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(Manuscript received October 4, 1966) 

This paper deals with the analysis of data from the omnidirectional 
high-energy proton detector on the Telstar® 1 satellite. The main accom
plishment is the development of relatively simple (empirical) mathematical 
models lvhich give a statistically accurate representation of the 1neasured 
spatial distribution of intensity of protons with energies between 50 and 
130111eV. 

These models depend upon the fitting of 8 (or 9 or 10) coefficients based 
on samples containing approximately 1000 of the nearly 80,000 experi
mental observations. The nature of the model for the average omnidirec
tional counting rate permits its closed form transformation to the equivalent 
equatorial pitch angle distribution. 

Sufficiently accurate fits were achieved so that the residuals (equal to 
observed minus fitted) could be productively examined for possible depend
ence on variables other than the two magnetic coordinates used in the 
fitting. One consequence of this was the detection of instrumental suscep
tibility to temperature and bias voltage changes, which led to an objective 
partitioning of the data. 

The present paper has several evolutionary aspects: In part'£cuZar, a 
series of one-dimensional fits was employed as a base faT cleveloping a 
two-dimensional model; a preliminary analysis of all the data was used 
to guide the rejection of outliers; a first two-dimensional fit to all the data 
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led to a data-independent basis for partitioning the data; the mode of 
selection of a sample of data, to which the two-dimensional model was 
fitted, changed as deeper insight into the importance of this issue developed; 
and, after a very satisfactory fit to the data was attained, the model was 
improved by specialization and reparameterization so as to overcome some 
statistical defects and to achieve greater physical meaning. 

The data cover the time period between July 1962 and February 1963, 
and the spatial region bounded by 1.09 R. ~ R ~ 1.95 Re and 0 ~ A < 58°. 
Flux maps having a relative accuracy of about two percent are derived 
from the fit and presented. The temporal behavior of the intensity is ex
amined and some changes are noted. The maximum value of the omni
directional flux of protons with energies between 50 and 130 J11 e V is found 
to be [5.7~~:~] X 103 protons/cm2 sec at L = 1.46 on the magnetic 
equator, in good agreement with other experiments. Relative flux values 
and energy spectra are consistent with the generally accepted picture of 
the proton distribution. 
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r. INTRODUCTION 

This paper deals with the analysis of data from the omnidirectional 
high-energy proton detector on the Telstar® 1 satellite. The main ac
complishment is the development of a relatively simple (empirical) 



1304 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967 

mathematical model which gives a statistically accurate representation 
of the measured spatial distribution of protons with energies between 
50 and 130 MeV. 

The Telstar® 1 satellite was launched into a 45°-inclined orbit with 
an apogee of 5600 km and a perigee of 950 km on day 191 (July 10), 
1962. The period of precession of the apsis was 180 days. The satellite 
was instrumented to measure fluxes of energetic particles; in particu
lar, counting rates of protons with energies above 50 MeV were re
corded. Two thousand hours of telemetry was received during the ac
tive life of the satellite, which terminated on day 52 (February 21), 
1963. The satellite and associated systems have been described in de
tai1.1 The particle-detection instruments have been documented2 and 
some of the experimental results have been presented.::;, 4, 5 

The above-mentioned presentations of information concerning the 
earth's radiation belts have been principally graphical in format, ow
ing to the complexity of the belts and the limited understanding of the 
details of the processes affecting them. 

An accurate analytical representation of the data would enable con
venient interpolation, extrapolation, and transformation. Thence it 
would be practical to make extensive comparisons with the results of 
other experiments and with various theoretical predictions and to sum
marize, analytically, such features as the equatorial omnidirectional 
counting rate and the approximate size of the equatorial loss cone. In 
addition, an empirical mathematical model would facilitate the study 
of temporal fluctuations in various regions of space. Of course, a good 
analytical representation, even though empirical, may also stimulate 
deeper physical insight and theories. 

The present study was directed toward the development of a math
ematical function which would, when fitted to the data, provide a con
venient, concise and precise summary description. The mathematical 
model (s), which are herein presented, were empirically evolved, using 
the knowledge that the intensity distribution of these protons is, in 
the main, not rapidly variable in time. Even more specifically, the 
assumption has been that fluctuations in observed counting rates at a 
fixed point in space relative to the earth are independent random vari
ables. Further, the main effort of the analysis has been to try to relate 
the observed counting rates to a two-dimensional magnetic coordinate 
system derived from three-dimensional spatial coordinates by mapping 
the known earth's magnetic field onto the field of a magnetic dipole. G 

The mathematical models which are used depend upon fitting of be
tween 8 and 10 coefficients based on samples containing approximately 
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1000 of the nearly 80,000 experimental observations. The nature of 
these models for the average omnidirectional counting rate permit 
their closed-form transformation to the equivalent equatorial pitch 
angle distribution. 

The fitted models were sufficiently accurate so that the residuals 
(equal to observed minus fitted) of all the data could be productively 
examined for possible dependence on variables other than the two mag
netic coordinates used in the fitting. One consequence of this was the 
detection of instrumental susceptibility to temperature and bias volt
age change, which led to an objective partitioning of the data. 

This article summarizes some of the productive aspects of the anal
ysis of this body of data. A very large amount of "preliminary" work 
is not reviewed. Though not an historical description of the work, the 
present paper does have several evolutionary aspects. In particular, a 
series of one-dimensional fits were employed as a base for developing 
two-dimensional models; a preliminary analysis of all the data was 
used to guide the rej ection of outliers; a first two-dimensional fit to 
all the data led to a data-independent basis for partitioning the data; 
the mode of selection of a sample of data, to which the two-dimen
sional model was fitted, changed as deeper insight into the importance 
of this issue developed; and, after a very satisfactory fit to the data 
was attained, the model was improved by specialization and reparam
e.terization so as to overcome some statistical defects and to achieve 
greater physical meaning. 

Readers with specific interests may wish to consult the Table of 
Contents, the summary (Section XIV) and the following overview for 
guidance. 

Section II introduces the input data which have been analyzed. Co
ordinates and notation are tabulated, the distribution of the data is 
displayed, and the general quality and stability of the data are dis
cussed. It is shown informally that the measurements may be usefully 
organized in the dipole. magnetic coordinate system used. 

In Section III, various alternative coordinate systems and scales are 
considered. The bases for choice of the x,L coordinate system for the 
independent variables and the square-root-of-counting-rate scale for 
the dependent variable are given. 

Section IV brings together the ideas underlying the formulation and 
evolution of the models, and gives mathematical definitions and details. 
Some properties of the models which make them suitable smoothing 
functions for this body of data are indicated. 

One-dimensional fits to the data in each of several L-slices (an 
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L-slice is a particular grouping of the data) are displayed on several 
scales and discussed in Section V. It is shown that L-slice fits suffer 
from fundamental deficiencies, in addition to being inconvenient to 
work with. The results of the L-slice fits are used to lead to a two
dimensional model. 

Section VI contains the treatment of the preliminary fit of a two
dimensional model. This fit is of good quality and provides residuals 
which are used to help identify and eliminate extraneous sources of 
variability in the data and to Berve as a basis for more refined sample 
selection. 

The treatment of the two-dimensional fit to the data after it has 
been partitioned to reduce instrumental effects appears in Section VII. 
The method of sample selection is important, and some algorithms and 
their influence on the resultant fits are considered in Section 7.1. The 
advantages of selecting a sample on the basis of a preliminary fit are 
discussed. The fit itself is described and evaluated in the remainder of 
the section. 

A more detailed statistical critique of the fit discussed in Section 
VII is contained in Section VIII; in particular, some remaining phys
ical and statistical defects are pinpointed. 

Section IX deals with a modified version of the model, which elimi
nates the remaining defects, and gives the results of fitting the most 
satisfactorily parameterized model of the proton distribution. 

Residuals are used to study temporal effects in Section X. An in
crease in intensity near L = 2 is noted during October, 1962. An upper 
limit of 0.003 gauss is found for the diurnal variation of the earth's 
magnetic field near L = 1.5. A possible shift in the location of the 
atmospheric cutoff is examined. 

The behavior of the radiation belt near the top of the atmosphere is 
the subject of Section XI. Although the data do not allow the position 
of the low-altitude cutoff to be accurately determined, the qualitative 
behavior precludes a simple atmospheric cutoff mechanism. 

Section XII is devoted to a comparison of the Telstar® 1 results, 
presented as flux maps, with those obtained on Injuns 1 and 3, Ex
plorers 4 and 15, and other satellites. Absolute flux values agree to 
within a factor of 2 in most cases, which is as well as can be expected. 
Very good agreement exists concerning the behavior of the intensity 
in the equatorial plane, on L-shells, and near the top of the atmos
phere. Experimental results regarding the equatorial pitch angle (see 
Fig. 1) distribution are found to agree well with each other, but differ 
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appreciably from the published results of theoretical calculations. 
Section XIII gives brief consideration to possible directions in which 

this work might be extended: improving the fit to the Telstar® 1 high
energy protons still further; approaching model development differ
ently; employing the data more fully; and encompassing other more 
complex bodies of data. 

Section XIV contains a brief summary of the results and Section XV 
contains acknowledgments. 

Appendix A provides a detailed description of the particle detector 
and its calibration. 

Appendix B gives some statistical background and details of the 
analysis, and Appendix C discusses statistical measures of the good
ness of fit of the model over all the partitioned data. 

MAGNETIC 
NORTH 

COS a o = 0.5 

ao = 60° 

Bo = 0.01995 GAUSS 

Fig. 1-Magnetic coordinates of the point P. The spiral is the orbit of a 
particle trapped on the magnetic line of force L = 2.5 and mirroring at B= 
0.0266 gauss. The equatorial pitch angle, CXo, is the angle between the velocity 
vector and the magnetic field vector at the equator. 
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II. THE DATA 

The data which are studied in this paper were obtained with a 
detector on the Telstar® 1 satellite which measured protons with energies 
greater than 50 l\/[eV. The sensitive detecting element is a semiconductor 
diode developed specifically for satellite experiments. 7 The effective 
geometric factor, g, of the detector depends upon proton energy, but 
over the region energy between 50 and 130 MeV the average geometric 
factor, g, is relatively insensitive to the energy spectrum and an ap
proximate value of 0.143 cm2 steradian has been selected. These con
siderations are discussed in detail in Appendix A. The response of the 
detector is also dependent upon both temperature and electrical bias 
because of changes in the effective thickness of the active region of the 
detector. These effects are discussed in Section 6.8. 

The primary input to our data reduction process consisted of: the 
telemetry record of the number of counts measured by the detector 
in an II-second counting interval once every minute; the time at which 
the data were recorded (inserted by the recording station); and the 
ephemeris of the satellite position obtained from tracking data. These 
are supplemented by the satellite spin-axis orientation obtained from the 
mirror flash data8 and by telemetered measurements of the satellite 
skin temperature near the detector and of the detector bias voltage. 

During data reduction, the square root of the counting rate was 
computed for each recorded particle-counting interval and associated 
with the following information: date and time, geographic position, 
position in the earth's magnetic field, orientation of the detector relative 
to the magnetic field, bias voltage, and skin temperature. 

The model developed in the present paper is based on the use of 
a two-dimensional magnetic coordinate system, in which the earth's 
magnetic field is mapped onto an axially symmetric dipole field using 
the adiabatic invariants of particle motion. 9 Any of a number of equiv
alent pairs of magnetic coordinates, including the B,L; R,A. and x,L 
sets10 may be used to locate position in this dipole field. Briefly: The 
magnetic shell parameter, L, specifies a particular line of force (about 
which the trapped particle spirals) by the radial distance to the line 
in the equatorial plane of the dipole measured in units of one earth 
radius (see Fig. 1); position along the line of force is specified by either 
the magnetic induction (field strength), B, or by x, where x= (I-Bo/B)! 
is a convenient variable in the equations of the dynamics of charged 
particle motion. (Bo is the magnetic induction at the equator on the 
line of force in question.) l\/[agnetic dipole polar coordinates R and A., 
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MAGNETIC INVARIANT EQUATOR 

1.0 1.5 

R 

1309 

2.0 

Fig. 2 - The spatial distribution of data for L < 3 in R, A coordinates. Every 
twentieth point from the L-ordered data is plotted. 

where R is the radial distance in earth radii and A is the latitude angle, 
offer a sufficiently close analog to geographic coordinates to be con
venient in many circumstances. The choice among these sets is dis
cussed in Section III, as are the reasons for choosing the square root 
of the counting rate as the scale for the dependent variable. 

The coordinates and variables, together with other symbols used 
in this analysis, are listed in Table I under the following headings: 
Radiation Intensity, Position and Orientation, Instrument and Energy 
Spectrum, Mathematical Model, Statistics, and Other. Summary in
formation concerning units, constants, derivations, and sources IS 

included. 
The satellite was confined to the volume of space {1.09 Re ~ 

R ~ 1.95 R. , * 0 ~ A ~ 58°}. For {L > 3, R < 1.95 R.}, the average 
counting rate is very nearly zero, and these data were not examined 
further. About 5 percent of the 50-130 MeV proton data for L ~ 3 
were associated with noise bursts which affected adjacent telemetry 
channels; these data were discarded. The study described below is 
based on the remaining 77,649 observations. 

The spatial distribution of the data is indicated in Fig. 2 which is 

* R e = earth radius. 
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a plot in R,A coordinates of the position of every twentieth point from 
the L-ordered data. Although data were not acquired continuously 
during the 226 days that the satellite was active, there arc no time 
gaps in the data longer than two days in duration. 

Fig. 3 is a plot of bands of constant counting rate made by plotting 
the R,A coordinates at which certain specified numbers of counts were 
recorded during II-second counting intervals. The data in Fig. 3 cover 
the entire seven-month life of the satellite. The narrowness of the con
tour bands demonstrates that the data are exceptionally well-behaved 
in both time and space, and that one may reasonably hope to describe 
radiation intensity in terms of R,A coordinates or their equivalent. 

Among the various sources of error in the data are: noise present 
in the received telemetry signal or introduced during the recording and 
processing of the telemetry; e.rrors in the time as recorded by the 
ground station; errors in the satellite ephemeris; differences between 
the real magnetic field of the earth and the values of Band L calcu
lated from the coefficients in the computer program INVAR (see Table 
I); and instrumental effects. In addition, one expects statistical fluc
tuations in the measured counting rate at a fixed position. The im
portance of these. sources of error is discussed later. 

CB 

• .. -: + 

MAGNETIC INVARIANT EQUATOR 

++ ~ ~ 
• ++ 

1.0 

e.- _ . 

" 

.. 
1.5 e 
R 

d 2.0 

Fig. 3 - Bands of constant numbers of counts in 11 seconds in R, A space: 
Band a, 4; Band b, 32; Band c, 127-129; Band d, 254-258; Band 3,508-516 counts. 
All the data from the seven-month period are displayed. 
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III. CHOICE OF THE PRINCIPAL VARIABLES AND THEIR SCALES 

The current state of knowledge of the earth's radiation belts sug
gests that the spatial distribution of high-energy protons may reason
ably be organized on the basis of a two-dimensional magnetic coordi
nate system, except perhaps at very low altitudes near the South 
American magnetic anomaly, where longitude also becomes important. 
Telstar® 1 data plotted in Fig. 3 indicates that the observed counting
rate data does indeed depend principally on the magnetic coordinates, 
Rand A. The coordinates R,A are defined in terms of the mathemat
ically equivalent pair B,L.9 A third equivalent set consists of L to
gether with the coordinate x, suggested by Roberts,I° defined in Table 1. 

We have primarily employed the x,L set in this study because of 
the following considerations: In the adiabatic theory, the mirror points 
of particles do not migrate between magnetic shells.H \Vithin any shell, 
the coordinate x is approximately linear in A for A < 30°, and thus the 
near-equatorial data is not "crowded" into a small interval of the 
coordinate, as is the case for B. Moreover, we have been able to de
velop simple functional representations of the data in terms of x and L. 

