 qo+q,e iWT 12 

Fig. 4-0ptimum desired impulse response of length two. 
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CHANNEL B 

Fig. 5-Sampled channel impulse responses used in the simulation. 

Qureshi and Newhall receiver. As can be seen from the performance 
curves, the Qureshi and Newhall receiver performs about as well as 
our receiver for Channel A and much worse for Channel B. The 
difference in performance is presumably due to the use of different 
criteria to choose the desired response. In the case of Channel B, the 
channel passes virtually no dc, yet the DIR from truncating the 
channel response does pass dc. This causes considerable noise enhance
ment by the Qureshi and N ewhalliinear prefilter. 

Figure 6 also shows the matched filter lower bound, the lower bound 
on performance derived by Forney,9 and a lower estimate which is 
used to predict actual optimum reference receiver performance. This 
lower estimate is obtained by computing the MSE and minimum 
coding distance of the DIR. Thus, it is assumed that the MSE is un
correlated and Gaussian in this approximation. 

Pee) '> K erfc O~2 (~flE)' (35) 

where K is a constant depending on the error structure of the channel, 
and dmin is the minimum Euclidian distance between all possible 
pairs of noiseless sequences with differing first information symbols 
emerging from the prefilter.9 This lower estimate is found without 
considering the fact that the noise is correlated. If a more accurate 
estimate of performance is desired, the results of Qureshi an,d N ewhall4 

can be used to consider the effects of noise correlation. 
The simulations were run with a 31-tap prefilter whose taps were 

adjusted with ~ = 0.001, and a 5-tap desired overall response length 
with the adjustment parameter equal to 0.01. In the case of the Qureshi 
and Newhall receiver, the prefilter was adjusted with ~ = 0.001 and 
the channel was estimated with a filter with adjustment parameter 
equal to 0.01. * As the curves show, the receiver structure given here 

* The performance loss due to the adjustment parameters has not been evaluated; 
however, simulation results indicate that this loss is very small. 



assures that a good choice of a DIR is made which is not always the 
same as the truncated channel impulse response. 

VI. COMPARISON WITH OTHER SYSTEMS-AN EXAMPLE 

Based on the results in Section II, performance calculations were 
made for baseband PAM transmission on the channel whose frequency 
response is shown in Fig. 7. The results shown in Fig. 8 were made with 
the following assumptions: 

(i) A matched filter preceded the receiver. 
(ii) There was a 31-tap prefilter. 

(iii) There was a 5-tap desired impulse response. 
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Fig. 7-Channel amplitude characteristic. 

(iv) Although the noise may be correlated, at the input to the 
Viterbi algorithm, it has a negligible effect on performance. 

Of the assumptions made, only the one about the noise correlation 
might not be realistic. Work is currently being done to deal with the 
correlated noise problem. In any case, it is not expected that it would 
affect performance more than a few dB and it clearly would not affect 
the place in the performance curve at which the performance begins 
to degrade seriously. 

The curves representing the linear and decision-feedback equalizers, 
provided by J. Salz, show the MSE versus rate for additive white 
Gaussian noise with N 0/2 = 0.0001. In the linear and decision-feed
back cases the MSE may be roughly related to performance in terms 
of probability of error. * 6,10 The curve for the prefilter/VA combination, 
labeled "VA equalizer," is a plot of (MSE/ d~n) versus rate, where 
dmin is the minimum distance for the DIR. This is done because the 
attainable system performance is not determined by MSE alone, but 
rather by MSE/d~ln as in expression (35). Direct minimization of this 
ratio by analytical or numerical means has not been accomplished. 
Note however that the minimum value dmin can attain (over all 

* The analysis for decision-feedback equalization ignores the effect of decision 
errors on the MSE. 
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Fig. 8-Indication of attainable performance for three receiver structures. 

channels with equal-energy impulse responses) is limited by the dura
tion of the DIR which is chosen.ll 

As can be seen from the curves, this receiver structure can be ex
pected to perform well while using only binary signaling over a much 
greater range of transmitted data rates than the linear and decision
feedback receivers. This result occurred despite the fact that the 
linear and decision-feedback computations were made for infinite 
filters while the prefilter was finite. It is the more relaxed criterion for 
our system compared to the decision-feedback criterion which results 
in lower MSE and thus better performance. Nevertheless the results 
are considered preliminary until a better understanding of the effect 
of noise correlation is achieved. 

VII. TRANSMITTER OPTIMIZATION 

The "channel's" frequency response H(w) actually includes the 
transmitting filter, i.e., 

H(w) = C(w)G(w), (36) 

where C (w) is the frequency response of the transmission channel 
alone, and G(w) is the frequency response of the transmitting filter, 
which we have hitherto assumed fixed. In a practical data communi
cation system, a "reasonable" transmitting filter would likely be 
fixed to avoid having to provide an extra feedback channel for adjust-
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ing the transmitter parameters, and because of the complexity of the 
transmitter optimization argument itself for general channels.6 

Nevertheless, the performance attainable with transmitter optimi
zation is of theoretical interest. In this section we obtain expressions 
for the optimum transmitter filter G(w) and the resulting minimum 
MSE under a transmitted power constraint. For simplicity, we assume 
a "well behaved" channel C(w) for which I C(w) I is monotone decreas
ing, and for which I C(w) I /N 0 is sufficiently large in the range { -rr/T, 
rr/T} that the optimum transmitter uses the entire Nyquist band 
I w I ~ rr /T. Treatment of more general channel characteristics is more 
complicated, but can be carried out as in Ref. 6. 

The minimum MSE for a fixed transmitting filter G(w) and DIR {qz} 
is given by eq. (27) and by the channel's folded power spectrum, 
which from (32) and (36) can be written 

1 00 \ ( 2rrn) \ 21 ( 2rrn) 12 fjJ (e iwT) = T n:f. 00 C w - T G w - T . (37) 

The constraint that the transmitted power be fixed at P T can be 
written 

- :E G w - - dw = PT· 1 f 7r IT 1 ( 2rrn) 12 
T -7r/T n T 

(38) 

A necessary condition for minimizing the MSE, given by (27), 
subject to the power constraint (38), is obtained using a simple vari
ational argument: for -rr/T ~ w ~ rr/T and every integer m, either 
G(w - 2rrm/T) = 0 or G(w - 2rrm/T) ~ 0 and 

~ n ~ 00 \ C (w - 2;n ) 12 \ G (w _ 2;n ) 12 + ~ 0 

= ~ I q(e iwT) I 1 C (w - 2;m) I, (39) 

where ~ is a Lagrange multiplier whose value will be determined from 
the constraint (38). Furthermore, for any w such that C(w) = 0, 
G(w) = O. 

For any frequency w, there will be only one integer m for which 
G(w - 2rrm/T) ~ 0, since the left-hand side of (39) does not depend 
on m and the right-hand side does. Indeed, if I C(w) I is monotone 
decreasing, then best use is made of the transmitter power if G (w) = 0 
for Iwl > rr/T. Thus we can rewrite (39) as 

~ I C (w) 12 I G (w) 12 + ~ 0 = ~ I q (e iw T) I I C (w) I 
for C(w) ~ 0 and Iwl ~ rr· (40) 



ADAPTIVE CHANNEL MEMORY TRUNCATION 1559 

For simplicity, we assume that P T and the ratio I C(w) I /N 0 are 
sufficiently large that (40) can be satisfied for all I w I < niT. [Other
wise G(w) would be zero6 beyond a certain frequency Wo < 7r/T.] 
Then the amplitude frequency response of the optimum transmitting 
filter is given by 

1 2 _ A I q(e hrT) I 
TI Gopt(w) I - I C(w) I for Iwl ~ ; 

=0 for w > !!:. 
T 

(41) 

The Lagrange multiplier A is determined by (41) and the power 
constraint (38). Substitution of the expression for J G opt I into expres
sion (27) for the MSE gives 

where 

_ NoT f 7r
'T I q(e iwT

) I 
MSE - 47rA -7rIT I C(w) I dw, 

Nof 7r
IT 1 

A = P T + 2 -7r IT I C (w) 12 dw 

f
7r 'T I q(e iwT) I 

-7rIT I C(w) I 

(41a) 

(41b) 

It is interesting to look now at the frequency response of the optimum 
receiver prefilter 

corresponding to the optimum transmitter filter. The left side of (42) 
follows from the cascade of the channel and transmitter and the appro
priate matched filter, followed by the discrete filter {pz}. Substitution 
of expressions (41) for I Gopt(w) I and (25) for p(e iwT) results in 

for Iwl ~~. (43) 

Thus the transmitting filter and receiving prefilter frequency re
sponses are identical in the Nyquist band except for constant factors 
(clearly, the transmitting and receiving filters' phase characteristics 
can be chosen arbitrarily). This equal sharing of the filtering load 
between the transmitter and receiver is a well-known result for 
optimum linear communication systems (see pp. 118-121 of Ref. 7). 

It is also of interest to evaluate the power spectrum of the error 
sequence that the Viterbi algorithm assumes to be additive uncorre-
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lated Gaussian noise samples. From expressions (26) and (40), this is 
given by 

iw T _ N 0 I q (e iw T) 12 
E (e ) - "2 A I q (e iw T) I I C (w) I 

_ No I q(eiwT) 
- 2A I C(w) I 

7r 
for Iwl ~ T· (44) 

Thus, the extent that the amplitude frequency response of the 
chosen DIR approximates that of the channel in the Nyquist band 
determines how close the power spectrum E (e iwT) is to being fiat, 
and hence, to what extent successive errors are uncorrelated. 

From (41a) and (41b) we obtain an expression for the MSE for a 
given DIR after the transmitting and receiving filters have been 
optimized. 

(45a) 

where _ f 7r 'T I q(e iwT) I 
a(Q) - -7r/T I C(w) I dw 

7rIT [ ~ ~ qzqmei<m-l)WT] ~ 
f l=O m=O d (45b) 

= -7r/T I C(w) I W· 

Minimization of the MSE expression with respect to the DIR Q 
under the constraint I Q 12 = 1 is then equivalent to minimization of 
a (Q) under this constraint. Necessary conditions for the optimum 
Q+ = (qo, ... qLL) are then 

LL 
J.Lqz = L qmPZ-m(Q), l = 0, ... LL, (46a) 

m=O 

where 

f
7r'T eiZwT 

pz(Q) = LL LL ! dw 
-7r/T I C(w) I [ i~O k~O qiq{(i-k)wT ] 

(46b) 

and where J.L is a Lagrange multiplier. Again the optimum DIR Q 
is the solution of an eigenvalue problem, this time nonlinear. It is easy 
to verify that the optimum DIR of length two is again either of the 
two "duobinary" impulse responses shown in Fig. 4. In that case the 
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minimum achievable MSE is given by (45a) and (45b) as 

NoT [f 7r'T [1 ± cos wTJ! dw]2 
MSE = 47r -7r/T / C(w) / 

Nof7r
'

T 1 
P T + 2 -7r/T / C(w) /2 dw 

the + or - being chosen to minimize (47). 

VIII. CONCLUSIONS 
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(47) 

We have presented a scheme of linear prefiltering to optimally 
"condition" the impulse response of a channel to approximate an 
impulse response of limited duration for which maximum likelihood 
estimation of the data sequence is implementable in practice. This 
scheme in conjunction with the VA can be adaptive, to deal with un
known or slowly time-varying channels. In the simulations its per
formance compared favorably with the similarly motivated scheme of 
Ref. 4. 

The optimization criterion we used-minimization of the MSE with 
respect to the prefilter taps and the DIR, with the energy, duration, 
and relative delay of the DIR being fixed-is admittedly somewhat 
ad hoc. If the sequence of errors {ei) emerging from the prefilter is still 
assumed to be stationary Gaussian, with zero mean and covariance 
{Em}, then it can be shown that the error rate of a VA which assumes 
correlated noise is minimized if a certain weighted minimum distance 
is maximized, namely 

where the s' is the set of all possible vectors representing error events 
and A is a covariance matrix whose dimension equals that of 
d {Aii = EI i-il }. The above quantity is clearly difficult to maximize, 
and even if it could be done, the non-Gaussianness of the error se
quence would render the solution suspect. 

Nevertheless, the performance estimates for the sample channel 
reported in Section VI make the use of the VA is conjunction with 
prefiltering appear attractive for high-speed data transmission relative 
to other schemes. Further studies should be done on the correlatedness 
of the error sequence and the minimum distance properties of the 
desired impulse responses. * 

* S. Fredricsson presented a paper dealing with this subject at the International 
Symposium on Information Theory, Israel, June 1973. 
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New technologies of fiber manufacture and a demand for unusual fiber 
qualities in communication systems have intensified the interest in a 
comprehensive theory of multimode fibers with nonuniform index distribu
tions. This paper deals with a general class of circular symmetric profiles 
which comprise the parabolic distribution and the abrupt core-cladding 
index step as special cases. We obtain general results of useful simplicity 
for the impulse response, the mode volume, and the near- and far-field 
power distributions. We suggest a modified parabolic distribution for best 
equalization of mode delay differences. The effective width of the resulting 
impulse is more than four times smaller than that produced by the parabolic 
profile. Of course, practical manufacturing tolerances are likely to in
fluence this distribution. A relation is derived between the maximum index 
error and the impulse response. 

1. INTRODUCTION 

Conventional optical fibers consist of a high-index core surrounded 
by a cladding of lower index. The index step between core and cladding 
contains the light inside the core and isolates it from the outer fiber 
surface, whose quality is usually difficult to control. In a more general 
way, inside guidance can be accomplished by any index profile which 
decreases from a maximum inside the fiber to a lower (cladding) value. 
The specific shape of the profile has an effect on the distribution of the 
guided optical power in the fiber and on the overall loss encountered, 
but, more importantly, the profile profoundly influences the velocities 
of the various propagating modes. A good example is the parabolic 
index distribution which was predicted to nearly equalize the group 
velocities of the propagating modes.1 ,2 The Selfoc fiber which closely 
approximates these conditions has indeed since exhibited an extremely 
narrow impulse response.3 ,4 

These effects greatly enhance the chances of multimode fibers to be 
used in optical communication systems. On the other hand, a theory 

1563 
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of the interrelations between index profile, impulse response, and 
power distribution is presently only available for the two special cases 
of the uniform and the parabolic core index. This paper provides a 
more general theory and studies a broad class of index profiles po
tentially useful in communication applications. The uniform and the 
parabolic profile are special cases within this class. . 

Our concern with multimode fibers for communication applications 
allows us to make four simplifying assumptions: 

(i) The index profile is circular symmetric. 
(ii) The core diameter measures hundred wavelengths or more and, 

hence, a great number of modes can propagate. 
(iii) The total index change within the guiding core region is only 

a few hundredths, so the propagating modes can be considered 
essentially as transverse electromagnetic. 5 

(iv) Index variations within the distance of a wavelength are 
negligible, and the conditions of geometrical optics (or the 
zeroth order of the WKB method) apply. 

Except for these four restrictions and the requirement of guidance, 
the index profile can be of the most general form. It can, for example, 
have an index depression in the center and one or several ring-shaped 
index maxima. 6 

For the sake of clarity, this paper is restricted to the simpler type 
of profile illustrated in Fig. 1. We assume the index profile will decrease 
monotonically from the center and converge into a fiat cladding region 
which guarantees isolation from the outside surface. 

t 
x 
w 
Cl 
Z 

ncl------
CLADDING CORE 

-a 0 

RADIUS --

CLADDING 

Fig. l-Cross-sectional sketch of circular symmetric index profile in multimode 
fiber. 
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Fig. 2-Wave vector diagram in the propagating region of a multimode fiber. 

Apart from the index profile, there are, of course, other influences 
which affect the impulse response and the optical power distribution 
inside the fiber. Mode excitation, loss differences in the process of 
propagation, and coupling among the modes play a part. To isolate 
the effect of the index profile, we assume here the ideal case of uniform 
loss, absence of coupling, and equal and simultaneous excitation of all 
propagating modes at the input. For the computation of the impulse 
response, the input is assumed to be an infinitely narrow pulse of unit 
energy. 

II. MODE DESIGNATION AND MODE COUNT 

All guided modes are essentially transverse electromagnetic and, 
with some proviso, can be decomposed into linearly polarized pairs. 5 ,7 

Because of the circular symmetry of the index n, the modes have a 
circular periodicity and can be identified in the conventional way by 
an azimuthal order number v. To characterize the radial field distribu
tion, we need an additional mode number J.t. The propagation constant 
{3 of a particular mode (J.t, v) can then be approximately determined 
by the WKB method. 6,8 Figures 2 and 3 give a physical description 
of these relationships. In Fig. 2, the local wave number 

k(r) = 27rn(r)/'A (1) 
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O~--~R-l----------~R2~,\----~R~A~DI~U~S~~ 

\ 

" '-
Fig. 3-Sketch defining regions of periodic and aperiodic field characteristics of a 

mode of azimuthal order v. 

is decomposed into its components in a cylindrical coordinate system 
(r, ¢, z). The unknown radial component becomes 

(2) 

Given (3 and 11, we can find two radii Rl and R 2, at which u(r) vanishes 
(see Fig. 3). These radii define a ring-shaped region within which u is 
real, causing a radial periodicity of the mode field. Outside this region, 
the field is aperiodic. 

Radially decreasing (or evanescent) field conditions obtain outside, 
when the phase inside (approximately) adds up to an integer number 
of half periods between Rl and R 2• Consequently, if fJ. designates this 
number of half periods, 

(3) 

We would have obtained the same result by way of the "\tVKB method, 
with the only difference that fJ. and 112 would be replaced by fJ. + 1 and 
112 + 1. These corrections are important in the case of small fJ. or 11, 

and particularly for the fundamental mode which has fJ. = 11 = O. On 
the other hand, to obtain a general view of the mode structure, we 
can ignore the 1-terms as long as we refrain from discussing individual 
low-order modes. 

For the purpose of a total mode count, let us consider the limits of 
fJ., 11, and {3. The requirement of evanescent field conditions in the 
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cladding (index nc in Fig. 1) limit f3 to a minimum value 

f3c = 211"nc/"A. (4) 

Modes with smaller f3 find propagating conditions in the cladding and 
are no longer bounded by the core profile. Condition (4) defines mode 
cutoff. The largest value for 11 results for f3 = f3c and J..L = 0, and 
alternatively J..L is largest for f3 = f3c and 11 = o. We obtain the total 
number of modes M from a summation of (3) over all 11 from 0 to 
1Imax. If 1Irnax is a large number, we may consider 11 a continuous variable 
and replace the sum by an integral. In this case, 

4 fvmax ~R2lV) M = - [k2(r) - f3~ - p2/r2J!drdp. 
11" 0 R1(v) 

(5) 

The factor 4 in front of the expression allows for the fact that each 
combination J..L, 11 designates a (degenerate) group of four 'modes of 
different polarization or orientation.5 Figure 4 illustrates the area of 
the double integration indicated in (5). A change of order in the 
integration leads to 

(6) 

where a is the radius at which the index nCr) reaches the cladding 
value nco Integrating (6) with respect to 11 yields 

ra 
(211")2 ra 

M = J 0 [k2(r) - f3~J!rdr = T J 0 [n2 (r) - n~J!rdr • (7) 

For small index differences, the integral represents the volume under 
the (circular symmetric) profile plot. It may be worth noting, though, 
that the substance of this relation is not limited to circular symmetry. 

t 

o 
RADIUS -.. 

Fig. 4-Region of double integration in eq. 5. 
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Fig. 5-A few of the index profiles defined by n = no[l - 2.:l(r/a)aJ~ for small .:l. 

For later use we write (7) in the somewhat different form 

[R2(O) 

m({3) = Jo [k2(r) - (J2J!rdr, (8) 

where m({3) denotes the number of modes having a propagation con
stant larger than 13. The upper limit R2 (0) of the integration is the 
radius at which k(r) = 13. 

Let us now consider a particular class of profiles defined by 

for r < a 
(9) 

for r > a, 

where a is a parameter between 1 and 00. Figure 5 illustrates the cases 
a = 1, 2, 4, 10, and 00. All profiles reach a constant cladding value at 
r = a. The core profile has a cone shape for a = 1, becomes nearly 
parabolic for a = 2, and converges to the case of the step profile for 
a = 00. Using (1) we introduce (9) into (8) and obtain 

(10) 
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where 
ko = 27rn o/X. (11) 

For {3 = f3c from (4), the total mode number becomes 

Jl;[ = a ~ 2 a2k~A . (12) 

It is proportional to the index difference and the core cross section. 
The uniform profile accepts twice as many modes as the parabolic one 
and three times more than the cone-shaped one. 

