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Frequency Sampling Filters
Hilbert Transformers and Resonators 

By R. E. BOGNER 

(Manuscript received November 6, 1968) 

We first briefly review the principles of frequency sampling filters. 
We also show that the "conventional" frequency sampling filter can be 
modified simply to give an output which is the Hilbert transform of the 
original output. Both the original and transformed outputs are made 
available by the use of the simple complex number resonator described. The 
relationship between this system and filtering by Fourier transforming 
is shown. 

1. INTRODUCTION 

Frequency sampling filters are filters whose frequency responses are 
synthesized as the sum of elemental frequency responses of the form 
(Fig. la) 1 

where 

V k (f) is the transfer function of the kth response; 
Ak is a constant multiplier, the value of the amplitude response at 

frequency f k; 
f is frequency in hertz; 
f k is the kth sampling frequency = k f II; 
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Fig. 1- (a) Elemental frequency response contribution; (b) Elemental time 
response contribution. 

fo is the frequency interval between samples, that is, fo = h+l-h, 
fo = IjDT, D = delay in samples; 

T is the group delay, a constant for all the responses. 

Because of the constant group delay, the amplitude versus frequency 
response, IV (f) I, of the sum is given by 

(2) 

By choice of the A"" suitable amplitude responses for many applica
tions may be specified. These will be band limited functions of fre
quency_ 

The elemental time responses, vdt) (Fig. Ib) are convenient to 
realize by digital methods. They are truncated cosine waves. 

Figure 2 shows a comb filter, whose impulses occur DT seconds 
apart, followed by a resonator, whose impulse response is a cosine 
wave of frequency an integral multiple of IjDT. The overall impulse 
response is the sum of the cosine responses to the two impulses; this 
is zero before the positive impulse, a cosine from then until DT sec
onds later, and thereafter zero, when the two cosines cancel. 

A complete frequency sampling filter is shown in the left of Fig. 3. 
Usually the resonators have been programmed as conventional second 

COMB 
FILTER RESONATOR 

IN~_j 
DT ~-I ~n ~VV ~OUT 

Cos'2'7Tkt 
DT 

Fig. 2 - Comb filter followed by cosine resonator. 



FREQUENCY SAMPLING FILTERS 

IN HILBERT 
TRANSFORMER 

503 

>-1 h (t) ~ OUT 

Fig. 3 - Frequency sampling filter, followed by Hilbert transformer. 

order systems, with slight damping to ensure stability under condi
tions of error in the resonator coefficients. 

II. USE AS HILBERT TRANSFORMER 

A frequency sampling filter may be readily adapted to give an out
put which is the Hilbert transform of that of the filter described above. 
Consider the sampling filter (Fig. 3) followed by a Hilbert trans
former, h (t). This is equivalent to the system of Fig. 4, where the one 
Hilbert transformer has been replaced by one at the output of each 
elemental filter. Now, in the original frequency sampling filter, the 
kth resonator has an impulse response, for time sampled systems 

Ok(nT) = cos wk(nT), n = 0, 1, 2, ... 

where T is the sampling interval. The Hilbert transformed version of 
this is approximately 

The approximation is discussed in Appendix A. Thus to make a system 
equivalent to the original frequency sampling filter plus Hilbert trans
former, we need only replace the resonators by ones with impulse re
sponses sin Wkt. This could be done by use of modified second order delay 
resonators; but the system of Fig. 5 is more convenient programwise 
and is helpful conceptually. This system has the z transform system 
function 

W(z) = G(z) = 1 
U(z) 1 - Z 1 exp [(a + jw)T] 

(3) 

and corresponding impulse response 

(4) 
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IN 

OUT 

Fig. 4 - Frequency sampling filter with separate Hilbert transformers. 

For a = 0, the real and imaginary parts are cos wnT and sin wnT. A 
small negative value of a would be used for stability. 

The frequency sampling filter then has the form of Fig. 4, with each 
channel containing one complex number resonator instead of the res
onator plus Hilbert transformer. The output at each sampling time is 
a complex number, whose real part corresponds to the output of a 
conventional frequency sampling filter, and whose imaginary part is 
an approximation to the Hilbert transform of the real part. 

In Appendix A, the analysis of the approximation results in the 
following observations: 

(i) The Hilbert transformer cannot handle signals with frequencies 
tending to zero. 

(ii) For signals with low-frequency components, care is necessary 
in specifying the frequency samples to ensure that the negative-fre
quency tail of the positive-frequency response component is of small 
amplitude. 

(iii) The errors are in the amplitude and not phase characteristics. 

The system is capable of filtering a complex input, 1£ + jv without 
modification of the resonators. 

III. RELATION TO DISCRETE FOURIER TRANSFORM 

Consider a = 0. The response of the kth resonator at time nT, 
n = 0, 1, 2, ... , to a unit pulse at time mT is exp [jwk(n - m) T]. 
Hence the response at time nT to a signal s(mT), m = ... , -1,0, 
1, 2, ... is: 

n 

L s(mT) exp [jwk(n - m)T] 

n 

exp (jwknT) L s(mT) exp (- jWkmT). (5) 
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~ + ;--_______ ~-W-(t-)-=_:x: (t) + jy (t) 
IN OUT 

Fig. 5 - Complex number resonator. 

When the comb filter precedes the resonator, the effect of its nega
tive impulse, occurring DT seconds after the positive impulse is to 
add the second term of (6) : 

n 

xk(nT) + jYk(nT) = exp (jwknT) L s(mT) exp (- jWkmT) 
m=-oo 

n 

- exp (jwknT) L sCm - D)T exp (-jwkmT) 
m==-oo 

= exp (jw,nT>[j~:~ s(mT) exp (-jw,mT) 

- m~~ s(mT) exp (-jw,mT) exp (-jw, DT) J. (6) 

But D T is an integral multiple of the period 27r / Wk as mentioned in 
Section I; thus exp (-jwkDT) = 1. Hence 

n 

xk(nT) + jYk(nT) = exp (jwknT) L s(mT) exp (- jWkm'T). (7) 
m=n-D+l 

This expression may be recognized as an oscillation exp (jWkn T) whose 
coefficient is the value at frequency Wk of the Discrete Fourier Transform 
(DFT) of s(mT), computed over the last D samples. The output of the 
frequency sampling filter, taking into account the weights Ak , is 

x(nT) + jy(nT) = L Adxk(nT) + jYk(nT)] 
k 

n 

L exp (jwknT)Ak L s(mT) exp (- jWkmT). (8) 
k m=n-D+t 

This is the Fourier synthesis (inverse DFT) of the frequency function 

n 

Ak L s(mT) exp (-jwkmT), k = 1,2, ... , (9) 
m=n-D+l 

which may be regarded as the product of the running DFT of s(mT) 
and a DFT whose values at frequencies Wk are the Ak . 
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Frequency sampling filtering is thus equivalent to filtering by Fou
rier transforming, multiplying by a filter frequency function, and in
verse transforming. 

The filter frequency function (A k , k = 1,2, ... ) has, so far, been 
considered real. There is no reason why the AT.; should not be com
plex, permitting the filter to have an arbitrary phase characteristic. 
The complex values of the AT.; may be specified in cartesian or polar 
form, the latter being more convenient for amplitude-phase specifica
tion. 

Another way of looking at the resonator output is obtained by re
arranging (7) : 

o 

L s[(m + n)T] exp (-jwkmT). (10) 
m=-(D-l) 

This may be recognized as the DFT of the last D values of s (1r/,T) , 
shifted in time so that the latest occurs at time 'tnT = O. 

IV. CONCLUSION 

The use of complex number resonators in a frequency sampling 
filter provides a Hilbert transformed output as well as the conven
tional filtered output. The system can readily accept a complex time 
function as input, and has a very simple flow chart. The output is 
equivalent to that obtained by the use of Fourier transforms to per
form filtering in the frequency domain. 

A sampling filter subroutine using the ideas presented has been 
written in Fortran IV. It has been used for filtering and Hilbert 
transforming speech signals in a number of tasks. 

V. ACKNOWLEDGMENT 
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APPENDIX A 

Errors in the Hilbert Transformer 

A cosine wave, truncated in time, is the basis of the frequency sam
pling filters. A correspondingly truncated sine wave has been used 
as an approximation to the Hilbert transform of the cosine. The 
errors in this approximation will be analyzed by comparing the 
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Fourier transform of the truncated sine wave with that of the true 
Hilbert transform of the cosine. The analysis is for continuous (that 
is, nonsampled) sines and cosines. 

The truncated cosine response is taken to be 

= 0, 

The F transform of hc(t) is 

elsewhere. 

H 
_ '£ [Sin 7rT(f - ~) sin 7rT(F + ~) l 

e(f) - ') (N) + ( N) J (11) 
... 7rT f - T 7rT f + T 

= Hel(f) + H e2(f) , respectively. (12) 

He (f) may be separated further into main responses and "tails" 
(Fig. 6) : 

where 

H f Hcl(O) f H cl + = cl, > 0; -2-' . = 0; 0, f < 0 

H cl - = 0, f > 0; He~(O), f = 0; H el , f < 0 

H f He2(0) f 
H e2 + = e2, > 0; ~, = 0; 0, f < 0 

H e2- = 0, f > 0; He~(O), f = 0; H e2 , f < o. 

The F transform of the Hilbert transform [he(t)] of he(t) is then 

It(f) = - j sgn (f)He(f) (14) 

= - jHel+(f) + jHct-(f) - jHe2 +(f) + jHe2-(f). (15) 

The truncated sine response is taken to be 

= 0, elsewhere. 
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~ o 

"TAILS" 

FREQUENCY ~ 

Fig. 6 - Components of elemental frequency response. 

The F transform of h,q(t) is 

_ '£ [~ . sin 7rT(f ~ ~) . sin 7rT(f + ~)] (16) 
H 8 (f) - 2 J ( N) + J ( N) 

71'T f - T 71'T f + T 

which by comparison with (11), (12), (13) is seen to be 

H.Ct) - jHe1Ct) + jHe2 Cf) 

-jHe1+Cf) - jHct-(f) + jHe2 +(f) + jHc2-(f). (17) 

Then from (15) and (17): 

H.Ct) = tCCf) - 2jHe1 -(f) + 2jHe2 +C!)· (18) 

The error in approximating HeCf) by H.(f) is thus attributable to the 
tails HC1-Ct) and H e2+Ct), which are small for N » 1. From the defini
tions (11), CI2), CI3), it follows that these tails are related: 

(19) 

In a complete frequency sampling filter, the transforms corresponding 
to all the time responses are to be added. Errors in the "Hilbert trans
formed" output, y, as compared with the straight filtered output, x, 
are determined by the resultant tails; these tails may be of small 
amplitude if suitable values are chosen for the frequency samples. 

Just what criterion of smallness should be applied depends on the 
application. Some general observations may be made, however: 
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(i) The Hilbert transformer cannot be useful to zero frequency 
because a zero frequency sample has tails equal to the main responses, 
and would thus contribute gross errors. This is of course consistent 
with the infinite duration of the impulse response (lIt) of a true 
Hilbert transformer. 

(ii) To transform signals with low frequency components, many 
frequency samples may be required to provide the sharp and con
tinued cutoff required for tail suppression. 

(iii) Since H c1 - (-f) = H c2+ (f), it follows from (l8) that the 
errors, associated with H c1- (- f) and H c2+ (f) are directly in or out 
of phase with the relevant main responses. The error in the Hilbert 
transform is thus an amplitude and not a phase error. This result is 
also consistent with the observation that the approximate Hilbert 
transformed response to an impulse is truly odd. 

APPENDIX B 

Relationship between Complex Number Resonator and Conventional 
Second Order Resonator 

VVhile the formal transform relation between (3) and (4) is readily 
shown, it is satisfying to explain how the seemingly first order delay 
system can produce an oscillatory response. The system of Fig. 5 is 
described by the equation 

x(mT) + jy(mT) = u(mT) + e( a+jw) T[x(m - 1) T + jy(m - 1) T] (20) 

When a pulse u(O) = 1, with zero before and after is applied, the first 
response is 

x(O) + jy(O) = 1 + jO 

The next response is simply the first response multiplied by e(a+i
w

) T 

x(1 T) + jy(1 T) = e( a+;w) T (1 + jO); 

there is a similar multiplication at each subsequent sampling instant, 
yielding the impulse response 

x(nT) + jy(nT) = en
( a+;OJ T), n = 0, 1, 2 ... , (21) 

equivalent to (4). 
The complex number resonator may be shown to contain a second 

order delay feedback, making its oscillatory response consistent with 
that of the more conventional second-order systems. Its equation (20) 
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u r----------------------.---ox 

_eaT SINwT 

eaT SINwT 

eaT coswT 

r----------------------4---oy 

Fig. 7 - Expanded flow chart for complex number resonator. 

may be examined by equating separately real and imaginary parts: 

x(mT) = u(mT) + (e a 
T cos wT)x[(m - l)T] 

- (e a T sin wT)y[(m - l)TJ (22) 

y(mT) = (e a 
T sin wT)x[(m - 1) T] + (e a 

T cos wT)y[(m - 1) T] (23) 

Equations (22) and (23) may be represented by the flow chart of 
Fig. 7. There is, in fact, a path of delay two sampling intervals from 
the real output x, via y, the imaginary part of the output, back to 
x. Thus, y could be considered to provide the necessary memory for 
the second delay. 

One aesthetically pleasing feature of the representation (Fig. 7) is 
the symmetry. If a complex input, u + jv were to be filtered, then v 
would be found to be applied to the lower summer. 
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Scattering from Dielectric Mirrors 

By D. GLOGE, E. L. CHINNOCK, and H. E. EARL 

(Manuscript received September 9, 1968) 

Most of the light scattered from high-reflectivity dielectric mirrors is 
radiated into directions close to the reflected beam. We measured the angular 
power distribution at angles between 0.010 and 1 0 from the beam axis by 
scanning with a narrow slit. From this a linear structure function is 
calculated for coherence lengths between 20 microns and 1 millimeter, 
assuming isotropic surface statistics. The corresponding power density 
decreases with the third power of the scattering angle. The power outside 
a given radius and the pOWe1' density is plotted for various wavelengths 
and distances. 

1. INTRODUCTION 

The improvement of dielectric mirrors during recent years has re
duced their surface scattering considerably. Nevertheless, there are 
applications which are limited by these small amounts of scattered 
light. One of them is the laser gyroscope whose locking threshold 
depends on the light scattered back into the direction of incidence. 
Measurements have been performed recently to analyze this case.1 

Another application is the simultaneous transmission of many laser 
beams in an optical waveguide for communication purposes.2 The 
focusers in such a guide will probably be front surface mirrors rather 
than lenses because, for the large apertures needed, lenses are apt to 
have imperfections in the bulk. Dielectric mirrors have fewer im
perfections, but they still scatter some light into adjacent beams where 
it produces crosstalk. It was the purpose of our experiment to measure 
some representative mirror surfaces as a basis for later feasibility 
studies on multiple beam waveguides. Only the light in a narrow cone 
around the beam is collected by the next focuser and eventually con
tributes to the crosstalk. The experiment showed that, in this cone, 
the scattered light intensity decreases relatively fast with increasing 
angle. 

511 
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Applying these results to more complicated problems requires a 
simple but adequate mathematical representation of the results. We 
found that the standard scattering theory, which uses a covariance 
function to describe the mirror surface statistics, serves this purpose 
very poorly.3 On the other hand, a simple structure function can be 
found which is a satisfactory representation of the physical reality in 
the range of the measurements and is easily applicable to practical 
problems. 

II. SCANNING THE SCATTERED POWER DISTRIBUTION 

The measurements were performed with a 50-cm He-Ne laser gen
erating a 1-milliwatt gaussian beam at 6328A. To achieve enough 
sensitivity and discrimination against noise, the laser beam was 
chopped for signal processing in a lock-in amplifier as shown in Fig. 1. 

A slit was used to scan the scattered light. This requires scanning 
only in one direction (while the slit averages over the perpendicular 
coordinate) and more signal power is collected than with a pinhole 
method. Because of its circular symmetry, the scattered power den
sity can be calculated from this measurement by a simple integral 
transformation. 

To avoid scattering from dust particles in the beam path to and 
from the mirror, this path was evacuated to about 4 torr. But care
ful comparison with measurements in unfiltered, though quiet, air 
showed no measureable difference. 

The mirror had a radius of curvature of 24 m and a diameter of 
15 cm. The beam, having a lie-width of 24 mm at the mirror, was 
focused to 0.8 mm in the plane of the slit. The slit was 0.15 mm 
wide. Figure 2 shows the relative intensities normalized to the peak 

HORIZONTAL SCANNING 
FOR SLIT AND MULTIPLIER 

I I 
I I 
I I 
I I 

EVACUATED 24 m RADIUS MIRROR 
TO 4 TORR TO BE TESTED 

Fig. 1-Setup to measure the scattering under vacuum. 
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Fig. 2 - Scattered power at 24-m distance normalized to the peak power 
(the vertical lines are part of the coherent beam profile). 

intensity in dB and plotted versus the vertical coordinate. In this 
logarithmic plot, the gaussian intensity profile of the coherent signal 
has a parabolic shape, part of which is represented by the almost 
vertical lines in the center of Fig. 2. If diffraction and spherical 
aberrations are taken into consideration, the fall-off is not quite as 
sharp as indicated by the parabola, but these effects were estimated 
to be well below the light levels measured. Therefore, we believe that 
surface scattering is the sole source for our results. The scanning 
range in Fig. 2 corresponds to angles from 0.01 to 0.1 degree. 

For larger angles up to 1 degree, a I-m set-up was used which was 
basically similar to the one shown in Fig. 1, but had no vacuum en
closure. The five mirrors tested in this arrangement had a radius of 
curvature of 1 m, a diameter of 25 mm, and the same coating as the 
24-m mirror. The test beam in this set-up was 4 mm wide at the mirror 
and was focused to 0.2 mm at the slit. The slit had a width of 0.05 
mm. Coatings from different batches showed up to 3 dB difference. 
Figure 3 shows average and variation of the results. Again the in
tensity normalized to the peak intensity is plotted in dB. The profile 
of the coherent beam is shown in the center. 
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Fig. 3 - Scattered power at I-m distance normalized to the peak power (the 
vertical lines are part of the coherent beam profile). 

Both the 24-m mirror and the 1-m mirror were polished and 
coated by the same methods though by different manufacturers. They 
were tested to be spherical within "-/10. The reflection loss of the 24-m 
mirror was measured by a multiple reflection technique to be 0.135%. 
The mirrors were measured new without previous use, but no increase 
of the scattering was measured by repeated checks during the follow
ing weeks. Further lifetime studies are under way. 

III. DESCRIPTION OF THE SCATTERING SURFACE 

The scattering plotted in Figs. 2 and 3 originates from a slight 
roughness or ripple structureS (X, Y) on the mirror surfaces which 
is, of course, different for different mirrors. The surfaces tested in this 
experiment, however, were manufactured by the same process and 
are therefore equivalent in a statistical sense. That implies that the 
average magnitude of each ripple component, that is, the "power spec
trum" of S (X, Y), is the same from mirror to mirror. The average 
has to be taken over an ensemble of test surfaces; however, for cor
relation lengths small compared to the test area, the ensemble average 
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may be replaced by an average over the individual surface. In this 
case, measuring only one or a few surfaces still yields a meaningful 
result, though only for correlation lengths small compared to the 
radius w of the light beam at the mirror surface. 

The "power spectrum" is closely related to the scattering profile 
measured by the slit method. A vertical slit at X', as in Fig. 4, col
lects mainly light scattered from the vertical ripple component with 
the spatial frequency 

X' x =-
LA 

(1) 

where A is the light wavelength and L the distance between slit plane 
and mirror. Therefore, apart from a constant, the scattered profile 
s (X') of Figs. 2 and 3 agrees with the "power spectrum" dx(x) of 
S (X, Y) for Y = constant.* The quantitative relation between dx and 
s is given in (38) of Appendix A and reads 

LA
3 

( 7rwt ) 
dx(x) = 167r2 t erf V2 AL s(x). (2) 

where t is the slit width and w the 1/ e-width of the gaussian light 
beam at the mirror surface. A log-log plot of dx (x) is shown in Fig. 
5. The points on the left hand side are taken from Fig. 2 and rep
resent the 24-m experiment, the ones on the right hand side stem 
from Fig. 3 and the I-m experiment. Since the mirrors are statistically 
equivalent, all these points belong to the same function. A rough ap
proximation is attempted by the straight line in Fig. 5 which represents 
the function 

with 

D 
=2 

X 

D = 6.10-14 mm. 

(3) 

(4) 

The Fourier transform of dx is the covariance ofS (X, Y) along 
lines Y = constant. 3 It proves impossible, however, to perform this 
transform without knowing dx for very small x where it increases 
rapidly. Accurate information about this range is unnecessary if the 

* Strictly speaking, s(x) is a two-fold convolution of d",(x) with the intensity 
profile of the beam and the slit aperture function; but because the latter two 
functions are very narrow as compared to the scattered profile, the above sim
plification is appropriate. 
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x' 

Fig. 4 - Sketch of the experiment showing the coordinate system used. 

structure function 

6(Xl - X 2 , Y1 - Y2) = ([O(XI , Y1) - O(X2 , y 2)]2),w (5) 

is used instead. The interrelation between ~ and dm is derived in the 
Appendix A and given in (39). It involves the transformation 

irfJ 

dx(x) sin2 (7rXx) dx. 

The sin2-kernel of this transformation reduces the contribution from 
the zero-end of the dm-function and ~ (X, 0) can therefore be calculated 
more accurately in the range of interest than the covariance. 

Inserting (3) into (39) yields the functional approximation 

(6) 

where X has the meaning of a correlation length. In the range X < w, 
which is shown in Fig. 6, the structure function (6) is essentially a 
straight line given by 

(7) 

This result suggests that the mean square difference between sam
ples of 8 increases proportionally to the distance at which they are 
taken. At the right side of Fig. 6 the quantity (~) % can be read off, 
which indicates a direct measure of the heights of the surface ir
regularities as a function of their extension about the surface. This 
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Fig. 5 - Power spectrum of the mirror surface roughness. The line represents 
a best-fit approximation to the measured points. 
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quantity does not, at least not in the measured interval, approach a 
definite rms value, but increases unlimited for larger and large sam
pling distances. This is not necessarily in contrast to physical reality, 
but one has to keep in mind that, for macroscopic sampling distances, 
the statistics of 8 are probably governed by a different process, which 
could mean a steeper rise as well as a leveling off for the structure 
function. 

Unknown contributions from outside the measured interval of dx 

will to some degree affect the accuracy with which (7) can be evaluated. 
Ruling out any poles of dx for x ~ 0 (which would mean nonstatistical 
components), a "worst case" may be established by assuming that (3) 
holds only in the measured interval Xl < X < X2 , everywhere else 
dx(x) = o. Then from (39) with X « w and A « 1 

A(X,O) = 8D fX. sin
2 

(~Xx) dx 
Xl X 

(8) 

with Xl = 0.3mm-1 and X2 = 30mm-1 • The dashed line in Fig. 6 shows 
the evaluation of this integral. The accuracy seems satisfactory for 
coherence lengths between 20,p. and 1 mm. 

Though A (X, 0) describes the statistics ofS only along lines Y = 
constant, this result can easily be generalized assuming that the mir
ror surface is isotropic. Then the structure function has circular 
symmetry and can be expressed as a function of the radius R = 
(X + y2) lh. This function reads 

A(R) 

where A (R, 0) is given by (7). 

A(R, 0) 

IV. THE DISTRIBUTION OF THE SCATTERED POWER 

(9) 

For most applications the actual scattered light distribution around 
the beam is of more immediate interest than the structure function. 
Of course, this light distribution not only depends on the properties 
of the mirror, but also on the properties of the light beam reflected 
off the mirror. More specifically, this light distribution is the convolu
tion of the intensity profile of the primary beam with the "power 
spectrum" of the mirror irregularities. Only when the beam profile 
is very narrow, as in our experiment, do the scattered light distribu
tion and the "power spectrum" become proportional functions. 

In this section we evaluate this distribution for various optical 
wavelengths in arbitrary cross sections of the beam. If applied to 
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problems where the width of the beam may not be neglected, the 
convolution of this function with the intensity profile of the beam has 
to be formed. 

Because of the isotropy of the mirror surface, the scattering has 
circular symmetry. If we define a normalized radius r = (x2 + y2) %, 

the scattered light distribution p (r) can be calculated from (32) of 
Appendix A. By substituting x by r in (32), one obtains 

(10) 

where r is related to the radius R' = (X'2 + y/2) % by the normaliza
tion 

R' r = --. 
L}" 

(11) 

One can solve (10) for p(r) by multiplying both sides by xdx/ 
(x 2 

- r2) % and integrating with respect to x from r to 00.4 After inter
changing the order of integration on the right-hand side, the integral 
over x can be evaluated and one obtains 

L}.. fC() xs(x) dx fC() 
2t r (x2 _ r2)~ = r 27rrp(r) dr. (12) 

The integral on the right represents the total power scattered out
side a circle with radius r and will be called Per) in the following. 
Insertion of (2), (27), and (35) into (12) yields 

87r2 fC() xdx(x) dx 
Per) = P tot 7 r (x 2 _ r2)! ; (13) 

and the power density per) is finally obtained from the differentia
tion 

per) = 
1 dP 

(14) ---. 
27rr dr 

By using (3) for dx in (13), one obtains for the power outside the 
radius r 

47r3 D 
Per) = 7 -:;: P tot (15) 

and the power density 

27r2 D 
per) = ~2 -;'3 P tot • (16) 
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To gain information about the power density as a function of the 
scattering direction, one may multiply (11) by A and find the scat
tering angle 

R' 
P = Ar = -. 

L 
(17) 

The power scattered into directions deviating by more than p from 
the beam axis is obtained by inserting (17) into (15) 

(p) 47r3 D 
P x =-i:-;;Ptot • (18) 

The derivative with respect to p yields the angular power density 

1 dP 27r2 D 
pp(p) = -27rp dp = X;3 Ptot • (19) 

Equations (18) and (19) are evaluated for various wavelengths in 
Figs. 7 and 8. Figure 7 shows the power fraction outside p which de
creases linearly with increasing radius. Fig. 8 shows the power frac
tion radiated into a given solid angle at p. This function decreases 
with the third power of p. 

Finally, for a certain distance L, one finds the power arriving out-
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Fig. 7 - The total power fraction scattered with an angle larger than p off 
the beam axis for various wavelengths A. 
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Fig. 8 - The angular power density as a function of the scattering angle p 
for various wavelengths A. 

side a circle of radius R' to be 

3 DL 
= 47r );R' P tot (20) 

and the derivative with respect to R' yields 

1 dP 2 DL 
PR'(R') = -27rR'dR' = 27r "AR'3 P tot' (21) 

where PR' is the scattered power density at a distance L. Equation (20) 
is plotted for various L in Fig. 9. Figure 10 shows the power density 
versus the radius which decreases with the third power of R'. It is 
interesting that the power density at a fixed radius increases pro
portional to the distance from the scatterer. 

Of course, equations (15) through (21) hold only for r < 0.3 mm -1, 
the lower limit of the interval measured, and are based on the assump
tion that (3) is valid for r > 30 mm -1. However, as d., is small in the 
latter region, a possible error introduced by this assumption should not 
be significant in the range of interest. 

V. CONCLUSIONS 

The small angle scattering was measured for very highly reflecting 
dielectric mirrors. A reasonable functional "approximatioiI for the 
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measurements leads to a linear structure function for coherence 
lengths between 20 microns and 1 mm. The rms difference between 
surface deviations found at two points 1 mm apart is 30 Angstroms 
and decreases with the root of the distance for points closer together. 
At an angle of 0.10 the scattered power density per cm2 is 10-6 of the 
total power. It decreases proportional to the third power of the angle 
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and linearly with the light wavelength. No considerable differences 
were found for mirrors polished and coated by two different manu
facturers which were using the same processes and chemicals. 
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APPENDIX 

The Structure Function 

Consider a coherent Gaussian beam of wavelength A to be reflected 
off the mirror in Fig. 4 and focused on a plane with a slit. Assume 
that unperturbed phase fronts emanating from the mirror were 
spherical with a field distribution 

E(X, Y) = Eo exp [- (X2 + y2)/1l]. (22) 

The mirror diameter may be considered sufficiently large compared 
to the lie-width w so that the field at the mirror edge may be 
neglected. In this case, the field in the focal plane is 

I(x, y) = Ji:CQ e- i27r 
(X" + YY)E(X, Y) dX dY . (23) 

where 

X' Y' 
x=- and y--LA - LA (24) 

are the normalized coordinates in the focal plane (see Fig. 4). The 
solution of (23) is 

I(x, y) = Eo1l7r exp [_7r2
W

2
(X

2 + y2)]. 
The total power 

2 

7rW E" P tot = 2 10 

can be calculated by integrating (22) or (25). 

(25) 

(26) 

Assume that the slit in the focal plane is long enough to collect all 
the power in y-direction and has a width t in x-direction. Then for 
X' = 0 the signal received is 

( 
7rwt ) 

S(O) = P tot erf v2 LX (27) 
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where erf denotes the error function. This is the peak signal measured 
with no scattering present. However, for the case in question where 
the scattered power is less than a percent, (27) can also be used for 
the peak center signal of the scattering profile. 

The scattering under consideration originates from a slight rough
ness 0 (X, Y) of the mirror surface which gives rise to a phase varia
tion 

471" 
cp(X, Y) = T o(X, Y) (28) 

on the otherwise perfect phase front. The term 8(X, Y) is assumed 
to be a gaussian random process with isotropic statistics. Its structure 
function is given by (5). 

It can be shown that for gaussian statistics5 

(exp i[I'(X, , Y,) - I'(X, , Y,)]) = exp [ - ~' /1]. (29) 

The power density in the focal plane can be calculated from (23) by 
introducing the phase factor exp [-i<p (X, Y)] and then multiplying 
(23) by its conjugate complex. Using (29) yields finally 

+00 

-00 

·exp [ -~~' /1(X, - X" Y, - y,)] 
. exp [-i271"(Xl - X 2)x] 

. exp [-i271"(Yl - Y2)y] dX dX2 dY1 dY2 . (30) 

After a standard coordinate transformation, this becomes 

p(x, y) = P tot JL:oo 

exp [_(X2 + y2)/2w2] 

·exp [ -~~' /1(X, Y)] exp [-i2 .. (Xx + Yy)] dX dY. (31) 

To measure the relatively flat power distribution outside the co
herent beam, one may average over the slit width t and consequently 
the signal measured in this region is approximately 

t f+oo 
Sex) = L~ _~ p(x, y) dy. (32) 
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Because of (31), this becomes 

S( ) t P f+oo [1 X
2 

87r
2 

(X O)J -i27rXX d V 
x = I>: tot -00 exp -2" w2 - ~.1 , eA. 

For experimental convenience the normalized signal 

Sex) 
sex) = S(O) 
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(33) 

(34) 

was measured and plotted in Figs. 2 and 3. From (27) and (33) one 
finds 

t [ (7rwt )J-1 sex) = LA erf v2 LA 

• f+OO [_! x 2 

_ 87r
2 

A(X O)J -i27rXX dX exp 2 2 '\ 2 "-l. ,e . 
-00 W 1\ 

(35) 

Inverting the Fourier transformation in (35) yields 

LA f ( 7rwt ) f+oo () i27rXX d = -- er -- s x e x. 
t v2 LA -00 

(36) 

The evaluation of this integral is problematic for small x where the 
measurements are impeded by the coherent beam, but where s (x) is 
large and contributes significantly to the dc component of A (X, 0). 
To overcome this difficulty, the identity A (0, 0) = 0 can be used 
which is based on the definition (5) of the structure function. Incor
porating this identity (36) can be rewritten in the form 

[ 
1 X

2 

87r
2 J 1 - exp -2" w2 - ~.1(X,O) 

LA f ( 7rwt ) f+oo () [1 i27rX:rJ d = -- er -- s x - e x. 
t v2 AL -00 

(37) 

The function 

(38) 

may be interpreted as the "power spectrum" of a (X, Y) for Y = 
constant. Consequently, x has the me~ning of a spatial frequency 
related to the Fourier components of a along lines Y = constant. dx 
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as well as s are even functions of x. Therefore, the solution for ~ (X, 0) 
can be written in the form 

}..2 { 1 X
2 

[ .1 (X , 0) = -2 ---2 - In 1 
87r 2 10 

64 2100 

]} ~~ 0 dx(x) sin2 
(7rXX) dx . 

(39) 
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Apparent Increase in Noise Level 
When Television Pictures 

Are Franle-Repeated 

By F. W. MOUNTS and D. E. PEARSON 

(Manuscript received October 16, 1968) 

Subjective measurements were made of the apparent increase in noise 
level which occurs when television pictures are frame-repeated. We show 
that in all cases of practical interest this increase is small (less than 3 dB), 
that it is dependent on the type of scanning (greater increases with line
sequential than with line-interlaced scanning), and that it is relatively 
independent of the picture signal-to-noise ratio. At smaller numbers of 
repetitions-the region which shows most promise for practical schemes of 
bandwidth saving-the increase in apparent noise level with increased 
frame-repetition is most rapid. 

I. INTRODUCTION 

Seemingly attractive schemes for compressing the bandwidth of tele
vision signals sometimes render the signal highly sensitive to noise. 
As a result, the signal-to-noise ratio requirement for the channel be
comes extremely large.1 If this requirement is not met, the errors 
caused by the noise degrade the picture to an intolerable degree. Thus, 
noise is a great obstacle to the success of bandwidth-saving schemes, 
and the authors of any such schemes should always take care to check 
the noise-sensitivity of their compressed signals. 

vVe report in this paper on some measurements we have made of 
the noise-vulnerability of picture signals in a frame-repeated tele
vision system. In a previous paper concerned with the possibilities of 
bandwidth-saving by frame-repetition or frame-replenishment, Brain
ard, lVlounts, and Prasada made the observation that with increasing 
numbers of repeated television frames there appears to be an increase 
in the picture noise leve1. 2 The noise pattern is "frozen" for the repeti
tion period; this tends to make it more visible to the eye. Any source 

527 
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noise, such as that created by delta modulation or pulse code modula
tion (PCM) , or any channel noise, such as random gaussian noise, has 
its effective power raised by the process of frame-repetition. 'Ve at
tempted to measure this apparent increase in noise power in quantita
tive terms to determine what improvements in modulation methods or 
channel noise levels would be required if television pictures were 
frame-repeated. 

II. EXPERIMENTAL EQUIPMENT 

The equipment used to produce the frame-repeated pictures has 
been fully described in Ref. 3. For the experiments reported in this 
paper random noise was added to the video signal prior to frame
repetition. An automatically-timed switch was arranged to present, 
alternately, on a single display monitor, frame-repeated and non
frame-repeated (standard) versions of the same picture. Controlled 
amounts of noise could be added to the frame-repeated picture by 
the experimenter and to the standard comparison picture by the sub
j ect. This arrangement permitted the subj ect to carry out a visual 
match of the levels of noise in the frame-repeated and standard pic
tures. A block diagram is given in Fig. 4; a more detailed descrip
tion of the apparatus is given in Appendix A. 

III. EXPERIMENTAL METHOD 

The method we used to measure the apparent increase in noise 
level in a frame-repeated picture was to ask 24 subjects to view in 
succession frame-repeated and standard versions of the same picture. 
With controlled amounts of noise added to the frame-repeated picture 
by the experimenter, the subjects were required to adjust the noise 
level in the standard picture until the noise level in the two pictures 
appeared to be the same. The difference in the actual or measured 
noise levels was taken as the apparent increase in noise level. Judg
ments were obtained for various numbers of repeated frames, for 
both interlaced and sequentially-scanned pictures, and for several 
values of signal-to-noise ratio. The study was restricted to band
limited white gaussian noise. A single still picture (Fig. 1) was used 
in all the trials as a background against which the noise was viewed. 
Details of the test conditions and subject instructions are given in 
Appendix B. 
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Fig. 1-Test picture used in the experiment. 

IV. RESULTS 

Averaged results for the 24 subjects are shown in graphical form in 
Figs. 2 and 3. In both sets of graphs the average apparent increase in 
noise level is plotted as a function of the repetition ratio. With se
quential scanning (Fig. 2) the time taken to scan a complete frame 
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was 1/60 second, whereas with interlaced scanning (Fig. 3) it was 
1/30 second. This fact often leads to semantic confusion when com
paring the two cases; what we have termed 2: 1 frame-repetition of 
an inter laced picture is sometimes loosely referred to as 4: 1 frame
repetition by virtue of the fact that the time period during which the 
picture is repeated is the same as that for 4: 1 sequentially-scanned 
pictures. To emphasize our usage we have indicated the repetition 
period in seconds along the horizontal axis in all graphs. 

Separate curves are plotted for each of the three signal-to-noise 
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ratios used in both sequential- and interlaced-scan conditions. These 
signal-to-noise ratios are the true or measured ratios and refer to 
the frame-repeated picture, not the standard picture used for a com
parison; thus, at higher numbers of repetitions the apparent signal
to-noise ratios are less than the stated figures by an amount equal to 
the ordinate of the curve. No attempt has been made to fit a smooth 
curve to the measured points as there was no way of knowing what 
type of curve to fit. Instead, the points have been connected by 
straight-line sections. 

Several subjects experienced difficulty in adjusting for subjective 
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equality when the signal-to-noise ratio was 50 dB in the sequential 
case and 53 dB in the interlaced case. At these levels the noise is very 
near the threshold of visibility, and even allowing for the increase in 
noisiness with frame-repetition, the noise is barely perceptible. Fur
thermore, at these signal-to-noise ratios small alterations in noise 
level are much less noticeable than at 30 dB or 40 dB signal-to-noise 
ratios. The subjects discovered that for a 50 dB signal-to-noise ratio 
they could rotate their attenuator control through a number of steps 
without affecting the relative appearance of the two pictures. Two 
subjects maintained that altering the attenuator over its full range 
made no perceptible difference to the picture at 50 dB, and in con
sequence, when presented with a comparison at this noise level, merely 
reiterated their setting for the previous presentation. The variability 
of the 50 dB settings, as compared with the 30 dB and 40 dB settings, 
reflects these difficulties. In Figs. 2a, b, and c, and 3a, b, and c the 
standard deviations (J' of the plotted means are shown. These were 
calculated according to the formula 

[ 
1 24 2J! 

(J' = 24 ~ (Xi - (X)av) 

where the Xi are the 24 results whose mean (X\v is plotted in the 
graph. The vertical lines about each plotted point extend to ±(J'. 
Figure 2d is a superimposition of Figs. 2a, h, and c for comparison 
purposes. Similarly Fig. 3d is a superimposition of Figs. 3a, b, and c. 

V. DISCUSSION 

A point of interest about the results is the obvious difference be
tween the graphs for interlaced and sequentially-scanned pictures. 
The apparent increases in noise level are substantially larger in the 
sequential case (Fig. 2) than in the interlaced case (Fig. 3). For ex
ample, consider four presentations of each picture. From Fig. 2d 
the average increase in noise level for sequential scanning is about 
3 dB, while from Fig. 3d the increase is seen to be a little over 1 
dB. If this comparison is deemed to be unfair because the period of 
repetition is not the same in each case, then consider the 4: 1 frame
repeated sequential case against the 2: 1 frame-repeated interlaced 
case. Again, the difference is substantial. 

A partial explanation of this difference may be given in terms of 
the time period of repetition. The scanning of a single frame takes 
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twice as long in the interlaced case as it does in the sequential case. 
Thus, in standard or non-frame-repeated interlaced pictures every 
noise sample or element on the screen is seen for twice as long (1/30 
second) before replenishment by a different noise sample as it is in 
sequentially-scanned pictures (1/60 second). t, With a 2: 1 frame
repeated sequentially-scanned picture, noise samples are replenished 
by different samples every other frame, that is, also at 1/30 second 
intervals. Therefore, crudely speaking, a standard interlaced picture 
is a 2: 1 frame-repeated sequentially-scanned picture with a different 
order of line presentation. Hence, from Fig. 2 we would expect about 
1.5 dB difference in the apparent noise level between standard inter
laced and standard sequential pictures having the same added noise 
pattern, with the sequential picture having the higher apparent signal
to-noise ratio.t We have observed with our system that, by taking 
a picture with a fixed amount of added noise and changing the read
out method from sequential to interlaced with no frame-repetition, 
there appears indeed to be a slight increase in noise level.:!: This ob
servation is only that of the authors, however, and we have yet to 
confirm it under properly-controlled conditions with a larger sample 
of subjects. Until this experiment is performed it should not be as
sumed, from Fig. 2 and 3, that a 4: 1 frame-repeated sequential pic
ture looks noisier than a 2: 1 frame-repeated interlaced picture, each 
having the same signal-to-noise ratio. 

If an ordinary interlaced picture can be equated to a 2: 1 frame
repeated sequential picture, it follows that the upper portion of Fig. 
2d, above a horizontal line drawn through 1.5 dB, should correspond 
to Fig. 3d. It can be seen that this correspondence is by no means 
exact, although in the case of the 30 dB signal-to-noise ratio curve it 
is quite close. The 50 dB curves are unreliable because of the pre
viously-mentioned difficulties of adjustment at low noise levels, so 
that the 40 dB curve represents the main discrepancy and obstacle to 
accepting the correspondence. In Fig. 2d the 40 dB curve closely 
follows that of the 30 dB curve (an analysis of variance showed no 
significant difference between the plotted points) while in Fig. 3d 
the 43 dB curve diverges from the 33 dB curve and dips down to zero 
at higher repetitions. We carefully examined this phenomenon and 

* The decay time of the phosphor may be considerably less than 1/30 second, 
but the sample is seen for a longer period owing to the persistence of vision. 

t Having the same added noise pattern implies a 3 dB difference in their 
signal-to-noise ratios (see Appendix A). The interlaced picture has the higher 
actual SIN. 

:j: Roughly estimated at between 1 and 3 dB. 
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conclude that it may well be explicable in terms of an interference 
or masking effect due to the interline flicker. At high levels of noise 
the masking is inoperative, but at lower levels it becomes predominant 
and acts to reduce the apparent noisiness. It also has a greater effect 
on the large-grain slow-moving noise produced by the higher repeti
tions. These conclusions are derived from personal observation and 
are tentative, but they do explain the shape of the Fig. 3 curves to 
some extent. A further point which should be clearly borne in mind 
in evaluating the curves is that the difference limen for random noise 
is probably at least 1 dB at 30 and 40 dB signal-to-noise ratios and 
greater at 50 dB signal-to-noise ratio; the increases in apparent noise 
level and variations in the apparent increase which are being con
sidered are therefore quite small and, to the average person, fre
quently indiscernible. 

Another point of interest in the graphs (more evident in Fig. 2 than 
Fig. 3) is the rapid rise in apparent noise level at small numbers of 
repetitions followed by a general flattening out or saturation above 
1/15-1/10 second (66-100 milliseconds). This corresponds roughly 
to the integration period or critical duration of the eye. 4 Below the 
critical duration, the eye sums "frozen" noise frames and sees increas
ing granularity with increasing frame-repetition. Above the critical 
duration the granularity stays constant, but the apparent spatial 
movement of the noise becomes slightly more noticeable with larger 
numbers of repetitions. It is unfortunate that in the region which 
shows most promise from the point of view of useful band-compres
sion without noticeable picture deterioration (2: 1, 3: 1, or 4: 1 se
quential and 2: 1 interlaced) the increase in noise level is most rapid. 

Notice finally, that subjects exhibited a slight bias in preference in 
the experiment toward the standard comparison picture. This can be 
seen in Figs. 2 and 3 by the positive intercept in apparent noise level 
increase at the 1: 1 repetition ratio in all the graphs. This bias may 
have been due to slight differences in the brightness and contrast of 
the frame-repeated and standard pictures, as well as to difficulties in 
measuring signal-to-noise ratio to an accuracy of less than 1 dB. 

VI. CONCLUSIONS 

The apparent increase m noise level due to frame-repeating is 
fairly small: between 1 and 3 dB in the range of repetition ratios 
which are likely to be of practical interest for bandwidth-savings (up 
to 4: 1 with sequential-scanning, 2: 1 with interlacing). 
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With sequentially-scanned pictures the increase in apparent noise 
level is greater than with interlaced pictures, but interlaced pictures 
appear to be noisier to start with. Without further experimentation 
it is not possible to say with certainty whether a frame-repeated 
sequential picture is noisier than a frame-repeated interlaced picture, 
when each has the same signal-to-noise ratio. 

The rate of increase in apparent noise level is greatest in the region 
which shows most promise from the point of view of useful bandwidth
saving without picture deterioration (up to 4: 1 frame-repetition with 
sequential scanning, 2: 1 interlaced). 

The apparent increase in noise level is largely independent of 
signal-to-noise ratio, with one possible exception: low-level noise in 
interlaced pictures appears to be masked by interline flicker at the 
higher numbers of repetitions. 
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APPENDIX A 

Details of the Experimental Apparatus 

A block diagram of the experimental equipment is shown in Fig. 4. 
A 60 frame per second, 160-line, sequentially-scanned video signal 
was derived from a vidicon camera. To this signal random gaussian 
noise at one of two levels was added, dependent on the setting of 
switch 8 1 • In position A, corresponding to frame-repetition (see linked 
switch 82 ) , the noise level was completely and solely under the control 
of the experimenter (attenuator I), and in practice was set such that 
the signal-to-noise ratio (measured as the peak-white to black-level 
signal voltage divided by the rms noise voltage) was, in the case of 
line-sequential scanning, either 30, 40 or 50 dB at the display moni
tors. For line-interlaced scanning the levels of added noise were not 
changed, giving values of signal-to-noise ratios 3 dB higher at the 
display monitors, that is, 33, 43 and 53 dB. This was because the 
different manner of readout from the frame store with interlacing 
effectively reduced both signal and noise bandwidths by a factor of 
2. In the B position the noise level was determined in part· by the 
experimenter (attenuator II) and in part by the subject. The experi
menter would, in practice, set attenuator II to 8 dB less than attenua-
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tor I, that is, to give a 22, 32 or 42 dB signal-to-noise ratio (sequential 
scanning). The subject's attenuator was adjustable in steps of 1 dB 
over a range of 10 dB, so that, given, for example, a 32 dB setting on 
the experimenter's attenuator II and 40 dB on attenuator I, the sub
ject could vary the signal-to-noise ratio over the range 32-42 dB. 
This proved to be an adequate adjustment for the subject to match 
A and B noise levels in almost all cases. 

Subsequent to the addition of noise, the video signal was passed 
through a low-pass filter of bandwidth 768 kHz to the frame-repeat
ing equipment.* This equipment, consisting of a PCM encoder, 
memory, decoder, and control logic, has been fully described in Ref. 
3. With switch S2 in position B no frame-repetition occurred and the 
picture seen on the subject's and the experimenter's monitor screens 
was a standard 60 frame per second picture with added noise. vVith 
the switch in position A, however, every nth frame was stored in the 
memory and read out to the display monitors n times in succession. 
The experimenter was able to select any n in the range 1-11. By 
means of switch S3 (independently controlled and not linked to any 
of the other switches) the experimenter could choose to display the 
contents of the memory in either line-sequential or line-interlaced 
fashion. In both cases readout from the memory was line-sequential, 
the interlacing being produced by subsequently blanking every alter
nate line of the readout (the blanking signal was delayed by one line 
period in alternate readout scans to give the interlacing effect). The 
subjective effect of this type of interlacing is exactly equivalent to 
conventional interlacing when a still picture is used. For example, 
consider a single stored frame of a plain white picture to which noise 
has been added. In both the conventional interlaced readout and the 
sequential alternate-line readout, the noise patterns as seen on the 
display monitor will be identical. Viewers will not appreciate that, in 
the alternate-line blanking case, the lines are scanned at twice the 
rate with pauses in between lines. With conventional interlaced read
out the noise bandwidth and the noise power are halved, and the peak
signal to rms noise ratio increased by 3 dB. A corresponding 3 dB 
increase in signal-to-noise ratio has, therefore, been assumed for the 
alternate-line blanking method used in this instance. 

In both interlaced and sequential cases the memory readout was 
displayed on a sequentially-scanned monitor. Linked to S3, but not 
shown, was an arrangement of attenuators in the video path to the 

* The characteristics of this filter are fully described in Ref. 3. 
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display monitors such that the screen brightness and contrast was 
unchanged in switching from sequential to interlaced pictures. This 
ensured that interlaced and sequentially-scanned pictures were seen 
under exactly similar conditions. 

Linked switches 81 , 82 , and 85 were controlled by an automatic 
timer which repeatedly switched between A and B conditions, each 
condition being presented for 2112 seconds. To avoid visible transients 
these switches were arranged to operate only during the frame fty
back interval. Switch 85 controlled two lights labeled A and B, visible 
to the subject, in order to indicate to him which presentation he was 
currently viewing. Linked switches 84 and 8a enabled the experimenter 
to set up a condition on his own monitor before presentation to the 
subject. 

APPENDIX B 

Test Conditions 

The viewing distance for each subject was approximately 25 inches, 
the picture size being 5 inches X 5 inches. Screen highlight and low
light luminances were maintained at 60 foot-Iamberts (206 cd/m2) 
and 3 foot-Iamberts (10 cdjm2) respectively. Ambient illuminance 
was approximately 5 foot-candles (54Imjm2). 

Noise level matching was carried out by the method of adjustment.5 

Subjects were introduced to the method in the following way. On ar
rival for their test, an A-B pair was presented to them (the A and B 
presentations occurring successively on the same screen for 21j2 sec
onds each) in which the B presentation was noticeably noisier than 
the A. It was then demonstrated that by adjustment of the step at
tenuator (see Fig. 4) it was possible to lower the noise level in B 
until it matched the noise level in A. Subjects were invited to try the 
matching for themselves, and in all cases, with very little practice, 
succeeded in mastering the technique. It was explained that a num
ber of similar pairs would be presented to them, and that for each 
pair they were required to adjust the attenuator until the noise levels 
in the A and B pictures were the same. An unlimited time was allowed 
for the adjustment, most subjects taking about one minute, with a few 
taking as much as two minutes. When the pictures were matched to 
their satisfaction the subjects reported the attenuator setting to the 
experimenter. The quantity: Attenuator I setting - (Subject's at
tenuator setting + attenuator II setting) was taken as the apparent 
increase in noise level due to frame-repeating. 



NOISE IN VIDEO 539 

All of the presentations were made with the same still picture, a 
portrait of a girl (Fig. 1). Had a moving picture been used, the sub
ject's judgment would have been confounded by the motion break-up 
with frame-repetition. By using a still picture, the only visible dif
ference between the two pictures was in respect to noise level. 

Based on the results of preliminary experiments, repetition ratios 
of 1:1,2:1,4:1,7:1, and 10:1 (60,30,15,8.6, and 6 new frames per 
second respectively) were chosen to cover the range of interest for 
sequentially -scanned pictures. For inter laced pictures 1: 1, 2: 1, 3.5: 1, 
and 5: 1 (30, 15, 8.6 and 6 new frames per second respectively) were 
used. The 1: 1 repetition here was identical to a standard or non
repeated picture, and was included as a check on the validity and ac
curacy of the A-B comparisons. 

The 27 A-B presentations, consisting of all combinations of the 3 
signal-to-noise ratios, the two methods of scanning and the various 
frame-repetition ratios (5 for sequential, 4 for interlaced scanning) 
were presented to subjects in random order, the order being different 
for each subject. Subjects made only one match per A-B pair. Twenty
four subjects were tested and the mean increases in apparent noise 
level, together with the standard deviation between subjects, were 
calculated for each of the 27 conditions. 
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The Gelleration and Accumulation of 
Timillg Noise in PCM Systems

An Experimental and 
Theoretical Study 

By J. M. MANLEY 

(Manuscript received September 30, 1967) 

Three sources of timing noise in a self-timed regenerative PCM re
peater, namely, tank circuit mistuning, amplitude to phase conversion, 
and pulse shape, were studied both experimentally and theoretically. We 
discuss how these noises accumulate and combine along a chain of repeaters. 

The theoretical work is from the viewpoint of frequency analysis which 
leads easily to the spectrum of the timing noise. We first give a simple form 
of this theory applicable in a number of cases, and then a more general 
form useful in other cases, which shows the approximations and lim,itations 
of the simple theory. 

We found that the spectrum of timing noise caused by tank circuit mis
tuning has no energy at zero frequency and because of this fact, timing noise 
from this source does not build up indefinitely along a chain of repeaters 
but soon reaches a limit. On the other hand, the spectrum of timing noise 
caused by amplitude to phase conversion does have energy at zero frequency; 
thus, timing noise from this S01lrce increases indefinitely along a repeater 
chain. Some of the timing noise is attributable to pulse shape alone and in 
some cases may include a very low frequency part. This latter comes about 
through the small energy near the harmonics of the pulse rate in the tuned 
circuit response and the aliasing of this energy down to very low frequencies 
by the sampling process used in measuring the phase deviation or in 
generating the retim1:ng pulses. 

I. INTRODUCTION AND SUMMARY 

A considerable amount of work has been done and results published 
on the subject of timing noise in pulse code modulation (PCM) sys
tems.1

- 11 The material in this paper comes from work which began as 

541 
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an experimental investigation. This led to some successful simple 
theories and generalizations along somewhat different lines from 
those followed previously. 

It appears to be impossible for a regenerative repeater to perfectly 
restore a train of signal pulses to its original form because of the 
difficulty of obtaining a perfect timing source at a repeater location 
remote from the transmitter. The most widely used simple method of 
obtaining a timing wave is to pass the incoming pulse train, or some 
modification of it, through a narrowband resonant tank circuit, tuned 
as nearly as possible to the pulse rate. Since the tuning of the tank is 
unlikely to coincide with the pulse rate, since the bandwidth of this 
selective circuit is finite, and for other reasons, the derived timing 
wave is not perfect. Through this imperfect timing source, a certain 
amount of timing noise is added at each repeater to that already 
present in the incoming signal train. 

Because this noise arises from imperfections in the system, it may 
be considered to be analogous to the modulation interference noise 
in amplitude systems caused by small departures from linearity in 
v'arious components. Thus, if the narrowband tank circuit could be 
centered exactly on the pulse rate and kept there, and if the pulse 
generating circuits were always triggered exactly at a zero crossing 
of the timing wave, and if nonlinearity were not required to generate 
the pulse rate, then maj or sources of timing noise at a regenerative 
repeater would not exist. 

As pointed out by W. R. Bennett and others, the principal effects 
of timing noise are two: 1 

(i) At anyone repeater, the phase of the timing wave may be dis
placed in an irregular way from the proper place for optimum gating 
of signal pulses so that, at best, the tolerance of the system to noise 
is reduced and, at worst, errors in recognition of pulses or spaces are 
made. 

(ii) Even if the sequence of pulses and spaces arrives at the receiver 
with no errors, the decoded signal samples will be irregularly spaced, 
thus introducing into the signal circuits a distortion which has the 
frequency of the deviation. The seriousness of this effect depends on 
its magnitude and the character of the signal. This effect is analyzed 
by W. R. Bennett in Ref. 1. 