The flux of particles is the variable of greatest physical interest for 
comparing the results of different experiments, calculating physical 
effects of the radiation (such as radiation damage to devices in pro
posed orbits), deriving an energy spectrum from experimental meas
urements, examining the implications of various source and loss mech
anisms, etc. However, the flux is not measured directly and requires 
for its calculation knowledge of the energy spectrum of the particles 
and of the energy dependence of the geometric factor of the detector. 
Even in the present circumstances where the conversion is (under the 
assumptions of Appendix A) quite insensitive to these, we prefer to 
carry out the bulk of the data analysis in terms mathematically equiv
alent to the directly observed counting rates. 

From among the possible representations of the counting rate in
formation (including counting rate, log counting rate, and square root 
of counting rate) the square root of the observed counting rate, Y, has 
been selected as the dependent variable. On the hypothesis that the 
number of counts in a given II-second counting interval at any given 
position in space is a random variable with a Poisson distribution, it 
can be shown that the variance of Y is approximately constant, inde
pendent of its average value (see Appendix B.2). The least squares 
criterion has been used in all the estimating procedures; that is, coeffi
cient estimates have been selected so that the sum of squares of dif-



TABLE I-COORDINATES, VARIABLES AND NOTATION 

The redundent use of a few symbols is partly due to the decision to retain "standard" notation in both geophysics and statistics. 
The context should resolve any apparent ambiguities. Some symbols used locally in the text are not included in this table. 

Symbol Coordinate Units 

Radiation Intensity 
-------- --

J Fitted average omnidirec-
tional flux 

protons/cm2 sec 

j Predicted unidirectional protons/cm2 sec 
flux ster 

Y, Y j Square root of observed 
counting rate 

(counts /sec )1/2 

y Fitted average value of Y (counts/sec )1/2 

Z Counts in an 11-second counts 
counting interval 

Position and Orientation 

B I Magnetic induction I gauss 

B Magnetic field strength gauss 
Bo Equatorial value of B gauss 

L Magnetic shell parameter ratio to earth 
radius (R.) 

Source 

telemetry 

least squares fit 

telemetry 

I INVAR 

IBI 

INVAR 

Underlying 
variables 

y, (j 

y, {j 

Z 

Y,x, L 

------

I r, 0, cp 

r, 0, cp 

r, 0, cp 

Remarks 

Equation (21). 

Equation (8). 

Section IV. This symbol is 
used generically for all 
the models. 

Random variable. 

Computer program 
INV AR by McIlwain12 

containing the Jensen 
and Cain13 magnetic 
field coefficients for 
1960. Re = 6371.2 km. 

Bo = 0.311653/L3 
= 0.311653/R3. 

See B, above. 
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Symbol Coordinate 

Position and Orientation (Cont'd) 

Lm Midpoint of an L-slice 

R Magnetic dipole radial dis-
tance 

Re Earth radii 
r Geocentric distance 

T Universal time 

Local time 

x 
[ _ 0.311653J/2 

1 BL3 

a o Equatorial pitch angle 
'Y Angle between satellite 

spin axis and local mag-
netic vector 

6 Declination of the satellite 
spin axis 

TABLE 1-(Cont'd). 

Units 

same as L 

Re 

km 
earth radii (Re) 

days 

hours 

dimensionless 

degrees 
degrees 

I degrees 

Source 

B,L 

Heiskanen14 

ephemeris 

clock at telem
etry receiv
ing station 

B,L 

B,w 

mirror flash 
data 

Underlying 
variables 

r, 8, c!> 

tracking data 

T,c!> 

r, 8, c!> 

13, x, 6 

I r, 8, C!>, T, and 
_ astronomical 

data 

Remarks 

Section V. 
0.311653 J 3m 1/2 

B R3 L4-TJ 
6371.2 km. 
For geomagnetic calcula

tions, r is corrected to 
altitude above the 
International Ellipsoid 
[Heiskanen14]. R. 
6371.2 km. 

Measured in days from 0 
hr 0 min. U. T., Jan. 0, 
1962. 

Apparent sun time (local 
mean time corrected for 
the equation of time 
taken from the Ameri
can Ephemeris and 
Nautical Almanac15 ). 

See above for Band L. 

Fig. 1. 
'Y = B·w/jBj,wherewisa 

unit vector parallel to 
the angular momemtum 
vector of the satellite. 

Optical observations of 
the reflection of the sun 
from mirrors on the sat
ellite, Courtney-Pratt, 
et a1 8• 
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Symbol Coordinate 

Position and Orientation (Cont'd) 

() 

X 
J.l.o 
cp 
X 

(,) 

Colatitude 
Magnetic dipole latitude 
Cos ao 
East longitude 
Right ascension of the 

satellite spin axis 

Direction of the spin 
angular momentum 
vector of satellite 

Instrument and Energy Spectrum 

E Energy 
Eo e-folding energy 

g Geometric factor of the 
detector 

{j Average geometric factor 
of detector 

:fl.! Exponent of integral 
power-law energy 
spectrum 

N N umber of protons 
n Exponent of differential 

power-law energy 
spectrum 

Vb Bias voltage 

T Skin temperature 

TABLE 1-(Cont'd). 

Units 

degrees 
degrees 
dimensionless 
degrees 
degrees 

dimensionless 

MeV 
MeV 

cm2 ster 

cm2 ster 

dimensionless 

dimensionless 
dimensionless 

bits 

°C 

Source 

ephemeris 
B,L 

ephemeris 
mirror flash 

data 

mirror flash 
data 

detector geome
try 

detector geome
try 

telemetry 

telemetry 

Underlying 
variables 

tracking data 
r, (), cp 

tracking data 
r, (), cp, T, and 

astronomical 
data 

x, 0 

proton energy 
spectrum 

resistor calibra
tion 

thermistor cali
bration 

Remarks 

geocentric angle. 
X = [arc cos(R/L)J1/2 
Numerically equal to x. 
Geocentric angle. 
See 0, above. 

See 0, above. 

Used in energy spectrum, 
Appendix A. 

Equation (20). 

Each bit represents a step 
of -1.108 volts. 

Measured near the de
tector. 
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Symbol 

Mathematical Model 

A, A', A", A'" 
Aiv 

Ap 

ai, a2, a3, a4, a5 

b e, 
F 
G, G', G", G'" 

Coordinate 

Equatorial value of y 

Coefficient 

Coefficients 

Coefficients 

TABLE I-(Cont'd). 

Units Source 

(counts/sec )1/2 fitting 

(counts/sec )1/2 I fitting 

I fitting 

dimensionless 

dimensionless 
dimensionless 

L 

Underlying 
variables 

x, (L) 
L 
L, (x) 
x, (L) 

Remarks 

The superscripts indicate 
various models, see Sec
tion IV. In particular 
A' indicates Model I 
and A" indicates Model 
II. N.B. A is used 
generically for all the 
models, or when the 
distinction is unimpor
tant or clear from the 
context. 

Maximum value of A" 
(and therefore y"), 
Model II, Equation 
(11). 

Coefficients of A" and 
A iv, Equations (6) and 
(16). 

Equation (18). 
Equation (18). 
Equation (19). 
Describes the x-depen

dence of y for the 
models indicated by the 
superscripts, see Sec
tion IV. N.B. G is used 
generically for all the 
models, or when the 
distinction is unimpor
tant or clear from the 
context. 
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TABLE I-(Cont'd). J-.l 
C..:I 
J-.l 

Underlying 0) 

Symbol Coordinate l:nits ~ource variables Remarks 

:\Iathematical Model (Cant'd) ~ :r: 
t"J 

Lo Coefficient same as L fitting Smallest value of L for to 
which y > 0. t"J 

Lp Coefficient same as L fitting Position of Ap is at (x, L) t'" 
t'" 

= (0, Lp). (fl 

Ll Coefficient same as L fitting Equation (16). ~ 

111 Coefficient dimensionless fitting L Model III, Equation (15). (fl 

~ 
P Coefficient dimensionless fitting L Model III, Equation (15). t"J 

Pi Coefficients x Equation (19). ~ 

Q Coefficient dimensionless fitting L Model III, Equation (15). 8 
Re R at cutoff R. fitting L Equation (4). trj 

a 
rl, r2, r3, (r4), Coefficient fitting Coefficients of R e, Equa- :r: 

(r5) tion (5). Z 
H 

S Shape factor dimensionless fitting L Equation (3). a 
So, SI Coefficient fitting Coefficients of S, Equa- ;..-

t'" 
tion (3). c... 

Xc Cutoff function dimensionless fitting L Smallest value of x for 0 
which y = 0, Equation d 

~ 

y, YL, y', y", y'" I 
(4). Z 

Fitted average value of y (counts/sec )112 fitting x, L The subscript and super- ;..-

scripts indicate various !" 
models, see Section IV. (fl 

In particular y' indi- t"J 
"'d 

ca tes Model I and y" "'3 
t"J indicates Model II. ~ 

N. B. y is used generically to 
for all the models, or t"J 

~ 
when the distinction is ..... 
unimportant or clear <:0 

from the context. 0 
-l 

Yj Fitted value (counts/sec )1/2 fitting I x, L Corresponds to the obser-
vation Y j • 

11 Coefficient di mensionless fitting Shape factor, Equations 
(6) and (11). 



Symbol 

Other 

CB 

HTB 

Statistics 

Cov 
df 
D 12, D22 
g 
h 
n 
R2 

Res, RES 
SS 
lii 
11 
Var 
W 

Wi 

ex 

fi. 
b 

Coordinate 

Complete body (of data) 

High temperature and high 
bias voltage (data) 

Covariance 
Degrees of freedom 
Squared distance 
Function 
Function 
N umber of observations 
Squared multiple correla-

tion coefficient 
Residual 
Sum of squares 
Function of Y i 
}\'[ean of 1£i 
Variance 
Independent variable 

(vector) 
Components of W 

Values of the random 
variable Z 

Dependence coefficient 

Confidence coefficient 
Correction to 0 (vector) 

TABLE I-(Cont'd). 

Units Source 

di mensionless 

counts 

Underlying 
variables Remarks 

Designates all the data, 
see Section 4.5. 

Designates a subset of the 
data, see Sections 4.5 
and 6.9. 

See Wilks16. 
Appendix B.6. 

Observed minus fitted. 

Wilks16. 

ex = [1 - Vl-pi]sign(p), 
Wilk17. Equation (31). 

Wilks16• 
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Symbol 

Statistics (Cont'd) 

fi 
0, Of 
~i _ 

~, 0 
0, 
p 

p 
(j' 

MSD 
MSE 
MSR 

-- --- -

TABLE I-(Cont'd). 

Coordinate Units Source 

Component of '5 I ... .. . 
Coefficient vector ... . .. 
Component of Of ... . .. 
Estimate of Of ... . .. 
Components of 8 ... . .. 
Average value of a Poisson counts ... 

variable 

Correlation coefficient dimensionless ... 
Standard deviation ... . .. 

I 

Underlying 
Variables 

. .. 

. .. 

. .. 

. .. 

. .. 

. .. 

. .. 

. .. 

Remarks 

. .. 

. .. 

. .. 

. .. 
Estimates of OJ. . .. 

... 

. .. 
The terms, mean square error (MSE), mean square residual (MSR) and mean square deviation (MSD) are used 
in this document to denote related but different entities, each measuring "goodness of fit" in relation to different 
situations. When a selected array of data is fitted by a model, the minimum sum of squares of residuals from the 
fit of those data divided by the degrees of freedom (number of selected observations minus number of coefficients 
fitted) is termed the MSE. When a fit based on a sample of data is used to generate residuals for all of the data, 
without refitting, the total sum of squares of these residuals divided by the number of residuals is termed the MSR. 
For defined "small" cells in x,L space, the sum of squares of deviations of observations from their average in the 
cell divided by the number of such deviations minus one is termed the MSD. 
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ferences between observed and fitted values is minimized. The choice 
of the square root scale, Y, as the scale on which to represent the 
counting rate data makes troublesome differential weighting of the 
data in the least squares fitting unnecessary. Similarly, plots of Y 
versus various variables are convenient since the scatter in Y is ap
proximately independent of the value of Y. In fact, the square root 
transformation will make the variance of the observation approxi
mately independent of its average value whenever the variance is pro
portional to the mean. Thus, the procedure is more robust than the 
assumption of a Poisson distribution, for which the variance equals 
the mean. Further discussion and detail is given in Appendices B.2 
and C. 

The results were restored to counting rate and the flux was calculated 
using the best estimate of the average geometric factor, {j, (see Appendix 
A) to facilitate the discussion of the physical significance of the meas
urements. 

IV. THE EVOLUTION OF THE MODELS 

4.1 General Approach 

This section provides a summary overview of the evolution of the 
models, the details and accomplishments of which are elaborated in 
the following sections and appendices. 

The approach to model development in this study has been largely 
empirical. Theoretical physics considerations are currently too com
plex and speculative to do more than serve as a general guide and 
stimulus. We have proceeded on the presumption that an adequate 
model for the spatial distribution of the high-energy protons can be 
based on the mapping of the earth's magnetic field onto a two-dimen
sional axially symmetric dipole field, expressed, for example, in the 
coordinates x and L. This is supported by the plots of Fig. 3, the suc
cessful polynomial fits on L-lines of McIlwain,18 Valerio,19 and Fil
lius,zo and by the results of the present study. 

The ultimate justification of the mathematical models developed 
herein is that, when appropriate estimates of coefficients are inserted, 
good fits to the data are obtained. Various other mathematical, phys
ical, and statistical considerations also provided guidance and evalua
tion. 

The evolution involved successive interactions with the data and 
iteration on models. Roughly, the main stages included: grouping the 
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data into L-slices; inferring a mathematical function having adjustable 
coefficients which would fit a selected series of L-slices; developing a 
mathematical function to describe the dependence of the L-slice coeffi
cients on L; thence fitting the two-dimensional model so-defined toO a 
sample of the data; using this fit to screen outliers, to detect instru
mental effects and, after partitioning the data, to select a representa
tive sample of partitioned data for further fitting; after obtaining a 
very good fit to the partitioned data, some remaining physical and 
statistical defects of the model were overcome by a reparametrization 
and specialization. Further generalizations of the model were also 
tested. 

4.2 The L-slice JlI[ odel 

As a developmental operational procedure (encouraged by the L-she11 
orientation of the adiabatic theoryll) the data were grouped into a 
series of narrow bands according to L values (e.g., 1.849 ~ L ~ 1.851) 
and plottcd versus x. Retrospectively, there is every reason to believe 
that an initial approach based on grouping the data into x-slices would 
also have led to an effective analysis (see Section 13.2). Various func
tional forms, having adjustable coefficients dependent on L, were tested 
for adequacy of fit to the L-slices. 

Initially, we employed the functional form 

( ) _ {A ·G(x; xC, S) 
YL X -

o 
(x ~ xc), 

(x > xc), 

where A, XC and S are fitted coefficients for each L-slice, and 

(x ~ xJ, 

(1) 

(2) 

For this body of data from the region {R ~ 1.95 Re , 1.15 ~ L ~ 3.0}, 
we have found this YL(X) function provides an adequately flexible model 
on L-slices, for appropriately fitted values of the coefficients A, XC) 

and S. In this representation for given fixed L, the quantity A 2 may be 
interpreted as the average equatorial omnidirectional counting rate, 
since x = 0 on the equator, Xc represents a "cutoff" value for x, i.e., 
the cosine of the equatorial pitch angle corresponding to the "loss cone", 
and S has the effect of a shape factor in the y,X dependence. 

The analysis using this YL(X) model is described in Section V. 
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4.3 Dependence on L 
The YL (x) model was fitted to a series of L-slices, obtaining fitted 

values of A, XC and S. These were each plotted against the nominal 
(mid-range) L value for the slice and a reasonably smooth variation 
with L obtained. 

Thence we inferred the following functional dependence of the L
slice coefficient estimates on L: 

s = S(L) = So + SlL, (3) 

I (R )3[ R J-~ XC = xcCL) = \)1 - i 4 - 3 i ' (4) 

Rc = Re(L) = La + 1'l(L - La) + 1'2(L - Lo)2 + 1'3(L - Lo)\ (5) 

J a1(L - La) 

A = A'(L) = 1~' + (L - a,)' 

where So, Sl, r1, r2, r3, a1, a2, a3, TJ and Lo are fitted coefficients. 