III. IMPULSE RESPONSE 

Consider all modes to be excited by the same narrow pulse at the 
input. Each mode transports an equal amount of energy to the fiber 
end. The individual pulses are expected to suffer a certain distortion, 
depending on the f3-w characteristic of each mode and dispersion in the 
dielectric. We assume, however, that the resultant broadening is small, 
or at least not much larger than the group delay differences between 
adjacent modes. Because of this effect and other limitations in the 
system response, the pulses from individual modes are likely to fuse 
into one continuous output pulse called the impulse response. Since 
all modes carry the same energy, the power profile of the impulse 
response is equal to the mode density per unit time interval. In the 
following theory, the continuity of the impulse response results not 
from the broadening of the individual mode responses, but from the 
assumption that J..L and v are continuous functions. 

The straightforward method of computing the impulse response 
starts from (3) to find the propagation constant {3 for each pair, J..L, v. 
The group delay in a fiber of length L is then 

( ) 
_ Lno d{3(J..L, v) 

T J..L, v - -c- dk 0 ' 
(13) 

where c is the vacuum velocity of light. A simplification of this ap
proach for the purpose of numerical computations is indicated in the 
appendix. Once dJ..L, v) is known, the impulse response results from 
a count of the combinations J..L, v which arrive between T and T + dT. 

This number plotted versus T then constitutes the impulse response. 
For the special class of profiles defined by (9), group delay and 

impulse response can be computed in a much simpler way. First we 
postUlate that, in this case, the relation between T and f3 according to 
(13) is independent of J..L and v. If this holds-and we shall prove it 
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later with the help of eq. (16)-we can replace {3 by T in (3) and still 
perform the same integration over v which led to (8) and, more specifi
cally, to (10). Solving the result of this integration for T yields 

T = Lno ~ [k2 _ (2ma + 2)a l (a+2)(2t::.k2)2 /(a+2)]!. (14) 
c dk o 0 a2 a 0 

This result can easily be verified by solving (10) for (3 and introducing 
it into (13). With the help of (10) and the abbreviation 

;) = t(1 - (32/k~) , 
eq. (14) .takes the form 

Lno 1 - 45/(a + 2) 
T = c (1 - 2;))! 

(15) 

(16) 

This expression proves indeed to depend on {3 alone (and not explicitly 
on m), thus justifying the approach chosen. 

To obtain the impulse response, we can now introduce (16) into 
(10) and differentiate with respect to T. Although this is not difficult 
to do, it leads to rather unwieldy expressions. We shall therefore merely 
consider some special cases of interest. To normalize the impulse 
response for total unit energy, we divide (10) by (12) and obtain 

;; = (~) t2/a)+1 • (17) 

Furthermore, since;) can at most assume the value t::. (for {3 = (3c) 
and is therefore small compared to unity within the scope of our theory, 
we develop (16) into a power series in terms of 5 and obtain 

T = Ln 0 (1 + a - 2 ;) + 3a - 2 ~) . 
c a+2 a+22 

(18) 

We relate T to the total propagation time Lno/c and introduce a new 
time reference, which ignores the delay common to all modes. Hence, 

(19) 

In this time frame, the fundamental mode arrives at t = O. 
As long as a is not too close to 2, the linear term in (19) dominates. 

Therefore, 

l
~t 
a-2 

5= 

€t 

except for a ~ 2 
(20) 

for a= 2. 
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Insert this into (17) and differentiate with respect to t to obtain the 
impulse response 

1
0: + 21 0: + 2 1 I (2/aHl __ __ _ /t/ 2/ a 

1 dm 0: 0: - 2 A 

Mdt = 2 

A2 

except for 0: ~ 2 

(21) 

for 0: = 2. 

As 0 varies from 0 to A, the time t changes from 0 to 

except for 0: ~ 2 

(22) 

for 0: = 2. 

Outside of this time interval, the impulse response is zero. Figure 6 
shows plots of (21) for the profiles sketched in Fig. 5. A change from 
0: = 00 to 0: = 10, which implies a relatively small change in the 
profile, narrows the impulse response by i. The response becomes 

10 
-.r 

8 -.r 

6 
T 

4 
T 

£x= 1 

2 
-.r 

0~_-1/-3~~--~0----~--~--~~ 

RELATIVE DELAY, t 

Fig. 6-Impulse response of multimode fibers having the profiles of Fig. 5. 
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extremely narrow for a ~ 2, then broadens again, as a decreases 
further. For a < 2, the high-order modes overtake the fundamental 
and arrive earlier. 

In the vicinity of a = 2, where both terms of (19) contribute, the 
impulse response is a rather complicated function. The most interest
ing of these cases is the one for which the impulse response has the 
narrowest possible width. This optimum condition arises for 

aopt = 2 - 2~, (23) 
which yields 

t = t(02 - ~o). (24) 

In this case, the modes of highest and lowest order both arrive at the 
same time t = 0; all other modes are faster, the fastest one being 
determined by 0 = ~/2. It arrives at 

~2 
t = --' 

8 
(25) 

Equation (24) has two solutions for O. Hence, (17) yields two values 
for the same t, indicating that two mode groups, a high and a lower 
order, contribute to the impulse response at every particular instant 
in time. By introducing 0 into (17), differentiating with respect to t, 
and then adding the two contributions, we find the impulse response 

4 ( 8t )-t 
~2 1 + ~2 • (26) 

This function is plotted in Fig. 7. It peaks at t = - ~2 18 and decreases 
towards t = O. Because of the normalization introduced in (19), the 
absolute temporal width is 

Lno ~2 
-c-S' (27) 

The time slot in which a pulse of this kind can be transmitted is 
narrower than that, because 70 percent of the power is concentrated 
in the first half of the interval (27). 

A practical implementation must, of course, allow for a certain 
tolerance or error in the profile, as a result of which the total width 
of the impulse response is likely to exceed (27). To obtain some in
dication of the pulse broadening as a result of this index deviation, we 
assume that the erroneous profile is still of the type (9), but has 

a = aopt + da. (28) 
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Fig. 7-Impulse response in the case of optimal profile shape. 

The maximum index deviation from the optimum profile then appears 
approximately at 

r = ae-! (29) 
and has the value 

d d 
noA 

n max = a 2e' (30) 

where e is the base of the natural logarithm. As a result of this profile 
error, the normalized width of the impulse response becomes 

leA + !ldal)2 (31) 
or, in absolute terms, 

Lno (e )2 
8c A + noA Idnmaxl . (32) 

Consider a guide with a maximum index no = 1.5 and an index 
variation A = 2 percent. If the profile is optimal, mode delay should 
produce an effective broadening of only 0.25 ns/km. An index devia
tion of 10-4 from the optimal profile increases the broadening to 
0.53 ns/km. 

IV. NEAR- AND FAR-FIELD POWER DISTRIBUTION 

We take again into account the fact that the core cross section mea
sures many wavelengths in diameter. If this cross section is illuminated 
by an incoherent source (exciting all modes uniformly), the power 
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incident per unit solid angle at any point in the cross section is con
stant. To compute the power accepted by the fiber, we merely have to 
know the solid angle of acceptance at any point. We find this angle 
from the wave vector diagram of Fig. 2, which yields 

cos OCr) = f3/k(r). (33) 

The maximum angle Oc results for f3 = f3c; hence, 

( ) f3c nc 
cos Oc r = k(r) = nCr) . (34) 

Using this relation, we can define a local numerical aperture at the fiber 
front face 

A (r) = nCr) sin Oc(r) = [n2(r) - n~Jt. (35) 

The power accepted at r is then 

A2(r) n2(r) - n~ 
per) = p(O) A2(O) = p(O) n2(O) _ n~ (36) 

If all modes propagate equally attenuated and without coupling, the 

1.0 ~--=--_~--__ 

0.8 

0.6 

:£ 
Q. 
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-Q. 

0.4 

0.2 

RADIUS r ~ 

Fig. 8-Power distribution in the core of multimode fibers having the profiles of 
Fig. 5. 
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same power distribution should hold for the fiber end face. The class 
of profiles described by (9) has 

A(r) = n o(2Ll)![1 - (r/a)aJ! (37) 
and 

per) = p(O)[l - (r/a)aJ. (38) 

The agreement between the profile plots (Fig. 5) and the near-field 
power plots (Fig. 8) is not a coincidence, but holds in general as long 
as the total index variation is small. 

Under the conditions assumed here, every incremental area of the 
core cross section at the fiber end uniformly illuminates its cone of 
acceptance. For this reason, all those areas that have a numerical 
aperture 

A(r) ~ sin () (39) 

contribute equally to the far-field power at (). For the class of profiles 
described by (9), the areas contributing to () are within a circle whose 
radius is obtained by solving (37) for r. Consequently, 

P(() = P(O) 1 _ SIn a 
( 

• 2 () )21 
2n;Ll 

(40) 
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is the far-field power distribution. Figure 9 shows a plot of (40) for 
the profiles of Fig. 5. The uniform illumination for a = 00 changes 
to a parabolic distribution for a = 2. All plots must be understood as 
the average power expected under the idealized conditions mentioned 
earlier. Monochromatic mode excitation results in mode interference 
phenomena and a local fine structure, which can greatly modify the 
average distribution considered here. 

V. CONCLUSIONS 

By assuming somewhat idealized conditions for mode excitation, 
coupling, and loss in a multimode fiber, we can isolate the influence 
of the index profile upon mode volume, near- and far-field power dis
tribution, group delay, and impulse response. Surprisingly simple 
relations exist for a special class of profiles which comprises most 
multimode fibers of interest. Particular attention is given to a near
parabolic profile which accomplishes optimal delay equalization of all 
modes. If the (relative) index difference between center and periphery 
of this profile is .1, mode delay broadens the impulse response by a 
fraction .12/8 of the total propagation time. This amounts to about 
0.25 ns/km for.1 = 2 percent. On the other hand, an index deviation of 
10-4 from the optimal profile increases the broadening to 0.53 ns/km. 

APPENDIX 

Some Further Relations for the Group Velocity 

The numerical evaluation of {3 as a function of J..L, P, and ko and its 
subsequent differentiation to obtain r are usually tedious and time
consuming. A substantial simplification results from a direct computa
tion of r by applying the operation 

Lno aJ..L/ak o 
r=----

C aJ..L/ a{3 
(41) 

to (3). The result is 
(R2 

L J Rl k(r)n(r)dr/u(r) 
r=- . 

C ~R2 (3dr/u(r) 
Rl 

(42) 

To understand the physical significance of this relation, consider a 
ray propagating along the fiber core of Fig. 2 in such a way that it has 
the direction of k(r) at r. A line element along this ray is 

(43) 
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and therefore 
ds _ k(r) 
dr - u(r) and 

dz (3 
dr = u(r)" (44) 

The condition u(r) = dr = 0 at Rl and R2 indicates a reflection (turn
around) of the ray. The ray performs periodic undulations between 
Rl and R2, simultaneously moving sideways in a helical fashion. By 
introducing (44) into (42), we obtain 

f n(r)ds/c 

T=L f ' dz 

where jJ denotes integration over a full period of the ray. The de
nominator describes the axial length of one ray period, and the nu
merator the propagation time along the ray within this length. 
Multiplied by the fiber length, this ratio yields the total group delay. 
This result emphasizes the equivalence between ray theory and the 
zeroth-order WKB approach followed in this paper. 

Within this order of approximation, the only quantities that depend 
on the wavelength are the mode numbers. Normalization of these 
numbers and subsequent transition to continuous variables eliminates 
the wavelength entirely; group velocity and impulse response are then 
independent of wavelength. More specifically, if we write 

P = J.I./ako and (46) 

and 
n = n o[l - 2d(r)J! , (47) 

eq. (3) assumes the form 

P = ~ (R2 [20 _ 2d - (crajr)2J!dr, (48) 
7ra J Rl 

and (42) becomes 

L (R2 (1 - 2d)dr/[20 - 2d - (cra/r)2J! 
T = ~ (1 - 20)-! J Rl (49) 

C ~R2 dr/[20 - 2d - (cra/r)2J! 
Rl 

These two equations are sufficient to calculate group velocity and 
impulse response in the case of large mode numbers. 
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Optical Fiber End Preparation for 
Low-Loss Splices 

By D. GLOGE, P. W. SMITH, D. L. BISBEE, 
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(Manuscript received May 8, 1973) 

Cables made from brittle materials like glass require new techniques 
of end preparation for the purpose of splicing, especially if such splices 
are to be made in the field. We report here on a method of breaking fibers 
in a way which invariably produces flat and perpendicular end faces. 
We explain the underlying theory and derive optimal parameters that 
permit the design of a simple breaking tool. Experiments with a tool of 
this kind show that the tolerances for successful fracture are not critical. 
Laboratory splices of multimode fibers prepared by this method exhibited 
losses of less than 1 percent (0.04 dB) when Joined in index-matching fluid. 

1. INTRODUCTION 

With installation and maintenance consuming an ever-larger share 
of system costs, simple and inexpensive splicing techniques have be
come a prerequisite for competitive communication systems. One 
bottleneck in optical fiber cable splicing is the fiber end preparation, 
as conventional grinding and polishing techniques turn out to be time
consuming and costly, especially in the field. It is well known that 
glass fibers sometimes break with flat and perpendicular end faces if 
they are previously scored,l and it has thus become common practice 
in the laboratory to obtain good ends in this way by trial and error. 
Besides being faster and simpler, this technique has the added ad
vantage of producing perfectly clean surfaces uncontaminated by 
lossy residues. Such ends were recently used in fiber joining experi
ments to determine eventual splice losses.2- 5 The lowest losses obtained 
were about 10 percent for single-mode fibers4,5 and 3 percent for multi
mode fibers.2 

For such laboratory practice to become useful technology, absolute 
control of the breaking process and utmost reliability in obtaining a 

1579 
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successful result are required. We report here on an approach which 
guarantees this reliability through control of the stress distribution in 
the fracture zone. The break is initiated by lightly scoring the fiber 
periphery at the correct point. We explain the underlying theory which 
allows us to predict the character of the break from the initial stress 
distribution. By modifying a previous design,6 we obtained a simple 
tool that permits us to vary the amount and distribution of stress in 
the fracture zone. All 130 breaks we have made with this tool have 
produced the predicted fracture surface. The range within which per
fectly flat and perpendicular end faces were obtained was found to be 
so wide that the eventual construction of a simple hand tool for this 
purpose should present no problem. The quality of the surfaces ob
tained makes this method the most promising of all the techniques 
investigated so far. 7- 9 This notion is supported by some fiber-joining 
experiments which we desc'ribe in Section IV of this paper. Low-loss 
multimode silica glass fibers were prepared by our breaking technique 
and then joined in an index-matching liquid. With proper alignment, 
the splice losses were always less than 1 percent. Results on alignment 
tolerances for multimode fiber splices are also given in Section IV. 

II. BRITTLE FRACTURE OF GLASS RODS AND FIBERS 

It has been well documented that glass rods tend to break in such a 
way that the fracture face comprises three regions known as the mirror, 
the mist, and the hackle zones.IO,n The mirror zone is an optically 

ORIGIN OF 
FRACTURE MIRROR MIST HACKLE 

\ \ \ I 

\r~,1 
/ to' 0 

Fig. I-A typical glass fiber fracture. 
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smooth surface adj acent to the fracture origin, the hackle zone corre
sponds to an area where the fracture has forked and the specimen is 
separated into three or more pieces, and the mist zone is a transition 
region between these two zones. Such behavior is also observed with 
glass fibers. Figure 1 shows the fractured end of a 125-Jlm glass fiber 
which clearly exhibits these three regions. 

It has been experimentally demonstratedll that the distance from 
the origin of fracture to a point on the boundary between the mirror 
and mist zones, r, is given by 

Z-vr = K, (1) 

where Z is the local stress at the point in question and K is a constant 
for a given material. 

A theoretical justification for eq. (1) can be given. Anderson12 gives 
the energy balance equation for a crack of length 2e propagating in a 
brittle isotropic material subject to a plane stress, Z, as 

d ( Z2e2 1 e2
Z

2 
) 

de -7r E + 2kpiP FJ2 + 4)'e = O. (2) 

Here E is Young's modulus, p is the density, and)' is the surface tension 
of the material. The parameter k is a geometrical factor which depends 
on the shape of the crack. The three terms in eq. (2) represent, respec
tively, the released strain energy, the kinetic energy associated with the 
moving crack, and the surface energy of the newly created surfaces. 
As the crack propagates, more and more strain energy is converted 
into kinetic energy until the crack reaches a limiting velocity, c = v" 
where Vj is roughly i the longitudinal sound velocity for the material 
(see, for example, Reference 12). At this point the excess energy begins 
to be taken up by the creation of subsurface cracks (the mist zone). 
When the released strain energy is sufficient to create four new sur
faces, a hackle zone is created. Thus, at the boundary of the mirror 
and mist zones, 

d ( Z2e2 1 e2
Z

2 
) 

de - 7r E + 2 kpv7 7JJ2 + 4),e = O. (3) 

By differentiating, we find 

Z 2 - 4),E - t t e - 2 k 2jE - a cons an , 
7r - pV/ 

(4) 

which is of the same form as eq. (1). A similar derivation is given in 
Reference 11. The value of the constant K in eq. (1) is found experi-
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mentally to have the value 6.1 kg/mmJ for soda-lime-silicate glass 
and 7.5 kg/mm! for fused silica, in reasonably good agreement with 
the value foundll from the evaluation of the constant from eq. (4). 

In order to break an optical fiber in such a way that the mirror zone 
extends across the entire fiber, it is necessary to have the stress at all 
points within the fiber low enough so that Z-{; < K. The required 
value of Z at the origin of the fracture depends on the size of the crack 
or flaw from which the fracture originates. 12 The value of Z cannot be 
allowed to become zero or negative at any point across the fiber, or 
the crack will cease to propagate or propagate in a direction which is 
not perpendicular to the axis of the fiber. Under these conditions, a lip 
is formed on one fiber end. We see, then, that, to make a reliable clean 
mirror zone fracture, the stress distribution across the fiber must be 
suitably adjusted. 

III. THE FIBER BREAKING l\IACHINE 

In the preceding section, we have given the conditions necessary 
to create a mirror zone fracture across an entire fiber end. To deter
mine experimentally the range of stress distributions over which clean 
mirror zone fractures can be obtained, an apparatus was constructed 
which could simultaneously bend the fiber and place it under tension. 
In this way, the stress distribution across the fiber can be varied, as 
shown in Fig. 2. For a given average tension (force per unit area), 
T, the stress distribution across the fiber depends on the radius, R, 
of the form over which the fiber is bent. (We assume no shear friction 
between the fiber and the form.) In fact, the stress across the fiber, 
Z (x), is given by 

Z (x) = T + E (a R- x) , (5) 

where T is the average tension on the fiber, E is Young's modulus, 
and a is the radius of the fiber. 

If R = 00, the maximum diameter, d},{, of fiber that can be fractured 
with a mirror zone across the entire surface is given by 

Z'~=K, (6) 

where Z' is the stress necessary to initiate the break. 
In the experiments to be described later using a diamond or carbide 

scorer to initiate the break, we find Z' ~ 25 kg/mm2• Thus, for fused 
silica fibers we find d},{ ~ 100 }.Lm and for R = 00, when fracturing 
fused silica fibers with diameters ~ 100 }.Lm, we expect hackle to appear. 
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(a) 

STRESS 

TENSION I 
o 

(b) 

COMPRESSION! 

o 

x_ 

Fig. 2-(a) A glass fiber bent over a form of radius R and subjected to a tension T. 
(b) The stress as a function of position in the fiber for various bending radii R. 

Our experiments showed this to be the case. If we compute the stress 
from eq. (5), assume T is adjusted so that the stress at x = 0 is Z', 
and select R (=Ro) so that Z = 0 at x = 2a, we find that the maximum 
value of z-v;. occurs on the surface of the fiber at the position where 
r = ({4/5)a, and if we require this product to be <K, we find 
dM(R = Ro) = 3.50 dM (R = (0). Thus, using this technique, fused 
silica fibers of up to ",,350 J,Lill in diameter can be fractured with clean, 
mirror zone ends. 

