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By R. MAGNANI 

(Manuscript received November 15, 1967) 

This paper examines two general methods for specifying directed routing 
patterns in c01n1nunication networks. Hierarchical routing, as currently 
used in the toll network, is such a directed routing pattern. However, it 
is only one member of a large set of possible routing strategies that can be 
realized by storing, in each office, a list of outgoing trunk groups and an 
orde1'-of-choice for these groups for each received call address. The general 
class of routing strategies is defined by this method of realization, subject 
to the constraint that routing patterns be loop-free. The paper discusses 
procedures for generating loop-free patterns, for detecting whether or not 
a given pattern is loop-free, and for specifying "good" patterns from the 
large number which are realizable. 

I. INTRODUCTION 

The fundamental problem which besets people concerned with the 
design of communication networks is how to provide a network which 
is, at once: 

(i) Of sufficient routing capability to allow any two users to be 
connected with a high probability of success. 

(ii) Economical in its use of transmission facilities and switching 
centers. 
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(iii) Capable of surviving extensive natural or man-made damage. 
(iv) Adaptable to changing traffic patterns and overload situations. 
(v) Capable of being engineered and implemented in small sections, 

over a period of years, by many different people. 

This is a problem of such complexity that, with the present state of 
the theory, it must be attacked piecemeal. 

This paper deals with a small but important section of the problem. 
It considers some of the topological properties of communication net
works and examines a class of alternate routing strategies from a gen
eral point of view. Our purpose is to state rules which will allow the 
orderly production of routing patterns, for arbitrary networks, by a 
computer. We approach the problem in three stages: 

(i) Several simple rules are stated for producing "loop-free" rout
ing patterns. 

(ii) The rules are "generalized" to allow the proof of some theorems 
about the extent of their application. 

(iii) A more limited but practical statement of the rules is presented 
followed by several heuristic procedures, based on these rules, which 
can be used to specify "good" routing patterns from the large number 
which can be generated. 

II. BACKGROUND 

What is fundamental to the routing process as it is practiced today 
in the telephone network? Certainly one of the answers is that each 
office stores a list of outgoing trunks and an order of choice for those 
trunks for each possible call address that can be received. We can 
think of the aggregate of these lists as constituting a "routing map" 
which has been distributed among many offices. The "map" which is 
currently stored in the telephone network realizes the hierarchical 
routing plan. 

But suppose we wish to examine strategies which do not require a 
"hierarchy" of offices? Is there a way to realize a general class of 
routing maps which will allow offices to be of equal rank and which 
can be implemented in the same fashion as the current hierarchical 
plan? The answer is that such a class of routing maps does exist and 
that, indeed, the present hierarchical map is simply one member of 
the set. To see this, consider the simple network of four offices shown 
in Fig. 1. This may be an entire network or some subset of a much 
larger network with the connecting trunk groups omitted. For the 
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present, we will assume the trunk groups shown are all two-way (that 
is, contain trunks that can be seized from either end) and that rout
ing between the offices is subj ect to the following constraints: 

(i) No routing control information is passed between offices. 
(ii) Offices do not check for shuttle:~ 
The resulting network is a fair approximation to a subset of the 

present day commercial network.t Routing between offices is accom
plished as follows : 

(i) Each office is assigned a unique address such as NNX or NPA-NNX. 

(ii) Upon receiving a call request, an office checks to see if it is the 
destination office. If it is, the call is counted as a success (although 
in practice the called subscriber's line must still be checked). If not, 
the office consults a routing table and, on the basis of the received 
NNX, selects an outgoing trunk group. 

Fig. 1-A four-office network. 

(iii) If a trunk in the group is available, it is seized and the called 
address is passed over it to the next office. At this point we return to 
step (ii). 

(iv) If no trunks are available, the office again consults its routing 
table, to find an alternate trunk group, and returns to step iii. The 
process continues until all alternate trunk groups have been tried. 

(v) If no trunks are available in any of the alternate trunk groups, 
the call is blocked, and the caller is so notified. 

For a particular network and destination office, this process may be 
conveniently summarized on the graph which represents the network; 
for routing to a particular office, we assign each trunk group in the 
network a direction and an order of choice out of the office in which 
it originates. For example, if office 4 were the destination office in the 

* Shuttle refers to routing a call out over the same trunk group on which the 
call arrived. 

t With one-way trunk groups omitted. 
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network of Fig. 1, we might summarize routing to this office by the 
use of Fig. 2. 

Here we are to understand that calls must route in the directions 
shown and that trunk groups are to be selected in the given order 
(beginning with 1). The routes between office 1 and office 4 can easily 
be seen to be: 1-2-4, 1-3-4, and 1-3-2-4, where the numbers rep
resent office numbers and the routes are listed in the order they will 
occur. Similarly, offices 2 and 3 can be seen to have routes 3-4, 3-2-4, 
and 2-4. 

Fig. 2 represents routing from all offices to office 4 and will be said 
to be a directed routing pattern to office 4 on the network of Fig. l. 
When such a routing strategy is followed, the way in which a call 
routes from a particular office is independent of the past history of the 
call; this is characteristic of routing in the present DDD network. To 

Fig. 2 - A directed routing pattern to office 4. 

completely specify routing in the network of Fig. 1, four directed 
routing patterns are necessary, one with each office as destination. 
The direction and order of choice assigned to the trunk groups will 
vary from pattern to pattern depending on the destination office. To 
see that the hierarchical pattern in use today is of this type, we need 
simply draw the pattern. (See Fig. 3.) 

III. ROUTING PATTERNS 

Let us examine some simple rules for constructing such patterns 
and adopt the standard graph theory terminology: "branch" or "link" 
for trunk group, and "node" for office. 

Because we assume offices do not check for shuttle or looping, we 
will require the patterns we generate to be loop-free.* A "loop" for 
our purposes is defined as: a set of branches and nodes (not contain
ing the destination node) constitutes a loop if we can select any node 

* It has been suggested by J. H. Weber that a small probability of looping 
may be acceptable if looping can be detected (see Ref. 1). 
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in the set and, by following the directions of the branches, traverse 
each branch once to form a path which returns to the selected node 
(that is, loops must be "directed"). It is not clear in the case of a 
large network just how one goes about obtaining a loop-free directed 
routing pattern, particularly if the network is nonplanar. To dem
onstrate that a systematic procedure is required, we invite you to try 
to draw a loop-free pattern on the network of Fig. 4a. 

A closely related problem is illustrated by Fig. 4b in which we are 
given a routing pattern and asked to determine whether or not it 
contains a loop. In this case, the single loop that the network does con
tain mayor may not be obvious to you; however, if the network were 
much larger, say 40 nodes, a systematic procedure again would be 
required. 

Fig. 3 - Hierarchical directed routing pattern. 

Consider the following two rules for generating directed routing 
patterns in an arbitrary network. 

Rule 1-Select any node in the network (usually the destination 
node) and label all its branches incoming. 

Rule 2-Now select a node which has at least one outgoing branch 
and label all its remaining free branches incoming.* Repeat this 
rule until all branches in the network have been assigned a direction. 

Fig. 5 illustrates the process for a simple 6-node network. The num
bers in the node circles represent the order in which rules 1 and 2 are 
applied, beginning with the heavily circled node that is the destination 
node for this pattern. Notice that the process is finished in four steps, 
leaving the two blank nodes with only outgoing branches. We will call 
nodes of this type (the blank nodes) originating nodes, although it is 
assumed that calls routing to the destination node can originate at any 

* Free branches are those which have not been giyen a direction. 
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node. Nodes with both incoming and outgoing branches will be termed 
tandem nodes (for example, 2, 3, 4). The remaining node, node 1, will 
be called a terminating node and, in this case, it is the destination 
node for the pattern. Indeed, if the rules remain as stated, there can 
be only one terminating node in any pattern, the destination node. 
Unless stations are being considered which are multiple-homed, this 

Fig. 4 - A sample pattern. 

is not a limitation:>:' However, to deal with a multiple-homed situa
tion and to allow the proofs of some general theorems, we will remove 
this restriction by restating rule 1: 

Rule l' Select any free node in the network and label all its branches 
incoming.t This rule may be repeated an arbitrary number of times, 
each application creating a terminating node. 

* A station which can be reached from more than one office is said to be 
multiple-homed. A dual-homed station, for example, can be reached from either 
of two offices-in this case, we would want both offices (if not connected) to be 
terminating nodes in the routing pattern. 

t A free node is one with no directed branches. Each application of this rule, 
of course, creates a "trap" for traffic. 
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Rule 2' Same as 2. 
This revised set of rules will be referred to as backward production. 

Clearly an analogous process exists in the forward direction and 
will be called forward production. 

Rule 1" Select any free node in the network and label all its branches 
outgoing. This rule may be repeated arbitrarily, each application 
creating an originating node. 

Rule 2" Now select a node which has at least one incoming branch 
and label all its remaining free branches outgoing. Repeat rule 2 until 
all branches in the network have been assigned a direction. 

We show later that backward production is the more useful process 
for generating telephone network routing patterns. 

BACKWARD PRODUCTION 

RULE 1: ~ 
BECOMES 

RULE 2: ~ 
BECOMES 

DESTIN~r6g~ N4 
GIVEN 
NETWORK: 