A program of measurements for stUdying the properties of this tim
ing noise, and how it accumulates along a chain of regenerative 
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repeaters, was begun because of the difficulties which had been en
countered in trying to calculate the noise. It was planned to isolate 
the sources of timing noise and so consider each one separately and 
then in combination. The work described here is not concerned with 
the effects of the noise on the system. 

Measurements were not made on chains of varying numbers of real 
repeaters. Instead the chain is simulated by one real special repeater 
and a multitrack tape recorder as indicated by Fig. 1. While the 
previous repeater output is being reproduced from two tracks of the 
recorder and used as input for the real repeater, the new output is 
being recorded on two other tracks. One of each pair of tracks is used 
for the pulse train and the other for timing information. Because no 
recorder has steady enough speed, the timing wave cannot be recorded 
directly. Instead, the phase deviations are detected and these are 
recorded. During playback, the timing wave is reconstructed with a 
phase modulator. The recording is sufficiently long so that statistical 
fluctuations are well smoothed. For most of the work the pulse train 
consisted of random unipolar pulses at a 1 kHz rate. 

The first results obtained were on the noise caused by mistuning 
of the timing tank in one repeater and then two in tandem. Study of 
these results led to the development of a simple theory for the gen-

~~------------~--O-~~TR3 

RECORD 

TR2~r-O--~--~ I----+----o----.c>----l TR 4 

Fig. 1-Simulation of regenerative repeater chain. 
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eration of the timing noise and its accumulation along a chain of 
repeaters. Subsequent work demonstrated that this theory may be 
used to calculate the noise satisfactorily, not only for longer chains, 
but for amplitude to phase conversion sources of timing noise as well. 
Very good agreement was obtained between the noise calculated from 
this theory and that measured. 

A brief summary of these results obtained when narrow rectangular 
pulses are used follows: 

The spectra of timing noise at each of the repeaters in a chain of 
six, all mistuned alike, are shown in Fig. 2. This noise is designated 
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Fig. 2 - Spectra of timing noise caused by 0.1 percent mistuning of timing 
tank, Q = 100. Random rectangular pulses, 10 percent duty factor. N = number 
of like repeaters in chain. 
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Type A; the most important characteristic of these spectra is that 
there is no energy at zero frequency. Because of this, the peak of the 
spectrum at the end of a chain never becomes larger than four times 
the peak at the first repeater, no matter how long the chain is. The 
root mean square (rms) value of the total noise increases to about 
twice the amount at the first repeater as we go along a very long 
chain. If, as is most likely, some of the repeaters in the chain are 
mistuned in the opposite direction or to a smaller degree, the noise 
at the end is smaller than that above. Thus it is seen that mistuning 
of the timing tank is not a factor in the accumulation of large amounts 
of timing noise in a long chain of regenerative repeaters. 

The situation is different, though, if we have a pulse generator 
whose trigger point is offset from a zero crossing. The timing noise in 
this case is a direct consequence of the amplitude variation of the 
timing wave, which variations have a spectrum with nonzero value 
at zero frequency. As shown in Fig. 3, this causes the rms value of 
very low frequency timing noise to increase linearly at successive re
peaters in a chain having equally offset triggers in each. This noise 
is designated type B. The total noise at the end of the chain increases 
without limit as the number of repeaters increases. The total amount 
varies inversely as the Q of the tank circuits. 

It was demonstrated that the theory applies also when both mis
tuning and amplitude-to-phase conversion are present simultaneously. 

Spectra of timing noise caused by pulse shape alone are shown for 
several particular shapes in Fig. 4. While the total noise for the wider 
pulses is fairly large here, because it is spread over a wide frequency 
band, the magnitude of the undesirable very low frequency com
ponents is quite small. For example, the total noise for the asym
metrical overlapping pulses is only one-fifth the amount per repeater 
measured in the Tl system.s The results of this investigation in
dicate that some form of amplitude-to-phase conversion is probably 
the greatest source of very low-frequency timing noise. 

The idea that, for the propagation of phase deviations, the chain 
of regenerative repeaters resembles a chain of tandem low-pass re
sistance-capacitance (RC) filters follows from considering the phase 
deviation to be a modulation of a carrier wave at the pulse rate. Ex
periments verified this idea which had been suggested earlier.s 

A brief outline of the simple theory and method of calculation 
will now be given; a more detailed description will be made in Sec
tions 2.1-2.5. Consider the spectrum of the incoming pulse train, 
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Fig. 4 - Timing noise spectra caused by various pulse shapes. 

which will contribute very little timing noise itself if the pulses are 
narrow.* This spectrum consists of discrete components at harmonics 
of the pulse rate and a broadband of a special kind of noise.! Next 
consider this broadband of noise to be divided into small evenly 
spaced bands, each small band replaced by a single frequency com
ponent having the same power as the small band. Taking these side
frequencies in pairs about the pulse rate, we may think of the spec
trum of the pulse train in the vicinity of the pulse rate as a carrier 
wave amplitude modulated by a number of small components. 

The tuned circuit by which the pulse rate fundamental is selected 
from this spectrum to provide a timing wave, also admits some of the 
noise side frequencies which are still symmetrical if the tuned cir
cuit is centered exactly on the pulse rate. When this tank circuit IS 

* The meaning of this is brought out in Sections 4.3, 2,6.5, and 2.6.6. 
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detuned from the pulse rate, the side-frequency pairs in the tank 
response are no longer symmetrical about the carrier. Sometimes the 
dissymmetry is described by saying that a quadrature carrier term 
has been introduced. The dissymmetry in amplitude, or phase, or 
both, is equivalent to phase modulation of the timing wave. This 
phase modulation of the timing wave is transferred to the outgoing 
pulse train in the regeneration process. 

Next, assume that these asymmetrical side frequencies (which are 
another description of the above phase modulation), after being at
tenuated and phase shifted in transmission through the narrowband 
tank of the second repeater, would add directly to the corresponding 
ones newly generated by the detuning of the second tank. Phase 
deviation calculated from this assumption agrees very closely with 
that measured, not only after two repeaters, but after many have 
been traversed. 

If the amplitude modulation at the tank output, corresponding to 
the symmetrical components, is not entirely removed by a limiter, 
that remaining may cause further phase modulation. For example, if 
a pulse generating circuit is supposed to trigger at a zero crossing of 
the timing wave but actually triggers a few degrees away from zero, 
amplitude variations of the timing wave will be converted to phase 
variations. The magnitude of these phase variations and their in
crease along a chain of repeaters may be successfully calculated us
ing the same methods described abov'e. 

The simple theory applicable in a number of cases, and which leads 
easily to the spectrum of timing noise, is inadequate for pulse shapes 
other than narrow ones. Here the pulse train itself is now a source of 
timing noise. For example, if the pulses have a finite width, a small 
additional amount of noise (type B) can arise, although not in all 
cases. The limitations of the simple theory and how it fits into a more 
general theory is discussed in detail in Section 2.6. 

The more general theory, described in Section 2.6, is also developed 
from a frequency viewpoint and is based on analysis by S. O. Rice to 
whom I am indebted for this work. With it the amount of timing 
noise in the situations of the previous paragraph were calculated. Also, 
this theory was used to calculate the timing noise for raised cosine 
pulses two time slots wide, hence with large enough overlapping so 
that a non-linear device is required in order to derive the pulse rate 
fundamental. It was found that in this case, the timing noise is Type 
A (that is, it does not build up in a long chain of repeaters) with a. 
small qualification discussed in Section 2.6.6. 
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Another source of type B noise (which builds up indefinitely) is 
in any low-frequency distortion of the pulse spectrum if this is fol
lowed by a nonlinear operation of any kind. 

II. THEORY OF PHASE NOISE GENERATION AND ACCUMULATION 

As mentioned in the Section I, the simple theory is described first, 
with the more general one and its relation to the simple one being 
discussed in Section 2.6. The principal area in which the simple theory 
is satisfactory is that in which the pulses are narrow. In this case the 
pulse train itself causes very little timing noise, and so other sources 
may be considered separately. 

2.1 Spectrum, of Narrow Pulse Train 

It is assumed that the message pulses are represented by a random 
train of narrow, rectangular, unipolar pulses. By random pulse train 
is meant one having regularly spaced pulse positions which are filled 
or not at random. Although most of the work was done for an averag~ 
pulse density of one-half, the result would not be appreciably different 
except in magnitude, if this parameter differed somewhat from the 
value one-half. 

The spectrum of this train has been calculated by W. R. Bennett.1 

Part of the spectrum is a series of harmonics, the fundamental of 
which is the pulse rate, and the magnitudes of which are determined 
by the shape of the individual unit pulses. The spectrum of the other 
part has the same shape as the envelope of harmonics, and is con
tinuous and therefore is a noise. Bennett points out that while this 
noise is like thermal noise in some respects, that is, for example, in 
the proper frequency band the two sound alike; nevertheless it has 
a phase structure which thermal noise does not. 

H the original pulses are rectangular of height Vo and duration T 

and occur at regular intervals T = l/fo with a probability of 1/2, 
Bennett's calculation shows that the mean square value of the funda
menal term at f = fo is 

(1) 

and that the mean square value (in a band B Hz wide) of the noise 
part is 

(2) 

From a somewhat different point of view, the spectrum of this 
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random train of narrow pulses may be calculated by first considering 
the train to consist of repeated blocks of random pulses, each block 
being N pulse periods T in length. The Fourier series representation 
of this train consists of harmonics of the pulse rate Ie plus single 
frequency "noise" components spaced lelN apart. The harmonics 
have nonzero average values. While the noise components have zero 
:average values, their average powers are nonzero. If N is made to 
approach infinity, this spectrum approaches that calculated by Ben
nett. The representation by finite components means, in effect, that 
a band of noise lelN Hz wide is replaced by a discrete term having 
the same mean square value. If S and Ai are the rms amplitudes of 
one of the noise components and the pulse rate fundamental, respec
tively, then, as shown in (113), Section 2.6.5, 

(3) 

where lelN has been replaced by B. This agrees with (1) and (2) 
from Bennett's calculation. In the vicinity of the fundamental, we 
have 

The spectrum of this representation of the pulse train is shown in 
Fig. 5. 

Near the pulse rate component, the noise amplitudes on both sides 
of it are nearly equal because the pulses are narrow. For example, 
when TIT = 0.1, values of S for components 2.5 percent above and 
below Ie differ by about 0.2 percent. Hence an approximate representa
tion of this region of the spectrum is 

(4) 

where 

(5) 

which describes the input as an amplitude modulated carrier. A more 
accurate representation would include a modulated quadrature term 
to account for the slight dissymmetry of side frequencies. 

It is the regular spacing of the random pulses which gives the 
phase structure to the noise spectrum, causes zeros of the wave Ei 
to appear at regular intervals T = III e apart, and which makes pos
sible the representation in (4). 
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In the simple theory, attention is given only to that part of the 
pulse spectrum in the vicinity of the pulse rate fundamental as indi
cated by the representation (4). The strength of the noise terms with 
respect to the fundamental is obtained by the indicated statistical 
averaging of the pulse train components with the result (3). The 
reasons why these simplifications are satisfactory are discussed in 
Section 2.6. 

In the Section 2.2, the response of the tuned circuit to this re
stricted portion of the pulse spectrum, considering the noise terms 
to have fixed amplitudes, is calculated. 

2.2 Response of Tuned Circuit to N arrow Pulses 

In calculating the response of the tuned circuit to (4), we need 
to consider only one representative modulation term of frequency 
q127r = kleiN, namely 

Eik = Ai[1 + 2(SIAi) cos qt] cos wet. (6) 

The response to the two side frequencies S cos (we ± q) t of this one 
term is 
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Eo. = Sl cos (Wet + qt + (}l) + S2 cos (Wet - qt + (}2) 

= S1 cos [(Wet + ~) + qt + ((}l - ~)] 

+ S2 cos [Wet + ~) - qt - (~ - (}2)], (7) 

where (}l and (}2 and ~ are the phase shifts received by the two side fre
quencies and the carrier respectively in going through the tuned circuit. 
If the tuned circuit is resonant at We , the symmetry of the side fre
quencies about We in both amplitude and phase which exists in (4) is 
preserved in the response. But if it is resonant at Wo , different from We , 
the response side frequencies are unsymmetrical as indicated in Fig. 6. 
In this case, they may be resolved into a pair with even symmetry 
and a pair with odd symmetry, or into a component in phase with the 
carrier and another in quadrature with the carrier. That is, we get 

Eo. = A. cos [wet + ~ + qt + ~.] + A. cos [Wet + ~ - qt - ~.] 

where 

+ Aa cos [Wet + ~ + qt + ~a] - Aa cos [Wet + ~ - qt - ~a] 

= 2A. cos (qt + ~s) cos (Wet + ~) 
(8) 

2A. = {S~ + S; + 2S1S2 cos [(~ - (}2) - ((}l - ~)]}l 

2Aa = {S~ + S; - 2S1S2 cos [(~ - (}2) - ((}l - ~)]} 1 (9) 

t 
Sl sin ((}l - ~) + S2 sin (~ - (}2) 

an~ = 
• Sl cos ((}l - ~) + S2 cos (~ - (}2) 

t 
S2sin (~- (}2) - Sl sin ((}l - ~) 

an~ = . 
a S2 cos (~ - (}2) - Sl cos ((}l - ~) 

Thus the resonant tank response to the amplitude modulated wave 
(6) is 

Eo = [Ao + 2A. cos (qt + ~B)] cos (wet + ~) 
- [2A" sin (qt + ~a)] sin (wet + ~). (10) 

When S/ Ai is small, as at present, (10) is approximately described by 

Eo ~ Ao[l + 2(A./ Ao) cos (qt + ~.)] cos [(wet + ~) 
+ 2(Aa/Ao) sin (qt + ~a)]. (11) 

The tuned circuit to which the train of random pulses is applied 
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in order that the pulse rate fundamental may be selected is described 
by 

Let 

Then 

1 
E 

Y(j27rf) 

w~LC = 1 

1 
(12) 

(13) 

(14) 
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and 

Y(j27r!)/Y(j27r!0) = n + x + j~[t ~ X)2 _ 1] (15) 

This general formula will be used in the treatment for wide pulses. 
Here we will be concerned only with frequencies in the neighborhood 
of fo and so we set n = 1. Thus 

Y 1(j27r!)/Y(j27rfo) = 1 + x + Ij2~X(1 + x/2)· (16) 

When Ilw/wo = x is small, a satisfactory approximation to the trans
missi on Y 1 (j27rf) R is 

Y 1(j27rf)R ~ 1 + j2~ Ilw/wo• (17) 

The phase of Y 1 is (), where tan () = -2Q6.w/wo• Let 

(18) 

where 0 is the amount of tank circuit detuning from the carrier and 
q is the modulation frequency. It is convenient also to write 

Sl/ S = I Y[j27rfo(1 + Xo + Xq)] I R = Yl = cos ()1 

82/S = I Y[j27r!0(1 + Xo - Xq)] I R = Y2 = cos ()2. 

(19) 

The amounts of amplitude and phase modulation in the tank 
circuit response (11) can now be given explicitly. Writing 

2A. = (~)(Ai)(2A8) , 
Ao A. Ao 8 

then substituting (5) for the first ratio on the right, and the upper 
of (9) for the third ratio, and noticing that 

we have 

2A./ Ao = (B/tc)!(1 + tan2 cp)! 

. {yi + y~ + 2Y1Y2 cos [(cp - ()2) - (fh - cp)])! (20) 

'Similarly, 

2Aa/ Ao = (8/ Ai)(AJ A 0)(2 A a/ S) = (B/tc)!(1 + tan2 cp)! 

. {yi + y~ - 2Y1Y2 cos [(cp - ()2) - (01 - cp)])'. (21) 
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When the amount of detuning is small (0.1 percent detuning with 
Q = 100 makes tan cp = 0.2), the expression inside the large radicals 
of (20) and (21) may be simplified so that 

and also ~. ~ o. 

2(B/fc)1 
2A./ Ao ~ [1 + (2qQ/wo)2]l (22) 

(23) 

The two expressions in (22) and (23) describe the amplitudes of 
the amplitude and phase modulation in (11) which are the responses 
of the resonant tank circuit to an amplitude modulated wave rep
resenting part of the incoming pulse train. Before discussing the 
meaning of these results for the generation of phase modulation or 
how it accumulates in a chain of repeaters, we will calculate the 
amount of phase deviation generated by another possible source 
within the repeater. 

2.3 Arnplitude to Phase Conversion Factor of O.tJset Trigger 
In an ideal repeater, a perfect limiter following the resonant tank 

circuit would remove all the amplitude modulation from the derived 
timing wave (11) which would then, at one of its zero crossings, 
trigger a pulse generator as a part of the retiming process. But in 
a real repeater, the limiting would not be perfect so that some ampli~ 
tude modulation remains on the timing wave; also the trigger point 
may have drifted away from the zero crossing. This is one way in 
which amplitude variations of the timing wave are converted to 
phase variations in a regenerative repeater. The diagram of Fig. 7 
illustrates the conversion. 

Referring to Fig. 7, where the triggering level has been offset by 
the bias b or by the angle Yo which are related by 

sin 'Yo = b/Ao , (24) 

it is seen that the change, Ay, in triggering angle for a change, AA, 
in amplitude is 

(25) 

The amplitude variation in (11) at the tank circuit output is 
reduced by a factor KL in the limiter which follows, so that .the input 
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TIME ~ 

Fig. 7 - Amplitude-to-phase conversion in trigger with offset bias. 

for the pulse generator is 

Ao[l + K L(2A,/ Ao) cos (qt + ~.)] cos [(wet + ~) 
+ (2Aa/Ao) sin (qt + ~a)]. (26) 

Hence the phase variation introduced by the offset trigger, using 
KL2As/Ao from (22) for AA/Ao, is 

-2(B/fe)IKL tan 'Yo 
!1'Y = [1 + (2qQ/wo)2]! cos (q, + ~8). (27) 

2.4 Application of These Results to Timing Noise 
.The phase variations (referred to the carrier fundamental) of the 

pulse generator driven by (26) are then given by the sum of Ay from 
(27) and 2 (Aa/ Ao) sin (qt + ~a) from (23), that is, 

_ 8(B/fc)i(oQ/wo)(qQ/wo) . (t + ) 
~l - 1 + (2qQ/wo)2 sm q ~a 

2(B/fc)IKL tan 'Yo 
- [1 + -(2qQ/wo?]i cos (qt + ~8) (radians). (28) 

From the magnitudes of the two components of (28), the spectra of 
timing noise caused by tank circuit mistuning and by amplitude to 
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phase conversion are determined. These are plotted in Fig. 8 with 
I(L tan Yo = 1. The phases 'Pa and 'Ps are plotted in Fig. 9. The first 
term in (28) specifies the spectrum if mistuning alone is present; 
the second term applies if mistuning is zero and there is amplitude 
to phase conversion. It is seen that the spectra in these cases are 
quite different at very low frequencies near q = O. The phase modula
tion for mistuning alone is zero at zero frequency and has a maximum 

(29) 

at 

2qQ/wo = 1, (30) 

while that for amplitude to phase conversion alone has a maximum 
value of 2(B/fc)%KL tan Yo at zero frequency. This difference be
tween the two spectra at low frequencies has a very important effect 
on the accumulation of timing noise in chains of repeaters, as will 
be seen in Section 2.5. Second, we see that the first component depends 
directly on the amount of detuning, 8, and is zero for zero detuning. 
See Section 4.1. This emphasizes what Bennett has said about the 
difference between the noise spectra of random pulses and thermal 
noise.1 In the latter case, phase noise would not be zero for zero 
detuning. 

The good agreement between phase deviations calculated in this 
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way, and measured values, has already been mentioned in the intro
duction and is shown in the curves of Fig. 2 and 3. 

In one sense both of these effects are amplitude-to-phase conversion 
with the amplitude modulated carrier representation of part of the 
pulse train, as in (4), being the original amplitude variation. From 
this viewpoint, in both (23) and (27), 

2(B/fe)! 

is the applied amplitude variation; the factor 

[1 + (2qQ/wo)2]! 

is the attenuation of the tuned circuit; while 

-KL tan 'Yo 

is the amplitude-to-phase conversion factor in (27), and 

4( oQ/wo) (qQ/wo) 
[1 + (2qQ/wo)2]! 

is the corresponding conversion factor for mistuning from (23). 
When both tank mistuning and trigger offset are present in the 

timing wave path, their combined effect may be calculated by adding 
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the two as suggested in (28). The correctness of this has been verified 
by experiment as seen in Fig. 10 where both measured data and 
values calculated according to (28) are plotted. This result emphasizes 
again that both of these phase modulation effects have a common 
source in the special noise side frequencies about the pulse rate in 
the spectral representation of the random pulse train. 

2.5 Accwnulation of Phase ]l[ odulation in a Chain of Repeaters 

Next consider how phase modulation accumulates in a chain of 
repeaters when the same amount and kind of phase modulation is 
generated at each repeater of the chain. 

Assume that phase modulation generated in the derived timing 
wave at repeater 1 is 

CPI = <PI sin (qt + CPa) (31) 

and that this is passed along unchanged by the regenerator. Then 
at the input to repeater 2, this is equivalent to the presence of a pair 
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Fig. 10 - Spectrum of timing noise caused by tank de tuning and trigger offset. 
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of antisymmetrical side frequencies 

S±/A = ±(<pd2) cos (Wet + ~ ± qt ± ~a) (32) 

about the carrier. The transmission of these side frequencies through 
the tuned circuit of repeater 2 is governed by expressions (11), (20), 
and (22), developed above for the transmission of amplitude modula
tion. In using these in the present circumstance, the amplitude <1>1/2 
in (32) takes the place of S/Ai in (20). The response of the tank 
circuit of repeater 2 to these side frequencies is then approximately 

(33) 

if it is assumed that the pulse amplitude, and hence that of the 
carrier, are the same at repeater 2 as at repeater 1. This expression 
is independent of mistuning when the degree of mistuning is small, 
as we have assumed. In addition to this response we have the pair 
of anti symmetrical side frequencies, as expressed by (32), but now 
genera ted at repeater 2, namely 

(34) 

Thus at the output of the tank circuit of repeater 2, the antisym
metrical side frequencies are represented by the sum of these two, 
that is (34) and (33) or, 

±(1),/2){ cos (w,t + <p ± qt ± <P.) 

+ [1 + (2~Q/wYll cos (w,t + <p ± qt ± <p. ± <P.)}. 

Therefore the total modulation <I>!l at the output of repeater 2 is 
seen to be 

<P2 = 1 <PI + <PI (cos 0) exp (jO) 1 

where cos 0 has been substituted for 

1 
[1 + (2qQ/wo)2]~ 

(35) 

according to (19), and CPs has been replaced by its approximation O. 
Carrying through the same process for repeater 3, we find the phase 
modulation at repeater 3 output to be 

<P3 = <PIlI + (cos 0) exp (jO) + (cos 0)2 exp (j20) I. (36) 
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These show that, while the actual combining process at each repeater 
involves the direct addition of side frequencies, we can drop the carrier 
reference and consider the generation and propagation of modulation 
alone. And the <PI generated at each repeater need not be only the 
component (23), but may be the more general one (28) in which 
mistuning and amplitude to phase conversion effects are combined. 

The process begun in (36) may be generalized to give the amount 
of phase noise at the Nth repeater in a chain of N-like repeaters. 
This is 

(37) 

where Y 1R has been written for (16). The approximation (17) to 
Y 1R and the relation (19) are used so that 

Y1R ~ 1 + ~2XqQ = (cos 0) exp (jO), (38) 

where Xq = q/wo as defined in (18). In (37), (Y)N is not an admittance 
as Y 1 is, but is a transfer function. By direct expansion of (Y)N , using 
(38), 

1 (
Y) 12 = 1 + (cos O)2N -: 2(cos O)N cos NO. (39) 

N sln2 0 

(Y) N may be considered a sort of phase deviation transfer function 
for a chain of N repeaters when <PI is the phase deviation generated 
in each repeater. I (Y) N I is plotted for N = 4, 30, 100 in Figs. 11, 
12, and 13. 

Since <PI and (Y) N are functions of the phase deviation frequency 
q, I <PN I will describe the spectrum of accumulated phase noise. Con
sider first the case of tank circuit mistuning alone. From (23), we have 

(40) 

where 

(41) 

Then for mistuning, 

I <I>N 12 = 4K~ cos2 0[1 + (cos 0)2N - 2 (cos O)N cos NO]. (42) 

This is a rather unwieldy expression when N is large, but it may be 



562 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969 

4r-.------~--------~----~~_,--------_,--------_, 
Icy",,)1 

3~-------4---------4---------4--~~ 

~2~------~---------4---------4-----4~-+---------1 

0~~00~1------~0~.070~1 ------~O~.O~I--------O~.I~------~--------~ 

Qx=fs Q/fc 

0.2 

~ 
0.1 .; 

C\J 

Fig. 11- Effective transfer characteristic of four tandem timing tank circuits 
to modulation on pulse train. 

approximated for the purpose of finding its maximum value by 

I <PN I~ 4Kl (cos 0) (l+N/2) sin (NOI2) (43) 

since 0 is small for large N at the maximum of 1 cI>N I. The expression 
in (43) is maximum with respect to 0 when 

tan Om tan (NOmI2) = N I(N + 2). (44) 

A list of maximum values for <PN are given in Table I: 
These are plotted in Fig. 14 along with four of the full calculated 
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Fig. 12 - Effective transfer characteristic of thirty tandem timing tank circuits 
to modulation on pulse train. 
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spectrum curves of Fig. 2. It is seen from (43) that 4Kl is the largest 
value tJ>N can have. 

The spectrum of CPl is plotted along with the (Y) N function in Figs. 
11, 12, and 13 to suggest why the peak values of CPN do not increase 
indefinitely with N. 

To get the total mean square "power" of CPN, 1 CPN 12 in (42) is 
integrated with respect to x from x = 0 to 00 or, with respect to (), 
from () to 0 -7('/2. Since the expression for <PN in (42) gives the peak 
value, we have for the total mean square power PN , 

(45) 

where a value of 1 Hz is used for the bandwidth B in K 1 . Evaluation 

TABLE I-MAXIMUM VALUES FOR <Pm 

N Om QXm <Pm 
------

I 11"/4 0.5 Kl exact 
4 0.49 0.267 2.384 Kl exact 
4 0.463 0.249 2.290 Kl approximate 

10 0.2525 0.1290 3.14 Kl approximate 
30 0.0997 0.049 3.68 Kl approximate 
50 0.0603 0.0392 3.80 Kl approximate 

100 0.0308 0.0154 3.90 Kl approximate 
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Fig. 14 - Calculated spectra of timing noise caused by tank circuit detuning. 

of this integral gives 

P N = 27rQ ~; {I - ;-1 + ;N N(~NN) ;} (radians)2 
We 2 2 " 

(4G) 

ignoring the small difference between Wo and We • For N 

p) = 7rQfl/w; 

and for N ~ 4, P N is approximated very closely by 

f/{ II} 
P N ~ 27rQ w; 1 - 2N - 1 + (7rN)! . 

1, we have 

(47) 

(48) 

Twice the quantity in the braces is plotted in Fig. 15, where exact 
values from (46) are used through N = 4. 
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The expression in (47) for PI was derived in a different way by 
W. R. Bennett.1 The expression (46) for PN has been derived inde
pendently and differently by S. O. Rice. 

When there is no tank circuit mistuning and amplitude to phase 
conversion is the only source of phase deviation, that generated at 
each repeater is given by (27), that is, 

In this case 

2(B/fc)~I(L tan 'Yo 
<I> 1 = [1 + (2qQ/Wo)2]~ 

= 2IC cos e (radians). 

I 1
2 2 cos

2 e ( )N [( N ( -N <PN = 4IC -·-z-e cos cos e) + cos e) - 2 cos N eJ. 
sm 

(49) 

(50) 

When (cos fJ)N > 0.8, that is for fJ, and hence q, sufficiently small, the 
sum of the first two terms within the bracket is very close to 2. For 
this condition, <PN may be approximated by 

~ 2ICN[cos (Ne/2)](cos e) (l+NI2) , (51) 

which shows that the phase deviation very near zero frequency 
increases directly with the number N of repeaters in the chain. This 
is in contrast with the similar result (43) for mistuning where the 
largest value of 1 <PN 1 is only four times that of 1 <p] I. (Y) N is the same 
for both. The difference arises because of the difference in spectrum 
shape of the generated phase deviation in the two cases. In mistun
ing, 1 <PI 1 is zero at zero frequency, while in amplitude to phase 
conversion effects, l<Pl 1 is flat and nonzero for very low frequencies. 
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Fig. 15 - Calculated total timing noise caused by tank circuit mistuning as a 
function of the number N of like repeaters in a chain. 
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To find the total mean square "power" of CPN, the integral (45) 
is calculated, using (50) this time instead of (42). The value of this 
integral is given in a paper by Byrne, Karafin, and Robinson.8 It is 

P =7rfo 1e{N_! (2N-l)! } 
N Q 0 2 4(N-l)[(N - l)W (52) 

which shows that the total phase noise power increases directly with 
the number N of repeaters in a chain and varies inversely with the Q 
of the tank circuits. 

In Ref. 8, the result (52) and the spectrum (50), or something 
closely related to it, were derived by assuming that at each repeater 
there was a noise source (nature and magnitude unknown) with a fiat 
spectrum and "power" density 2K~ . The process followed is similar 
to work first done by R. C. Chapman of Bell Telephone Laboratories. 
Also in the paper of Ref. 8, the results of measurements of accumulated 
timing noise in an experimental Tl system are given and the spectra 
of these are like those of Fig. 3. 

2.6 Spectrum and Phase Noise of Wide Pulses 

In most practical systems it is not desirable for the transmitted 
pulses arriving at the timing circuit input to have the narrow shape 
considered in the previous section of the paper. It is to be expected 
from the above discussions of the effects of dissymmetry between 
upper and lower side frequencies, that wider pulses having spectra 
with these characteristics would introduce phase noise in the derived 
timing wave even when there is no mistuning or amplitude to phase 
conversion. But the calculation of dissymmetry needs to be more 
elaborate for the wider pulses; the simple calculation used above is 
inadequate. 

A more generally applicable theory is available from analysis 
by S. O. Rice who worked it out originally for pulses wide enough 
to spread over two time slots. How the simple theory is related to 
the more general one to be described in Section 2.61 will be discussed 
in Section 2.66. An outline of Rices' analysis follows. It is assumed 
that neither mistuning nor amplitude to phase conversion is present 
so that the phase noise calculated is caused by the pulse train alone. 

2.6.1 Fourier Series for Pulse Train 

The general theory is based on a frequency analysis also and so 
the pulse spectrum is calculated first. We consider the train to consist 
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of repeated blocks of N pulse periods each, with each of the N pulse 
periods having a pulse or not at random. The train has a period NT 
and may be described by the Fourier series 

00 

I(t) = L em exp (j27rmt/NT). (53) 
m==-co 

If the parameter N is made to approach infinity, a random pulse 
train will be obtained. But a good approximation results if N is just 
large, say 100. 

In order to consider pulses which may be as much as two pulse 
periods wide so that there is considerable overlapping of adjacent 
pulses, four auxiliary functions are necessary to specify the current 
I (t) in anyone pulse period of duration T. These functions correspond 
to the four possibilities of (i) no pulse present, (ii) only the leading 
edge of a pulse present, (iii) only the trailing edge of a pulse present, 
and (iv) overlapping pulses present. 

This is illustrated in Fig. 16 which is a short section in time of a 
random train of raised cosine pulses exactly two pulse periods wide. 
The four possibilities mentioned above occur in that order in periods 
3, 1, 2, 5 of Fig. 16. For a random train of pulses all these possibilities 
eventually occur in anyone time slot as suggested in the composite 
drawing of Fig. 17a. In this a number of sections in time of Fig. 16 
have been overlapped as they would be in an oscilloscope presenta
tion. In Fig. 17a, the four possibilities in the order given above are 
AC, AD, BC, BD. Another illustration is the same wave after passing 
through a half-wave rectifier which begins conduction at the half 
amplitude level as shown in Fig. 17b. Figures 18a and b are photo
graphs of oscilloscope patterns of real pulse trains which approximate 
the idealized ones of Figs. 17a and b. 

Then I(t) may be represented by a sequence of functions In(t), 
each of which is specified by the auxiliary functions F2 (t'), F3 (t'), 
F 4 (t') and the parameter an as follows 

an- 1 = 1, I net) = F4(t') 

an- 1 = 0, InCt) = F 2 (t') 
(54) 

an- 1 = 1, In(t) = F3(t') 

an-I = 0, In(t) = 0, 

in the time slot interval 

(n - 1) T - vT ~ t ~ nT - vT 
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o T 2T 3T 4T 5T 6T 7T aT 

Fig. 16 - Short, time section of a random train of raised cosine pulses, each 
two time slots wide. 

and is zero outside this interval. In this representation, an = 1 if a 
pulse begins in the interval under consideration and an = 0 if a pulse 
does not begin in it. The time scale t' used for describing the pulse 
train is related to the time scale t of the Fourier series by 

t' = t - (n - 1) T + v T. (55) 

The time shift (n - 1) T brings the pulse forms in the nth time slot 
back to the first one for description by the auxiliary F functions. The 

~------~~----~ 
F 

(a) 

o E ~ 
TIME,t 

ONE TIME SLOT 

(b) -L--L57--lt-y---"-- ______ _ 

~ tl I~ 
(c) 0 T 0 T 

IF2(~( F3(tJ~ 

Fig. 17 -Idealized pulse waveforms: (a) Overlapping raised cosine; (b) 
wave in (a) applied to half-wave rectifier; (c) functions used in calculation. 



TIMING NOISE 569 

Fig. 18 - Photographs of random pulse oscilloscope traces: (a) Raised cosine 
pulses, two time slots wide at the base; (b) bottom half of (a) obtained with 
half-wave rectifier; (c) raised cosine pulses, one time slot wide at the base. 
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shift vT will be convenient later when it will be desirable to have 
the occurrence of pulses adjustable with respect to the zeros of the 
sinusoids in the Fourier series (53). To make I (t) a random pulse 
train, we let aI, a2, •.. , an •.. be independent random variables with 
probability of an = 1 being p and probability of an = 0 being q = 
1- p. 

The representation just described was designed with the situation 
of Fig. 17 in mind; but it is valid for other pulse shapes including 
those which occupy just one time slot or less. The transformation of 
time scales is illustrated for rectangular pulses in Fig. 19. 

The specifications (54) may be expressed by 

-I f-T 

I~ 1 l 1 ~ I~~I 
2T 3T 4T sT 6T 

~Io....--..I--I _t +vT --1.---11 ~~I ~L----J,.....I_ 
3T 4T sT 6T 

__ ~I __ ~~~ __ ~~_I(_l_+_V_T_)~I ______ ~I~t_+ __ VT __ ~I ______ ~I ______ ~!~ __ __ 

o T 2T 3T 4T sT 6T 

I /> (l +v T) I ~L-__ ~I __ t_+_V_T __ .J..' ______ .....J....
1 

______ ....L' ____ _ 

o T 2T 3T 4T sT 6T 

__ ..I..-______ ~/_5_(t_+_V_T_).....J....1 ______ ....L, __ t_+_VT __ ~'~~L __ ....L' ______ ~, ____ _ 

o T 2T 3T 4T sT 6T 

__ ~ ______ .J..II_6_(l_+_V_T_)~I ______ ~, __ t_+_VT __ ~, ______ ~,~~L-__ ~! ____ _ 

o T 2T 3T 4T sT 6T 

n In (t') l' __ ~~I IL __ ~I ______ -.J..' ______ ~! ______ ~,~ ____ ~, ______ ~, ____ _ 

o T 2T 3T 4T sT 6T 

t!=t-(n-t)T+vT 

Fig. 19 - Representation of pulse train for Fourier analysis. 
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In(t) = an(l - an- I)F2 (t') + an-l(l - an)F3(t') + anan- I F 4(t') 

= anF 2 (t') + an- I F 3 (t') + anan-l [F4 (t') - F 2(t') - F 3 (t')] (56) 

and I (t) is the sum of N separate In (t). 

2.6.2 Fourier Coefficients 
The Fourier coefficients em in (53) are then 

1 jNT-VT 

Cm = NT -vT exp (-j27rmt/NT)I(t) dt 

1 N iT = NT L exp [-j27rm(n - 1 - v)/N] exp (-j27rmt'/NT) 
n=l 0 

. In[(n - 1 - v)T + t'] dt' (57) 

where the integral from -vT to NT - vT has been written in the 
second form as a sum of N integrals, each over an interval T and then 
the transformation t = (n - 1 - v) T + t' applied to each integral. Let 

r iT f3m = i 0 exp (- j27rmt' /NT) F2 (t') dt' 

"1m = r,; iT exp (-j27rmt'/NT)F3(t') dt' 

Om = r,; iT exp (- j27rmt' /NT) [F4(t') - F2(t') - F3(t')] dt 

z = exp (-j27rm/N) , 

Then 

and the average value of em is 

Since 

N 

rm = exp (j27rVm/N). 

L zn-l = 0 m ~ IN 
n=l 

=N m = IN, 

(58) 

(59) 

(60) 

(61) 

(63) 
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where l is an integer, we have 

(Cm)av = p((3m + I'm + P Om), 

(Cm)av = 0, 

m = 0, ±N, ±2N, 

otherwise. (64) 

The Fourier components for 1n = ±N are those at the fundamental 
frequency of the pulse rate, 1jT. The average values of the "noise" 
components are all zero but the second order averages are not zero. 
Rices' calculation of these follows. 

From the expressions for Cm and <Cm)av in (62) and (63), it follows 
that 

N N 

= N-2 L L zn-1S-k-1[(an - p)(3m + (an-1 - P)/'m + (anan-1 - p2) om] 
n=l k=l 

(65) 

where , = exp ( - j27rljN). Expanding the last product and using the 
independence of the a,/s (except for ao = aN) shows that the ensemble 
average of (65) depends upon the averages 

«(an - p)2)av = P _ p2 = pq 

«(an - p)(ana j - p2)\v = p2 _ p3 = p2q, 

«(anan-l - p'2)2)av = p2 _ p4 

«(anaj - p2)(anai _ p2)av = p3 _ p4 = p3 q, 

j ~ n, i ~ n, i ~ j. (66) 

For n fixed, the only values of k which lead to nonzero averages 
are k = nand k = n ± 1 with the understanding that for n = 1 the 
values k = 0, 1, 2 mean k = N, 1, 2, and for n = N the values 
k = N - 1, N, N + 1 mean k = N - 1, N, 1. vVhen k = n the average 
value of the summand in (65) is 

zn- 1S-n-l[pq(3m(3z + pql'ml'z + (p2 - p4) Om 01 

+ p2q((3m 01 + I'm 01 + om(3z + OmI'Z)]' (67) 

For k = n + 1 it is 

zn-1S-n[pq(3mI'Z + p2q((3moz + Oml'l) + p3qomo zJ, (68) 

and for k = n - 1, 

z"-1S-"-2[pql'm(3z + p2q(l'ml + om(3Z) + p3qomod. (69) 
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Some experimentation shows that the sum of (67), (68), and (69) 
can be written as 

(z~r-l[pq{f3my + 'Ymy-l + POm(Y + y-l)} 

. {f3ly-l + 'YIY + POI(y-l + y)} + p2q2omozJ, (70) 

where 

y = ~! = exp (-j7rl/N). (71) 

The sum of (Z~)n-l, taken from n = 1 to N, is 0 unless z~ = 1, 
that is, unless J.l;J + l = 0, ±N, ±2N, .... In this case 

N 

N- 2 2: (z~r-l = N- 1
, ~ = Z-1 = exp (+j27rm/N) , 

11=1 

y = exp (-j7rl/N) = exp [-j7r(l + m)/N] exp (+j7rm/N) 

= (-1) (Z+m)/N exp (j7rm/N) , 

and (70) can be written as 

where 

(72) 

(73) 

Sm = 13m exp (j7rm/N) + "1m exp (-j7rm/N) + 2p Om cos 7r;, (74) 

and Sz is defined similarly with l in place of m, and Om is the function 
defined in (60). 

Collecting results shows that averaging (65) over the ensemble 
gives 

«Cm - (Cm)&v)(C z - (Cz):v) 

f [Pq( _l)'m+l)/N SmS, + p'q' Om o,lIN, 

= 1 m + l = 0, ±N, ±2N, ... 

0, otherwise 

(75) 

Replacing Cz - (Cz)&.., , ~, f3z , "II , Oz , Y by their complex conjugates 
in expressions (65) to (71), and noting that the sum of (z~*r-l is zero 
unless z~* = 1, that is, unless m - l = 0, ±N, ±2N, ... , carries 
(75) into 
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«Cm - (Cm)av)(C, - (C')av)*) 

= ffpq<-1),m-Il/N8m8r + p'q' ~m ~rl/N. 

l 
m - l = 0, ±N, ±2N, ... 

0, otherwise 

(76) 

In terms of the functions Fj(t) we have 

5m = ~ iT exp (-j27rmtINT)[F4 - F3 - F2] dt 

8m = ~ ( exp < -j21Tmt/NT){[2PF, + (q - p)F, + (q - p)F,] 

. cos 1T; + j[F, - F,] sin 1T;} dt. (77) 

The mean square value of the noise component of frequency miNT is 

(78) 

considering a positive frequency only spectrum. Thus from (76), we get 

(79) 

2.6.3 Phase lJ,Iodulation of Tuned Circuit Response 

To calculate the phase modulation on the recovered fundamental, 
we first obtain the response of the tank circuit to the train of rectified 
pulses, I (t). This response is the approximate sine wave at the pulse 
ra te frequency. 

The response Io(t) is described by 

(80) 

where the envelope Ro(t) and the phase angle cp(t) are slowly fluctuat
ing functions whose rate of change is proportional to the bandwidth 
of the tank circuit. Considering now, only those components of I(t) 
in the vicinity of the pulse rate liT, we have 

Io(t) = 2Re 2: Y mCm exp (j27rmtINT). (81) 
m';::::!,N 

Writing Cm = (Cm - (Cm)av) + (Cm)av and noting that (CN)av is the 
only nonzero value of (Cm)av in the summation, (81) may be rear
ranged ~~ to be 

* YN as used here is Y m for m = N and is not the (Yh of Section 2.5. 
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Jo(t) = 2Re{ YN(GN)av exp (j27rt/T) 

+ L Y m(Gm - (Gm\v) exp (j27rmt/T)} 
m';::jN 

= 2ReY N(GN\v exp (j27rt/T) 

'{l + L Y m(Gm - (Gm)av) exp [j27r(m - N)t/NT]}. (82) 
mf':jN Y N(GN)av 

The summation part of this is small, partly because Um/UN is small 
and partly because of the attenuation of the tank circuit Y m except 
for frequencies near the pulse rate liT. Thus if the part within the 
brackets is represented by 1 + A + jB, I A + jB I is small compared 
with unity and so 

1 + A + jB ~ exp [A + jB] (83) 

and 

Jo(t) ~ 2ReYN(GN)av exp [j(27rt/T) + A + jB] 

~ 2 I Y N(GN)av exp (A) I cos [27rt/T) + B + arg (Y N(GN)av)]. (84) 

This is the approximate sine wave at the pulse rate frequency which 
has been recovered from the pulse train by means of the narrowband 
tank circuit. Its phase modulation is 

<pet) = arg (Y N(GN)av) + B 

= arg (Y N(GN)av) + 1m L bm exp [j27r(m - N)t/NT] (85) 
m'r:::!N 

where 

(86) 

The Fourier component of ¥' (t) at frequency k/NT is determined 
by the two side frequencies mfclN = (N + k)INT and mfc/N = 
(N - k)INT about the pulse rate as was found in the earlier analysis. 
To calculate this, we use the two terms for which m = N ±k in the 
above sum. That is 

<Pk = 1m [bN+k exp (j27rkt/NT) + bN- k exp (- j27rkt/NT)] 

= 1m [(bN+k - bh-k) exp (j27rkt/NT)]. 

The time average of the "phase power" in this component is 

(<pi\vt = ! I biV+k - bh-k 12 radians2 

(87) 

(88) 
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which can be written 

(89) 

where the subscripts + and - denote N ±k. 
The ensemble average of the expression (89) may be computed 

with the help of the second order moments of the Cm's given by (75) 
and (76). For example 

(b+b!)av = Y + Yt(CN+k - (CN+k)av)(CN+k - (CN+k)av)*)/\ Y N(CN) .. v\2 

Y+Yt(pqS+St +p2q2 0+ o!)/\ YN(CN)av \2 N 

where 

(90) 

and the subscripts + and - are used to indicate m± = N ± k. Also 
m - l = (N + k) - (N + k) = 0 so that the (-1) to the power 
(m - l)/N appearing in (26) is +1. Similarly, in the calculation of 
(b+b_), m + l = (N + k) + (N - k) = 2N and the (-1) to the power 
(m + l)/N appearing in (75) is again +1, and so on. 

After the ensemble average of (90) has been calculated, taking each of 
the four parts of (90) in turn, the terms may be combined to give one of 
the results we have been seeking: 

( 2) _!. pq {\ U _ U* \2 + \ V _ V* \2} d· 2 'Pk av - 2 N + - PrJ. + - ra lans . (92) 

Since the Fourier components are it//N apart, this expression for 'P~ is 
equivalent to the "phase power" in a band iciN wide. The averaging has 
been done over both time and the ensemble. 

2.6.4. Effect of Sampling and of High Frequencies in the Response 
Next we consider a generalization of the expression (92) as derived 

above for the phase modulation on the fundamental pulse rate ob
tained by passing the random pulse train through a tuned circuit. 

In deriving the result (92) for the phase modulation of the timing 
wave obtained from the tuned circuit response, only that part of the 
pulse train spectrum in the vicinity of the pulse rate was considered. 

While the maj or part of the tuned circuit response lies in the fre
quency region near the pulse rate liT, as assumed in the calculation 
beginning with (81) and ending with (92), the way in which this 
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response is used in a regenerative repeater (or is measured in a phase 
detector) gives some importance to the part of the response neglected 
in (81). 

In a regenerative repeater, retiming of the message pulses is done 
by very sharp pulses which are generated at each positive (or nega
tive) going zero crossing of the timing wave. In the phase detector 
used in the experiments described here, the deviations of the zero 
crossings from their ideal periodic nature are measured and used as 
a sequence of numbers or held and smoothed by low pass filter to 
approximate the phase deviation function rp (t). Thus in both these 
processes, it is the samples of the derived timing wave which are 
used. When the deviations are not too large, the magnitudes of the 
zero crossing deviations are equivalent to the magnitudes of samples 
of the phase deviation wave rp(t), taken at the pulse rate. Since the 
high frequency part of the tuned circuit response which was neglected 
in (81) lies above one-half the sampling rate, the process described 
above as equivalent to sampling, may convert some of this high 
frequency part into very low frequency energy in the final timing 
noise result. In particular, if the high frequency part of the pulse 
spectrum has energy at or very near the harmonics of the pulse rate, 
this will be converted to zero or very low frequency energy in the 
phase noise spectrum. The analysis by S. O. Rice deals with this 
situation also. 

First the expression (81) for 10 (t) must be enlarged to include a 
dc term and all values of m from 1 to 00. This may be rewritten in 
the following form which corresponds to (83). vVe have 

I.(t) = 2 Re Y NCN exp (j27r t/T){ 1 + t d. exp (-j27rt/T) 

00 

+ L d z exp [j27r(l - l)t/T] + tb o exp (-j27rt/T) 
Z=2 

(93) 

where l is an integer, 

dz = Y NZ(CNZ)av/Y N(CN)av 

and the coefficient bm is defined as in (86). This expression is the 
complete response of the tuned circuit to the random train of pulses. 

Again assuming that the term within the square brackets in (93) 
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always remains near 1, 

cp(t) ~ arg Y N(CN)RV 

+ 1m {tdo exp (- }'21rtl'1') + t; d, exp li21l( I - 1) tiT] } 

+ 1m { t bo exp ( - j21lt1T) + t bm exp [j21l( m - N) tiNT] }. (94) 

This is an improved version of (85). The first line on the right is 
approximately the ensemble average (so (t) )av. It consists of a de 
term and harmonics of the pulse repetition frequency liT. While it 
may appear that the assumption about the bracketed part of (94) 
being small is unjustified because this represents the adding of har
monics to yield the pulse wave form, this is not the case since all the 
harmonics included are reduced at least by Q. Furthermore, since 
the sampling operation occurs near the zeros of the response, where 
the harmonics are zero or very small, an additional reduction of 
magnitude is involved. The noise portion of the power spectrum of 
SO (t) arises from the second line, which may be written as 

cp( t) - (cp( t) )av 

~~Im{ ibo exp (-j21ltIT) + j~N bN+k exp (j2.-ktITN) 1 (95) 

The sampling operation mentioned above, which is performed on 
the phase function SO (t) in both the phase detector used in the experi
ments reported and in regenerative PCM repeaters, generates a new 
phase function e(t). This is 

00 00 

(J(t) ~ cp(t)T L B(t - nT) = cp(t) L exp (j27rntIT) (96) 
n=-oo n=--co 

where B(t) denotes the unit impulse function. For some frequencies in 
cp(t) , the extraneous modulation products introduced by the impulses 
may be negligible. However, for the higher frequencies and for a single 
tuned circuit with slowly decreasing Y(iw) , some of the products may 
become appreciable and should be taken into account. The sampling 
times in (96) were arbitrarily set at t = 0, T, 2T ... for convenience in 
the analysis to follow. These can be varied to occur at or near the zeros 
of the response wave lo(t) by shifting the time scale of the description 
of the pulse train using the parameter 11 as indicated by (54) and related 
equations as illustrated in Fig. 19. Forming the ensemble average 
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(O(t)av , subtracting it from OCt), and noticing that the sums in the 
expression (96) for OCt) are real, leads to 

8(t) - < 8( t) ).. = 1m {!b •• t~ exp (j2ornt/T) 

+ .t~ '!;.N bNH exp [j2 .. (lc + nN)t/NT1}. (97) 

The component of OCt) of frequency ljNT for 1 ~ l ~ N - 1, that is, 
for frequencies which lie between 0 and f 0 , is the sum of terms having 
exponential factors exp (±j27rltjNT). For k + nN = +l, the values 
of k and n are 

k = -N + l, k = l, k = N + l, k = 2N + l, ... , 

n = 1, n = 0, n = -1, n = -2, ... , 

and for k + nN = -l they are 

k = -l, k = N - l, k = 2N - l, ... , 

n = 0, n = -1, n = -2, ... , 

Therefore the component of (J(t) of frequency ljNT is 

1m [(b z + bN + Z + b2N+ Z + ... ) exp (j27rltjNT) 

+ (bN - l + b2N- Z + b3N- Z + ... ) exp (- j27rljNTJ 

= 1m [{(b z + bN + Z + b2N+ Z + ... ) - (bN - Z + b2N- Z + ... )*} 

. exp (j27rltjNT). (98) 

When bN +l and bN - l are the dominant terms in (98), comparison 
with expression (87) (with k = l) shows that the component of O(t) 
of frequency liNT is nearly equal to the corresponding component in 
cp (t). By means of the procedure used earlier in (91) the average 
power in the component of (J(t) of frequency kjNT is obtained where 
we have returned to k from the l in (98). First, the time average of 
the power in the component is 

(99) 

where 0 < k < n. To average (99) over the ensemble we make use 
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of (75) and (76) slightly rewritten by substituting exp (-j7rm/N) for 
(_l)m/N and including it with Sm. Thus 

2 2 

= Pfr [8m exp (- j7rm/N)][8z exp (- j7rl/N)] + P J Om Oz , 

m + l = 0, ±N, ±2N, ... , (100) 

«(Cm - (Cm)av)(C Z - (CZ)av)*)av 
2 2 

= r;: [8m exp (-j7rm/N)][8 z exp (-j7rl/N)]* + P J Om or 
m - l = 0, ±N, ±2N, .... (101) 

The averages are equal to zero unless m and l satisfy the respective 
conditions. 

A typical term encountered in the averaging of (99) is 

(bnN+kb;, N+k)av = (bmb"l)av 

where m = nN + k, l = n'N + k, and m - l = (n - n')N. From (101) 

2 2 

(bmb"l)av = r;: CUm exp (-j7rm/N)][U z exp (-j7rl/N)]* + P J VmVr, 

m - l = (n - n')N. 

In this U and V are generalized from the definitions of (91), so 
that for example 

U - 8nN+k YnN+k. 
nN+k - (C) Y 

N av N 
(102) 

Considering all four forms of (bmb)av as before, the ensemble aver
age of (99) is found to be 

(0;) .. = ~~ 1 t. U.N +. exp [-jrr(nN + k)/N] 

00 12 - ~ U;N-k exp [+j7r(nN - k)/N] 

(103) 

The exp (- j7rk/N) can be factored from the first absolute value and 
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then exp (±j7rnN IN) replaced by (-It, so that 

l
ao co 12 «()~)av = 2PN

Q 2: (-rUnN+k - 2: (-rU':N-k 
n~O n=l 

2 21 co ao 12 + ~~ ~ V nN+k - ~ V':N-k (radians?, (104) 

which js the generalization of (92) when the complete response of the 
tuned circuit is used. To repeat what was said before, since the Fourier 
components in the spectrum of () are lelN apart, this expression for 
«()Dav at 1 = klNT is equivalent to the "phase power" in a band lelN 
wide in a continuous spectrum. 

To obtain the continuous power spectrum waC!) of the "noise" part 
of (), we let miNT = t' and N ~ 00 in the above expressions. First 
(77) becomes 

0(/') = exp (j27f11f'lle) iT exp (-j2'Tr1't)[F4 - F3 - F2J dt 
T 0 

S (f') = exp (j27f11f' lie) 1 T exp ( - j27rf' t){ [2pF 4 + (Q - p) F 3 

T 0 

+ (Q - P)F2J COS'Trf'T + j[F2 - F3J sin 'Trf'T} dt. (105) 

Also 

UnN+k ~ U(f') = U(nfe + f) (106) 
Y[j27r(nfe + f)J S(nfe + f) 

Y(j27rfJ p[S(fe) + p o(fc)J 

where (CN)av has been replaced by p (SN + pDN) as derived from (64) 
and (74). 

Since the expressions derived earlier for the average power in a 
component of 'P (t) refer to positive frequency only, we shall deal 
with the one-sided power spectrum We (f) of ()(t). As before f = klNT 
denotes the frequency associated with the average power expressed 
in (104). Then the value of the right side of (104) tends to W (f) 6.f = 
We (f) jNT as N -? 00 and consequently 

wo(f) ~ T:q 1 t, (- )'U(nt, + f) - t, (-tU'(nt, - f) I' 

+ Tp~q' 1 t, Vent, + f) - t, V'(nt, - f) I' (radians)' per Hz, 

(107) 
where 0 < f < f c· 



582 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969 

2.6.5 Application of Results in Section 2.6.4 to Particular Pulse Shapes 

Comparing the result (104) with the earlier (92), it is seen that 
each component of frequency I = k/NT in the spectrum of () is made 
up of contributions from the pairs of components spaced I from all 
the harmonics of the pulse rate Ie. The sampling of <p (t) has brought 
in all these additional contributions. 

Now we are in a position to find out what the effect is of neglecting 
the higher frequencies as was done in the previous work and espe
cially in deriving the result (92) to which (104) reduces when only 
n = 1 is considered. 