The fibers used for the experiments reported here were multimode 
silica glass fibers with an outer diameter of 125 J,Lm and a core diameter 
of 80 J,Lm. Ro can be found from eq. (5), letting Z = 0 at x = 125 J,Lm, 
assuming the stress necessary to initiate the break, Z', to be equal to 
the experimentally determined value of 25 kg/mm2, and using the 
values E = 7.2 X 103 kg/mm2; K = 7.5 kg/mm~ appropriate for 
silica glasses. We obtain Ro = 3.7 cm. 
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Fig. 3-A semi-schematic view of the fiber breaking machine. 

Figure 3 shows a semi-schematic view of the device used to investi
gate the fracture properties of optical fibers. The fiber to be broken 
is clamped by clamps No. 1 and No. 2 and slides freely under the 
Teflon *-coated fiber guide. A Teflon-coated form of suitable radius R 
can be raised to cause the fiber to conform to the form by adjustment 
screw A. The tension on the fiber is measured by a tension gauge, which 
measures the mechanical displacement of a stiff steel bar on which 
clamp No.2 is mounted. The tension can be adjusted with the adjust
ment screw B. A scoring blade can be lowered onto the fiber by adjust
ment screw C and pulled across the fiber by adjustment screw D. The 
pressure on the scorer blade can be adjusted by changing the weight 
in the counterbalance. 

* Registered trademark of Dupont Co. 
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IV. EXPERIMENTAL RESULTS 

Breaks were made on samples of a low-loss multimode silica glass 
fiber having a core diameter of 80 ,um and a cladding thickness of 
22 ,um. A wide range of breaking tensions and fiber-bending radii was 
studied using the fiber-breaking machine described above. We used a 
variety of scoring techniques and attempted breaks in atmospheres 
of various relative humidities. The results can be summarized as 
follows: If the radius of curvature of the form was less than about 
2 cm, a lip would be formed. When fractures were made without using 
a form, i.e., R = 00 or negative, a hackle region was produced. "Good," 
clean fractures were obtained when a 5.7-cm radius of curvature form 
was used. These results are illustrated in Fig. 4. 

Using the 5.7-cm radius of curvature form, clean fractures with no 
visible hackle or lip were always produced using breaking tensions 
in the range of 125 to 175 g and scorer pressures ranging from 1.5 to 
7.5 g. The smallest scores were produced when a sharp diamond 
scorer* was lowered onto the fiber after the tension had been applied. 
We found no effect on the fracture characteristics when the relative 
humidity was varied from 7 to 100 percent, or even when water was 
applied to the point of fracture. In all, a total of 33 fractures were made 
within this range of conditions. In no case was there any visible evidenCe 
of any hackle or lip. In the worst case the disturbed region associated 
with the score extended over a distance of ",22 ,um. As the cladding 
thickness on this optical fiber was 20 ,um, this means that in all cases a 
perfect mirror zone fracture occurred over essentially the entire core 
region of the fiber. 

To establish the minimum splice loss in joining such fiber ends, we 
used the setup shown in Fig. 5. The joints were made from ends ob
tained from the same fracture, but rotated with respect to the original 
fracture position. In this way, the time between fracture and joining 
was kept at a minimum in order to avoid contamination of the ends. 
Moreover, utmost accuracy was achieved by comparing the losses 
immediately before fracture and immediately after joining. This time 
was typically 10 minutes, while instabilities in the setup caused a 
power drift at the detector of not more than 1 percent in 30 minutes. 
Joining adjacent ends, of course, eliminated the possibility of diameter 
discrepancies which would be encountered in practical splices. 

* The diamond scorer was supplied by Victory Diamond Tool Co. of East Hanover, 
N.J. 
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Fig. 4-Electron microscope photographs of 125-J,Lm diameter silicate glass fibers 
broken using various form radii (R): (a) R = 0.75 cm; (b) R = 00 or negative; 
(c) R = 5.7 cm. 

Fibers of the type that were used for the splice loss measurements 
reach a steady-state power distribution after a certain distance inde
pendent of the injection conditions. This distribution was measured 
for the fiber in question at the end of a 1.2-km length. The power 
distribution in the splice should preferably be the steady-state dis
tribution. Since a sufficient fiber length to achieve such conditions 
was not available for our measurements, we approximated as well as 
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WINDOW SUPPORT SUPPORT 

Fig. 5-Schematic of apparatus used to measure laboratory splice loss. 
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possible the steady-state distribution at the input by properly focusing 
the input beam onto the fiber front face. Specifically, we made the 1/ e2 

width of the Gaussian field distribution in the input cone equal to the 
1/e2 width of the steady-state far-field distribution measured at the 
end of the long sample (0.14 rad half-width). The distance between 
input and splice was 1 m. 

If the splice disturbs the power distribution substantially, a sufficient 
fiber length must be provided after the splice to allow the distribution 
to settle, a process which generally is associated with some excess loss. 
To study the magnitude of this effect, we measured several joints with 
fiber lengths from 1 to 5 m after the joint. We did not find a consistent 
increase in loss as the length was increased, although 5 m is admittedly 
not a sufficient length to reach the steady state. Further study is 
necessary to estimate the error involved. 

To make a good joint, the ends were aligned using a microscope to 
within a fraction of a degree in angle and within 1 ,urn laterally, but 
kept apart by at least 10 ,urn to avoid damage of the ends by mutual 
abrasion. A drop of glycerin was then added, which was held between 
the ends by surface tension. The refractive index of glycerin is 1.473 
and almost coincides with that of silica glass (n = 1.458). This pro
cedure invariably produced a splice with a loss of less than 1 percent 
(typically, 0.5 percent). This result was unaffected by rotating one end 
with respect to the other. Note that no information on the transmitted 
optical signal was required to achieve this optimal alignment. 

To establish the order of magnitude of alignment tolerances per
missible in practical splices, we measured the increase in loss as a 
result of longitudinal or lateral misalignments. The fiber ends could 
be parted axially by 100 ,urn (one core diameter) before the losses in
creased by 1 percent. Lateral displacements were more critical. The 
loss increased by 1 percent for a 5-,um displacement and by 4 percent 
for a 10-,um displacement (10 percent of the core diameter). 

v. SUMMARY AND CONCLUSIONS 

We have presented a theory of glass fiber fracture which allows us 
to design a machine for reliably producing clean breaks which leave 
the fiber ends in a suitable condition for splicing. We have built such 
a machine and demonstrated that, with 125-,um silica glass multimode 
optical fibers, such breaks are consistently obtained. Laboratory 
splicing experiments using fibers broken with this machine always 
produced splices with losses of less than 1 percent (0.04 dB). 
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Overload Model of Telephone Network 
Operation 

By R. L. FRANKS and R. W. RISHEL 
(Manuscript received June 5, 1973) 

A n analytic model for the steady-state behavior of an overloaded tele
phone network is given. The model includes trunk and machine congestion, 
retrials, "don't answer and busy," and some network management controls. 
It is significantly cheaper to use than Monte Carlo simulations for moderate 
size networks. It compares well with Monte Carlo simulation calculations 
of point-to-point completion probabilities and the expected number of 
messages in progress. It compares less well for sender attachment delay 
and probability of time-out calculations in switching machines. 

I. INTRODUCTION TO THE PROBLEM 

The purpose of this paper is to develop an analytic model of a tele
phone network which displays the major steady-state behavior of the 
network under overload conditions and which is computationally 
tractable. Besides being used to predict steady-state network opera
tion in the presence of overload, such a model should help in the de
velopment of insight into network operation. Also, with an analytic 
model available, optimization theory can be brought to bear on various 
problems in network management. 

Analytic network modeling seems to have been aimed at the trunk
ing network design problem in the past. The usual approach was to 
assume that switching machines had enough capacity to have no 
effect on the traffic through them. Under these conditions, the stream 
of call attempts on a trunk group may have its distribution changed 
in two ways: the calls have previously been offered to a different trunk 
group and overflowed to the present one, or some of the calls in the 
stream were removed as a result of blocking on a trunk group in series 
with the present one. These cases have been handled by Wilkinson's 
Equivalent Random Methodl and Katz's Carried Equivalent Method.2 

When a network is overloaded, the effect of machine congestion is 
not negligible and must be taken into account. Early work on toll 
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machine congestion was done by Helly,3 who considered a homogeneous 
group of identical machines connected by infinite trunk groups. His 
approach suggested the way we treat sender holding time in the 
switching machine model. Recently Szybicki4 gave a model for an 
overloaded local switching machine. 

Monte Carlo call-by-call simulations have been used to study net
work behavior. Recent examples at Bell Laboratories are simulations 
by J. A. Kohut5 and J. M. McCormick. These simulations have the 
advantage of great flexibility. They also give transient response as well 
as the steady-state response of the network. Call-by-call simulations 
may require many runs, or long runs, to obtain reliable statistics for 
a process under study. They tend to be more expensive to run than 
analytic models. 

II. INTRODUCTION TO A TELEPHONE NETWORK 

From a traffic point of view, the network consists of end offices, 
switching machines, and trunks. The end offices serve as sources and 
destinations of calls. The trunks are message paths through the net
work. The switching machines are nodes in the network at which the 
choice is made of the path to be taken. 

To illustrate the important effects in network operation, let us trace 
the progress of a typical call through the simple network shown in 
Fig. 1. The call enters the network through end office 1. It finds a free 
circuit on the trunk group from 1 to 2, attaches to it, and simul
taneously bids for a sender in switching machine 2. After a short wait, it 
is accepted into machine 2. It finds the trunk group from 2 to 4 full, and 
attempts to attach to the trunk group from 2 to 3. There is a free circuit 
on that trunk group, so the call attaches to it and bids for a sender in 
machine 3. This process continues until the call enters end office 5. 
If the destination telephone is not busy, it rings. If it is answered, 
the attempted call is successful and becomes a message. 

This typical call went through three switching machines. The block 

2 4 

1 5 

Fig. I-Network used to show progress of typical call. 
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diagram in Fig. 2 shows the sequence of operations in a Bell System 
No. 4A-ETS switching machine. 

A call coming into a switching machine enters a queue to wait for a 
vacant sender. When a call gets a sender, its destination information is 
impulsed to the sender, and the sender it had in the previous machine is 
released. 

The call then queues for the remaining common control equipment, 
indicated here as a decoder-marker combination. This decoder-marker 
decides on the machine the call should be routed to next, tests for a 
vacant trunk, and sets up the connection, if possible. If there are no 
vacant trunks to appropriate subsequent machines, a no-circuit 
announcement is given. After a no-circuit announcement, the trunks 
on all the links over which the call had progressed are released. If the 
call is routed to a subsequent machine, it enters a queue for a sender 
in that machine. 

The sender in the current machine is occupied by the call from the 
time it begins processing the call until the call has transmitted its 
destination information to the sender which processes the call in the 
subsequent machine. If a call waits longer than a fixed time to get 
a sender in the subsequent office, it is timed out. If it is timed out, 
the call is sent back to the marker-decoder which then connects it to a 
no-circuit announcement. 

Under normal network operation, very few calls receive a no-circuit 
announcement, and fewer still time out while waiting for a sender. By 
far the most important causes of a call failing to become a message 
are for the called telephone to be busy when the call arrives and for 
the called customer to fail to answer the phone when it rings. When 
the network is overloaded, the number of no-circuit announcements 
increases, and time-outs become more frequent. Not only does the 
percentage of failures increase as the network becomes overloaded, but 
the number of successful attempts may actually decrease. 

The factors underlying the decrease in the number of calls carried 
by the telephone network as it becomes highly overloaded were al
ready understood in early work, such as Reference 3. As a call is being 
set up, it uses equipment in one switching machine until the next 
switching machine on its route accepts the call and receives the 
destination of the call from the previous machine. If a switching 
machine becomes overloaded, machines adjacent to it will have to 
wait longer to have their calls accepted and the destinations passed on. 
This causes an increase in the service time for putting a call through 
these machines. This in turn may cause the adjacent machines to 
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become congested. The time-out mechanism helps to relieve this con
gestive phenomenon. However, even with time-outs, switching machine 
congestion can back up throughout the network. Calls being set up 
occupy trunks on the partial route over which they have progressed. 
If a large number of calls are attempting on routes which are blocked, 
a portion of the capacity of certain links could be used by these in
effective attempts trying to set up. This would use capacity that 
could be utilized by talking calls. These ineffective attempts also use 
switching capacity in machines preceding the blockage. Most blocked 
attempts try again; these retrials increase the congestion. 

The model to be set up will incorporate the features mentioned 
above. Based on those observations, the model must take into account 
both trunking congestion and switching machine congestion. Any 
call which enters the network will take trunk and machine capacity, 
even if it fails. For this reason, its effect on the network depends not 
only on whether a call succeeded or failed, but also on how far it 
progressed and over which particular route. This information must 
also be included in the model. 

III. INTRODUCTION TO THE MODEL 

Our view of modeling the network is probabilistic. We assume that 
for each trunk group there is a probability that an attempt on it will 
find a free circuit and for each switching machine there is a probability 
that an attempt on it will be accepted before timing out. We further 
assume that these acceptance probabilities are independent of the past 
history of the attempt. 

The model has two conceptually distinct parts. First, the global 
problem is, given these acceptance probabilities, to find the various 
quantities of interest such as the expected number of messages in 
progress between each source-destination pair, the attempt rate on 
each trunk group and on each switching machine, and the point-to
point completion probability. Second, the local problem is, given those 
quantities, to find the acceptance probabilities for each switching 
machine and each trunk group. The local and global problems to
gether give a large number of coupled nonlinear equations which de
scribe the steady-state behavior of the network. These equations 
form the model. 

For the model to be computationally tractable, the number of equa
tions involved must be as small as possible. For this reason we have 
assumed that each stochastic process in the model can be described 
by a single parameter. (For example, the call origination process 



1594 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973 

between a given source-destination pair is assumed to be Poisson.) 
Even with this assumption, the number of equations involved is very 
large for any reasonable size network. 

It must be emphasized that this is a first-generation nlodel for an 
overloaded network. While the model does very well at predicting 
certain statistics, it is relatively poor at predicting others. A model 
using two parameters to describe each stochastic process could be 
more accurate than this one. Within the structure of this model, the 
switching machine treatment could be improved. 

The network model given here is in several ways similar to the 
model used in the optimization problem of Reference 6. 

IV. GLOBAL ASPECTS OF THE MODEL 

This section deals with global, or network, effects caused by local 
phenomena. An example of such a global statistic is the mean number 
of messages in progress between a source-destination pair, which 
depends on various local effects such as the probability a call offered 
to each trunk group will be accepted onto it. 

Before proceeding further, some definitions are required. 
A complete route, R = (a, bl , b2 • •• bn , c), is a list of the switching 

machines through which a call may pass in going from the end office 
connected to a machine a to the end office connected to machine c. 
For example, in Fig. 1 there are two complete routes, (2,4) and (2,3,4), 
from end office 1 to end office 5. 

A partial route, r = (a, bl , b2 •• ·bm ; c) of a complete route R de
scribes the route occupied by a call in the process of being set up and 
its destination. For example, a call on r = (a, bl , b2, b3 ; c) started in 
the end office attached to switching machine a, passed through 
machines a, bl , and b2, has entered (or is waiting to enter) machine 
b3 , and has as its destination the end office connected to machine c. 
Define 

XR = Expected rate that calls on complete route R = (a, al' . 'at, b) 
attach to the trunk group from switching machine b to its 
associated end office. 

Xr = Expected rate that calls on partial route r = (a, al" 'at; b) 
attach to the trunk group from at-l to at. 

Zr = Expected rate that calls on partial route r are connected to 
senders in switching machine at. 

tr = Expected rate that calls on partial route r time out while 
waiting for senders in switching machine at. 
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Fig. 3-Relationship of X T, ZT, iT, and br • 

br = Expected rate that calls on partial route r which attach to 
senders in switching machine at are blocked because of a 
lack of outgoing circuits. 

8M i = the ith switching machine. 

To make the meaning of these variables more obvious, consider Fig. 3. 
Calls on partial route r = (a, i, J; b) attach to trunk group "{j, and 
therefore bid for senders in 8M j at a rate x r • Some of them are accepted, 
at a rate Zr, into 8M j and the remaining ones time out at a rate tr• 

Those calls accepted into SM j then attempt to reach end office b by 
attaching to linkJk, at rate X rl , where rl = (a, i, j, k; b). 

If X rl < Zr, some of the calls alternate route over link Jf, with rate 
Xr2 , where r2 = (a, i, J, .e; b). If Xrl + x r2 < Zr and there is no further 
alternate route available, then some of the calls are blocked with rate 

br £E. Zr - (x rl + x r2 )· 

The global aspect of the network relates the x/s, z/s, b/s, and t/s 
for all partial routes in the network. The following assumptions are 
made: 

(i) The model assumes that every type of call attempting to enter 
switching machine i has the same probability, Pi, of being 
accepted. Therefore 

(1) 

for each partial route r entering SMi • 

(ii) It further assumes that every type of call attempting to attach 
to trunk group, iJ, has the same probability Pi] of attachment. 
The resulting equations are given below as (2) for the case 
with no network management control. Appendix A contains 
the equations that result when network management controls 
are included. 
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If a call from a to b in SM i has a preferred route over link 
I] and a second most preferred route over link ik, then 

etc., where 

X r1 = PiiZr 

x r2 = Pik(Zr - xr1 ), 

r= (a,i;b) 

rl = (a,i,j; b) 

r2 = (a,i,k; b). 

(2) 

(iii) It is assumed that any call successfully attached to the trunk 
group leading to its destination end office, b, has a probability 
P A b of being answered and therefore becoming a complete 
call. This probability depends on the destination. Therefore, 

(3) 

where 

R = (a,i,j,k,b) 
r = (a,i,j,k,b; b). 

(iv) The stream of original calls attempting to go from a to b is 
Poisson with mean Aa. b. Calls that do not complete retry with 
probability P R. The expected long run attempt rate for calls 
from a to b is 

A a.b = Aa.b + PR(A a.b - Ca.b), 

where Ca • b = L XR, is the completion rate for all calls 
R from a to b 

from a to b. That is, 

A 
Aa.b - PR L XR 

a.b = Ratob (4) 
1- PR 

On the link from end office a to its switching machine, SMa, 

X(a; b) = PaaA a • b• (5) 

Clearly, with assumptions (i)-(iv) , all the rates involved can be 
found from the P's. A method for finding the P's in terms of the 
x/s and z/s is discussed in the next section. 
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V. LOCAL ASPECTS OF THE MODEL 

The assumptions made in Section IV for the global portion of the 
model place few constraints on the local part, requiring only certain 
acceptance probabilities, Pi, to satisfy those assumptions. 

5.1 Toll Machine Model 

The toll machines to be modeled are No. 4A-ETS switching ma
chines. The statistics of interest in the model are the acceptance 
probabilities, P, mentioned in the last section, and the expected wait
ing time, T w, for a call to get a sender. For relatively light loads, these 
statistics behave as though the machines selected the next call to be 
served on a first-come, first-served basis.7 When the machines are 
overloaded, they behave as though calls were selected at random for 
service.8 

We calculate the expected waiting time based on the former when 
loads are light and on the latter when they are heavy. The switch 
from the first to the second method is made where the curves of waiting 
time versus load cross. 

In the light-load case the assumptions are 

(i) The stream of calls attempting to enter each switching ma
chine is a Poisson stream with mean Ai. 

(ii) The time a sender is held in SM.;. by a call is an exponentially 
distributed random variable with mean II J.Li. 

(iii) All toll machines have the same time-out interval, T. 
(iv) The queuing discipline is first-come, first-served. 

The problem of finding the probability, Pi, of acceptance of calls 
into SMj, under these assumptions has been solved.9 The result is 

where 

N 8i = the number of senders in machine i 

B(n, a) _ anln! - ---:;;-;:;;, 
L~ 

j=O J ! 

the Erlang B function. 

(6) 
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Under these assumptions Reference 9 also gives the expected waiting 
time to get a server. The result is 

T' = (1 - p.) 1 N 8iJ.LieT(NaiIJ.i-Ai) - [N BiJ.Li + 'AiT (N BiJ.Li - 'Ai) ] I 
Wi t (N BiJ.Li - 'Ai)2 , 

for 'Ai ~ N BJ.Li (7) 

T'wi = (1 - Pi) T (1 + 'A;T) , for 'Ai = N BiJ.Li. 

In the heavy load case, assumption (iv) is replaced with 

(iv) , The queuing discipline is random. 

