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Some Theorems on Properties of DC 
Equations of Nonlinear Networl(s 

By I. w. SANDBERG and A. N. WILLSON, JR. 

(Manuscript received July 3, 1968) 

Several results are presented concerning the equation F(x) + Ax = B 
(with F(·) a "diagonal" nonlinear mapping of real Euclidean n-space En 
into itself, and A a real n X n matrix) which plays a central role in the 
dc analysis of transistor networks. In particular, we give necessary and 
sufficient conditions on A such that the equation possesses a unique solution 
x for each real n-vector B and each strictly monotone increasing FC·) that 
maps ~ onto itself. 

There are several direct circuit-theoretic implications of the results. For 
example, we show that if the short-circuit admittance matrix G of the linear 
portion of the dc model of a transistor network satisfies a certain dominance 
condition, then the network cannot be bistable. Therefore, a fundamental 
restriction on the G matrix of an interesting class of switching circuits is 
that it must violate the dominance condition. 

I. INTRODUCTION 

For each positive integer n let ~n denote that collection of mappings 
of the real n-dimensional Euclidean space En onto itself, defined by: 
F £ g:n if and only if there exist, for i = 1, ... , n, strictly monotone 
increasing functions fi mapping El onto El such that, for each x == 
(Xl' ... , Xn)t £ En, F(x) = (fl(xl), ... ,fn(xn))t. 

The main purpose of this paper is to report on some results concerning 

1 
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properties of the equation 

F(x) + Ax = B, (1) 

where A is an n X n matrix of real numbers, F maps En into En, and 
B t En. In particular, a condition to be satisfied by A is given which is 
both necessary and sufficient to guarantee that for each F t g:n and each 
B t En there exists a unique solution of equation (1). 

We also study the problem of obtaining bounds on the solution of 
equation (1). These bounds show that (if F t g:n and our condition on A 
is satisfied) the solution depends continuously on B. The bounds are 
often of use in computing the solution by standard iteration methods 
such as the Newton-Raphson method. By appealing to a theorem of 
R. S. Palais it is shown that the bounds can also be used to obtain a 
theorem essentially the same as, but somewhat weaker than, our 
principal result. 

Several results can be found in the literature which specify sufficient 
conditions for the existence of a unique solution of equation (1). For 
example, if A is positive semidefinite then a special case of a theorem 
of Ref. 1 guarantees the existence of a unique solution of equation (1) 
for all those F t g:n which have the property that the slope of each fi 

is bounded from above and below by positive constants, and for all 
B t En. This theorem also specifies that a certain iteration scheme will 
always converge to the solution. 

A theorem of G. J. lV[inty2, when applied to equation (1), also implies 
essentially the same result. The boundedness condition on the slopes 
of the functions fi is not required by lVlinty's theorem. On the other 
hand, lVlinty's theorem does not provide a procedure for computing the 
solution of equation (1). 

In Ref. 3 it is proved that a sufficient condition for the existence and 
uniqueness of a solution of equation (1) for all F t g:n and B t En is 
that A satisfy a weak row-sum dominance condition: 

aii ~ L 1 aii I, i = 1, ... ,n.* 
ir'i 

Other information concerning the location and the computation of 
the solution is also given in Ref. 3. 

1;'he class of matrices satisfying the condition of our theorem (which 
is defined in Section III and denoted by Po) includes all positive semi
definite matrices as well as all matrices which satisfy anyone of several 

* Appendix A contains a simpler proof of a similar result and a proof of a new 
related result. These results specify convergent algorithms for obtaining the 
solution. 
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dominance conditions. lVIany other matrices are included in Po; and 
since the condition of our theorem is both a necessary and a sufficient 
one, we are assured that Po is the largest class of matrices A for which 
equation (1) has a unique solution for all F t g:n and all B tEn. 

II. NONLINEAR NETWORKS 

Equation (1) is often encountered in the study of nonlinear electrical 
networks. In the case of networks containing only resistors (that is, 
linear resistors with nonnegative resistance), dependent and inde
pendent sources, and two-terminal nonlinear resistors that are described 
by functions in g:l (diodes, for example), this is rather obvious. 3 Even 
for networks 'which contain more general nonlinear devices, however, 
equation (1) can often provide a convenient characterization. For 
example, D. A. Calahan shows in his recent book that the transistor 
network of Fig. 1 may be described by the equation 

[-1,,<e:::::: - 1)] + [ 0.0225 0.309] [VrJ = I 0.00177VeeJ 
Ies(e - 1) -0.168 0.494 VI -0.188Vee 

if the Ebers-1VIoll model is used to represent the transistor. (See pp. 
13ff of Ref. 4.) In this equation Ies , Ies , q, k, T, and Vee all represent 
fixed real parameters. It is quite trivial to apply the theory of this paper 
(in particular, Corollary 3 of Section IV) to Calahan's example and 
prove that this equation has a solution, the solution is unique, and 
the solution depends continuously on Vee. We also show how bounds 
on the solution can be obtained. 

90K 

6K 

af = 0.99 

ar = 0.5 

Fig. 1-Biased transistor-stage. 
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More generally, it is frequently the case that networks which contain 
transistors, as well as the previously mentioned linear and nonlinear 
elements, may be described by the equation 

TF(x) + Ax = B. (2) 

In this case, x is a vector whose components are the voltages across 
the nonlinear resistors and the transistor base-emitter and base-collector 
voltages. The n X n matrix A is the y-parameter matrix of the linear 
n-port network which is obtained by removing all nonlinear resistors 
and transistors and setting the value of each independent source to 
zero. The function TF(x) describes the behavior of the nonlinear re
sistors and the transistors. It happens that the matrix Tis nonsingular; 
therefore equation (2) can be put into the form of equation (1). 

Networks which contains inductors and capacitors as well as the 
memoryless elements already mentioned are of course described by dif
ferential equations. Even the study of such networks, however, can 
often lead to the consideration of equations of the same type as equa
tion (1). One usually finds the solution of such an equation is necessary, 
for example, when computing the solution of the differential equations 
by using some implicit numerical integration formula. 

The problem of determining the equilibrium states of the above
mentioned dynamic networks is one in which the consideration of 
equations of type (1) often arises in perhaps a more direct manner. 
In this regard, if it happens that equation (1) has a unique solution, 
then the network cannot possibly be bistable. 

When the determination of equilibrium states of a transistor net
work leads first to the consideration of equation (2), then as a rather 
direct application of our existence and uniqueness theorem it follows 
that if the matrix A satisfies a weak column-sum dominance condition, 

i = 1, ... ,n, 

then T- 1 A E Po and hence the network has exactly one equilibrium 
state. This result and related results which are proved in Section IV 
have the following interesting corollary: One cannot synthesize a 
bistable network which consists of resistors, inductors, capacitors, 
diodes, independent voltage and current sources, and one (Ebers-Moll 
modeled) transistor-or even an arbitrary number of (Ebers-Moll 
modeled) transistors with a common base connection. 

The authors feel that in many respects the main contributions of this 
paper are in the techniques used to prove the results. For this reason, we 



PROPER'l'IES OF DC EQUATIONS 5 

have not chosen to summarize all of the results at the outset and relegate 
proofs to later sections. But rather, the results and the proofs will appear 
in the order in which they will best illustrate the techniques developed. 

III. MATRICES OF CLASSES P AND Po 

The following notation will be used throughout the remainder of the 
paper: The origin in En will be denoted by (J. If D is a diagonal matrix 
then D > 0 (D ~ 0) means that each element of D on the main diagonal 
is positive (nonnegative). 

In Ref. 5 and Ref. 6 M. Fiedler and V. Ptak define the classes of 
matrices denoted by P and Po . They in fact prove that the following 
properties of a square matrix A are equivalent: 

(i) All principal minors of A are positive. 
(ii) For each vector x ~ (J there exists an index k such that XkYk > 0 

where Y = Ax. 
(iii) For each vector x ~ (J there exists a diagonal matrix Dx > 0 such 

that the scalar product (Ax, Dxx) > o. 
(iv) For each vector x ~ () there exists a diagonal matrix Hx ~ 0 such 

that (Ax, Hxx) > o. 
(v) Every real eigenvalue of A, as well as of each principal submatrLx 

of A, is positive. 

The class of all matrices satisfying one of the above conditions is de
noted by P. Fiedler and Ptak prove that the following properties of a 
square matrix A are also equivalent: 

(i) All principal minors of A are nonnegative. 
(ii) For each vector x ~ (J there exists an index k such that Xk ~ 0 and 

XkYk ~ 0 where Y = Ax. 
(iii) For each vector x ~ () there exists a diagonal matrix Dx ~ 0 such 

that (x, Dxx) > 0 and (Ax, Dxx) ~ O. 
(iv) Every real eigenvalue of A, as well as of each principal sub matrix 

of A, is nonnegative. 

The class of all matrices satisfying one of the above conditions is de
noted by Po . 

The following theorems follow directly from the above definitions. 

Theorem 1. If A £ Po then for every diagonal matrix A ~ 0 (A > 0), 
A + A £ Po (A + A £ P). 

Proof: Let x ~ (J. Then, since A £ Po , there exists an index k such 
that Xk ~ 0 and xk(Axh ~ O. Thus, Xk(AX + AX)k ~ 0 (>0). 0 
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In particular, Theorem 1 implies that if A E Po and ~ ~ ° (~ > 0) 
then det (~ + A) ~ ° (>0). 

Theorem 2. If A E P then A-I E P. 

Proof: Suppose A E P. Let x ~ e be given and let y = A -IX. Y ~ e 
since A-I is nonsingular. Thus, there exists a diagonal matrix D > ° 
such that (Ay, Dy) > 0, which implies (x, DA -IX) > 0, or (Dx, A -IX) >0, 
or (A -lX, Dx) > 0. That is, for every x ~ e there exists D > ° such that 
(A -lX, Dx) > 0. Hence A-I E P. 0 

Because of the similarity of the definitions of the classes of matrices 
P and Po , one might conjecture that this proposition is also true: If 
A E Po , and del A ~ 0, then A-I E Po . This conjecture is in fact true. 
Interestingly enough, hmvever, its proof is not obtained as one might at 
first suspect, by simply modifying the proof of Theorem 2. IVloreover, the 
proof of this conjecture does not even seem to follow directly from any 
of the above definitions of Po . Rather, upon making the trivial observa
tion that for every diagonal matrix D > 0, det (A- 1 + D) = det (A -1) 
·det (D- 1 + A) ·det (D), the conjecture is easily seen to follow from the 
fact that det (D + A) ~ ° for every diagonal D > ° if and only if 
A r Po . This fact is a direct corollary to the proof of Theorem 3. 

IV. EXISTENCE AND UNIQUENESS THEOREM 

The following theorem is the principal result of this paper. 

Theorem 3. If A is an n X n matrix then there exists a unique solution 
of equation (1) for each F E ;}n and for each BEEn if and only if A E Po . 

Proof: (if) Let A E Po , F I: ;}n, and B I: En. The solution of equation 
(1) is then unique (if it exists) since if x and yare both solutions then, 
using the strict monotonicity property of F, there exists a diagonal 
matrix D > ° such that F(x) - F(y) = D(x - y). But [D + A](x - y) = 
e and, by Theorem 1, D + A is nonsingular. This means that x = y. 

We prove the existence of a solution of equation (1) by induction. For 
k = 1, ... , n, let 

f1(X 1)] 

Fk(X) = : ' 

h(Xk) 
[

all ... alk] 

Ak = . . . 

. akl ••• akk ' 

Clearly, Ak I: Po , Fk E;}\ and Bk I: Ek. Also, it is clear that there exists a 
unique solution of F1 (x) + A 1x = B1 for each F1 1:;}1 and for each B1 E E\ 
and that this solution is a continuous function of b1 • 
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Assume that there exists a unique solution of Fk(x)+Akx=Bk for each 
Fk £ ~k, Bk £ Ek, and that this solution depends continuously on any 
scalar parameter 1'] upon which Bk depends continuously. Let the 
matrices A k,k+1 and Ak+1,k be defined by 

[

a
1
'k+1] 

A k,k+1 = : ' 

ak,k+1 

Then, for every real number Xk+1 , the equation 

Fk(X) + Akx + Ak,k+lXk+l = Bk (3) 

has a (unique) solution which is a continuous function of Xk+l and of 1']. 
Let the components of this solution be denoted by Xi = mi(Xk+1 , 1']), 
for i = 1, ... , k, and define the vector 1I1k(xk+1 , 1']) by Jl1k = (m1 , 
mk)t, 

We now prove that the function 

<P(Xk+1' 1']) == Ak+l,kJl1k(xk+l , 1']) + ak+l,k+lXk+l - bk+1(1']) 

is monotone increasing in Xk+1 : Let Xi+1 , X~+l £ E1 with Xi+1 < X~+1 . 
Then, if 1111 (M2) denotes the solution of equation (3) when Xk+l 
Xi+1 (X~+1)' we have 

Fk(lIr) - Fk(Jl11) + Ak(J112 - Ml) + Ak,k+1(X~+1 - Xi+l) = O. 

Because of the strict monotonicity of the function Fk , however, there 
exists a k X k diagonal matrix Ll > 0 such that 

Fk(1I12) - FkOlf1) = Ll(1I12 - 1111
). 

Hence, 

Thus, 

<P(X~+l) - <P(X~+1) = {ak+1.k+1 - Ak+1.k[Ll + A kr 1 
Ak,k+l} (X~+1 - Xi+1)' 

But then, from the easily verified relation 

det .[~~] + A k + 1 

o .. ·0 
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and since 

det [[~~] + A k ., 1 ~ 0 (Theorem 1) , 

o ···0 ) 

and X~+l - X!+l > 0, it follows that CP(X~+l) ~ CP(X!+l). 

Now since cp is monotone increasing and, obviously, continuous in 
Xk+l , it follows that the left side of the equation 

(4) 

is a strictly monotone increasing function mapping El onto El, and hence 
equation (4) has a unique solution. If X~+l denotes this solution then 

m1(xZ+ 1) 

is the (unique) solution of 

Fk+l(X) + Ak+1X = Bk+1 • 

We must now prove that this solution is a continuous function of any 
scalar parameter 7] upon which B k + 1 depends continuously. It suffices to 
prove that Xk+l depends continuously on 7] (see equation (3». This may 
be done as follows: 

Let X~+l be the solution of equation (4) corresponding to 7] 

That is, let 

lk+l(XZ+ 1) + 'P(X~+1 , 7]0) = 0, 

° 7] • 

and let E > 0 be given. Since Ik+l is a strictly monotone increasing map
ping of El onto El, so is 1-;;11 , and hence /";:11 is continuous. Hence, there 
exists 0' > 0 such that if I Ik+l (X~+I) - IHI (Xk+l) I < 0' then I xZ+ 1 -

Xk+l I < E. Since cp is a continuous function of 7], there exists 0 > 0 such 
that I 7]0 - 7] I < 0 implies I CP(X~+1 ,7]0) - CP(X~+1 ,7]) I < 0'. If I 7]0 - 7] 1< 
0, and 

then, 
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fk+l(X~+l) - h+l(Xk+l) + CP(X~+l , fJ) - CP(Xk+l , fJ) 

= - [<P(X~+l , fJO) - <P(X~+l , fJ)]. 

But since both fk+ I and cP are monotone increasing in Xk+l , 

(X~+l - XHl)[fk+l(X~+l) - fk+l(XHl)] ~ 0, 

and 

Therefore, 

1 (X~+l - xk+l)[fk+l(XZ+ 1) - fk+l(Xk+l)] 1 

~ 1 (X~+1 - Xk+1)[CP(X~+1 , fJO) - CP(X~+1 , fJ)] I· 
Now, if X~+1 = Xk+l then of course 1 X~+1 - Xk+1 1 < E. Otherwise, 

1 fk+1(X~+1) - fk+1(Xk+1) 1 ~ 1 CP(X~+1 , fJO) - CP(X~+1 , fJ) I· 

But then, 

1 fk+1(X~+1) - fk+1(Xk+1) 1 < 0', 

and hence 1 X~+1 - Xk+1 1 < E. Thus, Xk+1 is a continuous function of fJ· 

(only if) Suppose A ¢ Po . If det A < 0 then for sufficiently small 
r > 0, det (rI + A) < 0. For sufficiently large r, however, 

det (rI + A) = rn·det (I + ~ A) > 0. 

Thus, since det (rI + A) is a continuous function of r, there is some 
value of r > ° such that det (rI + A) = 0. For this value of r let 
F(x) = rIx. Clearly, for this choice of F (: ffn

, equation (1) cannot have a 
unique solution. 

If det A ~ 0, but A has a negative principal minor, we can still find a 
diagonal matrix ~ > ° such that det (~ + A) = 0; however, in this case 
~ will not, in general, be simply the identity matrix multiplied by a 
positive constant r. 

For some positive integer k < n let A have a k X k principal minor 
which is negative and let 

~ (1) = diag [01 , ... , On]. 

Since the determinant of ~ + A is not altered if any two rows and then 
the corresponding pair of columns are interchanged we may, without 
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loss of generality, assume that the matrix A is partitioned as 

A = [AI A2], 
A3 A4 

where Al is a k X k matrix with det At < O. Let ~ > 0 be chosen so small 
that det (U + AI) < 0, and let 01 = ... = Ok = ~. Now, if Ok+I 

On = r > 0, then 

det (~(1) + A) = det [~I + Al A2] 
A3 rI + A4 

l
~I + Al A2] 

= rn
-

k
• det 

1 1· r A3 I + r A4 

Thus, for r > 0 chosen to be sufficiently large, det (~(1) + A) < o. 
(det (~(1) + A) ~ rn

-
k

• det (~I + AI) < 0 as r ~ 00.) Now, if for 
7] > 0, ~ (2) = 7]1, then it is clear that for 7] chosen sufficiently large, 
det[~(2) +A] = 7]n·det(I+ (1/7])A) > O.Thus, if 

~(€) = €~(l) + (1 _ €)~(2), 

it is clear, since det [~(O) + A] > 0 and det [~(1) + A] < 0 and since 
det [~(€) + A] is a continuous function on 0 ~ € ~ 1, that there is a 
value of € > 0 (0 < € < 1) such that det [~(€) + A] = O. For this value 
of €, ~(€) > 0 is the required diagonal matrix. 0 

Notice that our proof shows that if F I: g:n and A I: Po , then the solu
tion of equation (1) depends continuously on any scalar parameter 
upon which B depends continuously. The arguments of Section V show, 
under these assumptions on F and A, that the operator (F + A)-l is 
in fact a continuous map of En into itself. 

In the proof of Theorem 3 we see that the uniqueness of the solution 
follows simply from the hypotheses that each f i is strictly monotone 
increasing and that A I: Po . The additional hypotheses that each fi 
is continuous and maps El onto El are not necessary (continuity of 
each f i is not explicitly hypothesized, but follows from the "monoto
nicity" and "onto" hypotheses). Hence, "\ve have: 

Corollary 1. If, for i = 1, ... , n, Si is a subset of E\ and if S = Sl X 
... X Sn , and if F(x) = (fl(x l), ... , fn(xn))t, where each fi maps El 
into El and is strictly monotone increasing on Si , then if A I: Po and B I: En, 
there exists at most one solution of equation (1) in S. 
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We now prove another interesting corollary of Theorem 3. We first 
define some additional notation. 

For each positive integer n let sn denote the collection of all subsets of 
En defined by: S E sn if and only if S = Sl X ... X sn where, for i = 
1, ... , n, Si C El and Si has the same cardinality as El. For each 
S C sn we define the collection g:n(s) of functions mapping S onto En by: 
F E g:n(s) if and only if there exist, for i = 1, ... , n, strictly monotone 
increasing functions fi mapping Si onto El such that for each x E sn, 
F(x) = (fl(x l), ... , fn(xn))t. 

Corollary 2. If A is an n X n 1Jwtrix and the collection g:n (S) is non
empty then there exists a unique solution of the equation 

(5) 

for each Fl E g:n(s), F2 E g:n(s), and each BEEn if and only if A E Po . 
Proof: Since F2 E g:n(s), F;l : En ~ S exists and Fl 0 F;l E g:n. Thus, 

there exists a unique solution of equation (5) if and only if there exists 
a unique solution of 

As special cases of Corollary 2 we have: there exists a unique solution 
of each of the equations 

and 

x + AF(x) = B, 

for each Fl , F2 , F E g:n and each BEEn if and only if A E Po . 

In Theorem 3 (and Corollary 2) the hypothesis that each of the func
tions fi is an onto mapping is quite necessary in order to guarantee the 
existence of a solution for each A E Po . In the following example all of 
the hypotheses of Theorem 3 except this one are satisfied: 

It is of course impossible for these equations to have a solution since, by 
adding both sides, we find that the solution would have to satisfy 

which is absurd. 
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Even though the functions Ii are not "onto," it is still possible to 
specify sufficient conditions for the existence of a unique solution of 
equation (5) [and equation (1)] by strengthening the hypothesis on 
the matrix A-namely, by requiring that A E P. This is the essence 
of Corollary 3. We first require additional notation. 

With sn defined as above, we define, for each S E Sn, the collection of 
functions ff~(S) mapping S into En by: F E ff~(S) if and only if there 
exist, for i = 1, ... , n, monotone increasing functions Ii mapping 
Si onto a connected set in EI such that, for each XES, F(x) = (f1(Xt),· .. , 
In(xn»'. When S = En we denote ff~(S) by ff~ • 

Corollary 3. I I A is an n X 11 matrix then there exists a unique solution 
of equation (5) for each FI E ff~(S), F2 E ffn(S), or FI E ffn(S), F2 E ff~(S), 

and for each BEEn, if A E P. 

Proof: If F2 E ffn(S), F;l : En ~ S exists and FI 0 F;l l: ff~ • Thus, in 
this case, there exists a unique solution of equation (5) if there exists a 
unique solution of 

Now, since A E P, it follows from the fact that the determinant of a 
matrix is a continuous function of each of its elements, that there is a 
matrix A * E P C Po and an E > 0, such that A el + A *. Hence, 
equation (6) is equivalent to 

F(y) + A*y = B, (7) 

where we have defined 

But, since FI 0 F;l E ff~ and el l: ff'\ it follows that F E ffn. Therefore, 
since A * E Po , equation (7) and hence equation (6) and hence equation 
(5) have unique solutions. 

The case when FI E ffn(s) and F2 E ff~(S) can be reduced to the case 
just considered by making the simple observations that, in this case, 
equation (5) has a unique solution if 

A-IF1(x) + F2 (x) = A -IB 

has a unique solution. and A E P implies A-I E P (Theorem 2). D 
In Corollary 3 a sufficient condition is given for the existence of a 

unique solution to say equation (1) when the functions Ii which specify 
F are not necessarily mappings onto EI. That the condition (A E P) is not 
necessary is easily demonstrated by the counterexample: Let F E ff~ and 
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B I: E2; then the equations 

11 (Xl) - X2 = bl , and f,J(X2) + Xl = b2 

have a unique solution in spite of the fact that the matrix 

A == [~ -~J ¢P. 

13 

This is true because the function f2(fl (Xl) - bl ) is obviously a continuous 
monotone increasing function of Xl , and hence the left side of the equa
tion 

(8) 

is a strictly monotone increasing mapping of El onto El. Thus equa
tion (8) has a unique solution. 

V. BOUNDED SOLUTIONS AND RELATED PROBLEMS 

For many systems whose behavior is described by an equation having 
the form of equation (1), the vector B may be regarded as the sys
tem's input and the vector X may be regarded as the system's response, 
or output. Thus, if a sequence B\ B2, B 3

, •• , of input vectors for the 
system is given, the corresponding sequence Xl, x 2

, x 3
, ••• of output 

vectors is specified by equation (1). An important property that such 
systems might have is that of producing a bounded sequence of output 
vectors for each bounded sequence of input vectors; that is, the property 
that whenever an input sequence B\ B2, B 3

, ••• is contained in some 
bounded region of En, then the corresponding output sequence x\ x2

, 

x 3
, ••• (exists and) also is contained in some bounded region of En. 

By considering matrices A which are not members of Po , it is easy to 
demonstrate that all equations having the form of equation (1) do not 
have this property. For example, if f(x) == X + e% (f I: rrl), then the se
quence of solutions of the equation f(x) + (-I)x = b is unbounded, 
even though the sequence b = 1, !, i, ... of inputs is bounded. The fact 
that one must resort to matrices A which are not in Po, and the fact that 
by choosing any A ¢ Po , an example of the above kind can be constructed 
by an appropriate choice of F I: rrn, follows from our next theorem. 

Theorem 4. If A is an n X n matrix then A I: Po if and only if for 
each F I: rrn and each unbounded sequence of points x\ x 2

, x3
, ••• in En, 

the corresponding sequence B\ B2, B\ ... (Bk = F(xk) + Ax\ k = 1, 
2, 3, ... ) is unbounded. 
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Proof: (if) If A ? Po then, as shown in the "only if" part of the proof 
of Theorem 3, there exists a diagonal matrix D > 0 such that D + A is 
singular. Hence, there exists some point P I: En, P ~ 0, such that Dp + 
Ap = O. Let Pi , the j-th component of p, be nonzero. Let the diagonal 
elements of the matrix D be denoted by d l , ••• , dn and let the mapping 
F I: ~n be defined by 

fi(xi) = {diX i , Xi 

diXi + e , 

for i ~ j, 

for i = j. 

If Pi < 0 let € = 1, if Pi > 0 let € = -1. Consider the unbounded 
sequence x\ x2

, x3
, ••• defined by Xk = k· €'p, for k = 1, 2, 3, .. , . 

The members of the corresponding sequence B\ B2, B 3
, .,. are Bk = 

(0, '" , 0, /<Pj, 0, ... , 0) t, k = 1, 2, 3, ... , where the j-th element 
of each Bk is nonzero. Since for k = 1,2,3, ... , k € Pi < 0, the sequence 
B\ B2, B 3

, ••• is bounded. 

(only if) Our proof of the "only if" part of Theorem 4 consists of 
proving Theorem 5 ,vhich is referred to later for another purpose. 0 

Theorem 5. Let F == (f1('), ... , fn(' »t I: g:n, A I: Po, and, for i = 
1, ... , n, ai ~ {3i be given. There exist, for i = 1, ... , n, real numbers 
"Ii ~ Oi such that for any B == (b i , .,. , bn)t I: En with ai ~ bi ~ {3i for 
i = 1, ... , n, if x satisfies equation (1) then "Ii ~ Xi ~ Oi for i = 
1, ... ,n. 

Proof of Theorem 5: We first prove a useful lemma. 

Lemma 1. Let f be a strictly monotone increasing mapping of El onto 
itself. Let x, b, a, (3 be real numbers such that xf(x) ~ xb with a ~ b ~ {3. 
Then "I ~ x ~ 0, where l' = min {f-l(a), O} and 0 = max {f-l ({3) , O}. 

Proof: Let a ~ b ~ {3 and define l' = min {f-l(a), O} and 0 = 
max {f-I({3), O}. Let x satisfy xf(x) ~ xb. Then x(f(x) - b) ~ O. Clearly, 
l' ~ 0 ~ 0 and hence if x = 0 then l' ~ x ~ O. If x > 0 then f(x) ~ 
b ~ {3 which implies x ~ r l ((3) ~ 0 and hence "I ~ 0 < x ~ O. If 
x < 0, then f(x) ~ b ~ a which implies x ~ rl(a) ~ "I and hence 
l' ~ x < 0 ~ O. 0 

(Proof of Theorem 5) Since A I: Po there exists kl I: {I, ... ,n} such 
that Xk 1 (Axhl ~ 0 and hence, 

Xkl bkl = XkJk 1 (XkJ + Xk 1 (Ax)k 1 ~ XkJk 1 (XkJ. 

Thus, by Lemma 1, there exist I'k!) =I'k!) (hI' akJ and Ok!) = Ok!) (hI' (3k,) 
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such that 'Y~~) ~ Xk, ~ o~~) . Now if F n - 1 denotes the mapping of E n
-

l 

onto E n
-

l defined by 

Fn- l == (fl('), ... ,Ik,-l('), h,+l('), ... ,In(·))t, 

if A n - l denotes the (n - 1) X (n - 1) matrix obtained from A by 
deleting the kcst row and column (note that A n - l £ Po), if 

and if 

then 

Fn-1(x) + An-lx = Bn- 1 - an-IXk, .* 
Since A n - I £ Po , there is a k2 £ {I, ... , kl -1, kl + 1, ... , n} such 
that xk.(An-lxh. ~ ° and hence, as before, 

xk.(b". - ak •. k,xkJ ~ Xk.!k.(Xk.)' 

But, if ale •. k, ~ 0, then 

and if ak •. k, > 0, then 

Therefore, by Lemma 1, there is a 'Y~!) = 'Y~!) (h., a". - ak •. k''Y~!») 
and o~!) = O~!)(fk.' (3k. - ak •. k,01~)) such that 'Y~!) ~ Xk. ~ o1!) if 
ak •. k, ~ 0, and similarly for ak •. k, > 0. 

The above process may be repeated successively until the n pairs 
of real numbers 'Y~!), o~!), (i = 1, ... , n) have been obtained. Thus, for 
any given B ·with ai ~ bi ~ {3i for i = 1, ... , n, the components of 
the solution x of equation (1) will be bounded by these pairs of numbers, 
provided it is known at each step which coordinate k i to choose. The 
appropriate coordinate choice, however, will in general depend on the 
particular solution x which is associated with the given B. For different 
input vectors B the appropriate choice will in general be different. There
fore, in order to obtain bounds on x which are valid for all B with ai ~ 

b. ~ {3. (i = 1, ... , n) we must consider each of the n! permutations of 
the coordinates {I, ... , n} and, for each one, generate the set of bounds 
ht), o~;): i = 1, ... , n} for v = 1, ... , nL We then define 'Yi 

* In this equation x is understood to be (Xl, ... , Xk,-l , Xk,+l I ••• , Xn)t. 
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min h~'): v = 1, ... , n!} and Oi = max {o~·): v = 1, ... , n!} for 
i = 1, ... , n. Then, for each B with (Xi ~ bi ~ {1. for i = 1, ... , n, 
we have that 'Y. ~ Xi ~ 0, for i = 1, ... , n, since at least one of the 
sets of bounds h!~), o!~): i = 1, ... , n} must always apply. 0 

If the matrix A of Theorem 5 satisfies a stronger condition than 
A I: Po (that is, if A satisfies a weak row-sum dominance condition), 

for i = 1, .. , ,n, 

it is possible to use a method that requires much less computational 
effort than that of Theorem 5 to compute the vectors 'Y and 0 whose 
components bound the corresponding components of the solution of 
equation (1). This method of computing the bounds, a straightforward 
generalization of an idea presented in Ref. 3, is explained in Appendix B. 

From Theorems 3 and 4 we now have the result: Every bounded 
input sequence B\ B2, B3

, ••• is mapped by equation (1) into a bounded 
output sequence x\ x 2

, x3
, ••• , for each F I: g:n, if and only if A I: Po . 

In the proof of Theorem 5, the number of real numbers 'Yt), o!~) 
which must be computed, in order to determine bounds for x, is 2n X 
(n!). At the expense of obtaining poorer bounds it is easy to reduce 
this number to 2n2

• Suppose we compute, at the first step, the 2n 
numbers 'Y(1) 0(1) •.. 'YO) o(l) and set A = min {"V O ) ••• 'YO) } 

1 , l' 'n , n 1 11" n , 

J1.1 = max {oil), ... , o~l)}. Then, for each B with (Xi ~ bi ~ {1. for 
i = 1, ... , n, one of the components of the corresponding x will be 
bounded by Al (from below) and J1.1 (from above). We next compute the 
2n numbers 'Y!2) = 'Y!2)(f. , (x. - p!I»), o?) = o?)(fi , {1i - q?»), where 
p~l) = max {aijAI , aijJ1.1 : j ~ i}, q~l) = min {aijAI , aiiJ1.1 : j ~ i}, and 
denote the smallest 'Y~2) by A2 and the largest 0!2) by J1.2 • Then we have 
bounds which apply for two of the components of the x which 
corresponds to any B \vith (Xi ~ b, ~ {1i for i = 1, ... ,n. By computing 
'Y~3) = 'Y~3) (fi , (Xi - p!l) - p~2»), 0~3) = 0~3) (f. , {1. - q;l) - q~2»), etc., 
the above process may be continued to obtain the numbers Al , ••. , An , 
J1.1' .•• , J1.n • Each component of the X corresponding to any B with 
(Xi ~ bi ~ {1. for i = 1, ... ,n will be bounded by A = min {AI, ..• , An} 
(from below) and J1. = max {J1.1' ••• , J1.n} (from above). 

A matter that is closely related to the proofs of the above theorems 
on the boundedness of solutions of equation (1) is that of proving: For 
each F I: g:n and each A I: Po the solution x of equation (1) is a continuous 
function of the vector B. It is obvious that it will suffice to prove that 
for each F I: g:n with F(e) = e, and for each A I: Po, the solution x 
of equation (1) is continuous in B at B = e. We then note that if f 
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satisfies the hypotheses of Lemma 1 and, in addition, if f(O) = 0 then, 
due to the continuity of r\ for every € > 0 there exists r > 0 such that 
if Ci, (3 in Lemma 1 satisfy - r < Ci ~ b ~ (3 < r then "I, 0 in Lemma 1 
satisfy - € < "I ~ x ~ 0 < €. This observation may be used to incor
porate a simple" €-o argument" into the steps of the previous paragraph 
to show that when F(8) = 8 then for arbitrary € > 0, one can determine 
r > 0 such that II B \I < r implies \I x \I < €. 

At this point we return to the matter of the existence and uniqueness 
of solutions of equation (1). We state first a theorem of R. S. Palais 
(Ref. 7-see also the Appendix of Ref. 8) which shows the connection 
between the concepts of existence and uniqueness of solutions and the 
boundedness of solutions. 

Palais' Theorem. Let f1' ... , fn be n continuously differentiable real 
valued functions of n real variables. Necessary and sufficient conditions 
that the mapping f : En ~ En defined by f(x) = (fl (x) , ... , fn(x»' be 
a diffeomorphism of En onto itself are: 

(i) det [afJaxj] never vanishes. 
(ii) limllxll-+<IJ \I f(x) \I = ex>. 

Palais' Theorem may be used to prove a result which is almost 
equivalent to our Theorem 3, that is: 

Theorem 6. If A is an n X n matrix then there exists a unique solution 
of equation (1) for each F == (fl(X1), ... , fn(xn» , with continuously 
differentiable, strictly monotone increasing functions fi which map El 
onto itself, and whose slopes are everywhere positive, and for each B 1: En, 
if and only if A 1: Po . 

A proof of Theorem 6 which is independent of our Theorem 3 is 
easy to construct: For all A 1: Po , the rather trivial Theorem 1 guarantees 
that condition (i) of Palais' Theorem is satisfied, and Theorem 5 
guarantees that condition (ii) is satisfied. If A 1/ Po then a choice of F 
such as is specified in the "if" part of the proof of Theorem 4 provides 
a case in which condition (ii) of Palais' Theorem is violated. 

VI. SUFFICIENT CONDITIONS FOR A 1: PoOR P 

For a given matrix A, it is not in general an easy task to determine 
whether or not A satisfies anyone of the four equivalent conditions 
of Fiedler and PtaJc which are given in Section III and which serve to 
define the class of matrices Po (or the conditions which define P). This 
is particularly true when the order of A is large. For this reason, we 
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now give several conditions which are sufficient to insure that a matrix 
A is in Po or P (and which are not so difficult to verify). 

Suppose it were known that every eigenvalue of A as well as every 
eigenvalue of each principal submatrix of A had a nonnegative (positive) 
real part. Then this would guarantee that A t Po (P). This is the main 
idea involved in the following theorem. 

Theorem 7. If anyone of the following inequalities is satisfied by the 
elements aij of the matrix A, for all i = 1, ... , n, then A t Po . 

(i) aii ~ (I: I aij I)"(I: I aki 1)I-a, 0 ~ a ~ 1; 
jr"i kr"i 

(ii) aii ~ a~/l]( I: I aij 11')1/1', p~ 1, p-l + q-l 1, 
jr"i 

n 

ai positive numbers satisfying I: (1 + ai) -1 ~ 1; 
i=1 

(iii) aii ~ a max I aij I, a positive satisfying 
ir"i 

n 

I: {I: I aij I (max I aij I)-I} ~ a(1 + a), (0/0 = 0). 
i=1 jr"i jr"i 

If anyone of the above inequalities with ~ replaced by > is satisfied f01' 
i = 1, ... , n, then A t P. 

Proof: If the right-hand side of any of the above inequalities is 
denoted by the nonnegative number ri then it is well known that all 
of the eigenvalues of the matrix A are contained in the union U { C i : 

i = 1, ... , n} of the disks Ci = {z: I z - aii I ~ rd.9 But the condition 
aii ~ (» ri guarantees that if z t Ci then Re(z) ~ (» O. Thus, 
each of the eigenvalues of the matrix A has a nonnegative (positive) 
real part. The same is true of each eigenvalue of every principal sub
matrix of A, for if one of the above inequalities is satisfied by the 
elements of A it is also satisfied by the elements of any principal sub
matrix. 0 

VII. COMPUTATION OF THE SOLUTION 

At present, the authors know of no single computational algorithm 
which is guaranteed to yield the solution of equation (1) for all F t g:n, 
A t Po , B t En. However, there are several ways that the solution may 
be computed for large classes of such equations. 

If, for example, the matrix A satisfies either a weak row-sum or weak 
column-sum dominance condition (inequality (i) of Theorem 7 with 
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either a = 1 or a = 0) and if F £ ;In with, roughly speaking, the slopes 
of each f i bounded from below by some positive constant, then it can 
be shown (see Appendix A) that an algorithm for computing the solu
tion can be obtained by the use of Banach's contraction-mapping 
fixed point theorem. 

If the matrix A is positive semidefinite then, as mentioned in Sec
tion I, the existence of a unique solution of equation (1) for all F £ ;In 

follows from the earlier work of Sandberg and lVIinty. If, in addition, 
there exists for i = 1, ... , n, positive constants ai and f3i such that 

for all u ~ v, then Sandberg's iteration scheme (also resulting from 
an application of the contraction-mapping fixed point theorem) can 
be used to compute the solution. 1 In this regard, if the techniques 
of Section V are first used to obtain bounds on the location of the 
solution then one could modify equation (1) by changing the nature 
of the functions fi outside the domain in which the solution is known 
to lie (but still keeping the f i strictly monotone increasing from El 
onto El) and obtain a new equation which has the same solution as 
the original equation. By doing this, the functions f i in the new equa
tion might be made to satisfy the above inequalities in cases where 
this was impossible for the original f i • Also, even if these inequalities 
could be satisfied for the original equation, larger values of ai and 
smaller values of f3i might be used for the modified equation. This can 
result in a more rapidly converging iteration process (see Section VII 
of Ref. 3). Similarly, the bounds can be used to improve the perform
ance of other iteration schemes. 

In case A £ Po is not positive semidefinite, it might be that there exist 
diagonal matrices L11 , L12 > 0 such that L11AL12 is positive semidefinite. 
If such matrices can be found, then Sandberg's iteration scheme could 
be used to compute the solution of the equation 

from which the solution of equation (1) may be obtained directly. 
Unfortunately, it is not the case that such L11 , L12 > 0 exist for all 
A £ Po . For example, it is quite easily verified that for 
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even though A E Po , the matrix AIAA2 is not positive semidefinite for 
any choice of Al , A2 > o. 

It is easily verified, however, that appropriate A1 , A2 > 0 can be 
found for all 2 X 2 matrices A E Po except those for which 

and 

(ii) a12a21 0, 

and 

(iii) either a12 ¢ 0 or a21 ¢ O. 

In particular, for all nonsingular 2 X 2 matrices A E Po, appropriate 
A1 , A2 (A2 = J) can be found. Thus, Sandberg's iteration scheme could 
be used, for example, to compute the solution of the example problem 
of Section II which was taken from Calahan's book. 

VIII. APPLICATION TO EQUATIONS FOR TRANSISTOR NETWORKS 

In this section some of the above theory is applied to the equations 
which describe the behavior of electrical networks containing tran
sistors. By the word transistor we refer to the three-terminal device 
whose equivalent circuit is shown in Fig. 2.~~ Considering the tran
sistor as a nonlinear two-port network, the following equations which 
express the port currents in terms of the port voltages follow imme
diately from inspection of Fig. 2: 

We assume, as is the case for the usual large-signal model of a physical 
transistor, that 0 < CX12 < 1, 0 < CX21 < 1, and that both of the func
tions i1 and i2 are continuous and strictly monotone increasing. The 
character of the functions i1 and i2 which describe the transistor's 
nonlinear conductances will depend on whether the transistor is des
ignated as NPN or PNP. We shall, however, have no occasion to dis
tinguish between these two cases in what is to follow. 

Suppose an electrical network is synthesized by connecting together, 

* In some respects this equivalent circuit is an ideal model of a transistor. 
Nevertheless, since this model is often used in the design and the computer 
analysis of transistor networks, consideration of it is important. The presence of 
series resistance at the base, emitter, and collector terminals of a transistor will 
be considered by the authors in another paper. 
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VI Q12 LC 

+ 

Fig. 2 - The equivalent circuit of a transistor. 

in an arbitrary manner, any (finite) number of transistors, resistors 
(that is, linear resistors with nonnegative resistance) , voltage sources, 
current sources, and nonlinear resistors which are described by strictly 
monotone increasing conductance functions (and which we shall hence
forth refer to as "diodes"). Suppose the network contains n transistors 
and d diodes. For k = 1, "', n, let X2k-l, X27q Y2k-l, and Y2k denote 
the voltage and current variables Vl, V2, i l , and i 2 , respectively, for 
the k-th transistor. For k = 1, "', d, let X2n+k and Y2n+k denote the 
voltage across, and the current through, the kth diode. Let these 
variables be related by Y2n+7c = f2n+k(X2n+7J. Then, if x = (Xl, 
X2n+a) t and Y = (Yl, •. " Y2n+a) t, we have 

y = TF(x) , (9) 

where T = diag(Tt, T2 ), with Tl a block diagonal matrix with n 2 X 2 
diagonal blocks of the form 

and T2 a d X d identity matrix. The nonlinear function F has the 
formF(x) = (fl(Xl) , "·,f2n+a(X2n+a))t. 

Consider now the (2n+d) -port network of resistors and independ
ent sources which is formed from the original network by removing the 
transistors and diodes. If the y-parameter matrix G of this (2n+d)
port exists then we have the additional equation relating the vectors 
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x and y: 

y = -Gx + u, (10) 

where u is some vector of constants which is, in general, nonzero since 
sources are present in the (2n+d) -port. 

Combining equations (9) and (10) we obtain 

TF(x) + Gx = u. (11) 

Now T is a nonsingular matrix and hence, if equation (11) is multiplied 
by T-t, we obtain an equation having the form of equation (1). If 
the matrix T-1G E Po then, by Corollary 1, there exists at most one 
set of transistor and diode voltages satisfying equation (11). IV[oreover, 
if each of the nonlinear functions describing the transistors and diodes 
in our network maps El onto E\ or if T-1G E P, then Theorem 3, or 
Corollary 3, guarantees the existence of a unique solution of equation 
(11). 

We have been careful to distinguish between the case when our 
theory guarantees only the uniqueness of a solution and the case 
when it guarantees both the solution's existence and its uniqueness 
for the following reason: In the analysis of transistor networks the 
nonlinear functions which are used to describe diodes or to describe 
the nonlinear conductances in the equivalent circuit of a transistor 
are often taken to be of the form 

where 10 and A are constants. The range of such a function is not the 
entire real line. Presumably, therefore, one can construct transistor 
networks having the property that if functions of the above type are used 
in a transistor's equivalent circuit then the network admits no solution. 
We now give a simple example of such a net,vork. We wish to emphasize, 
though, that even for these networks whose equations may sometimes 
have no solution, our theory still guarantees that if T-1G E Po and if a 
solution of equation (11) exists, then it is unique. 

Consider the network of Fig. 3. For this network, equation (11) 
becomes 

Suppose £X12 = 0.5, £X21 = 0.9, and g = 5.5 mhos. Then, the above equa
tion is equivalent to 
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Hence, V1 and V2 must satisfy 

If we now assume that the transistor's nonlinear conductances are 
described by the functions 

1), 

1), 

where the parameters Ie, Ie, Ae , and Ac are each positive, then for 
all Vj , V2 we have 

Hence, if the values of the independent current sources of Fig. 3 are 
chosen such that 

Ia + Ib ;;; ioIe + !Ic , 

then the equation for this network has no solution. 
Let us now consider the problem of determining whether or not, for 

a given network, the matrices T and G in equation (11) satisfy the 
condition T-1G £ Po (or T-1G £ P). (The existence of many transistor 
bistable circuits assures us that this condition is not always satisfied.) 

1:------1 
I V2 +L c=f2 (V2) «2l t e t I 

I 9 

I I I v: tCe=f,(v,) ",,.co i I 
L ________ TRANSISTO~ 

Fig. 3 - A transistor network whose equations may have no solution. 
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There is a large class of networks for which this condition is satisfied, 
and for which a simple inspection of the G matrix suffices to identify 
a member of the class. 

Since the matrix T satisfies a strong column-sum dominance condi
tion, that is, since 

tii > L I tii I for i = 1, ... , 2n + d, 
ir<i 

the following theorem guarantees that if the matrix G also satisfies a 
strong column-sum dominance condition, then T-IG E P, and that if 
the matrix G satisfies a weak column-sum dominance condition, 

then T-IG I: Po and, hence, the above conclusions concerning the ex
istence and the uniqueness of a solution follow. 

Theorem 8. If the square matrix A satisfies a strong column-sum dom
inance condition and if the square matrix B satisfies a weak (strong) column
sum dominance condition, then A -IB I: Po (P). 

Proof: Suppose A -IB ¢ Po . Then, by the main result of the "only if" 
part of the proof of Theorem 3, there exists some diagonal matrix 
D > 0 such that det (D + A -IB) = O. But det (D + A -IB) = det (A -1). 
det (AD + B), and det (A-I) ~ O. Likewise, det (AD + B) ~ 0 
since AD + B satisfies a strong column-sum dominance condition. 
Hence, A -IB E Po . 

With B strongly column-sum dominant, let 0 > 0 be such that 
B - oA also possesses the strong dominance property. Suppose that 
A -IB - 01 ¢ Po . Then, as above, there is aD> 0 such that A -IB -
oJ + D = A -I[B - oA + AD] is singular, which is a contradiction. 
Therefore A-IB - oJ I: Po, and, by Theorem 1, A-IB r P. 0 

IX. COMMON-BASE TRANSISTOR NETWORKS 

We now consider a special class of the networks which are comprised 
of transistors, resistors, diodes, and independent sources. We consider 
the class of all such networks for which there is a single node (called 
ground) to which the base terminal of each transistor is connected. 
Let us first consider a subclass of this class of networks; that is, let us 
temporarily assume that no diodes are present. For all networks in 
this subclass it is easily verified that when the G matrix for equation 
(11) exists, then it satisfies the above weak column-sum dominance 
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condition and hence, by Theorem 8, T-1G £ Po . This fact is made 
evident if we consider the network of resistors which is described by 
G (that is, the linear multiport to which the transistors are connected, 
with all sources removed) and first simplify this network by using the 
star-mesh transformation to remove all internal nodes. Of course for 
many networks of this sublcass G is strongly column-sum dominant, 
in which case T-1G £ P. 

It is clear that the networks for which the G matrix fails to exist 
are exactly those networks in which either one or more of the collec
tor or emitter terminals are connected, through the resistor network, 
directly to ground (that is, through a branch having infinite con
ductance), or else two (or more) of the transistors' collector or emitter 
terminals are connected directly together (through a branch of the 
resistor network having infinite conductance). These direct connec
tions can exist in the resistor network either because of corresponding 
short-circuits in the original linear multiport, or because of corre
sponding connections involving branches which contain only ideal 
voltage sources. 

If one assumes that each transistor in the network has a nonzero 
series resistance associated with both its emitter and its collector 
terminals (this assumption certainly being consistent with physical 
reality) then one need not be concerned about the possibility of the 
nonexistence of the G matrix since the situations mentioned in the 
previous paragraph cannot occur. We now show, however, that one 
need not rely upon this assumption in order to prove the uniqueness 
of the solution of the equations which describe the networks that we 
are considering. 

We have observed that the matrix G will not exist if and only if 
the linear multiport has fewer independent port voltages than it has 
ports. In this case we modify the nonlinear multiport in such a man
ner that we can break some of the connections to the linear multiport 
so that it then possesses a G matrix and hence can be described by 
an equation having the form of equation (10). The modifications 
to the nonlinear multiport which are called for are obviously the ad
dition of voltage sources between certain nodes, the values of these 
sources being the same as those of the voltage sources connecting the 
corresponding nodes in the linear multiport. This simple concept is 
illustrated in Fig. 4. Here, the network of Fig. 4a, containing a linear 
6-port, has been replaced by the "equivalent" network of Fig. 4b con
taining a linear 3-port. Although the G matrix of the 6-port does not 
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r-=- --_--1a------------+-II:-=~------,~,/-\1 -I 
I 1 2 V + t------+-------. 

I I 
lV 

L,~ 
v, 

(a) 

(b) 

Fig. 4 - Example of a grounded-base transistor network. 

exist, it does exist for the 3-port which can be described by 

[ill [1 -;3 0] VII [-1 
:: - - ~ 0 ~ ::. + ~ 

We have shown that the above artifice allows an equation having the 
form of equation (10) to always be written to describe the linear 
multiport contained in our network. We now show that an equation 
like equation (9) can be written to describe the nonlinear part of our 
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modified network. The equation which we obtain is of the form y = 
PTF (ptx + C) with Pan 1n X 2n matrix (m, < 2n) and C a 2n-vector. 

Consider the equation which describes the nonlinear part of a com
mon-base transistor network before any of the above-mentioned 
modifications (that is, the addition of voltage sources) are made. 
This equation has the form of equation (9) with T being a 2n X 2n 
block diagonal matrix (recall that n is the number of transistors 
present). Let us consider the effect on this equation of the modifica
tion of the network by adding voltage sources, one at a time. There 
are two different ways of adding voltage sources that must be con
sidered. 

Suppose a voltage source of voltage E is connected between nodes 
j and k (with plus reference at node j), and suppose the connections 
between node j and the linear multiport are then open-circuited. This 
situation is illustrated in Fig. 5. Using the notation indicated in this 
figure, we have 

i' = TF(v) , 

i. = 
., 
~. for v ~ j, k, 

~i = 0, 

~k = i~ + ik , 

Vi = Vk + E. 

Let us now define the vectors v* and i* to be the (2n-l)-vectors 
obtained from v and i, respectively, by deleting the Vi and i j elements. 
Then, if F*(v*) is the 2n-vector obtained from F(v) by replacing the 

~ L, ~ Lj=o ~ Lk ~ L2n 

v, Vj Vk V 2n 

L, ., + Lj ~ + L'k 
., 

~L2n 

NONLINEAR MULTI PORT 

Fig. 5 - Typical modification of the nonlinear multipart network. 
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argument Vj by Vk + E, we then have that 

i* = T*F*(v*), (12) 

where the (2n-1) X 2n matrix T* is obtained from T by adding the 
j-th row to the k-th row and then deleting the j-th row. Observe that 
T*F*(v*) can be written as QTF(Qtv* + R) in which the j-th element 
of the 2n-vector R is E, all other elements of R are zero, and Q is obtained 
from the identity matrix of order 2n by adding the j-th row to the k-th 
row and then deleting the j-th row. 

In case a voltage source of voltage E is connected between node j 
and ground (with the plus reference at node j) and all connections 
between node j and the linear multipart are open-circuited, then we 
can again form equation (12) from equation (9) by simply replacing 
Vj by E wherever it appears in the argument of F, to form F*(v*) , 
and deleting the j-th row of the matrix T, to form T*. In this case 
T*F*(v*) can be written as QTF(Qtv* + R) in which R is as defined 
earlier, but in this case Q is obtained from the identity matrix of order 
2n by simply deleting the j-th row. 

The above processes can be applied repeatedly to account for the 
addition of an arbitrary number of voltage sources to the nonlinear 
multiport. The resulting equation which describes the multiport will 
have the form 

y = Qp ... Q2Q1TF(Q~Q~ ... Q!x + C) 

== TP(x) 

with C some constant 2n-vector and each of the Qi obtained from the 
identity matrix of the appropriate order in one of the two ways described 
above. 

Consider equation (9) in which T is a square matrix. Due to the strict 
monotonicity of each component function of F, the mapping TF(x) 
has the following property: If p, q are arbitrary 2n-vectors then there 
is a diagonal matrix D > 0 such that 

TF(p) - TF(q) = TD(p - q), (13) 

and furthermore, the matrix TD is strongly column-sum dominant 
(since T is strongly column-sum dominant). We now wish to show that 
a similar fact is true in the more general case. 

With m the number of rows of Qp, let p and q denote arbitrary 
m-vectors. Then since there is a diagonal D > 0 such that 

F(Q~Q~ ... Q!p + C) - F(Q~Q~ ... Q!q + C) = DQ~Q~ ... Q;(p - q), 
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we have 

TF(p) - TF(q) = Qp ... Q2QIT DQ~Q~ ... Q!(P - q). 

The fact that Qp ... Q2QI TDQ~Q~ ... Q! is strongly column-sum 
dominant follows from the very easily verified proposition that the 
product Q"MQ! (k = 1, 2, ... , p) possesses that property whenever 
M does. 

Therefore if Xl and x2 denote two solutions of the "generalized equa
tion (11)," then [Tn + G](x l 

- x2
) = () in which 

and n = DQ~Q~ ... Q! . 

But Tn, and hence Tn + G, is strongly column-sum dominant and 
hence, nonsingular. This implies that Xl = x 2

• 

We have now shown that in any network constructed from resistors, 
independent sources, and transistors having a common-base connection, 
the transistors' base-emitter and base-collector voltages are unique. It 
is a trivial matter to show that the same result applies when diodes 
are also allowed to be present in the network. 

Suppose the result was not true for some network containing at least 
one diode. Then there would be two different sets of voltages and cur
rents which satisfy Kirchoff's laws. Thus for each diode in the network 
there would be two (not necessarily distinct) pairs of points (v~l) , i~l»), 
(V~2) , i~2») at which the diode is biased, corresponding to each solution. 
Letting I denote the strictly monotone increasing function which 
characterizes the diode we have i~l) = l(v~l)) and i~2) = I(V~2»). But 
then, suppose the diode is replaced by the series combination of a 
resistor r and a voltage source E whose values are chosen so that the 
line id = (l/r)vd - Elr passes through the points (v!ll , i~l)) and (V~2) , 
i~2»). (Due to the strict monotonicity of I, this can certainly be done 
with some positive choice of r.) Performing the above type of sub
stitution for each diode in the network, we obtain a new network of the 
type already considered. This new network would possess two different 
sets of transistor base-emitter and base-collector voltages (the same 
as before). This contradicts our previous result, and hence the previous 
result must apply, even when diodes are present in the network. 

To determine the equilibrium solutions of the differential equations 
which describe a network containing inductors and capacitors as well 
as the elements mentioned above, one must determine the solutions of 
a dc equation for a network of the above class. Thus, in summary, 
what we have shown is: One cannot synthesize a bistable network 
which consists of resistors, inductors, capacitors, diodes, independent 
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voltage and current sources, and an arbitrary number of (Fig. 2) 
transistors having a common base connection (or, in particular, only 
one transistor). 
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APPENDIX A 

Algorithms for C01nputing Sollltions of Equation (1) 

In this appendix two algorithms for computing the solution of 
equation (1) are presented. It is proved that one of the algorithms will 
always converge to the solution of equation (1) if the matrix A satisfies 
either a weak row-sum or column-sum dominance condition (inequality 
(i) of Theorem 7 with either a = 1 or a = 0) and if, roughly speaking, 
the slopes of each fi are bounded from below by some positive constant. 
In each case the proof of convergence relies upon Banach's contraction
mapping fixed point theorem, and therefore also represents an inde
pendent proof of the existence and uniqueness of a solution of equation 
(1) for the conditions stated above. 

The following notation will be used: For fixed F l: ;yn, B l: En, let 
f(x) == F(x) - B; also, if A is a given n X n matrix with elements aij , 

,ve define the diagonal matrix D by D = diag [all' a22 , ... , ann], and 
let A = A-D. 

Theorem A. If the n X n matrix A satisfies 

for i = 1, ... ,n, 

and if F l: ;yn, B l: En, and if there exists some € > 0 such that for each 
a, (3 l: E\ € I a - (3 I ~ I fiCa) - fi({J) I for i = 1, ... , n, then equation 
(1) possesses a unique solution, and if XO is an arbitrary point in En, the 
sequence XO, Xl, x2

, ••• defined by 

X
k

+
l = (f + D)-I(_A)xk 

converges to the solution. 

Proof: Equation (1) may be rewritten as 

f(x) + Dx + Ax = o. 

Hence, if the operation T: En ~ En is defined by T = (f + D)-l( -A), 
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then the solution of the equation x = Tx is identical to the solution 
of equation (1). We now prove that the sequence xo, x\ x2

, ••• converges 
to this solution by proving that T is a contraction. 

Let x and y be arbitrary points in En and let g = Tx, h = Ty. Then, 
f(g) + Dg = -~x and f(h) + Dh = -~y. Thus, for i = 1, ... ,n, 

f;(gi) - bi + aiigi = - (~x) i , 

and 

Subtracting, we obtain 

Since fi is strictly monotone increasing, we have 

and hence, since e + a i i > 0, 

Now, 

i (~X)i - (~Y)i I 

~ L:(lai i 1·lxi - Yi i) 
ir<i 

~ (L: I aij i). max I Xi - Y i I· 
i r< i i 

Thus, defining the metric p on En by p(x, y) 
have, for i = 1, ... , n, 

max I Xi 
i 

Yi I, we 

But, since 0 ~ L: I aii I < aii + e, there exists K, 0 ~ ]( < 1, such 
ir<i 

that I gi - hi I ~ K·p(x, y) for i = 1, .,. ,n, and in particular, p(Tx, 
Ty) = max I gi - hi I ~ K· p(x, V). Hence T is a contraction. 0 

Theorem B. ] f the n X n matrix A satisfies 

for i = 1, ... ,n, 

and if F £ ~n, B £ En, and if there exists some e > 0 such that for each 
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a, f3 (: E\ E \ a - f3\ ~ \ fiCa) - fi((3) \ for i = 1, ... , n, then equation 
(1) possesses a unique solution, and if ZO is an arbitrary point in En, the 
sequence zO, ZI, Z2, ••• defined by 

Zk+l = - A(f + D)-ll 

converges to some point z* and the solution of equation (1) is given by 

x* = (f + D)-IZ*. 

Proof: As in Theorem A, the solution of equation (1) is also the solu
tion of x = (f + D) -1( - A)x. For each x (: En, let z = (f + D)x and 
hence x = Ct + D) -IZ• Thus, x* is the solution of equation (1) if x* = 
(f + D)-lZ*, where z* is the solution of z = -ACt + D)-lZ. The theorem 
is thus proved if it is proved that the operator T === -A(f + D)-1 is a 
contraction. 

Let P denote the operator (f + D)-t, and let x and y be arbitrary 
points in En. Then, proceeding as in the proof of Theorem A, we obtain 

1 
\ (Px)j - (pY)j \ ~ a .. + € \ Xi - Yi \, 

11 

for j = 1, ... ,n. 

Thus, if g = Tx and h = Ty, then for 1: = 1, ... , n, 

gi = - L aitCPx)i and hi = - L aii(PY)i . 
j,.,i i"" 

Hence 

\ gi - hi \ = \ L aii((Px)i - (PY)i) \ 
j,.,i 

~ L (\ a'i \.\ (PX)i - (PY)i \) 
i,.,i 

~ L (\ aii \. 1 .\ Xi - Yj \). j,.,. aii + E 

Therefore, 

~(" lai il ) = L.J L.J \ Xi - Yi \. 
i=1 ir'i aii + € 

But, there exists K, 0 ~ K < 1, such that, for j = 1, ... , n, 

L I aij I ~ K, 
i"'i aii + E 
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and hence 
n n 

L I gi - h. I ~ K L I Xi - Yi I· 
i=1 j=l 

Defining the metric p on En by 
n 

p(x, y) = L I Xi - Yi I, 
i~1 

we therefore have 

n 

p(Tx, Ty) L I gi - hi I ~ K· p(x, Y), 
i=1 

and hence T is a contraction. 0 

APPENDIX B 

Deterrnination of Bounds on the Solution of Equation (1) 

In this appendix we present a method for determining bounds on 
the solution of equation (1) when F (: ;In, A is weakly row-sum dominant, 
and (for given a == (aI' ... , an)t, {3 == ({3I, ... , {3n)t (: En) B == (b1 , 

... , bn ) t satisfies ai ~ bi ~ (3i for i = 1, ... , n. The solution bounds 
are, in general, easier to compute than those of Theorem 5. The method 
presented here is a generalization of an idea presented in Ref. 3. 

The computation of the solution bounds proceeds in two steps. First, 
one solves each of the equations 

F(x) = a (14a) 

and 

F(x) = {3. (14b) 

Denoting the solutions of equations (14a) and (14b) by Il == (Ill' 

•.• , Iln) t and v == (Vl' ... , vn) t, respectively, and defining 

A = max { I III I, ... , I Iln I, I VI I, ... , I vnl}' 

and 

B' = (L I ali I, ... , L I ani I)', 
i~l i~n 

one then solves each of the equations 

F(x) + diag [all , ... , ann]x = a - AB', (15a) 
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F(x) + diag [au , ... , ann]x = {3 + "AB'. (15b) 

Denoting the solutions of equations (15a) and (15b) by 'Y - ('Yl' 
••• f 'Yn) t and 0 == (01 , ..• , On) " respectively, one has 'Yi ~ x~ ~ 0, for 
i = 1, ... , n, where XO is the solution of equation (1) that corresponds 
to any B satisfying a, ~ b. ~ {3i for i = 1, ... ,n. 