RULE 1 
APPLIED TO NODE 1~ 

NODE2~ RULE 2 
APPLIED TO 

~~~~,,i'D TO NODE 3~ 
RULE 2 
APPLIED TO NODE 4~ 

FINAL 
PATTERN 

Fig. 5 - Example of use of backward production. 
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IV. GENERAL THEOREMS 

4.1 Proof of Lemma and Theorems 

We now prove the following lemma and theorems: 

Lemma 1: Any loop-free pattern must contain at least one originat
ing node and at least one terminating node . .y,· 

Proof: This can be proven by exhausting the possibilities. Clearly it 
is not possible to have a network consisting only of originating nodes 
or only of terminating nodes. The remaining possibilities are: 

(i) Only Tandem Nodes-If A is a tandem node, it must have an 
outgoing branch to some other node, B. Similarly, B must have an out
going branch to some node other than A (or we would have a loop), 
say c. This argument proceeds until all nodes in the network have 
been considered. The last node to be considered must connect to some 
previous node since it, too, is a tandem node. Such a connection would 
create a loop. 

(ii) Originating lVodes and Tandem Nodes-If A is a tandem node, 
its outgoing branches must connect to another tandem node, since no 
branches can terminate on an originating none. Therefore, the argu
ment presented in i can be used here. 

(iii) Terminating Nodes and Tandem Nodes-If A is a tandem 
node, its incoming branches must originate at another tandem node, 
say B, since no branches originate at terminating nodes. Since B is 
also a tandem node, it must have incoming branches from some node 
other than A (or we would have a loop), say c. Again, this argument 
proceeds until all nodes in the network have been considered. The last 
node considered must have an incoming branch from some previously 
considered tandem node, thus creating a loop. 

The remaining two possibilities (terminating the originating nodes 
only, and all three node types), each contain at least one terminating 
and one originating node. 

Theorem 1: Routing patterns generated by backward production are 
loop-free. 

Proof: Rule l' tells us we may create terminating nodes arbitrarily 
(we must create at least one) in sequential fashion. Since candidates 
for terminating nodes must have all branches free and these branches 

* As this paper was being prepared, the author learned of work by S. L. 
Hakimi in which Lemma 1 and Theorems 1 [lnd 2 are proved in n, more formal 
fashion. (See Ref. 2.) 
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are all made incoming, it is not possible to loop through a terminating 
node, nor can there be branches between terminating nodes. Let A 

and n be terminating nodes and let c be the first nonterminating 
node, with a branch to A (and possibly to B), to which we apply rule 
2'. Since it is not possible to loop through nodes A and B, we may 
disregard the branches to these nodes as far as loops are concerned. 
Then the only branches which can be members of a loop are the re
maining (all-free) branches on c. But rule 2' tells us to make all these 
branches incoming. Therefore, the only way to loop through node c 
is to loop through node A (or B). Since it is not possible to loop through 
A or B, it is not possible to loop through c. Clearly the same argument 
applies at each stage of the process; the only way to loop through the 
present node is to loop through some previously considered node, 
which is not possible. The process ends when all branches have been 
given a direction. At this point, the originating nodes will be seen to 
have been created by applying rule 2' to all the nodes to which they 
connect. Since it is not possible to loop through originating nodes, the 
pattern must, indeed, be loop-free. 

By a completely analogous proof, it may be shown that the routing 
patterns generated by forward production are also loop-free. 

Now we have two procedures for generating loop-free patterns. The 
question is : What sort of patterns do they generate ? We prove: 

Theorem 2: All loop-free routing patterns can be generated by back
ward production. 

Proof: This is proven by induction on Lemma 1. Let No be any' arbi
trary loop-free routing pattern. Then, by Lemma 1, it must contain 
at least one terminating node. For generality, assume it contains two, 
A and B. We will make these nodes evident, leaving a reduced net
work, N 1. See Fig. 6. 

In a blank network (that is, a copy of No without branch assign-

NETWORK No BLANK NET:WORK 

Fig. 6 - Construction of a duplicate of No from a blank network-first stage. 
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ments), the terminating nodes A and B may be generated by the ap
plication of rule 1'. 

If we were to remove these nodes and their branches from No, we 
would have left the network N I , which must also be loop free. (If NI 
is not loop-free, then neither is No.) Since NI did not contain terminat
ing nodes (all terminating nodes in No were made evident), we must 
create terminating nodes in the process of discarding nodes A and B 

and their branches. That is, in the set of nodes to which A and B con
nect, there must be at least one node which becomes a terminating 
node if its branches to A and B are removed. In addition, if there is 
more than one such node, the nodes cannot be connected to each other. 
(Any such connection would make one of the nodes a nonterminating 
node.) We will call these terminating nodes, generated by discarding 
previous nodes and branches, pseudoterminating. Let us assume there 
are two such nodes, c and D, in the network NI and place them in evi
dence. See Fig. 7. In the blank network, the outgoing branches from 
c and D (and all other nodes) to A and B, were generated when we 
applied rule l' to nodes A and B. If we were now to apply rule 2' to 
nodes C and D, in any order, we would generate the nodes c and D in 
the blank network exactly as they appear in the network No. 

If we now remove nodes c and D and their branches from N I, we 
are left with network N 2 , which must also be loop-free. N2 had con
tained only tandem and originating nodes (all pseudoterminating 
nodes in NI were made evident). With the removal of branches to C 

and D, we must therefore create at least one pseudoterminating node 
in N 2 • Let there be two such nodes, E and F, and make them evident. 
See Fig. 8. In the blank network, the application of rule l' to nodes 
A and B, and of rule 2' to nodes C and D, assigned all the outgoing 
branches from nodes E and F (and all other nodes) to nodes A, B, C, and 
D. Now the application of rule 2' to nodes E and F in the blank net
work will properly assign all the incoming branches to nodes E and F, 

and these nodes will appear as they do in No. 

NETWORK Nl BLANK NETWORK 

Fig. 7 - Second stage. 
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NETWORK N2 BLANK NETWORK 

Fig. 8 - Third stage. 

This argument may be applied to smaller and smaller networks, 
each time generating the proper nodes and branch assignments in the 
blank network. Since the network No is assumed to be finite, the proc
ess terminates in I( steps with some network, N K, which contains all 
the originating nodes in No, now isolated (all branches will have been 
discarded). At this point in our assignments in the blank network, 
we wiV find that all branches have been assigned and that we have 
generated network No by applying rules l' and 2'. 

Again, an analogous proof will show that all loop-free patterns may 
be generated by forward production. 

It is possible to decide whether or not a given network and rout
ing pattern contains a loop by a procedure which is a variant of that 
given in theorem 2. (This procedure relies on lemma 1 for its justifica
tion.) 

Identify all originating and terminating nodes and remove them and 
all their branches from the graph. Now repeat this step until either: 

(i) Only branchless nodes remain, or 
(ii) No originating or terminating nodes can be found. If the net

work can be reduced to branchless nodes, it is loop free. If not, at the 
point where no further reduction is possible, the remaining network 
contains at least one loop. 

4.2 Conclusions from the Theorems 

'Ve can now draw the following conclusions: 

(i) The class of routing patterns defined by rules l' and 2', or by 
rules 1" and 2", is equal to the class of all loop-free routing patterns. 

(ii) Therefore, any pattern that can be generated by forward pro
duction can also be generated by backward production. 

(iii) If a pattern is loop free, there is at least one sequence of nodes, 
to which we can apply backward production, that will generate the 
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pattern. (A similar statement holds for forward production.) The 
sequence that will generate the pattern is discoverable by applying 
the procedure given in theorem 2. 

(iv) If Ni represents the number of terminating or pseudoterminat
ing nodes made evident in the ith step, the number of ways to generate 
the pattern No, by backward production, is: 

K 

No. of Ways = II (Ni !) 
i=l 

In general, the number of ways to produce a pattern using forward 
production is unequal to the number of ways using backward produc
tion. 

V. SYMMETRIC NETWORKS 

5.1 Additional Conclusions 

The theorems and conclusions of Section IV apply equally well to 
symmetric networks (that is, fully interconnected). In addition, it 
can be shown that, for symmetric networks, the following is true: 

(i) There is exactly one originating node and exactly one terminat
ing node in any pattern. 

(ii) There is only one way to produce a given pattern using back
ward production. (Similarly for forward production.) 

(iii) If we choose a terminating node and apply backward (or for
ward) production, we can generate (N-l) distinct loop-free routing 
patterns to the terminal node. These patterns will all be isomorphic 
(that is, the same with a relabeling of the nodes). Indeed, there is 
really only one "abstract" loop-free pattern in a symmetric network, 
no matter which node is the destination node or what order of choice 
is applied, since all patterns can be shown to be isomorphic. 

5.2 Routing in Symmetric Networks 

We would now like to examine routing in symmetric networks both 
as useful in itself and for a bound on routing in incomplete networks. 
We begin by deriving an expression for the number of K-link routes in 
a symmetric routing pattern from a given node to the destination node. 

Assume we are given an 11 node symmetric network with the first 
node as the destination. Also assume forward production is applied to 
the network, using rule 1 on node N and rule 2 on the nodes N - 1, 
N- 2, ... 3, and 2, in that order. (Equivalently, we could use backward 
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production, applying rule 1 to node 1 and rule 2 to nodes 2, 3, 4, ... 
N - 2, and N - 1, in that order.) Then we may show the following: 

Theorem 3: In a sYl1unetric network of N nodes, the nU111,ber of K-link 
routes between the Qth node (2 ~ Q ~ N) and the destination node (node 1) 

is exactly given by the binomial coe.tficient C(~ = ~). 
Proof: Consider node N. It will have one branch to the destination 

node, giving a single one-link path. We may write this as C(N ~ 2). 

N ow, any 2-link path must pass through an intermediate node, of which 

(
N - 2) there are N - 2. If we can show that each of the C 1 selections 

of an intermediate node generates exactly one 2-link path, the number 

of 2-link paths from node N to the terminal node will be C(N ; 2). 

Let A be one of the possible intermediate nodes. Since we are using 
forward production to generate the routing pattern, each successive 
node considered must have no branches directed toward previously 
considered nodes and must have exactly one branch directed to each of 
the nodes not yet considered. Since node A is considered sometime after 
node N, there must exist a branch from N to A. But A is considered 
before the destination node (which is last in the process); therefore, 
there must exist a branch from A to the destination node. Thus, there is 
exactly one 2-link route from node N, through node A, to node 1. This 

argument is valid for any of the C(N ; 2) choices for A. Therefore, 

(
N - 2) there are exactly C 1 2-link routes from node N to node 1. 

This argument may be generalized for K-link routes. Each K-link 
route requires I( - 1 intermediate nodes between node N and node 

1. There are C(~ = ~) ways to choose a distinct set of K - 1 inter

mediate nodes. If we let Al , A2 , A 3 , ••• A K - 1 be a particular choice 
of the K - 1 nodes, then there must exist exactly one ordering of these 
nodes which represents the sequence in which rule 2" was applied. 
If the ordering is Al , A2 , A 3 , ••• A K - 1 , node Al will have a branch 
to A2 , which will have a branch to A3 , and so on. Since Al is always 
considered after node N, and node AK - 1 is always considered before 
node 1, there will be exactly one K-link path for this choice of K - 1 
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nodes. Since the choice was arbitrary, there are c(~ = ~) K-link 

routes from node N to node 1. 
N ow consider node N - 1. All branches from node N were made 

outgoing and therefore are of no use to later nodes for the purpose of 
routing. If we remove node N and its branches from the graph, we 
are left with an N - 1 node symmetric network. In this reduced graph, 
we may consider node N - 1 as the originating node and node 1 as 
the destination node. The sequence in which rule 2/1 was applied in this 
graph is the same sequence used in the larger graph. Hence, the argu
ment presented above applies to this network with N - 1 nodes 
replacing N nodes. The number of Ie-link routes is therefore 

c[ (N i !} 1- 2} We may proceed to remove node N - 1 and its 

branches from the graph, and so on, generating successively smaller 
symmetric networks and applying the same arguments at each stage. 
In general, from node Q, the number of K-link routes to the destination 

is c(~ = ~) , (2 ~ Q ~ Nand 1 ~ K ~ Q - 1). As a corollary, it 

can be shown that the total number of K-link routes from all nodes 

in the graph to the destination node is given by C(N I~ 1). That is: 

C(N - 1) = t C( Q - 2) 
K Q=2 K - 1 

where 

c(~ = ~) is zero for K ~ Q. 

It is possible to summarize routing in symmetric networks by using 
Table 1. As an example of the information obtainable from the table, 
consider a 6-node symmetric network to which we have applied back
ward production in the order: (rule 1) 1, (rule 2) 2, 3, 4, 5, 6. (See 
Fig. 9.) 
This network will have: 

From node 6: one I-link, four 2-link, six 3-link, four 4-link, and one 
5-link route to node 1 (the destination). 
From node 5: one I-link, three 2-link, three 3-link, and one 4-link 
route to node 1. 
And so on, reading node I routes from line 1. Reading from N =6, 
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there will be a total of five I-link routes from all nodes to node 1, 
a total of ten 2-link routes, and so on. 

These numbers represent the maximum numbers of K-link routes 
in an arbitrary (not necessarily symmetric) 6-node network. This 
follows from the fact that we may generate the arbitrary network by 
removing branches (and therefore routes) from the corresponding 
symmetric network. 

VI. HEURISTIC PROCEDURES FOR ARBITRARY NETWORKS 

How does one go about choosing a "good" routing pattern to a 
given terminal node in an arbitrary network? "\Ve can begin by mak
ing the following observation. 

Fig. 9 - Six-node symmetric network. 

Since a practical pattern defines routes to one node, the destination, 
it is reasonable to require "good" routing patterns to have only one 
~erminating node type, the destination node. This means we may 
~pply backward production as defined by rules 1 and 2; therefore, 
we cannot expect to generate all loop-free routing patterns (which 
require rule l' in place of rule 1). This is not a limitation unless we 
~re dealing with multiple-homed stations. We will ignore this latter 
case, although the procedures we discuss can be generalized to deal 
with multiple homing. 

Now, what is meant by a "good" routing pattern? One with the 
lowest average blocking from all nodes to the destination node? A 
pattern which minimizes blocking from a selected node to the destina
tion? One with the smallest average route length? A pattern with the 
maximum total number of routes?¥" 

To the author's knowledge no algorithm exists which will guarantee 

* There is, of course, the larger problem of designing a network which realizes 
all of these and is, at the same time, rugged, economical, and so on, as described 
in the introduction. This is a complex problem; its very statement is difficult and 
has been the subject of intensive study, (See Refs. 3, 4 and 5.) 
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any of these criteria. However, it is possible to approach the last two 
criteria by using a heuristic procedure which will generate patterns 
with large numbers of short routes, and which also has the virtue of 
assigning orders of choice to the branches. 

6.1 Generating Patterns with Many Short Routes 

Consider the following method for applying rules 1 and 2 to an 
arbitrary network: 

(i) Select the destination node as the first node and apply rule 1, 
labeling all the branches incoming. Label the originating ends of each 
of these branches the first choice out of the respective nodes. 

(ii) Now, in the set of nodes to which the destination node con
nects (these will be called "predecessors" of the destination node), 
select any node and apply rule 2, labeling its free branches incoming. 
Label the originating ends of these branches first choice out of the 
respective nodes, if possible; or, if a first choice already exists (from 
step i) label the branch second choice. 

(iii) Continue step ii, choosing nodes only from the predecessors of 
the destination node; each time, label the branches n plus first choice 
out of the node at the originating end, where n choices already exist. 
Continue until all the predecessors of the destination node have had 
rule 2 applied to them. 

(iv) Consider the set of nodes which has outgoing branches to any 
node (or nodes) which are predecessors of the destination node.t 
These may be thought of as second level predecessors of the destina
tion node. Apply rule 2 to these nodes until they have been exhausted 
(or until you are exhausted, whichever comes first), each time label
ing branches the n plus first choice out of the node in which they 
originate. 

(v) Identify the third level predecessors of the destination node, 
and so on. Continue the process until every branch in the graph has a 
direction and order of choice out of the node from which it originates. 

Fig. 10 gives an example of the procedure, which is tedious to de
scribe, but easy to perform. 

At this point, we can observe that all the paths from the ](th level 
predecessors of the destination node have at least K links. We prove 
the following theorem: 

t The predecessors of any node (or nodes) can be identified without reference 
to branch directions. In this procedure, a predecessor of node A is any node 
connected to node A by an (as yet) undirected branch. If we are seeking the 
predecessors of a group of nodes, branches between nodes in the group are 
ignored. 
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PREDECESSORS FIRST LEVEL SECOND LEVEL 

~~1 ~ RULE 1 
TO NODE 1: 

RULE 2 ~-1 12 1 
TO NODE 2: ~ 

1 2 1 

RULE 2 
TO NODE 3: 

RULE 2 
TO NODE 4: 

Fig. 10 - Deriving order of choice in the backward production process. 

Theorem 4: The given procedure creates the maximum number of 
1-link and 2-link routes. 

Proof: Clearly, there is no way to create more I-link paths to the des
tination node than to label all its branches incoming. Consider the 
first level predecessors of the destination node. Among their free 
branches, they may have branches to each other, and branches from 
second level predecessors. 

Each time we label a branch between first level predecessors we 
create one 2-link path to the destination. This is true regardless of 
the direction given to the branch. Hence, the number of 2-link paths 
created this way is fixed, and is exactly the number of branches be
tween first level predecessors. If we now discard the branches between 
first level predecessors and consider the reduced graph, it is clear that 
the way to get the maximum number of 2-link paths is to label every 
free branch, on every first level predecessor, incoming. But this is 
exactly the effect of the given procedure. Branches that do not con
nect first level predecessors remain free until rule 2 is applied to the 
node; then they are all labeled incoming. It follows that the total 
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number of 2-link paths created is fixed, and is equal to the number 
of free branches on all first level predecessors after the application of 
rule 1 to the destination node. The order in which rule 2 is applied to 
these nodes has no effect on the number of 2-link routes. 

It might seem that this theorem can be extended to show that the 
procedure produces the maximum number of K-link routes (K > 2), 
subject to the fact that 1(-1 link, K-2 link, ... , 2-link, and I-link 
routes have been maximized. Unfortunately, one need go no higher 
than 3-link routes to find a counterexample as shown in Fig. 11. 

The heuristic procedure can be improved by eliminating the arbi
trary choosing of nodes in step ii and in later steps. That is, having 
identified the Nth level predecessors of the destination node, we apply 
rule 2 to these nodes in a particular order. 

6.2 Choosing Nth Level Predecessors 
We suggest this revised heuristic procedure for choosing among Nth 

level predecessors: 

(i) Arrange the graph to show the various level predecessors in 
stages. An example is Fig. 12, where higher and higher level predeces
sors are encountered as we progress from left to right. 

(ii) Direct all branches between stages toward the destination node. 
(See Fig. 12.) 

(iii) Now consider the first level predecessors, nodes 2, 3, and 4. 

Fig. 11- Counterexample. (a) Pattern generated by heuristic procedure; 
number of 3-link routes: 2. (b) Pattern with maximum number of 3-link routes; 
number of 3-link routes: 4. 
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For each of these nodes, we compile two figures, the number of routes 
provided from the node to the destination, and the number of nodes 
served by this node. Node B is said to be served by node A if there 
exists at least one directed path from B to A. Node 2, for example, 
serves nodes 5 and 9, while node 7 serves none. We take the difference 
of these two numbers (nodes served minus routes provided) and use 
the resulting number as a measure of the need for additional routes. 
For Fig. 12b these numbers may be tabulated as follows: 

No. Nodes No. Routes 
Node Served Provided Difference 

2 2 1 1 
3 3 1 2 
4 3 1 2 

(iv) N ow choose the lowest of the difference numbers and apply 
rule 2 to the corresponding node. In this example, node 2 is the choice 
and we label all its branches incoming. (Presumably, it needs the 
least number of additional routes.) 

(v) Node 2 is now removed from consideration and we may restate 
the table for nodes 3 and 4, adding the routes picked up by the 
branches directed into node 2 : 

Node 

3 
4 

No. Nodes No. Routes 
Served 

3 
3 

Provided 

2 
2 

Difference 

1 
1 

In this case, we have equality and so choose node 3 arbitrarily. Node 
4 is, then, the last node in the process and the result is shown in Fig. 
12c. 

( vi) We now move one stage to the right and consider second level 
predecessors: 

No. Nodes No. Routes 
Node Served Provided Difference 

5 1 1 0 
6 2 2 0 
7 0 4 -4 
8 1 4 -3 

This suggests that node 7 is least in need of additional routes and we 
may label all its branches incoming. Restating the table two more 
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(c) 

(d) 

SECOND 
LEVEL 

5 

Fig. 12 - Example of heuristic procedure. 
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times, we obtain node 8 next and, finally, node 6. The result is shown 
in Fig. 12d. 

No. Nodes No. Routes 
Node Served Provided Difference 

5 1 1 0 
6 2 6 -4 
8 1 8 -7 
5 1 1 0 
6 2 14 -12 

To obtain an order of choice for the branches, we simply apply the 
heuristic procedure for generating patterns with large numbers of 
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short routes in node order 1, 2, 3, 4, 7, 8, 6, and 5. (See Section 6.1.) 
The result, identical to that in Fig. 12d, is shown in Fig. 13. 

This method yields routing patterns in which the average path 
length is short and the total number of routes large. It is, however, not 
infallible, and counterexamples can be generated-networks in which 
the process leads to neither a minimum average path length nor a 
maximum total number of routes. 

Fig. 13 - The complete routing pattern to node 1. Apply backward produc
tion in the order: 1, 2, 3, 4, 7, 8, 6, 5. 

VII. SUMMARY AND CONCLUSIONS 

This paper discusses methods for generating loop-free directed 
routing patterns and for detecting the presence of loops in arbitrary 
patterns. The heuristic procedures suggested seem to yield useful pat
terns for the size network that can be considered by hand; moreover, 
they are clearly programmable, thus allowing us to deal with large 
networks. 

The procedures and theorems we present are not addressed to the 
problem of achieving optimum traffic handling abilities of commu
nication networks. They are, however, a preliminary step to such ex
aminations and, hopefully, present an orderly and useful way of 
looking at the process of routing as it is currently practiced. These 
theorems and procedures suggest ways of modifying present routing 
practices which may be fruitful to explore. 
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Diode and Transistor Self-Analogues 
for Circuit Analysis 

By BERNARD T. MURPHY 

(Manuscript received September 25, 1967) 

A new method of circuit analysis based on the time-scaling of actual 
circuits has been proposed. Audio-frequency self-analogues of microwave 
frequency transistors can be constructed using charge control theory, and 
these accurately model transistor performance in the active region. Scaling 
of storage times in diodes and transistors requires multiple-lump modeling. 
The multiple lump model developed by Linvill is reformulated here on 
the basis of an analogy between charge density in the semiconductor and 
charge density in the model, rather than between carrier density and voltage. 
Only two parameters, time constants corresponding to lifetime and a 
diffusion transit l'ime in the semiconductor, need be specified in the re
formulated model. This simplified multiple-lump model should be generally 
useful for device calculations. We describe a diode self-analogue which 
is an exact physical realization of the multiple-lump model. Separation 
of active and saturation region stored charges can be achieved in a transistor 
self-analogue, so that a single-lump model can be used for the active, and 
a multiple-lump model for the saturation region stored charges. 

I. INTRODUCTION 

A new approach to circuit analysis has been poposed which allows 
high-frequency circuits to be characterized using simple low-fre
quency models.1 vVith this approach, nanosecond diodes and transis
tors can be slowed down to audio frequencies and interconnected in 
audio frequency breadboard models of the high-frequency circuits. 
Thus, high-frequency circuits can be evaluated and optimized with 
the convenience afforded by low-frequency breadboard techniques. 

According to charge-control theory,2 the frequency and transient 
responses of diodes and transistors are determined by the charges 
stored within the devices. Nanosecond diodes and transistors can be 
slowed down to millisecond models simply by multiplying their stored 
charge by a factor of 106 or some other convenient value. Charge 

487 
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storage in the devices can be classified broadly as terminal voltage 
dependent (fixed charge in depletion layers) and terminal current 
dependent (charge in transit). The former can be multiplied by con
necting large capacitors between the device terminals, as described 
by Levine.3 The latter can be multiplied by using small resistors as 

. current sensors in series with device terminals, and using the voltage 
developed across these resistors, suitably amplified, to cause charge 
storage in capacitors connected to the device.1 Models thus con
structed have given excellent results for transistors operated in their 
active regions.4 

The models also give time-scaled storage times when representing 
diodes or transistors operated in their saturation regions, but the 