An asymptotic expression for waiting time under this assumption is 

T':oi = T(1 - P i/2), 

Fitting eqs. (7) and (8) together 

{

T'wo 
Tw· = 

• min {T'wo T':oi} , 

(8) 

(9) 

To find Pi. and Two all that is needed are T, 'Ai, and J.Lil. T is given and 

(10) 

where 
Ii = {rlr = (a,al" ·i; b) for some a, band al"'}' 

To find J.Lil, consider Fig. 4. Calls on partial route r bid for a sender 
and connector in SM" at rate x r• All calls waiting to enter SMi have 
an expected waiting time, T Wi • Calls on partial route r are accepted 
into SMi at rate Zr. It takes To seconds to connect an incoming trunk 
to a sender. 

Once a sender is connected, it requires T p seconds to pulse the digits 
into that sender. It then waits TWM seconds for a translation device. 
The time to translate the digits, look for an available trunk on an 
acceptable route, and connect to that trunk is taken as a constant, 
T M seconds. If no circuit is available, a call is attached to a no-circuit 
announcement. Otherwise it is attached to a trunk connected to some 
switching machine, say SM j. The call, and the sender in SM i, wait 
for a sender and connector in SM j. If the call is accepted into SM j, it 
takes T c seconds to connect to the next sender and another T p to 
pulse its digits into that sender. If the call hasn't been accepted by T 
seconds, it times out, and must return to the common control equip
ment to be connected to a no-circuit announcement. 
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The expected time a sender is held by any call accepted into 8M i is 

fJ.i I = (Tp + TWM + TM) 
+ (Expected waiting time for calls leaving SMi ) 

+ (TWM + TM) (Probability a call leaving SM i times out) 
+ (T p + Tc)(Probability a call leaving SMi is accepted 

into the next machine). 

(11) 

where 

when 
r = (a,aI·· ·at; b) 

and OJ and Oi are sets of partial and complete routes, respectively, 
defined by 

Oi = {rlr = (a,aI·· ·i,at; b) for some a, b, aI···} 

Oi = {R I R = (a,aI·· ·i,b) for some a, b, at· .. }. 

The only symbol in (11) remaining to be explained is T WM, the 
expected time spent waiting for a decoder-marker. The decoder
markers are modeled as a finite source queue. The assumptions are 

(i) There are N m exponential servers. 
(ii) The queuing discipline is first-come, first-served. 

(iii) Each N s sender in the switching machine either is waiting for 
or receiving marker service or is generating its next marker 
bid with an exponential interarrival time of mean 1/,1'. 

This finite source queuing model has been analyzed in Reference 10. 
The result, in a convenient computational form thanks to D. Jagerman, 
IS 

T - TM Ns - Mm - A[1 - B(Ns - N m - 1, A)] (12) 
WM - -N N N(t)(N N )t- i ) , 

m 1 + B(Ns - N m - 1, A).f m s - i
m 

t=l (,),TM ) 
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where the subscripts corresponding to the switching machine have 
been suppressed and 

A = N m 

"(Tm 

N(i) = N (N - 1)· .. (N - i + 1) 

Nt-i) = 1 
N (N + 1)· .. (N + i-I) 

To compute T w},{, it is necessary to know ,,(, which depends on the 
mean rate, m, at which calls arrive at the marker-decoder queue 

m = L Zr + L tr 
rEI; REO; 

(13) 

Making use of Little's Theoremll and the definitions of m and ,,(, 

m 
(14) 

Equations (13) and (14) have a unique solution for all rates, m, 
which can be handled by the machines. 

5.2 Comments on the Switching Machine Model 

The interaction of switching machines in the real network is known 
to be an important cause of congestion. That interaction is included 
in this model by the waiting time of senders in one machine affecting 
the holding time of senders in adj acent machines. 

This model has some features that appear to be ad hoc. The assump
tions, however, are computationally convenient and give results 
similar to gross machine behavior. The network model has been 
structured to accept expanded machine models if they are required. 

Section VII, on validation, includes a discussion of the accuracy of 
this switching machine model. 

5.3 Trunk Group Model 

The probability that an attempt will be accepted on a trunk group 
is found by assuming that the arrival process is Poisson. The required 
result is the Erlang B function, which depends only on the mean 
number of calls which would be on the trunk group if it were infinite 
and the actual number of trunks. 

To find Pi] on the trunk group between i andj, we need the following 
definitions: 

N i] = number of trunks between SM i and SM j. 
Ei] = expected number of calls on the trunk group between i and j. 
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F-i; = expected number of calls that would be on the trunk group 
if Nij were infinite. 

nR = expected number of messages on complete route R. 
Sr = expected number of calls on partial route r being processed 

in SM~ where r = (a·· ·t; b). 
W r = expected number of calls on partial route r waiting to enter 

SM~ where r = (a·· ·t; b). 

! = mean holding time for a message. 
v 

Then 

Ei] = L _ n R + L _ Sr + L _ W r 
Rover ij rover ij rover ij 

1 L _XR 
V Rover ij 

+ L {Tw~ L Xr + (Tc + Tp + TWM + TM) 
all TC~ rElL 

rover ij 

L Zr} 
rElL 

rover ij 

+ (TWM + TM) L _ tr• (15) 
r overi; 

rEEliUlj 

To find Fi], simply notice that Pi] is a linear factor of every X r, Zr, 

and tr in eq. (15). Given all the P's except Pi], choose any positive 
value for Pi], say Pi], use eqs. (1) through (15) to find Ei], the value 
of Ei] corresponding to Pi]. Then 

(16) 

Finally 
Pi] = 1 - B(Ni], Fi]), (17) 

where B is the Erlang B function. 
It is unlikely that the arrival process at each trunk group in the 

network is Poisson. In fact, much of the recent trunking analysis has 
been directed toward non-Poisson processes. However, the Poisson 
assumption is a reasonable one to make in a mean value model. The 
accuracy of the overall model will be discussed in Section VII. 

VI. SOLVING THE EQUATIONS 

In the last two sections the model was given as a set of equations, 
(1) through (17). Most reasonable uses of the model require simul
taneous solution of the equations and then computation of quantities 
of interest from this solution. 
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Fig. 5-Network used in point-to-point comparison run. 

Solving these equations, at reasonable cost, is essential to the use
fulness of the model. As given in Sections IV and V, there are a very 
large number of equations, both nonlinear and coupled. In the network 
shown in Fig. 5 are about 50,000 equations and variables. Fortunately, 
the P's and T w's calculated in Section V form a fundamental set of 
variables from which everything else can be calculated. There are 91 
of these variables for the network in Fig. 5. In another network of 
interest there are 240 of these variables. 

The approach taken to solving the equations is iterative. Given a set 
of P's and T w's, all other variables of Section IV are calculated. Then 
a new set of P's and T w's are calculated. If the new set and the old 
set are the same, a solution has been found. More precisely, let y be a 
vector whose components are the P's and Tw's, then the equations of 
the model specify a function, F(y), which gives the new value of P's 
and T w's. In this framework solving the model equation is equivalent 
to solving 

F(y) = y. (18) 

To make the solution of (18) easier, the components were normalized 
to the interval [0, 1]. The components corresponding to P's are 
necessarily in this interval. The components corresponding to Tw's 
were forced to be in the interval by replacing TWi by T wjT. The re-
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sulting function F maps [0, IJn into itself, where n is the number of 
trunk groups plus twice the number of toll machines. The function is 
continuous so (18) has a solution by Brouwer's Fixed Point Theorem.12 

The question of uniqueness of the solution will be discussed later. 
For this model to be a useful tool for network analysis, it is necessary 

to solve (18) inexpensively. There are two basic problems to be over
come. First, F is so complicated that, for reasonable size networks, its 
derivative is unavailable. This means that any method which requires 
F' cannot be used. Second, in these same networks a single evaluation 
of F costs on the order of $0.50. The cost of estimating F' by n evalua
tions of F depends on n, the dimension of y. For the network in Fig. 
5 it would cost about $45 for a single estimate of F'. 

In order to solve (18) economically, an algorithm which doesn't 
require F' or estimates of it was devised. The algorithm adapts the 
step size on the basis of the last ten evaluations of F. 

The algorithm is as follows: 

(i) Initialize yOe[O, IJn and set i = O. 
(ii) If /IFyi - yill < e, stop. 

(iii) Otherwise, 

where 

Ii = {j Ii an integer ~ 0, i ~ j ~ i - 10} 

00 = 1 
II (Fyi - yi) - (Fyi-I - yi-1) II 

0 0 = ~~--~~~~~~~~~ 
1 Ilyi _ yi-11l ' j > O. 

(iv) Repeat (ii) with i = i + 1. 

A computer program was written to evaluate F(y), i.e., eqs. (1) 
through (17), and to implement the algorithm for solving (18). Our 
experience with the program has been that the algorithm usually 
reaches a satisfactory solution in less than n/2 steps. The cost of the 
program depends on the network size and on the value of various calling 
parameters. However, the cost for the network shown in Fig. 5 was 
usually around $10, with some runs as high as $40. For a larger net
work with 240 variables, the cost was usually around $20. 

An important point to mention is that F is not a contraction map
ping. This means that the existence of a unique solution cannot be 
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----~o~----~o~------

NS = 14 A = 1 CALL/SEC 

Tp = 2.5 SEC PR = 0 

T = 30 SEC PA = 1 

Fig. 6-Example network which has two quasi-stationary solutions. 

guaranteed. In fact, in one example, two solutions to (18) were found. 
The question immediately arises, "Are both of these solutions physi
cally meaningful?" The answer is "Apparently, yes." The existence 
of two stable operating regimes for the toll network has been suggested 
before.3 The argument for their existence is as follows: If large queues 
form before switching machines, other machines will have their hold
ing times greatly increased and will be able to switch only a fraction 
of their usual capacity. All other calls will time out. That means, if 
somehow the queues become large, they might stay large and the net
work completion rate would be very low, while under the same system 
parameters if the queues ever became small, they would stay small 
and the network completion rate would be much larger. 

To test this argument, J. A. Kohut's Monte Carlo Simulation5 of 
the network shown in Fig. 6 was run. A brief description of this simu
lation is given in Appendix B. The system started empty and was run 
for one hour of simulated time, reaching a quasi-stationary condition 
within the first 10 minutes. Then the offered load was doubled for 10 
minutes, causing large queues to form. After that, the simulation was 
run for one more hour at the original traffic level. Again it reached a 
quasi-stationary state within 10 minutes. The results are given in 
Table 1. The results show conclusively, for this simulated network, 
that two quasi-stationary operating regimes exist. For comparison, 
the results from the analytic model are also included in Table 1. 

It is possible for this network to be operating in the uncongested 
regime, receive an unusually large number of calls during some short 
time interval, and go into the congested regime. In the congested 
regime, if an unusually small number of calls arrived for a period of 
time, the system could go into the uncongested regime. I t seems 
reasonable, and the simulation run helps confirm it, that the mean 
time before spontaneously leaving one of the regimes is quite long. 
This is the reason for using the term quasi-stationary. 
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Model 

Simulation 
10 to 60 min. 
80 to 130 min. 

Analytic 
Solution 1 
Solution 2 

TABLE I-ExAMPLE SHOWING Two 

QUASI-STATIONARY SOLUTIONS 

Mean Attem~ts Mean Time-outs 
(per 5 min. (per 5 min.) 

602 ± 9 0 
605 ± 8 454 ± 11 

600 10-9 

600 459 

Mean Waiting 
Time (in sec.) 

0.17 ± 0.02 
21.5 ±0.2 

0.22 
22.7 

The existence of two quasi-stationary operating regimes apparently 
has implications for network management. If the network is congested, 
it may not be due to high calling rates but only due to high sender 
queues. A control which clears out these queues may be enough to 
decongest the network. Short sender timing which is currently used 
in the network is such a control. 

VII. MODEL VALIDATION 

The model discussed in previous sections contains many important 
network features. The machine model includes the stochastic arrival 
of attempts, office work times depending on waiting for adjacent 
offices, and time-outs. The trunk model includes stochastic arrivals 
and holding times, with the mean holding times dependent on how 
far the calls progressed toward becoming messages. 

In the final analysis, the model stands or falls by how well it pre
dicts the operation of a real network under overload. While from a 
validation viewpoint this could best be done by comparing the model 
with a real situation, there are two good reasons not to do so. First, 
the data collection problem would be extremely difficult and pro
hibitively expensive. Second, getting meaningful comparisons would 
require allowing the network to operate in an unacceptable mode. In 
addition, any real network would include things not modeled here, 
such as other types of switching machines and additional network 
management controls. 

An alternative is to compare the model with a Monte Carlo simu
lation which is currently being used to evaluate network controls. 
While this comparison cannot evaluate the modeling of effects treated 
similarly in both models, it does help evaluate the modeling of effects 
treated differently. We compare our model with Kohut's simulation. 
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It also contains a simplified machine model, but does not include our 
simplifying assumptions on how senders wait for senders, that all 
arrival processes are Poisson, or that machine holding times are ex
ponentially distributed. These assumptions are perhaps the most 
suspect in our model. 

Two kinds of comparison between the two models were carried out. 
The first compares gross behavior over a very large range of offered 
loads. The second looks at more detailed statistics under a reasonable 
overload. In both cases, the results are similar. 

The first type of comparison was carried out on the network in Fig. 
7. The two models were given exactly the same data on machine sizes, 
pulsing times, trunk group sizes, etc. A series of runs was made with 
the only change between runs being the calling rates. The first run 
used a nominal set of calling rates, the second used twice the nominal 
calling rates, the third used three times the nominal calling rates, etc. 
For each run, the Monte Carlo simulation was run until, on the basis 
of the retrial rates, it appeared to be in steady state. It was then run 
for another one or two simulated hours to estimate the expected num
ber of messages in progress in the network in steady state. The sample 
variance was used to estimate the 68 percent confidence interval for 
the mean. The analytical model was then used to find the expected 
number of messages in progress for each offered load. Figure 8 shows 
the curve generated by the analytic model as well as the Monte Carlo 
simulation's estimates of the corresponding means and confidence 
intervals. 

In Fig. 9, exactly the same runs were made as in Fig. 8, except that 
switching machines timed out after 5 seconds in Fig. 8 and after 30 
seconds in Fig. 9. Monte Carlo runs for more than double the nominal 
calling rates were not made in the 3D-second case, since the simulation 
was not intended to handle the very large queues that would develop. 

From Figs. 8 and 9, it appears that the models predict the same 
behavior for the expected number of messages in progress over a very 
large range of calling rates. The numerical values given by the two 

Fig. 7-Network used in massive overload comparison runs. 
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Fig. 8-Carried vs offered load, time-out = 5 seconds. 

models also seem to agree well. At three times the nominal calling rate, 
the two means differ by less than 4 percent in Fig. 8. 

The previous examples were generated for the network in Fig. 7. 
The second type of comparison was made between the Monte Carlo 
simulation and the analytic model on the network in Fig. 5. This 
network configuration was used in early network management simu
lation studies. While it is similar in structure to the toll network, it 
has one less level of hierarchy. 

In order to get reliable statistics, the Monte Carlo simulation was 
run for three simulated hours. The network appeared to have reached 
equilibrium by the end of the first hour. Statistics were printed out at 
10-minute intervals for the next two hours, and these were used to 
estimate completion probabilities, expected sender attachment delay, 
and the probability a call would time out in each switching machine. 

Table II shows the comparison of the expected sender attachment 
delay and probability of time-out given by each model for each of the 
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17 switching machines. For the Monte Carlo run, estimates of the 
standard deviation in the estimates are also given. It can be seen that 
the analytic model tends to give larger numbers for both quantities 
than does the Monte Carlo simulation. 

To estimate the completion ratio for each point-to-point pair, the 
total number of attempts and completions were recorded for each pair 
for the last two simulated hours of the Monte Carlo run. The estimate 
of the completion ratio from source i to destination j is 

" Gij GR .. = -
~J Aij 

G ij = number of completions from i to j 
Aij = number of attempts from i to j. 

This estimate of the completion ratio was used since it has a smaller 
variance than would result if the completion ratio was calculated for 
each 10-minute interval and then averaged. The corresponding com-
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TABLE II-COMPARISON OF ANALYTIC AND MONTE CARLO 

MODEL RESULTS FOR SWITCHING MACHINES 

Switching 
Attachment Delay (in sec.) Probability of Time-out 

Machine 
Analytic Monte Carlo Analytic Monte Carlo 

1 0.33 0.19 ± 0.03 0.008 0.008 ± 0.002 
2 0.12 0.08 ± 0.01 0.002 0.002 ± 0.001 
3 0.30 0.20 ± 0.03 0.016 0.012 ± 0.002 
4 0.25 0.16 ± 0.03 0.013 0.007 ± 0.002 
5 0.29 0.21 ± 0.03 0.015 0.012 ± 0.002 
6 0.18 0.12 ± 0.02 0.008 0.007 ± 0.002 
7 0.10 0.04 ± 0.02 0.004 0.001 ± 0.001 
8 0.79 0.31 ± 0.03 0.011 0.009 ± 0.002 
9 0.49 0.19 ± 0.03 0.016 0.007 ± 0.002 

10 0.15 0.07 ± 0.01 0.005 0.003 ± 0.001 
11 3.04 2.03 ± 0.07 0.219 0.163 ± 0.009 
12 1.83 0.90 ± 0.06 0.085 0.054 ± 0.006 
13 0.46 0.32 ± 0.04 0.027 0.020 ± 0.003 
14 0.17 0.07 ± 0.02 0.008 0.002 ± 0.001 
15 0.18 0.12 ± 0.02 0.008 0.007 ± 0.002 
16 0.19 0.08 ± 0.01 0.009 0.003 ± 0.001 
17 0.12 0.04 ± 0.01 0.005 0.002 ± 0.001 

pletion ratio calculated by the analytic model will be denoted CRij. 
To compare CRij with CR ih it is necessary to have an estimate of the 
standard deviation of CRij. This estimate was made as follows: If the 
actual completion ratio really is CRij and if the probabilities of com
pletion are independent for successive ij attempts, then given the 
number of ij attempts, the number of ij completions is a binomial 
random variable. Therefore, CRij has mean and standard deviation 

E[CRij] = CRij 

_ ~CRij(l - CRij) 
(Jij - A.. ' 

t3 

respectively. The assumption that successive completion probabilities 
are independent is not unreasonable, since in this network the trunk 
groups between a typical ij pair will have an average of 10 to 50 
message completions between successive ij attempts. 

To conveniently compare CRij and CRih consider the standardized 
random variable 

(19) 

Figure 10 has a histogram of the ~ds for 72 arbitrarily chosen ij pairs. 
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In the pairs plotted, 68 percent of the ~ds were in [ -1, IJ, 92 percent 
were in [ -2, 2J, and 100 percent were in [ -3,3]. This is consistent 
with the above assumptions. If they were correct, the expected percent
ages would be approximately 68, 95, and 99.7 percent, respectively. 

To get a quantitative estimate of the difference in the completion 
ratios given by the two models, we require an estimate of E[~ij]. To 
get such an estimate, treat the ~ds as independent, identically dis
tributed random variables. Then, using the 72-pair sample to estimate 
E[~iiJ and the standard deviation of that estimate gives 

E[~ijJ = 0.026 ± 0.143. (20) 

This is consistent with E[~iiJ = O. However, using the estimated 
mean allows us to estimate the relative error, €ij, between the two 
models. 

(21) 

From (19), 

(22) 

Using E[~iiJ = 0.026, €ij was calculated for all 72 point-to-point pairs. 
All the calculated values were in (0.0017, 0.0051) and the average was 
0.0033. This gives the estimated relative difference in the completion 
ratios calculated from the two models as 0.33 percent. This error is 
negligible for practical purposes. 

.. 100% (99.7%) 

92% (95%) 

68% (68%) 

-3 o 

Fig. 10-Relative frequency of ~i/S for 72 point-to-point pairs. 
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From the examples given in this section, it seems reasonable to 
conclude that 

(i) The two models agree well when computing network quantities 
such as point-to-point completion ratios and the expected 
number of messages in progress. 

(ii) They show somewhat less agreement in local phenomena such 
as the sender attachment delay and probability of time-out in 
individual machines. 

VIII. CONCLUDING REMARKS 

This paper presented an analytic model of the response of a tele
phone network to overloads. The model agrees well with a currently 
used simulation for network quantities such as point-to-point com
pletion ratios and the expected number of calls in progress in the 
network. It is much cheaper to use, with typical costs being $20 
versus $200. The model only gives quasi-stationary results. To get 
the transient response, a Monte Carlo simulation must be used. 