To prove that the components of the vectors 'Y and 0, determined by 
the above procedure, are indeed bounds for the corresponding compo
nents of the solution XO involves no more than a word-for-word repetition 
of the proof of Theorem 2 of Ref. 3, with several quite obvious modifica
tions. We omit the details. 

REFERENCES 

1. Sandberg, 1. W., "On the Properties of Some Systems that Distort Signals-I," 
B.S.T.J., 42, No.5 (September 1963), pp. 2033-2046. 

2. Minty, G. J., "Two Theorems on Nonlinear Functional Equations in Hilbert 
Space," Bull. Amer. Math. Soc., 69, No.5 (September 1963), pp. 691-692. 

3. Willson, Jr., A. N., "On the Solutions of Equations for Nonlinear Resistive 
Networks," B.S.T.J., 47, No.8 (October 1968), pp. 1755-1773. 

4. Calahan, D. A., Computer-Aided Network Design (Preliminary Ed.), New 
York: McGraw-Hill, 1968. 

5. Fiedler, M. and Ptak, V., "On Matrices with Non-Positive Off-Diagonal 
Elements and Positive Principal Minors," Czech. Math. J., 12, No. 3 
(1962), pp. 382-400. 

6. Fiedler, M. and Ptak, V., "Some Generalizations of Positive Definiteness and 
Monotonicity," Numer. Math., 9, No.2 (1966), pp. 163-172. 

7. Palais, R. S., "Natural Operations on Differential Forms," Trans. Amer. 
Math. Soc., 92, No.1 (1959), pp. 125-141. 

8. Holzmann, C. A. and Liu, R., "On the Dynamical Equations of Nonlinear 
Networks with n-Coupled Elements," Proc. Third Ann. Allerton Conf. 
on Circuit and System Theory., (U. of Illinois, 1965), pp. 536-545. 

9. Marcus, M., Basic Theorems in Matrix Theory, Washington, D. C., National 
Bureau of Standards Applied Mathematics Series, 57 (1960). 



Some Theorems on the Dynamic Response 
of Nonlinear Transistor N etworl{.s 

By I. w. SANDBERG 

(Manuscript received July: 16, 1968) 

Relative to the huge body of theory of linear time-invariant systems, very 
little of a general and precise nature is known about the network-theoretic 
properties of transistor circuits operating under large-signal conditions. 
One basic property P which a transitor network might have is that if the 
input approaches a constant, then the output approaches a constant which is 
independent of the initial conditions. In this paper we prove a stability 
theorem concerning a nonlinear differential equation that governs the 
behavior of a large class of networks. A corollary of this theorem asserts 
that if a certain condition is satisfied, then property P holds. 

We consider also the problem of estimating the rate of decay of transients 
in transistor networks and we prove theorems which allow us to make some 
often quite conservative, but definite, statements concerning limitations on 
switching speeds. A practical example considered shows that in some cases 
the bounds, which are frequently very easy to evaluate, can be quite useful. 

The proofs depend in an interesting way on the relationship between 
the static diode characteristic and the nonlinear capacitance associated with 
a semiconductor junction. 

1. INTRODUCTION AND DERIVATION OF THE DIFFERENTIAL EQUATION 

We initially consider the network of Fig. 1, which contains transis
tors, linear resistors, voltage sources, and current sources. Each 
transistor is represented by a model of the type shown in Fig. 2 (see 
Gummel1 and Koehler2

) which takes into account nonlinear dc proper
ties as well as the presence of nonlinear junction capacitances. Asso
ciated with this model are six parameters: ai, a r , Te , Te, Ce , and Ce (all 
positive constants; al < 1, ar < 1) and two nonlinear functions Ie ( . ) 
and Ie ( . ). 

Concerning Ie ( .) and Ie ( . ), for our purposes it is necessary to as
sume only that 

35 
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Fig. 1-General network containing transistors, sources, and resistors. 

Assumption 1: For each transistor: fc(·) and fc(·) are strictly-mono
tone increasing mappings of the real interval (- 00, (0) into itself; 
fo(O) = fc(O) = 0, and fc(·) and fc(·) are continuously differentiable 
on (- 00, (0). 
The functions f c ( .) and f c ( .) of Gummel's model! are of simple 
exponential type and satisfy Assumption 1. 

From Fig. 2: 

d 
ie = dt [c.ve + Tef.(ve)] + fe(v e) - oAe(ve) , 

ic = :t [ceve + Tefe(ve)] - a,j.(v.) + fc(vc). 

Suppose that the network of Fig. 1 contains p transistors; for k = 
1,2, ... , p, let V2k-l and V2k, respectively, denote the emitter to base 
voltage and the collector to base voltage of the kth transistor. Simi-

\ / 
ve~~v' 

b 

Fig. 2 - Transistor model. 
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larly, for k = 1, 2, ... , p, let i 2k - 1 and 1~2k' respectively, denote the 
emitter current and the collector current of the kth transistor (with 
reference polarities as indicated in Fig. 2). Then, with v = (VI, V2, 

••• , V2P) t1", i = (iI, i2, ... ,i2P ) t1", f2k-d·) and G2k-1 the fe(·) and Ce of 
the kth transistor, and f2k ( .) and C2k the fe ( .) and Ce of the kth tran
sistor, 

i = ~t [C(v)] + 'PF(v) 

where, for j = 1, 2, ... , 2p, 

[F(V)Ji = fi(vJ, 

(1) 

(2) 

(3) 

and T = TI EB T2 EB ... EB T p , the direct sum of p 2 X 2 matrices 
Tk in which 

(k)] -ar 

1 

for k = 1, 2, ... , p. 
We assume that the linear resistive portion of the structure of Fig. 1 

introduces the constraint 

i = -Gv + B (4) 

in which G is a conductance matrix and B is an element of the set (B 

of all real bounded continuous 2p-vector-valued functions of t on [0, 00). 
From equations (1) and (4) 

d 
dt [C(v)] + TF(v) + Gv = B. (5) 

Let u = C (v). Since all of the Ci and 7 i are positive, and each of the 
fi(·) is continuous and monotone increasing, there exists a C- I

(.) such 
that v = C-I(U). Thus, 

~~ + TF[C- 1(u)] + GC-1(u) = B. (6) 

The Jacobian matrix J u of TF[C-1(u)] + GC-1(u) is 

T diag { f~[gi(ui)J } + G diag { 1 } 
Ci + 7d~[gj(uj)J Ci + 7d~[g;(uj)J 
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in which for all j = 1, 2, ... , 2p 

gj(Uj) = [C-l(u)]j 

with each of the gi(·) continuously differentiable. 
Since J u is continuously dependent on u, and II J u II (\ I . II any norm) 

is bounded from above uniformly in u, it follows that there exists a 
constant L such that 

II TF[C-l(ua )] + GC-l(u,,) - TF[C- 1 (Ub)] - GC-l(Ub) II 
~ L II U a - Ub II (7) 

for all U a and U b belonging to real Euclidean 2p-space E 2
P. In particular, 

we have 
II TF[C-l(u)] + GC-l(u) - B II ~ L II U II + liB II (8) 

for all t ~ 0 and all U t E 2P
• Therefore (see, for example, N emytskii and 

Stepanov3
), for any initial condition Uo t E2

P, there exists a unique con
tinuous 2p-vector-valued function u(·) such that u(O) = Uo and equation 
(6) is satisfied for all t > O. In other words, under the assumptions we 
have introduced, it makes sense to study the properties of the solution 
of the equation 

t ~ 0 [u(O) = uo] (9) 

II. STATEMENT OF RESULTS, AND EXAMPLES 

We need the following definitions. 
Definition 1: A real matrix M of arbitrary order n is strongly col

Umn-Sll-m dominant if and only if for all j = 1, 2, ... , n 

mjj - 2: I mij I > O. 
i,.<j 

An important property of T is that it is strongly column-sum dominant. 
Definition 2: We shall say that a real matrix M of order 2p is an element 

of ~ if and only if there exists a diagonal matrix diag (d l , d2 , ••• , d21J) 

with each dj > 0 such that 

(k) < d2k - l < _l_ 
a, d

2k 
a;k) 

for k = 1, 2, ... , p, and diag (d l , d2 , ••• , d2P) M is strongly column
sum dominant. 

Our main result* concerning equation (9) is: 

* Proofs of all results in this section are given in Scction III. 
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Theorem 1: If G £ ~, and ua(·) and Ub(') satisfy 

t ~ 0 (10) 

t ~ 0 (11) 

with Ba £ 03 and Bb £ 03, and if [Ba(t) - Bb(t)] -7 () (the zero vector of E 2
)J) 

as t -7 00, then [ua(t) - Ub(t)] -7 () as t -7 00. 

An interesting corollary of Theorem 1 is 

Corollary 1: Referring to equation (9), if G £ ~, and if there exists 
a constant vector B~ such that [B(t) - B~] -7 () as t -7 00, then there 
exists a constant vector U~ such that [u(t) - u~] -7 () as t -7 00, and U~ is 
independent of the initial condition Uo • In particular, if B~ = (), then 
u~ = (). 

It is interesting to observe that G £ ~ whenever the base leads of all 
transistors are connected together and there is a resistor between the 
emitter and base, and between the collector and base, of every transistor, 
for then G is strongly column-sum dominant. Also it is easy to give 
examples of conductance matrices which are not strongly column-sum 
dominant, and which belong to ~. For instance, for the network of 
Fig. 3. 

Fig. 3 - Single-transistor network. 

G = [ga + gb - gb] 
-gb gb 

and diag (dl , d2)G is strongly column-sum dominant for d2 

some d l such that 
1 and 

* More generally, G of order 2p with positive diagonal elements belongs to :D 
whenever it is possible to obtain a strongly column-sum dominant matrix from 
G by adding an arbitrarily small positive quantity to a single diagonal element. 
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t 

Fig. 4 - A two-transistor circuit. 

As another example, consider the circuit of Fig. 4, for which 

473 

G = ~ -10 
21 

10 

-11 

-10 

473 

-11 

10 

10 -11 

-11 10 

11 -10 

-10 11 

Since diag (1, 1, 22, 22)G is strongly column-sum dominant, G t :D. 
Finally, for the network shown in Fig. 5, 

11 

G = ~ -10 
21 

10 

-11 

-10 

11 

-11 

10 

10 

-11 

11 

-10 

-11 

10 

-10 

11 

In this case, G is obviously singular and hence does not belong to :D. 
Suppose that the source current of Fig. 5 io(t) is a constant and that the 
transistor functions f 1 ( • ), f 2 ( • ), f 3 ( • ), and f 4 ( .) are all bounded from 
below by the constant b (tills is certainly an assumption consistent with 
our earlier assumptions and with the character of transistor models 

In 

Fig. 5 - Transistor circuit for which the dc equations may have no solution. 
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ordinarily used.) We wish to show that here for sufficiently small io , 
there does not exist a constant vector U oo such that [u(t) - u oo] ~ e 
as t ~ 00. 

Suppose that u(t) ~ U oo , a constant vector, as t ~ 00. Then there 
would exist a 2p-vector Voo such that U oo = C(voo) and 

TF(voo) + Gvoo = B 

with B = (io ,0,0" .. , 0) Ir. Let rJ denote the 2p-row-vector (1, 1, 1" .. , 1). 
Then 

But rJGvoo = 0, and hence 
l' P 

io = L: [1 - a}kl]f2k_l(voo2k_l) + L: [1 - a;kl Jf2k(V oo2k) 
k=1 k=1 

which does not possess a solution Voo if 
P 

io < b L: [1 - a}kl] + [1 - a;kl]. 
k-l 

2.1 Estimation of the Rate of Decay of Transients 

Theorem 2: If the hypotheses of Corollary 1 are satisfied with B(t) = Boo 
for t ~ 0, then 

21' 21' 
L: d i I ui(t) - uooi I ~ exp (-ISt) L: di I ui(O) - uooi I, t ~ 0 
i-I i=1 

for every set of positive constants d1 , d2 , ... , d21' such that 

o < IS ~ m~ min {:. (1 - aidi1ai) , ;. (gii - ~ didi
l I gii D} 

" ,Or-' 
in which - ai is the nonzero off-diagonal term in the jth column of T, 
and ai = di + 1 for j odd and ai = di - 1 for j even. 

It is easy to show that G I: ~ implies that there are positive constants 
di , j = 1, 2, ... , 2p, such that IS > O. 

As an example of the application of Theorem 2, consider the problem 
of estimating the switching time of the single-transistor inverter circuit 
of Fig. 6 in which af = 0.968, Ce = 2 X 10-12 fd, Te = 1.7 X 10-10 second, 
a r = 0.583, Cc 1.7 X 10-12 fd, and Tc = 2.62 X 10-8 second. Here 
(in mhos) 

G = [ 1.1886 X 10-
3 

-1.01215 X 10-3 

-1.01215 X 10-3
] 

1.01215 X 10-3 
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e (t) 

Fig. 6 - Practical logical-inverter circuit. 

which takes into account a bulk base resistance of 280 ohms and a bulk 
collector resistance of 18 ohms. The circuit is initially at steady state 
with e(t) = 0.3 volt for t < o. For t ~ 0, e(t) = 10 volts, and as t ~ ex> , 

u(t) ~ uoo , some constant vector. With d2 = 1, the number K is the 
smallest of the four quantities: 0.58(1 - 0.968d~l) X 1010

, 0.5(1.1886 -
1.01215d~l) X 109

, 0.3815(1 - 0.583d1) X 108
, and 0.58(1.01215) 

(1 - d1) X 109
• 

It is clear that d1 must satisfy 0.968 < d1 < 1 in order that K > O. 
Then optimal choice of d1 (that is, the choice that yields the largest 
value of K) is approximately 0.9709. For d1 = 0.9709, K = 1.66 X 107

• 

Let the "charge switching time" ta denote the smallest value of t such 
that ~~=1 \ Uj(t) - Uooj \ is less than or equal to two percent of ~~~1 
\ Uj (0) - Uooi \ for all t ~ ta. Then our upper bound on t. is approxi
mately 4 X (1.66)-1 X 10-7 ~ 241 nanoseconds. The actual value of t. , 
as determined by numerically integrating the system of two nonlinear 
differential equations is approximately 57 nanoseconds. Thus, for this 
circuit, Theorem 2 provides a very easily evaluated and useful upper 
bound on ta . 

Finally, we state a result which provides an often rather conserva
tive but easily evaluated lower bound on the rate of decay of tran
sients. 

Theorem 3: With B a constant real 2p-vector, let 

t ~ o. 

If there exists a constant 2p-vector U<fJ such that [u(t) - uoo] ~ () as t ~ ex> , 

then for any choice of positive constants d j , j = 1, 2, ... , 2p: 

2p 2p 

~ dj \ ui(t) - UCfJi \ ~ exp (-Kt) ~ di \ Ui(O) - UCfJi \, t ~ 0 
i-I ;=1 
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in which 

K = max max {~(1 + ajdi 1cxj), 1 t didi 1 I gij I} 
j Tj Cj i-1 

where -CXi is the nonzero off-diagonal element in the jth column of T, and 
ai = d j+1 for j odd, and a; = di- 1 for j even. 

The arguments used to prove the results stated in this section can 
be modified in a straightforward manner to prove far more general 
results concerning networks that contain diodes, capacitors, and in
ductors, in addition to the elements of the structure of Fig. 1. Some 
of these more general results are described in Section IV. 

III. PROOFS 

3.1 Proof of Theorem 1 

We first show that 

and 

(13) 

with Dl and D2 diagonal matrices dependent on t and possessing some 
special properties. 

For j = 1, 2, ... , 2p, let gj(uaj) = [C-l(Ua)]j and gj(Ubj) = 
[C-l(Ub) L. Then, using equation (2), 

Ua; - Ubi = Cj[gj(uaj) - gj(Ub;)] + Tdfj[gj(uaj)] - fj[gj(Ubj)]}. 

Thus if Uaj ~ Ubi , 

f;[g;(ua;)] - f;[gj(Ub;)] r;(ua; , Ubj) 
Ua; - Ubi C; + T;T;(Uaj ,Ubj) , 

in which (for Uaj ~ Ubj) 

T (U U) = f;[gj(uaj)] - fj[g;(Ubj)]. 
; aj, bj g;(Ua;) - gj(Ubi) 

In a similar manner we find that for all Uaj ~ Ubi: 

gj(Uaj) - gj(Ubj) _ 1 
Uaj - Ubj - Cj + Tir(Uaj , Ubj) 

Now, let us define for j = 1, 2, ... , 2p 

Tj(Uaj ,Ubj) = fHgj(Uai)] 
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when Uai = Ubi • Then since Uai and Ubi are continuous on [0, co), it 
follows (see Appendix A) that ri(uai , Ubi) is continuous on [0, co). 
Since ri(uai , Ubi) is nonnegative, it is clear that both 

and 

1 

are continuous on [0, co). Moreover equations (12) and (13) are satisfied 
with 

(14) 

(15) 

At this point we have 

d 
dt (ua - Ub) + (TD! + GD2)(ua - Ub) = Ba - Bb , t ~ ° (16) 

with TDI + GD2 continuous on [0, co). 
We need the following lemma. 

Lemma 1 * : Let M ( .) be a continuous real n X n matrix-valued func
tion of t defined on [0, co) such that there exist positive constants E and 
Cl , c2 , ••• , cn , with the property that for j = 1, 2, ... , n and all t ~ ° 

mjj - L cic;! I mil I ~ E. 
ir'i 

Let x be a differentiable real n-vector-valued function on [0, co) such that 

dx 
dt + Mx = 0, t ~ 0. 

Then there exists a constant k such that for i = 1, 2, ... , n, and all t ~ ° 
I Xi(t) I ~ k exp( - Et). 

Moreover, k depends only on the Ci and the initial values Xi (0). 

* In Ref. 4, Rosenbrock states a similar result, but does not give a rigorous 
proof. He considers the case in which CJ == 1 for j == 1, 2, .•. , n. 
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Proof of Lemma 1: Let the functional S be defined in terms of an 
arbitrary continuously differentiable scalar function cp( .) by 

s(cp)(t) = 1 if cp(t) > 0 or if cp(t) = 0 and cp'(t) > 0 

= -1 if cp(t) < 0 or if cp(t) = 0 and cp'(t) < 0 

=0 if cp(t) = 0 and cp'(t) = O. 

Then for t ~ 0, 

L CiS(Xi)(t)X~(t) - L CiS(Xi)(t) L miixi 
i i i 

- L Xi L CiS(Xi)(t)mii 
i i 

- L XiCiS(Xi)(t)mii - L Xi L CiS(Xi)(t)mij 
i i iT"i 

~ - L cjmjj I Xj I + L I Xi I L Ci I mi i I 
i i ir'i 

~ -e L I CiXi I· 
i 

But Li CiS(XJ (t)x~ is equal to ~; Li I CiXi \, the right-hand derivative 

of Li I CiXi I [see Appendix B; the derivative of I Xj I need not exist 
at points t at which Xi(t) = 0]. Therefore 

d+ 
dt ~ I CiXi I ~ - eLI CiXi I, t ~ 0 

1 i 

from which it follows that 

L I CiXi(t) I ~ exp (- et) L I CiXi(O) I, t ~ O. 0 
i i 

If JJl(·) satisfies the conditions of Lemma 1, then it is easy to show 
that the unique continuously differentiable n X n matrix-valued function 
X defined on [0, 00) which satisfies 

dX at + MX = 0, t ~ 0 [X(O) = I] 

possesses the property that (for any norm II . lion En) there exists a 
constant Kl such that 

II X(t)X(r)-l II ~ Kl exp [- e(t - r)] 

for all t ~ r. 

Returning now to equation (16), assume that [TDl + GD2 ] satisfies 
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the conditions on M ( . ) o(Lemma 1. Then with Y the solution of 

t ~ 0 [Y(O) = I] 

we have 

Ua(t) - Ub(t) = Y(t)[ua(O) - ub(O)] 

+ it yet) Y(T)-l[Ba(T) - Bb(T)] dT, t ~ o. 

Therefore, for t ~ 0 

II ua(t) - Ub(t) \I ~ \I Y(t)[ua(O) - Ub(O)] \I 

+ it \I yet) Y(T)-l 1\·11 Ba(T) - Bb(T) \I dT 

~ II Y(t)[Ua(O) - Ub(O)] II 

+ K2 it exp [-e(t - T)] \I Ba(T) - Bb(T) \I dT 

for some positive constant K2 . Since \I Ba(T) - Bb(T) \I ---70 as T ---7 00, 

it follows that \I ua(t) - Ub(t) \I ---7 0 as t ---7 00. 

It remains only to prove that [TDl + GD2 ] meets the conditions 
imposed on M ( .) of Lemma 1. Since G t 5), there exists a diagonal 
matrix diag (dl , d2 , ••• , d2P) with dj > 0 for j = 1, 2, ... , 2p and 

for k = 1, 2, ... , p such that both 

diag (dl , d2 , ••• , d2P)G 

and 

are strongly column-sum dominant. Thus for j = 1, 2, ... , 2p 

tii - L didi l I tii I > 0 
iFi 

gjj - L didi 1 I gii I > O. 
i~i 



NONLINEAR TRANSISTOR NETWORKS 47 

Let W = TDI + GD2 • Then, for j = 1, 2, ... , 2p, 

and 

L didi
l I Wii I 

'>"i 
" d d- l I ri + 1 I L...J i i tij gij • 
i>"i Cj + Tjrj Cj + Tjrj 

Therefore 

Wjj -

Since ri ~ 0, the right side of equation (17) is bounded from below by 
some positive constant E uniformly in t and j. 0 

3.2 Proof of Corollary 1 

By Corollary 3 of Ref. 5 there exists a unique v t E 2p such that 

TF(v) + Gv = Br/J (18) 

whenever G is such that all principal minors of T-1G are positive. 
In Reference 5 it is proved that T-1G will have this property if T-1G can 
be written as A -IB with both A and B stongly column-sum dominant. 

Let H = diag (dl , d2 , ••• , d2P)G be strongly column-sum dominant 
with all di > 0 and 

(k) < d2k - 1 < _l_ a, d (k) 
2k a r 

for k = 1, 2, ... , p. Then U ~ diag (d1 , d2 , ••• , d2P) T is strongly 
column-sum dominant, and T-1G = U-1H, which proves that equation 
(18) possesses a unique solution v. 

With v the solution of equation (18), let Ur/J = C(v). Clearly if Br/J = 8, 
then Ur/J = 8. Let Ub satisfy 

t ~ 0 

with Ub(O) = Ur/J. Of course, Ub(t) = Ur/J for all t ~ o. By Theorem 1, 
[u(t) - ur/J] ~ 8 as t ~ 00, independent of Uo • 
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3.3 Proof of Theorem 2 

Following the proofs of Theorem 1 and Corollary 1, 

d 
dt (u - u oo ) + (TDI + GD2)(u - u oo ) = 0, t ~ ° 

in which 

and 

Therefore 

in which 

But for j = 1, 2, ... , 2p 

tii - L did;l I tii I = 1 - did;lcxi . D 
ir'-i 

3.4 Proof of Theorem 3 

Since TF[C-\z)] + GC-l(z) depends continuously on z (: E 2P
, u'" 

satisfies (see Ref. 6) 

Therefore, following the proofs of Theorem 1 and Corollary 1, 

in which 

and 
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For any z t E 2P
, let II z II denote L di Iz; I . Then, for t ~ 0 

i 

II :t (u - Um) II ~ II (TD, + GD,)(u - um) II 

Thus 

II :t (u - um) II ~ IC II U - U m I J, t ~ o. 

Clearly, 

49 

(19) 

II :t (u - um) II ~ L~ ~ II u(t + €) - U m - u(t) + U m II. t ~ a 

Also, for t ~ 0, the limit 

lim 1: [II u(t) - UC>J II - II u(t + e) - UC>J II] 
<--0+ e 

exists and is equal to - ~; II u - Ucn II in which as before ~; denotes 

the right-hand derivative (see Appendix B). But, since for any e > 0 
and t ~ 0, 

II u(t) - UC>J II - II u(t + e) - UC>J II ~ II u(t + e) - UC>J - u(t) + UC>J II, 
we have 

- ~: II U - U m II ~ II :t (u - Um) II · t ~ o. (20) 

Therefore, using equations (19) and (20), 

d+ -
dt II u - u'" II ~ -]( II u - u'" II, t ~ 0 
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and, for t ~ 0, 

II u - UCIJ \I ~ exp (-Ii t) 1\ u(O) - UCIJ 1\. D 

IV. A SIGNIFICANT EXTENSION 

We can easily extend our results to cover an interesting class of 
networks containing diodes, capacitors (not necessarily linear), and 
(not necessarily linear) inductors, in addition to the elements of the 
Fig. 1 network. 

Let each diode be represented by a model of the type shown in 
Fig. 7 in which 

ia = :t [CaVd + Tdfivd)] + fivd), 

with Cd and Ta positive constants. Assume that fa(') satisfies the con
ditions placed on fe(') and fc(') of the transistor model. Let there be 
q diodes and let V2p+k and i21Hk (k = 1, 2, ... , q) be the voltage and cur
rent associated with the kth diode. 

Suppose that the kth capacitor (we assume that there are f capacitors) 
is governed by 

for k = 1, 2, ... , f, where C2p+a+k(') is a strictly-monotone-increasing 
continuously-differentiable mapping of El onto itself such that C2P+a+k(0) 

= 0 and the slope of C2P+a+k(') is uniformly bounded from above and 
from below by positive constants. 

Finally, let there be 8 inductors which introduce constraints 

Fig. 7 - Diode model. 
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for k = 1, 2, ... , s, in which each l2P+q+r+k(·) is a function of the same 
type as the c2P+q+k(·). 

Assume that the linear resistive portion of the network introduces 
the constraint 

i = -Hv + B, Beffi 

in which i = (ii, i 2 , ••• , i 2+p+a+r , V2p+aTr+l, ••• , v2P+a+r+a)tr, V = 
(VI' V2 , ••• , V2p +a+r ' i2P+a+r+I' ••• , i2P+a+r+s)tr, and H is a constant 
hybrid-parameter matrix of order (2p + q + r + s). Then 

d - --
dt [C(v)] + TF(v) + Hv = B 

where 

[O(V)]i = [C(V)]i , j = 1,2, ... ,2p 

= CiVi + rdi(v i), j = 2p + 1, 2p + 2, ... ,2p + q 

= Ci(V i) , j = 2p + q + 1, ... , 2p + q + r 

= li(ii) , j = 2p + q + r + 1, ... , 2p + q + r + s; 
T is the direct sum of matrices T EB I a EB Or+a , in which I a is the identity 
matrix of order q and Or+s is the zero matrix of order (r + s), and 

[F(V)]i = [F(V)]i , 

= fi(Vi) , 

j = 1,2, ... ,2p 

j = 2p + 1, ... ,2p + q. 

Under our assumptions 0(· )-1 exists and, with u = o (f)) , 
(21) 

Let:D denote the set of all real matrices M of order (2p + q + r + s) such 
that there exist positive constants d l , d 2 , ••• , d2p+a+r+8 with the 
property that 

for k = 1, 2, ... , p (when p ~ 0) and diag (d l , d2 , ••• , d2p+q+r+s)M 

is strongly column-sum dominant. 
With straightforward modifications of the arguments already pre

sented, we can prove (i) that for each Uo e E(2
p

+a+r+s) equation (21) 
possesses a unique solution defined on [0, co) such that u(O) = Uo , and 
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(ii) the analogs of Theorems 1, 2, and 3 and Corollary 1. To be more 
specific, the analogs of Theorem 1, Corollary 1, and Theorem 2 are: 

Theorem 1': If H t is, and ua and Ub are solutions of equation (21) 
with B = Ba and B = Bb , respectively, for t ~ 0, and if [Ba(t) - Bb(t)] 
~ 8 [the zero vector of E(2P

+
q

+r+s)] as t ~ 00 with Ba t ill and Bb t ill, then 
[ua(t) -Ub(t)] ~ 8 as t ~ 00. 

Corollary 1': Referring to equation (21), if H t is, and if there exists 
a constant vector Boo such that [B(t) - Boo] ~ 8 as t ~ 00, then there exists 
a constant vector Uoo such that [u(t) - uoo] ~ 8 as t ~ 00, and Uoo is in
dependent of the initial condition Uo . In particular, if Boo = 8, then Uoo = 8. 

Theorem 2': If the hypotheses of Corollary l' are satisfied with B(t) 
Boo for t ~ 0, then with jo = (2p + q + l' + s), we have 

i 0 i 0 

L di I Ui(t) - Uooi I ~ exp (-i{t) L di I Ui(O) - uOOi I, t ~ 0 
i=l i=l 

for every set of positive constants dl , d2 , ... , d2P+q+rH such that 0 < K = 
min {Kl , K2 , K3} where 

Kl = min min {~ (1 - did,\xi) , 1 (gif - L did,l I gii I)} 
1::ii::i2p Ti Ci ir<i 

K2 = min min {~ , 1 (gif - L did,l I gii D} 
2p+l::ii::i2p+q Ti Ci ir<i 

K3 = min {l (gii - L did,l I gii D} 
2p+q+l::ii::i2p+q+r+s Si ir<i 

in which Sj = sup c~(·) for j = 2p + q + 1, ... , 2p + q + 1'; Sj 

sup l~(·) for j = 2p + q + l' + 1, ... , 2p + q + l' + s; -ai is the 
nonzero off-diagonal term in the jth column of T; and ai = d j +1 for j odd 
and aj = di - l for j even. Moreover there exists one such set of constants {d j }. 

v. FINAL COMMENTS 

The results presented here are quite encouraging in that they are 
concerned with the equations of reasonably realistic nonlinear network 
models, and provide some understanding of a precise nature in an 
area where there is a great need for many results of similar type. 
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APPENDIX A 

Proof that rj(uaf , Ubi) is continuous. 

It is clear that ri(uai , Ubi) is continuous at each point t such that 
Uai(t) ~ Ubi(t). Suppose now that t is such that Uai(t) = Ubi(t), and 
let E > 0 be given. Since Uai , Ubi, g and N are continuous, there exists 
01 > 0 such that 

for all I 'I] I ~ 01 , Then for I 'I] I ~ 01 either ua;(t + 7]) = Ub;(t + '1]) in 
which case 

I ri[uai(t + '1]), Ubi(t + '1])] - ri[uai(t), Ubi(t)] I ~ E 

or Ub;(t + '1]) ~ Ub;(t + 7]) and (using the mean-value theorem) 

r.[u .(t + ) U .(t + )] = fj {gi[Uaj(t + 'I])]} - fi {gi[Ubj(t + 'I])]} 
1 al '1], bl 'I] gj[uaj(t + '1])] - gj[ubj(t + '1])] 

= f:(~) 

in which 

I ~ - g;[ua;(t)] I ~ max { I gi[Ua;(t + '1])] 

-gi[Uai(t)] I , I g;[Ubi(t + '1])] - gi[Uai(t)] I }. 
In the latter case, there exists 02 > 0 such that I 1'(~) - l' {gi[Uai(t)]} I 
~ E for all I 'I] I ~ 02' Thus for all I 'I] I ~ min {01 , 02}, we have 

I ri[Uai(t + '1]), Ubi(t + '1])] - r[Uai(t), Ubi(t)] I ~ E. 

APPENDIX B 

Proof that the Right-Hand Derivative of I Xi I exists and is equal to 
S(Xi) (t)x:. 

If t is a point such that Xi (t) ~ 0, then it is clear that 

At t such that Xi (t) = 0 and x:Ct) ~ 0, 

s(xj)(t)xi = lim S(Xi)(t) Xi(t + e) = dd+t I Xj I. 
e-O E 
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Finally if Xj(t) = 0 and x~(t) = 0, then 

I x:(~) I = lim I Xi(t + E) I = dd+t I Xi I, 
t ..... O+ E 

0= lim 

since Xj is continuously differentiable. 
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Adaptive Equalization of Highly Dispersive 
Channels for Data Transmission 

By ALLEN GERSHO 

(Manuscript received May 29, 1968) 

This paper analyzes an adaptive training algorithm for adjusting the 
tap weights of a tapped delay line filter to minimize mean-square inter
symbol interference for synchronous data transmission. The significant 
feature of the adjustment procedure is that convergence is guaranteed for 
all channel response pulses, even for very severe amplitude and phase dis
tortion. 

The author examines convergence, rate of convergence, and the effect 
of noisy observations of the received pulses, and he shows that the noisy 
observations result in a random sequence of tap weight settings whose mean 
value converges to a suboptimal setting. The mean-square deviation of the 
tap weights from the suboptimal values is asymptotically bounded with a 
bound that can be made as small as desired by sufficiently reducing the 
speed of convergence. 

The suboptimality arising here results from the use of isolated test pulses 
for the training signal. However, a training scheme using pseudorandom 
sequences or the actual data signal does not suffer from the suboptimality 
effect. Hence, although of possible utility in other pulse shaping applications, 
the technique presented here appears to be primarily of value in providing a 
conceptual framework for the closely related but more practical techniques 
to be examined in the sequel to this paper to be published shortly. 

I. INTRODUCTION 

A common approach to data transmission is to code the amplitudes 
of successive pulses in a periodic pulse train with a discrete set of 
possible amplitude levels. The coded pulse train is then linearly 
modulated, transmitted through the channel, demodulated, equalized, 
and synchronously sampled and quantized. As a result of dispersion 
of the pulse shape by the channel, the number of detectable amplitude 

55 
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levels has very often been limited by intersymbol interference rather 
than by additive noise. 

In principle, if the channel is known precisely it is virtually always 
possible to design an equalizer that will make the intersymbol inter
ference (at the sampling instants) arbitrarily small. However, in 
practice a channel is random in the sense of being one of an ensemble 
of possible channels. Consequently, a fixed equalizer designed on av
erage channel characteristics may not adequately reduce intersymbol 
interference. An adaptive equalizer is then needed which can be 
"trained," with the guidance of a suitable training signal transmitted 
through the channel, to adjust its parameters to optimal values. If the 
channel is also time-varying, an adaptive equalizer operating in a 
tracking mode is needed which can update its parameter values by 
tracking the changing channel characteristics during the course of 
normal data transmission. In both cases the adaptation may be 
achieved by observing or estimating the error between actual and 
desired equalizer responses and using this error to estimate the di
rection in which the parameters should be changed to approach the 
optimal values. 

A simple and effective technique for adaptive equalization was de
veloped by Lucky using the tapped delay line filter structure for 
the equalizer.1

,2 The main limitation of this technique is that con
vergence of the tap weight adjustment algorithm is assured only for 
relatively low dispersion channels. The convergence condition re
quires that the dispersed pulse shape have adequate quality so that, 
in the absence of noise, error-free binary data transmission would be 
possible without equalization. In other words the dispersed pulse must 
have an open binary "eye." 

Using an approach to adaptation3,4 with virtually unrestricted con
vergence properties, Lucky and Rudin subsequently proposed and 
implemented an adaptive equalizer for minimizing the mean square 
error in frequency response of an analog channel.5

,6 This approach 
was applied to synchronous data transmission by the author and in
dependently by Lytle and by Niessen. 7

-
9 An implementation of the 

technique was described by Niessen and Drouilhet.10 It has also been 
implemented for data communication at Bell Laboratories. 

In this paper the approach is used for synchronous data transmis
sion in a training mode where a sequence of isolated pulses is used 
as a test signal. The technique may be viewed equally as an adaptive 
design procedure for a sampled-data pulse shaping filter where the 
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error criterion is to minimize the mean square error between actual 
and desired pulse shapes at the filter output. The important feature 
of the technique is that convergence is achieved for any channel 
pulse response whatever, thereby including highly dispersed pulses 
for which even binary data transmission would be impossible with
out equalization. Of particular interest are: (i) the analogous optimal
ity condition to Lucky's zero forcing condition resulting with the 
change from a summed absolute error to a summed squared error 
criterion/ (ii) the manner in which noisy observations introduce ran
domness in the iterative corrections to the weights and the resulting 
stochastic convergence properties, (iii) the possibility of applying the 
technique where isolated pulses applied to a filter must be used to 
adaptively adjust the filter for optimum pulse shaping (unrelated to 
equalization), and (iv) the conceptual framework for the more prac
tical adaptation techniques to be described in a sequel to this paper, 
planned for publication soon. 

Perhaps the earliest application of the tapped delay line or "trans
versal" filter to pulse shaping for data transmission was made by 
W. P. Boothroyd and E. M. Creamer.l1 Tufts and George have shown 
that under a mean-square error criterion the optimal receiver struc
ture includes a tapped-delay line filter with delay between taps equal 
to the symbol period.12

, 13 Aaron and Tufts have also shown that the 
same receiver structure is needed to minimize the average error prob
ability for binary data transmission.14 

The basic approach to adaptive adjustment of a set of weights 
where a mean-square error criterion is used with a gradient search 
procedure was considered by Widrow and Hoff who noticed that no 
derivative computation is needed.3 Narendra and McBride proposed 
a self-optimizing vViener filter using a continuous-time gradient 
algorithm and a filter structure whose transfer function is a weighted 
sum of fixed functions. 4 Koford and Groner used a mean-square error 
criterion and a gradient learning algorithm to find an optimum set 
of weights for pattern classifying.15 vVidrow described a general adap
tive filtering problem with the tapped delay line filter.16 CoIl and 
George discussed the performance of George's optimum equalizer and 
indicated a possible adaptive adjustment technique.17 Lucky and Rudin 
were the first to apply the mean square error criterion with the 
gradient search procedure to the field of adaptive equalization. 5,6 
This paper expands on a short presentation given at an international 
symposium on information theory.18 
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II. PERFORMANCE OBJECTIVES FOR EQUALIZATION 

The objective of equalization, viewed as a pulse shaping problem, 
is to adjust the parameters of the equalizer to a setting which mini
mizes a suitable measure of the error between actual and desired 
pulse shapes. For the usual synchronous data transmission applica
tion, the desired pulse shape is one with the Nyquist property that 
the sample values Yk at the sampling instant kT are given by Yk = 
Okr where ~kr is unity for k = r and zero for all other integers k. The 
criterion used by Luckyl is peak distortion, D, given by 

An alternate criterion of interest is the mean square distortion E, 
defined by 

The physical interpretation of the peak distortion is that it is di
rectly related to eye opening and determines the error probability for 
a worst case message pattern. The mean square distortion has a dif
ferent interpretation. If the message pattern is such that the trans
mitted level for each time slot is statistically independent of the levels 
for other time slots, then the variance of the intersymbol interference 
in a given time slot is proportional to the mean square distortion. If 
the pulse shape has a large number of small sidelobes so that the 
intersymbol interference is normally distributed, then minimizing 
mean square distortion is equivalent to minimizing error rate. 

Closely related to the mean square distortion is the mean square 
error 

(1) 

where dIe is the desired pulse sample value at time instant k T. For the 
usual equalization problem where dk = Okr , the measure 8 has virtually 
the same interpretation as E; however, E is a normalized measure in
dependent of pulse amplitude while 8 depends on both shape and ampli
tude. Optimization of the tapped delay line equalizer with respect to 
either criterion leads to equivalent results. 

III. FORMULATION 

Consider the transversal equalizer with N taps and tap spacing T 
equal to the symbol period. Let eTc be the weight at the kth tap for 
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k = 0, 1, ... ,N -1 so that the input output relation of the transversal 
filter at the sample times is 

N-I 

Yn = L CkXn- k = c'xn 
k=O 

(2) 

where Xk and Yk denote the input and output pulse samples, respectively, 
at time instants kT, c = (co, C1 , ••• , CN-I) is the tap weight vector, 
and Xn = (xn , X n- I , ••• , Xn-N+I) is the sample memory state of the 
delay line at the time instant nT; the vectors c and Xn are to be regarded 
as column matrices, and the prime denotes the transpose. We assume 
that the input sequence Xk has finite energy. Let En = Yn - dn • Then 
from equation (1), using (2), the gradient of the error with respect to c 
may be written as 

(3) 

Therefore the optimality condition for minimum error '18 0 is 
equivalent to the requirement that the (deterministic) corss-correlation 
between the input sequence Xk and output error sequence Ek must have 
zeros for the N components with index values corresponding to the index 
values of the available tap weights. That is, 

for k = 0, 1,2, ... ,N - 1. 

This condition has an interesting similarity to Lucky's condition 
which states that the peak distortion, D, is minimized when the error 
sequence €n has zeros for the N components with index values corre
sponding to the index values of the available tap weights.1 An im
portant distinction is that Lucky's condition is generally not valid 
when the input pulse distortion D exceeds unity, while the mean 
square optimizing condition is valid for any input pulse with finite 
mean square distortion. 

Using equation (2), the gradient (3) can be expressed explicitly as 
a function of the tap weight vector c, namely: 

'18 = 2(Ac - g) (4) 

where 

and 

Notice that A is symmetric and positive definite (see Appendix A). 
Setting equation (4) equal to zero yields the solution for the optimum 
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tap weight vector c*, 

c* = A-1g. 

Using equation (2), the error expression given by equation (1) may 
be expressed in the convenient form: 

8(c) = 8(c*) + (c - c*)' A(c - c*) (5) 

which shows explicitly the simple quadratic nature of the error surface 
and the unique optimality of the minimizing weight vector c*. It can 
be shown that the residual error 8(c*) can be made as small as desired 
for all channels of practical interest by using a sufficiently large number, 
N, of taps.19 

It is intuitively reasonable that successive corrections to the tap 
weight vector in the direction of steepest descent of the error surface 
should lead to the minimum error where c = c*. This is the idea of the 
well-known20 gradient algorithm: 

(6) 

where ex is a suitably small positive proportionality constant, Co is 
arbitrary, and Ci is the tap weight vector after the ith iteration. 

The significant feature of the gradient algorithm for our quadratic 
error surface (5) is that the gradient can be conveniently evaluated 
without knowledge of the error surface itself. We have seen from equa
tion (3) that the components of the gradient vector are values of the 
crosscorrelation between the input sequence and the output error 
sequence. This suggests the conceptually simple implementation 
where an isolated test pulse is transmitted through the channel and the 
requisite crosscorrelation values are formed by multiplying the de
layed input pulse with the error pulse, sampling, and summing (or 
averaging). The tap weights are then incremented according to (6), 
the old crosscorrelation values "dumped" and a new iteration is begun 
with the transmission of a new test pulse. 

The error pulse is formed by subtracting from the equalizer output 
pulse an "ideal" pulse whose sample values are the desired values dk ; 

the ideal pulse is locally generated at the appropriate time. The basic 
scheme is shown in Fig. 1. Naturally, the summation given by equation 
(3) cannot be performed over an infinite time interval. Suppose K T 
is a practical upper bound on the possible time duration of the input 
pulse, ~ T is the time interval between successive test pulses with ~ T > K T, 
~ and K as positive integers. Then if we include the effect of perturbing 
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Fig. 1-Four tap training mode adaptive equalizer. 

receiver noise samples ni and Zi at the equalizer input and output, 
respectively, the measured crosscorrelation vector ~i after the ith 
iteration is given by: 

lo+i~+K 

~i = L (Xl-it + nl)(€l-it + Zl)' (7) 
l=lo+it 

In the noiseless case the estimate ~i reduces to one-half the deterministic 
gradient, that is, !'V'8(Ci) under the assumption that the pulse sequence 
Xl and desired sequence dl are virtually zero outside of the interval 
lo ~ l ~ lo + K - N + 1. 

IV. CONVERGENCE PROPERTIES 

In the presence of noise the tap weight corrections contain undesired 
random components consisting of products of input and output noise 
samples and products of pulse and noise sample. As a result, the 
random tap weights no longer converge to the optimal values but 
instead approach some neighborhood of a suboptimal setting and then 
fluctuate randomly about this setting. The error between the opti~al. 
and suboptimal settings is small for low noise levels and decreases 
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with increasing signal-to-noise ratios. The size of the fluctuation neigh
borhood about the suboptimal setting is proportional to the noise level 
but can be made as small as desired by making the training time suf
ficiently long. 

Assume the noise samples ni have zero mean and finite variance (1"2. 

Define the vector nk = (n", nT.;-l, ... ,nk-N + 1) to be regarded as a col
umn matrix. Then the output noise samples of the equalizer are: 

(8) 

Define the matrix B = E(nknD, where E(· .. ) denotes the expected 
value. Notice that B is symmetric and positive semidefinite. 

To formulate the iterative equations describing the tap weight be
havior in the presence of noise, apply equations (2) and (8) to (7) to 
show how the gradient estimate depends on the tap weight vector: 

~. = 2: (Xl-i~ + nZ)[(xl-i~ + nZ),ci - dZ-i~]' 
1 

Hence 

(9) 

where H. is the random symmetric matrix 

Hk = 2: (XZ-i~ + nZ)(xZ-i~ + nz)' (10) 
1 

and 

(11) 

Let a = E(H i ), the expected value of H •. Then equation (10) yields 

a = A + KB. (12) 

which is positive definite since A is positive definite and B is positive 
semidefinite. 

It is convenient to examine the random variation of the tap weight 
vector Ck about the suboptimal setting defined by 

(13) 

and let qi = Ci - C. From equation (12) it is evident that the suboptimal 
setting c approaches the optimal setting c* as the ratio of noise variance 
to input pulse sequence energy approaches zero. The iterative algorithm 
may be expressed in the form 

(14) 
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(15) 
where 

(16) 

Equations (14) and (15) constitute a system of first-order stochastic 
difference equations with a forcing function hi which is statistically de
pendent on the stochastic state matrix Hi . We assume that the per
turbing noise samples in different iterations are uncorrelated, so that 
Hi and hi are independent of H j and h j for i ~ j. Notice that the ex
pected value of any function of Hi and hi is independent of i. Under 
these conditions it is proved in Appendix C that for suitably small values 
of a the mean value of the solution vector qi approaches zero as i -7 00 

and the sum of the variances of the components of q. is bounded with a 
bound that approaches zero as a approaches zero. Consequently the 
mean value of the tap weight vector converges to the suboptimal set
ting c while the actual tap weights fluctuate randomly about the con
verging mean values with a variability that can be made arbitrarily 
small. 

Notice from Appendix C that the norm of the mean solution vector 
(q)i is reduced at least by the factor r, the spectral norm20 of I - aCf. 

Let PI and PN denote the minimum and maximum eigenvalues, respect
ively, of Cf. Then 

r = min I 1 - apl I, I 1 - apN I . (17) 

(For proof see p. 24 of Ref. 20.) 
Then for 0 < a < 2/(PI + PN), we obtain r = 1 - apl . Consequently, 

while decreasing a offers a smaller bound on variability of the tap weight 
vector, increasing a assures a stronger bound on convergence rate. For 
the training mode it is likely that speed of adaptation will be relatively 
unimportant so that a very small value of a could be used to approach a 
tap weight setting that is very close to the suboptimal setting. 

It is useful to obtain bounds on the eigenvalues of Cf which can be 
determined without specific knowledge of the channel characteristics. 
If x(t) denotes the channel pulse response and net) the additive receiver 
noise so that the sampled values used earlier are given by Xk = x(kT) 
and nk = n(kT), then the sampled spectrum X*(w) of Xk is 

and the sampled spectral density S*(w) of nk is 

S*(w) = L: E(nini+k)e-iwkT = -T
1 L: Sew - 2n/T) 

k k 
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where X(w) is the Fourier transform of x(t) and Sew) is the spectral 
density of net). Let m and 11£ denote the infimum and supremum, 
respectively, of 1 X*(w) 12 + KS*(W) so that 

m ~ 1 X*(w) 12 + KS*(W) ~ M. (18) 

In all cases of practical interest M will be finite; furthermore generally m 
will be greater than zero. It is shown in Appendix B that each eigenvalue, 
Pi , of (l will be bounded according to 

m ~ Pi ~ M. (19) 

To illustrate the use of this bound, notice from Appendix C that the 
condition for convergence of the mean tap weight vector to the subopti
mal solution is that a < 21 PN . Thus a sufficient condition is that 

a < 21M. (20) 

Furthermore, the mean tap setting converges exponentially with the 
convergence factor r, given by equation (17). Hence it can be inferred 
that the choice of a which provides the strongest bound (least value of 
r) is a = 2/(PI + PN) yielding 

p - 1 
r=p+l 

where P = PNI PI . Using the bounds given in (19) we obtain p ~ 1vllm, 
and so 

(21) 

Therefore, for the best choice of a, convergence of the mean proceeds at 
least at a rate given by the geometric factor (11£ - m)/(M + m). Thus 
useful information regarding the convergence speed can be determined 
without knowledge of the channel characteristics. 

V. CONCLUSION 

The degree of sub optimality of the tap weight setting reached by the 
training algorithm mayor may not be consequential, depending on the 
application. In applications where multilevel pulse transmission with a 
large number of levels could be achieved with adequate equalization, 
the signal-to-noise ratio is necessarily very high and therefore the degree 
of sub optimality is not large. Even when the noise level is fairly sub
stantial the suboptimal setting may still be adequate if the error surface 
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given by 8(c) is "shallow" in a large neighborhood of the minimum. 
Then a fairly large departure of c from c* may correspond to a rela
tively small increase in mean-square error. Also, if training mode adapta
tion is used as a prelude to tracking mode adaptation, a fairly large 
degree of sub optimality may be a tolerable starting point for a tracking 
mode operation such as the one we plan to describe in a future paper. 

When the noise level is substantial the criterion for optimality used 
here becomes inadequate because it does not consider the effect of the 
equalizer on the receiver noise. The price of reducing intersymbol in
terference may be a sizable increase in noise level at the equalizer 
output. In our future paper the error criterion is modified to include 
noise with the result that the problem of suboptimality does not arise. 

The random fluctuation of the tap weights which prevents true con
vergence to the suboptimal setting can be eliminated by reducing the 
proportionality constant a in ea'ch iteration using a sequence of step 
sizes ak with the properties 

I: Cik = co and I: Ci~ < co. 

It may then be shown that the tap weight vector converges to the 
suboptimal solution with probability 1. The proof uses stochastic 
approximation theory and follows the lines taken by Tong and Liu 
who considered a training mode algorithm for low dispersion chan
nels. 21 However, this modification complicates the implementation 
somewhat and cannot be applied to the tracking mode adaptation 
problem. 

APPENDIX A 

Proof that A is Positive Definite 

The matrix A is defined by 

Consequently 
GO GO 

C' Ac = I: C'XkX~C = I: yi . 
-GO -GO 

(22) 

But the sequence Yk is the convolution of the Xk sequence with the finite 
tap weight sequence Ck • Hence, using Parseval's equality, 

1 ('lrIT 

c'Ac = 271" ''-''IT 1 X*(w) 12 I C(w) 12 dw, (23) 
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where 
N-l 

C(W) ""'" -ikw T = L.J cke . 
k=O 

Equation (23) shows immediately that c' Ac is nonnegative for all 
vectors c. Also, C(w) can have only isolated zeros and I X*(w) I is square 
integrable since the input pulse has finite mean square distortion. It may 
then be inferred that c' Ae > ° unless e = 0, which proves that A is 
positive definite. 

APPENDIX B 

Bounds on the Eigenvalues of Ci 

Since B = E(nknD the quadratic form c'Bc is the mean squared value 
of y~ of the response of the equalizer with weight vector c to the input 
noise nz . Consequently 

1 f 7r

IT c'Bc = -2 S*(w) I C(w) 12 dw. 
7r -rriT 

Combining equations (23) and (24) yields 

1 f 7r

IT c'Cic = - II X*(w) 12 + KS*(W) l I C(W) 12 dw. 
27r -rriT 

(24) 

(25) 

Applying to equation (25) the bounds m and ]If given by equation (18) 
yields 

m e'e ~ e'Cie ~ ]lfe'e. (26) 

Let c be the eigenvector of Ci corresponding to eigenvalue p. Then 
Cic = PiC and equation (26) yields 

(27) 

which provides a convenient bound for the largest and smallest eigen
values of Ci. 

APPENDIX C 

Convergence Proof 

To examine the convergence properties of the tap weight adjustment 
algorithm, it is convenient to define the norm of a random vector u as 

II u II = [E(u'u)]1/2, (28) 
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so that the squared norm of u is the sum of the second moments of the 
components of u. For a deterministic vector the norm reduces to the 
usual Euclidian norm. The norm of a deterministic matrix will denote the 
usual spectral norm.20 

Theorem: Let Hk be a sequence of random synunetric N X N matrices 
and hk a sequence of random N -tuple column vectors. Suppose Hk and 
hk are stationary in k with Hk and hk independent of Hi and hi for k ~ j. 
Assume hk has zero mean, and the elements of Hk and hk have finite vari
ance, EHk = <t, indeper(dent of k with ex positive definite. Define the random 
vector sequence qk according to: 

(29) 

where 

(30) 

for k = 0, 1, 2, ... and qo is an arbitrary deterministic vector. Then for a 

positive and sufficiently small, 

lim II E qk II = 0 
k-"" 

and 

lim sup II qk II ~ yea) 
k-"" 

with Yea), given in (47), satisfying: 

lim yea) = o. 
",-0 

Proof: Combining equations (29) and (30) yields 

qk+l = (I - aHk)qk - ahk . 

(31a) 

(31b) 

(32) 

(33) 

Noting that qk is independent of Hk , taking the expected value in 
equation (33), we find 

(34) 

It follows then that 

(35) 

where 

r = II I - a<t II . (36) 
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Hence equation (31a) follows when r < 1, or equivalently, for 

o < a < 2/PN 

where PN is the largest eigenvalue of <t. 

To prove equation (31b), observe that 

(37) 

E(q'+lqk+l) = E[q,(I - aHk)2qk] - E[2aq~(I - aHk)hk] + a2 II hk 112 

(38) 

from equation (33). Noting again that qk is independent of Hk , we have 

E[q,(I - aHk)2qk] = E {q,E[(I - aHk)2]qk} ~ p. II qk 11
2

, (39) 

where 

Also, using the Schwarz inequality, 

E[ - q'(I - aHk)hk] = aq,E(Hkhk) ~ a II q~ II f 
where f = \I E(Hkhk) \I. Using equation (35) we obtain 

-E[qk(I - aHk)hk] ~ ark \I E(qo) \I f· 

(40) 

(41) 

The bounds (39) and (41) may be applied to equation (38), yielding 

\I qk+l W ~ p. \I qk W + a 2f II E qo II rk + a 2 II hk W . (42) 

If we now define the bounding sequence of positive numbers Qk ac
cording to 

and 

Qk+l = P.Qk + a2f II E(qo) \I rk + a2 
I\hk W , (43) 

then it follows from (42) that 

\I qk W ~ Qk . 

But the difference equation given by (43) has the asymptotic solution 

for ~ < 1 and II- < 1. Then 

lim sup II qk W ~ a
2 

II hk W. 
k-+co 1 - p. 

(44) 
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Notice that II hk II IS independent of k by the hypothesis of station
arity. 

Since 

where 

we find that 

JL ~ II I - aCi W + ci II E( G~) II 
JL ~ r2 + a 2

'Y 

(45) 

(46) 

where'Y = II G~ II. Furthermore for a < 2/(Pl + PN), we have r = 1 -
api . Then, using (46), we see that 

2 2 
__ a ___ ~ a

2 
2 • 

1 - JL - 2api + a (PI + "I) 

We have therefore shown that for positive and sufficiently small a, 

equations (31b) and (32) are valid where 

V(a) = 2 + ~( 2 + ). 
PI a PI "I 

(47) 
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On tIle Probability of Error Using a 
Repeat-Reqllest Strategy on the 

Additive WI lite Gaussian Noise Channel 

By A. D. WYNER 

(Manuscript received July 5, 1968) 

An upper bound on the error probability is obtained for dl'gital communi
cation (with average power Po and no bandwidth constraint) in the presence 
of additive white gaussian noise (with one-sided spectral density No) with 
the use of a noiseless feedback link. A repeat-request strategy is used: the 
receiver decodes a signal only when it is relatively sure that one particular 
message was actually transmitted, otherwise it requests (via the feedback 
channel) a retransl1l,ission. We show that as the coding delay T becomes 
large, we can transmit at an effective rate R < C = Po/No, the channel 
capacity, with error probab1:lity P e approximately exp {- T[( vIC -
VR,)2 + C - R]}, which is a considerable iJr/,provement over the reliability 
attainable with a one-way channel. These results parallel those obtained 
earlier by Forney for the discrete memoryless channel. 

r. INTRODUCTION 

In a recent paper, Forney studied a repeat-request strategy for 
communication of digital information over a discrete memoryless 
channel when a fedback channel is available. 3 In this system the 
receiver decodes a received message only when it is relatively "sure" 
that one particular message was actually transmitted. If the receiver 
is not confident that one particular message was actually transmitted, 
then it requests (via the feedback channel) that the transmitter repeat 
the message. Forney showed that considerable improvement in the 
resulting error probability (over the best one-way scheme) was ob
tainable with a negligible degradation in the effective rate of trans
mission. In this paper we apply Forney's ideas to the additive white 
Gaussian noise channel (with no bandwidth constraint) and obtain 
analogous results. Furthermore, our coding scheme is constructive
the codes being orthogonal codes. 

71 
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We will consider the following channel. The channel input signal 
is a real-valued function s (t), defined on the interval [0, T], which 
satisfies the "energy" constraint 

(1) 

The average signal "power" is therefore Po. The channel output ret) 
is the sum of set) and a sample net) from a white Gaussian noise process 
with one-sided spectral density No (and with mean zero). By expanding 
s(t), ret) and net) on any orthonormal basis of £2[0, T], it is easy to 
show that an equivalent channel model is as follows.8

•
9 (This equivalent 

channel model is the one we use in this paper.) The input signals are 
are (semi-infinite) vectors x = (Xl' X 2 , ••• ) which satisfy 

00 

L x~ = AT. (2) 
k-l 

The channel output is a vector y = (Yl' Y2, ..• ), where 

k = 1,2, ... , 

and the zk(k = 1,2" .. ) are independent Gaussian variates with zero mean 
and unit variance. The parameter A is equal to 2Po1No , and we as
sume that A is held fixed throughout the paper. We also assume that it 
takes T seconds for the channel to process x, and that successive T
second transmissions are independent. 

A code with parameters M and T is a set of M signals (called "code 
vectors" or "code words") Xi = (Xii' Xi2, ••• ), i = 1, 2, ... , 1\1, 
which satisfy equation (2), that is 

i = 1,2, ... ,M. (3) 

We assume that each of the M code words is equally likely to be trans
mitted, so that the transmission rate is R = II T In M nats (natural 
units) per second, and M = eRT

• It is the task of the receiver to examine 
the channel output y and to announce the code word, say D(y), which 
it believes was actually transmitted. Let P ei be the probability that 
D(y) ~ Xi given that Xi is transmitted. The overall error probability 
is therefore 

It is easy to show that for a given code, the "optimal" decoding rule D 
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(which minimizes Pe) selects for D(y) that code word Xi which maximizes 
(with respect to i) the inner product 

co 

(Xi , y) = L XikYk 
k-1 

Define P~(M, T) as the smallest attainable error probability P e for 
a code with parameters M and T. Set M = [e RT], and let T ~ 00 with 
the rate R held fixed. Then it is well known that if R < A/2 = 
Po/No ~ C, the "channel capacity," 

P~([eRT], T) = exp {-Eo(R)T[1 + fo(T)]} , (4) 

where Eo(R) > 0, and fo(T) ~ 0 as T ~ 00 .1,8,9 Thus at rates R < C, 
the error probability tends to zero exponentially in T. Further, for rates 
R > C, P~([eRT], T) ~ 1, so that the capacity C is the supremum of 
the rates for which "error-free" coding is possible. 

Although this type of behavior of P~ is typical of a large class of 
channels, the present channel is unique in two ways. First the exponent 
Eo(R) is known exactly, namely 

o ~ R ~ C/4, 

C/4 ~ R ~ C. 
(5) 

Second, an explicit construction of codes which achieve error probability 
as in equation (4) is known. In fact, P e as in equations (4) and (5) 
can be achieved when the code is any set of M orthogonal vectors. 
The simplest such code is that for which Xik (the kth coordinate of Xi) 

is given by 

X.Ok 
__ [(AT)!, k = i, i = 1,2, ... ,M, k = 1,2, .... 

0, k ~ i, 
(6) 

For this orthogonal code, the inner product of y and the ith code word is 

i = 1,2, ... ,M; 

so that the optimal decoding rule is 

D(y) = Xi if Yi > Yi for all j ~ i, 1 ~ j ~ M. (7) 

With probability one, (7) is satisfied for exactly one i. Notice that 
the coordinates Yi(j > M) are irrelevant to the receiver. Further, 
from the symmetry of the orthogonal code (6), we can without loss 
of generality, assume that code word Xl is transmitted. Hence, the 
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error probability is 

111 

P e = Pel = Pr V {Yi ~ yd, (8) 
;=2 

where the probability is computed with {Yi} ~f independent unit variance 
Gaussian random variables withEYl = (AT)! and Ey; = 0 (2 ~ j ~ M). 

N ow suppose we can use a noiseless feedback link. As before, we 
transmit one of a set of M = eR 

T orthogonal signals {xd :f, where Xi is 
given by (6). Instead of the decoding rule (7), let us use the rule 

D(y) = Xi if Yi > Yi + Ll for all j ~ i, 1 ~ j ~ M, (9) 

where Ll > 0 will be chosen later. If no Yi satisfies (9) then we 
request a retransmission via the feedback channel, and use (9) on 
the second received vector, and so on. The probability of error de
creases as Ll increases. The price which we pay for this increased reli
ability is an increase in the length of time which it will take to complete 
the transmission of the M -ary message, and the consequential reduction 
in the effective rate of transmission. In fact, let E R be the event that we 
ask for a retransmission, and let P(ER ) be its probability. Then from 
the assumption that successive transmissions are independent, the 
expected number of T-second transmissions required to accept a 
message is 

00 

L j Pr {j transmissions are required} 
i=l 

00 00 

L j[1 - P(ER)][P(ER)]i-1 [1 - P(ER)] L jP(ER )i-1 

i=l i=1 

1 

Thus the average length of time required to transmit the M -ary message 
is T = T /(1 - P(ER))' If P(ER) is small, then T is not much greater 
than T. 