To do this, we will investigate several particular pulse shapes. As 
will be seen below, certain simplifications arise for n = 1 so that in 
some cases, approximate expressions for the noise may be derived. 
But, in general, and especially when the sums of (107) are to be cal
culated, the expressions become so complex that they cannot be dealt 
with readily in an analytical way. However, numerical calculations 
of We (f) in (107) answers most of our questions. Some of the com
putations for the rectangular pulses were first done by S. O. Rice. The 
others are extensions of them. The sums were carried to 30 terms 
for the rectangular pulses and to 15 or 20 in the other cases. Leveling 
off occurred before these cutoff points were reached. 

If each pulse is confined to one time slot, then In (t) is determined 
entirely by an. Thus, in the specifications (54), we have 

Fa(t') = 0; F2 (t') = F4 (t'). (108) 

As a consequence, it is seen from (59), (60), and (74) that 

I'm = 0 

8 m = 13m exp (j7rm/N) 

(109) 

(110) 

with corresponding simplifications in (75), (76), (79), and (92) 
and (104). 

2.6.5.1 Narrow Rectangular Pulse. First take the rectangular pulse of 
duration r used in Fig. 19. Here 

(T - r)/2 < t' < (T + r)/2 (111) 
= 0, elsewhere. 

Calculation of the pulse spectrum function Sm from (110) I (58) I and 
(61) yields 
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8 m = (_)n-l ex ["7rx(1 _ 2v)] exp [-:-j7r2v(n - 1)] sin 7r~n + x)rlT 
8N p J \n + x) sm 7rr IT 

(112) 

using m = nN + k and x = kIN. 
The expression (3) in Section 2.1 for the ratio of noise power in a 

band B to carrier power is derived from (112) using (79) and (64), 
putting f'lfe for n + x, and noting that ,(J'N = 2pSN for a positive fre
quency only spectrum as in (79). Thus 

<T~ q 8 m8!, 
2=--2-
<TN pN 8N 

f; sin2 7rf'r 
= N (f')2 sin2 7rr Irp (113) 

These components are f cl N apart and so the power of each corresponds 
to that in a band B of this width. The ratio <T~/<T~ corresponds exactly 
to 821A~ in (3). 

To apply these results to the single tuned tank circuit centered on the 
pulse rate, the general form of Y m+IY N as given in (15) is necessary. 
This is 

n+x 
YnN+kIYN = n + x + jQ[(n + X)2 - 1] (15) 

Combining (15) with (112) in (102) or (106) gives 

U(nfc + f) 
(-r- 1 exp [j7rx(1 - 2v)] exp [-j7r2v(n - 1)] sin 7r(n + x)rlT 

p[n + x + jQ[(n + X)2 - 1]] sin 7rriT 

(114) 

with l' = nfc + f and miN = I'lle . 
First, notice that the factor exp (j27rxv) in (114) disappears in the 

calculation of (107) since exp (j7rx2v) = exp * (j7r( -x)2v) and hence 
factors out of both sums. 

Next consider the unique conditions that arise when n = 1. The 
second exponential factor containing the parameter v, which determines 
the sampling time, disappears from (114). And the factor multiplying 
jQ in the denominator becomes proportional to x. The first means that 
the sampling time has no effect on the contribution of the n = 1 terms 
to wo(j). The second means that (U + - U'!.) ~ 0 as x ~ 0 and hence 
that the contribution of n = 1 to we(/) approaches zero as f ~ o. 
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As indicated in Fig. 19, the zero crossing of the fundamental com
ponent comes at the t = 0 sampling time for v = i; hence this value was 
used in the computations. Timing noise spectra obtained in this way 
for several durations of rectangular pulse are plotted in Fig. 20. In 
order that the effect of the high frequencies may be easily seen, the 
corresponding spectra considering only the n = 1 term are shown in 
Fig. 2l. 

Several interesting points are evident: 

(i) Comparing the two sets of spectra, it is seen that the high fre
quencies have brought in noise at and near zero frequency, except for 
the TIT = 0.6 duration. * 

(ii) There is a great difference in the full spectra for TIT > 0.5. 
This was observed experimentally for other values of TIT than 0.6. 

(iii) The high frequencies in the timing tank response, through the 
sampling process, have not only brought in very low frequency phase 
noise, but reduced the higher frequency noise except for TIT = 0.6. It 
is the phase structure of this noise which makes cancellation as well as 
addition possible. 

(iv) In the case of TIT = 0.6, there is only a small difference between 
the spectrum obtained with the full spectrum and that from considering 
only n = l. 

(v) There is very little difference between the spectra for TIT = 0.1 
and TIT = 0.02. This suggests that the phase noise may not disappear 
for pulses which approach spikes in shape. 

(vi) The magnitude of the noise, when compared with that of the 
usually more practical rounded shapes, is quite small, as seen in Fig. 4. 
It will be seen below, that the effect of the high frequencies is much less 
for these other pulse shapes. 

For the narrow pulse case, TIT = 0.1, the timing noise spectrum 
can be changed greatly by small amounts of tank circuit mistuning, as 
shown in Fig. 22. This also can be a cancellation or an addition effect. 

When the tank circuit is mistuned from the pulse rate, ± x is replaced 
by Xo ± x in (15) for the normalized admittance. Here Xo is the relative 
mistuning as defined earlier in (18). 

2.6.5.2 1 T Raised Cosine Pulse. A photograph of an oscilloscope dis
play of this pulse shape is given in Fig. 18c. Each pulse is confined to 

* The possibility of this property of the noise was pointed out by H. E. Rowe. 
See Ref. 6. 
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a single time slot and so the relations (108), (109), (110) hold. Here 

F 2 (t') = F 4 (t') = 1 - cos (27rt/T) (115) 

and 

B(nfe + f) 
S(fe) 

2 exp (j27rVX) exp [j27rV(n - 1)] sin 7r(n + x) 
-; (n + x) [en + x? - 1] 

The proper value of v is 1/4. 

(116) 

The spectrum of timing noise is shown in Fig. 35, where it is seen 
that there is no noise energy at zero frequency. The pulse spectrum 
not only has nulls at all the pulse rate harmonics except the funda
!llental, but has very small energy in all the high frequencies. Thus, 
in this case, the high frequencies have very little effect on the timing 
noise. This was verified by both further calculation and measurement. 

For x not too large, the noise spectrum is nearly 

. (we(f))! ~ (T /2)! sin
7r 

7rX (9
1 
++1:~:~:)! rad/Hz. (117) 
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2.6.5.3 1.5T Raised Cosine Pulse. This pulse shape is drawn in Fig. 
23a. A single pulse is described by 

f(t) = 1-cos(47rt/3T). (118) 

Consideration of the specification (54) shows that 

F 2(t') - F 3(t') = f(t') - f(t' + T)} 

F 4(t') = f(t') + f(t' + T) 
o < t' < T/2 

(119) 

F 2(t') - F 3 (t') = f(t') } 

F 4(t') = f(t') 
T/2 < t' < T. 

Thus, even though there is overlapping of adjacent pulses, Om, = 0 
and the pulse spectrum is completely specified by Sm. Consideration 
of the waveform of Fig. 23 (a) for all pulses present shows that v = 1/2 
is the proper value here. Sm/SN is independent ofv for this value and is 

Sm = . n 5 [1 - exp (-j7rm/N)] 
SN exp (]7rX) ( -) 8' (m/N)(4/9 _ m 2/N2) 

.{~: [1 + exp (-j,rm/N)] + ~ exp (j,rm/N)}. (120) 

TIME,t ~ 

(b) 

o 3T TIME, t ~ 

Fig. 23 - Pulse waveforms. 
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The spectra of timing noise, caused by this pulse shape, calculated 
and measured, are plotted in Fig. 36. While the magnitude (rms) of 
this noise is about 4 times that for IT pulses, the energy at zero fre
quency is 0.00075 degree in a 10 Hz band, which is quite small. Hence 
overlapping of pulses does not appear to be a source of very low fre
quency timing noise. As in the previous case, the high frequency part 
of the response is small and so has only a small effect on the timing 
noise. 

2.6.5.4 Asymmetrical Overlapping Pulses. The particular pulse shape 
chosen here is pictured in Fig. 23b, where it is seen that the rise occurs 
in one-half pulse period while the decline takes a whole period. The 
auxiliary function F 2 (t) is described by 

F2(t') = 1 - cos 27rt' /T 

= 1 - cos 7r(t' + T /2)/T 

o < t' < T/2 

T/2 < t' < 3T/2. (121) 

From this and Fs and F4 , it is found that the 0 function is zero as 
in the previous case. The spectrum function 8m is 

8 m _ 2j exp (j27rxv) exp [j27rV(n - 1)] 
8 N - 7r (1 - j4/37r)(n + x) 

.{1 + exp [-j27r(n t x)] _ 1 + exp [j7r(n -t: X)]}. (122) 
1 - 4(n + x) 1 - (n + x) 

Estimates indicate that v = 0.35 will bring the zero crossing of the 
fundamental term very close to the sampling time of t = 0 and so 
this value was used in the calculations. The spectrum of timing noise 
caused by this pulse shape is plotted in Fig. 36, where it is seen that 
the amount at zero frequency is quite small, although somewhat 
larger than that of the symmetrical overlapping pulses. Hence, asym
metry of pulse shape does not appear to be a significant factor in 
very low frequency timing noise. 

Since no readily available means for generating this pulse shape 
in the laboratory was found, there is no measured data. The good 
agreement between calculation and measurement in the other cases 
gives considerable weight to the calculated curve. 

2.6.5.5 Rectified 2T Raised Cosine Pulses. Rectified 2T raised 
cosine pulses are pictured in Figs. 17 and 18. Before rectification, a 
single pulse occupying two time slots is represented by 
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12(t) = 1 + cos (wJ2)t -T < t < T (123) 

where Ie = wc/27r is the pulse rate. After rectification, the auxiliary 
functions are shown in Fig. 17 c and described by 

F 2 (t') = 0, ° ~ t' ~ T/2 

- cos (7rt' /T) , T/2 ~ t' ~ T 

F 3 (t') cos (7rt' /T) , ° ~ t' ~ T/2 (124) 

= 0, T/2 ~ t' ~ T 

F/t') = 1, o ~ t' ~ T. 

Because of the nonlinearity, thea function is not zero. The pulse 
spectrum is described by 

S =! exp [-j(37r/2)(m/N)] cos (7r7'"llf) sin (7rm/N) 
m 7r (m/N)(l - 4m /N ) 

(125) 
o _! exp [-j(37r/2)(m/N)][sin (7rm/N) - 2m/N] 

m - 7r (m/N)(l - 4m2/N 2
) 

SN = 0, ON = j2/37r, (CN\v = j/67r for v = 1/4, P = 1/2. 

The spectrum of timing noise calculated from (125) is plotted in 
Fig. 37. The sums in (107) were carried to 15 terms, but the higher 
order terms added very little. The results are very close to those for 
n = 1 except at zero frequency. The higher frequency terms with alias
ing do generate some noise at these. The amount, which is difficult to 
see in the Fig. 37, is 0.0023 degree rms in a 10 Hz band, about three 
times that for 1.5T pulses and one-half that for the asymmetrical 
pulses. 

2.6.6 Relation of the General Theory to the Sintpler One 

The operation U + - U: which appears in (92) for the calculation of 
phase deviation is essentially the same as the operation used in Section 
2.2 for determining symmetrical and antisymmetrical components or 
in phase and quadrature components. The expression U + - U: is 

U+ - U: = (S+/(CN)av)(Y+/YN) - (S-/(CN)av)*(Y-/YN)*' (126) 

In the simpler derivations of Section 2.2, it was assumed that the 
pulse train was such that (S+/(CN)av) = (S-/(CN)av) >< and so could 
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be factored out leaving 

u+ - U~ = (S/(CN)av)[Y+/YN - (Y-/YN)*J. (127) 

Or, in other words, the pulse train contributed to the phase deviation 
in magnitude only. The part within the brackets is the conversion 
factor caused by mistuning, if any, in the tuned circuit described by 
Y. In the case of the offset trigger, a separate conversion factor was 
derived. 

The simple theory cannot be applied generally for the wider pulses 
and particularly in those cases when the S function enters into the 
pulse spectrum description. In some cases considered in detail, it was 
found that the strength of noise components (J'm (and hence the dis
symmetry between side frequency pairs about the pulse rate) depends 
largely on the ·8m part of (79), and very little on the 8m part, while the 
situation is just the reverse for the phase deviation CPk in (92). 

III. SYSTEM USED FOR MEASUREMENTS 

3.1 Principal Apparatus 

In Fig. 24, the connection diagram of Fig. 1 has been revised to 
show the detection and remodulation process. This also shows why 
the actual apparatus used (bottom diagram) is really parts of two 
repeaters. 

The complete block diagram of the apparatus used, corresponding 
to the simplified diagram at the bottom of Fig. 24 is shown in Fig. 25. 
The functioning of this apparatus will now be described in more 
detail. The principal sections are: 

3.1.1 Pulse Regenerator 
The pulse regenerator has been especially developed so that it will 

not add any timing noise of its own. It was worked out mainly by 
C. R. Crue following plans made by S. L. Freeny. To make the first 
record (simulating repeater 1), the regenerator input is switched to 
the source of clipped random noise, thus generating a random train 
of pulses. Thereafter it is switched to the recorder playback so that 
the same sequence of pulses, though random, is used for each trans
mission through the apparatus. A fixed bias may also be connected 
to the regenerator input so that it sends an all pulses present train 
to the system for calibration and testing. 
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Fig. 24 - Block diagram of simulation of chain of regenerative repeaters. Parl 
within dashed section at top is redrawn at bottom. 

3.1.2 LC Tank Circuit 
The LC tank circuit which derives the timing wave from the in

coming pulse train uses an air core coil and positive feedback to 
achieve a Q of 100. It is necessary to use an air core coil and to keep 
it in a temperature controlled oven in order to measure phase with 
the required precision of less than 0.10. 

3.1.3 Amplitude Limiter 
A very important section and one which is difficult to achieve is 

the amplitude limiter which removes very nearly all the amplitude 
variation from the timing wave so that in the detection process, only 
the phase deviation of the timing wave is measured. For most of the 
measurements, the limiter has two stages, each consisting of amplifier, 
cathode follower, and series limiter made up of resistance and a pair 
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of diodes. The amplifiers were made to approach linearity very 
closely and are isolated from the limiters by cathode followers in 
order to make amplitude to phase conversion negligible. 

3.1.4 Phase Detector Characteristic 
The phase detector characteristic, volts versus phase, extends 

through zero equally in both directions, and is linear over a wide 
range. How it works is explained briefly in the simplified diagram 
of Fig. 26. There are two inputs to the phase detector, the signal 
wave and the reference standard. At the positive zero crossings of 
these waves, sharp pulses are generated to operate the flip-flop whose 
output is the square wave at E when A and B are opposite in phase 
as shown. The edge of the square wave at E, controlled by the refer-
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Fig. 26 - Block diagram and operation of phase detector. 
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ence standard, is fixed; the other edge varies as the phase of the 
signal wave. The average value of E appearing at the low-pass filter 
output is then proportional to the time variations of the positive zero 
crossings of the signal wave, that is, its phase. The low-pass filter 
and a little shaping in the dc amplifier are such that the bandwidth 
available for the detector output as indicated in Fig. 26 is about 0.4 
the pulse rate. The noise wave thus derived is nearly the best con
tinuous representation of the zero crossing deviations. 

Since part of this detector is like a sampler operating at 1 kHz, 
there will be aliasing in the process if the original time variations 
contain frequency components higher than 0.5 kHz, as discussed in 
Section 2.6.4 and 2.6.5. 

With the time interval unit and counter connected at E, the time 
duration from a fixed edge of the square wave to the adjacent vari
able edge can be measured so that individual zero crossing variations 
as well as the smoothed wave v may be obtained from the detector; 
or the time interval unit may be operated to measure from one vari
able edge to the next. In this way "spacing jitter" may be measured. 

This connection is also used in the standardization of the detector 
characteristic. With an all pulses present train applied to the tuned 
circuit, a steady sine wave is obtained at the signal point A of the 
phase detector. The precision phase shifter which supplies the refer
ence at point B is adjusted until the duration of the positive part of 
E is 500.0 microseconds. Then a bias adjustment is made to bring 
v to zero volts. After this the phase shifter is moved by various 
amounts from this reference condition and the amplifier gain ad
justed to give the proper detector output voltage. In this calibration 
a Leeds and Northrup potentiometer is used for voltage measurement. 

3.1.5 Phase Modulator 

The phase modulator generates a sharp pulse at the instant voltage 
coincidence occurs between the input signal wave and a very "linear 
sawtooth" wave generated from the 1 kHz standard. This pulse is 
then used in the regenerator for timing the new pulses. The modulator 
must generate this timing pulse just as precisely as the phase detector 
detects the zero crossings of the original timing wave. It is calibrated 
by applying a known voltage which then causes a phase shift through
out the system. This phase shift is then converted to a voltage by 
the phase detector and the result compared with the input. The modu
lator sensitivity is adjusted so that the detector output is the same 
as the modulator input. Thus all calibration of the detection and 
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modulation process is in terms of two absolute standards, the Leeds 
and Northrup potentiometer for voltages and the phase shifter for 
phase angles. 

The circuit for the modulator was originally developed and worked 
out by L. R. Wrathall. This was revised somewhat and built in final 
form and thoroughly tested by C. R. Crue. 

3.1.6 Tape Recorder 
The tape recorder used is an Ampex FR-100B with servo speed 

control such that reproduced signal time never varies by more than 
±0.25 ms (1 ms = 1 pulse period) from precise time. Because the 
noise wave is essentially a low frequency signal with most of its 
energy below 5 Hz, and because frequency modulation (FM) record
ing is used, these small variations in time will affect only the time 
at which this old noise is added to the new. Tests have demonstrated 
that whatever time variation there is has a negligible effect. FM 
recording at 30 inches per second is used on five tracks, one of which 
is for speed servo. The machine is operated at 50 Hz derived by 
step-down chain from the 1 kHz standard which in turn is derived 
from the 1 MHz crystal oscillator in the counter. Two tracks pro
vide a 5 kHz band for the pulse train. The other two tracks are for 
the phase noise signal and the bandwidth for these has been reduced 
to 1.25 kHz to lessen recorder noise. The gain through these channels 
is made unity. A phase shifter in the 50 Hz supply to the recorder 
makes it possible to align the recorded pulses with the gating triggers 
at the regenerator input each time the recorder is started. 

3.1.7 Delay Network 
The delay network in the pulse path makes up for the delays in 

the noise path caused mainly by the detection and recording process 
so that the noise record and pulse record correspond at any time. 

3.1.8 Trigger Circuit and Envelope Detector 
A trigger circuit with adjustable triggering level was introduced 

into the system in place of the limiter for the investigation of ampli
tude to phase conversion effects. Operation and data taking were 
simplified by removing the limiter entirely even though in a real 
repeater some limiting, though imperfect, would be used. 

For the measurement of the properties of amplitude variations of 
the tuned circuit response, an envelope detector was connected at the 
tuned circuit output. 
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3.1.9 Pulse Shaping Networks 
For the study of wide pulses and intersymbol interference, pulse 

shaping networks were introduced between the pulse regenerator and 
the tank circuit. These were RC circuits and low-pass filters for 
producing a sine-squared shape. In some cases a half-wave rectifier 
was introduced between filter and tank circuit. 

3.1.10 Longword Pulse Pattern 
In order to investigate some aspects of timing noise, an attachment 

to the signal generator was made so that a longword pulse pattern 
with a period of 240 bits, and hence having important components 
within the band of the tank circuit, could be applied to the system. 
The basic parts of this attachment are (i) a code plate with a rectan
gular 15 by 16 array of holes, placed before (ii) a cathode ray tube, 
the electron beam of which is swept across all the holes successively, 
and (iii) a light sensitive device to convert the light coming through 
the code plate holes into pulses. The longword signal pattern which 
is desired is then brought about by blocking out with black tape the 
proper holes in the code plate. This apparatus was developed by C. R. 
Crue. 

3.2 Method of Operating the System 
In using the system to obtain a series of noise records corresponding 

to the timing noise at successive repeaters in a chain, the procedure 
is as follows. After calibrations have been made with the all pulses 
present condition, the regenerator is connected to the clipped noise 
source (which has been adjusted to give the desired pulse density) 
and recordings are made of the pulse train on track 5, the generated 
phase noise in the timing wave on track 3, and the 50 Hz servo control 
wave on track 1, for about 15 minutes. Then the tape is rereeled, 
calibration checked, and playback started with track 3 going to the 
phase modulator and track 5 going to the pulse regenerator. This 
time the pulse train is recorded on track 4 and the timing noise on 
track 2. We now have two timing noise records corresponding to the 
timing waves at the first and second repeaters of a chain and these 
are now analyzed following the procedure outlined below. 

Notice that it is the phase noise on the timing wave which is 
analyzed here rather than the repeater output pulses. These are the 
same, of course, in a completely retimed repeater. Therefore, it is 
not necessary that the recorded pulse train have the accumulated 
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timing noise; it is a perfectly timed replica of the original pulse 
train. The first part of the regenerator removes any time variations 
acquired in the recording-playback process. In the first recording, 
a few minutes of all pulses present is recorded before switching to 
the random train to give the recorder servo time to synchronize and 
also to allow time for the alignment of recorder to system each time 
it is started. 

To obtain the next pair of records corresponding to transmission 
through repeaters 3 and 4 of the chain, track 2 is played back to the 
phase modulator, while the detected accumulated noise is recorded 
on track 3 thus erasing the record first made there. Then track 3 is 
played back to the modulator with the new noise record being made 
on track 2. And so on, as long as desired or until some difficulty in 
the process arises. 

During the playback, the alignment of system and recorder is 
monitored continuously to make sure that the recorder stays in syn
chronism. If it does not, the pulse train may be altered. 

A great amount of time and effort has gone into the building of 
the system just described to make it sufficiently stable and accurate 
for measuring phase deviations to within less than 0.10 out of 10°. 
It is necessary to measure with this precision in order to be able to 
describe accurately the change in noise from one repeater to the next 
because of the small amounts involved. The rms value of noise gen
erated at one repeater with Q = 100 and 0.1 percent detuning is a 
little less than 10. 

Another factor in the reliability of the data is that a long enough 
signal was used for analyzing so that fluctuations in the plotted 
parameters of the noise were fairly small. As described below, 32 
ten-second averages of the time the noise wave spends below each 
threshold are used for each point on the cumulative distributions. 
Since the counter rests for 10 seconds after each adding period, the 
length of signal involved is 640,000 pulse positions. Each plotted 
point is well enough established, so that the curve connecting them 
is smooth without the necessity of further averaging. 

The residual noise at the detector output for all pulses present 
is about 0.006° rms. For a random train of pulses (narrow) there 
should be no phase noise generated if the tank circuit is centered 
exactly on the pulse rate. In this situation, the residual noise is about 
0.012° rms. See Fig. 28. This is not only a good test of the system 
as a whole, but is a good dynamic test of the limiter, which is hard 
to do in any other way. 
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3.3 Apparatus tor and Process of Analyzing Data 

3.3.1 Cumulative Distribution-Slicer Circuit 

To obtain the cumulative distribution of the noise, a slicer circuit 
was developed. This is an adjustable threshold device which generates 
a standard height pulse whenever the noise wave is below the thres
hold. The duration of each of these pulses is measured by counting 
the number of cycles of a 100 kHz wave which the pulse gates to 
the counter. The accumulated durations of all these pulses which 
occur in a standard interval of 10 seconds is then totaled by the 
counter. 

At each threshold setting, 32 of these totals are obtained and 
plotted in control chart fashion as shown in Fig. 27. This helps us 
to see if the data are statistically acceptable. If appreciable trouble 
has occurred in the apparatus during the run, it will show up in this 
picture. The median taken from each chart of data is used to plot 
one point on the distribution. After the distribution is plotted, the 
rms value is taken from 1/3 the difference of the values at the 93.3 
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percent and 6.7 percent points, following a method suggested by E. B. 
Ferrell for skewed distributions. 

3.3.2 Spectrum Density-Wave Analyzer 
To obtain the spectrum density of the noise wave, a General Radio 

1900A wave analyzer with external rms indicator is used. In order 
to extend the nominal 20 Hz lower end of the analyzer to around 1 
Hz, a 16-to-l speedup of the noise wave is made in a second recording 
process. Each point on the cumulative distribution requires about 11 
minutes of signal, so the original noise record is played back and 
then rereeled for each point. During each playback the noise record 
is duplicated at lower speed by bridging the input of another FR-I00 
recorder operating at 1'% inches per second at the main recorder out
put. The new record then consists of about 8 to 10 serial duplications 
of the noise which, when played back at 30 inches per second, pro
vides about 5 minutes total of the original noise with all frequency 
components multiplied by 16. A wave analyzer band of 10 Hz then 
is equivalent to a 0.625 Hz band for the original noise. 

In order to obtain consistent and reliable measurements of noise 
power in the wave analyzer band, it was found necessary to replace 
the linear detector provided in the wave analyzer with a square law 
detector. To do this, the wave analyzer IF output was connected to a 
Ballantine rms meter and the square law response of this applied 
to a 4-second time constant RC smoothing circuit and a linear scale 
meter. The pointer of this meter still fluctuates, thus requiring some 
kind of average. This average was obtained arithmetically from 20 
successive meter readings made at 5-second intervals and, after cali
bration, was taken as the measure of the mean square power of the 
noise falling within the wave analyzer band at each frequency setting. 

The variance of each of these readings depends partly on the 
analyzing filter bandwidths and partly on the lengths of signal record 
available. The latter part could be obtained only by calculation and 
appears to be the dominating part. Variance estimated this way 
indicates that any reading taken by the above method is within 10 
percent of the true value with 95 percent confidence. The data taken 
appear to have less variation than this. Some further smoothing of 
an unknown amount occurs in the plotting of the individual points 
to give a smooth spectrum curve. Integration of these curves con
sistently gave results agreeing (within a very few percent) with 
measurements of total noise power. 
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IV. RESULTS OF EXPERIMENTS 

4.1 Use oj N arrow Rectangular Pulses 
The first measurements of phase noise on the timing wave recovered 

from a random train of narrow pulses by a tank circuit mistuned from 
the pulse rate showed that the magnitude of the noise is proportional 
to the amount of mistuning when this is only a few tenths of a per
cent, as predicted by W. R. Bennett.1 Hence there should be no noise 
for zero mistuning. It was found difficult to define, though, just what 
zero mistuning is for a real LC tank circuit. In the experiments 
reported here, the tank circuit consisted of an air core coil and capaci
tor in shunt at the collector of a transistor, the emitter of which had 
a resistor equal to the resonant impedance of the LC tank. The 
transistor was driven at its base and there was positive feedback 
using another transistor to bring the effective Q of the tank to a 
value of 100. The reference point from which mistuning was measured, 
chosen because it could be easily set with sufficient precision, was 
that of 1800 phase between the collector and emitter voltages of the 
tank transistor as determined by an oscilloscope Lissajou figure. 

That the minimum of phase noise does not occur at this point is 
shown by the curve of Fig. 28. Neither is its value zero, being made 
up partly of the residual noise of the system as indicated by APP 
(for all pulses present) and partly of the noise from the train of 
random narrow rectangular pulses. However, in the investigation of 
noise caused by pulse shape alone (Section 4.3), it was found that 
this minimum does not coincide with zero mistuning. Rather, the 
minimum is the result of cancellation by small amounts of mistuning 
and trigger offset of part of the noise attributable to pulse shape. 
While the minimum is about 0.012 degree, the noise from the pulses 
is about 0.036 degree. This is the true zero mistuning and occurs 
about where the curve crosses this ordinate. Even though the noise 
contributed by the narrow rectangular pulses is not zero, it is quite 
small as may be seen from the spectrum curves of Figs. 4 and 20. 
Hence using the narrow rectangular pulses in the measuring of noise 
caused by tank circuit mistuning and by offset trigger gives results 
which very nearly isolates these as sources for individual scrutiny. 

4.2 Tank Circuit Mistuning 
The curves of Fig. 2 show how the spectrum changes as the noise 

is examined at successive repeaters, each mistuned by the same amount 
and direction, in a chain of six repeaters. Distinctive features of these 
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Fig. 28 - Measured timing noise as a function of tank circuit detuning near 
minimum. This shows residual noise of the system. 

spectra are the zeros at zero frequency and the maxima which occurs 
at f = f~/2Q for N = 1 and closer to zero as J.V increases. Additional 
measurements on longer chains up to 20 in length show that this trend 
continues and agrees with magnitudes predicted by the theory pre
sented in Section II. In Fig. 14, these predictions are plotted and 
extended to a chain of 100 repeaters. It is evident from these results 
that while the maximum continues to rise, its magnitude will never 
be greater than four times what it was at the first repeater. The 
reason for this is that the noise spectrum generated at each repeater 
is zero at zero frequency and the succeeding tank circuits continually 
attenuate the higher frequency components. These effects are seen 
also in the data on the total phase noise along the chain. For chains, 
up to 20 in length, measured and calculated values are plotted in 
Fig. 29. Calculated values for longer chains are plotted in Fig. 15. 

Figure 30 shows the measured and calculated spectra of phase 
noise at two adjacent repeaters when the second one is mistuned in 
the opposite direction but by the same amount as the first one. This 
has the effect of reversing the dissymmetry of side frequencies about 
the carrier in the second repeater, and so there is a partial canceling 
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Fig. 29 - Total timing noise caused by 0.1 percent mistuning of timing tanks 
in chains of N like regenerative repeaters. 

of phase noise. Thus the greatest accumulation of timing noise caused 
by mistuning comes when all repeaters in a chain are mistuned the 
same way. 

In all these cases, we have seen how well the values of timing noise 
calculated from the theoretical model of Section II agree with those 
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obtained by measurement. The theoretical model was developed from 
the simple picture of the equivalence of phase modulation of the 
recovered carrier and dissymmetry of the side frequencies about this 
carrier introduced by the mistuning of the tank circuit into the other
wise symmetrical side frequency and carrier representation of the 
random pulse train. 

The cumulative distribution curve of phase noise generated at a 
mistuned repeater, obtained from measurements, is shown in Fig. 31 
and is seen to have a shape which is approximately log-normal. Cal
culation of a distribution curve which agrees quite well with these 
results has been made by M. R. Aaron and J. R. Gray.9 When the 
distributions of timing noise at successive repeaters along a chain 
are examined, it is found that the skewness is gradually reduced. 

Another set of data from the measurements of timing noise caused 
by mistuning is that concerning spacing noise which is displayed in 
Fig. 32. Spacing noise is defined as the deviations from normal of the 
spacing between successive positive (or negative) going zero cross
ings of the timing wave. As suggested by M. R. Aaron and H. E. 
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Fig. 32 - Timing wave spacing noise caused by tank mistuning. Measured 
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Rowe, the reason for this lies in the quantized character of changes 
in the pulse pattern. That is, at any point in time, the next time slot 
has either a pulse or no pulse. The magnitudes can be found from 
the results shown in Fig. 39a for one absent pulse in 240 and mis
tuning. Scaling this to 0.1 percent mistuning (condition for Fig. 32), 
gives a peak phase change of 0.36° or 1 JLs. For a single pulse added, 
the phase change would have the opposite sign. Since the most likely 
change in the random pulse train is that of a single pulse added or 
left out and other changes are less likely, the distribution of Fig. 32 
should have peaks near + 1 JLS and -1 p,s as observed. 

4.3 Amplitude-lo-Phase Conversion 

The pulse rate fundamental recovered from the signal pulse train 
by narrowband tank circuit has appreciable phase deviations only 
if the tank circuit is mistuned from the pulse rate. But this funda
mental has noisy amplitude variations even when the tank circuit is 
perfectly tuned. 

By connecting an envelope detector at the tank circuit output, 
recordings were made of the response amplitude variations. The spec
trum is shown in Fig. 33 where it is seen to have a nonzero value as 
frequency approaches zero as predicted by the calculated values 
superimposed and as also shown by the calculated curve of Fig. 8. 
That this must be so may be seen by considering that the noise side 
frequencies continue to exist at about the same magnitude as they 
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get closer to the carrier (pulse rate). That is, the amplitude modula
tion is not reduced, only the dissymmetry disappears. The measured 
cumulative distribution of the amplitude variations is very nearly 
normal. 

One way in which these amplitude variations may be converted 
into phase variations is through an imperfection in the trigger circuit 
which, from the timing wave, generates sharp pulses for retiming the 
signal pulses. Such will be the case if the triggering level of this cir
cuit is, for some reason, offset from the zeros of the timing wave. 

This kind of timing noise was generated in the system for simulat
ing a chain of regenerative repeaters by replacing the amplitude 
limiter which follows the tank circuit in Fig. 9 with a trigger circuit 
having an adjustable threshold. In a real repeater, some amplitude 
limiting, though imperfect, would be used between tank and trigger, 
but here it is more convenient to leave out all limiting. 

Spectra of this amplitude to phase timing noise, when there is no 
mistuning, at successive-like repeaters in a chain of six are plotted 
in Fig. 3 along with calculated points. The spectra have the same 
shape as that of the amplitude variations since the two phenomena 
are directly related. The rms magnitudes at very low frequencies 
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grow directly with repeater number because of the nonzero magnitude 
of noise and nearly zero tank circuit attenuation at very low fre
quencies. Total timing noise in the same situation is shown in Fig. 
34. The cumulative distribution of the noise is somewhat curved, 
about like the amplitude to phase conversion characteristic of the 
trigger circuit. 

Timing noise was measured also when mistuning and amplitude to 
phase conversion were both present in the same repeater. This is 
shown in Fig. 10, along with calculated values. 

We see in all these results very good agreement between the mea
sured values and those calculated, as outlined in Section II, by the 
method developed first in the investigation of noise caused by mis
tuning. 

4.4 Phase Noise Attributable to Pulse Form 

4.4.1 Rectangular Pulses 

After it was found that the low sharp mlllimum of timing noise 
shown in the curve of Fig. 28 was attained by small deviations from 
zero mistuning and zero trigger offset, fairly good agreement between 
measured and calculated noise spectra for rectangular pulses was 
obtained. Most of the curves of Fig. 4 are from measurements while 
those of Figs. 20 and 21 are from calculations. 
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It is only the narrow rectangular pulses which have the magnitude 
and shape of noise spectrum which can be changed to produce the 
result of Fig. 28 by small adjustments of the two indicated factors. 
The calculated curves of Fig. 22 show how this can be. For rectangular 
pulses with TIT = 0.6, the total noise changes only about 10 percent 
as the tuning varies over the range of Fig. 22. 

An attempt was made to measure the effect of high frequencies in 
the tank circuit response by cutting out these components; it was not 
entirely satisfactory because of the difficulty of obtaining a suitable 
filter. The results were sufficient though to verify the general features 
of the differences between the curves of Fig. 20 and Fig. 21. 

4.4.2 Raised Cosine Pulses 

Trains of pulses approximating the raised-cosine shape were gen
erated by applying the 10 percent duty factor rectangular pulses to 
a 4-section low-pass filter built from a design by W. E. Thomson.12 

Filters were built to generate pulses IT, 1.5T, and 2T wide at their 
bases. Oscilloscope presentations of the IT pulses are shown in Fig. 
18c and of the 2T pulses in Fig. 18a. 

The measured spectrum of phase noise caused by the IT pulses is 
shown in Fig. 35 along with the calculated values and it is seen that 
agreement is fairly good. This spectrum has appreciable energy at 
considerably higher frequencies than does that caused by mistuning 
or trigger offset and narrow rectangular pulses. The reason for this is 
that the dissymmetry of side frequencies extends to much higher 
frequencies. The same is true of course for the rectangular pulses 
wider than TIT = 0.5. 

Measured and calculated spectra for the 1.5T pulses are plotted 
in Fig. 36 where it may be seen that the total amount of noise is about 
four times as great as that for the IT pulses. 

Since there seemed to be no suitable way to generate the asymmet
rical pulses, no experimental data is available for this case. 

Some of the data obtained with rectified 2T pulses are presented 
in Fig. 37. It is difficult to duplicate experimentally the idealized 
waveform of Fig. 17b assumed in the calculations of this case. For 
example the wiggles at the top of the real waveform Fig. 18a come 
from small departures from ideal of the pulse shapes, and the rectifier 
does not produce cusps at its cutoff point but rounded transitions as 
in Fig. 18b. The data plotted in Fig. 37 agrees fairly well with cal
culation, and it is believed to be reliable. But other data has been 
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slot wide at base. No tank rnistuning. 

obtained which gives spectra both smaIler and larger than that shown. 
When the driving pulses are ac coupled to the shaping filter, there 

is a large increase in very low-frequency noise components as shown. 
This illustrates the statement made before that if there is low-fre
quency distortion in the transmission of pulses, then nonlinearity 
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which follows this can convert this distortion into very low-frequency 
phase noise. With ac coupling, the pulse waveform of Fig. 18 (a) is 
changed to that of Fig. 38. 

4.5 Long Word Periodic Pulse Pattern 

In addition to the previous results obtained with a random pulse 
train, a few measurements were made using a periodic pulse pattern 
of period 240 time slots. 

Fig. 38 - Photograph of random pulse oscilloscope traces for ra.ised cosine 
pulses two time slots wide at base. AC coupling. 
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For a particular pattern chosen at random, the measured phase 
modulation on the recovered pulse rate agrees very closely with that 
calculated from the theory developed in Section II. Hence there is 
nothing in periodic pulse patterns as such to cause behavior different 
from that predicted by the theory. 

Another particular pattern, with one pulse per period missing was 
used to measure a sort of phase impulse response. Under this condi
tion phase deviation was observed and photographed under two con
ditions. Figure 39a shows the phase detector response for tank 
mistuning and Fig. 39b that for an offset trigger circuit following 
a perfectly tuned tank. In Fig. 39a, the mistuning is -0.2 percent 
and the peak phase deviation 0.73 degree. In Fig. 39b, the trigger 
offset is 12.6 degrees and the peak phase deviation is 0.43 degree. 
The wiggles on both waveforms are a residual noise in the system 
and have nothing to do with the phenomena being discussed. 

Fig. 39 - Photographs of oscilloscope traces-Phase deviation of recovered 
fundamental pulse rate for pattern of 239 pulses, 1 space, with (a) tank circuit 
mistuning, (b) amplitude to phase conversion by means of trigger offset. 
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Both of these resemble the response of an RC circuit to an impulse. 
A simple picture of this situation then is that deletion of one pulse 
from the all pulses present condition is converted, by one or the 
other of the two imperfections considered, into an equivalent impulse 
of phase change which through the tank phase transfer characteristic 
produces one of the responses of Fig. 39. 

But there is a small, though significant, difference between the 
two responses, The simpler of the two, Fig, 39b, with its sharp 
rise and exponential decline is very close to an RC impulse' response. 
Its measured time constant is about 30 ms which is quite close to the 
value of 32 ms which describes the phase transfer characteristic 
derived from sine-wave measurements. The Laplace transform of this 
pulse is F (p) = 1/ (p + a). Its amplitude spectrum, with its finite 
value at zero frequency, is like the measured spectra of phase noise 
caused by amplitude to phase conversion. 

The pulse in Fig. 39a differs from the other, principally in its 
crossing of the baseline and undershooting as it declines to zero. The 
observed pulse can be approximated very closely by the modified 
exponential il (t) = e-at (1 - at) which has the Laplace transform 

F(P) = p 2' 
(p + a) 

The corresponding amplitude spectrum is 

I F( ' ) I [w [ 
lW = 2 + 2' W a 

It is seen that 11 (t) goes through zero at t = to = 1/ a and has a minimum 
value of _e-2 = -0.135 at t - =2to . Also, it is seen that I F(jw) I 
has its maximum at w = a. From the photograph, we estimate that 
to = 33 ms and that the minimum of 0.135 occurs at 2to . Further, from 
the earlier work we find that both measurement and theory show a 
maximum in the spectrum of phase noise caused by tank circuit mis
tuning at w = wo/2Q. Equating this to a gives 1/ a = 32 ms which is 
very good agreement with the estimation of to . 

Thus the "impulse response" view of phase deviation in the funda
mental recovered by means of a narrowband tank circuit is consistent 
with the spectrum modification view worked out earlier. 

V. CONCLUSIONS 

Two important sources of timing noise in a self-timed regenerative 
PCM repeater, namely tank circuit mistuning and amplitude to phase 
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conversion by means of an offset trigger circuit, have been identified 
and studied both experimentally and theoretically. Another source, 
pulse shape and duration has been studied less than the other two. 
Another subject investigated is the way these noises accumulate 
along a chain of repeaters and how they combine. 

As a part of this investigation, a simple theoretical picture of the 
process has been developed whereby many important properties of 
timing noise and its accumulation along a chain of repeaters can be 
calculated with results which agree very well with corresponding 
measurements. 

The process of calculation begins with the spectrum of the pulse 
train, then proceeds to the modifications of it which arise as the 
pulse train is transmitted through the timing tank and retiming 
process of each repeater. The properties of the timing noise which 
appear on the retiming wave depend on the particular character of 
these modifications. The further modifications of the spectrum of the 
pulse train, acquired at each repeater, are used to find the way in 
which the timing noise accumulates along the repeater chain. 

These investigations have shown that the characters of the spectra 
of these timing noises are important in determining how they accu
mulate along a chain of repeaters. It has been found that the spectrum 
of the noise caused by tank circuit mistuning has a zero at zero 
frequency. It has been demonstrated that because of its property, 
the noise increases only for the first few repeaters of the chain, soon 
reaching a limit. Further, it has been found that the spectrum of 
timing noise which depends on amplitude variations of the timing 
wave (as in a trigger circuit where the firing point has been offset 
from a zero crossing) has a nonzero value at zero frequency. It has 
been shown that because of this property, this timing noise increases 
without limit along the repeater chain. The total amount of the noise 
varies inversely with the Q of the tank circuit. 

Thus, whether or not timing noise increases without limit along 
a repeater chain depends, not on whether the same noise is generated 
and added on at each repeater, but on whether or not the spectrum of 
the noise added at each repeater has a nonzero value at zero frequency. 

Study of the effect of pulse shape and duration have shown that 
while the total noise from this source is greater than it is for the 
others, the amount at very low frequencies is quite small, though not 
zero in a number of cases. These latter components are the result 
of aliasing of the high-frequency parts of the tank circuit response. 
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If there is nonlinearity in the fundamental recovery path, low
frequency pulse distortion during transmission can be converted to 
very low frequency timing noise. 
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Synchronizing Digital Networl{.s 

By J. R. PIERCE 

(Manuscript received September 11, 1968) 

It appears that stable synchronization of large digital transmission 
networks should be easy, granted accurate clocks, buffers which accept 
pulses at the incoming rate and deliver them at the local clock rate, and 
adequate delay for making frames coincide. An electric network analog of 
a simple linear system in which the clock frequency depends on the fullness 
of buffers and the departure of frequency setting from midsetting makes it 
obvious that the system is stable. System frequency should be made to depend 
strongly on accurate or master clocks; criteria are given for choosing param
eters to achieve this. Strategies are given for periodic infrequent adjustments 
to compensate for changes in transmission time, and for adding new clocks 
to the network. The practical realization of a synchronized network calls 
for more information concerning variations of transmission time and for 
adequate components, particularly, buffers and adjustable delay devices. 

The synchronization of digital networks has been studied theoret
ically and experimentally.1-9 This paper does not purport to review 
excellent previous work, some of which has been highly theoretically 
oriented, through some results of earlier work are referred to. Rather, 
it discusses some problems of synchronization and illustrates them 
by means of a simple analysis of a simple example. We reach the 
following conclusions: that with good clocks, buffers and adequate 
delay both to compensate for changes in transmission time and to 
make frames coincide, there should be no trouble in stably synchroniz
ing a nationwide network. This is in accord with earlier analysis 
and experiment.6 

1. SYNCHRONIZING FRAMES OR BITS 

In some papers, synchronization has been discussed in terms of 
synchronizing frames, that is, successive groups of bits identified by 
some framing signal present in each group.l, 6 In this paper, synchro-

615 
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nization will be discussed in terms of synchronization of bit streams. 
The choice of the bit stream as the signal to be synchronized is 

partly arbitrary. However, there may be advantages in performing, 
at a terminal, as many operations as possible on an accurately timed 
binary bit stream. 

For some purposes, and especially for time division switching, it 
seems essential to synchronize frames. This can be done by passing 
the bit stream through a suitable adjustable delay device. The delay 
measured in pulses, which is needed to make frames coincide, is not 
small. The frame time for a digital system designed for speech trans
mission is commonly 1/8000 second. If a transmission system runs 
at the rate of 5 X 108 pulses per second, the frame time includes 
about 70,000 pulses. This may be an akwardly large number of pulses 
to store. 

II. CHANGES IN TRANSMISSION TIME AND CLOCK RATE 

A scheme of synchronization must take into account both errors 
in clock frequency and changes in transmission time. These pose 
rather different problems. Both for this reason, and because it makes 
the presentation simpler, changes in transmission time are disre
garded in the earlier portions of this paper, and treated separately 
later on. 

III. THE SYSTEM CONSIDERED 

Various approaches to synchronization are possible. One solution 
would be to transmit synchronizing signals from a central master 
source. Few people seem to like this method because of problems 
of reliability. 

The system considered here is composed of a lot of centers (the 
dots of Fig. 1) with highly stable clocks, interconnected by two-way 
digital circuits (the lines of Fig. 1). The common frequency of opera
tion will be determined by the characteristics of the clocks and of the 
transmission circuits. 

We assume that each clock is equipped with a frequency control, 
so that its frequency can be adjusted to be above or below its central, 
"correct" value. We also assume that each receiver is equipped with 
a buffer which will accept a bit stream from a terminal at some 
received rate and emit bits at the rate or frequency determined by 
the local clock. 
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Fig. 1-A network of centers to be synchronized. 

We might assume a system in which each center knew the state 
of every other center's buffers and clock settings. In Section XI we 
discuss how such knowledge may be used in dealing with changes in 
transmission time. Initially, we will consider the case in which each 
center knows only the state of its buffers and the setting of its clock 
frequency. Thus, any adjustments of the clock frequency will be 
based on the frequency of each clock with respect to its center value, 
and on the state of the buffers, each of which reflects both the clock 
frequency at the other end of a transmission circuit relative to the 
local clock frequency, and any changes in the transmission time. 

The case considered is illustrated schematically in Fig. 2. The 
elements concerned with automatic adjustment of the clock frequency 
are enclosed by a dashed line; they consist of the clock, buffers, and 
a network whose inputs are buffer readings and (optionally) the read
ing of the clock setting and whose output is a signal which adjusts the 
frequency setting of the clock. Other elements shown in Fig. 2 are 
adjustable delay for framing the bit stream from the buffer output, 
a decoder for going from received pulses to bit stream, and an adjust
able delay before or after the decoder which can be used to compen
sate for changes in transmission time. 
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TRANSMISSION 
CIRCUIT, PULSE 

STREAM 

ALTERNATE POSITIONS FOR ADJUSTABLE 
DELAY WHICH CAN BE USED TO COMPENSATE 

FOR CHANGES IN TRANSMISSION TIME 

,------------
I ~~~~ 

I 
I 
I 
I 
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I 
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SIGNAL TO RELEASE 
BITS FROM BUFFER 

READING OF 
CLOCK SETTING 

SIGNAL TO CONTROL RATE 
SETTING OF CLOCK 

I READINGS FROM I 
OTHER BUFFERS L _______________ ~ 

BIT STREAM FOR USE ADJUSTABLE DELAY 
FOR FRAMING 

Fig. 2 - Block diagram showing components used in synchronization. 

IV. STABILITY OF CLOCKS 

It is clear that both the stability of the clocks and the pulse rate 
are overwhelmingly important. If the clocks were perfectly stable 
(if they could be exactly synchronized at the factory and if they main
tained their frequency exactly after being shipped to the centers), 
then the buffers would merely have to take care of fluctuations in 
transmission time. As the transmission time will not change without 
bound, finite, realizable buffers would insure the satisfactory operation 
of the system. 

The clocks cannot be synchronized perfectly, but will differ in rate 
by some fraction, d, which may be 10-8 for a good crystal oscillator or 
perhaps as good as 10-12 for an atomic clock. Comparatively inexpen
sive ($1,800) commercial frequency standards are now available which 
have a short-term d of 10-11 and a long-term value of 2 X 10-11 (see 
Ref. 10). 

Consider two centers interchanging pulses at a rate r per second. If 
no effort is made to synchronize the clocks, the number N of pulses 
the buffer must absorb per day would be roughly N = 86,400 rd. 
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Let us consider some cases: 

r 

5 X 107 

5 X 107 

5 X 107 

d 

10-7 

2 X 10-11 

10-12 

N 

4.32 X 105 

864 
43.2 

619 

This is instructive. If the clocks were stable enough, the buffers 
could be dumped and the delays readjusted at strategic times, with 
resulting errors through loss of message bits. This might be feasible 
with the Hewlett-Packard clock.10 If very stable clocks are used, 
any adjustments can be very slow or very infrequent. 

V. TRANSMISSION TIME 

The time delay in transmission is a complication in any analysis 
of synchronization. This makes the idea of infrequent periodic ad
justments or very slow continuous adjustments attractive. If the 
time intervals between adjustments or the time constants involved 
in the adjustment process are long compared with the transmission 
time, then a sort of kinetic model, in which transmission time can 
be disregarded, will apply. 

Transcontinental transmission time via coaxial cable is of the order 
of 0.02 second, and via microwave radio somewhat less. For a clock 
stability d = 10-8 and a pulse rate 5 X 108

, around five pulses would 
accumulate in the buffers each second, and an adjustment once a 
second seems reasonable. For a d = 10-10 and the same pulse rate, 
5 pulses would accumulate in 100 seconds, a time long compared 
with the 0.3 second transmission time for a synchronous satellite. 

Thus, it appears from the outset that very slow adjustments of 
clock frequency are permissible. We will see later that very slow 
adjustments are desirable as well. There is every reason to believe 
that we can disregard transmission time in considering the stability 
and performance of the synchronizing scheme which we discuss in 
Section VIII. * 

VI. THE BUFFERS 

We have noticed that at each center we may make use of the 
departure from the center frequency setting of the clock frequency 

* A criterion for stability which is independent of transmission time has been 
available for some years.3 In work to be published, 1. W. Sandberg gives a less 
stringent criterion which is dependent on transmission time, and which is in 
accord with the qualitative statements made here. 
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adjustment and of the loading of the buffers, which we call b1 , b2 , and 
so on. These loadings may, with respect to their design or "normal" 
values, be positive or negative numbers. 

Buffers will have finite capacity and hence will overflow when 
clock frequencies at two interconnected centers are persistently dif
ferent. Here it is assumed that when a buffer overflows it remains 
completely full or empty until the sign of the difference in clock 
frequencies changes, at which time it again accepts and release 
pulses. It is also assumed that during the overflow condition the 
buffer reading b remains at some extreme value ±bm , and becomes 
smaller in magnitude once the sign of the difference in clock fre
quencies changes. 

The bounds imposed on the b's by buffer overflow are valuable. 
The clock at the other end of a circuit may be in really bad trouble. 
In the extreme,,- no pulses may be coming in. Thus, we should not 
allow, or else we should disregard, buffer readings beyond some 
limiting extremes. As the buffers are finite, drastic malfunction will 
cause them to overflow and so limit the range of the buffer reading b. 

VII. CLOCKS OF DIFFERING ACCURACY 

In adjusting clock frequency, account should be taken of the 
accuracy of the clock. In a large system, it may be desirable to use 
very accurate master clocks at some important nodes and less ac
curate subsidiary clocks at other nodes. It is essential that some 
provision be made so that the final frequency of operation depends 
most. strongly on the accurate master clocks and less on the less 
accurate subsidiary clocks. Thus, in adjusting the clocks, either the 
magnitude of the adjustments should be suitably smaller for the 
more accurate clocks than for the less accurate clocks, or else the 
adjustments of the more accurate clocks should be made less fre
quently or both. 

VIII. MATHEMATICAL DESCRIPTION OF THE SYNCHRONIZING SCHEME 

Let us now consider one particular node of the network of Fig. 1, 
at whioh the clock frequency is 11. This node is shown as 1 in Fig. 3 . 

. Connected to it are nodes 2, 3, 4, ... , n, where the frequencies are 
f2, fa, f4' fn. If the 1, n buffer is set to b1tlJO at t = 0, the various buffer 
readings at 1 are 

(1) 
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Fig. 3 - A node of the network of Fig. 1. 

We will assume that b1n can be positive or negative. If we let 
b1n = ° when the buffer is half full, then the buffer reading can have 
any value in some range from -bm to +bm where 2bm is the size of 
the buffer. 

Let the "center" clock frequency at 1 for "center setting" of the 
frequency control be 110. The center settings are intended to adj ust 
the clock to the desired system frequency. The frequency I nO of a 
given clock at center setting differs from the intended frequency 
because of the error of the clock. 

The buffer reading must be an integer. If the range of variation 
of this integer is great enough, it should be possible to treat the 
buffer reading as a continuous variable in a differential equation; 
this is what we will do. 

A suitable linear strategy for adjusting the frequency 11 was found 
to be 

We can regard the equation as applying either to control of the clock 
frequency or the rate of change of clock frequency. If we make C = 0, 
then the equation prescribes departure from center clock setting" 
(fl - flO), in terms of buffer content. If C ~ 0, then the equation pre
scribes rate of change of clock setting, dfddt, in terms of buffer con
tent and departure from center clock setting. 

In either case Bl should be larger for more accurate clocks and 
smaller for less accurate clocks. This will give the departure from 
center clock setting greater weight for more accurate clocks and less 
weight for less accurate clocks. 

IX. AN ELECTRIC ANALOG 

Let us now consider an electric analog, the circuit shown in Fig. 4. 
Node 1 is connected to ground through a capacitance C. Current. 
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I 120 ---+---~-----'r-'" 

Fig. 4 - Electric analog of a node synchronization system considered. 

flows to C through a resistance R1 to which a bias voltage V 10 is ap
plied. Current also flows to node 1 because this node is connected to 
other nodes 2, 3, 4, ... , n, at which the voltages are V2 , V3 , V4 , ••• , 

Vn , by inductances L. The differential equation for the voltage V 1 is 

(I/L) 2: it (Vn - VI) dt 
n 0 

- (I/R1)(V1 - V lO) - c d~l + ~ llnO = O. (3) 

Here l1no is a current flowing into node 1, not from but associated with 
node n, at time t = o. We see that equation (3) is identical with 
equation (2) if we let 

(I/L) = A 

(I/R1) = BI 

c=c 

(4) 

The behavior of the frequency of a network of oscillators adjusted 
according to the strategy of equation (2) will be the same as the 
behavior of the voltage in an L, R, C network of the form shown in 
Fig. 5. We should notice that it is perfectly permissible to make 
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C = 0 in (2) or (3). A network analog for this case has been given 
by Brilliant.5 

In a network such as that of Fig. 5, no matter how extensive or 
how interconnected, all the voltages settle down to some final value 
because of the damping (energy loss) of the resistors Rn. What is the 
final voltage? It must be such that the total of the currents flowing 
to all nodes is zero. This means that 

o = L L Inmo + L (Vno - V)jRn . (5) 

The double summation is in each case over all nodes. Not all nodes 
are connected to one another, and Inmo will be zero for n = m and for 
all nodes n not connected to m. 