The overall model structure permits changes in the mo'del of in
dividual components. Expanding the No. 4A switching machine 
model, including other types of switching machines, and including 
additional network management controls might be useful. 

IX. ACKNOWLEDGMENTS 

Many people have contributed ideas to this work. We wish partic
ularly to acknowlecge contributions by Jack Holtzman, Sheldon 
Horing, Edwin Messerli, Irvin Yavelberg, Pat Spagon, Dave J agerman, 
and George Hallas. We also take this opportunity to thank Elizabeth 
Murphy for early programming assistance, and Ellen Hill for produc
ing the final program. Finally, we wish to thank John Kohut for help 
in connection with his Monte Carlo simulation model of the network. 

APPENDIX A 

Introducing Some Network Management Controls into the Model 

For ease of exposition, eqs. (2) omitted network management 
controls. These equations must be modified to include network 
management controls corresponding to switching machine code 
blocking on the basis of destination, skip routing, cancellation of 
alternate routing from a trunk group, and cancellation of alternate 
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routing to a trunk group. To see how these controls are included, let 

r = (a,i; d) 

r1 = (a,i,j; d) 

1'2 = (a,i,k; d). 

Partial route l' enters switching machine i. Partial route 1'1 is the pre
ferred route out of machine i toward the destination d. Partial route 
r2 is the alternative to route 1'1. Also let 

NCB id = one minus the fraction of calls code blocked in switching 
machine i because they have destination d 

NCFij = one minus the fraction of calls cancelled because they 
attempt to alternate route from trunk group ij 

NCTik = one minus the fraction of calls cancelled because they 
attempt to alternate route to trunk group ik 

N SK ik = one minus the fraction of calls which skip over trunk 
group ik when alternate routing. 

In terms of these symbols, the replacements for eqs. (2) are 

X r1 = PijzrNCBid 
x r2 = PikNSKidNCTikNCFij(zrNCBid - x r1 )}· 

(2') 

The interpretation of the equations is as follows: The calls entering 
SMi on route r which are not code blocked are offered to trunk group 
ij. They are accepted with probability Pij . The quantity in parentheses 
corresponds to calls which are neither code blocked nor accepted into 
route r1. The quantity in brackets corresponds to calls which are not 
cancelled because of alternate routing controls. Of those calls, the 
ones which do not skip trunk group ik and do find a free trunk enter 
route r2. Those calls which do skip trunk group ik or find it full will be 
offered to the next alternate route, if one exists. 

APPENDIX B 

A Brief Description of the Monte Carlo Simulation in Reference 5 

The Monte Carlo simulation in Reference 5 is a call-by-call simulation 
in the sense that it generates calls individually and processes them 
through the simulated network as individual entities. That is, each 
run of the simulation of Reference 5 produces a realization of the under
lying stochastic process as opposed to the model presented here which 
analytically arrives at statistics for that process. The remainder of this 
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appendix describes the assumptions and treatments used In the 
simulation. 

The underlying traffic between each source-destination pair is a 
Poisson stream. Any attempt which reaches its destination end office 
has a fixed probability of failing because of a "don't answer" or "busy" 
condition. Any attempt which fails to become a message, for any 
reason, will retry with a fixed probability. If a failed attempt will 
retry, the time until retrial is chosen from an exponential distribution. 
The conversation length for each successful attempt is also .chosen 
from an exponential distribution. 

An attempt which arrives at a trunk group can seize a trunk only 
if one is free at that time. Once a trunk is seized, it is held while the 
attempt progresses through the network. If the attempt fails, the 
trunk is released at the time of failure. If the attempt becomes a 
message, the trunk is also held for the duration of the conversation. 

The simulation contains several switching machine models, only 
one of which was used in the comparisons in this paper. It consists of 
two groups of parallel servers: the first models the senders, while the 
second models the common control responsible for translation, trunk 
testing, and switching. We will refer to the first group as the senders 
and the second as the markers. 

An attempt bids for a sender, if one is seized, then a constant delay 
is introduced to represent receiving digits. If a sender is not seized 
within a specified time, the attempt abandons the queue. After a 
sender has received the digits, a bid is made for a marker. If one is 
available, it is seized and held for a constant holding time. If one is 
not available, the sender will wait for a marker. During the marker 
operation, a test is made for a free trunk. If no trunk is available, the 
call is immediately blocked and the sender and all prior seized trunks 
are released. In the simulation, it is assumed that announcements and 
reorder tone do not extend the holding time of blocked attempts. 

After the marker holding time, the sender bids for an attachment 
to a sender at a distant machine. This bid will result in either an 
attachment of a sender or an intersender time-out. In the former case, 
the sender is held for an additional constant length of time which 
simulates outpulsing the digits. In the latter case, no out-pulsing 
occurs, but an additional marker usage is required to route the attempt 
to an announcement. 

The queuing discipline for senders and markers is random. When a 
piece of common control becomes free, a bid is selected at random 
from the bids waiting. The simulated switch of an attempt through a 
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switching machine may encounter delay in four different ways. An 
attempt will be delayed during the sender and marker service times 
and may be delayed by waiting for these pieces of equipment if they 
are not available at the time of the bid. The service time delays are 
fixed, so these delays are equal for all attempts. However, the delays 
caused by queuing are random and are dependent upon how long an 
attempt must wait for equipment to become free. 
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Peakedness of Traffic Carried by a Finite 
Trunk Group With Renewal Input 

By H. HEFFES and J. M. HOLTZMAN 
(Manuscript received May 17, 1973) 

In trunking theory, peakedness is defined conventionally as the variance
to-mean ratio of a traffic load when carried on an infinite trunk group. 
For analysis of switching machine delays, it has proven useful to define 
a peakedness measure associated with the Carried Arrival Process (CAP), 
the stream of call arrivals carried on an incoming trunk group. The peaked
ness of the CAP is defined to be the conventional peakedness of a fictitious 
traffic-load process generated by associating with each carried arrival an 
independent exponentially distributed holding time with mean equal to 
the mean of calls actually carried on the trunk group. 

The problem considered is the effect of trunk group congestion on the 
peakedness of the CAP for traffic consisting of renewal inputs offered on 
a blocked-calls-cleared basis to a finite trunk group with exponential hold
ing times. The CAP is characterized as a semi-Markov process. This 
model leads to the determination of the peakedness of the CAP . Numerical 
results illustrate the reduction of peakedness, or smoothing, introduced 
by the congestion. 

1. INTRODUCTION 

This paper is concerned with characterizing the traffic offered to a 
switching machine, taking into account both the alternate routing 
that the traffic may have undergone and the smoothing of the traffic 
resulting from congestion on the trunk group incoming to the machine. 
In trunking theory, peakedness is defined conventionally as the 
variance-to-mean ratio of a traffic load carried on an infinite trunk 
group. It is well known that trunk group blocking of peaked traffic, 
such as overflow traffic, can be substantially larger than the blocking 
seen by Poisson traffic with the same intensity. Similarly, switching 
machine* delay and capacity can be quite sensitive to the peakedness 

* Throughout this paper, when we refer to a switching machine we mean the com
mon control devices in a switching machine. 

1617 
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of the incoming traffic.1 To determine the peakedness of the traffic 
offered to a switching machine, we must take into account the smooth
ing effect of the incoming trunk groups. To this end, we consider the 
process of arrivals offered to a trunk group which are carried by that 
trunk group. We call this process the Carried Arrival Process, or CAP. 

To illustrate the CAP, consider the alternate routing network 
shown in Fig. 1. Here traffic overflowing trunk group AB is then 
offered to trunk group AC [Fig. 1 (c)]. Those calls finding free circuits 
on AC then appear at node C as requests for service. The CAP is 
illustrated in Fig. 1 (d). 

The basic model used in the analysis is shown in Fig. 2 where a re
newal process is offered to a group of N trunks on a blocked-calls
cleared (BCC) basis. The renewal input allows us to consider overflow 
traffic offered to an incoming trunk group. The holding times on the 
trunks are assumed to be independent, identically distributed, ex
ponential random variables with service rate /-L. 

For analysis of machine performance it has proven useful to define 
a measure of peakedness for the CAP, zC, equal to the variance-to
mean ratio of the traffic load carried (number of trunks occupied) on 
an infinite trunk group to which the Carried Arrival Process has been 
offered. By definition, the holding times on the infinite trunk group 

(a) 

A .. B 

(b) II II I I I 1111 1111 II III OFFERED 
TOA-B 

(c) III III OVERFLOW 
TOA-C 

I I 
CARRIED 

(d) ON A-C 
(OFFERED 
TO NODE C) 

Fig. I-Carried Arrival Process. 
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Fig. 2-Carried arrival model. 

are independent, identically distributed, exponential random variables 
(with service rate J..L) which are independent of the holding times on the 
incoming trunks. * 

The peakedness of the CAP should be distinguished from the 
variance-to-mean ratio of busy trunks on the incoming group, a 
quantity which is discussed, for example, in Section 8.4 of Reference 2 
for the case of Poisson input. This distinction can be made clear by 
considering an example of Poisson traffic of intensity }.(calls/second) 
offered to N trunks. As }. approaches zero, the two measures approach 
one. Clearly, as }. gets large, the variance of busy circuits in the trunk 
group goes to zero and the mean goes to N, giving a variance-to-mean 
ratio of zero. On the other hand, as }. gets large, the time differences 
between successive carried calls approach independent, exponential 
random variables with rate N J..L (i.e., a Poisson stream) and the peaked
ness Zc approaches unity. This is illustrated graphically in Fig. 3 
which plots Zc and (v /m) B. s. (variance-to-mean ratio of busy servers 
on the N trunks) as a function of offered load for N = 10. The example 
is a special case of the general results derived in this paper for arbitrary 
renewal input to the trunk group. 

By modeling the CAP as a semi-Markov process (SMP), it becomes 
possible to calculate peakedness Zc as a function of the peakedness of 
the traffic offered to the incoming trunk group and of the congestion 
encountered on the group. The resulting Zc may then be used in the 
determination of machine performance. l Numerical results illustrate 
the reduction in peakedness, or smoothing, introduced by the trunk 
group congestion. In the course of determining the peakedness, the 
transform of the distribution of the time between carried calls is 
derived. 

* That is, although carried arrivals are accepted simultaneously on the finite and 
infinite trunk groups, the departure times are different. 
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Fig. 3-Distinction between peakedness and variance-to-mean ratio of busy 
servers. 

II. OUTLINE OF RESULTS 

In this section, we give an informal overview of the results. In 
particular, we give the key equations that a User can employ to deter
mine the peakedness, Zc, of a Carried Arrival Process. The equation 
numbers are the same as will be used in the derivation. Stationarity 
is assumed throughout. In all that follows, we assume unity holding 
time (or the time unit is the mean holding time). 

First of all, 

z = M+ _1. 
C (3' (11) 

where M+ is the mean number of calls up on the infinite trunk just 
after the time that a call is accepted onto the finite (and infinite) 
trunk group. (1/(3) is the mean number of carried calls (on both the 
finite and infinite trunk group). * 

M+ is determined from the following equation: 

M+ - 1 1Y!+ P+ [ ¢(N + 1)] (32) 
- 1 - ¢(1) - N N 1 - ¢(N + 1) , 

where ¢(s) is the Laplace-Stieltjes transform of the interarrival time 

• Note that, since we are assuming unity holding time, M+ and (1/f3) are in 
erlangs. 
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distribution. Mt is the mean number of calls up on the infinite trunk 
group immediately after arrival of a carried call, given j calls in progress 
on the finite trunk group immediately following the arrival of the 
carried call. Pi (j = 0, 1, "', N) is the probability that an arrival 
finds j trunks busy on the finite access group, and 

p+ _ P i - 1 

j - 1 - P N 
(24)* 

is the probability of j calls up on the finite trunk group immediately 
following a carried call arrival. 

The only quantity left to be determined in (32) is Mt which is 
calculated by solving the linear equations 

N 
[M;;t - 1JP;i = L ClmMl+, In = 1, 2, "', N, (33) 

l=max(1,m-l) 

where 

In - 1 ~ l ~ N - 1, 
1 ~ In ~ N, (34)t 

Pt ( N ) N-f+l (N - In + 1) (-1)'I¢(1] + In) 

C m - 1 'I =0 1] (35)t 
Nm = 1 - ¢(N + 1) 

A simple method of solving (33) is discussed at the end of Section VI. 
In the course of deriving the expressions which ultimately determine 
the peakedness of the CAP, the Laplace-Stieltjes transform of the 
distribution of time between carried call arrivals is obtained. This is 
given by 

¢ (s) = ¢(s) _ [1 - ¢(s)J¢(s + N) p+. 
c 1 - ¢(s + N) N 

(23) 

Note that the CAP is not completely characterized by (23), since it is 
not generally a renewal process. 

Examples are given in Section VII. 

. * One method of computing Pi is via the equations given on p. 179 of Reference 3. 
Alternate methods which may avoid some of the numerical difficulties inherent in 
this approach will be discussed in Appendix C. 

t Alternate expressions for special cases, more suitable for computation, are given 
in Appendix C. 
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Fig. 4-Peakedness of the Carried Arrival Process. 

III. CHARACTERIZATION OF THE CARRIED ARRIVAL PROCESS AS A SEMI

MARKOV PROCESS 

Consider a renewal process, with a nonlattice interarrival time dis
tribution F(t), as an input to N trunks with mutually independent 
exponential holding times each with mean unity (or the time unit is 
the mean holding time). F(O+) is assumed to be zero. Blocked calls are 
cleared. Such a system is analyzed in Chapter 4' of Reference 3. 

Let {Ti' i = 1, 2, ... } denote the sequence of times at which calls 
are accepted by the N servers (this is, of course, a subset of the times 
at which calls are offered). Let j(t) be the number of servers busy at 
time t. Then j (Tt) is the number of servers busy just after the nth carry 
(nth carried call). Note that P{j(Tt) = O} = O. It is clear that the 
j(t) process held fixed at j(Tt) for Tn < t < Tn+l is an SMP.* The 
transition probabilities for the embedded Markov chain are derived 
as follows. 

Since there is a death process on the finite trunk group between 
carried calls, we have for m = 1, 2, "', N and for l = m - 1, 
N - 1 (in which case, the next arrival is the next carry) 

P{j(rt) = m/j(Tt-l) = l} 

(00 ( l ) e-(m-l)t[l _ e-tJI-m+ldF(t) 
Jo m - 1 

( l ) l-m+l (l + 1 ) m - 1 Eo - : (-1)17cf>(7] + m - 1), 

where cf>(s) is the Laplace-Stieltjes transform of F(t), 

cf>(s) = 1000 
e-stdF(t)· 

* For an introduction to semi-Markov processes, see Reference 4, Chapter 5. 

(1) 

(2) 
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When j (r;:-I) = N, note that the next arrival need not be the next 
carry. With s.c. denoting service completion and F i(t) the ith-fold 
convolution of pet), we have 

P{j(r;:) = m/j(r;t-l) = N} 

00 {no s.c. before the first (i - 1) } 
L P arrivals after r n-l, (N - m + 1) s.c.'s j(r;:-I) = N 

i =1 before ith arrival after r n-l 

f. (00 (t e-Ns ( N ) e-(m-I) (t-s)[l _ e-et-s)]N-m+l 
i=l Jo Jo m - 1 

XdFi- 1(S)dF(t - s) 

( N ) N-m+l (N + 1) 
m - 1 '1~O - : (-1)'1cj>('I] + m - 1) 

1 - cj>(N) 
(3) 

Letting Fzm(t) be the conditional probability that a transition will 
take place within a time t, given that the process has just entered l 
and will next enter m, we have 

(m ~ 1) e-(m-l)t[l - e-t]Z-m+ldF(t) , 

P{j(rt) = m/j(rt_l) = l} 
l = m - 1, ... , N - 1, 

f. (t e-Ns ( N ) e-(m-I)et- s) 
i=l Jo m - 1 

X [1-e- et- s)]N-m+ldFi_ 1(S)dF(t-s) 

P{j(rt) = m/j(rt_l) = N} 
l = N. 

(4) 

Although the SMP characterization of the CAP is of general in
terest, it is particularly useful in determining the peakedness of the 
CAP as we shall see in Section IV. 

IV. PEAKEDNESS OF THE CARRIED ARRIVAL PROCESS 

Recall that the peakedness of a process is the variance-to-mean 
ratio of the number of calls up on an infinite trunk group when that 
process is offered to the infinite trunk group. To determine the peaked
ness of the CAP, consider the situation shown in Fig. 4. In this figure, 
each time a call is carried on the finite group, a call is put up on the 
infinite group with an exponentially distributed holding time with the 
same mean as on the N-trunk group but independent of the N-trunk 
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group holding time. * As before, j (t) is the number of busy servers on 
the N-trunk group at time t. Let k(t) be the number of busy servers 
on the infinite trunk group at time t. We use the following familiar 
result (given for renewal input in Reference 3 and for semi-Markov 
input in Reference 5, which is the form applicable to our problem). 
The following limits 

and 

exist and satisfy 

Pi = lim P{k(r;;) = i} 
n ..... O() 

P; = lim P{k(t) = i} 
t ..... O() 

P-. _ Pi - 1 

i-2i3' 

(5) 

(6) 

(7) 

where (3 is the mean time between transitions of the SMP (i.e., mean 
time between carried calls). From (7) we obtain 

lim E{k2 (t)} = _(31 [lim M(r;;) + IJ = _(31 lim M("t) , (8) 
t-co n-co n-co 

where we have defined 
M(t) = E{k(t)}. 

Defining 
M+ = lim M(rt), 

the peakedness of the CAP (denoted zc) is given by 

(9) 

(10) 

Zc = M+ - ~. (11)t 

Note that 1/(3 corresponds to the mean of the carried load (recall that 
we are assuming unity mean holding time). 

We are thus left with the problem of determining M+. This deter
mination will be in terms of the distribution of time between carried 
calls, to which the next section is devoted. 

v. DISTRIBUTION OF TIME BETWEEN CARRIED CALLS 

Consider an arrival at rn which finds a free circuit [i.e., j (r;;) < NJ. 
Let Fc(t) be the distribution of time until the next carry (carried call); 

... It is this independence which distinguishes the peakedness from the variance-to
mean ratio of busy trunks on the N-trunk group (as discussed in Section I). 

t This is given in Reference 6 for the case of renewal input and weaker assumptions 
on service times. 
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i.e., 
Fe(t) = P{ict ~ t/ carry at Tn}, (12) 

where ict denotes inter-carry time. Denoting 

and 
(13) 

and recognizing that 

(14) 

yields 

where 

P j = P {j trunks busy on the finite group just before 
a call arrival} (16) 

is the stationary call congestion probability given on p. 179 in Chapter 
4 of Reference 3. In particular, P N is the blocking probability. 

2.8 

en 2.4 
en 
w 
u 
o 
a::: 
~ 2.0 

;; 
a::: 
a::: 
~ 1.6 
o 
w 
a: 
a::: 
C5 1.2 
u.. 
o 
en 
en 
~ 0.8 
o 
w 
l.! 
~ 

~ 0.4 

o 

-
\ 

~4 
z= 3" ~ -

-z = 2 , 

~ ~ '-

~ ....... 
-............ ----:::: :::---z 1 I---I-- ---~ 

c- Z = PEAKEDNESS OF INPUT PROCESS 

-
I I I I I I I I 

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 

RHO, OFFERED LOAD PER TRUNK (ERLANGS / TRUNK) 

Fig. 5-Peakedness of CAP (5 trunks). 

I I 
3.6 4.0 



1626 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973 

Let epc(s) and ci>c(s) be the Laplace-Stieltjes transforms of Fc(t) and 
Fc(t), respectively. Transforming (15) gives 

The function ci>c(s) can be obtained from the solution to the Type I 
counter problem given on p. 207 of Reference 3 with renewal input 
transform ep(s) : 

¢c(s) = [1 - ep(s)] 1000 

e-SYH(y)dm(y) , (18) 

where, for our problem, 

H(t) = 1 - e-Nt (19) 

and 

m (t) = E {number of arrivals in (0, t)}. (20) 
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From (18) we have 

- [ ¢ (s) ¢ (s + N) ] 
¢e (s) = [1 - ¢ ( s) ] 1 _ ¢ (s) - 1 _ ¢ (s + N) , (21) 

where we have used 

t fJ 

e-8tdm(t) = ¢(s) . 
Jo 1 - ¢(s) 

(22) 

Combining (17) and (21) gives the transform of the intercarry time 
distribution: 

¢e(S) = ¢(s) _ [1 - ¢(s)J¢(s + N) [ P N- 1 ]. (23) 
1 - ¢ (s + N) 1 - P N 

We are now in position to determine M+, defined by (10), and sub
sequently the peakedness of the CAP. 
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VI. DETERMINATION OF M+ 

In order to determine the peakedness of the CAP Ceq. (11)], we 
need to evaluate M+ defined in (10). This will be done by characterizing 
the conditional mean of trunks up on the infinite trunk group, given j 
calls up on the finite trunk group. 