values may be in error by a factor of two or more. One difficulty is 
that the charge-control model does not provide any means for rep
resenting the distribution of charge throughout bulk semiconductor 
regions. It is shown here that by replacing the storage capacitors in 
the model by resistance-capacitance networks, an exact physical 
realization of the multiple-lump Linvill model can be obtained. A 
second difficulty in the case of the transistor is that the time con
stants for charge storage in the saturation region and in the active 
region are different in general. Section 3 describes means for over
coming this difficulty. 

II. DIODE SELF-ANALOGUES 

2.1 Charge-Control Self-Analogue 

Fig. 1 shows a simple self -analogue of a diode. The diode itself, D, 
is its own dc model. Capacitor CD is used to multiply depletion layer 

D 

Fig. 1 - Diode self-analogue with scaling of charge storage. 
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stored charge in D) with, 

(1) 

in which CJ is the junction capacitance of the diode. CD would ideally 
have the same voltage dependence as CJ. (A large area junction might 
possibly be used, with a battery to avoid forward bias). 

Resistor R s , amplifier A (whose gain is R 2/R 1 ) and capacitor ClII 

are used to multiply minority carrier storage effects. Minority carrier 
charge storage QlII within the diode itself is given by 

(2) 

in which IF is the forward current in the diode and T is an effective 
lifetime which will usually be dominated by the bulk minority carrier 
lifetimes in the P and the N regions. The charge Q~[ stored in C 1IJ in 
the model is 

(3) 

in which parameters in the model are chosen to give 

(4) 

J( is the desired time-scaling factor. 
During turn-on and turn-off transients, QAf in the diode and Q~[ in 

the model obey the charge control equations 

dQAf = I _ QM 
dt T 

(5a) 

dQ~f = I _ Q~r 
dt KT 

(5b) 

in which in which I is the terminal current. In the model, a current IF 
which is proportional to Q~[, flows in the actual diode at all times, 
maintaining the correct bias voltage on the diode at all times (assuming 
that series resistance gives negligible voltage drops). 

Provided that amplifier A has good common-mode rejection, the 
diode voltage has negligible influence on the charge stored on C M. 

Fig. 2 shows a slightly modified version of the analogue in which 
the full diode voltage appears across the plates of CJ1 • In this modi
fied version stored charge on CM is the analogue of both the depletion 
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RS 

Fig. 2 - Alternative diode self-analogue with scaling of charge storage. 

layer stored charge and the minority carrier stored charge; therefore, 
capacitor CD has been eliminated. This version cannot be used if non
linear depletion layer effects are to be represented. 

The analogue of Fig. 1 is satisfactory whenever the charge control 
equation (suitably time-scaled) satisfactorily describes the transient 
behavior of the actual diode. This is true in at least two important 
types of diode: epitaxial diodes with epitaxial layers which are thin 
compared with a diffusion length, and diodes formed in integrated 
circuits using the emitter-base junction of a transistor whose base
collector junction is shorted. In the second type of diode, minority 
carrier storage is confined to the thin base layer. 

2.2 111 ultiple Lump Analogues 

Although thin epitaxial layers are generally used for high speed 
switching diodes, such diodes are often so heavily gold doped that 
the diffusion length for minority carriers is even less than, or at 
least comparable with, the epitaxial layer thickness. In this case dif
fusion delays comparable with diode storage times occur during turn
off. The charge-control equation (5) is not satisfactory then, and 
the simple model shown in Fig. 1 is inadequate. For example, in the 
extreme case of a diode formed on a uniformly doped substrate, and 
for a reverse current equal to the forward current, Kingston's anal
ysis/ which includes diffusion delays, gives a storage time ts = 0.25 
7', and a fall time t, = 0.6 T, whereas equation (5) gives ts = 0.7 7' and 
t, = o. 

Diffusion delays can be taken into account by using a multiple
lump Linvill model.6 Figure 3 shows a diode self-analogue which can 
be made an exact physical realization of such a model. This self
nnaloguc is justified later by its node equations which are expressed 



CIRCUIT ANALYSIS 491 

in terms of the stored charge at each node, rather than the voltage: 

Node 1. I - I ' = I _ ~ = QI - Q2 + dQ] 
} rAC RC dt 

Node X. QX-I - Qx = Qx - QX+l + dQx + Q . /1 
RC RC dt .~ C 

Node N. QN-l - QN = dQN + Q .Q + QN. 
RC dt N C RsC 

In this case the output of the amplifier is double-ended; each out
put has the polarity of the input opposite to which it is drawn. 

The Linvill model is based on an analogy between carrier density 
in the diode and voltage in an r-g-c line. The well-known continuity 
and current equations for the uniformly-doped semiconductor region 
adj acent to the transition region in a diode are 

in which 

a(N - Ne) 
at 

N - Ne _ aI/qA 
T ax 

I -D a(N - Ne) 
qA - ax 

N - N e = carrier density in excess over equilibrium density 
T = lifetime 
I = current 
q = particle charge 

A = cross sectional area of diode 
D = diffusion constant 
Drift current is assumed negligible. 

Fig. 3 - Physical realization of Linvill model as a diode self-analogue. 

(6) 

(7) 
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The voltage-current equations for the analogous r-g-c transmission 
line are 

ill which 

v = voltage 
I = current 

!Jl = -G'V _ C' aV 
ax at 

aV -R'I ax -

G' = conductance (combinance) per unit length 
C' = capacitance (storance) per unit length 
R' = resistance (l/diffusance) per unit length. 

(6a) 

(7a) 

Analogue of 
N - Ne 

I 
qA/T 
qA 

l/qAD 

The analogy can be expressed in a simpler, dimensionally-con
sistent way if the equations are written in terms of charge per unit 
length, Q', in both cases. Then equations 6 and 7 become 

a(Q' - Q'e) 
at 

Q' - Qe' aI 
T 

a(Q' - Qe') 
I = - D --'-''--a-x----'~ 

and Equations 6a and 7a become 

aI G'Q' aQ' 
aX - -e' - at 
aQ' _ 
ax - -R'C'I. 

Analogous quantities are now 

Diode r-g-c line 
Q' - Qe' Q' 
I I 

T C'/G' 
D l/R'C' 

- aX (8) 

(9) 

(8a) 

(9a) 

The length of the r-g-c line is equal to the length of the semicon
ductor region which it represents. Redundancy caused by introducing 
area A in Equations 6 and 7 has been removed and only two param-
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eters of the r-g-c line need be specified. The elements I/R, G, and C 
correspond to the diffusance, combinance, and storance in the Linvill 
model. 

Fig. 4 shows the lumped version of the r-g-c line. Its node equa
tions are: 

Node 1. I = Ql - Q2 + dQl + Q1G 
RC dt C 

Node X. QX-l - Qx = Qx - QX+l + dQx + QxG 
RC RC dt C 

Node N. QN-l - QN = dQN + QNG + QN 
RC dt C RsC 

These are expressed in terms of charge stored on the capacitors con
nected to each node rather than node voltages. It may be assumed 
that the line and diode have been cut into equal lengths Sx, so that 

C/G = T 

RC = ox2R'C' = ox2/D. 

(10) 

(11) 

The RC product in equation 11 is the analogue of a diffusion 
transit time between sections of the diode. 

Resistor Rs can be used to represent a surface with recombination 
velocityvs (or a collector junction in which carriers travel with scat
ter limited velocity vs). Then Rs is given by 

OX 
RsC = VB • (12) 

The node equations for the lumped network are identical with the 
node equations for the diode self-analogue represented by Fig. 3, 
provided rA = l/G. The charge distribution in the self-analogue is 
then the same as that in the Linvill model under the same boundary 

I R 2 

G 

Fig. 4 - Multiple-lump model. 
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conditions. If the self-analogue is to operate at low frequencies, ap
propriate scaling factors are needed. We discuss an example in the 
appendix and in Section 2.3. It remains to be shown that the correct 
diode voltage is maintained at all times. 

In the actual diode, the applied junction voltage is 

in which 

V = leT In Ql 
J q Qe 

Ql = charge in lump closest to the junction 
Qe = equilibrium charge in that lump. 

(13) 

In the self-analogue, neglecting internal resistance, and assuming 
that r is chosen to be small, the analogue diode voltage is: 

V J A = leT In [IF + Ie + 1]. 
q I.at 

"Tith I G being the current so designated in Fig. 3, 

leT lIF(l + ~~) J 
=-In +1 

q I. at 

r(l + rA) ~ J 
= leT In R c rAG + 1 . 

q I sat 
(14) 

Bearing in mind that Q in the model is the analogue of Q - Qe in 
the diode, (13) and (14) are identical if 

Rc = rA/(rAg;sat - 1). (1;'5) 

Rather than evaluate (15) directly, it is easier to proceed as follows. 
If Ra is chosen correctly for one condition, (13) and (14) show that 
the diode voltage will be correct under all conditions. Under dc con
ditions it is required that the full current I should flow in the diode. 
The current through Ra should therefore replace that lost through 
the dc resistance of the rGG network, and Rc should be set equal to 
this de resistance. 

2 .3 Numerical Example 
Figure 5b shows a two-lump self-analogue of the typical diode 

shown in Figure 5a. Numerical values for the parameters are derived 
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Fig. 5 - (a) Typical epitaxial diode. (b) Model of epitaxial diode. (c) Diode 
circuit and response curves. 

in the appendix, where the behavior of the two-lump analogue under 
transient conditions also is described. Figure 5c shows the behavior 
of the actual diode, a single-lump and a double-lump model in the 
circuit shown inset. This circuit gives equal forward and initial re
verse currents, and 5 volts reverse bias when the diode is switched off. 

The solution for the diode was provided by D. L. Scharfetter from 
an exact solution of the semiconductor equations using the well
tested procedures that he and Gummel developed. 7 The single-lump 
model gives only a rough approximation to the actual diode and can
not be adjusted to give reasonable agreement because of its incor
rect storage time. The two-lump model, as first calculated from the 
diode parameters is still not in good agreement, but a 20 per cent 
reduction in the assigned value of the junction capacitance gives ex-
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cellent results. This agreement is, in fact, better than might be ex
pected and results from compensating errors. 

Transient calculations for the three-lump model give a storage time 
of 0.44T. For the infinite lump model the storage time is presumably 
shorter. However, current-dependent stored charge in the "depletion" 
region was found by Scharfetter to be a significant proportion of 
the total. Also, the "depletion" layer capacitance is very large in the 
storage regions. Both effects lead to a longer storage time, and com
pensate for the over-estimation resulting from representing the epi
taxiallayer by only two lumps. 

III. TRANSISTOR SELF-ANALOGUES 

3.1 Trans~'stor Operated in Active Region 
Figure 6 shows the simplest way of time-scaling a transistor. 

Charge stored on CJI is the analogue of control charge stored in the 
transistor. Capacitors connected between Band C, and between B 
and E can obviously be used to represent fixed depletion layer ca
pacitance. They have been omitted from the diagram for the sake of 
simplicity and will not be discussed further. 

The analogy holds even under base-widening conditionsS and in 
saturation provided that the control charge recombines everywhere 
within the transistor according to a single lifetime. In that case, 

in which 

I B = base current 
Q = in-transit control charge 

TQ = lifetime. 

In the analogue r, R 1 , R2 and CM should satisfy 

(16) 

(17) 

The distribution of controlled and control charge in high-frequency, 
double-diffused transistors is quite complicated and does not lend 
itself well to separation into "base" stored charge, "collector" stored 
charge·, or even into "current" controlled charge and "voltage" con
trolled charge. This can be seen from the results of numerical anal
ysis of charge distribution in such transistors, as given by GummeJ.7 



CIRCUIT ANALYSIS 497 

Bo--,---",--~ 

1------~-_oE 

Fig. 6 - Transistor self-analogue. 

To a first approximation however, the "current dependent" control 
charge in an npn transistor consists of (i) a component of base 
charge Qn associated with electrons in transit through the base, and 
(ii) a component of base charge Qc associated with charge in transit 
through the collector transition region. Recombination current as-
sociated with Qc is very small, and equation 16 is not applicable in 
the sence described above. However, since 

and 

in which 

Tn = effective base lifetime 
Ie = collector current 

(18) 

(19) 

te = transit time through collector depletion layer, equation 16 is 
still applicable provided that TQ is interpreted as 

hpEt, ( ) 
TO = Tn + -2-' 20 

In spite of the difficulties in modeling described above, the simple 
model illustrated in Fig. 6 has been shown to give a remarkably ac
curate representation of transistor operation in the active region.' 

The multiple-lump Linvill model cannot be used to represent dif
fusion delay in the base of the transistor in the same way that it 
was used for the diode. Suppose lump 1 represents the base section 
closest to the emitter, lump N that closest to the collector. Emitter 
junction voltage should be related to the charge stored on lump 1 if 
the effects of emitter transition region storage on high frequency 
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response is to be correctly reproduced; collector current should be 
related to charge stored on lump N, and the two requirements con
flict with one another. Two-pole representation of the transistor can 
be obtained if necessary, however, using two amplifiers as Fig. 7 
shows.1 

3.2 Transistor Operated in Saturation Region 
When transistors operate in their saturation regions, excess control 

charge is stored in Lhe device. Excess control charge is also stored 
in the model because of the excess base current. But equation 16 is 
not generally valid in this region because the majority of the excess 
control charge in double-diffused transistors is stored in the collector 
region in which the lifetime ordinarily differs from that of the base. 
Also, because the collector region is much thicker than the base, a 
multiple lump model is usually needed to represent the charge dis
tributed throughout the collector region even though a single lump 
model is satisfactory for the base. 

If the primary problem is that the collector life-time To is not 
equal to Tn, then the model shown in Fig. 8 can be used, in which 

R' .R2 ·CM = TQ 
Rl 

(21) 

R".R2
• CM = Tc. (22) 

Rl 

In this model, two time constants are obtained with a single opera
tional amplifier. The simplicity of the model is, however, achieved 
at the cost of loss of accuracy in the dc collector voltage in saturation. 

~------------------~--~c 

B~-+----~~---------+4 

C, 

~----------~------~~-OE 

Fig. 7- Two-pole transistor self-analogue. 
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Fig. 8 - Transistor self-analogue with different time constants for active and 
saturation region storages. 

As in the case of diodes, charge distribution in the collector layer 
of epitaxial transistors in saturation is likely to be troublesome. For 
example, an npn transistor which gives a storage time of 5 ns (meas
ured with IBF = IBR = Ie) has an effective lifetime of 7 ns accord
ing to charge control theory. This, however, gives a diffusion length 
of about 3 ""m (with D = 10 cm2/sec), which is about equal to typical 
epitaxial layer thicknesses, and is inconsistent with the assumption 
of charge-control theory that charge is stored close to the junctions. 
Digital programs for circuit analysis commonly use the Ebers-Moll 
model,l° which uses a similar assumption. Predicted storage times 
are too long and current fall times are too short in this situation. A 
multiple-lump model similar to that proposed for the diode is needed 
for more accurate representation of storage and fall time. In this 
case, it is necessary to represent simultaneously (i) active region 
storage with a single-lump model and (ii) saturation region storage 
with a multiple-lump model. 

In the model shown in Fig. 9, active and saturation region storages 
are separated by the following means. The combination RI , Al , 0 1 

represents active region storage, R2 , A 2 and its associated R - G - 0 
network represent saturation region storage. Active region storage 
which would otherwise occur because of base current flowing in R2 
is cancelled by feedback via R4 . Thus, the feedback current If in R4 , 
which flows only in R~ because of the ground connection of amplifier 
AI, is 

(23) 

in which I II = emitter current. 
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c 
B 

E 

Fig. 9 - Separation of active and saturation region storage. 

Diode Dl is chosen to compensate for the forward bias voltage across 
the base-emitter junction of the transistor, and voltages across Rl , R2 , 
and R~ are designed to be negligible. Then if R4/RIAl = hFE + 1 
the desired cancellation will be achieved. Cancellation can only be 
partial since hFE depends on ie . 

CONCLUSIONS 

A new technique of circuit analysis, by which high-frequency 
circuits can be evaluated and optimized using simple audio frequency 
breadboard techniques has been demonstrated. It is based on the 
use of audio frequency self-analogues of diodes and transistors, which 
can be formed by multiplying the stored charge in the devices by 
some suitable factor such as 10.6 Self-analogues based on charge-con
trol models can satisfactorily represent (i) the base region of a tran
sistor and (ii) diodes and transistors formed in epitaxial layers which 
are thin compared with a diffusion length. The latter condition is not 
satisfied by most switching diodes and transistors. Self-analogues can 
be constructed which are exact physical realizations of the multiple
lump Linvill model. These can be used to represent diodes and tran
sistors formed on epitaxial layers of arbitrary thickness. 

APPENDIX 

Specific Design Example 

Figure 5a shows an epitaxial diode with typical dimensions. 
Other parameters used in this section are: 

Lifetime, T = 3ns 
Diffusion constant, D = 10 cm2/sec 
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Epitaxial layer doping = 1017/cm3 

Surface concentration of diffused layer = 102°/cm3
• 

The effective recombination velocity at the epitaxial interface can 
be expected to be low because outdiffusion from the substrate creates 
a built-in field which keeps minority carriers away from the inter
face. 1000 cm per second is used as an illustration. 

Figure 5b shows the two-lump self -analogue of the diode. vVe will 
assume that each of the lumps represents half of the epitaxial layer, 
so that C1 = C2 • With a scaling factor of 106

: 

C 1 = K T = 106 X 3 X 10-9 = 3 ms 
G 

RC
l 

= I{ 0 ; 2 = 106 X (1.5 ~o 10-
4

? = 2.25 ms. 

Both r and A can be arbitrarily chosen. A gain of 100 and resistance 
of a few ohms, say 50, are convenient values to use in practice. Since 
rA = 11G, this gives IIG = 5000, and C1 = 3ms G = 6 p..F, and R = 
2.25ms1C1 = 2750. Finally, equation 12 with a scaled value for satura
tion velocity gives Rs = 25,0000, which is too high to have a signi
ficant effect on the model and will be neglected. 

Current-dependent charge storage will also occur in the p-layer 
and the depletion layer. The p-layer is typically diffused and a 
charge stored in it will lie close to the junction. Both effects could 
therefore be represented by an additional capacitor in parallel with 
C1 , with rA reduced in value to y r A, in which y is the efficiency of 
injection into the n-layer. This complication was not introduced into 
the present model. 

The behavior of the two lump model was calculated assuming a 
steady-state forward-bias current If followed instantaneously at t = 
o by a reverse bias current 11'. Solutions for Q1 and Q2 during storage 
time ts are then: 
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Storage time ts is defined as the time at which Ql goes to zero. After 
T8: 

Ql 0 

(
Gil + 1 t) 

Q2 Q~(t .• ) cxp - Gil .-;.' 

The behavior of the model inset in Figure Sc was compared with 
that of an actual diode in the following way. The response of the 
diode was obtained from an exact computer solution of the semicon
ductor equation using the procedures developed by Gummel and 
Scharfetter.7 This solution is given in Figure Sc. The area of the diode, 
3.33 X 10-6 square centimeters, corresponds to a current density of 
300A per square centimeter. 

Using the Lawrence-Warner10 curves, the average junction capaci
tance, defined as total charge per total voltage, in the range from 0 
to S.8 volts is 0.lS3pF. Using the equations and numerical values for 
the two-lump model given previously, this leads to the double-lump 
curve in Figure 5c. A 20 per cent reduction of Cj to obtain best fit led 
to the corrected double-lump curve. The figure shows the solutions 
for a single lump model for comparison. These results are discussed 
in Section 2.2. 
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Nonlinear Distortioll in Feedbacl( Systems 

By J. M. HOLTZMAN 

(Manuscript received November 21, 1967) 

We give a method for determining the distortion effect of a nonlinearity 
in a feedback loop. 

I. INTRODUCTION 

Desoer gives an interesting analysis of distortion resulting from 
a nonlinearity of the form v + €v m (n" an odd integer) in a feedback 
100p.1 Sandberg considers virtually the same problem for nonlineari
ties with upper and lower bounds on the slope.2 On page 2546 of his 
work, Sandberg suggests that Desoer's result may be sharpened. 
Our purpose is to show how a small modification of Desoer's analysis 
might give this sharpening and extend its applicability. 

Desoer's method is to find conditions for a particular mapping to 
be a contraction in a ball. The method presented in another work 
is particularly suited to that problem and will be applied in this 
paper.3 The problem of distortion in nonlinear systems is also con
sidered in References 4 and 5 among other papers. 

II. NOTATION AND PRELIMINARIES 

The feedback loop (with unity feedback for simplicity) is assumed 
to be described by 

y = NL(r - y) (1) 

where the input r and output yare in some Banach space. Land N 
are linear and nonlinear operators, respectively, mapping the Banach 
space into itself. We need not, at this point, specify which Banach 
space we are working in. Rather, we refer the reader to Reference 2 
for details on two Banach spaces of interest for analysis of nonlinear 
feedback loops.'~ In particular, Reference 2 shows how to evaluate 

* It must be verified that the Banach space (or an appropriate subset) is 
mapped into itself by the nonlinearity. In particular, nonlinearities such as de
scribed by polynomials do not map L2 into itself. 

503 
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the norm of the linear operator when it is defined by a convolution 
operation or by a transfer function (frequency response). 

III. THE PROBLEM OF DISTORTION 

Suppose that 

N(x) = x + €P(x). (2) 

Then the loop is linear if € = 0 and it is of interest to determine how 
the loop response differs for a nonzero Eo This difference is called the 
distortion. On the other hand, we might consider some fixed , €, > 0 
and determine how small the input r must be in order that the dis
tortion is sufficiently small. This latter question assumes that P (x) 
is of an order less than x as X-70. 

The following manipulation is convenient for this problem. From 
equations 1 and 2 we have 

y = L(r - y) + €P[L(r - y)]. (3) 

If we assume that (1+ L) has a bounded inverse where 1 is the identity 
map/~ we obtain 

y = (1 + L)-lLr + (1 + L)-leP[L(r - y)]. 

Then, if z is the response of the linearized loop, 

z = (1 + L)-lLr. 

And if ~ represents the distortion, 

~ = y - z, 
we have 

~ = €(J + L)-lp[Z - L~] 

== 1I;[(~). 

We are thus interested in finding a fixed point of the operation M (~). 
In particular, how large is ~? To solve this problem, we use a con
venient modification of the contraction mapping fixed point theorem. 

IV. THE CONTRACTION MAPPING THEOREM 

Let X be a complete metric space (with metric d) containing 
the closed set n and let F map n into itself. F is a contraction map
ping if there is an a E [0, 1) such that 

d[F(x), F(x')] ~ ad(x, x') (x, x' En). 

* For conditions for the existence of this bounded inverse, see Reference 2, 
especially p. 2538. 
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The contraction mapping theorem (Reference 6, p. 627) states that 
if F is a contraction mapping then there is a unique x~~ E: 11 such that 
x* = F (x*), that is, x~~ is a fixed point of the operation F. Also, x'(· 

is the limit of a sequence {xn} where 

X n + 1 = F(xn) 

and Xo is any element of 11. 
One aspect of using the above theorem is finding the appropriate 

set n mapped into itself. Often, the contraction mapping theorem is 
used when 11 is the whole space, that is, F is globally Lipschitzian. 
The analysis of Reference 1 may be viewed as a method of deter
mined a ball about the origin such that a mapping is a contraction 
in that ball. The general problem of simultaneously trying to de
termine a set mapped into itself such that a mapping is contraction 
on that set is discussed in Reference 3. The following simple theorem 
from Reference 3 is useful in this direction. 

Theorem: Let B be a Banach space. F maps B into itself and Xo t B. 
It is assumed that 

(i) F has a derivative at all x t B 
(ii) There is a nondecreasing function g such that if x t B, then 

II F'(x) /I ;£ g(1I x - Xo I/) 

(iii) There is an a t [0, 1) such that 

where 

k ~ II F(xo) - Xo II· 

Then there is a unique x* t n such that 

x* = F(x*) 

where 

!l = {x: xe B, II x - xo II & 1 ~ J 
Remarks: See chapter XVII of Reference 6 for a general discussion 
of differentiation in Banach spaces. 

It is often a straightforward matter to find an appropriate func
tion g as we shall see in the distortion problem of this paper. 
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v. SOLUTION OF THE DISTORTION PROBLEM 

To apply the preceding theorem to the distortion problem of Sec
tion III, we first find M' (~), then a nondecreasing g such that 

/I llf' (~) /I ~ g (II ~ - ~ 0 /I) = g (1/ ~ Ii) 
And with P (0) = 0 (for simplicity), 

II JI![(~o) - ~o 11 = II e(I + L)-lp(Z) /I 
~ k. 

We must finally find an a £[0.1) such that 

(~o = 0). (4) 

(5) 

(6) 

vVith (I + L)-l and L both assumed to be bounded linear operators, 
we have 

111l1'(~) II = /I e(l + L)-lp'(Z - L~)L /I (7) 

(assuming that P has a Frechet derivative). It should be clear that 
our method of analysis is not restricted to nonlinearities described 
by functions of the form of v + fV m as used in Reference 1. For the 
case of the space of continuous real valued functions with the sup 
norm~:· and 

P(x) = xm 

we have that 

m an integer > 1 (not necessarily odd) 

P'(x) = mxm- 1
• 

Then, using equations 7 and 9, 

/I 111'(O /I ~ Ie 1·/1 (1 + L)-1 II·m·11 (z - L~)m-l 11·11 L /I 

(8) 

(9) 

~ m I e 1·11 (1 + L)-1 II (II z II + II L 11·11 ~ IDm-l /I L /I 
== y(11 ~ - ~o ID 
= y(11 ~ II) (~o = 0). (10) 

Now, using equations 5 and 6, we obtain 

m I E 1·\\ (I + L)-1 II 

.11 L 11(11 z II + II L 11·1 e 1·11
1
(I_+aL )-1 11·11 z lL:)m-l ~ a. (11) 

* What might be considered to be a disadvantage of using this space is that 
the norms of the linear operator are expressed in terms of impulse responses 
rather than frequency responses. 
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Condition (11) could be used in several ways. For a fixed €, we could 
determine how small II z II has to be in order for there to be an 
a I: [0, 1) satisfying (11) and thus get a bound on the distortion /I ~ /I. 
The emphasis in Reference 1 is in determining how small € should be 
with linearized outputs satisfying II z II < 1 and the distortion II ~ II < ! 
in order for the method of successive approximations to converge at 
a given rate (a = i). The discussion on page 2546 of Sandberg's article2 

assumes the following conditions (in our notation) : 

m=3 

/I L " = 100 (12) 

/I (I + L)-l /I = 2. 

Then, (11) becomes 

(13) 

If 1 € 1 is less than about 1/2900 (actually a little larger, thp,n (13) 
is satisfied. Then, the distortion ~ satisfies 

11~1I~_k_ 
1 - a 

~ 1 € I-§-II (1 + L)-l \I·lIz 11 m 

~ -£ 1 € I· (14) 

The bound obtained using equation 25 of Desoer's article l is 1 € I ~ 
1/(2150·2900), a substantially smaller bound. 

VI. CONCLUSION 

Notice that since we do not require the mapping to be a contrac