The analogous expression for final frequency is 

(6) 

Again, bnmo will be zero for n = 1n and for all nodes n not connected 
to m. 

We will see that the final frequency depends on the center fre
quencies of the oscillators, on the A and B coefficients, and on the 

L 

LI,mo 
m 

Fig. 5 - Interconnected nodes of electric analog. 

L 
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initial buffer settings. If the initial buffer settings bnmo are all zero, 
the final frequency depends only on the fno's and the Bn's. If the buf
fers overflow, this in effect resets them. 

We can see from Fig. 5 that the system will be stable in the case 
of certain nonlinearities. 

For example, all the Rn's can be nonlinear as long as no resistance 
is ever negative at any current. Thus, if in the equations of the oscil
lator system the second term on the right of (2) is replaced by a 
nonlinear function of (f1 - flo), the system will be stable as long as 
the term decreases monotonically with increasing fl. In the case 
C = 0, this corresponds to a nonlinear control of clock setting as a 
function of buffer content. 

It is easy to show that in a special case buffer overflow cannot 
result in instability. This is the case in which the buffer readings at 
two ends of a transmission circuit are complementary, that is, their 
sum is zero. Disregarding changes in transmission time, if the buffers 
are both set to zero or to complementary values at the same time, 
or if both buffers overflow and then recover, the readings will be 
complementary. 

Appendix A shows that for this case, in the electric analog of Figs. 
4 and 5 buffer overflow results in the dissipation of energy, and 
this convinces the writer that in this case overflowing buffers cannot 
make the network unstable. The writer is mortified that he is unable 
to demonstrate this for the case of non-complementary readings, but 
he suspects that buffer overflow will not result in instability in this 
case, either. 

Buffer overflow would affect the final frequency of operation. Fur
ther, all the buffers at a given node can conceivably overflow per
manently (if the clock center rate shifts drastically, for example). 
In such a case, the node will operate out of synchronism with the rest 
of the network. This will cause buffer overflows at nodes connected 
to the asynchronous node. Such overflows can affect the frequency of 
operation of the rest of the network, but need not prevent its syn
chronous operation. 

If widespread buffer overflow is avoided, adjustment according to 
equation (2) will result in stable operation. 

X. PARAMETERS AND TIME CONSTANTS 

Let us consider equation (2) with C 
be written 

O. By using (1), this can 
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(7) 

(8) 

We see that T1 is a time constant. Equation (7) prescribes the de
parture of the clock frequency from center setting in terms of the 
sum of buffer readings bIn for the various transmission circuits ter
minating at node 1. How shall we choose the parameter T1? 

The srp.allest amount by which the sum of the buffer readings can 
change is unity. The frequencies f1 and flO differ by a very small 
amount. Thus, the fractional change in frequency caused by unit 
change in the sum of the buffer readings can be written 1/T1f1. If we 
are to take full advantage of the stability of the clock at the node, 
we should make this smallest change small compared with the clock 
stability expressed as a fraction, which we call d1• Hence, we should 
choose 

(9) 

If this is not so, changes in buffer readings will cause sudden changes 
in frequency larger than the changes which would occur if the clock 
were not adj usted. 

The buffer readings must, however, be able to change the frequency 
of the clock by several times its fractional stability d1 if we are to 
be sure to bring all the clocks to the common intended frequency. 
Strictly, it might be possible to accomplish this if (1/Td1) bm > d1/n, 
where bm is the maximum buffer reading and n is the number of buf
fers. It would seem wise to choose bm large enough so that this criterion 
is considerably exceeded. We might reasonably ask that 

As an example, let us consider a case in which 

Tl = 10/ddl 

bm = 10Tdldl = 100. 

(10) 

(11) 

(12) 

Assume that f1 = 5 X 108 • For various values of d1, the computed 
values of T 1 are: 

Fractional 
oscillator 

stability, d1 

10-8 

2 X 10-11 

10-12 

Stability 
(pulses per day) 

86,400 d1 

4.32 X 105 

864 
43.2 

Time constant, 
Tl (seconds) 

2 
1000 (17 minutes) 

20,000 (5.5 hours) 
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The time constants Tl are large, implying that the time for the system 
to come to equilibrium is large. The time constants may not seem 
excessive, however, when we consider oscillator stability measured in 
pulses per day. It would be rash to try to adjust an exceedingly stable 
oscillator in too short a time. Further, time jitter in the received 
pulses (see Appendix D) and perhaps other quickly changing phe
nomena could cause undesirable changes in operating frequency if 
Tl were made smaller. 

XI. COPING WITH CHANGES IN TRANSMISSION TIME 

We have not yet considered the effect of changes in transmission 
time. Changes in buffer reading have been ascribed to differences in 
frequency. But changes in transmission time can also cause changes 
in buffer reading. 

Consider two interconnected nodes. If the clock at one speeds 
up, the buffer at the node will tend to empty and the buffer at the 
node to which the fast clock is connected will tend to fill. Thus, a 
change in clock rate will change the buffer readings at interconnected 
nodes in opposite sense. 

Consider an increase in transmission time between nodes, for ex
ample, an increase in transmission time in both directions. Because 
of the increase in transmission time, more pulses will be stored in 
the lines and the buffer readings will decrease at both ends. Thus, 
changes in transmission time will change the buffer readings at inter
connected nodes in the same senses. 

If we can compare the buffer readings at two interconnected nodes, 
we can distinguish changes caused by changes in transmission time 
from changes caused by changes in clock frequencies. Once we iden
tify a change in transmission time, we can correct for it by means 
of an adjustable delay between the transmission system and the 
buffer input. Such corrections have been provided in some synchroniza
tion schemes.6 It is not clear, however, that an automatic system 
acting in the same way among all nodes is best in coping with 
changes in transmission time. 

Another course would be to use no adjustable delay, and merely 
provide buffers large enough to accommodate changes in transmis
sion time. Then, changes in transmission time would cause buffers 
to fill or empty. This would have some effect on system frequency. 
If the system included highly stable clocks, such changes would neces
sarily be very small. 
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What should be done about changes in transmission time depends 
on the magnitude of such changes and on how rapidly they occur. 
Unfortunately, adequate information is not available. 

In cable and waveguide systems, transmission time can vary with 
temperature and with the gas pressure within the waveguide or cable. 
vVhat is known is discussed in Appendix B. For a circuit 3,000 miles 
long, we might expect variations of more than a thousand pulses over 
the year. However, because cable is buried and waveguide would 
be, we would expect the transmission time to vary little during the 
day, or over a period of several days. Experience with the L4 system 
tends to confirm this. 

If the short-term stability of transmission time of cable and wave
guide is as good as would seem, it would be satisfactory to make 
compensating adjustments in delay at intervals of days or weeks; this 
would argue for a scheme of adjustment separate from that used for 
clock synchronization. 

Variations in transmission time for microwave radio systems (see 
Appendix C) may be comparable to those for cable or waveguide sys
tems, but changes may be more rapid. Diurnal changes might be 
taken care of by the buffers, and slower changes by daily delay 
adjustments. 

A node may often be connected to the rest of the network by cable 
and/or waveguide circuits as well as by microwave circuits. In this 
case, it seems attractive to the writer to use the cable or waveguide 
circuits for adjusting clock rate. Then the buffers and delay adjust
ments associated with the microwave circuits could be used solely 
to compensate for changes in microwave transmission time. 

Thus, a somewhat mixed strategy of adjustment may be called 
for. The following seems reasonable to the writer: 

(i) If possible, avoid the use of microwave circuits for synchroniza
tion. Use parallel cable or waveguide circuits for synchronization, and 
use buffers or adjustments of delay to absorb changes in microwave 
transmission time. 

(ii) The system will probably contain several master clocks which 
are more accurate than other subsidiary clocks. The parameters T 1 

will be chosen [according to (9) or (11)] so that frequency is chiefly 
dependent on the center frequencies of the master clocks. Hence, 
the correct function of the buffer readings at the subsidiary clocks 
is to adjust these clocks to the (correct) operating frequency. At 
each node with a subsidiary clock, periodic adjustments of delay 
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should be made, such as to make all buffer readings zero. At the same 
time a delay adjustment should be made to make any buffer at a 
master clock on a line from the subsidiary clock zero. Simultaneously, 
the subsidiary clock should be readjusted so that its center frequency 
ino is equal to the current operating frequency in. This adjusts for 
changes in transmission time by making buffer readings at the ends 
of links to and from subsidiary clocks complementary (and equal to 
zero). It may be desirable to make these adjustments at a common 
time at all nodes concerned. Notice that in making the adjustments at a 
node, no knowledge of buffer readings or clock settings at other nodes 
is needed. Such adjustments might be made once a day or once a week. 

(iii) It is desirable that the network link all master clocks together 
by cable or waveguide, directly or indirectly, but with no intervening 
buffering and retiming by less accurate clocks. When this is so, it 
would seem desirable to make periodic adjustments of the delays in 
each transmission circuit connecting two master clocks, such as to 
render the buffer readings complementary at the two ends of the 
link. This compensates for changes in transmission time. It is unde
sirable to adjust the frequency at center setting, since we rely on the 
frequencies of the master clocks at center settings to determine the 
operating frequency. This adjustment of delays need be made only 
infrequently (once a day or once a week). To make it, we must know 
at each master clock the buffer readings at the other ends of the 
circuits connecting it to other master clocks. 

(iv) In adding a subsidiary clock to a network, it should be ad
justed so that its frequency at center setting is equal to the current 
operating frequency and the buffers at both ends of all circuits con
necting it to the network should be set to zero. If a master clock 
is added, the adjustment of frequency at center setting should be 
omitted. 

XII. CONCLUDING REMARKS 

The behavior of a simple scheme of synchronization was investigated 
and found to be stable in the absence of buffer overload if clock 
adjustments are sufficiently slow compared with transmission time. 

The criteria given for choice of parameters result in time constants 
very long in comparison with transmission time. 

A strategy of infrequent periodic adjustment (once a day or once 
a week) has been suggested. This can compensate for changes in 
transmission time and correct the frequencies at center setting of 
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subsidiary clocks. A strategy has been given for adding new clocks 
to the system. If these strategies are followed, and if parameters are 
chosen as prescribed, it seems likely that the buffers will not overload 
except in case of clock failure. Clock failure will cause loss of syn
chronization at a node. 

It has been shown that in a special case, buffer overload from 
other causes will not result in instability; it seems plausible that this 
is so in general. 

It appears that there are no inherent obstacles to the synchroniza
tion of large digital networks. In the practical realization of such 
networks it would be desirable to have more information concerning 
the variation of transmission time with time, and on the availability 
of suitable components, including: 

(i) Adequate buffers which will accept pulses at one rate, emit 
them at another, and behave under overload in the fashion described 
earlier. 

(ii) Adequate delay of the order of 105 pulses, to bring frames 
into coincidence. 
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APPENDIX A 

Buffer Overflow 

The purpose of this section is to consider the consequences of buffer 
overflow by studying the behavior of the electrical analog. 

Consider equation (1) : 

bln = blnD + r (fn - 11) dt. (1) 
I 0 

Because of the finite content of the buffer, if for blno = ° the buffer 
is set half full at t = 0, we must have 

-bm < bl1• < bm , I b1n I < bm (13) 

. One satisfactory way to treat buffer overflow is to let blno of (1) 
change during time intervals when the integral would otherwise cause 
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an increasing violation of (13). For example, suppose that the integral 
is increasing with time. 'Vhen bIn reaches the value bm, bino starts to 
decrease and decreases so as to make bIn = bm for as long as the in
tegral continues to increase. As soon as the integral starts to decrease, 
bino remains constant (until another buffer overflow) at whatever 
value it had when the integral started to decrease, and bIn starts to 
decrease. A little thought shows that this results in just the behavior 
that an overflowing buffer of the type described in the paper would 
exhibit. . 

In equations (3) and (4) and in Fig. 4 we see that the exact analog 
of bIn is LIln given by 

(14) 

In exploring the effect of buffer overload it is sufficient to consider 
a circuit element consisting of ail inductor and two bias currents. 
For simplicity we will assume that these bias currents are equal and 
opposite, with magnitudes 10 , as shown in Fig. 6. The input and output 
currents are thus equal and of magnitude I. The input and output 
voltages are V2 and VI. The current If; through the inductance L is 

(IS) 

Assume the same buffer overload current at each end, of magnitude 
1m. Thus, the magnitude of the current I cannot become greater 
than 1m. 

Suppose that I = 0 at t = 0 and the voltages are such as to in
crease the magnitude of I. How much energy have we put into the 
circuit by the time I = 1m? This energy Em is 

Em = i~: (V2 - VI)I dt. (16) 

Now 

Hence 

1
1m 

Em = L 0 I dI = (1/2)LI~ . (18) 

Notice that Em does not depend on 10 and that it is recoverable, 
that is, we get it all back if we change the current from 1m to 0 in 
such a manner that the magnitude of I is always less than 1m. 
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The voltage difference Vz - Vi can cause the current 1L to change 
even after I has reached its limiting magnitude 1m. 10 must then 
change to keep the magnitude of I from exceeding 1m. In this regime 
of buffer overload, 

I = 1m (19) 

10 10 

i L i '000' 
V2 ~ 

V t 

IL 

Fig. 6 - Electric analog of buffer, used in studying buffer overflow. 

(20) 

What about the energy E that is supplied to the circuit during 
this period? This energy is 

E = ft. (V
2 

- V
1
)lm dt 

It 

f t. L d1L I dt 
t, dt m 

(21) 

Overload operation persists only as long as 10 is increasing. If 
we come to a point where 10 would decrease, we hold 10 constant. The 
buffer is no longer overloaded and we return to the regime of a fixed 
bias current. 

Thus, 

E> O. 

(22) 

(23) 

In fixed bias operation, the recoverable energy is merely Em as given 
by (18). The positive energy E has been dissipated. Hence, the effect 
of buffer overload is tb dissipate energy, and buffer overldad cannot 
result in instability. . 
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APPENDIX B 

Cable and Waveguide 

The transmission time through cable or waveguide can change 
for several reasons. The gas pressure in a cable is controlled, and 
changes in gas pressure cause changes in transmission time, as could 
changes in gas temperature. While large changes in pressure could 
produce large effects (see Appendix C), it seems likely that another 
effect will dominate. 

This is the linear expansion of the cable or waveguide because of 
changes in temperature. Structurally, waveguide would probably be 
largely steel; cable might be considered as copper. The thermal coef
ficient of expansion of steel is about 12 X 10-6

; for copper it is about 
18 X 10-6 • For a change in temperature of 40°F or 22°C, the frac
tional change FC in length would be approximately 

Material 
Fractional change in length, FC, 
for 22°C change in temperature 

Steel 260 X 10-6 

Copper 400 X 10-6 

During an experiment on the L-4 field installation in Dayton, Ohio, 
T. J. Pedersen observed phase shift versus time of a 12 MHz sine 
wave sent through an 84-mile loop of the L-4 system. During a 24-
hour period he measured a peak-to-peak change of about 1.5°. The 
velocity of propagation is about 175,000 miles per second, so the 
total phase shift in the 84-mile loop was about 2 X 106 degrees. This 
is a fractional change of 

0.75 X 10-6
• 

During the time that this change took place, the temperature of 
the cable was changing about 0.3°F per day. If this temperature 
change was indeed the source of the phase shift, the fractional change 
III transmission time for a 40°F change in temperature would be 

FC = (0.75 X 10-6)(40/0.3) = 100 X 10-6
• 

This value may not be accurate, but an estimate based on the thermal 
expansion of a metal may not be accurate either. 

Change in temperature increases the resistivity of copper, and 
this causes a change in the reactive as well as the resistive component 
of skin impedance. Further, the capacitance may change with tem
perature. Both calculations and measured values of cable'parameters 
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as a function of temperature indicate that such effects will change 
transmission time much less than linear expansion. 

Change in diameter of a waveguide causes a change in group 
velocity. The change in transmission time with temperature which 
this would cause is considerably smaller than a change proportional 
to linear expansion. 

It may be conjectured whether cable or waveguide is or need to 
be free to expand in length as temperature changes. We have no 
waveguide systems in operation at present, and variations of trans
mission time for coaxial cable systems have not been adequately 
measured. We can only conclude: 

(i) Change in transmission time will be very slow, so that infre
quent adjustments would be satisfactory. 

(ii) Total fractional changes in transmission time may be from 
100-400 parts per million. 

For a path length of 3,000 miles, a velocity of 175,000 miles per 
second and a pulse rate of 5 X 108 pulses per second, the number of 
pulses stored in the line would be 107 • For the fractional changes in 
transmission time quoted above, the changes in number of pulses 
stored in a 3,000 mile cable would be 

Fractional change in transmission time 

0.75 X 10-6 (observed change in one day) 
100 X 10-6 (estimated effect of 40°F 

change in temperature) 
220 X 10-6 (from expansion of steel caused by 

40°F change in temperature) 
400 X 10-6 (from expansion of copper caused by 

40°F change in temperature) 

APPENDIX C 

Microwave Radio 

Change in number 
of pulses stored 

7.5 

1000 

2200 

4000 

The velocity of radio waves traveling through the atmosphere de
pends on temperature, pressure, humidity and probably on rain. 

The effect of the first three factors is given in terms of N units. In 
terms of the index of refraction n (ratio of velocity in vacuo to 
velocity in the medium) 

A simple expression gives N quite accuratelyll 
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N = 7~6 (p + 4,810~) 

P = total pressure in millibars 
e = partial pressure of water vapor in millibars 
T = absolute temperature OK = °C + 273. 

Here we are concerned with rough estimates of changes in N over 
short and long periods. 

The diurnal change in temperature may account for the most rapid 
fluctuations in N. For a constant pressure and disregarding water 
vapor, N is inversely proportional to absolute temperature. For a 
20°C (36°F) change in temperature around 20°C (68°F), at a pres
sure of one bar the change in N would be about 18. 

Data taken over a six-year period from forty-five U. SP weather 
stations show that the monthly mean value of N at the earth's sur
face (Ns ) varies from 230 to 400 over the country and through the 
year. In the U. S. the largest local variation in the monthly means 
is on the southeast and Gulf Coasts and amounts to a charge of 
N of 50 units. 

During a given month, the variation in Ns (for one and ninety-nine 
percent probability) can be as much as 100 N units. 

Co'ncerning rain, it has been calculated that 150mm per hour rain 
over a 1 km path will introduce a phase shift of some 500 degrees at 
30 GHz.13 This is equivalent to a change in N of 14 units. 

It is not easy to arrive at a reasonable estimate of short-term 
and long-term changes in the average value of N over a long trans
mission system. On the basis of the foregoing data, it appears to the 
writer that changes during the day would probably not exceed 20 
units, while changes during the month might be as much as 100 
units, and changes during the year might be several hundred units. 

If we assume a 3000 mile path, the nominal transmission time is 
about 0.016 second, and at a pulse rate of 5 X 108 pps the number 
of pulses in the transmission system will be 8 X 106

• The change in 
this number of pulses will be the number times N times 10-6

• For 
some values of change in N, the change in number of pulses will be 

Change in N 

20 
100 
200 

Change in number 
of pulses 

160 
800 

1600 
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APPENDIX D 

Jitter Due to Regenerative Repeaters 

In an experimental digital repeater line l the systemic jitter intro
duced by a single repeater had an rms value ()1 of about 3.3 0

• The 
nTIS jitter after N repeaters,()N, is given by14 

/P(N) 
eN = e1'\j P(l) 

= N _ (2N - I)! 
2 4N[N _ 1!]2 

P(N) 

(24) 

(25) 

The function P(N) has been tabulated: 15 P(l) = 0.250 and for 
N > 100, P (N) = Nj2. Thus, for a large N > 100 number of 
repeaters, 

en = e1 V2N 

Some computed values of ()n are: 

Number 
of repeaters 

On, rms phase jitter, 
(degrees) 

REFERENCES 

1 
100 
300 

1000 
3000 

3.3 
47 
81 

148 
256 

(26) 

1. Karnaugh, M., "A Model for the Organic Synchronization of Communica
tions Systems," B.S.T.J., 45, No. 10 (December 1966), pp. 1705-1735. 

2. Bosworth, R. H., Kammerer, F. \V., Rowlinson, D. E., and Scattaglia, J. V., 
"Design of a Simulator for Investigating Organic Synchronization Sys
tems," B.S.T.J., 47, No.2 (February 1968), pp. 209-226. 

3. Gersho, A., and Karafin, B. J., "Mutual Synchronization of Geographically 
Separated Oscillators," B.S.T.J., 45, No. 10 (December 1966), pp. 1689-1704. 

4. Brilliant, M. B., "The Determination of Frequency in Systems of Mutually 
Synchronized Oscillators," B.S.T.J., 45, No. 10 (December 1966), pp. 1737-
1748. 

5. Brilliant, M. B., "Dynamic Response of Systems of Mutually Synchronized 
Oscillators," B.S.T.J., 46, No.2 (February 1967), pp. 319--356. 

6. Candy, J. C., and Karnaugh, M., "Organic Synchronization: Design of the 
Controls and Some Simulation Results," B.S.T.J., 47, No.2 (February 
1968), pp. 227-259. 

7. Inose, H., Fujisaki, H., and Saito, T., "Theory of Mutually Synchronised 
Systems," Electronics Letters, 2, No.3 (March 1966), pp. 96-97. 

8. rnose, H., Fujisaki, H., and Saito, T., "System Design of a Mutually Syn
chronised System," Electronics Letters, 3, No.1 (January 1967), pp. 15-16. 

9. Inose, H., Fujisaki, H., and Saito, T., "Phase Relation between Offices in a 
Mutually, Synchronized System," Electronics Letters, 3, No.6 (June 1967), 
pp. 243-244. 



636 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969 

10. Throne, Darwin H., "A Rubidium-Vapor Frequency Standard for Systems 
Requiring Superior Frequency Stability," Hewlett-Packard J., 19, No. 10 
(June 1968), pp. 8-14. 

11. Smith, E. K., Jr. and S. Weintraub, "The Constants in the Equation for 
Atmosphere Refractive Index at Radio Frequencies," Proc. IRE, 41, No. 
8 (August 1953), pp. 1035-1037. 

12. Bean, B. A., and Dutton, E. J., "Radio Meteorology," NBS Monograph, 
92 (March 1966), pp. 63, 100, and 416. 

13. Hogg, D. C., private communication. 
14. Dorros, 1., Sipress, J. M., and Waldhauer, F. D., "An Experimental 224 

Mb/s Digital Repeater Line," B.S.T .J., 45, No.7 (September 1966), pp. 
993-1043. 

15. Byrne, C. J., Karafin, B. J., and Robinson, D. B., Jr., "Systematic Jitters 
in a Chain of Digital Repeaters,,' B.S.T.J., 42, No.6 (November 1963), 
pp. 2679-2714. 



Extension of Bode's Constant Resistance 
Lattice Synthesis of Transfer 

Impedance Function* 

By S. Y. LEE 
(Manuscript received August 30, 1968) 

Bode developed some explicit formulas in terms of the poles and zeros 
of the transfer impedance function for each element of the first and second 
degree constant resistance lattice structures. To extend work in this area, 
we derive explicit formulas for two of Bode's structures using coupled coils; 
we give two new structures which avoid coupled coils. Illustrative examples 
show the usage of these formulas. Finally, we include a general procedure 
for synthesizing any physically realizable, rational transfer impedance 
function by a constant resistance lattice network. A flow chart aids in 
detailing this procedure. 

With the addition of these results, a general method for synthesizing any 
physically realizable, rational transfer impedance function with explicit 
formulas is complete. The explicit formulas method developed in this paper 
gives more rapid results and introduces fewer round-off errors than the 
step-by-step procedures used in the past. 

r. INTRODUCTION 

An important characteristic of constant resistance lattice networks 
is the absence of reflection effects when such two-port lattice net
works are connected in tandem. The synthesis of a given transfer 
impedance function is simplified by representing the function by a 
partial product expansion. Thus the transfer impedance may be rep
resented by a tandem connection of a number of constant resistance 
structures (one for each partial product). This process will result in 

* Some results presented in this paper are based upon the author's thesis, 
IIExplicit Formulas for Constant Resistance Lattice Synthesis of Transfer Im
pedance," presented to the Moore School of Electrical Engineering, University 
of Pennsylvania in December 1965 in partial fulfillment of the requirements for 
the degree of Master of Science in engineering. 
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realizable, simpler, transfer impedance functions provided that the 
constant multiplier of the given transfer impedance function is made 
large enough to permit each of the constituent networks to have non
negative loss on the real axis.l In general, then, there will be addi
tional fixed loss for the overall two-port network. 

For physical realizability, it is required that both members of any 
conjugate complex pair of zeros or poles be retained within a given 
partial product. Hence, each of the elementary constituent networks 
must be represented by a biquadratic factor. When there are single 
zero and single pole pairs on the (T axis, the partial product factor 
for each pair is reduced to the bilinear form. It is recognized that 
the expansion can be performed with the zeros and the poles col
lected in a variety of ways and assigned to the individual networks. 
The elementary lattice networks for these bilinear and biquadratic 
factors are first and second degree constant resistance lattice struc
tures, respectively. Therefore, one can realize a complicated rational 
transfer impedance function, to within a constant loss, by a combina
tion of elementary structures in tandem. 

Bode1 developed the basic first and second degree structures, which 
are given in Fig. 2. They cover all the possible pole-zero combina
tions. Furthermore, he derived the explicit formula for each element 
of structures I to VI in terms of the poles and the zeros of the transfer 
impedance function. The object of this paper is to extend work in 
this area. Explicit formulas are obtained for structures VII and VIII 
and for two additional structures (Fig. 7). The structures of Fig. 7 
avoid coupled coils. Illustrative examples are given to show the usage 
of these formulas. Finally, a general procedure for synthesizing any 
physically realizable, rational transfer impedance function by a con
stant resistance lattice network is included. This procedure is de
tailed with the aid of a flow chart. The appendix gives a method 
of obtaining the physical realizability conditions for one of the struc-

Fig. 1- General constant resistance lattice network. 
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tures as an illustration. Reference 2 supplies the derivations of the 
physical realizability conditions of other structures. 

II. DEVELOPMENT OF SECOND DEGREE CONSTANT RESISTANCE LATTICE 

STRUCTURE INTO GENERAL FORMULAS 

The transfer impedance function exp () of the constant resistance 
lattice given in Fig. 1 of second degree can be written as the biqua
dratic factor 

(1) 

where exp () is related to the series branch impedance Zx by the ex
pression 

or 

[exp OJ - 1 
Z", = [exp OJ + 1 for ZXZII = R~ = 1 

1 + Zx exp 0 = --. 
1 - Zx 

Hence Zx is a biquadratic of the form 

(2) 

(3) 

(4) 

The solution for A/s can be expressed in terms of the zeros and the 
poles of the transfer impedance function exp () by setting (1) and (3) 
equal 

l{ 8: - (a l + a2:s + al a2 

8 - (b l + b2)8 + bI b2 

(A6 + A5)8
2 + (A4 + A3)S + (A2 + AI) (5) 

= (A6 - A 5)i + (A4 - A3)S + (A2 - AI)' 

For convenience let 

(6) 

and 

(7) 

Then equating coefficients in (5) and solving for A/s yields 

(8) 
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A2 = ![a2(A6 + A5) + .82(A" - As)] 

A3 = ![al(A6 + A5) - .81(A6 - As)] 

A4 = ![al(A6 + A5) + .81(A6 - A5)] 

K = A6 + A 5. 
A6 - A5 

Expressing exp () on the real frequency axis we have 
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(9) 

(10) 

(11) 

(12) 

(13) 

where () = 0: + j{3 may be called the transfer loss and phase. From this 
the expression for the transfer loss is obtained as 

by letting 

k = K2 and x = w2 

and from (6) and (7), equation (14) becomes 

k(a2 - X)2 + aix 
exp (2a) = (.82 _ X)2 + .8;x . 

(14) 

(15) 

(16) 

It can be shown that in general the attenuation characteristic of a 
lattice for which exp () is a biquadratic function exhibits a minimum 
at a real frequency.l One can shift this minimum loss to hav'e zero 
loss at that particular frequency; thus the transfer impedance ob
tained will be within a constant loss. By doing this the attenuation 
characteristics of all elementary structures will have zero transfer 
loss at one frequencywo. Corresponding to Wo, exp (20:) = 1. Thus k 
can be determined in terms of the zeros and the poles of the transfer 
impedance function by (16). If A6 is equated to unity, A5 is obtained 
by (12). With the relationships (8) to (11) one can determine A/s 
in terms of the zeros and the poles of the transfer impedance function. 
Hence from (4) and (2) Zx and Zy can be obtained respectively. 

III. EXPLICIT FORMULAS FOR STRUCTURE VII 

The physical realizability conditions and the typical attenuation 
characteristic of this structure are given in Fig. 2. Zero attenuation 
occurs at a frequency Wo; therefore we must choose k such that the 
attenuation becomes zero at the same frequency. 
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For zero attenuation, exp (2a) must be equal to 1; thus from (16) 
after rearranging and letting w~ = x, we obtain a quadratic in Xo 

(k - l)x~ + (ka~ - 2a2k + 2{32 - {3i)xo + (ka; - (3;) = 0 (17) 

which can be written compactly as 

ax~ + bxo + c = 0 

where 

a = k - 1 

b = (a~ - 2(2)k + 2{32 - {3~ 

(18) 

(19) 

(20) 

c = ka; - (3; . (21) 

In order that the frequency be real and the attenuation equal to 
zero, the solution of (18) must have a double root at Xo. This condi
tion holds only when the discriminant b2 - 4ac = O. First we find 
from (18) 

-b 
Xo = 2(;' 

Secondly we obtain the following quadratic in k 

where 

Ak2 + 2Bk + C = 0 

A = ai(ai - 4(2) 

B = (ai - 2(2)(2{32 - (3i) + 2({3~ + a~) 
C = (3i({3i - 4(32)' 

(22) 

(23) 

(24) 

(25) 

(26) 

It can be shown that the larger root of (23) must be used to insure 
that ZIJ) is a positive real function. * Denote this larger real root by 
km • Thus, from (15) and (23) 

k = K2 = {-2B ± [(2B)2 - 4ACJ i
} 

m m 2A max 
(27) 

Hence Km can be obtained quite easily and it is in terms of the zeros 
and the poles of exp O. 

* Notice that km as well as the discriminant of (23) 'must be positive and 
real because of the physical realizability conditions. By considering all t~e 
possible sign combinations for A, Band C, one of the positive roots of Km IS 

greater than, or equal to, unity. 
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By substituting Km into (12) and letting Au = 1 we obtain 

(28) 

Notice that from (12) and (28), the root Km must be greater or equal 
to unity in order for Zx to be positive real functions. 

Using (8), (9), (10) and (11) we can determine AI, A2 , A3 and A4 • 

Then multiplying each coefficient by Km + 1 we get 

Al = cx2Km - {32 (29) 

A2 = cx2Km + {32 (30) 

Aa = {31 - K mCX l (31) 

A4 = -(31 - KmCXl (32) 

A5 = Km - 1 (33) 

A6 = Km + 1. (34) 

Thus the coefficients of Zx and Km are expressed implicitly in terms 
of the zeros and the poles of the transfer impedance function exp o. 
Furthermore from (33) and (34), we must have the positive root 
Km > 1 for A/s to be positive. 

Before considering the realization of the biquadratic Z:c in (4) with 
its coefficients given from (29) to (34), we will show that Zx is a 
minimum resistance function. 

Rewriting (3) as 

where 

z" = R" + jX", 

the corresponding magnitude is 

Since we require that 

exp (2cx) = 1 at Wo 

(35) 

(36) 

(37) 

(38) 

then Rx must equal zero and hence Z:c must be a minimum resistance 
function. 
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N ow we can determine the element values for structure VII by using 
the results given in Chapter 4 of Boghosian and Bedrosian, in that 
the element values of a Brune network were expressed explicitly in 
terms of the coefficients of a minimum resistance biquadratic im
pedance function. 3 Since we have shown that the biquadratic function 
in (4) is also minimum resistance, it is a simple matter to express 
the element values in terms of the zeros and the poles of exp o. The 
case when the coefficients of Zx satisfy the inequality 

(39) 

is suitable for structure VII. Thus the Brune network for the series 
arm Zx of structure VII is shown in Fig. 3, where the equivalent-T 
is used instead of the transformer. Since ZxZy = 1, we have for the 
cross arm of these lattices 

A6S2 + A4S + A2 
ZII = ASS2 + A3s + At· 

Fig. 3 - Series arm z'" for structure VII of Fig. 2. 

(40) 
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02 K m+{32 
R7 = -O-2-K-m-----'-{3-2 

Fig. 4 - Cross arm ZlI for structure VII of Fig. 2. 
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Then Zy is given by the network in Fig. 4 where the values of K 1II , 

the zeros and the poles are the same as those given in Fig. 3. 

IV. EXPLICIT FORMULAS FOR STRUCTURE VIII 

The physical realizability conditions and the typical attenuation 
characteristic of this structure are given in Fig. 2. It can be shown 
that general formulas in terms of the zeros and the poles of exp () for 
Km and the A/s are the same as those for structure VII, with the 
exception that for structure VIII the coefficients of Zx satisfy the fol
lowing inequality 

(41) 

yielding a positive sign for the reactance jWOLl and a negative sign for 
the reactance jWOL3 of Fig. 3. Similarly, the cross arm Zy of structure 
VIII yielding a negative sign for reactance jWOL4 and a positive sign for 
reactance jWOL6 of Fig. 4. Thus the Brune network for the series arm Zx 

and the cross arm ZlI of structure VIII is shown in Figs. 5 and 6 re
spectively. 
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Fig. 5 - Series arm ZI/J for structure VIII of Fig. 2. (£Is, Ca, and Ra are same 
as for Fig. 3.) 

V. EQUIVALENT NETWORKS TO STRUCTURES VII AND VIII 

To avoid the need for coupled coils in the lattices developed pre
viously, we can introduce the Bott-Duffin impedance arms in struc
tures IX and X to obtain equivalent networks to structures VII and 
VIII respectively in Fig. 2.4 The series and cross arm of structure IX 
have the same configuration as the cross and series arm respectively 
of structure X. Hence only the series arm of each lattice is shown 
in Fig. 7. These new lattice structures necessarily have the same phys
ical realizability requirements and exhibit the same typical charac
teristics as sketched in Fig. 2 for structures VII and VIII. The 
element values for the general case of these lattice networks without 
mutual inductance are given in Table I. 

VI. EXAMPLE 

We now illustrate by an example the methods we have developed 
to obtain realization of constant resistance lattice networks. Let us 
find such a realization given the transfer impedance function 

() _ K(84 + 2.26883 + 6.517i + 3.3028 + 4.905) 
exp - 84 + 283 + 4.77882 + 5.5568 + 5.556 (42) 

In order to represent the given function as tandem lattices, we ob-

Fig. 6 - Cross arm ZII for structure VIII of Fig. 2. (L's, Cs and R1 are same 
as for Fig. 4.) 
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TABLE I (a)-ELEMENT VALUES FOR STRUCTURE IX 

1J1 
La = [(lX2K m + (32)3(Km + I)]! 

1J1 
= [(a 1a2K m + b1 b2)3(I(m + I)]! 

C - RaR4 

a - L4 

Ra = lX2Km - {32 = a1a2K m - b1b2 
lX2Km + {32 a1a2K m + b1b2 

L 
- [(Km - 1)\lX2K m - (32)]! 

4 - 1J1 

[(Km - 1)3(a1a2K m - b1b2)]' 
M 

K - 1 
R4 = K: + 1 

C
1 

= [(lX2Km - (32)((31 - KmlX1)]! 
(-{31 - KmlXl)(Km + 1) 

where 

= {(a1a2Km - b1b2)[(b1 + b2) - Km(a1 + a2)J}' 
[-(b1 + b2) - Km(a1 + a2)](Km + 1) 

lYI = ({31 - K mlX1)[(lX2K m + (32)(Km + 1)]' 

- ({31 + K mlXl)[(lX2K m - (32)(Km - I)]! 

R' -~ 
3 - Ra 

= [(b1 + b2) - Km(a1 + a2)][(a1a2Km + b1b2)(Km + 1)]' 

- [(b1 + b2) + Km(a1 + a2)][(a1a2Km - b1b2)(Km - I)]! 
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TABLE I (b)-ELEMENT VALUES FOR STRUCTURE X 

L~ = { (Km - 1)(.81 - K mCX1) }! 
(cx2Km + .82)( -.81 - K mCX1) 

{ 
(Km - 1)[(b1 + b2) - Km(a1 + a2)] }! 

= (a 1a2K m + b1b2)[ -(b1 + b2) - Km(a1 + a2)] 

651 

c~ = [( ~~( ~ cx2Km -.82 Km - 1)]' 
1 

R3 = -, 
R3 

M 

c~ = [(Km + 1)accx2f.(m + .82)]! 
M 

[(Km + 1)3(a1a2K m + b1b2)]! 
M 

R' _ Km - 1 
4 - Km + 1 

where 

III = (.81 - KmCX1)[(CX2Km + .81)(Km + I)]! 

- (.81 + KmCi l)[(CX2K m - .82)(Km - I)]! 

= [(b1 + b2) - Km(a1 + a2)][(a1a2K m + b1b2)(Km + I)]! 

- [(b1 + b2) + Km(a1 + a2)][(a1a2K m - b1bz)(Km - l)]t 
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tain a partial product expansion of exp () wherein the factors are 
bilinear or biquadratic forms. In the present example, we find 

() = K(i + 28 + 5)(8
2 + 0.2688 + 0.981) 

exp i + 28 + 2 i + 2.778 (43) 

or 

(J = [K (i + 28 + 5)J[K (8
2 + 0.2688 + 0.981)J 

exp 1 i + 28 + 2 2 i + 2.778 (44) 

where K or K1K2 are constant multipliers to allow for any corre
sponding net increase in loss required by the overall network. 
Each biquadratic factor must be physically realizable if it is to be 
synthesized using one of the basic structures. For the first factor we 
get the following zeros for the polynomials 

a l = -1 + j2, 

bl = -1 + j, 
From these a's and b's we determine 

a2 = -1 - j2, 

b2 = -1 - j. 
(45) 

{3l = -2, (32 = 2, (46) 

a~ + a~ = - 6, b~ + b~ = O. 

Substituting into the physical realizability conditions of structures 
VII and IX, we find that these conditions are satisfied. The second 
factor in (44) has the following values 

al = -0.268, 

{3l = 0, 

1 1 
2 + 2 = -1.964, 
al a2 

a2 = 0.981, 

(32 = 2.778, 

1 1 
b~ + b; = -0.72. 

(47) 

With these values the second factor satisfies the requirements for 
structures VIII and X. Hence, the given transfer function (42) can 
be represented by two second degree lattices in tandem with or without 
mutual coupled coils. 

Using (27), K1 and K2 of (44) become 

Kl = Kml = 1.2895, (48) 
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K2 = Km2 = 7.035, 

and the constant multiplier K is 

653 

(49) 

K = KIKz = 9.0716. (50) 

Thus by substituting (46) and (48) into the explicit formulas for 
structures VII and IX, and substituting (47) and (49) into the explicit 
formulas for structures VIII and X, the element values for each 
corresponding structure can be obtained. These element values are 
summarized in Tables II, III, IV and V. It should be apparent that 
another realization may be obtained for (42) by interchanging the 
numerators of the two biquadratic factors given in (43). Then the 
counterparts would have to be re-examined to see which basic struc
ture would be realizable. 

VII. GENERAL SYNTHESIS PROCEDURE 

The flow chart shown in Fig. 8 is a guide for the general synthesis 
procedure of any physical realizable, rational transfer impedance 
function exp (). This flow chart can be summarized as follows: 

(i) Factor the given transfer impedance function into first and 
second degree functions with both members of any conjugate complex 
pair of zeros and poles retained in each given partial product. 

(ii) Synthesize all first degree functions by structure III or IV 
according to their physical realizability conditions. 

(iii) Examine the poles and zeros of these second degree functions to 
see whether they are real or complex; then use the appropriate group of 
structures indicated. If the poles and zeros are real, factor the second 
degree function into first degree functions. 

(iv) Examine the physical realizability conditions further to de
termine to which sub-group of structures the function belongs. 

TABLE II-ELEMENT VALUES OF STRUCTURES VII FOR (43) 

Zx (series arm) 

Ll = -0.0658 
~ = 0.1290 
C2 = 1.0296 
L3 = 0.1344 
R3 = 0.5265 

ZII (cross arm) 

L4 = 2.0178 
Ls = 1. 9379 
C5 = 0.0685 
L6 = -0.9876 
R7 = 1.8994 
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TABLE III-ELEMENT VALUES OF STRUCTURE IX FOR (43) 
(EQUIVALENT TO STRUCTURE VII) 

z'" (series arm) 

C1 = 0.4956 
L2 = 0.1342 
Ra = 0.5265 
C3 = 1.5695 

La = 0.2084 
R4 = 0.1264 
L4 = 0.0424 
C4 = 0.3193 

z" (cross arm) 

CI' = 0.1342 
L2' = 2.0178 
Rs' = 1.8994 
L3' = 0.6371 

Ca' = 0.2084 
R/ = 7.9113 
L/ = 3.1319 
C/ = 0.0424 

(v) Connect the synthesized elementary structures in tandem. 
(vi) Raise the impedance level to the desired Ro . 

The realizability conditions of structures VII and IX are the same 
and also those for structure VIII and X. If one wishes to avoid hav
ing coupled coils, he should use structures IX and X. Since struc
tures IX and X are generally more complex, one may elect to use 
the structures VII and VIII to save on the number of elements in 
the final network. 

VIII. CONCLUSION 

In the field of classical network theory, Bode developed explicit 
formulas in terms of the poles and zeros of the transfer impedance 
function for synthesizing constant resistance lattice structures of the 
types I, II, III, IV, V, and VI. This paper has shown the detailed 
development and derivations of explicit formulas in terms of the poles 
and zeros of the transfer impedance function for synthesizing types 
VII and VIII, with coupled coils by Brune Method, and for types 
IX and X which are new types of structures that may be used to 
avoid having coupled coils by Bott-Duffin Procedure. With the addi
tion of these results, a general method for synthesizing any physically 
realizable, rational transfer impedance function with explicit for
mulas is complete. The explicit formulas method developed in this 

TABLE IV-ELEMENT VALUES OF STRUCTURE VIII FOR (43) 

Zx (series arm) 

L 1' = 0.7896 
L2 = 2.4106 
C2 = 0.4572 

La' = -0.5949 
Ra = 0.4266 

Z1/ (cross arm) 

L4' = -1.3958 
L5 = 5.6767 
Cr, = 0.1948 
L6' = 1.8564 
R7 = 2.3475 
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TABLE V-ELEMENT VALUES OF STRUCTURE X FOR (43) 
(EQUIVALENT TO STRUCTURE VIII) 

Zz (series arm) 

ct' = 2.4677 
L 2' = 0.7896 
R3' = 0.4260 
L3' = 0.8710 

Ca' = 1.2658 
R/ = 0.7511 
C/ = 2.7222 
L/ = 0.4050 

ZII (cross arm) 

Cl = 1.2665 
~ = 2.4677 
Ra = 2.3470 
La = 1.2658 

Ca = 1.1481 
L4 = 2.7222 
C4 = 2.4691 
R4 = 1.3314 
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paper gives more rapid results and introduces fewer round-off errors 
than the step-by -step procedures used in the past. 
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APPENDIX 

Derivation of Physical Realizability Conditions 

We now develop the physical realizability conditions for second degree 
lattices in terms of the poles and the zeros of exp e. We shall find that 
the requirement for non-negative loss at real frequencies for such two
ports leads to both a product and a summation condition on the poles 
and zeros of the transfer impedance function. This analysis is carried 
out in terms of an example utilizing structures VII and IX. These 
structures exhibit zero loss at a finite frequency Wo (see Figs. 2 and 7). 
To evaluate the constant multiplier for these structures we set 
exp (2a) = 1 at Wo , and let Xu = w~ • Then from (16), k becomes 

Ie = ((32 - xu): + (3~xo 
(a2 - xo) + alXO 

where a's and (3's are given by (6) and (7) respectively. 

(51) 

Substituting (51) back into (16) and applying the non-negative loss 
condition, that is, exp (2a) ~ 1 for all frequencies we have 

[
((32 - XO)2 + (3ixo][(a2 - X)2 + aix] > 1 (52) 
(a2 - XO)2 + aixo ((32 - X)2 + (3ix = . 
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We shall obtain one of the realizability conditions by letting the 
frequency approach infinity. The result is the expression 

(53) 

Expanding this expression and substituting for a'S and {3's from 
(6) and (7), we obtain 

(b 1b2)2 + (bi + b~)xo ~ (ala2)2 + (ai + a;)xo . (54) 

For 

(55) 

then 

(ala2)2 ~ (b 1b2)2. (56) 

Thus (56) can be rewritten as 

(ala2)2 = (b 1b2 )2 + € (57) 

where E is a positive quantity. Substituting (57) into (54) we get 

(b 1b2)2 + (bi + b~)xo ~ (b 1b2)2 + € + (ai + a~)xo • (58) 

Simplifying and dividing both sides by Xo yields 

bi + b~ ~ ai + a~ + ..!.. (59) 
Xo 

Since ·E and Xo are positive quantities their ratio may be deleted 
without altering the inequality of (59). Thus we have shown that the 
realizability requirements for second degree structures VII and IX 
are given by the pair of expressions 

bi + b~ ~ ai + a~ (60) 

and 
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Recirculating Ultrasonic Stores: 
An Economical Approach to 
Sequential Storage with Bit 

Rates Beyond 100 MHz 

By E. K. SITTIG and F. M. SMITS 

(Manuscript received September 30, 1968) 

State of the art integrated circuits and ultrasonic delay lines can be 
combined to form batch-fabricated digital storage modules having random 
access to sequentially stored blocks of information. Greatest economy is 
indicated if such stores are designed for as high a bit rate as is technologi
cally feasible, at present limited by the speed of available integrated circuitry. 
A store of optimum design will have a block size of approximately 1000 
bits which, for a bit rate of 100 MHz, gives a maximum latency time of 
approximately 10 microseconds. Such designs are realizable with zero 
temperature coefficient material. The stores can be used as main memories 
for small computers or as fast transfer stores shuttling information be
tween a slow external bulk memory and a very fast random access memory 
in large computers. 

A variety of accessing modes permit these stores to operate over a large 
1'ange of access rates without requiring large buffer stores. 

I. INTRODUCTION 

In a computer of conventional organization, a central processor 
communicates with a large array of randomly accessible storage loca
tions, each of which contains one word of a given number of bits. 
The assembly of these locations, the "random access memory," typi
cally consists of one discrete element for each bit stored, which oc
cupies a fixed location in space. This approach is comparatively 
costly. At present, the cycle time for such a memory of megabit size 
is of the order of one microsecond. 

Since cost and size normally prohibit providing storage for more 
than a few million bits in this form, additional bulk memory is pro-

659 
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vided in which bits are stored in homogeneous media at lower cost 
and higher density. Since the bit locations in this bulk memory are 
basically defined by sequential scanning from a given addressable 
starting location, the information has to be stored or read out sequen
tially as a block. Therefore, once the desired block is addressed, a 
certain latency time passes until the information is available. This 
typically ranges from 10 to 100 milliseconds in mechanically scanned 
systems such as drums or disks and is even longer if heads have to 
be repositioned. If the information is stored on magnetic tape, this 
latency time may be several minutes. 

The present trend is to have shorter processor cycle times and 
multiple access facilities in evolving computers; increasing emphasis 
is put on the ability to transfer blocks of information quickly be
tween a bulk store and the random-access memory with which the 
processor interacts. In order to avoid a bottleneck in the throughput 
of information, transfer stores of lower capacity but shorter latency 
time are provided; these transfer stores can be loaded from a slower 
store without intervention of the central processor but can also transfer 
data on demand with minimum waiting time. Drum stores and random 
access memory blocks are often used for this application. 

It is the purpose of this paper to point out that ultrasonic delay 
line stores have been developed to the point where bit rates of 100 
MHz and higher have become feasible; therefore, stores with opera
tional properties similar to those of a drum can be built which have 
maximum latency times of about 10 microseconds. Organized in 
parallel tracks, these stores can transfer many giga bit per second. 
In contrast to magnetic storage, these stores share with semiconductor 
stores the disadvantage of volatility with respect to power failure; 
but they have the advantage of high storage density and absence 
of moving parts. 

These devices appear to be a strong contender for buffer stores of 
relatively short latency time. Since they are sequential stores with 
the information stored in a homogeneous medium, one may expect that 
the storage cost could be considerably lower than would be the case 
for a random access memory. This paper will show this to be the case. 
As a matter of fact, the higher the frequency of operation the more 
economical a delay line store becomes since its components become 
more and more compact. At 100 MHz bit rate, for example, stores 
with packing densities exceeding 6000 bits per cubic centimeter are 
readily possible. 

In optimizing a store, the interrelation between delay line and 
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auxiliary circuitry needs to be considered. Details of delay line de
sign analysis have been discussed elsewhere. 1 The present paper uses 
the delay line design analysis in an optimization with the auxiliary 
circuitry to find a combination which is optimized from functional 
and economical considerations. 

The most repetitive elements in a delay line store are individual 
recirculating delay line loops. Accordingly, the optimization of indi
vidual loops will be considered first. This will be followed by giving 
detailed design considerations for the delay lines meeting such re
quirements. Finally, operational characteristics of a delay line store 
will be covered. 

II. GENERAL TRADE-OFF CONSIDERATIONS FOR A SINGLE DELAY LINE LOOP 

A basic recirculating delay line loop typically has the configuration 
shown in Fig. 1. Binary coded data in the form of pulses appearing 
at terminal DI are inserted into the delay line through gates Band 
A when a "write" command pulse appears at terminal W. As the 
pulses appear at the other end of the delay line, they are amplified 
to make up for the insertion loss of the line and are detected in the 
amplifier-detector AD. In gate E the detected signals are retimed 
with respect to an external clock frequency inserted at terminal Cl. 
They can be monitored at the data output terminal DOlor gated 

r--
I 
I 
I 
I 
I 
I 
I 
L_ 

Dr w C.l 

Fig. 1-Basic recirculating storage loop. The terminals are as designated: 
Dr, data insertion; W, write command; R, read command; DOl, D02, data 
output; Cl, external clock frequency. 
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through D to the output terminal D02 by a "read" command applied 
at R. Gate C provides reconnection to the input of the delay line 
unless disabled by the write command at W while reading in new 
data. Storage loops of similar configuration have in the past been 
used with bit rates of a few MHz and storage capacities of up to 
about 20,000 bits in electronic desk calculators and the like. 

A large store will have to contain a multiplicity of identical storage 
loops, and a limited number of control circuits, registers, and clock 
frequency supplies which are common to all loops. To minimize the 
over-all cost of the system, it is most important to minimize the cost 
and complexity of the components constituting the individual loops. 
In principle a given storage capacity may be obtained by using many 
relatively simple delay lines with a corresponding number of regen
eration circuits or by using fewer but more complex delay lines usually 
requiring more complex circuitry. As long as the circuit.s have to be 
built from discrete components, it is more economical to use long and 
fairly complex delay lines so that maximum use could be made of the 
expensive circuitry. 

As an example of this approach, a store has been built with a capacity 
of 1.3 X 106 bits, using 48 delay lines, storing 28,000 bits each at a 
bit rate of 40 MHz, which gives a resulting latency time of approxi
mately 707 microseconds.2 The materials available for such a large 
storage capacity per delay line exhibit a sizeable absorption loss and 
a temperature coefficient of delay around 80 ppm per centigrade de
gree. With such a large temperature coefficient some form of tem
perature stabilization is necessary. The high insertion loss of the delay 
lines-typically 50 dB pulse-to-pulse-requires amplifiers with care
fully controlled linear gain at the output of each delay line to bring 
the signal back up to logic level. To retime unavoidable drift in tem
perature between the individual delay lines, the regeneration circuitry, 
in addition, has to provide the largest retiming margin possible. 

These stringent requirements might be relaxed considerably by an 
alternative approach using delay lines which store only about 1000 
bits each, so that the individual lines can be of a simple rectangular 
block configuration; the rectangular block configuration, in contrast 
to the polygons required in the above-mentioned example, can readily 
be batch fabricated in large numbers. Thus a cost saving appears pos
sible in spite of the 28-fold increase in the number of delay lines over 
the example mentioned before. Also, the shorter delay line length per
mits the use of a delay medium, with higher absorption but with a 
lower temperature coefficient, so that temperature stabilization equip-
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ment becomes unnecessary. Finally, with shorter individual delay 
lines a 28-fold reduction in the latency time is achieved which, if 
combined with lower cost for the devices, could make it more attrac
tive for computer applications. 

This approach will only be economical if the concomitant increase 
in the number of regeneration circuits can be obtained at minimal 
cost. This should be feasible if each circuit could be built as an in
dividual integrated circuit of reasonable size. In order to make this 
practical, certain requirements are posed on the delay line perform
ance. Since with an integrated circuit level detector pulses of 30 
millivolts amplitude or more can easily be detected, and since an 
integrated circuit driver can deliver readily pulses of the order of 1 
volt amplitude, the delay line pulse-to-pulse insertion loss should not 
exceed 30 dB. If kept to such levels, closely gain-controlled linear 
amplifiers can be avoided. Also, the transducers of the delay line 
should have an impedance falling into the range of 10 to 100 ohms so 
as to permit coupling the delay line to integrated circuitry without 
the use of transformers or tuning inductors. 

III. DESIGN CONSIDERATIONS FOR THE ULTRASONIC DELAY LINES 

The simple delay line to be considered has the configuration shown 
in Fig. 2; two equal piezoelectric transducers of thickness .ec and ac
tive diameter 2r are affixed to a delay medium in the shape of a bar 
of length x and square cross-section ha,ving a width D. The delay 
medium is characterized by its sound velocity Ca, density pa and am
plitude absorption index JJ. (absorption per wavelength). The trans
ducer material is characterized by its sound velocity Cc, density pc, 
permittivity€, and electromechanical coupling factor k. At the fre
quency f 0, for which the thickness of the transducer equals half a 
sound wave length, that is, for 

(1) 

the electrical impedance Zi appearing at its electrical terminals is 

(2) 

where Co = 7rr2 4.ec and Z = paCa/ pccc is the acoustic impedance ratio 
of the delay medium with respect to the transducers. Without tuning 
networks, maximum power is transferred between a source of im
pedance Rs and the delay line, and likewise between the line and a 
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- -DELAY MEDIUM 

- -- TRANSDUCER 

DELAY LINE WITH PIEZOELECTRIC TRANSDUCERS 

Fig. 2 - The basic delay line configuration. Two transducers of thickness lc and 
diameter 2r are attached to a delay medium of length x and lateral dimension 
D. This delay line is connected between a source of resistance R. and load R I 

without tuning networks. 

load resistance Rl , if 

(3) 

provided that 4k2/7rz « 1 which is fulfilled in all the cases of interest 
here. 