Suppose that we use this repeat-request strategy repeatedly-that is, 
if the receiver does not call for a retransmission, then the transmitter 
sends a new M-ary message. For k = 1,2, ... , let the random variable 
Nk be the number of M-ary messages which the receiver accepts (that is, 
it does not call for a retransmission) in k T seconds. Then we can write 

k 

Nk = L ~i , 
i=l 
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where the random variables ~j = 1 if the receiver accepts a message 
on the jth T-second interval, and ~j = 0 otherwise. Note that Pr{~j = 
O} = P(E1l ) , and that the {~jh\ are independent (since we have as
sumed that successive T-second transmissions are independent). Thus 

(i) E(Nk) = kE(~i) = k(1 - P(ER » 

(ii) Nk/k ~ 1 - P(ER ), as k ~ 00, (10) 

with probability 1. 

Statement (ii) follows from the strong law of large numbers (see Ref. 
3, p. 190). Since each M -ary message contains In ll1 = RT nats, the 
effective rate of transmission R, in the light of (10), 

R = [E(Nk)]RT nats/sec 
kT 

= R[1 - P(ER )] = R(T /T). 
(11) 

Let us turn our attention to the probability of error. Since we are 
using the orthogonal code of (6), we can, as above, without loss of 
generality, assume that code word Xl is transmitted. Using the decod:" 
ing rule of equation (1.9) we make an error only when for some j > 1, 
Yi > Yi + .1 for all i = 1, 2, ... ,M and i ~ j. (In this case D(y) = Xi .) 

Thus the error probability is 
1II 

P e = Pr U n {Yi > Yi + .1l· (12) 
i~2 ir'i 

As in (8), the probability in equation (12) is computed with EYl = 
(AT)! and EYi = 0 (2 ~ j ~ M). 

Let us further define El as the event that either an error occurs or a 
repeat-request occurs. If Xl is transmitted, EI has probability 

"If 

Pr(EI) = Pr U {YI ~ Yi + AI, (13) 
i=2 

where as above, the probability in (13) is computed with EYl (A T)! 
and EYi = 0, j > 1. Clearly the probability of a repeat-request is 

(14) 

Consider the parameter A. In the interest of minimizing P e , we want 
to make Ll large. However, in the interest of minimizing peE R) and 
therefore making R as close to R as possible, we want to make Ll small. 
The approach which we will take is to choose Ll just small enough so 
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that as the parameter T -? 00 (R is held fixed), peEl) -? 0; so that 
by (14), P(ER ) -? O. Thus the effective transmission rate R ~ R. 
We will see that this results in a considerable improvement in P e 

over that of equations (4) and (5). Roughly speaking, we will show 
that the resulting exponent is increased from that in equation (5) to 
approximately 

EF(R) = [e! - R!]2 + C - R = 2Cl(C! - Rl). (15) 

The exponents Eo(R) and EF(R) are plotted in Fig. 1. Notice that the 
improvement is greatest in the neighborhood of capacity where (as 
R -? C)EF(R) ~ (C - R) and Eo(R) r-v (C - R)2/4C. 

II. SUMMARY AND DISCUSSION OF RESULTS 

The main result is given as a corollary to the following two theorems 
which provide information on the trade-off between P e and peEl) as 
A is varied. The proofs are given in Section III. 

Theorem 1: Let {Yi} :f, be independent Gaussian random variables with 
unit variance and expectation 

Ey; = 0, 2 ~ j ~ M. 

2Cr-----~----~----~----~ 

1.5 C ~~--__t_-----t------+----___l 

ler-----~--~~----_+----~ 

0.5 e ~----__t_-----t--""""---+-----___l 

O~ ____ ~ ____ -L __ ==~ ____ ~ 
o 0.25 C 0.5 C 

R~ 

0.75 e Ie 

(16) 

. Fig. 1-Exponents for white Gaussian noise channel: Eo(R )-one way exponent, 
EF(R)-repeat-request exponent. 
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Let M = eRT
, where 0 < R < A/2 = C, and let !1 = 0(2T)!, where 

c! - (4R)! ~ 0 < C1 - Ri. (17) 

Then 
M 

peEl) = Pr U {YI ~ Yi + !1} ~ 2 exp {_[C1 - Ri - 0]2T}. (18) 
i-2 

Notice that 0 = 0 will satisfy (17) if R ~ C / 4. In this case peEl) = p. 
(see (8)), and (18) yields Eo(R) ~ [Ci - Ri]2(C/4 ~ R ~ C), a fact 
which is contained in (5). In fact, the proof of Theorem 1 closely 
parallels the derivation of P 6 for orthogonal codes (for a one-way 
channel). 

Theorem 2: Let {y i } ~I, be independent gaussian random variables with 
unit variance and expectation 

(19) 
EYi = 0, 2 ~ j ~ M. 

Let M eRT
, where 0 ~ R < A/2 = C, and let !1 = 0(2T)\ where 

o > C! - (4R)!. (20) 

With Rand 0 held fixed, and ()l , ()2 arbitrary but satisfying 

(21a) 

(21b) 

then for T sufficiently large, 
M 

p. = Pr U n {Yi > Yi + !1} 
;-2 ir<j (22) 

~ 2(1 + ()l) exp {-[(R! + 0 - ()2)2 + (C! - R! + ()2)2 - R]T}. 

Again notice that 0 = 0 will satisfy (20) if R > C /4. In this case 
also, (22) yields Eo(R) ~ [C! - R!]2, when R > C/4 (since O2 can 
be made arbitrarily small). 

Let us now use these theorems to find the value of !1 = 0(2T)i which 
gives the smallest upper bound on P fl without substantially changing 
the effective rate R ~ R[l - peEl)]' Since p. is a decreasing function 
of 0, we choose 0 as large as possible with the proviso that peEl) ~ o. 
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From Theorem 1, this value of 0 is 

o = ct - R! - 1'1 , (23) 

where 1'1 > O. If 1'1 is sufficiently small, this choice of 0 satisfies (17) 
and (20). With 0 so chosen, for any 1'2 > 0 we can find a T sufficiently 
large so that R ~ R(1 - 1'2)' Further, substitution of equation (23) 
into equation (22) yields an exponent 

-[ct - 1'1 - O2)2 + (Cl - R! + O2)2 - R]T. 

Finally, since 1'1 , 1'2 , 01 and O2 can be made arbitrarily small we have 
our main result: 

Corollary: Let 01 > 0, € > 0 be arbitrary. Let R < C. Then for T 
sufficiently large, there is a repeat-request communication system using 
orthogonal codes with an effective rate of R and error probability 

P e ~ 2(1 + 01) exp {-[(C! - R!)2 + C - R - €]T}. 

Let us turn our attention to (4) and (5) which give the error prob
ability for the one-way Gaussian channel. The fact that Eo(R) ~ 

(C! - R!)2 can be demonstrated by a "sphere-packing" argument. 9 

This argument states that P~(M, T) ~ Q, where Q is the probability 
of error which would result if it were possible to subdivide Euclidean 
M-space into JJI congruent cones (each with apex at the origin), one 
for each code word, and each code word were placed on the axis of its 
cone at a distance (A T)! from the origin. Setting the "sphere-packing 
exponent" 

Esp(R) = (C! - R!)2, 

we have from the above corollary that for effective transmission rates 
R < C we can obtain an error exponent arbitrarily close to 

(24) 

For discrete memoryless channels it is possible to find a lower bound 
to the optimal (one-way) error probability using an analogous sphere
packing argument. 7 Forney showed that using a repeat-request strategy 
similar to the one used here, one can obtain an error exponent arbitrarily 
close to that of equation (24) [with the appropriate E sp(R)].3 Forney 
also studied the so called (discrete) "very noisy channel," which is 
closely related to our Gaussian channel* and obtained results similar 

* Our. Gaussian channel may be thought of as a "very noisy channel" since 
the signal-to-noise ratio per coordinate is zero. 
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to our results. Thus, in the light of Forney's results, the above corol
lary is not surprising. 

Let us also remark that Kramer has found a scheme for our white 
noise channel with a feedback link that attains an error exponent of 
C - R, which is less than that in equation (24).4 In Kramer's scheme, 
the receiver observes the signal until it is sufficiently confident that 
one particular message was actually transmitted. It then informs the 
transmitter, via the feedback channel, to start the next l}f -ary trans
mission, thereby using the feedback channel only once per M -ary 
message. In the repeat-request scheme studied here, the number of 
uses of the feedback channel per l11-ary transmission is an unbounded 
random variable. Thus the two schemes, while similar (in that the 
feedback channel is used only to convey a "decision"), are not di
rectly comparable. On the other hand, there are schemes which use 
the feedback channel considerably more heavily (so called "informa
tion feedback") which in some cases attain somewhat better per
formance than the repeat-request strategy. (See for example Refs. 5, 
6, and 10). 

Finally, an important problem which has been completely ignored 
here is the requirement that the transmitter have a buffer in which it 
can store data which will accumulate at the transmitter at times when 
the receiver asks for retransmissions. If the buffer has finite capacity, 
it will occasionally overflow, introducing a further source of errors. 
Some quantitative results on this problem have been obtained by the 
author, and will be reported in a future paper. 

III. PROOFS OF THEOREMS 

We begin with some definitions. Let 

g(a) = (2!)~ exp (-a? /2), - 00 < a < 00, 

be the standard Gaussian density, and let 

-00 <U < 00, 

be the cumulative error function, and let 

<I>c(U) = l rfJ 

g(a) da = 1 - <I>(U) , -00 <U < 00, 

be the complementary error function. Let b = (A T) ~ = (2C T)! so 



80 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969 

that Yl has density g(a - b) and Yi (2 ~ j ~ M) has density g(a). 
We will use the following 

Lemma 1: For u ~ 0, <pe(u) ~ exp (_u2 /2); and for u ~ 0, tPe(u) ~ 
exp (-u2/2) (Wozencraft and Jacobs Ref. 8): 

Proof: For u ~ 0, 

[<Pe(U)]2 = £00 £00 g(a)g«(3) dex d{3 ~ i J g(ex)g«(3) dex d{3 = exp :;-u
2

) , 

where (R = {(a, (3): ex2 + (:12 ~ 2u2
, ex ~ 0, (:1 ~ o}. Taking square roots, 

we have 

;r.. ( ) < exp ( _u
2 

/2) < (_ 2/2) 
'±' e U = 2 = exp u . 

The rest of Lemma 1 follows on noting that tP(u) = <pe( -u). 

Proof of Theorem 1: Let R (0 < R < C) and 0 satisfying (17) be 
given. Since Yl has density g(ex - b), and the {yd~[ are independent, 

M 

peEl) = Pr V {Yi ~ Yl - A} 
i-2 

_ fOO d ( b) P {at least one I -} - ex g ex - r Yl - a 
-00 Yi ~ Yl - .1 

(25) 

f
OO M 

= -00 dex g(ex - b) Pr ~ {Yi ~ ex - A}. 

Now since the Yi (j > 1) have density g(ex), 

M {I 
Pr ~ {Yi ~ ex - A} ~ (M _ I) Pr {Yi ~ ex - A} ~ M<pe(a - A). 

(26) 

Letting a be a parameter to be specified later, we break the integral of 
equation (25) into two parts, ex ~ a and ex ~ a. We then apply the first 
upper bound of (26) in the first part, and the second bound of (26) 
in the second part. Thus 

If we assume that 

a ~ A, (27) 
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we can use the bound of Lemma 1 on <Pc (a - Ll) and obtain 

peEl) ~ [arfJ g(a - b) da + M l rfJ 

g(a - b) exp [- (a - Ll)2/2] da 

= PI + MP2 • (28) 

We now overbound PI and P 2 • First, 

If we further assume that 

a ~ b, 

we can use Lemma 1 and obtain 

Second, 

l rfJ 1 [( b + Ll)2] = a (271")~ exp - a - -2- exp [-(b - Ll)2/4] da 

exp [-(b - Ll)2/4] 1 frfJ ( 2/2) d = --~ exp -v v 
V2 (271") V2[a-(b+.l)/2] 

If we now make a third assumption that 

>b+Ll 
a=-2-' 

we can use Lemma 1 again (and 2-~ ~ 1) to bound P 2 : 

P, ;"; exp [-(b - t»'/4] cxp { - [a - (b ~ t>)J} 
= exp [-(b - a)2/2] exp [-(a - Ll)2/2]. 

Inserting the bounds on PI and P 2 into (28), we obtain 

(29) 

(30) 

(31) 

(32) 

peEl) ~ exp [- (b - a)2/2]{ 1 + M exp [- (a - Ll)2/2]} , (33a) 



82 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969 

where from (27), (29), and (31), 

b ~ :} ~ a ~ b. 
(33b) 

It remains to choose the parameter a. A good choice will probably 
result when the upper bound of (28) is differentiated with respect to a 
and the result set equal to zero: 

g(a - b) - 1I1g(a - b) exp [-(a - ~)2/2]= 0, 

or 

111 exp [- (a - ~)2 /2] 

or since M = exp (RT) and ~ = 8(2T)!, 

a = (R! + 8)(2T)!. 

1, (34a) 

(34b) 

Let us now verify that when 0 < R < C, constraints (33b) are satisfied 
for this choice of a. Since R > 0, a ~ ~. Further, since b = (2CT)!, 

a - (b ~ ~) = {8 - [C! - (4R)!]} [(2;)!] ~ 0, 
since 8 satisfies (17). Finally, from (17), 

b - a = [C! - (R! + 8)](2T)! ~ o. 
Thus constraints (33b) are, in fact, satisfied. Thus from (34) and (33a) 

peEl) ~ 2 exp [-(C! - R! - 8)2T] , 

which is Theorem l. 

Proof of Theorem 2: Let R (0 ~ R < C), 8 > C! - (4R)\ and 
01 , O2 satisfying equation (21) be given. Then 

]If ]If 

P e = Pr U n {Yi < Yj - ~} ~ L Pr n {Yi < Yj - ~}, 
j=2 ir'j j=2 ir'j 

or 

P e ~ M Pr n {Yi < Yj - ~}, j ~ 2. 
ir'j 

The last inequality follows from the symmetry of the distributions of 
the Yi (j ~ 2). Recalling that the density for Yi (j ~ 2) is g(a), and that 
the {Yd:r are independent, 
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fOO {for all i ~ j I } = M g(a) da PI' _ A Y i = a 
-00 Yi < Yi ~ 

= M fOO g(a) da PI' n ! Y i < a - ~ l . 
-00 ir'j 

Again using the independence of the Y. and the fact that the density of 
Yl is g(a - b) we have 

Pr D (y, < a - "'I = U:-' g(a - b) da ] [.c-' g(a) da r-' 
= <P(a - ~ - b)[<P(a - ~)J1If-2. 

Substituting, we obtain 

p. ~ Jill l: g(a)<p(a - ~ - b)[<p(a - ~)J1If-2 da. (35) 

Also note that 

[<p(a - ~)JlII-2 = [1 - <pc(a - ~)J1If-2 
(36) 

~ exp [-(M - 2)<pc(a - ~)J. 

As in the proof of Theorem 1, we break the integral in (35) into two 
parts a ~ a and a ~ a, where a will be specified later. In the range 
a ~ a we overbound <p(a - ~ - b) by unity, and [<p(a - ~)]1If-2 by 
(36). In the range a ~ a, we overbound [<p(a - ~)]1If-2 by unity. Thus 

p. ~ M f_a
oo 

g(a) exp [ - (1I! - 2) <p cCa - ~) ] da 

+ 1I! i oo 

g(a)<p(a - ~ - b) da = 1I!P1 + JIIJP2 • (37) 

We now overbound PI and P 2 • First, 

PI = la
oo 

g(a) exp [ - (1I! - 2) <p cCa - ~) ] da 

~ exp [-(.Ll! - 2)<pc(a - ~)J la
oo 

g(a) da (38) 

~ exp [-(M - 2)<pc(a - ~)J. 

Second, if we assume that 

(39) 
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we can write 

P2 = i~ g(a)<p(a - .1 - b) da 

l
~+b 1~ 

= g(a)<p(a - A - b) da + g(a)<p(a - A - b) da. 
a ~+b 

In the first integral, a - A - b ~ 0, so that we may use Lemma 1 to 
bound<I>(a - A - b). In the second integral, weoverbound<I>(a - A - b) 
by unity. Thus 

l
~+b f~ 

P2 ~ g(a) exp [-(a - A - b)2/2] da + g(a) da 
a ~+b 

Since from (20) and the fact that R < C, 

A + b = (0 + C!)(2T)! > 2(C! - RI)(2T)! > 0, 

we can again use Lemma 1 to overbound <P c (A + b). Using the definition 
of g(a), we have 

P 2 ~ i~ (2!)! exp (-a2/2) exp [-(a - .1- b)2/2] da 

+ exp [-(A + b)2/2] 

1 1~ [( b + A)2J = exp [-(b + .1)2/4] (27r)! a exp - a - -2- da 

+ exp [-(A + b)2/2] 

2-1/21~ 
= exp [- (b + .1)2 /4] ~2) _ exp (-v2/2) dv 

7r V2[a-(b+~)/2) 

+ exp [-(A + b)2/2] 

~ exp [-(b + .1)'/4] <1>0 [ v'2(a - b ~ .1)J + exp [-(.1 + b)'/2]. 

If we further assume that 

a ~ (b + .1)/2, (40) 

then we can again employ Lemma 1 to bound <pe[ V2(a - (b + .1)/2)]. 
Hence 
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P, ;;; exp [-(b + ~)'/41 exp {- [a - (b t ~)]'} 
+ exp [-(Li + b)2/2] 

= exp {_![a2 + (a - Li - b)2]} + exp [-(Li + b)2/2]. 

85 

(41) 

The difference between the second and first exponents in (41) is 

-!{ (Li + b)2 - [a2 + (a - Li - b)2]) = a[a - (Li + b)] ~ 0, 

by (39) and (40). Thus, the first term of (41) is not less than the 
second, and 

(42) 

Inserting the bounds on PI (38) and P 2 (42) into (37), we obtain 

p. ~ M exp [- (M - 2)cI>c(a - Li)] 

+ 2M exp {_![a2 + (a - Li - b)2]}, (43a) 

where from equations (39) and (40), 

b t Li ~ a ~ b + A. (43b) 

It remains to choose the parameter a, and here we will simply state 
a good choice of a without giving a motivating argument. Let 

(44) 

(where (}2 is the arbitrary parameter which was selected at the begin
ning of the proof) . We must verify that constraints (43b) are satisfied 
for this choice of a. First, since R < C and '(}2 > 0, 

b + A - a = (Ci - Ri + (2)(2T)i > O. 

Thus a ~ b + Li. Second, from equation (21b), 

a - (b t A) = !{ 0 - [C li - (4R)!] - 282 }(2T)i ~ 0, 

so that a ~ (b + Li) /2 and (43b) is satisfied. 

Now consider the second term in (43a). Direct substitution of (44) 
shows that this term is 

2 M exp {-[(Ri + 0 - (2)2 + (Cl - R! + (2)2]T}, 

a single exponential decay in T (as T ~ 00). Finally consider the 
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exponent of the first term of (43). Substituting (44), it is 

-(M - 2)cJlc (a - Ll) = -(exp (RT) - 2)cJl c {[Ri - 02](2T)!}. 

Making use of the asymptotic formula cpc:(u) ~ (27ru)-ie- u
'/

2 as 
u ~ 00 (see p. 106 of Ref. 2), and letting T ~ 00 (and noting that from 
equation (21b), R! - O2 > 0), this exponent is asymptotic to 

-1 
(27r)!(R! _ 02)(2T)! exp (+KT) , 

where K > o. Thus the first term of equation (43a) decays to zero as a 
double exponential in T, very much more rapidly than the second term 
of equation (43a). We can find a T sufficiently large so that the ratio of 
the first to second terms of equation (43a) ~ 01 • With T so chosen 

P e ~ (1 + 01)2 exp {_[(Ri + 0 - 02? + (O! - R! + O2)2 - R]T} 

which is Theorem 2. 
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Second and Third Order Modulation Terms 
in the Distortion Produced when Noise 

Modulated FM Waves are Filtered 
By s. o. RICE 

(Manuscript received August 8, 19(8) 

This paper is concerned with the distortion produced in a frequency 
modulation wave when it passes through a filter. The phase or frequency 
modulation representing the signal is assumed to be a band of gaussian noise. 
The main result is an expression for the power spectrum Wo (f) of the output 
phase angle O(t). This expression holds for any filter, contains all of the 
distortion terms due to second and third order modulation, and is suited 
to computer evaluation. It is useful in many cases, but it has the shortcoming 
of not containing any modulation terms higher than the third order. 

A second result is an approximation to Ws(f), based on log (1 + x) ~ x 
(that is, a "first-order" approximation), which is encountered in the deriva
tion of the main result. Although it does not contain all of the second and 
third order modulation terms, it does contain higher order modulation terms 
which may give most of the distortion in some cases. The results given here are 
compared with those obtained earlier. 

r. PREFACE 

This work is a sequel to "Distortion and Crosstalk of Linearly 
Filtered Angle-Modulated Signals" by E. Bedrosian of the Rand 
Corporation and myself.l One of the principal results of that paper 
is an expression for the distortion produced when a frequency modula
tion wave, modulated by gaussian noise, passes through a filter as
sumed to be symmetrical about the carrier frequency. 

The assumption of symmetry simplified the analysis, but led to 
zero second order modulation; and consequently the results do not 
apply to many cases of practical interest. 

The main result of this paper is an expression for the distortion 
which contains all of the second and third order modulation terms pro
duced by a general filter. It includes the earlier result as a special case. 
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As before, the input phase angle is assumed to be a gaussian noise. 
Some time. ago Mr. Bedrosian and I worked out, independently, 

the second order modulation terms. His analysis is somewhat different 
from mine and throws a different light on the problem. Since each ap
proach is of interest in its own right and since we were unable to 
combine the two without losing useful results, we decided to publish 
our work separately. An early version of Bedrosian's analysis is given 
in a RAND memorandum.2 

II. INTRODUCTION 

When an angle-modulated wave (FM or PM) passes through a 
filter, the signal becomes distorted. For a multichannel system this 
distortion may produce crosstalk. In many practical cases the second 
and third order modulation terms give a good measure of the distor
tion. These terms have been studied by a number of investigators. In 
this paper we obtain some general expressions for them for the case in 
which the modulation is gaussian. 

Our main results includes all of the second and third order modu
lation products. In this respect, it is more general than some of the 
earlier expressions for the distortion (see Medhurst,s Magnusson,4 and 
Liou5). However, it does not give higher order modulation terms, some 
of which appear in earlier "first order" approximations. A first order 
approximation (similar to the earlier ones) occurs in our derivation of 
the main result. It is stated, along with the main result, in Section III. 

As in Ref. 1, the complex form of the filter input is 

set) = exp [iwot + i<p(t)] (1) 

where the carrier frequency is Wo = 27ft 0 and the signal is carried by the 
real input phase angle <pet). Let the filter have the transfer function G(f) 
and the impulse response g(t): 

get) i: G(f) exp (iwt) df, 
(2) 

G(f) = i: get) exp (-iwt) dt, 

where the response get) may be complex and may be different from zero 
when t < O. 

The filter is regarded as a bandpass filter for which G(t) is large only 
near ±to . Let normalized functions be defined by 

ref) = G(fo + f) (t) = get) exp ( -iwot) . (3) 
G(fo) ,'Y G(fo) 
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From the definitions and the Fourier relations (2) it follows that 

'Y(t) = i: ref) exp (iwt) df, ref) = i: 'Y(t) exp (-iwt) dt, 

i: 'Y(t) dt = 1, r*( -f) = L: 'Y*(t) exp (-iwt) dt, 

where the asterisk denotes "conjugate complex." 
The filter output corresponding to the input set) is 

so(t) = i: g(u)s(t - u) du 

= L: g(u) exp [iwo(t - u) + icp(t - u)] du 

= [G(to) L: 'Y(U) exp [iq>(t - u)] duJ exp (;""ot) 

= exp (-ao - i/3o) {R(t) exp [iO(t)]} exp (iwot) 

= exp (-ao - i/3o) {exp [iB(t)]} exp (iwot). 
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(4) 

(5) 

The definition of 'Y(u) is used in going from the second to the third line. 
In going from the third to the fourth line, the attenuation and phase 
shift, ao , /30 at the carrier frequency have been introduced by writing 
G(fo) as exp (-ao - i/3o). The complex phase angle B(t) is related to 
the envelope R(t) exp (-ao) and phase angle -/30 + O(t) of the output 
[an and /30 are constants which do not depend on cp(t)] by 

exp [iB(t)] = R(t) exp [iO(t)], 

OCt) = Re B(t), 

iB(t) = In R(t) + iO(t) , 

In R(t) = - 1m B(t). 

Comparing the third and fifth lines of equation (5) leads to 

8(t) = -i In [.c 'Y(u) exp [i<pCt - u)] duJ. 

(6) 

(7) 

The analysis may be simplified by introducing the "linear portion" 
<I>(t) of e(t). Working with the case in which the input cp(t) is small gives 

e(t) = -i In [1 + i .c 'Y(ujq>(t - u) du + ... ] 

~ (-i)i L: 'Y(u)cp(t - u) dU1 
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and this leads us to define the linear portion of e(t) as 

<p(t) = L: "I(u)cp(t - u) duo (8) 

The complex phase angle e(t) may be separated into its linear and 
nonlinear portions by adding and subtracting i<p(t) in the exponent in 
equation (7): 

e(t) = <I>(t) ~ i In LC y(u) exp [il'(t ~ u) ~ i<I>(t)] dUJ. (9) 

Adding and subtracting 1 in the integrand and using the fact that the 
integral of "I(u) is unity gives the fundamental relation 

e(t) = <p(t) - i In [1 + K(t)] (10) 

where 

K(t) =L: du "I(u) {exp [icp(t - u) - i<p(t)] - 1}. (11) 

In most cases of practical interest, K (t) tends to be small. When 
I [((t) I < 1, expansion of the logarithm gives the series 

e(t) = <p(t) - iK(t) + i Ie(t) - i K 3(t) + ... (12) 
2 3 

upon which our analysis is based. When cp(t) is gaussian, I K(t) I will 
occasionally exceed unity. It appears that results obtained from the 
series of equation (12) represent the first few terms of an asymptotic 
series. This is further discussed in Appendix F. 

If cp(t) is small for all values of t, expansion of the exponential in the 
definition of K(t) [equation (11)] shows that [((i) is 0(cp2). Our main 
expression for the distortion, given in Section III, neglects terms of 
order cps. For this accuracy, equation (12) can be written as 

e(t) = <p(t) - iK(t) + ~ K2(t) + O(cp6). (13) 

Since the variable portion O(t) of the output phase angle is the real 
part of 8(t), the dc portion, Ode, of O(t) is the average value of Re 8(t). 
When the input cp(t) is a stationary gaussian process with zero mean, 

Ode = Re (e(t)av 

= Re ( ~iK(t) + ~ K'(t) .. + 0(1") 

= 1m (K(t) - 2- 1Ie(t)av + O(cp6) 

(14) 
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where ( )av denotes "ensemble average" and (<p(t) )av is zero because 
<p(t) depends linearly on cp(t). Notice that from equation (5), the total 
output phase angle is e(t) = - f30 + OCt) and that the dc part of e(t) is 

The two-sided power spectra Wo(t) , WoCt) of e(t), OCt) contain the dc 
spikes (-f3o + Odc)2 oCt), O~c oCt), respectively. Furthermore, 

Here oCt) is the unit impulse function. 
In the following work it is convenient to ignore f3o, and we shall 

call OCt) itself the output phase angle. 

III. STATEMENT OF PRINCIPAL RESULTS 

In all of the results stated here, the input phase angle cp(t) is gaus
sian with zero mean. The two-sided power spectrum of cp (t) is W'P (f). 
The two-sided power spectrum of the output phase angle O(t) is We (f) . 

3.1 Second and Third Order Modulation Terms in woCt) 

The principal result given in this papert is an expression for We (f) 
which contains all of the second and third order modulation terms: 

Wo(f) = O~c oCt) + 1 W tp(f) 1 uCt) + U*( - t) 12 

1100 

+ 8" -00 dp Wtp(p)Wtp(f - p) 1 T(p, t - p) - T*(-p, -t + p) 12 

1 100 100 

+ 24 -00 dp -00 du W tp(p)lV tp(u)lV tpCt - p - u) 

·1 S(p, u, t - p - u) + S*( - p, -u, -t + p + u) 12 

+ o (cp6W tp). (15) 

t Note added at press time: Equation (15) gives essentially the first few terms 
of a general expansion due to A. Mircea, Rev. Roum. Sci. Tech.-Electrotechn 
et Energ., 1967, t. 12, No.3, pp. 359-371, and Proc. IEEE (Correspondence), Octo
ber 1966, 54-, pp. 1463-1466. I regret the oversight of Mircea's excellent work. Use 
of his results would have substantially improved this article. 
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Here the dc part, (jan, of (j (t) is the imaginary part of 

1 foo Dc = -2 -CIJ dp W",(p)S(p, - p) 

1 fCIJ jCIJ - 2 -CIJ dp -CIJ du lV lI'(p)W lI'(u)S( -u, - p)[!S(u, p) - r(u + p)] 

+ 0(,/) (16) 

and 

T(p, f - p) = S(p, f - p) 

+ i: du W",(u)[2S(u, p)S(-u, f - p) - S(u, f - u) 

- r(u)r( -u)S(p, f - p) + S(p + u, f - p - u)] (17) 

U(f) = r(f) + i: dp W ",(p)r(p)S( - p, f) 

+ i: dp i: du W ",(p)W ",(u) {-!r(p + u)S( - p - u, f) + r(u) 

. [3S( -u, p)S( - p, f) - S(p, f - p - u) + S(p - u, f - p)]}. 

(18) 

The r (f) is the normalized filter transfer function defined by equa
tion (3) and the functions S are discussed in Appendix B. They depend 
only on the filter. That is, they are independent of W rp (f), and are 
defined symbolically by 

n 

S(x l , ••• ,xn) = II [yXIo - r(Xk)] (19) 
k-l 

where the power yZ of y is to be replaced by r(z) after multiplying 
out the product. The S's are symmetric functions of their arguments. 
Forn = 2 and 3, 

S(p, u) = yp+rr - ypr(u) ~ yrrr(p) + r(p)r(u) 

= rep + u) - r(p)r(u), 

S(p, u, v) = rep + u + v) - rep + u)r(v) 

- rep + v)r(u) - r(u + v)r(p) + 2r(p)r(u)r(v). 

The S (p, (J', v) of Ref. 1 is the negative of the one used here. 

(20) 
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In the "order of" symbol appearing in equation (15) the W rp enters 
for dimensional reasons. This is in line with 

(21) 

as can be seen by integrating both sides of equation (15) from! = 
-00 to! = 00. 

In some instances the expression for Wo(f) is useful when rms cp(t) 
is large but rms dcp (t) /dt is small. 

Bedrosian has computed curves showing the second order distor
tion for the case of quadratic phase shift, that is, for r (f) of the 
form exp[iAf2].2 

As equation (15) stands, it is oriented towards phase modulation. 
For frequency modulation the time derivatives cp' (t) = dcp(t) / dt, 0' (t) = 

dO(t)/dt replace the phase angles cp(t), O(t) as the items of interest. Since 
the power spectrum Wo,(f) of O'(t) is equal to (27rt)2WO(t) , multiplying 
(15) by (27rt)2 converts it into an expression for Wo,(t). On the right side 
of (15), the factor W <p (f) in the first line is replaced by W <p' (f) and the 
W /s appearing in the integrands may be transformed into W <p"s with
out introducing infinities. The last statement is seen to be true for the 
second order modulation integral when we write 

Wq>(p)W<p(f - p) = W<p,(p)Wrp,(1 - p) (27r)-4p-2(1 _ p)-2 

and observe that the product p-l(1 - p)-lT(p, 1 - p) remains finite 
even when p and (I - p) approach zero. The third order term may be 
treated in a similar way. 

In many applications W <p' (f) is proportional to D2 where 

D' = <[~~~) ]') .. 
and D is the rms frequency deviation in cycles per second. Then the 
second and third order modulation integrals in (15) are proportional to 
D4 and D6

, respectively, as D tends to zero. This suggests that the 
remainder term, o (cp6W rp), is proportional to D8. For this reason we shall 
sometimes refer to (15) as the "small deviation" approximation. When 
the FM signal to crosstalk ratio in dB is plotted as a function of log D, 
the behavior of the resulting curve as D ~ 0 can be computed from (15). 
Indeed, if the second order modulation predominates, (15) furnishes an 
asymptote to the curve with a slope of 6 dB per octave. If, because of 
symmetry in the filter, the second order modulation term in (15) is 
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zero, the third order term gives an asymptote with a slope of 12 dB 
per octave. 

Some idea of how equation (15) begins to fail as D increases from 0 
may be obtained by considering the case cp(t) = A sin wat. Then the rms 
frequency deviation is D = taA/2! and the filter output is 

00 

so(t) = L In(A)G(fo + nta) exp [i(wo + nwa)t] 

where In(A) is a Bessel function and Wa = 27rta . Consider only the 
second harmonic. It is proportional to J 2 (A), and the approximation 
underlying (15) is roughly equivalent to replacing J 2 (A) by A 2/8, the 
leading term in its power series. The value of A which makes A 2/8 
exceed J 2 (A) by 3 dB is A ~ 2.0 and the corresponding Dis 1.4 fa . If 
the baseband of a gaussian FM wave were flat and extended from 0 to B, 
the expected number of zeros per second would be 1.16 B. This is the 
same as the number of zeros of A sin wat with fa = 0.58 B. This represen
tative value of fa leads to the estimate that (15) will be in error by 3 dB 
when D ~ (1.4) (0.58)B ~ 0.8 B. Comparison of (15) with experimental 
values indicates that the 3 dB error point typically occurs when D lies 
between B/2 and B. 

3.2 Power Spectrum of a()(t) + b In R(t). 
Equation (15) for Wo(f) may be modified to give information re

garding the fluctuation of the envelope R (t). This information may 
be of interest, say, in determining the distortion produced by "AM to 
PM conversion."5 More generally, suppose that one is interested in the 
power spectrum W a: (f) of 

x(t) = a()(t) + b In R(t) = Re [(a + ib)8(t)] (22) 

where a and b are arbitrary real constants. Then Wa: (f) is given by 
an expression obtained from equation (15) upon replacing U (f), 
T(p, j-p) and S(p, a, j-p-,a) by (a+ib) U(f), (a+ib) T(p, j-p), and 
(a+ib)S(p, a, j-p-u), respectively, so that U~f (-f) is replaced by 
(a-ib)U* (-f), and so on. (See Appendix E.) 

3.3 Second and Third Order Modulation Terms tor "Small and Slow" 
Frequency Deviations 

The expression (15) for Wo(f) simplifies when 

(1,) ret) can be expanded as a power series 
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r(f) = G(fo + f) = 1 + f anr 
G(fJ n=1 n! 

(23) 

and 

(ii) the effective spread of W I"(f) is so small that the r's used in 
equations (15) to (20) can be replaced by the first few terms of their 
power series expansion. Roughly, this means that the top baseband 
frequency is small compared with the filter bandwidth. The instantaneous 
frequency changes slowly in comparison with the envelope of the impulse 
response of the filter, and the quasistatic case is approached. With these 
assumptions the resulting simplified form of We(f) is given by equation 
(126). A more complete form of the small and slow deviation approxi
mation is given in equation (133) which brings out the asymptotic 
nature of the results. 

The sum of the second and third order modulation terms given by 
the integrals in equation (126) [which are the simplified versions of 
the corresponding integrals in equation (15)] is 

W~(f) = 2-\A2i + 2- 1 D2A4i)2 i: dp W I"(p) W I"(f - p) /(f - p)2 

+ 6-\AaJ2 1°O dp 100 

d(]' W I"(p) W I"((]') W I"(f - p - (]') p2(]'2(f - P _ (]')2. 

-00 -00 (24) 

Here W~ (f) is the portion of We (f) which gives the interchannel inter
ference, that is, the noise a listener would hear in an idle channel in a 
multichannel frequency division multiplex angle-modulation system. 
D is the rms frequency deviation in cps, 

D' = ([~~~) J') .. (25) 

where < >av denotes ensemble average. The quantities Ani are the im
aginary parts of the semi-invariants An defined by the expansion 

In r(f) = f Anr· 
n=l n. 

(26) 

Equations (125) express the first five An's in terms of the first five an's, 
the coefficients in the expansion of ref). 

The corresponding approximation for the power spectrum W~(f) 
of x = aBet) + b In R(t) [see equation (22)] is obtained by replacing Ani 
in equation (24) by (aAni + bAnr) where Anr denotes the real part of An . 
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In the important FM case in which the baseband signal cp' (t) has 
a flat power spectrum, the two-sided power spectrum of <p' (t) may be 
taken to be 

W~.(f) = {O, 
(271" D)2 j(2B) , 

I f I> B 

I f I ~ B 
(27) 

where the baseband extends from f = ° to f = B (that is, from -B 
to + B for two-sided spectra), and D is the rms frequency deviation. 
Then 

I f I> B 

I f I ~ B. 
(28) 

When this expression is used, the integrals in equation (24) may be 
evaluated and it is found that, for ° ~ I f I ~ B, 

W~(f) = ~: (2B - I f I)(A2i + 2- 1 D2A4i)2 + 4~3 (3B2 - r)(A3i)2, 

° ~ I f I ~ B. (29) 

The average signal power in an elementary frequency band extending 
from f to f + Af in the input base band is W cp' (f) ilf (radians per second) 2. 

The ratio of the interference power to the output power in the same 
elementary band is 

W~,(f) Af W~(f) 
Wo·(f) ilf = We(f)· 

(30) 

For the flat baseband FM case we may approximate Wo(f) by Wcp(f) = 
D2 j (2Br) and use equation (29). This leads to the approximation 

wi.(f) Af _ rD
2 
[( _ W)( -ID2)2 D2 ( _ L)( )2J 

Wo.(f) Af - 4 2 B Au + 2 A4i + 6 3 B2 A:li , 

(31) 

for the ratio of the interchannel interference power to the signal power 
in the elementary band (f, f + ilf). This ratio has meaning only if 
If I ~ B. 

Liou has given an approximation which is equivalent to equation 
(24) for W~(f) with several more terms included.5 This approximation 
is discussed in Section XII. 

The small and slow deviation approximation described above gives 
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results which agree well with Monte Carlo computations made by C. L. 
Ruthroff.6 For illustration we take the simplest of Ruthroff's cases, 
the one in which the transfer admittance of the filter is 

1 
G(f) = 1 + 2x + 2X2 + x3 , (32) 

Here 10 is the carrier frequency and Ie is the filter semibandwidth. 
Putting f = f 0 gives G(f 0) = 1. Putting f = I' + f 0 gives x = il' If e 

and 

In ref') = In G(f' + f 0) 
GCto) 

-In (1 + 2x + 2X2 + x3) 
(33) 

The last line follows from the series of equation (26) defining the 'An's 
as the coefficients in the expansion of In r (1'). In going from line 2 to 
line 3, the logarithm is expanded by setting al = 2, a2 = 4, a3 = 6, 
an = 0 for n > 3 in 

In (1 + ~ anXnln!) = ~ 'Anxnln! 

and by using the expressions (125) for the 'An's. 
Substituting x = if'lfe in line 3 of equation (33) and comparing the 

result with the last line gives 

Hence 'Au = 0, 'A3i = -2f;3, 'A4i = 0, and the approximation of equation 
(31) for the ratio of the interchannel interference power to the signal 
power leads to 

W~(f) Dol [/2 D4 ( r)] 
-10 loglo Wo(f) Dof ~ -10 loglo 6f~ 3 - B2 . 

In his Fig. 15 Ruthroff has plotted values of 

-10 loglo [W~(f) DofIWo(f) D.f] 

(34) 

for several different values of D I Band fiB with B 7 MHz and 
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fe = 119 MHz.6 The agreement with our equation (34) is good at 
fiB = 1.0. Our DIB is the same as Ruthroff's o/W and our fiB = 1.0 
corresponds to Ruthroff's slot 10. At fiB = 004, equation (34) gives 
values which are about 3 or 4 decibels less than the Monte Carlo values, 
but this may still be regarded as good agreement. 

Similar agreement is found when the small and slow deviation approxi
mation is applied to a number of the other cases examined by Ruthroff. 

3.4 A "First Order" Approximation 

Although equation (15) is useful in some FM distortion problems, 
in some cases it is of no help. One example concerns the distortion 
produced by an ideal filter centered on the carrier frequency and having 
a semibandwidth exceeding 3B, where B is the baseband. That is, 
W rp (f) is 0 for I f I > B. In this case the distortion is produced by modula
tion terms of order higher than the third, and these are neglected in 
equation (15). 

For such problems "first order" approximations can sometimes be 
used. The term "first order" refers to the approximation In (1 + x) ~ x 
where x is of the nature of I{(t) in equation (10); it does not refer to the 
order of the modulation products in x. Different choices of x lead to 
different first order approximations. The first order approximation 
given by the first two terms in the series of equation (12) for e (t) is 

O(t) ~ Re <p(t) + 1m K(t). 

The output phase angle O(t) may be written as the sum 

O(t) = Ode + Oe(t) + One(t) 

(35) 

where 0 eCt) = Re <p(t) is the "linear portion" of O(t), and OneCt) given by 

O(t) - Oe(t) - Ode 
(36) 

O(t) - Re <p(t) - Ode 

is the time varying part of the "nonlinear distortion" in (J(t). The first 
order approximation for One(t) corresponding to the first order approxi
mation of equation (35) for O(t) is 

One(t) ~ 1m K(t) - Ode ~ 1m K(t) - 1m (K(t) \v = yet) (37) 

where 

yet) = 1m [K(t) - (K(t) )av]. (38) 

The work of Section VI, which is part of the derivation of equation 
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(15), shows that the power spectrum of yet) is 

Wy(f) = 2- 1 Re [P(f) + Q(f) + P*( -f) + Q*(-f)] (39) 

where 

1 100 100 100 

P(f) = -"2 -00 dr exp (-iwr) -00 du -00 dv')'(u}y(v) 

. exp [a(u) + a(v)]{ exp [2c(u, v, r)] - I} 

1100 100 100 

Q(f) ="2 -00 dr exp (-iwr) -00 du -00 dv')'*(u}y(v) 

. exp [a*(u) + a(v)] {exp [2c(u, v, r)] - I} 

1100 

a(u) = -"2 -00 df W ",(f)Hu(f)Hu( -f) 
(40) 

1100 

c(u, v, r) = -"2 -00 df W ",(f)Hu( -f)Hv(f) exp (iwr) 

c(u, v, r) = ~ i: df W",(f)Ht(f)Hv(f) exp (iwr) 

HuCf) = exp (-iwu) - r(f) , w = 27ff. 

The function Q(f) is real when f is real, and P(f) is an even function of f. 
The first order approximation Wy(f) for the power spectrum of eneCt) 

contains some higher order modulation terms which are not contained 
in our main equation (15) for Wo(f); conversely, equation (15) contains 
terms which are not in Wy(f). In using the first order approximation of 
equation (35), which may be rewritten as 

e(t) = Re cIl(t) + 1m K(t) + 0(K2
), 

one should guard against throwing away* [in the o (K2) terms] quantities 
which are of the same order as those being computed from Re cIl(t) + 
1m K(t) (the leading term). Although each case requires its own in
vestigation, it is helpful to remember that K(t) is 0((/). Furthermore, 
when 'Y(t) is real, 1m K(t) is O(l). Also when r(f) == 1, K(t) becomes 
0; and when 

I r(f) - 1 I < E « 1 

for all real values of f (as in the case of small wave-guide echoes), it 

* This type of error has been discussed by Enloe, Ruthroff,· Gladwin, and 
Medhurst in Refs. 7 and 8. 
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may be conjectured that K(t) itself is G(e) irrespective of how large 
(c/)sy may be. 

The approximation Onl(t) ~ yet), is not quite the same as earlier first 
order approximations.3.4.9-12 It is a closer, but more complicated, 
approximation because cp(t - u) - <p(t) is used in the integral equation 
(11) for K(t) instead of cp(t - u) - cp(t) as in the earlier approximations. 
Appendix D gives some results obtained when the present analysis is 
repeated with cp(t - u) - cp(t) in place of cp(t - u) - <p(t). 

Equation (39) for WvCf) gives a first order approximation for the 
power spectrum of Onl(t) = OCt) - Re cI>(t) - Odc. The corresponding 
approximation for the power spectrum of 

In R(t) + 1m <p(t) - [In R(t)]dc ~ Re [K(t) - (K(t»av] = x(t) 

is 
W%(f) = 2-1 Re [-pet) + Q(f) - P*(-f) + Q*(-f)]· 

3.5 Simplification When Filter has Symmetry r ( - f) = r* (f) 
When the filter has the symmetry 

r( -f) = r*(f) (41) 

about the carrier frequency, the even order modulation terms disappear, 
S*( -Xl' ... , -xn ) becomes equal to S(Xl , •.. , xn), and equation (15) 
becomes 

Wo(t) = W",(t) \ U(f) \2 

1 100 100 

+ '6 -00 dp -00 du W <p(p)W <p(u)W <Pet - p - u) 

·1 S(p, u, f - p - a) 12 + o (cp6W "'). (42) 

Here U(t) is still given by equation (18) and S(p, u, v) by equation (20). 
This expression for Wo(f) agrees with one of the main results of Ref. 1 
when the double integral in equation (18) for U(t) is assumed to be so 
small that it may be neglected. 

When r ( - f) is equal to r* (f), the coefficients an in the power series 
of equation (23) for r(f) are real when n is even, and imaginary when 
n is odd. The same is true for the An's of equation (26). Hence Au , A4i 

are zero and the second order modulation terms disappear from the 
small and slow deviation. approximations equations (24), (29), and 
(31) for W~(f) . 
. The relation r( -1) = r*(f) implies that '}'(u) is real and that Hu( ~f) 

is equal to H~(f). Then a(u) , c(u, v, r), and c(u, v, r)are real and c(u; v, r) 
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is equal to -C(U, V, T). Both P(f) and Q(f) become even and real. Equa
tion (39) for the power spectrum of yet), that is, the first order approxi
mation for the power spectrum of the nonlinear distortion One(t) , be
comes 

WII(f) = P(f) + Q(f)· (43) 

Here the triple integral for P(f) is the same as that given in equation 
(40); and the triple integral for Q(f) may be obtained from the integral 
for P(f) by changing the sign of 2c(u, v, T). Hence equation (43) be
comes 

WII(!) - i: dT exp (-iWT) f_: du ~.c: dV'Y(uh(v) 

. exp [a(u) + a(v)] sinh [2c(u, v, T)] (44) 

where W = 27r-j, and a(u), c(u, v, T) are given by equation (40). 

IV. INITIAL EXPRESSION FOR THE POWER SPECTRUM OF () (t) 

When OCt) is a stationary noise process its two-sided power spectrum 
Wo(f) is the Fourier transform of its autocovariance: 

Wo(f) = i: exp (-iWT)(O(t)O(t + T»av dT, W = 27r-j. (45) 

Denoting functions with arguments t, t + T by subscripts 1, 2 and using 

OCt) = Re 8(t) = 2- 1[8(t) + 8*(t)] (46) 

gives 

(O(t)O(t + T»av = (0102)av 
(47) 

= 2-1 Re [(818 2)av + (8182)av]. 

The procedure of Appendix A and equation (13) for the complex phase 
angle 8 (t) lead to 

(8 18 2 )av = A(T) + A( - T) + 0((/) 

(8182 )av = B(T) + B*( - T) + 0((/) 

where ACT) and B(T) are the ensemble averages 

A(T) = (<I\(2-1<P2 - iK2 + i2-1K;) - 2- 1K 1(K2 - K;)av 

B(T) = (<I>i(2-1<I>2 - iK2 + i2- 1K;) + 2- 1K1(K2 - K;»av . 

(48) 

(49) 
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The remainder terms in equation (48) are O(c/) instead of O(c/) be
cause the ensemble average of an odd order term is zero. 

It also follows from Appendix A that equation (45) for the power 
spectrum of e(t) goes into 

Wo(f) = 2- 1 Re [P(f) + Q(f) + P*( -f) + Q*( -f)J + o((/w~) (50) 

P(t) = i: exp (-iwr)A(r) dr 
(51) 

Q(t) = i: exp (-iwr)B(r) dr. 

Although the functions P(f), Q(f) used here are not the same as those 
in Section III, they are of the same nature. 

V. CALCULATION OF AVERAGES NEEDED FOR COVARIANCES 

The equations of Section IV show that the value of (e(t)e(t + r»av 
depends upon various ensemble averages of products of <I>(t) and K(t). 
When the input phase angle cp(t) is gaussian, these averages may be 
computed by using a result proved in Ref. 1. 

Let L be a linear operator which operates on functions of t, and let 

L exp (iwt) = exp (iwt) t (f) , w = 27rf. (52) 

Let cp(t) be a stationary gaussian process with two-sided power spectrum 
W~(f). Then 

(exp [iLcp(t)])av = exp [ -~ i: dt W ~(f)t(f)t( -f) J. (53) 

Setting xLcp(t) for Lcp(t) and comparing coefficients of x2 in the power 
series expansions of the two sides of equation (53) shows that 

i: df W \0 (f)t(f)t( -f) = ([Lcp(t)]2)av . 

That (exp [iLcp(t)])av is equal to exp {_2-1([Lcp(t)]2)av} follows from 
the fact that the real and imaginary parts of Lcp(t) are correlated gaussian 
processes. 

In dealing with K(t) it is convenient to introduce the function J(v, r) 
defined by 

J(v, r) = exp [icp(t + r - v) - i<I>(t + r)]. (54) 

The dependence of J(v, r) on t is ignored because the right side of 
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equation (54) is a stationary random process, and J(v, r) will be used 
only to calculate ensemble averages. The examples, which follow from 
the definition of equation (11) of I((t), 

(IC)av = (K(t»av = l: du 'Y(u)(J(u, 0) - l)av 

(KJ{2)av = (K(t)K(t + r»av 

= l: du i: dV'Y(u)'Y(v)([J(u, 0) - 1J[J(v, r) - 1J),.v 

(K'iK2)av = l: du i: dV'Y*(uh(v)([J*(u, 0) - 1J[J(v, r) - 1J)av 

(55) 

show that averages of the type (J(u, O»av, (J(u, o)J(v, r»av, and 
(J*(u, o)J(v, r»av are needed. 

To calculate (J(u, O»av from the general result, equation (53), let 
L be the operator which carries cp(t) into cp(t - u) - cp(t). Replacing 
cp(t) by the integral which defines it gives 

Lcp(t) = cp(t - u) - l: ds 'Y(s)cp(t - s). 

The function t(t) associated with L is obtained by setting exp (iwt) 
in place of cp(t): 

exp (iwt)t(f) = L[exp (iwt)J 

= exp [iw(t - u)J - i: ds 'Y(s) exp [iw(t - s)J, 

t(t) = exp (-iwu) - ref) == Hu(f). 

Then equation (53) gives 

(exp [iLcp(t)])av = (exp [icp(t - u) - icp(t)J),.v 

= (J(u, o»av = exp [a(u)] 

where 

The functions a(u) and 

Hu(f) = exp (-i27rfu) - ref) 

(56) 

(57) 

(58) 
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play important parts in the analysis. The present Hu(f) is the negative 
of the one used in Reference 1, a change made to simplify the analysis. 

The calculation of (J(u, o)J(v, r)av proceeds in much the same way. 
Let 

L<p(t) = <PCt - u) - <I>(t) + <p(t + r - v) - <I>(t + r), 

((f) = Hu(f) + exp (iwr)H.(f) , -~ i: df W I'(f)((f)(( -f) 

-~ i: df W 1'(f)[Hu(f)Hu( -f) + H.(f)Hv( -f) 

+ 2 exp (iwr)Hu(-f)Hv(f)] 

= a(u) + a(v) + 2c(u, v, r) 

where WI' (f) is an even function of f and c( u, v, r) is the integral 

1100 

c(u, v, r) = -2 -00 df W I'Cf)Hu( -f)HvCf) exp (i27rfr). 

Consequently, 

(59) 

(60) 

(J(u, o)J(v, r)av = exp [a(u) + a(v) + 2c(u, v, r)]. (61) 

Similarly, to calculate (J*(u, o)J(v, r)av let 

L<p(t) = -<pet - u) + <I>*(t) + <p(t + r - v) - <I>(t + r), 
(62) 

((f) = - exp (-iwu) + L: ds "(*(s) exp (-iws) + exp (iwr)Hv(f) 

-H~( -f) + exp (iwr)Hv(f) 

where the Fourier transform of "(*(s) is r*(-f). The work of equations 
(59) and (60) goes through much as before with -H~( -f) in place of 
Hu(f). The result is 

(J*(u, o)J(v, r)av = exp [a*(u) + a(v) + 2c(u, v, r)] (63) 

where 

c(u, v, r) = ~ i: df W 1'(f)H~(f)HvCf) exp (i27rfr). (64) 

All of the averages needed are given in Tables I and II. Items 1, 3, 
and 6 in Table I have just been computed, and the others may be ob-
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TABLE I-ENSEMBLE AVERAGES OF PRODUCTS OF J(V, r)'s 

Average 1(1) Value 

(J(U,O)av Hu(f) exp[a(u)] 
(J(v, T)av exp( iWT ) H v(f) exp[a(v)] 

(J(u, o)J(v, T)av Hu(f) + exp(iwT)Hv(f) exp[a(u) + a(v) + 2c(u, v, T)] 
(J(u, o)J(v, T)J(W, T)av HuCf) + exp(iwT)[Hv(f) + Hw(f)] exp[a(u) + a(v) + a(w) + 2c(u, v, T) 

(J*( u, 0) )av -Hu*( -f) 
+ 2c(u, w, T) + 2c(w, v, 0)] 

exp[a*(u)] 
(J*(u, o)J(v, T)av -Hu*( -f) + exp(iwT)Hv(f) exp[a*(u) + a(v) + 2c(u, v, T)] 

(J*(u, o)J(v, T)J(W, T»av -Hu*( -f) + exp(iwT)[Hv(f) + Hw(f)] exp[a*(u) + a(v) + a(w) + 2c(u, v, T) 
+ 2c(u, w, T) + 2c(w, v, 0)] 

---------

TABLE II-ENSEMBLE AVERAGES OF PRODUCTS CONTAINING cp(t - u) 

Average 1(1) Value 

(q;(t - u)q;(t + T - v) )av f -<X)oo dfWtp(f) exp[iw(T - v + u)] 
(q;(t - u)J(v, T»av X exp( -iwu) + exp(iwT)Hv(f) if-<X)oo dfWtp(f) exp[iw(T + u)]Hv(f) exp[a(v)] 

(q;(t - u)J(v, T)J(W, T»av X exp( -iwu) + exp(iwT)[Hv(f) + Hw(f)] if-<X)oo dfWtp(f) exp[iw(T + u)][HvCf) + Hw(f)] 
exp[a(v) + a(w) + 2c(w, v, 0)] 
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tained in a similar manner. The entries in the last column of Table I 
may be verified by expressing the a's and c's as ensemble averages 
[see equation (67)] and using (exp [iLcp(t)])av = exp {_2-1([Lcp(t)]2)av}. 

Table II gives averages of products in which one factor is cp(t - u). 
The first average, (cp(t - u)cp(t + r - v) )av , is the Fourier transform of 
W~(f). The second average, (cp(t - u)J(v, r)av, is the coefficient of ix 
in the expansion of exp ([iLcp(t)]) where 

Lcp(t) = xcp(t - u) + cp(t + r - v) - <I>(t + r) 
l(f) = x exp (-iwu) + exp (iwr)Hv(f). 

The third average may be computed in a similar way. 
The following list brings together the integrals a(v), c(u, v, r), 

which appear in Tables I and II: 

1100 

a(u) = -2 -00 df W ~(f)Hu(f)Hu( -f) 

1100 

c(u, v, r) = -2 -00 df W ~(f)Hu( -f)Hv(f) exp (i27rfr) 

a*(u) = -~ i: df W ~(f)H~(f)H~( - f) 

c(u, v, r) = ~ i: df W ~(f)H~(f)Hv(f) exp (i27rfr) 

(65) 

(66) 

where Hu(f) = exp (-i27rfu) - ref), and replacing Hu(f) by -H~( -f) 
in a(u), c(u, v, r) gives a*(u), c(u, v, r). Also 

a(u) = c(u, u, 0), c(w, v, 0) = c(v, w, 0), 

c(u, v, - r) = c(v, U, r), c(u, v, -r) = c*(v, u, r), 
(67) 

c(u, v, r) = -!([cp(t - u) - <I>(t)][cp(t + r - v) - <p(t + r)])av 

c(u, v, r) = !([cp(t - u) - <I>*(t)][cp(t + r - v) - <I>(t + r)])av . 

When r( -f) is equal to r*(f), both 'Y(t) and <p(t) are real; and it 
follows that a(u), c(u, v, r), c(u, v, r) are also real. Furthermore, Hu(-f) 
= H~(f) and c(u, v, r) = -c(u, v, r). 

VI. THE POWER SPECTRUM OF J( ( t) 

The dc portion of the complex random process J( (t) defined by the 
integral in equation (11) is the complex constant 
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(K(t))av = (K1)av = i: du 'Y(U)(J(U, 0) - l\v 

= i: du ,,(U) {exp [a(u)] - I}. 
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(68) 

This follows from equation (55) for (K1)av and the expression for 
(J(u, O)av given in Table 1. 

The power spectrum of I( (t) is the Fourier transform of (K~I(2)av. 
The integral for (K~K2)av given by equation (55) and the ensemble 
averages of J*(u, 0), J(v, r), and J*(u, o)J(v, r) given in Table I lead to 

(K~K2)av = (IC)(K~\v + f_: du i: dv,,*(u),,(v) exp [a*(u) + a(v)] 

. {exp [2c(u, v, r)] - I}. (69) 

Integrals of the type appearing in equations (68) and (69) may be 
expressed as infinite series involving the S functions [which depend 
only on ref)] described in Appendix B and the more complicated func
tions Sn described in Appendix C. Only the first few terms need be 
considered when most of the distortion arises from second and third 
order modulation. 

The definition [equation (167)] of the complex constant So and its 
series expansion [ equation (171)] give 

(K(t)av = So - 1 

1100 

= -"2 -00 dp W cp(p)S(p, - p) 

Expanding exp [2c(u, v, r)] in equation (69) in powers of 2c(u, v, r), 
replacing each c(u, v, r) by its defining integral [equation (66)] with P in 
place of j, and integrating with respect to u and v with the help of 

Sn(Pl , ... , Pn) = f_: dv,,(v) exp [a(v)] g H.(Pk) (71) 

leads to 

00 1 100 100 

[ 11. ] (K~K2\V = 1 (K1)av 12 + ~ n! -00 dPl ... -00 dpn n W CP(Pk) 

. exp [i27rr(Pl + ... + Pn)]S'!(Pl , ... , Pn)Sn(Pl , ... , Pn). (72) 
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When this expression for (K~K2)av is put in the integral 

(73) 

for the power spectrum, WK(f) , of K(t) and the Fourier transform of 
unity denoted by o(f), the result is 

W K(f) = 1 (K(t»av 12 o(f) + L: dr exp (-iwr) 

. L: du L: dv -Y*(U)-y(V) exp [a*(u)+a(v)]{ exp [2c(u, v, r)] -I} 

00 1 foo foo 
1 So - 1 12 o(f) + ~n! -00 dPI ... -00 dPn 

. O(t - PI - ... - Pn)[ tr W ~(Pk)J 1 Sn(PI , ... , Pn) 12 
k~1 

1 So - 1 12 oCt) + W ~(t) 1 SI(t) 12 

1 foo + 2 -00 dp W ~(p)W ~(f - p) \ S2(P, t - p) \2 

1 foo foo +"6 -00 dp -00 dO" W~(p)W~(O"}W~(f - P - 0") 

.\ S3(P, 0", t - P - 0") \2 + ... . (74) 

The leading terms in the series for So, S1 , S2' S3 in terms of un
subscripted S's are given by equations at the end of Appendix C. The 
inequality for Sn given in Appendix C may be used to show that the last 
series in equation (74) converges when W~(f) remains finite for all 
values of f and ([cp(t)]2)av is finite. The convergence of similar series which 
will be encountered later will be tacitly assumed. 

VII. "FIRST ORDER" APPROXIMATION FOR POWER SPECTRUM OF (J(t) 

Before taking up the problem of computing W8(f) from (J(t) = Re e(t) 
and 

e(t) = <p(t) - iK(t) + ~ K2(t) + O(cp6), 

which is the same as equation (13), we shall go through a similar, but 
simpler, calculation using the "first order" approximation 

·e(t) = cp(t) - iK{t) + O(cp4). - (75) 
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Neglecting 0(K2) terms in equation (14) for Ode, and in the covariance 
expressions given in Section IV, shows that 

Ode = 1m (K(t»av + O(c/) 

Wo(f) = 2-1 Re [P(f) + Q(t) + P*( -f) + Q*(-f)] + O((/W 10) 

where P(f), Q(f) are the respective Fourier transforms of 

A(T) = (cI>1(2-1cI>2 - iK2) - 2-1K 1K2)av 

B(T) = (cp~(2-1cp2 - iK2) - 2-1K~K2)av 

(76) 

(77) 

Expressions for (K~K2)av have been obtained in the preceding sec
tion. Repeating the work with Kl in place of Kt brings in 'Y(u), a(u), 
c(u, v, T), -HuC-p), and (-rSn(-Pl' ... , -Pn) in place of 'Y*(u), 
a*(u), e(u, v, T), and H;(p), S*(PI , ... , P11). The result is 

(K1K2)av = [(Kl)av]2 + i: du i: dv'Y(u)'Y(v) exp [a(u) + a(v)] 

· {exp [2c(u, v, T)] - 1} 

2 <Xl (-r fCXl f<Xl [n ] 
= [(K1)av] + ~ n! -<Xl dPI ... -CXl dPn IT W 10 (Pk) 

· exp [i271"T(PI + ... + Pn)] 

· Sn( - PI , ... , - Pn)Sn(PI , ... , Pn). (78) 

The remaining portion of A(T) in equation (77) is 

(cI>1(2- 1cI>2 - iK2)\v 

= i: du i: dv 'Y(u)'Y(v)(2-1cp(t - u)cp(t + T - v) - icp(t - u)J(v, T)av 

= i: du i: dv'Y(u)'Y(v) 

. fCXl dt W 1O(f) exp [iW(T + u)]{2- 1 exp [-iwv] + H.(t) exp [a(v)]} 
-CXl (79) 

where W = 271"1 and Table II has been used in going from the first equa
tion to the second. Integration with respect to u brings in r( -1), and 
integration with respect to v brings in both ref) and the function SI(f) 
of Appendix C. 