Recall that we are considering an arrival at Tn that finds a free 
circuit on the finite trunk group (i.e., .i (T;:) < N). The state dis
tribution on the finite trunk group at T t is thus given by 

P j - 1 

1 - P N ' 
Pt = Pr{.i(T;t) = j} 1 ~ .i ~ N, (24) 
Pt = 0, 

where the P /s are the call congestion probabilities defined in (16). 
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We define 

Pt.N = Pr{ j (T;f) < N}, (25) 

M- = E{k(T;)} = E{k( T;f)} - 1 = M+ - 1, (26) 

M l+ = E{k(T;f) /j(Tt) = l}, (27) 
and 

(28) 

where k corresponds to the infinite trunk group and j corresponds to 
the finite trunk group. In terms of these quantities, we have 

(29) 

Recall that, if j (Tt) < N, the distribution of time until the next 
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carry is F (t) and if j (r;t) = N the distribution of time until the 
next carry is Fe(t). Using this together with some conditioning argu
ments, the following relationship is obtained (see Appendix A) : 

M- = M+ - 1 = PtNMtN¢(I) + PtMt¢e(1). (30) 

From (29) and (30) we obtain 

M+ = 1 + M+P+ [¢e(1) - ¢(1) ]. (31) 
1 - ¢(1) N N 1 - ¢(1) 

Use of (21) simplifies (31) to 

M+ = 1 
1 - ¢(1) 

MtPt¢(N + 1) 
1 - ¢(N + 1) 

(32) 

It should be noted that the first term in (32) corresponds to the 
value M+ would assume if the renewal input process was offered 
directly to the infinite trunk group. The second term corresponds to 
the reduction in M+ as a result of blocking on the finite trunk group. 
Weare now left with the problem of determining Mt. 

It is shown in Appendix B that Mt for m = 1, 2, ... , N satisfies 
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the following set of equations: 
N 

I I 
0.9 1.0 

[MJ - 1JPJ = :E C1mMz+, m = 1, 2, "', N, (33) 
l =max(l,m-l) 

where for m - 1 ~ l ~ N - 1, 1 ~ m ~ N, 

Clm = PZ+ ( ~ 1) l-i+1 
(l - m + 1) (-1) 11ct>(?J + m). 

m 11=0 ?J 
(34) 

Further, for l = N we have 

_ Pt (m ~ 1) N~~O+l (N - ; + 1 ) (-1) 11ct>(?J + m) 
CNm - 1 _ ct>(N + 1) (35) 

It should be noted that the above set of equations is in a form which 
is amenable to solution for the desired quantity Mt. Written in 
matrix-vector form, the matrix in question is triangular with additional 
entries below the diagonal. Transforming the matrix associated with 
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(33) into triangular form * leads directly to the quantity of interest 
Mt for use in (32), which is subsequently used to determine the 
peakedness of the CAP Ceq. (11)]. 

VII. EXAMPLES 

We ran some examples with a 2-moment matcht interrupted Poisson 
process (Reference 7) as the renewal input to the finite trunk group 
(the computational aspects are discussed in Appendix C). Figures 5 
to 9 show Zc, the peakedness of the CAP, as a function of p, the offered 
load per trunk for N = 5, 10, 20, 50, and 100 trunks, respectively. 

* Details are in Reference 9. 
t The blocking experienced by an overflow process is less than the blocking seen 

by a 2-moment match interrupted Poisson process and more than that seen by the 
3-moment match process (all with the same mean and peakedness). 
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On each figure are plots for offered z's of 1, 2, 3, and 4. It is seen that, 
for fixed N, as z increases, the smoothing effect (reduction of peaked
ness) becomes appreciable at lower p's. This is because of blocking 
remaining negligible for larger p's as z is decreased. If we fix z, we see 
that the smoothing effect becomes appreciable at lower p's as N is 
decreased. This is again explainable from the point of view of blocking, 
i.e., blocking is larger on the less efficient small trunk groups. 

Since blocking is an important parameter, Figs. 10 to 14 show the 
peakedness of the CAP versus the blocking for the same cases as 
shown in Figs. 5 to 9. Note that, for final trunk groups which are 
normally operated with blockings of 0.01, the smoothing effect is very 
small, while for high-usage trunk groups which may reach blockings 
of a few tenths, the smoothing is substantial. Also, note that Zc, in all 
the cases, approaches unity as the load (and blocking) increases which 
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is consistent with the explanation in Section I as to how peakedness 
differs from the variance-to-mean ratio of busy servers (which ap
proaches zero). 

It was observed in Reference 10 that, when z > 1, the blocking 
probability is bounded away from zero no matter how small the input 
mean is. This is evident in Fig. 10. 

VIII. CONCLUSION 

We have shown how to determine the peakedness of a CAP. The 
use of mean and peakedness to characterize a CAP is attractive from 
the point of view of simplicity and is consistent with the use of the 
equivalent random method (Reference 2) in trunking analyses. To 
approximately calculate the delays at a switching machine, we could 
replace the CAP (or, more usually, a superposition of CAP's) with an 
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interrupted Poisson process with the same mean and variance and 
proceed as in Reference 1. This is being investigated. 

We mention, in passing, that we also tried out a renewal approxi
mation for ZC. That is, although the CAP is a semi-Markov process 
and not generally a renewal process, we tried to approximate Zc with 

1 1 
1 - ¢c(l) - {3 , 

which is the peakedness that the CAP would have if it were a renewal 
process. This approximation did not compare well enough with the 
true Zc to recommend its use. That is, although one might use a re
newal approximation to a superposition of CAP's after the peakedness 
is determined (see the last paragraph), we do not recommend using a 
renewal assumption to determine the peakedness. 

In the course of determining the CAP peakedness, we have more 
fully characterized the CAP as a semi-Markov process. Any queuing 
results available for semi-Markov inputs could be used with the CAP 
semi-Markov characterization given in Section III. 

IX. ACKNOWLEDGMENT 

The excellent programming of Mary Zeitler is gratefully 
acknowledged. 

APPENDIX A 

Derivation of Equation (30) 

Consider the system in equilibrium with times of carried calls {rn}. 
From (26) we have 

M- = E{k(r;)}, (36) 

which can be expanded as 

M- = E{k(r;-)/j(rt_l) = N}P{j(rt_l) = N} 
+E{k(r;)/j(rt_l) < N}P{j(rt_l) < N}. (37) 

This can be written as 

M- = Pt f f iP{k(r;) = i/k(rt-l) = n, j(rt-l) = N} 
n=O i=l 

XP{k(rt-l) = n/j(rt-l) = N} 

+Pi:N f f iP{k(r;;) = i/k(rt-l) = n, j(rt-l) < N} 
n=O i=l 

(38) 



1636 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973 

Writing 

P{k(r;;) = ilk(rt-l) = n, j(rt-l) = N} 

10
00 

P{k(r;;) = ilk(r,t-l) = n, j(r~--l) = N, 

Tn - rn-l = t}dFc(t) 

1000 

(~ ) e-it (l - e-t)n-idFc(t) (39) 

and 

P{k(r;;) = ilk(r,t-l) = n, j(r,t-l) < N} 

= 1000 

(~) e-it (l - e-t)n-idF(t) (40) 

and observing that 

t i (~) e-it (l - e-t)n-i = ne-t 
i=l ~ 

leads to the desired result 

M- = PtNMtN<P(l) + PtMt¢c(l). 
APPENDIX B 

Derivation of Equations (33) through (35) for M;t; 

Consider the events 

AZm = {j (7,t-l) = l, (l - m + 1) s.c.'s before next 

(41) 

(42) 

arrival after rn-I} (43) 

B km = {j(rt-l) = N, no s.c. before (k - l)st arrival after rn-l, 
(N - m + 1) s.c.'s before kth arrival after rn-d, (44) 

where s.c. denotes service completion on the finite trunk group. From 
these definitions we obtain 

N-l 00 

P{ j(r;t) = m} = L P{AZm} + L P{B km }. (45) 
Z=m-l k=1 

The conditional mean of interest is thus given by 

M; = E{k(r;;) I j(rt) = m} 
N-l co 

L E{k(r;;) IAzm}P{Azm} + L E{k(r;) IBkm}P{B km } 
l=m-l k=l 

P{j(r,t) = m} 
Defining the events 

Az = {j(rt-l) = l} 

(46)* 

(47) 

* When m = 1, P {A Om I = 0, because P { j (rt-l) = 0 I = o. In that case, sum from 
l = 1 to l = N - 1. 
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and 

A2lm = {(l - m + 1) s.c.,'s before next arrival after rn-d (48) 

gives 

E {k( r;;) I A lm } P{A lm } 

= f. iP{k(T;;) = i, A 2lm lAdPt (49) 
i=l 

00 r 

= Pt L P{k(rt-l) = r/Ad L iP{k(r;;) = i, 
r=O i=l 

A2lmIAZ, k(rt-l) = r}. (50) 
Letting l < N and using 

P{k(r;;) = i, A2lmIAZ, k(rt-l) = r} 

x ( l ) e-<m-l)t(l - e-t)l-m+ldF(t) (51) 
m-1 

and 

(52) 

yields 

E{k(r;;) /A1m}P{A lm } = Pl+Mt 1000 (m ~ 1) 
Xe- mt[l - e-tJl-m+ldF(t). (53) 

From (1) we have 

E{k(rt;-) IAlm}P{A lm } = Pz+Mz+ (m ~ 1) 
l-m+l (l - m + 1 ) 

X '1/~O 1] (- I) 71¢ (1] + m) 

where we are using (54) to define elm in (55). This yields (34). 

(54) 

(55) 

It now remains to show the desired relationship for CNm • We con
sider the second summation of (46) 

co 

E{k(r;;) /Bkm}P{B km } = L iP{k(r;;) = i, B I , B 2km }, (56) 
i=l 

where 

BI = {J(rt-l) = N} 
B 2km = {no s.c. before (k - l)st arrival after rn-I, (N - m + 1) 

s.c.'s before kth arrival after rn-d. (57) 
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Now 

E{k(T;;) IBkm}P{B km } 
00 n 

L L iP{k(T;;) = i, B 2km 1B1, k(T;;_l) = n} 
n=O i=l 

XP{k(T;;-l) = nlBdPt (58) 

= pt f nP{k(r;;_I) = nlBd 
n=O fOO ft n (n - 1) . L e-~t 

o 0 i=l i-I 

X (1 - e-t) (n-i)e- Ns ( N ) e-(m-I) (t-s) 
m -1 

X (1 - e-(t-s»N-m+ldFk_1(S)dF(t - s). (59) 

Upon performing the summation over i, (59) simplifies to 

= PtMt ( N ) (00 t e-(N+l)se-m(t-s) 
m - 1 10 10 

X L (-1)1/e-1/(t-s)dF k_1(S)dF(t - s) N-m+l i (N - m + 1) 
1/=0 1] 

=PtMt( N )N1:+1(_1)1/(N-m+1) 
m - 1 1/=0 1] 

Xcf>k-I(N + 1)cf>(1] + m). (60) 
Summing over k gives 

Pt ( ~ 1) N -f+l (-1) 1/ (N - m + 1) cf> (1] + m) 
_ M+ m '1=0 1] (61) 
- N 1 - cf>(N + 1) , 

which is the desired result for (35). 

APPENDIX C 

Computational Considerations 

In this appendix we briefly* discuss some computational problems 
experienced in the numerical solution of the carried process problem 
and point out some possible approaches to circumvent them. t In 

* A more detailed description of our computational experience is in Reference 9. 
t We first discuss the approaches and then the numerical experience we have had. 
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particular, we are concerned with the computation of the state prob
abilities, P j, j = 0, ... , N, defined in (16) and the computation of 
the quantities Clm defined in (34) and (35). 

We also specialize and subsequently simplify the above results for 
the case where the interarrival time distribution is a sum of ex
ponentials. In particular, we consider the interrupted Poisson process7 

as the renewal input. This specialization appears to have eliminated the 
numerical problems associated with the required calculations for 
large trunk groups. 

The problem of determining the call congestion state probabilities 
for a renewal input to a BCC system with N independent exponential 
servers is considered on p. 179 of Reference 3. The results are as 
follows: Let 

( 
¢(j + 1) ) 

CHI = 1 _ ¢(j + 1) Cj , 
j = 0, ... , N - 1, (62) 

with Co = 1. Then BTl the rth binomial moment of the P is, is given by 

f (~)~ 
B, = C/;' (~) ~;. 

L . -
j=O J C j 

The B r satisfies the backward recursion 

Br = (1 ~(:~ t 1)) Br+I + ( ~) B N , 

with 

f(~)~ B N = P N = j =0 J C i 
1 1 

(Reference 11, p. 93). The P /s are given by 

N .(r) Pi = L. (-I)r-J . B r· 
r=J J 

(63) 

(64) 

(65) 

(66) 

The computation of the C l' coefficients and the binomial moments 
B r is fairly straightforward and does not pose much of a numerical 
problem. It is the computation of the P is, using (66), that is sensitive 
to numerical errors. The alternating sign in (66), together with the facts 

that (;) B r can be quite large and the summation in (66) is between 

zero and unity, lead to a numerical problem. * 

* Actually, for an N = 10 case seven significant decimal digits were lost in one 
subtraction and the resultant probability was computed to be zero. This plays havoc 
with the solution to (33). Details are in Reference 9. 
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An alternate approach * to the computation of the state prob
abilities is by way of the equations 

(67) 

where the transition probabilities Pik represents the probability of 
going from state j prior to one arrival to state k prior to the next 
arrival. The Pik'S are given by 

j < N, (68) 

and 
PN,k = PN-l,k. (69) 

From (67) and (68), we obtain the backward relation 

P k 1 N 

P k- 1 = ,f...(k) - - L PikP i" 
'f' c/>(k)i=k 

(70) 

Expanding (68) gives 

( j + 1) i+l-k (j + 1 - k) 
Pik = k 7]~0 7] (-1)71c/>(7] + k)· (71) 

The computational procedure is outlined as follows: Compute P N 

from (65)t and use (70) to compute Pi for j < N. It should be noted 
that, although the terms in (71) alternate in sign, c/> never exceeds 
unity and is monotonically decreasing. Also note the relation between 
Pik given by (71) and elm given by (34) and (35). At this point, the 
accuracy in computing the Pis should be comparable to the accuracy 
in computing the elm'S. 

For the case where F(t) is the sum of exponentials (e.g., interrupted 
Poisson process) we can further simplify (and more accurately com
pute) the P /s and elm. We go to the integrals from which the sums 
(with alternating signs) appearing in (34), (35), and (71) were derived. 
Note that we have 

( l ) z-f:+
1 (l- m + 1) (-1)71c/>(7] + m) 

m - 1 7]=0 7] 

= (rfJ ( l ) e-mt (1 _ e-t)Z-m+1dF(t) (72) 
Jo m - 1 

* Motivation for investigating this approach stems from remarks made by P. J. 
Burke. (In recent unpublished work, Burke showed a more accurate approach for 
the case where the renewal interarrival time distribution is a sum of exponentials.) 

t Note that each term in the sum of (65) is positive. 
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[see (53) and (54)]. Let 

s 
F(t) = L k i (l - e- rit ); 

i=l 
(73) 

then the integral in (72) can be identified as a beta function. * Re
peated integration by parts in (72) gives 

10
00 (m ~ 1 ) e-mt (l - e-t)Z-m+ldF(t) = i~ljzm(ki' ri), (74) 

where 

( 
l - (l - m) ) 

. .. l + ri - (l - m) for l > m - 1. (75) 

For l = m - 1, we obtain from (72) 

(76) 

Note that jZm can be computed recursively from 

(77) 

with initialization from (76). 
The direct calculation of the integral has thus led to a computa

tionally tractable method of computing the elm'S and the P is. elm is 
calculated from 

elm = Pl+ ( .f jZm(k i , ri») , m - 1 ~ l ~ N - 1 , (78)t 
~=1 

[see (53)] and 

eNm = 1 _ ¢~;. + 1) ( i~l jN,m(k i , r i ») (79)t 

[see (35) and (72)]. 
The P /s are calculated from (70) where (68) is simplified as above 

(using integration by parts) and then used to compute the transition 
probabilities. Note that for an interrupted Poisson process,7 S = 2, 
and kl' k2, rl, and r2 are given in Reference 7 in terms of the switch 

* Identification made by D. L. Jagerman. 
t Note that this procedure does not involve the calculation of either binomial 

moments or binomial coefficients. 
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parameters. An alternate method of computing the P /s for the 
interrupted Poisson process is via the use of birth and death equations 
and conditioning the results on the switch being closed. A computer 
program for doing this was available (Reference 8). 

At this point, it is of interest to discuss our computational experi
ence using some of the aforementioned procedures. The first method 
considered was to calculate the P /s by first obtaining the binomial 
moments [eqs. (62) to (66)J and to compute the elm'S from (34) and 
(35). Using single precision arithmetic the procedure worked for N = 2, 
but failed for N = 10. The problem was traced to inaccurate calcula
tion of the probabilities from binomial moments. Double precision 
arithmetic extended the range of N (worked for N = 10). The method 
failed at N = 20. The failure was traced to the same cause as above. 
At this point we used the birth and death equation approach to calcu
late the Pis,s which assumes an interrupted Poisson input. This 
extended the range to N = 20. For N = 30 we ran into problems 
computing the elm'S from (34) and (35). * Modification of the elm 

computation using (78) and (79) significantly extended the useful 
range on N. The results presented in Section VII were computed using 
this method of calculation. 
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Model Approximations to Visual Spatio
Temporal Sine-Wave Threshold Data 

By z. L. BUDRIKIS 
(Manuscript received May 8, 1973) 

Experimental data on visual spatio-temporal sine-wave thresholds ob
tained by Robson and Kelly are considered. In seeking model approxi
mations to the data it is assumed that the subject's visual threshold to 
modulation at different spatial and temporal frequencies gives the image 
of his filter function to within a multiplicative constant. It is further 
assumed that the data can be approximated by a system with a spatially 
uniform, isotropic, and temporally invariant response which consists of 
the difference between an excitatory and an inhibitory term, and that each 
term is separable into a product of a spatial and a temporal function. 

r. INTRODUCTION 

Tests of vision with sine-wave flicker go back at least fifty years to 
H. E. I ves. l He determined flicker fusion frequencies with a number 
of wave shapes, including sinusoids. Spatial sinusoid test stimuli are 
more recent. The first to use them was probably Schade2 in the fifties. 
Soon after that Kelly3 suggested a stimulus which would simultaneously 
test the spatial and the temporal sine-wave response of vision. Such 
tests were implemented by Robson,4 Kelly,5,6 and others. 

The special interest in the sine "vave as a test stimulus stems from 
the ease with which one can extrapolate from its results. Provided a 
system is linear and time-invariant, Fourier analysis can be used to 
predict the system response to any input from its response to sinusoidal 
inputs. However, the visual system is neither linear nor time-invariant. 
Nevertheless, given a sufficiently constant adaptation state and input 
variations that result in small output variations,t linear theory can be 
used. 

t It is often incorrectly stated or implied that, for linearity, the input needs to be 
small. But consider the situation where a flickering light appears fused visually. The 
input may then swing between zero and many times the average luminance, yet the 
behavior is linear. 

1643 
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Our interest in the visual system is related to visual communications. 
When visual messages are transmitted digitally then there are po
tentially very many different ways-some more advantageous than 
others-in which the messages might be coded and still give acceptable 
fidelity at the receiver. Clearly, it would be good if the likely subjective 
effect of given quantizing procedures could already be predicted at 
the computer simulation stage without involving repeated subjective 
tests. Such predictions will probably be possible soon. 7 However, there 
is still need for complete specifications both of the linear behavior of 
the visual system and of the nonlinear effects of background masking. 
We will concern ourselves here only with the linear characteristics. To 
this end we will examine several alternative mathematical models to 
see whether they could be used to represent published experimental 
data on spatio-temporal sine-wave thresholds. 