tion in the whole space, we only get uniqueness in 0, the ball of 
radius k/(l-a). However, the result may be strengthened by also 
seeking the largest contraction constant a, satisfying condition iii of 
the theorem. Then the fixed point is also unique in the larger ball. 
On the other hand, uniqueness information might be available from 
another source (for example, a property of a differential equation). 

We notice that the existence of derivatives in the theorem may 
actually be relaxed if there is a nondecreasing function suitably 
bounding Lipschitz constants. We also mention the possibility of using 
transformations to facilitate the application of the result. 



508 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968 

The following may be helpful in visualizing the application of the 
contraction mapping theorem:::' Assume that condition iii of the 
theorem of Section IV is satisfied with equality, that is, 

The radius of the ball Q is k/(l - a). Letting 

k r = ---
I - a 

the condition is seen to be 

gCr) 

which Fig. 1 shows pictorially. 

1 
k 
r 

I 
I 
I 

g(r): LIPSCHITZ 
CONSTANT ON BALL 

OF RADIUS r 

L....----.L.------......;I--r=llx-xoll r- il F(xo)-xoll-1 k I 

If<RADiUsOFBALL-CONT~INING I 
ALL ITERATES XL+l=F(XL) I 

I AND A FIXED POINT I 
r--BALL OF GUARANTEED UNIQUENESS-->j 

Fig. 1- Contraction mapping theorem. 
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Numerical Integration of Systems of Stiff 
Nonlinear Differential Equations 

By I. W. SANDBERG and H. SHICHMAN 

(Manuscript received November 29, 1967) 

In connection with the design of transistor circuits, for example, it is 
frequently necessary to obtain a numerical solution of a system of non
linear ordinary differential equations. In some cases, these equations 
possess a property that leads to intolerable computational requirements 
relative to the use of standard predictor-corrector techniques or general 
linear multipoint formulas of open type. 

Here we describe an alternative approach which has been used to solve 
some practical problems by permitting dramatic step-size increases (for 
example, a factor of 104

). The approach is developed in a way which 
provides some detailed understanding of why it is useful. 

1. INTRODUCTION 

In connection with the design of transistor circuits, for example, it 
is often necessary to obtain a numerical solution of a system of non
linear differential equations 

x + lex, t) = 0, t ~ 0, [x(o) = xoJ (1) 

in which x and f(x, .) are N-vector-valued functions of t. The sim
plest numerical-integration formula which can be in principle used 
for this purpose is Euler's formula: 

Yn+l = Yn + hy~ , n ~ ° (2) 

in which h, a positive number, is the step size; Yo = Xo; 

y~ = -f(Yn, nh) for n ~ 0; 

and Yn is of course the approximation to x(nh) for n ~ 1. 
It is frequently the case that f (x, .) possess a property that leads 

to computational requirements consistent with the use of (2) that are 
intolerable, To see clearly how this situation can arise suppose that 

511 
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the solution of (1) is desired over some finite interval [0, T], and con
sider the very special case in which I(x, t) = Ax with A an N X N 
matrix possessing distinct eigenvalues {ai} all of which have positive 
real parts. Then using the fact there exists a nonsingular transforma
tion T such that 

D = diag (a1 , a2 , ... , aN) (3) 

we have 

n ~ 0, (4) 

in which IN is the identity matrix of order N. From (4) 

k ~ O. (5) 

Since 

k ~ 0 (6) 

it is evident that the numerical solution is "acceptable" if h is so small 
that (1 - hai)k is an "acceptable" approximation to e-a;kh for all i 
and all values of k for which 0 ~ kh ~ T. On the other hand if for 
some value of i 

11 - hai I = 1, or 11 - ha i I > 1 

then for at least one initial condition vector xo , {II Yk II} ~ ClI·11 denotes 
the usual Euclidian norm) does not approach zero as k --7 00 or is 
unbounded, respectively [that is, (2) is numerically unstable]. Therefore 
if the sequence {Yk} defined by (4) is to be a good approximation to 
the samples of the solution of (1) with I(x, t) = Ax, it is certainly 
necessary that 

I 1 - hai I < 1 for all i. (7) 

Moreover, in order to fully determine the character of the solution of 
the differential equation, it is reasonable to assume that T, the length 
of the interval over which the solution is desired, is proportional (by 
some factor c such as 3 or 10) to the reciprocal of mini Re (ai) (that 
is, proportional to the largest time constant of the system). Thus in 
addition to (7) we have 

T = c[min Re (ai)r 1
• (8) 

i 

A lower bound on the number of evaluations of (2) necessary to 
compute the solution is T/h where h satisfies (7). If all of the ai are 
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real, the smallest lower bound is simply 

max (ai) 
1 ----:.-i __ 

zC min (a.) 
(9) 

It is a simple matter to give examples of, for instance, positive-element 
linear RC networks governed by a state equation of the form x + Ax = 0 
for which the bound (9) can be made arbitrarily large by choosing the 
value of one capacitor to be arbitrarily small. Thus, from the practical 
viewpoint, computation based on (2) can be impossible as a result of 
the presence of parasitic circuit elements that have no really signifi
cant effect on the circuit performance! It is not surprising therefore 
that a more complex and pressing problem of the same type arises in 
connection with the numerical solution of the nonlinear differential 
equations of transistor circuits, as a result of, for example, the para
sitic capacitors associated with the models of transistors. For many 
practical circuits of this type, computation time estimates, based upon 
use of (2) and a modern high-speed computer, are about 1000 hours. 

The well-known basic problem described above arises not only in 
connection of the use of (2), but (as can easily be shown) is en
countered also in attempts to use more general integration formulas 
of open typel • 2 

p p 

Yn+l = L akYn-k + h L bkY~-k , (10) 
k=O k=O 

or predictor-corrector techniquesl
• 2 such as 

Yn+l (p) = Yn-l + 2hy~ (11) 
Yn+l (e) = Yn + !h(y~ + Y~+l (p». 

The fundamental difficulty associated with the integration of "stiff 
equations" results from the restrictions that must be imposed on h in 
order to insure numerical stability. 

The purpose of this paper is to consider the properties of alterna
tive numerical methods for obtaining solutions of equations of the 
form (1). Our principal objective is to present some analytical results 
that shed some light on the properties of a class of numerical-integra
tion techniques that have been used to solve practical transistor circuit 
problems by permitting dramatic step-size increases (for example, a 
factor of 104

) relative to the methods defined by (10) and (11). 
More explicitly, attention is focused on "large-h algorithms" based 
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on, or derived from, the standard formula of closed type 

Yn+l = Yn + hY~+l (12) 

which is a special case of the general multipoint formula 

p p 

Yn+l = L akYn-k + h L bkY~-k (13) 
k=O k=-l 

with b_1 ~ O. There is an extensive body of information concerning 
(12) in the numerical-analysis literature only for the case in which 
h is "sufficiently small." 

II. INTEGRATION FORMULA 

If we use the numerical-integration formula 

(12) 

in an attempt to compute the solution of (1), then Yn+l is defined 
implicitly in terms of Yn through 

Yn+l + ht[Yn+l , (n + l)h] = Yn , n ~ 0, [Yo = xoJ. (13) 

For the special case considered in Section I, in which f (x, t) = Ax 
and A = TDT-l, we have 

n ~ 0 (14) 

and to the extent that (1 + hai)-l is a good approximation to e-ai
\ 

(13) generates an acceptable numerical solution of the differential 
equation. More explicitly (13) generates the exact solution of the 
differential equation 

x + Ax = 0, t ~ 0, [x(O) = xoJ (15) 

in which A = TDT- 1 and e-f)h = (IN + hD)-l. 
Let us suppose now that all of the ai are real and that hal is very 

small relative to unity for i belonging to a proper subset S of m ~ 
{I, 2, ... , N}, and that hai is very large relative to unity for i belong 
to the complement S of S with respect to m. Then for all i £ S, iii , the 
ith element of D is very nearly ai , while for all i £ S, iii < a i and iii 
is very much larger than all of the iii for which i £ S. 

In other words, roughly speaking, (13) generates a solution to a 
differential equation governing a system similar to that governed by 
:i; + Ax = 0; the former system has virtually the same low-frequency 
performance and less pronounced high-frequency performance. To 
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look at the situation in still another way, in using (13) we are able 
to (i) break away from an extremely restrictive requirement on h for 
numerical stability, such as (7), and (ii) trade step-size for accuracy 
of high-frequency solution components. 

The simple heuristic argument given above suggests that the use 
of (12) can lead to a considerable increase in permissible step sizes 
for a class of nonlinear transistor circuit problems in which typically 
the Jacobian matrix al(x, t)/ax of I(x, t) along the solution of (1) 
possesses only real eigenvalues which are widely separated. This argu
ment is supported by a proposition, proved in Section IV, which is 
concerned with the case in which there exists a constant m > Osuch 
that (with (- , -) denoting the usual inner product) 

<v, fey, nh) - f(O, nh» ~ m II y W (16) 

for all n ~ ° and all y. If this condition is satisfied for all h > 0, which 
for the scalar case is true if 

af(y, t) > ay-=m 
for all t and all y, if II f(O, t) II ~ ° as t ~ 00 or if II f(O, t) 1/ is uniformly 
bounded on [0, 00), then (as can easily be shown) /I x(t) 1/ ~ ° as t ~ 00 
or /I x(t) 1/ is uniformly bounded on [0, 00), respectively. The Proposition 
asserts that if (16) is met and Yn+l is defined for n ~ ° by (13) ,then 

n-l 

" Yn " ~ (1 + mh)-n " XO II + L (1 + mh)-<k+l) II hf[O, (n - k)h] II 
k=O 

for all n ~ 1, which implies that (13) is numerically stable for all h 
in the sense that for all h, /I f(O, nh) 1/ ~ ° as n ~ 00 implies that Yn ~ ° 
as n ~ 00 and {I/ f(O, nh) "} ~ bounded implies that {Yn} ~ is bounded. 

Although the result stated above does not provide quantitative in
formation concerning the errors incurred in using (13), it does show 
under a reasonable assumption concerning I (x,t) that unlike all for
mulas (10) of open type and unlike predictor-corrector methods such 
as (11), (13) defines for any step size a sequence {Yn} which is con
sistent with either or both of two possible basic properties of the true 
solution. 

The discussion above does not take into account the fact that at 
each step errors are inevitably introduced in solving the equation 

Yn+l + hf[Yn+l , (n + l)h] = Yn (17) 
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for Yn+l. Consider the result of using the iteration scheme 

which is the usual method described 1, Z in connection with the theory 
of integration formulas of closed type. For the linear case [that is, 
forj(x,t) = Ax], 

k 

Y~"}l L: (-hA)iYn 
i=O 

Ie 

= T L: (-hD)iT-1Yn . (18) 
i=O 

Therefore, if Yl denotes the approximation to Yl computed from Yo 
after kl iterations, and if Y2 denotes the approximation to Yz computed 
from Yl after k2 iterations and so forth, then 

- TO 0 0 0 T- 1 
YK = OkKO kK_1··· Ok.O k1 Yo 

in which 

8 kp = diag (~ (-ha1)i, ... , ~ (-haN)'). 

Since (assuming now that all of the ai are real) 

(19) 

provided that hai > 2 and kp ~ 1, if hai > 2 for some i, then II Yk /I ~ 00 

as k ~ 00 for some initial condition Yo , independent of the sequence 
kl , k2 , ... . Therefore the usual iteration method will reintroduce 
the numerical instability for insufficiently small h which it is our objec
tive to avoid. * 

Let us consider now a different and more general approach of solving 
(17) for Yn+l . Assume that there exists a positive constant l such that 
fey, nh) satisfies the Lipshitz condition 

for all n ;:::: 0 and all Yl and Y2 • Suppose also that the smallest eigen
value of the symmetric part of the Ja'cobian matrix aj(y, nh)/ay of 

* Similar instability results for the nonlinear case can be proved. But since 
this is hardly surprising, we shall not consider the matter further. 
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fey, nh) is bounded from below by m, a positive constant, for all Y 
and all n. 

Ideally, we would like to determine the sequence {Yn}~ defined by 

Yn+l + hf[Yn+l , (n + l)hJ = Yn , n ~ O. 

Suppose that we determine instead a sequence {Yn} ~ such that 

Yo = Yo 

and 

for n ~ 0 in which € is an arbitrary positive constant independent of 
n. In other words, suppose that at each step the local error in solving 
for Yn+l is at most €. Then, according to Theorem 1 (Section IV) 

n-l 

II Yn - Yn II ~ e(l + hl)(l + hm)-l L (1 + hm)-k 
k~O 

for all n ~ 1, which of course implies the uniform bound 

n~1. (20) 

Our assumption concerning aj (y,nh) jay implies that the condition 

(y, fey, nh) - f(O, nh» ~ m II y W 
of the Proposition is met. Thus it follows from the Proposition and (20) 
that if the local error in solving for Yn+l is held to within e at each step, 
then the algorithm is numerically stable for all h in the sense that 
for all h (i) {II f(O, nh) II}~ bounded implies that {Yn}~ is bounded, and 
(ii) II f(O, nh II ~ 0 as n ~ 00 implies that for any 0 > 0 there exists 
an no such that II Yn II ~ e(1 + hl)(hm)-l + 0 for all n ~ no. 

The combination of this stability result and the heuristic argument 
of Section I strongly suggests that the following approach should per
mit the use of considerably increased step sizes with acceptable accu
racy, for many of the "widely-separated eigenvalue" problems de
scribed earlier. Referring to (17), solve for Yn+l at each step using, 
say, the Newton-Raphson technique;* iterate until some norm of 

* After the work reported here had been completed, A. N. WilIsonJ Jr. brought 
to our attention a preprint of a paper by R. Willoughby and several of his col
leagues at IBM, in which au approach of this type is suggested. The pre print 
does not contain the principal results of this paper, the material of Section IV. 
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the difference between the last two iterates is not greater than some 
small prescribed constant. 

In particular, notice that for f (x, t) = Ax, this approach, using the 
Newton-Raphson iteration procedure, reduces to the use of the for
mula Yn+l = (IN + hA)-lYn (that is, to equation 14). 

The technique described above has provided a significant reduction 
in total computation time for several types of practical problems. It 
was used, for example, to solve the system of differential equations 
governing the circuit of Fig. 1, an oscillator designed to supply a 1 
kc signal. The 16 G Western Electric 100 Mc. silicon transistor of 
Fig. 1 was represented by a charge-control model (see Section 6.2, 
pp. 556-557 of Koehler3

) using two nonlinear charge-controlled voltage 
sources, with the result that the system of equations for the circuit 
is of order 5. 

Motivated by the fact that the local-truncation error for formula (12) 
is th2X(~) for some ~ t[nh, (n + l)h], the following method was used 
(for this problem as well as for others) to control the step size. Let e 
denote the largest of the magnitudes of the elements of the vector 
of second differences associated with the most recently computed point. 
If e t [ie, e] (for this problem e was taken to be 10-4

), then the point 
is accepted; if e > e, then the point is rejected and the calculation 
is repeated with h replaced with th. If e < ie, then the point is accepted 
and h is replaced by 2h in the computation of the next point. Average 
step-size increases of about 104 (relative to, for example, the use of a 
forth-order predictor-corrector method) 'were obtained for this problem 
(see Fig. 2). 

3.0V 

2.SV 

Fig. 1- One-kilocycle oscillator using a 160 "100 megacycle" transistor. 
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Fig. 2 - Comparison of computed and experimental response of the oscillator 
shown in Fig. 1. 

III. AN EXPLICIT INTEGRATION FORMULA 

Of particular interest in connection with the approach described 
above is the numerical-integration formula 

Yn+l = Yn - fIN + ht'[Yn , (n + I)h]} -lht[Yn , (n + I)h], 

n ~ 0, (21) 

which is obtained from 

Yn +1 + ht[Yn + 1 , (n + I)h] = Yn (22) 

by replacing Y n by Yn and using as the approximation Yn+l to 
Y n+1 the result obtained by using one step of the Newton-Raphson 
iteration scheme with Yn the initial point. That is, with 

Q(z) = z + hf[z, (n + I)h] - Yn , 

Yn+l = Yn - [Q'(z) IZ.=IIJ- 1Q(z) IZ=lIn . 
(23) 

In spite of its relative simplicity, it has been found that formula 
(21) is useful for solving problems of the type that we have been 
considering. For the problem of Fig. 1, it has led to an average step 
size increase of about 103

• 
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In view of the simplicity of formula (21), and especially in view of 
the fact that Yn+1 is defined explicitly in terms of Yn, it deserves 
special consideration. 

Theorem 2 (Section IV) asserts that for any h > 0 there· exist 
P9sitive constants k1 and k2 such that k1 < 1 and 

n-l 

\I Yn II ~ k~ II Yo II + hk2 2: k~ II 1[0, (n - k)h] II (24) 
k=O 

I 

for n ~1, provided that the Jacobian matrix a1(y, nh)/ay satisfies 
certain conditions. For the scalar case, these conditions reduce to: 

; (i) there exist positive constants k and l'n such that 

111- ::::;; af(y, nh) ::::;; k 
- ay -

for all Y and all n ~ 1 

(ii) 2 af(y, nh) _ afCay, nh) ~ 0 
ay ay 

for all y, n ~ 1 and a t [0, 1]. 
Clearly, under these conditions, Yn ~ 0 as n ~ 00 if f (0, nh) ~ 0 as 
n ~ 00 and {Yn} is bounded if {1If(0, nh) I/} is bounded. 

The function f (y, nh) of Fig. 3 is one for which conditions (i) and 
(ii) are clearly met. If condition (ii) is not met, then (24) need not 
follow. To show this, consider, for example, the function of Fig. 4 

Hy,nh) 

'--SLOPE = 1 

-1 

-2 

.... -SLOPE=1 

Fig. 3 - Definition of j(y, nh) for all n. 
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which meets condition (i), but not condition (ii). ,Ve have from (21): 

h = 1 and Yo = 1 imply that 711 = -1 

and 

h = 1 and 711 = -1 imply that 712 = 1 

from which it is clear that for this function Yn = (-1) n if h = 1 and 
Yo = 1, which of course implies [here f(O, nh) = ° for all n] that (24) 
is not satisfied. Thus we see that if condition (ii) is not met, then (24) 
need not follow. 

Fig. 4 - Alternate definition of f(y, nh) for all n. 

IV. PROPOSITION AND THEOREMS* 

Proposition: If {Yn} satisfies 

Yn+l + hf[Yn+l , (n + l)h] = Yn , 

and if there exists an 1n > ° such that 

(y, fey, nh) - f(O, nh) ~ 1n /I Y W, 
for all real y, then 

n-l 

n ~ ° 

n ~ ° 

II Yn II ~ (1 + mh)-n II Yo II + I: (1 + mh)-k II hf[O, (n - k)h] II 
k=O 

for n ~ 1. 

* Throughout this section, "." denotes the usual Euclidean Norm and (".) 
denotes the corresponding usual scalar product. 
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Proof: Clearly, 

{Yn+l , Yn - hf[O, (n + 1)h]) 

= (Yn+l , Yn+l + hf[Yn+l , (n + 1)h] - hf[O, (n + 1)h]) 

~ (1 + mh) II Yn+l W, 
and, by the Schwarz inequality, 

(Y1l+1 , Yn - hf[O, (n + 1)h]) ~ /I Yn+l 1/./1 Yn II 
. + /I Yn+l 1/·11 hf[O, (n + 1)h1 II· 

Thus 

/I Yn+l /I ~ (1 + mh)-l /I Yn /I + (1 + mh)-l /I hf[O, (n + 1)h] /I 
from which we have 

n-l 

II Yn II ~ (1 + mh)-n II Yo 1\ + L (1 + mh)-Ck+ll II hf[O, (n - k)h] II 
k=O 

for n ~ 1, which completes the proof. 

Definition: Let A(Y, nh) denote the smallest eigenvalue of the symmetric 
part of af(y, nh)/8y. 

Theorem 1: Suppose that there exists a constant m such that A(Y, nh) ~ 
m > 0 for all n ~ 0 and all y, and that there exists a constant l such that 

/I f (y 1 , nh) - f (y 2 , nh) /I ~ l /I Y 1 - Y 2 /I 

for all n ~ 0 and all Yl and Y2 . If {Yn} satisfies 

Yn+l + hf[Yn+l , (n + I)hJ = Yn , n ~ ° 
if, with E a positive constant, {Yn} satisfies 

then 

II Yn - Y~ II ~ E for n ~ ° with 

Y:+l + hf(Y~+l , (n + I)h) = Y., 

II Yn - Yn II ~ (1 + hm) -n II Yo - Yo II 
n-l 

+ (1 + hm)-1(1 + hl) E L (1 + hm)-k 
k=O 

tor n ~ 1. 
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Proof: We have for n ~ 0: 

Yn+l + hf[Yn+l + (Y~+1 - Yn+l), (n + l)h] = Yn + (Yn+l - Y~+I) 

and 

Yn+l + hf[Yn+l + (Y;+1 - Yn+l), (n + l)h] 

523 

= Yn + hf[Yn+l + (Y:+l - Yn+l), (n + l)h] - hf[Yn+l , (n + l)h]. 

Therefore 

Yn+l - Yn+l + ht[iJn+l + (Y;+1 - Yn+l), (n + l)h] 

- ht[Yn+l + (Y;+1 - Yn+l), (n + l)h] 

= Yn - Yn + (Yn+l - Y;+I) + ht(Yn+l , (n + l)h) 

- ht[Yn+l + (Y:+l - Yn+l), (n + l)h]. (25) 

With t~ the symmetric part of af(y, nh)/ay, the inner-product of 
(Yn+ 1 - Yn+ 1) with the left side of (25) is 

II Y.H - Y ••• II' + h\Y.H - Y ... , [ t:{a[Y.H + (y~+. - y ... )] 

+ (1 - a)[y ... + (y: .. - V..,)], (n + I)h} da(fi ••• - Y ... ) >, (26) 

since 

t[iJn+l + (Y;+1 - Yn+l), (n + l)h] - t[Yn+l + (Y:+l - Yn+l), (n + l)h] 

-1 1 

at[y, (n + l)h] I d (- - ) - a Yn+l Yn+l' 
o ay 1/="'[ )+(1-",)[ ) 

Expression (26) is bounded from below by 

(1 + hm) /I Yn+l - Yn+l W· 
By the Schwarz inequality, the inner-product of (Yn+l - Yn+l) with 
the right side of (25) is bounded from above by 

II Yn+l - Yn+l 11·11 Yn - Yn II 
+ II Yn+l - Yn+l 11·11 Yn+l - Y;+l II + II Yn+l - Yn+l II 

·11 ht[Yn+l , (n + l)h] - ht[Yn+l + (Y;+l - Yn+l), (n + l)h] II, 

which is bounded from above by 

II Yn+l - Yn+l /1./1 Yn - Yn II + /lYn+l - Yn+l /I (€ + hZe). 
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Thus, 

/I fin+l - Yn+l II ~ (1 + hm)-l " fin - Yn /I + (1 + hm)-1(1 + hl)€, 

from which it follows that 

II Yn - Yn II ~ (1 + hm) -n II Yo - Yo II 
n-l 

+ (1 + hm)-1(1 + hl) e L (1 + hm)-k 
k=O 

for all n ~ 1. 

Theorem 2: If {Yn} satisfies 

Yn+l = Yn - {IN + hf'[Yn , (n + I)h]} -lhf[Yn, (n + l)h] 

for n ~ 0, if 
(i) there exists a constant k < 00 such that 

II at(~~nh) II ~ k 

for all n ~ 1 and all y 
(ii) there exists a constant m > ° such that }..(y, nh) ~ m for all n ~ 1 

and all Y 
(iii) with F ~ hf'[y, (n + l)h] and F a ~ hf'[ay, (n + I)h], the sym

metric part of {(2F - F a)F!} is* nonnegative definite for all y, 
all n, and all a t [0, 1], 

then there exist positive constants kl and k2 such that kl < 1 and 

n-l 

II Yn II ~ k7 II Yo II + hk2 L k~ II f[O, (n - k)h] II for all n ~ 1. 
k=O 

Proof: We have 

Yn+l = Yn - {IN + hf'[Yn, (n + I)h]} -1 {hf[Yn , en + I)h] - hf[O, (n + l)h]) 

- {IN + hf'[Yn , (n + I)h]} -lhf[O, (n + I)h]; 

hence 

II Yo., II ~ 111N - (IN + F)-I { Fa da II· II Yo II 

+ II (IN + F)-l 11·11 hf[O, (n + 1)h] II (27) 

* The superscript t denotes matrix transposition. 
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with the understanding that F and Fa are evaluated at Y = Yn, since 

hf[Yn , (n + I)h] - hf[O, (n + I)h] = 11 hf'[aYn , (n + I)h] da Yn . 

We now prove that there exists kl £ (0, 1) such that 

for all n and all Yn. 
From condition (ii'i) , with V an arbitrary N-vector, 

«2F
t 

- F~) V, F~ V) ~ ° 
or 

(2F
t
V, F~ V) - (F~ V, F~ V) ~ ° 

which implies that 

or 

In view of conditions (i) and (ii), it is evident that there exists a 
~ £ (0, 1) such that 

- 2(F ! V, V) ~ - (1 - ~) /I V W - 2(1 - ~)(Fe V, V) - (1 - ~) /I FI V W 
for all a, n, Yn, and V. Therefore 

/I (F t - F!)V W - /lFIV W - 2(F!V, V) 

~ - (1 - ~) /I V W - 2(1 - ~) (FI V, V) - (1 - ~) /I Ft V W 
which is the same as 

/I V W + /I (Ft - F~) V W + 2«Ft - F!) V, V) 

or 

~ ~ /I V W + 2HFt V, V) + ~ " Fe V W 

II (IN + Ft - F !)V W ~ ~ /I (IN + Fe)V w. 
vVith U = (IN + Ft) V, we have 
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Since (28) is satisfied for all V, 

" (IN + F' - F ~)(IN + Ft)-1 " ~ l{',J 

with kl = (~) t. However, 

and 

~ 11 II (IN + F)-J(1N + F - F ex) \I da ~ kl . 

Consider now I! (IN + F-1 11. Since for any V 

/I (IN + F)V W = /I V W + 2(FV, V) + /I FV W ~ (1 + 2hm) /I V W, 
it follows at once that 

" (IN + F)-1 " ~ (1 + 2hm)-!. 

Thus with k2 = (1 + 2hm)-t 

11 Yn+1 1/ ~ k1 /I Yn " + k2 /I hf[O, (n + I)h] /I 
from which we obtain the bound on IIYnll stated in the theorem. 

v. FINAL REMARKS 

The algorithm described in this paper is a marriage of two stand
ard techniques, the use of a well-known closed-type numerical-inte
gration formula and the Newton-Raphson iteration procedure. It is 
clear that the approach is of use in connection with a certain class of 
practical problems, and, what is of at least as much importance, we 
have some detailed understanding of why the algorithm is useful. 

It is also clear that some natural generalizations and extensions 
of the approach, such as using different closed-type formulas* or 
different methods of solving systems of nonlinear equations, will lead 
to more efficient techniques. Finally, since there are several alternate 
approaches available which are alRo of use in certain cases (see Pope, 

* For example, for the trapezoidal rule Yn+l = Yn + !h(Yn' + Yn+l') and for I(x, t) = 
Ax, we have Yn+l = T'ZT-1Yn, in which 'Z = diag [(2 - hal)(2 + hal)-l, ... , (2 -
haN)(2 + haN)-l](T and the ai are defined in Section I). In view of the relation 
between the local-truncation errors of the trapezoidal rule and formula (12), this 
suggests that for nonlinear problems the trapezoidal rule should permit larger step 
sizes for the same accuracy when the "fast components" of the solution have decayed 
to a very low level. 
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for example) 4 much work directed toward the comparison of avail
able methods is needed. 
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An Upper Bound 011 the Zero-Crossing 
Distribution * 

By NICHOLAS A. STRAKHOV and LUDWIK KURZt 

Let Q(T) equal the probability that a random process, x(t), does not 
cross the zero axis in a given interval of length T. A family of upper bounds 
for Q(T) is derived with only weak restrictions imposed on x(t) and it is 
shown that for gaussian random processes only one member of the family 
provides useful formulae. Specific results are obtained for x(t) representing 
a number of interesting random processes. 

I. INTRODUCTION 

Let Q (T) equal the probability that a random process, x (t), does 
not cross the zero axis in a given interval of length T. The problem 
of determining Q (T) (and related functions) has important appli
cations in communications theory and has been investigated by 
many authors.1

-
6 Reference 5 gives an extensive bibliography of 

most of the related work on this subject prior to 1962. Despite all 
this effort, Q (T) is known only when x(t-) is a simple nongaussian 
process (such as a process whose zero-crossings obey the Poisson 
distribution) or a stationary gaussian zero-mean process with one 
of four explicit correlation functions. 5

• 6 Most of the rest of the results 
obtained are either approximate or form upper or lower bounds.5 

In this paper, we develop a whole family of upper bounds on 
Q (T). For computational purposes, however, only one member of 
the family has been found to provide useful results for most cases 
of interest. 

II. DERIVATION OF AN UPPER BOUND ON Q(T) 

Consider the transformation 

1 iT 
ZT = T 0 sgn [x(t)] dt (1) 

* An abbreviated version of this paper was presented at the Fifth Allerton 
Conference on System and Circuit Theory, Monticello, Ill., October 4, 1967. 

t New York University. 
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where x(t) is a sample function of a stochastic process,·:f T is a fixed 
observation interval, and ZT is a random variable defined by the 
stochastic integral (1). The function 8gn [x (t)l is defined as 

f+l, :r > 0 

sgn [x] 1 0, 
x = 0 

-1, ;t < O. 

Since ZT is a random variable, it has a cumulative distribution func
tion, P (ZT), associated with it. From (1), two properties of P (ZT) are 
immediately apparent, regardless of the statistics governing x(t): 

(i) 

and (2) 
P(ZT) = 1 for ZT > 1 

(ii) lim [P(l + €) - P(l - €)] = Q('(11) (3) 

and 

lim [P(-l + €) - P(-l - E)] = QL(T) (4) 
<~O 

where 

Prob {:r(t) ~ 0 for 0 ~ t ~ TJ (5) 

and 

QL(T) = Prob {x(t) ;£ 0 for 0 ~ t ;£ Tj. (6) 

Obviously, Q (T) as defined previously is related to the last two 
quantities by 

Q(T) = Qu('11) + QL(T). (7) 

If x (t) is a symmetrict process, then 

Qu('11) = QL(T) = !Q(T). (8) 

As a consequence of properties (i) and (ii) , P (ZT) can be rep
resented by 

* Throughout this paper, we assume that almost all sample functions of the 
stochastic pocess are continuous. Thus, (1), (5), and (6) are well defined. 

t The stochastic process x(t) will be called symmetric if the probability meas
ures that govern it also govern the process -x(t). 
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where G(ZT) is continuous at ZT = ±1 and 

u(x) = {~ for x < 0 

for x ~ O. 