(cI>1(2-1cI>2 - iK2»av = fCXl dtWIO(f) exp(iwT)r(-t)[2- 1 r(t) + SI(f)]. 
-<Xl ~m 

Replacing CPt , 'Y(u) by cI>t , 'Y*(u) causes r*(t) to appear in place of 
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r( -f) and shows that the remaining portion of B(T)· in equation (77) 
IS 

(cp~(2-1cp2 - iK2»av = 100 

df W ~(f) exp (iWT)r*(f)[2- 1 r(f) + SI(f)]. 
-00 (Sl) 

The function A(T) is the sum of -2- 1(K 1K 2 ), obtained from equation 
(7S), and (SO). Its Fourier transform is 

P(f) = W ~(f)r( -t)[2- 1 r(t) + SI(f)] - 2-1[(K1\v]2 oCt) 

1 100 100 100 

-"2 -00 dT exp (-i27T-jT) -00 du -00 dv')'(u)-y(v) 

. exp [a(u) + a(v)]{ exp [2c(u, v, T)] - I} (S2) 

where the leading term follows immediately from equation (SO) and 
the Fourier integral theorem. 

The function B(T) is the sum of 2- 1 (KtK2 )av, obtained from equa
tion (69), and (Sl). Its Fourier transform is 

Q(t) = W ~(f)r*(f)[2-1r(t) + SI(f)] + 2-1 
\ (K1)av \2 o(f) 

1 100 100 100 

+"2 -00 dT exp (-i27T-jT) -00 du -00 dv,),*(uh(v) 

. exp [a*(u) + a(v)] {exp [2c(u, v, T)] - I}. (S3) 

A first order approximation for Wo(f) may be obtained by combining 
equations (76), (S2) , and (S3). Deleting the terms multiplied by oct) 
and W ~ (f) gives the first order approximation to the power spectrum of 
the nonlinear distortion Onl (t). This approximation is stated by equations 
(38), (39), and (40) in the section describing the results. We now proceed 
to express the first order approximation for W o(!) as the series given by 
equation (90). 

When equation (S2) for P(f) is added to equation (S3) for Q(f) and 
the triple integrals replaced by their series, namely, the Fourier trans
forms of the series appearing in equations (7S) and (72), the result is 

P(f) + Q(t) = W ~(t)[r( -f) + r*(t)] 

. [2-1r(f) + SI(f)] + 2-\1 (K1)av 12 - [(K1\V]2) o(f) 

1 00 1 (00 100 

[ n ] + "2 ?; n! ~ -00 dPl ... -00 dPn o(f - PI - ... - Pn) IT W ~(Pk) 

·Sn(Pl, ... , Pn)[-(-tSn(-Pl' ... , -Pn)+S~(Pl' ... , Pn)]. 

(S4) 
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Changing the signs of f and the variables of integration PI , , Pn, 
and then taking the conjugate complex shows that the series in the 
expression for P*( -f) + Q*( -f) differs from equation (84) only in 
that the Sn factors are replaced by 

S~(-PI' ... , -Pn)[-(-fS';:(PI , ... ,Pn) + Sn(-PI, ... , -Pn)]. 

(85) 

Taking (- t- I out of the square brackets in equation (85) and then 
adding the series term in P (f) + Q (f) to the series term in p* ( - f) + 
Q* ( - f) gives 

1 00 1 100 100 

[ n ] 2 ~ n! -00 dpl ... -00 dPn o(f - PI - ... - Pn) IT W CP(Pk) 

. 1 Sn(PI , ... , Pn) - (- f S~( - PI , ... , - Pn) 12 (86) 

for the series term in P(f) + Q(f) + P*( -f) + Q*( -f)· 
The term for n = 1 in the series of equation (86) is 

From the first line in equation (84), the sum of the other terms in 
P(f) + Q(f) + P*( -f) + Q*( -f) containing the factor W cp (f) is 

wcp(f)[r( -f) + r*(f)] 

·[2- l r(f) + 2-1 r*(-f) + SI(f) + StC-f)]. (88) 

The real part of the sum of equations (87) and (88) may be written as 

These results and equation (76) for Wo(f) lead to 

00 1 100 100 

[ n ] + 4-
1 ~ n! -00 dPI ... -00 dPn oCt - PI - ... - Pn) 11 W cp(Pk) 

·1 Sn(PI , ... , Pn) - (-fS';:(- PI , ... , - Pn) 12 + O(c/W cp). (90) 

The remainder in equation (90) for Wo(f) is o (c/W cp) while the one 
in the main result, that is, equation (15), is o (c/W cp). The result of 
neglecting all o (c/W cp) terms in equation (90) agrees with the result 
obtained by neglecting the o (,/W cp) terms in the main result. This may 
be verified with the help of 
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1100 

Slf) = -2" -co dp W rp(p)S(p, - p, f) + O(q/) 
(91) 

S2(P, v) = S(p, v) + O(c/) 

which follow from the equations at the end of Appendix C. 

VIII. "SECOND ORDER" APPROXIMATION FOR THE POWER SPECTRUM OF O(t) 

In Section VII the "first order" approximation to Wo (f) is com
puted using the approximation 

e(t) = <p(t) - iK(t) + O(c/) (92) 

for the complex phase angle e(t). In this section the "second order" 
approximation to Wo(f) will be computed using the approximation 
given by equation (13), 

e(t) = <p(t) - iK(t) + ~ K\t) + O(c/). (93) 

The equations needed are given in Section IV. Portions of the ensemble 
averages A(T), B(T) defined by equation (49) have already been obtained 
in Sections VI and VII. The remaining portions needed are 

(94) 

for A(T) and 

(95) 

for B(T). 
From Table II, 

(i2-
1

<I> l K;)av = i2- 1 i: du i: dv I: dw'Y(u)-y(v)'Y(W) 

·(cp(t - u)[J(v, T)J(W, T) - J(v, T) - J(w, T) + l])av 

= _2-
1 i: du i: dv I: dw'Y(u)'Y(V)'Y(W) 

. i: df W rpCf) exp [iW(T + u)][2HvCf)J[VWz - V], 

W = 27rf. (96) 

In going from the first to the second equation, symmetry in v and w 
has been used to replace H v (f) + H w (f) by 2H v (f) and we have introduced 
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part of the notation 

U = exp [a(u)], v = exp [a(v)] , W = exp [a(w)] 

x = exp [2c(u, v, r)], y = exp [2c(u, w, r)], z = exp [2c(w, v, 0)] 

x = exp [2c(u, v, r)], Y = exp [2c(u, w, r)], U* = exp [a*(u)]. 

(97) 

As in equation (80), integration with respect to u brings in r( -t), 
and integration with respect to v and w brings in the functions SlO(t;), 
S] Ct) of Appendix C: 

(i2- l
<I> l K;)av = - L: dt exp (iwr)WI'(f)r(-t)[SlOCt;) - Sl(f)]. (98) 

The corresponding portion of B(r), (i2-l<P1K;)av, is equal to the 
expressions obtained when ')'(u) and r( -t) are replaced by ,),*(u) 
and r*Ct) in the rjght sides of equations (96) and (98). 

The last portion of A (r) is 

(2- 1K 1K;)av = 2-1 L: du i: dv L: dw')'(uh(v)')'(w) 

·([J(u, 0) - 1][J(v, r) - 1][J(w, r) - l])av 

= C1 + D1(r) (99) 

where C 1 is independent of r and represents the value of equation (99) 
at r = 00. With the help of Table I and the notation defined in equation 
(97), the ensemble average in the integrand may be written as 

UVWxyz - UVx - UWy - VWz + U + V + W - 1. (100) 

The only variables in this expression which contain r are x and y. When 
r ~ 00, c(u, v, r) tends to 0 and x and y tend to 1. Therefore the portion 
of equation (100) which contributes to C 1 is 

UVWz - UV - UW - VWz + U + V + W - 1 

and the portion contributing to D 1(r) is the remainder 

UVWz(xy - 1) - UV(x - 1) - UW(y - 1). (101) 

The portion contributing to C1 will be ignored since the Fourier trans
form of C1 , namely C1 oCt), is part of O~e oCt), and Ode will be treated by 
itself. 

When xy - 1 is written as (x - 1)(y - 1) + (x - 1) + (y - 1) 
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equation (101) becomes 

UVWz(x - 1)(y - 1) + UV(Wz - 1)(x - 1) + UW(Vz - 1)(y - 1). 

The symmetry in v and wallows the last summand to be replaced by 
the second and hence 

DI(T) = f_: du i: dv i: dw')'(u)')'(v}y(w) 

. [2- 1 UVWz(x - 1)(y - 1) + UV(Wz - 1)(x - 1)]. (102) 

Expanding (x - 1), (y - 1) in powers of c(u, v, T), c(u, w, T), respec
tively, and integrating termwise in much the same way as in the passage 
from equation (69) to equation (72) leads to 

00 ( t 100 100 

[ n ] DI(T) = ~ :, -00 dpi ... -00 dpn g TV I'(Pk) . 

· exp [i27rT(PI + ... + Pn)] 

· Sn( - PI , ... , - Pn)[Sno(PI , ... , Pn;) - Sn(PI , ... , Pn)] 

· exp [i27rT(PI + ... + Pn + 0"1 + '" + O"m)] 

(103) 

When the last portion of B(T) is written as 

< -2- I K;K;)av = C2 + D2(T) (104) 

the work goes through much as for CI + DI(T). The functions ')'*(u), 
J*(u, 0), U*, X, and y replace ')'(u) , J(u, 0), U, x, and y, respectively. 
The functions HuC -Pk), and Hu(-O"t) in c(u, v, T), c(u, w, T) are replaced 
by - H~ (Pk), and - H~ (0" t). This carries x, y into X, y and causes Sn (PI , 
. . . , - Pn) to be replaced by ( - ) n S; (PI , ... , Pn). A similar replacement 
holds for Sn+m . 

The resulting expression for D2(T) is obtained by changing the sign 
(because -K";. replaces K I) of the expression (103) for DI(T), and then 
replacing Sn(-PI' ... -Pn) and Sn+m(-PI' ... , -O"m) by (-rS~(pI' 
... , Pn) and (- r+mS;+m(PI' ... , O"m), respectively. 
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Now that expressions for the portions (94) and (95) of A(T) and B(T) 
have been obtained (in effect), there remain two problems: 

(i) taking their Fourier transforms to get their contributions to P(t) 
and Q(/), and 

(ii) adding these to the first order approximation for lVe(f) given by 
equation (90). 

The Fourier transform of (i2- 1 CP1K;)av follows from equation (9S) 
and the Fourier integral theorem. The Fourier transform of (i2-1CPiKDav 
may be obtained in much the same way and consequently the contribu
tion of these terms to P (I) + Q (I) is 

i: dT exp (-iWT)[(i2-1cpJ{Dav + (i2-1cpiK;)av] 

= -WI'(/)[r(-f) + r*(f)][Slo(/;) - Sl(f)]. (105) 

Consequently their contribution to the right side of 

Wo(/) = 2-1 Re [P(/) + Q(f) +P*(-/) + Q*(-/)] + O(cpulVI') (106) 

[from equation (50)] is 

2-1WI'(f) Re [r(-IJ + r*(f)][SI(f) - SlO(f;) + SiC-f) Sio( - f;)]· 

(107) 

The Fourier transform of the portion D1(T) of (2-1K 1KDav is obtained 
by replacing exp [i211"T(PI + ... + Pn)] and exp [i211"T(Pl + ... + um)] 
in equation (103) for D1(T) by o(f - PI - ... - Pn) and o(f - PI -

. .. - um), respectively. The Fourier transform of D2(T), from 
(-2-1K1KDav, can be obtained similarly. The sum of these two Fourier 
transforms gives the contribution of D1(T) + D 2 (T) to P(f) + Q(f). 
Changing the signs of I and the variables of integration PI, ... , U m , 

and then taking the conjugate complex, gives the contribution of 
D1(T) + D 2 (T) to P*( -I) + Q*( -I). When the two contributions are 
added, it is found that the contribution of D1(T) + D 2 (T) to P(f) + 
Q(/) + P*( -I) + Q*( -I) is 

. 0(1 - PI - ... - Pn)[S~(Pl , ... ) - (- rSn( - PI , ... )] 

. [Sn(PI , ... ) - (-r S~( - PI , ... ) 

- Sno(Pl , ... ) + (- t Sn~( - PI , ... )] 
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1 eo eo 1 leo leo - - L L-,-, dPI'" dUm 
2 n=1 m=1 n. m. -eo -eo 

.[[1; W.Cp,l][g W.Cu,l] W - PI - - uml 

, [S;+m(Pl ' ... ) - (-t+mSn+m(-PI , ... )J 

. [Snm(PI , ... ) - (- t+m S;m( - PI , ... )J (108) 

where the complete arguments of the S functions are shown in equation 
(103). 

The desired expression corresponding to equation (106) for Wo(/) 
is obtained by adding the significant terms in the first order approxi
mation of equation (90) for Wo(f) to the second order terms given by 
equations (107) and (108). The remainder term, o (c/W q», in equation 
(90) can be ignored because the significant terms are obtained from 
<p(t) - iK(t) without approximation [compare equations (92) and (93) 
for Set)]. The result is 

Wo(/) = e~c o(f) + 4- 1W ~(f) I ref) + SI(f) + r*( -f) + S~( -f) 12 

eo 1 leo leo [ n ] + 4-
1 ~ n! -eo dPl ... -eo dPn o(f - PI - ... - Pn) IT W ~(Pk) 

. I Sn(PI , ... , Pn) - (- t S~( - PI ... - Pn) 12 

+ expression (107) + 2- 1 Re[expression (108)J + O(c/W~). (109) 

The next section is concerned with the elimination of all o (c/W q» 

terms from the significant portion of equation (109). When these terms 
are eliminated, the result is the "main result" stated in equation (15). 

IX. ELIMINATION OF HIGHER ORDER MODULATION TERMS FROM W 8 (f) 

In this section all terms of o (c/W q» in equation (109) for Wo(f) 
will be discarded, that is modulation terms of order higher than three 
will be discarded. Since the integral of W q>(f) is o (c/) , all terms in 
equation (109) containing the product of four or more W ~'s may be 
dropped immediately. 

First consider the terms which explicitly contain the product of three 
W cp's. This corresponds to n = 3 in the single series in expressions (108) 
and (109), and to the pairs of values n = 1, m = 2; n = 2, n = 1 in 
the double series. The contribution of the double series can be dis
carded because it is O(J J W!cp2) = 0(cp6W~), the functions S21 and 
S12 being 0(cp2) [from S(t) = 0, SI (I) = 0(cp2) and Appendix C]. The 
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n = 3 term in expression (108) can also be discarded because, from 
Appendix C, S3 - S30 is 0«/). Using S3 - S = O(q}) in the n = 3 
term in equation (109) shows that the contribution to Wo(f) of the 
terms which explicitly contain the product of three W /s is 

1 100 100 

24 -00 dp -00 dO" W~(p)W~(O")W~(v) 

·1 S(p, 0", v) + S*( - p, -0", -v) 12 + O(~6W~) (110) 

where v = f - P - 0". 

N ext consider terms which explicitly contain the product of two 
W ~'s, namely the terms n = 2 in the single series and n = m = 1 in 
the double series. When we put PI = p, P2 = f - P = v in the single 
series terms, and PI = p, 0"1 = f - P = v in the double series term, all 
of the integrands contain the factor 

f3* = [S~(p, v) - S2(-P, -v)] 

and the contribution of their sum to We(f) can be written as 

1100 

8" -00 dp W ~(p) W ~(v) Re [f3*(f3 + 21')] 

where f3 is 0(1), and I' is not the earlier 'Y(u). Here 

I' = S2(P, v) - S20(P, v;) - Sl1 (p; v) - S~( - p, - v) 

+ Sto( -p, -v;) + S11( -P; -v) 

is O(~2) since both S2 - S20 and Sl1 are O(~2). Furthermore, 

Re [f3*(f3 + 21')] = 1 f3 + I' 12 - 1'1'* = 1 f3 + I' 12 + 0(~4), 
f3 + I' = T(p, v) - T*( - p, -v), (111) 

T(p, v) = 2S2(p, v) - S20(P, v;) - Sl1(P, v). 

The equations at the end of Appendix C may be used to show that 
T(p, v) is equal to T(p, v) + 0(~4) where 

T(p, v) = S(p, v) + i: dO" W ~(O")[ -!S(O", - 0", p, v) 

+ !S(O", -O")S(p, v) + S(O", p)S( -0",' v)] (112) 

and consequently the contribution to We(f) of the terms which explicitly 
contain the product of two W /s.is· .-
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where v = f - p. 

Now consider the terms in Wo(f) which are multiplied by W",(f). From 
equations (109), (107), and the term for n = 1 in the single series in 
equation (108), the sum of these terms is W", (f) multiplied by 

4-1 1 r(f) + SI(f) + r*( -f) + S~( -f) 12 

+ 2-1 Re [r( -f) + r*(f)J[SI(f) - Slo(f;) + S~( -f) - Sro( -f;)J 

+ 2-1 Re [S~(f) + SI( -f)J[SI(f) - Slo(f;) + S~( -f) - Sro( -f;)J 

= 4- 1 1 a + (3 12 + 2-1 Re (a* + (3*)C'Y) 

= 4- 1 [(a + (3)(a* + (3*) + (a* + (3*)"1 + (a + (3)'Y* + "1"1* - "1"1*] 

= 4- 1 1 a + (3 + "I 12 - 4- 1"1"1* 

= 4- 1 1 O(f) + 0*(- f) 12 - 4- 1"1"1*. 

Here, with (3 and "I different from those in equation (111), 

a = ref) + r*( -f) = 0(1) 

(3 = SI(1) + S~( -f) = O(q}) 

"I = SI(f) - SlO(f;) + S~( -f) - Sro( -f;) = 0(,/) 

O(f) = r(f) + 2S1(f) - SlO(f;)· 

(114) 

(115) 

The equations at the end of Appendix C may be used to show that 
o (f) is equal to U (f) + 0 ('/) where 

1100 100 100 

U(f) = ref) -"2 -00 dp W",(p)S(p, - p, f) + -00 dp -00 d(7 W ",(p) W ",«(7) 

. [lS(p, (7, - p, -(7, f) - lS(p, - p, 1)S«(7, -(7) 

- !S(p, f)S«(7, -(7, - p) - !S(p, (7, f)S( - p, -(7)]. (116) 

Since "1"1* is 0(,/), the terms in We(f) which are multiplied by W",(f) 
can be written as 

(117) 

Finally consider the dc spike, O~c o(f), in Wo(f). From equation (14), 
the dc component of OCt) is 

Odc = 1m (K(t) - 2-1K 2 (t»av + 0«(/). (118) 
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The value of (K(t) )av is given by equation (70) and from equation (78) 
with T = 0, 

1 100 100 

+ 2 -00 dp -00 du VV ",(p) JV ",(U)S2( - p, - U)S2(P, u) + 0((/'). 

Since Sl(P) is 0((/), the single integral is 0((/) and may be included in 
the remainder term. Squaring the leading term in equation (70) to get 
(K(t»2, combining terms, and using S2(P, u) = S(p, u) + 0((/) 
leads to 

1 100 100 100 

D = -2 -00 dp W",(p)S(p, - p) + -00 dp -00 du JV ",(p) JV",(u) 

. [tS(p, u, -p, -u) - is(p, -p)S(u, -u) -lS(p, u)S(-p, -u)] 

+ 0((/). (119) 

The imaginary part of Dc gives Ode' 

Addition of equations (110), (113), and (117) shows that 

woCt) = O~c oCt) + W",(i) 1 uCt) + U*( -i) 12 

11
00 

+ 8 -00 dp W ",(p) W ",Ct - p) 1 T(p, i - p) - T*( - p, - f + p) 12 

1 100 100 

+ 24 -00 dp -00 du W ",(p)W ",(u)W ",(v) 

·1 S(p, u, v) + S*( - p, -u, -v) 12 + o (cp6 JV 1') (120) 

where v = f - p -CT. This is the same as equation (15) in the state
ment of results. However, the expressions for Dc, T(p, f - p), and U(f) 
given in Section III are simpler than the ones given in this section. The 
method of obtaining the simpler expressions will be outlined in Sec
tion X. 

X. SIMPLIFIED EXPRESSIONS FOR Ode, U (f) , AND T (p, v) 

The expressions obtained for Ode, U (f), and T (p, v) in Section IX 
may be put in forms better suited to calculation by writing the higher 
order S functions in terms of S functions of two arguments, 

S(p, u) = rep + u) - rep) r(u). (121) 
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These simplified forms are the ones stated in equations (16), (17), and 
(18). 

Since no really satisfactory procedure of reduction was found, the 
expressions given here may not be the simplest. The procedure is il
lustrated for the double integral 

I = L: dp L: dCT W ~(p)W ~(CT) 
·[S(p, -p, CT, -CT) - S(p, -p)S(CT, -CT) - 2S(p, CT)S(-p, -CT)] 

which appears in equation (119) for Ode = 1m Dc. 
After some cancellation, the general equation (159) for S(p, CT, v, J.L) 

shown in Appendix B,gives 

S (p, - p, u, - u) = 1 - (p) ( - p) - (u) ( - u) + (p + u)( - p) ( - u) 

+ (p - u)( - p) (u) + (- p + u)(p) ( - u) 

+ (-p - u)(p) (u) - 3 (p)( - p) (u ) ( - u) . 

Here rex) has been written as (x) and (0) = reo) = 1 has been used. 
When this expression is multiplied by W~(p)W~(u) and integrated 
with respect to p and u, changes in the variables of integration show that 
the value of I is unchanged by the substitution 

S(p, -p, u, -u) ---7 1 - 2(p) ( -p) + 4(p + u)( -p)( -u) 

- 3(p)( -p)(u)(-u). 

Here the arrow means "may be replaced in the double integral by". 
Similarly, 

- S(p, - p)S(u, -u) = - [1 - (p)( - p)][1 - (u)( - u)] 

---7 -1 + 2(p)(-p) - (p)(-p)(u)(-u) 

-2S(p, u)S( - p, -u) = -2[(p + u) - (p) (u)] [( - p - u) - (- p)( -u)] 

---7 -2(p + u)(-p - u) + 4(p + u)(-p)(-u) - 2(p)(-p)(u)(-u). 

Addition shows that the quantity within the square brackets in the 
integrand of I may be replaced by 

8(p + u)( - p)(-u) - 2(p + u)( - p - u) - 6(p)( - p)(u) ( -u) 

= 6(- p)( -u)[(p + u) - (p)(u)] - 2(p + u)[( - p - u) - (- p)( -u)] 

= 6(-p)(-u)S(p, u) - 2(p + u)S(-p, -u) 
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= 6[(- p - 0-) - (- p - 0-) + (- p)(-0-)]8(p, 0-) - 2(p + 0-)8(- p, -0-) 

= 6(-p - 0-)8(p, 0") - 68(-p, -0")8(p, 0") - 2(p + O")S(-p, -0") 

~ 4(p + o-)S(-p, -0-) - 68(-p, -0")8(p, 0-). 
Hence 

I = i: dp i: do- W ~(p)W ~(o-)S( - p, -0-)[4I'(p + 0-) - 6S(p, 0-)] 

which is the form of I used in equation (16) for D (except that p and 
(T are interchanged) . 

The simplification of equations (112) and (116) for T(p, v) and 
U (f), respectively, proceeds along the same lines. In dealing with 
U (f) , the symbolic substitution 

S(p,O", -p, -0", f) ~ [1 + (p)(-p) - 2yP(-p)] 

. [1 + (0-)(-0-) - 2yCT( - O")][yf - (f)] 
was found helpful. 

In addition to the simplified forms for T(p, v) and U(f) given in 
equations (17) and (18), we also have 

S(p, 0-, v) = S(p + 0", v) - I'(p)S(o-, v) - I'(O")S(p, v). (122) 

XI. THE "SMALL AND SLOW" DEVIATION APPROXIMATION TO We(f) 

This section and the following one are concerned with approxima
tions to We (f) which are obtained by replacing the 1"s used in equa
tions (15) to (20) by the first few terms in their power series expan
sions. These expansions are assumed to exist and to converge rapidly 
over the range of frequencies for which W rp (f) is effectively different 
from zero. Roughly speaking, the top baseband frequency is assumed 
to be small compared with the filter bandwidth. 

When the top baseband frequency is small, the modulating fre
quency, cp'(t) , changes slowly and we have the quasistatic case. The 
name "small and slow deviation approximation" is used because (15) 
holds only for "small" rms frequency deviations (D small), and here 
the requirement of "slowness" is added. 

Two series which play important roles are 

aO = 1 (123) 
n=O 

CD 

In ref) = L: Anf/n!, (124) 
n=Q 
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The first one is the series assumed for I' (f). Substituting (123) in 
(124), expanding the logarithm, and equating coefficients of powers 
of f leads to expressions for the A'S in terms of the a'S: 

~1 = ai, 

~2 = a2 - ai , 
~3 = a3 - 3a2a1 + 2a~ , (125) 

~4 = a4 - 4a3a1 - 3a; + 12a2ai - 6a~ , 

~5 = a5 - 5a4al - 10a3a2 + 20a3a~ + 30a;a1 - 60a2a~ + 24a~ • 

and so on. 'Vhen the an's are the moments of a probability distribu
tion, the An's are the associated "cumulants" or semi-invariants. In 
our problem the an's are proportional to the moments of the normal
ized response y (t), a relation which follows when the series (123) for 
I' (f) is compared with the one obtained by expanding exp (-i27rft) in 
the Fourier integral (4) for I' (f) . 

The small and slow deviation approximation obtained from (15) 
and the first few terms of (123) is 

We(f) ~ e~c o(f) 

+ W l"(f)[l + r I (~li + 2- 1 D2~3i + 8- 1 D4~5i)2 + (a2r + 2-1 D2 Ar) } ] 

+ 2-1(~2i + 2- 1 D2~4i)2 (00 dp TV I"(p) W <p(f _ p) p2(f _ p)2 
":_C() 

+ 6-1(~3i)21OO dp 1
00 

du W I"(P} W l"(u)W I"(f - p - U)p2u2(f _ P _ U)2 
-00 -00 (126) 

Here the ani'S, Ani's are the imaginary parts of the coefficients in the 
series (123), (124), D2 = ([<p'(t)/(2rr))2), D is the rms frequency 
deviation in Hz, and £Y2r, Ar denote the real parts of 0:2, A where 

The detailed derivation of equation (126) from equation (15) for 
We(f) makes use of equation (162) which gives S(XI , X2, ... xn) for 
small values of the x's. The leading term in equation (162) gives 

S(p, u) ~ PU~2 

S(p, U, v) ~ pUV~:l 

-S(u, -u, p, v) + S(u, -u)S(p, v) + 2S(u, p)S( -u, v) ~ U2pV~4 

(127) 
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where the left side of the last equation is proportional to the integrand 
in equation (112) for T(p, v). There is a similar equation which shows 
that the integrand in the double integral in equation (116) for U(f) 
tends to a quantity proportional to p2(J'2fA5' To deal with the single 
integral in U(f) we use both terms in equation (162) to obtain 

S(p, -P, f) -7 -p2fA3 - 2- 1/tA. (128) 

Combining equations (127), (128), and the first three terms in the 
series for ref) gives 

S(p, (J', v) -7 P(J'VA3 

T(p, v) -7 PV(A2 + 2-
1 D2A4) 

uCt) -71 + (al + 2-lD2A3 + 8- lD 4 A5)f + (2-la2 + 4- lD2A)t. 

Substitution in the small deviation approximation (15) for weCt) then 
gives the small and slow deviation approximation shown in equation 
(126). 

A form of the small and slow approximation which is more complete 
than (126) may be obtained by starting with the quasistatic form of 
equation (7) for e(t) instead of from the small deviation approximation 
(15) for We(t). In the quasistatic case the instantaneous frequency 
Q = Wo + cp' (t) changes slowly and hence rms cp" (t) is small. This leads 
us to replace cp(t - u) in (7) by the equivalent expression cp(t) - ucp' (t) + 
2-lU2cp"(~) where ~ lies between t - u and t. Let F denote the filter 
bandwidth and suppose that the impulse response ')'(u) is effectively 0 
outside an interval of length 1/ F. Then, heuristically, the integral in (7) 
is given by 

i: ')'(u) exp [icp(t - u)] du = [1 + 0(2- 1 F- 2 rms cp")] 

. i: ')'(u) exp [icp(t) - iucp'(t)] duo 

The integral on the right is the desired quasistatic approximation. It is 
almost equal to the integral on the left when 2- l F- 2 rms cp" « 1. How
ever, for small rms frequency deviations, the contribution of ucp'(t) may 
be less than the term 2- 1 F- 2 rms cp" even though 

(i) the latter may be « 1, and 
(ii) despite the fact that when cp(t) is band-limited with top frequency 

B we always have rms cp" ~ (2 'If B) rms cp'. Therefore, in order to make 
the quasistatic approximation meaningful for small (as well as large) 
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deviations, we impose the additional restriction 2-1 F-2 rms cp" I (F- 1 rms 
cpl) « 1. Then, if 

rms cp" I (2F2) « 1, rms cp" I (2F rms cp') « 1 

the Fourier transform (4) gives the quasistatic approximations 

i: ,,(u) exp [icp(t - u)] du ~ r[cp'(t)1(27r)] exp [icp(t)] 

e(t) ~ cp(t) - i In r[cp'(t)1(27r)] 
(129) 

which are equivalent to the usual quasistatic approximation for the 
filter output, namely 

So(t) ~ G(Q) exp [iwot + icp(t)]. (130) 

D. T. Hess13 has given a rigorous bound, roughly equivalent to rms 
cp" 1(2F2) « 1, for the error in (130). 

For the flat FM baseband case discussed in Section 3.3 the above 
restrictions go into 

10 DBIF2 « 1, 2BIF« 1 

where D is the rms frequency deviation in Hz and B is the top baseband 
frequency in Hz. Notice that although the term "quasistatic" implies 
that rms cp" tends to 0 in some sense or other, the requirements that the 
quasistatic approximations (129) and (130) hold differ from the require
ment that the deviation ratio be large, a condition used in calculating 
the quasistatic approximation to the power spectrum of cos [wot + cp(t)]14 
Thus, for the flat baseband case, the deviation ratio can be taken to be 
DIB, and this does not have to be large for (129) and (130) to hold. 

To continue with the derivation of the more complete form of (126), 
we substitute the series (124) for In r(f) in (129) and take the rea1 part. 
This gives 

O(t) ~ cp(t) + B(t) 
00 

B(t) = L: Ani[CP'(t)/(27r)fln!. 
n=l 

Since B(t) depends only on cp'(t), the power spectrum of cp(t) + B(t) is 
W f' (1) + W B (1) (Ref. 15). The covariance of B (t) is 

00 00 

(B 1B 2 ) = L: L: AniAmi(cp~ncp~m)(27rrn-m I(n! m!) (131) 
n=1 m=l 

where subscripts 1 and 2 denote arguments t and t + T, respectively. 
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From the characteristic function of the joint gaussian distribution 
function of cpi , cp~ we have 

CPI CP2 = (27ri)-2 ~ ...-!!. exp - '1'0 U V - 'I' ( ,n 1m) 1<0+) d 1<0+) d [.f, ( 2 + 2)2- 1 .f'TUV] 

nl ml U V in+mulIvm 

C'l [1 + (-t-kJ[l + (_)m-kJ (21fT)k(1fo)<n+m)/2 
t; kl 4r[(n - k)2- I + IJr[(m - k)2- 1 + IJ 1fo 2 

(132) 

where 1fT = (cpicp~), 1f0 = (27rD)2, and we have used, for integer l, 

(2 ')-1 1<0+) -1-1 [_ .f, 2/2J d = (it + i- l
)(1fo/2)lI2. 

7r~ U exp 'l'ou U 2r(2 I.e + 1) 

Actually, instead of co the upper limit of summation for k in (132) is the 
smaller of n, m. Also the sum is 0 unless n, m are both even or both odd. 
When n is even, k runs over even integers; and when n is odd, k runs over 
odd integers. When (132) is substituted in (131), the Fourier transform 
of the resulting series for (B1B2) gives a series for W B(f) which leads to 
the more complete form of (126) we have been seeking, namely 

T1'o(f) ~ W ~(f) + t ~ [t A2n+k'iD2n]2 
k=O k! n=O n! 2

n 

The integral in (133) can be expressed as a (k - I)-fold convolution 
of the power spectrum W ~I(f) = (27rf)2W",(t) of cp'(t). This gives the 
first few terms of (126), except for the term (a2r + 2-1D2A r ) W ~(f) 
which arises from terms neglected by (133). 

Equation (133) is useful only when D is small because the summation 
with respect to n usually diverges. To illustrate this, consider the single 
pole filter for which ref) is (1 + ift;l)-l and An is (n - 1)!( _ij;lt. 
Equation (133), with k replaced by 2k + 1, gives 

C'l 1 [ ctJ (-t(2n + 2k)! D2n]2 
T1'o(f) ~ W ~(f) + t; (2k + I)! ~ n! 2nf~n+2k+l 

(2 )_U_2jC'l .f,2k+l ('2 f ) d . 7r . 'l'r exp - ~ 7r T T. 
-00 

(134) 

The quasistatic approximation for Wo(f) obtained by starting with 
(130) is (see Ref. 13) . 
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co r (2 D) -4k-2 fco 
Wo(f) ~ W I"(f) + ~ 2(2k7r + I)! -co t/;;k+l exp (-i27r/r) dr, 

10k = t x" exp [ -:; - ~ t, ] dx. 

This series, which converges for all D, is of the same form as (134) in 
that it has 12dD2k+l in place of the divergent sum with respect to n. 
When D becomes small, the two expressions for Wo(f) approach equality 
in the sense that the sum with respect to n is the asymptotic expansion 
of 12k/D2k+l. 

XII. LIOU'S APPROXIMATION FOR SECOND AND THIRD 

ORDER INTERCHANNEL MODULATION 

It is instructive to relate our main result, equation (15) for Wo (f) , 
to an approximation for the interchannel modulation given by Liou.5 

Liou's approximation is equivalent to taking additional terms in the 
small frequency deviation approximation given in Section XI. 

The interchannel modulation is represented by the portions of 
Wo(f) in equation (15) which contains T(p, f - p) and S(p, (J', f - P 

-, (T). Liou's approximation may be obtained by (i) approximating 
T (p, f - p) by the leading term, namely S (p, f - p), in equation (17) 
and (ii) expanding S(p, f - p), S(p, ,(]', f - p -(]') in powers of 
p, ,(]', and f out to and including degree 4. This leads to 

T(p, f - p) ~ S(p, f - p) = ref) - r(p)r(f - p) 

= pet - p)[X2 + /t2 + /2t3 + pet - p)t4] + Ocr) 

S(p, u, t - p - u) = pu(1 - p - U)[X3 + It1] + Ocr) (135) 

where 
co 

ref) = L anf/n!, ao = 1 
n=O 

t1 = (a4 - 2a3al - a; + 2a2a~) /2 

f2 = (a3 - a2( 1)/2 

f3 = (a4 - a3( 1)/6 

f4 = 4-1(a4 -- a;) - 3-1(a4 - a3(1). 

(136) 

Equation (162) of Appendix B gives the approximation for S(p"rr, 
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f - p - 0") shown in equation (135). It does not give the higher order 
terms in S (p, f - p) shown in equation (135). These must be cal
culated from the series for r (f). Although the t's and A's used here 
are not precisely the same as those used by Liou, they are of the 
same general character. 

'Vhen the expressions [equation (135)] for T(p, f - p) and S(p, (J, 

f - P - 0") are used in equation (15) for Wo(f) , the second and third 
order interchannel modulation terms are found to be 

~ i: dp W .,(p)W.,(f - p)p2(f - p)2 

. I [A2i + re3i + p(f - P)t4i ]2 + f2t2r } 

+ ~ [Aii + rtir] i: dp i: dO" 

. W .,(p)W .,(O")W .,(1 - p - 0")/0"2(f - p - 0")2 (137) 

where the second subscripts rand i denote "real part" and "imaginary 
part." The basic approximation used by Liou [his Eqs. (29) and (30)] 
may be put in this form by expressing his Fourier transforms as 
convolution integrals and combining terms. 

APPENDIX A 

Power Spectra of Real and Imaginary Parts 
of a Complex Random Process 

Let z (t) be a complex, stationary, ergodic, random process [for ex
ample the complex phase angle e(t)] and let x(t), yet) be its real and 
imaginary parts. We seek convenient expressions for the power spectra 
Wx(t), Wit) of x(t) and yet) when z(t) is the sum of several correlated 
complex random processes, say aCt), bet), e(t), .... For illustration we 
take 

z(t) = aCt) + bet) + e(t) (138) 

which corresponds to equation (13) for e(t) with aCt), bet), and e(t) 
in place of cp(t) , -iK(t), and i2- 1K 2 (t), respectively. 

Denoting functions with arguments t, t + T by subscripts 1, 2 and 
using relations of the type 

(139) 

leads to the following expression for the ensemble average (XIX2)av 
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(X1X2)av = «Zl + Z~)(Z2 + z~)\v/4 

= «ZtZ2 + Z~Z~) + (Z~Z2 + ZtZ~»av/4 (140) 

It is convenient to write (Z l Z2)av as 

(ZlZ2)av = A(T) + A(-T) (141) 

where 

This is suggested when the product ZlZ2 is multiplied out and terms of 
the type al b2 + bJa2 are considered. Thus, if 

(143) 

setting t = t' - T and making use of stationarity leads to 

(bla2)av = (a(t + T)b(t) av= (a(t')b(t' - T)av = f( -T) (144) 

and hence to equation (141). 
Similarly, replacing al' bl , Cl by at , bt , ct leads to writing the 

second ensemble average in equation (140) for (XlX2)av as 

(145) 

where 

B(T) = (!(a~a2 + b~b2 + ctc2) + a~b2 + a~c2 + b~C2)av . (146) 

For terms of the type atb2 + bta2 , the analogues of equation (143) and 
(144) are 

(a~b2)av = (a*(t)b(t + T)av = f(T), 
(147) 

(b~a2)av = (a(t + T)b*(t)av = (a(t')b*(t' - T)av 

= (a*(t')b(t' - T)~v = f*( - T). 

Comparing equation (13) for e(t) with equation (138) for z(t) sug
gests setting aCt) = <I> (t) , bet) = -iK(t), and c(t) = i2- l K 2(t); this 
leads to equation (49) for A(T), B(7) given in Section IV. 

Equation (140) for the auto covariance (XlX2)av of x(t) now takes the 
form 
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and the power spectrum of x(t) is 

w = 27rf. 

This may be written as 

Wx(f) = 2- 1 Re [pet) + Q(t) + P*( -t) + Q*( -f)] (149) 

where 

pet) = i: exp (-iwr)A(r) dr, 

Q(t) = i: exp (-iwr)B(r) dr. 

Equation (149) for Wx(f) may be derived from 

(150) 

2- 1 Re [A(r) + A( - r)] = 4- 1 [A(r) + A *(r) + A( - r) + A *( - r)] 

2- 1 Re [B( r) + B*( - r)] = 4 -1[B( r) + B*( r) + B( - r) + B*( - r)] 

(151) 

and relations of the type 

P*(f) = i: exp (iwr) A *( r) dr = i: exp (-iwr)A *( - r) dr 

P( -f) = i: exp (-iwr)A( - r) dr, 

P*( -f) = i: exp (-iwr)A*(r) dr. 

(152) 

The power spectrum Wy(f) of the imaginary part yet) of z(t) may be 
computed in much the same way, starting with 

(YIY2)av = «(ZI - Z~)(Z2 - Z~)av/(2i)2 

= 2-1 Re [ - (ZIZ2)av + (Z~Z2)av]. 
This differs from equation (140) for (X1X2)av only in the sign of (ZIZ2)av. 
Therefore only the signs of A(r) and P(f) need be changed in the earlier 
work, and we get 

WuCf) = 2-1 Re [-P(f) + Q(f) - P*( -f) + Q*( -f)] (153) 
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APPENDIX B 

The Functions S(p,a), S(p, u, v), ... 

The function 

S(Xl , X2 , ••• ,xn) = i: du 'Y(U)Hu (Xl)HuCX2) •.. HuCxn) (154) 

where 

Hu(x) = exp (-i27l"xu) - rex) (155) 

is a symmetrical function of the x's. It may be expressed as the sum 
of products of r's by replacing the Hu's Ly their definitions, multiply
ing out, and using the fact that r (f) is the Fourier transform of 'Y (t). 
This evaluation of the integral shows that S (Xl, X2, ••• ,xn ) is given 
symbolically by 

n 

S(Xl , X2 , ••• ,xn) = II [yXk - r(Xk)] (156) 
k=l 

where, after multiplying out, the various powers of yare replaced 
by r's according to the rule yZ ~ r (z) . 

For example, 

S(p) = 0, 
(157) 

S(p, 0") = [yP - r(p)][y<T - r(O")] 

= yP+<T _ ypr(O") - r(p)y<T + r(p)r(O") 

= rep + 0") - r(p)r(u) 

S(p, 0", v) = rep + 0" + v) - rep + O")r(v) - rep + v)r(O") 

- r(O" + v)r(p) + 2r(p)r(u)r(v). (158) 

For four variables, writing (x) for r(x), 

S(p, 0", v, p.) = (p + 0" + V + p.) - (p + 0" + v)(p.) - (p + 0" + p.)(v) 

- (p + v + p.)(a) - (0" + p. + v)(p) + (p + O")(v)(p.) 

+ (p + v)(O")(p.) + (p + p.)(O")(v) + (0" + v)(p)(p.) 

+ (0" + p.)(p)(v) + (v + p.)(p)(O") - 3(p) (0") (p.) (v) • (159) 

S (Xl, X2, ••• ,xn ) vanishes when one or more of its arguments are 
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zero because Hu (0) is zero. Of interest is the form taken by S (Xl, 
. . . ,xn ) when the x's are small and r (f) may be expanded as a power 
series in f. Let the power series be 

ao = 1. 

Since 

r(f) = i: ')'(u) exp (U) du, ~ = -i27ru 

it follows that 

an = i: ')'(u)t duo 

When x is small, equation (155) for Hu(x) gives 

Hu(x) = exp (~x) - rex) 

= x[(~ - al) + 2-lX(~2 - a2)] + O(x3). 

Then 

(160) 

(161) 

IT H.(x.) = (x,x, ... x.J[ (~ - a,)" + 2-'(~ - a,)"-'(i!' - a,) t. x,] 
+ O(xn

+
2

) 

and substitution in the integral [equation (154)] defining S(Xl' ... , x,,) 
leads to 

S(Xl , ... ,xn) 

= (x,x, ... x.) ( du "}'(uJ[ t. (~)~'( -a,)"-' 

+ 2-' ~>, ~ (n ~ 1 )(~,., - ~'a,)( -a,)"-HJ + O(x''') 

= (XlX2 ... Xn)[ ~ (~)al( -alr-
l 

+ 2-' t x, ~ (n ~ 1 ) (a,., - «,a,)( -ar'-l ] + O(x·"). (162) 

This is the approximat~?n.neeq.ed ~o examine the f.orITlt~ken-l>y.·.W9(f) 
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when the bandwidth of cp(t) becomes small, as it does in Section XI. 
When ref) is such that I ref) - 1 I < e « 1 for all values of j, it 

may be shown that the symbolic form of equation (156) for S(X1 , •.• ,xn) 

becomes 
n 

S(X1 , ..• , xn) = II (yXk - 1) + O(e2
) (163) 

k=1 

and the r's appear only linearly. Furthermore, S(Xl , , xn) is O(e). 
For example 

S(p, 0") = yP+~ - yP - y~ + 1 + O(i) 

= r (p + 0") - r(p) - r (0") + 1 + 0 (f?) . 

This result is of interest in connection with the first order approximation 
discussed in Appendix D. 

To establish equation (163) let 

so that equation (156) for S becomes 
n 

S(x1 , .•. ,xn) = II (Zk + ek) 
k=1 

n n n 

= II Zk + II ek II' Zl + O(e
2
). 

k=1 k-1 (=1 

Here the factor Zk is omitted from II'. When the product 
m 

Z1Z2 ••• Zm = II (yXk - 1) 
k-1 

(164) 

is multiplied out and the y"'s are replaced by r(u)'s, the result is the 
sum of 2mr's [(1 = reO)]. Half of the r's will have plus signs and the 
other half will have minus signs. Adding + 1 for each - rand -1 for 
each +r shows that the entire sum is O(e). Hence Z1Z2 ••• Zm isO(e), 
and when this is used to show that the II' in equation (164) is O(e), 
the result stated in equation (163) follows. 

APPENDIX C 

The Functions Sn and Snm 

The functions Sn(Xl , X2, ••• , xn) and Snm(X1, .•• ,Xn ; Y1 , ••• , Ym) 

are defined by the integrals, for n ~ 1 and m ~ 1, 
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= 1: dv 1: dw,),(vh(w) exp [a(v) + a(w) + 2c(w, v, 0)] 

. [11 H,(x.) J[ 11 H.(y,) ] 

where Hu(x) , a(u), c(w, v, 0) are given by 

Hu(x) = exp (-i27rxu) - r(x) 

1100 

a(u) = -2" -00 df W ",(f)Hu ( -f)Hu(f) 

1100 

c(w, v, 0) = -2" -00 df W ",(f)H w( -f)Hv(f) = c(v, w, 0) 

[see equation (66)]. For n = 0, So is defined as 

So = i: du ')'(u) exp [a(u)] 

and for the double subscripts, 

133 

(165) 

(166) 

(167) 

= i: dv i: dw,),(vh(w) exp [a(v) + a(w) + 2c(w, v, o)J n Hv(Xk) 

Soo(;) = 100 

dv 100 

dw')'(vh(w) exp [a(v) + a(w) + 2c(w, v, o)J. 
-00 -00 (168) 

The functions Sn and Snm depend upon both W", (f) and r(f) [through 
Hu(f)]. This is in contrast with the function S(XI , ... , xn ), defined in 
Appendix B, which depends only on r(f) and is independent of W",(f). 

The function Sn may be expressed as the sum of multiple integrals 
involving the functions S. Expanding exp [a(u)] in powers of a(u) and 
replacing each a(u) by its integral [equation (166)] with p in place of 
the variable of integration f leads to 
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[ 
. l . IT W.p(Pk)JS(PI , ... , Pi' -PI, ... , -Pi) 

k=l 

00 (_!)i 100 100 
= S(XI , X2 , ••• ,xn) + ~ --., - dPI ... dPi 

,~l J. -00 -00 

. [IT W.p(Pk)]S(PI , ... , Pi , - PI , ... , - Pi , Xl , ... ,xn) 
k=l (169) 

where n ~ 1. 
Similarly, expanding exp [2c(w, v, 0)] in the integrand of the integrals 

defining the Snm functions leads to 

Soo(;) = S~ + 

,Pi)Si(-PI' ... ,-Pi) 

(170) 

when n ~ 1 and m ~ 1. 
In order to obtain an inequality for Sn(XI , , xn) assume that (i) 

the termwise integration in the derivation of the series in equation 
(169) is legitimate, and (ii) an M > 1 exists such that for all real values 
of f 

M > \ ref) \ = \ GCt + fo)/G(fo) \. 

Since S (Xl' ••• , Xn) may be expressed as the sum of 2n terms, each of 
which is a product of not more than n of the r's, 

\ S(x l , ••• , xn) \ < 2nllr. 
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Furthermore, since the integral of W", (f) from - 00 to + 00 is equal to 
(c/(t) )av , the terms of the series in equation (169) for Sn(Xt, ... , xn) 
are dominated by the terms in 

00 (l)i L 2., (c/)~v(2M)2j+n = (2Mt exp [21112 (c/)av]. 
j=O J. 

Therefore the series in equation (169) converges and 

I Sn(x1 , ... , xn) I < (2111t exp [21112(c/)]. 

This inequality may be used to show that the series in equation (170) 
for Snm converges and that 

I Snm(x1 , ... , Xn ; Y1, ... , Ym) I < (2Mt+m exp [8M2«(/)av]' 

The leading terms in the series required to handle the second and third 
order modulation are 

1100 

So = 1 -"2 -00 dp W",(p)S(p, - p) 

1 100 100 

6 + 8 -00 dp -00 dO' WI"(p)W",(O')S(p, 0', -p, -0') + O(cp), (171) 

1100 

Sl(f) = 0 -"2 -00 dp W l"(p)S(p, - p, f) 

1 100 100 

6 + 8 -00 dp -00 dO' W",(p)WI"(O')S(p, 0', -p, -0', f) + O(cp), (172) 

1100 

4 S2(P, v) = S(p, v) -"2 -00 dO' -VV ",(O')S(O', - 0', p, v) + O(cp ), 

S3(P, 0', v) = S(p, 0', v) + O(cp2), 

1 100 100 

Soo(;) = s~ +"2 -00 dp -00 dO' WI"(p)WI"(O')S(p, O')S(-p, -0') 

(173) 

(174) 

+ o (cp6) , (175) 

Slo(I;) = Sl(f) + i: dp i: dO' W l"(p)W 1"(0')[4-1 S(p, - p, I)S(O', -0') 

+ 2- 1S(p, f)S(O', -0', -p) + 2- 1S(p, 0', f)S(-p, -0')] + O(cp6), 

(176) 
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Sl1(P; v) - L: du W lI'(u)S(U, p)S( -u, v) + 0«/), 

S21(P, u; v) = 0«/). 
In obtaining the leading terms in Soo(;) and SlO(f;) the leading terms in 
So, Sl (f) and S2(P, f) were used. S1 (f) is 0«/) in contrast with So , 
S2 , S3' ... which are 0(1). 

APPENDIX D 

Derivation of Earlier First Order Approximation 
by Present Procedure 

The first order approximations which are given in Section VII 
are somewhat more complicated, as well as more accurate, than the 
ones which have appeared in the literature.3 , 4, 9-12 Here the relation 
between the earlier and present work will be brought out by applying 
the procedure of Section VII to obtain a first order approximation, 
which is the same as the given in Ref. 10 [the O(t) of Ref. 10 is O(t) 
- <p (t) in the present notation]. 

The derivation starts from the initial equations (5) and (7) for 
the filter output So (t) , 

so(t) = {exp [-ao - i{3o + ie(t)]} exp (iwot) 

B( t) = -i In {I: du "f(U) exp [i<p(t - u) 1 }. 
(177) 

The difference between the output phase angle e(t) = Re e(t) and the 
input phase angle <pet) is assumed to be small, and the filter delay is 
usually taken to be zero at the carrier frequency, that is, Im [dr(f)/df] 
is zero at f = O. 

Adding and subtracting i<p(t) [instead of the linear portion cJ?(t) of 
the output] in the exponent appearing in equation (177) for e(t) gives 

e(t) = <pet) - i In [1 + k(t)], 
(178) 

k(t) = L: du ')'(u) {exp [i<p(t - u) - i<p(t)] - I}. 

The first order approximations to the complex phase angle e(t) and 
the output phase angle e(t) are now 

e(t) ~ <pet) - ik(t) 
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and 

e(t) ~ cp(t) + Re [-ilc(t)], (179) 

respectively. 
The analysis of the earlier sections goes through much as before with 

k(t) in place of K(t), and 

hu(f) = exp (-i2nIu) - 1 (180) 

in place of 

Hu(f) = exp (-i27rfu) - r(f). 

An illustration of how hu(f) enters the analysis is furnished by the 
computation of (exp [icp(t - u) - icp(t)])av. As suggested by equation 
(56) for cp(t - u) - <p(t), let 

Lcp(t) - cp(t - u) - cp(t) 

t(f) = exp (-i27rfu) - 1 = hu(f) (181) 

-~ i: df W \0 (f)t(f)t( -f) = -~ L: df TV \0 (f)hu(f)hu( -f) = a'(u) 

(exp [icp(t - u) - icp(t)])av = exp [a'(u)]. 

Of most interest in practice is the power spectrum WI;(f) of Ht), 

Ht) = Re [-ik(t)] 

e(t) ~ cp(t) + Ht) 
(182) 

where Ht) is an approximation to the distortion. The power spectrum 
WI;(f) is the Fourier transform of the covariance (~1~2) where, as before, 
subscripts 1, 2 refer to times t, t + r, respectively. By putting Ht), 
-ilc(t) for e(t), e(t) in equation (47), or directly, 

(~1~2)av = 2-1 Re [ - (lc 1k2 ),w + (lc~lc2)av]. (183) 

It may be shown that 

(k1\V = f_: du ')'(u) exp [a'(u)] 

(k1k2\V = (lc1):v + L: du L: dv')'(uh(v) exp [a'(u) + a'(v)] 

. {exp [2c'(u, v, r)] - I} 
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(le~le2)av = 1 (le1)av 12 + i: du i: dV')'*(u)')'(V) exp [a'(u) + a'(v)] 

. {exp [-2c' (u, V, r)] - I} 

(184) 

where 

1 foo c'(u, V, r) = -2 -00 df W ip(f)hu ( -f)hv(f) exp (i27rfr) 

a'(u) = c'(u, u, 0) (185) 

c'(u, V, - r) = c'(v, u, r). 

Since he-f) is equal to h*(f), a'(u) and c'(u, v, r) are real. Furthermore, 

c'(u, V, r) = -![Rip(r + u - v) - Rip(r - v) - Rip(r + u) + Rip(r)] 

a'(u) = -Rip(o) + Rip(u) (186) 

where Rip (r) is the covariance (cp(t)cp(t + r) )av of cp(t). 
The expression for (~1~2)ay obtained by combining equations (183) 

and (184) is similar to equation (8) of Ref. 10. 
The power spectrum of Ht) may be written as 

WE(f) = ~~c o(f) + 2-1 Re [P(f) + Q(f) + P*( -f) + Q*( -f)] (187) 

in which ~dc is equal to 1m (leI )av and 

P(f) = i: dr exp [-i27rfr][ -!(le1le2)av - (le1)!v)], 
(188) 

Q(f) = i: dr exp (-i27rfr)[!(le~le2)av - 1 (le1)av 12)]. 

Addition gives 

P(f) + Q(f) = i: dr exp (-i27rfr) i: du i: dv exp [a'(u) + a'(v)] 

. (-!')'(u)')'(v) {exp [2c'(u, v, r)] - I} 

+ !')'*(u)')'(v) {exp [-2c'(u, v, r)] - I}) (189) 

which, when used in equation (187), leads to an expression for W~(f) 
which is similar to the main result given in Ref. 10 [equation (16) of 
Ref. 10]. 
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The relation c'(u, v, -r) = c'(v, u, r) may be used to show that Q(f) 
is real and P(f) is even. When ')'(u) is real, r( -f) = r*(f), and the 
expression for W t (f) may be simplified. 

Expanding exp [±2c'(u, v, r)] in powers of c'(u, v, r) leads to 

2 1 00 1 100 100 

W t(f) = ~dc o(f) + - L , dpi ... dPn o(f - PI - ... - Pn) 
4 n=l n. -00 -00 

.[g W,(p,)] 1 S~(p" ... ,P.) - (-rS~*(-p" ,-P.) I' 

where, as in Appendix C for the unprimed S's, 

S~(XI , ... ,xn ) 

= L: du ')'(u) exp [a'(u)J t1 [exp (-i27ruXk) - IJ 

(190) 

00 (_1/ 100 100 

[ i ] = S'(XI , ... ,Xn) + ~ iI -00 dPI ... -00 dPi g W",(Pk) 

. S'(PI , ... , Pi , - PI , ..• , - Pi , Xl , •.. , Xn). 

The series in equation (190) is analogous to the series in equation (90) 
for the more accurate first order approximation based on cp(t - u) -
<I>(t). The function S'(Xl, ... , xn) is the analogue of S(x1 , ••• , x~) 

discussed in Appendix B and is defined by 

S'(x 1 , ••• ,xn) = L: du ')'(u) D huCXk) 

n 

~ IT (yXk - 1). 
k=l .. 

The second equation is symbolic in that yZ is to be replaced by r(z) 
after expansion of the product. It is shown in Appendix B that when 
I r(f) - 1 I < E« 1 for all real values of f, 

S(x l , ••• , xn) = S'(x1 , ••• , xn) + O(l). 

APPENDIX E 

Power Spectrum of aO(t) + b In R (t) 

Section III states that an expression for. the power spectrum Wx(f) 
of x(t) = aO(t) + b In R(t) may be obtained from equation (15) for 
We(f) by.replaci~gU(f), T(p,f~p), and S(p,'(J, f-p~·C!0 t>y (a+.{b}U(f), 
(a + ib)T(p, f :-:- p), and (a..+ ib)S(p, (J, j.- p::-_(J),· .. r~spectively. He~~ 
the steps leading to this result are outlined. 
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From equation (6) for the complex phase angle 8 (t) we have 

i8(t) = In R(t) + i8(t), 

and it follows that, for arbitrary real values of a and b, 

a() + b In R(t) = Re [(a + ib)8(t)]. 

Consequently W..,(t) may be obtained by replacing 8(t) by (a + ib)8(t) 
in the analysis which led to equation (15) for Wo(f). 

The functions A(T) and B(T) appearing in equation (48) are replaced 
by (a + ib)2 A(T) and 1 a + ib 12 B(T), and their respective Fourier 
transforms P(f) and Q(f) are replaced by (a+ib)2 P(f) and 1 a+ib 12 Q(f). 
Each factor in (a + ib)2 = (a + ib)(a + ib) can be associated with 
factors in pet), and each factor in (a + ib)(a + ib)* with factors in 
Q(f), in such a way that U(t) becomes multiplied by (a + ib) and 
U*( -f) by (a + ib)*, and so on. This may be verified by repeating the 
analysis of Sections VIn and IX "with the modified expressions. 

APPENDIX F 

Results Obtained from the Series for In[1 + I((t)] may be Asymptotic 

For gaussian cp(t) with average 0 and rms value (j, the following con
siderations suggest that results obtained from equations (10) and (12), 
namely 

8(t) = <p(t) - i In [1 + K(t)] 
(191) 

00 

= <p(t) + i L n -1[ - K(t)r 
1 

represent the first few terms of an asymptotic series when (j ~ O. 
Since K(t) is difficult to handle, we replace it by a[aiq'(t) - 1] where a 
is somewhat like the integral of 'Y(u) between - 00 and 00. The value 
of this integral is 1, and we regard a as being near 1. The series for 
In [1 + K(t)] behaves somewhat like the series 

In (1 + a{ exp [icp(t)] - I}) = - t (-at {exp [icp(t)] - 1 r (192) 
1 n 

in which the mean square value of the modulus of the nth term is i: exp [:c;:~(2(j2)] n -2[2a sin cp/2]2n dcp. (193) 

When (j « 1 and n is not too large, most of the contribution to the 
integral (193) arises from the region around cp. = 0, and the integral is 
approximately 
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Consequently, the first few terms decrease rapidly when (J' « l. 
However, when n is very large most of the contribution arises from the 
regions around cp = ±71", ±371", ... , where [sin (cp/2)]2n is a narrow pulse 
of height 1 and area 2 (7I"/n)!. When Cr « 1 only the regions around 
cp = ±71" are important and the integral (193) is approximately 

(J'-12n3/ 2- 5
/ 2(2a)2n exp [_7I"2/(2(J'2)] 

which tends to co when a is near 1 and n --7 co. 

The fact that the rms values of the terms of the series in equation 
(192) decrease rapidly at first and then increase without limit suggests 
that results attained from the somewhat similar series in equation (191) 
may be asymptotic in nature as (J' --7 O. 

REFERENCES 

1. Bedrosian, E., and Rice, S. 0., "Distortion and Crosstalk of Linearly Filtered 
Angle-Modulated Signals," Proc. IEEE, 56, No.1 (January 1968), pp. 2-13. 

2. Bedrosian, E., Transionospheric Propagation of FM Signals, RAND Mem
orandum RM-5379-NASA, August 1967. 

3. Medhurst, R. G., "Explicit Form of FM Distortion Products with White
Noise Modulation," Proc. lEE, 107, No. 11, part C (March 1960), pp. 120-
126, and 107, No. 12 (with J. H. Roberts) (September 1960), pp. 367-369. 

4. Magnusson, R. I., "Intermodulation Noise in Linear FM Systems," Proc. 
lEE, 109, No. 15, part C (March 1962), pp. 32-35. 

5. Liou, M. L., "Noise in an FM System Due to an Imperfect Linear Trans
ducer, B.S.T.J.," 4-5, No.9 (November 1966), pp. 1537-1561. 

6. Ruthroff, C. L., "Exact Computation of FM Distortion in any Linear Net
work for Bandlimited Periodic Signals, B.S.T.J.," 4-7, No.6 (July-August 
1968), pp. 1043-1063. 

7. Enloe, L. H. and Ruthroff, C.L., "A Common Error in FM Distortion The
ory," Proc. IEEE, 51, No.5 (May 1963), p. 846. 

8. Gladwin, A. S., Medhurst, R. G., Enloe, L. H., and Ruthroff. C. L. "A Com
mon Error in FM Distortion Theory, Proc." IEEE, 52, No.2 (February 
1964), pp. 186-189. 

9. Bennett, W. R., Curtis, H. E., and Rice, S. 0., "Interchannel Interference in 
FM and PM Systems Under Noise Loading Conditions, B.S.T.J.," 34-, No. 
3 (May 1955), pp. 601-636. 

10. Rice, S. 0, "Distortion in a Noise-Modulated FM Signal by Nonlinear At
tenuation and Phase Shift," B.S.T.J., 36, No.4 (July 1967), pp. 879-890. 

11. Bosse, G., "Die Verzerrung frequenzmodulierter Schwingungen beim Durch
gang durch lineare N etzwerke," Frequenz 12, Sonderheft, (October 1958), 
pp. 6-13. 