The data that we will use were reported by Kelly6 and Robson.4 

In both cases threshold values of m were determined In a target 
described by 

(1) 

where Lo is the average luminance, U o the spatial frequency, and fo the 
temporal frequency. 

Kelly's measurementst were made at four different values of L o• 

The entire target area, a circular 7 -degree CRT face, filled with the 
flickering grating, was viewed monocularly through a 2.3-mm artificial 
pupil. Robson made all measurements at a single Lo value. The target 
had a 2.5-degree X 2.5-degree grating in the center of a 10-degree X 10-
degree screen which had a luminance equal to L o, and it was viewed 
binocularly without artificial pupils. 

In both cases the subject's threshold was measured by the method 
of adjustment. The subject judged whether he could see the signal or 
not. He did not attempt to distinguish between seeing flicker and 
seeing the bar pattern. During each session of Kelly's experiment, the 
subject made 5 settings at each of 12 frequencies, with the 60 presenta
tions given to him at random. Robson made his measurements in 
orderly sequences. Their results are shown as log-log plots of (11m) 
against frequency in Figs. 1-5. 

Kelly's measurements obtained for vision with an artificial pupil 
are converted to equivalent luminances viewed through a natural 
pupil. To calculate the equivalent luminance one needs to take into 
account changes in the size of the natural pupil and the Stiles-Craws
ford effect. From data tabulated by LeGrandB it can be inferred that, 

t D. H. Kelly kindly supplied a listing of his measurements and standard deviations. 
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Fig. 2-KeIly's data at 15.2 mL. (a) Temporal frequency response. (b) Spatial 
frequency response. 
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We will consider six different, though similar, mathematical models 
as possible candidates for representing the data of Figs. 1-5. There is 
a similarity between the models in that: (i) they all consist of an 
algebraic difference between an excitatory and inhibitory term, (ii) 
these terms are in all models separable functions of spatial and tem-
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Fig. 4-Kelly's data at 0.91 mL. (a) Temporal frequency response. (b) Spatial 
frequency response. 
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Fig. 5-Robson's data at 6.3 mL. (a) Temporal frequency response. (b) Spatial 
frequency response. 

poral frequencies, and (iii) in each model there will be six undeter
mined parameters. We find values for the parameters by digitally 
searching for the smallest weighted mean-square deviation of experi
mental points from the models. The fit of none of the models is com
pellingly good, but in several cases the degree of fit is useful. We find 
the best all-round fit with a model with diffusion-like temporal response 
of excitation, a Gaussian function for the temporal response of in
hibition, and Cauchy functions for the spatial response. From the 
point of view of economy in computer simulation, a model with simple 
exponential time responses and Gaussian spatial responses would be 
preferable. However, the mean-square departure from the model is 
somewhat larger than the best. 

II. THE MODELS 

2.1 The Framework 

By the nature of things, the retinal image is a somewhat blurred 
version of the light distribution in object space. Over isoplanatic 
patches,9 or areas A which are large compared to the size of a blurred 
point and small compared to inhomogeneities of the image-forming 
properties of the eye, we can model the formation of the image by a 
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convolution integral with a fixed point-spread function: 

lex, y) = f fA W(x - ~, y - 1])L(~, 1])d~ d1] , (3) 

where W is the point spread function and L and I are the object and 
image distributions. 

There is virtually no time lag in forming the retinal image. If L 
were switched on at some instant of time then the retinal image 
I (x, y) would be formed at that instant. 

The object-space to image-plane spatial frequency response of the 
given isoplanatic patch, or its modulation transfer function, is the 
Fourier transform of W: 

H(u, v) = f f W(x, y)e-27rj (ux+VY)dx dy , (4) 

where u and v are the spatial frequencies in the x and the y directions. 
Point spread in the space domain becomes filtering when transformed 
into the frequency domain. The point spread function W is necessarily 
positive and, with a normal pupillary aperture, has a maximum at the 
center and decreases monotonically.lO Consequently H (u, v) is a low
pass function. 

It is natural to think of perception being based on an "image" at 
some deeper location beyond the retina. This "image" is physiologically 
mediated and must suffer appreciable time lags. Hence, the response 
at the deeper location will be time-dependent. There will also be 
further spatial filtering as a result of lateral physiological interactions. ll 

Say we designate the resulting point response function by R (x, y, t) 
and the internal "image" distribution by C(x, y, t). At least for a re
stricted class of object-space luminance functions, L(x, y, t), C can be 
obtained by superposition, so that 

C(x, y, t) = fA f fo+~ R(x - ~, y - 1], t - r)L(~, 1], r)dr d1] d~. (5) 

The three-dimensional Fourier transform of R is the spatio-temporal 
frequency response function 

S(u, v, f) = f f f R(x, y, t)e-27ri(ux+xY+lt)dx dy dt. (6) 

The integration is over all x, y, and t. f is the temporal frequency. 
We may assume that the response function R is even in x and y, 

i.e., R(x, y, t) = R( -x, y, t) = R(x, -y, t) = R( -x, -y, t). This 
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means that S is even in u and v, i.e., S(u, v, f) = S( -u, v, f) = 

S( -u, -v, f). No symmetry can be assumed for R in t, and hence, 
for S in f. Indeed, R(x, y, t) = ° for t ~ 0, and hence, S(u, v, - f) ~ 
S(u, v, f). 

If the input to the system is the L of eq. (1), then the internal 
"image" is 

C(x, y, t) = S(O, 0, O)Lo + /S(u o, 0, fo) /Lom cos (271"u ox) 
Xcos (271" fot + ¢), (7) 

where 

and 
¢ = tan-1{Im[S(u o, 0, fo)]/Re[S(u o, 0, fo)]} , 

The * designates the complex conjugate and 1m and Re the imaginary 
and real parts. 

Now we ask: What size must m be before the flickering grating is 
seen with a given level of certainty? We assume thresholds correspond 
to fixed differences, i.e., the flickering grating is seen with probability 
p if 

/S(u, 0, f) /Lom = T(p) , (8) 

where T is a monotonically increasing function of p, but is independent 
of all other variables. We may assume that subjects adjusted m so 
that it always resulted in the same probability of seeing. Therefore, 
the values of 11m, as plotted in Figs. 1-5, are regarded as experi
mental determinations of /S(u,O,f)/ [to within the multiplier 
T(p)ILo which is a constant when the criterion T and the average 
luminance Lo are fixed]. 

If the visual system were truly linear it would have the same re
sponse functions irrespective of luminance level Lo. But all evidence, 
including that contained in Figs. 1-4, shows that the system adapts. 
It does so somewhat ponderously, much faster with rising Lo than 
in reverse, but still quite effectively, changing gain, spatial spread, 
and temporal lag. There is just one aspect of S which Kelly12 found 
unchanging over more than four decades of luminance, Lo. In large
area flicker threshold determinations, using an artificial pupil, he 
found that at different Lo values plots of (1/mLo) approached a 
common asymptote for large values of f. However, in other parts of the 
functional domain, different S functions hold for different adaptation 
luminances. 6 

In searching for suitable mathematical expressions for R or S it 
would be convenient if these functions were isotropic, and even more 



1650 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1973 

so, if they were also separable into spatial and temporal factors. 
Isotropism would mean that the space variables x and y would reduce 
to a single distance p and the frequencies u and v to a direction
independent spatial frequency v. Then 

S(v, f) = S(u = v,o, f) = S(O,v = v, f) 

= /orf.) [/orf.) R(p, t)27rpJ o (27rpv)dp ]e- i2r1tdt, (9) 

where J 0 is the Bessel function of order zero. 
Man's vision is not isotropic. It is astigmatic, having better resolu

tion in the horizontal and vertical directions than at other angles. 
But, to a first order of approximation, we may assume isotropism. 

Separability of R would mean that we could write it as 

R(p, t) = U(p)V(t) (10) 

and then S would also be separable: 

S(v, f) = G(v)H(f) , (11) 
where 

G(v) = /orf.) U(p)27rpJ o (27rpv)dp (12) 

and 

(13) 

Moreover, because U(p) is symmetrical, and hence G(v) IS a real
valued function, it would follow that 

1 S (v, f) 1 = G (v) 1 H (f) I· (14) 

However, even a superficial look at the families of experimental 
curves in Figs. 1-5 will convince one that IS(v, f) 1 is not separable. 
If it were, then curves of 1 S (v, f) I, as functions of f at different values 
of v, would differ from each other only by constant multipliers. Plotted 
against a logarithmic ordinate this would result in fixed vertical shifts. 
The same result would hold for plots of 1 S (v, f) 1 versus v at different 
values of f. But neither of these outcomes are found to be true. This is 
particularly evident when looking at Figs. 5a and b. The curves at 
high values of v or f are low-pass in shape, while for low values of the 
parameters they are bandpass. Figure 6 shows a linearly scaled per
spective view of a surface13 to which the measured values of Fig. 5 
approximate. Measurements apply only to positive frequencies, while 
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Fig. 6-Perspective view of spatio-temporal frequency response. 

the surface has been drawn over all four quadrants making use of 
symmetry. It suggests a volcano with a deep central crater. 

It is customary7 to think of the response as being brought about by 
an interplay of excitation and inhibition, with inhibition responsible for 
the crater. Looked at in this way the measurements suggest, at least to 
a first approximation, that excitatory and inhibitory responses in 
themselves may be separable and that the effects of inhibition simply 
subtract from the effects of excitation. These assumptions will be 
made. The response functions can then be formally broken down: 

with 

R(p, t) = Re(P, t) - Ri(p, t) 

= U e(P) Ve(t) - Ui(p) Viet) 

S(v, f) = Se(v, f) - Si(V, f) 

= Ge(v)He(f) - Gi(v)Hi(f) 

G e (v) forfJ U e (p)27rpJ 0 (21f'Pv )dp, 

He(f) = forfJ Ve(t)e-j2r/tdt, 

and similarly for the inhibitory functions. 

(15) 

(16) 
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2.2 Choice of Functions 

To satisfy physical considerations, all the component functions 
should be low-pass in character. Of the immense number of possibilities 
we consider just several. The Gaussian function comes readily to mind 
particularly for spatial spreads. 

If 

U ( ) = _1_ e-p2/2a2 
e p 27ra2 , (17) 

then of course the Fourier transform is also Gaussian: 

(18) 

The function has another property which can be especially useful in 
computations, namely that as a function of two variables x and y, i.e., 
p2 = x2 + y2, it is separable: 

U e(X, y) = (_1_ e-X2/2a2) (_1_ e-v2/2a2) . (19) 
-v'27ra2 -v'27ra2 

N one of the other functions of interest to us has this property. 
Another possible candidate for point spreads is the exponential 

p>O (20) 

and then 

(21) 

At high values of v, v» b, the function decreases as (l/v)3 which 
corresponds to a fall-off of 18 dB/octave. 

On the other hand, if the spatial frequency response function were an 
exponential then there would be no straight-line asymptote on a log-log 
plot, but rather a response which would be 

(22) 

with 
(23) 

This is often called the Cauchy response. 
Since the temporal frequency responses are similar to the spatial 

frequency responses similar functions can be used to model these. The 
important differences are that the function V (t) is one-sided and that 
eq. (13), instead of (12), is used to obtain the Fourier transform. 
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The Gaussian function can be used in an approximate way by shift
ing it a distance to to the right along t and deleting it leftward of t = 0: 

= 0; t < O. (24) 

When tol T is greater than three, say, then there is negligible error in 
assuming that Ve(t) is the Gaussian function for all t, t < 0 included. 
Then 

(25) 

In computer simulation a simple exponential time response, often 
known as the Poissonian, would be the easiest because it can be effected 
by recursion. That function and its transform are 

Ve(t) = (1/Tl)e- t / T1 ; 

1 
He(f) = 1 + j21f'fTl 

t "?; 0 (26) 

(27) 

A function in which there is theoretical interestl2 .14 is one that occurs 
in diffusion processes. Kelly12 found that the high-frequency asymptote 
for large-area flicker responses could be fitted well with a frequency 
function which one would find in diffusion that had no losses in the 
diffusing substance, namely with 

He(f) = G1e(-I21rf T I!). (28) 

If the Laplace transform is taken as 

H e(S) = G1e-(28T)i, (29) 

then the time function is 12.15 

t "?; O. (30) 

The six models which were compared with the experimental data are: 

(i) Gaussian temporal/Cauchy spatial (GIG) 

(ii) Poissonian temporal/Cauchy spatial (PIG) 

_ A {[e- pue (l + 41f'2f2~) - ke-PUi ]2 + (21f' fnke- VUi )2J! 
/S(v,f)/ - • (1 +41f'2f2~)(1 +41f'2f2~)t ' (32) 
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(iii) Diffusion-Gaussian temporal/Cauchy spatial (D-GIC) 

I S (v, f) I = A (e-(fTl)~e-puc - ke-21r2j2Tie-PUi), (33) 

and three further models in which the Gaussian is substituted for the 
Cauchy response giving GIG, PIG, and D-GIG. 

Note that in four of the models, GIC, PIC, GIG, and PIG, one 
time-lag stage is common to excitation and inhibition (Fig. 7a). The 
remaining two models, involving diffusion, have distinct paths for the 
two effects (Fig. 7b). 

Each of the models differs from the others in its exact functional 
shapes but they are all similar in their form. Figure 8 illustrates the 
evolution of the point spread as given by the PIG model. The point 
spread function is shown at the instant of occurrence of the point 
impUlse and at two subsequent time instants thereafter. In this, as in 
all the other models, the excitatory effect is confined to a smaller 
region and has a faster time course than the inhibitory effect. 

III. SELECTION OF PARAMETERS 

Each of the models chosen for comparison with the experimental 
data has six undetermined parameters: the gain A, time constants Tl 

and n, space constants (Je and (Ji, and the per unit inhibition k. The 

L (x, y, t) C (x,y,t) 

(a) 

L (x, y,t) C (x,y,t) 

(b) 

Fig. 7-System block diagram: (a) for PIG, GIG, PIC, and GIC models; (b) for 
D-G/G and D-G/C models. 
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parameters have to be given values to produce as close a fit as possible 
between model and data. 

The following performance index may be used as an appropriate 
measure for the closeness of fit: 

N 

P = L {[mi - 1/IS(vi, !i)/J/Ei}2, (34) 
i=l 

where mi is the measured threshold modulation at the spatial frequency 
Vi and temporal frequency !i and Ei is the estimated (standard) error 
of that measurement. The summation is over all N points measured at 
a given luminance Lo. 

This will be callcd the aggregate-square fractional error, or ASFE, 
index. The ASFE index is perhaps the most defendable in light of the 
experimental procedure. However, if the aim is to obtain the best 
representation of data plotted as (11m.) along a logarithmic scale 
(Figs. 1-5), then a better index is 

(35) 

which can be called the aggregate-square log error, or ASLE, index. 
Irrespective of index, the array of six parameter values can be looked 

upon as a vector T and the performance index as a real-valued function 
of it. Our object is then to find that location T m in six-space at which 
peT) assumes its smallest value. However, there is no way of recogniz
ing a global minimum and it is therefore impractical to insist on finding 
it. The object is rather to find as good a value for T as possible, while 
keeping computer expenditures 'within reasonable bounds. 

Of the many possible parameter search routines we tried a gradient
dependent algorithm, random search, and a combination of the two. 
Random search proved the more successful, almost as good on its own 
as in combination with gradient techniques. 

The gradient in question is 
6 ap 

vP = n~l aTn an, (36) 

where an is the unit vector along the nth coordinate axis and Tn is 
the scalar (T·a n). The components of the gradient were evaluated in 
one of two ways: 

(i) approximate differentiation: 

ap ~ peT + ilT nan) - peT) 
aTn - ilTn 

(37) 
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(a) 

Fig. 8-Evolution of the point spread function in the Poissonian/Gaussian model. 
Inhibitory effect has been exaggerated. (a) at t = 0, (b) at t = 45 ms, (c) at t = 150 ms. 
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(c) 

Fig. 8 (continued). 

(ii) evaluation of exact expressions which, given (34), are 

ap 
aTn = ~ 2{[mi - II/S(vi, !i)/J/ed 

X [II ei / S (Vi, Ii) /2J a / ~~:' Ii) / (38) 

Using (37), care had to be taken in choosing the size of t1T n. 

Given the gradient at the vector location Til the next location with 
a lower value of P should be at 

(39) 

This will prove to be so, provided K is small enough. Improved con
vergence rates are possible by making K variable,16 increasing its value 
with repeated improvements in P, and decreasing it with failures. The 
next location to be tested is then not given by (38) but by 

(40) 

where Tb is the location at which the last lowest value of P was calcu
lated and K j has been determined from a starting value K 0 by multipli
cation with either 0:(0 < 0: < 1) or '}'(I < '}'), depending on outcomes 
of the j iterations thus far. 
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A difficulty with gradient-dependent search is that it may end at a 
local minimum which is far above the global, and that often proved to 
be so. A way around this is to alternate between the gradient-dependent 
search mode and random search. In random search the next location 
to be tested would be 

6 

Ti+l = Tb + K L GnRj(n)an, (41) 
n=l 

where Tb is again the last best location, K is a constant that scales the 
size of the search volume, Gn's are further scaling factors designed to 
make the search about equally sensitive along the different coordinates, 
and Rj(n) is a Gaussian variate obtained from a (pseudo)-random 
number routine taking a fresh value for each component and each 
iteration. 

Typically, a computational cycle would consist of gradient-depen
dent search to within a convergence test specification, taking some 20 
to 100 iterations, followed by 100 iterations of random search. The 
number of cycles depended on progress and could be as many as 50. 

Most of the performance improvements were found to come from 
the random search phases of the computational cycles. For that reason 
the gradient-dependent phase was dispensed with in many calculations, 
and then K of (40) became a variable similar to K j of eq. (39). The 
calculation was still done in cycles, starting each cycle with a large 
value of K. 

IV. RESULTS 

Although there is no guarantee that the performance indexes finally 
arrived at are the lowest possible, in each case the chances are small 
that there would be anything substantially lower. Hence, Table I can 
be taken as a good guide for comparing the effectiveness of the different 
models in fitting the data. The table gives rms deviations D, which are 
calculated from P in accordance with 

D = [P/(N - 6)J!. (42) 

Division is by (N - 6), because the parameters provide six degrees 
of freedom. For Table I, P was as defined by eq. (34), i.e., the ASFE 
criterion. 

From the last column of Table I it can be seen that the best of the 
six models is the Diffusion-Gaussian/Cauchy and the worst the 
Gaussian/Cauchy. The Poissonian/Gaussian is somewhat worse than 
the average over the group. A comparison of the models by order of 
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TABLE I-RMS DEVIATIONS 
Summary of rms deviations, D, derived from ASFE performance index 
Ceq. (34)]. In computation, experimenter's estimates of experimental 
errors were used with Kelly's data and assumed errors with Robson's 
data. 

~ 
Kelly's Data Robson's 

(mL) Data MeanD 
Model for 

Model 
62.8 15.2 3.7 0.91 6.3 

Poissonian/Gaussian 7.0 4.3 3.9 7.6 3.7 5.3 
Poissonian/Cauchy 7.2 4.4 4.0 7.9 3.4 5.4 
Gaussian/Gaussian 4.0 4.6 4.7 8.8 2.9 5.0 
Gaussian/Cauchy 6.1 6.2 5.6 9.8 4.2 6.4 
Diff -Gauss / Gaussian 4.0 3.6 4.3 4.4 3.9 4.0 
Diff -Gauss /Cauchy 3.4 3.7 I 4.5 4.5 2.8 3.8 

rank within each set, and then over the sets, shows the two Diffusion
Gaussian models fit best, closely followed by the Poissonian/Gaussian 
model. 

Except with Robson's data, where assumed error values were used, 
the actual magnitude of D in Table I has significance. With P by eq. 
(34) being measured relative to experimental errors one would expect 
with a perfect model fit a D value of unity. (D - 1) is then the in
crease in relative error due to the model, and D can be thought of as 
error gain. In this sense all the models, including the best, give only 
poor fits. 

The D-G/C model is shown fitted to Robson's data in Figs. 9a and b. 
According to Table I this ought to be about the best fit, but obviously 
is only fair. The same data is fitted by the P /G model in Figs. lOa and 
b. The P /G model is shown fitted to Kelly's data at 62.8 mL in Figs. 
11a and b. According to Table I the P /G model represents nearly the 
worst fit. 