As shown in detail in Ref. 1, with these electrical terminations one 
obtains a reasonably linear phase response and a pass band centered 
near fo which rolls off approximately like sin4 (7rflfo) on either side 
of f 0 if z is selected to fulfill the condition 

z = 1 - k2
• (4) 

With this pass band, a unipolar input pulse of rectangular envelope 
and a nominal width 

T = 1/2/0 (5) 

gives rise to an output pulse having the. shape shown in Fig. 3. The 
center lobe of. this pulse is. about 6.5 dB below the amplitude of the 
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input pulse. This reduction in pulse amplitude is due to side lobes 
being generated by the band limiting characteristic of the delay line. 

Pulses can be inserted at a maximum bit rate equaling fo with 
adequate margin for binary detection. Thus one bit can be stored for 
each sound wave length Aa in the delay medium so that the storage 
capacity N is given by 

(6) 

The transducer insertion loss would be minimized if k is chosen as 
large as possible. This is evident from (2) in that more of the input 
voltage is dropped across the resistive part of the input impedance. 
However, k = 0.6 is about the maximum available in transducer ma
terials with reasonable technological properties so that a transducer 
insertion loss minimum of a few dB seems unavoidable. An attempt 
to trade off bandwidth for a reduction of loss would, as a rule, im
pair the detection margin of the output signal, and would probably 
increase the pulse amplitude insertion loss due to the pass-band char
acteristic above the value of 6.5 dB mentioned before. 

Within these limitations one may now choose a transducer-delay 
medium combination by criteria such as a small temperature coefficient 
and adequate sound absorption. As shown in Ref. lone can combine 
the expressions for the length of the delay line x, the thickness of the 

6~------~----------~=------------

-4~--~--+-~~-+--~--~-X---------

I 
f-- 1Ifo-- -- 1Ifo 
1 0 BINARY 

SEQUENCE 

Fig. 3 - Output signal from a delay line when rectangular pulses of duration 
1/2/0 are applied to its input. The worst case for detection is obtained when 
such pulses are entered at the rate /0/2 representing a binary 1-0-1 sequence 
as shown; since the outermost sidelobes of the nearest neighbors will fill in the 
"zero" slot between "one" pulses, this creates intersymbol interference. A spurious 
signal at a -20 dB level further reduces the detection margin to the one shown. 
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transducer to, its capacitance Co, and the length of its Fresnel zone 
Xo which determines its directivity, namely 

x = N"A; 

to obtain a compatibility condition 

(8) 

with a materials constant 

(9) 

This condition implies that the beam spreading loss Lb (which is ap
proximately x/xo in dB if x/xo ~ 10) and the impedance levels of the 
delay lines are interrelated for a given material combination and storage 
capacity. 

The total delay path loss La is composed in part of the absorption 
in the delay medium La and the beam spreading loss Lb . 

(10) 

with p. in dB per bit. In order to keep the total loss below 30 dB, the 
above loss should be restricted to about 20 dB, since in addition there 
are a few dB transducer loss and the 6.5 dB loss in pulse amplitude 
due to the band-pass characteristic of the delay line. 

The absorption loss La increases with increasing frequency and 
thus introduces by itself additional distortions. Since, the beam 
spreading loss Lb decreases with increasing frequency, it is possible 
at least to first order, to compensate these two losses by choosing 
them approximately equal at the center of the pass band leading to 
the condition 

(11) 

By restricting the total loss to 20 dB, one is limited to x/xo ~ 10. To 
reduce the spurious signals, (primarily the triple travel signal due to 
multiple reflection between the transducers) to at least 20 dB below 
the main response, a minimum propagation loss La of 10 dB is necessary. 
This requirement limits the design range to 

(12) 

The lateral dimension D of the delay medium is determined by the 
requirement that the directional response of the transducers sup
presses glancing reflections from the side walls by at least 20 dB. 
This is assured ifl 
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D/r = x/xo • (13) 

The above relations contain all information necessary for a complete 
design of an optimized delay line. 

It is interesting to note that (7), (9), and (11) do not contain the 
frequency explicitly. It enters only in implicit form through the ab
sorption index f-t which for most suitable materials increases less than 
linear ly with frequency. 

The other factor to consider is the potential cost of the delay line 
when compared to other methods of information storage. The tech
nology required in fabricating delay lines is very similar to the semi
conductor device technology and, as in that case, the variable giving 
a measure of the cost is the area that has to be precision finished, 
plated, and so on. For delay lines this is the area of the two end faces, 
each of which is given by 

(14) 

a relation obtained by combining (6), (7) and (13). 
Thus, the area per bit to be finished, 2D2/N, is seen to decrease as 

l/t: . Moreover, (6) and (14) combined state that the delay line volume 
XD2 decreases like l/t! . Thus at high frequencies the materials cost 
can be expected to be negligible compared to the finishing cost. These 
relations imply that, for economical reasons, the delay line should be 
operated at as high a frequency as possible, in spite of the reduction in 
storage capacity with increasing frequency which is imposed by the 
loss limit. 

With present-day technology, delay lines have been made with 
storage capacities of approximately 1000 bits and pUlse-to-pulse in
sertion loss in the vicinity of 30 dB with bit rates beyond 100 MHz.3 
There is no reason that this frequency could not be further increased. 
However, at present integrated circuitry with toggle rates much above 
100 IVIHz has barely become available commercially so that at present 
100 IVIHz is the highest frequency that can be considered from a practical 
point of view. 

Once the frequency to , the material constant m, and the impedance 
l/woCo have been chosen, (9) indicates that the storage capacity N 
can only be varied in proportion to x/xo • This in combination with (14) 
implies that the finished area per bit 2D2/N increases with the storage 
capacity N. The permissible range of N is limited by the considerations 
leading to (12). As mentioned before, in the optimum case the beam 
spreading loss should equal the bulk loss, a condition which usually can 
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Fig. 4 - For a delay line consisting of sodium-potassium niobate transducers 
attached to a Bausch & Lomb T-40 glass delay medium and fa = 100 MHz: 
the loss in the delay medium La, the latency time tL , the combined cndface area 
of the delay line, silicon chip area both per 1000 bits, and their sum. Outside the 
shaded region either the loss is too high or the triple travel suppression too low. 

be met only approximately since the conditions imposed by (4) and (9) 
on the materials data will also have to be considered. 

A useful compromise on all counts consists of a delay line using as a 
delay medium, a glass with nearly zero temperature coefficient of delay, 
such as Bausch & Lomb's T40 glass, and using ceramic sodium potas
sium niobate transducers. The materials constants for this system are 
as follows:1

•
4 T40 glass: Cd = 2.58 millimeter per microsecond, z = 0.51, 

p, = 9 X 10-3 X (f/fo)o.3 dB at fa = 100 MHz; sodium potassium niobate 
ceramic: Cc = 3.68 millimeter per microsecond, E ~ 500Eo , k = 0.6. 
This combination fulfills (4) closely enough to be usable at bit rates 
up to fo with adequate detection margins. Figure 4 shows the delay 
medium loss Ld of (10), the maximum latency time tL , and the processed 
area per 1000 bit, 2D2 of (14) as a function of the storage capacity N for 
to = 100 MHz. Condition (12) in this case limits the value of N between 
560 and 1100 bits as is also indicated in Fig. 4. 

For N = 1000 the delay medium length is x = 25.8 millimeters 
and the lateral dimension D = 2.45 millimeters, so that the material 
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cost can be considered insignificant compared with the processing cost 
of the end faces. These, however, tend to be proportional to the end 
face area 2D2, but will certainly be less than the cost of an equal 
area of integrated circuit chips, in view of the less complex procedures 
involved in fabricating the delay lines. The regeneration circuit com
prises about 30 transistors and should, at the present state of the art, 
require about 1 square millimeters of silicon.5 One circuit of this area 
is required for each delay line loop. The processed area per bit de
creases, therefore, inV'ersely with the number of bits stored in a single 
delay line as indicated in Fig. 4. As a result of this the sum of the 
processed area of the chip and the delay line itself has a minimum 
near N = 300 bits. If the processing costs per unit area were equal 
for the delay line and the chip, this minimum would correspond to the 
cost minimum. If, as appears likely, the cost per unit area is lower 
for the delay line, this minimum shifts to a higher N, close to the 
values of N between 560 and 1100 bit, permitted by the spurious sig
nal supression and insertion loss limit. With a transducer impedance 
of 28.5 ohms the bulk loss in the delay medium at 100 MHz can be 
made equal to the beam spreading loss. This impedance will pose no 
difficulty with standard integrated circuitry. 

It appears, therefore, that some presently available materials have 
close to optimum properties for the design of delay line storage loops 
operating at a bit rate of 100 MHz and storing 1024 bits with a re
sulting latency time of 10.24 microseconds. If such delay lines were 
produced by batch techniques, their cost should be comparable to 
those of a few square millimeters of silicon integrated circuits. The 
storage density in these devices is approximately 6000 bits per cubic 
centimeter of volume. Individual storage loops with delay lines stor
ing 1024 bits have been built and operated at bit rates of 100 MHz.5 

IV. ORGANIZATION OF A DELAY LINE STORE 

Delay lines of the design described above are highly compact and 
could be built in modules of, for example, 18 delay lines built in a 
single glass plate of approximate dimensions 2 inches by 1 inch by 
0.1 inch. The transducers would be mounted on the 2 inch by 0.1 inch 
faces while the 2 inch by 1 inch faces would be available as the sub
strate for interconnections, and the integrated circuit chips perform
ing the recirculation, clock, and control functions. If one uses two 
of the 18 tracks for parity check and timing functions, then each 
module would store 16,384 bits. Such a module might constitute a 
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repetitive element of any larger store so that the latency time for 
any randomly accessible block of information need not exceed 10.24 
microseconds at a bit rate of fo = 100 MHz, regardless of the store 
SIze. 

It thus seems sufficient to discuss the organization of an individual 
module. The simplest organization would consist of providing random 
access by a 4-bit track selector to each track which stores a block of 
data words in a word and bit sequential organization. The start of 
each track would be delineated either by a 10-bit cyclic counter, 
counting off the clock frequency, or by reading signals from one or 
t.wo additional delay lines serving as timing tracks. By adding an 
address register and a circuit, comparing its content with the counter, 
individual words in each track can be addressed individually. This 
type of organization, shown schematically in Fig. 5 using as elements 
the storage loops of Fig. 1, is natural for bit-serial processing with 
its economy of equipment so that it may well find application as 
main memory in small computers, where a cycle time of 10 micro
seconds is quite adequate. 

Faster data transfer at the cost of more equipment is obtained in 
the word serial, bit parallel organization shown in Fig. 6. There the 
bits of anyone word are contained in parallel tracks, so that a com
plete word is accessed by comparing its address with the counter 
reading. Data input and output have to be provided by parallel regis
ters; transfer of words to the outside world can occur at the bit rate 
fb. The store, whatever its size, can be written or read completely 

CLOCK ',;,---___ ~ 

WORD 
ADDRESS 

B 

READ/WRITF. 

TRACK SELECTOR _~ 

ENABLE SELECTOR 

Fig. 5 - Bit-serial, word-serial organization of B storage loops as in Fig. 1. 
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2 8 

CLOCK r--"---+1 

2 B 

READ IWRITE 

ADDRESS r-------., 

Fig. 6 - Bit-parallel, word-serial organization of B storage loops. 

within 10.24 microseconds. In this form the store would cooperate 
best with a random access memory of about 10 nanoseconds cycle 
time without excessive buffer pile-up. As will be discussed in the 
Section V, slower, nonsequential operating modes can provide a match 
with memories of any cycle time between 10 nanoseconds and 10 
microseconds. 

Finally, like any sequential memory the delay line store can be 
organized associatively as shown in Fig. 7. All words are compared 
with a word preselected in the content register during the 10.24 
microseconds it takes for all words to pass by the test location. If 
the comparison extends only over a part of the bit forming a word, 
these bits can serve as a pointer address for sorting sequences, and 
so on. In this version the store acts as an associative memory with a 
cycle time of 10.24 microseconds. 

V. TIMING PROBLEMS 

In the operation of a delay line store, the timing requires careful 
attention since in contrast to a digital shift register the delay line has 
a characteristic recirculation time. This time is dominated by the 
delay time ta of the individual delay lines while the circuitry will 
contribute only a minor additional delay. A delay line designed for a 
characteristic frequency fa can be operated at a bit frequency fb up 
to the frequency fa. If the frequency is chosen below fa, it is important 
that the pulse width is nevertheless maintained at 1/2fo. Deviation to 
longer or shorter values causes the insertion loss to increase, since less 
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ADDRESS IN 

COINCIDENCE 

CLOCK >---4~ 

Fig. 7 - Bit-parallel, word-serial organization of B storage loops with asso
ciative addressing. A coincidence signal is produced when the content register 
agrees with a stored word, as the latter passes through the comparator. 

of the spectral energy of the input pulse falls into the pass band of 
the delay line. Storage capacity N and bit rate Ib are interrelated by 

(15) 

so that within certain limits storage capacity can be traded off in 
order to synchronize the store with an external clock frequency deter
mining the bit rate. However, usually it will be more advantageous 
to operate the store asynchronously with respect to the outside world. 
One then avoids the problems in distributing frequencies of 100 MHz 
over an extended system with a predetermined phase. Moreover, one 
can then slave the store clock to a delay line used as a timing track.2 

As in any asynchronous organization, buffer registers must be pro
vided which temporarily store information entered at one transfer 
rate and withdrawn at a lower one. Information accumulates in the 
buffer at a rate equal to the difference between the two rates until 
the complete block is transferred. This determines the buffer capacity 
required. It is therefore of advantage to know how a delay line store 
can be accessed at rates nearly equal to those of the equipment it 
serves, so that the buffer capacity can be kept low. 

If bits are loaded every t.e second into a delay line loop of capacity 
N, bit (N + 1) will coincide in time with the first bit loaded if 

(16) 

where p ~ 1 may be any positive integer. However, if p has common 
factors with N, bits earlier than the (N + 1)-st one will akeady co
incide in time, so that such values of pshould be avoided. For N = 1024, 
p. may thus assume all odd numbers. 
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Combining (16) and (15) one obtains 

II = l/tl = Ib/P (17) 

as the permissible loading rates. These generally cause the bits to be 
stored internally in a scrambled sequence, with the exception of the 
choices 

P = qN + 1 q = 1, 2, 3, ... , (18) 

which cause storage in the original sequence, and 

p = qN - 1 q = 1,2,3, ... , (19) 

which cause storage in time-inverted sequence. Equation (18) is the 
basis of the well known delay line time compression (DELTIC) sig
nal processing systems described in the literature in which digital 
data are written into storage at a slow rate 1£ but are read at the fast 
bit rate Ib = (qN + 1)/£.6 Also, all pairs of loading rates Ib and 1£2 
given by 

Ill/112 = p/(qN + p) (20) 

cause storage in the same, although internally scrambled, sequence 
so that the bit addresses can be set by sequential counting rather than 
address comparison. 

Series-parallel conversion can be utilized to keep the difference of 
transfer rates between stores at a minimum. For instance, certain 
core memories provide access to, say, 72 bits every cycle with a cycle 
time of 1 microsecond. Parallel to serial conversion would make use 
of a bit rate of 72 MHz quite feasible, which would increase even 
further if various checking bits were added to each 72-bit word. 

VI. CONCLUSIONS 

Sequential storage in recirculating loops, consisting of ultrasonic 
delay lines in combination with integrated regeneration circuitry of 
medium scale complexity, has reached a state of the art where bit 
rates can be obtained which are, at present, unattainable with large 
scale integrated circuit registers. At bit rates around 100 MHz and 
beyond such storage appears economically competitive with LSI im
plementations operating at much lower speeds. Such bit rates have 
already been demonstrated. 

With modules storing blocks of 1000 bits at 100 MHz bit rate, 
larger stores can be built with latency times of about 10 microseconds, 
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for possible use as main memory in small computers or as fast trans
fer stores shuttling information between a slow external bulk memory 
and a fast random access memory in large computers. 

In spite of the inherently fixed recirculation time of such a store, 
it should be adaptable to various processor and bulk store speeds 
without having to provide more than a few words of buffer storage by 
a judicious combination of measures such as clock frequency varia
tion, DELTIC modes, and series-parallel conversion. This opens the 
prospect of using only one or a few basic types of storage modules 
with a standardized delay time so that maximum advantage could 
be taken of the savings inherent in mass fabrication. 
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Queues Served il1 Cyclic Order 

By R. B. COOPER and G. MURRAY* 

(Manuscript received September 30, 1968) 

We study two models of a system of queues served in cyclic order by 
a single server. In each model, the ith queue is characterized by general 
service time distribution function Hi ( .) and Poisson input with param
eter ~i • 

In the exhaustive service model, the server continues to serve a particular 
queue until the server becomes idle and there are no units waiting in that 
queue; at this time the server advances to and immediately starts service 
on the next nonempty queue in the cyclic order. 

The gating model differs from the exhaustive service model in that when 
the server advances to a nonempty queue, a gate closes behind the waiting 
units. Only those units waiting in front of the gate are served during this 
cycle, with the service of subsequent arrivals deferred to the next cycle. 

We find expressions for the mean number of units in a queue at the 
instant it starts service, the mean cycle time, and the Laplace-Stieltjes 
transform of the cycle time distribution function. 

I. INTRODUCTION 

We consider a system of queues served in cyclic order by a single 
server. The ith queue is characterized by general service time dis
tribution function H i (·) and Poisson input with parameter ~. 

We study two variations of this model. In the first, called the 
exhaustive service model, the process begins with the arrival of a 
unit at some queue, say A, when the system is otherwise empty. The 
server begins on this unit immediately, and continues to serve queue 
A until for the first time the server becomes idle and there are no 
units waiting in queue A. The server then looks at the next queue 
in the cyclic order, queue A + 1, and serves those units, if any, that 
have accumulated during the serving period of queue A. The server 
continues to serve queue A + 1 until for the first time the server 

* The RAND Corporation. 
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becomes idle and there are no units waiting in queue A + 1. The 
process continues in this manner, with the queues being served in 
cyclic order, until for the first time the system becomes completely 
empty. The process is then re-initiated by the arrival of the next 
unit. No time is required to switch from one queue to the next. 

The second variation, called the gating model, differs from the first 
in the following way: When the server moves to a queue with at 
least one waiting unit, the server accepts only those units that were 
waiting when the server arrived, deferring service of all subsequent 
arriving units until the next cycle. That is, in the gating model, at the 
instant the server advances to a nonempty queue a gate closes behind 
the waiting units, and only those units waiting in front of the gate are 
served during that cycle. 

The exhaustive service model is analyzed in detail. We obtain the 
generating function for the joint probability distribution of the num
ber of units in each queue at an instant at which the server finishes 
serving anyone of the queues. We then obtain expressions for the 
mean number of units in a queue at the instant it starts service, the 
mean cycle time, and, in a form suitable for numerical computation, 
the Laplace-Stieltjes transform of the cycle time distribution function. 

Finally, we note that the equations describing the gating model 
differ only trivially from those of the exhaustive service model, and 
that the same method of solution applies to each. 

Systems in which a single server is shared among several queues 
are common. For example, in the No.1 Electronic Switching System 
the central control spends much of its time polling various hoppers 
and performing work requests that it finds in these hoppers. Similarly, 
in a time-shared computer system the users have access through tele
typewriters to a central computer which is shared among them. The 
cyclic queueing models studied here are of a type which may be useful 
in the analyses of these and similar problems. 

The exhaustive service model for the special case of two queues 
has been studied by L. Takacs,1 B. Avi-Itzhak, W. L. Maxwell, and 
L. W. Miller,2,3 and M. F. Neuts and M. Yadin.4 Avi-Itzhak et al 
used an argument based on the properties of mean values, to obtain 
an expression for the mean waiting time suffered by a unit in either 
queue. Takacs, by a more direct argument, utilizing the Markov 
chain imbedded at the epochs of service completion, obtained the 
corresponding Laplace-Stieltjes transform and formulas for the wait
ing time moments assuming service in order of arrival. Neuts and 
Yadin obtained waiting time results for the transient case. 
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The more general two-queue model in which the time required to 
switch from one queue to the next has some arbitrary distribution 
function is also studied in Ref. 3, and has been investigated in addi
tion by M. Eisenberg5 and J. S. Sykes.6 M. A. Leibowitz7

•
8 has stud

ied a multiqueue model similar to the gating model studied here. A 
nonprobabilistic approach to cyclic queueing problems has been used 
by J. B. Kruskal. 9 

In the present paper we use the imbedded Markov chain approach 
but, as with Neuts and Yadin, our chain is imbedded at the instants 
at which the server completes serving a queue, rather than at the set 
of all instants of service completion used by Tablcs. Whereas Takacs 
and Neuts and Yadin obtained waiting time results, our analysis yields 
cycle time results. The mathematical analyses characterizing the three 
approaches share some common ground, although the differences, espe
cially those arising from our consideration of an arbitrary number of 
queues, are significant. 

Also, in a recent nontechnical article on queues by Leibowitz/o the 
present problem is offered as a prime example of an important, dif
ficult, unsolved queueing problem. 

II. PRELIM IN ARIES 

In the analysis of the exhaustive service model, we take the number 
of queues to be N + 1 ~ 2. Units arrive at the ith queue according to 
the Poisson process with rate Ai ; that is, the probability Qi(k; t) that 
k units arrive at the ith queue in an interval of length t is 

Qi(k; t) = (Ak~)k exp (-AJ)" (k = 0,1,2, ... ;i = 0,1, ... ,N). 

The length of time required to serve a unit from queue i has distribution 
function H i (·) with mean hi (i = 0, 1, ... , N). 

In the analysis of the exhaustive service model, we shall use the 
concept of busy period, discussed at length by Takacsll• For the ordinary 
single-server queue, the busy period is defined as the length of time 
from the instant a unit enters a previously empty system until the 
next instant at which the system is completely empty. Both the distri
bution function of the busy period and its Laplace-Stieltjes transform 
are known explicitly for the MIGI1 queue. In particular, the MIGI1 
queue with arrival rate A and mean service time h has a busy period 
with mean b = hl(1 - Ah) if Ah < 1 and b = 00 if Ah ~ 1. 

Consider now the MIGI1 queue with j waiting units; define the 
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j-busy period as the length of time from the instant at which service 
starts on the first of the j units until the next instant at which the 
system is completely empty. (When j = 1, the j-busy period and the 
busy period are identical.) Each of the j units, which together generate 
a j-busy period, individually generates a I-busy period. Thus (as 
Takacs shows) the distribution function of the j-busy period is the 
j-fold convolution with itself of the distribution function of the I-busy 
period. 

Denote by B i (·) the distribution function of a I-busy period for 
queue i, by (3i(') its Laplace-Stieltjes transform, and by bi = hj(1 -
"ihi) its mean. Let Br i (. ) be the j-fold convolution of B i (·) with itself, 
B*!(·) = B i (·). Then a j-busy period for the ith queue has distribution 
function Br i (.) and Laplace-Stieltjes transform «(3i(' )) i. 

III. FORMULATION OF IMBEDDED MARKOV CHAIN STATE EQUATIONS FOR THE 

EXHAUSTIVE SERVICE MODEL 

There are N + 1 ~ 2 queues. Suppose that the system is idle and a 
unit arrives at some queue at epoch To • The server immediately com
mences service at that queue, and continues to serve units at that 
queue until the first instant TI at which that queue becomes empty. 
If the system is not empty at TI , the server advances to the next queue 
in the cyclic order. The server immediately commences work at this 
queue until the instant T2 at which this queue becomes empty (where 
T2 = TI if the server finds the queue empty), and continues on in this 
manner until for the first time, Tn say, the server finishes serving a 
queue and there are no units waiting anywhere in the system. The 
process terminates at Tn and is reinitiated by the next arrival. 

Thus the process generates a set of points To , TI , ••• , Tn , where To 

is the arrival instant of a unit at some queue in the previously empty 
system, and Tn is the first instant at which the system becomes com
pletely empty again. The next arrival, at epoch To' say, reinitiates the 
process, and a new set of points, To' , TI' , ••• , Tn' is generated. We call 
the points TI , ••• , Tn (and TI' , ••• , Tn') switch points. 

Note that To is not a switch point, whereas Tn is a switch point. 
Successive switch points may occur simultaneously in time, but are 
nevertheless considered distinct. Thus, with each switch point is as
sociated a queue, namely, that queue at which the server has just 
completed its visit. 

When the server finishes serving a queue and finds the system com
pletely empty, a switch point associated with that queue is recorded. 
The next switch point is recorded when the server leaves the queue at 
which the process is reinitiated, and is associated with that queue. 
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Let (i; n 1 , "', nN) denote the state of the system at an arbitrary 
switch point, where i is the index of the associated queue, and nk is the 
number of units waiting in queue i + k(k = 1, ... ,N). [For simplicity, 
no special notation will be used to denote arithmetic mod (N + 1).] 
Let th~ state (i; n 1 , ••• , nN) have probability Pi(n 1 , ••• , nN); that is, 
Pi(n1 , ••• , nN) is the joint probability that at a switch point, the 
server has just completed a visit to queue i (i = 0, 1, ... , N) and n 1 

units are waiting in queue i + 1, n2 units in queue i + 2, ... , and UN 

units in queue i + N. 
The state (i; n 1 , ••• , nN) can occur through the following exhaustive 

and mutually exclusive contingencies: 

(i) The server leaves queue i-I and finds j E?; 1 units waiting 
for service in queue i, where it thus spends a length of time 
equal to a j-busy period. 

(ii) The server leaves queue i-I and finds j = 0 units waiting 
for service in queue i, but at least one unit waiting for service 
somewhere else in the system, so that the server then 
"passes through" queue i in zero time. [That is, the state 
(i; n 1 , ••• nN-l , 0) necessarily follows the state (i - 1; 0, 
n 1 ,"', nN-l) where at least one of the nk~O(k=I,"', N-l).] 

(iii) The server leaves some queue and finds no units waiting any
where in the system. With probability AdA (A = Ao + '" + AN) 
the next arrival (which reinitiates the process) occurs at queue i, 
where the server then spends a I-busy period. 

These considerations lead directly to the imbedded (at the switch 
points) Markov chain probability state equations: 

"N-l 

L Pi-l(j, kl , ... ,kN - 1) 

kN-l=O 

• [c5(X) = {I if x = 0; 
o if x ~ 0 

i=0.1.··· .N)' (1) 
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[Throughout the analysis, arithmetic mod (N + 1) in subscripts 
will not be specially denoted.] Assuming it exists, the distribution 
{Pdnl, ... ,nN)} is uniquely determined by (1) and the normaliza
tion equation 

eo 
L P i(nl , ... ,nN) = 1. (2) 

(Intuitively, one would expect a unique stationary distribution to 
exist when Lf~o Aihi < 1.) 

IV. FUNCTIONAL EQUATIONS FOR GENERATING FUNCTIONS 

We define the probability generating functions at (Xl, ... ,XN): 
eo eo 

gi(Xl , ... ,XN) = L ... L Pi(nl , ..• ,nN)x~l ... X';.N 

(i = 0, 1, ... ,N). (3) 

Substitution of (1) into (3) yields, after some rearrangement, 

gi(Xl , ..• ,XN) 
eo eo eo 
L L ... L Pi-l(j, kl , ... ,kN_I)X~l .•. X;;:'ll 
j=1 k1=O kN-l=O 

·l
eo 

exp (- t f Ai+m(1 - Xm)) dB1\t) 
o m=l 

. o(nN)Pi- 1(0, nl , ... ,nN_l)x~l ••• X';.N 

A. N leo (N ) + ; {; Pk(O, ... ,0) 0 exp -t ~ Ai+m(1 - Xm) dBi(t) 

(i = 0,1, ... ,N). (4) 

The integrals on the right side of (4) are recognized as the Laplace
Stieltjes transform (f3i(' »i of the j-busy period distribution function 
with argument L~=1 Ai+m(1 - Xm). Hence (4) yields the set of simul
taneous functional equations 

gi(XI , ... ,XN) = gi-l(f3i(t. Ai+m(1 - Xm») ,Xl, ••• ,XN-I) 

Ai (N , ) N + "' f3i L Ai+m(l - Xm) L Pk(O, ... ,0) 
A m=l k-O 

- Pi-leO, ... ,0) (i = 0, 1, ... ,N). (5) 
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v. SOLUTION OF THE FUNCTIONAL EQUATIONS 

For notational convenience, we define the nesting operator :a: for any 
sequence of functions {fk(·)} for which it is meaningful: 

We shall denote by x the vector with components Xl , ••• , XN , and 
by 0 the vector with all components zero. Both vectors and vector
valued functions will be denoted by boldface type, and square brackets 
will be used to enclose vector arguments of vector-valued functions. 
Finally, we will denote by cf>(v) the first component of a vector v. 

Define the vector functions 

Z,[x, •...• XN] = [!l,(i; Ai+m(l - Xm)) • x, •...• XN-' ] 

(i = 0, 1, ... , N) (6) 

so that (5) can be rewritten 

Ai' N 

gi(X) = gi-l(Zi[X]) + X cf>(Zi[X]) ~ Pk(O) - Pi-1(O) 

(i = 0, 1, ... , N). (7) 

Iterating v-I times on i in (7) we obtain 

(i = 0,1, ... ,N;v = 1,2, ... ). (8) 

In particular, when v = N + 1 (8) can be written 

(i=O,I,···,N) (9) 

where we have set 

N 

P(O) = L Pk(O). . (10) 
k-O 

We shall now solve (9) by extending a method devised by M. F. 
Neuts12 for the solution of a related equation in one variable. 
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Define the iteration procedure 

N 

V!j) [xl = Z zi_dv~i-l) [x]] 
k .. O 

(i = 0,1,·" ,N;j = 1,2, ... ; viO) [x] = x). (11) 

Using (11) in (9) gives 

gi(V!i) [x]) - gi(V~i-l) [x]) 

= P(O)(1 - ~ t Ai-m<P( i Zi_k[Vi i
-

1
) [X]])) 

1\ m=O k-O 

(i = 0,1, ... ,N;j = 1,2, ... ). (12) 

Adding equations (12) for j = 1,2, ... ,n yields 

gi(v~n) [x]) - gi(X) = P(O) ~ (1 - ~ t Ai-m<P( i Zi_k[v!il [X]])) 
1-0 1\ m-O k-O 

(i = 0,1, ... ,N; n = 1,2, ... ). (13) 

N ow let n --) 00 in (13). We will show in the next section that 

lim v~n) [x] = I (Xl ~ 1, ... ,XN ~ 1; i = 0, 1, ... ,N) (14) 
n->oo 

where I = [1, 1, ... , 1], so that (13) becomes 

gi(l) - gi(X) = P(O) t (1 - ~ t Ai-m<P( i Zi_k[vi il [X]])) 
1-0 1\ m-O k=o 

(i = 0,1, ... ,N). (15) 

Notice that 

(16) 

and 

N 

L g;(O) = P(O) (17) 
i-O 

so that upon setting x = 0 in (15) and adding for i = 0, 1, ... , N 
we obtain 

P(O) = (1 + t, Ai(O»)-l (18) 
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where 

(i = 0,1, ... ,N). (19) 

(We remark that P(O) ~ 1 - L~=o A)"i because the set of switch points 
is not an arbitrary subset of the set of all points at which units leave 
the server.) 

It remains to calculate gi(l). Physically, gi(l) is the probability that 
at the instant the server leaves some queue, that queue is queue i. This 
event occurs if 

(i) the last time the server left a queue the system was empty, and 
the next arrival occurred at queue i, or 

(ii) the last time the server left a queue the system was not empty, 
and the queue was queue i - 1. 

Event (i) has probability (AdA)P(O); event (ii) has probability gi-l (1) -
gi-l(O). Hence 

(i = 0, 1, ... , N). (20) 

[Equation (20) can also be obtained directly from (7) with x = 1.] 
But the difference (gi-l (1) - gi-l (0)) can be evaluated from (15) with 
x = O. Hence 

Ai 
gi(l) = >: P(O) + P(O)Ai-I(O) (i = 0, 1, ... , N) (21) 

so that (15) can be rewritten 

Ai >: + Ai-I(O) - Ai(X) 
gi(X) = N (i=O,l, .. · ,N). (22) 

1 + L Aj(O) 
j=O 

The quantities on the right side of (22) are completely specified; the 
set of simultaneous functional equations (5) has been solved in the 
sense that gi(X) may be calculated for any x ~ 1. 

VI. PROOF OF CONVERGENCE 

We wish to prove statement (14) : 

(Xl ~ 1, ... , XN ~ 1; i = 0, 1, ... , N). 
n-+oo 
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Note first that v~n)[x] is a vector whose (N + 1 - m)th element 
(m = 1, 2, ... ,N) is 

Therefore, we need show only that 

lim cp( Z Zi_k[v~n) [X]]) = 1 
n-oo k~O 

(i = 0, 1, ... ,N; m = 1,2, ... ,N; Xl ~ 1, ... , XN ~ 1). (23) 

From the definition (11) it is clear that the sequence {v~n)[x]} is bounded 
as n ~ 00 for x ~ 1, and therefore the sequence {gi(v~n) [xl)} is bounded 
as n ~ 00 for x ~ 1. Also, 

° ~ cp( Z Zi_k[Vin
) [X]]) ~ 1 (n > 1, x ~ 1). (24) 

k=O 

We now turn our attention to equation (13). From (24) we see that the 
right side of (13) increases monotonically with n for x ~ 1, and there
fore the sequence {gi(v~n)[xl)} increases monotonically with n for x ~ 1. 
Thus the sequence {gi(v~n)[x])} is monotonically increasing and bounded 
for x ~ 1, and therefore has a limit. Hence the left side of (13) has a 
limit, which implies that the series of nonnegative terms on the right 
side of (13) converges. This in turn implies that 

lim ~ f Ai-mcp( Z Zi_k[v~n) [X]]) = 1 (x ~ 1). (25) 
n-OO 1\ m-O k~O 

Statements (24) and (25) together imply (23), completing the proof. 

VII. MEAN NUMBERS OF WAITING UNITS 

Denote by niCk) the mean number of units waiting in queue i + k when 
the server leaves queue i (i = 0, 1, ... ,N; k = 0, 1, ... ,N; ni(O) = 0). 
For convenience, let gi(l)ni(k) = mi(k) and mi(l) = mi . Then L:f-o mi 
is the mean number of waiting units found by the server in the next 
queue in cyclic order at a switch point, and L:f-o mi(k - i) is the 
mean number of waiting units in queue k at a switch point. We shall 
evaluate mi(k) (i = 0, 1, ... , N; k = 1, 2, ... , N). 

We first note that m,(k) is given by 

mi(k) = ~ gi(XI , ••• ,XN) I 
aXk %1-" '-%N~l 

(i = 0,1, ... ,N; k = 1,2, ... ,N) (26) 
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and the mean I-busy period bi = 
in queue i is given by 

ki/ (1 - 14k,,) generated by a unit 

bi = _!i (3i(S) I 
ds 8~O 

(i = 0, 1, ... ,N). (27) 

Differentiating through (5) we obtain 

a 
-a gi(Xl ,' .. ,XN) 

Xk 

a (N ) a = -a (3i L Ai+m(1 - xm) a{3. gi-l({3i , Xl , ••• ,XN-l) 
Xk m=1 , 

a + (1 - o(N -k)) a- gi-l({3i , Xl , ••• ,XN-l) 
Xk 

Ai a (N ) + T P(O) aXk (3i ]; Ai+m(1 - Xm) 

(i = 0, 1, ... ,N; 7~ = 1, 2, ... ,N) (28) 

which upon setting Xl = ... = XN = 1 gives the two-dimensional set 
of linear equations 

iiii(k) = Ai+kbiiiii-l + ~i P(O)Ai+kbi + (1 - o(N -k))iiii-l(k + 1) 

(i = 0,1,'" ,N;k = 1,2,'" ,N). (29) 

For each i, (29) can be solved successively starting with k = N 
and working backward: 

i+l i+l 
iiii(N - j) = Ai+N-i L bi+l-viiii-v + A -lp(O)Ai+N_i L Ai+l-vbi+l-v 

v=l v=1 

(i=O,I, .. · ,N;j=O,I, .. · ,N-l). (30) 

In particular, when j = N - 1 equation (30) can be written 
i+N i+N 

iiii = Ai+l L bv+liiiv + A -lP(O)Ai+l L Av+lbv+l 
v=i+l v=i+l 

(i = 0,1, ... ,N). (31) 

When Ai+lbi+liiii is added to both sides of the ith equation of the set 
(31) we have after rearrangement 

i+N i+N 
iiii(l + Ai+lbi+l)A~1l - A -lp(O) L Av+lb,,+l = L bv+liiiv 

v=;+l v=i 

(i = 0, 1, ... ,N). (32) 
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The sum on the right side of (32) is a constant independent of the 
value of the index i. Hence 

i+N 
in i (1 + Ai+lbi+l)A~:'l - A -lp(O) L Av+lbV+l 

v=i+l 

i+i+N 
rni+i(1 + Ai+i+lbi+i+l)A;;'i+l - A -lp(O) L Av+lb v+ 1 

v=i+;+l 

(i = 0, 1, ... ,N; j = 0, 1, ... ,N). (33) 

Combining (33) and (31) yields 

mi = A;1 P(O) P 1~;1 (i = 0,1, ... ,N) (34) 

where we define Pi = Aihi and P = L~-o Pi • Note that for (34) to be 
meaningful we must have P < 1. The {mi(k)} can now be calculated 
from equations (34) and (30). 

VIII. LAPLACE-STIELTJES TRANSFORM OF CYCLE TIME DISTRIBUTION 

FUNCTION 

Consider the set of switch points associated with queue i, and append 
to this set every switch point associated with queue i-I at which the 
server finds the system completely empty. Call the elements of this 
augmented set the record points associated with queue i. 

We define the partial cycle time for queue i as the elapsed time be
tween a switch point associated with queue i-I and the temporally 
preceding record point associated with queue i. Denote by Gi (·) the 
distribution function of the partial cycle time for the ith queue, and by 
-9 i ( .) its Laplace-Stieltjes transform. 

Since queue i is necessarily empty at an associated record point, all of 
the units waiting for service in queue i at a switch point of queue i-I 
must have arrived during the preceding partial cycle time. Let Pi-l(j) 
be the conditional probability that j ~ 0 units will be waiting for 
service in queue i, given that a switch point associated with queue i-I 
has just occurred. Then the distribution function Gi (·) of the partial 
cycle time for the ith queue and the distribution {Pi-l(j)} of the 
number of units that arrive (according to the Poisson process with rate 
Ai) during the partial cycle time are related as follows: 

(i = 0, 1, ... ,N; j = 0, 1, ... ). (35) 
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Notice also that the distribution {P i - 1 (j)} has probability generat
ing function 

00 

L Pi_1(j)X i 

;=0 

g;-l(X, 1, ... , 1) 
gi-l(l) 

(i = 0, 1, ... ,N). (36) 

Substitution of (35) into (36) yields, for the Laplace-Stieltjes transform 
1 i ( .) of the partial cycle time distribution function for queue i, 

(
A.. - S ) gi-l _1_A.-. - , 1, ... , 1 

1i(S) = ' . (1) 
gl-l 

(i = 0, 1, ... ,N). (37) 

We define the (full) cycle time for queue i as the partial cycle time 
plus the time required to serve those units, if any, waiting in queue 
i when the server finishes queue i - 1. (Notice that in order to be 
counted as a cycle for queue i, a time interval must contain a partial 
cycle ending at a switch point at queue i - 1.) Denote by Gi (·) the 
distribution function of the cycle time for the ith queue, and by 'Y i ( • ) 

its Laplace-Stieltjes transform. 
The cycle time distribution function Gi (·) is related to the partial 

cycle time distribution function Gi (·) as follows: 

Gi(t) = it ~ (A.j~)~ exp (-A.i~)Bri(t - ~) dGi(~) 
(BrO( .) = 1; i = 0, 1, ... ,N). (38) 

Taking Laplace-Stieltjes transforms throughout (38) we obtain 

(i = 0, 1, ... , N). (39) 

Hence we have for the Laplace-Stieltjes transform Yi(S) of the cycle 
time distribution function for the ith queue 

. (A. J3i (S) - S 1 '" 1) 
gl-l A.. " , 

'Yi(S) = 1 . (1) 
gl-l 

(i = 0, 1, ... ,N). (40) 

By differentiating through (40) we obtain for the mean cycle time 
ti the intuitively obvious result 

(i = 0, 1, .. , ,N). (41) 

IX. THE GATING MODEL 

Consider now a system of N ~ 1 cyclic queues described by the 
gating model of Section 1. Define Pi(n1 , ••• , nN) as the joint prob-
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ability that at the instant the server leaves a queue, that queue is 
queue i (i = 0, 1, ... , N - 1) and nl units are waiting in queue i + 1, 
n2 units in queue i + 2, ... , and nN units are waiting in queue i (that 
is, nN units arrived at queue i after the closing of the gate). Denote by 
H~f (.) the j-fold convolution with itself of the service time distribution 
function Hi ( . ). Then 

Pi(nl , ... ,nN) 

Ao N-l 100 N . o (nN) + .. : L: Pk(O, ... ,0) II Qi+m(nm ; t) dHi(t) 
1\ k=O 0 m~l 

(i = 0,1, ... ,N - 1) (42) 

where Qi = Qi+N. 
Equation (42), for the N-queue gating model, is only trivially dif

ferent from (1), which describes the (N + 1) - queue exhaustive ser
vice model. The analogue of (5) is 

gi(Xl , ... ,XN) = gi-l( 'I1i(t, Ai+m(l - Xm») , Xl , ••• ,XN-l) 

Ai (N ) N-l + ~ 'I1i ~ Ai+m(1 - Xm) t; Pk(O, ... ,0) 

(i = 0,1, ... ,N - 1) (43) 

where 'I1i ( .) is the Laplace-Stieltj es transform of the distribution func
tion Hi ( • ), and gi (Xl, ... , XN) is now the generating function for the 
gating model state probabilities. The solution of (43) follows that 
given for (5), and a complete analysis may now be carried out in a 
manner similar to that employed for the exhaustive service model. 
(We remark in passing that the equations originally considered by 
Neuts are those of the gating model with N = 1.) 

x. SUMMARY 

Two models of a system of queues served in cyclic order by a single 
server have been presented. One of these, the exhaustive service model, 
has been analyzed in detail. This model is described by the imbedded 
Markov chain probability state equations (1), from which a set 
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of functional equations (5) for the probability generating functions 
are derived. The functional equations are solved with the help of a 
generalization of an iteration procedure used by Neuts. The equa
tions (5) are then used to obtain explicit expressions for various 
mean values, such as the mean number of units found waiting by the 
server in the ith queue, given by equation (34), and the mean cycle 
time, given by equation (41). The Laplace-Stieltjes transform of the 
cycle time distribution function is given, in a form suitable for nu
merical computation (and hence numerical inversion), by equation 
(40) . 

It is then shown that the gating model is described by state equations 
only trivially different from those of the exhaustive service model. It 
is now easy to adapt the methods and results of the detailed analysis of 
the exhaustive service model to a similar analysis of the gating model. 

It is noteworthy that all results are expressed directly in terms of the 
single state probability P(O) and the relevant generating functions, so 
that there is no need to evaluate the individual state probabilities. The 
calculations are thus reduced to the iteration algorithm, which may be 
suited to digital computer solution. 
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A Hybrid Coding Scheme for Discrete 
Memoryless Channels* 

By D. D. FALCONER 
(Manuscript received June 6, 1968) 

We consider a coding-decoding scheme which can permit reliable data 
communication at rates up to the capacity of a discrete memory less channel, 
and which offers a reasonable trade off between performance and complexity. 
The new scheme embodies algebraic and sequential coding-decoding stages. 
Data is initially coded by an algebraic (Reed-Solomon) encoder into blocks 
of N symbols, each symbol represented by n binary digits. The N n-bit 
symbols in a block are transmitted separately and independently through 
N parallel subsystems, each consisting of a sequential coder, an inde
pendent discrete memoryless channel, and a sequential decoder in tandem. 
Those coded n-bit symbols which would require the most sequential de
coding computations are treated as erasures and decoded by a Reed
Solomon decoder. We show that the hybrid technique reduces the variability 
of the amount of sequential decoding computation. We also derive asymp
totic results for the probabilities of error and buffer overflow as functions 
of the system complexity. 

I. INTRODUCTION 

It is well known that the use of block coding and maximum-likeli
hood decoding permits transmission of information at rates up to the 
capacity of a discrete memoryless channel with an error probability 
which decreases exponentially with the code block length.1-4 A discrete 
memoryless channel (DMC) may be an adequate model for some 
types of real one-way digital communication channels consisting of a 
transmission medium, transmitting and receiving equipment and modu
lation-demodulation scheme. An arbitrary DMC is assumed to have 

* This research is partly, based on a Ph.D. thesis, Department of Electrical 
Engineering, Massachusetts Institute of Technology, 1966, carried out at the 
Research Laboratory of Electronics, Massachusetts Institute of Technology, 
supported by the National Aeronautics and Space Administration (Grant NsG-
334) and a Hughes Industrial Fellowship. 
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a P-symbol input alphabet and a Q-symbol output alphabet. During 
each channel use, an input symbol is selected and transmitted and 
an output symbol is received. Successive input-to-output transitions 
are random and statistically independent; the probability that the 
output is symbol j (j = 1, 2, ... , Q), given that the input is symbol 
i (i = 1, 2, ... , P), is qij. (Table I contains a list of the symbols 
used throughout this paper) 

Maximum-likelihood decoding, which is known to be optimum, 
involves the cross-correlation of a received block code word with all 
possible transmitted code words. The number of code words, and 
hence the required number of decoding operations, grows exponentially 
with the block length; this exponential growth in decoding complexity 
makes maximum-likelihood decoding impractical, even for moderate 
block lengths. There has thus been considerable incentive to find 
suitable classes of codes having nonoptimum decoding schemes, for 
which the complexity (reflecting the number of components and the 
number of decoding operations per unit of transmitted information) 
does not increase exponentially with the block length. 

A number of coding-decoding schemes have previously been pro-
posed. Among the most widely known are: 

(i) Algebraic coding and decoding schemes.5
, 6 

(ii) Elias' iterated coding and decoding.1 
(iii) Massey's threshold decoding of convolutional codes.s 

(iv) Gallager's low density parity check codes.s 

(v) Sequential coding and decoding.10-12 

For some performance-versus-complexity criteria, one or more of 
these schemes may be well suited. However, lower bounds on the 
performance and complexity of these schemes show that none can 
yield an exponentially low error probability for a rate arbitrarily 
close to channel capacity without incurring exponentially growing 
complexity; Ziv, Pinsker, and Forney have proposed some more gen
eral coding-decoding schemes for use with discrete memory less chan
nels,13-16 The common feature of these schemes and of the earlier 
scheme of Elias is that they incorporate two or more separate stages 
of coding and decoding as Fig. 1 illustrates.1 The "inner stage" is an 
arbitrary block coding-decoding scheme, generally using maximum
likelihood decoding, which has just enough complexity to guarantee 
a fairly low probability of decoding error. Then the chain consisting 
of the inner coder, DMC, and inner decoder constitutes another dis-
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TABLE I-LIST OF SYMBOLS 

Definition 

Size of channel input alphabet 
Size of channel output alphabet 
Transition probability that output is J' if input is i 
Block length of RS code 
N umber of information symbols per RS code word 
Dimensionless rate of RS code. R = K. / N 
Minimum distance of RS code 
N umber of erasures to be corrected per parallel block 
Maximum number of correctable errors per parallel block 
N umber of channel symbols per tree branch 
Rate of sequential code in bits per channel use 
Computational cutoff rate 
Time interval for transmission of a single channel symbol 
N umber of tree branches per serial block 
Number of redundant (known) branches per serial block 
Overall information rate in bits per channel use 
Defined by: S = No - 1 
Probability of decoding error for one serial block 
Upper bound on P u( e) 
Constants, for a given sequential code 
Sequential decoding error exponent 
Probability of error for a super block 
= - xfny - (1 - x) in(l - y) 
= - xfnx - (1 - x) fn( 1 - x) 
Overall block length 

693 

Number of sequential decoding computations to decode the jth super 
block 
Upper bound on the probability that Ci exceeds x 
Pareto exponent 
= max(a, 1) 
Number of computation units to decode a given super block 
= n( a' I alAe exp [H(o)/ao] 
= Noa/(Noa - 1) Ae exp [H(o)/aoj 
Size of buffer allotted to each sequential decoder 
Probability that buffer overflows before first L super blocks are decoded 
Queue size after ith super block is decoded 
Number of new super blocks joining queue during the decoding of the 
ith super block 
Maximum number of computations each sequential decoder can do per 
received branch 
N umber of computation units to decode the lth super block 
= 1 + e6 

= p.n/AI 
Total decoder buffer storage 

Fig. 1-Two-stage coding-decoding scheme. 
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crete channel with a low probability of error or erasure. Scrambling 
and descrambling may be necessary to make this new channel mem
oryless. The "outer" stage or stages embody available coding and 
decoding techniques with long block length, which drive the proba
bility of decoding error down to a negligibly small value with a 
relatively small degree of complexity. The overall block length is the 
product of the block lengths of the individual coding stages, and the 
overall information rate is the product of the individual rates. 

The overall block lengths for these schemes are much larger than 
those known to be necessary to achieve a given error probability with 
a given information rate. However, this penalty, which is reflected 
in increased coder complexity, may be compensated for by the more 
favorable tradeoff between performance and decoder complexity. 

These multistage schemes allow transmission at any information 
rate up to channel capacity with error probabilities which decrease 
exponentially with overall block length (or its square root in Ziv's 
scheme) ; the total decoder complexity may be large but it increases 
only algebraically with the overall block length. Notice that if the 
inner stage uses maximum likelihood decoding in order to achieve 
a low error probability for a rate close to channel capacity, its com
plexity increases exponentially with its block length. Thus the com
plexity of the inner stage may well dominate the total complexity, 
for rates close to capacity. 

We propose yet another two-stage coding-decoding scheme, which 
we call a hybrid scheme and which is described in detail in Section 
II. The inner stage involves sequential coding-decoding, which is 
known to be capable of yielding exponentially small error proba
bility for any rate less than the channel capacity. The decoding effort 
required of the inner stage is actually alleviated by the use of the 
outer stage, which involves algebraic coding-decoding. Section III 
contains derivations of upper bounds on error probability, distribu
tion of decoding computation, average decoding computation and 
probability of buffer overflow for the hybrid scheme. These bounds 
display the asymptotic performance capabilities of the scheme. The 
bounds are not sufficiently tight to be useful in obtaining detailed 
performance parameters for actual systems, but must be supplemented 
by simulations. Section IV contains some simple calculations, based 
on a previous simulation, for the performance of a hybrid scheme. 
Before describing the new scheme, we briefly review some salient fea
tures of algebraic coding and of sequential coding. 
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1.1 Algebraic Coding and Decoding 
Any algebraic code has an underlying algebraic structure, upon 

which the coding and decoding algorithms are based.5 For a code 
with block length N, each code word consists of N symbols picked 
from a finite field. Thus the symbol alphabet size must be a prime 
or power of a prime. The channel is assumed to either change a symbol 
to a different symbol in the field with some probability p (thus mak
ing an error) or change it to a symbol not in the field with some 
probability q (thus making an erasure), or pass the symbol on un
changed with probability 1-p-q. 

Algebraic codes may be put in systematic form; K of the N sym
bols in a code word are information symbols and the remaining N-K 
are check symbols. The ratio KIN is the dimensionless rate of the 
code. The required coder complexity is generally proportional to N. 

An important property of an algebraic code is its minimum dis
tance, d, which is the minimum number of symbols in which any two 
code words differ. Practical decoding algorithms are available for 
certain classes of algebraic codes with specified minimum distance 
properties. These decoding algorithms generally involve a finite num
ber of algebraic (finite field) operations, and guarantee the correc
tion of up to T errors and S erasures for any T and S such that 

2T + S ~ d - 1. (1) 

The best known algebraic block codes are the BCH codes, for 
which both the number of decoding operations per block and the 
number of components vary with N approximately as N log Nand 
with T approximately as T log N, as shown by Berlekamp.6 A special 
case of BCH codes, involving roughly the same order of decoder 
complexity, is the class of Reed-Solomon (RS) Codes.17,18 A RS 
code can be defined with any rate R and block length N, provided 
that the size of the symbol alphabet exceeds N. It can be shown that 
a RS code's minimum distance is the largest possible, given Rand N, 
that is 

d = dm"x = (1 - R)N + 1. (2) 

Reed-Solomon codes are useful where the size of the code's symbol 
alphabet can be large. 

1.2 Sequential Coding and Decoding 
Sequential coding and· decoding is applicable in principle to any 

DMC. Sequential coding is also known as tree coding.10-12 Included 
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in the clas£ of tree codes are the easily implemented convolutional 
codes.10 

A sequential coder accepts a sequence of consecutive binary infor
mation digits and, for each1 generates v channel input symbols. Cod
ing is sequential; each channel input symbol depends only on pre
vious binary input digits. 

Implicit in the structure of a sequential coder is a tree, as typified 
in Fig. 2 for v = 3. Each branch is labeled with v channel input 
symbols. A sequence of binary inputs to the coder is conceptually a 
sequence of directions which sequentially steer the coder along a path 
(called the correct path) starting at the origin of the tree. Successive 
branches along the correct path are transmitted over the DMC as 
v-tuples of channel symbols. The rate of the tree code in bits per 
channel use is r = l/v. If a rate r = u/v is required, bits entering the 
coder would be grouped into u-tuples, and there would be 2U branches 
stemming from each node of the tree. 

INPUT "0"_1 
INPUT "1/1 r 
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ORIGIN 

010 

110 

001 

101 

010 

101 

010 

110 

001 

100 

011 

111 

000 
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T 101 

011 

1 
T 100 

010 

1 
T 101 

001 

1 
T 110 

000 

1 
1 111 

Fig. 2 - Tree structure of a sequential code. 
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Sequential decoding is a form of probabilistic decoding, which is 
applicable to tree codes. It is termed "probalistic" because the general 
decoding procedure applies to any randomly selected tree code and 
because the decoder is guided to a final decision by probabilistic 
considerations rather than by a fixed sequence of algebraic operations. 
A sequential decoder implicitly contains a copy of the tree, and must 
hypothesize a path through the tree, starting at the origin, which 
with high probability is the correct path. 

The Fano sequential decoding algorithm is a specific sequential 
tree search procedure which is efficient, practical to implement, and 
is amenable to analysisY· 12 The decoder examines received branches 
successively, makes tentative hypotheses for the corresponding branches 
of the correct path, and advances along them through the tree, if 
their likelihood, measured by an appropriate "path metric," appears 
high enough. If the current hypothesized path appears not sufficiently 
likely, the decoder retreats one branch and starts searching for a 
more likely path. Thus there is backward and forward searching 
through the tree, with a trend toward the right, as the decoder con
tinually extends and revises its estimate of the correct path. If the 
rate r is less than the capacity of the DMC, the Fano algorithm 
sequential decoder can be shown to eventually trace out the correct 
path with high probability. 