12. Medhurst, R. G., "Fundamental and Harmonic Distortion of Waves Fre
auency-Modulated with a Single Tone," Proc. lEE, 107, No. 32, part B 
(March 1960), pp. 155-164. (Numerous references to earlier work are 
given.) 

13. Hess, D. T., "Transmission of FM Signals through Linear Filters," Proc. Nat. 
Elec. Conf., 18 (1962), pp. 469-476. 

14. Rowe, H. E., Signals and Noise in Communication Systems, Princeton, N. J.: 
D. Van Nostrand Co., Inc., 1965, p. 121. 

15. Bedrosian, E. and Rice, S. 0., "Reply to Comment by J. H. Roberts," sched
uled to be published soon in the Proc. IEEE, Letters to the Editor. 





Frequency Modulation of a Millimeter-wave 
IMP A TT Diode Oscillator and Related 

Harmonic Generation Effects 

By T. P. LEE and R. D. STANDLEY 

(Manuscript received May 31, 1968)* 

In this paper we report the performance of a continuous wave millimeter
wave 1M PATT diode oscillator with a wide-band tunability. The diode 
is mounted in an iris wafer circuit; its oscillation frequency can be modulated 
either by a varaclor diode or by direct modulation of the IMP A T T diode 
bias current. The oscillator has been successfully used as a millimeter-wave 
frequency deviator in an experimental pulse code modulation millimeter
wave system. 

We also report detailed measurements on sub harmonic frequencies in 
1M PAT T diode oscillators. Experimental results show that wide frequency 
tunability can be obtained with a circuit which provides an "idler" resonance 
at one-half the fundamental transit-time frequency. The results also show 
that by providing "idler" resonances at both the transit-time frequency and 
at one-half of the transit-time, the oscillation at ! the transit-time frequency 
is enhanced and yields a useful output power of 2 mW at 86 GHz. 

I. INTRODUCTION 

A continuous wave (CW) millimeter-wave silicon IMPATT diode 
oscillator was used satisfactorily as a local oscillator in an experi
mental pulse code modulation (PCM) millimeter-wave repeater sys
tem. t

, 2 That oscillator circuit used a radial-line resonant cavity whose 
resonant frequency was the primary factor determining the oscilla
tion frequency. The oscillator was difficult to tune either mechanically 
or electronically. 

While such characteristics are desirable for fixed frequency local 
oscillator applications, other applications which demand wideband 

* The essential results of this paper were presented at the 26th annual con
ference on Electron Devic~ Research, Boulder, Colorado, June 19-21, 1968. 
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performance and tunability are also of interest. For example, a mil
limeter-wave frequency deviator using an IMPATT diode would be 
advantageous over the L-band deviator and up-converter combina
tion in the PCM repeater system. The IMPATT diode oscillator 
could deliver power at least one order of magnitude greater than the 
up-converter. 

A previous paper showed that the circuit inductance of the radial
line cavity in shunt with the diode was much smaller than the diode 
inductance.1 Therefore, the oscillation frequency could be tuned only 
a few hundred megahertz by varying the diode bias current.~~ In ad
dition, the radial-line cavity was loosely coupled to the external wave
guide circuit so that a tuning range of only 300 MHz was obtained 
when a varactor diode was used for frequency deviation. To improve 
the tunability, it is necessary to have (i) the IMPATT diode equi
valent inductance dominate that contributed by other circuit elements, 
and (ii) the diode closely coupled to controllable external circuit 
parameters. 

It is important to notice that the tunability can be further improved 
by providing more than one resonant circuit for the oscillator. The 
frequencies are harmonically related, and oscillation at each of these 
frequencies is reactively terminated except the one for the output. 
Take as an example the two-frequency case. The tunability of the 
oscillator near the transit-time frequency (say 60 GHz) can be im
proved if a lossless resonant circuit at half the output frequency (30 
GHz) is incorporated in the oscillator circuit. The oscillation at 30 
GHz is terminated by a cut-off waveguide and therefore is designated 
as the "idler," an analog to the idler in harmonic generators using 
varactor diodes. It is not necessary that the low frequency be used as 
the idler. Swan has shown that by providing an idler resonance at 
twice the transit-time frequency, improvements in both the power 
output and the tunability can be obtained.3 

To achieve wide band tunability, IMPATT oscillators were designed 
using resonant-iris structures. It can be shown that the diode equi
valent inductance is dominating in this circuit compared with that of 
the radial-line cavity structure. The loaded Q of the iris is about 10 
which provides a wide bandwidth for oscillation. The oscillation fre
quency could be tuned over 9 GHz in the 50 to 60 GHz range by vary
ing the bias current of the IMPATT diode, thus varying the diode 

* The diode equivalent inductance is inversely proportional to the diode 
bias current. 
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equivalent inductance. It could also be tuned over 3 GHz by using a 
varactor diode closely coupled to the IlvIPATT diode. 

Notice that by using the fundamental transit-time frequency as the 
idler, the power output at one-half the transit-time frequency is, in 
general, higher than the power output when the half frequency is used 
as the idler in our particular circuit. We refer to the frequency which 
is one-half the transit-time frequency as the subharmonic frequency 
throughout this paper. 

In the sections which follow we describe the circuit structure of the 
oscillator, the performance as a tunable oscillator, and the results of 
frequency modulation of the oscillator in an experimental millimeter
wave PCM repeater system. Then measurements of various harmonic 
frequencies existing in the oscillator circuit, and the identification 
and effect of the subharmonic oscillation are described in detail. 

II. DESCRIPTION OF THE OSCILLATOR 

Figure la shows the resonant-iris structure. The iris is made in 
wafer form similar to the Sharpless wafer. 4 The range of the oscilla
tion frequency and the Q of the resonant iris are determined by the 
size, thickness, and shape of the iris aperture. Refs. 5, 6, and 7 give 
details of iris characteristics. The wafers used were 0.100 inch thick, 
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Fig. 1- Artist's view of the oscillator assembly. (a) IMPATT diode wafer. 
(b) Oscillator mount. 
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and had a rectangular aperture 0.010 or 0.030 inch high and 0.100 to 
0.148 inch wide. 

The IMP ATT diodes had a 0.001 inch diameter mesa structure 
and nearly abrupt junctions as reported by Misawa.8 Typical diode 
characteristics are given in Table 1. The diodes were thermal-com-

TABLE I -TYPICAL DIODE CHARACTERISTICS* 

Epitaxial layer thicknesst 
Epitaxial layer doping densityt 
Junction depth t 
Space charge layer widtht 
Breakdown voltage (at 1 I-'A) 
Capacitance at breakdown 
Junction area A 

* All diodes were from the LO 1114 series. 
t Measured by staining and interference fringe. 
t Obtained from voltage dependence of capacitance. 

2.11-' 
6 X 1016 cm-3 

1.01-' 
0.75 I-' 
19V 
0.19 pF 
1. 5 X 10-5 cm2 

pression bonded onto gold-plated copper studs 0.063 inch in diameter. 
After bonding, the diodes were coated with a thin layer of silicone 
varnish which enchances the mechanical strength of the mesa struc
ture. Electrical contact to the diode was made by a 0.032-inch nickel 
rod with a welded contact spring, as pictured in Fig. 1a. For the 
varactor-tuned oscillator, a varactor diode in a Sharpless wafer was 
mounted adj acent to the iris wafer as shown in Fig. lb. The relative 
coupling between the IMPATT diode and the varactor diode (thus 
the tuning characteristic) was adjusted by varying the relative posi
tion of the two diodes in the plane of the cross section of the wave
guide. 9 The complete assembly in a RG-98/U waveguide is shown in 
Fig. lb. 

III. OSCILLATOR PERFORMANCE 

Figure 2 shows the typical performance of an oscillator without the 
varactor. (The varactor wafer is replaced by a blank wafer.) The 
iris used had an aperture of 0.130 by 0.030 inch. The CW ouput 
power (above 1 m W) and the frequency are plotted as a function of 
the IMPATT diode current. Oscillation began at a diode current of 
about 50 mA compared with 100 mA for the cavity structure.1 The 
output power was optimized at each current level by adjusting an 
E-H tuner in front of the diode and a sliding short in back of each 
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diode. Note that the tunable band (about 10 GHz) is considerably 
wider than that previously reported for a radial line cavity structure. 
By varying the bias current with fixed mechanical tuning, the fre
quency could be tuned over 4 GHz with a 3 dB variation in the out
put power, and over 9 GHz with a minimum output power of 1 mW. 

Table II summarizes the results of various circuits with different 
iris apertures. Although there are not enough data to draw a meaning
ful conclusion, it seems that the oscillation frequency was relatively 
independent of the iris width compared with iris height, which im
plies that the inductance of the center post (with contacting spring) 
partially controls the oscillation frequency. This statement is based 
on the assumption that diodes used in the test are of uniform char
acteristics since they were made from a single slice and batch pro
cessed. The dc characteristics of the diodes showed less than 5 per
cent variation in capacitance and in breakdown voltage. 

IV. FREQUENCY MODULATION 

As mentioned in Section I, one goal in this work was to design an 
IMP ATT diode oscillator circuit which could be frequency modulated 
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Diode No. 

1 
2 
3 
4 
5 
6 
7 

TABLE II-RESULTS OF CIRCUITS WITH 
VARIOUS DIODES AND IRIS APERTURES 

Tunable~ 
Width Height GBt bandwidth 

(in) (in) (pF) (GHll) 

148 0.030 0.19 50 - 60 
130 0.030 0.19 53 - 63 
120 0.030 0.19 52 - 59 
110 0.030 0.18 56 - 63.2 
100 0.030 0.19 53 - 61 
130 0.010 0.16 64 - 70 
148 0.010 0.18 58 - 65 

PmnCdBm) 

15 
16.5 
11.5 
9.4 

10.7 
11.5 
11.1 

t CB is the diode capacitance measured at breakdown (VB = -19 volts). 
'If The lower limit on frequency is arbitrarily chosen as the frequency for which 

the power is 1 m W. The upper frequency limit occurs at a bias current of 160 rnA 
which is well below the burn-out level for the LO 1114 series diodes. 

and used as a frequency deviator in a PCM millimeter-wave repeater 
system.2 Two approaches were taken. The first used a varactor diode 
to tune the circuit susceptance outside the diode; the second used 
the fact that the diode inductance (from avalanching) varies in
versely with the bias current. 

Both methods have advantages and disadvantages. The power out
put of the varactor-tuned oscillator remains almost constant over 
the frequency band so that amplitude modulation is negligible. How
ever, to achieve ultimate performance the circuit is much more com
plex. The bias-current tuned oscillator has simpler circuitry, but 
inevitably its power output varies with bias current, which results 
in AM distortion. However, the AM distortion can be overcome by 
proper tuning of the circuit if the modulation index is small. (See 
Section 4.2) 

4.1 The Varactor-Tuned FlI! Deviator 

The varactor tuned oscillator is shown in Fig. lb. The varactor 
diodes used were planar diffused GaAs diodes with a honeycomb 
structure.10 The zero-bias capacitance was 0.04 - 0.05 pF and the 
breakdown voltage was 20 volts. The capacitance varied with volt
age approximately as C = Co (1 + V/rp)-o.4, where Co is the junction 
capacitance at zero bias, V is the bias voltage, and rp is "built-in" 
voltage which is approximately 1 volt for GaAs. The diode was then 
mounted in a Sharpless wafer which in turn was inserted into the 
oscillator mount. The varactor diode was about 0.080 inch behind the 
IMPATT diode. The coupling between the varactor diode and the 
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IMP ATT diode was tuned by sliding the varactor wafer relative to 
the IMP ATT wafer. Additional tuning was provided by a sliding short 
behind the varactor diode and an E-II tuner in front of the IMP ATT 
diode. 

The self-resonant frequency of the varactor diode, as measured by 
the transmission resonance technique, was used to correlate with the 
tuning sensitivity of the oscillator. The self-resonant frequency can 
be varied by changing the length of the contacting wire in the varac
tor waferY It was found experimentally that the best tuning sensi
tivity was obtained when the varactor diode was self-resonant near 
the "idler" frequency. 

A typical frequency tuning characteristic of the oscillator is shown 
in Fig. 3 where the frequency is plotted as a function of the dc bias 
voltage (reverse biased) on the varactor. A tunable band of 2.5 GHz 
was obtained. Notice that the linear region was 1.5 GHz with a sen
sitivity of 1 GHz per volt. Also notice that the power output varied ± 1 
dB over the tunable band. 

Frequency modulation with sinusoidal drive on the varactor was 
achieved at both the 160 MHz and the 500 MHz modulation fre-
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Fig. 3 - Performance of the varactor-tuned oscillator. 
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quency. Figure 4 shows a series of the FM spectrum at 160 MHz 
modulation as the modulating power is increased. For the particular 
diode tested, the minimum modulating power required at 160 MHz 
for complete carrier suppression was about 4 m W (to a 50 ohm load). 

4.2 The Bias-Current Tuned F M Deviator 
The second method of frequency modulation was achieved by di

rect modulation of the IMPATT diode bias current (the varactor 
diode wafer was replaced by a blank wafer). The modulating signal 
was directly applied to the bias through a coupling capacitor. The 
dc tuning sensitivity was between 100 to 200 MHz per milliampere at 
optimum tuning conditions; this resulted in a decrease of 1 dB in 
output power compared with the maximum power obtained without 
frequency deviation. For a sinusoidal drive at 160 MHz, complete 
carrier suppression was achieved at 0.25 mW drive power. Figure 5 
shows the spectrum of the modulated signal at various drive levels. 
When it is tuned properly, no appreciable AM distortion was seen at 
low modulation index. 

4.3 System Performance with the 1M PATT Diode Oscillator-Deviator 
The methods of IMPATT diode oscillator frequency deviation were 

tested in a two-level PCM millimeter-wave repeater system.2 The 
error rate of the system with the IMPATT diode oscillator used as 
the deviator was measured as a function of the signal-to-noise ratio. 
Figure 6 is a simplified block-diagram of the test circuit. The IM
PATT diode oscillator-deviator is driven by a random-word genera
tor either through the bias of the varactor for varactor-tuned devia
tion or through the bias of the IMPATT diode for current-tuned 
deviation. 

The random word generator produces 160 megabit pulses per sec
ond with a random distribution in polarity. These pulses modulate 
either the IMP ATT diode current or the varactor diode bias to deviate 
the millimeter-wave output frequency according to the input pulse 
polarity. The IMPATT diode oscillator-deviator output is down con
verted to an IF signal in the 1.3 ± 0.25 GHz band. The IF signal is 
then amplified and inj ected through a 500 MHz bandwidth filter to a 
phase-locked oscillator. The function of this oscillator is to act as a 
limiter thus removing amplitude modulation from the frequency 
modulated signal. The output of the phase-locked oscillator is further 
amplified before being injected into the differential phase detector and 
timing recoyeI'Y circ.uit. The latter gives two output yoltages. The 
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.Fig. 4 - FM spectrum at 160 MHz modulation of varactor-tuned oscillator. 
Complete carrier suppression is shown in (d) with 6 dBm IF power. Others are 
(a) -9 dBm, (b) -4 dBm, (c) 1 dBm, and (e) 11 dBm (first sideband sup
pression) . 
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Fig. 5 - FM spectrum at 160 MHz modulation on the bias current. (a) IF 
power of -11 dBm for equal sidebands and carrier, Mlj = 1.435, (b) IF power 
of -6 dBm for carrier suppression Mlj = 2.405, and (c) IF power of -2 dBm 
for first sideband suppression, Mlj = 3.832. 
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first output is ideally a replica of the baseband drive signal from the 
random word generator. The second output provides a timing signal 
for the regenerator, which samples the polarity of the first input at 
the time of arrival of the second input. The regenerator output is 
then compared with the random word generator output in an error 
counting circuit. (Reference 12 gives further details of circuit com
ponents.) 

For the random-word modulation just described, the drive required 
at the 160 megabit rate was about 0.1 volt peak-to-peak (to a 750 
load) for the varactor-tuned deviation scheme, and 0.03 volt peak-to
peak for the current-tuned deviation scheme at the optimum error-rate. 
Figure 7 compares typical eye-diagrams for the two deviation meth
ods tested. For the latter case, the measured error-rate was 10-7 for a 
16 dB signal-to-noise ratio, which was 2 dB worse than that obtained 
with a 1.3 GHz tunnel-diode deviator.2 The major problem appeared 
to be the FM noise on the IMPATT oscillator output when it was 
optimally tuned for best deviation. The noise could have been re
duced by increasing the circuit Q and consequently increasing the 
IF drive power. 

Error rate improvement could have been obtained by matching 
the input impedance to the IMPATT bias circuit over the band
width of the baseband signal. A narrow band matching results in dis
tortion of the baseband pulses. 
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Fig. 7 - "Eye-diagrams" of the differentially-coherent-detected random word 
signal. (a) With the varactor-tuned FM deviator. (b) With the current-tuned 
FM deviator. 

V. MEASUREMENTS OF SUBHARMONIC FREQUENCIES 

As mentioned in Section I, the oscillator circuit under study pro
vides at least two resonant circuits for the IMPATT diode, namely, 
an output circuit which is resonant at the transit-time frequency in 
M-band (50 to 75 GHz) and an "idler" circuit which is resonant at 
one-half the transit-time frequency in V -band (26.5 to 40 GHz). 
The two-frequency arrangement, with the frequencies harmonically 
related, has improved the tuning sensitivity of the oscillators, as we 
have shown in previous sections. 

Although the existence of such a subharmonic oscillation can be 
deduced from the experiments described below, it is not surprising in 
view of the highly nonlinear nature of the impact ionization and 
avalanche process. Indeed, small-signal theories have predicted that 
the negative resistance exists over, at least, an octave in frequency.13-15 
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Parametric oscillations and mixing have been observed by DeLoach, 
Johnston, Evans, and Haddad.16• 11 High-efficiency, low frequency, 
subtransit time oscillations have also been reported by Prager, J ohn
ston, Scharfetter, and others/8- 19 and analyzed recently by Scharfet
ter and others.20 In Scharfetter's analysis, the low-frequency oscilla
tion is not necessarily harmonically related to the fundamental tran
sit-time frequency. In recent work, Swan3 showed that improvements 
in both output power and tuning bandwidth are obtained by pro
viding an idler circuit which resonates at the second harmonic of the 
transit-time frequency. This result js similar to our findings except 
that in our case the idler is at one-half the transit-time frequency. 

5.1 Measurements 

Since the idler frequency is below the cutoff frequency of the RG-
98/U waveguide, it is impossible to detect its existence directly at 
the output port of the oscillator as shown in Fig. 1. However, the 
existence of such a signal at the subharmonic frequency would result 
in mixing with the fundamental to produce an output at 3/2 the fun
damental frequency. It was found that the next higher-order harmonic 
detected was always 3/2 of the oscillation frequency independent of 
bias current for all the diodes tested. 

For direct detection of the below-cutoff subharmonic oscillation 
dielectric-filled waveguide tapers which had a cutoff frequency of 18 
GHz were used as shown in Fig. 8a. However, a short section of air
filled RG-98/U waveguide with about 30 dB attenuation at 30 GHz 
remained between the IMPATT diode and the output waveguide 
taper. This arrangement retained the same subharmonic oscillation 
circuit conditions. Yet, if enough power exists for the signal at the 
subharmonic frequency to pass through the short section of air-filled 
RG-98/U waveguide, both the fundamental and the subharmonic fre
quencies should be present at the output port. A mixer and a spectrum 
analyzer were used to detect the subharmonic, while a wavemeter and 
a diode detector were used for the fundamental frequency. There was 
indeed an appreciable amount of power (estimated at 9 dBm at the 
diode) at the subharmonic of 27 GHz; the fundamental was exactly 
twice the subharmonic frequency, or 54 GHz, within measurement 
error. 

When the short section of the RG-98/U waveguide preceding the 
diode wafer was also filled with dielectric the power output at the 
subharmonic was increased appreciably, but the frequency shifted 
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Fig. 8 - Waveguide arrangements for measuring the subharmonic signal. 

slightly because of the change in loading impedance. The measure
ments of the subharmonic power on several diodes are summarized in 
Table III. 

When the sliding short on one side of the oscillator mount was 
replaced by an E-H tuner followed by a wavemeter and a detector, 
as shown in Fig. 8b, both the fundamental and the subharmonic 
could be measured simultaneously. The results again confirmed that 
the subharmonic frequency was exactly one-half of the fundamental as 
shown in Fig. 9 for diode No.3. This harmonic relation held true for 
any bias current. 

The E-H tuner in the M-band circuit serves as an impedance 
matching device. By mismatching the oscillator to the load in the M
band circuit (thus reducing the 58 GHz power delivered to the load), 
the power delivered to the V-band load increases, and vice versa. Thus 
for efficient operation of IMPATT diodes, the subharmonic (and the 
harmonics) 3 should be reactively terminated. Likewise maximum sub-
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TABLE III-MEASUREMENT OF POWER AT ONE-HALF 

THE TRANSIT-TIME FREQUENCY 

Bias current Frequency Power output 
Diode No.* (rnA) (GHz) (dBrn) 

1 115 28.13 12.05 
2 129 28.36 11.2 
3 140 29.05 12.0 
5 140 29.51 10.2 
6 150 34.48 16.9 
7 150 32.25 15.2 
8 150 32.98 14.7 
9 150 31.91 11.1 

* The diode number is consistent with that in Table II. 
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harmonic power can be obtained when the fundamental and all 
harmonics are reactively terminated. Using this approach, by reac
tively terminating both the fundamental and the subharmonic, we 
obtain an output power at 3/2 the transit-time frequency of about 3.3 
dBm at 86 GHz. 

5.2 Harmonic Phase-Locking 

The Fig. 8b circuit arrangement also was used for harmonic phase
locking. The locking-signal was injected in the V-band end through 
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Fig. 9 - Fundamental and subharmonic frequencies as a function of diode 
bias current. 
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a 10 dB directional coupler. Both the locked signals at the V-band 
and at the M-band were measured. The gain-bandwidth product 
(26.//10) (PO/Pi) % was about 0.05 to 0.07 for the V-band output:x• 
The M-band output frequency was simultaneously phase-locked with 
the locked-bandwidth exactly twice that of the V-band. Since the 
power output in the M-band was about 1 mW compared with about 
6 mW at V-band, the apparent gain bandwidth product was much less. 

5.3 V-Band Circuit with Cap Structure 
The experiments of Section 5.1 were conducted on IMP ATT diodes 

in the iris circuit shown in Fig. 1. The same behavior was observed in 
a different circuit structure. A V-band oscillator was constructed using 
a resonant cap structure similar to the circuit described in Ref. 1. 
(see Fig. 10.) Caps were made III various diameters, and could be 

SLIDING 
SHORT 

CAP RESONATOR ./ RG-96/U (V-BAND) 
/' WAVEGUIDE 

~ TO E-H TUNER 

--- IMPATT DIODE 
AND STUD 

Fig. lO-A V-band IMPATT oscillator using cap resonator structure. 

slid up and down the center bias rod, thus permitting the frequency 
of oscillation to be varied. A diode with very similar characteristics 
(breakdown voltage and capacitance) as the ones used before was 
selected from the same batch (LO 1114). The fundamental oscilla
tion was in the range of 64 to 72 GHz with an output power of 10 
dBm at 67 GHz for 150 mA bias. The subharmonic power was also 
detected. 

To optimize the fundamental power, a V-band to M -band taper 
was used in addition to an E-H tuner so that the subharmonic oscil
lation was reactively terminated. Table IV shows the results. Notice 
that when the diode was biased at the same current level, the sub
harmonic frequency was close to 112 the fundamental frequency. The 

* Here we define: fo = free running oscillation frequency 
Po = free running oscillation output power 
P, . = injected power at frequency fo =*= tlf . 

2tlf = bandwidth over which the oscillator is phase-locked .. 
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TABLE IV -OSCILLATION IN V-BAND CIRCUIT 

WITH CAP-RESONATOR STRUCTURE 

Subharmonic Fundamental 
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(Sub harmonic reactively terminated) 

Frequency Power output Bias Frequency Power output 
(GHz) (dBm) (rnA) (GHz) (dBm) 

32.75 7.5 80 64.95 4.0 
32.87 9.5 105 65.7 5.7 
33.4 14.0 150 67.0 10.5 
36.0 14.0 160 72.0 11.1 

slight difference resulted from the reactive termination of the sub
harmonic which required slight retuning for maximum output power 
at the fundamental frequency. 

5.4 Comparison of the Outputs 
Table V compares the fundamental and subharmonic power out

puts in the two different circuits. For the iris-wafer circuit the diode 
was mounted in the RG-98jU waveguide; dielectric-filled waveguide 
and tapers were used when the subharmonic frequency power was 
measured. The dielectric-filled waveguide and tapers had an insertion 
loss of 1 dB in the frequency range of interest, which was taken into 
account for the power listed in the fourth column in Table V. For 
the resonant cap circuit, the diode was mounted in the V-band wave-

Diode 
No. 

1 
3 
5 
6 
7 
8 
9 

10 
10 

TABLE V-COMPARISON OF FUNDAMENTAL AND 

SUBHARMONIC POWER OUTPUTS 

Sub harmonic Fundamental 

Bias Frequency Power Frequency 
(rnA) (GHz) (dBm) (GHz) 

Iris circuit 
115 28.13 12.05 55.02 
140 29.05 12.0 57.84 
140 29.51 10.2 59.5 
150 34.48 16.9 69.1 
150 32.25 15.2 63.93 
150 32.98 14.7 66.25 
150 31.91 11.1 63.7 

Resonant Cap 
Circuit 

150 33.4 14 67.0 
160 36.0 14 72.2 

Power 
(dBm) 

9.5 
9.9 
7.3 

11.5 
11.1 
10.6 
7.6 

10.5 
11.1 
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guide as previously described, so that no dielectric-loading was neces
sary. 

In both circuits, the subharmonic power was maximized by re
actively terminating the fundamental power, and vice versa. The 
subharmonic power is generally greater than that at the fundamental 
output by about 3 to 6 dB. This is in general agreement with Johnston, 
Schafetter, and others.19- 2o However, the current density used here is 
the same as for the diodes operated in the fundamental frequency 
mode, and the frequencies are harmonically related to each other. 

VI. CONCLUSIONS 

By using an idler resonance at the subharmonic frequency, one can 
design oscillators with 20 percent tuning range. Such tunable oscil
lators and frequency deviators were built and worked satisfactorily in 
an experimental millimeter-wave PCM repeater system. 

Multiple frequency circuits for IMPATT diode oscillators offer an 
important means of generating millimeter waves with useful power. 
For example, 2 mW of power at 3/2 the transit-time frequency, or 
86 GHz, has been obtained. 
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Minimal Synthesis of Two-Variable 
Reactance Matrices* 

By T. N. RAO 

(Manuscript received July 3, 1968) 

A simple algebraic method stemming from ideas in minimal state-variable 
realization theory is developed for the synthesis of two-variable reactance 
matrices. The method rests mainly on the factorization of a one variable 
polynomial matrix which is para-Hermitian and positive semidefinite on 
the imaginary axis, and always yields a realization minimal in both vari
ables. 

1. INTRODUCTION 

Two-variable reactance functions and matrices, originally intro
duced to represent the characteristics of lumped passive networks 
with variable elements,t·2 have become more important because of 
their application to the synthesis of lumped-distributed networks. 
Ansell first showed the two-variable reactance property of networks 
composed of lossless transmission lines and lumped reactances.3 The 
two-variable theory has also been applied to the synthesis of net
works consisting of lumped resistors capacitors and uniformly dis
tributed RC lines,4' 5 which are of importance in microelectronic struc
tures.6 • 7 Besides the various applications, the two-variable reactance 
theory is of theoretical interest in itself since it can be shown that 
passive RLC synthesis is a special case of two-variable reactance 
synthesis.2 

Koga8 demonstrated that every nXn two-variable reactance matrix 
W (p, s) can be realized as the impedance seen at the first n ports of 
a lossless (n+qr) -port network in the p-plane terminated at its last 
qr ports with unit inductors in the s-plane; q is the rank of W(p, s), 
and r is the highest degree of s in the least common denominator of 

* This work is based on Chapter III of the author's dissertation, "Synthesis of 
Lumped-Distributed RC Networks" submitted in partial fulfilment of the re
quirements for the Ph.D. degree at Stanford University, May 1967. 
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the elements of w. The method is quite complicated and rests heavily 
on the theory of algebraic functions and the structure of para unitary 
matrices. Also it does not guarantee the use of a minimum number of 
elements. Youla9 solved the problem of synthesizing a lossless two
variable scattering matrix by adapting an earlier method for syn
thesizing one-variable scattering matrices.10 The method could be 
adapted to the direct synthesis of an impedance matrix but appears 
to be unduly complicated because of the need to find the transforma
tion required to transform a generally unrealizable coupling network 
into a realizable one. 

A simple algebraic method stemming from ideas in minimal state
variable realization theory and having similar beginnings as that of 
Youla9 is developed here for the synthesis of two-variable reactance 
matrices. The method rests mainly on the factorization of a one
variable polynominal matrix which is para Hermitian* and positive 
semidefinite on the imaginary axis. Such a factorization is well known 
in n-port network theory and once it is accomplished, the coupling 
network is obtained by simple matrix operations. Furthermore the 
method always yields a network minimal in both types of elements. 

We first introduce some basic definitions and necessary theorems, 
and later we add more as the need arises. The synthesis procedure 1S 
developed in Section III. Since the various proofs involved are rather 
indirect and tend to cloud the simplicity of the actual procedure, the 
synthesis procedure is outlined in Section IV. The reader interested 
only in the procedure and not in the theory behind it may go directly 
to Section IV where step-by-step instructions are given for the syn
thesis of any two variable reactance matrix. In Section V an example 
is worked out. The notation used in this paper is almost the same as 
found in earlier work to assure easy reading for those familiar with it. 9 

Capital letters indicate matrices; bold face letters indicate matrix 
transposition. A superscript dagger indicates the substitution of -s 
or -p for sand p respectively, in the case of two-variable functions. 

II. BASIC DEFINITIONS AND THEOREMS 

The basic notion in the two variable theory is that of a two variable 
positive real matrix, which is a straightforward extension of the same 
notion in the one variable theory (See p. 96 of Ref. 11 and p. 32 of 
Ref. 8). 

* A matrix A(p) is said to be para-Hermitian if A(p) = At(p) where the bold 
face letter denotes matrix transposition and the superscript dagger denotes re"; 
placement of p by -po 
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Definition 1: An n X n matrix W(p, s) is said to be a two variable 
positive real matrix if 

(i) W is real for real p and s. 
(ii) W is analytic in the domain Re p > 0 and Re s > o. 

(iii) W + W* is positive semidefinite in the domain Re p > 0 and 
Re s > O. 

By statements such as: "W is analytic" in the definition and in 
what follows, we mean, "each element of W is analytic." A two vari
able function is said to be analytic at a point if it has a total differ
ential at the point. The bold face letter indicates matrix transposition, 
and the superscript star indicates the complex conjugation of each 
element. 

If W(p, s) satisfies conditions (ii) and (iii) of the definition and not 
necessarily condition (i), it will be called a two variable positive 
matrix. 

Definition 2: An n X n matrix W(p, s) is said to be a two variable 
reactance matrix if 

(i) W is a two variable positive real matrix. 
(ii) W + wt == o. 
The superscript dagger indicates the operation of substituting -p 

and -s for p and s in the original matrix. This definition of a two 
variable reactance matrix is similar to the corresponding one in the 
one variable theory. (See p. 102 of Ref. 11 and p. 32 of Ref. 8.) Anal
ogously, as in the one variable case (p. 117 of Ref. 11), it is generally 
hard to check if condition (iii) of Definition 1, which involves the 
whole domain Re p > 0 and Re s > 0, is satisfied for a given two 
variable matrix; we would like to find an equivalent set of conditions 
that are easier to check. In the case of two variable reactance matrices, 
the following theorem proved by Ozaki and Kasami2 in the scalar 
case, and extended to nonsymmetric matrices by Koga, (p. 33 of Ref. 
8) serves this purpose. 

Theorem 1: The necessary and sufficient conditions for an n X n matrix 
W (p, s) to be a two variable reactance matrix are: 

(i) W is rational in p and s, and real for real p and s. 
(ii) W is analytic in the domain Re p > 0; Re s > O. 

(iii) W == - W t • 

(iv) For any (Po, so) with Re Po = Re So = 0, which is a regular 
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point of W, poles of W(Po·, s) and W(p, so) are simple and restricted to 
the imaginary sand p axes respectively. 

(v) aW jap and aw jas are positive semidefinite Hermitian for Re p = 
Re s = 0, except at poles. 

The proof of this theorem can be found on p. 33 of Ref. 8. We will 
interpret the above conditions on a physical basis. Assuming that a 
network realization consisting of reactances in the p and s-planes 
exists for W(p, s), condition i is fairly obvious, since the general loop 
impedance will be a real rational function in p and s. Condition iii is 
also an obvious consequence of this reason, since the substitution of 
-p and -s in W(p, s) is equivalent to changing the sign of all ele
ment values and hence of every branch and loop impedance. Under 
the assumption of existence of a two element kind of reactance net
work corresponding to the given W(p, s), condition iv is also clear, 
because p is fixed as a pure imaginary number, the p-type elements 
can be considered as "frequency insensitive reactances," and their 
presence in a network consisting of pure reactances in thc s-plane can
not create poles off the imaginary s axis. Similar reasoning justifies 
condition v for s fixed at any imaginary number, the positive semi
definiteness of aw lap can be considered as an extension of the posi
tive slope of a reactance function in the one variable theory. 

The necessary and sufficient conditions for a two variable reactance 
function are not discussed separately, since scalars can be considered 
as a special case of a reactance matrix. 

If W(p, s) has a pole at p = Po, independent of the value of s, Po 
is said to be an s-independent pole of W. The following theorem (see 
p. 34 of Ref. 8) concerning such poles is important for the synthesis 
method to be given. . 

Theorem 2: A two variable reactance matrix Wo(p, s) can be de
composed as 

where WI and W 2 are reactance matrices in p and s, respectively, and W 
is a two variable reactance matrix with no p-independent or s-independent 
poles. 

Any given two variable reactance matrix Wo (p, s), by virtue of the 
above theorem, can be realized as a series connection of networks hav
ing WI, W 2 , and W as their impedance matrices, as shown in Fig. 1. 
Since WI and W 2 can be realized by existing techniques (See chapter 
7 of Ref. 11) the given Wo can be realized if a method of synthesis is 
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Wo (p,s) -+-

Fig. 1- Interpretation of theorem 2. 

found for W. Henceforth we assume that the given reactance matrix 
has no p-independent or s-independent poles. 

III. SYNTHESIS OF TWO VARIABLE REACTANCE MATRICES 

Let us assume that there is a passive n-port network representation, 
consisting of p- and s-type reactances, gyrators, and ideal transform
ers, for a given two variable n X n reactance matrix W(p, s). In such 
a network it is always possible to replace each s-type capacitor by a 
gyrator-s-type inductor combination and then isolate all the s-type 
inductors, of which we assume there are k, as shown in Fig. 2, without 
changing the impedance seen at the prescribed ports. If we further 
assume that the (n + k) -port coupling network, consisting of p-type 
reactances, ideal transformers, and gyrators has a Z matrix, then the 
impedance matrix W (p, s) seen at the first n ports is given by 

W(p, s) = Zl1(P) - Z12(P)[Z22(P) + Slkr1z21(p) (1) 

where Z (p), the impedance matrix of the coupling network is given by 

Z(p) = [Zl1(P) Z12(P)]. 

Z21 (p) Z22(P) 
(2) 

Since the coupling network is a lossless network in the p-plane 

Z = -zt (3) 

and we have 

W(p, s) = Zl1(P) + Z12(P)[Z22(P) + Slkr
1
zi2(p). (4) 

Next we show, by algebraic means, that every two variable reactance 
matrix can be decomposed into the form in equation (4), such that 
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W(p.s) ~ 
Z(p) .- k - PORTS 

n- PORTS -+-

Fig. 2 - Extraction of S-type inductors. 

Z (p) of equation (2) describes a lossless network. Once such a decom
position is found, we can realize the given W (p, s) by realizing Z (p) 
by any of the existing techniques (see chapter 7 of Ref. 11) and 
terminating it at its last k ports with unit inductors in the s-plane. 

To establish that any given two variable reactance matrix W(p, s) 
can be decomposed as shown in equation (4), we first expand W(p, s) 
and the expression on the right side of equation (4) about s = 00 and 
find the expressions that relate Zl1, Z12, and Z22 with the expansion 
coefficients of W (p, s). We then show that a set Zll, Z12, and Z22, which 
satisfies the above relations and at the same time guarantees that the 
Z (p) of equation (2) is a reactance matrix in p, can always be found. 

The given two variable reactance matrix W (p, s) can be assumed 
to have no p-independent or s-independent poles by virtue of Theorem 
2 and hence can be written in the form 

lV( ) = BoCp)sr + B1(p)l-1 + ... + Br(P) 
p, s ao(p)sr + a1(p)sr-l + ... + arCp) (5) 

where the Bi (p) are real polynomial matrices in p and the scalar 

(6) 

is the least common denominator of the entries in W (p, s). For any 
ordinary value of p, W(p, s) can be expanded in the neighborhood of 
s = 00 as9 

(7) 

Expanding the right side of equation (4) in the neighborhood of s = 00 

For the equality in equation (4) to hold, we identify 

Zl1(P) = A_1(p) = W(p, (0) (9) 
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and 

Az(p) = (-1)Zz12z;2Z:2 l = 0, 1,2, ... 

Since the Z (p) formed out of Zll , Z12 and Z22 

has to describe a lossless network in the p plane, we must have 

z = -zt 
as given by equation (3), and hence 

and 

t 
Zll = - Zll 

169 

(10) 

(11) 

(12) 

(13) 

With the identification in equation (9), equation (12) is always satis
fied, since by equation (9) 

Zu = W(p, 00) = -W(-p, - 00), 

and thus Zll is uniquely determined. The problem is to chose a pair 
Z12, Z22 to satisfy equation (10) and at the same time guarantee that 
equation (11) describes a lossless network in the p-plane. For Z (p) to 
describe a loss less network, it must be positive real and satisfy equa
tion (3). 

Before proceeding further, we would like to know more about Az (p) , 
the expansion coefficients in equation (7). By equating the right sides 
of equations (5) and (7), 

Bo(P)sr + B1(p)l-1 + ... + Br(P) 

= [ao(p)s + a,(pjr' + ... + a,(P){ A-,(P) + t, ~:<,P,) J. (14) 

Equating coefficients of like powers of s on both sides of equation (14), 
(see p. ~07 of Ref. 12, Vol. II). 

aO(P)A-l(P) = Bo(P) 

a1(P)A_1(p) + ao(p)Ao(p) = B1(P) 

a2(P)A_1(p) + a1(p)Ao(P) + aO(P)Al(P) = B2(P) 
(15) 
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and 

aO(p)Ai(P) + a1(p)Ai-1(P) + ... + ar(p)Ai-r(P) = On for i ~ r. 

From equation (15) an expression for Az(p) can be written* in the con
venient form (see p. 14 Ref. 9) 

Bo(p) ao(p) 0 

B1(p) a1(p) ao(p) 

o 
o 

o 
o 
o 

B z(p) al(p) al-1 (p) az-2(p) ao(p) 

B Z+l(P) aZ+l(p) az(p) az-1(p) a1(p) 

l = -1,0, 1,2, ... 

for l > r 
for l > r 

(16) 

where the (l + 2) X (l + 2) determinant is expanded formally in 
terms of its first column. In equation (16) the Bi are matrices, the at 
are scalars, and the determinant is not a determinant in the usual 
sense. From equation (16), it can be seen that Az(p) is of the form 

A ( ) = real polynomial matrix in p. (17) 
Z P a~+2(p) 

Another important property of the Az (p) 's is obtained from the rela
tion 

W(p,8) = - W(-p, -8) 

which implies 

A_ 1(P) + t A/~r) = -A_1( -p) - L (_1)1+1 ~~\~p). (18) 
Z=O 8 S 

Hence by equating like powers of s 

* Alternate methods of obtaining these A z(p)'s are by diffe rentiation of W(p, 8) 

A ( ) = aZ+lW(p, s) I 
I P asZ+l .-GO 

or by long division. 
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(19) 

If, for the purpose of choosing a pair Z12, Z22 that satisfies equation 
(10) and, at the same time, guarantees that the Z(p) of equation (11) 
describes a loss less network in the p-plane, we define Pz (p) as 

i Z12 
I 

Pz(p) l:::::: (20) 

Z12Z22 

Then 
t t t 2t 2t z t t 

Z12 Z12 Z12 Z22 Z12 Z12 Z22 Z12 Z12 Z22 Z12 

t t t 2t t zt t 
Z12Z22 Z12 Z12Z22 Z22 Z12 Z12Z22 Z22 Z12 • •• Z12Z22 Z22 Z12 

2 t 2 t t 2 2t t 2 Z t t 

PzP; = 
Z12Z22 Z12 Z12Z22 Z22 Z12 Z12Z22 Z22 Z22 • •• Z12Z22 Z22 Z12 (21) 

z t 
Z12Z22 Z12 

z t t 
Z12Z22 Z22 Z12 

z 2t t 
Z12Z22 Z22 Z22 

z z t t 
· .• Z12Z22 Z21 Z12 

In the above matrix, the entry in the ith row and jth column is Z12Z;2Z;;Z:2 

and by equation (13) 

Since we wish the equality in equation (10) to hold 

i it t i i+i t ,: 
Z12Z22Z22Z12 = (-I)z12Z22 Z12 = (-1) A i + i 

If we define T z (p) as 

Ao(p) 

-Al(P) 

A2(P) 

Al(P) 

-A2(P) 

A3(P) 

A2(P) 

- A3(P) 

A4(P) 

(22) 

(23) 

Az(p) 

-AZ+l(P) 

Az+ip) 

(-I)ZAz(p) (-I)ZAz+l(p) (-I/A z+2(p) .. • (-I)ZA2z(P) 

(24) 

from equation (23), we can see that 

Tz = PIP; . (25) 



172 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969 

Equation (25) suggests that a way of obtaining a pair Z12, Z22 would 
be to form the matrix Tl (p), factor it in the form of equation (25), 
and then try to identify Z12 and Z22 from these factors. We do not know 
in advance if the matrix Tl (p) formed from the expansion coefficients 
of W about s = 00 can always be factored as indicated in equation 
(25) ; hence we first study the properties of Tl (p) , to see if it can be 
factored in the desired form. 

Consider the matrix Tl(p) when l = r, r being the s-degree of g(p, s), 
as given in equation (6), 

1',~ -* -* -1: A,~: -1::: I. (26) 

r 
Ao Al A2 A r-l A r l 

(-l)r~lAr_l (-l):-lAr (-l);lAr+l (-1)":-lA2r_1 (_1)r~IA2r_l j 
LC -l)rAr (-l)rAr+l (-1)rAr+2 (-1)rA2r_l (-1)rA2r _ 

The matrix obtained by deleting the last column and row in equation 
(26) is T r- 1 , and by equation (15) it is easy to see that the last column 
is a linear combination of the first r columns. Hence" 

rank T r = rank T r-l 
and 

rank Tz = rank T r - 1 for l ~ r - 1. 

The rank of T r- 1 is connected with the s-degree 8s [W(p, s)] of W(p, s) 
which is defined in Definition 3 (see p. 10 of Ref. 9). 

Definition 3: The s-degree of a rational two variable matrix W(p, s) 
is obtained from the rule 

s = degree of W(p, s) = o.[W(p, s)] = max o[W(Po , s)] 
Po 

where 8 [W (Po, s)] is the McMillan degree (see part II of Ref. 13) of 
W (Po, s). For any fixed Po, W (Po, s) is a matrix of rational functions 
in s with its McMillan degree uniquely specified; hence the above 
definition uniquely specifies the s-degree of W (p, s). The relationship 
between the s-degree of W(p, s) and the rank of T r - 1 is stated formally 
in the following lemma. 

Lemma 1: The rank of Tr-1(p) is equal to the s-degree of W(p, 8). 

* By the rank of rational or polynomial matrix we mean the "normal rank," 
which is defined to be the rank everywhere except at a finite number of values 
of the variable. .. 
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The proof of this lemma for the one variable case can be found in 
Ref. 14 and on p. 200 of Ref. 10, and for the two variable case on p. 17 
of Ref. 9. 

To show that the matrix T r - 1(p) can always be factored in the form 
of equation (25), we need the following lemma. 

Lemma 2: The matrix Tr- 1 (p) defined by equation (24) for l = r - 1 
satisfies 

(i) T r - 1 = T:-1 

(ii) Tr-1(jW) is Hermitian and positive semidefinite. 

Proof: 

Since Az = (-1) IA: by equation (19), the proof of i is readily seen 
from equation (26) 

(27) 

To prove (ii), we first notice that by Theorem 1, for any real w, W(jw, s) 
has only simple poles, which are restricted to the imaginary axis in 
the s-plane. Hence W(jw, s) can be expressed in the partial fraction form 

W( . ) A (.) + ~ Ri(jW) JW, s = -1 JW L..J _. () 
.=1 8 Ja. w 

(28) 

where, Ri(jW) are the residue matrices at the poles jai(W), and the ai(w) 
are real. 

It is shown in Appendix A that the Ri(jW) are Hermitian and positive 
semidefinite for each w. Now, if each term in the sum on the right side 
of equation (28) is expanded about s = 00, we have 

W(jw, s) = A-1(jW) + t t (j~~r Ri(jW). 
i=1 «=0 S 

(29) 

For the purpose of comparison, equation (7), written with p jw, is 

W( . ) A (.) + ~ A q(jw) JW, s = -1 JW L..J~' 
q=O s 

(30) 

The right sides of equation (29) and (30) are expansions of W(jw, s) 
about s = 00, and because of the uniqueness of a power series expansion 

r 

Aq(jw) = L (jaitRi(jW). (31) 
i=1 

By noting that the ai are real and the Ri(jW) are Hermitian and positive 
semidefinite for each w, we have 
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r 

Ao(jw) = L Ri(jW) ~o (32)* 
i=1 

r 

Al(jW) = j L (XiRi(jW) (33) 
i~1 

r 

- L (X~Ri(jW) ~o (34) 
i=1 

r 

A4m-3(jW) . L 4m-3R C ) -J (Xi i JW (35a) 
i-I 

r 

A4m-2(jW) L 4m-2R (. ) - (Xi i JW ~o (35b) 
i=1 

T 

A 4m- 1 (jW) . L 4m- 1R C ) - J (Xi i JW (35c) 
i=1 

T 

A4m(jW) = L (X~mRJjw) ~ o. (35d) 
i=1 

By direct substitution of equation (33) into equation (24), Tr-1(jW) 
can be written as 

R. ja.R. -a~R. (ja.y-1R. 

-ja,R. a~R. ja~R. -(ja,),R. 

T,-l(jw) = t -a2R. -ja~R. a~R. (jay+lR, (36) 
.. -1 

The matrix sum on the right side of equation (36) can be written 

r
Ri 0 0··· 01 

. -~ ~ ~ ~:::~j* Tr- 1(Jw) - ~ Li/: : : : : Li (37) 

lo 00···0 

where 

* By the notation A ~ 0 or A ~ 0, we mean that the associated Hermitian form 
of A is positive semidefinite or negative semidefinite. 
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In 0 0 ···0 -1 

ja i 1n In 0 ···0 

L. a:ln 0 In ... 0 (38) 

( -IY(jay-l1n 0 0 In 

Since each RJjw) is Hermitian and positive semidefinite for each w, 
the sum on the right side of equation (37) is also Hermitian and positive 
semidefinite. Hence, we have proved the lemma. 

We have shown that T r - 1 , a matrix of rational functions, is para
Hermitian and positive semidefinite on the imaginary axis. Such a 
matrix can always be factored in the form shown in equation (25), 
(see p. 133 of Ref. 15). It is tempting to factor T r - 1 at this stage and 
find Z12, Z22 to satisfy the required conditions, but we will factor a~r T r - 1 

instead of T r - 1 for the reason that the factors would be polynomial 
matrices. 

From equation (17) we can see that a~r T r - 1 is a polynomial matrix 
in p. To be able to factor a~r T r - 1 in the required fashion, we have to 
show that T = a~r T r - 1 is para Hermitian and positive semidefinite on 
the jw axis. To do this, we obtain the required additional information 
about the polynomial ao(p) from the following theorem. Since the 
theorem contains more information than we need at this point, we will 
only state it here; a proof is given in Appendix B. 

Theorem 3: If 

is a two variable reactance matrix, then for all i = 0, 1, , r 

(i) Bi is a reactance matrix in p 
ai 

(ii) ~ is a reactance function in p 
ai+l 

(iii) ai has all its zeros on the jw axis and these are simple 

(iv) XBiX for all constant real n X 1 vectors, X, is a reactance 
XB i+1X function in p 
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From this theorem, ao(p) can be represented as 

ao(p) = pV II (p2 + w:) = ±ao( -p) (39) 
.. 

where v = 0 or 1. Hence 

(40) 

From the form of ao shown in equation (39) and Lemma 1, it can be 
seen that 

except when simultaneously, v = 1 and r is odd; in which case 

Tr - 1 (jw) ~ o. 

(41) 

(42) 

We will assume that Tr-1(jW) ~ 0 in developing the synthesis procedure 
and discuss the needed modification when Tr - 1 (jw) ~ 0 later. 

If the s-degree of W(p, s) is equal to k, by Lemma 1 the rank of T r - 1 (p) 
and hence of T r- 1(p) is k. Since T r- 1 = 1':-1 and Tr-l(jW) ~ 0 there 
exists a factorization 16,17 

(43) 

where M(p) is an nr X k polynomial matrix and has a left inverse M-1(p) 
which is analytic in Re p > o. 

From the definition of T r-1, we have 

T
r

- 1(p) = 1l1(p)~\p). (44) 
ao 

M (p) can be partitioned into n X k blocks M i (p) 

1l1o(p) 

1l11(P) 
M(p) 

and hence 

(45) 

(46) 

Now by comparison of equation (45) with equation (20), we can im
mediately identify a suitable Z12 as 

Mo z --. 
12 - a~ 

(47) 
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To find a suitable Z22' if we define Td as 

r 
-At 

l -~: Tip) = 

( - ~r Ar (-1): Ar+l 

(48) 

(-IY Ar+2 ... (-If A 2r 

from equations (20), (21), and (25) we see that Z22 must satisfy 

(49) 

Even though equation (49) does not uniquely specify Z22, we can choose 
for Z22 

Z22 = a~r 1l1- l T dM- l t. (50) 

From equation (19) and the definition of Td , we see that Td - T; 
and hence 

We now notice that by construction, the pair Zl2, Z22 defined by 
equations (47) and (50) satisfies 

(10) 

for all 0 ~ l ~ 2r - 2. Our aim is to find Z12 and Z22 that satisfy equation 
(10) for alll ~ o. It is not immediately clear that the pair Zl2, Z22 defined 
by equations (47) and (50) satisfy equation (10) for alll ~ o. 

To see that the chosen pair Zl2, Z22 does indeed satisfy equation (10) 
for alll ~ 0 and not just for 0 ~ l ~ 2r - 2, we introduce the generalized 
companion matrix n(p) defined bylo 

On In On On 

On On In On 

n(p) (52) 

On On On On In 

_ aT In - ar - l In _~-2 In ... _ a2 1 _ a l In 
ao ao ao ao 

n 
ao 
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From equation (15) it can be seen that 

Td = - T r - 1 n. 
Hence, by equation (43) 

and by equation (51) 

Hence 

and 

Z22 -a~r11f-1Tr_1nM-1t 

-l1f-111fM t nM -1 t 

_M tnM-1t , 

Z;2 = -l1f-1ntJlfMtnM-1t 

- a~r 11f-1 n tTr_
1 
nM- 1 t 

_a~r llf-1 n2tTr_IM-1 t 

-l1f-1 n2tM 

l> O. 

(53) 

(54) 

(55) 

From the definition of n, we see that g(p, ~) is its minimal polynomial, 
and hence the matrix polynomial 

g(p, n) = aonr + a1n
r- 1 + ... + ar1nr == Onr (56) 

and hence 

(57) 

By equation (55) 

g(p, Z22) = 11f-1 (-lr-1ao~rt + (-lr-2al~r-It + ... + ar1nr M, 

and by equation (57) and Theorem 3 

g(p, Z22) = ± M-1[g( -p, nt)]l1f == Ok' (58) 

From the last equation in equation (15), from equation (58), and from 
equation (10), which holds for 0 ~ l ~ 2r - 2, 

- a1A 2r - 2 - a2A 2r - 3 - ••• - arAr-1 

-z12[a1z;;-2 + a2z;;-2 + .,. + arz;;lJZ:2 
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Hence 

and by induction 

A l = (-1) IZ12Z~2Z:2 

for alll ~ 0, which is the same as equation (10). 
We thus have a set of three matrices Zll , Z12 , Z22 such that the in

finite set of equations obtained by equating the right sides of equations 
(7) and (8) are satisfied. Hence the right side of equation (4) and JV(p, s) 
have the same Taylor's series expansion in the neighborhood of s = 00. 

By analytic continuation, for all p and s 

W(p, s) = zu(p) + Z12(P)[Z22(P) + slkrlz:2(p) , 

where Zu , Z12, and Z22 are defined by equations (9), (47), and (50), 
respectively. 

We have thus succeeded in decomposing W(p, s) as shown in equation 
(4). It now remains to show that Z(p) formed from the chosen Zll , 

Z12, and Z22 

Mo(P2 ] 
a~(p) 

a~r(p)M-l(p)Tip)M-l \p) 

(59) 

is a reactance matrix. 
To show that the Z(p) in equation (59) is a reactance matrix, we may 

choose any standard test, but we will choose the one given below since 
it is particularly suited for the problem at hand (see pp. 117 and 123 
of Ref. 11): 

Lemma 3: The necessary and sufficient conditions for a square matrix 
Z (p) to be a reactance matrix are: 

(i) Z is rational and real for real p. 
(ii) Poles of Z(p) are simple and restricted to the imaginary axis. 

(iii) Z + zt == o. 
(iv) Residue matrices are positive semidefinite Hermitian. 

Since all the entries of Z(p) in equation (59) are real and rational, con
dition i is satisfied. 
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From equations (13a) and (15), Zll = A_I = Bo/ao is a reactance 
matrix by Theorem 3; hence its poles are simple and restricted to the 
imaginary axis. Also, the pole at p = 00, if any exists, is simple for 
this block. Since M 0 is a polynomial matrix, it is clear that the poles of 
the off diagonal blocks ZI2 and - Z;2 are in the zeros of ao and hence by 
Theorem 3 the poles of ZI2 are restricted to the jw axis. However, it is 
not clear that these poles are simple. To show that they are indeed 
simple we will use the fact that Ao defined by 

(60) 

is a polynomial matrix. From equations (10) and (47) 
t 

A - MoMo 
o - 2r 

ao 
(61) 

and from equation (39) ao 
case 

±a~ . We first consider ao = a~ in which 

(62) 

Equation (54) then shows that Ao = .A~ and Ao(jw) ~ O. Hence there 
exists an n X q polynomial matrix, Q, such that 

(63) 

where q is the rank of Ao . Equations (62) and (63) are two different 
factorizations of Ao , hence:17 

kf-°I = Q[lq : OkX(r-ql] V 
ao 

(64) 

where yep) is a Ie X Ie para unitary matrix, that is, vvt = l k • Since Q 
is a polynomial matrix, and yep) being para unitary can have no poles 
on the imaginary axis (see p. 186 of Ref. 11), the left side of equation 
(64) can have no poles on the imaginary axis. Hence a~-t, which has 
all its zeros on the jw axis, must divide Mo . Thus Z12 has all its finite 
poles in the zeros of ao . By Theorem 3, the zeros of ao are simple and 
restricted to the jw axis. In the above, we have assumed that ao = a~ ; 
if ao = -a~ and r is odd, the same proof holds; if r is even we can con
struct a similar proof by factoring - Ao instead of Ao . 

To show that the pole of Z12 at P = 00, if any, is simple. Consider 
the following representation for Ao obtained from equations (15) and (17) 

(65) 
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Since Bl/al and Bo/ao are reactance matrices and at/ao is a reactance 
function, according to Theorem 3, the right side of equation (65) be
haves as J{pV near p = 00, where J{ is a constant matrix and v is an 
integer such that - 2 ~ v ~ 2. But Z12 satisfies 

Ao = Z12Z~2 

and hence the pole of Z12 at P = 00, if any, must be simple. 
We now have to show that the Z22 block also satisfies condition (ii) 

of the lemma. By equation (54) 

(54) 

Since M-l is analytic in the open right-half plane and Q has all its poles 
in the zeros of a o , by equation (54) the poles of Z22 are restricted to the 
jw axis. To show that these poles are simple we will prove by contradic
tion that aOZ22 is polynomial. 

From equation (52), the definition of Q, and equation (54) we see that 
if aOZ22 has a pole of multiplicity 0: at p = jwo. In the neighborhood 
of this pole, we have the approximation 

J{ 

aOZ22 ~ ( .)'" p - JWo 

where J{ is a constant matrix and 0: is a positive integer, and 
J{2 

a~z;2 ~---
(p - jWO)2'" 

(66) 

(67a) 

Now by equation (55) Z;2 = - M- l
Q2tM, and hence in the neighborhood 

of p = jwo 

(67b) 

where J{l is a constant matrix and (3 is a positive integer. Since the poles 
of aOZ22 are contained in the poles of M-t, (3 ~ 20:. By comparison of 
equations (67a) and (67b), which must be equal, it is clear that either 
0: = {3 = 0 or J{l = J{2 = O. Since Z22 = -Z!2' J{ = K*, and hence 
J{2 = KK* = 0 implies that J{ = O. Thus aOZ22 can have no poles on 
the jw axis and this, coupled with the fact that Z22 can have poles only 
on the jw axis, guarantees that aOZ22 is always polynomial. We therefore 
conclude that all the finite poles of Z22 are in the zeros of ao , and their 
multiplicity cannot exceed that of the corresponding zeros of ao • Hence, 
again by Theorem 3, all the finite poles of Z22 are simple and restricted 
to the jw axis. 
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To show that the pole at p = 00 of Z22 , if any, is simple, consider 
equation (15) written in this form: 

A - Bo 
-1 -

ao 

Ao = B1.a1 _ Bo.a1 (68) 
a1 ao ao ao 

Al = B2 _ a2.a1 _ a1 [B1.a1 _ Bo.a1J _ a2.a1.Bo. 
a2 a1 ao ao a1 ao ao ao a1 ao ao 

Owing to the reactance nature of BJai and aJa;+l by Theorem 3, 
and from the form of A i shown in equation (68), near p = 00, Ai behaves 
as 

where Ki is a constant matrix and Vi is an integer such that 

i + 2 ~ Vi ~ - (i + 2). 

Also from equation (10) 

(69) 

(70) 

(71) 

Since Z12 has at most a simple pole at p = 00, in the neighborhood of 
p = 00 

(72) 

where K is a constant matrix and l is an integer such that l ~ 1. If 
Z22 behaves as K 22pm near p = 00, where K22 is a constant matrix and m 
an integer, then by equation (70), (71), and (72), (i + 2) ~ im + 2l ~ 
- (i + 2). For such to be true for any fixed l and all integral i ~ 0, 
m has to be less than or equal to unity. Hence the pole of Z22 at p = 00, 

if any, is simple. 
We have thus shown that condition ii of Lemma 1 is satisfied for 

each block in Z(p), and hence Z(p) also satisfies it. 
Since Zll is a reactance matrix, Zll = -Zi1 and Z22 = -Z~2 by equation 

(51), we have Z = -zt and thus condition (iii) of the lemma is also 
satisfied. 

Now to complete the proof that Z(p) is a reactance matrix, we have 
to show that the residue matrices at the poles are positive semidefinite 
Hermitian. To do this we need Lemma 4, which follows from the defini
tions of a two variable positive real and two variable reactance matrices 
(see p. 34 of Ref. 8). 



REACTANCE MATRICES 183 

Lemma 4. It W(p, s) is a two variable reactance matrix with no p-in
dependent or s-independent poles, W[p, s(p)] is a reactance matrix in p 
for any reactance function s (p) . 

To prove that Z(p) satisfies condition iv of Lemma 1, which requires 
that the residue matrix of Z (p) at any of its simple poles on the jw axis 
is positive semidefinite Hermitian, we note that at any pole, p = jw, 
of Z(p), if we set 

s(p) 
2lp 

= 2 2 
P + Wo 

for I Wo I < CIJ 

= lp for Wo = CIJ 

In 

W(p, s) = Zll + Z12(Z22 + Slk)-lZ:2 

[which is equation (4)] then by Lemma 4, W[p, s(p)] is a reactance 
matrix in p for all positive l. Since Z(p) is real for real p and Z = -zt, 
the residue matrix H at the pole p = jw is Hermitian; if we write it as 

then, K, the residue matrix of W[p, s(p)] at p = jwo is given by 

K = Hll - H 12 (H22 + l1k)-lHl~ . 

(73) 

(74) 

Since H, Hu , and H22 are Hermitian, there exist unitary matrices U1 

and U2 such that 

(75) 

and 

(76) 

Hence 

(77) 

where 

(78) 

If J 12i denotes the ith column of J 12 , the right side of equation (77) can 
be rewritten as 

(79) 
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Since I( is the residue matrix of a reactance matrix, for all l > 0, K is 
positive semidefinite. Au is also positive semidefinite, since Hu is 
the residue matrix of the reactance matrix Zll' J 12 ar2i is obviously 
positive semidefinite and the left side of (79) can be positive semi
definite for all positive l only if all the Ai are nonnegative. Hence A22 

and H 22 are positive semidefinite. 
To show that H is positive semidefinite, we will show that H' defined by 

H' = (U~ + U~)H(UI + U2) = [All 
Jt2 

(80) 

is positive semidefinite. For this purpose, consider the Hermitian form 

where 

l > O. 