(6) 

Equation (4) simply expresses the mathematical relationship be
tween R (or Rc) and x (or xc) in the magnetic dipole field (see Table 
I) . The coefficient Lo, which occurs in A' (L) and Xc (L) , may be inter
preted as the lower bound of the L shells on which protons with ener
gies above 50 MeV were measurable. The quantity Rc (L) is such that 
Rc(L) - 1 is the equivalent dipole altitude at which the counting rate 
falls to zero. 

4.4 A Two-Dimensional Jl1 odel-1I1 odel I 

The conj unction of (1) to (6) defines a two-dimensional model, re
ferred to henceforth as lVIodel I, 

y'(x, L) = A'(L)· G/(x, Xc(L) , S(L)) , (7) 

where G' is essentially the function G of (2), with Xc and S explicitly 
dependent on L. 

Though empirical considerations mainly guided the choice of these 
functions, some physical and mathematical properties influenced the 
choice. In the present case, in which the geometric factor of the de
tector is considered to be independent of the energy spectrum (see 
Appendix A), [y (x, L)] 2 transforms in closed form to the equatorial 
pitch angle distribution, giving10 



1322 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967 

_ 4". [A(L)]'{l - [tctT}"'Ll 
j(J1.o, L) - g 27rxc(L)/3C!, 1 + 2S(L» (8) 

where j (fLo, L) is the predicted equatorial unidirectional flux (protons/ 
cm2 sec ster) at equatorial pitch angle ao = arc cos fLo, and f3 is the 
beta function, 

(9) 

In addition y' (x, L) has good boundary behavior. The derivative at 
the magnetic equator, ay' (0, L) lax, is 0, which provides continuity. 
vVhen i < S(L) < !, then ay'(xc , L)/ax ~ -00 and a[y'(xo, L)F/ 
ax = o. The estimated values of S do satisfy this constraint in the 
present case. The desirable consequences of this behavior of the de
rivatives will be discussed in Section V. The function y' (x, L) gives 
smooth interpolation over regions sparse in data, and does not have 
any of the wild fluctuations often associated with polynomial fits. 

The analysis of the data using Model I is described in Section VI. 

4.5 Summary Uses of Model [. 

The unspecified coefficients of Model I were estimated by nonlinear 
least squares fitting to a sample of about 1000 observations from the 
complete body of data. Thence this fit of Model I (the CB fit) was 
evaluated relative to all the data and to auxiliary variables, such as 
time, which were not included in the model. Outliers were thereby de
tected and screened. An instrumental effect was uncovered (see Section 
6.8), and this led to an objective partitioning of the data, yielding a 
subset (HTB data) for further analysis. The CB fit of Model I was 
also used to specify a representative data sampling procedure for fur
ther fitting to the HTB data. 

Though Model I produces a very good fit to the HTB data (see Sec
tion VII), it has certain physical and statistical defects. Specifically, 
though the quantities A and Xo in the L-slice model have a direct phys
ical interpretation, most of the coefficients in y' (x, L) do not. Addi
tionally, the estimates of the coefficients in A' (L) turn out to have 
exceedingly high statistical correlations and the model y' (x, L), as a 
function of the coefficients, exhibits marked nonlinearities even in a 
close neighborhood of the least squares estimates (see Section 8.5). 

Therefore, after clarifying the character of the data and obtaining 
a good fit, attention was given to additional improvements of the 
model. 
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4.6 A ]vIodified 111 odel-lll odel II 

The statistical difficulties of lVlodel I were entirely overcome by em
ploying a specialized version of A' (L), defined below. Furthermore, 
this specialized model, 1Vlodel II, retains all the desirable properties 
of lVlodel I while providing both aesthetic improvement and greater 
physical in terpreta bili ty. 

Model II is defined by 

y"(x, L) = A"(L) ·G"(x, xcCL), S(L)) , 

where G" is as in (2), but with S (L) = So, and 

where A p, Lo, Lp and T] are the coefficients to be estimated. 

(10) 

(L ~ L o), 

(11) 

A" (L) is a special case of A' (L) and relates to it by the following 
transformations: 

'11 = '11 

a3 = 2Lo - Lp (12) 

a2 = 2'1-1('11 - 2)(Lp - Lo)'1 

a1 = 2'1- 1 Ap'Y](Lp - Lo)'1-1. 

Indeed, Model II is essentially defined by the following nonlinear con
straint imposed on 1VIodel I: 

(13) 

The coefficients of A" (L) in 1VIodel II have the following physical 
interpretations: 

Lo (as before) is the smallest value of L such that high-energy 
protons are measurable by the instrument; 

Ap is the square root of the maximum counting rate of high-energy 
protons in the radiation belt; 

Lp is the value of the magnetic shell parameter (on the equator, 
x = 0) at the highest radiation intensity; 

'11 may be interpreted as a shape factor for the equatorial (counting 
ra te)! function, A" (L). 
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The model A" (L) has the form of a product, with the maximum 
value, Ap , being multiplied by a factor which decreases as L departs 
from Lp in either direction. Note that the factor multiplying Ap is 
dimensionless. 

The other fitted coefficients of lVlodel II are so, which is a shape fac
tor for the dependence of (counting rate)! on x at constant L, and rl, r2 
and r3 which, with L o, define the cutoff function Xc (L). 

The analysis of the HTB data using Model II and comparisons of 
Models II and I are considered in Section IX. 

4.7 Generalizations 

The previously defined models may be regarded as special cases of 
Model III defined by 

y"'(x, L) = A"'(L)· G"'(x, xc(L), 1I1(L) , P(L), Q(L)), (14) 

where A'" (L) = A' (L), defined in (6), 

G'" 
(15) 

xc(L) is as defined in (4), and 111(P), peL) and Q(L) involve coef
ficients or functions to be fitted. 

The function G' is a special case of G"', in which J.VI (L) = 2 and 
Q (L) = t. This permits a closed form transformation to an equatorial 
pitch angle distribution. The function G" additionally constrains P (L) 
= so, independent of L. 

The more general G'" in lVlodel III can be used on L slices to de
termine L-slice estimates of lVI, P, Q, as well as A and Xc, and these 
in turn inspected to infer functional dependence on L. Clearly, this 
more general form must lead to at least as good a fit as Models I or 
II. Work has been done with Model III21 but no important improve
ment over Model II was obtained for this body of data. 

Neither of the fitted models y' (x, L) nor y" (x, L) is applicable far 
outside the spatial and energy regions that include the data analyzed 
here. For example, Models I and II do not fit well to the 26-33 MeV 

. protons measured by the Telstar® 1 satellite, nor are they suitable for 
fitting many of the electron distributions. Preliminary investigations 
indicate that these remarks may not apply to G"', whose additional 
coefficients allow more rapid changes in curvature as a function of x. 
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vVe have already shown for Telstar® 2 data5 that A (L) can be ex
tended to include description of the plateau of high-energy protons 
reported by McIlwain18, 22 near the equator at R ::::: 2.2 R c , beyond the 
orbital extremes of the Telstar® 1 satellite. The extension was made by 
adding a term to A'(L), (6), to give Aiv defined by 

A i v = A' (L) + a4 exp [ (16) 

where a4, au, and Ll are coefficients describing the equatorial distribu
tion of the "excess" protons that give rise to the plateau. In the less 
stable parts of the radiation belts the early work on empirical time 
dependence presented by Gabbe and Brown5 clearly requires extension. 

V. FITS ON THE L-SLICES 

The model of (1) and (2) was fitted to the data, on the scale of Y, 
in 92 individual L-slices, using a nonlinear, multidimensional, least 
squares, computer program (see Appendix B) to estimate the coeffi
cients and produce various statistical measures. The procedure of fit
ting to L-slice data enabled one to test functional forms of YL(X) and 
then to evolve functional forms for the dependencies of the coefficients 
of the L-slice models on L. 

Proceeding in this manner, however, has a number of possible pit
falls. In particular, the estimates of coefficients within an L-slice may 
be highly correlated, and the reliability of the actual values of the 
estimated coefficients also depends on the pattern of data points in 
the particular L-slice, e.g., whether or not there are points near Xc. 

Hence, the estimated values for any particular coefficient may not ex
hibit a smooth dependence on L. 

The form of the L-slices whose middle values of L, called L m , are 
1.35, 1.801, 2.2015, and 1.79, respectively, are displayed in Figs. 4 to 7. 
The thin solid lines in the. figures are the fits to the L-slice data (mean
ing of the dashed and thick solid lines will be taken up later). The 
numerical values of the coefficients of the fits, and the widths of the 
slices are given in Table II. Figs. 4 and 5 are examples of the high 
quality of fit which is typically obtained for L-slices having Lm < 2. 

In Figs. 4 (a) and 5 (a), square root of counting rate is plotted 
against x. One sees that the fit to the data points (the thin solid line) 
is quite adequate. The cutoffs, Xc, are well-defined, the scatte.r in Y is 
approximately independent of Y and the data are well-distributed in x. 
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TABLE II-COEFFICIENTS AND STATISTICS OF THE L-SLICE FITS. 

Lm 1.35 1.801 2.2015 1. 79 

LMIN 1.346 1.800 2.200 1.7895 
LMAX 1.354 1.802 2.203 1.7905 
llL 0.008 0.002 0.003 0.001 
A 6.757 4.109 1. 70 4.324 
u(A) 0.053 0.031 0.12 0.043 
Xc 0.6795 0.8998 0.954 0.923 
u(Xc) 0.0027 0.0044 0.011 0.015 
8 0.324 0.390 0.58 0.478 
u(8) 0.018 0.024 0.10 0.060 
Number of pts 140 129 144 65 
MSE 0.1125 0.0497 0.0282 0.0478 

Correlation coefficients 

A with Xc 0.281 0.309 0.724 0.408 
A with 8 0.605 0.561 0.940 0.548 
Xc with 8 0.774 0.820 0.890 0.944 

As the cutoff is sharp on the scale of y, it is convenient to have a 
function which has an infinite derivative at xc. Otherwise the exact 
X at which y ~ 0 may have relatively little effect on the mean square 
error of the fit. This would lead to an ill-defined value for Xc, even 
though the data allows one to evaluate the position of the cutoff quite 
precisely for L values smaller than ::::::1.9. 

In Figs. 4 (b) and 5 (b), the counting rate, Y\ is plotted against x. 
The thin solid lines represent the same fits as those in Figs. 4(a) and 
5 (a). One finds that the position of the cutoff is no longer well-defined 
on the plot. Instead the counting rate fades away as X increases. Hav
ing the derivative of y2 equal zero at the cutoff (as noted in the pre
vious section) is suitable in this situation. The scatter in y2 now 
changes with y2, and is greater for large values of y2 (small values 
of x). This nonuniform scatter makes it more difficult to judge the ap
propriateness of fit. If one wished to minimize the squared deviations 
between observed and fitte.d in terms of y2 (or log y2) the values of 
y2 (or log y2) would have to be weighted inversely as their estimated 
approximate variance, with a loss of intuitive appreciation of the qual
ity of fit from a scatter plot and a substantial inconvenience in carry
ing out the fitting procedure. 

In Figs. 4 (c) and 5 (c) the ordinate is log y2. This choice of coordi
nate restores the ability to discriminate in the vicinity of the cutoff at 
the cost of a large loss of sensitivity in regions where the counting rate 
is higher. 

Finally, Figs. 4(d) and 5(d) display the same data in the coordinate 
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system log y2, log (B I Bo). This choice of abscissa expands the high-x 
region enormously, but contracts the low-x region to the point where 
it is impossible to see the details of the particle distribution in the 
vicinity of the equator (x = 0). This contraction would be even more 
severe if the abscissa were B or BIBo. 

In the region defined by A < 45°, 'which covers the high energy pro
ton data, the coordinate x provides adequate detail (see. Ref. 10 for 
further discussion). If, however, the data had extended to A > 45° an
other choice. of magnetic coordinate would have been desirable for 
x > 0.95, because all A > 45° are crowded into x values between 0.95 
and l. 

The standard errors and correlations of the coefficients of the 
four L-slices under discussion, together with mean square. error (}\lISE) * 
of fits, are listed in Table II. The standard error is in general a 
relatively small fraction of the estimate and the MSE is substantially 
greater at small values of Lm than at larger ones. This is further ana
lyzed in Section VI. 

At L = 2.2 the satellite gets no closer to the magnetic dipole equator 
than A = 20°. This fact, which is associated with the problem of cor
relation of coefficient estimates within L-slices, is displayed more em
phatically by choosing x as a coordinate, as in Figs. 6(a), (b), and (c), 
than by choosing log (B I Bo) as in Fig. 6 (d). In addition, in Fig. 6 (d) 
the expansion of the abscissa in the region of the cutoff makes it diffi
cult to judge the physical appropriateness of the value of Xc which re
sults from the least squares procedure. The same difficulty is encoun
tered to a lesser degree with Fig. 6 (b). However, in Figs. 6 (a) and 
6(c) one judges the x-intercept of the thin solid line to be too large, 
and Fig. 6 (a) has the additional advantage of allowing one to make 
a better judgment of the quality of the fit at lower values of x. As might 
be surmised from the high values of the correlations for Lm = 2.2 in 
Table II, the value of Xc can be adjusted to a substantial extent with
out much change in the mean square error. These high correlations, 
which typically occur for Lm > 2, reduce confidence in the individual 
estimates of the coefficients for given L-slices. This difficulty also re
duces the stability of the estimates of the coefficients as Lm is changed, 
and precludes basing the values of xc(L) and S(L), for L > 2, on the 
fits to the L-slices. 

A similar difficulty may be introduced when L < 2 by sampling 
fluctuations as illustrated in Fig. 7. In this case, there is a scarcity of 

* Some statistical terms are defined in Table I. 
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data near and beyond the cutoff, unlike the slice with Lin = 1.801 
illustrated in Fig. 5. The paucity of data near the cutoff in the L-slice 
centered on Lm = 1.79 both correlates and distorts the values of Xc 

and S. In this particular case, the width of the L-slice can be increased 
t.o avoid this difficulty, but, in general, increasing the width of the 
slice to include enough data may introduce a serious L-dependence 
within the slice. As a result, Xc may be determined by points near one 
extreme of L within the slice, A by points at the other extreme and S 
by some combination. This problem is especially severe below L = 1.3 
where data begin to become sparse. 

The plotted points in Figs. 8 to 10 summarize the dependencies of 
the estimates of the L-slice coefficients A, XC, and S, respectively, on 
Lm , for all 92 slices. More than one value of the coefficients is plotted 
for some values of Lm because .on occasion the width of the L-slice was 
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varied without changing Lm . Although there are local fluctuations in 
the estimates that arise from the way a narrow L-slice samples the 
data, the estimates exhibit a smooth dependence on L. The fluctuations 
are particularly pronounced near Lm = 1.8 in Figs. 9 and 10, and Lm = 

1.3 in Fig. 10. 
The standard errors of the L-slice estimates of A are typically 1 per

cent for L < 1.95, but become as large as 6 percent where there are 
no equatorial data, as is the case for L > 1.95. Fox Xc estimates, the 
standard errors are typically 0.5 percent. The estimates of S have a 
standard error of about 5 percent (±0.015) near L = 1.5 and about 
15 percent (±0.05) near L = 1.2 and L = 2. The meanings of the 
curves in Figs. 8 to 10 will be discussed in the following sections. 
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In summary, the. L-slice approach enables one to infer a functional 
dependence of L-slice coefficients on L and to obtain an intuitive ap
preciation of the quality and nature of fit. The fitting procedure re
quires refinement by being carried out as a simultaneous two-dimen
sional process in x and L jointly. This overcomes the "grouping" 
inaccuracy in the L-slice approach and in addition makes good use of 
the data in those regions where data are scarce. The resultant function 
also provides convenient and excellent interpolation of data over the 
entire x,L region while employing a relatively small number (8, 9, or 
10) of fitted coefficients. 