The number of branch examinations, or computations done by 
the decoding algorithm to advance one branch deeper into the tree 
is a random variable. Analysis and simulation have shown that its 
mean is bounded, independent of the coder complexity, only if the 
code rate r is less than a "computational cutoff rate," R cQmp , which is 
characteristic of the channel and is always less than the channel 
capacity. 

Since the rate of transmission and the decoder's operating speed 
are fixed, a buffer must be provided at the decoder to store arriving 
branches which accumulate during periods of intensive tree searching. 
The buffer is necessarily of finite size, and hence may overflow if a 
span of received branches requires an unusually large amount of 
computations. Buffer overflow is catastrophic, since it is accompanied 
by loss of data and subsequent disruption of the decoding process. 
It is generally the most prevalent mode of failure in systems which 
use sequential decoding. 

Restarting the decoding process after an overflow occurs is gener
ally possible only if the sequence of transmitted channel symbols is 
divided into blocks which are coded and decoded independently. That 
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is, at regular intervals, the coder starts afresh at the tree origin and 
erases its memory of previous information bits. Then if an overflow 
occurs, decoding can resume at the beginning of the next block. 

It will be shown that the hybrid coding-decoding scheme described 
in the Section II reduces the severe variability in decoding effort that 
is characteristic of sequential decoding, and furthermore, that for 
any rate up to channel capacity, the probability of decoding failure 
(error or overflow) asymptotically decreases nearly exponentially 
with the total system's complexity. 

II. DESCRIPTION OF CODER AND DECODER 

2.1 The Coder 
Figure 3 shows the structure of the hybrid coder. We assume that 

N parallel independent DMC's are available, each of which is used 
for transmission once every T seconds. These N parallel channels 
could be created by time-multiplexing a single DMC which is used 
once every T/N seconds. The input to each DMC is from a separate 
sequential coder. The code rate is r = l/v bits per channel use. Every 
VT seconds each sequential coder accepts a binary input digit and 
generates v successive channel input symbols which, in accordance 
with the tree structure of the code, depend on present and past coder 
inputs. However, each coder's memory of past input bits is erased 
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• 

Fig. 3 -Hybrid coder structure. 
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at nvr-second intervals. Thus, successive blocks of n inputs are coded 
independently into blocks of nv channel input symbols; such inde
pendently coded blocks are called serial blocks, and the correspond
ing blocks of n coder input digits are called n-symbols. 

If a coder input digit is to be decodable with a low error probability, 
it must affect a certain minimum number of subsequent channel input 
symbols. However since the coder's memory of previous inputs is 
erased at the beginning of each serial block, the final coder input digits 
in any n-symbol can affect relatively few channel input symbols. The 
error probability is kept low by making the last m (m < n) digits of 
each n-symbol a fixed sequence known to the decoderP Then each a 
priori unknown coder input digit can affect at least mv channel input 
symbols. The last m coder input digits are redundant; the net informa
tion rate of each sequential coder is then (I-mini) v bits per channel 
use. In general, n is chosen to be much greater than m, so that the 
decrease in net rate resulting from the periodic "resynchronization" 
is acceptably small. 

The N serial blocks simultaneously coded and transmitted in paral
lel over the N DMC's comprise a super block. The corresponding set 
of N n-symbols which enter the coders in parallel is called a parallel 
block. NR of the n-symbols in a parallel block are independent sub
blocks each consisting of n-m information bits followed by m known 
bits. The remaining N (1-R) n-symbols in a parallel block are parity 
check symbols generated from the information n-symbols by an alge
hraic block coder operating on a field of 2n elements (that is, the coder 
operates on n-symbols rather than individual bits). Each n-symbol is 
made to enter its respective sequential coder serially, as a sequence 
of binary digits at vr-second intervals. 

A parallel block is thus a member of a block code with block length 
N and a 2n-symbol alphabet. The code's dimensionless rate is R, and 
the number of words in the code is 2nNR. 

The overall information rate of the system is 

R' = R(l - mln)lv bits per channel use. (3) 

Since each DMC is used once every r seconds, the overall information 
rate is NR'lr bits per second. A source producing information at this 
rate would determine which of the 2 nNR block code words would be 
generated in each nvr-second interval. 

For moderate-to-Iarge parallel and serial block lengths (greater 
than, say 50) the most eligible available block code would be a Reed-
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Solomon code, since the required alphabet size is generally large, and 
RS codes have the largest possible minimum distance for given rate 
and block length. The alphabet size must be a power of two and must 
exceed (N + 1). This imposes a constraint on n, 

n ~ Iog2 (N + 1). (4) 

Typically, m might be between 10 and 100, n might be 10 or 20 times 
m, and N might be between 10 and 1000. Forney16 has pointed out that 
if n = n'l (n' and I integers) and 2nl ~ N then a RS code of block 
length N on a field of 2n elements can be implemented more simply as 
I repetitions of a RS code of block length N on the subfield of 2n' ele
ments. Use of this smaller field for algebraic operations makes for 
simpler implementation of the RS coder and decoder. Figure 4 shows the 
structure of a super block. 

The Reed-Solomon coder may be implemented with a number of 
components proportional to N. Each of the N sequential coders may be 
realized as a convolutional coder, constructed from at most n shift 
register stages. Thus, the overall coder complexity is proportional to nN. 

2.2 The Decoder 
Not surprisingly, a decoder appropriate to the two-stage coding 

scheme just described consists of sequential and algebraic stages, as 
illustrated in Fig. 5. The first stage consists of N parallel sequential 
decoders which simultaneously and independently utilize the Fano 
sequential decoding algorithm to decode serial blocks emerging in 
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parallel from the N DMC's. This stage might be implemented by a 
time-sharing technique, in which a single logic unit is allocated to one 
decoder after another in turn. The second stage is an algebraic de
coder for the RS code. 

During the decoding of a super block, all N sequential decoders 
attempt to decode their respective serial blocks into the original input 
n-symbols. In general, some serial blocks require more computations, 
and therefore more computing time, than others. After all but some 
fixed number 8 (8 < N) of the N serial blocks have been sequentially 
decoded, the S sequential decoders still at work are halted, and then 
all sequential decoders are free to start work on the n-symbols of the 
following super block. 

Meanwhile the present super block is passed on to the RS decoder 
in the form of a parallel block consisting of N - S sequentially de
coded n-symbols and S undecoded n-symbols which are treated as 
erasures. If the RS code's minimum distance is d, and no more than 
T of the sequentially decoded n-symbols contain errors, where 

2T + S = d - 1, (5) 

then the RS decoder is guaranteed to decode the parallel block cor
rectly, using a fixed number of decoding computations that varies 
roughly as N log N and as T log N.6.16 In this way, those S serial 
blocks which normally would be sequentially decoded last are es
sentially all corrected by the algebraic decoder as soon as the first 
(N - S) serial blocks have been sequentially decoded. Thus the 
algebraic decoder's assistance should tend to curtail the very long 
decoding times which occasional serial blocks may require and should 
thereby reduce the chances for overflow of the sequential decoders' 
buffers. 

From relation (2), governing the minimum distance of an RS code, 

2T + S = (1 - R)N; (6) 

the numbers of correctable errors and erasures are proportional to N, 
for fixed rate R. 

A hybrid scheme closely related to the one described here was de
scribed and analyzed in Ref. 19. In that scheme the sequence of chan
nel input symbols is not divided into independently coded serial 
blocks. Instead, once the sequential decoding algorithm advances a 
certain fixed number of branches beyond a given n-symbol, that n
symbol is considered irrevocably decoded, and thus is presented to the 
block decoder as a nonerased symbol in a parallel block. As in the 
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scheme described here, n-symbols which would require excessive 
numbers of sequential decoding computations may be decoded by 
the Reed-Solomon decoder. The asymptotic bounds on computation 
statistics are essentially similar for both hybrid schemes. The scheme 
described here appears somewhat more practical to implement. Ref
erence 19 also describes a simulation of the earlier scheme in which 
there are ten parallel sequential coding-decoding systems, and the 
block code word rate is either 8/10 or 9/10. The outer stage was in
tended to correct erasures only. The tail of the observed distribution 
of sequential decoding computation behaved as predicted by the upper 
bound of Section 3.2; the frequency of very large peaks of computa
tion was considerably reduced. 

III. BOUNDS ON PERFORMANCE AND COMPLEXITY 

In deriving bounds on the probability of error, distribution of com
putation, average computation, and probability of buffer overflow, 
we assume arbitrarily that the RS decoder corrects T = N8/2 - 1 
errors and S = N8 - 1 erasures per parallel block, where 0 < ,8 < 112. 
Half the RS code's minimum distance is then used to correct erasures 
and half to correct errors. The value of 8 is then fixed by (6); 

o=l-R+~>l-R 
2 2N = 2 ' 

(7) 
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and S is essentially independent of the block length N for large values 
of N. 

Arbitrarily set m/n = S. Then the overall rate is 

R' = rR(l - m/n) = r(l - 0)(1 - 20 + ~) > r(l - 0)(1 - 20). 

(8) 

It will turn out that the performance of the hybrid scheme depends 
on the distribution of computation and on the error probability for 
the Fano sequential decoding algorithm. Previously known upper 
bounds on these statistics are summarized in Appendix A. The bounds 
are on averages over ensembles of tree codes. Following an argument 
of Shannon, one can show that most tree codes picked at random 
satisfy all the bounds at least to within a small constant factor.l For 
example, suppose the ensemble averages of error probability and mean 
computation per decoded bit are upper bounded respectively by X 
and Y. Then at least 9/10 of all possible tree codes have error prob
abilities less than lOX, at least 9/10 have mean computations less 
than lOY, and therefore at least 8/10 satisfy both of these bounds. 

The upper bounds on the error probability20 and on the distribu
tion of computation23 for rates r exceeding Rcomp are known to apply 
also to the ensemble of convolutional codes, for which the coder's 
complexity is proportional to n. This extension to convolutional codes 
has not been analytically established for the distribution of computa
tion for rates below Rcomp;21. 22 however, it seems a reasonable con
jecture that the degradation in performance due to the implementa
tion of a tree code by a convolutional code is small for all rates. 

3.1 Error Probability 

From a result of Yudkin, it is inferred in Appendix A that the prob
ability Pu (e) that a sequential decoder decodes a serial block incor
rectly is bounded by a negative exponential function of m, the number 
of redundant coder input bits in each n-symboPO With m = nS, 

puCe) < p~(e) = nAe exp [-novE,,(r)] (9) 

where Ae is a constant and Eu (r) is a function of the tree code rate r 
and of the transition probabilities of the DMC. The exponent Eu (r) 
is positive for any rate less than the capacity of the DMC. It is 
sketched for a typical DMC in Fig. 6. The probability of error p(e) 
for the hybrid decoder is the probability that NS/2 or more undetected 
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Fig. 6 - Sequential code error exponent Eu(r) for a typical DMC. 

serial block errors occur within a parallel block. Thus 

(10) 

The asymptotically tight Chernoff bound for the distribution of 
sums of binomially distributed random variables may be applied to 
the right-hand side of (10) .10 

pee) ~ exp (-N {Te[0/2, puCe)] - H( 0/2)}) 

where 

o ~ puCe) < 0/2 (11) 

Te(x, y) = -x en y - (1 - x) en (1 - y) 

H(x) = -x en x - (1 - x) fn (1 - x). 

It can readily be shown that for y < x < 112, 

Te(x, y) - H(x) > O. 

Thus the bound decreases exponentially with N. Notice that 

a 
8pu(e) Te[0/2, puCe)] < 0 puCe) < 0/2. 

(12) 

(13) 

Thus, the exponent in (11) is monotone decreasing in pu(e), provided 
that puCe) < 0/2; therefore pee) can be further upper bounded by 
substituting p~(e) for puCe) in (11) 

pee) < exp (-N{Te[0/2, p~(e)] - H(0/2)}) p~(e) < 0/2. (14) 

The exponent in (14) will be positive if p~(e) < 0/2 < !. By virtue of 
(9), this will be true if 

1 
n > ovE,Jr) en (2nA e/o). (15) 
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Thus p (e) decreases exponentially with N if (15) is satisfied. But 

1 - R 3 
0=-2-+2N; (7) 

o > 0 if R < 1 

and 

Eu(r) > 0 if r < channel capacity. 

Thus, values of r, 0, and n can be found for which the constraint (15) 
is satisfied, while the overall rate, given by (8), is arbitrarily close 
to the channel capacity; that is, 0 arbitrarily close to zero and r 
arbitrarily close to capacity. 

The overall block length is Se = nN. The serial block length n is 
constrained by (15) and by the constraint on the alphabet size of 
an RS code: 

n ~ log2 (N + 1). (4) 

Thus for fixed overall rate R', and very large values of N, n behaves 
essentially as log2 N, or at most as log2 B •. This implies that for a fixed 
rate less than the channel capacity, the probability of error is bounded by 
a quantity that asymptotically decreases almost exponentially (approxi
mately as B./log2 B8 ) with overall block length 8 •. Notice also that the 
quantity B. is proportional to the complexity of the hybrid coder, if 
the tree codes are convolutional codes. As mentioned earlier, it seems a 
reasonable assumption that the bounds on error probability and distri
bution of computation apply to convolutional codes of any rate. 

The choice of T = N 0/2 - 1 was arbitrary but convenient. For 
practical systems where N is less than, say 50, it would undoubtedly 
be more efficient to make m large enough that p~(e) is negligible and to 
use the RS decoder to correct only erasures, that is, set T = 0 and 
8 = N(l - R). 

3.2 Distribution of Computation 

A sequential decoding computation is done every time a tree branch 
is examined and compared to a received branch. Let c be the total 
number of computations to decode a given serial block, that are done 
by a sequential decoder operating alone, without aid or relief from 
an algebraic decoder. Appendix A uses the results of References 19, 
21, 22 and 23 to show that the probability distribution function of 
c is bounded by a function which asymptotically is a pareto distribu-
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tion. That is, 

(16) 

where ex' = max {I, a}, Ac is a constant, and a is the pareto exponent, 
a function of tree code rate r and of the channel statistics. The pareto 
exponent is positive for all rates less than channel capacity, and is 
greater than unity for all rcLtes less than Rcomp , which is less than channel 
capacity. The pareto exponent is sketched as a function of r for a 
typical DMC in Fig. 7. Note that the average of c is finite if and only 
if a is greater than one. It is clear that the smaller a is, the slower is the 
asymptotic decrease in pr (c ~ x), and hence the greater is the varia
bility of the random variable c. The bound on pr (c ~ X) will be used to 
upper bound the distribution of the number of computations done by 
the hybrid decoder in decoding a super block. 

For analytical convenience it will be assumed that sequential de
coding of any serial block within a super block does not start until: 

(i) The preceding super block has been decoded. 
(ii) The entire serial block has been received and stored in the 

sequential decoder's buffer. 

These conditions ensure that successive super blocks are decoded 
independently, and that during the decoding of any super block there 
is no idle time spent by the sequential decoders waiting for new 
branches to arrive. These assumptions can only delay the operation 
of the sequential decoders in our model, and hence lead to a conserva
tive estimate of the buffer overflow probability. 

Decoding of a super block is essentially completed when all but 
S of its N serial blocks have been sequentially decoded. The number 
of decoding operations then done by the RS decoder is bounded by 
a fixed quantity, and will be neglected. Accordingly we define C, the 

a 

Rcomp Co 

Rate r (BITS PER CHANNEL USE) 

Fig. 7 - Pareto exponent a for a typical DMC. 
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number of computation units to decode the super block to be the 
(8 + 1) th largest of {Cl, C2, ••• , cn}, where Cj is the number of com
putations that the jth sequential decoder, acting alone, would require 
to decode the jth serial block. Then, no more than 0 computations 
are done by anyone sequential decoder during the decoding of the 
super block. One computation unit represents one or more (up to N) 
sequential decoding computations done simultaneously by the corre
sponding number of sequential decoders. 

The number of computation units 0 exceeds X if (8 + 1) or more 
of {Cl,C2, .•. ,cN}exceedX.From (16), 

pr (Cj ~ X) ~ p:r; = [nalaAc/Xr. (17) 

Then analogous to (14) we have, for S + 1 = N a, 

pr (0 ~ X) ~ exp {-N[Tc(o, p:r;) - H(o)]} p:r; < o. (18) 

A cruder but simpler bound is obtained by bounding To(a, P:xJ by 
-a In P{J}. Thus for P{J} < a 

pr (0 > X) ~ exp [NH(o)]p~~ (19) 

where 

Al = exp [H(o)/ao]na'/ a Ac . 

From t.he definitions of Al , and H(o), and expression (17) for pr, it is 
easy to show that the condition Px < 0 is certainly t.rue if X > Al . 
Also, pr (0 ~ X), being a probability, is certainly bounded by unity. 
Thus 

pr (0 ~ X) ~ {[Al/X]N5a X > Al . 

1 X ~ Al 
(20) 

Notice that the right-hand side of (20) asymptotically has the 
form of a pareto probability distribution, but that the effective pareto 
exponent is Na times the pareto exponent for pure sequential de
coding. Now, 

1 - R 3 
0= -2- +2N; (7) 

o > 0 if 0 < R < 1 

and 

a> 0 if r < channel capacity. 
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As the overall rate approaches channel capacity, a and 0 both ap
proach zero and the "break point" Al grows very large [AI also in
creases as the 1/ ath power of log2 (N + 1) for very large values of N]. 
However, for arbitrarily small but fixed values of a and 0, the RS code's 
block length N may be chosen sufficiently large that the effective pareto 
exponent N oa can be arbitrarily large and hence pr (C ~ X) arbitrarily 
small, for any X greater than Al . 

For a fixed value of N, the upper bound (20) is interesting only for 
X » Al or for values of a and 0 large enough that Noa» 1. For values 
of X for which (20) is not tight, the probability pr (C ~ X) is upper 
bounded by the probability that the largest of {CI , C2 , ... , CN} exceeds 
X; that is, it is bounded by N pr (C ~ X) where pr (C ~ X) is bounded 
in (16). 

3.3 Average Computation 

Presumably, the average number of computation units done per 
super block is bounded if N oa > 1, even if 0 < a ~ 1. This is true, as 
will now be shown. The average of C is written 

00 

(C)av = L Xpr (C = X) 
X=I 

00 

= L X[pr (C ~ X) - pr (C ~ X + 1)] (21) 
X=I 

00 

= L pr (C ~ X). 
X=I 

Then by (20) 

00 

(C)av ~ Al + L (A I/X)N5 " . 
X=A 1 +I 

The sum can be bounded by an integral from Al to infinity, since the 
integrand is positive and monotone decreasing. 

(C)av ~ Al + foo (A I /Xt 5
" dX 

Al 

= NoaAI < 0:> if Noa> 1 
Noa - 1 

No~: 1 [exp [H(o)/ao]n"""A c]' 

(22) 

Thus the average number of computation units per super block is 
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bounded if the effective pareto exponent N oa exceeds unity for any 
overall rate that is arbitrarily close to capacity, if N is chosen sufficiently 
large. 

The bound on (C)av varies with n as nat/a. Note that the number of 
computation units C is a bound on the number of computations done by 
each of the N sequential decoders, and that the number of information 
bits decoded by each sequentjal decoder per super block is no more than 
n. Thus the average number of sequential decoding computations per 
information bit is bounded by 

Noa> 1 (23) 

where 

Noa 
A2 = Noa _ 1 [exp [H(o)/ao]Ac]. 

Since the block code is Reed-Solomon, n is constrained by 
n ~ log2 (N + 1). The overall block length (reflecting the complexity 
of the hybrid coder) is nN. Thus the minimum possible value of n 
behaves as the logarithm of the overall block length, and the average 
computation per bit increases as the (a' / a - l)th power of the loga
rithm of overall block length. Furthermore, if l' < Rcomp then a' = a > 1, 
and the average computation per bit is independent of the overall block 
length. 

For rates above Rcomp , the exponent a' / a increases rapidly with rate, 
approaching infinity at channel capacity. Thus the bound on the 
average computation, although finite, increases very rapidly with rate 
above Rcomp • The average computation observed in the simulation 
reported in Reference 19 did indeed increase very rapidly with rate 
above Rcomp • 

3.4 Probability of Buffer Overflow 

A new super block arrives to be decoded once every nVr seconds. 
Each of the N sequential decoders is provided with a buffer which 
is assumed to store the latest Bv received output symbols from its 
respective DMC. Since we have assumed that all symbols comprising 
a super block must have been received before any decoding of the 
super block can start, the total storage must be large enough to con
tain one or more super blocks, that is, B must exceed n. Whole or 
partial super blocks stored but not yet decoded form a queue. 

If the queue exceeds Bin super blocks (Bv channel output sym-
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boIs per DMC) buffer overflow occurs. We wish to upper bound 
PL (B), the probability that the buffer overflows before the first L 
consecutive super blocks are decoded, given that the decoder starts 
with initially empty buffers. 

Let qi be the number of undecoded super blocks in the queue just 
after i consecutive super blocks have been decoded. Let Xi be the 
number of new super blocks which arrive to join the queue during 
the decoding of the ith super block. Because of our convention that 
decoding of any super block does not begin until the entire block 
has joined the queue, the number Xi does not include the ith super 
block itself or later super blocks. The random variables Xi and qi 
are not necessarily integers, since a fraction lin of a super block 
arrives to be decoded every VT seconds. 

When decoding of the first super block starts, the queue consists 
of only the first super block. Just after the first super block is decoded, 
the queue is thus diminished by one but has been increased by X 1. 

Thus 

ql = 1 - 1 + Xl = Xl . 

Just after the second super block is decoded, 

{
q I-I + X 2 if ql ~ 1 

q2 = 

X2 if ql < 1. 

This is upper bounded by ql + X 2 for any ql ~ O. Therefore 

q2 ~ Xl + X 2 . 

Similarly, 

{
q2 - 1 + X3 if q2 ~ 1 

q3 = 
X3 if q2 < 1 

~ Xl + X 2 + X3 for any q2 ~ O. 

By induction then, 

i 

qi~ LXI' 
1=1 

(24) 

(25) 

(26) 

(27) 

(28) 

This upper bound increases monotonically with i. It is clearly a crude 
approximation for large i. However it will turn out to yield a theoret
ically interesting upper bound on PL (B), at least for values of L 
which are small relative to B. 
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PL(B) = pr [(ql + 1 ~ B/n) or (q2 + 1 ~ B/n) or 

(qL + 1 ~ B/n)] 

= pr [max {ql , q2 , ... , qd ~ (B - n)/n] 

~ pr [tx,;;; (B - n)/n} 

This inequality follows from (28) and the fact that all X e ~ o. 

711 

(29) 

Suppose each sequential decoder is capable of doing up to JL computa
tions in each vr-second interval, during which time a new branch arrives 
in each buffer. The parameter JL must be several times greater than the 
average number of computation units that the hybrid decoder does per 
information bit, if the decoder is to keep up with the incoming data. 
The hybrid decoder is "busy" (doing exactly JL computation units every 
vr-second interval) until it is about to start decoding a super block 
which has not yet completely entered the buffer. From that instant it 
is idle until the entire super block has entered the buffer, at which time 
it becomes busy again. Thus, a busy interval can only be initiated just 
after the arrival of some super block, and can end only upon completion 
of the decoding of some subsequent super block. Suppose that during 
a partiCUlar busy interval, the lith through (ll + 17)th super blocks are 
decoded (1I, 17 integers; L ~ 1I ~ 1, 17 ~ 0). Let C I be the number of 
computation units to decode the lth super block. Thus L~~~ C 4 is the 
total number of computation units done during the busy period. The 
first new super block to arrive during the busy interval arrives after 17 
computation units have been done; thereafter, super blocks arrive every 
JLn computation units. Thus (1/ I.m) L~~~ C I super blocks arrive during 
the entire busy interval. Successive busy intervals do not overlap, and 
therefore until the Lth super block is decoded, 

L L 

L Xl ~ (l/JLn) L Cl • (30) 
1~1 1=1 

Thus, from (29), 

P L(B) ~ pr [t C I ~ JL(B - n)]. 
1=1 

(31) 

Since coding and decoding is independent from one super block to the 
next, the random variables {C I , .e = 1, 2, ... , L} are statistically 
independent, and have a common cumulative probability distribution 
function which is bounded by the asymptotically-pareto distribution 
function (20). 
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The probability that overflow occurs before the first block is de
coded is 

[ 
Al ]Naa 

Pl(B) ~ pr [C1 ~ (B - n)] < }.t(B _ n) . (32) 

In appendix B an upper bound is obtained for the probability distri
bution of a sum of L statistically independent pareto-distributed ran
dom variables.* If the distribution of each random variable is upper 
bounded by pr (C i ~ X) ~ (A/X)8, S > 1 then it is shown that 

pr [t, C, ;;; Y] < DL(Ac/y)" (33) 

where D = 1 + eGo This bound is valid for values of L which are small 
relative to y; specifically, for 

(33a) 

Applying inequality (33) to (31), we obtain the following bound 
for the probability of buffer overflow before L super blocks are 
decoded: 

[
A ]NOa 

PL(B) < DL }.teB ~ n) , Noa> 1 (34) 

provided that 

_ LAI fn {[}.teB - n)]NOa} in {}.teB - n)} < e- 1 • (34a) 
/.L(B - n) A~oa L Al 

Condition (34a) will be satisfied for values of L which are small 
relative to the product of decoder speed and available buffer size 
p.(B-n). Inequality (34) then indicates that PL(B) tends to increase 
linearly toward one with L and to decrease asymptotically as the 
negative (Noc<) th power of p. (B-n) . 

The techniques used to bound PL (B) were too crude to yield a useful 
result for small values of p. (B-n) or relatively large values of L; if 
condition (34a) is not satisfied, PL (B) can only be estimated by heu
ristic reasoning. The waiting line of undecoded super blocks can 
increase during the decoding of a given super block only if C, the 
number of computation units to decode the super block exceeds the 
number of computation units the decoder can do in nVr seconds, that is, 

* Jelinek has given a more easily derived upper bound, which in its dependence 
on L, is at least as tight as our bound for 1 ~ s ~ 2.30 
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if C > np... The probability that the queue increases is bounded by 
(20) with X = np... 

pr (0 > nJ.t) < (A l/nJ.t)Naa . 

If the decoder's speed factor p.. is made large enough so that np.. > 
(C)av where (C)uv is bounded by (22), then the probability that the 
queue increases during the decoding of any super block approaches 
zero as N approaches infinity. Then the queue would be expected 
to remain close to zero most of the time, and consequently the proba
bility that the buffer overflows during the decoding of a given super 
block would be approximated by pdB), the probability that the first 
super block causes buffer overflow. For this reason, we use Pl (B) , 
bounded by (32) as a measure of buffer overflow probability. 

It was shown in Section (3.3) that if Noa > 1, the mean computa
tion per super block is bounded by 

(22) 

A hybrid decoder which can perform at least <C)uv computation units 
in a nVT-second interval can, on the average, keep up with the in
coming stream of super blocks arriving at nVT-second intervals. A 
necessary condition for np.. > <C)uv is 

(35) 

where p..o is any number greater than Noa/ (Noa - 1). 
Under condition (35) Pl (B), given by (32), is bounded by 

(36) 

A fairly realistic measure of the cost of the hybrid scheme is the 
total amount of buffer storage utilized. If each of the N individual 
sequential decoders has a buffer capable of storing Bv channel output 
symbols, the total number of symbols which can be stored is 

St = BNv. (37) 

Suppose we set 

B = n(l + e/J.to). (38) 

Then 
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PICB) < exp [-Noa] 

= exp [- St oa/Bv] 

[ -St oa 'J 
= exp vn(1 + e/ fJo) • (39) 

For very large values of N (and therefore of St), the necessary 
value of serial block length n increases no faster than log2St to fulfill 
the constraints (4), (37) and (38). Consequently, the buffer overflow 
probability PI (B) is bounded by a quantity that asymptotically 
decreases almost exponentially with the total decoder storage St (that 
is, as St/log2 St). Furthermore, the exponent in (39) is positive pro
vided that ,8 > 0 and a > O. These conditions may be met for any 
overall rate R' which is less than channel capacity if the tree code 
rate r is less than channel capacity, and 0 is small enough so that 
condition (8) is fulfilled. The derivation of this result suggested that 
best use would be made of a large but fixed amount of buffer storage 
if the number of parallel sequential coding-decoding systems is as 
large as possible, while the amount of storage allocated to each is a 
relatively small fixed multiple of the serial block length n. 

[v. A NUMERICAL EXAMPLE 

The upper bounds of the previous section are generally useful only 
if one is interested in asymptotic performance. Calculation of per
formance parameters for an implementable system should be based 
on the results of simulations. In this section we illustrate the estima
tion of performance parameters, based on a simulation of a sequen
tial decoder. 

Reference 25 describes the computer simulation of a Fano algorithm 
sequential decoder which decodes convolutionally coded binary anti
podal signals received from a quantized phase-coherent white gaus
sian noise channel. For a convolutional code rate r = 1/7 bits per 
channel use, a signal-to-noise ratio of -6.5 dB, and an 8-level channel 
output quantization scheme, the pareto exponent '0: was very close to 
unity, that is, Rcomp was close to 1/7. Other parameters are: 

(i) serial block length n = 360 branches 
(ii) number of redundant branches per serial block m = 24 
(iii) convolutional code constraint length = 24 branches. 

The net information rate of this system was then 

! 360 - 24 = 0 133 bits per channel use. 
7 360 . 
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Assume the following RS code parameters 

(i) Block length N = 31 = 25 
- 1. 

(ii) Alphabet size = 32 = 25
, so that each super block is a se

quence of 72 RS code words. 
(iii) Rate R = 26/31, so that 5 serial blocks out of 31 are check 

symbols. 
(iv) The RS decoder is designed to correct no errors and up to 5 

erasures per RS code word. 

The RS decoder would be easy to implement. A 155-bit register is 
required to store a RS code word consisting of 31 32-ary symbols. In 
addition, circuitry must be provided to solve 5 parity check equations 
to find the values of up to 5 erased 32-ary symbols. Forney has de
scribed efficient techniques for finding values of erasures.16 The number 
of RS decoding operations is on the order of the square of the number 
of erasures which can be corrected. 

Reference 25 shows empirical probability distribution functions for 
the total number of computations per serial block as observed in the 
simulation. For example, for the - 6.5 dB channel, the probability that 
c, the number of computations per serial block exceeds 36,000 is approxi
mately 10-2

• Thus the probability pr (C ~ 36,000) that the number of 
computation units to decode a super block exceeds 36,000 equals the 
probability that 6 or more of the 31 serial blocks require more than 
36,000 computations. This probability is obtained from tables (S. 
Weintraub, Tables of the Cumulative Binomial Probability Distribution 
for Small Values of p, London: Collier-Macmillan, 1963). 

pr (C ~ 36,000) = I: [3?Jpi(1 - p)36-i = 6 X 10-7 (p = 10-2
). 

i=6 'L 

Now assume that each sequential decoder is fast enough to do p. = 
50 computations between received branches. Then, up to 360ft = 18,000 
computations can be done by each decoder in the time taken for one 
new serial block to enter the buffer of each; hence if each sequential 
decoder has a buffer with a storage capacity of three serial blocks, 
the buffer storage will overflow (starting from the initially empty 
state and assuming that decoding of a block starts after it is within 
the buffer) if the first super block requires more than 2 X 18,000 = 
36,000 computation units. Then, assuming overflows are rare enough 
to be nearly statistically independent, the buffer overflow probability 
per super block would be about 6 X 10-7

• Each decoder's buffer stores 
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3 X 360 = 1080 received branches, and the total number of branches 
stored is thus 1080 N = 33,480. The total number of bits (one per 
branch) per super block is 360 X 31 = 11,160. 

Takingno = m = 24, v = 7, Eu(r) 10g2 e ~ R COIDP ~ 1/7, and assuming 
that A" ~ 1 and that the upper bound (9) holds for convolutional codes, 
we have a rough upper bound for p.(e), the probability of undetected 
error per serial block. 

puCe) :s 360 X 2-24 = 2.23 X 10-5
• 

(In the simulation, none of 1331 decoded blocks contained undetected 
errors.) 

The probability of an undetected error for a super block is the 
probability that one or more of the 31 serial blocks has undetected 
errors; this probability is upper-bounded by 31 X 2.23 X 10-5 = 
6.9 X 10-4 • This probability may be considered too high. It may be 
decreased about 3 orders of magnitude by increasing the value of 
m from 24 to 34. The resulting increase in the serial block length 
from 360 to 370 should cause negligible effect on the distribution of 
computation per serial block. 

The net information rate of this system is rR (n-m)/n = 0.109 bits 
per channel use. It can be shown that the required signal-to-noise 
ratio per information bit is about 4.7 dB above Shannon's theoretical 
minimum for the infinite bandwidth white gaussian noise channel. 

By such simple calculations based on extensive simulations, one 
can optimize the parameters of a hybrid scheme to meet given cost 
and performance criteria. 

v. CONCLUSIONS 

In the hybrid decoding scheme the number of decoding computation 
units per super block is a random variable, reflecting the probabilistic 
character of the sequential decoders' operations. However the pareto 
exponent is proportional to N; the frequency of large peaks of compu
tational effort is reduced by algebraic decoding of the occasional serial 
blocks which otherwise would require excessive sequential decoding 
computation. 

It was shown that for any overall information rate that is strictly 
less than the channel capacity, a finite minimum value of parallel block 
length N can be specified such that the average number of sequential 
decoding computations per bit is bounded by a quantity varying as 
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ncx1/cx-r, where a is the original pareto exponent for the sequential 
decoding components and a' = max {a, I}. The number of algebraic 
decoding computations per bit is a fixed number which is almost inde
pendent of parallel or serial block length.6 

It was also shown that for a proper choice of parameters, the error 
probability decreases nearly expooentially with the overall block length, 
and (heuristically) that the probability of buffer overflow asymptotically 
decreases almost exponentially with the total amount of storage at the 
decoder. These results can hold for any overall information rate which is 
strictly less than the channel capacity. 

A rigorous upper bound was also obtained on PL(B), the probability 
that the buffer overflows before L super blocks are decoded. The bound 
is valid for /.L(B - n) » L, and behaves as L[Ale/ /.LB]Nacx for B »n and 
fixed effective pareto exponent N oa. 

The hybrid scheme shares the multistage feature with the schemes 
of Ziv, Pinsker, and Forney.13-16 In Ziv's scheme, there is an in
termediate stage in which errors made by the inner block coding 
stage are detected and treated as erasures. After a scrambling-de
scrambling procedure these erasures are corrected by an outer block 
coding-decoding stage. Forney's scheme has two stages; a large alpha
bet RS code outer stage corrects errors and/or erasures made by an 
arbitrary inner block coding-decoding stage. Pinsker's scheme utilizes 
sequential coding-decoding for the outer stage. The principle is that if 
the inner stage has a sufficiently low error probability, the rate Rcomp 

seen by the outer stage is little different from channel capacity. (This 
is, in a sense, the inverse of our hybrid scheme.) 

In the hybrid scheme described in this paper, the inner and outer 
stages embody sequential (pro ba bilistic) coding-decoding and alge
braic coding-decoding respectively. Sequential coding and decoding is 
practical to implement and is efficient for any given DMC, which 
might be created from a physical communication channel by effi
cient modulation, demodulation, and quantization. 26 , 27 The number of 
computation units per super block is a random variable, reflecting 
the probabilistic nature of sequential decoding and of short-term 
channel behavior. However, the variability of the sequential decoding 
computational load is eased substantially by the outer (algebraic) 
stage. Thus, in contrast with previous multistage schemes, the outer 
decoding stage assists the inner decoding stage, as well as correcting 
its errors. 

Modifications and generalizations of the hybrid scheme are pos-
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sible. A related scheme, in which channel symbols are not organized 
into independently coded blocks, was studied in Reference 19. An
other modified hybrid scheme, falling into the general class of con
catenated schemes considered by Forney, is implemented by imposing 
an upper limit Xo on the number of computations any sequential 
decoder can do on a serial block.16 Assuming the speed factor p. is large 
enough that Xo computation units may be done in the time taken 
to receive one super block, no queue of undecoded super blocks can 
build up, and the buffer overflow problem is eliminated. Instead, any 
super blocks requiring more than Xo computation units are passed on 
to the user as erasures. The probability of erasure is then bounded 
by the right-hand side of (19) with X = Xo > Al , that is, it de
creases exponentially with parallel block length N. 

The multistage approach embodied in the hybrid scheme would 
also appear to be useful for real channels with memory, where errors 
or severe channel disturbances occur in bursts, usually separated by 
fairly long intervals with only scattered random errors. If the N 
serial blocks comprising a super block are transmitted consecutively, 
a burst occurring during the transmission of one or more consecutive 
serial blocks would likely render them nearly undecodable by se
quential decoding. Then if the burst did not extend over more than S 
serial blocks, an outer Reed-Solomon or other burst-correcting stage 
could correct the resulting erasures. The application of hybrid or 
other multistage coding schemes to real channels with memory is an 
interesting area for future investigation. 

Any "hybrid" or "concatenated" coding-decoding scheme, incor
porating a number of separate parallel coders and decoders would 
likely be orders of magnitude more complex than present day coding
decoding schemes for discrete memoryless channels. However the ad
ditional complexity may be a tolerable price to pay for the benefits 
of increased reliability and more efficient utilization of the commu
nication channel. It is also well to remember that highly complex 
digital systems are becoming increasingly feasible as a result of rapid 
progress in integrated circuit technology. 
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APPENDIX A 

Bounds on Performance for Sequential Decoding 

Various upper bounds on the probability of error and the distribu
tion of computation for the Fano sequential decoding algorithm have 
been given in References 20, 21, 22, and 23. All these bounds were 
obtained by random coding arguments, that is, by averaging over an 
ensemble of tree codes with a given probability distribution. The 
results apply to an arbitrary DMC with a P-symbol input alphabet 
and Q-symbol output alphabet, and a transition probability matrix 
{qij}. We shall summarize some of these previous bounds and then 
shall relate them to the performance of the hybrid scheme. 

Using Gallager's notation, we define the function 

where 

{Pi} i = 1, 2, ... , P is the probability distribution on the channel 
input symbols which maximizes Eo(p).3 

It can be shown that Eo (p) is a nondecreasing function of p, that 

and that 

lim 1: Eo(p) = Co 
p-o p 

where Co is the capacity of the DMC in bits per channel use. 
Any transmitted serial block is a sequence of nv channel input 

symbols which label the corresponding correct path through the 
code tree. A path which diverges from the correct path is termed an 
incorrect path. A sequential decoder makes an undetected error at 
some node lying on the correct path, if the pattern of channel symbol 
transitions causes the decoder to reach the end of the serial block 
while on some incorrect path stemming from that node. One or more 
branches following the node will then have been decoded incorrectly. 
Of the n coder input bits which generate a serial block, m (the final 
m) are known to the sequential decoder. Hence a necessary condition 
for an undetected error to occur in decoding any serial block is that 
an incorrect path exists whose corresponding sequence of coder input 
digits matches that of the correct path in m or more places, and 
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which the decoding algorithm can follow past those m places. The 
probability Ph (e) that this necessary condition is fulfilled for say 
the hth node lying on the correct path has been upper-bounded by 
Yudkin, by random coding arguments.20 

(40) 

where Ae is a constant and EuCr) > 0 for 0 ~ r < Co . The exponent 
Eu(r) is sketched for a typical DMC in Fig. 6. It is considerably greater 
than the unexpurgated error exponent for block codes ~with the same 
rate.3 In fact, Eu(r) = Eo(l) for rates below r = Eo (1) log2 e bits per 
channel use. This result for convolutional codes was also shown by 
Viterbi.29 The probability of error puCe) for a serial block is upper 
bounded by the probability that the necessary condition for undetected 
error occurs for one or more of the n nodes on the correct path. By 
the union bound, 

n 

puCe) ~ L Ph(e) ~ nA. exp [ - mvEuCr)]. (41) 
h=l 

Inequality (9) follows from this result with no substituted for m. 
Consider tree codes of rate r bits per channel input, where the tree 

extends infinitely to the right. The incorrect subset of the hth node 
lying on the correct path is defined to consist of that node plus the 
infinite set of nodes lying on incorrect paths which stem from the hth 
node. Let "fh be the total number of computations (examinations of 
branches) ever done on nodes within this incorrect ubset. Then "III iss 
a random variable over the ensemble of tree codes and channel transi
tion sequences. The 8th (8 > 0) moment of "Ih is bounded by a fixed 
quantity A: for rates r such that 

r < (EoC8)/8) log2 e. (42) 

The quantity A: is a function of 8, T, {Pi} and {qij}. This was established 
for integral values of 8 by Savage, for all 8 ~ 1 by Yudkin, and for 
o < 8 ~ 1 by Falconer.19 ,21-23 In particular, note that the mean of "Ih 

is only bounded for r < Eo(l) log2 e. The quantity Eo(l) for a DMC is 
also denoted by Rcomp , that rate below which the mean computation is 
finite. This bound on ('Y~)av leads to an upper bound on the probability 
distribution pr ('Yh ~ x) by use of the Chebyshev inequality.21 

( > ) < < 8) -, pr 'Yh = x = 'Yh avX 8 > 0 (43) 
r < CEo(8)/8) log2 e. 
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The pareto exponent a is defined parametrically by 

(44) 

Then for any € > 0 

(45) 

The right-hand side of (45) is proportional to a pareto probability 
distribution. The positive quantity € may be made arbitrarily small 
by setting Ac large enough. Henceforth, we shall ignore € as trivial 
since it would not affect our asymptotic results. Thus, we write 

(46) 

and 

(47) 

where 

Eo(a)/a = r/log2 e, 

where the rate r is in bits per second. The pareto exponent for a 
typical DMC is shown in Fig. 7. The exponent on the right-hand 
side of (47) agrees asymptotically with that of a lower bound on the 
distribution of sequential decoding computation derived by Jacobs 
and Berlekamp.24 

Let us now relate this upper bound on the distribution of computa
tion for the Fano sequential decoding algorithm to the sequential 
decoding of serial blocks in the hybrid system. Only the portion of 
the code tree to a depth n branches from the origin is used to code 
and decode a serial block. Furthermore the last m information digits 
are known to the sequential decoder. Truncating a tree at a depth of 
n branches and making known the final m information letters can 
only reduce the number of branches a sequential decoder must exam
ine before completing all computations in the first n incorrect subsets 
of an infinitely deep tree. Furthermore, it can be shown that for 
the Fana sequential decoding algorithm, allowing the decoder to 
search branches beyond depth n cannot reduce the number of com
putations ultimately done within a depth of n branches. Therefore, 
if c is the total number of computations to decode a serial block, 

(48) 
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and 

(a > 0). (49) 

The right-hand side of (49) may be bounded with well-known in
equalities.28 

Since 

o < a < co, for all h, 

we have 

or 

( a) a'Aa c av < n e 

where 

a' = max (1, a). 

Then pr (c ~ x) is bounded using Chebyshev's inequality 

pr (c ~ x) ~ (ca)avx- a ~ n a' (Ae/x) a 

where a is given parametrically by r = [Eo(a)/a] log2 e. 

APPENDIX B 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

Probability Distribution of a Sum of Independent Pareto-Distributed 
Random Variables 

It is required to upper-bound 

pr [t c, ~ yJ ' _-I 

where the {Ct } are a set of independent positive integer-valued ran
dom variables whose distribution is asymptotically bounded by a 
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pareto distribution function 

pr [C, ~ x] ~ {(A/Xr , x ~ A 
1, 0 < x < A 

(56) 

where s is greater than one. The following assumption will be found 
necessary 

r1 
(A/y) en (yB / A "L) en (y/ A) < ~L' (57) 

This assumption is tantamount to requiring that y be large relative 
to L. 

We shall split the required probability into two parts, one of 
which is bounded by a union argument, and the other by use of a 
Chernoff technique (Reference 12, p. 97). That is, we write 

where 

But 

pr [t Ci ~ yJ = PI + P2 
0=1 

p, = pr [t, C, ;,; y; one or more of {Cd;,; yJ 
P2 = pr [ t c, ;,; y; all { c, I < y 1 

Pl < pr [one or more of {C.} ~ y] 
L 

~ Lpr(C i ~ y) 
i=1 

(58) 

(59) 

by the union probability bound. So, substituting (56) into (59), we get 

PI < L(A/yr y > A > 1 

s > 1. 
(60) 

The probability P2 may be bounded using the Chernoff technique, 
since each random variable Ci, being upper-bounded by y, has a finite 
moment generating function. To bound P2 we first define 

Zi = 1, 2, ... , y; 
(61) 

i = 1,2, ... ,L 
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and 

Then by definition, 

{
I x ~ 0 

<p(x) = 0 
x<o 

(62) 

p, ~ .~, f" J;, f" ...• ~, f'L q{ t, z, - Y 1 (63) 

We upper-bound the step function <I>(x) by the exponential function 
exp(Ax) , where>.. is an arbitrary positive quantity. We shall later 
choose a convenient value for >... The right-hand side of (63) can 
now be bounded by a product of sums. 

p, ~ .~, f" .~, f" ...• f, f'L exp [A( t, z, - Y) ] 

~ exp (-AY) g L~, f .. exp (M')] (64) 

~ exp (-AY) [~ f. exp (Az) r, (65) 

since the random variables {Zi} are identically-distributed. 
Now let 

1/-1 

1/1 = L: fz exp (~z). (66) 
z=1 

This may be expressed in terms of the distribution function pr (C ~ z). 

f z = pr (C = z) = pr (C ~ z) - pr (C ~ z + 1) (67) 

So, 

1/-1 

1/1 = L: exp (~z)[pr (C ~ z) - pr (C ~ z + 1)] 
z=1 

1/-1 

= 1 + L: [exp (~z) - exp (}..(z - 1))] pr (C ~ z) 
z=l 

- exp (}..(y - 1)) pr (C ~ y), (68) 

since 

pr (C ~ 1) = 1. 

Taking out the common factor [1 - exp (->..)] and upper-bounding 
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it by A, we get 
11-1 

tP < 1 + [1 - exp ( - ,,)] L exp (Xz) pr (C ~ z) 
z-1 

11-1 

~ 1 + " L exp (AZ) pr (C ~ z). (69) 
z=1 

The function tP is further bounded by employing the upper bound 
(56) for pr (C ~ z). 

A 11-1 

tP < 1 + A L exp (AZ) +" L exp (AZ) (A/zt . (70) 
z=1 z=A+l 

We now express the exponential functions as convergent power series 
and interchange the order of summation to yield 

tP < 1 + ± A exp (AZ) + t "h A,sh I: Zh-l-S. (71) 
z=1 h=1 h. z=A+l 

The sum over Z may be upper bounded by an integral, which can 
be evaluated and bounded by simple expressions 

11-1 fll 
'"' h-I-8 < h-I-8 d < 
L.J Z = Z Z = 

z=A+l A 

A h -8 

s-h 

A h-8 en (y/ A) 

y 

h-B 
-y
h-s 

s-l<h~s 

s<h~s+1 

h>s+1 

(72) 

These bounds will be used to bound the right-hand side of (71). 
The first sum in (71) is bounded by the number of terms times the 
largest (last) term. 

A 

L A exp (AZ) < A exp (A A) . (73) 
z=1 

Therefore, defining ho to be that integer for which ho + 1 > s ~ ho, 
we have 

ho-l "hAh "hoAho 
tP < 1 + "A exp (AA) + t; (h _ I)! (s _ h) + (h

o 
_ I)! en (y/ A) 

+ Aho+l A By + (A/yr t (Ay)hh. (74) 
hoI h=ho+2 h! (h - s) 

In the final sum in (74), h ~ ho + 2 > s + 1, and hence the sum may 
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be upper bounded by bounding h/(h - s) by ho + 2 and then extending 
the summation down to h = o. Thus, 

(A/yY i: , (Ay)hh ~ (ho + 2)(A/yY i: (Ayt 
h-h.+2 h. (h - s) h-O h. 

= (ho + 2)(A/y)8 exp (Ay). (75) 

Furthermore in the first sum in (74), h ~ ho - 1 ~ s - 1, and hence 
the sum may be bounded by bounding l/(s - h) by 1 and then ex
tending the summation to infinity. Thus 

h.-l (AA)h 00 (A A/ t; (h - 1)! (s _ h) < AA t; ~ = AA exp (AA). (76) 

Since s ~ ho , 

'" < 1 + 2AA exp (A A) + (s + 2)(A/yt exp (AY) 

(AAt (AA)8 + (ho _ 1)!en (y/A) + ~ Ay. (77) 

We shall now choose a particular value for A: 

A = A =! fn (--'1L). 
o y LAB 

We also assume that L is small enough relative to y so that 

1 
AoA[fn (y/ A)] < eL· 

(7S) 

(79) 

This assumption is equivalent to (57). This condition also ensures 
that AoA < 11eL < 1. The terms of (77) may now be bounded 
separately to yield a convenient upper bound on 1/1. Thus, 

2AoA exp (AoA) < 2/L. (SO) 

From (78), 

(s + 2)(A/yY exp (AoY) = (s + 2)/L. (81) 

Finally, using (7S) and (79) it is easy to show that 

(AoAt (AoAY 
(h

o 
_ I)! en (y/ A) + ~ AoY < 2/L. (S2) 

The function 1/1 is now upper bounded for A = Ao by using (SO), 
(S1), and (S2) in (77), 

'" < 1 + 4/L + (s + 2)L = 1 + (6 + s)/L. (S3) 
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Then, 

y," = [~f' exp (Az) r < [1 + (6 + 8)/Ll". (84) 

Now for any L, a ~ 0, 

[1 + a/L]L = 1 + a + L(L2~ 1) (a/L)2 

Hence, 

+ L(L - ~!(L - 2) (a/L)3 ... + (a/L)L. 

< 1 + a + a2/2! + ... = exp (a). 

",L < exp (6 + 8). 

Substituting (86) in (65), we obtain 

P2 < L(Ae/y)8 exp (6). 

Finally, after substitution of (87) in (58) and (60), 

pr [t, C, ;S; yJ < DL(Ae/y)', 

where 

D = 1 + l. 
This bound is valid under the condition (57), 
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Convolutional Reed-Solomon Codes 

By P. M. EBERT and S. Y. TONG 

(Manuscript received July 28, 1968) 

We derive a new family of convolutional character-error-correcting 
codes which are a convolutional form of the Reed-Solomon block codes and 
as such have nonbinary symbols . We also derive a bound on the error cor
recting capabilities of these codes in which the error-correcting capability 
per constraint length grows approximately with the square root of the 
constraint length. 

When these codes are used on a binary channel they are effective for both 
random and burst error correction because a single character spans several 
channel digits. 

These codes have greater error-correcting capabilities than the Robinson
Bernstein self-orthogonal codes but are harder to decode. The single
character-error-correcting codes, when interleaved, are shown to be more 
powerful than the equivalent H agelbarger code and appear to be simpler to 
implement. They are also slightly better than the interleaved version of 
Berlekamp's code. 

We discuss encoding and decoding algorithms and illustrate a simple 
decoding algorithm for some of the codes. These codes are closely related 
to the Bose-Chaudhuri-Hocquenghem block codes and share with them the 
decoding simplification for character erasures in place of errors. Any 
Bose-Chaudhuri-H ocquenghem decoding algorithm can be used to decode 
these codes. 

1. INTRODUCTION 

This paper is concerned with a family of character error correcting 
convolutional codes which are derived from Reed-Solomon block 
codes.1 The derivation of the error correcting capabilities is easy be
cause of the algebraic nature of the code; the convolutional nature of 
the code allows the use of a simple encoder even at high rates. Also, 
sequential decoding techniques might be applicable. 

Throughout the paper we use elements of a finite field as symbols 

729 
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instead of just 1 and O. The elements can be represented by k-tuples 
of ones and zeros if the field has 27.; elements; these k tuples are called 
symbols or characters. Thus with this code we are able to correct 
character errors which may be bursts of binary errors. All that one 
need know about finite fields is that each nonzero element has an in
verse and that there exists at least one element which when taken to 
successive powers will generate the entire field with the exception of 
the zero element. This is called a primitive element. 

The capability of the codes is given by the number of errors that 
can be corrected within a fixed number of characters (the constraint 
length). Suppose a code can correct three errors within a const.raint 
length of 12. Then the code can correct any pattern of errors as long 
as no sequence of 12 characters has more than three errors in it. In 
the context of error correcting ability one can define a minimum dis
tance of the code. For linear codes the minimum distance (d), is 
equal to the minimum weight code word segment, one constraint 
length long, which has a nonzero first character. With this definition 
the code can correct up to (d-1) /2 errors occurring within one con
straint length. 

The rate of a code, R, is the fraction of characters used as informa
tion symbols. 

A convolutional code has its check symbols formed as a convolu
tion or weighted sum of a fixed number of the past information sym
bols. The weighted sum is formed in the algebra of the finite field. 

The codes described in Section II are capable of correcting t char
acter errors within a constraint length of (2t 2 

- t + 1)/(1 - R) 
channel characters. The channel characters must be elements of a 
finite field of size at least [R(2t - 1) (t - 1) + 1]/(1 - R). If 
one uses as channel symbols elements of a much larger field it is pos
sible to construct a code which will correct t errors with a constraint 
length of only 2t/ (1 - R). Those codes can be encoded by a stand
ard convolutional encoder or by a number of accumulators which can 
also perform multiplication. Decoding can be accomplished by a 
modified Bose-Chaudhuri-Hocquenghem decoder. 

II. CONSTRUCTION OF THE CODES 

For a code of rate R = (b - l)/b one can use every bth symbol as a 
check symbol. To define the code completely one need only give the 
weights used in the convolution of past channel symbols. For con
venience we put these weights in an N by b = 1/(1- R) matrix, B. Bi ,j = 
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W i - 1 +bi (The constraint length is Nb.) If Xi is a check symbol we write 

or 

bN-l 

Xi = - L Xi-kWk , 
k=l 

bN-l 

L Xi-kWk = 0, 
k=O 

i = b,2b, ... 

Wo = 1. (1) 

Following Wyner and Ash we take the N by b matrix called B and form 
it into an infinite A matrix by shifting B to the right b places and 
down one place:2 

Then by (1) any code sequence written as a vector x will satisfy 

Ax = O. (2) 

We define the code by defining the elements of the matrix B. B is used 
instead of the weights Wi because the notation is clearer. Denote the 
elements of B by Bij . Then let Bii = {3/y~-l where the b 'Y/s are c/, 
a\ ... , a b

-
2

, 0. The symbol a is a primitive element of the field, and 
00 is taken as 1. The 'Y/s are called locators. Let: {3i = a"w (b-l) 

where 

v (f) = .I: i = (j - 1) (j - 2). 
i=O 2 

Thus for any b, N, and finite field a code is defined. 
As an example we take the special case which was presented by 

Wyner, where N = 2 and the Bij are given by3 

{,,"-'HHl i ~ b 
Bii = 

OU-I) i = b 

B = [~ 1 1 

~l (3) 
2 b-2 a a a 

This code has d = 3 and thus can correct single errors, or double 
erasures in a constraint length of 2b. It has the additional advantages 
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that it can be easily implemented, it is optimal/" and it has no error 
propagation. We describe, in Sections III through V, the implementa
tion and some properties of the single-character-correcting codes. 