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\Ve assume throughout that the function G (ZT) is not identically 
equal to zero. If it were, then it would be easy to show that Q (T) 
is known exactly ; that is, Q (T) = 1. 

Next, consider the even-order moments of P(ZT), denoted by the 
Stieltj es integral 

q2k = J1 z;~ dP(z1') k = 0, 1,2, 
-1 

By substituting (9) into (10) one obtains 

q2k = 1:1 z;~ dG(ZT) + Qu(T) + QL(T) k = 0, 1,2, .... 

(10) 

(11) 

Neglecting the first term in the right side of (11) (which is always 
positive) and taking (7) into account leads to a family of upper 
bounds for Q (T) expressed by 

Q(T) ~ q2k k = 0, 1, 2, (12) 

For k = 0, (12) reduces to the obvious result 

Q(T) ~ 1. 

Before discussing the usefuless of the inequality (12), an expression 
for the moments will be derived. 

From its definition, (10), q:!k can be expressed as 

q2k = E[z~~} 
where E { .} denotes the expected value of the quantity enclosed m 
braces. Substitution for ZT from (1) results in 

q" = -,fo, E{[ [ ... [ y(t,)y(t,) ... y(t,,) dt, dt, ... dt,,} (13) 

where 

yeti) = sgn fx(tJ] '/, = 1, 2, '" , 2k. 

Interchanging the order of integration and expectation yields 
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where 

R(ll, t2 , ... , t2lJ = E{y(t1)y(t2) ... y(t2k)}. (15) 

vVe now make some remarks concerning the ordering of the family 
of inequalities expressed by (12). 

Denote the first term in the right side of (11) by S:!l., or 

S2k = [11 z7; dG(z7'). (16) 

We next establish that S2.1. > S:U.+2 (k = 0, 1, 2, ... ) which in turn 
establishes 

1 > q2 > q4 ... > Q(T). (17) 

The former inequality follows directly from 

S2k+2 = 1_11 ilk dG(z7') 

~ [11 Z2k dG(z7') 

with equality if, and only if, G(Z7') is of the form 

G(Z7') = Au(z7' + 1) + Bu(z7' - 1). (18) 

Since G(Z7') is continuous at Z7' = ±1, equality is not possible and there
fore 

which, together with (11), establishes (17). vVe next establish the 
readily proven fact that 

EO > 0 (19) 

and therefore, 

lim q2k = Q(T). 
k-->oo 

We begin by choosing an a (ko) > 0 such that 

1
-1+<> (ko) 

-1 Z~ko dG(Z7') < ~ , EO > o. 

This can always be done because G (ZT) is continuous at ZT = -l. 
Using the definition of s~k,(16), obvious symmetry properties, and 
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the fact that 

1

- 1+ a (kO) 1-1+a(kO) 

-1 Z2; dG(Z7') < -1 Z~ko dG(ZT) 

for each k > ko, it follows immediately that 

1
1 11-a(kO) 

lim i; dG(ZT) < € + lim Z2; dG(ZT). 
k-HtJ -1 k-HtJ -1+ a (ko) 

Since the sequence of functions {Z2;}, k = 0, 1, 2, ... is uniformly 
convergent to zero on the interval [-1 + a(ko), 1 - a(ko)], the limit 
and the integral may be interchanged yielding (19). 

In light of (17) and (t'9) , it appears that (12) should be evaluated 
for as large a value of k as possible. For the special case when x(t) 
is a stationary gaussian random process (assumed to be zero-mean 
without loss of generality), it does not seem to be possible to evaluate 
q2k for k > 1 as evidenced by the following discussion. 

As shown by McFadden/ the quantity R(t1 , t2 , ... , tn ), defined 
in (15), is equal to the sum of some simple terms plus a quantity Pn(r), 
which is defined as 

P.(r) ~ (271r·j
, Irl-l 1~ dx, ... 1~ dx. exp [ -~ t; r~ix;x; ] 

where r is a covariance matrix with elements 

rij = 'l'(t i - t j ) = E{x(tJxCtj)}, 
I r I is the determinant of r 
n 

i, j = 1, ... , n 

L r~/xiXj is the quadratic form associated with the inverse of r 
i,; 

and 

i = 1,2, ... , n 

In other lvords, Pn(r) is the probability that the n jointly distributed 
gaussian random variables, x(t i ) (i = 1, ... , n) are all positive. 

As discussed by McFadden,7 and even more thoroughly by Slepian,5 

expressions for Pn(r) have not been obtained in terms of elementary 
functions for n > 3. Because of this fact, it seems unlikely that an 
expression for (14) with k > 1 can be obtained for a general gaussian 
process, x(t). It should be pointed out, however, that an expression 
for q4 has been derived8 for p(T) = exp (-IT /), but without first evaluat
ing P4(r). This result is not included because, for this correlation 
function, Q(T) is known exactly.5 
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III. APPLICATION 'ro GAUSSIAN RANDOl\! PROCESS 

Assume that x (t) ill (1) is a sta tiona!')" zero-mean, ga ui::lsian random 
process, normalized so that p(O) = 1 where peT) = E{x(t)X(t+T)}. 
The relationship (14) will be evaluated for the case k = 1, that is, 
for 

(20) 

where 

(21) 

The latter expression has been evaluated by many authors (see page 
58 of Lawson and Uhlenbeck's hook,!' for example) and the result is 

(22) 

Substituting (22) into (20) and making the obvious simplifications 
in integration results in 

q2 = ! ( (1 - u) sin- 1 [p(Tu)] du, 
7r Jo 

or, in light of (12), 

Q(T) ~ ! ( (1 - u) sin- 1 [p(Tu)] duo 
7r Jo 

(23) 

This result has been obtained by Slepian,!) who states it as Theo
rem 5.* Slepian's proof, however, is long and complicated, as opposed 
to the simplicity of the proof given here. Furthermore, extensions to 
other cases can be obtained using the new method. 

IV. APPLICATION TO SINE WAVE PLUS GAUSSIAN RANDOM PROCESS 

We now turn to applying (12) with k = 1 to the case where 

x(t) = wet) + A cos (27rft + cp) 

where 

(24) 

w (t) is a stationary, zero-mean, gaussian random process with 
normalized correlation function, p (T) , 

'P is a random phase constant uniformly distributed on [0, 271"], 
f is the sine-wave frequency, and 

A is the sine-wave amplitude. 

* Notiee that SIcpian's P[T, r(r)] equals one half of our Q(T). 
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As derived in the next subsection, the result obtained is 

(1('1') ~ q~ 1) + q~'2) 
where 

with 

= ~ l sin
-

1 

p(uT) 'ex {_ A 2 1 - sin 0 cos 27rbU} 
H(uT) 7r 0 P 2 cos2 0 

. I {A 2 sin 0 - cos 27rbU} dO 
o 2 cos2 0 

b = iT 

and Io(x) = modified Bessel function of the first kind, zero order. 
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(25) 

(26) 

(27) 

The expression given below for q~l) is approximate, except for T = kif, 
k = 0, 1, 2, ... where it is exact and consequently the function is most 
accurate in a neighborhood of these points. In addition, the accuracy 
of the approximation improves as A increases. For small A, where the 
approximation is least accurate, (26) dominates q~ll and so very little 
error results in the upper bound, (25) for all values of A. The expression 
for q~l) is given by 

i b

-

n 

(b - n - v)S(v) dv, n ~ b < n + i 

- f.:H (b - n - ! + v)8(v) dv 

+ it (b - n - v)S(v) dv, n + t ~ b < n + ! 

q~ll f".J ~2 X - ib-n-~ (b - n - ! - v)S(v) dv (28) 

+ 2 it (t - v)S(v) dv, n + ! ~ b < n + ! 

f.:l-b (b - n - 1 + v)S(v) dv 

- 10
1 

(b - n - 1 + v)S(v) dv, n + ! ~ b < n + 1 
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where 

G(v) 

and 

n = 0, 1,2, .,. 
e-A '/2 

S(v) = (1 - 4v) - -- G(v) 
7r 

i
1r

-
21rV i21rV 

c-K(v) cos;r dx _ eK(v) COB;r dx 
o 0 

A2 
K(v) = """2 cos 27rv. 

(29) 

(30) 

(31) 

\Vhile (28) appears to be a formidable equation, it turns out to be 
easily computed, partly because S(v) does not depend on b and hence 
needs only to be computed once for each value of A. The expression 
(26), on the other hand, turns out to be time-consuming to compute, 
particularly for large values of b. 

4.1 Derivation of Upper Bound, Given by (25) 

The expression for Q2, (14), with x (t) specified by (24) IS 

1 iT iT q2 = fji2 0 0 R(tl' t2) dt l dt2 (32) 

with R (t1 , t2 ) given by (15). Notice that the expectation in this case 
ranges over the three random variables, w (t1), w (t2) and ip. For con
venience, define 

(33) 

where 

and 

Wi = W(ti) 

a j = A cos (27rft i + cp) i = 1,2. 

The latter expectation is with respect to Wl and W2 only. Writing out 
(34) in terms of the definition of E { . } results in 

(35) 

where'T = t2 - h. 
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Applying Price's theorem/o to this equation results in 

ar(t1 , t2) = 2? 1 exp {_ ai + a; - ~p(r)ala2}. (36) 
ap(r) 71"[1 - p-(r)]2 2[1 - p (r)] 

Integrating (36) and applying the appropriate boundary condition 
yields 

or, 

(37) 

where 

f ( ) 1 l x 

-1/'/2 d 
er x = (271")1 ° e y. 

As a result of the natural separation of (37) into the sum of two 
quantities, define 

q2 = q~ll + q~2) (38) 

where, by substituting (33) and (37) into (32), the terms III (38) 
may be defined as 

q~ll = 2T21T 17' j7r erf (a l ) erf (a2) d<p dt l dt2 (39) 
71" 0 0 -7r 

q
(2) 1 17' 17' j7r l P

('T) 1 
2 = ;?T2 ° 0 _ 7r 0 (i - a?r 

{ 
ai + a; - 2aal a2 } 

. exp - 1 _ a2 da d<p dt l dt2 • (40) 

The detailed steps of simplifying (39) and (40) are relegated to 
Appendices A and B, respectively. In Appendix A we discuss the na
ture of the approximation made in arriving at (28). 

Before applying the results just obtained to specific situations, a 
power series representation for (32) will be given. The series may be 
derived from (39) and (40) by expanding the integrands of these 
functions in their respective Taylor series, evaluating the resulting 
terms and adding the expansions for (39) and (40) together. This 
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procedure results in 

q2 = ; {i 1 

(1 - u) sin -1 p(Tu) du 

+ A211 (1 - u)[cos 2n-fTu - p(Tu)] du + 0(A4)}. 
2 0 VI - p2(U) 

4.2 Numerical Results and Comparisons 

We evaluated the inequality (25) with the aid of a digital computer. 
For the first case considered, per) = e- 1rI , j = 2 Hz, T ranged between 0 
and 3.5 seconds and A, the sine-wave amplitude, was either 1 or 10. 
The results of these computations are plotted in Fig. 1. 

Let us first discuss the A = 10 case. The quantity q~l) (T) exhibits 
a damped oscillatory behavior much like a plot of [sin (7rjT)/(n-jT)]2 
while the quantity q~2) (T) decays toward zero quite smoothly. For 
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Fig. 1 - Upper bound of Q (T) for zero cro~sings of sine wave plus gaussian 
noise. 
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large A, the former term dominates except at its zeros located at T = kif, 
k = 1, 2, .... The values of qz('P) are shown as dotted lines on Fig. 1. 
Since Q(71

) is a monotonically decreasing function, its upper bound 
can be constructed by drawing horizontal lines between the local 
minima of q2(T) and the first intersection of this line with q2(T) to 
the right of the minimum. This accounts for the step-like curve drawn 
in Fig. 1 representing the upper bound for Q(T) with A = 10. 

The curve representing A = 1, while not exhibiting as fast a decay 
as the curve for A = 10, shows some interesting features. As con
trasted to the last case, the q~2) (71) term dominates the q~l) (T) term 
and consequently much of the oscillatory behavior noted earlier has 
disappeared. 

Another interesting observation can be made when the A = 1 curve 
is compared with the A = 0 curve (gaussian noise alone) for which 
Q(T) is known to equal (2/7r) sin- l (e- T) when peT) = e- 1T1

• (See Ref
erence 5.) Notice that for 0 < T < 0.25 the A = 1 curve lies above 
the A = 0 curve while for 0.2.5 < T < 0.75 the reverse is true. 

This result can be explained by recaHing that T = 0.25 represents 
one-half the period of cos (47rt). For intervals shorter than this, the 
sine wave is not likely to cross zero and the effect is to cause fewer 
zero crossings than would be obtained if the sine wave were absent. 
Conversely, for time intervals longer than one-half the period (T = 0.25 
in this case): the sine wave is sure to cross zero and therefore tend to 
increase the number of zero crossings over the noise-alone case. 

As a result of this observation, it seems reasonable to conjecture 
that for T greater than one half the sine-wave period Q(T), for noise 
alone, also forms an upper bound to Q(T) for the sum of a sine wave 
plus noise. 

Additional calculations were made for comparison with Cobb's 
previously reported approximate results. l The quantity that Cobb 
derived is an approximate expression for the probability distribution 
function of zero-crossing intervals, denoted by poeT). Rice gives the 
relationship between Q(T) and PoCT) in Reference 4 as 

Q(T) = 1 - 2vT + 2v .l7' .f' poet) dt dx (41) 

where v = expected number of zero crossings of (24). 
As observed in Fig. 1 and 2 of Reference 1, 

v ,....., f 
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for the large sine-wave amplitudes where Cobb's approximation IS 

valid. Thus, 

Q(T) r--.J 1 - 2fT + i2fT ill P o(s) ds dy. 

Cobb shows in equation 52 of Reference 1 that 

where 

1 [(s - 1)2J 
Po(s) r--.J (27T"0-)f exp - --0-2-

0- = 
[2(1 + Pl)J~ 

7T"A 

PI = p(2fT). 

The approximation (43) is only valid for 0- « 1. 
Substituting (43) into (42), we obtain 

Q(T) r--.J (1 - 2fT) [ 0.5 + erf (1 -0- 21'T) J 

(42) 

(43) 

+ ~T {exp [_1 (~I'P)2J - exp (- ~)}. (44) 
(27T") 2 2 0- 20-

As in Reference 1, set 

per) 
sm r 

r 

A = 3 

27T"f = 0.875 rad/sec. 

(45) 

(46) 

(47) 

Figure 2 compares the approximate solution based on Cobb's re
sults (44), and our upper bound (25). For 2fT < 1, the approximate 
solution is somewhat smaller than the upper bound. For 2fT> 1, the 
approximation becomes negative and therefore of little interest while 
the upper bound gradually approaches zero as T increases. 

V. EXTENSIONS TO OTHER CASES 

The specific applications discussed should not be considered ex
haustive. For example, the case where x(t) is the sum of a sine wave 
plus gaussian noise could easily be extended to x(t) being the sum 
of a square wave plus gaussian noise. Although the specific formulae 
may be more complex, the general result (equations 12 and 14) is 
still applicable for x (t) nonstationary or nongaussian. 
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Fig. 2 - Comparison of upper bound and approximate solution of Q(T) for 
zero crossings of sine wave plus gaussian noise. 

In addition, the derivation of the general result can be modified 
slightly to obtain a useful upper bound on the conditional probability 
that x (t) does not cross the zero axis for an interval of length T, 
given that x (t) = 0 at the start of the interval. Slepian has inten
sively investigated this latter probability. See Reference 5 for his 
discussion. 
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APPENDIX A 

Derivation of q~ 1) 

We seek a simpler expression for the term 

2 iT iT 111" q~1) = -T2 erf (al) erf (a2) dcp dtl dt2 
1f' 0 0 -"I' 

(48) 
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which was first encountered in (39) and where 

a. = A cos (2i1ft, + <p), 2 = 1,2. (49) 

Substitution of the definition of erf (x) results in 

(50) 

where 

The first step is to notice the following three easily established 
properties of (51) : 

P(tl , t2) = P(tl - t2) = P(t2 - t l ) (52) 

per) = P(r + 7) , n = ±1, ±2, (53) 

P(T + !t) ~ -p(lt - T). (54) 

As a result of (52), (50) may be written as 

(1) 2 iT ( ) ( q2 = 7r2T2 0 T - r P r) dr. (55) 

It is a simple matter to demonstrate that, for any function, H (T) , 
satisfying the requirements of (52) through (54), 

1
(i+1)11 

(T - T)H(T) dT = O. 
ill 

(56) 

We next introduce an approximation to (51) that preserves properties 
(52) through (54). It is important to preserve these properties because, 
as a result of (56), if they are satisfied, q~l) = 0 for T = kif, k = 1,2, ... ; 
consequently, an approximation satisfying (52) through (54) will be 
accurate in a vicinity of these values of T. In addition, the three prop
erties permit fast computation of (50). 

The approximation chosen is given by 
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for sgn [ad = sgn [a2J, and 

l
a. la. l 7r/2 l<a"+a .. )t 

o 0 exp [ - !CX2 + y)] dx dy t'J - 0 0 e- r
'/

2r dr dO! (58) 

for sgn [ad = -sgn [a2J. 
Essentially the approximation results in deforming the region of 

integration, as shown in Fig. 3. From this figure, it may be noticed that 
(57) is in reality an upper bound while (58) is a lower bound. Of course, 
it is easy to conceive of functions that give an upper bound to (58) 
and thus result in an upper bound for q;ll. However, this results in a 
loss of properties (52) through (54). 

Evaluating the integrals appearing in (57) and (58) and then sub
stituting into (51) yields 

P(tl , t2 ) = ~ i: peep, tl , t2 )[1 - e-!(a"+a .. )] dep (59) 

where 

(60) 

and 

p(tl , t2) t'J P(tt , t2)' 

Proving that (59) possesses the properties (52) through (54) only 
requires the use of elementary integration theory and will therefore 
be omitted. As a result of these properties, (59) may be written as 

p( r) = ~ j7r p(B, r) {I _ e-(A'/2) [CDS' S+ CDS' (",,.+8»)} dB (61) 
2 -7r 

where w = 27rf 

p(B, r) = sgn [cos B cos (wr + B)]; 

REGION OF INTEGRATION 
_____ ~---- FOR APPROXIMATION -...... a1 ~, 

, REQUIRED REGION 
~.-\----- OF INTEGRATION 

\ 
\ 

o 
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\ 

\ 

(62) 

Fig. 3 - Deformation of region of integration for approximation in Appendix A. 



544 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968 

furthermore, PCr) need only be evaluated for the range 0 < r < I/C4f). 
Values beyond this range are related to values within the range by 
(52) through (54). To evaluate (61), an explicit expression for (62) is 
required. After studying this latter equation one finds that for 

o < r < 1/2/ 

1 for 
7r 37r -< e ~ 2 - wr 2 

-1 for 
7r 
- - wr < 
2 

e <?!: 
=2 

-1 for 
7r 7r 

- 2" - wr < e ~ 2 

with similar expressions for r falling in the ranges 

~< <k+l 
21 = r = 2/ ' k = 1,2, ... 

However, only the expression given by (63) is needed to evaluate 
(61) in the required range. 

Substitution of (63) into (61) results in 

[j( "./2) - WT 1(3 "./2) - WT 

Per) = ?!:2 F(r, 0) de + F(r, e) dO 
-".n ".n 

_j-"./2 F(r, e) de _ j' "./2 F(r, e) de] (64) 
- ( ". /2) - W T ( ". /2) - W T 

where 

F(r, e) = 1 _ e-(A'/2) [cos' 0+ cos' (WT+O) I. 

With the help of some fundamental trigonometric identities it is easy 
to show that 

F( e) 1 -A"/2 -K(T) cos (wT+20) r, = - e e (65) 

where 

A2 
K(r) = "2 cos wr. (66) 
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Substituting (65) into (64) and performing obvious simplifications 
results in 

where 

1
7r

-

WT lwT G(T) = a e-K(T) CO.X dx - a eK(T) Co.X dx. 

For the time being assume n ~ fT < n + i where n = 0, 1,2, 
Substituting (67) into (55) gives 

q~l) "-J :21T (T - T)S( T) dT 

where 

e-A ' /2 

SeT) = 1 - 4fT - -- G(T). 
7r 

Using the result (56), the latter equation equals 

q~l) "-J T221T (T - T)S(T) dT. 
nil 

Setting t = T - nlf, 

q;ll ~ fa {-,nIl) (T - T - t)S(t + '}) dt 

= fz l T

-(nlf) (T - J - t)S(t) dt 

as a result of property (53). Now substitute t = v If to obtain 

21b
-

n 

q~l) "-J b2 a (b - n - v)S(v) dv for n ~ b < n + i 
where b = fT. 

(67) 

(68) 

(69) 

(70) 

This equation is the same as the first part of the final result stated 
in (28). The equations defined in (69), (68), and (66) are the same 
as (29), and (30), and (31), respectively, except for a convenient 
scale change. The rest of the results stated in (28), for various 
ranges of T, are derived in a similar manner as (70) was, using rela
tions (52), (53), or (54), as required. Because only straightforward 
operations are used to obtain these results, they will not be de'rived. 
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APPENDIX B 

Derivation of q~2) 

The first step in simplifying the expression for q~2), as defined in (40), 
is to interchange the order of integration of the two innermost integrals 
to yield 

(71) 

where 

(72) 

Using the definitions of al and a2, (34), and some obvious trigono
metric identities, it is easy to show that 

= A2{COS [w(t l + t2) + 2cp][a - cos (WT)] + [1 - a cos (WT)]} 

where we have set W = 2nf for convenience. 
Substitution of this relationship into (72) results in 

B(a, tl , t2) = exp [ - J l (a, T)] 

. ["" exp {- J 2(a, T) cos [w(t l + t2) + 2cp]} dcp (73) 

where 

J ( ) = A 2 [1 - a cos (w T)] 
1 a, T 2 1 _ a 2 (74) 

J ( ) = A 2 [a - COS (WT)]. 
2 a, T 2 1 _ a 2 (75) 

Setting 8 = w(t l + t2 ) + 2cp in (73) and using the periodic properties 
of the integrand, yields 

B(a, T) = 2 exp [-Jl(a, T)] fa" exp [-J2(a, T) cos e] de. 

This integral is recognized as an expression for the modified Bessel 
function of the first kind (see Reference 11, page 181, Equation 4). 
And so 

(76) 
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where 10 (x) IS the modified Bessel function of the first kind, zero 
order. 

Since (76) is only a function of r, one may define 

21P
(T) 1 

H(r) = - _ / 2 B(a, r) da. 
7r 0 vI-a 

(77) 

Furthermore, it is easy to show that H (r) = H ( -r). Consequently, 
(71) can be written as 

q?) = 2 10
1 

(1 - u)H(uT) duo 

By setting r = uT in (77) and by making the change of variable a 
= sin 0, (26) and (27), which are the desired results, follow. 
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Adaptive Redundancy Removal in 
Data Transmission 

By R. W. LUCKY 

This paper suggests an adaptive filter, similar to that used in automatic 
equalization, for use as a predictor in data compression systems. It dis
cusses some of the applications of this adaptive predictor in digital data 
transmission. In the event of redundant data input to the system the pre
dictor could be used to lower the transmitted power output required for a 
given error rate or to decrease the error rate while maintaining constant 
transmitted power. The action of these redundancy-removal and restoration 
systems is analyzed in simple cases involving Markov inputs. 

1. INTRODUCTION 

In the design, analysis, and testing of data transmission systems it 
is invariably assumed that the input digits are identically distributed, 
independent random variables. However, in many actual systems the 
input digits may arise from a physical source which imposes signifi
cant correlations in the data train. In these cases we know that the 
entropy of the source is less than when independent digits are pre
sented. Accordingly, we should be able to use the redundancy in the 
input message to provide, in some sense, more efficient transmission. 
For example, we could imagine the redundancy being used to de
crease bandwidth, to increase speed, to lower probability of error, or 
to lower average signal power. 

Redundancy removal in analog transmission systems was investigated 
in the early 1950's by Oliver, Kretzmer, Harrison, and Eliasl

-
4

• Each 
of these papers relied on the theory of linear prediction as developed 
by Wiener in the early 1940's.5 Figure 1 shows the basic idea. It is 
assumed that the input samples are taken from a stationary time series 
{xn }. These samples are passed through a linear filter whose output 
xn at time tn forms a linear prediction of the sample Xn based on all 
preceding samples. The prediction xn is subtracted from the actual 
sample Xn and only the error en is passed on for further processing and 

549 
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TRANSMITTER 

Fig. 1 - Predictive system. 

transmission. Since the portion {xn} "removed" from the input sequence 
is a deterministic function of the error sequence, no information has 
been lost and the original sequence can be reconstructed at the receiver 
by the feedback loop shown in the figure. 

The philosophy of predictive systems has been widely studied for 
its application in bandwidth compression of telemetry data and of 
television; for example, see Kortman, Davisson, and O'Neal.G

-
8 In these 

examples the error samples ek are quantized and transmitted by pcm. 
Because of redundancy, that is, predictability, in the source data, 
fewer digits per sample (and consequently less bandwidth) are re
quired for transmitting the error samples than for transmitting the 
original samples for a given fidelity of reconstruction. 

One of the difficulties with these data compression systems is in 
determining the predictor filter. Although the theory of linear predic
tion for stationary time series is well known, the practical determina
tion of the statistical properties of the input data and the realization 
of the corresponding optimum filter are nearly impossible. Generally, 
an approximate average statistical description is used for the input 
data and a considerably simplified version of the optimum filter is 
constructed. Most existing compression schemes appear to use only 
linear or zero-order extrapolation of the previous sample to form the 
prediction of the succeeding sample. More complicated and adaptive 
prediction techniques have been confined to computer-processed data. 

In this paper we describe a simply-instrumented adaptive filter for 
use as a predictor. This filter uses a finite tapped delay line whose 
coefficients are continually adjusted to provide a least squares predic
tion of incoming data. The coefficient settings are based on the sta-
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tistics of a finite section of the past data (the learning period). As 
the statistics of the data during this learning period change, the 
coefficients are changed to provide an updated version of the predictor 
filter. 

Although the most obvious applications of this adaptive predictor 
would be in the transmission of television or some other very redun
dant analog signal, we choose here to explore its application in digital 
data transmission. In the past, little attention seems to have been 
focused on the use of prediction in digital transmission. Presumably 
this is because the most effective use of prediction would be in the 
compression of the analog wave from which the digits are taken. 

However, there do exist situations in which the input digital signal 
is not under the control of the transmission systems designer. This 
occurs notably in the design of data communications equipment. 
Although it has been common practice to use redundancy in speech 
signals to ease transmission system requirements (the T ASI system 
is a dramatic example), nothing similar has been attempted with 
digital data signals. There would seem to be no compelling reason 
why any redundancy in digital signals should not be taken advantage 
of, as long as the error statistics of the output data were not ad
versely affected by the procedure. After describing a digital redund
ancy removal and restoration system we shall discuss its possible 
benefits to the customer and to the transmission plant. 

II. SYSTEM DESCRIPTION 

Figure 2 shows a digital redundancy removal and restoration scheme. 
For simplicity we assume that the input digits an are binary, although 
the technique obviously extends to multilevel transmission. The input 
sequence is passed through a shift-register transversal filter whose tap 
gains Ck have been adjusted so that the filter output an, where 

N 

an = L Ckan-k , 
k=l 

(1) 

is a linear least squares prediction of an . This prediction is subtracted 
from the actual sample an and only the difference en is passed to the 
modulator for transmission. Notice that, although an is a binary variable 
taking on the values ±1, both an and en are analog. Unless the digits 
an are uncorrelated, the error samples en will have smaller variance than 
the unit variance of the input data. Consequently, a linear modulator 
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TRANSMITTER 

RECEIVER 

Fig. 2 - Digital redundancy removal and restoration. 

LINEAR 
MODULATION 

SYSTEM 

will put out less line power in transmitting the error samples than in 
transmitting the original data. 

After demodulation at the receiver, the missing, predictable, com
ponent an must be added to the error sample en before slicing, in order 
to recover an . This component is obtained by a bootstrap arrangement 
wherein the detected symbols are passed through a transversal filter 
identical to that at the transmitter in order to form the predictions an . 
The receiver is similar in arrangement to the circuitry used in dc restora
tion. 

There are two relatively simple ways in which this system could 
be used to improve transmission efficiency. As shown in Figure 2 the 
system lowers the average transmitted power without appreciably 
affecting the output data error rate. In this mode of operation any 
benefit from the data redundancy is used to lower the load require
ments on the transmission plant. If many data sets were equipped 
with such circuitry, the average power handled by the plant would 
be lowered in a statistical fashion. Some sets, transmitting entirely 
random data, would require their normal power complement. Others, 
transmitting redundant data, would require considerably less. Notice 
that this is exactly the type of effect which now takes place for voice 
transmission. 

As the input data becomes entirely redundant in the limit, the 
transmitted power goes to zero. In this case the input data consists 
of a periodic pattern. In spite of the zero-level line signal, the pat-