Since 

is positive semidefinite, we obtain from equation (81) the following 
inequality: 

[X~ X~J [All . J12] [Xl] 
Jt2 D22 X 2 

~ X~J12D~~Jt2Xl + X~J12X2 + X~Jt2Xl + X~A22X2 . (82) 

Since the right side of equation (82) can be expressed as G*G, where 
G = [D~~2Jr2Xl + A~~2X2], the Hermitian form in equation (81) is 
positive semidefinite for all l > 0; by a continuity argument we can 
see that H' and consequently H are positive semidefinite. 

'rVe have thus shown that Z (p) does indeed describe a lossless network 
in the p-plane and thus W(p, s) has the network representation shown 
in Fig. 2. 

In the development of the synthesis procedure we assumed that 
a~r(jW)Tr_l(jW) = Tr-l(jW) ~ O. If simultaneously, ao(p) is an odd 
function of p [in'other words v = 1 in equation (39)] and r, the s-degree 



REACTANCE MATRICES 185 

of the least common denominator of W(p, s) is odd, then Tr-l(jW) ~ O. 
In this case we factor - Tr-1(p) which is para Hermitian and positive 
semidefinite on the jw axis. We will then have 

- Tr - 1 = M Mt (83) 

and hence, as before equation (44), 

MMt 
T r - 1 = -;-t' 

ao a~ 

It is then clear that the identification of Z12 and Z22 can be done in 
exactly the same way as when Tr - 1 (jw) ~ O. 

It is of importance to notice that the number of s-plane inductors 
used in the realization of Fig. 2 is equal to the s-degree, os[W(p, s)] 
which in general is smaller than the number required in Koga's tech
nique. Appendix C shows thatos[W(p, s)] is the minimum number of 
s-plane inductors required in any realization, and that if a realization 
is minimal in the variable s it is automatically minimal in the variable 
p, the minimum number of p-type reactances needed in any realiza
tion being the p-degree, op [W(p, s)] .18 

The main result of this section can be conveniently put in the form 
of a theorem: 

Theorem 4: Every two variable reactance matrix W(p, s) can be realized 
as the impedance seen at the first n-ports of a lossless (n + k)-port con
sisting of op[W(p, s)] reactances in the p-plane, terminated at its last k 
ports with o.[W(p, s)] unit inductors in the s-plane. Furthermore, such a 
realization uses the minimum possible number of reactances of each kind. 
(The roles of p and s are completely interchangeable.) 

Since several of the proofs involved in establishing Theorem 4 were 
rather indirect and lengthy, while the procedure for synthesis, sum
marized in Section IV, is itself rather simple. 

IV. SUMMARY OF SYNTHESIS PROCEDURE 

Given an (n X n) two variable reactance matrix Wo(p, s), decom
pose it as 

Wo(p, s) = W1(p) + W 2 (s) + W(p, s) 

where WI and W2 are reactance matrices in p and s, and W(p, s) is a 
two variable reactance matrix with no p-independent or s-independent 
poles. Such a decomposition is always possible by Theorem 2. 
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Expand W(p, s) as 

~ Az(p) 
W(p, s) = A_1(p) + L.J---r:tl 

1=0 S 

[which is the same as equation (7)] where the A (p) 's may be ob
tained by equations (16) or (16a) or by long division. 

Find 9 (p, s), the least common denominator of the entries in 
W(p, s) and express it in the form 

g(p, s) = ao(p)sr + a1(p)sr-l + ... + ao(p). 

[which is the same as equation (6)]. 
Form the (nr X nr) matrix Tr-dp) , defined by 

Ao(p) 

-Al(P) 

A2(P) 

which is equation (24). 

Al(P) 

-A2(P) 

A3(P) 

A2(P) 

-A3(P) 

A4(P) 

Factor Tr-1(p) = a~rrpr_l(P)' a polynomial matrix, as 

'1\-l(P) = 1I1Mt 

Ar-1(p) 

-Ar(P) 

Ar+1(p) 

(43) 

unless simultaneously, ao = -a~ and r in equation (6) is odd, in which 
case factor -Tr-1(p). The factorization must be such that M is a 
(k X nr) polynomial matrix with k = rank of T r - 1 (p) and M-t, the 
left inverse of M analytic in the open right plane. The existence of such 
a factorization is guaranteed by Lemmas 1 and 2. 

Partition M(p) into (n X k) blocks of equation (45) 

Mo(p) 

M1(p) 
M(p) = 

M r - 1(p) 

Form the (nr X nr) matrix Q(p) defined by equation (52) 
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With the identification of equations (9), (45), and (54) .::. 

and 

and 

the decomposition 

Zl1(P) = A_1(p) , 

Mo(p) 
Z12 = ao(p) , 

W(p, s) = Zll(p) + Z12(P)[Z2ip) + slkr1z;2 

187 

(4) 

is obtained. Notice that this is equation (4). It should also be noticed 
that W(p, s) can be decomposed as in equation (4) even if it has 
s-independent poles, since the assumption that W (p, 00) is finite is 
enough to guarantee the validity of the procedure. For network reali
zation it is usually more convenient to remove both p-independent 
and s-independent poles; we therefore removed them at the start of 
the procedure. 

To realize W (p, s) as the impedance of a passive network, we per
form the following operations. 

Form the (n+k X n+k) impedance matrix Z(p) of the coupling 
network 

Z(P) 
[ 

A-l(P) :(~) 1 
- ~~(p) Iv[-\p) n \p)M(p) 

ao(p) 

(84)t 

Realize Z(p) as a lossless (n+k) port network in the p-plane and 
terminate its last k-ports with unit inductors in the s-plane. Also 
realize the reactance matrices W1(p) and W2 (s) as lossless p-plane 
and s-plane n-ports, and connect all three networks in series as shown 
in Fig. 1. The given Wo(p, s) is thus realized as a passive network. 

V. AN EXAMPLE 

It is desired to synthesize the two variable reactance matrixt 

* Equation (54) is used to determine Z22(P), in preference to equation (50) since 
equation (54) is easier to compute. 

t Equation (84) is the same as equation (59) except that for the Z22 block 
equation (54) is used instead of equation (50) for the reason mentioned in the 
previous note. 

t This example was given by Koga, (see p. 50 of Ref. 8). 
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[

(P2 + l)(l + 1) ps - 1] 
W o(p, s) = (p + s) (ps + 1) P + s . 

~ ps+1 
p+s p+s 

Since Wo(p, s) has no p-independent or s-independent poles the first 
step 1 of Section IV need not be performed, and Wo (p, s) = W (p, s). 
The least common denominator of the elements of W (p, s) is 

g(p, s) = pS2 + (p2 + l)s + p 

[which is equation (6)], and hence 

ao(p) = p, a1(p) = (p2 + 1), a2(p) = p, and r = 2. 

The least common denominator of the minors of W (p, s) is also g (p, s) 
and hence 

k = 08[W(P, s)] = 2. 

In the expansion, equation (7), 

~ Az(p) 
W(p, s) = A-l(P) + L..J--z+l 

1=0 S 

by the formula of equation (16) or by long division 

A-l(P) = 1: [p2 + 1 p2], 
P p2 p2 

Ao(p) = _ \ [ (p2 + 1)2 p2(p2 + l)J ' 
p p2(p2 + 1) p2(p2 - 1) 

Al(P) = \ [ (p2 + 1)3 p4(p2 + 1)] , 

p p\p2 + 1) p4(p2 - 1) 

A2(P) = _ 14 [p8 + 3p6 + 4p4 + 3p2 + 1 p6(p2 + 1)]. 

P p6(p2 + 1) p6(p2 - 1) 

T r - 1 (p) = Tl(P) defined by equation (24) is 

[

_P2(P2+1)2 -p4(p2+1): p(p2+1)3 P5(P2+ 1)"] 

1 _p4(p2+1) -p4(p2_1) I p5(p2+1) p5(p2-1) 

T
r
_

1
(p) = p4 =-;(;;+-i)3---=-:-p~(;;+1)-:;;+3~+4;:+3;;+1--;6(;;+-i) .. 

-p5(p2+1) -p5(p2_1) I p6(p2+1) p6(p2_1) 
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The polynomial matrix T1(p) = P~Tl(P) is factored by the method in 
Ref. 16 as equation (43) 

[ 

p(p2+1) 

1 p2(p-1) 
Tl(P) = M(p)Mt(p) - -

- (2)! p4_ p3+2p2_ p +1 

-p(p2+1) 1 
-p2(p+1) 

p4_ p3 

-p2(p+1) 

p2(p-l) 

_(p4+ p3+2p2+ p + 1) 

_(p4+ p3) 

_(p4_ p3+2p2_p+1) 

The (4 X 2) matrix M(p) is partitioned as equation (45) 

M(p) = [~o~2J 
M1(P) 

1 

_p2(p2 + 1) 

_p2(p + 1) 
2 ------------------------------------

p4 _ p3 + 2p2 _ P + 1 _ (p4 + p3 + 2p2 + p + 1) 

4 3 
P - P 

To find M-l (p), a left inverse of M (p), it is enough to find a left in
verse of Jl1() if it exists, since 

[M~' : 0] [~J = 1, . 

In our example k = 2 and Mo is a nonsingular matrix and hence 
M-l (p) is given by 

M-l(p) = 3 -; 1 [_p2(P + 1) p(p2 + 1) l 0 OJ. 
2p (P + 1) _p2(P _ 1) p(p2 + 1) 1 0 0 

From the definition of n, equation (52) 

o 01 1 o 
1 

n(p) = o 0 : 0 1 
-------1-------------- . 

-1 1 1L±l OI-
1 P 

o 
1 
1 

O' -1: 
I 

o _1L±l 
P 
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Using equation (54) 

[

1L±l 
_ 2p 

(p _ 1)2 
2p 

- (p + 1)2] 
2p . 

p2 + 1 
2p 

Hence the coupling network formed by p-type elements has the 
(4 X 4) matrix of equation (84) 

Z(p) 

p2 + 1 
P 

p2 + 1 p2 + 1 
2p (2)!p - (2)!p 

P P 
P - 1 p+1 

(2)! l2T 
p2 + 1 p+1 p2 + 1 (p + 1)2 

(2)!p l2T 2p 2p 

p2 + 1 p - 1 (p _ 1)2 p2 + 1 
- (2)!p - (2)! 2p 2p 

Z(p) can be verified to be lossless, and the given Wo(p, s) can of course 
be realized as the impedance seen at the first two ports of Z (p) when 
it is terminated at its last two ports by unit s-plane inductors. 

VI. CONCLUSIONS 

The synthesis method for two-variable reactance matrices developed 
here, in general yields a nonreciprocal coupling network even when 
the given two-variable reactance matrix is symmetric, and if a 
reciprocal coupling network is desired, Koga's method for generating 
a reciprocal network from the nonreciprocal one can be used.8 This 
procedure generally yields a reciprocal network at the cost of in
creased numbe~s of elements of both kinds. 

This method of synthesis of two-variable reactance matrices has 
been successfully applied to the synthesis of lumped-distributed RC 
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networks which are important in microelectronics circuits.7 In prac
tice, the only laborious step in the synthesis procedure is the factoriza
tion of polynomial matrix in the desired form. Of great importance is 
the approximation of desired characteristics by rational functions in 
two-variables; any work in this area would greatly enhance the use
fulness of the two-variable theory. The synthesis problem of n-vari
able positive real functions, for which many applications can be 
found/ can be reduced to the synthesis of (n+ 1) -variable reactance 
matrices.21

•
22 when n = 1 the two-variable method developed here 

gives rise to a new method of passive RLC synthesis, which is no more 
complex than the existing methods. 
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APPENDIX A 

Partial Fraction Expansion of W(jw, s) 

To guarantee the factorization of Tr-1(jw) as MMt we needed Lemma 
2, which asserts that T r - 1 is para Hermitian and that T r - 1 (jw) ~ O. 
In the proof of Lemma 2 we used the fact that Ri(jW), the residue 
matrices of W(jw, s), are positive semidefinite. The proof is given below. 

Under the assumption that W(p, s) has no p-independent of 8-in
dependent poles, for each real w the s-plane poles of W(jw, 8) are simple 
and restricted to the imaginary 8-axis by Theorem 1. Hence, for any 
fixed w, we can write W(jw, 8) as 

W(jw,8) = A_l(jw) +:t Ri~W) 
i=l s - JCXi(W) 

(85) 

where the CXi(W) are real and the Ri(W) are the residue matrices at the 
poles jCXi(W). As in equation (9), r is the s-degree of g(p, s), the least 
common denominator of the elements of W. 

By complex conjugation on both sides of equation (85) 

W *(· ) - A* (. ) + ~ R~(w) JW, s - -1 JW LJ * + . ()' 
i=l S JCXi W 

(86) 

Since Wand A_1 are rational in jw, 

W*(jw, 8) = W( -jw, s*) 
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and 

A:~\(jw) = A_ 1 ( -jw). 

Hence equation (86) becomes 

W(-jw, s*) = A_l(-jw) + t R~(w) (87) 
i-I s* + jai(W) 

and 

~ R~(w) . -W(-jw, -s*) = -A-l(-jW) + L..J 
i=l s* - jai(W) 

(88) 

Since equation (88) is an identity for s*, we have 

W( · ) A ( .) + ~ R~(w) - - JW, -s = - -1 - JW L..J . • 
i=l S - Jai(W) 

(89) 

From the definition of a two variable reactance matrix, 

W(jw, s) = - W( -jw, -s) 

and by equation (19) 

Hence, by comparison of equations (85) and (89) we have the desired 
result 

Ri(W) = R~(w). (90) 

To show that the Ri(W) are positive semidefinite for each w, we first 
notice that if 

W(P s) = 1/;(p, s) 
, yep, s) 

where 1/;(p, s) is a polynomial matrix and yep, s) is the least common 
denominator of the entries in W, Ri(W) in equation (85) is given by 
(see p. 308 of Ref. 19) 

Ri(W) = 1/;(p, s) 
ay(p, s) 

as 

(91) 

Denoting ay/as by Ys and a1/;/as by 1/;s , for any n X 1 constant matrix 
X, (p. 39 of Ref. 8) 
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X*RiX = X*1/IX I 
Y. 'D-iw 

.-jao(w) 

= [(X*1/IX)Y8*- Y~X*1/I8X)]-1 
(X 1/IX) p~iw 

.-jao(w) 

Hence, if X*WX ¢ 0 

X*R.(w)X = [.i (X*WX)-l]-l 
as p=jw 

B=jai(w) 

193 

(92) 

From definitions 1 and 2, and Theorem 1, X*WX is a two variable 
positive function and for Re p = Re s = 0 

and 

Hence 

for 

.i (X*WX)-l as 

Re [X*WX] == 0 

a
a (X*WX) ~ O. s -

Rep=Res=O 

and consequently the left side of equation (90) is nonnegative. 
Thus we have proved that the residue matrices, Ri(W), are positive 

semidefinite Hermitian for each w. 

APPENDIX B 

Proof of Theorem 3 

Theorem 3: If 

W( ) _ Bo(p)sr + B1(p){-1 + ... + Br(P) 
p, s - ao(p)sr + a1(P)sr 1 + ... + ar(p) 

is a two variable reactance matrix, then for all i = 0, 1, ... r 
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BJai is a reactance matrix in'p. 
aJai+l is a reactance function in p. 
ai has all its zeros on the j axis, and these are simple. 
XBiXIXBi+1X for all constant n X 1 vectors, X, is a reactance function 

in p. 

Proof: For any constant n X 1 matrix X, 

is a rational function in p and s with possible complex coefficients. 
For convenience, if we define 

and as before 

bi = X*BiX 

w(p, s) = X*WX 

f(p, s) = bOST + bisT- 1 + ... + br 

g(p, S) = aosT + a1sT- 1 + ... + ar 

equation (93) can be written as 

w(p s) = f(p, s) . 
, g(p, s) (94) 

From the definition of a two variable reactance matrix, w(p, s) is a 
two variable positive function, and hence for any Po with Re Po > 0, 
w(po ,s) is a positive function of S.20 Consequently, for all s with Re s > 0 

Re f(po , s) ~ O. 
g(po ,s) -

(95) 

Since equation (95) has to be satisfied for all s with Re s > 0 and hence 
for arbitrarily small s, it can be seen from equation (93) that 

Re br(po) ~ 0 
ar(po) -

for all Po with Re Po > o. Hence, Br(p)lar(p) is a positive real matrix 
and since W = - Wt 

[~:J -[~:T 
and thus Brl aT is a reactance matrix in p. 
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If instead of starting froni the positive function f(po, s)/g(po, s), 
we start from 8 Pf(po, s)/8sP /8 Pg(po, s)/8s P

, which is also a positive 
function20 for all 0 ~ v ~ T, the same arguments used in proving that 
Br/ai is a reactance matrix can be repeated to show that BJai is a 
reactance matrix in p for all 0 ~ i ~ T. 

Now to show that ai+l/ai is a reactance function in p, we can use a 
similar proof based on the fact that 8P

-
1g(po, s)/8s P

-
1/8 Pg(po, s)/8s P 

is a positive function. 20 

Again, it can be seen from the fact that 

8 P
-

1g(po, s)/8s P
-

1/8 Pg(po , s)/8s P 

is a positive function. 20 that bi+dbi ' is a positive function satisfying 

[bb:'J = _[bb:T 
If X in equation (93) is chosen real bi+1/bi will be real for real p and 
hence XBi+1X/XBiX for any real n X 1 matrix, X, is a reactance func
tion. 

To see that the zeros of ai are all simple and restricted to the imaginary 
axis: if anyone of the ai has a double zero on the jw axis or a zero off 
the jw axis, from the reactance nature of ai+l/ai for all 0 ~ i ~ r, 
-all the ai must have the same zero, and, consequently, W(p, s) will 
have an s-independent pole contradicting our original assumption that 
W has no such poles. 

We have thus proved all the claims of Theorem 3. 

APPENDIX C 

Proof of the Minimality of the Realization of W (p, s) 
in Both Variables 

In this appendix we show that the realization of W(p, s) that Sec
tion III gives is minimal in both the p and s variables. From the def
initions of 88 [W (p, s)] and8p [W (p, s)], it can be shown that if 
W(p, s) is finite at p = 00 and s = 00, 

o.[W(p, s)] 

op[W(p, s)] 

o.[?](p, s)] 

op[?](p, s)] 

,:her.e the two variable rea.lpolynol1lial 

'r](p; s)· == do (p}Sk .+ dl(P)Sk~.l .. + ... . 0:+ dk(p) . .: (96) 
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is the least common denominator of all the minors of W (p, s). The 
form in which TJ (p, s) is written in equation (96) immediately reveals 
that 

O.[W(p, 8)] = k. 

And if TJ (p, s) is written as 

TJ(p, s) = co(p)pm + Cl(p)pm-l + ... + cm(p), (97) 

it can be seen that 

C.l Minimum Elements 

N ext we would like to find the minimum number of elements of each 
kind needed in the realization of W(p, s). 

Lemma 1 states that k, the rank of Tr-1(p), is equal to the s-degree 
of W(p, s), and the realization obtained there uses exactly k s-type 
elements. By equation (4) 

W(p, s) = Zl1(P) + Z12(P)[Z22(P) + slkrlz~2(p), 
Suppose that there exists a realization with ko s-type elements, where 
ko < k = rank Tr-1(p). Then, 

W(p, s) = Zl1(P) + ~12(P)[~22(P) + slkor 1 ~~2(P) 

where the matrices ~12(P) and ~22(P) are n X ko and ko X ko ,respectively. 
Then by equation (25), Tr-1(P) = N(p)Nt(p) where 

~12(P) 

N(p) = ~12(P)~22(P) 

Z12(P)!2;1(p) 

is an nr X ko matrix and hence, rank N(p) ~ ko . Also, we have 

rank Tr-1(p) ~ rank N(p) ~ ko < k = rank Tr-1(p) 

which is a contradiction, and hence k = rank Tr-dp) = 88 [W(p, s)] 
is the minimum number of s-type elements required in any realiza
tion. Now by repeating the same argument with a realization of 
W (p, 8) where p-type elements are extracted instead of s-type ele-
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ments, we can see that any realization must contain at least m p-type 
elements where m = Sp [ (p, s) ]. 

C.2 M inimality of the Realization in Section I I I 

vVe next discuss the minimality of the realization in both p-type 
and s-type elements. For the purpose of realization, the reactance 
matrix W(p, s) was decomposed as 

W(p, s) = Zll(P) + Z12(P)[Z22(P) + Slkr 1
Z:2(p) (4) 

where 

Z(p) = [ Z:l(P) Z12(P)J 

- Z12(P) Z22(P) 

(11) 

can be realized as the impedance matrix of a lossless (n + k) port 
in the p-plane. W(p, s) is the impedance seen at the first n ports when 
the above (n + k) port network is terminated with unit s-plane in
ductors at its last k-ports. Since k is the s-degree of W (p, s), the 
realization uses the minimum number of s-type elements. To show 
that the realization uses the minimum number of p-type elements, 
we have to show that S[Z(p)] =Sp[W(p, s)]. For this we need a rela
tionship that exists between the least common denominator of the 
minors of W(p, s) and the determinant IZ22(P) + sIkl. 

Every minor of [Z22(P) + sI k ]-1 can be expressed as p,(p, s)/cp(p, s) 
(See p. 21, of Ref. 12, Vol. 1) where p,(p, s) and cp(p, s) are polynomials 
in s with coefficients from the field of rational functions in p. Further-
more, 

'P(p, s) = I Z22(P) + si k I 
is a monic polynomial in s of degree k. 

Since W(p, s) has no p-independent or s-independent poles, every 
zero of 1](p, s) is a zero of cp(p, s), and since k = 88 [<p(p, s)] = 
88 [1] (p, s) ], cp (p, s) and 1] (p, s) / do (p) , which are monic polynomials in 
s with rational functions of p as coefficients, must be identical. Hence 

I () I 
1](p, s) 

Z22 P + si k = do(P) . (98) 

To show that o[Z(p)] = op[W(p, s)] (since we already know that o[Z(p)] ~ 
op[W(p, s)]) it is sufficient to show that o[Z(p)] ~ op[W(p, s)]. To establish 
this inequality, consider the matrix S(p, s) defined by 

S(p, s) = [Z(p) - sln+k][Z(p) + sln+krl. (99) 
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When s = 1, S(p, s) is the scattering matrix of a lossless network, 
since Z (p) describes a lossless network and (see p. 184 of Ref. 11) 

o[Z(p)] = o[S(p, 1)]. (100) 

Since S(p, 1) is para unitary (see p. 131 of Ref. 15) 

o[S(p, 1)] = 0[1 S(p, 1) 1]. (101) 

Equating the determinants of matrices on both sides of equation (99) 

\ S(p s) \ = \ Z(p) - sInH \. 
, \ Z(p) + sInH I 

Using a formula from the theory of determinants (see p. 46 of Ref. 
12, Vol. I) 

I S(p, s) I _ I (Zll - sin) + Z12(Z22 - sIk)-l Z!2 I· I Z22 - sik I 
- I (Zll + sin) + Z12(Z22 + sIkri Z:2 1·1 Z22 + slk I 
_ I W(p, -s) - sIn I I Z22 - sik I 
- I W(p, s) + sIn I ·1 Z22 + Slk I· 

Now if IW(p, s) + SInl is written as 

I W(p s) + sl I = k(p, s) 
, n 1J(P, s) 

(102) 

(103) 

where k (p, s) is a real polynomial in p and s, since the left side of 
equation (102) is finite at p = 00 

(104) 

Substituting equations (98) and (103) in equation (102), we have 

I S( s) I = k(p, -s) . 1J(p, s) .1J(p, -s). do(1!l 
p, 1J(p, -S) k(p, s) do(p) 'I'}(p, s) 

k(p, -s) 
k(p, s) 

and by equations (100), (101), and (104) 

o[Z(p)] = o[S(p, 1)] ~ op[W(p, s)]. 

,\Ve have thus shown that o[Z(p)] = op[W(p, s)]. 

(105) 

It should be noted that Z (p) is the impedance matrix of any loss
less coupling network in a realization of W(p, s), minimal in s, and 
hence we come to the important conclusion that if a realization of 
W (p, s) is minimal in one of the variables it is automatically minimal 
in the other variable. 
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Computation of tIle Noncentral Chi-Square 
Distribution* 

By G. H. ROBERTSON 

(Manuscript received July 17, 1968) 

This article gives a formula that allows accurate values of the cumulative 
noncentral chi-square distribution to be computed. Although this distribution 
has been recognized for a long time, none of the standard references give 
formulae that are suitable for computing accurate values over an extensive 
range of the parameters; approximations in terms of the chi-square dis
tribution are usually recommended. A program written by the author, based 
on the formula given here, has been successful for computations involving 
more than 10,000 degrees of freedom. Since many steps are required when the 
degrees of freedom are as large as this, the program is not "fast" but it is 
believed to be accurate. 

I. INTRODUCTION 

The Non-Central Chi-Square Distribution is encountered in many 
statistical problems, one of the most important in communications 
studies being the detection of signals in noise using a square-law 
detector.! Marcum discussed this application but concluded that a 
satisfactory algorithm for computing system performance could not 
be based on the formula he used. 2 This article shows that a satisfac
tory algorithm can be based on the formula that Marcum derived if 
the expression is expanded in a power series and the terms are properly 
grouped before being evaluated. 

More recently Urkowitz3 discussed detection system performance 
in which the above distribution arose and recommended that approxi
mations in terms of the chi-square distribution, given by Patnaik/ 
be used for computation. While these approximations are adequate 
for some purposes, it is desirable to have a reliable and accurate 
method of computing values, if only to check the approximations. 

* This work was supported by the U. S. Navy under contract N00039-68-C-3584. 
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II. INTEGRATION OF NON CENTRAL CHI-SQUARE DISTRIBUTION 

If the signal-to-noise power ratio is x for the sum of TJ independent 
samples of the output of a square-law detector, the following integral* 
gives the probability that the sum will be y or more. The variables 
are normalized to the variance of the individual noise samples, so 
the average signal-to-noise power ratio for one sample is x/TJ and the 
average output per sample is Y/TJ' Considering one sample of noise 
to be the sum of the squares of two independent gaussian variables 
of unit variance, the integral is related to the noncentral chi-square 
distribution by the conversions given in equation (8). 

f OO (Z)('1-1)/2 
Q = 1/; exp (-z - x)I'1-1[2(zx)'] dz. (1) 

From (Ref. 4, Section 8.445) [71-1 [2 (zx) %] is the modified Bessel 
function 

00 (t/2)m+2k 
I m( t) = ~ k! rem + k + 1)' (2) 

Thus 

Q = exp (-x) foo exp (-z)z'1-1 dz + exp (-x) foo exp (-z)z'1-1 
r(1]) 1/ f(1]) 1/ 

[ 
xz (xz) 2 (xz) 3 

] 

. 1! 1] + 2! 1](1] + 1) + 3! 1](1] + 1)(1] + 2) + ... dz. (3) 

Notice that 

fOO exp (-z)z'1- 1 dz = r(1], y) 
1/ 

(4) 

the incomplete gamma function (Ref. 5, Section 6.5.3). Since 

t f' exp ( - t) dt = - f' exp( - t) r + p t tH exp (- t) dt (5) 

equation (3) can be written 

Q = exp (-x) [f( ) 
r(1]) 1], y 

+ ;, {r(~, y) + (~)r exp (-y)} 

* Sometimes called the generalized Marcum Q-function. See Ref. 2. 
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+ ~; {r(~, y) + (~ + ~(~ y~ 1»)Y'-' exp (-y)} 

+ ~; {r(~, y) + (~+ ~(/~ 1) + ~(~ + t3(~ + 2)Y'-' exp (-y)} 

+ ... and so on ] . (6) 

Summing the terms by columns gives 

Q = r(1], y) + yTl-l exp (-y) [U exp (-x) f xr 
r(1]) r(1]) 1] r=l r! 

2 (l) r 

y "x + ( + 1) exp (- x) L..J, 1] 1] r=2 r. 
3 (l) r 

y ( )" x + 1](1] + 1)(1] + 2) exp -x ~ r! 

+ ... and so on ] (7) 

A satisfactory computing algorithm can be based on equation (7) 
where we notice that Q can be expressed as the ~um of 'two parts, Q1 
= r(1], y)jr(1]) which is independent of x, and another part which 
we call Q2. 

III. DISCUSSION 

The' noncentral chi-square cumulative distribution can be written 
Q (x'2iv, A.) (see Ref. 5, Section 26.4.25), where the distribution is in
tegrated from X'2 to infinity, the number of degrees of freedom is v, 

and the noncentral parameter is A.. This integral is the same as that 
given in equation (7) if we put 

(8) 

1\ = 2x 
so that 

Q(2y I 21], 2x) = Ql + Q2 
(9) 

= Q(2y I 21]) +Q2 

whereQ(2Yi21]) = Q(x2iv), the cumulative chi-square distribution 
(see Ref. 4, Section 26.4.2) .' 
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If M independent samples of the output of a square-law detector 
are averaged, when the input is narrowband gaussian noise plus a CW 
signal at the center of the band, Q can be used to find the probability 
that a threshold value will be exceeded. Expressing all parameters in 
units of the narrowband noise power, the desired threshold is yl"" xlTJ 
is the signal-to-noise power ratio, and M =",. 

It is interesting that the Rayleigh distribution, and the Rice dis
tribution, are equivalent to the chi-square and non-central chi-square 
distributions respectively, when the latter are expressed in terms of a 
parameter X equal to the square root of x2

, and", = 1. 
Marcum2 gave an expression of the form shown in equation (3) 

for the output of a square-law detector. He stated that it could only 
be used satisfactorily for values of ", up to about 10. More recently 
Urkowitz3 has discussed the integration of a square-law detector out
put and recommends that the non central chi-square distribution be 
computed using an approximation given by Patnaik1 in terms of the 
chi-square distribution. Patnaik compares with exact values some 
results computed using the approximation and finds errors of the 
order of 1 % around Q = 0.5. The accuracy is much less for values 
around unity and for values less than 0.01. 

Brennan and Reed have shown that, when the order of the Bessel 
function in equation (1) is zero, corresponding to one sample, a 
straightforward recursive method applied to the resulting equation 
(6) can be used to compute the integral.6 They suggested that a 
similar procedure could be used even on the form of equation (I) 
given here. However, as pointed out by Marcum, such a technique 
rapidly becomes useless as ", increases above about 10. 

A program written by the author, based on equation (7), has been 
used satisfactorily for ", as large as 8192, and simultaneously for 
values of xl", up to 0.1. The exact values given by Patnaik were 
checked. Further checks were made possible by the development of a 
uniform asymptotic expansion by S. O. Rice, with which it is possible 
to get results outside the useful range of the algorithm given here.7 

Table 1 compares values obtained with the author's program 
(CHISQ) and corresponding values supplied by S. O. Rice using his 
uniform asymptotic expansion (UAE) , with results obtained using 
the Patnaik1 and Gauss approximations (Ref. 5, Section 26.4.29). 

The accuracy of the algorithm given in equation (7) decreases as 
xl", increases in the table, and the value in the last entry depended 
quite sensitively on the last digit of a 18 digit double precision con-



X/fJ Y/fJ fJ 

0.01 1.05 8192 
0.05 1.05 8192 
0.08 1.05 8192 
0.1 1.05 8192 
o.n 1.05 8192 
0.12 1.05 8192 
0.13 1.05 8192 
---

TABLE I-COMPARISON OF COMPUTATION METHODS 

l-CHISQ UAE PATNAIK 

0.999801547E-00 0.9998015E-00 0.999801544E-00 
O. 501464546E-00 0.5014645E-00 0.501467E-00 
0.552623909E-02 O. 5526235E-02 O. 552472E-02 
O. 138627645E-04 O. 1386275E-04 O. 138700E-04 
o . 2811R6446E-06 0.2811860E-06 0.280145E-06 
0.316387190E-08 0.3163860E-08 0.314279E-08 
o . 20004E-10 0.199969E-10 0.197750E-1O 

GAUSS 

0.999809E-00 
0.50nOE-00 
O. 56050E-02 
O. 14803E-04 
O. 31438E-06 
0.37651E-08 
0.25799E-10 

a 
p:: 
1-1 
I 

UJ. 

§ 
r;; 
t'j 

l:' 
1-1 
UJ. 
8 
~ 
6j 
o 
8 
1-1 o 
Z 

tv 
o 
Q1 
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stant used in the program. Notice that even for the last entry, the 
value actually computed, (CHISQ), appears to be correct to 14 places 
after the decimal point. 

IV. EXTENSION TO A MORE GENERAL INTEGRAL 

A more general integral is obtained by writing, for example, the 
13th moment of the partial noncentral chi-square distribution, 

Q/3 = i<>O l(;) ('1-1)/2 exp (-z - x)I'1-1[2(zx)!] dz. (11) 

The corresponding form of equation (4) is 

f<>O l exp (_z)z'1-1 dz = r(~, y) 
1/ 

(12) 

where 

~ = r] + (j, (13) 

and the corresponding form of equation (7) becomes 

Q = r~~'r]f) exp (-x)lFl(~; r]; x) 

+ y~-l exp (-y) [y ( ) ~ xr (~ + l)r-l ---- - exp -x L...J-
r(r]) r] r=l r! (r] + l)r-l 

+ y2 () ~ xr (~ +. 2)r-l exp -x L...J-
r](r] + 1) r-2 r! (r] + 2)r-l 

+ y3 ( ) ~ xr (~ + 3)r-l exp -x L...J-
r](r] + 1)(r] + 2) r=3 r! (r] + 3)r-l 

+ ... and so on ] . (14) 

The confluent hypergeometric function IFI Ca; b; x) (Ref. 5, Section 
13.1.10) is defined by 

ax a(a + 1)x2 a(a + l)(a + 2)x3 

lF1(a; b; x) = 1 + bI! + b(b + 1)2! + b(b + l)(b + 2)3! + 
= i: (a)rxr . 

r-O (b)rr! 

(15) 

Equation (15) conveniently gives an example of Pochhammer's sym
bol (a)r (Ref. 5, Section 6.1.22), also used in equation (14). 
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The structure of equation (14) is closely related to that of equa
tion (7), so it can form the basis for a useful algorithm to compute 
the integral given in equation (11). 
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Uniform Approximation of Linear Systems* 

By HARRY HEFFES and PHILIP E. SARACHIK 

(Manuscript received August 6, 1968) 

A method for reducing the complexity of the class of linear, time-varying, 
dynamic control systems is developed where the approach taken is that of 
uniform approximation (that is, modeling for a region of initial conditions). 
The objective of the modeling procedure is to choose a linear time-invariant 
system of given dimension, that minimizes a "worst-case" type of error 
criterion. Some results from the theory of widths of sets in Banach space 
are used to obtain bounds on the optimal approximation error as a function 
of the dimension of the approximating system. The use of these bounds in 
choosing the order of the approximation is discussed. An example illustrates 
the use of the derived results. 

1. INTRODUCTION 

In the analysis and design of control systems it is often useful to 
have low order constant coefficient models for the system. The prob
lem of modeling linear systems by lower order linear systems has 
received considerable attention, but these analyses have usually been 
restricted to the modeling of constant coefficient systems. 

References 1 through 5 contain various approaches to the system 
approximation problem; however, these analyses are generally re
stricted to the modeling of constant coefficient systems or systems 
which are forced with a given input or initial condition. 

The control system analyst often finds himself dealing with non
stationary systems, but little work has been done in the area of 
optimally modeling this class of systems. The emphasis here is on 
modeling the class of linear, homogeneous time-varying systems with 
constant coefficient models. Reference 6 considers approximation of 
forced systems. Rather than design the model requiring solutions of 
the actual and approximate systems be "close" for a prescribed initial 

* From a dissertation written as part of the requirements for a Ph.D. degree, 
New York University, 1968. 
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condition, the approach taken here is that of uniform approximation. 
Initial conditions are assumed to lie in some set in Euclidean space 
and a "worst-case" type of error criterion is defined. This eliminates 
tuning the model to specific conditions which may not be met when 
using the model. The material presented here thus generalizes previous 
work in that it extends the class of systems considered to time-varying 
systems and generalizes the error criterion to handle the more realistic 
problem of modeling for regions of initial conditions. 

The problem is of importance, for example, in trajectory analysis 
where the linear time-varying system is obtained by linearizing a set 
of nonlinear equations about a nominal trajectory. In this case the 
time-varying nature of the system is described by partial derivatives 
evaluated along the nominal trajectory. Solutions to the resultiI}g 
equations require simulation for each set of initial conditions. Using 
a constant coefficient model eliminates the need for repeated simula
tion. 

The above example illustrates the use of a simplified model in 
analysis. The designer is interested in reducing the complexity of 
high-order nonstationary control system plants since this provides 
a means for designing simpler controllers based upon the model de
scription. The results presented here not only allow one to obtain 
stationary models but simultaneously offer the opportunity to obtain 
lower order models of the original system. 

II. PROBLEM DEFINITION AND FORMULATION 

The system we are considering is described by the linear, time
varying, homogeneous vector differential equation 

:t(t) = A (t)x(t) (1) 

with the outputs given by 

yet) G(t)x(t) (2) 

where 

x(t) is an n-vector 

A(t) is an n X n matrix whose elements are bounded and piecewise 
continuous on [to, tIl. 

G(t) is an m X n matrix whose elements are bounded and piecewise 
continuous on [to, tIl. 
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It is desired to obtain a constant coefficient system of kth order* 
(k ~ m) 

~(t) = Ax( t) (3) 

such that the first m components of the state vector x(t) closelyapproxi
mate the components of yet) over the finite time interval [to, t,]. Writing 

fJ(t) = Cx(t) (4) 

with 

C = [Imxm : 0] 

the approximation problem can be viewed as choosing the elements of 
the k X k matrix A such that fJ(t) approximates yet) over [to , t,]. 

Since, in general, it is not known at the time of modeling what initial 
conditions will exist in the system, it is desirable to have the approxi
mating system depend on a prescribed range of initial conditions rather 
than being tuned to any specific initial condition. The initial conditions 
are considered to lie in a closed, bounded convex subset of Euclidean 
n-space. That is, 

and the performance criterion is given by 

I
t! 

Jk(A) = max min (y - fJ)'W(t)(y - fJ) dt 
XoER XoEEI; to 

where 

[to, t,] is bounded 
yet) is the solution of (1) and (2) with x(to) = Xo 

fJ(t) is the solution of (3) and (4) with x(to) = Xo 

Wet) is positive definite and bounded for all t t [to. t,]. 

(5)t 

The above performance criterion corresponds to the worst case error 
in the approximation, corresponding to a given model, when the initial 
condition on the model, x(to), is chosen optimally in terms of the initial 
conditions on the actual system. The modeling objective is to choose 
A to minimize Jk(A)(that is, minimize the maximum approximation 
error). 

The approximation problem will be cast into a Hilbert space setting 

* Notice that k is not restricted from above. It may be desirable to have k 
> n if the original system is time-varying. 

t In all that follows the prime denotes transpose. 
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which will permit the use of many of the general results to be presented 
in the next section. Vector spaces of solutions of the original system 
equations and any member of the class of approximate system equations 
are established. These spaces are then imbedded into an encompassing 
Hilbert space. It then is shown that the problem of finding an optimal 
approximation can be viewed as a problem of finding the "best" subspace 
(of a given form) of the Hilbert space to use in approximating solutions 
of the original system. Writing the output vector of the original system 
in terms of the transition matrix leads to 

(6) 

where the transition matrix <p(t, to) satisfies 

(7) 

with initial conditions 
(8) 

Now if the original system is completely observable8
•
9 on the finite 

interval [to, tl ] the columns of the m X n matrix C(t)<p(t, to) are linearly 
independent as vector-valued time functions. That is, 

implies x(to) = O. For an observable system, the initial state can be 
determined uniquely from knowledge of the output. Since x(to) = 0 ::::} 
yet) == 0 and, from observability, yet) == 0 ::::} x(to) = 0 the linear in
dependence of the columns of C(t)<p(t, to) follows. 

Let 11 be the linear space spanned by the n columns of C(t)Cf!(t, to). 
The solutions of the original system lie in 11, which is of dimension n for 
an observable system. Notice that the number of components (m) in 
the vector y and the dimension of the space 11 need not be the same. If 
the system is not completely observable on [to, tl ] the dimension of 11 is 
less than n. 

The solutions to equations (3) and (4) can be written as 

(9) 

where 

and 
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(10) 

It is thus seen that solutions yet) lie in the vector space spanned by the 
k columns of the m X k matrix CeA(t-t o

). Denote this vector space as 
'Yk . If A is such that the approximate system is observable then 'Yk is 
of dimension k and the k columns of CeA(t-t o

) form a basis 

{g. ; i = 1, ... , k} 

for the k-dimensional vector space 'Yk of approximating solutions. These 
basis elements can be written as 

gi(t) = CeA(t-t o) Ki 

gi = {gi(t); t E [to , tl ]} 

(11) 

(12) 

where Ki is the ith column of the k X k identity matrix. If the approxi
mation is not observable the dimension of 'Yk is less than k. In any case 
vector spaces 'Yk with basis elements of the form (11) characterize the 
approximating systems where A is a k X k real matrix. Defining 

~k = {'Yk; gl, ... , gk span 'Yk} (13) 

where gi(t) is given by equation (11) and A is any real constant k X k 
matrix casts the problem into finding an element of ~k minimizing J k • 

The problem of finding an optimal approximation has been cast into 
the problem of finding an extremal space 'Yt E ~k of approximating 
solutions. A Hilbert space X containing ~ and all members of ~k will 
now be constructed. 

Recall that the elements of ~ and 'Yk are real, vector-valued, time 
functions having m components. Thus each element of the Hilbert 
space X to be constructed will have m components. The inner product in 
X is defined by 

(14) 

where Wet) is a real symmetric m X m matrix which is positive definite 
for t E [to , til and whose elements are bounded for t E [to, tiJ. Notice that 
this is the same matrix appearing in the performance criterion given 
by equation (5). The norm of an element in X is given by 

llyll = (y, y)i. (15) 

The Hilbert space X is defined as 

:Ie = {y; y has m components, II y II < co} 
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where II y II is given by (15) and the inner product given by (14). 

Since 

tf - to < 00 

and the elements of A(t) and C(t) are bounded it follows that solutions 
of equations (1) and (2) are bounded thus yielding 

-
'Y ex. 

Since elements of 'Yk are bounded over the finite interval [to, tf ] 

'Yk C x. 
That 'Yk and 11 are subspaces of X follows from the fact that any finite
dimensional linear set in a normed space is closed 10. 

The set of functions to be approximated are solutions to the original 
system equations with the initial conditions x(to) satisfying 

x(to) £ R C En 

where R IS a closed, bounded convex subset of Euclidean n-space. 
Writing 

(16) 

gives 

Jk(A) = max min II y - y W (17) 
yt(f yt'lJ I: 

where the modeling objective is to find 

d~ ~ inf max min II y - y W. (18) 
'lJ .l;t:l).I; Yt(f Yt'lJ.I; 

Before proceding to solve the formulated approximation problem, 
some results from the theory of widths in Banach space are outlined. 
Lower bounds on the optimal performance are found as a function of 
the dimension of the approximating system. 

III. WIDTHS OF SETS IN BANACH SPACE AND LOWER BOUNDS* 

Classically, approximation theory was concerned with the follow
ing problem. Given a function to approximate and a set of approxi
mating functions (sinusoids, exponentials, and polynomials, for ex
ample) find that linear combination of approximating functions which 

* Ref. 7 contains an excellent treatment of widths of sets in Banach space. 
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minimizes some distance function. Notice that here the approximat
ing functions are given as part of the problem statement. 

Rather than approximate a single function, the problem under con
sideration is to approximate the class of functions 5= given by (16). 
For a given class of functions 5= it is desired to obtain a "best" set of 
approximating functions rather than to choose the set arbitrarily. A 
measure of comparison is introduced which enables one to evaluate the 
efficiency of different sets of approximating functions. The following 
definitions serve to illustrate these ideas. 

Let ffi be a Banach space containing a set of functions 5= to be approxi
mated by elements of an n-dimensional subspace, Xn , of ffi. It is desired 
to find the "best" n-dimensional subspace, or equivalently the "best" 
set of approximating functions to use in approximating elements of 5=. 

For a given f t 5= and Xn C ffi 

inf IIf-xll 
X£Xn 

represents how well one can do in approximating a given f with elements 
of Xn . Taking the supremum of the above quantity over all elements 
in 5= leads to the following definition. 

Definition 1: The deviation of 5= from Xn is given by 

Ex n (5=) = sup inf II f - x II· 
ft'J X£Xn 

The deviation represents the worst case approximation error over the 
class 5= when using elements of Xn . Notice that the deviation serves as 
a performance measure of X n • Taking the infimum of the deviation 
over all n-dimensional subspaces of ffi leads to the following definition. 

Definition 2: The nth width of 5= is given by 

dn( 5=) = inf EXn( 5=) 
Xnc(B 

= inf sup inf II f - x II. 
Xnc(B f£'J X£Xn 

Some of the elementary results following from the above definitions are 

(i) The monotonicity of the width: 

do(5=) ~ d1 (5=) ~ d2(5=) ~ 

and 

(ii) The nested property: If 5=1 C 5=2 C ... then 

dn(5=1) ~ d1i (5=2) ~ 
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Notice that 

(19) 

In defining d~ the infimum of the square of the deviation was taken 
over the j-dimensional (j ~ k) subspaces in ~k whereas in defining dk 

the infimum was taken over all k-dimensional subspaces of <E. Using the 
monotonicity property of the width, with X serving as the required 
Banach space, gives 

for any k X k matrix A. 

Definition 3: Un is a closed ball of radius r in Xn if 

Un = {xtXnillxll ~r}. 

(20) 

The following theorem, by Gohberg and Krein, is proved in Ref. 7 
and will be found useful. 

Theorem: If X n+1 is an (n + I)-dimensional subspace of a Banach 
space <E and if Un+ 1 is the closed ball of radius r in X n + 1 then dn(Un+ 1) = r. 

This theorem and the nested property of widths can be used to obtain 
lower bounds on dn(~)' This lower bound can be obtained by constructing 
a ball in an (n + I)-dimensional subspace and choosing r such that 
U n+ 1 C ~. Using the nested property then leads to 

(21) 

Since 
die ~ dk (22) 

the radius of ball also serves as a lower bound on (J Ie) i . 

Lemma 1: Let <I>(t, to) and C (t) be the transition matrix and output 
matrix, respectively, of the original system (1) and (2). Assume this system 
to be completely observable on [to, til. Let Wet) satisfy the previously stated 
conditions. Then the matrix 

f
t! 

M = <I>'(t, to)C'(t) W(t)C(t)cJl(t, to) dt 
to 

is positive definite. 

Proof: Consider the quadratic form x~Mxo = II y W ~ 0 where 

x(to) = Xo, that is, yet) = C(t)cJl(t, to)xo . 

NowllyW = O=}y(t) == Oon[to,tll· 

(23) 
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Since the system is observable y == 0 =} xo = O. Thus JJI is positive 
definite. 

The following theorem provides the lower bound on the performance. 

Theorem 1: Let R be the closed region of initial conditions on the 
original system and let x(to) = 0 be an interior point of R. Assume the 
system to be completely observable on [to, tl]' Denote the boundary of R by 
aR and let 

p2 ~ min x' (to) X (to) . (24) 
x(t o ) taR 

Let the eigenvalues of the positive definite matrix M be ordered Al (M) ~ 
A2CM) ~ ... ~ AnCM). Then the performance, for any k-dimensional 
approximating system, satisfies Jk(A) ~ p2Ak+lCM) for k < n. 

Proof: Let 

if = {y; yet) = C(t)ip(t, to)x(to), x(to) E R}. 

A k + 1 dimensional ball will now be constructed which is a subset of 
if. Consider the k + 1 dimensional ball of radius r 

Ek+l and r will be chosen such that Uk + 1 C if. Since M is real and sym
metric it can be diagonalized with an orthogonal matrix T. Thus M = 
T' AT and 

where 

T' = T- l 

A = [A, ... 0 1 
o An 

and 

Defining 

Ek+l = {x(to); [TX(to)]i = 0, i=k+2,·'·,n}. 

and 
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gives 

Uk+l {y; yet) = C(t)CP(t, to)x(to), 

II y W ~ p2 Ak+1(1lif), [TXCto)]i = 0 

i=k+2,···,n}. 

Thus for y E Uk + 1 

n 

2: Z~Ai ~ p2A
k+ 1 • 

i=1 

Since 

i = k + 2, ... , n 

and 

for i ~ k + 1 

we have 
n 
"'2 ,<2 
L..., Zi = XoXO = P • 
i-I 

It then follows, from the definition of / and the fact that zero is an 
interior point of R, that Xo E R and therefore y E B=. Thus Uk+l C B= 
and the desired result 

k<n 

follows. 

Remarks: Recalling that the eigenvalues of M are ordered, we 
notice that the lower bound is a decreasing function of the dimension 
of the approximating system. This result can be used to determine 
what order aproximating system (at least) need be considered to 
achieve a given performance. We emphasize that the bound depends 
on the original system and is obtainable prior to the modelling proce
dure. From an engineering viewpoint, if one has an approximating 
system whose performance is "close" to the bound it may not be 
necessary to seek the minor improvement. Notice that the only prop
erty of R appearing in the lower bound is p and no attempt was made 
to take the orientation of the set into account. The bound will there
fore be least conservative when R is a hypersphere of radius p. 
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IV. EVALUATING THE PERFORMANCE FUNCTION 

In this section the problem of finding the performance (or equi
valently the deviation) of a given approximating system is considered. 
The optimal choice of initial conditions on the approximating system 
is obtained using some elementary Hilbert space concepts and it iR 
shown that 

is a positive semidefinite quadratic form in x (to) . Next, properties of 
convex functions are used to evaluate the performance for different 
classes of regions of initial conditions; namely, for ellipsoids and con
vex polyhedra. The Powell algorithm for minimizing a function of 
several variables, without calculating derivatives, is then outlined 
and applied to the system approximation problem. 

The problem of finding 

fl = inf II y - y 112 (25) 
yt'll k 

is equivalent to finding the best choice of initial conditions on a given 
approximating system characterized by 'Yk E !:Ok. It can be shown 11 

that there exists a unique y* E 'Yk (y* is called the projection of y in the 
space 'Yk) such that 

fl = II y - y* W = II y W - II y* W· (26) 

Furthermore, since gl , g2 , ... , gk spans 'Yk , y* has the representation 

k 

y* = L gixt 
;=1 

where 

(27) 
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and G is the Grammian of {gi ; i = 1, ... , k}, that is, 

i, j = 1, ... , k. 

Any solution to (27) results in an optimum choice of initial conditions 
on the approximate system. If the g/s are linearly independent (this 
corresponds to the system being observable) the Grammian is invertible 
and j;* is unique. Thus 

where Gt is the pseudoinverse12 of G. 

The Grammian is given by 

(28) 

G(gl , ... ,gk) = f" eAICI-to)C'W(t)CeACt-to) dt (29) 
to 

and 
(30) 

where F is given by 

f
t

' F = eAIU-to)C'TV(t)C(t)<I>(t, to) dt. 
to 

(31) 

Using (30) in (28) gives 

(32) 

Thus the optimal initial condition on the approximating system 
is obtained by linearly transforming the actual initial condition with 
the (k X n) matrix GtF. Using the orthogonality property (26) yields 

II y - y* W = II y W - :l*'(to)G:l*(to). 

Letting 

f
t

' M = <I>'(t, to)C'(t) W(t)C(t)<I>(t, to) dt 
to 

and using (32) and the symmetry of G (and thus Gt) gives 

II y - y* W = x'(to)(M - F'GtF)x(to). 

In summary, 

02 = inf II y - y 112 = x/(to) Dx(to) 
yt'Y i 

(33) 

(34) 

(35) 
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with 

D = M - F'GtF. (36) 

Thus, finding the optimal initial condition on the approximating sys
tems leads to the positive semidefinite quadratic form (35) for the 
approximation error. The above represents the first step in evaluating 
the performance of any given approximating system. 

Since D is a positive semidefinite matrix, 82 defined by (35) is a 
convex function of the initial state x (to). The following theorem from 
Ref.13 is useful in maximizing 82

• 

Theorem: If the absolute maximum of a convex function, defined 
on a closed, bounded, convex set, is finite then the absolute maxi
mum is taken on at an extreme point of the set. 

Remarks: An extreme point of a convex set is a point in the set 
that cannot be written as a convex combination of two other points 
in the set. Notice that an extreme point is a boundary point; how
ever, generally not every boundary point is an extreme point. Thus, 
if one is seeking the absolute maximum of a convex function defined 
on a closed, bounded, convex set only boundary points need be con
sidered. Also if the domain of definition is a convex polyhedron (a 
closed, bounded, convex set with a finite number of extreme points) 
the absolute maximum can be obtained by simply evaluating the 
function at the extreme points and choosing the largest value. 

Two general classes of closed, bounded, convex regions of initial 
conditions are considered in this paper, the ellipsoid and the convex 
polyhedron. 

Let the region under consideration be an ellipsoid defined by 

(37) 

where B is a positive definite, symmetric matrix and r is finite. Notice 
that R is closed, bounded, and convex. Now the constrained maxi
mization problem is one with an inequality constraint. Using the con
vexity of R and 82 

, the absolute maximum of the quadratic form is 
seen to take place on the boundary of the set R. Thus the performance 
can be written 

Jk(A) = max x'(to) Dx(to) 
z(t o ) 

subject to the constraint 
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It can easily be shown that the x(to) maximizing the quadratic form 
is the eigenvector of the matrix B-1 D corresponding to the largest 
eigenvalue and the maximum is given by 

(38) 

A convex polyhedron is usually representative of the type of in
formation one has as to the range of initial conditions. As an example 
of this situation consider the original system to represent linearized 
equations of motion of a space vehicle. Suppose it is known that the 
range of initial conditions are in terms of bounds on position, ve
locity deviations, and so on. For example, 

I X1Cto) I ~ 100 feet. 

I X2(to) I ~ 5 feet per second. 

This particular region is described by a rectangular region III state 
space with the extreme points being the corners 

In general for this type of initial condition region, that is, 

i = 1, ... ,n, 
the region has 2n extreme points. Since 82 is an even function of x (to) 
it is only necessary to consider 2n-1 extreme points eliminating from 
consideration the negative of any point considered. 

The convex polyhedron region also is important, for example, since 
it may be used to simply approximate a more complex region. In gen
eral, let 

XCi) i = 1, 2, ... , N 

be the extreme points of the convex polyhedron R. Using the con
vexity of 82 in the initial state x (to) the absolute maximum 82 over 
R takes place at one of the X(i). Letting 

where D is given by equation (36) leads to 

(39) 
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v. MINIMIZING THE PERFORMANCE FUNCTION 

Since it is a fairly simple matter to evaluate the performance, whereas 
evaluating the gradient of the performance function requires significant 
computational effort, it is desirable to use a numerical procedure not 
requiring a gradient computation. Notice that Jk(A) is not generally 
differentiable. Here, for completeness, the Powell method of minimizing 
a function of several variables without calculating derivatives is pre
sented. l4 Reference 15 contains a summary of the various minimization 
techniques available not requiring the computation of a derivative. 
See Refs. 14 and 15 for a more detailed description of the methods 
and their convergence properties. 

Consider a real, scalar, valued function of N real variables a1 , ... , aN 
written f(a). Powell's iterative scheme concerns itself with finding the 
minimum of f(a) without computing its derivative. 

Each iteration of the modified Powell procedure starts with a search 
down N linearly independent directions 

1]1 , 1]2, ••• , 1]N 

starting with an initial guess ao and defines a new set of directions for 
the next iteration. 

An iteration of the recommended procedure, suggested by Powell, is: 

(i) for j = 1, 2, ... , N calculate Ai such that f(a'-l + Ai1]i) is 
minimum and define ai = ai-1 + Ai1]i • 

(ii) Find the integer m, 1 ~ m ~ N, such that j(am- 1) - f(am) is 
a maximum and define .1 = f (am-I) - f (am). 

(iii) Calculate f3 = f(2aN - ao) and define 

f1 = f(a o) 

f2 = f(aN). 

(iv) If either f3 ~ f1 or 

(f1 - 2f2 + f3) (f1 - f2 - .1)2 ~ !Ll(f1 - f3)2 

use the old directions 1]1, ••• , 1]N for the next iteration and use aN 
for the. next ao , otherwise 

(v) define 1] = an - ao and calculate A such that f(aN + A1]) is 
minimum. Use 

1]1, ••• , 1]m-1 , 1], 1]m+1 , ••• , 1]N 

as the new directions and aN + A 1] as the new ao • 
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The performance functions, for the two classes of initial conditions 
being considered are given by (38) and (39) in terms of the matrix D 
defined in (36). The major effort in computing the performance func
tion is seen to lie in the computation of D. Sylvester's expansion (see 
page 83 of Ref. 16) for computing eAI is useful in the computation of 
the matrices F and G. 

The basic procedure can be outlined as follows: 

(i) Compute and store C(t)iJ!(t, to) for t I: [to, tl ] using (7) and (8). 
(ii) Evaluate Musing (23). 

(iii) If it is desired to compute the lower bounds to aid in choosing 
the dimension of the approximating system, compute the eigenvalues 
of M and obtain the bounds from the result of Theorem 1. 

(iv) Choose starting values for A and choose the directions for the 
initial search in the modified Powell method to be 

1 o 
o 1 

o 

o o 

where the above are k 2 vectors. 

o 

o 

1 

(v) Use modified Powell method to determine the minimum of the 
performance function. Each element of the vector a in the Powell 
method corresponds to an element of A. 

VI. EXAMPLE 

A linearized missile guidance loop may be expressed in the form 

. H 
X2 = m _ t X3 , 3;3 = U (40) 

where Xl is the lateral position deviation from a nominal trajectory, 
X2 is the lateral velocity deviation, X3 is the attitude deviation in the 
given direction and u is the control signal. The relationship between 
the attitude and lateral acceleration is given through the time-varying 
gain H/(m - t) which accounts for the loss of mass because of fuel 
consumption. 
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Suppose it is desired to approximate homogeneous solutions to 
(40) for initial conditions (at beginning of a stage) lying in a set 
R (R is defined later) with solutions of a constant coefficient system. 
The actual system (40) can be written in the vector-matrix form 

:t(t) = A (t)x(t) (41) 

with output 

yet) = [1 0 O]x(t) = Cx(t) (42) 

where 

[

Xl (t)] 
x(t) = X2(t) 

X3(t) 

and 

A(t) = [: : m ~ 1 (43) 

Let 

(44) 

Before proceeding to find the approximation it is instructive to 
determine the lower bounds on the optimal performance. This will 
naturally aid in choosing the dimension of the approximating system. 
The matrix, .1.11, defined by (33), is given by 

M = faT Cf>'(tJ o)C'CCf>(t, 0) dt (45) 

with 

d 
dt Cf>(t, 0) = A(t)Cf>(tJ 0). (46) 

The transition matrix, which is the solution to (46) with the identity 
initial condition, is given by 
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Evaluating M leads to 

T 

J\[ = 

T2 

2 
H{~' - (m ~ T)' In (m;;: 7') + ~ (T' - 2mT)}1 

lYl23 

J 
with 

M _ H[T3 _ ~ 3 _ (2T + m)(m - T)2 
23 - 3 36 m 6 

.In (m : 7) + (m - T)2i!T + 5m)] 

and 

T3 _ (m - T)3 In2 (m - T) + ~ (m _ T)3 
33m 9 

.In (m - T) + ~ {m3 - (m - T)3l 
m 27 

_ 10 m3 _ (2T + m) (m _ T)2 
36 3 

.In (m : T) + (m - T)2i:T + 5m) 

Let the constants defining the problem be given by 

m = 15 seconds (normalized mass) 

T = 10 seconds 

H = 15 (pound-seconds per slug) X 10-3 

and let the region of initial conditions be given by 

R = {x(o); I x1(o) I ~ 30 feet, I X2(O) I ~ 2 feet per second, 

I X3(O) I ~ 1 milliradian l· 
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Evaluating 111 for the above values of the constants leads to 

with eigenvalues 

[ 

10 

JlI[ = 50 

206 

Al = 8393, 
\Ve have 

and 

Here Jo represents 

J o ~ 8,393 

J 1 ~ 31 

maxllYW· 
XotR 

1.1. 

227 

The second order approximation thus has the possibility of yielding 
a negligible approximation error. Thus in the remainder of this paper 
the optimal second order approximation will be sought. Thus 

and 

fj = [1 O]x. 

The initial choice for A in the iterative procedure is 

"L = [~ ~J 
which represents polynomial approximations to solutions of the orig
inal system. 
The extreme points of R are given by 

x'" = [3~l, x'" [ -3~l, x'" = [~~l and x'" 
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and their negatives. Thus 

Jl.1o) = max {X(i)1 Dx(i)} = 340 , 
where D is evaluated from (36). It is thus seen that the performance 
function is far greater than the lower bound and the possibility exists 
for a significant improvement. The result of applying the Powell 
algorithm to this problem yields 

.1* _ [0.244 0.827 ] 

0.177 X 10-3 0.629 X 10-3 

and 

J 2 (.1*) = 33.4 

with the eigenvalues of .1* given by 

Al(A*) = 0.245 

AlA*) = 0.30 X 10-4
• 

The above results are obtained after three iterations of the Powell 
algorithm. The G, F and D matrices are given by 

and 

G = [271 771] 
771 2230 

F = [43.14 296.0 1459J 

112.2 832.6 4241 

[ 

4.4 X 10-6 -1.8 X 10-4 1.2 X 10-
4

] 

D = -1.8 X 10-4 7.3 3.5 X 10-3 
• 

Evaluating 

1.2 X 10-4 3.5 X 10-3 4.2 

max {x W DX(i)} , 
gives the maximum approximation error occurring at the extreme point 
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Figure 1 shows the solution of the actual and approximate system 
for this worst-case initial condition. The solutions are obtained from 

yet) = 30 - 2t + CP13(t, 0) 

and 

get) = 4.82 i 1t + 19.78 eA
•

t
• 

The matrix relating the initial conditions is given by G-IF, that is, 

x(o) = G-1Fx(0). 

x(o) = [ 1.00 
-0.295 

80 

1.86 

-0.271 

-1.68]X(0) . 