III. DECODING TECHNIQUE FOR SINGLE CHARACTER CORRECTING CODES 

Single errors are particularly easy to correct because the first 
syndrome (difference between the calculated check character and the 
received check character) is equal to the error, and the second syn
drome is equal to the error multiplied by the error location. Since 
we take 

i-l 
"Ii = a , 

"Ii = 0, 

i ~ b 

i = b 
(4) 

the error location i can be found by dividing the second syndrome Sl 
by ex and comparing the result to the first syndrome, So. This is 
repeated until they agree. The division can be implemented by a 
shift register whose feedback path corresponds to the coefficients of 
9 (x) the generator polynominal of ex, the primitive element.4 

IV. HARDWARE IMPLEMENTATION FOR SINGLE CHARACTER CORRECTING CODE 

The implementation is described through the example: symbols in 
GF (2k) k = 2, b = 4. The elements of GF (4) are represented as 
binary 2-tuples. Since X2 + x + 1 is a primitive polynomial in GF (2), 
division by ex can be instrumented by a two-state shift register with 
appropriate taps. The decoder takes form of Fig. 1. The entire re
ceived vector is shifted into the data buffer and then the syndromes 
So and S1 are computed and stored in two registers Ro and R1, respec
tively. So identifies the error pattern. If So is nonzero, it is assumed 
that a single character error of the pattern shown occurred. For each 
character shifted out of data buffer the R1 register is shifted once 
with the feedback path connected (which corresponds to a division 
by a). The error pattern So in Ro matches that contained in register 
R1 when the erroneous character just emerges out of the data buffer. 
This character need only have So subtracted from it to complete cor
rection. It is possible to do all of this with simple logic circuitry and 
a storage of 2bk bits. 

*No other code, of the same constraint length, which corrects single errors, 
can have a higher rate (that is, fewer check symbols). 
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Fig. 1-Decoder for single error correcting code. Go and Gl are timing signals: 
Go is high during the time information characters appear; Gl is high when parity 
character appears. 

V. PROPERTIES OF THE SINGLE CHARACTER CORRECTING CODE 

Observe that for every b character one must decide, based on the 
current syndromes of 2k bits, the error pattern and the location of 
the error. Since there are b possible error locations one needs at least 
[log2b] = k bits for identification if 27.:-1 < b, and as there are 27.: error 
patterns in a character (including the no-error pattern) that calls for 
k bits of information; thus the lower bound on the number of syn
drome bits is 2k which shows the code is optimal~~ when b > 2k-l. 

Notice that since the syndrome is reset to zero after correction (cor
responding to the removal of the effect of the error on syndrome) no 
error propagation is possible. 

Interleaving can be applied to this class of codes to achieve a class of 
near-optimal burst-error correcting codes. If the interleaving degree is 

* It is optimal in the number of check symbols. 
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m then two adjacent characters in the original code are separated by 
m - 1 characters or L = k (m - 1) binary digits. A burst of length L 
+ 1 bits will never affect two adj acent characters of the original codes; 
hence the interleaved code is capable of correcting an L + 1 bit burst. 
Since the original code has a storage requirement of 2bk bits, the in
terleaved code requires, at most, 2kbm bits. Observe that to correct a 
particular character one need not store the last character of the other 
m - 1 interleaved codes; therefore the storage requirement is 2 bkm 
- (m - l)k = 2 bk(l + L/k) - L. 

The required guard space is simply one less than the constraint 
length.~r, This can be seen by observing that in correcting a burst the 
syndrome must be set to zero when the last character in the burst is 
corrected. It follows that the guard space must always be shorter 
than the constraint length. Table I compares some members of this 
class of codes with some Hagelbarger burst-error-correcting recur
rent codes as well as the Berlekamp burst-error-correcting recurrent 
codes (assuming Massey's decoding algorithm) .5-7 Table I shows this 
class of codes requires less guard space and hence is more powerful. 

TABLE I-COMPARISON OF BURST CORRECTING CODES 

Decoder cost* Guard space 

Rate Burst A B C A B C 

R = 1/2 20 44 - 61 61 - 60 
19 - 60 58 - 61 57 

R = 2/3 21 132 - 112 170 - 111 
22 - 120 - - 122 -

R = 3/4 20 183 - - 223 - -
21 - 168 156 - 171 155 

R = 4/5 20 326 - - 384 - -
21 - 225 - - 229 -
22 - - 219 - - 218 

* More precisely, the number of shift registers. 
Note: A - Hagelbarger codes. 

B - Berlekamp's type B2 burst-error correcting codes modified by inter
leaving. 

C - Single-character correcting codes modified by interleaving. 

Although the number of shift register stages is not an accurate meas
ure of decoder cost, it is seen that, except for the rate of 112, Hagel
barger's codes generally cost more, especially at higer rates. Although 

* In our case the constraint length is equal to the storage requirement. 
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the interleaved single character correcting codes are slightly better 
than Berlekamp's code for correcting type Bl bursts, they are both the 
same (and optimal) for type B2 burst correction.2 

VI. GENERALIZATION 

In order to demonstrate the minimum distance of codes with a 
longer constraint length we rely on the following lemma. 

Lemma: If the code with N = Nl ~ 1 has a minimum distance of at 
least dl , then the code with N2 = Nl + dl - 1 has a minimum distance of 
at least dl + 1. 

The proof of this lemma depends on showing that no code word with 
dl or less nonzero elements can satisfy Ax = 0, which is equivalent to 
showing that any d] columns of A form a matrix of rank at least dl 

and thus equation (2) can be satisfied only by x = ° among all x with 
weight d1 or less. 

Proof: By the assumption that the code with N = Nl has minimum 
distance dl , there must be at least dl nonzero elements in the first Nlb 
symbols of x. Assume that there are just dl and no more, as well as no 
additional nonzero symbols in the rest of the constraint length N2 . 
We write x' as a dl dimensional vector consisting of only the nonzero 
elements of x. Accordingly A'x' = 0, where A' is a N2 by dl matrix with 
columns corresponding to the elements of x'. We must choose dl rows of 
A' which have a nonzero determinant. Assume for the moment that 
none of error locations are zero. We then choose the bottom dl of A'. 
We have a dl by dl array of nonzero elements. Each of the matrix 
element is guaranteed to be nonzero by the fact that all the nonzero 
elements of x lie within the first Nlb elements and consequently A' can 
only have no zeros in the dl th or lower rows. 

We now take the dl by dl array and divide each column by the first 
element. The first row is now alll's and the kth row is 

Bli + k - 1) 
Bij 

{3i+k-1'Y~ +k-2 

{3 
i-1 

('Ii 

= (ai(b-l)'Yi/-la[{k-l) (k-4)(b-l)/2). (5) 

We next divide each row by 0:[(k-1) (k-4) (b-1)/2] thus obtaining a Van
der-Monde matrix. The determinant of the matrix cannot be zero since 
the quantity 

f(b-l) 
a 'Y. (6) 
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is unique for each column. If q of the locators are zero, we choose the 
bottom d l - q rows and those q rows which correspond to the l's in the 
q zero locator columns. This determinant is nonzero by the same logic. 
Consequently, the equation A'x' = 0, can only be satisfied by x' = 0, 
which contradicts our assumption. Therefore, the assumption is untrue 
and the minimum weight code word which satisfies (2) must have 
weight d l + 1 or larger, therefore providing the lemma. 

We now prove the general result by induction. When N = 1 the 
matrix 1 obviously has rank 1 and thus the minimum distance is 2. 
To obtain a minimum distance of 3 we need to add 2 - 1 = 1 to b, 
thus N = 2. Each time we increase the minimum distance by 1 we 
increase N by d - 1, thus 

N = 1 + I: i = (d - 2)(d - 1) + 1 
i-I 2 

2N - 4 = d(d - 3) for any value of d ~ 2. Since this is a lower bound 
on d we can be assured that for any d ~ 2 we can build a code with 
2N - 4 ~ d(d - 3). 

The field must be of sufficiently large size so that all the "locators" 
of (6) be different. This can be done if the field has at least (b - 1) 
[(d - 2) (d - 3) + 2]/2 nonzero elements. Thus for example we 
could build a code which corrects two errors (d = 5), has a rate of 
% (b = 4) with a 16 element alphabet. The constraint length would 
be Nb = 7 X 4 = 28. This could be implemented by using 4-tuples as 
symbols with an overall constraint of 112 binary digits. 

VII. ALTERNATIVE CODE 

It is also possible to obtain a minimum distance of N + 1 if one uses 
only a certain set of symbols as locators. In the previous section one 
needed a field with at least (b - 1) [(d - 2) (d - 3) + 2]/2 nonzero 
symbols. In this section we show that N can be made equal to (d - 1) 
if one is willing to use symbols from a much larger field. For this pur
pose we define B by: 

r 
1 1 1 

I 2 b 
1'1 1'2 'Yb 

B= {3'Y~ {3'Y~ {3'Y~ 

(3~(N) N-l '- al ... (3~(N) N-l 
ab 
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( .) ~. (j - 2)(j - 1) 
V~ = L-J't= 

':~l 2 

where Yi is the locator and f3 will be defined later. As in Section VI 
we wish to show that 

Ax = 0 (7) 

only if x has d or more nonzero elements, given that there is at least 
one nonzero element among the first b. Suppose there exists a code word 
x with weight d - 1 or less such that (7) is met. Then take the N by 
d - 1 matrix consisting of the d - 1 columns of A corresponding to the 
nonzero components of x, and call it A'. The determinant of A' is a 
polynomial in {:3, where the lowest power of {:3 is no lower than that found 
along the main diagonal. This comes about because the right-hand 
columns are shifted down and thus contribute least to the power of {:3 
in the bottom rows. The highest power of {:3 is shown in the appendix to 
differ from the lowest power by no more than: 

If we call the difference between the highest and lowest power of {:3, r, 
then the determinant can only be zero when {:3 is a root of an rth order or 
smaller polynomial with coefficients from the field containing the 'Y /s. 
Consequently we can choose (:3 from an r + 1 order extension field such 
that it is a root of an irreducible r + 1 order polynomial. Then it cannot 
be the root of a polynomial of degree r or less, and the determinant 
cannot be zero. Consequently x = 0 for (7) to be met. 

We have now defined a as a member of the field with qr+l elements 
where GF(q) is the locator field. In other words our symbols are 
taken from a qr+l element field and the locators (Xi are confined to the 
q element subfield. For example, suppose we require a double-error
correcting code (N = 4) with a rate %. We use the four element field 
as locators, and since r + 1 = 4 the symbols must come from a 44 = 
256 element field. This results in an overall constraint length of 
8 X 4 X 4 = 128 bits. 

VIII. IMPLEMENTATION 

The encoding can be accomplished by the standard convolutional 
encoder. The decoding presents the same problems as the decoding of 

* [ .] is the symbol for the integer part of .. 
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a nonbinary Bose-Chaudhuri-Hocquenghem code. One takes increas
ing estimates of the number of errors within a constraint length and 
solves for the error locations and values. If the estimate is incorrect 
there is no consistent solution for the error values. The problem of 
error propagation can be easily handled by introducing a second set 
of syndrome calculators which are not changed when errors are cor
rected. A guard space equal to the constraint length, with no errors, 
will then produce zeros in all these syndromes, indicating that there 
have been no errors in the last constraint length. 

In both coding and decoding, symbols must be added and multi
plied. This is easy to implement when the symbols are represented as 
binary k tuples. Addition is just bit by bit modulo two addit.ion; 
multiplication by a (the primit.ive element) is accomplished by a 
linear shift register. 4 

IX. CONCLUSIONS 

We have presented a class of algebraic convolutional codes. These 
codes can be compared to other convolutional codes, such as Robinson 
and Bernstein's self-orthogonal codes. 8 The Robinson-Bernstein codes 
are binary error correcting codes which have a constraint length bounded 
hy N ~ [(2t2 - t)(b - 1) + 1]b. Our codes have a constraint length 
bounded by N ~ (2t2 - t + 1)b, which is less than the above for 
b ~ 2. Ignoring the fact that our code is a character error correcting 
code, our code is more powerful than the Robinson-Bernstein code. 

If one takes account of the fact that characters are several bits long, 
one can still make a comparison by taking the constraint length of our 
code as 

N ~ (2t2 - t + 1)b({ n2[(b - 1)(2e - 3t + 1) + b]} + 1), 

[.] integer of. 

One now finds that our code is more powerful than the Robinson
Bernstein code for sufficiently large b. More specifically, if e ~ 2b j16b 
our code is more powerful. The Robinson-Bernstein codes have the 
advantage that they can be decoded by majority logic devices while we 
require much more complex devices. 

The codes described in this section may be useful when one desires 
a high rate code. Here the amount of storage needed at the encoder 
can be made equal to the redundancy per constraint length. The 
decoder must store the entire constraint length in order to make cor-
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rections but the part of storage needed to compute the error locations 
and values is only equal to the redundancy. The disadvantage is that 
the decoder must perform finite field multiplication, division, and 
addition. 

The code is also capable of correcting erasures; decoding is much 
simpler in this case. Therefore it may be advantageous to let the 
k tuples (which represent symbols) be code words in a binary sub
code. The subcode then could be used to detect binary errors (produc
ing an erasure), and the convolutional code used to correct these 
erasures. This is a convolutional version of Forney's concatenated 
block codes.9 

The decoding algorithm is also simple for any code of distance four 
or less. This includes the single-error correcting code, the double
erasure correcting code, and the single-error-plus-single-erasure code. 
The decoding complexity is comparable to that of Hamming codes. 

APPENDIX 

Bound on the Powers of f3 

We wish to bound the difference between the maximum and minimum 
power of {3 in the determinant of A'. The matrix will be made up of 
columns taken from B or columns from B shifted downward. This 
shifting downward of columns is the only parameter which effects our 
bound. Therefore we take Z i as the amount that the ith column is 
shifted; the ith column is headed by Z. zeros. By ordering we make Z. a 
nondecreasing function of i. We can assume that Z. < i; otherwise this 
would put a zero on the main diagonal and produce a zero determinant. 
One could then take the largest nonsingular upper left minor A" and 
write A"X" = O. The only difference here is that A" has smaller size; 
but the bound will still be valid. 

The determinant of the matrix is given by 

(8) 

where (j is a permutation of the numbers 1 to N. The term b •. tlco is 
zero if u(i) ~ Z. ; otherwise it contains (3 to the {[u(i) - Z. - 2] 
. [(j(i) - Z, - I]} /2 power. For any given (j the product of (8) contains 
{3 to the 

N 

! 2: [(j(i) - Zi - 2J[cr(1,} - z. - 1J (9) 
.=1 
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power, provided that for all i u(i) > Zi. Equation (9) can be re
written 

N 

! L (i(i) - 30"(z,') - 2(~')Zi + (Zi + 2)(Zi + 1). (10) 
i-I 

The only term which depends on u is 
N 

- L O"(i)Z, . (11) 
i=1 

The minimum power of /3 in (8) is given by (10) when we minimize 
(11). Since Zi is nondecreasing the term which minimizes (11) is 
clearly u(i) = i. Furthermore, the only other terms of (8) which con
tribute to this lowest power of f3 come from u's which permute the i's 
over regions where Zi is constant. 

The difference between the maximum power of f3 and the minimum 
power is 

N N 

D = L iZi - Min L O"(i)Zi 
i=1 <T.<T(i»Zi i=1 

N N 

Max L [i - O"(i)]Zi = L (i - O"min(~')]Zi • (12) 
<T.<T(i»Zi i=1 i-I 

The minimization in (12) is accomplished by assigning the smallest i 
to the largest Zi, subject to the constraint that u(i) > Zi. This can be 
done by starting with ZN and assigning the smallest possible integer 
to u(N), namely ZN + 1. The term ZN-l then receives the next small
est integer which is still free, and so on. This is the minimum as any 
other acceptableu can be converted into this <Tmin by a sequence of 
pairwise permutations which do not increase the sum. In Fig. 2 we 
show an example of the assignment on a square array where the O's 
indicate the u which minimizes the sum and the x's that which maxi
mize it [<T (i) = i]. The D's in Fig. 2 are not exactly as described above 
but are permuted somewhat above equal value Z/s for reasons which 
will be clarified in this appendix. 

We now show that we can increase various Z/s to Z~'s so that Ll~ = 
Z~+l - Z~ ~ 1 (in Fig. 2 we increase Z4 , Zs and Zs) and D will not de
crease. When we change the Z, , 0" min (i) does not change. When Ll i ~ 1, 
our construction of O"min(i) gives O"min(i) = Zi+l < i + 1; thus O"min(i) ~ i, 
and i - O"min(i) ~ O. Once we have the new Z~ with Z~+1 - Z~ ~ 1 we 
write D' ~ D in terms of a sequence 

Ai' = Z:H - Z: = t· 
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Fig. 2 - Bounds on the minimum and maximum powers of {3 in the determinant 
of A. 

Since 

i-I 

Z~ L ~i , 
i=1 

then 
N N i-I 

D' L [i - o-(i)JZ~ L [i - (i)] L ~~ 
i=1 i=1 i=1 

N-l N 

= L t1i L [i - o-(i)] 
i=1 i=1'+1 

= ~ Ll{ (N - j)(~ + j + 1) - J~, 0-(.)]. (13) 

'Ve observe that our choice of ,(T(i) gives 

N 

L (T(~) 
i=i+l 

when t1i 1, 

and (13) becomes 

N-l 

L ~i(N - j)(j - 1 - Zi)' 
i=1 

For each value of Zi(O, 1, 2, ... ) there can be only one nonzero t1i ; if 
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one takes ]( to be the number of nonzero Ll~ , then 
K-l 

D' = L (N - tk)(tk - 1 - k), 
k-O 

where tk is that value of j for which Zi = k and Ll~ 
that 

1. We now show 

K-l N 

L (N - tk)(fk - 1 - k) ~ L (N - i)(to - 1). 
k=O i-fo 

The terms on the right are all nonnegative and for every k on the left 
there is an i on the right with i = tk . For that term tk ~ to + k, as tk 
cannot increase faster than k. 

tk - 1 - k ~ to - 1, 

(N - tk)(tk - 1 - k) ~ (N - tk)(tO - 1). 

D' ~ £ (N - i)(to - 1) = (to - 1) (N - to}(N - to + 1). (14) 
i=fo 2 

The integer value of 10 which maximizes this is 

[ .] = integer part of· 

and 

(15) 

This bound on D can actually be achieved for any N. 
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Error Rate Considerations for Coherent 
Phase-Shift I(eyed Systems with 

Co-Channel Interference 

By v. K. PRABHU 
(Manuscript received July 23, 1968) 

In this paper we present a theoretical analysis of the performance of an 
m-phase coherent phase-shift keyed system in the presence of random 
gaussian noise and interference. An explicit expression is given for the 
probability of error of the phase angle of the received signal; we show that 
this probability of error can be expressed as a converging power series. 
We show that the coefficients of this series are expressible in terms of well
known and well-tabulated functions, and we give methods of evaluating 
the character error rates of the systems. We also show that this error rate 
is minimum when all the interference power is concentrated in a single 
interferer, and that it attains its maximum [P m]max when the total inter
ference power is equally distributed amongst the K interferers. The limit
ing case when K goes to infinity is considered. The cases of K = 1, and 
m = 2, 4, 8, and 16 are treated in some detail, and the results are given 
graphically. The usefulness of the results presented in this paper is that 
the designer can have at his disposal very simple expressions with which to 
evaluate the performance of any given Coherent Phase-Shift Keyed sys
tem when the received signal is corrupted by both interference and random 
gaussian noise. 

I. INTRODUCTION 

The performance of coherent phase-shift keyed (CPSK) systems 
has been investigated by many authors ;1-5 in the transmission of in
formation the CPSK system has been shown to be one of the most 
efficient techniques for trading bandwidth for signal-to-noise ratio. 
However, the type of noise considered by these authors is almost 
always limited to be random gaussian noise although most authors 
admit that interference other than normal noise must be considered 
in the design of any modulation scheme for digital transmission. 

743 
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Consider the following situation. In the frequency bands above 10 
GHz where the signal attenuation resulting from rain storms could 
be very severe, close spacings of the repeaters are almost always 
mandatory for reliable communication from point to point and for 
all periods of time.6 In such cases the problem of interference may be 
much more important than the problem of noise in the optimum detec
tion of the desired signal; hence it is very desirable to evaluate the per
formance of a CPSK system with co-channel and adj acent channel in
terference so that, for the selection of an optimum transmission scheme, 
comparative advantages of CPSK over other broadband modulation 
techniques (like FM) in combating interference can be determined. 

We consider in this paper the performance of a CPSK system when 
the received signal is corrupted by both interference and random 
gaussian noise.* We first discuss binary (2-phase) and quaternary 
(4-phase) CPSK systems and show that exact expressions can be 
obtained for their probability of error Pm. These expressions are in 
the form of infinite power series which are shown to converge for all 
values of signal-to-noise ratio and for all signal-to-interference ratios 
above a certain level determined by the system. For m =, 2 and 4, 
these error rates are calculated and the results are given in graphical 
form. 

For m = 3 and for m > 4 we show that exact expressions for Pm 
are very complicated functions of signal-to-noise ratio, and signal-to
interference ratios; in this paper we only indicate how these expressions 
can be obtained. However, we do obtain expressions for upper and lower 
bounds to Pm and show that the difference between these two bounds is 
a monotonically decreasing function of signal-to-noi.se ratio, signal-to
interference ratios, and the number m of phases used in the system. 
For m ~ 4, signal-to-noise ratio p2 ~ 5 dB, t and for signal-to-interference 
ratio 1/L2 ~ 20 dB, we show that this difference is less than 5 percent, 
and that the upper bound can be used as a good approximation to Pm. 
For m = 8 and 16, we calculate these upper bounds and we present the 
results graphically. 

For a given amount of interference power, we show that the char
acter error rate is minimum when all the power is concentrated in 
a single interferer. If the total number of interferers is K we also 
show that the error rate Pm reaches its maximum [ Pm] max when the 
interference power is equally distributed among all the interferers. It 

* The word "noise" indicates random gaussian noise corrupting the desired 
received signal. 

t We use the notation b == a dB if 10 loglob = a. 
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follows that [ Pm] mnx is a monotonically increasing function of I( and 
attains its maximum when I( goes to infinity. We show that the case 
of K going to infinity can be treated in a simple manner. 

For the computation of error rates Pm (or upper bounds to Pm, m 
> 2) it is necessary to calculate the central moments P2n'S of a certain 
random variable 1] defined in terms of the K interfering carriers. For 
large values of I( the conventional method of evaluating P2n'S can be 
rather tedious; we give some simple methods of evaluating these mo
ments. 

In conclusion, this paper determines the performance of m-phase 
CPSK systems for the important case of signals corrupted by random 
gaussian noise and interference. The cases of m = 2, 4, 8, and 16 are 
treated in some detail. 

II. PHASE ANGLE DISTRIBUTION IN CPSK SYSTEMS 

Let us consider an m-phase CPSK system. We assume that there 
is a steady received signaP< which is corrupted by random gaussian 
noise and interference. The gaussian noise is assumed to have zero 
mean and variance .0.

2
• The signals under consideration consist of 

phase-modulation pulses of specified width transmitted at a known 
repetition rate; we assume that there are I( interferers, each interferer 
having the same form as the signal. 

If we assume that each signal transmitted has a duration T, the 
received signal waveform in the absence of noise during the Nth in
terval can be represented as 

SN(t) =' (2S)! cos (wot + ()), NT ~t ~ (N + 1) T, (1) 

where S is the received signal power, Wo is the angular frequency of the 
signal, and () will have some value in the discrete set 27rk/m, 0 ~ k ~ 
m - 1, corresponding to the Nth message. All m messages are assumed 
to be equally likely. In the absence of noise and interference, the set of 
m possible received signals is described by a set of m equally-spaced 
vectors in the complex plane as shown in Fig. 1. The noise and inter
ference corrupting the signal distort the signal both in amplitude and in 
phase; a zero-phase signal (corresponding to k = 0), as disturbed by 
noise and interference, is also shown in Fig. 1. 

If we now assume that poweI in the jth interferer is Ii, the jth inter-

* In this paper we do not consider the effects of fading on the error rates of 
CPSK systems. The effects of fading can usually be accounted for by a further 
integration of error rates obtained in this paper.r 
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Fig. 1-Phasor representation of CPSK signals for m = 4. 

ferer as received during the Nth interval can be represented as* 

iiN(t) = (2Ii)! cos {Wit + (Ji + J.l,}, NT ~ t ~ (N + 1) T (2) 

where Wi is the angular frequency of the jth interferer, (Ji is some value 
in the discrete set (2-Ir/m) k, 0 ~ k ~ m - 1, and the probability density 
7r J!/ (J.li) of J.li is given by 

7r J.llJ.li) = {2
1
7r ' 

0, 

o ~ J.li < 27r 

otherwise. 

(3) 

Since the I( interferers are assumed to originate from I( different 
sources, it is reasonable to assume that all fL/S are statistically in
dependent of each other and are also independent of gaussian noise 
n (t). 

The total received signal during the Nth interval can then be writ
ten as 

K 

rN(t) (2S)! cos (wot + (J) + L: (2Ii)! cos (Wit + (Ji + J.li) + n(t) , 
i=l 

NT ~ t ~ (N + I)T (4) 

where n(t) has zero mean and variance (12. 

Assuming that the receiver used in the system detects only the 
phase angle <P of rN(t) and does not respond to its amplitude varia
tions,t we can writeS 

* We assume that all iJN'S, 1 ~ j ~ K, are in the passband of the CPSK 
receiver used in the system. 

tThis can be achieved in practice by using an ideal limiter at the front end 
of the receiver. If A(t)eH,m is the input to an ideal limiter, its output is given 
by AoeJ~m where Ao is a constant. 
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;r... - t -1 rN(t) - t 
'J:' - an rN(t) Wo (5) 

where {'N(t) is the Hilbert transform of rN(t) and is given by 

rN(t) = ! f<Xl rN( T) dT. 
7r -<Xl t - T 

(6) 

Let us write 

net) = Ie cos (wot + 0) - 18 sin (wot + 0). (7) 

We can show9 that Ie and Is are two independent gaussian random 
variables each distributed with mean zero and variance 0

02
." From 

(4)-(7), we can now show that 

cI> = 0 + tan- 1 

K 

I. + L: (2Ii)1 sin [(Wi - wo)t + 0i - 0 + ILi] 
i-I 

K 

(28)' + Ie + L: (2Ii)! cos [(Wi - wo)t + 0i - 0 + ILi] 
i~1 

Let us now write 

where 

and 

S1 
P =(j , 

K 

o = L: Ri sin Ai , 
i~1 

K 

?J = L: Ri cos Ai , 
i-I 

(10)' Ri = S ' 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

* It is assumed that the spectrum of gaussian noise is symmetrical around the 
frequency w = WI). 
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Let us also denote the set {AI , A2 , ... , Ai , ... , AK} of random 
variables A/s by ~. 

We can now write eq. (8) as 

;J; = 0 + t -1 V + 0 
'J:' an 1 + U + T} 

(16) 

where 0 and T} are functions of ~. 
If K is a finite number, we can show1o that the probability density 

P'YJ (7]) can be represented as':-

(17) 

where Jo(x) is the Bessel function of the first kind and of order zero. 
For I( = 1, we can show that10 

(18) 

otherwise. 

For I( = 2, p'YJ (7]) can be expressed in terms of elliptic functions, and 
for I( > 2, no closed form expressions can be obtained for p'YJ (7]). In 
Ref. 10 p'YJ (7]) has been expressed as a converging sum and has been 
evaluated for I( =, 10. It is easy to show that 

K 

piT}) = 0, for I T} I > L R j , (19) 
i-I 

and 

(20) 

III. CPSK RECEIVER 

An ideal CPSK receiver is shown in Fig. 2. The ideal limiter re
moves all the amplitude variations of the received signal before it 
reaches the ideal phase detector of the system. We shall assume maxi
mum likelihood detection for our analysis of the receiver. Let us as
sume that the receiver shown in Fig. 2 has zero-width decision thres
holds as shown in Fig. 1. 

* We can also write similar expressions for p6(a). 
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Fig. 2 - CPSK receiver. 

3.1 Error Rates for Binary C P SK Systems 

For a binary CPSK system the set of two possible received signals 
in the absence of noise and interference is shown in Fig. 3. The noise 
and interference corrupting the desired signal distort the signal both 
in amplitude and in phase; a zero-phase signal (corresponding to 
k = 0) as disturbed by noise and interference is also shown in Fig. 3. 

When the message k = 0 is sent, and when the phase angle <I> of the 
received signal lies in the second and third quadrants of the complex 
plane shown in Fig. 3, an error is made in detecting the received signal. 
For a given /, and for an arbitrary set of A;'s let us assume that the 
origin of the gaussian noise vector is at point G in Fig. 3. When the 
terminus or tip of the gaussian noise vector lies in the left half of 
the complex plane (the shaded portion of Fig. 3) an error is made by the 
receiver. Since Ie and I. are two independent gaussian random vari
ables and since they are distributed independently of A/s, the prob
ability P2(~) that the terminus of the gaussian noise vector lies in the 

QUADRATURE 
.--./ AXIS 

~--=--+'------

I N-PHASE AXIS 

Fig. 3-Phasor representation of CPSK signals for m = 2. Ie and I. are the 
in-phase and quadrature components of gaussian noise corrupting the desired 
received signal. 
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left half of the complex plane is given by* 

P2("D:) = Pr [- 00 < Is < 00] 

,Pr [ - 00 < I, < -(28)! + t, (21;); cos A;) ] 
1 f-{(2S) i + j~, (21;> i C08 'Xi} 2 2 

= (2'71iO" -00 exp (- t /20" ) dt. (21) 

We can show from Equation (21) that 

where 

2 l x 

erf (x) = --r exp (_u2
) du 

7r' 0 
(23) 

and 

erfc (x) = 1 - erf (x). (24) 

The character error rate P2 for a binary CPSK system is, therefore, 
given by 

(25) 

where E[P2 ("D:)] represents the mathematical expectation of the random 
function P 2 ("D:). 

From Equations (22) and (25) we have 

P 2 = !E[erfc {p + P17}]. (26) 

We now note that we can writell , 12 

2 00 l 

erfc [x + z] = erfc [x] + 7r i exp (_x2
) ~ (-1)lH l_1(x) Tr ' (27) 

where Hn (x) represents the Hermite polynomial of order n. The series 
converges for all values of x + z such that 

x + z ~ o. (28) 

From Equations (26) and (27) we have 

* The notation Pr[a < x < b] denotes the probability that the random vari
able x satisfies the inequality a < x < b. It may also be noted that P2("A) is a 
conditional probability conditioned on ~: -
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Let us denote by p-n the nth central moment of '1]. 8 It can then be 
shown that10 

J.tU+l = 0, f, = 0, 1,2, .... (30) 

We, therefore, have 

1 00 21 

P2 = ! erfc (p) + 7r! exp (- p2) tt HU-l(P) (;f,)! J.tu • (31) 

The series given in Equation (31) converges for all values of p and 
R/s such that 

P + PrJ ~ ° for all ~. (32) 

From Equations (13) and (32) we can show that the series converges 
when 

(33) 

where 

(34) 

Equation (34) states that the sum of the normalized amplitudes of all 
the interfering carriers may not exceed the normalized amplitude of 
the desired signal. This is not a very stringent requirement and it is 
almost always satisfied when low error rates are desired. 

Since we also know that'~ 

{.l ± Ri} ~ IT RyK, 
1( i=1 i=1 

(35) 

when Equation (33) is satisfied, we have 

K (Ii) (1 )2K II - ~ - . 
i=1 S 1( 

(36) 

The expression Sjlj denotes the signal-to-interference ratio of the 
jth interfering carrier. 

When there is only one interfering carrier we can show that, 

(37) 

* Equation (35) states that the arithmetic mean of a set of real variables 
is always greater than or equal to its geometric mean. 
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and equation (31) can be written as 

[pRJ" 
P2 = ! erfc (p) + 71"\ exp (-l) ~ H 2l- 1(p) ~!]2. (38) 

The series in equation (38) converges for all signal-to-interference 
ratios such that 

liS ~ 1. (39) 

The values of P2 have been calculated from equation (38) and the 
results are given in graphical form in Fig. 4.* 

Notice that we need to calculate only the even order moments 
P-2n'S of the random variable 'IJ in determining P2 from equation (31). 
Some methods of calculating these moments are given in Appendix A. 

3.2 Error Rates for Quaternary CPSK Systelns 
Let us now consider a 4-phase CPSK system. For this system the 

set of four possible signal phasors and the four optimum decision 
thresholds are shown in Fig. 5. A signal phasor (corresponding to 
k = 1) as disturbed by noise and interference is also shown in Fig. 5. 

For a given set of A/s let us assume that the gaussian noise is rep
resented by a vector from the point G. If the message k = 1 is trans
mitted, an error is made if the received phase angle lies in areas 
marked 1, 2, and 3. The phase angle of the received signal will lie 
in areas marked 1, 2, and 3 if the terminus of the gaussian noise 
vector lies in this area of the plane.14 

We notice that 

and 

GB = (2S)! sin ~ + ± (2li)! cos (~~+ Ai)' (41) 
4 i=l 4J 

Let us denote by l1k1 • k2 , ••• , kn(~) the probability that the terminus 
of the gaussian noise vector lies in area 

* The results obtained in Fig. 4 indicate that the error rates obtained in Refs. 
13, 14, and 15 agree well with those obtained in this paper. 

tThe notation u i=lk. denotes the union of all elements of the set {k1 ,k2 ,· •• ,knJ. 
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Fig. 4 - Error rates for a 2-phase CPSK system with one interferer. 

We can show from Fig. 5 that 

n",(~) = ! erfc [p sin ~ + P t, R, cos (~ + Xi)]' (42) 

n",(~) = ! erfc [p sin ~ + p t, R, sin (~ + Xi)]' (43) 

and 

n,(~) = 1: erfc [p sin ~ + p t, Ri cos (~ + X,)] 
·erfc [p sin ~ + p t, R, sin (~ + Xi)]' (44) 

The probability P4(~) of an error due to noise is, therefore, given by 

(45) 

The probability of an error due to noise and interference is therefore 
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QUADRATURE AXIS 
/ 

/ 
/ 

\ 
DECISION 

THRESHOLDS 

IN-PHASE AXIS 

Fig. 5 - Phasor representation of CPSK signals for m = 4. I" and I" are two 
orthogonal components of gaussian noise. 

given by 

(46) 

From equations (27), and (42) through (46) we can show that 

p, = erfc [p sin ~J -1 erfc' [p sin ~J 

+ ~ exp (- p' sin' ~){2 - erfc [p sin ~J} 

(47) 

{ 
K )2i .' L: R I sin 01 • 

1-1 
(48) 
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For a given set of R/s, jJ.;t,2;'S may be evaluated from equation (48). 
For K = 1, we can show that 

* _ R2 (H8) (2£)! (2s)! (49) 
jJ.U,2s - 22 ((+8) t! s! (t + s)! 

For I{ = 1, we have calculated P4 from equation (47) and the 
results are presented in Fig. 6. 

VVe can again show that the series given in equation (47) con
verges for all values of p and Ris such that 

• 7r 1 
n ~ Sill 4 = \1"2' (50) 

For I{ = 1, equation (50) becomes 

S/I ~ 2. (51) 

Equation (50) is usually satisfied by systems encountered in practice. 
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Fig. 6 - Error rates for a 4-phase CPSK system with one interferer. 
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3.3 Error Rates for Multilevel CPSK Systems 

In this section we shall investigate the performance of a multilevel 
(m ~ 3) CPSK Systems and indicate a method in which an exact 
expression can be obtained for the probability of error of the system. 
This exact expression is a very complicated function of signal-to-noise 
ratio and R/s; we do not obtain this expression in this paper. However, 
we obtain upper and lower bounds to Pm and show that the difference 
between these two bounds is a monotonically decreasing function of 
p, m, and signal-to-interference ratios. For K = 1, m ~ 4, p2 ~ 5 dB, and 
SjI ~ 20 dB, we show that this difference is less than 5 percent of 
the lower bound, and hence the upper bound is a good approximation 
to Pm when low error rates are desired. 

A signal phasor corresponding to k = 0 as disturbed by noise and 
interference is shown in Fig. 7. For a given set of A/s let us again assume 
that random gaussian noise is represented by a vector from the point 
G shown in Fig. 7. If the message k = 0 is transmitted, an error is 
made if the terminus of the noise vector lies in areas marked 1, 2, and 3. 

We can show that * 

TI1 •2(6) = ! erfc [p sin ~ + p t Ri sin (~ - Ai)J (52) 
m 1=1 m 

and 

TI2 •3(6) = ! erfc [p sin ~ + p t Ri sin (~ + Ai)J. (53) 
m 1=1 m 

The probability of error due to noise is, therefore, given by 

(54) 

By looking at Fig. 7 we can see that no simple expression can be 
obtained for TI2 (6) (except when m = 4). TI2 (6) denotes the probability 
that the terminus of the gaussian noise vector lies in area 2; we shall 
now obtain upper and lower bounds to TI2 (6). Assume that 

(55) 

* Note that 

GA = (28)' sin ~ + ± (2Ii)! sin (~ - Ai) 
m i-I m 

and 



PHASE-SHIFT KEYED SYSTEMS 757 

Fig. 7 - Phasor representation of CPSK signals for m = 8. I .. and Iv are the 
in-phase and quadrature components of gaussian noise. 

so that nl.2(~) and n2.3(~) are nonnegative for all values of~. If equa
tion (55) is satisfied, it is easy to see (see Fig. 7) that 

for all ~, (56) 

and n2(~) reaches its maximum when* 
K 

7J = - I: Ri = - n. (57) 
;=1 

For this value of 7J it can be shown (see Fig. 8) that 

1 1-110 1-<11+110) tan '!rIm 
n2(~) = -2 exp ( - y2/2/i) dy exp ( - x2 /2(i) dx 

~U -~ 0 

or 

(58) 

where 

Yo (59) 

Since we always have 

o ~ exp (- X
2 /2u2

) ~ 1 for all real x, (60) 

* We can show that 7] = -0 when all hi's are odd multiples of 71". 
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L--- yo ---

Fig. 8- Computation of lower bound to Pm. 

we have 

tan 7r/m 100 
2 2 II2(~) ~ 2 (y - Yo) exp (-y /2u ) dy. 

7rU 110 

(61) 

Equation (61) can be simplified to* 

. [1 - (7r) !p(l - n) exp [p2(1 - n)2] erfc {p(l - n)}]. (62) 

From equations (54), (56), and (62) we have 

IIl.2(~) + IIl.3(~) - Qmo ~ P m(~) ~ IIl.2(~) + IIl.3(~)' (63) 

Since 

Pm = E[P m(~)], (64) 

we can show from equations (52), (53), (55), and (63) that 

Qm - QmO ~ Pm ~ Qm (65) 

where 

2 
( ) 

00 H U - 1(p sin ~) 
2 '2

7r '"" m U + (7r)! exp - p sm m ~ (2C) ! p J.l.u • (66) 

* For large values of p and small values of 0, Qmo is approximately equal to 

tan 7r/m exp [- /(1 - n)2] 
27r /(1 - n)2 
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The series given in equation (66) converges if equation (55) is 
satisfied, or if 

n ~ sin~· - m (67) 

When low error rates are desired, equation (67) must be satisfied. 
Equation (65) gives an upper and a lower bound to Pm; as can be 

seen from equation (62) the difference QmO between these two bounds 
is a monotonically decreasing function of p, m, and signal-to-inter
ference ratios. From equation (65) we have 

(68) 

For K = 1, Rl = To, and for m = 4, 8, and 16, we have plotted in 
Fig. 9 Qmo/(Qm - Qmo) as a function of p2. From Fig. 9 we see that 
Qmo/(Qm - Qmo) is less than 5 percent for / ~ 5 dB and for m ~ 4. 
We can, therefore, use Qm as a good approximation to Pm for high values 
of signal-to-noise ratio (p2 ~ 5 dB) and for high values of signal-to
interference ratio (I/Rl ~ 10 dB). 

In these cases we then have 

Pm ~ erfc (p sin ~) 

2 
( ) 

co H 2k-l(P sin ...!) 
2 • 2 7r ~ m 2k ( + (7r)t exp - p sm m·~ (2k)! p JL2k • 69) 

For K = 1, and for m = 8 and 16, the values of Pm obtained from 
equation (69) are given in Figs. 10 and 11. The error made in this 
a pproxima tion can be estimated from equation (68). 

IV. ERROR RATE AS A FUNCTION OF NUMBER OF INTERFERERS 

Let us now investigate how Pm varies as a function of K for a total 
given interference power. Let us assume that the total interference 
power is some number SL2 where 

(70) 

This power SL2 can be distributed among the K interferers in a 
variety of ways; everyone of these distributions will in general lead 
to a different character error rate of the system. Let us find out those 
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Fig. 9-Qmo/(Qm - Qmo) as a function of p. 

distributions of power (if they exist) which make this character error 
rate a maximum or a minimum. 

4.1 Error Rates for K Interferers 

Let us first consider the case when p» 1 and n « 1. In this case the 
series corresponding to Pm (or Qm) converges very rapidly; let us say 
that the first N terms of the series are sufficient to evaluate Pm to the 
desired degree of accuracy. 

For all t and z, we have 

H 2t- 1 (z) = 2zH2t_ 2 (z) - 2 (2t - 2)H2t- a(z). (71) 

From equation (71) we can show that 

H 2i - 1(P sin ~) ~ 0, 1 ~ j ~ N, (72) 
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2N -! 
p~ , 

• 7r 
Slll
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(73) 

If Equations (72) and (73) are satisfied notice from Equations (31) 
unci (69) that Pm's are monotonically increasing functions of J.l.21'S, 

t ~ 1. For a given J.l.2 , it can be shown from Equation (13) that J.l.2Z'S 

t ~ 2, reach their minimum when n is minimum and they reach their 
maximum when n is maximum. 

We can then say that Pm's (or Qm'S) attain their minimum when n 
is minimum and that they are at their maximum when n is maximum. 

From Figs. 3, 5, and 7 this seems to be true for all values of p and n 
which satisfy Equation (55). 

Let us now find out when n is minimum for a given value of signal-

5 

2 

>- 2 
f-

:! 10- 6 
[) 

Q1j 5 
o 
a: 
D... 

10 -7 

5 

10- 10 

~ 1\ \ \\ 1\ 
\~\ \ 1\ \ 

f\ 

\\' \ \ \ 
~ ~\ \ 1\ 

\ 
\ 

1\\ \ \ \ \ 
\\ 1\ \ ' \ 

f = 00\' ~\ \ 1\ 1\ 
',\ \ \ \ \ 
1\ \ r\ ' \ 

~ 1'\ \ 1\ 
\ \ \,8 

1\\~5 I\o,~ 
\ ' \ \ \ 

\ 1\ \ \\ 1\ \ 1\ \ 

\\ \ \ 

K= I 

1\5 dB 

\ 
\ 

1\ 
\ 

\ 
\ 

\ f\ 
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

SIGNAL-TO-NOISE RATIO IN DECIBELS 

Fig. 10 - Error rates for an 8-phasc CPSK system with one interferer. 
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Fig. 11- Error rates for a 16-phase CPSK system with one interferer. 

to-interference ratio. The signal-to-interference ratio 1/L2 is given by 

Clearly 0 is minimum when 

and 

L2 = ± Ii. 
i=l S 

1 ~ j ~ K, 

1 ~ f, ~ K, f, ~ j. 

(74) 

(75) 

(76) 

We can then say that the character error rate Pm is minimum when the 
total interference power is concentrated in a single interferer. 

Now from equations (14), (34) and (74), 0 is a maximum when 

a [K (1.)' K (I')J - L: 2 - € L: 2 = 0, 
ali i=l S i=l S 

1 ~ j ~ K. (77) 
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€ is a constant and is the Lagrange multiplier used in finding the 
extremum of n. 

Solving equation (77) we observe that n is a maximum or that 
Pm is a maximum when 

(78) 

or that the total interference power is equally distributed among the 
I( interferers. 

Let us now assume that K is a variable number. It is clear from 
equation (78) that [P m]max is a monotonically increasing function of 
1(, 

4.2 Error Rates for a Large Number of I nterferers* 

Let us now consider the limiting case when K goes to infinity and 

(79) 

We can show10 that the probability distribution function oft 

K 

yet) = L (2Ij)t cos {Wit + 0i + J.ti} (80) 
i=1 

as K goes to infinity approaches that of gaussian noise with mean 
zero and variance SL2 under certain conditions. 

In this case we have from equation (4) 

rN(t) = (2S)! cos (wot + 8) + yet) + net). (81) 

Since y (t) and n(t) are independent gaussian random variables their 
sum 

bet) = yet) + net) (82) 

is also a random gaussian variable with mean zero and variance SL2 
+ (T2. 

From equations (81) and (82) we can write 

rN(t) = (2S)! cos (wot + 8) + bet) 

where b (t) is a gaussian random variable. 

(83) 

* The results of this section are applicable for an~ signal-to-noise ratio and 
any signal-to-interference ratio. 

t Ruthroff has shown that for K ~ 50 the distribution of y(t) can be considered 
to be gaussian in practice for the computation of distortion in PM systems.16 
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The case where rN(t) can be described by equation (83) has been 
considered in detail in Ref. 17 ;{(o we can easily determine the deteriora
tion in performance produced by interference from the results pre
sented in that paper. For example, suppose that 1n = 4, S/a2 = 16 dB, 
and L2 = -16 dB. Clearly 

2 

~ + L2 
S 

and P 4 from Ref. 17 is given by 

-13 dB 

P4 = 7.9 X 10-6
• 

(84) 

(85) 

For the calculation of the effect of interference in CPSK systems, 
we note that we have not shown the validity of the gaussian approxi
mation of y (t) for I( » 1. However, this assumption seems to be 
justified for large signal-to-noise ratios and small interference-to
signal ratios.15 

In conclusion, this section gives methods of evaluating character 
error rates of CPSK systems for all values of 1n and for all values of 
IL It shows that the error rate Pm is minimum when all the inter
ference power is concentrated in a single interferer and that it attains 
its maximum value [Pm]max when the interference power is equally 
distributed amongst all the interferers. We further show that [Pm]max 
is a monotonically increasing function of the number I( of interferers. 
'Ve also show that the case, K going to infinity, can be treated and that 
the deterioration in performance produced by interference can be de
termined. 

V. CONCLUSIONS 

A method to evaluate the character error rates of CPSK systems 
has been presented in this paper. The received signal is assumed to be 
corrupted by both interference and random gaussian noise. 'Vhen the 
number of interferers is very large it can be shown that the inter
ference and random gaussian noise can be combined together to give 
rise to an equivalent noise source having gaussian properties. The 
variance of this random variable is the sum of variance of random 
gaussian noise and total interference power. In this case the analysis 
of the CPSK system can be done by methods presented in Ref. 17. 

When K is a finite number and when 1n = 2 or 4, exact expressions 

* The results presented in this paper for 8/1 = 00 are also sufficient to deter
mine Pm for a large number of interferers. 
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are given for the probability of error Pm. When m ~ 3, upper and lower 
bounds to Pm are derived. We show that the difference between these 
two bounds is a monotonically decreasing function of signal-to-noise 
ratio /, signal-to-interference ratio I/L2, and the number m of phases 
used in the system. For K = 1, m ~ 4, p2 ~ 5 dB, and 1/ Rl ~ 10 dB 
we show that this difference is less than 5 per cent, and that the upper 
bound can be used as a good approximation to Pm . 

We then show that for any m-phase CPSK system the character 
error rates can be expressed in terms of the central moments of a 
certain random variable 1] and that they can be calculated to any 
desired degree of accuracy by using a set of tables or by using a 
digital computer. 

For a total given interference power we show that the character 
error rate Pm attains its minimum when all the power is concentrated 
in a single interferer, and that it reaches its maximum [Pm]max when 
the power is equally distributed among all the K interferers. It is also 
shown that [Pm]max is a monotonically increasing function of K. 

The cases of K = 1, m = 2,4, 8, and 16, have been treated in some 
detail and the results are given in graphical form. The required signal
to-noise ratio for any value of signal-to-interference ratio can be 
determined from these figures. 

The usefulness of the presented results is that they provide the 
designer with some relatively simple expressions with which to eval
uate the performance of any given CPSK system with interference 
and random gaussian noise. The only quantities he must have at his 
disposal are the central moments of a certain random variable 1] 

defined in terms of the K interfering carriers. 
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APPENDIX 

Evaluation of Central Moments of 1] 

In the computation of character error rates for CPSK systems it is 
necessary to calculate the even order moments of the random variable 
1]; we shall give in this section two alternate methods to evaluate these 
moments. 
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By definition fL2n is given by 

1 12,.. 12,.. 12,.. [ K J2n f.l2n = --K dOl d02 ... dOK L Ri cos 0i . 
(271') 0 0 0 i=l 

(86) 

By the multinomial theorem 

(87) 

where n/s are positive integers such that 
K 

Lni = 2n. (88) 
i=l 

Since O/s are statistically independent of each other, and smce 
JL2l+1 = 0 for all .c, we have from Equations (86) and (87) * 

(2n) ! K (nt) ! 

L fr n,! n (R,),' 2·,[(nt ) 'J2 , 
t=l 2 . 

f.l2n = (89) 

where nt's are a set of even positive integers satisfying Equation (88). 
Even though equation (89) gives an exact expression to evaluate 

fL2n'S, it can-be rather tedious ,to' evaluate ft2n'S from equation (89) 
for large val~es of n and Ii. We shall therefore give an alternate 
method to evaluate the central moments of the random variable 'f}. 

It can be shown that the probability density function P71('f}) of the 
random variable 'f} can be expressed aslO 

p,(~) = 2
1
n [1 + 2 t cos "';~ n Jo(S1r~;)} (90) 

The 2nth moment of 'f} canbe represented as 

f.l2~· r= fn lnpTJ(z) dz. 
-0 

(91) 

From equations (90) and (91) we can show that 

= Q2n( 1 + 2 ~ (_l)l+l 
f.l2n 2n + 1 ~ 

.{[g Jo(C1r~;)J t, (-I)' [2n _ 2~2~!ll! (C1r)2k})· (92) 

---* For K = 1, equation (89) reduces to equation (37). 
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It can be seen that the infinite series appearing in equation (92) 
converges rapidly for all values of R/s; we need take only a finite 
number of terms from equation (92) to estimate P-2n'S. It is, therefore, 
easier to evaluate P-2n'S from equation (92) than from equation (89) 
when there are a large number of interferers, and we have to take a 
large number of terms in estimating Pm. 
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Spectral Density Bounds of a PM Wave 

By V. K. PRABHU and H. E. ROWE 

(Manuscript received November 5, 1968) 

In this paper we derive upper and lower bounds of the spectrum of a 
sinusoidal carrier phase modulated by gaussian noise having a rectangular 
power spectrum. It has been found in practice that such a random process 
adequately simulates for some purposes, a frequency division multiplex 
signal, a composite speech signal, and so on. We show that these upper and 
lower bounds of the spectrum are very close to each other if the root mean 
square phase deviation of the carrier is even moderately high. Also, a simple 
method called the saddle-point method can be used at all frequencies f to 
estimate the spectrum with less than ten percent error. We also show that 
the results obtained from the quasistatic approximation, often used in 
such cases, are too small for large f, and that this low-frequency approxi
mation cannot be used in cases where the behavior on the tails is 
of importance. 

1. INTRODUCTION 

It has been found in practice that a bandlimited random gaussian 
noise having a rectangular power spectrum adequately simulates for 
some purposes a wideband composite speech signal, a frequency divi
sion multiplex baseband signal consisting of a group of single side
band carrier telephone channels, and so on.1 In the design of commu
nication systems, the spectral characteristics of a sinusoidal carrier 
phase modulated by such a baseband signal are of great interest; 
various methods have been used in recent years to estimate this 
spectrum for large and small values of mean square phase deviation 
of the wave, both close to and far from the carrier frequency (that is, 
in the principal part of the spectrum and far down on the tails of the 
spectrum respectively) .1-8 

It has been shown that the spectrum may be expanded as an 
infinite series of weighted convolution terms.2 ,5,7,8 This series may 
be used to estimate the principal part of the spectrum (close to the 

769 
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carrier) for small or moderate index (that is, small or moderate values 
of rms phase deviation). However, for large index, or far down on 
the tails for small index, too many terms would have to be included 
if this series is to be used directly. 

The simplest analysis-often called the quasistatic approxima
tion-yields a gaussian spectrum for large-index angle-modulated 
waves2

.4-8 in most cases.~~ This approximation fails far out on the 
tails of the spectrum; a careful investigation has been given in only 
a few cases.7 We obtain below upper and lower bounds for the spec
trum of an angle-modulated wave with white, band-limited phase 
modulation; far out on the tails the spectrum far exceeds that pre
dicted by the quasistatic approximation. 

This problem is of interest in considering interference between 
two (or more) phase modulation (PM) systems in neighboring loca
tions. Consider the following situation. In the frequency bands above 
10 GHz, where the signal attenuation due to rain storms could be very 
severe, close spacings of the repeaters are almost mandatory for 
reliable communication from point to point.9 In such cases the prob
lem of interference between neighboring systems may be much more 
important than the problem of noise; the system may thus be in
terference limited. In order to combat this interference it is very 
likely that broadband modulation techniques like PM [or frequency 
modulation (FM)] or pulse code modulation (PCM) will have to be 
used. In order to investigate the effect of this interference between two 
co-channel PM (or FM) waves it is necessary to evaluate the spec
trum of a PM wave, so that the parameters (such as rms phase 
deviations) of the two PM systems can be properly chosen to keep 

'the interchannel interference below a certain desired level. 
We first obtain an expression for the covariance function of the 

PM wave. From this covariance function we then derive an expres
sion for the spectrum of the PM wave and show that it can be 
expressed as an infinite series. This series has been evaluated for 
certain values of rms phase deviation N.6 

We then show that the autocorrelation function of the PM wave 
is analytic at all points in the finite part of the complex plane deter
mined by the argument of the autocorrelation function. In determin
ing the Fourier transform of the autocorrelation function we change 
the path of integrationt so that the contour is very close to the path 

* For exceptional cases see Ref. 7, Ch. 4, pp. 131-135. 
t The method used in this paper to evaluate the spectrum is a close relative 

of the method of steepest descent (or the saddle-point method) used in evaluat
ing certain kinds of integrals.1 , 7, 10, 11, 12 
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of steepest descent of the integrand. We then divide this contour into 
four (or five) disjoint sections and show that the major contribution 
to the integral comes from one of these sections. 

We next derive upper and lower bounds to the spectrum Sv(f) of the 
PM wave and show that these bounds are very close for all f and for all 
values of rms phase deviation N ~ 5. For N ~ (10)! we show that the 
spectrum can be evaluated by this saddle-point method in a very 
simple manner with a very small fractional error (less than 10 percent), 
and we give this method. 

We finally compare the quasistatic approximation to the saddle
point approximation. For large values of frequency f, we show that 
the quasistatic approximation gives too small a value for the spec
trum, and that it cannot be used in cases where the spectral behavior 
on the tails is of importance. However, as we show, the saddle-point 
method can be used in all cases in which N is moderately high. 