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tern is reconstructed exactly at the receiver (in the absence of noise). 
Such an eventuality would alleviate the problems now encountered 
with the transmission of periodic data. These data patterns normally 
lead to tones, that is, line spectra, in the transmission channel which 
cause certain overloading and other system malfunctions. 

Currently the problem is being treated in wideband transmission 
by the introduction of digital scramblers.9 In practice the zero
level transmitted signal would not be a satisfactory solution to the 
tone problem since some signal strength would be required for syn
chronizing and timing maintenance. However, proper design of the 
system could ensure that some minimum signal strength was main
tained under all circumstances. For example, a nonlinear element in 
each predictor could be used to keep the predictions smaller than 
unity. As long as the same nonlinearity were used in both transmitter 
and receiver, the data signal would be reconstructed perfectly at the 
receiver. 

The other simple way to use redundancy removal to aid transmis
sion would be to keep the level of transmitted power constant while 
lowering the probability of error. In this case, compensating gain 
controls would be placed at the transmitter output and at the re
ceiver input. These controls would be adjusted to keep the transmitted 
power constant regardless of signal redundancy. During periods of 
redundancy most of the voltage presented to the slicer at the receiver 
would come via the feedback predictor and therefore would be noise
less (in the absence of errors). Since the small error signal transmitted 
would be greatly amplified to keep line power constant, the total noise 
presented to the slicer after complementary deamplification would be 
much smaller than in normal transmission. Consequently, the error 
rate would be diminished during periods of redundant data trans
mission. 

Complementary amplification and deamplification surrounding chan
nel noise introduction are automatically accomplished in transmission 
over compandored facilities. Normally for these channels we would 
expect that the error rate would be independent of transmitted power 
level. In the redundancy removal system, however, this mechanism 
is defeated by using the noiseless feedback in the detection process. 

There are further uses of redundancy removal in data transmission, 
but they appear to involve more complicated system arrangements. 
For example, the bit rate and bandwidth of the data signal could be 
lowered for redundant data. This could be accomplished by slicing 
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the prediction an to obtain a closest digital prediction and then sub
tracting an from an in digital form. The resulting error digits could 
then be processed by run-length encoding to achieve message com
pression. Of course we would then need a buffer to ensure a constant 
channel bit rate. We will not discuss this type of system further here. 

Thus far we have alluded to the possible benefits of redundancy 
removal in data transmission. There is also one major drawback
that of error propagation. Since the estimate an at the receiver de
pends on the correct reception of all previous data, the compensation 
at the receiver is perfect only in the absence of errors. When an error 
occurs, the probability of error in succeeding bits tends to be larger 
and an error propagating effect occurs. Notice that this effect does 
not depend on the particular circuit configuration for its existence, 
but is a philosophical necessity in any redundancy removal operation. 
We analyze the effect of error propagation in a simple example in 
Section V. Normally we would not expect the error propagation to 
increase the entire error rate by more than a small algebraic factor. 

III. THE ADAPTIVE PREDICTION FILTER 

In the theory of linear prediction developed by Wiener5 and others 
it is assumed that the input samples an are taken from a stationary 
time series with known covariance function R (n), where 

(2) 

The power output, which is the mean square prediction error, is 

(3) 

The coefficients Ck; k = 1, ... N, which minimize this prediction 
error, can be obtained by the solution of the N simultaneous equations 

N 

L: ckR(n - k) = R(n); n = 1,2, ... ,N. (4) 
k=l 

In case of an infinite filter (N = 00) the coefficients Ck and the 
prediction error are given by a method involving factoring of the 
spectral density G (f) of the input process. Under proper conditions 
the prediction error P can be expressed in the form 

p ~ exp [t, log Gct) dtJ 
2 

(5) 
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(See Doob for the mathematical niceties of this result.10
) Notice that 

if the input symbols are independent, G (f) = 1, I f I ~ 112, and 
P = 1. Since the input power is also unity no gain is achieved by 
the prediction process. If, on the other hand, G (f) is not flat the pre
diction error, P is less than unity and power is saved. 

\Vhile the mathematics of linear prediction for stationary time 
series serve as a guide to actual system performance, it is clear that 
the assumptions are philosophically inadmissible. Furthermore, since 
the data source is outside the designer's control, it would be extremely 
unlikely that the covariance function would be known in advance. 
For these reasons, Balakrishnanll in 1961 developed a mathematical 
formulation for a learning or adaptive predictor wherein the form of 
the prediction operator was dependent solely on the past data and 
not on any assumptions of stationarity or of prior knowledge of data 
statistics. 

In Balakrishnan's formulation that prediction operator is chosen 
as optimum at time tn which works best when applied at times 
tn-I, ... , tn-L . Since all past information is available, we could "try 
out" all possible prediction operators on the previous data and select 
the operator for which 

L 

En = I: [an-i - an_i]2Wi 
i=1 

(6) 

is mInImum. The weights Wj could be used to assign a relative im
portance to each past trial of the predictor. 

For our finite linear predictor we have 

L [ N J2 
En = I: an-i - I: Ckan-i-k Wj. 

i=1 k=l 

(7) 

In order to develop a physical implementation for this adaptive filter 
we use a motivation based on a steepest descent approach. The deriv
atives of the error En with respect to the coefficients Cm are 

L 

I: 2w jen- j an-i-m • 
j=l 

(8) 

(9) 

Notice that these derivatives can be obtained by passing the product 
of sample an-m and the error voltage en through a filter with impulse 
response {Wj}. Thus we are led to the adaptive filter configuration 
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shown in Figure 3. This configuration is entirely similar to that cur
rently being used for equalization12 and for echo suppression.13,14 

When the input samples an are digital, the circuitry of Figure 3 is 
quite simple. The delay line becomes a shift register and the multi
pliers become simple polarity switches. However, the circuit is not 
limited to digital applications, but could be used in such analog 
functions as telemetry or television compression systems. 

In any event, the response of the system, involving accuracy and 
settling time as well as stability, is controlled by selection of the 
smoothing filters W (,w). Basically these filters must perform an a ver
aging followed by an integration. If the data were stationary and 
the memory L sufficiently long, the result of averaging the product 
of the error and sample voltages for the mth tap coefficient would 
give (see equation 8) 

N 

L: ck(t)R(m - k). (10) 
k=l 

Then these voltages would be integrated for use as tap coefficients, 
so that the governing system equations would be 

emU) = A[R(m) - :£ ck(t)R(m - k)] for m = 1, ... ,N. (11) 
k=l 

This system would be stable for all A, since the covariance matrix, 
whose nmth entry is R (n-m) , must be positive definite (see Davenport 
and Root15). All voltages Ym (t) would be asymptotically reduced to 

Fig. 3 - Adaptive prediction filter. 
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zero and the filter coefficients would asymptotically approach those 
of the optimum (least squares) linear predictor of equation (4). 

For nonstationary data and realistic filters W (w) the analysis of 
the nonlinear, multidimensional control system is extremely compli
cated. Let us study the dynamics of the one-dimensional system 
formed by using a one-tap predictor as a guide to the behavior of 
the system. 

In order to put this analysis into proper perspective with regard 
to the system of Figure 2 we should observe that when the input data 
statistics change abruptly, both transmitter and receiver predictors 
undergo the same transients. If the predictors are identical, these 
transients cancel exactly at the receiver summer and no loss in noise 
margin is suffered. However, the statistics of the transmitted signal 
are affected by only the transmitter predictor. Therefore, the proper 
design of the adaptive predictor is crucial to obtaining desirable line 
power statistics, but not to the performance of the entire system. 

IV. THE ONE-TAP TRANSMITTER FOR BINARY DATA 

Figure 4 shows a one-tap transmitter with a binary input signal 
of the form 

00 

set) = L anr(t - nT) 
n=O 

an = ±1 

{
I O~t<T 

ret) = 0 
elsewhere 

The transmitted voltage is given by 

e(t) = set) - e(t)s(t - T) 

where 

e(t) = Aw(t)*[s(t - T)e(t)]. 

Because of the binary nature of the input 8 2 (t) = 1 and thus 

e(t) = Aw(t)*[s(t)8(t - T) - e(t)]. 

(12) 

(13) 

(14) 

(15) 

Let m (t) 
0(8) is'* 

8 (t) s (t-T); then the Laplace transform solution for 

* Some liberty has been taken with the shift-register starting state. 
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SR SR 

Fig. 4 - One-tap digital system. 

C() = A W(s)M(s) . 
s 1 + AlV(s) 

(16) 

Now returning to equation (13) we multiply both sides by s (t-T) 
to obtain 

e(t)s(t - T) = met) - e(t). (17) 

Combining equations (16) and (17) gives 

e(t)s(t - T) = rn(t)*h(t) (18) 

where 

1 
H(s) = 1 + A lV(s) (19) 

The output signal itself can be written by again multiplying equation 
(18) by s (t-T) 

eel) = set - T)[rn(t)*h(t)]. (20) 

Notice that the special properties of binary sequences have been used 
in arriving at this solution, so that equation (20) does not hold for 
multilevel or analog input. 

Figure 5 (a) shows the mathematically equivalent transmitter 
given by equation (20) as well as its corresponding receiver. Since 
the second multiplier does not affect the transmitted power in any 
way, both transmitter and receiver can be simplified by its removal 
to result in the equivalent represented by Figure 5 (b) . f:. This final 

* The systems differ in their noise performance, however. 
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equivalent system is amazingly simple and appears to bear little 
resemblance to the initial system of Figure 4. It is interesting to 
observe that, while the initial system was termed "adaptive," no 
one would seriously consider its equivalent in Figure 5 (b) as being 
adaptive in any sense. 

Figure 5 (b) has an intriguing interpretation. The input data is 
first subjected to the nonlinear operation of delay and multiplication. 
The output of the multiplier is 

(21) 

This voltage has a mean value given by R (1) in the stationary case. 
If the filter W (w) has been designed as a low pass filter, then the 
filter 1/[1 + AvV(w)] in the equivalent circuit is a high pass filter. 
Thus the dc component of met) is removed before transmission and 
reinserted via a dc restorer at the receiver. In other words, a nonlinear 
operation on the input signal has converted the correlation into a 
spectral line which can then be removed by a time invariant linear 
filter. It would seem that some generalization of this concept should 
be possible, but as yet none has been found. 

The equivalent circuit can be used for design purposes in selecting 

Fig. 5 - Equivalent binary one-tap systems. (a) Equivalent system. (b) 
Simplified equivalent. 
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W (w), or for calculating line power or transient response. Here are 
the results of a few straightforward examples. 

Example 1 

Simple RC filter, dotting pattern input applied at time zero: 

W(S) 
a 1 --_. 

a = RC S + a' 

a. = f+l, n even (22) 
.. -I, n odd 

A deterministic sequence is to be transmitted. We find that the output 
of the equivalent circuit is 

e(t)s(t - T) = - [A ~ 1 u(t) + A ! 1 e-a(A"'} (23) 

Thus the error voltage transmitted in the original circuit becomes 

e(t) = [f (-Ifr(t - nT)J[_I- u(t) + _A_ e- a 
(A+l) tJ. (24) 

n=O A + 1 A + 1 

The error voltage does not approach zero because of the lack of an 
integration in the smoothing filter. 

Example 2 

Simple RC filter, markov input: 

If the input is a first order Markov process the one-tap predictor 
becomes the optimum linear predictor. (We study this case more thor
oughly in the next section.) The covariance function of the input time 
series is taken to be 

R(n) = Rlnl. (25) 

Since we now are dealing with a random input, our concern is with 
the transmitted power level rather than the exact waveform as in 
the previous example. The transmitted power is the same in Figures 
4 and 5b, so we use the simpler structure of the latter diagram for 
analysis. 

When the input Markov process is subjected to delay and multipli
cation, it can be shown that the resultant symbols (anan-l) have 
mean value R and are uncorrelated. The spectral density of the 
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multiplier output met) is given by 

• 2 w'P 
Sill -

S M(W) ~ R' {jew) + (1 - R')T (wD~ . 

561 

(26) 

This spectral density can be multiplied by 1 H(w) 12 and integrated to 
give the transmitted power. The power becomes 

R2 2 

P = (1 + A)2 + (1 - R ) 

{ I [ 1 J[l - e- a (l+A) TJ} 
. (1 + A)2 + 1 - (1 + A)2 a(l + A)T . (27) 

Ideally, of course, this power should be (1-R2), but the crude RC 
filter is unable to approximate this result unless the gain is high 
and the time constant (l/a) is large. 

Better results in both examples could be achieved by an improved 
selection of the filter characteristic W (w) . We can see from the 
equivalent circuit that the best choice of W (w) makes 1/ [1 + A W (w) ] 
an efficient high pass filter with a transmission zero at w =, O. Of 
course this must be compromised with any requirement on the filter 
response time. 

In this section we stress the use of the equivalent circuit as a 
method of analysis rather than as an implementable system. Clearly, 
if one were to build a one-tap binary predictor, the circuit of Figure 
5 (b) would be preferred to that of the original system. However we 
believe that such a restricted system would not be of great practical 
interest. 

While the implementation of the simple equivalent circuit cannot 
be extended to wider application, it is hoped that the easy analysis 
of the simple system conveys some insight into the performance of 
multiloop systems. This would be particularly true if there were 
small interaction between taps on the multi loop system. Such a 
situation would occur if the covariance R (n) decreased rapidly with n. 

V. ERROR PROPAGATION 

When noise is added in the transmission channel there is some 
probability of the received digits being incorrectly detected by the 
slicer. Even though the transmitted power might have been substan-
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tially reduced by the redundancy removal, the probability of an 
initial error is identical to that of a full power system. Once an error 
has been made, however, the probability of making subsequent errors 
is increased because of the incorrect symbol being used in redundancy 
restoration. Thus, errors tend to bunch together in the received data. 
Besides increasing the average probability of error this error propaga
tion considerably complicates the problems of error control in the 
entire system. 

Error propagation in dc restoration circuits has been examined by 
Zador, Aaron, and Simon.1G• 17 It appears to be a very complicated 
problem, in general, which is even more confused by the presence of 
the adaptive, pattern sensitive filters in the redundancy removal 
system we are considering here. Therefore, we shall attempt the 
analysis of only the simplest meaningful theoretical model. Both 
transmitter and receiver will have one-tap transversal filters as shown 
in Figure 4. The input data is taken to be a binary first order Markov 
process, with zero mean and covariance 

R(n) = Rlnl. 

The transition matrix for this process is: 

+1 -1 

+1 
l+R 1-R 

2 2 
an 

-1 1-R l+R 
2 2 

The ideal linear predictor for this time series is simply an =, Ran-l 
and the average transmitted power using this predictor is 1 - R2. 
Since the ideal predictor uses only a single tap filter, the assumption 
of single tap filters in the actual system is not particularly restrictive. 
If additional taps were used, their gains would be small and their 
effect on error propagation would not be significant. 

We will assume that noise samples ~k, uncorrelated Gaussian 
random variables with zero mean and variance (T2, are added to the 
transmitted symbols in the channel. We further assume that suf
ficient smoothing is done at the transmitter so that the tap gain may 
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be fixed at its optimum value, R. Thus the transmitted samples are 

(28) 

Now at the receiver we shall write the received symbols as f3kak. The 
parameter 13k = ±1 indicates the absence (+1) or the presence (-1) 
of an error at time t k • If the tap gain at the receiver is denoted by 
the parameter c, the detected symbols can be written 

{3kak = sgn [ak - ak-l (R - C{3k-l) + h]. (29) 

Thus the error parameter 13k is 

(30) 

where Y}l~ = ~kak has the same statistical properties as ~k' The proba
bility of error at time tk is the probability that f31~ = -1, which is the 
probability that Y}k is such that the term in brackets is negative. 

Now we must turn our attention to the behavior of the receiver tap 
gain c. If no errors are made, then this gain is identical to the trans
mitter gain and as k ~ 00, C -7 R. However, because of the presence 
of errors, the receiver tap gain tends to be different from the trans
mitter tap gain. At time tk the output voltage of the multiplier at 
the receiver is 

(31) 

The random variables Vk are averaged to determine the movement of 
c. Notice that, since I f3kakf3k-lak-l I = 1, the magnitude of c cannot 
exceed unity except as a transient starting state. This eliminates any 
possibility of a runaway in c resulting from unusual error patterns. 

We assume that the action of the loop at the receiver is to reduce 
to zero the expectation of the multiplier output voltage at time 
infinity. Thus 

E[vooJ = 0 = lim E[{3kak{3k-lak-d - Coo • (32) 
k-+oo 

This type of final behavior would be exhibited by systems in which 
W(w) consisted of a long term averaging followed by an integration. 
The expectation of the term in brackets in equation (32) depends on 
Coo itself, so in general we end with a fairly complicated equation requiring 
a trial and error solution for Coo • By taking the limit as k ~ ex> of the 
expectation we eliminate the dependence on time and on the initial 
probability distributions for the random variables involved. 

Define a vector random variable CXk = (ak' 13k) taking on the four 
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possible states (+1, +1), (+1, -1), (-1, +1) and (-1, -1), denoted 
by states 1 through 4, respectively. Because ak is lVIarkov and since the 
expression for 13k in equation (30) involves only ak, ak-l, {3k-t, and 
'lJk, we conclude that 0: is also Markov. The four-by-four transition 
matrix 7r for 0: has entries PH which may be calculated from the original 
transition matrix for the input symbols ak and from equation (30) for 
the probabilities of error in various states. Table I lists these transition 
probabilities. If the 4-entry row vector 'I1)(k) gives the probabilities of 
O:k assuming each of the four possible states, then 

(33) 

In terms of the initial state distribution '11)(0) 

(34) 

For I R I < 1 it is clear from standard lVlarkov chain theory (see, 
for example, Reference 18) that steady-state probabilities exist for 

TABLE I-TRANSITION PROBABILITIES FOR O:k = (ak' 13k) 

Q(x) = 100 

e_-:'/
2 

dy 
x v 27r 
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the transition matrix 7r, that is, wen) approaches a constant vector w as 
n --7 00 independent of w(O). The steady-state probabilities of the four 
possible states can be obtained by the solution of the equations given by 

W7r = w. 
Some algebraic manipulation yields the probabilities 

W 2 = P(aCI".J = +1, f3CI".J = -1) 

W3 = P(aCI".J = -1, f300 = +1) 

1 - P22 + P12 - P24 + P14 

(35) 

(36) 

(37) 

(38) 

W4 = P(aoo = -1, f300 = -1) = ! - WI (39) 

where the transition probabilities P'12, P14, P22, and P24 are given in 
Table I as functions of c, R, and u. 

The expected value of the multiplier output at time infinity can 
now be written in terms of the steady-state probabilities Wi and the 
transition probabilities Pij. 

E[vCl".JJ = w1[Pu - P12 - Pl3 + P14J + W2[P22 + P23 - P21 - P24J 

+ W3[P32 + P33 - P31 - P34J + W4[P41 + P44 - P42 - P43J - c. (40) 

Again some algebraic manipulation yields the result 

E[vCl".JJ R[I-PI4 -P24 -P22 -P12J+2[PI4 -PI2J+4[P22PI2 -P24P14J c. (41) 
I-P22+PI2-P24+P14 

The value of the tap gain at time infinity can be found by trial and 
error. A value of c is assumed, the transition probabilities are computed 
and E[vooJ is found. The value of c for which E[vCl".JJ = ° is CCI".J • Notice that 
under suitable assumptions E[vCl".Jl gives the rate of change of the coef
ficient c in the dynamic action of the system. 

The probability of error after the system has settled is simply the 
probability that CXoo is in a state where f300 = -1, which is simply (W2 + 
104) . 

P P12 + P14 
e = 1 + + - P22 P12 - P24 P14 

(42) 

The transition probabilities here must be computed using coo. 
Expressions (41) and (42) have been written in terms of only 

those transition probabilities which involve errors. Thus, as u ~ 0, 
each of the transition probabilities in (41) and (42) approaches zer0 1 
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c'X) ~ R, and P e ~ O. Each of these probabilities can be visualized 
as the probability that the noise (zero mean, variance (]"2) is greater 
than the one of these four thresholds: 

(multiPly by 1 -; R) ( 1 - R) multiply by -2-

[~r' 
PH P21 

~~j 
0 l-R 1 l+R 

Thus P24 is the smallest transition probability, while P2:!. is the largest. 
If the transition probabilities are small, it can be seen from equa

tion (42) that P e is principally determined by (PI2 + Pl4), which is 
minimized by c = R. Also we notice frQm equation (42) that the tap 
gain c approaches R very closely for small transition probabilities. 
In general, however, c = R ,yill not be the best setting to minimize 
the error probability in equation (42), nor is it the setting to which 
the loop settles. Unfortunately it appears that these are not compensat
ing offsets. For example, in Figure 6 we have plotted P e and E [v oo ] 

against c, for a case in which R = 0.4 and (]" = 0.4. Although neither 
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Fig. 6 - Probability of error and E[ vco] vs receiver tap gain c. 

Pe 



REDUNDANCY REMOVAL 567 

effect is very significant, it can be seen that the system settles (E [voo] 
= 0) for a value of c somewhat smaller than R, while the minimum 
error probability is obtained at a value of c somewhat larger than R. 

In all but the most severe noise conditions the approximation of 
Coo = R would be satisfactory and we would have 

1 - (t t R)Q(t -(T 2R) - (t ; R)Q(t +(T 2R) + Q(~) . 
(43) 

But Q (1/ (T) is the probability of error in the original system (no 
redundancy removal). If this probability, called Peo , is small, then 
Q (1 + 2R / (T) is much smaller and we have the very good a pproxi-
mation 

(44) 

The factor in the denominator gives the amplification of the original 
error rate due to error propagation. Finally if R > 1/2, then Q (1 -
2R / (]') approaches unity and we get the severe dependence upon R 

p I 2PeO 
e P oo small ~ 1 - R' 

R>! 
(45) 

The most significant aspect of the error propagation behavior of 
the circuit is that the redundancy removal and restoration system 
has impressed the statistics of the input data (Markov here) upon 
the error statistics of the output. It is clear that this philosophy 
would hold in general. In the case of highly correlated input we would 
end with highly correlated errors. The problems of error control could 
be made quite severe in this manner. 

VI. EXPERIMENTAL RESULTS 

A three-tap, adaptive transmitter and a similar receiver were de
signed and constructed by V. G. Koll. The system was designed for 
binary data transmission so that the multipliers in Figure 3 became 
polarity switches, while the delay line took the form of a shift register. 
The filters W (8) consisted of simple RC low pass sections followed 
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by integrators, that is, 

TV(s) = S(S ~ ex) . (46) 

With this choice of smoothing, the steady-state error for a periodic 
input (period 3 or less here) was zero. It was in fact observed that 
during the transmission of periodic data the transmitter could be 
disconnected with no effect on the received data pattern. 

The input data for the system was obtained by passing white Gaus
sian noise through a variable cutoff, low pass filter. If we assume an 
ideal low pass filter, with cutoff frequency W Hz, then the autocor
relation function of the filter output is 

(47) 

This voltage is then sampled at rate (l/T) and subjected to infinite 
clipping so as to produce the correlated input bits. Van Vleck and 
Middleton19 show that the resulting autocorrelation is 

R( ) = ~ . -1 [sin 27mWTJ. 
n 7r sm 27m TVT (48) 

For a filter cutoff of 1/2T Hz the data is uncorrelated. By decreasing 
the filter cutoff frequency the redundancy in the data can be increased. 

The action of the adaptive redundancy remover is shown in Figure 
7 for two different values of filter cutoff. Notice that as the redundancy 
is increased the transmitted waveform has longer periods of near zero 
voltage where predictability is good and occasional peaks where the 
predictor is "surprised." Except for a few minor discontinuities the 
reconstructed signal before slicing at the receiver is the same as the 
original input waveform at the transmitter. The relative power saving 
as a function of filter cutoff is shown in Figure 8. 

In order to predict system performance in Gaussian noise we make 
the crude approximation that the input process is Markov with R (1) 
as given in equation (48). According to this approximation the trans
mitted power should be 1 - R (1) 2. This value is also shown in Figure 
8 in comparison with the actual measured power output. Since the 
exact correlation function is known, the theoretical signal power output 
could be computed precisely through equation (4). However, we have 
no corresponding means of computing the degree of error propagation 
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Fig. 7 - Transmitted and reconstructed signals. (a) Filter cutoff wT = 0.4 
[little redundancy, R (1) = 0.15], (b) Filter cutoff wT = 0.1 [moderate redun
dancy, R (1) = 0.77]. 
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for the non-Markov source. The approximate curve of signal power 
in Figure 8 is shown only as a way of evaluating the Markov ap
proximation for later use in predicting error propagation values. 

Bandlimited white Gaussian noise was added to the transmitted 
signal, and error rates were experimentally determined by V. G. Koll 
at a number of filter cutoff (redundancy) positions. The results of 
these tests are shown in Figure 9 in curves of probability of errol' 
versus signal-to-noise ratio. Beside these measured curves have been 
plotted theoretically computed curves which are based on the Markov 
approximation and on the use of equation (43) for Pc. 

Although all necessary information for performance determination 
is contained in Figure 9, it is instructive to plot two additional curves 
of probability of error versus filter cutoff. These curves are shown 
in Figure 10. In one curve the transmitter and receiver gains are held 
constant so that the line power decreases according to the curve of 
Figure 8 while the probability of error increases with increasing re
dundancy because of the effects of error propagation. In the other 
curve of Figure 10 the transmitter and receiver gains have been 
adjusted with increasing redundancy so as to hold line power constant. 
In this case the probability of error decreases with increasing redun