2.48 

j 
70 

I' 
'I 

I
UJ 
UJ 
u.. 

~ 

60 

(/) 50 
z 
Q 
I
:> 
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o 
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i 
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Fig. 1-Exact and approximate solutions in worst case. 
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VII. CONCLUSIONS 

A method for uniformly approximating solutions of linear, time
varying, homogeneous differential equations has been presented. The 
problem of approximating systems subject to control or reference 
inputs is considered in Ref. 6 for the class of exponential polynomial 
control inputs. 

One of the obj ectives of modeling with constant coefficient systems 
was to obtain closed form approximations. Use of Sylvester's expan
sion allows one to derive these closed form expressions. However, 
more general classes of approximating systems can be sought while 
still maintaining the property that approximations are in closed form. 
For example, a general model of the form 

j; = p(t)ifx 

where p (t) IS a scalar valued function possesses the closed form 
solution 

and pet) as well as if may be sought as part of the modeling procedure. 
A complexity constraint can be imposed on pet) by considedng it to 
be a polynomial of given degree and the search for the model reduces 
to finding the coefficients of the polynomial as well as the elements of if . 
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A Second Order Statistical Analysis of tIle 
Operatioll of a Lilniter-Pllase 

Detector-Filter Cascade 

By w. D. WYNN 

(Manuscript received August 30, 1968) 

This paper presents a second-order statistical analysis for the cascade of 
a bandpass limiter, and '£deal phase detector and a v£deo filter. This cascade 
forms an important subsystem, in the l1wthematical 1rwdel of some coherent 
communication systems where information is transmitted by phase or 
frequency modulation of the carrier . We derive the autocorrelation function 
R(t! , t2 ) of the video filter response when the bandpass limiter input is a 
fixed amplitude-phase modulated carrier plus stationary gaussian noise. 
The video filter response is wide sense stationary for some nontrivial cases; 
these include biphase, single tone, and stationary gaussian noise phase 
modulation. For these cases, we obtain the video filter output average power 
spectrum as the Fourier transform of R(T) for all values of the limiter input 
signal-to-noise power ratio. An application of the results of this paper is 
the performance of a F1J!I-P1Jl demodulator for a set of parmneters charac
teristic of one mode of operation of the Apollo Unified S-Band communica
tions system. We present the performance as a family of curves of sub carrier 
channel output signal-to-noise power ratio as functions of the limiter input 
signal-to-noise ratio where subcarrier phase modulation index is a param
eter. The approach is similar to the analysis by Davenport of the signal
to-noise ratio transfer characteristic of an isolated bandpass limiter. 

I. INTRODUCTION 

In some coherent communication systems, such as the Apollo Uni
fied S-band system/ where information is transmitted by phase 
modulating a carrier, bandpass limiters2 are used in the IF channels 
preceding the coherent demodulators. Ideally the bandpass limiter 
removes any amplitude modulation that might exist before the signal 
is demodulated. 

233 
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Figure 1 shows a typical coherent phase demodulator used in such 
a system. This demodulator consists of a multiplication operation (a 
phase detector) with post-video filtering. The phase modulated signal 
is multiplied by a coherent carrier reference to yield a video signal 
containing the desired information. The signal into the limiter is 
usually accompanied by noise that is frequently assumed to be addi
tive and gaussian. The presence of the noise affects the performance 
of the demodulator in a very complicated way because of the non
linearity of the limiter. Thus it is difficult to evaluate the corruptive 
effect of the noise on the demodulated information. 

One criterion of performance at points in a communication system 
is the signal-to-noise power ratio (SjN). For the cascade in Fig. 1, a 
problem of interest to the systems engineer is the video filter output 
SjN as a function of the input SjN to the limiter when the input noise 
is additive, stationary, and gaussian. The relationship is known between 
input and output SjN for an ideal bandpass limiter where the input is 
the sum of a stationary gaussian noise and a signal pet) cos (wet + cp) 
(see Ref. 2). For the analysis there, pet) is a random process and is 
slowly varying compared with cos wet. The carrier phase cp is a random 
variable independent of pet) with a uniform distribution over [0, 2'71-], 

It is not possible to apply the known SjN transfer characteristic of 
the ideal bandpass limiter found in Ref. 2 directly to obtain the SjN 
transfer characteristic for the bandpass limiter-phase detector-video 
filter cascade. A knowledge of the form of the signal and the noise 
out of the bandpass limiter, and not just the SjN of this output, is 
necessary to determine the effect of the phase detector on the bandpass 
limiter response. 

To obtain the cascade SjN transfer characteristic we apply the 
mathematical tools used in Ref. 2. The form of the signal assumed in 
the analysis of the cascade is set) P cos [we + OCt) + cp] where P is 

p (t) cos [Wet + 0 Ct) + <l>J + NOISE 
// 

REFERENCE 
SIN (Wet +<1» 

I 
/ 
I 

1 
S(O, N 

I-----~ I 
Bl~D- :do! I I 
PASS 

FILTER 
(We) 

z(O 

OUTPUT 

Fig. 1-A coherent phase demodulator with IF bandpass limiting in the 
presence of additive noise. 



DETECTOR-FILTER CASCADE 235 

a positive constant, O(t) is phase modulation that is slowly varying 
compared with cos wet, and cp is a random variable representing the 
arbitrary initial phase of the signal carrier. The probability density 
function of cp is assumed to be uniform in the interval [0, 27r]. The 
noise input to the bandpass limiter is assumed to be additive, stationary, 
and gaussian with zero mean and power spectral density N. The input 
noise, the modulation O(t), and the carrier phase cp are assumed to be 
jointly statistically independent. For the following analysis, the limiter 
is assumed to be ideal with limit level l. The transfer function of an 
ideal limiter is defined by 

f +l, 
y = lex) = l 0, 

-l, 

x > 0 

x = 0 

x < o. 
(1) 

A coherent carrier reference sin (wet + cp) is assumed to be available 
for the demodulator where cp is the phase of the carrier. 

II. THE SECOND ORDER STATISTICAL ANALYSIS 

2.1 A Cascade 1I10del when set) is Narrow Band Limited 

In order to obtain a SIN transfer characteristic for Fig. 1, the auto
correlation function of z(t) is derived. When Rz(t1 ,t2 ) = Rz(T) the aver
age power spectrum of z(t) is defined by the Fourier transform of Rz(T) 
and the SIN transfer characteristic can be found. An analysis of the 
autocorrelation function of z(t) does not seem possible for general set). 
However, if the signal set) is a narrow band-limited process such that 
the bandpass filters are narrow compared with the carrier frequency We , 

the response z(t) should be the same with or without the post bandpass 
filter that precedes the phase detector. The response of the nonlinearity 
lex) to an input x(t) = set) + net) that is narrow band-limited about 
±We is a family of terms narrow band-limited about the frequencies 
±nwc where n = 0, 1,2,3, ... (see equation 13-53, section 13-1 of Ref. 3). 
Any narrow band-limited input to the phase detector that is not about 
±We will generate a phase detector response above the cutoff frequency 
assumed for the video filter. For a narrow band-limited x(t) the auto
correlation function of z(t) is obtained from the analysis of Fig. 2. 

2.2 The Derivation of the Autocorrelation Function of z(t) 

Assume that the input x(t) is narrow band-limited such that Figs. 1 
and 2 yield equivalent z(t). The autocorrelation function Rz(t1 ,t2) is 
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s(t), N IF 
BAND-PASS 

FIL TER 
(We) 

1, (X) 
VIDEO 

FILTER 
z(t) 

t 
I 
I 

:x: (t) = s (0 +n(t) 
REFERENCE 

SIN (Wet +4» 

fcc «fe 

Fig. 2 - The narrow band equivalent receiver for the derivation of RZ(tl, t2 ). 

obtained by first deriving Rw (tl , t2) from the model in Fig. 2. Since z 
and ware related by the linear video filter, R.(t1 , t2 ) follows directly 
from Rw(tl , t2)' 

The Laplace transform solution of a zero memory nonlinearity with 
stochastic excitation is used to derive Rw (tl , t2) (see Chapter 13 of Ref. 3). 
The limiter characteristic is 

lex) = -2
1

. [f f+(w) exp (xw) dw + f f-(w) exp (xw) dW] (2) 
7rJ c+ c-

where 

i + OO l 
f+(w) = lex) exp (-wx) dx = - , 

o W 
for Re [w] > 0 

and 

10 1 
f-(w) = -00 lex) exp (-wx) dx = ~ , for Re [w] < o. 

The variable w = u + jv is complex with Re[w] = u. The contours 
C+ and C_ are taken parallel to the v axis in the w plane with Re [w] > 0 
for C+ and Re [w] < 0 for C_ . For convenience lex) is written symbolicly 
as 

, 1 f lex) = -2' few) exp (xw) dw 
7rJ C 

(3) 

where equation (3) means the same as equation (2) when C + and C _ are 
not the same contours. 

Since wet) = sin (wet + ¢) ·l[x(t)], the autocorrelation function of 
wet) is 

(2!)2 i f(WI) Iv f(W2)E {sin (Wetl + ¢). exp (WISI + Wln l ) 

·sin (Wct2 + ¢). exp (W2S2 + W2n2)} dWI dW2 (4) 
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where Si = s(tJ and ni = n(ti), i = 1, 2. The order of complex integra
tion and the expectation operation have been interchanged to get equa
tion (4). For the assumed statistical independence of net), e(t), and cp, 
the expected value in equation (4) factors into 

. exp ![ciwi + 2Rn(T)W1W2 + (lw;] (5) 

where T = t2 - t l . The form for the cross correlation function 
E{ exp (wlnl) exp (W2n2)} where net) is stationary gaussian noise has been 
used in equation (5) (see pp. 476-477 of Ref. 4). 

For the case where set) is narrow band-limited with respect to We, 
the filter in Fig. 2 is a narrow bandpass filter, and is assumed to be 
symmetrical about We . Then net) can be written as (see pp. 373-374 of 
Ref. 4) 

net) = Xe cos wet - Xa sin wet 

where Xe and Xa are statistically independent stationary gaussian random 
processes, and 

(6) 

where Rv(T) = Rxc(T) = Rx.(T). For a narrow bandpass IF filter, the 
transform of Rv(T) is lowpass with a narrow bandwidth compared to We . 

With the substitution of 

t2 = t + T, 

cp* = cp + wet, 

_ exp (jcp*) - exp ( - jcp*) 
sin cp* - 2j 

and 
+00 

exp [Rn (T)W1W2] = L Im(wlw2Rp) exp (jmweT) (7) 
m=-OO 

(see Article 1, Chapter 3 of Ref. 5), equation (5) becomes 
+00 

(-t) L I m(W1W2Rv) exp (jmweT)·E {[exp (jwcT + j2cp*) 
m=-OO 

+ exp (- jWcT - j2cp*) - exp (jWeT) - exp (- jWeT)] 

. exp [wlP cos (e l + cp*) + W2P cos (e2 + cp* + WeT)]} . (8) 
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Since exp (jWeT) and exp [W2P cos (82 + cp* + WeT)] are periodic in WeT 
with the period 211", the function 

exp (jmweT)E{ } (9) 

in equation (8) is periodic in WeT. Since Rv(T) transforms to a narrow 
band-limited lowpass spectrum, the autocorrelation function of z(t) 
corresponds to the dc component of the Fourier expansion of equation 
(9). With the substitution of 0 = WeT, the dc component of equation 
(9) is 

12lr do 
- exp (jmo) ·E{ 

o 211" 

+00 +00 {12lr do 
= r~oo k~oo I r(wIP), I k(w2P) ·Eo 0 211" 

.[E •. {exp UCm + 1 + k)1i + j(2 + r + k)</>- + j(rO, + kO,)]1 

+ E",* {exp U(m - 1 + Ie) 0 + j( -2 + r + k)cp* + j(r81 + k(2)]} 

- E",* {exp [j(m + 1 + k) 0 + j(r + k)cp* + j(r81 + k(2)]} 

- E •• {exp UCm - 1 + k) Ii + jCr + Ie)</>- + j(rO, + kO,)]J ]}. (10) 

Since cp* = wet + cp, cp* has a uniformly distributed probability density 
function on [0, 211"]. The averages in equation (10) with respect to 0 
and cp* follow. For example, the first average with respect to 0 and cp* 
is zero if W + k + 1 ¢ 0 or k + r + 2 ¢ 0, and when k = -1 - m 
and r = -2 - k = m - 1 the double average is exp [em - 1)81 -

(m + 1) 82 ], Equation (8) reduces to 

c-t) j~~ ImC",,""R.{I~':.·i)I~(::)I)E{eXp [j(m - 1)0, - i(m + 1)0,]1 

+ I~w./t) I~~;"~l)E {exp [j(m + 1) 81 - j(m - 1) 82]} 

- I~:'t) I~~;"~)l)E {exp U(m + 1) 81 - j(m + 1) 82]} 

- I~~lt) I~~;"~l)E {exp [j(m - 1) 81 - j(m - 1) 82]} ]. (11) 

The terms in equation (11) for positive and negative m can be combined 
by noting that I -mex) = I m(x). With the substitutions 

(12) 
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and 

hm,k = 2~j fcf(w)wk exp (u~w2)Im(wP) dw, 

the autocorrelation function of z(t) is 

where 

00 00 R2a+m 
Rz(tl , t2) = l,~ ~ 22Q +

mE
;, (q + m) , 

. [h!+1,2a+mRe(m + 1, m + 1, tl , t2) 

+ h!-1,2a+mRe(m - 1, m - 1, tl , t2) 

Em = {I, 
2, 

m = 0 

m>O 

239 

(13) 

and Re(A, B, tl ,t2 ) = E {cos [AB(t l ) - BB(t2 )]} for any integers A and B. 

III. THE CLOSED FORM SOLUTION FOR hill, Ie 

The autocorrelation function of z(t) given in equation (14) contains 
the constants hm ,k where m + k are odd integers. For the ideal limiter 
characteristic of equation (1), there are closed form solutions for these 
parameters. Since f+(w) = l/w for Re [w] > 0 and f-(w) = l/w for 
Re [w] < 0, equation (13) becomes 

hm.k = -21 . f lwk-Ilm(wP) exp (u
2

2
w2) dw 

~J c- \ 

+ 2~j fc+ lW
k
-

1 
I m(WP) exp (U;2) dw (15) 

where C _ is the contour (- E - j 00, - E + j (0) and C + is the contour 
( + E - j 00, + E + j 00 ). By the change of variable w = jx and the sub
stitution of Im(z) = (j)-m J m(jz) , analytic continuation can be applied 
for m ~ 0 and k ~ 0 to give 

h = I (')k+m-l 100 

(k-l) J ( P) [-U
2
X2] d 

m. k J x Tn x exp 2 x. 
~ -00 

(16) 

When m + k is even, the integrand of equation (16) is odd and hm,k = O. 
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When m + k is odd, the integrand of equation (16) is even and 

(
m + k)( p2)m12 

h = 2l (:\k+m_l.
r 
-2- 2c? F (m + k. + 1. _P2) (17) 

m,k 11" JJ [ u ]k 1 1 2 ' m '2u2 

2r(m + 1) (2)1 

where a solution has been used for the integral 

i~ Xk- 1 J m(xP) exp [ - ;2X2] dx (18) 

in terms of the confluent hypergeometric function IFl(a; f3; -x) (see 
equation A.1.49, p. 1079 of Ref.6). For the case when m and k are non
negative integers IF1(m + k/2; m + 1; -x) can be expressed in closed 
form in terms of first and second kind modified Bessel functions. A 
list of these expressions is given by Middleton (see equation A.1.31, 
section A 1.2 of Ref. 6). A collection of hm,k in closed form for low order 
indices is given in Table 1. For Table I, x = p 2/2u2 is the input signal
to-noise power ratio into the limiter in Fig. (2). 

Any of the hm,k in equation (14) can be found in closed form from 
Table I by using the recurrence relations 

2(m + 1) 4(m + l)m 
hm+2'k = hm,k - P hm-1,k-l + -P-2 -- hm ,k-2 , (19) 

P (k - m - 2) 
hm+1,k+l = --2 hm,k - 2 hm-1,k-l 

u u 

2(k - m - 2)m + U2p hm,k-2 , (20) 

and 

(m - k) p 2 (m - k) 
hm,k+2 = 2 hm'k + 4 hm- 2,k - U4 Phm-l,k-l. (21) 

U U 

Equation (19) is derived from equation (16) by using the Bessel 
function identity 

2(m + 1) . 
J m+2 (xP) = Px Jm+1(xP) - Jm(xP). (22) 

Equation (20) is derived through a by-parts integration of equation 
(16) and the application of equation (19). Equation (21) is derived 
through by-parts integration of equation (16). In the development of 
equations (19), (20) and (21), the integral in equation (16) is re-
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TABLE I-CLOSED FORM SOLUTIONS OF SOME hm,k 

m k hm,k 
-

1 0 e2Z;u e-
x
/
2
LIoex/2) + I 1ex/2)] 

-
/')'I! l 

o 1 ~ -x/2I e /2) 
- -

(rr)!u e a X 

2 1 - (2)! l -x/2 I e /2) 
(rr)!u e 1 X 

-

1 2 e2~)l~3 e-
x
/
2
[Ioex/2) - I 1ex/2)] 

-

3 2 (2~)1~, e-';{1o(X/2) - (1 + ~)1,(X/2) ] 
-

o 3 (~~)!l e-x
/

2 [el - x)Ioex/2) + xI1ex/2)] 
7r 2 U 

-

2 3 (2~:u' e -,n [ 1o(x/2) - (1 + ~)1, (x/2) ] 
-

4 3 (;:.~r:, e-'/{ (1 + ~ + ~)1,(X/2) - (1 + ~)1o(X/2) ] 
-

1 4 (2;~U5 e-x
/

2 [(3 - 2x)Ioex/2) + (2x - 1)I1(x/2)] 
-

3 4 (;:.~f:, e-,n[ (1 + 2~)1o(X/2) - (1 + 2: + ~ )1, (x/2) ] 
-

5 4 (~,,~f:, e-,n[ (H ;X + ~~)IoCx/2)-( H ;! +~~+~~)1,(X/2) ] 
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stricted to the half interval [0, 00) which is possible since the inte
grand of equation (16) is even when m+k is odd. 

IV. THE AVERAGE POWER SPECTRUM OF Z (t) 

The autocorrelation function of z(t) given in equation (14) becomes 
time independent such that z(t) has the average power spectrum Sz(w) = 
F[Rz(r)] when Ro(A, B, t1 , t2) = Re(A, B, r) for integers A and B. 
There are some important cases of O(t) for which Re is time independent. 

If 0 is a biphase modulation with OCt) = ± I 0 I that has a zero mean 
and autocorrelation function (see equation 9-42, section 9-2 of Ref. 4) 

for 
(23) 

then 

R e (A, B, t1 , (2) 

= cos A I 0 I· cos B I 0 I + sin A I 0 I·sin B I 0 I'Te(r) (24) 

where Te(r) = Re(r)/I 0 12 is the normalized autocorrelation function 
of OCt). Then Re is a function of r = t2 - t1 . 

For a single tone modulation given by OCt) = 1n1 sin (WIt + ~) where 
~ is a random variable with a uniform probability density function 
on [0, 27r], a simple Bessel series expansion gives 

00 

Re(A, B, tl , t2) = L €nJ2n(Aml)J2n(Bml) cos (2nwIT) 

where 

n=O 

00 

+ L €nJ2n-l(Aml)J2n-l(Bml) cos [(2n - l)wlr] (25) 
n=l 

En = {I, 
2, 

n=O 

n> 0. 

For the single tone modulation, Re depends only on the time difference T. 

If OCt) is the sum of tones 
N 

OCt) = L mp sin (wpt + ~p) (26) 
p=l 

where ~p, p 1, ... , N, are independent random variables with 
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uniform probability density functions on [0, 271"], Re is again independent 
of time. 

If OCt) is a stationary gaussian process with zero mean, variance O"~ 
and autocorrelation function l(o(r) , then Re(A, B, tl ,tz) = Re(A, B, r). 
The second-order characteristic function for the stationary gaussian 
process is defined as (see equation 112, Chapter 7 of Ref. 4) 

<PO(Wl ,Wz ; r) = E(exp {j[wlO(t + r) + w2 0(t)]}) 
(27) 

Then 

Real Part E I exp (jAOI - jBOz)} 

exp [-~ (A' + B') }exp [ABK.(r)] (28) 

= Re(A, B, r). 

The validity of equation (14) depends on the narrow band-limited 
assumption for the modulated signal s (t) at the carrier frequency 
We. For s (t) to be narrowband limited, the parameter values that the 
modulation functions can have are restricted. 

v. AN APPLICATION OF THE Rz RESULTS TO THE PERFORMANCE OF A SUB

CARRIER CHANNEL 

A modulation technique sometimes used for communication is FM
PM where the carrier is phase modulated by a sub carrier that is in 
turn frequency modulated by the information waveform. The FM
PM signal is of the form 

set) = P cos {wJ + ¢ + 1n1 sin [WIt + ~ + A(t)]} (29) 

where P, We , WI and 1nl are constants, ¢ and ~ are independent random 
variables usually assumed to have uniform probability density func
tions over [0, 271"], and A(t) is the integral of the information waveform. 
In a typical application, We » WI and A(t) is slowly varying compared 
with cos WIt. With these restrictions the information }..(t) can be re
covered from set) with the receiver shown in Fig. 3. 

The purpose of the bandpass limiter is to remove the effect of varia
tions that might occur in P. For the ideal case where set) is not per
turbed by noise, the sub carrier filter input z(t) is 
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Fig. 3 - FM-PM receiver with ideal bandpass limiter. 

SUB
CARRIER 
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ULATOR 

(30) 

If A(t) is slowly varying compared with cos WIt, the information can be 
recovered with a sub carrier filter that passes only the first component 
of the sum in equation (30). For the noiseless case the subcarrier filter 
response is then 

(31) 

After additional processing in a sub carrier demodulator, X(t) is obtained 
from equation (31). One criterion of performance of the receiver is the 
SIN out of the sub carrier filter as a function of the limiter input SIN, 
x = p2 12(J'2. Since A(t) varies slowly compared with cos WIt, the output 
SIN for the sub carrier filter is determined with sufficient accuracy by 
setting A(t) == O. If A(t) == 0, the sub carrier output SIN follows directly 
from equations (14) and (25). Substitution of equation (25) into equa
tion (14) gives the power spectrum 

S.("') I ,~,",.in '0, .. " ~ 2h;o .t J;.~,(m,)· F[ cos (2n - I)"" T 1 

+ (t)[(J'hOI - (J'h21 J O(2ml)]2·F[rv(r)] 

00 

+ (!)(J'2h;1 L J!(2m1) ·F[rv(r)· cos (nwlr)] 
n=1 

00 

+ (!)(J'4h~2 L J;n-I(ml) ·F[r~(r)· cos (2n - l)wlr] 
n=l 

00 

+ Cl6) L En[(J'2h12 J n(ml) - (J'2h32Jn(3ml)]2·F[r;(r)·cosnwlr] 
n=O 



DETECTOR-FILTER CASCADE 245 

00 

+ (l6)CT6h;3 L J~(2ml) ·F[r~(T)· cos nWlT] 
n=l 

00 

+ (riB) L En[CT3h23Jn(2ml) - CT3h43Jn(4ml)]2.F[r:(T)·cosnwlT] 
n=O 

00 

+ (lz)CT 8hi4 L J;n-l (ml) . F[r!( T)' cos (2n - l)wl T] 
n=l 

00 

+ (m) L En[CT4h14Jn(ml) - CT4h34Jn(3ml)]2·F[r!(T)·cosnwlT] 
n=O 

00 

+ (7As) L En[CT4h34Jn(3ml) - CT4h54Jn(5ml)]2·F[r!(T)· cos nWIT] (32) 
n=O 

where r" = R,,/R,,(O) = R,,/CT2
• The approximation, equation (32), 

neglects all the terms of equation (14) containing the factor R;a+m 

where 2q + m > 4. The terms in equation (32) are the significant terms 
of Sz(w) for the single tone modulation. The spectrum in equation (32) 
is the weighted sum of terms of the form 

F[r~( T) cos mWl T] = 2~ F[r~( T)] * F[ cos mWl TJ (33) 

where * is the convolution operation. Since F[cos mWIT] is a pair of 
impulses of weight 7r at ±mwl , 

where 

Sv,n(W) = F[r~(T)J. 

The first term in the spectrum of equation (32) is the signal content 
of z (t). All other terms of equation (32) correspond to noise alone or 
a combination of signal and noise. All terms of equation (32) except 
the first term are usually combined to give the interference (noise) 
spectrum at the output of the video filter. 

A computation was made for the subcarrier filter output SIN as a 
function of the input SIN x. The following conditions are assumed for 
the computation. 

(i) The power spectrum of the input gaussian noise to the cascade 
in Fig. 1 is uniform over the bandwidth of the prelimiter bandpass 
filter. 
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(ii) The prelimiter bandpass filter is assumed to have a gaussian 
transfer function such that 

r,Cr) ~ exp [ -;'w:} (35) 

(iii) The subcarrier amplitude transfer function is 

{

I, WI - il; < I W I < WI + ~w 
I H(jw) I = (36) 

0, all other w, 

where ilw « Wo . Also, Wo = 12.566 X 106 and WI = 6.434 X 106 are 
assumed. Substitution of equation (35) into equation (34) gives 

S •. n(w) = F[r~(r)J = ~ exp [-.!!:... (~)2J. (37) 
wo(n) 4n Wo 

From condition iii, the noise spectrum in the passband of the subcarrier 
filter is approximately constant when w = WI' The signal and noise 
powers out of the sub carrier filter follow from SzCWI)' The signal power 
is 2hioJi(m l ); the noise power is 

where ilf is the width of the subcarrier filter and where S~ is equation 
(32) with the first term omitted. The function 

S(ml) = 2h~()~~(ml) (38) 
X[Sz(Wl) ] 

was computed for x between 0.01 and 100 with m l as a parameter. The 
results of the computation are shown in Fig. (4). For a given m l and x, 
the output S/N for the subcarrier filter is x/2ilf· S(ml)' 

VI. SUMMARY 

A general, second order statistical analysis is presented for the cascade 
of a narrow bandpass limiter, an ideal phase detector, and a video filter. 
In this analysis, the input to the limiter is assumed to be the sum of a 
stationary gaussian noise and a fixed amplitude phase modulated sine 
wave. The autocorrelation function of the cascade response is obtained 
as a function of the signal-to-noise ratio x at the limiter input, the nor
malized autocorrelation function of the lowpass equivalent for the 
limiter input noise rver), and the phase modulation (J(t). 

The cascade response z(t) has the autocorrelation function Rz(tl , t2 ) 
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Fig. 4 - The unit bandwidth sub carrier filter output, SIN normalized by x 
where 10-2 ~ x ~ 102 and Ml is a parameter. 

that can be time dependent. However, for some important cases of e(t), 
Rz(t1 , t2 ) = Rz(r), and the cascade response has the average power 
spectrum Sz(w) = F[Rz(r)] where F is the Fourier transform operation 
with respect to r. The cases of e(t) considered that yield Rz(r) are the 
random biphasewaveform e= ±I e I, the single tone e(t) =1n1 sin (w1t+O, 
and the stationary gaussian process with autocorrelation function 1(o(r). 

The dependence of Rz(t1 , t2 ) on the limiter input SIN appears in the 
h parameters. These parameters can be obtained in closed form as func
tions of the modified Bessel functions Io(xI2) and Il(x/2). The lower 
order h parameters encountered in the first few terms of the series for 
Rz are found, and recurrence relations are derived through which 
higher order h parameters can be derived easily. 

For the modulation types that make Rz a function of r alone, the 
power spectrum Sz(w) is known for all values of the limiter input SIN x. 
Then the SIN can be derived in any frequency band at the output of 
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the video filter in Fig. 1 as a function of any SIN into the limiter. 
The performance of a sub carrier channel was considered where e(t) = 

m i sin [WIt + A(t) + ~]. The sub carrier was assumed to be phase mod
ulated by a narrowband low pass process A(t). The SIN at the output 
of the subcarrier filter was obtained by computation of the approxima
tion of equation (32). For this example, a gaussian prelimiter bandpass 
filter was assumed. For this filter shape, r;(r) and its transform Sv.n(w) 
are gaussian for all integers n. Some representative parameters from 
the Apollo unified S-band communication system i were assumed. These 
were 

(i) A prelimiter noise equivalent bandwidth of 4 l\t1Hz. 
(ii) A sub carrier frequency of 1.024 l\t1Hz. 

(iii) A sub carrier noise equivalent bandwidth of 0.2 l\t1Hz. 
(iv) An input SIN range of 0.01 ~ x ~ 100. 
(v) A set of modulation indices m i = (0.2)k, k = 2, 3, 4, 5, 6, 7, 8, 

9,10. 

The results are given in Fig. 4. The differential between subcarrier filter 
output SIN at low and high values of x is a monotonically increasing 
function of m i for 0.4 ~ m i ~ 2.0. The shapes of the curves are similar 
to that of the (S/N)o/(S/N). curve obtained by Davenport. 2 
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Multiplex Touch-Tone® Detection Using 
Time Speed-Up 

By J. F. O'NEILL 
(Manuscript received August 19, 1968) 

A signal may be read from a storage medium faster than the rate that 
would correspond to real time reconstruction of the signal; this process has 
been named time compression or time speed-up. Cheap serial shift registers 
make time speed-up an attractive means to detect Touch-Tone ® calling 
(or other format) signals on a multiplicity of channels using a single 
detector. 

I. BACKGROUND 

Time speed-up (TSU) of a signal consists of reading the signal 
from a store faster than the rate at which it was recorded. (This is 
generally faster than real time reconstruction of the signal, thus the 
name). I propose this process for multiplexing several voiceband 
channels in time, so that one multi frequency receiver can detect 
Touch-Tone@ signaling on a multiplicity of channels. 

Processing of a single signal using TSU configurations based on 
electric or acoustic delay lines (called DELTIC systems, for delay line 
time compression) has been done since the 1950'S.1,2 At Bell Lab
oratories, TSU is being investigated for multiplexing Picturephone ® 

visual telephone channels on slightly nonlinear microwave radio sys
tems.a 

The inherent simplicity and versatility of a digital TSU signal 
processing system is enhanced by the availability of inexpensive serial 
shift registers based on the insulated gate field effect transistor. These 
registers typically store 64 bits, and are sufficiently fast to permit a 
single detection circuit to serve eight to 16 Touch-Tone voiceband 
signaling channels or hundreds of channels in a low frequency ap
plication, such as 20 Hz ringing detection. 

The attractiveness of TSU multiplex tone detection is demonstrated 
by, and most of this article treats of, the Touch-Tone detection case. 

249 
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If the system is realized as a digital multiplexer (concentrator) in 
tandem with an analog frequency detector, it will become apparent 
that the frequency detector can (but need not) be exactly the type of 
circuit now used, but with a scaling applied to all reactances. This 
scaling is to raise all spectral features by a constant factor which is 
the ratio of time compression. Thus, all the linear and nonlinear signal 
processing now used can be included in a TSU system and its per
formance would simulate that of present Touch-Tone receivers. By 
adding additional data. smoothing, which could involve using the 
signal samples more than once, the present tolerance to digit simula
tion by speech can be exceeded. 

II. SIXTY-FOUR CHANNEL TSU RINGING DETECTOR 

An exploratory key telephone system must detect the presence of 
20 Hz ringing on 64 central office lines. This detection could be per
formed on each channel, but the availability of 64 bit serial shift 
registers has made centralized TSU detection economically more 
attractive. 

Figure 1 shows the TSU arrangement to be used in this exploratory 
system. A transducer Vi, i = 1, 2 ... 64 at each channel slices (limits) 
the ringing signal and presents a rectangular wave at logic level to the 
sampling gates Sai. Binary data is sufficient to specify the input signal 
because it is basically a single tone; there are interfering tones from 
power line cross-coupling but are suppressed to a large extent by the 
larger 20 Hz signal and the limiting operation. (It will be apparent 
that a multitone format such as Touch-Tone signaling would not be 
well represented by binary coded signal samples.) The sampling gates 
load the long serial register SRI with a sequence of samples V x from 
all the channels. The order of the samples is the same as the order of 
the channels: ... , 1,2, ... 63,64, 1,2, .... 

The register SRI has taps every 64 bits, however, and at these 1n 

taps (including the input and output) the samples at any instant are 
all for the same channel, as shown by Vy • These samples can be pro
cessed in a high speed detector, and the result registered in either a 
common or per-channel answer depository. A digital detector, for 
instance, could examine the 1n samples in a time consisting of a few 
logic gate delays. Alternatively, the 1n samples can be placed in an 
independent register SR2 as shown in Fig. 1, from which they can be 
clocked into an analog frequency discriminator of any type, such as a 
two-pole resonator. With this system, the SR2 read-out clock is in-
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Fig. 1- 64 Channel TSU single frequency detector. 

herently a part of the detection process, since it controls the ratio of 
time speed-up; if the channels are sampled at rate is per second and 
the SR2 register is read at kis per second, then k is the ratio of time 
compression (and spectral expansion). 

JVIodifications to the Fig. 1 TSU tone detector permit detection of 
a single tone of unspecified frequency. To do this, more detectors 
could be added at the output of SR2. The same result would be at
tained by using only one detector with various clock rates to read out 
SR2, and a return path from SR2 output to input, so that the samples 
for a particular channel could be processed repeatedly. 

In the exploratory key telephone ringing detector the 64 channels 
are sampled at seven times per cycle of the input 20 Hz wave and a 
digital detector is used to examine the samples from one cycle (1ft = 7). 
The detector stores this tentative result in another serial shift register, 
and when enough 50 msec intervals appear to have ringing present, a 
RING output is delivered to the common controller. This detection 
operation is low Q, but this is by design, and is not dependent on either 
the TSU structure or the technology. An analog detector in this system 
would need m » 7 but would not require the added integration. As 
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always, an appropriate trade-off between selectivity (high Q) and fast 
detection (low Q) must be made. 

The effectiveness of the detector in suppressing frequencies other 
than 20 Hz is a function of the sampling rate, as well as the param
eters of the detector. Waveform preservation is not necessary for 
detection, so the sampling theorem requirement (two samples per 
cycle at the highest frequency of interest) need not be met. As few 
samples as possible should be handled to conserve storage, but the 
lower limit is set by the signal duty cycle variation and the size and 
frequency of the interfering signals. The equivalence between pe
riodic sampling and modulation permits intelligent selection of the 
sampling rate. 

III. EIGHT CHANNEL TSU Touch-Tone DETECTOR 

The TSU configuration of Fig. 1 could be adapted to multifrequency 
detection by means of a few additions. First, incorporate at the regis
ter SRI input an analog to digital converter to code the signal sam
ples sufficiently accurately to preserve the information content, say 
b bits per sample. Replace shift register SRI by b parallel shift regis
ters, one for each bit at the analog-digital output. Finally, add a 
digital to analog converter at the output of the b parallel read-out 
registers (SR2 in Fig. 1). No change in principle is involved; the 
added circuitry only preserves the signal amplitude through the TSU 
system. A delta coder with a (longer) single shift register could be 
used for the digitizing operation; the type of code is a detail. 

However, the structure of Fig. 1 is not well suited to Touch-Tone 
detection. The serial registers are conveniently available in 64 bit 
and larger sizes. (Smaller sizes would be economically wasteful; adding 
taps increases the lead count perilously.) Only seldom is there a 
need to detect 64 Touch-Tone signals simultaneously, and reliability 
requirements would be excessively difficult, even if the need existed. 
By using the Fig. 2 TSU configuration, the 64 bit registers are used 
very efficiently. 

In Fig. 2, each channel has a private b-register store. The channel 
i(i = 1, 8) inputs are sampled in multiplex by switches Sai and coded 
by a common analog-to-digital converter. The coded samples are 
steered by logic gates Sbi to the registers for channel i. Sometime be
tween (or synchronized with) input samples, the registers are read at 
high speed into the digital-to-analog converter, which is assumed to 
be simple enough to build for each channel. Transmission gate Sci 
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Fig. 2 - Eight channel TSU Tou.ch-Tone@ dialing detector. 

simultaneously connects the (per channel) converter output to the 
detector input bus, so that the detector is time shared by all channel 
circuits. This detector can be a carbon copy of any of the standard 
receivers, but with all reactances scaled up in frequency by the time 
compression ratio. Or, it could be all-digital. In either case, the read
out of the channel register bank must be sufficiently fast to permit 
the detector to answer and return to quiescence before the next chan
nel is examined. 

An important feature of the Fig. 2 parallel register TSU system is 
that the channel registers need be supplied only for as many channels 
as are actually required. The Fig. 1 serial system must be built en
tirely in order to operate at all. 

An 8-channel Touch-Tone receiver using 3 bit (b = 3) coding has 
been built and operated by Mr. R. J. Violet of Bell Telephone Labora
tories. In this demonstration system, the channel sampling is done at 
4000 Hz with 64 samples being stored per channel. Each channel is 
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examined every 4 ms, and the detection requires 0.5 ms. Half of this 
0.5 ms is to allow the receiver to become quiescent. The time com
pression ratio is the sampling interval divided by the sample read time, 
or 64. The detector is thus constructed for input frequencies at 64 
times the normal Touch-Tone frequencies. This simple demonstration 
system immediately registers the detected results through gates 8di 

in a per-channel flip-flop bank (shown in skeletal form). An attractive 
feature of TSU detection is that further processing, such as delay or 
data format conversions, can be made by common equipment. Thus, 
Touch-Tone signal to dial pulse translators for conversion of step-by
step switching machines could be very effectively built using TSU 
multiplexing. 

If the input signal can vary considerably in amplitude, either a per
channel automatic gain control or more accurate sample coding would 
be required to preserve the signal waveform through coding and decod
ing. Also, a sampling rate higher than 4000 Hz and a larger number 
of samples per detection might be used in a production circuit. In 
compensation, a rate of more than 8 channels is within the speed 
capability of the circuitry; additional signal integration to improve 
the tolerance to digit simulation is easy to incorporate. 

The economic advantages of large scale production can be gained 
through the use of 64 bit serial shift registers in many of the digital 
systems. Preliminary economic analysis indicates that the marginal 
cost of one Touch-Tone detector in a TSU multiplex system would 
be less than the equivalent single channel receiver; a cost crossover 
can be expected at about three channels. In comparison with multiplex 
receiving based on digital filtering, TSU offers easier maintenance, 
per-channel modularity, and the ability to incorporate future im
provements in the detector circuitry. 
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Data Transmission Error Probabilities 
in tIle Presence of Low-Frequency 

Removal and Noise 

By B. R. SALTZBERG and M. K. SIMON 

(Manuscript received July 19, 1968) 

Upper bounds on error probability are derived for data trans111,ission 
systems which are subjected to gaussian noise and to the removal of the 
low-frequency components of the signal. This error probability can be quite 
low for random, data, even though the eye pattern is closed. Both standard 
format and partial response signaling are considered, as are binary and 
multnevel alphabets. Numerical results are given for a high-pass filter 
containing a single pole and fo1' a cascade of several such identical filters. 

1. INTRODUCTION 

It is frequently desirable, or unavoidable, that the low-frequency 
components of a data signal be eliminated. This may occur through 
the use of capacitor or transformer coupling in the terminal equip
ment or in the baseband transmission facilities. Another instance 
results from the necessity of removing low-frequency baseband com
ponents before modulation in order to provide a spectral guard band 
in the vicinity of the carrier frequency. 

Since dc is usually completely attenuated, no linear operation can 
correct for low-frequency removal. One commonly used approach 
uses nonlinear feedback to restore the low-frequency components.1 

Another solution to this problem involves dc-free signal formats. 2
, 3 

We evaluate the penalty resulting from the removal of low-fre
quency components from a standard format data signal (Nyquist I 
shaping) and a partial response signaling format (multilevel exten
sion of duobinary with precoding.) 4 Clearly, in both of these cases, 
the degradation is most severe when the transmitted data sequence 
contains long strings of identical digits. In fact, when the system 
bandwidth is less than the signaling rate, which is usual in data 
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communication systems, the received signal will be zero. This follows 
from the fact that for a periodic input impulse train the lowest fre
quency components are at dc and the signaling frequency, both of 
which are filtered out. However, the degradation of a random signal 
can be quite small when the cutoff frequency of the offending high 
pass filter is far below the signaling rate. 

We consider binary and multilevel data-transmission systems with 
signaling formats as above, degraded by a single-pole high-pass filter 
or a cascade of such filters. The systems are evaluated for error proba
bility in the presence of additive gaussian noise. A previously derived 
error probability bound5 is used, which takes the form of a gaussian 
distribution of the signal to noise ratio, in which the larger intersymbol 
interference components subtract from the signal amplitude and the 
smaller ones add to the noise power.5 In general, the optimum splitting 
of intersymbol interference terms between signal amplitude and noise 
power cannot be determined analytically. We show that for inter
symbol interference components, related by a single exponential damp
ing factor, an optimum subdivision can be explicitly specified. Where 
the eye is open, the error probability bound is given directly in terms 
of the eye opening to rms noise ratio. 

We also discuss the refinements of the generalized bound in the 
case of interysmbol interference from a single exponential signal tail, 
and then apply the results to Nyquist I shaped and partial response 
signaling formats respectively. Single poles and a cascade of identical 
poles are considered, and numerical results are given for practical 
data system parameters. 

II. DERIVATION OF A SIMPLIFIED ERROR PROBABILITY BOUND FOR SINGLE 

EXPONENTIAL INTERSYMBOL INTERFERENCE 

Reference 5 gives an upper bound for the probability of error in 
the reception of a random digital message perturbed by gaussian 
noise and intersymbol interference. This gives 

'" 1 < _1_0 -
LJ k N - 1 ktK 

(1) 
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where 

N is the number of levels of the input random message. 
u! is the variance of the additive noise. 
f(t) is the signaling waveform. 

1 
T 

is the signaling rate. 

fk = {I f(kT) I for standard format signaling 

I f[(k - !)T] I for N level partial response signaling with 
precoding* 

and 

A 
for standard format signaling 

for N level partial response signaling with 
precoding 
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We notice that the applicability of the error probability bound to 
partial response signaling formats was not discussed in the original 
paper but is presented here as a further extension of the result. 5 

The sets k £ K and k ~ K include all members except k = O. It is 
also shown in Ref. 5 that 

(2) 

Thus, if the signal sample set {fk} excluding k 0 is rearranged in 
order of decreasing magnitude to form a set {gd, then the sums in 
equation (1) may be replaced by 

(3) 
00 

L f~ = L g~. 
k¢K k=M+l 

For an arbitrary signaling waveform, t(t), the optimum M [in the sense 
of minimizing the right side of equation (1)] must be determined by a 
trial comparison method as decribed in Ref. 5. 

* In the partial response case, i1 must be replaced by i1-io in both numerator 
and denominator summations of equation (1) since only the unintentional inter
symbol interference should be included there. 
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For an exponential signal tail, 

o < T < 1; k = 2, 3, .,. (4) 

Thus, since f(t) is already monotonically decreasing for all t ~ T, 
the ordered sets {fk} and {gk} are identical in this case. 

t fk = f1[1 - r
M

] 

k~l 1 - r 
(5) 

00 f2 2M 

L f~=~' 
k=M+l 1 - r 

To minimize the right side of equation (1), it is sufficient to maximize 

(6) 

Differentiating Q with respect to M gives 

dQ = [ (N - 1) J[ (N - 1) J[ t~ ] dll! x In r to - 1 _ r t 1 (1 - x) to - 1 _ r f 1 1 _ r2 

where 

(0 ~ x ~ 1) 

and 

(N - 1) 
1 - r t1(1 - x) < fo . (8) 

Three separate cases must now be examined. 
(i) If fo - (N - l)fd(1 - r) < 0, then the eye is closed. From 

equation (7) it follows that dQ/ dM < 0 for 0 < x ~ 1. Therefore 
the positive maximum of Q occurs at the boundary x = 1, so the optimum 
value of M is M opt = O. 
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(ii) If 

fT!(N - 1) > 1 
(N' ;; 1 )(1 ~ J[to - (N

1 
-=- l;f'J ' 

it is implicit that 10 - (N - 1)/1/(1 - r) > 0, and the eye is open. In 
this case it is again true that dQ/dM < 0 for 0 < x ~ 1, and MOIlt = O. 

(iii) If 

° < fT!(N - 1) < 1 

(N
2 - 1) (_II ) [/0 _ (N - 1)/IJ ' 

3 1 + r (1 - r) 

it is again implicit that 10 - (N - 1)/1/(1 - r) > 0, and the eye is open. 
In this case a positive maximum for Q occurs in the interval ° < x < 1. 
Solving for the point where dQ/dM = 0, we obtain 

rllfoPt = fT!(N - 1) • 

(N
2

;- 1)(/0 - (N1 -=- ~/l)(1 ~ r) 
(9) 

Notice that condition (8) is automatically satisfied. 
Since the solution for MOIlt as given by equation (9) is not necessarily 

integer, the error probability bound as given by equation (1) must be 
modified in terms of the actual choice of an integer M. We will arbitrarily 
use the next higher integer. Letting [MoIlt ] denote the next higher integer 
to MOIlt and 

(N - 1)(1 + r) 
z=3 N + 11 - r , 

equation (6) may be expressed as: 

where 

[Sp - Imax(1 - rlllfoptl)]2 

Q = 2[fT! + I!axr2Il1foptl/z] 

b = rlllfoptJ-lIfoPt, r<b<1. 

(10) 

(11) 

lmax (N - 1)ld(l - r) denotes the maximum intersymbol inter-
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[(Sp - Imax)2 + b<T;Z]2 
<T;[(Sp - I max)2 + b2<T;z]· 

In terms of the error probability, 

P e < A exp [-Q] 

J (Sp - Imax)2 + 3r(~)(~)} 
< A '1 <Tn N + 1 1 - r 

e~ L 2 . 

(12) 

For the situations where Mopt = 0 (that is, cases i and ii) equation (1) 
becomes 

P e < A exp J - S! t . (13) 

1 [ 2 1 (N + 1)(1 - r) 2 JJ 2 <Tn + 3 N _ 1 1 + r I max 

III. ERROR PROBABILITY PERFORMANCE WITH A STANDARD· FORMAT INPUT 

DATA SIGNAL 

Figure 1 is a block diagram of the system considered. Although a 
basebahd system is shown, a system using linear modulation and de
modulation can readily be fit to this model. pew) is the basic shaping 
filter and it is assumed that the receiver is matched to this shaping 
filter. For simplicity, pew) is chosen to be real. The added .noise is 
white gaussian. H(w) is the narrow high-pass causal filter whose effects 
are considered. Since H(w) is narrow, it makes little difference whether 
the noise is added ahead of, behind, or somewhere in the middle of 
this filter. 

The source generates symbols randomly from an N-ary alphabet 
at a rate of liT symbols per second. The transmitted signal may be 
represented by 

00 

set) = L:akP(t - kT) 
k--oo 

where the ak'sare independent, zero,;,mean random variables ·wnich take 
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one of N equally spaced values with equal probability, and pet) is 
the impulse response of P (w) . 

It is assumed that there is no distortion other than H(w) and that 
Q(w) = P2(W) is a Nyquist shaped filter of bandwidth less than liT, 
so that 

q(kT) = 0, all k ~ O. (14) 

If we let P(O) 1, then 

q(O) = ;7f J Q(w) dw = TIP. (15) 

The power of the transmitted signal is 

S = <a~>av J P2(W) dw = ~~ 
27fT T2 (16) 

where IT~ is the variance of ak . 
The signal presented to the sampler may be written in the form 

00 

ret) = L: ak[q(t - kT) + e(t - kT)] + net) 
k=-oo 

where e(t) is the error signal caused by the low frequency removal, 
H(w). From equations (14) and (15), 

r(mT) ~ am[~ + e(O) ] + k~ a,e[(m - k)T] + n(mT). (17) 

The effect of the low frequency removal is both the reduction of the 
~ignal amplitude [since e(O) is negative] and, more important, the in
troduction of intersymbol interference. 

The Fourier transform of the error signal is 

E(w) = Q(w)[H(w) - 1] (18) 

so that 

e(t) = i: q(t - x)h_1(x) dx 

where h_1(t) is the inverse Fourier transform of [H(w) - 1]. 
In all cases of interest, H(w) - 1 is much narrower than Q(w). The 

time function h-l (t) therefore is virtually constant over a time interval 
equal to the effective duration of q(t) . We may therefore approximate 
q(t) by a delta function, whose area is unity since Q(O) = 1. 

e(t) = i: oCt - x)h_1(x) dx. 
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TRANSMIT 
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. p(w) 

HIGH - PASS 
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H(w) 
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RECEIVE 
FILTER 
P(W} 

Fig. 1- System block diagram. 

t=kT 

SAMPLE 

If H(w) is causal (which is the case we are interested in), then 

e(t) 

t < 0 

t = 0 

t > 0 

(19) 

where e(t) is the negative of the impulse response of a narrow causal 
low-pass filter. The generalized bound given in equation (1) can be 
applied to this case as: 

2(N - 1) J [~+ e(O) - (N - 1) 6 1 e, 1]'1 
P e < N exp 1 [2 N 2 

- 1 2J f . 
2 Un + 3 2: ek 

k¢K 

(20) 

The quantity u! is the noise power at the sampler input and is also 
equal to the noise power at the receiver input, measured in a bandwidth 
equal to half the signaling rate. For the N-Ievel system, 

In terms of the signal power, equation (16), equation (20) may be 
rewritten as 

2(N _ 1) {[I + g(O) - (N - 1) t; I gk 1]2} 
P e < N exp [ 2 ] (21) 

2 2 Un + '"'" 2 
U a S LJ gk 

k¢K 

where get) is the normalized error signal 

get) = Te(t) (22) 
G(w) = T[H(w) - 1]. 

To apply the simplified bounds derived in equations (12) and (13), we 
must first specify the high pass filter, H(w). 
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3.1 Single Pole Filter 

A very common type of low frequency removal results from the 
use of a single capacitor or transformer. The transfer function is 

ST 
H(s) =--

ST + 1 

where T is the time constant of the low frequency removal circuit. Its 
corner frequency is then 1/(271"T). From equation (22), the normalized 
error signal is 

G(S) 
T 

(23) ----
8T + 1 

and 

get) = -~ exp ( -~)u(t) 
where u(t) is the unit step function. Introducing the normalized quantity 

then 

Letting 

and 

T 
a=

T ' 

1
0 

a 
g(kT) = -2' 

-a exp (-ka), 

k < 0 

k = o. 
k>O 

Tfo = 1 + g(O) 

Tfk = I gk I, k = 1,2, ... 

-0 r = e , 

the normalized eye opening becomes 

(24) 

(25) 

(26) 

Tf - (N - 1)Tfl = 1 _ ~ _ (N - 1)ae-
0 < 0 (27) 

o 1 - r 2 1 - e- a 
• 

Thus, lVIopt = 0, and equation (13) becomes 
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f (1 - iY 1 
P < 2(N - 1) -=--__ ---:: 

e N exp 1- [2 a2 
] J 

2o-2a o-Sn 1 + exp (2a) 

(28) 

When a« 1, we may approximate equation (28) by 

P, < 2(N N 1) exp r (,1 )] . 
l 2o-~ ~ + i 

(29) 

The error bounds for binary, 4-level and 8-level systems are plotted 
in Figs. 2, 3, and 4, respectively, as a function of the signal to noise 
ratio, S/o-! , and the normalized reciprocal time constant, a. The dashed 
curves are the exact values for no low-frequency removal. 

(that is, P, = 2(N N- 1) erfc VJ = 2(N N 1) erfc ~~: ' 

where ( ) 1 100 

-t2/2 ) erfc x = (27r)! x e dt· 

It IS seen that, III the region of 10-5 error probability, these exact 

<I> 
0.. 

o 
o 

Or-------,--------,-------.-------.--------,-------, 
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Fig. 2 - Upper bound of the error probability of a binary standard format 
system with a single-pole high-pass filter. 
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Fig. 3 - Upper bound of the error probability of a 4-level standard format 
system with a single-pole high-pass filter. 
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Fig. 4- Upper bound of the error probability of an 8-level standard format 
system with a single-pole lligh-pass filter. 
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curves differ from the corresponding bounds by approximately a 
factor of 10 in error probability, or 1 decibel in signal to noise ratio. 

In the binary case, it is seen that a simple high-pass filter with a 
time constant of 50 bit intervals introduces a degradation of only 
about 1 decibel in the region of 10-5 error probability. On the other 
hand, a time constant of 10 bit intervals leads to totally unacceptable 
performance. For the same amount of degradation and the same 
symbol rate, the 4- and 8-level systems must have high-pass time 
constants respectively 5 and 21 times that of the binary system. 

3.2 Cascaded Single Pole Filters 

In many cases, several single-pole high-pass filters are contained 
in the transmission path of the system. If n identical networks are 
used, then the overall high-pass transfer function is 

Hn(s) = C7 s~ 1r. (30) 

In many cases, a transfer function containing a large number of real 
poles of different values can be approximated by a transfer function 
of the form of equation (30).6 

The Laplace transform of the error signal is 

To find gn (t) , we first evaluate 

£[¥ exp (~)g"(t)J ~ (8 - )M 1 = ~ t (n)(_!)ksn-k 
S k=l k 7 

~ (~)( -~r (k t:1

1)! ' t > 0 

T (t) n-l 1 ( )( t)k -- cxp -- L - n --, 
. 7 7 k=O k! k + 1 7 

t > o . 
At the sampling times, 

0, m < 0 

m = 0 (31) 

-a exp (-ma) % (k ~ 1) (_~a)k , m>O 

where again a = T /7. 
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This function may also be expressed in terms of the generalized 
Laguerre polynomial,7 

L<-l)(x) =.! t (n) (_X)k 
n n k=l k (k - I)! 

gn(mT) = ~ exp ( - ma)L~-l) (ma) , 
m 

(32) 

m> O. 

It has been found empirically in several numerical examples that 
the best error probability bound was obtained when all intersymbol 
interference terms were added to the noise (that is, Jl10Pt 0). The 
resultant bound is therefore 

J (1 - n2
at 1 

P e < 2(NN- 1) exp - 2 00 2 • (33) 1 2u;[~ + ]; (: exp (-ma)L~-"(ma») JJ 
An example of practical interest is the evaluation of the perform

ance of a baseband binary 50,000 bits per second data set without 
dc restoration, operating over a transmission facility using trans
former coupled repeaters. The transformers each have a corner fre
quency of 15 Hz, and therefore a time constant of 

1 
T = 271" X 15 = 10.6 msec. 

so that 

2 X 10-5 

a = 0.0106 = 0.00188. 

The results of Fig. 2 indicates a degradation of only about 0.1 
decibel when a single transformer is introduced. However, several 
transformers are usually present in actual systems. The error signals, 
gn (t), and error probability bounds have been computed for both 14 
and 28 transformers. The error signals for these two cases are shown 
in Fig. 5. Remember that one millisecond is equal to 50 bit intervals. 

Figure 6 shows the error probability bounds for these situations; 
28 transformers lead to unacceptable performance while 14 transformers 
introduce a degradation of 3 decibels at 10-5 error rate. It is significant 
that n transformers produce more degradation than a single transformer 
with a corner frequency n times greater. Also, under the assumptions 
of this paper, all of the above results apply independently of the roll-off 
characteristic of Q(w), as long as it is a member of the Nyquist I class. 
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Fig. 5 - Errors signal for a cascade of transformers with 15 Hz corner fre
quencies. 
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IV. ERROR PROBABILITY PERFORMANCE WITH AN N-LEVEL EXTENSION OF 

A DUOBINARY INPUT DATA SIGNAL 

The system model considered here is identical to Fig. 1 except 
that (i) a precoder which converts the input N-level sequence {ad 
to another N-Ievel sequence {b k } according to the relation 

(34) 

is inserted between the source and the transmitting filter, pew), and 
(ii) a decoder follows the sampler which decodes the received levels 
modulo N to recover the original symbols an . The important point for 
our application is that by including precoding at the transmitter, no 
knowledge of any symbol or sample other than the received sample, 
rk , is involved in deciding ak • 

til, Instead of the Nyquist shaping characteristic, the cosine filter is 
used for the composite signal shaping characteristic, Q(w) = P2(W), 
that is, 

T 
Q(w) = cos "2 w, 

The system impulse response is given by 

2 [ cos 7rt/T -'J 
q(t) = 7rT 1 - 4e/T2 , 

so its values at the sampling instant are 

q[(k - ~)Tl = {:' 
le = 0, 1 

le ~ 0, 1. 

The power of the transmitted signal is 

S = ~~)av j7rIT Q(w) dw = 2(J"~ 
... 7rT -7rIT 7rT 

(35) 

(36) 

(37) 

where (J"~ is the variance of bk • If the input symbols ak are equally likely 
and independent, then so are the pre coded symbols bk • Thus, (J"~ = (J"~ . 
The sampler input waveform, r(t), may be expressed as 

00 

ret) = L bk[q(t - leT) + e(t - leT)] + net) (38) 
k=-oo 

where once again e(t) is the degradation caused by the low frequency 
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removal, H(w). Substituting equation (36) in equation (38), 

r[(m - !)T] = r m = (brn + bm- 1) 2~ + bme( -~) 
+ L bke[(m - k - !)T] + n[(m - !)T]. (39) 

k,,<m 

If H(w) is causal as before, then e( - T /2) will be zero. l\!{aking the same 
assumptions as in the standard signal format case, we arrive at an ex
pression for error probability analogous to equation (21) 

(
N2 _ 1) {[! -(N - 1) t; I gk IJ

2

} 

P e < 2 N-2 - exp [ 2 J' (40) 
2 2 2ern + " 2 era S L..J gk 

7r ktK 

Here we consider only the single pole high-pass filter for H(w). The re
sult for a cascade of n identical poles follows immediately. 

4.1 Single Pole Filter 

We start by examining the normalized eye. Letting 

and r = e- a 

T/o = 1/2 

T/k = I gk I; k = 1,2, ... 

T/ _ (N - 1)/1 = ! _ (N - l)ae-
a 

0 
o 1 2 1 a <. -r -e 

Thus, M opt = 0 and equation (13) becomes for a « 1 

P, < 2(N'N~ 1) exp f - (1~4 r 
1 2er! !~ + ~ J 

(41) 

(42) 

(43) 

Figures 7, 8, and 9 illustrate the behavior of the error probability 
bounds versus S/er; for binary, 4-level and 8-level partial response 
signals with the normalized reciprocal time constant, a, as a parameter. 
The dotted curves give the exact values of P e for the case a = 0 

[thatis, P, ~ 2(N'N~ 1) erfc ((S;~~)l)J 
We once again observe that in the neighborhood of 10-5 error proba
bility, the exact curves for a = 0 differ from the corresponding bounds 
by approximately a factor of 10 in error probability, or 1 decibel in 
signal to noise ratio. 
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Fig. 7 - Upper bound of the error probability of a binary partial response sys
tem with a single-pole high-pass filter. 
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Fig. 8 - Upper bound of the error probability of a 4-level partial response 
system with a single-pole high-pass filter. 
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Fig. 9 - Upper bound of the error probability of an 8-lcvel partial response 
system with a single-pole high-pass filter. 

However, to achieve a SIN degradation of only 1 decibel in the 
region of 10-5 error probability with a simple high-pass filter, the 
time constant must be about four times that needed for the standard 
format signal. The above statement is true for the binary, 4-level, 
and 8-level cases. This more stringent requirement on the location 
of the low frequency cutoff may be viewed as a tradeoff for the saving 
in bandwidth associated with partial response signaling. 

V. CONCLUSIONS 

Although a high-pass filter will always close the eye pattern of 
i a standard format data signal (Nyquist I shaping) or iii a multi
level partial response signal (duobinary format), the error probability 
may still be quite low for random data provided that the high-pass 
filter is sufficiently narrow. This effect permits the use of capacitor or 
transformer coupling in the data terminals or transmission facilities. 
l\1ultilevel systems require a longer time constant for these networks 
than do binary systems for the same performance. 

Upper bounds of error probability have been given for binary, 
4-level, and 8-level systems with gaussian noise and a single-pole 
high-pass filter (exponential time response). A binary system with 
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a standard format input signal is degraded by only about 1 decibel 
by a simple high-pass filter whose time constant is 50 bit intervals. 
Four-level and 8-level systems require time constants of 250 and 
1000 baud intervals, respectively, for the same performance. 

A data system whose input is a binary, 4-level, or 8-level partial 
response signal must have a low frequency cutoff which is two octaves 
lower in order to achieve the same performance as a standard format 
system. 

The error signal for a multiple-order pole is an exponential multi
plied by a generalized Laguerre polynomial. The performance of a 
system with an nth order pole high-pass filter is worse than one with 
a single pole n times as large. 
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Computer-Aided Circuit Design 
by Singular Imbedding 

By E. B. KOZEMCHAK and M. A. MURRAY·LASSO 

(Manuscript received August 5, 1968) 

We give a new and powerful method for the direct solution of circuit 
design problems. The method begins with a prespecified topology and some 
or all elements undetermined in value. The designer imposes on the circuit 
any desired set of node-pair voltages, branch currents, or driving point 
and transfer immittances. Values of circuit elements that satisfy the con
straints are directly calculated. This direct method of solution avoids the 
usual iterative analysis-optimization schemes, reducing computer times by 
up to three orders of magnitude. 

A linear set of design equations is formulated by choosing undetermined 
element currents and node voltages as the variables. Singular elements are 
introduced to impose the desired constraints. Inequality as well as equality 
constraints are permitted. Element values are determined from the solution 
of these equations. In this paper we emphasize our method of solution in 
relation to de networks. 

r. INTRODUCTION 

The most significant advances made in computer-aided circuit de
sign have been in analysis programs. The designer can now choose 
from among several general purpose programs that program which 
most nearly suits his particular needs. In designing a circuit to meet 
a given set of requirements, the usual approach has been to use 
analysis programs in some optimization scheme. Through an iterative 
process, carried out by the machine, the man, or a man-machine inter
action, a final design is reached. The approach presented here pro
vides a direct solution, and does not rely on such iterative schemes. 