In conclusion, this paper gives a simple method of evaluating the 
spectrum of a sinusoidal carrier phase modulated by gaussian noise 
having a rectangular power spectrum and having a moderately high 
modulation index. 

II. SPECTRAL ANALYSIS OF PM WAVES WITH RANDOM PHASE MODULATION 

A sinusoidal wave of constant-amplitude phase modulated by a 
signal n (t) may be written as 

wet) = A cos [wot + net) + 0], (1) 

where A is the amplitude of the wave, fo = wo/271" is the carrier fre
quency of the wave, and 0 is a random variable with probability density* 

{
l 0 ;£ 0 < 271" 

71"0(0) = 271"' 

0, otherwise. 

(2) 

Assume that n(t) is a stationary bandlimited white gaussian ran
dom process with mean zero and variance N2.t Its spectral density 

* If n(t) is a stationary random process the introduction of random variable 
() in equation (1) makes W(t) a random process which is at least wide-sense 
stationary so that its spectrum can be calculated from the Wiener-Khintchine 
theorem.2

•
7 If we do not have () in equation (1), W(t) is no longer (even wide

sense) stationary, and the spectrum of W(t) is usually calculated from the time 
autocorrelation function of W(t).7 The results obtained in the two cases are 
identical. 

t The parameter N represents the rms phase deviation (or modulation index) 
of the PM wave given in equation (1). 
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Sn (j) can be represented (see Fig. 1) as 

I! 1< W, (3) 
otherwise. 

Such a random process n(t), is often used to simulate a multiplex 
signal, a composite speech signal, and so on.1 , 5 

We can show from equation (3) that the covariance function Rn(T) 
of n (t) is given by 

R ( ) = N 2 sin 27r W T • 

n T 27rWT ' (4) 

this function Rn(T) is shown in Fig. 2. Since net) is a stationary gaus
sian random process it can be shown that W (t) is at least wide-sense 
stationary and that its covariance function RlY (T) can be represented 
as2 ,7 

A2 
RW(T) = 2" exp [-RN(O)] exp [RN(T)] cos WoT. (5) 

From the Wiener-Khintchine theorem, and from equation (5), the 
spectrum SlY (j) of W (t) can be written as 

or 

where 

Sw(!) = i: RW(T) exp [-j27rfTJ dr, 

SPECTRAL DENSITY 
IN RAD2/Hz 

-w W FREQUENCY IN Hz 

Fig. 1-Spectral density of phase modulation. 

(6) 

(7) 
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Fig. 2-Covariance function of n(t). Since Rn(T) is an even function of T we 
only show Rn(T) for T ~ o. 

From equations (4) and (8) we have 

Sv(f) ~ 2"'~ ( exp {-N'[ 1 - si~ p]} exp HAp] dp, (9) 
where 

f 
w· 

III. SERIES EXPANSION OF SPECTRUM FOR GAUSSIAN MODULATION 

The integral in Equation (9) can be evaluated by expanding 

exp { - N{ 1 - s~ P ]} 

into a Taylor series; integrating term by term we can write{f 

{ 2[ sin p]} 2 00 N U 
(sin p) t exp -N 1 - -- = exp [-NJ L-, -- . 

P t=o t. P 

(10) 

(11) 

* We note that L~ -0 xn/n! converges uniformly to exp [x] for all finite values of x. 
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From equations (9) and (11) we have i
< 

By(/) = exp [_N2] 

{
I 00 N

U 
100 (sin p)l } 

. 0(/) + 271"W t; T! -00 P exp [-jAp] dp, 

where 0 (f) is the Dirac delta (unit impulse) function. 
We now note that 

100 sin p { -- exp [-jAp] dp = FI(A) = 71", 
-00 P ° , 

1 A 1 < 1, 

otherwise, 
or 

FI(A) = 71"[U-I(A + 1) - U-I(A - 1)], 

where U-l (x) is the unit step function defined by 

U-I(X) = {I, 
0, 

and that1 , 13 

100 (sinp)l 
-00 p exp [-jAp] dp = Ft(A) 

f (_I)k (I AI + t - 2k)t-1 , 
k=O k!·(t - k)! 

0, 

where 

x> 0, 

x < 0, 

° ~ 1 A 1 < t, t ~ 2, 

otherwise, 

and INT[x] represents the largest integer not greater than x. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

It can be shown that FI(A), t ~ 2 is a continuous function of A and 
that FI (A) is discontinuous at A = 1. For large t, we can show from the 
central-limit theoremt that2 

(6 )t [3A2J FI(A) "-' ; exp -2t . (18) 

* The term containing aC!) in equation (12) represents the dc component of By (!). 

(
sin P] I . t See pp. 362-366 of Ref. 2. It can be shown that p can be mterpreted 

as the characteristic function of the sum n of t independent random variables with 
identical uniform probability distributions.5 The function F leX) /27r therefore 
represents the probability density function of n. Alternatively FICX) is the ct - 1)
fold convolution of the fiat spectrum with itself. 
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From equations (12), (13), and (16) we can write 

[ 
1 co N

2l J Sv(f) = exp [_N2] o(f) + 27rW t; T! Flf/W) . (19) 

For N 2 = 6, we have calculated the spectrum from equation (19) 
and the results are shown in Fig. 3. Notice that the spectral density is 
discontinuous at f/W = l. 

For N 2 « 1 (low-index modulation), we have from (19) 

Sv(f) ~ Svo(f) = exp [-N'{ o(f) + 2~~ F,(flw) J ' (20) 

and the error in this approximation may be investigated from equations 
(9) and (20).* The approximation given in equation (20) represents the 
low-index approximation for the spectrum; this result has been obtained 
by many authors.3

-
6 

The series given in equation (19) may be used to estimate the princi
pal part of the spectrum (close to the carrier) for small or moderate 
index, since only a small number of terms need to be included in the 
partial sum. However, for large N 2

, or far down on the tails of the 
spectrum for small N 2

, too many terms would have to be included to 
estimate the spectral density. In fact for N 2 » 1, or for f /W » 1, 
the degree of complexity required in estimating Sv(f) from equation 
(19) becomes inordinately high. 

When N 2 » 1, and for low frequencies, several authors have givenl
-

7 

the quasistatic approximation t 

2 1 ( 3 )! [ 3 (f )2J Sv(f) ~ exp (-N) o(f) + NW 27r exp - 2N2 W (21) 

for the spectrum. The question arises whether equation (21) can 
be used for large f. Since RlV (T) is infinitely differentiable there is 
no simple way (known to the authors) of investigating, for large j, 
the error is this approximation.7 

In the problem of interference between two neighboring channels 
it is necessary to evaluate Sv (f) for large j so that the effect of this 
interference can be determined. As we shall show later on in this 
paper equation (21) gives too small values to Sv (f) for large j; it is 
therefore essential to have a simple and elegant method (different 
from the series method) to evaluate Sv(f) for large j and for large N2. 

* At times the low-index approximation for the spectrum is written as exp 
[-N2]o(f) + (N2/21l"W)F1(f/W). For N2 « 1, exp [-N2] ~ 1. 

t Note that mean square frequency deviation is N 2W 2/3. 
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Fig. 3 - Spectral density of a PM wave for N 2 = 6. The discrete part of Sv(f) 
for f = 0 is not shown in this figure. Note the discontinuity in the spectrum at 
f/W = 1. 

Readers who might be interested in the final results without wishing 
to work through the detailed analysis, might skip Section IV of this 
paper. 

IV. SPECTRUM EVALUATION BY CONTOUR INTEGRATION 

Let us now consider the integral given in equation (9). Since 8 (f) 
and Fl (f/W) are discontinuous functions of j, let us define an integrali~ 

sm ~ 1: exp [-N'l{ exp [ N' s~p ] - (1 + N' s~p)} cos Xp dp 

* In Ref. 14 this integral has been studied by Lewin for A = 0 and A = 1. It 
also occurs in several limiting cases in Ref. 1. It is sometimes referred to by 
the name Lewin's integraP 
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or 

S(f) I: exp [-N'l{exp [N,Si~pJ - (1 + N'Si~P)} 
. exp (- j'Ap) dp. (22) 

Since all Fe(f), .e ~ 2 are continuous, it can be shown from equations 
(19), and (22) that Set) is a continuous function of f. 

From equations (9), (19), and (22) we can then write{' 

Sv(f) = exp (-N'l{ Ii(f) + ~ [u-,(f + Wl - u-,(f - Wll} 

1 + 271'W Re S(f). (23) 

Notice from equation (22) that the integration is carried out along 
the real axis, and that for large I A I (or It I/W), the final factor of the 
integrand exp (-jAp) is a very rapidly oscillating function of p. From 
Refs. 7, 10-13 notice that in such circumstances the method of steep
est descent (or saddle-point method), or one of its close relatives, is 
often useful to get an approximate expression for the integral; we 
shall now apply such a method to evaluate Sv (f). 

In applying this method to the evaluation of an integral with a 
real variable of integration, we must first be able to regard the inte
gral as a contour integral along the real axis of the complex plane, 
with an analytic integrand. We note that the integrand in equation 
(22) is an analytic function of p, and that it has no singularities in 
the finite part of the complex plane (defined by p). From Cauchy's 
theorem it therefore follows that the contour of integration can be 
arbitrarily deformed as long as one end is at p = - 00 + jO and the 
other at p = 00 + jO.u 

In making use of the method of steepest descent the contour must 
be deformed so that the phase of the integrand remains constant (or 
almost so), while the magnitude of the integrand is small except in 
one or more localized regions, where it varies rapidly. This is usually 
accomplished by deforming the contour so that it goes through one 
or more saddle points. In other cases there may be some additional 
constraints on the contour;7 then only a portion of the path of steep-

* Re z and Im z denote respectively the real and imaginary parts of complex 
number z. 
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est descent through a saddle point may be used in finding the integral, 
and the deformed contour may not actually reach the saddle point. 
In this case the original integral is usually reduced to a virtually real 
integral whose integrand behaves sufficiently simply on the modified 
path of integration so that an approximate evaluation of the integral 
with rigorous (upper and lower) bounds on the error may be obtained. 

Departures from the strict method of steepest descent occur in this 
paper in that approximate paths of steepest descent are chosen. Al
though not quite optimum, they are analytically tractable and serve 
to give useful bounds on the integral under consideration. 

Consider equation (22). Since the integrand in equation (22) is 
an analytic function of p, let us assume that p = x + jy is a complex 
variable, and let us deform the contour so as to obtain the path of 
steepest descent. Since the integrand behaves properly on the contour 
for large I pi, it is clear that the contour of integration can be de
formed in quite a general way in the complex p-plane without modify
ing the value of the integral. 

From equation (22) it can be shown that the major portion of the 
integrand 

R(:P) '" exp [-N'] exp [N'Si~P ] exp [jXp] (24) 

has a saddle point on the imaginary axis, with the path of steepest 
descent parallel to the real axis at this point. The location Ps = jys of 
this saddle point is given by 

cosh y. sinh y. A f 
-y-.- - ---y; = N 2 = N 2W ; (25) 

for a given f/N2W, equation (25) can be solved numerically to give 
the required Ys. We plot Ys as a function of f/N2W in Fig. 4, and In 
R (jys) in Fig. 5. 

Let us now deform the contour so that it passes through the point 
Ps = jys and is parallel to the real axis at this point. From equation 
(22) we then have 

S(/) = exp [ -2N'( cosh' ~ - Sin:' y,) ] Re I (26) 

where 
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I [ N 2 sinh Ya] =exp - --
Ys 

. fco {exp [N2 sin (x +. jY8)] _ [1 + N2 sin (x +. jYs)]} 
-co x + JY s X + JY s 

. exp [jAX] dx. (27) 

Rewriting equation (27) 

(28) 

where 

G(x, Y,) == exp [-QR(X, Ys)] exp [jQI(X, Ys)] 

_ exp [_N2 sinh YS]{l + N2 sin (x +. jY8)} exp (jAX), (29) 
Ys x + JY, 

where QR(X, Ys) and Qr(x, Ys) are real and 

~ 
~ 

-12 

Q (x ) = N2{Sinh Y. _ Re [sin (x +. jYs)]} 
R , Y 8 Y 8 X + JY s 
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Fig. 5-Value of -[In R(jy.)]/(2N2). 

1 _ _ Y_s_sin x 
tanh Y s x + 1 - cos x 

Q ( ) = N2 sinh Ys x 2 Y; x
2 

R x, Ys Ys 1 + (X/y.)2 

Q (X y) = N 2 1m Isin (x + jys)] + AX 
r I • L x + jys I 

]Sinh Ys cos x - y. cosh y.sin x [sh . h ]} 
= N 21 2 2 x + ~ - sm 2 y. X. 

X + y. y. y, 

(31) 

(32) 

(33) 

The functions QR(X, Y.) and Qr(X, Y.) have been plotted in Fig. 6 for 
a set of values of y. . 

Since we are primarily interested in the high-index case let us assume 
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that N 2 » 1. From equations (27)-(33) we now observe that the 
principal contribution to the integral I comes from small x. For small x, 

(34) 

It can be shown (see Figs. 6, 7, and Appendix A) that QR(X, Ys) is a 
monotonically increasing function of x for 0 ~ x ~ 7r' and that it oscil
lates for values of x > 7r'. For large x, 
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Fig. 6-Functions QR(X, Y.) and Qr(x, Ys). 
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Fig. 7 - Function QR(X, Y8)' From this figure, it can be seen that QR(X, Ys) is a 
monotonically increasing function of x for 0 ~ x ~ 71'. 

G() [ N 2 sinh Y8] 
X, Y. ~ exp - ---

Y. 

{ [ 
2 h s in X] [·N2. h cos X] . exp N cos Y. -x- exp J sm Y. -x-

[1 + N 2( h sin X + . . h cos X)]} p .. x (35) - cos Y 8 -x- J sm Y 8 -x- e I 

and we note that the first and second terms both have small and 
almost equal magnitude, and almost opposite phase angle, so that 
they almost cancel. As I X I ~ 00 the cancellation becomes exact. For 
these reasons it is convenient to divide the range of integration in 
equation (27) into at least four regions: 

o < I X I < XI, small I X I, 
XI < I X I < 7r, intermediate I X I, 
7r< I X I < X2 , intermediate I X I, (36) 

X2 < I X I < 00, large I X I· 
From equations (25), (30), and (32) we can show that" 

* These expressions for QR and QI may be obtained from the Taylor series 
expansion of the function [sin (x + jys)]/(x + jys). 
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00 2l 

QR(X, YB) ==; N
2 t.; (-I)l- IAu (~£)!' (37) 

and 

00 U+l 

QI(X, Ys) = N
2 t.; (-1) HI Au+! (2: + I)! ' (38) 

where 

A _ sinh Y. 
o - Y. ' 

(39) 

(40) 

Au = sinh Y8 _ 2£ AU-I, 
Y8 Y8 

£=1,2,3,···, (41) 

and 

A
2l

+
1 

= cosh Ys _ (2£ + 1) Ayu , 
Y8 8 

£=1,2,3,··· (42) 

It can also be shown that 

A 2k-
1 

= f 1 ( y;l+l ) , ' 
l=O 2£ + 2k + 1 2£ + 1 . 

k = 1,2,3, ... , (43) 

and 

k = 1,2,3, .... (44) 

Since the spectrum is an even function of f we can assume without 
loss of generality that 

y. ~ o. (45) 

For Ys ~ 0, from equations (43) and (44) all A/s are monotonically 
increasing functions of Ys , and we can further show that 

o < A 2(k+l) < A2k , k = 0,1,2, ... , (46) 
and 

£ = 1,2,3,-··· (47) 

For large Ys (for large f /W), it can also be proved that 

exp (Y8) 
Au ~ A U - 1 ~ 2 . 

Y8 
(48) 
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Since it appears that the main contribution to the integral I comes 
from the region of small I x I, assume that I Xl I is small and that 

(49) 

where 

(50) 

and 

IR = [~Xl G(X, YS) dx + i~ G(x, Ys) dx. (51) 

For small I X I, we have from equations (37) and (38) 

QR(X) ~ N 2!A2X2, (52) 

and 

QI(X) ~ N2iA3X3. (53) 

Let us choose* Xl so that exp (_!N2A2X2) falls to exp (-5) ~ 0.0067 
for X = Xl ,t or that 

( 
10 )! 

Xl = N2A2 . (54) 

Since it can be shown from equations (39)-(44) that the minimum 
value of A2 is * (at Ys = 0), 

(55) 

Assume that 

(56) 

so that exp { -QR(X, Ys)} is a monotonically decreasing function of X for 
o ~ X ~ Xl • Equation (56) will be satisfied for all Ys if 

N 2 ~ 3~ ~ 3.039. 
7r 

(57) 

Since we are primarily interested in the high-index case, this is not 
a significant restriction. 

* See equation (34). 
t While there is some degree of arbitrariness in such choices, the bounds 

obtained are not too sensitive to small variations in the value of Xl, X2, and so on. 
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. < 
SIn x = x, O~x< 00, 

785 

(58) 

1 
sin (x +. ,iY.) 1_ (sin

2 
x + sinh

2 
Y.)! < (X2 + sinh

2Jl!)!. (59) 
x + JY 8 - (x 2 + Y;)! = x2 + Y; 

Since (sinh Y8)/(YB) ~ 1, it can be proved from equation (59) that 

1 

sin (x +. ,iY.) 1 ~ sinh Y.. (60) 
x + JY8 Y8 

We can show from equations (29), (50), and (60) that 

I II I < 2 iX1 
{exp [-QR(X, Y8)] + H(x, Y8)} dx, (61) 

where 

H(x, Y.) = exp [ -N' Sin~ y.J[ 1 + N' sin~ y1 (62) 

From equation (37) 

Q ( ) 2{1 A 2 1 A 4 1 A 6[ 61 As 2J 
R x, y 8 = N "2 2X - 24 4X + 61 6X 1 - 81 A6 X 

1 A 10[ lOlA 12 2J + } + 101 lOX 1 - 121 AlO x . .. . 

From equations (46) and (63) it can be shown that for all Ys 

QR(X, Y.) ~ NH A,x' - 2~ A4X
4J ' 

We then have 

(63) 

lX~ {[I 1 J} lX1 I II I ~ 2 0 exp _N
2 "2 A2X2 - 24 A4X4 + 2 0 H(x, Y8) dx. 

(65) 

One can show that 

I < 1 + eR 

- 1 t 
e = R' o ~ t ~ R. (66) 

Since we have 

(67) 
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J exp [25 A4 _1 ] - 1 l 
I II I ~ 21301 

exp [-N2!A2X2] 11 + 6 A~f2 A2 x 4f dx 

+ 21301 

H(x, Ys) dx < 21r:J'J exp [-N2!A2X2] 

+ 21";1 H(x, Ys) dx. (68) 

From equation (68) it can be shown that 

( 
2?T )! I II I < N 2 A2 [1 + Ed, (69) 

where 

E, = 1~0 {exp [2:~: N2~J - I} 
+ 2(~)' exp f _N2 8m;. YJ 1 + N 2 Sin~ YJ (70) 

Since we kIiow that 

-\ p \ ~ Rep ~ \ p \, p any arbitrary complex number, (71) 

equation (69) gives an upper bound to Re 11. Let us now find a 
lower bound to Re 11. 

From equations (29) and (50) we have 

Re II = 2 iX1 

exp [-QR(X, Ys)] cos [QI(X, Ys)] dx 

_ 2 Re {'"I exp [_N2 sinh Ys + jAX][l + N 2 sin (x +. jys)] dx. 
Jo Ys x + JYs 

(72) 

As shown earlier in this paper 

2 Re (Xl exp [_N2 sinh Ys + jAX][l + N 2 sin (~+. jys)] dx 
Jo Ys X JYs 

;;; 2x, exp [ ~N2 8m;.11.]{ 1 + N2 8m;. Y} (73) 
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One can also show that for z real 

Z2 

cos Z ~ 1 - 2 ' -00 <Z < 00. (74) 

Using equation (74) we can write 

2 i X1 

exp [-QR(X, Y.)] cos [QI(X, YB)] dx 

> 2 t1 [Q ( )][1 Q;(x, Y.)] d = J
o 

exp - R X, Ya - 2 x. (75) 

Now from equations (37), and (38) we have 

Q ( ) N2[1 A 2 1 A 4( 4! A6 2) R X, Y 8 = 2" 2X - 4! 4X 1 - 6! A4 X 

... ] , (76) 

and 

Q ( ) N2[1 A 3 1 A 5{ 5! A7 2} I X, Ya = "6 3X - 5! 5X 1 - 7! A 5 X 

1 A!l{ 9! All 2} 
- 9! 9

X 1 - II! ~ x - .. .J (77) 

From equations (76), and (77) one can show that 

(78) 

and 

(79) 

Equations (75), (78), and (79) yield 

2 i X1 

exp [-QR(X, Yo)] cos [QI(X, YB)] dx 

i
X1 

[N4] > 2 0 exp [_!N2 A2X2] 1 - 72 A;x6 dx 

= 2 frfJ exp [_!N2 A2X2] dx - 2 frfJ exp [_!N2 A2X2] dx 
Jo Xl 

(80) 
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Notice that 

1 ( 27r)1 15 
= 2" N 2 A2 (N2A 2)3' 

(81) 

We can also show that 

100 exp (_p2t2) dt < exp (-;~2a4) , 
a2 2a p 

(82) 

We can, therefore, write 

21~ exp [-!N
2
A2X2] dx < (5N~A2ye-s. (83) 

From equations (72)-(73), (75), (80)-(83) it can now be shown 
that 

( 
27r )t 

Re II > N 2 A2 [1 - En, (84) 

where 

Ef = (5!)! e-
s + 25~ (~:r N2~2 + 2(;Y 

.exp[ _N2Sin:'Y'][1 +N
2Sin

:.
Y} (85) 

We shall now obtain upper and lower bounds to Re IR in equation 
(51). According to equation (36) let 

(86) 

where 

(87) 

and 

IT = L~" G(x, Y.) dx + [00 G(x, Y8) dx. (88) 

From equation (87) we have 

12 I ~ 21" I G(x, Y8) I dx. 
Xl 

(89) 
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Now it can be shown from equations (29) and (60) that 

I G(X, Y.) I ~ exp [-QR(X, Y.)] 

+ exp [ -N'Sm:,y'][ 1 + N,sm:, y1 (90) 
From equations (89) and (90) we can write 

112 I ~ 2 f7r exp [-QR(X, Y.)] dx 
Xl 

+ 2(11" - x,) exp [ -N' sin:, v,][ 1 + N' sin:, y'l (91) 

From equation (64) 

QR(X, Y.) ~ N'U A,x' - 2
1
4 A.x'] '" N'v, 

where 

lA 2 1 A 4 
V =:2 2X - 24 4X. 

(92) 

(93) 

It can be shown (see Fig. 8) that v and dv/dx are positive for Xl ~ X ~ 
Xm = (6)!(A2/ A4)! ~ (6)! and that dv/dx is a monotonically increasing 
function of X for Xl ~ X ~ Xn where 

(94) 

We also know that QR(X, Y.) is a monotonically increasing function of X 
for Xl ~ X ~ 'Jr. Let us now assume that Xl < 0. 

V2 ------------

Xl -.f2 Xn Xm 

X 

F· 8 F· d dv .. . ( ) Ig. - unctIOns v an ax appearmg m equatlOn 95. 
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Equations (92)-(94) therefore yield 

2 i~ exp (-QR(X, y,)] dx 

where 

v -A _.:4..! 
2 - 2 6' 

and 

Since we know that 

we can write 

< [ N'x, ] r exp (-N'v) dv. 
5 1 _ §. A4 _1_ VI 

3 A2 N 2 A2 

Since it can be shown that 

100 [2t] dt _ exp [_p
2
a

2
] exp -p - 2 , 

a' P 
P 2~ 0, 

from equations (91), (95) and (100), we have 

(95) 

(96) 

(97) 

(98) 

(100) 

(101) 

(102) 
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where 

(
N2A )! + 2(77" - v2) 277" 2 exp [-QR(v2, YB)] 

+ 2(" - x,)(N;;,y exp [ -N' 8m:. y,][ 1 + N' sm:. y,] . 
Xl < v2. (103) 

Similarly, if Xl > V2, one can show that 

Let us now consider the range of integration 77" < X < co. For X» Y, 

exp [-QR(X, Y,) + jQI(X, Y8)] 

[ ( 
2 sinh y, N2 h sin X) 

~ exp - N -y-. - - cos y. -x-

+ j(AX + N 2 sinh y. co~ X)] , (105) 

and 

[ N 2 sinh Y s + ." ] exp - -- JI\X 
, Y • 

. [1 + N2 sin ex +. jys)] ~ exp [_N2 sinh Ys + jAX] 
X + JYB Y8 

.{l + N{S~x coshy, + j CO;X SinhY,]}. (106) 

Let us choose the point X2 + jy, along the path of integration so 
that the amplitudes of the two terms in equations (105) and (106) 
differ by less than 10.5 percent [(N2 cosh y,)/X2 ~ O.lland their relative 
angle departs from 1800 by less than 0.1 radian [(N2 sinh Y8)/X2 ~ 0.1]. 
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Such a point X2 + jy. is given by 

X2 = 10N2 cosh y •. (107) 

We assume that X2 > 7r' ~ Xl , or that 

N 2 7r > 10 ~ 0.31416. (108) 

Since from equation (57) N 2 ~ 30/7r'2, this inequality is always satisfied. 
We shall now write 

(109) 

where 

13 = L~~ G(x, Y.) dx + iX

' G(x, Y.) dx, (110) 

and 

14 = L~' G(x, Y.) dx + i~ G(x, Y.) dx. (111) 

Noticing that 

I sin (x + jy.) I < cosh y. < cosh y. 
I X + jy. I = (x2 + v!)! = x 

(112) 

we can show that 

and 

f x K f2l7r 

_ • exp [-QR(X, Va)] dx ~ L . exp [-QR(X, Va)] dx 
.. 1=1 (21-1) 7r 

K 1(2l+1)7r .. L exp [-QR(X, Y.)] dx, 
1=1 217r 

(114) 

where K is an integer such that 

(2K + 1)7r' > X2 ~ (2K - 1)7r'. (115) ~ 

One can show that equation (115) is satisfied if 
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J( = INT[X2 +!] 
27r 2 

or 

(116) 

'Ve now have 

n = 1,2,3, (117) 

and 

1 _ _ Y_s_ sin x + 2 1 -_cos x > 1 
tanh Y. x Y. x2 =, 

t = 1,2,3, .... (118) 

From equations (31), (117), and (118) we can now prove that 

K J2l1r: 
~ (21-1)11" exp [-QR(X, Y.)] dx 

< ~ [N2 sinh Y8 1 J = L..J 7r exp - --- 2 

/=1 Y. 1 + Y. 
7r2(2t - 1)2 

[ N 2 sinh Y8] ~ [N2yS sinh Ys 1 J = 7r exp - --- L..J exp 2 2 • 

Y. /=1 7r (2t _ 1)2 + 'lLi 
7r 

(119) 

Further it can be shown that;' 

~ [N2ys sinh Ys 1 ] 
~ exp 7r2 (2t - I? + Y;/7r 2 

[
N2Y8 sinh Y. 1 ] 

< exp 2 1 + 2/ 2 7r Y8 7r 

+ (K - 1) [N2ys sinh Y. 1 ]. 
exp 2 9+ 2/2 7r Y. 7r 

(120) 

* The upper bound derived in equation (120) can be improved in various 
ways. Since this makes only a minor contribution to the total integral we shall 
be satisfied with this simple bound. 
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From equations (119) and (120) we have 

K f2l'll" 8 (21-1)'11" exp [-QR(X, Y.)] dx 

< [ N 2 sinh YB]{ [N
2

y. sinh YB 1 ] 7r exp - -- exp 2 1 + ( /)2 Y. 7r Y. 7r 

+ (K 1) [
N2Y8 sinh Y8 1 ]} 

- exp 7r2 9 + (Y./7r)2 . 

For 2t7r + n/2 ~ x ~ (2t + 1)7r, f. ~ 1, we can show that 

1 _ _ Y_" _ sin x + 2 1 - cos x 
tanh Y. x Y8 x2 

> 1 Y. 2 . + Y; (1 ) 
- - tanh Y8 (4f. + 1)7r sm x (2f. + 1)27r2 - cos X 

== Je(x). 

In this range of x 

cos x ~ 0, 

sin x ~ 0, 

and 

aJ e = Y 8 2 + Y; . > 0 
ax -tanh Y. (4f. + 1)7r cos x (2f. + 1)27r2 sm x = . 

We, therefore, have 

1 _ _ Y_. _ sin x + 2 1 - cos x 
tanh Y. x YB x2 

(121) 

(122) 

(123) 

(124) 

(125) 

~ Jl(x) ~ Jl(2t7r +~) == VtCy.) , (126) 

where 

2 2 

V1(y.) = 1 - tan~ Y. (4f. + 1)7r + (2t ~'1)27r2 (127) 

It can be shown that 

(128) 
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that Vt(y.) reaches its minimum at 

(129) 

and 

1 [ 1 J2 [Vt(Ys)]min ~ 1 - 4 1 + 4t + 1 > 0, (130) 

N ow for 2t7r ~ x ~ 2t7r + 7r /2, it can also be shown that 

1 _ -Y-. - sin x + 1 2 1 - ~os x ~ 1 _ _ Y_" _ sin x 
tanh Y. x Ys x- - tanh Y. 2t7r 

+ (4t ~Yi?7r2 (1 - cos x) == Lt(x). (131) 

One can prove that Lt(x) reaches its minimum at 

= 2P + t -1 [(4t + 1)2 7r J 
X 1;7r an 8 P t nh ' 1; Y8 a Y. 

(132) 

and 

(133) 

Next we can show that 

1 2 
Ut(O) = 1 - 2t7r < 1 - (4t + 1)7r Vt(O) , (134) 

that Ut (Y8) is a monotonically decreasing function of Y8 (see Fig. 9), and 

. (4t + 1)2 
~8~ UtCY8) = 1 - 32(2 > 0, t ~ 1. (135) 

It can also be proved by numerical methods (see Fig. 9) that 

t ~ 1, (136) 

and 

(137) 
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We therefore conclude that 

1 _ ~ sin x + 2 1 - cos x > 
tanh Y. x Y. x2 = 

[ 
16y! y;]! 

- 62511"4 + 411"2 tanh2 Y. ' t "?;, 1, Y. "?;, 0, 

2t1l" ~ X ~ (2t + 1)11". (138) 

Equations (31), (117), and (138) show that 

( ) > N2 sinh Y. U () (2t) 211"2 
QR x, Y. = -- 1 Y. (2t)2 2 + 2, Y. 11" Y. 

2t1l" ~ X ~ (2t + 1)11". (139) 

From equation (139) we can now write 

K j(2(+I),.. 

L exp [-QR(X, Y8)] dx 
t-J 2t1l" 

< ~ [N2 sinh Y. () (2t) 211"2 ] = L..J1I" exp - -- VI Y. (2t)2 2 + 2 
t=l Y. 11" Y. 

[ 
2 sinh Y. U ( )] = 11" exp - N -y-. - 1 Y 8 

~ [N2Y8 sinh Y. 1] 
. ~ exp 11"2 u1(y.) (2t)2 + (Y./1I")2 . (140) 

It can be shown that 

~ [N 2
y. sinh Y. 1] 

~ exp 11"2 U 1(ys) (2t)2 + (Y8/1I")2 

[
N2Y8 sinh Y. 1] 

< exp 11"2 U1(Y8) 4 + (Y./1I")2 

+ (K ) [
N2y. sinh Y s U () 1 ] 

- 1 exp 11"2 1 Y. 16 + (Y./1I")2 . (141) 

Equations (140) and (141) yield 

L exp [-QR(X, Y8)] dx < 11" exp _N2 --Y-' V 1(Y8) 
K j(2(+1)1I" [Sinh] 

t-l 2t1l" Y. 

{ [N2 Y. sinh Y. U () 1 ] 
. exp 11"2 1 Y. 4 + (Y./1I")2 

+ (K - 1) Cxp [N' Y. s~ Y. U.(Y.) 16 + ~Y.;,.-)']}. (142) 
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From equations (113), (114), (121), and (142) we can write 

113 I < (N~~)!E3 , (143) 

where 

E (N2 A2)' J2 [N2 sinh Ya] 
27r Ys 3=--1 7rexp - --

[ (
N2ys sinh Ys 1 ) 

. exp 7r2 1 + (Ys/7r)2 

+ (K 1) (
N2yo sinh Ys 1 )] 

- exp 7r2 9 + (Ys/7r)2 

+ 2 .. exp [ -N' 8in:' Y. U,(Y.)] 

{ [N2 Y 8 sinh Yo U () 1 ] 
. exp 7r2 1 Ys 4 + (Ys/7r)2 

+ (K - 1) exp [ N' Y. s~ Y. U,(y.) 16 + ~Y.I")']} 

[
In (x2)]l 

+ 2(X2 - 7r) exp [_N2Sinh Yo] 1 + N 2 cosh Ys __ 7r_ J. (144) 
Y. X2 - 7r 

Finally, from equation (111) we have 

I 14 I ~ 21~ I G(x, Y.) I dx. 
z. 

(145) 

Now from equations (27)- (28) 

I G(x, Y.) I = exp [ -N' 8m::. y.] 
.1 ex [N2 sin (x +. JYB)] _ [1 + N 2 sin (x +. JYB)] I. 

p x + JY. x + JY 0 

(146) 

If z is a complex variable, it can be shown that 

hl I exp (z) - 1 - z I ~ 2 exp I z I· (147) 

From equations (112), (145)-(147), we can write 
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Since 

o ~ sin () ~ (), O _~ () _~ sl·n- 1 Y. < 7r 
( 

2 + 2)! 2- , 
X 2 Y2 

we can show from equation (148) that 

< N4 cosh
2 YB [N2 sinh YB] exp - ---

Ya Y • 

. . f i
'-' •• /«,' + •• ')! exp [N' c::h y. 0] dO 

2 h [N2 sinh YB] = N cos Y. exp - -Y-. -

{ [N2 cosh Y. . -1 y. ] I} . exp --- sm (2 + 2)! - . 
Y. X 2 Y. 

Now we have 

O < . -1 < 7r = sIn (J' = 2" (J', 0~(J'~1. 

From equations (149)-(151), we can write 

I I. I < N' cosh y, exp [ -N' sin:. Yo] 

. { [7r N2 cosh Y 8 
]} N 2 h 

exp 2" (100N 4 cosh2 Y;+ Y:)! - 1 < cos YB 

(149) 

(150) 

(151) 
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. exp [ -N' sin:. y.][ exp to) - 1] ~ ~:~JE4 , (152) 

where 

E, ~ (N~:'yN' cosh Y. exp [ -N' sin:, Y-J[ exp (;) - I} (153) 

From equations (27), (49), (69), (71), (84), (86), (102), (109), 
(143), and (152) we can write the following bounds for Re I: 

< Re I < (N~~)![l + El + E2 + E3 + E4]' 

It has been shown that 

V. UPPER AND LOWER BOUNDS TO SV (f) 

We have shown in the previous section that 

Sv(j) = exp ( - N"){ o(f) + ~ [u-. (f + W) - u_. (f - W) 1 } 

1 {N2[ h2 Ys sinh Ys]} + -- exp -2 cos - - -- jJ. 
27rW 2 Ys 

where 

(l\f~~)! {1 - E: - E2 - E3 - E4} 

< jJ. < (N~~)![l + El + E2 + E3 + E 4 ], 

cosh Ys s.linh Ys f ---:y:- - ----:y;-- = N 2W ' 

Parameter 
El 
E' 1 
E2 
Ea 
E, 

Equation 
70 
85 

103 or 104 
144 
153 

(154) 

(155) 

(156) 

(157) 

(25) 

(155) 
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For N2 
= 10 and 25 we plot, in Figs. 10-16, El , E~ , E2 , E3 , and E4 . 

Notice that El , Ef , E2 , E3 , and E4 appearing in these bounds are 
all very small compared to unity so long as the modulation index is 
moderately high, and that El ,E3 , and E4 are monotonically decreasing 
functions of I and N 2. Also notice that E~ and E2 may first increase 
(see Figs. 11, 12) with Y. (or I), reach their maxima and then decrease 
with Y • . * It can be shown that these maxima are all very small com
pared to unity for all N 2 which are even moderately high. 

For all I, we can then write 

( 
27r )i ( 27r )i 

N2A2 (1 - C) < p, < N2A2 (1 + D), (158) 

where 

(159) 

and 

(160) 

From Figs. 10-16 and expressions for C and D, we can show that 
C and D are both small «2%) compared to unity for N2 > 25 and 
for all I. Hence we deduce that 

(161) 

and that the fractional error in this approximation IS very much 
less than unity «2%). 

For N2 = 10 and 25 the spectral density Sv (f) and the fractional 
error C and D obtained from equations (158)-(161) are plotted in 
Figs. 17-20. From these figures notice that C and D are less than 
10 percent for N2 > 10,t and that 

C < 2%, for N 2 ~ 25, 

D < 2%, for N 2 ~ 25, 

proving the assertion made earlier in this paper. 

(162) 

(163) 

For N2 = 6 the spectral density obtained from equations (158), and 
(161) is given in Fig. 21; the percentage error between this spectral 

* One of the terms in El' is independent of f and N 2
• 

t By modifying the contour of integration we also have been able to show 
that C and D are less than 8% for N 2 ~ 10. Since this modified contour leads to 
unnecessary complications, we have not given that modified contour analysis in 
this paper. 
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Fig. 9-Functions Ul(y.) and Vl(y.). It can be observed that Vt(Ys) > U1(Ys) > 0, 
e ~ 1. 

0.04,----r----.----r-----r----,---------., 

0.03 r-----''ct-----+ 

El 

0.02 r-----t-----~--

0.0 1 ~=--o-. _ __.....~--+__ 

O~ __ ~ ___ ~ ___ ~ __ ~ ___ ~ ___ ~ __ ~ 
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density and that obtained from equation (19) has been plotted in 
Fig. 22 (for a set of values of f /W). The scatter diagram in Fig. 22 
indicates that the spectral densities obtained from the two methods 
agree very closely and that the saddle-point approximation error is 
not related in a simple way to the truncation error (it does not seem 
possible to draw a smooth curve through the points shown in Fig. 22). 

For all practical purposes, including interference calculations, esti
mation of the spectrum to such an accuracy is almost always suf
ficient. It can therefore be said that the saddle-point approximation 
given by equations (25), (155), (158), and (161) is a good approxima
tion to Sv(f) as long as the modulation index is even moderately high 
(N2 > 10). The spectrum can be estimated by this method for all 
values of f even when it is millions of decibels smaller than the con
tinuous part of the spectrum at f = o. 

Now compare the spectrum obtained from the quasistatic approxi
mation* to that obtained from saddle-point approximation. For this 
purpose, the spectra obtained from equation (21) for N 2 = 10 and 25 are 
plotted in Figs. 17, and 19. We see that the spectra obtained from the 
quasistatic approximation agree very closely with those obtained from 
the saddle-point approximation for low frequencies, but that the quasi-

* See equation (21). 
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Fig. 17 - Spectral density of an angle-modulated wave, with gaussian phase 
modulation with a rectangular spectrum. N = (10)1/2 ~ 3.162 radians, rms phase 
deviation. 

static approximation to Sv(f) is too small for large f.* In fact for N 2 = 10 
the quasistatic approximation is 30 dB too small for f jW ~ 13.5. We 
have therefore shown that the quasi static approximation to the spec
trum cannot be used in any interference calculations or in any calcula
tions where the behavior of the spectrum on the tails is of importance. t 
The saddle-point approximation can be used at all frequencies as long 
as N 2 is moderately high. 

* For small f (or small Ys) it can easily be shown that the saddle-point ap
proximation reduces to the quasistatic approximation. 

t The higher the rms phase deviation, the further out will the low-frequency 
(quasistatic) approximation be valid, 
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VI. RESULTS AND CONCLUSIONS 

A simple method (called the saddle-point method) has been pre
sented in this paper to estimate the spectrum of a sinusoidal carrier 
phase modulated by gaussian noise having a rectangular power 
spectrum. 

This method gives upper and lower bounds to the spectrum and 
shows that these bounds are very close for all f and for all moderately 
high phase deviations. We also show that the fractional error in the 
saddle-point approximation is less than 2 percent for N2 ~ 25 and 
for all f. 

The calculation of the spectrum by the saddle-point method is 
rather simple. For a given value of f, N2, and W, we calculate Ys 
from equation (25) and A2 from equation (155). The spectrum Sv(f) 
is then calculated from equations (156) and (161). 

We have also shown in this paper that the quasistatic approxima
tion to Sv(f) is only good at low frequencies, and that for large f the 
results obtained from that approximation are too small. 
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APPENDIX 

It can be shown (see Ref. 7, p. 114) that 

Sv(f) 1 fco [N2 fW ] 
27rW -co exp - 2W -JV (1 - cos 27rJ.J.T) dJ.1. 

·exp [-j27rfT] dT, (164) 
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Fig. 19 - Spectral density of an angle-modulated wave, with gaussian phase 
modulation with a rectangular spectrum. N = 5 radians, rms phase deviation. 
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or 

S(f) L: {exp [ -~ ( (1 - cos ;;'p )dJL] 

- exp [-N'{ 1 + N' s~p ]}e;>' dp. (165) 

From equation (165), it can be shown that 

I [ N 2 sinh Yo] = exp - -----
Y • 

and 

. L: {exp [:~ ( cos ;;, (x + jy.) dJL ] 

[ 1 + N' sin x(~ j~lj.) ]}e;>' dx, (166) 

(167) 
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or 

2 sinh y s N
2 1 w J.l. J.l. 

QR(X, Ys) = N -y-s - - W 0 cos W x cosh W y. dJ.l.. (168) 

Equation (168) yields 

aQR(X, Ys) N21w J.l. • J.l. h J.l. d 
ax = W 0 W sm W x cos W Y 8 J.l.. (169) 

For 0 ~ JlX/W ~ 'Ir, 

• J.l. > 0 sm W x = . (170) 

For y. ~ 0, and 0 ~ Jl ~ W, 

(171) 

J.l. . Jl h J.l. W sm W x cos W Ys ~ 0, (172) 

and from (169), 

o ~ x ~ 'Ir. (173) 

From equation (173) we then conclude that QR(X, Y.) is a mono
tonically increasing function of x for 0, ~ x ~ 'Ir. 

REFERENCES 

1. Bennett, W. R., Curtis, H. E., and Rice, S. 0., "Interchannel Interference in 
FM and PM Systems Under Noise Loading Conditions," B.S.T.J., 34, No. 
3 (May 1955), pp. 601-636. 

2. Middleton, D., An Introduction to Statistical Communication Theory, New 
York: McGraw-Hill, Inc., 1960, pp. 599-635. 

3. Blachman, N., "Limiting Frequency-Modulation Spectra," Information and 
Control, 1, No.3 (September 1957), pp. 26-37. 

4. Stewart, J. L., "The Power Spectrum of a Carrier Frequency; Modulated 
by Gaussian Noise," Proc. IEEE, 4~, No.9 (October 1954), pp. 1539-1542. 

5. Abramson, N., "Bandwidth and Spectra of Phase-and-Frequency-Modulated 
Waves," IEEE Trans. on Communication Systems, CS-ll, No.4 (Decem
ber 1963), pp. 407-414. 

6. Ferris, C. C., "Spectral Characteristics of FDM-FM Signals," IEEE Trans. 
on Communication Technology, CT-16, No.2 (April 1968), pp. 233-238. 

7. Rowe, H. E., Signals and Noise in Communication Systems," Princeton, 
N. J.: D. Van Nostrand Go., Inc., 1965, pp. 98-203. 

8. Gilbert, E. N., "Power Spectra of Some Random Frequency-Modulated 
and Phase-Modulated Waves," unpublished technical memorandum, Au
gust 1953. 

9. Tillotson, L. C., and Ruthroff, C. L., "The Next Generation of Short Haul 
Radio Systems," unpublished technical memorandum, April Hl65. 



SPECTRAL DENSITY BOUNDS 811 

10. Erdelyi, A., Asymptotic Expansions, New York: Dover Publications, Inc., 
1956, pp. 26-57. 

11. Morse, P. M., and Feshbach, H., Methods of Theoretical Physics, New York: 
McGraw-Hill, 1953, pp. 437-443. 

12. Jeffreys, H., Asymptotic Approximations, London, England: Oxford Univer
sity Press, 1962, pp. 10-50. 

13. Erdelyi, A., and others, Tables of Integral Transforms, New York: McGraw
Hill, 1954, pp. 18-20. 

14. Lewin, L., "Interference in Multi-Channel Circuits," Wireless Engineer. 27 
(December 1950), pp. 294-304. 





Contributors to This Issue 

ROBERT E. BOGNER, B.E., 1956, University of Adelaide (Australia); 
M.E., 1959, University of Adelaide; Postmaster-General's Department 
(Australia) Research Laboratories, 1957-61; Lecturer and Senior Lec
turer, University of Queensland (Australia), 1961-67; Lecturer in 
Electrical Engineering, Imperial College of Science and Technology 
(London), 1967-. Mr. Bogner has been involved in a variety of studies 
in speech processing, simulation of communication systems including 
radio wave scattering phenomena, and modulation techniques. The 
work on digital filters was a byproduct of his researches at Bell Tele
phone Laboratories where he was a summer employee in 1968, working 
on speech communication. Member, lEE. 

EDWIN L. CHINNOCK, Stevens Institute of Technology; Bell Tele
phone Laboratories 1939-. Mr. Chinnock has worked on microwave 
components, microwave radio relay, and helix waveguide fabrication. 
He is presently working on optical waveguide components. 

ROBERT B. COOPER, B.S., 1961, Stevens Institute of Technology; M.S., 
1962, and Ph.D., 1968, University of Pennsylvania; Bell Telephone 
Laboratories, 1961-. Mr. Cooper has worked on a variety of prob
lems concerned with applications of probability theory to the analysis 
of telephone systems. He teaches the GSP course, Probability Applied 
to Traffic Engineering, and is currently writing a set of notes for this 
course. Member, Tau Beta Pi. 

HERBERT E. EARL, JR., Bell Telephone Laboratories 1940-. He was 
engaged in work on pyrolitic film resistors, ferrites, and ferrimagnetic 
resonances. More recently he has worked on optical transmission 
techniques. 

P. M. EBERT, B.S., 1958, University of Wisconsin; S.M., 1962, Sc.D., 
1965, Massachusetts Institute of Technology; Bell Telephone Labora
tories, 1965-. Mr. Ebert has worked on problems in communications 
and information theory. Member, IEEE. 

DAVID D. FALCONER, B.A.Sc., 1962, University of Toronto; S.M., 
1963, and Ph.D., 1967, Massachusetts Institute of Technology; post
doctoral research fellowship, Royal Institute of Technology, Stock-

813 



814 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969 

holm, Sweden, 1966-67; Bell Telephone Laboratories, 1967-. Mr. 
Falconer is concerned with the application of communication theory 
and error control techniques to data communications. Member, IEEE, 
Sigma Xi, Tau Beta Pi. 

DETLEF GLOGE, Dipl. Ing., 1961, D.E.E., 1964, Braunschweig Tech
nische Hochschule (Germany); research staff, Braunschweig Tech
nische Hochschule, 1961-1965; Bell Telephone Laboratories, 1965-. 
In Braunschweig, Mr. Gloge was engaged in research on lasers and 
optical components. At Bell Telephone Laboratories, he has concen
trated on the study of optical transmission techniques. Member, 
VDE, IEEE. 

SHUI YEE LEE, B.S.E.E., 1964, University of Maryland; M.S.E.E., 
1965, and Ph.D. (E.E.), 1967, University of Pennsylvania; teaching 
fellow, the Moore School of Electrical Engineering, University of 
Pennsylvania, 1965-1967; member of research staff of Bockus Re
search Institute, Graduate Hospital of University of Pennsylvania, 
1966-1967; Bellcomm, Inc., 1967-. At the University of Pennsylvania, 
Mr. Lee was engaged in research on synthesis techniques and methods 
for determining transfer functions of physical systems. At Bellcomm, 
he has concentrated on the study of digital-optical and electro-optical 
information processing. He is also interested in communication sys
tems optimization. Member, Sigma Xi. 

JACK M. MANLEY, B.S. (Electrical Engineering), 1930, University 
of Missouri; Bell Telephone Laboratories, 1930-. He was first con
cerned with theoretical and experimental studies of nonlinear electric 
circuits. He later worked with new multiplex methods for communica
tion systems, including early research work on PCM. Afterward, he 
was engaged in transmission line research, and at present he is work
ing on noise problems in digital transmission systems. Fellow, IEEE; 
member, Sigma Xi, Tau Beta Pi and Eta Kappa Nu. 

F. W. MOUNTS, E.E., 1953, and M.S., 1956, University of Cincinnati; 
Bell Telephone Laboratories, 1956-. Mr. Mounts has been primarily 
concerned with research in efficient methods of encoding pictorial in
formation for digital television systems. Member, IEEE, Eta Kappa 
Nu. 



CONTRIBUTORS TO THIS ISSUE 815 

GRACE MURRAY, B.A., 1962, Duke University; M.S., 1966, Stevens 
Institute of Technology; Bell Telephone Laboratories, 1962-68; The 
RAND Corporation, 1968-. Miss Murray has worked extensively on 
traffic studies of complex telephone systems, using both stochastic 
simulation and mathematical techniques. Also, she has taught the GSP 
course, Advanced Programming. She is working on a study of the 
deployment and dispatching operations of the New York City Fire 
Department. Member, Phi Beta Kappa. 

DONALD E. PEARSON, B.Sc. (Eng.), 1957, University of Cape Town; 
Ph.D., 1965, Imperial College, University of London; Bell Telephone 
Laboratories, 1965-. Mr. Pearson has been involved with picture 
coding, especially subjective studies of the effect of various band
width compression techniques on picture quality. He presently is en
gaged in research into the laws of color mixture in complex scenes 
such as television pictures and the choice of primary colors for opti
mum rendition of skin tones. Member, lEE, Optical Society of 
America. 

JOHN R. PIERCE, B.S., 1933, M.S., 1934, and Ph.D. (E.E.) 1936, 
California Institute of Technology. He has published 12 technical 
books, hundreds of papers and articles, a number of science fiction 
stories (some under the name J. J. Coupling), and a few poems. Some 
of his computer music appears on a Decca record, Music from Mathe
matics. His awards include: Eta Kappa Nu, 1942; Morris Liebmann 
Memorial Prize, 1947; Stuart Ballantine Medal, 1960; Air Force As
sociation H. H. Arnold Trophy, 1962; the Arnold Air Society General 
Hoyt S. Vandenberg Trophy, 1963; the Edison Medal, 1963; the 
Valdemar Poulsen Medal, 1963; the National Medal of Science, 1963; 
the H. T. Cedergren Medal, 1964; Caltech Alumni Distinguished Serv
ice Award, 1966; and six honorary degrees. 

Dr. Pierce is Executive Director, Research, Communications Sci
ences Division of Bell Laboratories, with responsibilities in radio, elec
tronics, acoustics and vision, mathematics, economic analysis, and 
psychology. Member, National Academy of Sciences, National Acad
emy of Engineering, Air Force Association; Fellow, American Acad
emy of Arts and Sciences, IEEE, American Physical Society, Acous
tical Society of America. He is a Kentucky Colonel. 

VASANT K. PRABHU, B.E. (Dist.), 1962, Indian Institute of Science, 
Bangalore, India; S.M., 1963, Sc.D., 1966, Massachusetts Institute of 
Technology; Bell Telephone Laboratories, 1966-. Mr. Prabhu is a 



816 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1969 

member of Radio Research Laboratory, and his areas of interest in
clude systems theory, solid-state microwave devices, noise theory, 
and optical communication systems. Member, IEEE, Eta Kappa Nu, 
Sigma Xi, Tau Beta Pi, AAAS. 

HARRISON E. ROWE, B.S., 1948, M.S., 1950, Sc.D., 1952, Massachu
setts Institute of Technology; Bell Telephone Laboratories, 1952-. 
His fields of interest have included parametric amplifier theory, noise 
and communication theory, propagation in random media, and re
lated problems in waveguide, radio, and optical systems. M,ember, 
IEEE, Sigma Xi, Tau Beta Pi, Eta Kappa Nu. 

ERHARD K. SITTIG, Dip!. Imper. College, E.E. 1954, London, U.K.; 
Dipl., Phys., 1955, Univ. Tiibingen, Germany; Dr. rer. nat., 1959, 
Techn. Hochschule, Stuttgart, Germany; Bell Telephone Labora
tories, 1963-. Since 1963, Mr. Sittig has been working on ultrasonic 
devices, notably diffraction delay lines. He now supervises a group 
active in ultrasonic device technology, photodetectors, and access 
circuitry development for an exploratory optical memory. Member, 
German Phys. Soc., IEEE, Acoust. Soc. of America. 

FRIEDOLF M. SMITS, Dip!. Phys., 1950, Dr. rer. nat., 1950, University 
of Freiburg, Germany; research associate, Physikalisches Institut, Uni
versity of Freiburg, 1950-54; Bell Telephone Laboratories, 1954-62; 
Sandia Corporation, 1962-65; Bell Telephone Laboratories, 1965-. 
Mr. Smits' early work at Bell Telephone Laboratories included stud
ies of solid-state diffusion in germanium and silicon, exploratory 
semiconductor device development, and radiation damage studies for 
the Telstar® communications satellite. At Sandia Corporation he was 
responsible for work on radiation effects, particularly electron and 
neutron damage to semiconductors and semiconductor devices. His 
more recent responsibilities at Bell Telephone Laboratories were in the 
field of ultrasonics and acousto-optics. He is presently Director of the 
Semiconductor Device Laboratory at Murray Hill. Senior Member, 
IEEE; Member, American Physical Society, German Physical Society. 

S. Y. TONG, B.S., 1955, Taiwan University; M.S., 1961, University 
of Vermont; Ph.D., 1966, Princeton University; Bell Telephone Lab
oratories, 1964-. Mr. Tong has worked on problems in coding theory. 
Member, IEEE, AAAS, Sigma Xi. 



B.S.T.J. BRIEFS 

Correction Concerning Reflecting Objects in 
Coherent Illumination 

By L. H. ENLOE 

(Manuscript received January 31, 1969.) 

In a recent paper, the author analyzed and discussed the noise-like 
structure in images of diffuse objects in coherent illumination." While 
the author's interest and discussion concerned objects viewed in re
flection, a model illustrating a diffuse object was unfortunately shown 
in Fig. 1 as a granular transparency viewed in transmission. It turns 
out that the analysis presented is not sufficiently general to cover 
transparencies viewed in transmission. The object must be viewed in 
reflection because: 

(i) The direct beam, that is, the unscattered component, is not in
cluded in the fundamental equation (1). 

(ii) The relative phase angles (Ji of the individual scatterers in 
equation (1) are not unqualifiedly random in the forward scattering 
direction. 

I would like to thank D. Berkley for bringing this to my attention. 

* Enloe, L. H., "Noise-Like Structure in the Image of Diffusely Reflecting 
Objects in Coherent Illumination," B.S.T.J., 46, No.7 (September 1967), pp. 
1479-1491. 
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