VI. THE TWO-DIMENSIONAL FIT FOR THE COMPLETE BODY OF DATA 

The analysis of this section is a precursor to the more refined paral
lel analysis of Section VII. This preliminary analysis produces the 
following results of consequence: Model I (see Section 4.4) is shown 
to be satisfactory; instrumental effects are identified and an objective 
algorithm for partitioning the data to reduce these effects is formu
lated; outliers are screened; and a more. adequate basis for sample 
selection is provided. Many statistical details are omitted from this 
section, and statistical matters are dealt with more fully in Sections 
VII, VIII, and IX and in Appendices Band C. 

6.1 Sample Selection and Fit 

It was necessary, for practical computing reasons, to make a selec
tion of approximately 1000 observations on which to carry out the 
simultaneous two-dimensional (in x and L) nonlinear (in the. coeffi
cients) least squares fit. In this preliminary phase, the nearly 80,000 
data points were sampled by dividing the L-range from 1.15 to 3.00 
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into 925 contiguous intervals, each 0.002 wide. One data point was 
selected from each interval. As the data are approximately uniformly 
distributed in x (in the x-range covered by the satellite) in each 
L-slice (see Fig~. 4 to 7), no effort was made at this point to in
fluence the x distribution of the observations in this subset. The ques
tion of the "design" of the sample to be used as a basis for fitting the 
model is rather important, however, since the fit obtained with the 
empirical model is responsive to the distribution of data in x,L space. 
Other bases of sampling were employed later (see Section 7.1 and Ap
pendix B.3) . 

Model I, described in Section 4.4, was fitted to the 925-point sample 
from the complete body (CB) of data. As this serves only as a pre
liminary fit, the values of the CB coefficients and other statistics are 
not presented here. 

The quality of this fit was examined from various viewpoints: (i) 
by its behavior along the boundaries of the belt; (ii) by comparison 
with the L-slice fits; (iii) by plotting the residuals (observed value 
minus fitted value) versus the x and L coordinates; and (iv) by ex
amining the mean square residuals (MSR) in various regions of mag
netic coordinate space. Though the coefficients of the model were. esti
mated from 925 sampled data points, the evaluation of quality of fit 
was based on all the nearly 80,000 observations. 

6.2 Evaluation of Fit at Equator 

The points in Fig. 11 are the values of Y (square root of observed 
counting rate) plotted against L for all data points for which x is near 
0, specifically x < 0.037 (i.e., '" < 1 0). For a given L, y'(x, L) changes 
very little between x = 0 and x = 0.037 (see Figs. 4 and 5) and the 
points in Fig. 11 may be regarded as approximate equatorial points. 
The curve in Fig. 11 gives the fitted values of A' (L) = y' (0, L) using 
the CB coefficients, and appears to represent the data very well. Note 
that A' (L) has not come from a fit to the equatorial data as such, but 
rather is the equatorial value of y' as predicted by the two-dimensional 
fit. That is, the fitted A'(L) does not minimize the sums of squares of 
deviations for just the equatorial points, but is, rather, the optimum 
fit in the least squares sense to the 925-observation sample, and these 
observations are distributed through x,L space. The excessive scatter 
in the equatorial value of Y between L = 1.35 and L = 1.55 which 
shows in Fig. 11 will be taken up in the next section. 

The values of A' (L) are also plotted for reference as the dashed 
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line in Fig. 8. One sees that the L-slices give quite good estimates for 
A, although these estimates tend to be a little erratic and to favor 
the lower values rather too much in the neighborhood of L = 1.4. 

6.3 Evaluation of Fit at Cutoff 

The cutoff may be thought of as the position of the outer envelope of 
the nonzero counting rate, or the inner envelope of the zero counting 
rate. Thus, in practice the location of the cutoff is associated with the 
sensitivity of the detector, rather than with the absence of particles. 
For L ~ 2, there is a wide range of x over which there are many in
stances of either zero or one count occurring during the 11-second count
ing interval, and as a result the cutoff is not well-defined. This is 
exemplified in Fig. 6. The overlapping of the region in which no count is 
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observed with that in which one count is observed shows clearly in 
Fig. 12. The locations of occurrences of zero counts are plotted in R,A 
coordinates in Fig. 12(b) and in x,L coordinates in Fig. 12(d). Figs. 
12(a) and (c) show the locations at which one count (one, two, and three 
counts for L < 1.5) was recorded. (The density of points has been re
duced at high L to improve the clarity of the display.) 

Because the cutoff is increasingly difficult to define from the data as 
L increases beyond ~2, the position of the cutoff predicted by the fitted 
model is not a good boundary condition to use in judging the quality of 
the two-dimensional fit. Instead the locus of positions for which exactly 
one count per counting interval is predicted is superimposed as the solid 
lines in Figs. 12(a) and (c) upon the array of points giving the band 
of positions at which one count per counting interval was observed. The 
data are represented quite satisfactorily by the solid lines particularly in 
the region (L ~ 1.90) where the belt ends abruptly. The fit is least 
satisfactory near L = 2 (A = 40°). Adding the terms r4(L - LO)4 and 
r5(L - LO)5 to the expansion for Re(L) in (5) does not appreciably 
improve the fit near A = 40°. 

The line Xc (L) , representing the cutoff itself, is plotted as the dashed 
line in Fig. 12 and is seen to be a reasonable outer envelope for the 
nonzero counts. 

The present estimate of Xc (L) is also shown as the dashed line in 
Fig. 9. Below L ~ 1.8, the estimates of Xc from the individual L-slices 
are in good agreement with estimates from the two-dImensional fit. 
However, above L ~ 1.8 the L-slices give erratic values for Xc. As 
demonstrated in Fig. 7, the L-slice estImates may be biased toward 
high values, a circumstance which makes it dIfficult to extract a satis
factory fit for xc(L) from the estimates of Xc produced by fitting the 
L-slices. 

6.4 Behavior of S(L) 

The values of the function S (L) generated by the two-dimensional 
fit cannot be subjected to a simple boundary comparison with the data. 
The function S (L) is plotted as the dashed line in Fig. 10 along with 
the L-slice estimates. It will be seen that the L-slice estimates tend to be 
somewhat higher than the values given by StL) in the neighborhoods 
of L = 1.3 and L = 1.9. However, if the form of S(L) is taken to 
provide a better fit to the points in Fig. 10, then the resulting two
dimensional fit yields a physically less satisfactory fit of the cutoff 
function Xc (L) to the boundary data without substantial improve-
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Fig. 12 - All positions in R, A space (a) and x, L space (c) at which one count 
(one, two, and three counts for L < 1.5) was observed in an ll-second counting 
interval, and all positions in R, A (b) and x, L space (d) at which zero counts 
were observed in an ll-second counting interval. The solid lines are the loci of 
positions at which the CB coefficients estimate one count in 11 seconds. The 
dashed lines are the loci of the cutoff function xe(L) or Re(L) calculated from 
the CB coefficients. The trace R = 2.0 Re, which explains the absence of data 
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Fig. 12 - (continued) 
in the lower right-hand corner of the x,L plots, appears in part (d). The cluster 
of points near R = 1.1 and A = 20° in part (b) of the figure is data acquired by 
the telemetry station at Woomera, Australia. It represents observations made 
near perigee when the satellite was below the bottom edge of the proton belt, 
which is high over the western Pacific Ocean. 
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ment in the overall fit (see also Section 4.7). Admittedly, this judg
ment is subjective because it is made in regard to regions where the 
cutoff is poorly defined by the data because of the insufficent sensi
tivity of the detector. The high values of S near L = 1.9 appear to 
arise from the correlation problem discussed in Section V in connection 
with Fig. 6 and Table II. 

6.5 Behavior of the Fit on Several L Slices 

The dashed lines in Figs. 4 to 7 are the values predicted by the CB 
coefficients superimposed on the L-slice data along with the pre
viously derived L-slice fit. In Figs. 4 and 5, the difference between the 
thin solid and the dashed lines is insignificant, and this is generally 
the case for L < 1.95. At Lm = 1.79, the predictions from the CB 
coefficients differ importantly from the fit to the L-slice only for x 
values at which there are no data. 

For Lm = 2.2, however, the two predictions are noticeably different 
as may be seen in Fig. 6. The fit to the L-slice gives the estimate 
Xc = 0.954 (see Table II) ; the two-dimensional fit yields Xc = 0.928; 
and the difference exceeds two standard deviations. The question as to 
which of the two lines is a better representation of the data in this 
L-slice in the physical sense, rather than in the least squares sense 
applied to these points by themselves, is connected with criteria 
which will be discussed in the following sections. The basic fact is 
that the two-dimensional fit provides a mechanism by which the data 
on every L-slice can influence the fit on every other L-slice and 
thereby provides a fit that is more satisfactory overall than the 
collection of individual L-slice fits. 

6.6 Residuals in x,L Space 

The data were also examined for dependencies on x and Lover 
and above those provided for by the fitted mathematical model. This 
is accomplished by studying the residuals, i.e., (Y - y), for all the 
nearly 80,000 observations. The residuals provide a very sensitive basis 
for judging the quality of the fit. The removal of the principal depen
dence on x and L by subtracting the fitted function from the observa
tions has the effect of allowing small systematic differences to be 
prominently displayed. 

Fig. 13 shows a 3100-point sample of the residuals, Y - y, plotted 
against L, where, to keep the density of the points reaRonable, only 
one point has been plotted from each of the nearly 3100 contiguous 
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Fig. 13-CB residuals of Y (Le., Y - y calculated from the CB coefficients) plotted 
against L. The arrows indicate ± the approximate standard deviation if y2 were 
Poisson distributed. No more than one point is plotted for an L increment of 0.0006. 

L-intervals, of width I1L = 0.0006, between L = 1.15 and L = 3. 
Ideally, the residuals should scatter randomly about 0, without any 
perceivable pattern. For L < 2.4 there is only a little indication of a 
nonrandom trend. However, for L > 2.4 there is a distinct pattern. 
This pattern is associated with the quantization error, which becomes 
important where the number of counts per counting interval is very 
small. When 0 < y < VI count/II sec and Y = 0 or VI count/II sec, 
the result is the tailing upward toward the residual = 0 axis that starts 
at L ~ 2.4. When y = 0 and Y = 0 or VI count/II sec, one gets 
the two-line pattern (0 and 0.0310 = Vi7ll) seen clearly in Fig. 13 
for L ~ 2.7. (The thickening of the zero axis indicates the presence 
of data points.) 

Fig. 14 is a plot of the residuals against x for all points for which 
1.4 < L < 1.6. The residuals in Fig. 14 show no structure; however, 
their average value is a little less than zero. This dip is confirmed by 
the points in the range 1.4 < L < 1.6 in Fig. 13, and means that the 
value of y is slightly high relative to the data in this region. However, 
the lack of structure in Fig. 14 indicates that the bias is independent 
of x in this region. 

Fig. 15, the plot of the residuals vs x for 1.85 < L < 1.90, shows 
the region in which the fit is poorest. The residual points are not sym
metrically distributed about zero and the asymmetry seems to depend 
on x. Notice that the value of y is slightly too large near x ~ 0.05 and 
x ~ 0.65. The discussion of these trends is continued below, after 
some further analysis has been described. 

6.7 Jl!J ean Square Residuals in x,L Space 
Another way of gauging the quality of fit is to compute the mean 

square of the residuals (MSR) separately for various regions of 
x,L space. Trends in these quantities may indicate regional varia-
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Fig. 14-CB residuals of Y (i.e., Y - y calculated from the CB coefficients) plotted 
against x for 1.40 < L < 1.60. The arrows indicate ± the approximate standard 
deviation if y2 were Poisson distributed. 

tions in the adequacy of fit. The data and residuals were divided into 
three groups. Group I contains all the "good" data points "within" 
the boundaries of the > 50 MeV proton belt. These points are defined 
as those not included in Groups II and III. Group II consists of the 
"good" data points "outside" the boundaries of the belt. These are 
points which meet two criteria: they have values of (x, L) for which 
x is greater than xc(L) + 0,001, and they are not in Group III. Group 
III comprises the outliers or "bad" data points, defined as those points 
whose residuals are greater than three times the overall root mean 
square residual of the points in all three groups together.* The most 
probable origin of a point in Group III is a telemetry error. 

If the number of counts in a counting interval behaves like a 

* Note that only 0.5 percent of the data fall in Group III. 
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Poisson random variable, then the variance of yz would be equal to 
the average value of yz. As noted in Appendix B, when Y is not near 
zero, the variance of Y would then approximately equal 0.023, inde
pendent of the average value of Y. This value then might approx
imately represent the average value of the mean square residual, 
MSR, on the scale of Y. Thus, the number 0.023 provides a baseline 
for the comparisons discussed below. 

Table III lists the mean square residuals (MSR) by L range and 
by Group. For Group II, Y is frequently zero and, as x > Xc implies 
y = 0, one finds that the residual is zero very often. Of course, under 
the Poisson assumption the variance of Y when its average value is 0 
or very close to 0 will be less than 0.023 (see Appendix B.2) and the 
appearance of MSR values smaller than 0.023 in Group II is thus not 
surprising. A similar circumstance exists in Group I for L > 2.6. 
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Fig. 15- CB residuals of Y (Le., Y - y calculated from the CB coefficients) plotted 
against x for 1.85 < L < 1.90. The arrows indicate ± the approximate standard 
deviation if P were Poisson distributed. 



L-Range 

LMIN LMAX 

1.1 1.2 
1.2 1.3 
1.3 1.4 
1.4 1.5 
1.5 1.6 
1.6 1.7 
1.7 1.8 
1.8 1.9 
1.9 2.0 
2.0 2.1 
2.1 2.2 
2.2 2.3 
2.3 2.4 
2.4 2.5 
2.5 2.6 
2.6 2.7 
2.7 2.8 
2.8 2.9 
2.9 3.0 
1.1 3.0 
1.1 3.0 
1.1 2.0 

TABLE III-MEAN SQUARE RESIDUALS AND MEAN SQUARE ERRORS. 

All data. CB coefficients 

Group I Group II Group III 

No. of points MSR No. of points MSR No. of points 

148 0.039 31 0.009 0 
1147 0.053 68 0.019 9 
1608 0.106 99 0.027 20 
1939 0.106 120 0.010 19 
2974 0.083 101 0.004 22 
3835 0.056 104 0.004 26 
5233 0.055 87 0.001 29 
8487 0.054 92 0.001 54 
8880 0.041 98 0.011 55 
6261 0.043 106 0.033 24 
5354 0.0~2 183 0.049 18 
4717 0.030 313 0.047 16 
4040 0.034 477 0.0:30 21 
3769 0.044 716 0.021 22 
2987 0.038 1000 o 014 15 
2066 0.023 1696 0.010 15 
225 0.011 3104 0.007 24 

0 0.0 2784 0.006 11 
0 0.0 2~94 0.005 6 

63670 0.048 13573 0.011 406 
925 0.045 MSE of CB Sample (Group I +-Group II) 
975 0.065 MSR of equatorial points) X < 10 (Group I) 

MSR 

O. 
4.171 
2.265 
6.743 
9.079 
4.617 
4.3,56 
4.110 
4.280 
8.031 
6.509 
6.982 
9.478 
8.296 
6.462 

17.098 
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14.545 
15.908 
7.011 
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HTB data. Model I coefficients (see Table IV) 

L-Range Group I Group II Group III 

LMIN L MAX No. of points MSR No. points of MSR No. of points 

1.1 1.2 111 0.037 28 0.010 0 
1.2 1.3 650 0.045 49 0.028 8 
1.3 1.4 633 0.059 78 0.043 6 
1.4 1.5 693 0.050 56 0.0 7 
1.5 1.6 926 0.039 43 0.019 1 
1.6 1.7 1342 0.036 38 0.002 6 
1.7 1.8 2161 0.037 39 0.005 8 
1.8 1.9 4708 0.037 30 0.003 38 
1.9 2.0 5585 0.046 28 0.013 40 
2.0 2.1 3728 0.049 38 0.021 16 
2.1 2.2 3258 0.033 38 0.036 10 
2.2 2.3 2R57 0.030 80 0.034 10 
2.3 2.4 2335 0.032 135 0.027 14 
2.4 2.5 2193 0.043 212 0.020 11 
2.5 2.6 1R31 0.041 278 0.011 11 
2.6 2.7 1520 0.027 464 0.007 9 
2.7 2.8 1083 0.014 765 0.007 18 
2.8 2.9 146 0.009 1433 0.007 9 
2.9 3.0 0 0.0 1317 0.005 4 
1.1 3.0 35760 0.038 5149 0.009 226 
1.1 3.0 960 0.036 MSE of 960-point HTB Sample (Group I + Group II) 
1.1 2.0 429 0.035 MSH. of equatorial points, X < 10 (Group I) 

Poisson approximation: variance ~ 0.023. Note conditions in text and Appendix B.2. 
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For the overall fit, the MSR of Group I (L range from 1.1 to 3.0) is 
only twice 0.023. However, for 1.3 < L < 1.6 the Group-I MSR is four 
times 0.023. This L range is associated with the large scatter in the 
equatorial data plotted in Fig. 11, and Fig. 14 shows that this scatter is 
independent of x, rather than just an equatorial phenomenon. This 
issue is pursued further below. 