The method is most fertile in the area of active network design, 
where one often wishes to choose element values in a specified topology 
in order to meet some set of requirements. The method has been 
applied to a number of design problems of current interest including 

275 
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biasing direct coupled transistor circuits; designing transistor ampli
fiers for specified midband gain, input, and output impedances; and 
simultaneously realizing several specified impedance or admittance 
parameters of a network. 

In the design of electronic circuitry, one usually wishes to imbed 
passive elements into a network containing active devices, and to 
determine the required passive element values. Therefore, this paper 
deals with the determination of element values in a prespecified 
topology for which a given performance is required. Two new ele
ments, a voltage forcing element (VFE) and current forcing element 
(CFE) , are introduced in order to constrain network voltages and 
currents. These elements may be realized with independent voltage 
and current sources, and the nullator, a somewhat "pathological" 
element used in theoretical network studies. 

The method of singular imbedding places the VFE's and CFE's 
in a network to constrain the desired variables. The terminal voltage
current behavior of the variable elements is not specified. Instead, 
the constraints imposed upon the network by the VFE's and CFE's 
are used to determine allowed voltage-current relations for the variable 
elements. The formulation remains linear in these variables. The last 
step involves determining the element values through Ohm's law 
once the allowed voltage-current relations are known. 

By appending the original set of equations with a set of inequality 
constraints, it is possible to restrict the range of element values in 
the solution. For example, realizations employing only element values 
between specified lower and upper bounds are possible. For simplicity, 
only the case of linear dc networks are illustrated. Extensions of 
the method to ac and nonlinear design are considered elsewhere. 

II. A NEW APPROACH 

To understand the philosophy of this new approach to design, con
sider the train of events in realizing a set of requirements with elec
tronic circuitry. Since the choice of topology is better handled by the 
man than the computer, we will assume some specified topology in 
which some or all of the element values are to be chosen to meet the 
given criteria. For example, in designing transistor circuitry it is nec
essary to choose some resistance values to properly bias the transis
tors. Similarly, one must often choose element values to give a desired 
voltage gain, driving point impedance, transfer impedance, or similar 
network function. 
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The invariant feature in all of these problems is that a set of net
work currents and voltages, or their ratios, has been constrained. The 
design problem is to find any set of element values consistent with 
these constraints. If the problem is posed with sufficient freedom, 
many sets of element values may exist consistent with the imposed 
constraints. Conversely, if the problem is posed with insufficient free
dom, inconsistent equations arise and there is no solution. 

If one can find a general method of imposing these network con
straints, and can simultaneously monitor the voltage-current relations 
these constraints force at the terminals of the variable elements, then 
indeed a direct solution to many computer-aided design problems will 
have been found. 

Before proceeding, however, consider a very simple example of 
how one might presently handle the design problem and the diffi
culties that would ensue. Suppose in the network of Fig. 1, one wishes 
to choose G1 and G2 such that V'is constrained to be 0.1 volt. A set 
of nodal equations may be written: 

[lJ+ GI -GI] VI] = 1]. 
- G1 GI + G2 V 2 0 

(1) 

The first step involves a transformation of coordinates so that 
the desired quantities appear explicitly in the equations. In general, 
this will necessitate using hybrid parameters. For this case, the fol
lowing transformation might be used: 

~~] = [~ (2) 

Inverting the relation, we have 

[~ 1] V: 
1 V~ 

(3) 

Fig. (~-:Simple design problem. 
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and the current-law equations become 

~J (4) 

(5) 

Substituting the constant V' = V\ = 0.1, the set of equations becomes 

0.1(1 + G1) + V; = 1 
t 

-0.lG1 + G2 V 2 = O. 
(6) 

Thus, even if one is successful in finding a transformation to a 
basis that includes the variables that are constrained, the result is 
usually a set of nonlinear equations in the network elements and 
voltage variables. Solving this set of nonlinear equations for the 
unknown voltages and element values is extremely difficult. A method 
of handling this difficulty has been suggested, involving the use of 
optimizing techniques to vary element values until the network vari
ables take on their desired values-in this case V' = 0.1 volt.1 While 
this is a useful approach, it has several disadvantages. First, it is 
time consuming since many iterations are required for convergence. 
Second, local minima, or lack of sufficient numerical accuracy, may 
prevent convergence to a correct solution. Finally, although an infinity 
of sets (G1 , O2) exist to satisfy the given constraints, the optimization 
yields only one of these sets. 

With these difficulties in mind, let us repeat the philosophy of 
design presented here. We first determine how the requirements con
strain network currents and voltages. We then force these currents 
and voltages to take on the desired values. Finally, we determine the 
effect of such constraints upon the voltage-current relations at the 
terminals of variable elements. These v - i relations then determine 
the values of the variable elements. 

III. NETWORK CONSTRAINTS 

The common feature of all network synthesis problems is that they 
require some specified relation between some voltages and currents in 
the network. For example, synthesis of a given driving point im
pedance constrains the ratio of a port voltage to the current at that 
port. Synthesis of a tranSfer impedance constrains the ratio of a port 
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voltage to the current at a different port. A specified voltage or cur
rent gain constrains the ratio of two port voltages or port currents, 
respectively. Indeed the synthesis of entire network matrices is a 
combination of such constraints. Similarly, the static design problem 
in electronic circuits involves fixing certain branch currents and 
branch voltages. For example, one usually wishes to bias a transistor 
for a given collector current and collector-emitter voltage. Resistance 
values are chosen consistent with these constraints. 

It is essential to demonstrate a method for constraining voltages 
and currents in a network. The required constraints are shown in 
Fig. 2. We introduce two new elements, a current forcing element, 
CFE (10 ) , and a voltage forcing element, VFE (Vo) , which will be real
ized with more conventional elements shortly. We want the CFE(Io) 
to be such that it constrains the current through branch j to be 10 , 

without otherwise affecting the behavior of the network. We want the 
VFE (Vo) to be such that it constrains the voltage across branch j 
to be Vo without otherwise affecting the behavior of the network. 

In discussing the properties of the CFE and VFE, we use the concept 
of admissible or allowed pairs of voltage and current variables (v, i).2 
The set of voltage-current pairs that a system N allows can be used to 
completely describe that system.3 For example, let the system under 
consideration, N R, consist of a single resistor of value R. Then the 
system is completely described by its allowed terminal voltage and cur
rent pairs; namely, (Ri, i) t N R • Similarly, a capacitance of value C, 
denoted N c , is completely described by its allowed pairs (v, d(Cv)/dt) t 

N c . 

We now define the CFE (Io) and VFE (Vo) in terms of their allowed 
pairs. 

Current forcing element (Io) : 

(0,1 0 ) t NCFE(]o) • (7) 

Here we postulate an element which allows no voltage drop across 
its terminals, and passes only a specified current 10 , 

Next, we postulate an element which allows only a fixed voltage 
Vo to exist at its terminals, and passes no current. 

Voltage forcing element (Vo) : 

(Vo,O) t NVFE(Vo) • (8) 

Figure 2 makes clear the use of these elements in constraining net
work variables. In Fig. 2a, the current in branch j is forced to be 



280 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969 

(0 ) 

BRANCH J + 

Va 

(b) 

Fig. 2 - Network constraints. (a) Branch J current constrained by current 
forcing element (CFE); (b) Branch J voltage constrained by voltage forcing 
element (VFE). 

10 by inserting a CFE in series. Since the CFE (10) allows no voltage 
to exist across its terminals, its presence affects Kirchhoff's current 
and voltage laws only to the extent that branch j current is con
strained to be 10 • Notice that this would not be the case had we in
serted a current source in series with branch j. The current source 
would allow some voltage to exist between its terminals which would 
have been included in Kirchhoff's voltage law equations. Thus, a 
current source of value 10 would not only constrain branch j current 
to be 10 , but would also introduce a new degree of freedom, namely, 
the voltage across the current source. 

Similar reasoning can be applied to Fig. 2b. Here a VFE (Vo) is 
applied across branch j to constrain that voltage to be Vo. Since the 
VFE (Vo) passes no current, Kirchhoff's laws are affected only to the 
extent that branch j voltage is now constrained to be Vo. The net
work cannot respond with a new degree of freedom, as it could if a 
voltage source were placed across branch j and thus allowed to in
troduce a new current variable in Kirchhoff's current law equations. 
It should be noted that the VFE (Vo), can be placed between any 
two nodes to constrain the voltage between those nodes; it need not 
be placed across a branch. 

By using current sources and voltage sources in conjunction with 
VFE's and CFE's, current-voltage ratios may be constrained. For 
example, in Fig. 3a, 

(9) 

In Fig. 3b, 

(10) 
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Fig. 3 - Methods of constraining current-voltage ratios. (a) Impedance forcing 
element [IFE(Z)]; (b) admittance forcing element [AFE(Y)]. 

Thus we are constraining the network N to have, in the first case, 
a driving point impedance Z, and in the second case, a driving point 
admittance Y. The configurations used to constrain impedances or 
admittances will be denoted impedance forcing elements, IFE (Z) , 
and admittance forcing elements, AFE (Y) . Notice that IFE's and 
AFE's are composed of CFE's, VFE's, and independent sources. They 
are useful in constraining a network to have a desired driving point 
impedance or admittance. 

We already mentioned that VFE's and CFE's could be realized in 
terms of existing elements. The necessary elements are the ideal cur
rent source, the ideal voltage source, and the nulla tor, a somewhat 
"pathological" network element introduced by Tellegen.4 Returning to 
the allowed pair concept, the nullator is defined to be a two-terminal 
element for which the only allowed voltage-current pair is (0, 0). It 
can be looked upon as a simultaneous open and short circuit, since it 
allows only zero voltage at its terminals and passes no current. 

From its definition, one could not hope to physically realize and 
isolate such a device. However it's characteristics may be observed at 
the input to an operational amplifier imbedded in a feedback net
work, where the input .is at a virtual ground (short circuit) and yet 
passes no current (open circuit). The nullator is represented sche
matically in Fig. 4. 

By appropriate connections of voltage sources, current sources, 
and nullators, the VFE's and CFE's may be realized as in Fig. 5. 
Remembering that the nuJlator passes zero current and has zero volt
age across its terminals, the equivalents of Fig. 5 becomes clear. In 

0-----1 o t----o 

Fig. 4 - Schematic representation of nullator. 
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(a) (b) 

Fig. 5 - Equivalent circuits for VFE and CFE using nullators. 

Fig. 5a, the terminal voltage must be Vo , and since no current exists 
in the element the combination voltage source and nullator is by 
definition a VFE (Vo). In Fig. 5b, a current 10 exists at the terminals 
but no voltage drop exists across the terminals. Thus by definition, 
the combination current source and nullator is a CFE (10)' 

IV. ADDING FREEDOM TO THE NETWORK 

In the previous section, we placed constraints on the network that 
would generally lead to a set of inconsistent equations if all the 
elements were also specified. However, if some network elements are 
variable, we can determine how the constraints affect the voltage
current relations at the variable element terminals, and then choose 
variable elements in such a way as to be consistent with these v -
i relations. 

We propose two methods of characterizing the variable elements. 
First, since the element is variable, we can ascribe no functional rela
tion between the voltage and current of that branch. This is handled 
in writing the nodal equations for the network by explicitly adding 
the currents through variable elements into the equations, rather than 
first transforming them into voltage variables through a functional 
rela tion of the form 

(11) 

where the b implies the variable refers to some branch. The nodal 
equations are of the form 

[Yf]V] = Is] + [elI], (12) 

where 

V] is an n-vector of node voltages. 
Is] is an n-vector of forcing currents at each node. 
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[Y f] is the n X n nodal admittance matrix of the fixed portion of the 
network. 

I] is an r-vector of unknown currents through variable elements (r 
is the number of variable elements). 

[e] is the n X r node cutset matrix for the graph of variable elements. 
I] and V] are both vectors of network variables, and may be combined 

by matrix partitioning as 

[-C I y,] [:J ~ Is]. (13) 

Equation (13) describes a network in which some element values 
can be chosen to meet the given constraints. In the remainder of this 
paper, we combine the added degrees of freedom given by the variable 
elements in equation (13) with the constraints imposed by the CFE's 
and VFE's. All networks, satisfying the VFE and CFE constraints 
and the specified topology, with be generated. 

A simple example will help clarify these concepts. Figure 6 is the 
network of Fig. 1, with the I-ohm resistor replaced by a known resis
tance of R ohms. Currents II and 12 are those carried by the variable 
conductances G1 and G2 , respectively. The set of nodal equations is 

[l~R ~] ~:] ~ ~] + [ - ~ 
Rearranging into the form of equation (13), 

I1 

[ 1 0:1 0] 12 

-1 1: 0 0 V 1 

V2 

(14) 

(15) 

From this example, the method of generating equation (13) should 
become clear. 

Fig. 6 - Simple design problem. 
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The second approach useful in dealing with variable elements in a 
network is the introduction of another pathological element, the nora
tor, shown in Fig. 7, also introduced by Tellegen.4 The norator is a 
two-terminal element with allowed pairs (v, i), with v and i independ
ent and arbitrary. Thus, any voltage and current may appear across 
its terminals simultaneously, which is the property that we desire of 
variable elements. We do not wish to force any functional relation 
between the voltage across and the current through variable ele
ments. We wish only to observe constraints that may be imposed on 
the v - i relations by the VFE's and CFE's. The norator allows the 
network the extra degree of freedom taken away by the introduction 
of nullators. 

v. FORMULATION OF NETWORK EQUATIONS 

Since the introduction of nullators and norators into a network will 
generally introduce singularities into the corresponding equations, we 
call the approach we are considering the method of singular im
bedding. It has been demonstrated that the design problem can be 
reduced to the appropriate imbedding of nullators, norators, and in
dependent voltage and current sources. Let us now examine the effect 
of such imbedding on the network equilibrium equations. Since a 
nodal admittance formulation is used, it is important to determine 
the effect of nullators and norators on the admittance matrix. 

Independent voltage sources may be conveniently incorporated into 
an admittance formulation. If a series impedance exists with the 
voltage source, application of Norton's Theorem is sufficient. If no 
series impedance exists, the introduction of positive and negative im
pedances is necessary in transforming the voltage source to an inde
pendent current source (see Fig. 8). 

The effect of nullators and norators upon the admittance matrix 
of a network has been considered by A. C. Davies.5 Let us write the 
nodal equations for the network with all nullators and norators re
moved. The equations are of the form 

[Y.,] V] = I..,] (16) 

Fig. 7 - Schematic representation of norator. 
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-R -R 

1 r y 
v

T 
R 

-=-v 
I 

Fig. 8 - Equivalent circuit for ideal voltage source. 

where 

[yo] is the admittance matrix of the network with nullators and 
norators removed 

V] is the vector of node voltages with respect to ground 
Is] is the vector of currents injected into each node. 

Suppose now that a nullator is connected between nodes i and j. 
Since the nullator passes only zero current, the current law equations 
at those nodes are not affected. However, since there is zero voltage 
across the nullator, Vi and V j are now constrained to be equal. Call 
this new value Vij. Clearly, one degree of freedom has been removed 
from the network response. In addition to the matrix equation (16), 
one equation of the form 

(17) 

is added for each nullator imbedded in the network. Thus, if k nulla
tors are imbedded, k additional constraint equations are added. 

Two viewpoints can be taken here. First, the original set of equa
tions, equation (16), has been appended by a set of the form 

[B]V] = 0] (18) 

where 

V] is the n-vector of node voltages. 
[B] is a k X n matrix of -1, 0, 1 entries expressing the set of con

straints of equation (17) for the k nullators. 

The final set of equations becomes 

-. 

(19) 

A,_ second approach to the:- problem was suggestedpy Davies.5 In 
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the nodal equations below 

-, . 
... YIn I 

I V; 
... Yii ... Yii 

I • 

I : 
(20) 

I 

I Vi 
... Yni ... Yni ... Ynn J . 

Vn 

the addition of a nullator between nodes i and j makes Vi = V j = Vij • 

The ith and jth column of the Y matrix are both multiplied by Vij , 

thus they may be added and the equations written as 

VI 
Yll (Yli + VIi) .•. YIn 

Y2I (Y2i + Y2i) Y2n 
Vii = Is]. (21) 

YnI (Yni + Yni) ... Ynn 
Vn 

The addition of k independent nullators (no nulla tor loops) causes k 
additions of columns of Y and reduces the dimension of V] by k. We 
denote the reduced set of equations by 

[Y~]nX(n-kl V'](n-klXl = I~]nxl. (22) 

In either interpretation, we observe that the resulting set of equa
tions is no longer square. In the first interpretation, we are increasing 
the dimensionality of the vector space that the column vectors must 
span, without adding new basis vectors to span that space. In general, 
the equations will be inconsistent. In the second interpretation, we are 
keeping the dimension of the space fixed, but reducing the number of 
vectors available to form a basis and the space may no longer be 
spanned. Again inconsistencies will generally arise. In either interpre
tation, the inconsistencies are to be expected since nullators (VFE's 
or CFE's) have been introduced to constrain network variables. 

Let us now examine the way in which variable elements (additional 
degrees of freedom) remove these inconsistencies. Again two points of 
view may be taken. One provides us with new basis vectors to span 
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the space of possible injected current vectors Is], the second reduces 
the dimensionality of the space of Is] in order that the existing number 
of basis vectors might again span the space. 

Section III gives the essence of the first interpretation with the 
important result, equation (13). Observe that imbedding variable 
elements in a network provides an additional set of column vectors, 
namely, those of [-C], that may be used as basis vectors in spanning 
the space of possible Is]. Thus, if one has complete freedom in selecting 
variable elements, a set of column vectors, the columns of [- C] can 
always be found to assure that the space of all possible Is] will be 
spanned, regardless of how the nullators reduce the space of the column 
vector of the Y matrix. This concept, which involves growing new 
elements to satisfy imposed constraints, will be the subject of future 
study. 

A second approach in handling the freedom introduced by variable 
elements is to replace each variable element by a norator, as suggested 
in Section III. The method of Davies may then be employed to analyze 
the network containing norators. 5 Again assume that the admittance 
matrix Yo of the network without nullators and norators is available. 
Thus, 

[Yo]V] = Is]. (23) 

Now suppose that a norator is connected between nodes hand k, and 
that the reference direction for the arbitrary norator current 10 is 
from h to k. The current-law equations for nodes hand k will be of 
the form 

ISh - 10 = I: YhiVi (24) 
i 

ISk+Io= I: YkiVi' (25) 
i 

Since 10 is arbitrary, and is not needed to solve for the node volt
ages, adding the two equations gives 

ISh + I Sk = I: (Yhi + Yki)Vi. (26) 
i 

This corresponds to the addition of rows hand k of the nodal equa
tions of the network without norators. Thus for a network containing 
n nodes and r norators, only n - 1 - r independent equations can be 
written. 

Observe in Fig. 9 that the effect of connecting the norator between 
nodes hand k is to replace the nodal equations for nodes hand k 
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Fig. 9 - Effect of connecting norator between two nodes. 

by a single current law equation for the ambit (broken line) sur
rounding both nodes hand k. Thus any functional relation between 
the current and voltage of branch j is removed, as is desired for a 
variable element. 

To summarize thus far, the following manipulations may be per
formed on the network current law equations to deal with VFE's, CFE's 
and variable elements. To include network constraints, first imbed the 
CFE's and VFE's. ',,"rite the Y matrix with nullators removed. Then 
reduce the matrix by adding appropriate columns. This may be stated 
compactly by a matrix transformation as5 

Is] = [Yo] [UclV] (27) 

where rUe] is a matrix obtained from the unit matrix by adding columns 
corresponding to nodes between which nullators are connected. Since 
the transformation [Uc] is singular, not all components of V] are deter
mined. The undetermined ones are found from the relation 

[B]V] = 0]. (28) 

To include variable elements, either 
(1:) Augment the Y matrix of the fixed portion of the network with 

the node cutset matrix of the graph of the variable elements to get 

(29) 

or 

(i1:) Add the current law equation : corresponding to nodes to which 
a nullator is connected. This is compactly stated by a matrix transforma-
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tion as5 

(30) 

where [Ur ] is a matrix obtained from the unit matrix by adding rows 
corresponding to nodes between which norators are connected. The 
vector of currents through variable resistors is then formed by equation 
(29). 

VI. SOLVING THE NETWORK EQUATIONS 

We now wish to solve the set of equations after imbedding CFE's, 
VFE's, and variable elements. We assume equation (29) to be our 
starting point. A similar formulation may be made using equation 
(30) as the starting point. CFE's and VFE's are imbedded, variable 
elements are specified, and nullators are removed to generate the set 
of equations 

[-c : Yo] ~J = Is]. (31) 

Addition of nullators to the network adds the set of equations 

BV] = 0] (32) 

and, from equation (27), the corresponding transformation rUe] on 
the admittance matrix. Thus the final set of equations becomes 

[-C i Yf UeJ 1J = IsJ. (33) 
o : B V 0 

As seen in the previous section, the transformation [Ucl (which adds 
columns of Y f) is consistent with the set of equations [B]V] = o. Thus 
the second matrix equation in equation (33) will always have a solu
tion, provided the first one does. It remains only to solve 

[-C : Y, U,] ~J = Is]. (34) 

in order to determine the proper element values. Let 

IJ - = x] 
V (r+n-k) Xl • 

By using the Gauss-Jordan method one can bring these equations 
into the form 

(35) 
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where 

X1 1X2] is a vector of node voltages and currents through variable 
resistors, 

[U] is the unit matrix, 
[Q], lSI], I s2] are the resulting sub matrices after transformation. 
If 182] = 0 (the equations are consistent), the first equation can be 

solved for Xl] in terms of X2]. 

(36) 

The case 182] ~ 0 implies that there are no values of variable elements 
consistent with the imposed constraints. For 182] = 0], equation (36) 
generates all solutions to the problem. Some network variables X2] 

can be chosen arbitrarily and the remaining variables Xtl determined. 
At each setting of X2] the variable elements can be determined since 
all node voltages and currents through variable elements are known. 

Thus 

for ~ = 1, r (37) 

where il and i2 are connection nodes of the ith variable element. By 
allowing the free variables X2] to take on a continuum of values, all 
solutions to the problem are determined directly. 

Returning to the example already discussed (Fig. b), let us apply 
the method of singular imbedding. The circuit is redrawn in Fig. 10 
with the introduction of a VFE to constrain the voltage between nodes 
1 and 2 to be 0.1~:· volt. With the nullator removed, a set of nodal 
equations is written in the form of equation (13) 

II 

[-~ 
o : I/R 0 

°r'- -o·~l I 

1 : 0 1 -1 VI (38a) 
I 

0: 0 -1 1 V 2 0.1 

Vs 
The introduction of a nullator between nodes 1 and 3 results in the 
addition of the corresponding columns and the equality VI = Va = 

* Since the nulla tor passes zero current, the series battery in the VFE model 
may. have a nonzero resistance and still maintain the proper terminal voltage. 
Thus the introduction of positive and negative resistances are unnecessary here. 
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Fig. 10 - Network after singular imbedding. 

I
f 1 0 l/R 

-1 1 -1 

o 0 1 

~] ~: 1 ~ -0 ~]. 
-1 V 13 0.1 

V 2 J 
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(38b) 

With R = 1 ohm for ease of visualization, elementary row operations 
yield 

[~ 
0 0: 

-~] 
II 0.9' 

I 
12 1 0: = 0.9 . (39) 

I 
V 13 0 1 : O.lJ 
V2 

Thus, 

I, ] 0.9] 
V, ~J 12 = 0.9 - (40) 

V 13 0.1 -1 

It is clear that V2 can take on arbitrary values while maintaining the 
constraints. We will demonstrate this for two particular values of 
V 2 • For V 2 = 0 
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II 0.9 

12 0.9 

V 13 0.1 

V2 0 

VI - V2 

II 

R2 = i12 = O. 

1 
9 ' 

It is easily verified that these values, when substituting into the 
circuit of Fig. 1, result in V' = VI - V 2 = 0.1 volt. 

Similarly for V 2 = 0.6 volt 

II 0.3 

12 0.3 

V 13 0.7 

V 2 0.6 
and RI = lis, R2 = 2. 

Again it is easily verified that V' = VI - V2 = 0.1 volt. With this 
simple example in mind, let us consider the solution of more com
plicated networks by computer. 

VII. COMPUTER SOLUTION 

A program has been written to solve the design problem for resis
tive networks. The program performs the following operations 

(i) Accepts input of circuit description in conversational mode. The 
circuit may contain resistors (both fixed and variable), VFE's CFE's 
batteries, independent current sources, and current controlled current 
sources. 

(ii) Generates C, Y f , and Is matrices for the network. 
(iii) Reduces equations to triangular form by a Gaussian reduction 

which pivots around largest elements in array. 
(iv) Those variables not in the basis after gaussian elimination are 

passed to the right side and stepped through specified range. Resistance 
values are printed for each setting of the free variables. Each set of 
resistance values will satisfy the given constraints. 

Four examples demonstrate the flexibility of the method. Suppose 
in the circuit of Fig. 11 one wishes to choose Rl and R2 to provide 
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12V 

SET Ie = smA 

Fig. 11- Transistor design problem. 

a collector current of 5 mAo A CFE of value 0.005 is placed in series 
with the collector and the circuit of Fig. 12 is fed into the program as 
in Table 1. After the program sets up the equations and performs the 
gaussian elimination, it prints, that the voltage at node 3 is free. It 
can be arbitrarily chosen to generate sets of solutions. 

This free voltage is then, at the user's request, stepped from 7 volts 
to 10 volts in 1 volt increments. Combinations of Rl and R2 which 
provide a collector current of 5 mA are printed in Table I. To verify 
these results the program DCANAL7 was used to determine the transistor 
collector current for the fifth set of resistor values. As the table shows, 
the collector current is 5 mAo 

A second example involves simultaneously constraining Ie = 5 mA 
and VCE = 5 volts. As Fig. 13 shows, R 1 , R 2 , and R3 are variable. 
The network with a VFE and CFE imbedded is shown in Fig. 14, and 
the results given in Table II. Verification of the first set of resistance 
values is given. Observe that Ie = 5 mA and VCE = 5 volts. 

1n. 

1
12V 

Fig. 12 - Network after transistor modelling and singular imbedding. 
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TABLE I-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF FIGURE 11 
TYPE NO. OF BRANCHES.NODES.CO~TROLLED SOURCES,8ATTERIES,CURRENT SOURCES 

A:7 5 I .3 0 
TYPE BRANCH RESISTANCES 
8:1. I. 1260.200. 1.E3 I.E4 I. 
lYPE FOR EACH BRANCH: I~ITIAL NODE,FINAL NODE,BATTERY NO. 
C: I 5 I 4 3 1 I 5 2 5 2 3 1 2 1 3 2 I 1 4 2 
TYPE VALUES OF BATTERIES 
0:0. 12. -.7 
TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO. 
E:6 4 
TYPE VALUES OF BETAS 
1":75. 

OPTION COMMANDS:OESIGN R 

TYPE NO. VAR. RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS 
1:2 " 1 
TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J:I 2 
TYPE BRANCH CURRENTS BEING CONSTRAINED 
M:6 
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED 
N: .005 

THE FOLLOWING NODE VOLTAGES ARE FREE 
3 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:7. I. <1 

THE FREE VARIABLE: 7. 
R( 1):1.1850722E+03 
R( 2):9.9900005E+02 

THE FREE VARIABLE: 8. 
R( 1):1.IB4IHl4EHl3 
R( 2):7.9900003EHl2 

THE FREE VARIABLE: 9. 
R( 1):1.1831496E+03 
R( 2):5.99000000E+02 

THE FREE VARIABLE: tel. 
R( 1):1.1821898E+0.3 
Re 2):3.9899998E+02 

DESIGN COMMAND:KEEP 
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET 
:10. 

OPTION COMMAND:TRAN ALL 

VCE IC 
TRANS # 

I 4.9398502 4.9999999E-03 

12 V 

SET Ic= 5mA 

Vc E=5V 

Fig. 13 - Transistor design problem. 
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~ 
-=-12 Y 

1260 

~1 
12V -=-
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Fig. 14 - Network after transistor modelling and singular imbedding. 

A third example involves the rather complex three transistor circuit 
illustrated in Fig. 15. The imbedding of VFE's and CFE's to con
strain collector emitter voltages to 5 volts, and collector currents to 
10 rnA is shown. 

Table III illustrates the results of a computer solution to the problem 
by the method of singular imbedding. Observe that currents through 
variable resistors 10 and 14 can be arbitrarily chosen and sets of resistors 
RiO through R18 generated. Four such sets are presented in Table III. 
Observe the results of an analysis indicating one such set properly 
biases the network. Table IV presents the results of an optimization 
program, based on pattern search,l to bias the network, for which 
forty-eight exploratory moves and 105 pattern moves were required. 
Each exploratory move involves between eight and 16 circuit analyses. 
Each pattern move involves an average of four analyses. Thus, approxi
mately 1000 matrix inversions are required. Since each inversion involves 
(n3

) /3 operations, the number of operations to generate a single bias 
network ~243,000. 

Singular imbedding increases the number of nodes from 9 to 15. 
However, only one matrix inversion is required to generate a solution. 
Thus the number of operations ""n3/3 "" 1125. 

Singular imbedding increases the efficiency in finding a solution to 
this problem by a factor of approximately 200. What is even more 
important is the ease with which equivalent networks are generated. 
Each equivalent network is generated by a matrix multiplication of 
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TABLE II-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF FIGURE 13 
TYPE NO. OF BRANCHES.NODES.CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES 
A:7 5 I 3 0 
TYPE BRANCH RESISTANCES 
B:I. I. I. 126~. 200. I.E4 I. 
TYPE FOR EACH BRANCH: INITIAL NODE.FINAL NODE.BATTERY NO. 
C:I 3 I I 2 I 5 4 I I 3 2 3 2 3 4 2 1 I 5 2 
TYPE VALUES OF BATTERIES 
0:0. 12. -.7 
TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO. 
E:6 5 
TYPE VALUES OF BETAS 
F:75. 

OPTION COMMANDS:DESIGN R 

TYPE NO. VAR. RESISTANCES. NO. VOLTAGE CONSTRAINTS. AND NO CURRENT CONSTRAINTS 
1:3 I 1 
TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J:I 2 3 
FOR EACH VOLTAGE CONSTRAINT, TYPE PLUS AND MINUS NODES 
K:4 2 
TYPE VALUE OF' EACH VOLTAGE CONSTRAINT 
L:5. 
TYPE BRANCH CURRENTS BEING CONSTRAINED 
M:6 
TYPE VALUE OF EACH CURRENT BEING CONSTRAINED 
N:.005 

THE FOLLOWING NODE VOLTAGES ARE FREE 
3 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:4. 2. 2 

THE FREE VARIABLE: 4. 
R( 1):6.3601035E+02 
Re 2):6.4979250E+02 
Re 3):7.4140005E+02 

THE FREE VARIABLE:6. 
Re J):1.2760788EHl3 
Re 2):1.0450373E+03 
Re 3):3.4140001 E+02 

DESIGN COMMAND:KEEP 
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET 
:4. 

OPTION COMMAND5:TRAN ALL 

veE 
TRANS /I 

I 5.0000 EHl0 

the vector of free variables, which is stepped through a specified 
range, and the matrix of vectors not taken into the basis after tri
angulation. In this case the matrix is 19 X 2 and the vector of free 
variables is 2 X 1. Each multiplication involves 2 X 19 = 38 opera
tions. This means that up to 14,000 equivalent networks can be gen
erated with the same number of operations needed to give one solution 
by optimization techniques. 

The value of singular imbedding is apparent here. Only one equa
tion need be solved, and from it, all solutions are generated. 

As a fourth example, a network was designed for a specified Zll 
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+45V~----~----------------~------~A,A~----~ 

lk 

9065 

~--------~----------------4---------------~~--~-45V 

Fig. 15 - Three transistor network with VFE's and CFE's imbedded for desired 
biasing. 

and Z21 simultaneously. The circuit is given in Fig. 16. R1 , R2 , and R3 
are to be selected to give Zu = 213 and Z21 = 113. After proper imbed
ding of VFE's and CFE's the network of Fig. 17 results. Table V 
gives the results of a computer run to design the circuit. The third 
set, Rl = R2 = Ra = 2 is shown to give the desired z-parameters 
through the Y - A transformation of Fig. 18. 

VIII. RESISTOR CONSTRAINTS 

In many design problems it is desirable to constrain the values that 
the parameters take to lie within certain limits. For example, in 
biasing a transistor network, although solutions in which some resis
tors are negative are mathematically correct, in practice such net
works are unacceptable. 

If the designer has a good feeling for the circuit he is working 
with, his choice of the free variables resulting from gaussian elimina
tion with maximum pivoting will usually yield resistors with posi
tive values. There are, however, instances involving multiple feed
back paths where intuition cannOli always be relied upon. In these 
instances it is possible that the values given by the designer to the 
free variables yield negative resistances. Furthermore, it may be 
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TABLE III-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF 

FIGURE 15 
THE FOLLOWING BRANCH CURRENTS ARE FREE 

10 
14 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:I.E-3 I.E-3 I.E-2 .2E-2 2 

THE FREE VARIABLES ARE 
1.000 E-03 1.000 E-02 

R(IO):4.2366667E+03 
R(ll) :1.1028088E+09 
R(12):3.700B484E+03 
R(13):4.0579244E+03 
R(14):4.1685477E+03 
R(16):3.3704454E+03 
R( 17) :3.7811070 EH'3 
R(18):4.1917495E+03 

THE FREE VARIABLES ARE 
2.000E-03 1.000E-02. 

R( 10) :2.1183333 E+03 
R<lI):I.1372716E+09 
R(12):3.9956586E+03 
R(13):3.7284580E+03 
R(14):4.1685477E+03 
R(16):3.3704454E+03 
R(17):3.7811070E+03 
R( 18) :4.1917495E+03 

THE FREE VARIABLES ARE 
1."00E-03 1.20"E-"2 

R(IO>:4.2366667E+03 
R( 1 I) :2.1183293E+03 
R(12):3.7008484E+03 
R( 13) :4.9290360E+03 
R(14):3.4737897E+03 
R(16):3.3704454E+03 
R(17):3.7811070E+03 
R( 18) :4.1917495E+03 

THE FREE VARIABLES ARE 
2.000E-03 1.200E-02 

R(J(l):2.1183333E+03 
R<ll) :2.1183293E+03 
R(12):3.9956586E+03 
R(13):4.4512615E+03 
R(14):3.4737897E+03 
R(16):3.3704454E+"3 
R( 17) :3. 7811"70E+"3 
R(18):4.1917495E+03 

DESIGN COMMAND:KEEP 
ENTER VALUES OF FREE VARIABLES FOR DESIRED SET 
:2.E-3 I.E-2 

OPTION COMMANDS:TRAN ALL 

TRANS # 
1 
2 
3 

VCE IC 

5.0000E+00 
5.0"00EH'0 
5.0000EH'0 

I.0000E-02 
1.0000E-02 
9.9999E-03 

difficult to explore the space of the free variables looking for regions 
where all the resistors are positive. 

One possibility for finding positive resistor regions is to use an 
optimization technique in which, considering the free variables as 
adjustable parameters, the sum of the absolute magnitudes of the 
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negative resistors is reduced to a minimum. If there exist solutions 
with all resistors positive, the minimum (zero) hopefully would be 
found automatically by the optimization routine. 

This optimization is more efficient than solving the problem by 
exploring a space in which all the variable resistors are parameters 
to be adj usted.1 

Although the method given has been tried with success, a superior 
method having several advantages over the one proposed is explained 
in Section IX. The method avoids some of the most important problems 
associated with nonlinear programming. 

Some of these problems are: 

(i) The routine may get trapped in local minima. 

(ii) Depending on the shapes of the surfaces involved and on the 
methods used the convergence towards the minimum may be very slow. 

(iii) If the optimization is with constraints the nonlinear constraints 
are usually difficult to handle. 
If it were possible to reduce the problem to a linear programming 
problem, the following would have been gained: 

(i) If the problem has a finite minimum it will be achieved in a 

TABLE IV-PRINTOUT OF OPTIMIZATION PROGRAM 

INITIAL BRANCH RESISTANCES 

R C "J> :0.5'",''' E+04 
RCII):0.5000E+04 
R(12):0.3000E+04 
R(13):0.3000E+04 
RCI4):0.3000E+04 
R( 16) :0.3000E+04 
R( 17) :0.3003E+04 
R (18) :0.3000 E+04 

EXPLORATORY MOVES 48 

PA TTER H MOVES 105 

FINAL BRANCH RESISTANCES 

R(10):0.3730E+04 
RCII):0.4340E+04 
R( 12) :0.3732 E+04 
RCI3):0.4377E+04 
R(14):0.3795E+04 
RC 16) :0.3312E+04 
R( 17):0.3783E+04 
RCl8):0.4197E+04 

TRANSISTOR OPERATING POINTS 

TRANS # 
I 
2 
3 

VCE 
5.000E+00 
5.000EHl0 
5.000E+00 

IC 
1.0e0E-02 
1.000E-02 
1.000E-02 
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2/3 2/3 

SET Z 11= 2/3 
Z21= 1/3 

Fig. 16 - Z-parameter design problem. 

finite number of steps. No local minima which are not also global 
minima exist. 

(ii) Algorithms exist which converge to the minimum efficiently. 
(iii) The linear constraints generally complicate the problem only 

moderately. 

In Section IX the problem of biasing transistor networks is reduced 
to a linear programming problem. 

IX. APPLIED LINEAR PROGRAMMING 

Let us start by assuming a network in which the designer knows 
the correct signs of the node voltages with respect to the datum and 
the direction of the currents in the variable resistors. Generally the 
former is an easy task since it only involves knowing the nodes with 
the lowest potential. If this node is chosen as the datum, all the node 
voltages will be positive. Knowing the correct direction of the cur
rent through the variable resistors requires a better understanding of 
the circuit operation. Furthermore, there may be solutions in which 
the current through some resistors may flow in either direction. For 
this reason this requirement will eventually be relaxed. 

Linear programming requires the right side vector of equation (33) 

2/3 2/3 

Fig. 17 - Network after singular imbedding 
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TABLE V-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF FIGURE 16 

TYPE NO. OF BRANCH2S,NODES,CONTROLLED SOUnCES,BATiERIES,CURRENT SOURCES 
A:6 4 0 1 I 
TYPE BRANCH RESIST~NCES 
B:I. I. 1 •• 66666667 .66666667 .66666667 
TYPE FOR EACH BRANCH: INITIAL NODE,FINAL NODE,BATTERY NO. 
C:I 2 1 1 4 I 2 4 1 2 3 1 3 4 1 3 I I 
TYPE VALUES OF BATTERIES 
D:0. 12. -.7 
TYPE FOR EACH CONTROLLED SOURCE:BRANCH NO. AND CONTROLLING BRANCH NO. 
E:6 5 
TYPE VALUES OF BETAS 
F:75. 
TYPE FOR EACH INDEPENDENT SOURCE: INITIAL NODE AND FINAL NODE 
G=I 2 
TYPE VALUE OF EACH INDEPEflDENT CURRENT SOURCE 
H=I. 

OPTION COMMANDS:DESIGN R 
TYPE NO. VAR. RESISTANCES,NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS 

1=3 2 0 
TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J:I 2 3 
FOR EACH VOLTAGE CONSTRAINT TYPE PLUS AND MINUS NODES 
K:2 1 4 1 
TYPE VALUE OF EACH VOLTAGE CONSTRAINT 
L=.66666667 .33333333 

THE FOLLOWING BRANCH CURRENTS ARE FREE 
I 

ENTER LOWER LIMIT AND INCREMENT FOR EACH FREE VARIABLE AND NO. OF SETTINGS 
0:-1. .33333333 3 

THE FREE VARIABLE: -1.0000 
Re 1)= 0.66666670E+00 
Re 2)=-0.66666667E+00 
Re 3)=-0.66666680E+00 

THE FREE VARIABLE: -0.6667E+00 
Re 1)= 0.10000000E+01 
R( 2):-0.20000000E+01 
Re 3)=-0.19999999E+01 

THE FRE VARIABLE = -0.3333E+00 
Re I): 0.19999997E+01 . 
Re 2)= 0.20000000E+01 
R( 3): 0.20000013E+01 

2 

2/3 2/3 

(a) 

ZI1:::; 2/3 
Z21= 1/3 

1 

: ,! VV'v 

2 

(b) 

Fig. 18 - Verification of computer solution. 

I' : 
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to have positive entries. This may be achieved by multiplying by -1 
all those rows in equation (33) which have a negative entry in the 
right side vector and thus obtain the set of equations 

(41) 

where 

is obtained from 

l ~c Y~U'l and ~] from ~ J 
by possibly multiplying some rows by -1. 

To force all the branch voltages to be positive let us add the constraint 

- [C]V] ~ 0] (42) 

where [C] is the matrix appearing in equation (12). 
Equation (41) and inequality (42) together with the condition 

~J !?; 0] (43) 

can be looked upon as a linear programming problem in which it is 
desired to find the value of a positive vector satisfying a set of linear 
equalities and inequalities and which minimizes the linear function 
where 

z = D~J '--'v (44) 

E. = [0, 0, ... , 0]. 

Since the minimization of the constant zero is of no interest, all that 
is required is to obtain the feasible solutions of the linear programming 
problem.6 

Once the feasible solutions are obtained, the fact that the solution 
satisfies equation (41) guarantees that the circuit is properly biased 
while the positivity condition on the vectors ~ and - [C]V] guarantee 
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that all the variable resistors are positive, since both the currents 
and voltages across them are positive. 

To obtain the feasible solutions phase I of the two phase simplex 
method may be used. 6 

Phase I of the simplex method finds the basic positive solutions of the 
system of equations 

[~~_O l~l ~l o H3 0 V = 0 
----- - -

o -c - U w 0 

(45) 

where the vector w] (which is constrained to be positive) is a slack 
vector and U is a unit matrix. 

By denoting with A the matrix on the left of equation (45), with x 
the column on the left, and with b the column on the right side, equa
tion (45) may be written 

Ax = b. (46) 

Let the dimensions be: A, m X n; x, n X 1; b, m X 1. Let A and [A I b] 
have rank r. This implies equation (46) is compatible. (The case in 
which this is not true is of no interest since in such case no solution
whether positive or not-exists.) 

Phase I of the simplex method finds positive solutions of equation 
(46) for r of the variables Xi, i = 1, 2, ... ,r setting the rest of the 
xj, j = r + 1, ... , n to zero.;} Each one of this set is a basic feasible 
solution. There may be several such sets for a given problem. The 
totality of nonnegative solutions of equation (46) is the convex hull 
of the basic solutions. By extending the simplex algorithm so that 
once a basic feasible solution is found the other basic feasible solu
tions are also searched for, it is possible to obtain all basic feasible 
solutions. 

Suppose Xl, x2
, ••• ,xP are basic feasible solutions. Then any vector 

X satisfying 

and 

x = A,X' + A,X' + ... + APxPl 

Al , Az , ••• , Ap ;:;; 0 J 
Al + Az + ... + Ap = 1 

(47) 
with 

is also a feasible solution. 

* In case no nonnegative solutions to equation (46) exist, the simplex algorithm 
is able to detect it. 



304 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1969 

If xl, X 2
, ••• ,xP is the set of all basic feasible solutions, then all the 

solutions of equation (47) constitute the complete set of feasible solu
tions. 

X. RESISTORS WITH UPPER AND LOWER BOUNDS 

In the previous discussion the appearance of nonnegative resistors 
was precluded by adding inequality (42). Often it is desirable to im
pose lower and upper bounds for the resistors because the technology 
used to realize them requires it. For example, if tantalum thin film 
resistors are used it is desirable to restrict them to lie between 10 and 
105 ohms. 

Let the kth variable resistor be connected from node i to node j. The 
value of Rk is given by 

R - Vi - V j 

k - lk • 

If it is desired to have this resistor lie within 10 and 105 ohms the 
following conditions are imposed 

Vi - V j > 
h = 10, 

Vi - Vi < 105, 
h = 

which may be rewritten (recall h is nonnegative) 

Vi - Vi - 10lk ~ O}. 
Vi - V j - 105l k ~ 0 

(48) 

If instead of equation (42) inequalities similar to equation (48) 
are written for all variable resistors, the resulting circuits will have 
all variable resistors within specified upper and lower bounds (except 
for the possibility I k = 0, which implies an open circuit, in which 
case the resistor disappears altogether). 

The problem of biasing of transistor networks with positive resis
tors is equivalent to solving 

(49) 
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[D, I -C] ~J ~ ~J 

1J ~ QJ V - 0 
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where DI and D2 are diagonal matrices whose diagonal elements contain 
the minima and maxima for the variable resistors. By adding positive 
slack vectors WI and W 2 , equation (49) is equivalent to 

HI H2 0 0 I f 
- ---- -

0 H3 0 0 V 0 
- ---- - (50) 
DI -c -u 0 W l 0 
-----

~JW2 D2 -C 0 0 

where U is a unit matrix and the vector on the left is restricted to be 
nonnegative. 

XI. RELAXING SIGN CONDITIONS 

So far it has been assumed that the direction of the current flow in 
variable resistors is known beforehand. This condition may not hold 
for some cases and hence it is desirable to relax it. 

When a variable in a linear programming problem is not required 
to be positive it is customary to write it as the difference of two posi
tive quantities. Thus if II,; and V j - V I,; = V are not required to be 
positive one may write 

Ik = I k, - I k" 

Vz = V z' - V z" 

where h, , h" , V z' , V z" ~ O. 
A current Ik of variable sign may be restricted to have a magnitude no 

less than I ok ~ 0 by imposing the pair of conditions* 

(51) 

Likewise a branch voltage V z of variable sign across a resistor may be 

* The constraint set on the currents is not convex, therefore it is necessary to 
solve the problem twice, once with each inequality, and take the union of the 
two solutions. If n variable resistors may have currents flowing in either direc
tion, the solution will be the union of the solutions of 2'" problems in which 
all the combinations of the inequalities are used. 
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restricted to have a magnitude no greater than V ok ~ 0 by imposing the 
pair of conditions 

(52) 

If V l is the voltage across the kth resistor and 1 k its current, then in
equalities (51) and (52) insure that the magnitude of the kth resistor 
satisfies 

(53) 

The resistor Rk may be negative or positive. However, if each variable 
resistor is made of two resistors in series one of value V ok/l ok and the 
second to be determined by the computer subject to equation (53), the 
series combination of the two resistors will never be negative. This 
constitutes a technique for guaranteeing positive variable resistors 
without previous knowledge of the directions of current flows. ** 

The method described can also handle circuits with variable resistors 
whose values lie within upper and lower limits. If R kmin and Rkmax are 
the minimum and maximum values allowed for the kth variable resistor, 
the fixed series resistor should be 

RkJ = R kmin + V ok/l ok 

with V ok/l ok chosen such that 

(54) 

(55) 

The value of Rkmin may be zero. Thus, a resistor may disappear as a short 
circuit. If instead of bounding the value of a resistance from above, the 
value of an admittance is bounded, a dual method may be used to 
guarantee positive resistors. 

Instead of equations (51) and (52) the following restrictions are 
imposed 

(56) 

(57) 

* Both VOk and 10k are variables in the linear program which will be determined 
by the simplex al~orithm. The ratio is constrained by a linear inequality 101< I RI< I 
- VOl< =::; 0, where I RI< I is given. 

** Another approach is to reverse the reference direction of the current and 
voltage drop across each variable resistor and apply the methods of the previous 
section. If n variable resistors may have currents flowing in either direction 
it is necessary to consider 2n possibilities. 

t See footnote to equation 51. 
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These guarantee that 

(58) 

where Gk = 1/ Rk • Gk may be positive or negative if each variable 
resistor is made of two resistors in parallel, one of admittance Iok/Vok 
and the second to be determined by the computer subject to equation 
(58). However, the parallel combination of the resistors will never be 
negative. 

The dual method can also handle circuits with variable resistors whose 
admittance lies within upper and lower limits Gkmax and Gkmin • The value 
of Gkm1n may be zero. Thus a resistor may disappear as an open circuit. 

XII. CHOOSING TOPOLOGY BY COMPUTER 

As already pointed out, Phase I of the simplex method obtains the 
basic feasible solutions of a set of linear equations. The set of equa
tions may come from a set of equalities and inequalities to which 
slack variables have been added. Usually the number of variables 
(including slack variables) is greater than the number of equations 
and the system is redundant. If r is the rank of the system and n is 
the number of variables (including slack variables), at least n-r 
variables are set to zero in obtaining a basic feasible solution. Some of 
the variables set to zero may be node voltages or variable resistor 
currents. If a node voltage is set to zero, the corresponding node is 
grounded. If a variable resistor current is set to zero, the corre
sponding resistor disappears as an open circuit. If a slack variable 
is set to zero, the inequality constraints are met with equalities. 

For example, for equation (50) if the kth entry of w, is zero, the 
kth resistor acquires its minimum allowed value. 

One way of viewing equation (50) is to consider the columns of 
the matrix on the left as elements of a vector space and the entries 
of the column multiplying the matrix as those positive coefficients 
which synthesize the column on the right in the form of a linear com
bination of the columns of the matrix. A final tableau of Phase I of 
the simplex method will contain a number of independent unit col
umns (with all entries zero except one) equal to the rank of the mat
rix on the left side of equation (50). The unit columns are obtained 
by the special gaussian reduction provided by the simplex algorithm. 
Each column corresponds to a variable in the column multiplying the 
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matrix of equation (50). Those variables whose corresponding col
umns are not unit columns are set to zero. 

If a set of columns corresponding to the currents through a set of 
variable resistors are linearly dependent, one or more of the currents 
will be set to zero. This implies the disappearance of a resistor as an 
open circuit. The choice of which resistors disappear is automatically 
determined with the aid of the simplex algorithm, so that the non
zero currents acquire positive values (if such a choice exists). If two 
columns of the matrix of equation (50), corresponding to currents 
through variable resistors, are linearly dependent it means that Kirch
hoff's voltage and current law may be satisfied with one of the cur
rents zero, making one of the resistors unnecessary. 

The above argument provides a method for letting a computer pro
gram choose the topology and resistor values of a dc network in 
which certain voltages and currents are imposed by CFE's and VFE's. 
One connects an excess of resistors between different nodes (includ
ing additional internal nodes if desired). By using a linear program
ming formulation some node voltages and variable resistor currents 
are set to zero by the computer program, thus determining a set of 
"linearly independent positive resistors" 'that satisfy all the circuit 
equations. 

XIII. EXAMPLES 

Consider the circuit of Fig. 19 (a). The equivalent circuit is shown 
in Fig. 19(b) with a VFE and CFE in place. As indicated on Fig. 
19 (b) it is desired to impose on the transistor a collector current of 
5 rnA and a collector-emitter voltage of 5 volts. The resistors marked 
R1 , R2 and R3 are variable. 

The nodal equations for the circuit after the effect of the nullators 
introduced by the VFE's and CFE's are taken into consideration 
are, in matrix form 

1. 1. O. 0.005 -0.005 O. -1 X 10-10 

O. O. 1. -0.38 0.3811 -0.0011 O. 

O. O. O. O. O. 0.00333 O. 

1. O. O. -1. X 10-10 O. O. 1. 

O. O. O. O. -0.001 0.001 O. 

O. O. O. 0.375 -0.3751 0.0001 O. 
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In 12V 

11'l 

® 

(a) CIRCUIT (b) MODEL 

Fig. 19 - Circuit biased with constrained singular imbedding; (a) circuit, (b) 
model. 

II 0.0035 
12 -0.27 
13 0.035 
V2 12. 

(59a) 

V3 0.005 

v'j 0.2675 
V5 

By multiplying the second row by -1, the entry -0.27 in the right 
side vector is made positive. (As indicated above, linear program
ming assumes the right side vector is nonnegative). Notice that since 
the matrix in equation (59a) is 6 X 7, we therefore generally expect 
a one parameter infinity of solutions. If the system of equations were 
solved using the simplex method (with arbitrary cost coefficients), 
solutions in which all the variables acquire non-negative values may 
be obtained. Resistors R2 and R 3 , which are grounded, will auto
matically be positive. :However the voltage differences across un
grounded resistors may turn out to be negative, yielding negative re-
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sistances. To assure a non-negative voltage difference across R, the 
following additional constraint will be imposed 

V5 - V 2 ~ 0 
which may also be written* 

V 2 - V5 ~ O. 

There are two basic feasible solutions to this problem: 

II 5.788 5.9966425 X 10-5 

5.78794 

5.060073 X 10-3 

6.212 

5.5 

10.5 

O. 

5.060073 X 10-3 

6.212 

5.5 

10.5 

V5 6.212 11.99994 

The first basic. solution yields the following set of resistors 

R - V5 - V 2 _ 6.212 - 6.212 - 0 h 
1 - II - 5.788 - 0 ms 

V 2 6.212 7 h 
R2 = Y; = 5.78794 = 1.0 32660 ms 

R3 = i
3
3 = 5.0600:4

5 
X 10-3 = 1086.941 ohms. 

Rl is a short circuit. 
The second basic solution yields the set 

R1 = 97008.514, R3 = 1086.941. 

(59b) 

(60) 

(61) 

R2 is an open circuit. Notice also that Rg is the same for both solu
tions. This is expected since the voltage of node 3 is virtually fixed 
by the requirements. 

The totality of the solutions with non-negative voltage differences 
across the variable resistors may be written, according to equation (47) 

x = AX1 + (1 - A)x2 

where Xl and x2 are the basic feasible solutions of equation (60), and 
O~A~l. 

* When the right side of an inequality is zero, it is preferable to write it as 
a ~ inequality because the corresponding slack variable may be used as an 
artificial variable with savings on the size of the matrix to be manipulated. 
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2.89402 

2.89397 

5.060073 X 10-3 

X = 6.212 

5.5 

10.5 

9.10597 

which yields the set of resistors 

Rl = 0.997906, R2 = 2.146532, 

311 

R3 = 1086941. 

A continuous set of equivalent circuits, which achieve the require
ments exactly and which have positive resistances, is obtained by 
varying A between 0 to 1. 

Suppose now that further considerations require that Rl lie be
tween 1000 and 2000 ohms. By replacing (59b) by 

V5 -;: V 2 ~ 1000 

which may be written 

and V5 - V 2 ~ 2000 
II 

1000 II - V5 + V 2 ~ 0 

- 2000 II + V 5 - V 2 ~ 0 

the resistor Rl is forced to remain between 1000 and 2000 ohms. 

(62) 

When the new problem is solved the basic feasible solutions are 

5.782218 X 10-3 2.892554 X 10-3 

5.722218 X 10-3 2.832554 X 10-3 

5.060073 X 10-3 5.060073 X 10-3 

Xl = 6.212 x2 = 6.212 

5.5 5.5 

10.5 10.5 

11.99422 11.99711 
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The basic feasible solutions yield the following sets of resistors 

Xl : Rl = 1000., 

X2 : Rl = 2000., 

R2 = 1085.593, 

R2 = 2193.074, 

R3 = 1086.941 

R3 = 1086.941. 

Notice that Rl acquired its allowable extreme values in each basic 
feasible solution. 

Other sets of resistances may be obtained by convex combinations 
of the two basic feasible solutions. 

As an example in which the topology of a circuit is determined by 
the computer, consider the circuit of Fig. 16 in which Rb R 2 , and R3 
are to be selected to give Zll = % and Z:n = 113. The example was 
previously solved without linear programming techniques. Several 
solutions appear in Table V. By maximizing the negatives of the cur
rents in the resistors, those currents which may be set to zero by tak
ing them out of the basis for a basic feasible solution will be con
verted into open circuits. After the effect of the nullators introduced 
by the VFE's is accounted for, the matrix corresponding to the 
circuit of Fig. 16 is 5 X 6. We therefore expect a one parameter in
finity of solutions and two basic feasible solutions which are 

II 0.0 l 0.28174743 

12 5.9652404 X 10-3 4.5937138 X 10-3 

Xl 13 5.965238 X 10 -3 
X2 0.0 

V2 44.096881 

j 
43.602828 

V3 0.3333333 0.33639577 

V4 0.3333333 0.3333333 

Notice that V4 remains constant for both basic feasible solutions. This 
is expected since a VFE is connected from node 4 to node 1 (datum). 
The resistances corresponding to the basic feasible solutions are 

00 

154.4759, 

R2 = 55.879273, 

R2 = 72.5629, 

R3 = 7336.429 

R3 = 00. 

In both basic feasible solutions one of the resistances disappeared as 
an open circuit. This indicates that given R 4 , R5 and R6 with the 
values indicated in Fig. 16 the circuit is achievable with two topologies, 
each containing 5 resistors. 

Let us now make R6 a variable resistor. The nodal matrix after the 
elimination of the nullators is now.5 X 7. Thus we expect a two 
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parameter infinity of solutions and at least 3 basic feasible solutions. 
The following sets of resistors correspond to basic feasible solutions 

co, 1.33333, R6 = 0.16666667 

co, 0.333333, Ra = 0.4444456, 

(iii) Rl = 0.88888898, 

(iv) Rl = 1.3333336, 

R2 = 1.333333, Ra = co, 

R3 = co, R6 = 0.66666651. 

These sets provide four different topologies with which given two 
of the resistors (R 4 and R 5 ) a resistive network having Zll = 2/s, Z21 

= lis may be realized. 
The example illustrates how using the methods of this paper can 

solve the problem of realizing portions of a resistive matrix with cer
tain elements prespecified. The prespecified elements need not be 
resistors but may also include controlled sources, gyrators, ideal trans
formers, and so on. 

The methods discussed have been implemented on a time-shared 

TABLE VI-PRINTOUT OF THE SESSION TO SOLVE THE CIRCUIT OF 

FIGURE 19 
TYPE NO. OF BRANCHES,NODES,CONTROLLED SOURCES,BATTERIES,CURRENT SOURCES 
A=7 5 I 3 0 
TYPE BRANCH RESISTANCES 
B=I. I. 1.200. I.E4 300. I. 
TYPE FOR EACH BRANCH: INITIAL NODE, FINAL NODE,BATTERY NO. 
C =5 2 I 2 I I 3 I I 2 3 2 4 3 I I 4.3 I 5 .3 
TYPE VALUES OF BATTERIES 
D=O. -.7 12. 
TYPE FOR EACH CONTROLLED SOURCE: BRANCH NO. AND CONTROLLING BRANCH NO. 
E=6 5 
TYPE VALUES OF BETAS 
F=75. 

OPTION COMMANDS=DESIGN CKT 
TYPE NO VARIABLE RESISTANCES, NO. VOLTAGE CONSTRAINTS, AND NO CURRENT CONSTRAINTS 
I =3 I I 

TYPE BRANCH NO. OF VARIABLE RESISTANCES 
J=I 2 3 
TYPE PLUS AND MINUS NODES FOR EACH VFE 
K=4 3 
TYPE VALUE OF EACH VFE 
L=5. 
TYPE BRANCH CURRENT FOR EACH CFE 
M=5 
TYPE VALUE OF EACH CFE 
N=.005 
TYPE COST COEFFICIENTS 
0= I. I. I. I. I. I. I. 
TYPE MINIMA OF VARIABLE RESISTANCES 
P=100fl. 0. 0. 
TYPE MAXIMA FOR EACH VARIABLE RESISTANCE 
Q=2000. I.E8 I.E8 

R( 1)= 9.9999995E+02 
R( 2)= 1.0855930E+03 
R( 3)= 1.0869498EH,3 
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computer system. The program is conversational. A portion of a ses
sion in which a basic solution corresponding to the circuit of Fig. 19 
with Rl constrained betwen 1000 and 2000 ohms appears in Table VI. 

XIV. CONCLUSIONS 

The method of singular imbedding has been shown to be efficient for 
solving the following problem: Given a circuit with a prespecified 
topology, some of whose elements are prespecified, find the values of 
the unspecified elements which will yield desired node-pair voltages 
or branch currents. The unspecified element values may be restricted 
to lie within given upper and lower bounds. 

By letting the upper and lower bounds become infinite and zero, 
the problem of finding the topology for the circuit may be also solved. 

The method has been implemented on a time-shared computer, 
and several examples, including some practical transistor circuits, are 
given. 

The usual approaches to the problems of this paper have been itera
tive analysis-optimization schemes. Singular imbedding requires, for 
a three transistor amplifier, three orders of magnitude less computa
tion time. This makes the method appealing for time-shared applica
tions. 

Two new singular network elements, the voltage forcing element 
and the current forcing element, constrain node-pair voltages and 
branch currents without otherwise affecting the circuit. Elements of 
unspecified value are modeled by branches carrying unknown cur
rents. 

With the aid of these elements, the problem of design is reduced to 
one of analyzing a circuit containing unknown current sources and 
nullators. If there are more free elements than requirements, the solu
tion space may be a linear manifold. By allowing the free circuit 
variables to take on a set of discrete values, sets of exact solutions 
to the design problem may be generated economically. 

When the unspecified elements are required to lie within upper and 
lower bounds, the problem is one of analysis with linear inequality 
constraints. This may be solved efficiently using linear programming 
techniques. 

Among the practical problems solved by singular imbedding are 
biasing a direct coupled transistor amplifier, designing midband gain 
and driving point impedance, synthesizing networks for several given 
admittance parameters, and determining circuit topology. 

Areas being investigated include using singular imbedding in the 
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synthesis of resistance networks (the synthesis of a single column of 
a specified resistance matrix has been illustrated). Synthesis of an 
entire resistance matrix results from the intersection in resistance 
space of the solution spaces for each column of the matrix. Similarly, 
by considering the intersection of solutions spaces for both a small 
signal design and a biasing design, the method may be extended to 
designing transistor circuits for desired small signal design and bias 
points simultaneously. 

Although only fixed value CFE's and VFE's were used in this 
paper, CFE's and VFE's which may take any value within a given 
range may also be used. For example, a branch current may be forced 
to be greater than 1 rnA and less than 10 rnA. These elements are also 
useful in insuring that models for devices stay within their valid 
limits. For example, a transistor can be constrained to remain in the 
active region, for which the linear model used is valid. 

For simplicity, only the case of linear dc networks has been il
lustrated in this paper. However, the method has usefulness in ac 
design, combined ac and dc design, and non-linear design. These topics 
will be covered elsewhere. 
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