dancy. 
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VII. CONCLUSION 

We have advanced two main points. First we suggest the possibility 
of using an easily-implemented adaptive predictor for data compres
sion systems. Second, we investigated the use of this adaptive predictor 
in digital transmission. 

We have seen that the predictor can be used to increase transmission 
efficiency for redundant data either by decreasing signal power for a 
given error rate or by decreasing probability of error for a given signal 
power. Although the required circuitry for the digital application is 
quite simple, it is nearly impossible to make an economic evaluation 
of the system because of the complete lack of knowledge of the prev
alence and degree of redundancy in customer input data. 
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Group Codes for tIle Gaussiall Cllannel 

By DAVID SLEPIAN 
CManuscript received April 27, 1967) 

A class of codes for use on the Gaussian channel, called group codes, 
is defined and investigated. Roughly speaking, all words in a group code 
are on an equal footing: each has the same error probability and the same 
disposition of neighbors. A decomposition theorem shows every group code 
to be equivalent to a direct sum of certain bas1:c group codes generated 
by real-irreducible representations of a finite group associated with the 
code. Some theorems on distances between words in group codes are demon
strated. The difficult problem of finding group codes with large nearest 
neighbor distance is discussed in detail. 

I. INTRODUCTION 

In a communication model first introduced by Kotel'nikov1 in 1947, 
and independently by Shannon2 in 1948, and since studied by many 
authors,3-22 messages for transmission are represented by vectors in 
a Euclidean space, Sn, of n dimensions called signal space. In this 
model, known as the Gaussian channel, when X is transmitted, the 
received signal is represented by a vector Z = X + Y which consists 
of the sum of the sent vector and a noise vector Y whose components 
are independent Gaussian variates with mean zero and variance 0"2. 

Some physical circumstances that lead to this model, as well as further 
details, can be found in Refs. 3, 10, and 13. 

An equal-energy block code of size M for use on this Gaussian channel 
is a collection of M distinct vectors Xl , X2 , ... , Xli! in signal space 
all of the same length. We shall always suppose M ~ n and that the 
vectors span Sn • The length of the vectors serves to define an important 
parameter S called the average power of the code through the equation 

(1) 

The vectors of the code are called code words or code points. Their 
termini lie on the sphere of radius VfuS centered at the origin of Sn • 

Associated with each code point Xi of an equal-energy block code 

575 
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is a region CR i of signal space called a maximum likelihood region and 
defined by 

ill, ~ { X II X - X, I ;0:: I X -,- X; I, j "" i}' (2) 

That is, CR, is the set of all points in Sn at least as close to Xi as to any 
other code word. These regions are convex flat-sided cones with apex 
at the origin. The interiors of CR, and CR j are disjoint for i ~ j: the 
union of the CR i is all of Sn • 

The capabilities of equal energy block codes for communicating over 
the Gaussian channel are well known. If the words of a code are presented 
equally likely and independently for transmission over the channel, 
the communication rate is 

a 
R = - log J.l!l 

n 
(3) 

natural units per second where a (measured in numbers per second) 
is the rate at which vector components are transmitted. The receiver 
which minimizes the average error probability5.13 operates by asserting 
that code word Xi was transmitted when the received vector Z lies 
in CR, , i = 1, 2, ... , JJI. (The received vector lies in the boundary 
of some CR i with probability 0.) When Xi was transmitted the error 
probability of this best receiver is 

where CR~ is the complement of CR i • The average error probability is 

1 ]I[ 

P e = M L P ei • 
j i=l 

(5) 

Upper and lower bounds are known4
,6,7.11,17 for p. min(JJ1, n, S), the 

smallest attainable value of P e for an equal-energy block code with 
the indicated parameters. In the limit as n -7 00, these bounds lead 
to the famous capacity formula C = a/2 log (1 + S/(/) whose in
terpretation we suppose known. For fixed finite values of NI and n, 
however, little is known in the general case about codes for which 
p. attains its minimal value (optimal codes). The cases M = n + 1, 
n + 2, ... , 2n have been studied in some detail. 8

,9.14 For n = 2, 
Weber14 showed that the regular M-gon is globally optimal: for M = 

n + 1, n = 2, 3, '" , it has been shown20 that the regular simplex 
is optimal. No other optimal codes with n > 3 are known. 
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Recently Wyner12 has investigated the capabilities of equal-energy 
block codes when a suboptimal receiver, known as a bounded distance 
decoder, is used. Here the regions CR i of the maximum likelihood receiver 
are replaced by spheres of radius d/2 centered on the termini of the 
code vectors Xi , where d is the minimum distance between any two 
words of the code. If the received vector is not in one of these spheres, 
a decoding error is assumed. Wyner established upper and lower bounds 
on the smallest error probability attainable with an equal-energy block 
code using bounded distance decoding. In the limit as n ~ 00 he ob
tained coding theorems and a capacity analogous to the usual ones. 
For finite jl and n, the error probability using bounded distance 
decoding is a monotone decreasing function of the minimum distance d 
between code words of an equal-energy block code. In the general case 
little is known about equal-energy block codes with largest nearest 
neighbor distance. 

For equal energy block codes of J11 vectors spanning Sn two optimiza
tion problems thus present themselves: to find a code for which P e , 

as given by (4) and (5), is a minimum; and to find a code with largest 
nearest neighbor distance between its code words. We have made little 
progress in solving these problems. 

In this paper we investigate instead a class of equal-energy block 
codes called group codes. It is conjectured that this class includes 
solutions to the problems just mentioned for many values of jl and n. 
Quite apart from these questions of optimality, however, group codes 
possess an important symmetry property that makes their study of 
interest in its own right. Roughly speaking, all code words in a group 
code are on an equal footing. This notion is made precise in the next 
section. 

lVlost codes that have been investigated for the Gaussian channel 
are group codes: it is likely that any code used in practice will be of 
this type. Group codes for the Gaussian channel are a natural exten
sion of the group codes introduced for the binary channel in Ref. 21, 
and these latter codes are obtained as a special case of the codes de
scribed here. 

In what follows, we define equivalence for group codes, then in
vestigate the possible classes of group codes. Here the theory of group 
representations plays a key role. 25 The appendix gives a summary 
of results needed from this field. The problem of constructing group 
codes is considered and an optimization problem of some difficulty 
is encountered. A number of interesting properties of group codes are 
disclosed. 
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Many of the results reported here are contained in the author's 
Bell Telephone Laboratories report of May 7, 1951, a document that 
received a limited circulation outside the Laboratories. A number of 
these results were recently rediscovered independently by J. G. Dunn 
and appear in his thesis22 along with extensions in directions different 
from those reported here. The discovery of an easy decoding algorithm 
for certain group codes15 has led to a revival of the author's interest 
in this subject, and so the present paper, while in part very old, is a 
report on research now in progress. It examines the general structure 
of group codes. In a later paper we hope to give a detailed treatment 
of some group codes associated with the symmetric group. 

II. GROUP CODES 

In studying the geometric properties of equal-energy block codes, 
it is convenient to deal only with code vectors of unit length. That is, 
we set S in equation 1 equal to lin, and deal with normalized codes. 
To compute error probabilities associated with the use of the code, 
one must scale up the vectors by a factor V;S. 

Let Xl , X2 , ••• , XM be the (unit) vectors of an equal-energy block 
code. It is clear from the definition of the regions CR i and from (4) 
and (5) that P ~ is invariant under a rotation of the code as a whole. 
That is, if 0 is an arbitrary n X n orthogonal matrix and 

i = 1,2, ... ,M, (6) 

the error probability P~ for the code X~ , ... , X~[ is the same as that 
for the code Xl , X2 , ••• XM • The set of interword distances for the two 
codes is the same, and in particular both codes have the same minimum 
nearest neighbor distance d. Two codes whose vectors (with possible 
renumbering) can be related as in equation (6) are called equivalent. 
Equivalent codes have the same communication capabilities. 

We now examine in what sense the words of an equal-energy block 
code in Sn might be "alike". Given the lJ1 unit vectors Xi that define 
the code, the real orthogonal n by n matrix 0 is said to leave the code 
invariant if the Y, are a permutation of the Xi where Yi = OXi , i = 
1, 2, ... ,M. The collection () = {0 1 , O2 , ••• , Ou} of all real orthogonal 
n by n matrices that leave the code invariant clearly forms a finite* 
group under ordinary matrix multiplication. Now transformation by 

* By hypothesis, the Xi span Sn. An n X n orthogonal matrix is completely 
determined by its effect on a set of n vectors that span its carrier space. Since the 
words of the code are permuted along themselves by each element of 0, g ~ M!. 
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an orthogonal matrix preserves distances between points, so that a 
possible definition of "alikeness" for the points of the code is to require 
that in the group () there be elements 0 1 , O2 , ••• , OM that transform 
any particular word, say Xi , into each of the 111 vectors of the code. 
A collection of AI unit vectors spanning Sn that satisfies this condition 
will be called a group code and denoted by the symbol {M, n}. In a 
group code, if Oi sends Xl into Xi and OJ sends Xl into Xi , then OiO;l 
sends Xi into Xi . We have then 

Proposition 1: For a group code, the set of distances from Xi to all 
other points of the code is the same as the set of distances from Xj to all 
other points of the code, i, j = 1, 2, ... , AI. 

Each point has the same number of nearest neighbors, the same number 
of next nearest neighbors, and so on. 

The maximum likelihood regions CR i for a code are defined by equa
tion (2) in terms of distances from code points. Since orthogonal matrices 
leave distances invariant, it follows that for a group code a matrix 
o E () that sends Xi into Xi also sends CR, into CRi . From this fact and 
the form of (4) we have 

Proposition 2: For a group code {AI, n} the maximum likelihood regions 
illl , CR2 , ••• , illM are all congruent and all words have the same error 
probabilitY1 that is, p. 1 = p.2 = ... = p.M = p •. 

III. GENERATION AND CLASSIFICATION OF GROUP CODES 

To each matrix 0 of the group () of orthogonal matrices that leaves 
a group code {M, n} invariant, there corresponds a permutation on 
AI letters, namely the permutation effected by 0 on the M vectors 
of the code. That these permutations form a transitive permutation 
group follows from the definition of a group code. No two different 
elements of () can effect the same permutation of the words of {AI, n} 
since the effect of an n X n matrix on a set of vectors spanning SA 

completely determines the matrix. We have then 

Proposition 3: The group () of all orthogonal n X n matrices leaving 
a group code jl11, n} invariant forms a faithful representation of (is simply 
isomorphic to) a transitive permutation group on AI letters. 

Group codes {M, n} do not exist for every 111 and n. For example, 
it is not hard to prove that it is impossible to arrange 5 points on the 
sphere in 3 dimensions to form a group code. Necessary and sufficient 
conditions on M and n for the existence of an {1I1, n} are not known. 
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Group codes do exist in great abundance, however, and we shall 
give examples later. Indeed, from any set of n X n orthogonal matrices 
0 1 , O2 , '" , 0 1If that form a finite group 9 under matrix multiplication 
we can form a group code by choosing a unit n-vector X and forming 
the set of vectors 

i = 1, 2, .,. , 111. (7) 

Elements of 9 leave this configuration of vectors invariant by the 
group property. Since 9 must contain the n X n unit matrix, X is 
among the collection of vectors and it is sent into each of the other 
vectors. A group code therefore results. This code may not have lJ![ 
distinct vectors, however, and it may not span S" • The code depends 
on the initial vector X. 

If the code has fewer than M vectors, then for some i ~ j, Xi = Xi 
or OiX = OiX, or 0i10iX = OkX = X for some O~, l: g. That is, X must 
be an eigenvector with eigenvalue unity for at least one 0 l: 9 different 
from the unit matrix. The set of all such 0 l: 9 forms the subgroup JC 
of order h of 9 that sends X into itself. It is easy to show that by (7) 
9 generates v = M /h distinct vectors. Since the matrices of 9 have 
only a finite number of eigenvectors, however, it is always possible 
to choose an X so that the M vectors (7) are distinct. 

It may not be possible, however, to choose X so that the vectors 
span Sn • To discuss this matter further we must recall the notion of 
real-reducibility. A finite group of (real) orthogonal matrices 9 = 
0 1 , O2 , ••• , 0 1If is said to be real-reducible if there exists an n X n 
real orthogonal matrix 0 such that for i = 1, 2, ... , 1I1 

00 ,0-' ~ (~' I ~) (8) 

where Ai is an l by l matrix, Bi is an n - l by n - l matrix, 0 < l < n 
and C and D are matrices all of whose elements are zero. It is assumed 
that l does not depend on i. A group of real orthogonal matrices that 
is not real-reducible is said to be real-irreducible. In words, a real
reducible collection of matrices can be simultaneously transformed to 
block diagonal form by a real orthogonal matrix: a real-irreducible 
collection cannot be so reduced. * The reduced matrix in block form 
in equation (8) is said to be the direct sum of the two square matrices 
Ai and Bi . 

* In the theory of group representations (see the appendix) reducibility is usually 
defined over the field of complex numbers. The definition is as above with 0 replaced 
by a unitary matrix. We shall speak simply of "reducibility" in this case as opposed 
to "real-reducibility". 
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It is easy to show that if the matrices 0. of equation (7) are real
irreducible, then the code they generate spans Sn for all choices of X: 
if they are real-reducible, for some choices of X the code will not span Sn • 

These comments lead to 

Proposition 4: Every real-irreducible group 9 = 0 1 , O2 , ••• , OM 
of real orthogonal n X n matrices serves by means of equation (7) to generate 
a group code {1I1', n} tor each unit vector X in Sn • Here 111' ~ 111. It 
M' < M, it is a divisor of 111. 

Propositions 3 and 4, together with the theory of group representa
tionst suggest a means of classifying and generating all group codes. 
From Proposition 3 we can associate with a given group code {111, n} 
a unique abstract group and a faithful representation 0 of this group 
by orthogonal matrices. The code can be thought of as generated from 
one of its vectors, X, say, by the operation of the matrices of this 
representation in the manner of equation (7). Now the representation 
o will in general be real-reducible. There will exist then a real orthogonal 
matrix 0 that will exhibit 0 in block form (8) as the direct sum of a 
number of real-irreducible representations. Denote this new reduced 
representation by 0'. It is easily seen that the matrices of 0' operating 
on the vector Y = OXgenerateagroupcodeYl' Y2 ,···, YlIfequivalent 
to the originally given {M, n} . We can further regard Y as the sum 
of its projections Y\ y2, ... on the various invariant subspaces of 
0' indicated by its block structure. 

By the procedure just outlined, for each equivalence class of group 
codes we arrive at a particular set of real-irreducible representations, 
say e1 , O2 , ••• , OJ of an abstract group, each with a corresponding 
associated vector yl, y2, ... , yi . We regard Y' as lying in the carrier 
space of Oi , so that if Oi is of dimension li , then yi is a vector of li 
components, i = 1, 2, ... , j. Let the length of yi be Ai . We have 
2: A~ = 1. The 0. are determined by Ill!, n} only up to equivalence 
in the sense of representation theory, owing to the possibility of reduc
tion of e by different matrices O. The vectors yi inherit some additional 
freedom owing to theJliJ possible choices of X in the preceding paragraph. 

We can think of the {M, n} as decomposed by the above process into 
an equivalent direct sum of j group codes, the ith code being generated 
by the matrices of ei operating on the initial unit vector Zi = yi/Ai' 
i = 1, 2, ... , j. The constituent group codes are weighted by the 
numbers AI, A2 , ••• , Ai in forming the direct sum code {M, n}. Notice 

t Knowledge of the material in the appendix is necessary for understanding 
much of the remainder of this paper. 
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that some of the constituent codes may have fewer than M distinct 
words. 

Conversely, within equivalence we can construct any group code 
as the weighted direct sum of codes generated by real-irreducible groups 
of matrices after the manner of Proposition 4. In synthesizing codes 
in this manner, we may, of course, arrive at equivalent codes by several 
different constructions. The group 9 of Proposition 4 may be only a 
subgroup of the group of all orthogonal transformations that leave 
the code generated by 9 invariant. Different initial vectors operated 
on by the same group of matrices may give rise to equivalent codes. 

Every group possesses the trivial real-irreducible one-dimensional 
identity tepresentation in which each group element is represented by 
the one-dimensional unit matrix. The inclusion of this identity rep
resentation in the constituent codes making up a direct sum code 
represents a waste of one dimension, since the code is then equivalent 
to one in which each code vector has the same first component. This 
first component then carries no information. By omitting the first 
component of each vector (and rescaling the length of the resultant 
vectors), a new code of dimension n - 1 is obtained with error prob
ability no greater than the original {M, n}. In general in what follows 
we will not be concerned with codes that contain this identity rep
resentation. 

We turn our attention now to the basic problem of constructing good 
group codes as the weighted sum of properly chosen group codes gen
erated by real-irreducible groups of orthogonal matrices. 

IV. THE INITIAL VECTOR PROBLEl\I AND THE FUNDAMENTAL REGION 

As in Proposition 4, let a code be constructed from a given group 
9 = 0 1 , O2 , ••• , OM of orthogonal n X n matrices by means of equa
tion (7). We think of these matrices as a faithful representation of an 
abstract group isomorphic to the matrix group. The code obtained in 
this manner depends upon the initial X on which the matrices operate. 
The regions CR i of equation (2) and hence also PtJ = P ei by (4) also 
depend on this. choice. We suppose now that X is not an eigenvector 
of any of the Oi so that the code has M distinct words. It would be 
desirable to be able to choose an X of this sort to either minimize P e 

or to maximize d, the nearest neighbor distance. We have not seen 
how to solve either of these problems in general. A few words about 
them are in order. 

Consider first the problem of choosing X to maximize d. The squared 
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distance between X and Xi is 

d2 (X, XJ = 1 X - Xi 12 = 2 - 2X·O i X 

a monotone decreasing function of the quadratic form X·OiX in the 
components of X. This form is the cosine of the angle between X and Xi . 
Solution of the maximum nearest neighbor distance is equivalent to 
finding 

a = min max X·OiX 
x i 

(9) 

where the maximization over the matrices of 9 must omit the identity 
matrix. The quantity a is an invariant of the representation (is the 
same for every equivalent representation) and should ultimately be 
expressible in terms of properties of the group. The vector X which 
minimizes (9) is not unique: any word in the code generated by X would 
serve as well. 

Given 9, we define two points X and Yon the unit sphere to be equiv
alent if one can be obtained from the other by an operation of 9. The 
surface of the sphere is thus divided into equivalence sets. A connected 
region on the sphere such that no two points in its interior are equiv
alent and such that every point on the sphere is equivalent to some 
point in the region will be called a fundamental region of 9. The maxi
mum likelihood regions, CR i , associated with any {M, n} generated 
by 9 intersect the unit sphere in fundamental regions. These inter
sections are very special fundamental regions: they are convex and 
bounded by hyperplanes. 

In attempting to minimize P B or maximize d it clearly suffices to 
consider initial vectors X restricted to some fundamental region. It 
is natural then to ask what fundamental regions are possible for a 
given 9. 

The situation is complicated. For some groups, the fundamental 
region is completely determined (up to equivalence under the group 
operations, of course): for other groups only certain features of its 
boundaries are determined, or no points at all may be determined. 

For example, in the plane consider the group 91 generated by the 
three matrices corresponding to reflections in three lines through the 
origin that make angles of 60° with each other. This group is of order 6 
and is a subgroup of the symmetry group of a regular hexagon having 
the given lines as diagonals. The fundamental region of this group is 
completely determined. It is a 60° arc of the unit circle with end points 
on two of the given lines. Any group code {6, 2} generated by 91 has 



584 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1968 

this fundamental region for the intersection of one of its maximum like
lihood regions CR i with the circle. Choice of X serves only to position 
the initial vector within the maximum likelihood region. (When X is 
chosen to lie on one of the reflection lines, a {3, 2} results and the maxi
mum likelihood region changes discontinuously to the union of two 
adjacent regions of the sort just discussed.) 

On the other hand, consider the group 92 of rotational symmetries 
of the regular hexagon. 92 , of order 6, consists of a 2 X 2 matrix rep
resenting a rotation of 60° in the plane along with the distinct powers 
of this matrix. Any 60° arc of the unit circle is a fundamental region for 
this group. Codes {6, 2} generated by 92 are equivalent for all choices 
of the initial vector X. 

An example illustrating a partly determined fundamental region is 
obtained by considering the pure rotational symmetries of a cube 
in three dimensions. We imagine the cube centered at the origin and 
inscribed in a unit sphere. We speak in terms of the operations on the 
cube rather than in terms of the 3 X 3 matrices which describe these 
operations. 93 , a group of order 24, consists of rotations of the cube 
by 120° around the body diagonals, of rotations by 90° about axes 
through the origin and centers of faces and of rotations of 180° about 
axes through the midpoints of edges and the origin. One axis of each 
kind is shown on Fig. 1. In discussing the fundamental region of 93 
and codes generated by 93 , it is convenient to speak of points on the 
cube, rather than on the circumscribed unit sphere. It is to be understood 

Fig. 1-Example of partly-determined fundamental region. 
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then that when a point on the cube is mentioned it is really the cor
responding point on the sphere obtained by projecting along a radius 
that is under discussion. 

The vertices of the cube, the centers of faces and the midpoints of 
edges must all lie in boundaries of fundamental regions, for these points 
are on axes of rotation of Sa . For example, a point distance € from a 
vertex of the cube has two nearby equivalent points forming an equi
lateral triangle with the vertex at the center of the triangle. These 
three points cannot all lie in the interior of one fundamental region. 
The cube vertex therefore cannot be an interior point of a fundamental 
region. In fact at least 3 fundamental regions must meet at each vertex, 
at least 4 at each face center and at least two at each edge midpoint. 
Cube vertices and face centers must therefore be vertices of fundamental 
regions. Now all vertices of the cube are equivalent under S3 as are all 
face centers and all edge midpoints; no two of these three types of 
points are equivalent. A fundamental region of Sa must therefore con
tain at least one cube vertex and one face center among its vertices and 
at least one cube edge midpoint along its boundary. 

Two distinct types of fundamental regions for Sa bounded by hyper
planes (great circles on the sphere) are shown in Fig. 1. Region AEFG 
is bounded by four hyperplanes. Edge midpoints are vertices of this 
type or region. Four fundamental regions surround each face center 
and each edge midpoint: three surround each cube vertex. Region 
ABOD is bounded by only three hyperplanes. Edge midpoints are 
no longer vertices of the fundamental region. Eight regions meet at 
each face center. The fundamental region ABOD corresponds to the 
maximum likelihood region of a group code having an initial vector 
(and hence all vectors) pass through a cube edge: region AEFG results 
when the initial vector passes through a face diagonal. All other positions 
of the initial vector give maximum likelihood regions that are funda
mental regions bounded by four hyperplanes but not congruent to 
AEFG. 

Sa is the irreducible representation of the symmetric group on four 
letters derived from the Young tableau25 associated with the partition 
(2, 1, 1). The irreducible representation belonging to the partition (3, 1) 
is also three dimensional. It is equivalent to the group of symmetries 
of the regular tetrahedron and can be generated by reflections in planes 
through the centroid of the tetrahedron and its edges. The fundamental 
region here is completely determined. It is bounded by three of these 
generating reflection planes. Maximization of nearest neighbor distance 
for a {24, 3} generated by this group can be easily accomplished by 
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choosing the initial vector equidistant from the three bounding planes 
of the fundamental region. 

1\10re generally, Coxeter23 has shown that if a real-irreducible finite 
group of n X n orthogonal matrices is generated by reflections, the 
fundamental region is completely determined, and in fact the region is 
bounded by n hyperplanes. Indeed, Coxeter has enumerated all possible 
groups of this sort. In dimensions n greater than 8, there are only three 
such groups, called by him An, En, and Cn of order (n + I)!, 2n- I n!, and 
2nn!, respectively. These groups generate permutation modulation 
codes15-An generates Variant I codes, En generates Variant II codes 
with J1.I = 0, and Cn generates Variant II codes with J1.I ~ 0. The various 
permutation modulation codes are obtained by choosing the initial 
vector to lie in boundaries of various dimensionality of the fundamental 
regions of these groups. 

Returning to the general case (when 9 is not generated by reflections), 
the real eigenvectors of the Oi with eigenvalue unity serve to determine 
landmarks of the fundamental region. Such an eigenvector must lie in 
the boundary of the region. If 0 i has l such eigenvectors, their span is 
an l-dimensional boundary of the fundamental region. The situation 
has been studied by Robinson24 in some detail, but no simple method 
of classifying the possible regions is available. 

V. THE DIREC'l' SUl\I 

Since any group code is equivalent to the weighted direct sum of codes 
generated by real-irreducible representations of a group, it is natural 
to investigate the relationship between interword distances in the sum 