6.8 Dependence of Residuals on Other Variables 

Studies were made of the possible dependence of the residuals on 
observed variables other than x and L. Indeed, it will appear that 
some of the excess scatter exhibited in Table III and in Figs. 11 and 
14 is associated with instrumental effects. 

The regularities inherent in the orbit and orientation of a satel
lite, the motion of the earth, and the location and operation of the 
telemetry receiving stations lead to systematic interrelations among 
the various coordinates listed in Table 1. A simple example concerns 
temperature. The satellite cools when its enters the earth's shadow. 
This eclipse occurs only on the night side of the earth. Thus, if the 
detector is temperature sensitive, one would see a false day-night 
effect in the counting rate. If, because of additional dependencies, 
data are available during eclipse for only a limited span of days, a 
false secular effect might also be observed. Because of the implications 
of the preceding discussion, a careful study was made of the behavior 
of the residuals with respect to a large number of coordinates, and 
attention was given to the details of the relationships among the 
coordinates during the search for contributors to the inflation of the 
MSR. 

We present below the evidence that has led us to the conclusion that 
two instrumental effects, variations in bias voltage and changes in 
temperature of the detector, are principal causes of inflation of the 
MSR. 

There was no temperature sensor on the particle detector. The 
instrument is not exposed to sunlight and is relatively well-insulated 
thermally from the skin and frame of the satellite. Consequently, 
temperature measurements of the skin are not closely related to the 
temperature of the detector. However, a good indicator of detector 
temperature is elapsed time since entering or since leaving eclipse. 
Fig. 16 gives plots of the residuals, Y - y, against time in minutes 
measured from the more recent of the two events, entered shadow or 
entered sunlight. Residuals associated with periods during which the 
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satellite did not enter eclipse once per orbit are segregated at the far 
right-hand side of the plots, labeled A on the abscissa. 

Figs. 16(a) and (b) are for 1.4 < L < 1.6. The points in Fig. 16(a) 
are those for which the bias voltage was between 95.3 and 97.5 volts, 
while Fig. 16(b) contains those for bias voltages between 92.0 and 
95.3 volts. The decrease in the residuals (and also in the observed count
ing rate) after the satellite enters eclipse (and the temperature falls) 
and the increase after the satellite leaves eclipse (and the temperature 
rises) may be seen distinctly in both figures. In addition the residuals are 
noticeably more negative for the low (92.0 to 95.3 V) bias range. Both 
low bias voltage and low temperature are known to decrease the ef
ficiency of the detector and one expects an appreciable effect to be intro
duced into the counting-rate data. In the present case the scatter is 
about ± 15 percent of the counting rate. A consequence of this is the 
excess scatter that has been noted particularly with reference to Fig. 11 
and Table III. 

Figs. 16(c) and (d) are analogous to Figs. 16(a) and (b), but the 
residuals are for the L range 1.85 to 1.90.· Again, the systematic 
influence of low temperatures and low bias voltages is unmistakable. 

6.9 Partitioning the Data 

Two ways of responding to these instrumental effects might be: 
(i) to try to correct the data, or (ii) to disregard the affected data. 
It is not possible to make a correction to the counting rate that is 
properly independent of the experimental results because; (i) the bias 
voltage was measured in steps of 1.11 V, which is not sufficiently fine
grained; (ii) it would be necessary to estimate the temperature of 
the instrument using a complicated hypothetical relationship between 
the instrumental temperature, skin temperature, and time after enter
ing eclipse (or sunlight); and (iii) we have an insufficient knowledge 
of the temperature and bias-voltage sensitivity of the detector. 

Though an ad hoc correction based on the observed counting rates 
could have been attempted, it was decided for practical reasons to 
eliminate both the low-temperature and low-bias points and use only 
that data which was gathered under the following conditions: 

(i) The satellite had been in sunlight for the previous 50 minutes, 
and thus had attained temperature equilibrium reasonably well 
(see Fig. 16). 

(ii) The bias voltage was between 95.3 and 97.5 volts. 
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Fig. 16-CB residuals of Y (i.e., Y - y calculated from the CB coefficients) plotted 
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within the region marked HA" at arbitrary values of the abscissa. The arrows 
indicate ± the approximate standard deviation if y2 were Poisson distributed. 
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This selection yields a homogeneous body of 41,135 points, hence
forth referred to as high temperature-high bias (HTB) observations. 
The remaining 36,500 points, which represent a mixture of tempera
ture and bias conditions, were used only occasionally in further 
analyses. This selection process coincidentally produces one unfort
unate associated circumstance, namely, the exclusion, as low-bias 
data, of all measurements made between days 325 and 373. 

Further analysis and model fitting and development based on, and 
directed towards, this HTB data is detailed in the following sections 
and Appendix C. 

VII. THE TWO-DIMENSIONAL FIT FOR THE SELECTED (HTB) DATA 

7.1 Sample Selection 

The distribution of the HTB data in magnetic space is indicated 
in Fig. 17, which gives the R,A coordinates of every tenth point from 
the 41,135 L-ordered HTB observations. The data provide reasonably 
adequate, though uneven, coverage. As a practical requirement for the 
fitting procedure, a "representative" sample of about 1000 observa
tions must be selected. 

HTB 

MAGNETIC INVARIANT EQUATOR 
:; ..... 

1.5 

R 
2.0 

Fig. 17 - The spatial distribution of the HTB data for L < 3 in R, A coordi
nates. Every tenth point from the L-ordered data is plotted. 
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It is intuitively clear from preliminary knowledge of the radiation 
distribution that some sample configurations will be far more effective 
than others in defining the functional form of the proton flux. 

The sample selection is important because: (i) nothing more than 
a sophisticated smoothing function is being fitted and we want this 
function to be broadly a pplica ble over the entire space; (ii) an 
optimum fit in one region of space does not necessarily imply a good 
fit elsewhere; (iii) the spatial distribution of data points depends on 
the satellite orbit and the position of the telemetry stations; (iv) even 
with the square root transformation, there remains some differential 
variance among the data. 

These considerations argue against using a simple random sample 
or even a random sample in x with a systematic sample in L such 
as in the CB fit. Indeed, they also argue against fitting all (un
weighted) HTB data, even if this were practical. Alternatively, points 
might be chosen on the basis of a simple geometric grid in magnetic 
space. Such a procedure would be easy to use, but it is arbitrary with 
respect to the radiation belts. 

Sampling procedures might be based on particular physical features 
of the radiation belts to emphasize the goodness of fit, for example, 
where the flux is high or where diffusion across L lines might be 
important. However, such fits would be too biased for our present 
general objective. 

One is thus led to a sampling process based on properties of the 
radiation belt itself, as described for example by the preliminary CB 
fit. In particular, a high density of data points is desirable in regions 
where the value of y is changing rapidly, while a low density will 
suffice where the function is changing slowly. A realization of this 
criterion would be to define about 1000 x,L cells, within each of 
which the range of y from the preliminary fit would be the same. 
However, there are appreciable practical difficulties in defining the 
boundaries of such cells. 

Thus, the following hybrid procedure was used to define the 960-
point HTB sample on which the subsequent fitting was done: The 
L-range from 1 to 3 was divided into about 120 L-slices of equal 
(;::::: 0.017) width in L. Each L-slice was then divided into eleven 
x,L cells using a scheme that depends on the preliminary fit. The 
first ten cells were chosen so that within each cell the range of y 

predicted by the CB model is closely 1/10 of the equatorial value of 
y at the center of the L-slice. The eleventh cell lies beyond xc. The 
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method of partitioning in the x direction is illustrated by the partition 
of the L-slice in Fig. 5 (a) into five x-regions by the horizontal 
lines. (The distance d is added to Xo to define the lower-x boundary of 
the last cell.) 

To take some account of differential variances remaining after 
the square root transformation, the following procedure was em
ployed: The mean square deviation from the mean (MSD*) was 
calculated for all the HTB data in each x,L cell defined above; 
thence, after visual inspection of the results (see Appendix C), three 
groupings of contiguous x,L cells were made according to whether the 
MSD's were generally below 0.013, between 0.013 and 0.020, or above 
0.020; the corresponding regions were then given relative weights of 
2, Ii, and 1, respectively. The weight 1 implies that one point was 
sampled from the cell. 

These weights were assigned on the basis of a judgment which con
sidered: (i) the desire to increase the weight of low variance (i.e., 
near-zero counting rate) observations and thus to aid the definition of 
the cutoff; and (ii) the desire to keep from "wasting" sample points 
in the region x » Xo since such data will add little to the specification 
of Xo (L) and virtually nothing to the estimation of A (L) and S. 

Fig. 18 shows the distribution in x,L space of the 960-point sample 
which was used. The number 960 came about because a number of 
the defined cells had no data in them. Our experience with several 
other samples of the HTB data gives us confidence in both the ration
ale behind, and the results obtained with, this 960-point set, henceforth 
referred to as the HTB sample. However, sampling procedures tailored 
to the requirements of special purpose fits will give better results in 
some regions of x,L space. 

Some additional discussions relevant to sample selection and data 
usage are given in Se.ction 13.3 and Appendices B.3 and C.2. 

7.2 The HTB Fit 

A slightly constrained version of Model I of Section 4.4 was fitted 
to the 960-point HTB sample. The results are referred to as the HTB 
fit. The constraint is 81 = 0, in (3). Most of the values of 81 obtained 
in preliminary fits to various samples of the HTB data differed from 
zero by less than two standard deviations. Also, the points in Fig. 

* See Table I for definition of MSD, MSR and MSE. 
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Fig. 18 - The distribution of the 960-point HTB sample in x, L space. The 
trace R = 2.0 Re explains the absence of data in the lower right-hand corner of 
the figure. 

10 do not suggest a linear dependence of S on L. * The effect of this 
constraint on the value of the fitted cutoff function was examined and 
found to be unimportant. 

The estimated HTB coefficients (obtained by fitting the constrained 
model to the HTB sample) appear in Table IV. The physical inter
pretation of Lo as the lowest L on which > 50 l\1e V protons were 
measurable was noted in Section 4.3. The standard error of 0.001 (::::::6 
km in altitude) is no larger than the uncertainties inherent in the 
calculation of L itself. 

The interpretation of S as a shape factor (see Section 4.2) is 
straightforward in the present case, i.e., where 81 = O. The standard 
error of 0.005 is much smaller than the standard errors of the 
estimates of S generated from the fits to L-slices (Table II) and is 

* Some higher-order models for SeL) were tried but proved unsatisfactory (see 
also Sections 6.4 and 9.2). 
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Fig. 19 - Graphical summary of the HTB fit, (a) curves of y' vs L for constant 
x, (b) curves of y' vs x for constant L, (c) contours of constant y' in x,L space. 
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also small compared to the scatter in Fig. 10. This implies that a 
substantial fraction of the scatter may be associated with the high 
correlation between S and Xc on the L-slice fits. Further consideration 
of standard errors and correlations of the fitted coefficients and 
detailed statistical evaluation of the fit is deferred to Section VIII. 

Fig. 19 presents a graphical summary of the function y' (x, L). 
Part (a) of the figure shows y' vs L for (several) constant x. Physi
cally, these curves correspond to values of the intensity of radiation 
vs L for constant magnetic dipole latitude, because x = constant 
implies A = constant. The nesting of the curves in Fig. 19 (a) is a 
consequence of the fact that G' (x; XC, S) decreases monotonically 
with x [see (2) and Fig. 19(b)]. The shape of the curves changes 
smoothly with L, and the position of the maximum shifts smoothly 
toward higher L as the value of x (and therefore A) increases. 

The nesting property does not hold for plots of y' vs x at constant 
L. This general consequence of the existence of a maximum in A' (L) 
is displayed in Fig. 19 (b). All the curves in Fig. 19 (b) have similar 
dependences on x. 
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Fig. 19 - (continued) 
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Fig. 20 - The value of y' computed from the HTB coefficients of Model I vs 
the observed value, Y, for the 960-point HTB sample. 

Fig. 19(c) contains contours of constant y' plotted in x,L space 
and completes the graphical summary. The contours surround the 
point x = 0, L= 1.46 at which the peak intensity occurs. 

7.3 Evaluation of Fit to the HTB Sample 

A summary indication of the quality of the fit of the 9-coefficient 
Model I to the HTB sample is given in Fig. 20, in which the fitted 
(computed) value, y', is plotted against the corresponding observed 
value, Y. The solid straight line would represent the case of a perfect 
fit. This is impossible on the basis of a model using only x,L 
coordinates since different Y values were observed for the same x,L 
pairs. It is seen, however, that the scatter of the plotted points about 
the line of perfect fit is reasonably uniform and that the horizontal 
width of the "scatterband" is roughly constant over the entire range of y'. 
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In the following subsections, the quality of fit to the entire body of 
HTB data is scrutinized, using many of the procedures used in the 
previous section to evaluate the CB fit. 

7.4 Evaluation oj Fit on Equator 

The HTB fit along the equatorial boundary is displayed in Fig. 21. 
The points are the values of observed Y plotted against L for all HTB 
data for which 0 ~ x < 0.037 (i.e., A < 1°), and the plotted curve is 
A'(L), defined in (6), using the HTB coefficients of Table IV. Comparing 
Fig. 21 with Fig. 11, it is seen that most of the excess scatter has been 
eliminated. The curve in Fig. 21 does not deviate noticeably from the 
center line of the points (except for 1.5 < L < 1.6, where the curve is a 
trifle high and for L ~ 1.95, where the curve is a trifle low). 
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Fig. 21- All the HTB data for x < 0.037 (i.e., within 10 of the magnE'tic in
variant equator) and the equatorial value estimated from the HTB coefficients 
plotted against L. A' and Yare in units of (counts/sec)1/2. 



TABLE IV -FIT OF lVloDEL I TO 960-POINT HTB SAMPLE. (HTB COEFFICIENTS.) 

Analysis of variance 

Due to d.£.* Sum of squares :\Iean square 

Total 960 5374.7320 
Mean 1 2121. 1760 
Corrected total 959 3253.5560 
Model 9 5340.0645 593.3405 
Error 951 34.66751 0.03645 

Coefficient estimates 

al Lo I a2 aa '7 T! T2 Ta S 

Estimate 12.0702 1. 1300 I O. 3006 0.7131 5.6HlO 0.2600 -0.4937 0.3536 0.3221 
Standard error 5.1178 0.0010 0.1205 0.0765 0.3798 0.0090 0.0245 0.0190 0.0048 

a values 

al Lo a2 aa I '7 T! T~ fa S 

al 0.13 0.97 -0.98 0.90 0.11 0.09 -0.08 -0.00 
Lo 0.4969 0.12 -0.13 0.11 -0.47 0.27 -0.15 -0.00 

", a2 0.9995 0.4783 -0.96 0.92 -0.10 0.09 -0.08 -0.00 
~ 

a3 -0.9998 -0.4998 -0.9990 -0.90 0.11 -0.09 0.08 0.00 
::; 1] 0.9948 0.4705 0.9966 -0.9941 -0.10 0.10 -0.09 -0.00 ;:;, 

Q.. Tl 0.4624 -0.8541 -0.4505 0.4617 -0.4490 -0.64 0.43 0.00 
T2 0.4261 0.6819 0.4199 0.4243 0.4268 -0.9378 -0.72 0.00 
T3 -0.3951 -0.5355 -0.3926 0.3929 -0.4066 0.8219 -0.9589 -0.00 
S -0.0571 -0.0270 -0.0616 0.0657 -0.0680 -0.1166 0.0653 -0.0587 

- - ---- - ---- --- -

* degrees of freedom 
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In Fig. 8 the solid curve, which is A' (L) calculated from the HTB 
coefficients, may be compared with the dashed curve, which is A' (L) 
calculated from the CB coefficients. The HTB fit gives higher 
equatorial values for y' when L is less than ~1.9, as might be ex
pected from the fact, displayed in Figs. 16 (a) and (b) and discussed 
in Section 6.8, that the HTB data select the higher values of Y for 
1.4 < L < 1.6. For L greater than ~1.9, the equatorial values of the 
HTB fit are somewhat lower than those of the CB fit; however, there 
is no equatorial data for L > 1.95, and the comparison of the fits is 
not meaningful in this region. The points in Fig. 8 are estimates based 
on CB, not HTB, data and are not immediately pertinent to the solid 
curve. 