Parameter values for the P /G model are given in Table IIA. These 
were determined using the relative error criterion. Table lIB gives 
parameter values for the same model but determined by the log 
departure criterion. The final mean log departures are shown in the 
bottom row. There are noticeable differences between the parameter 
values in Table IIA and Table lIB but, given the rather poor fit 
between model and data, agreement is good. Consistent trends are 
apparent in both sets: with decreasing luminance the gain (A) of the 
system decreases accompanied by a decrease in fractional inhibition 
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Fig. 9-Diffusion-Gaussian/Cauchy model applied to Robson's data. (a) Temporal 
frequency response, parameters as in Fig. 5a. (b) Spatial frequency response, parame
ters as in Fig. 5b. 
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Fig. lO-Poissonian/Gaussian model applied to Robson's data. (a) Temporal 
frequency response, parameters as in Fig. 5a. (b) Spatial frequency response, parame
ters as in Fig. 5b. 
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Fig. 11-Poissonian/Gaussian model applied to Kelly's data at 62.8 mL. (a) 
Temporal frequency response, parameters as in Fig. 1a. (b) Spatial frequency re
sponse, parameters as in Fig. lb. 

(k). The time constants tend to increase with lower luminance while 
the space constants remain unchanged. The parameter values for the 
D-G/C model obtained using the log of departure criterion are given 
in Table III. With this different model, parameter values are naturally 
very different, but the variations with luminance are similar to those 
with the P /G model and, indeed, with the remaining models. 

TABLE IIA-PARAMETER VALUES IN POISSONIAN/GAUSSIAN MODEL 

DETERMINED WITH ASFE PERFORMANCE INDEX 

~ 
Kelly's Data Robson's 

(mL) Data 
Parameter 

62.8 15.2 3.7 0.91 6.3 

1 A 298 236 145 116 219 
2 71 (ms) 39 32 32 61 45 
3 72 (ms) 63 43 70 102 52 
4 (Fe (min arc) 1.48 1.55 1.49 1.49 1.01 
5 (Fi (min arc) 9.82 4.72 10.1 6.19 5.62 
6 k 0.9976 0.9831 0.9579 0.8150 0.9554 

7 D 7.0 4.3 3.9 7.6 3.7 

8 A/Lo 4.82 15.5 40.3 127.2 34.8 
9 (1 - k) 0.0024 0.0169 0.0421 0.1850 0.0446 
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TABLE lIB-PARAMETER VALUES IN POISSONIAN/GAUSSIAN MODEL 
DETERMINED WITH ASLE CRITERION [EQ. (35) ] 

~ 
Kelly's Data Robson's 

(mL) Data 
Parameter 

62.8 15.2 3.7 0.91 6.3 

1 A 234 168 134 93 198 
2 71 (ms) 29 37 53 79 55 
3 72 (ms) 34 58 80 101 55 
4 Ue (min arc) 1.52 1.40 1.37 1.34 1.01 
5 Ui (min arc) 9.68 8.30 10.51 10.28 5.58 
6 k 0.990 0.971 0.911 0.740 0.996 

7 D (log units) 0.48 0.56 0.63 0.73 0.49 

8 A/Lo 3.72 11.05 36.2 102 31.4 
9 (1 - k) 0.010 0.029 0.089 0.260 0.004 

V. DISCUSSION 

Both the D-G/C and the P /G models will be useful in practice, 
particularly the latter when simplicity of computation is a major con
sideration. However, the fact that none of the models fits the data 
well enough to satisfy any fundamental inquiry prompts us to look 
again at the assumptions of Section 2.1. 

One can scarcely doubt the interplay of excitation and inhibition 
in the visual mechanism, and that inhibition spreads over a wider 

TABLE III-PARAMETER VALUES IN DIFFUSION-GA USSIAN / CA UCHY 
MODEL DETERMINED WITH ASLE PERFORMANCE 

INDEX [EQ. (35) ] 

~ 
Kelly's Data Robson's 

(mL) Data 
Parameter 

62.8 15.2 3.7 0.91 6.3 

1 A 1596 943 810 372 853 
2 71 (ms) 472 489 649 656 496 
3 T2 (ms) 74 75 74 111 98 
4 Ue (min arc) 9.33 8.01 6.47 7.43 8.59 
5 Ui (min arc) 12.38 11.45 6.50 8.27 32.4 
6 k 0.517 0.479 0.351 0.236 0.677 

7 D (log units) 0.45 0.48 0.50 0.61 0.33 

8 A/Lo 25.4 62 219 409 135 
9 (1 - k) 0.483 0.521 0.649 0.764 0.323 
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area and persists longer than the excitation, i.e., is confined to lower 
spatial and temporal frequencies. However, it is probably untrue that 
inhibition simply subtracts from the excitation. It is more likely17 that 
it acts as a shunt, or a reduction in through-put gain, for which simple 
subtraction is only a first approximation. One could also expect a more 
precise characterization of inhibitory action to explain part of the 
adaptive changes. However, the model would be nonlinear and more 
complicated. 

Apart from linearity, it is very probable that more separability of 
functions has been assumed than is warranted. The statement that 
excitation (or inhibition) is separable into space and time functions 
purports that, given a point flash, the form of the spatial response is 
independent of time, or that the shape of the time function is inde
pendent of distance from the stimulus point. This is probably true of 
the spread which is due to optical smearing of the retinal image. But 
it is probably untrue of the lateral spread of neural interactions. Since 
neural interactions predominate in the wider inhibitory spread, separa
bility should be expected to be a poorer assumption for inhibition than 
for excitation. This seems to be borne out by the data. 

The assumption of uniformity raises another question. To speak of 
isoplanatic patches is, of course, no more than a simplification. Even 
the central fovea varies substantially in receptor packing density 
within the space of less than a degree. It is therefore difficult to main
tain the assumption of uniformity with data obtained for spatial 
frequencies of one cycle/degree or lower. To justify convolution in the 
presence of nonuniformity we only need to be sure that the spatial 
spread is small compared to the size of the "uniform" patch. However, 
we need uniformity over much more than (1/ fe) in order to justify a 
Fourier transform to within fe of the frequency origin. If this condition 
is not met, then with a sinusoidal input the output may, in the extreme, 
be nonsinusoidal even over only a part of a cycle. But our assumption 
of threshold is that a criterion value be exceeded by the peak-to-peak 
output and this then will not be related to the calculated transfer 
function. 

The concept of detection needs to be examined, not only where 
lack of retinal uniformity is critical. It is unlikely that detection is 
based on a comparison of just two values, a maximum and a minimum 
in the output, and that this comparison is independent of how far 
apart in space and time these two values actually are. It is more likely 
that there should be a pooling of evidence and that there should be a 
decline in detectability, the further apart the relevant events. 
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However, it need not follow that, given a more complicated detection 
mechanism, the modeling done here would be invalidated. The detector 
with variable weighting of evidence could, in fact, be equivalent to a 
spatial/temporal filter in its own right, followed by the kind of decision 
stage assumed here. If this were so, then it would only mean that not 
all the filtering evident from threshold data can be attributed to 
peripheral processes, but that some of it is due to central neural 
activity. This is an important distinction where comparisons are made 
between the filtering evident in stimulus detection and in, say, percep
tion of brightness. Inconsistencies of this nature have already been 
noted in the literature,18 but have not been satisfactorily explained. 

Higher-level filtering might also be responsible for the frequency
selective fatiguing discovered by Blakemore and Campbell.19 It seems 
improbable that spatial filtering by optical and retinal spread con
stitutes spatial frequency channels which may be independently 
adapted, but higher-level filtering could, in fact, occur after a Fourier
like signal transformation. But again, the presence of any transforma
tions like these would not affect the present modeling. They might 
however, affect adaptation effects. 
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Fig. 12-Adaptation of gain parameters A/Lo (line I) and (1 - k) (line II) 
against luminance as obtained in fitting Poissonian/Gaussian model to Kelly's and 
Robson's data. 
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Of the adaptive changes which are evident from the present model
ing, the variation in gain requires comment. The fact that the gain 
constant A was seen to decrease with decreasing adaptive luminance 
might be taken to mean that the system becomes less sensitive in the 
dark. As is well known, visual sensitivity goes up markedly with 
darkness and the present results do not, in fact, contradict this. By 
eq. (8), (11m) equals I S(u, 0, f) I only to within the mUltiplicative 
constant T(p)/L o• Assuming that the threshold does not change, then 
to make the gain values at different luminances Lo comparable to each 
other they have to be divided by Lo. A/ Lo does in fact go up with 
decreasing luminance as can be seen in row 8 of Table IIA and else
where. The actual A/Lo values are different across the models but the 
trend is always the same. 

As the adaptation luminance decreases there is an additional increase 
in sensitivity restricted to low frequencies. This occurs because of 
the decline in fractional inhibition k. The zero-point value of I S I is 
with all models A (1 - k)/ Lo. The net excitation (1 - k) is given in 
row 9 of Tables IIA, lIB, and III. A/Lo and (1 - k) have also been 
plotted for the P /G model in Fig. 12. From the plot one can infer that 
for the P /G model and in the range 1.0 ~ Lo ~ 100 mL 

so that 

A/Lo = constl X L;;0.81, 

(1 - k) = const2 X L;;1.03, 

IS (0, 0, 0) I = consts X L;;1.84. 

(43) 

(44) 

(45) 

The increase in low-frequency sensitivity with decreasing luminance 
is at the expense of bandwidth. 

VI. CONCLUSION 

Six spatio-temporal models of human visual filtering were tested 
against published experimental data on visual spatio-temporal sine
wave thresholds. These models arose as specific examples from a 
definite theoretical framework. It was assumed that thresholds could 
be related to a fixed peak-to-peak difference in a visually filtered version 
of the input stimulus, and that the filtering could be taken as time
invariant and spatially uniform and isotropic. Particular attention 
was directed to the question of whether the response was separable 
into functions of time and space. We showed that the total response is 
not so separable in this way. However, it was assumed that if the 
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response is expressed as an algebraic difference of two terms, excitation 
and inhibition, the individual terms would be separable. 

Component functions which were tried were exponential, Gaussian, 
and diffusion-like functions of time, and Gaussian and Cauchy func
tions of space. The best fit was obtained with a model which has a 
diffusion-like time function for excitation, a Gaussian time function 
for inhibition, and Cauchy space functions for both. The diffusion 
function, as a model of the time course of excitation, has previously 
been advocated by Ives,14 Kelly,t2 and others. The degree of fit 
obtained in the present study, involving both time and space, was 
however only moderate and no strong argument can be brought 
forward in favor of any of the functions, not even the best-fitting. In 
the best case the average departure from the model was three times 
larger than the average estimated experimental error. The present 
results do not exclude any of the functions either, for the fit was 
probably affected more by the restrictions of the framework than the 
choice of function. 

In each of the models six parameter values had to be determined. 
These were gain, fractional inhibition, two time constants, and two 
space constants. Parameter searches consisted of up to 50 passes of 
gradient-dependent convergence and evolutionary random search. 
Random search was invariably found to be the more productive phase 
in all the computational passes. 

With adaptation luminance between 1 and 60 mL, the time constants 
were found to be slightly larger at the low luminances than at the high, 
the space constants were almost nonvarying, and the gain and frac
tional inhibition decreased with decreasing luminance. As expected, 
the sensitivity, measured as gain divided by luminance, was found to 
go up with decreasing luminance. The reduction in fractional inhibition 
was shown to give a further increase in sensitivity with decreasing 
luminance, but only at low frequencies. With one model (P /G) the 
sensitivity at zero frequency was found to vary inversely as the 1.84 
power of luminance, 0.81 of this being due to variation in overall 
sensitivity and the remainder due to changes in inhibition. 

The major purpose of the present model fitting was to find a filter 
function for use in a program for predicting the subjective quality of 
visual signal coding schemes. Of the six models the most economical 
computational procedures are provided by the Poissonian/Gaussian 
model. The Poissonian, or negative exponential, time functions can be 
implemented recursively, using a delay of only one or two picture 
frames, and the Gaussian space functions, being themselves separable 
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into products of functions of x and y, can be implemented by two 
successive, modest transverse filter operations, instead of requiring one 
very large operation. This model was found to fit the data nearly as 
well as the best. Considering its computational advantages, it will no 
doubt be the one to find most use. 
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I. INTRODUCTION 

The equivalent random method! (aso see Ref. 2) is widely used to 
approximate the blocking probabilities for non-Poisson traffic streams. 
Although much numerical experience and some analysis (e.g., Ref. 3) 
suggests that the method is usually reliable for superpositions of over
flows, the reason for its accuracy (or errors) deserves further attention. 

The equivalent random method first determines the mean M and 
variance V of the number of the trunks that would be occupied if the 
traffic were offered to an infinite trunk group. Then an overflow process 
with the same M and V is offered to the finite trunk group and its 
blocking calculated.t This blocking is taken as the approximation for 
the blocking seen by the original traffic. 

In this Brief, we derive the range of the blocking probabilities which 
may be experienced by renewal streams characterized by the same M 
and V. Since this range may be rather wide, it follows that the success 
of equivalent random method cannot be explained solely by the con
straints put on blockings by fixing M and V. Rather, one should factor 
in the special structure of the processes. Furthermore, it is seen that 
one cannot use an arbitrary renewal process to represent another pro
cess with the same mean and variance. 

* A version of this Brief was presented at the Seventh International Teletraffic 
Congress, Stockholm, June 1973. 

t That is, the blocking is calculated for the specific renewal process which is the 
overflow process from a Poisson input. Conceivably, other types of renewal processes 
could be used. 
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II. IMPLICATIONS OF THE EQUIVALENT RANDOM METHOD 

Consider a nonlattice renewal process, with distribution function 
F (t) for the interarrival times, offered to a group of N trunks. The 
holding times are mutually independent exponential random variables 
with unity mean (or the mean is the time unit). Blocked calls are cleared 
and the system is in equilibrium. Define 

m = !o~ tdF(t), 

¢(x) = fo~ e-xtdF(t). 

Then it is known that the blocking probability is 

B = 11 + (N) 1 - ¢ (1) + ... 
1 ¢(1) 

( 
N) [1 - ¢(1)} .. [1 - ¢(N)] )-1 

+ N ¢(1)¢(2)· . ·¢(N) 

(1) 

(2) 

(3) 

(see, e.g., Ref. 4, Chap. 4). Observe that B depends on N values of 
¢(i), i = 1, "', N, and that it is an increasing function of these ¢(i). 
We shall show how the equivalent random method constrains these 
cp(i) by obtaining upper and lower bounds on them which, in turn, give 
upper and lower bounds on B. 

The description of the equivalent random method in the Introduc
tion leads to the question of how well M and V characterize a traffic. 
It turns out that they imply much more than is apparent at first glance. 
For our renewal input, we have the following relationships: 

M = m-1, (4) 

V = M [1 _1¢(1) - M] (5) 

(see, e.g., Ref. 4, Chap. 3*). Thus, (M, V) uniquely determines 
(m, ¢(1» and vice versa. Specifically, 

¢(1) = V/~;! t M. (6) 

Hence, the equivalent random method fixes ¢(1) which is particularly 
important in (3). Moreover, fixing V and M puts important constraints 
on the other ¢ (i), i = 2, "', N, which, in turn, further constrains B. 

* Also, see Ref. 5, p. 331/5, for an interesting characterization of peakedness. 
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1 

,p(1) 

Fig. I-Constraints on cp(x) for x > 1. 

Figure 1 shows how (m, <1>(1)) constrains <I>(x) for x > 1. The parame
ters PI, P2, b will be given in (16)-(18). All such <I> (x) must lie within the 
shaded area. The upper bound is a least upper bound and the lower 
bound, a greatest lower bound. Also shown in Fig. 1 is a wedge for 
x > 1 which respresents simpler, cruder bounds for <I> (x) which follow 
immediately from the decreasing convex nature of <I> (x). 

To derive the lower bound, let y = e-1 in 

Elyl ~ EI/xlyIX, x> 1, (7) 

with ~ the renewal interarrival time. 
We obtain 

(8) 
or, in other words, 

[<I>(I)Jx ~ <I>(x), (9) 

so that <I>(x) must lie above the indicated curve for x > 1 in Fig. 1. 
To show that this is a sharp lower bound, let 

dF(t) = [PIO(t - a) + P20(t - b)Jdt. 

(PI, a, P2, b) must satisfy 

(10) 

PI + P2 = 1, (11) 

pIa + P2b = m, (12) 

PIe-a + P2e-b = <I> (1). (13) 

By letting b get large and PI ~ 1, we can show that 

<I>(x) = PIe- xa + P2e-xb ~ PIe- xa ~ [<I> (I)Jx. (14) 

The sharp lower bound for <I> (x) may also be derived using Theorem 
2.1 on p. 472 of Ref. 6 (see Remark 2.3, p. 474). Use of this theorem * 

* The problem to which we applied this t.heorem is to find sharp upper and lower 
bounds for fo<r.e-ztdF(t) subject to fo<r.dF(t) = 1, fo<r.tdF(t) =m, and fo<r.e-tdF(t) =cp(I), 
a number fixed by (6). 
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also leads to the following sharp upper bound for cp(X): 

cp(X) ~ CPm(X) = PI + P2e- xb 

with (PI, P2, b) satisfying 
m(l - e- b) 

b = 1 - cp(l) , 

m 
P2 = b' 
PI = 1 - P2. 

We thus obtain that the true B satisfies 

where 

11 + (N) 1 - cp(l) + ... 
1 cp (1) 

( 
N) [1 - cp(l)} .. [1 - cpN(l)])-l 

+ N [cp(1)][N(N+l)/2] , 

11 + (N) 1 - CPm (1) + ... 
1 CPm(l) 

+ (N) [1 - CPm(1)]·· . [1 - cpm(N)])-l. 
N CPm(l)·· 'CPm(N) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

The blocking probability obtained by the equivalent random method, 
Ber, also satisfies (19) so that a bound on the error for the method is 

max {Bu - B er, Ber - B L }. 

III. INTERPRETATION OF EXTREMAL SOLUTIONS 

Some feeling for these bounds can be obtained by considering the 
maximum and minimum blocking probabilities attainable when only 
the mean interarrival time m is constrained (the equivalent random V 
is unspecified). It is shown in Ref. 7 that the minimum blocking is 
achieved when arrivals are regular with a separation of m. Our inf may 
be viewed as approaching that of regular arrivals but with a different 
mean [the impulse at b in (10) keeps the equivalent random M and V 
satisfied]. Observe that BL is the blocking probability seen by a renewal 
input with constant interarrival times with mean ml determined from 

e- m1 = cP (1). (22) 

It is shown in Ref. 7 that with a given m, blocking probabilities 
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Fig. 2-Bu, Ber, BL for V 1M = 1. 

arbitrarily close to unity may be obtained by having F (t) consist of a 
step at t sufficiently small and another small step at t sufficiently large. 
This causes most of the arrivals to come tripping on each other's 
heels. Our maximum blocking may be viewed as trying to approach this 
but constrained by V to keep the second step at a finite t. 

IV. EXAMPLES AND DISCUSSION 

Some bounds are shown in Figs. 2 through 4. These results do not 
necessarily imply that the equivalent random method is commonly 
subject to errors of such magnitude. In practice, the method is usually 
applied to superpositions of overflows and these are a special class of 
processes, generally not renewal. * Nevertheless, the relatively large 
differences between the inf and sup blockings suggest that the ap
parent success of the equivalent random method for superpositions of 
overflows cannot be explained solely by the constraints put on block
ings by fixing M and V. Rather, explanation of this accuracy should 
factor in the special structure of such processes. (It may be of interest 
to extend the results of this Brief to take special structures into ac
count.) Furthermore, it is seen that one cannot use an arbitrary re-

* Teletraffic interest need not be confined to simple superposition of overflows from 
trunk groups i e.g., switching center congestion can alter a traffic. 
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1.0~------------------------------------------------------' 

M 

Fig. 3-Bul Berl BL for VIM = 2. 

newal process to represent another process with the same mean and 
variance. 

As an aside, observe that if V / M > 1, the blocking B is bounded 
away from zero no matter how small M is. That is, (6) implies that 

1.0 ~--------------------------------------------------------, 

0.1 

M 

Fig. 4-Bu. Be •. B T• for V 1M = 4. 
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BL of (20) for fixed V /M cannot get below BL evaluated with 
cp(l) = 1 - (M/V). 
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