code and the corresponding distances in the summand codes. 

Let 9 = AI' A 2 , ••• , Ag be a finite group of order 9 with Al the 
identity. Let DI(A) and D2(A) be two real-irreducible representations 
of 9 by real orthogonal matrices of dimensions II and l2 respectively. 
Let Xi = DI(Ai)X, and Yi = D 2 (A i )Y, i = 1,2, ... , 9 be group codes 
generated by DI and D2 . (Neither code need have 9 distinct vectors.) 
The direct sum code with weights Al and A2 has vectors 

i = 1,2, ... , 9 (10) 

of l = II + l2 components. We seek to choose the weights so that the 
nearest neighbor distance, d, for the sum code Z is a maximum. 

Let ai = d2(Xi' Xl) and (3i = d2(Yi' YI ) be the squared distance 
from the code word generated by Ai to the initial vector in the two codes, 
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i 1, 2, ... , (j, respectively. For the sum code we have 

d2 (Zi ,Zl) = AilXi + A;{3. 

since the subspaces containing the X code and the Y code are orthogonal. 
The de3ired maximum nearest neighbor distance is thus 

d2 
= max min [(1 - A)lXi + A{3i] (11) 

O;:-;>';:-;l ir'l 

where we have set A = A; . The situation is illustrated in Fig. 2. Here we 
have taken lX2 ~ lXa ~ ... ~ lXg which we can do without 103s of general
ity since this is merely a matter of giving names to the group elements. 
The bracketed expression on the right of equation (11) is plotted as the 
line segment with ordinate lXi at A = 0 and ordinate {3. at A = 1. vVe 
seek the highest point on the bottom boundary of this collection of 
lines, point P in Fig. 2. 

N ow any of the vectors Y i , i = 1, 2, ... , g, not just Y I , would serve 
to generate the Y code. We can seek a further maximization of the nearest 
neighbor distance (11) for the Z code by choice of the vector from the 
Y code to be called YI • Stated otherwise, for the initial vector of the Z 
code we choose a particular vector Xl from the X code and to this we 
can add (directly) any of the vectors of the Y code. Now replacing Y1 

by Y l merely amounts to permuting the subscripts on the {3i of Fig. 2. 
The subscript i is replaced by k where AlA i = A k • To combine the 
two codes to get the largest nearest neighbor distance, we must further 

o 

Fig. 2 - Maximum nearest neighbor distance. 
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maximize (11) over permutations of the {3's corresponding to left 
translations of the group. 

The maximization just considered was with respect to the manner of 
combining the two summand codes. There remains the matter of choos
ing Xl and Y I to further increase (11). At first it might be thought 
that these vectors should be chosen to maximize the nearest neighbor 
distance in each of the summand codes. That this is not necessarily 80 

can be seen from Fig. 2. Choosing Xl to increase the nearest neighbor 
distance in the code generated by DI would cause CX2 to increase. The 
line connecting CX2 and {32 on the figure would move up. However, this 
change of Xl might cause CX4 to decrease by a larger amount so that 
point P on the figure moves downward. The situation is complicated. 

The relationship between the maximum likelihood region for the 
sum code and the corresponding regions for the constituent codes is 
even more complicated in general. Let (R be the region belonging to 
Zl of equation (10) and let (RI and (R2 be corresponding regions for Xl and 
YI in the summand codes. We write Z = AIX + A2Y for a general point in 
the space of the direct sum representation where X and Y lie in the 
respective invariant subspaces of the summand codes. A point will lie 
in (R then if I Z - ZI I ~ I Z - Zi I for i = 2, 3, ... , g, or what is the 
same, if 

for i = 2, 3, ... , g. Thus if X t (RI and Y t (R2 then Z t (R, but the con
verse is not necessarily so in general. 

A special case in which the converse holds is the following. It may 
happen that both the X code and the Y code have fewer than g distinct 
vectors. In the direct sum code (10) it may happen that each distinct 
vector of the Y code is paired at least once with each distinct vector 
of the X code. (£1 must be homeomorphic to the direct product of two 
groups.) In this case (R is the cartesian product of the two regions (RI 
and (R2. The probability of no error for the sum code is given by Qe = 
Q!(AI)Q;(A2) where the factors are the probabilities of no error for the 
separate scaled summand codes. The information rate (3) for the sum 
code in this case is the weighted sum of the rates for the constituent 
codes 

Weare better off using the code with the larger rate uncombined. 
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VI. THE CONFIGURATION MATRIX 

Let Xl' X2 , ••• , XM be a collection of unit vectors spanning Sn . 
The configuration matrix of this code is the M by M matrix P whose 
elements Pi j = Xi· Xi are the cosines of the angles between the words. 
Equivalent codes have identical configuration matrices except for a 
possible relabeling of rows and columns. This configuration matrix is 
real, symmetric, non-negative definite and of rank n. The diagonal 
elements are unity and the off-diagonal elements are of magnitude no 
greater than unity. 

Conversely, we have the following 

Lemma: Every real, symmetric, JJf by M non-negative definite matrix of 
rank n with diagonal elements unity and off-diagonal elements of magnitude 
less than unity is the configuration matrix of a code of M unit vectors that 
span Sn. 

The proof of this lemma follows readily from the fact that a real sym
metric M by M matrix P can be diagonalized by an orthogonal matrix 0, 
that is, OpO- 1 = A where, since p is non-negative definite and of rank n, 
A has n positive diagonal elements and all other elements are zero. 
Without loss of generality we can take the first n diagonal elements of 
A, say Au = Ai , i = 1, 2,· .. , n to be the positive ones. From p = 0- 1 AO, it 
follows that 

where Xi is a vector of n components, the ILth component being ~OjJi , 
i = 1, 2, ... , M. We have now exhibited M unit n-vectors whose 
configuration matrix is the given matrix p. We need now only show that 
they span Sn. But we have written p = XX where X is the matrix of M 
columns and n rows whose ith column is Xi . The tilde denotes trans
pose. Since the rank of a product of matrices is not greater than the 
smaller of the ranks of the factors, it follows that X must be of rank n, 
for if it were of rank less than n, so also would be p contrary to hypothe
sis. The Xi therefore span Sn • 

For group codes, the rows of the configuration matrix are all permuta
tions of the first row of the matrix as can be seen from Proposition 1. 
Indeed the structure of this matrix is closely related to the multiplica
tion table of the group generating the code. Let the code vector Xi = 
D(AJ X, i = 1, 2, ... , M be generated by an orthogonal representation 
D of a group 9 with elements Al , A 2 , ••• , AM . Here Al is the identity 
and the code need not have M distinct vectors. Denote by O(A i) the 
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angle between Xj and Xl . Then O(Ail) = O(A j), j = 1, 2, ... , M and 
the configuration matrix of the code is found to be given by 

Pij = cos O(A;lA i) 

'1" J = 1, 2, ... , M. If Plj < 1 for j > 1, then the code has JJI distinct 
vectors: if 1 = Pl;t = Pli. = ... = PIjh with 1 = ji < jz ... < jh 
and these are the only elements of value unity in the first row, then 
the code has M /h distinct vectors. 

Conversely, we have 

Theorem 1: Let x(Aj) be a real-valued function defined on the elements 
Al , A z , ••• , AM of a group 9 of order JJI. Let X(Al) = 1, where Al is the 
identity of the group, and let x(Aj) = x(Ai l), j = 1, 2, ... , JJI. If the 
M by M matrix P with elements Pij = X(A;lAj) is non-negative definite 
and of rank n, then there exists a group code {JJl' n} generated by an n
dimensional orthogonal representation of 9 that has configuration matrix p. 

Here M' = JJI/h where h is the number of different values of j for which 
xCA j) = 1. 

Proof: The proof follows easily from the lemma. We can find JJI unit 
vectors Xi (not necessarily distinct) that span Sn such that Pij = Xi' X j • 

Without loss of generality we can suppose that Xl' X2 , ••• , Xn are 
linearly independent. Now an n by n real matrix is determined by speci
fying its effect on n vectors that span its carrier space. For each J.L = 
1, 2, ... , M we determine the n by n matrix D(AI') by specifying its 
effect on Xl , ... , Xn , namely that DCAI') Xi = Xz (i .1') , i = 1, 2, ... ,n 
where AI'Ai=Az(i.I')' Now Xi,Xi=Pij=x(A;lAj)=x(A;lA;lAI'A j)= 
x(A~c\.u)Azu .1'») = XICi .1')' Xzu .1') , so that D(AI') preserves the angles 
between n vectors spanning its carrier space. It is easy then to show 
that D(AI') preserves the angle between any two vectors and hence is an 
orthogonal matrix. For j > n, 

n 

Xj = L: ajhXh 
h=l 

for some set of a's. Using this representation and the orthogonality of 
DCAI')' it is now easy to show that D(AI') Xi = XZ(i .1') for i= 1,2, ... , M. 
The fact that D is a representation then follows readily. 

Theorem 1 permits an interesting reformulation of the problem of 
finding an {M, n} of largest nearest neighbor distance generated by a 
representation of g. Form the modified multiplication table of g,-an 
M by M array of group elements with A;l A i in the ith row and jth 
column. From this table we construct a symmetric M by M matrix P 
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by replacing the group identity Ao , say, by unity, by replacing both Al 
and A~l by the variable Xl , A2 and A;l by X2, and so on. If 9 has 
exactly 1n self-reciprocal elements, there will be J( = m - 1 + (g - m)/2 
variables in p. The condition that p be non-negative definite and of rank 
not greater than n obtained by conditioning certain minors of p gives 
rise to polynomial constraints in the variables Xl, ••• , XK • To find the 
code of largest nearest neighbor distance, we must minimize maXi Xi 

subject to these constraints. 
We notice in closing this section that the configuration matrix of an 

{M, n} generated by a group 9 of order M commutes with all the ma
trices of the regular representation of 9 (see the appendix). Using Schur's 
lemma, one can then arrive at a canonical representation for configura
tion matrices that involves the irreducible representations of g. But 
we do not pursue this topic further here. 

VII. SOME THEOREMS ON DISTANCES 

We now adopt the notation of the appendix. Let 9 be an abstract 
group of order g with elements E, A, B, ... where E is the identity. 
Let D(E), D(A), ... be a real-irreducible representation of 9 by n X n 
(real) orthogonal matrices. From an initial unit vector X = XE the 
representation generates a code by X R = D(R) X E , R runs through g. 
We denote the squared distance from XR to Xs by d2 (XR' Xs). We 
have then 

n 

d2 (XA , X) = 2 - 2 L D(A)ijxixj 
i,i=l 

(12) 

for every R and A E g. Here Xl , X2, ... , Xn are the components of X. 
For codes generated from real-irreducible representations in this 

manner, a number of interesting distance sums are independent of the 
choice of the initial vector X. 

Theorem 2: Let D(R) be the matrices of a real-irreducible orthogonal repre
sentation of a group of order g. Let X R = D(R) X. If D(R) is not the trivial 
one-dimensional representation D(R) = 1, then 

L d\XR , X) = 2g 
R.g 

independent of the unit vector X. 

This is really a special case of the more general 
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Theorem 3: For any code generated from the initial unit vector X by a 
real-irreducible orthogonal representation D of g, 

L: d2(XRm , X) = 2g(1 - 11m) 
Rtg 

where 

is a constant independent of X. Here x(R) = Tr D(R) is the character of R 
in the representation. 

Proof: Consider the matrix 

A == L: D(Rm) = L: D(R)D(R) ... D(R) 
Reg Rtg 

where there are m factors in the summand. Since the representation is 
by orthogonal matrices, D(R) = D-1(R) = D(R-1) where the tilde 
denotes transpose. Thus 

if = L: D(R-1) ... D(R-1) = A 
Rtg 

since as R runs through 9 so does R- 1
• The matrix A is thus symmetric. 

We next show that A commutes with all the matrices D(R). By a 
theorem quoted in the appendix we can then conclude that A = aI 
where I is the unit matrix. To see that A commutes with D(R), consider 

AD(R) = L: D(s)m-1D(S)D(R) = L: D(S)m-1D(SR). 
Stg SEg 

Now set SR = T so that S = TR- 1. Then 

AD(R) = L: D(TR-1)m-1 D(T) 
Ttg 

L: D(TR-1)D(TR-1) ... D(TR-1)D(T) 

L: D(T)D(R-1T)D(R-1T) ... D(R-1T) 
TEg 

L: D(RU)D(u)m-l = D(R) L: D(u)m = D(R)A 
Utg Utg 

where we have used the substitution U = R-1T. 
From equation (12) we have 

n 

L: d2(XRm , X) = 2g - 2 L: XiX; L: D(Rm)ii 
Rtg i.i=l Rtg 

n 

= 2g - 2 L: XiXiAi; = 2(g - a) 
i. ;=1 
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by the diagonal property of A just established. To find a consider the 
trace of A. We have 

Tr A = Tr aI = an = L Tr D(RTn) 
R,g 

The theorem then follows. 
To establish Theorem 2, notice that for the trivial representation 

Dl(R) = 1, we have x1(R) = 1. For the character x(R) of any other 
nonequivalent real-irreducible representation we then have 

L x1(R)x(R) = L x(R) = 0 
R,g REg 

by the orthogonality relations (appendix). Using this fact and setting 
m = 1 in Theorem 3 yields Theorem 2. 

Theorem 4: Let e be a class of nc elements of 9 with character x(e). For 
any code generated from the initial unit vector X by a real-irreducible 
orthogonal representation D of g, 

.L d\XR , X) = 2nc(1 - .! x(e)) 
REe n 

independent of the unit vector X. 

Proof: 

(13) 

L d2(XR , X) = 2nc - 2 L XiXj L D(R)ij • (14) 
REe REe 

N ow consider the matrix 

B = L D<X(R) = nc L D<X(SRS-1) = nc L D<X(S)D<X(R)D<X(S-l) 
mte g Stg g Stg 

where D<X(R) is an irreducible (over the complex field) representation of 
dimension m of g. Now B commutes with all the matrices of D<X since 

BD<X(T) = nc L D<X(S)D<X(R)D<X(S-lT) 
g SEg 

= nc L D<X(TU-1)D<X(R)D<X(U) = D<X(T)B 
g u.g 

where we have set S-lT = U. By Schur's lemma, B = kI where I is 
the m by m unit matrix. Taking traces we have 

Tr B = Tr L D<X(R) = ncx<x(e) = Tr kI = kl1't 
Rte 
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so that 

(15) 

If now the real-irreducible orthogonal representation D is also irre
ducible, by equation (15) the inner sum in (14) is (nJn)X(e)Oii and the 
theorem (13) follows at once. 

Suppose now that D is not irreducible. Then (see appendix) D is 
equivalent to an orthogonal representation of the form 

(16) 

where D cr (R) = ucr (R) + iVcr (R) is an irreducible representation by 
unitary matrices and ucr and Vcr are real and of dimension m where 
n = 2m. We can suppose the D of equation (14) to be of the form (16). 
Now let 

and set 

13 = L D'(R) 
Rtf:!, 

U = ~ [I iIlj 
V2 iI I 

where as before I is the m by m unit matrix. One then finds by direct 
computation that 

U- l13U = L [Dcr(R) 0] 
Ree 0 Dcr(R)* 

= nc [xcr( e)l 0 1 == H 
m 0 xcr(e)*l 

where the middle equality fo11o\\'s from equation (15). Now let xcr(e) 
p. + iv with p. and v real. Direct computation gives 

The right of (14) is 

13 = U H U- 1 = ~~ [ p.l v I 1 . 
-vI p.IJ 

(17) 
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and using (17) this becomes 

') 2nc 
.... nc --J,l. 

m 
LX; = 2nc(1 ~ ~). 

m 
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From equation (16), however, x(e) = 2J,l., so that (13) then follows 
and the theorem is proved in all cases. 

Since every group code can be thought of as the direct sum of codes 
generated by real-irreducible representations, and since squared distance 
in the sum code is the sum of squared distances in the separate codes, 
Theorems 2, 3, and 4 have ready analogues for all group codes. For 
example, if a group code does not contain the identity representation, 
then 

L d2 (XR , X) = 2g. 
Rrg 

Theorems 3 and 4 hold for group codes in general when x(R) is replaced 
by the weighted sum L t..~xi(R) of the characters of the constituent 
real-irreducible codes. 

Another theorem of interest concerning codes generated from any 
group of orthogonal matrices arises from the fact (12) that d2 (XA , X) = 

d2 (XRA , XR). Let there be a point of the code distant d from the point 
XE • Starting from X E , we imagine moving from word to word of the 
code restricting our moves so that from any word we can move only to a 
word distant d away. We shall call the collection of words that can be 
reached from XE in this manner "a d chain starting from XE". XE is to be 
included in this chain. 

Theorem 5: Let the words of a d chain starting from XE be XE , XA1 , 

XA ., ••• XAh • Then the group elements E, At , A 2 , ••• , A" form a 
subgroup X of S. The group elements whose corresponding words are dis
tant d fro11t XE form a set of generators for x. If x is a proper subgroup of S, 
then from any word corresponding to a group element not in X, a new d 
chain may be formed and the group elements corresponding to the points of 
this new d chain will form a coset of :re. 

Proof: Suppose all the points distant d from XE are XA • , XA • , ••• , XAm • 

Let us construct a table of group elements in the following manner. 
The first row is E, At , A 2 , ••• , Am . The K + 1st row of the table is 
formed from the preceding K rows as follows. We examine the elements 
of the table in order, reading from left to right in the first row, then from 
left to right in the second row, and so on. Let R be the first element 
arrived at in reading the first K rows that does not appear in the first 
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column, rows 1, 2, ... , /(. The the /( + 1st row is to be 

R, RAJ, RAz , ••• , RAm. 

The table thus appears 

I i' 
~, 

B, 

R, 

When j rows have been written and every element in these j rows has 
appeared once)n the first column the process is stopped and the table is 
considered complete. The table can have at most g rows. Now from 
dZ(XR' XE ) = dZ(XSR' Xs ), it follows that the words represented by 
the elements in the 2nd, 3rd, ... , m + 1st columns of the /(th row are 
all distant d from the word represented by the element in the first column 
of the K th row. Furthermore, these m words are all the words of the 
code that are distant d from the word represented by the element in the 
first column of the Kth row. Thus the elements of the first column of 
the table give the points of the d chain starting from XE • That these 
elements of the first column form a group X and that Al , A z , ••• , Am 
are generators of X is clear from the method of constructing the table, 
for we have formed all possible distinct products of the A's and listed 
the distinct elements thus obtained in the first column. Let X be a 
proper subgroup of 9 and let S be an element of 9 not in X. If we multiply 
every element in the above table by S, we obtain a new table giving 
all the points that can be reached from point Xs by steps of distance d. 
The first column of this table lists the points of the d chain starting 
from Xs and the corresponding elements are just the coset Sx of X. 

VIII. BINARY GROUP CODES 

The group codes (n, k) for the binary channel introduced in Ref. 21 
are group codes in the present sense. Each word of an (n, k) code is an 
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n-place binary sequence. Replace each zero by 1 and replace each 1 by 
-1 in each word. Then write each word (a sequence of ± 1's) as a 
diagonal n X n matrix. This collection of 2k n X n orthogonal matrices 
forms an Abelian group CBk that is isomorphic to the k-fold direct product 
of the simple two element Abelian group. The matrices generate the 
code by operating on the n-vector (1, 1, 1, ... , 1). The real-irreducible 
representations of this group are all one dimensional. There are 2k of 
them. The representation by n X n matrices just considered is already 
exhibited in reduced form as the direct sum of n of these real-irreducible 
representations. 

IX. CON CL UDING REMARKS 

The foregoing paragraphs outline some of the theory of group codes 
for the Gaussian channel. The development of this subject is clearly 
incomplete: we have raised more questions than we have answered. 
Perhaps the outstanding problem is that of finding a tractable method 
of choosing the initial vector to maximize the nearest neighbor distance. 

There is a great abundance of groups of arbitrarily large order that 
can be examined from the point of generating group codes. The sym
metric group and the hyperoctahedral group appear most promising 
for initial investigation since their structure and irreducible representa
tions (which are all real) are comparatively well understood. 

APPENDIX 

Review of Group Representation Theory25 

Let 9 be a finite group of order g with elements E, A, B, .... The 
letters Rand S will be used for the general element of 9 and E will denote 
the identity of g. As R runs through g, the distinct elements of the set 
RAR- l are said to form a class of g. The elements A and B are said to 
belong to the same class of 9 if there exists an S such that A = SBS-l. 
9 can be divided uniquely into a union of classes, no two classes con~ 
taining a common element. The number of elements in a class of 9 is a 
divisor of g. 

If ;Ie is a subgroup of 9 and if JC is of order h, then h is a divisor of 
g and the number glh is called the index of JC under g. If, for every 
R in JC, all elements of 9 in the same class as R are also contained in JC, 
then JC is said to be a self-conjugate subgroup of g. A subgroup JC of 9 
is said to be proper if h < g. 

The matrices in what follows are assumed to have elements in the field 
of complex numbers. 
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If to every element R of a finite group 9 there corresponds an n by n 
nonsingular matrix D(R) and if D(R)D(S) = D(RS), the collection of 
matrices /),. = {D(R), R runs through g} is said to form an n-dimensional 
representation of g. The matrices of /),. form a group under matrix 
multiplication. If the correspondence between the matrices of /),. and the 
elements of 9 is one-to-one, /),. is said to be a faithful representation of g. 
If for some R ~ S, D(R) = D(S), /),. is said to be an unfaithful repre
sentation of g. The matrix D(E) is always the n by n unit matrix. If a 
representation is unfaithful, the elements represented by D(E) form a 
self-conjugate subgroup of g, say of order h, and to each matrix of /),. 
correspond exactly h elements of g. /),. contains (lih distinct matrices. 
If D(E), D(A), ... is an n dimensional representation of g, so is 
MD(E)M-t, 11ID(A)M-t, ... where M is any nonsingular n by n 
matrix. The two representations /),. and M /),.M- 1 are called equivalent. 
Every representation of a finite group is equivalent to a representation 
by unitary matrices. Henceforth we shall be concerned only with such 
unitary representations. 

A finite collection of n by nmatrices 0 1 , O2 , ••• , OK is said to be 
reducible if there exists an n by n unitary matrix U such that for i = 
1, 2, ... , [{ we have 

UO,U-' = 1 "21 f 1 

where Ai is an l by l matrix, B. is an n-l by n-Z matrix, 0 < l < n, C 
is an n-l by l matrix all of whose elements are zero, and D is an l by n-l 
matrix all of whose elements are zero. It is assumed that 1 is independent 
of i. A collection of matrices that is not reducible is said to be irreducible. 

Every finite group has exactly as many nonequivalent irreducible 
representations as it has classes. If II , l2' ... , lc are the dimensions of 
all the nonequivalent irreducible representations of g, of order (I, then 

c 

L l~ = (I. 
1 

If D a (R) p.v is the element in the J-tth row and vth column of the matrix 
representing R in the la-dimensional irreducible representation, (x, of g, 
then 

J-t,J-t',v,v' = 1,2,,,, ,la' 

Here * means complex conjugate and 0 is the usual Kronecker symbol. 
If the matrices D(j(R) form an lp dimensional irreducible representation 
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of S not equivalent to the representation a, then 

L D"'(R)l'vD(3(R):,v' = 0, 
u,g 

fJ., v = 1,2, ... , l"" fJ.', v' = 1,2, '" , l(3 . 

If D(R) is the n by n matrix representing R in the representation Ll, 
the trace of D(R), namely 

n 

x(R) L D(R) 1'1' , 
1'=1 

is called the character of R in the representation Ll. If Rand S are in 
the same class of S, then x(R) = xeS), for any representation of S· 
The characters of the irreducible representations a and (3 of S satisfy 
the orthogonality conditions 

L x"'(R)i(R)* = g 0",(3 . 
R,g 

Here 0",(3 is unity if a and (3 are equivalent representations and is zero 
otherwise. 

Let Ll be any representation of S with character x(R). Let the char
acters of the irreducible representations of S be Xi (R), j = 1, 2, .,. , C 

where c is the number of nonequivalent irreducible representations of 
S (= number of classes of S). Then x(R) may be written uniquely in the 
form 

c 

x(R) = L aixi(R), all R in S, 
i=1 

where the ai are nonnegative integers independent of R. In fact, 

1 '" . a j = - L.i x(R)x1(R) * . 
g R,g 

The representation Ll is said to contain the irreducible representation 
j ai times and there exists a unitary matrix U independent of R such 
that 

UD(R)U- 1 

o 

o ... 0 

D\R) ···0 

o D\R) 

all R in S 
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where Di(R), Di(R), Dk(R) etc., are matrices of the ith, jth, kth, etc., 
irreducible representation of 9, and 0 stands for the appropriate matrix 
with all elements zero. The jth irreducible representation will occur 
exactly ai times among Di(R), Di(R), Dk(R) and so on. 

Every group 9 possesses a faithful representation, called the regular 
representation r, that consists of 9 by 9 permutation matrices. The rows 
and columns of these matrices can be labelled by the elements of 9. The 
entry in row R and column S of the matrix representing T is unity if 
R = TS and is zero otherwise. The regular representation is reducible: 
it contains the irreducible representation DCI. exactly l CI. times, a = 
1,2, ... , c. 

Let D' (R) and D" (R), R runs through 9, be irreducible representations 
of 9 of dimension d' and d" respectively. Let the matrix H satisfy 
D'(R)H = HD"(R) for all R in 9. Then either H is the zero matrix or 
H is square and nonsingular so that d' = d", and the two representations 
are equivalent. A matrix that commutes with all the matrices of an 
irreducible representation of 9 is a multiple of the unit matrix. These 
statements are known as Schur's lemma. 

Much of the foregoing remains valid with minor modifications when 
the number field in question is the real rather than the complex numbers. 
One easily finds that every real representation of a finite group is 
equivalent (over the reals) to a representation by orthogonal matrices. 
The only real symmetric matrix that commutes with all the matrices 
of a real-irreducible representation is a multiple of the unit matrix. 
If DCI.(R) and D{3(R) are nonequivalent real-irreducible representations 
by real orthogonal matrices, respectively of dimension lCl. and l{3, then 

L DCI.(R)Il.D{3(R)Il'.' = 0, 
REg 

}J., v = 1,2, ... , lCl. }J.', v' = 1,2, ... , l{3 , 

L [Da(R)Il.Dct(R)Il'.' + DCI.(R)Il.,Da(R)Il'.] = 2 0llll' o •• ,glla , 
REg 

}J.,v,}J.',v' = 1,2, ···l",. 

For the characters one has 

L x a(R)x{3(R) = 0 
R.g 

if the representations a and (3 are not equivalent, while 

L [xa(R)xa(R) + X"'(R2)] = 2g. 
R 
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Every real-irreducible representation that is reducible (over the complex 
numbers) is equivalent to the direct sum of an irreducible representation 
and its complex conjugate. If the irreducible unitary representation 
D(R) = U(R) + iV(R), with U and V real, is not equivalent to a real 
orthogonal representation, then 

( U(R) I VCR)) 
- VCR) U(R) 

is a real-irreducible representation by real orthogonal matrices. 

(18) 

For an irreducible representation D(R) with character x(R), the sum 

can have only one of the three different values 0, ±l. If h = 1, D(R) is 
equivalent to a representation by real orthogonal matrices. If h = -1, 
the representation D is equivalent to its complex conjugate, but is not 
equivalent to a real representation. A real-irreducible representation 
can be made from each irreducible representation D having h = -1 by 
forming real matrices of the form (18), where U and V are the real and 
imaginary parts of D. Finally, if h = 0, D is not equivalent to its com
plex conjugate and is not equivalent to a real representation. Non
equivalent irreducible representations for which h = ° occur then in 
complex conjugate pairs. Each such pair gives rise to a single real
irreducible representation through the recipe (18). Thus, finally, if h 
has the value 0 for exactly 2p of the c nonequivalent irreducible repre
sentations of g, then 9 has exactly c - p nonequivalent real-irreducible 
representations. 
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