An estimate of the standard error of the fitted equatorial function 
A' (L), based on the HTB sample, is plotted as a function of L in 
Fig. 22 (a) (see Section VIn for details). The standard error of 
A' (L) is typically less than one percent in the range of L (1.15 < 
L < 1.95) over which equatorial data are available. Error bars of 
this size would hardly be visible in Fig. 21. For the same values of L, 
the standard errors of A' (L) derived from the HTB fit are sub
stantially smaller than those from the L-slice fits listed in Table II. 
As might be anticipated, the percent standard error of A' (L) in
creases as the minimum x values of available data increases with 
increasing L beyond L = 2. This increase to a value of 10 percent at 
L = 3 reflects increasing uncertainty in the extrapolation of the fit. 
Note that the curves in Fig. 8, which represent the equatorial values 
of CB and HTB fits, differ, in general, by substantially more than two 
standard errors and the difference is certainly "statistically signi
ficant." 

7.5 Evaluation of Fit at Cutoff 

Figs. 23(b) and (d) show the positions, in x,L and R,A coordinates, 
at which zero counts were observed during an II-second counting 
interval. Figs. 23(a) and (c) are corresponding plots for one count 
(one, two, or three counts for L < 1.5) per counting interval. Only 
HTB data are plotted, and the density of points at high L has been 
reduced to improve the clarity of the display. 

Judgments regarding the quality of the fit are made, once again, 
with reference to the well-defined band of one count, rather than in 
terms of the more nebulous cutoff. The solid lines in Figs. 23(a) and (c) 
are the loci of y'(x, L) = VI count/ll sec, using the HTB coefficients 
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Fig. 22 - The standard deviation of A, U A, and the standard deviation of Xc, 
Uz., as functions of L. Units of UA and Uz. are the same as the units of A and Xc, 
respectively. (a) Model 1. (b) Model II. 
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in the model. These lines represent the data well. Although the fit 
appears uniformly good in the x,L representation, a slight weakness 
near the "corner" at A ~ 40° is displayed sensitively in the R,A plot 
(see also Fig. 12). 

The dashed lines in Figs. 23(a) and (c) show the locus of the fitted 
cutoff function, xc(L), calculated from the HTB coefficients. Error 
bars indicating excursions of one standard error in xc(L) are shown at 
two places on Figs. 23(a) and (c). The standard deviation of xc(L) 
as a function of L has been estimated (see Section VIII), and is plotted 
in Fig. 22(a). This standard error is smaller than those produced by 
the L-slice fits at corresponding values of L (see Table II). 

The values of xc(L) for the HTB and CB coefficients are plotted in 
Fig. 9. Although there is no discernible difference between the two 
curves in the figure for L < 2, the difference between the tabulated 
values exceeds twice the standard error (which is very small) over 
much of the range of L. The two sets of coefficients thus lead to results 
which differ in a "statistically significant" manner. For L less than 
~2, the significance of the staridard error is more readily understood 
when it is interpreted in terrp.s of the altitude of the cutoff. This is 
done in Section XI. . . 

Beyond L ~ 2, the ~alues of Xc for the CB and HTB coefficients 
diverge noticeably, compare Figs. 12 (a) and (c) with Figs. 23 (a) and 
(c), respectively. The magnitude of this divergence is quite sensitive 
to the method used in selecting the samples to be fitted. As has been 
discussed, the concept of a cutoff is not well defined in the context of 
these measurements for L > 2. The uncertainty is reflected in the 
rapid rise in the value of the standard error of xc(L) [see Fig. 22(a)] 
as L approaches 3. The significance of this rise may be more readily 
appreciated by referring once more to the error bars associated with 
xcCL) in Figs. 23 (a) and (c). 

The partitioning of the data on the basis of electrical bias and tem
perature, and the procedure chosen for selecting the sample to the 
fitted, introduce statistically significant differences between the values 
of xc(L) obtained from the HTB and CB fits, as well as the more 
readily anticipated significant differences in the values of A' (L). 

7.6 Standard Error of Fitted Value 

The standard error for y' (x, L) is relatively constant, ranging be
tween 0.01 and 0.04, except close to xc(L). It should be understood 
that this standard error is based on the fit to the HTB sample, and 
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Fig. 23 - All positions for the HTB data in R, X space (a) and x, L space (c) 
at which one count (one, two, and three counts for L < 1.5) was observed in an 
11-second counting interval, and all positions in R, X space (b) and x,L space 
(d) at which zero counts were observed in an 11-second counting interval. The 
solid lines are the loci of positions at which the HTB coefficients estimate one 
count in 11 seconds. The trace R = 2.0 Re, which explains the absence of data 
in the lower right-hand corner of the x, L plots, appears in part (d). The dashed 
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Fig. 23 - (continued) 
lines are the loci of the cutoff function xe(L) or Re(L) calculated from the 
HTB coefficients. The cluster of points near R = 1.1 Re and A = 20° in part 
(b) of the figure is data acquired by the telemetry station at W oomera, Aus
tralia. They represent observations made near perigee when the satellite was be
low the bottom edge of the proton belt, which is high over the western Pacific 
Ocean. 
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thus applies to the estimate of the average value of y and does not give 
the standard deviation of a single predicted observation. The latter 
would be in the neighborhood of VQ.04 = 0.2 (where 0.04 is approx
imately the MSE, see Table IV). 

Contours of constant percent standard error in the counting rate, 
y2, are shown by the curves in Fig. 24 (a). For L < 2 the standard 
error is less than 2 percent except close to the cutoff, ·where the value 
of y2 is falling fast. (Near the cutoff, the standard error in Xc is more 
informative.) In the absence of a fitted function, it would be neces
sary to average between about 30 and 300 observations to achieve a 
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Fig. 24 - Contours of constant percent standard deviation in the counting rate, 
y2, calculated from the fits to the HTB sample and plotted in x, L space. (a) 
Model!. (b) Model II. 
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Fig. 25-HTB residuals of Y (i.e., Y - y calculated from the HTB coefficients) 
plotted against L. The arrows indicate ± the approximate standard deviation if 
y2 were Poisson distributed. 

standard deviation as small as 2 percent. As discussed in Appendix 
B.4, the estimates of the standard deviation based on the HTB sam~ 
pIe are conservative and (if there' were no bia'ses in the. model) the 
values that apply to the 40,000 'HTB .points might be' ~ma~ler than 
those in Fig. 24 (a) by a factor as: lal:ge as 6. 

The values in Fig. 24 (a) are for ~'elative counting rates (or fluxes) 
and do not include the uncertainty in the absolute calibration of the 
instrument noted at the end of Appendix A. Other discussion is given 
in Sections 9.4 and 12.2 and Appendix B.4. 

7.7 Behavior of the Fit on Several L-Slices 

Using the HTB coefficients, values of YL(X) were calculated for 
Lm = 1.35, 1.805, 2.0215, and 1.79. The results are plotted as the 
heavy solid lines in Figs. 4 to 7. Recall that the points in these figures 
are not all HTB points. In general, the HTB points are those with the 
higher values of Y, although this may not be the case at L ~ 2.2 
because of the temporal effects discussed in Section X. The four 
figures also allow further appreciation of the difference in results 
between CB fit and the HTB fit produced by the partitioning of the 
data and the refinement of the procedure by which the sample was 
selected. 

7.8 Residuals in x,L Space 

The residuals, Y - y, were computed for all the HTB data using 
the HTB coefficients. Fig. 25 is a plot of residuals against L, and 
Figs. 26 and 27 are plots of residuals against x, in the indicated 
L-ranges. These plots are analogous to Figs. 13 to 15, and as they 
display properties similar to the earlier figures, the discussion of 
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Fig. 26-HTB residuals of Y (i.e., Y - y calculated from the HTB coefficients) 
plotted against x for 1.40 < L < 1.60. The arrows indicate ± the approximate 
standard deviation if Y2 were Poisson distributed. 

Section 6.6 applies. In particular, there is little indication of a de
pendence of the residuals on the magnetic coordinates. IVloreover, the 
residuals in Figs. 25 to 27 are more closely clustered a bout zero than 
those in Figs. 13 to 15, confirming the fact that there is less scatter 
in the HTB data. This reduction in the scatter is especially marked 
in the neighborhood of the peak of the radiation belt (near x = 0 
between L = 1.4 and L = 1.6, Fig. 26). 

7.9 Mean Square Residuals in x,L Space 

A breakdown of the mean square residuals (wISR) by L-ranges 
for the fit to the HTB data is given in Table III. This analysis is 
analogous to that presented in Section 6.7 for the CB fit. For the 
Group I data the MSR for the overall fit (1.1 < L < 3.0) is about 
(1.5) (0.023) = 0.036 and the largest entry under HTB Group I is 
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0.059. The anomalous trend of the MSR near L = 1.4 evidenced in 
the fit to the unrestricted data (see Section 6.7) has been largely 
eliminated. The overall MSR for the Group I data has been reduced 
by 15 percent. 

The breakdown of the MSR by L-ranges is not a particularly 
refined test of the quality of the fit. This index is based on essentially 
all the HTB data and, because the averaging procedure is blind to 
the distribution of data within L-ranges, favors results that fit best 
where the density of data is high. As the HTB sample was selected 
using criteria dependent on the preliminary fit to the data and does 
not necessarily favor x,L regions in which large quantities of data 
were acquired, the results of fitting this sample does not produce the 
lowest obtainable value of MSR for all of the HTB data. Examina-
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Fig. 27 -HTB residuals of Y (i.e., Y - y calculated from the HTB coefficients) 
plotted against x for 1.85 < L < 1.90. The arrows indicate ± the approximate 
standard deviation if Y2 were Poisson distributed. 
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tion of the MSR in x,L cells shows the effect of the sample selection 
procedure on the MSR in L-ranges. Appendix C contains further in
formation and analysis of MSR in x,L cells. 

Model I with the HTB coefficients, provides a summary of the 
HTB data that, in the light of the many sources of variability and 
measurement errors, reasonably approaches the limit set by expected 
statistical fluctuations. 

7.10 Sources of Variability in the Data 

The residuals for the HTB data are now examined to see whether 
further identifiable sources of variability may be associated with 
them. Possible sources are: instrumental effects, errors in the ephemeris 
of the satellite, errors in the description of the magnetic field, telem
etry errors, fluctuations in the length of the counting interval, de
ficiencies in the model, and temporal variations. While all these must 
make some contribution to the MSR, the interrelationships among 
the coordinates discussed in Section 6,8 and the small size of the 
individual contributions, make positive identifications very difficult. 
'Ve have not attempted to examine in detail .the .large number of 
small, apparently systematic, deviations discernible on the residual 
plots, although some of these may be "statistically significant." In
stead we have restricted our study to effects which are readily ap
parent on the residual plots. Where the observations are dense, an 
effect would be glaringly apparent if it introduced a shift of ~ 0.05 
in the local mean of the residuals. (This corresponds to a change of 
about 1.2 percent in flux at the peak of the proton intensity, and 
about 12 percent when the flux is a hundredth of its peak value.) 

Instrumental effects are associated with temperature, bias voltage, 
radiation damage, and imperfections in the omnidirectional char
acteristics of the detector .. Restricting the range of temperature and 
bias voltage removed the major fraction of the instrumental' effects 
associated with these variables. Directional effects in the detector 
might show up when the residuals are plotted against "I, the angle. 
between the spin axis and the local magnetic field vector. However, 
no dependence was observed, indicating that the detector is effectively 
omnidirectional. Radiation damage, though technically an instru
mental effect, is more logically treated with temporal variations. 

Examination of plots of residuals versus various geographic co
ordinates did not reveal any systematic dependencies. In view of the 
small excess of the MSR over expectation for a random Poisson 
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process, and the existence of other sources of error, it seems reason
able to conclude that the ephemerides were computed with sufficient 
accuracy for this analysis. 

The plots of residuals against the geographic coordinates as well 
as against x and L values were used to judge the quality of the co
efficients used to calculate the magnetic coordinates Land x. No 
systematic effects that can be attributed to flaws in the coefficients of 
the magnetic field were discerned. Nor is there any indication, in the 
form of excessive scatter of the residuals, that L is an imperfect 
coordinate in any part of the region of space covered by these data. 

Gross telemetry errors and those that occur in conjunction with 
noise bursts are easily identified and have been discarded. There 
remain telemetry errors that are indistinguishable from good data 
on a point-by-point basis, and these erroneous data must make some 
contribution to the scatter. As noted in Section 8.1, the distribution 
of the residuals has been looked into and they are found to be very 
well-behaved. However, 'it is not possible' to make any quantitative 
estimates of the contribution of the remaining telemetry errors to the 
MSR. 

Temporal variations are an important source of variability, and 
Section X is devoted to their analysis. 

VIII. STATISTICAL CRITIQUE OF MODEL I. 

This section presents further information on statistical evaluation 
of the Model I fit. (Some background concerning relevant statistical 
techniques is given in Appendix B.) \Vhile confirming the very satis
factory performance of lVIodel I in fitting the data, as presented in 
Section VII, some unsatisfactory aspects are uncovered and several 
defects of the model are pinpointed. The rectification of these defects 
is effected by use of l\10del II, discussed in Section IX. 

8.1 Fit of 1110del I to the 96D-point HTB Sample 

The analysis of variance for the fit of Model I to the 960-point HTB 
sample is shown in Table IV. This gives various partitionings of the 
total sum of squares (about 0) of the 960 observations (on the square 
root of counting rate .scale). Table IV indicates the relevance of the 
model to the data in terms of its statistical effectiveness. Fitting the 
nine coefficients of the model accounts for more than 99.3 percent of 
the total sum of squares of the observations, leaving less than 0.7 per
cent associated with "error" or lack of fit. On a perdegree-of-::freedom-
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basis, the ratio of mean square for "fitted model" with 9 degrees of 
freedom to mean square for "error" is over 16,000. 

Of course, simply fitting the mean of all the data accounts for a 
sum of squares of 2121.2 .of the total of 5374.7. Of the remaining "cor
rected" total sum of squares about the mean of 3253.6, the part of the 
model "orthogonal" to the mean accounts for 3218.9, i.e., approxi
mately 98.9 percent (so that the squared multiple correlation coefficient, 
R2, is 0.989). The corresponding ratio, mean square for the model with 
(9 - 1) = 8 degrees of freedom to mean square for error, is over 11,000. 
It is worth emphasizing that the sample selection process which was 

used (see Section 7.1) is such that fitting the sample is, .on a per ob
servation basis, a more challenging problem than it would be for the 
entire body of data (see Appendix B.3). 

A summary graphical indication of the appropriateness of the fit is 
given in Fig. 20 which shows the fitted value plotted against the ob
served value. A perfect fit (essentially impossible here with any model 
based on x,L coordinates because different integral values of Yare 
observed near the same x,L point) would be the diagonal straight line 
shown. Deviations from fit should be gauged as horizontal spread about 
the line, since the observed quantities are plotted as abscissa, and are 
seen to be reasonably uniform throughout. 

Incisive indication of the quality of fit was provided by various 
plots of residuals (against L, x, y, time, etc.). Some representative 
plots over all the HTB data are shown in Figs. 25 to 27 and Figs. 41 to 
43. 

As a further examination of the adequacy of the fit to the selected 
HTB data, normal and half-normal probability plots (see Appendix 
B.8) were prepared for the 745 residuals comprising the subset of the 
960-point HTB sample for which x < Xc (L). These plots are shown in 
Figs. 28 and 29. 

Fig. 28 does display a generally good linear configuration indicating 
that the residuals may reasonably be regarded as a sample from a nor
mal distribution. There is no suggestion of general asymmetry or other 
distributional peculiarities. There are perhaps three values which are 
statistically "too large," but not wildly so. Indeed, the plot is remark
ably well-behaved and reassuring. 

From some points of view, it is useful to consider the. statistical be
havior of the residuals without regard to their sign. Fig. 29 is a plot 
of the ordered absolute residuals against standard half-normal (folded 
standard normal) quantiles. This presentation is more focussed and 
sensitive to a statistical overabundance of large absolute residuals. The 
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plot is also very well-behaved, with indication of the same three overly 
large values. 

The reason for omitting from these plots all residuals from points 
for which x > Xc (L) is that, for those, the predicted value y is 0 and, 
in the great majority, the observed Y was 0; hence, the residual is O. 
Since it was exactly this information which determined the estimate 
Xc (L) and since one. could hardly expect a collection which includes 
about V5 zeros to behave like a normal sample, these points were omit
ted 

From either Figs. 28 or 29 one can estimate a slope of about 0.21, 
which is an estimate of the standard deviation of the (counting rate)! 
observations, clear of the confounding influence of the non variance
stabilized very low counting rate observations, since observations for 
x > xc(L) have been omitted. The corresponding variance estimate, 
0.044, clearly exceeds that from the Poisson approximation, 0.023, 
and also is greater than the pooled value for the l\ISD(Y), 0.039, 
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Fig. 28 - Normal probability plot of residuals from fit of the model to the 
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(Appendix C) the overall HTB data MSR(Y), 0.038, (Appendix C) 
as well as the MSE(Y) from the fit to the 960 points, 0.036,,:(Table IV). 
This is as one would expect, since the variance estimate from the slope 
of Figs. 28 and 29 is not downward biased by the zero (and Vi7ll) 
residuals from the very low counting rate observations for x > xcCL) , 
while the other quantities are so biased. 

The excess of the variance estimate of 0.044 over the Poisson value 
of 0.023 may be due to any or all of several factors, including: (i) the 
noncorrectness of the Poisson assumption, (ii) temporal variations in 
the radiation belts or the detection equipment, (iii) measurement 
errors or computational biases in time record, ephemeris or magnetic 
coordinates, etc. (iv) noise bursts-the outlandish values were detected 
and discarded, but the general effect must be an upward bias on varia
tion, and (v) inadequacies in the model, including analytic form and 
coordinates employed. 
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8.2 Statistical J11 easures Over A II the H T B Data. 
An extensive presentation and comparison of various functions of 

the residuals over all the HTB data is given in Appendix C. Those re
sults provide (i) an empirical justification for the use of the square 
root transformation; (ii) a strong indication that the fit attained by 
l\10del I cannot be improved very much in the least squares sense over 
all the HTB data; (iii) information on the extent of "unevenness" of 
the cell-construction process by which the 960-point HTB sample was 
selected; and (iv) some. indication of differential effectiveness of fit of 
lVIodel I to the data for different x,L regions. 

8.3 Statistical Properties of Estimates of the Coefficients and Coefficient 
Functions . 

.. The least squares estimates of the nine coefficients of Model I fitted to 
the 960-point HTB sample are given in Table IV, with their approxi
mate standard errors and pairwise correlations.* These provide the, 
information needed to obtain estimates and standard errors for func-' 
tions of the coefficients; e.g., y' (x,L) , or A' (L), or the value of the max
imum counting rate, or the position in space at which the intensity of 
high energy protons is maximum, etc. (See Appendix B for the neces
sary formulae.) 

Some of the pairwise correlations in Table IV are exceedingly high. 
This may be due, in general, either to an unfortunate "design" (i.e., 
the array of positions of observations in x,L space in this application) 
or to some inherent "coefficient redundancy" in the model, or to both 
such blemishes. Occurrence of such near-singularities can lead to prac
tical difficulty with the iterative fitting computation and/or make the 
individual coefficient estimates poorly determined. 

In the present model, only the coefficient Lo has a direct physical 
interpretation. Its estimate has a very small standard error and an 
entirely bearable correlation with the remaining coefficient estimates 
(all values of lal < 0.5). Otherwise, physical interest centers mainly 
on the coefficient functions A' (L), XC (L), and y' (x,L) whose estima
tion is considered in Sections 7.2, 7.4, 7.5, 7.6, and 8.4. 

For a given model and specified coefficient values, the matrix of ap
proximate correlations depends only on the array of data positions in 
x,L space. Thus, to check on whether the correlational problems might 

* A rescaling of the values of p, namely as the quantity a defined and moti
vated in Appendix B.5, is also given in Table IV. The coefficient of dependence 
a has more nearly the behavior of a "linear utility function." 
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be due to inadequacy of the practically available (selected) array, a 
correlation matrix was computed using an 'ideal' x,L array, namely 
the 1034 values of (x,L) corresponding to the division of x,L space 
described in Section 7.1 and Appendix B.3. '¥hile some minor improve
ments in some of the correlations were noted, the changes were small. 
Thus, it would appear that the main reason for the high correlations 
is in fact some "coefficient redundancy" in the model. 

Inspection of Table IV indicates that the very large correlations are 
associated with some of the parameters of the A' (L) function, namely 
al, a2, a3, and TJ for all pairs of which Ipl > 0.99 (i.e., lal > 0.90). 
Moreover, it will be seen in Section 8.5 below, that the present param
eterization of the model leads to a markedly large indication of non
linearity and there is reason for believing that this is largely due to 
the same subset of coefficients. The combination of both defects stimu
lated development of Model II which overcame them (see Section IX). 

8.4 Estimates of Functions of the Coefficients 

The estimates of the coefficient functions A'(L) and xc(L) have been 
discussed in Sections 7.4 and 7.5 and summarized in Figs. 10 and 11. 
Their estimated standard deviations, on a "pointwise" basis, are 
graphed in Fig. 22(a), while the approximate correlations of the esti
mates of A'(L), xc(L), and S, as functions of L, are shown in Fig. 30(a). 

Despite the near-singularities (i.e., 1 P 1 near 1) in the estimates 
of some of the individual coefficients of A' (L), it is seen that the estimate 
of the square root of the equatorial counting rate provided by A'(L) is 
well-determined over the entire L range. The standard error varies 
between approximate limits of 0.018 and 0.040, nonmonotonically, and 
these values are typically less, sometimes by a factor of 5 or more, 
than the standard errors from the corresponding L-slice estimates 
(see Table II) reflecting in part the statistical gain from the simul
taneous two-dimensional fit. 

For xc(L), the standard error is less than 1 percent over much of 
the range of L, rising to 3 percent for large L values where the data 
are statistically inadequate. 

The three correlation functions PA,xc(L), PA,s(L), and Ps,xc(L), for 
the estimated coefficient functions A'(L), xc(L), and S, are plotted in 
Fig. 30(a) (see Appendix B.4 for formulae). In general, these correla
tions are small (I P 1 < 0.5, 1 a I < 0.12). The statement applies to 
the correlations involving A'(L) despite the very high correlations among 
individual coefficients. The generally low correlation between A'(L) 
and xc(L) is as intuitively expected since A'(L) is influenced mainly 
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by observations at small x while xc(L) is determined mainly by those 
at large x. The exception is near L = L o, where PA,xc(Lo) approaches 
1 as a result of the fact that the coefficient Lo is common to both func
tions and that the forms of A'(L) and xc(L) [see (4), (5), and (6)] 
require that both functions be zero when L = Lo. 

The statistical correlation between the fitted A and Xc for the L-slice 
fits was always positive (see Table II), which is not the case for PA,xc(L). 
This change in sign gives some indication of basic differences in be
havior between the results of the two-dimensional fit and the outcome 
of the collection of one-dimensional L-slice fits. 

The (A, 8) and (8, xc) correlations have the same signs in all cases. 
The magnitude of the correlations among A, xc, and 8 is larger for 
the L-slice fits (see Table II) than for the HTB fit at corresponding 
values of L [see Fig. 30(a)]. This is very noticeable for L greater than 
~1.7. particularly for the large correlation between 8 and xc' It is 
these large correlations which make it difficult to obtain reliable L-slice 
estimates of Xc or 8 when Lm > 2 (see Fig. 6) or when the distribution 
of the data within an L-slice is poor (see Fig. 7). 

8.5 Nonlinearity Indices and Dependence of Estimates 

Appendix B.5 discusses the use of the sum of squares function (i.e., 
sum of squares of differences between observed value and "fitted" 
value, as a function of proposed coefficients) as an indicator of the 
joint dependence and behaviour of the coefficient estimates and the 
fact-that the extent to which the contours of the sum of squares func
tion are. approximated by a certain family of ellipsoids provides a meas
sure- of linearity of the model. 

Fig. 31 shows 4 of the 36 pairwise projections of the 9-dimensional 
ellipsoid, whose size would correspond to a "0.99 joint confidence co
efficient" as discussed in Appendix B.5. The axes are scaled in each 
case according to the standard error of the coefficient. The orientation 
and shape of the ellipse corresponds directly to the sign and magnitude 
of the correlation, p, or its transform, a, for the pair of coefficients. 
Thus, for example, Fig. 31(a) shows the projection onto the al-a3 
plane. The. resulting very narrow positively inclined ellipse corresponds 
to a" very high positive correlation of al, a3 (p = 0.9995, a = 0.97). 
(The 45° inclination of the graphed ellipses is a result of scaling the 
axes by their standard errors.) Part (b) of the figure shows a narrow 
negatively inclined ellipse for the case of rather large negative correla
tion between a3 and 'YJ estimates. Parts (c) and (d) illu'strate results for 
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small and negligible correlations between L o, r2 and ra, 8, respectively. 
At various positions on these ellipses there appear numbers which 

are ratios of the actual sum of squares at that "point" to the minimum 
sum of squares. The computation of the actual sum of squares is done 
for the coefficient values corresponding to the point on the 9-dimen
sional ellipsoid which projects into the point on the plotted ellipse. 

If, in fact, the coefficients occurred linearly, all of these numbers on 
all of the pairwise. ellipses would be constant and in the present case 
would have the value 1.023 corresponding to a sum of squares of resid
uals of about 35.47. As a basis for judging the actual values and their 
variability, the following table gives values which this ratio would 
have, if the coefficients did occur linearly, for various joint (9-dimen
sional) "confidence coefficients:" 

Can/. Coei!. 

0.90 
0.95 
0.99 
0.999 

Contour Ratio 

1.015 
1.018 
1.023 
1.029 

In view of the variability of the actual ratios in Fig. 31, and of the 
extent to which some depart from the values in the above table, it is 
clear that in the present form of the model the coefficients behave 
jointly in a markedly nonlinear fashion even in a relatively small 
neighborhood around the least squares estimate. 

Inspection of the entire set of (9) (8) /2 = 36 pairwise plots strongly 
suggests that a major part of this nonlinear behavior derives from the 
coefficients aI, a2, a3, and 1] of the A' (L) part of the model. These also 
are the coefficients whose estimates exhibit the undesirably high cor
relations which have been shown above to be due mainly to a "coeffi
cient redundancy" in the model. 

Direct interpretation of the ellipses in Fig. 31, as indicating inter
dependence of the coefficient estimates, depends heavily on the appro
priateness of the linear approximation in the neighborhood of the least 
squares estimate.. Since the nonlinearity index is in fact distressingly 
large one must be cautious in interpreting the ellipses or their asso
ciated correlation or dependence coefficients. 

8.6 Summary Statistical Criticisms of lJf odel I. 
Model I, with coefficients determined by fitting to the 960-point 

HTB sample, has been shown to provide a very good fit both to the 
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sample and to the entire body of some 41,000 HTB observations. 
Moreover, the interesting coefficient functions y' (x,L) , A' (L) , and Xc (L) 
have stable statistical properties as :has the physically in~erpretable 
coefficient Lo. 

However, the model has two statistical defects: Firstly, although 
the model gives an extremely good fit to the Idata, the parameters 
a1, Q2, a3, and 'rJ of the A' (L) par~ of the model have exceedingly high 
mutual correlations (see Table IV), and these were shown not to be 
due to an obviously defective design. Secondly, the model coefficients 
exhibited distressingly high non~inearity of behavior even within 
rather close neighborhoods of their least squares estimates, with 
grounds to suspect that this was daused by the a1, a2, a3, 'rJ group of 
coefficients. In addition,' most of Ithe coefficients of Model I do not 
have any directly meaningful,.:phy¥cal interpretation. i 

The modifications which led to Model II, as discussied in the 
following Section IX, overcome these defects of ~lodel I ,vhile re
taining all its virtu,es. 

I 
IX. THE MODEL II FIT TO THE HTB DATA 

This section presents the statistical analysis' of the HTB data 
using lVlodel II, a modified version of ~lodel 1. The. emphasis in the 
presentation is on comparisons of lVIodels I and II. Since it is shown 
how very closely the fit of Model II approximates that of Model I, 
such aspects as the direct presentation of Model II residuals overall 
the data are unnecessary, and hence omittted. 

9.1 Alodel II 

The definition of ~/Iodel II has been given in Section 4.6, together 
,,,ith a discussion of the physical interpretation of its coefficients and 
its mathematical relation to lVIodel I. Specifically, the 8-coefficient 
~!Iodel II constitutes a specialization and reparameterization of the 
9-coefficient ~!Iodel I. Thus, it follows that the minimum sum of 
squares in fitting ~lodel II to any body of data can not be less than 
that from fitting lVIodel I, though this may not be true of the mean 
square error. 

The evolution of l\lodel II from Model I did not arise from any 
simply described systematic process, as is indeed true in other aspects 
of this study. Once the basic achievements of ~Iodel I were estab
lished it was then opportune to focus on maj or remaining defects. The 
character of these defects strongly urged elimination of one or more 
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coefficients in conjunction with a nonlinear reparameterization of 
the coefficients. The solution achieved was arrived at by 'empiricism, 
persistence and good luck. 

The remainder of this section documents the assertion that Model 
II retains all the virtues of Model I while overcoming its defects. 

9.2 The Fit of 1J10del I I to the 96D-point H T B Sample. 
The analysis of variance from fitting the 960-point HTB sample 

by means of the 8-coefficient Model II is given in Table V. As ex
pected, the residual sum of squares, 34.7126, of Table V exceeds that of 
Table IV, namely 34.6675. This difference is associated with the 
one-degree-of-freedom nonlinear constraint defined in (13). Thus, 
we see. that the sum of squares associated with the one-degree-of
freedom non-linear constraint is (34.7126-34.6675) = 0.0451 and this 
gives a ratio of less than 1.24 in relation to the mean square error 
of 0.03645. The value 1.24 corresponds to the upper tail 27 percent 
point of the chi-squared-with-one-degree-of-freedom distribution. 
The proportionate increases in the sum of squares for error is about 
0.13 percent and the increase in the mean square error is less than 
one part in 3000. Nlultiple R2 = 0.989 is effectively unchanged. 

For the models of both Tables IV and V, the coefficient S is treated 
as constant with L. If lVlodel II is modified so that S(L) = 80 + 81L, 
then, fitting this 9-parameter version of Model II yields a sum of 
squares for error of 34.520. Thus, we would have a sum of squares of 
(34.713-34.520) = 0.193 associated with the "hypothesis" 81 = O. 
The main point of quoting this result is to indicate thatthe$e minor 
differences in the sums of squares for error are judged as unimportant 
in this context, even if under some highly formalizedassu;mptions the 
distinctions are "statistically significant." 

Of greater interest and sensitivity are the. follo,ving considerations: 
(i) the 'behavior of the residuals from Nlodel II as functions of x,L 
and y; (ii) the behavior of the differences between lVlodels I and II; 
(iii) comparisons of the estimates o'f A' (L) of Model I and A" (L) 
of l\10del II [see (6) and (11)]; (iv): comparisons of the estimates of 
Xc (L) from the two models; (v) the pattern of correlations of the 
estimates of the eight Model II coefficients; and (vi) the indices of 
nonlinearity for the coefficients of Model r'I. ' 
9.3 Residuals of Model II Fit and Differences Between jVf odels I and II. 

Figs. 32, 33, and 34 are plots of the residuals of the 960;-point HTB 
sample from the fitted; values: of lVlpdel II against L, X an~ Y, re-
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spectively. These plots show no systematic structure and are quite 
similar to analogous plots for Model 1. Furthermore, Fig. 35, showing 
the observed Y versus fitted y" for Model II, is as well-behaved as 
the corresponding Fig. 20 for J\1odel 1. 

Figs. 36, 37, and 38 show the deviations between the fitted Models 
I and II plotted against L, x, and Y, respectively. Of course these 
figures show a systematic structure since one is plotting the difference 
of two smooth functions. However, the. actual differences are totally 
insignificant in the light of the data. (Note that the scale for Figs. 
36, 37, and 38 differs from that of Figs. 32, 33, and 34 by a factor of 
10.) 

Thus, on the basis of one less coefficient, Model II fits the data 
essentially as well as Model I, to which indeed it is a very excellent 
approximation. It has the merit that the physically arbitrary coef-
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Fig. 32- Residuals (Y - y) from the fit of Model II to the 960-point HTB 
sample vs L. 
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Fig. 33 - Residuals (Y - y) from the fit of Model II to the 960-point HTE 
sample vs. x. 

ficients aI, a2, and a3 of Model I have been replaced by Ap and Lp which 
do have direct physical interpretations. As will be detailed in the 
next subsection, Model II also has additional attractive statistical 
attributes. 

( 9.4 Coefficient Estimates 

Table V gives the least squares estimates of the eight coefficients of 
Model II together with their approximate standard errors, correla
tions and a values. The estimates are seen to be extremely well
determined. In particular, for the. physically meaningful quantities 
Ap, L o, and Lp the standard errors are about 0.4, 0.1, and 0.15 percent, 
respectively, while for the shape coefficients 'I'J and S they are about 
1 and 1.5 percent, respectively. 

Comparison with Table IV shows that the standard error has de-
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creased for every coefficient which is common to the models. The 
most dramatic change is for TJ for which the standard error diminished 
by a factor of about 8. 

The. estimates of A' (L) and A" (L) are in very close correspondence 
as implied by Fig. 36. The comparison of Fig. 22 (b) with Fig. 22 (a) 
indicates that the standard error of A" (L) is uniformly lower than 
(but in general agreement with) that of A' (L). 

Entirely similar remarks apply to comparison of estimates of xc(L) 
from Models I and II, as also documented by Figs. 22 (a) and 22 (b) . 

It has already been shown that the fitted values of y' (x, L) and 
y"(x, L) are in very close agreement. The pattern of contours of the 
percent standard errors of [y"(x, L) p, in Fig. 24(b), shows that the 
standard error is everywhere smaller than the corresponding results 
for :Model I, in Fig. 24 (a). 
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Fig. 34 - Residuals (Y - y) from the fit of Model II to the 960-point HTB 
sample vs Y. 
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One of the most dramatic changes between Models I and II is 
indicated by comparison of the correlations in Tables IV and V. The 
very large correlations (jpj > 0.99, jaj > 0.9) among the ..4.'(L) coef
ficients of Model I do not occur for Model II. Only the (rl' r2) and 
(r2, r3) coefficient pairs of Model II have jaj values above 0.5. This is 
inconsequential since these are physically arbitrary coefficients of a 
cubic polynomial. 

The correlations of A" (L), XC (L), and S from Model II remain much 
like the corresponding results for Model I, as shown in Fig. 30. 

9 .5 Nonlinearity Indices 

The further virtuosity of Model II is indicated by the behavior of 
the nonlinearity index shown for the examples of "confidence regions" 

9~--~----~----~----~----~----~----~----~----~ 

6 
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11J 
I-
~ 
a.. 
L 
0 
2 
::::Jl 
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9 

Y (OBSERVED) 

Fig. 35 - The value of y" computed from the fit of Model II vs the observed 
value, Y, for the 960-point HTB sample. 
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Fig. 36 - Deviations between the Model-I fit, y', and the Model-II fit, y", vs 
L, for the 960-point HTB sample. 

in Fig. 39. (See Appendix B for general discussion and definition.) 
Specifically, it is seen that the numbers on the ellipses vary very 
little and this is true for all 28 of these ellipses. These numbers would 
be constant and all equal to 1.023 if the model were linear in the 
fitted coefficients. Comparatively, NIodel II does indeed behave in a 
reassuringly linear fashion. For sharp contrast, we may compare Fig. 
39 with Fig. 31, for Model I, in which the values range up to 1000 
around the 9-dimensional ellipsoid. 

The nonlinear behavior of l\1odel I in relation to the linear be-
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Fig. 37 - Deviations between the Model-I fit, y', and the Model-II fit, y", vs 
x, for the 960-point HTB sample. 
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Fig. 38 - Deviations between the Model-I fit, y', and the Model-II fit, y", vs 
Y, for the 960-point HTB sample. 

havior of its specialized reparameterized version, Model II, is in
dicative of the reason for the high nonlinearity indices for ModelL 
Effectively, a p-coefficient model defines a constraining "surface" 
of p dimensions (p is 9 and 8 for Models I and II, respectively) in 
the n-dimensional space of the observations (n is 960 in the present 
case). In a small neighborhood of the least squares estimate, this 
p-dimensional surface mayor may not be planar. If the latter, one 
will obtain high indices of nonlinearity. If the former, then one will 
or will not obtain high nonlinearity indices according to whether 
the individual coefficient coordinates within the p-dimensional surface 
are or are not linearly behaved. 

It is likely that the 9-dimensional surface defined by lViodel I is 
indeed reasonably planar, but the coordinate system defined by the 
coefficients is highly nonlinear. 

The correlation and nonlinearity effects, it should be noted, are not 
in principle related. One can have very high correlations with linear 
models and very low correlations with very nonlinear ones. 

9.6 Summary Comments 

lViodel II has been presented and validated as an evolution of :Model 
1. Though Model II represents the current recommended fit from 
this study, several aspects of its justification, and of other comparisons 
in this paper, are based on the Model I fit. For example, the statistical 
study of residuals over all the HTB data, discussed in various places 
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including Appendix C, is based on lVIodel 1. This hybrid attitude is 
entirely sound, since the range of deviation between Models I and II is 
small compared to the range of residuals from the fitted sample. 

Thus l\Iodel II provides a fit to the HTB in which the 8 estimated 
coefficients provide a "good description" of about 41,000 observations. 
The deviations of the fit from the data are within reasonable statistical 
fluctuations-variation in telemetered counting rates, orbital errors, 
observational errors, rna pping-to-magnetic-coQl'dina te uncertainties, 
etc. (See Appendix C.3). A number of the coefficients have physical 
interpretations and these are statistically well-determined and rela
tively uncorrelated. Model II, though nonlinear in the coefficients, 
behaves in a very linear fashion in the neighborhood of the least 
squares estimates. 

x. TEMPORAL VARIATIONS 

This section and the two to follow are devoted to discussion of 
some specific physical results of the analysis. 

Temporal variations are considered in three classes: diurnal (day
night) , secular, and short term. Residual plots were used to study these 
effects. 

10.1 Diurnal Effects 

The HTB residuals were plotted against local time for various 
x,L regions. The HTB data are not well-distributed in local time 
near the magnetic dipole equator, making it difficult to draw firm con
clusions. However, no evidence of a diurnal variation was found. 

Specifically, to produce a change of about two percent in the 
average value of Y on the equator (x = 0) would require a diurnal 
shift in the radial position of the magnetic field line of about 0.01 
Rc at L = 1.35, and a shift of about 0.02 Rc at L = 1.55, if there 
were no other effects. At these two positions, the value of y is large 
(y ~ 8) and ay/aL is large, and a two-percent change in .y would 
correspond to a shift in the mean of the residuals of ;:::::0.16 between 
noon and midnight local time. An effect of this magnitude would be 
readily observable on the residual plots. 

Thus, it is unlikely that displacements larger than 70 km and 140 
km, at equatorial L's of 1.35 and 1.55, respectively, 'vvould escape de
tection, and these distances are offered as upper limits to the day
night changes of the magnetic field at the two positions. As both of 
these displacements are equivalent to a change in field strength of 
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about 300 gamma (0.003 gauss), this particle experiment does not 
qualify as a sensitive indicator of adiabatic changes in the earth's 
magnetic field. 

10.2 Secular E.tfects 

The HTB residuals are plotted against elapsed time, in days, for 
1.85 < L < 1.90, in Fig. 40. It would appear that the average value of 
Y decreased between days 191 and 255. This decrease is exhibited in all 
parts of the belt where we have measurements during this interval. 
Between days 191 and 225, the orbit of the Telstar® 1 satellite did not 
take it into the central region of the belt {1.3 ~ L ~ 1.8, A ~ 10°}. In 
other regions the decrease in the average value of Y over this period is 
about ten percent. The extremes are two percent and 20 percent, but it 

H~B I 
I I I I I I I I 

0.8 f-

.... 

-0.8 - 1.85 < L < 1.90 

1 I I I I I I I I I I 
180 220 260 300 340 380 420 

TIME IN DAYS FROM JAN. 0, 1962 

Fig. 40-HTB residuals of Y (i.e., Y - y calculated from the HTB coefficients) 
plotted against time for 1.85 < L < 1.90. The arrows indicate ± the approximate 
standard deviation if P were Poisson distributed. 
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is not possible to separate out other variables which may be influencing 
the results. 

From the magnitude of this effect, it is clear that it must be con
tributing sUbstantially to the lVISR. A decrease of ten percent in the 
average value of Y corresponds to a decrease of about 20. percent in 
the flux. A fractional change in the flux which is independent of x 
and L cannot be distinguished from a change in the characteristics 
of the instrument. Among other possibilities, radiation damage or the 
decay of protons which might have been associated with the Star
fish high-altitude nuclear test of July 9, (day 190.) 1962 might have 
produced the observed effects. Because of this ambiguity, we are 
unable to offer any well-founded interpretation of the time depend
ence of the data before day 225. For reasons to be noted shortly, 
ambiguities are also encountered when interpretation of the temporal 
behavior of data acquired after day 40.0. is attempted. In the inter
mediate period, the time dependence does vary with x and L. By 
using Fig. 40., which shows comparatively little fluctuation during 
this intermediate period, as a standard we are able to measure 
relative changes in the belt. The stretches of sparse data near days 
240. and 320. in Fig. 40. are a result of the orbital configuration, there 
being less opportunity to acquire "high-temperature" data during 
these periods. The absence of HTB data between day 325 and 373 
was caused, as noted in Section 6.9, by the low bias condition that 
existed during that time. However, an examination of residuals from 
the CB fit between days 325 and 373 reveals nothing that vitiates the 
conclusions drawn from the HTB data in what follows. 

Residuals versus time-in-days have also been plotted for x,L cells 
of size 0..1 in L by 0..2 in x. Below L = 1.9 we find only one change 
with time within the sensitivity of our measurements, namely, a 
secular decrease between days 225 and 40.0. which occurs only near the 
ends of the field lines (x ~ Xc - 0..2) . We are unable to quantify this 
effect because, in order to see the droop above the noise, we need to 
collect residuals from a fairly sizable region of space. The term "sizable" 
means a region over which y changes so much that an average value of y 
in the region is not sufficiently representative to be used as a basis for 
computing a percent change in the flux. Fig. 41 gives an example of an 
x,L cell near the cutoff where this decrease may be seen. However, in 
the adjacent lower-x region, Fig. 42, where the ability to discriminate 
absolute changes in the average value of Y is the same and the ability 
to discriminate percent change in the average value of Y is much greater 
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Fig. 41- HTB residuals of Y (i.e., Y - y calculated from the HTB coefficients) 
plotted against time for 1.6 < L < 1.7 and 0.8 < x < 1.0. The arrows indicate 
± the approximate standard deviation if y2 were Poisson distributed. 

than for the region of Fig. 41, no corresponding secular decrease be
tween days 225 and 400 is evident. 

The droop in the residuals after day 400, which is noticeable in 
Fig. 42, is characteristic of many of the plots of residuals versus 
time-in-days. The. widespread occurrence of this effect confuses in
strumental and "real" variations and introduces unresolvable am
biguities when attempts are made to identify the source of the droop. 

The observation of the general downward slope in Fig. 41 might 
be explained by a small decrease in Xc, which corresponds to a small 
increase in the altitude of the cutoff, between August 1962 and 
January 1963 on L-shells below 1.9.23 Alternatively, one might be 
observing the decay of the 55 MeV protons whose perturbation by 
the Starfish high-altitude nuclear test of July 10, (day 190) 1962 and 
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subsequent behavior have been measured by Filz24 near the bottom 
of the trapped proton belt. There are too few data for us to attempt 
further interpretation of this qualitative observation concerning the 
secular behavior of XC' The number of points affected and the mag
nitude of the shift are too small for this effect to contribute interest
ingly to the MSR. 

10.3 Short-Term Effect 

The plots of the residuals versus time-in-days, for x,L regions, 
show a short-term fluctuation which is sufficiently singular to be re
ferred to as an event. This event is an increase in the average value 
of Y over the 3D-day period which starts about day 280. It can be 
seen clearly in Fig. 43. The increase is discernible only for L > l.9. 

Fig. 42-HTB residuals of Y (i.e., Y - y calculated from the HTB coefficients) 
plotted against time for 1.6 < L < 1.7 and 0.6 < x < 0.8. The arrows indicate 
± the approximate standard deviation if y2 were Poisson distributed. 
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TABLE VI-FRACTIONAL INCREASE IN FLUX BETWEEN DAYS 280 
AND 310, 1962. 

~ 0.1 0.3 0.5 0.7 0.9 

<1.9 - - - - -
1.95 0.05 0.07 0.12 0.20 0.70 
2.05 - - 0.37 0.46 0.90 
2.15 - - 0.28 0.33 -

Table VI gives the fractional increase in the average counting rate 
(yZ) during this period at various values of x and L. By L = 2.25 
the change is barely observable and for L > 2.3 it has disappeared. 
The data acquired between days 325 and 373, which are not included 
among the HTB data because the bias voltage was low, were ex-

I I I I I 

0.8 '-

0.4-' .': '::". .: ..... '., 

>-u.. _ - ',:: ... ~.: . ; • • :,. ,i·· :,;', ....... ~.:.~.:;:;..:::: .. : ... ~:~\ .. :~\;.,.,:: .... ::_~: .. :.:!:'.::; .. ~.:\: -

•••• 

: 

•• 
: •• 

- •••••• : ':':: •• : ........ :-~~ •••• :; ••••• ~~ •• :.~ ••• : •••• ~ ... : •••••••••••••• ::: •• :.~~ •• : •• ~: • p ~ o~~~~:::~:·~i~\~::·_~.'~:~.:_~_~~~~~~~~ _____ ~ .. ~,.~ .. __ ._.~-~ 
! - ~ .:) )j;>?'.. :: .:~.~.:.t.~':.' .. ;;:-~i:.;,i·.~.~.i:.;>· 

:;; ~~)~: ~.':::~::" '.' . '. . .' 

" -0.4-

-0.8 -

I I I I I 1 I I 
180 220 260 300 340 

TIME IN DAYS FROM JAN. 0,1962 

2.0 < L < 2.1 

0.6 < :x: < 0.8 

I I 
380 

-

-

I 
420 

Fig. 43-HTB residuals of Y (i.e., Y - y calculated from the HTB coefficients) 
plotted against time for 2.0 < L < 2.1 and 0.6 < x < 0.8. The arrows indicate 
± the approximate standard deviation if y2 were Poisson distributed. 
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amined; and there appears no reason to believe that there were any 
changes in the intensity of the >50 MeV protons for L > 1.9 during 
these 48 days. 

While it is not possible to be quite sure. that we are observing a 
"true" temporal effect, it is difficult to contrive any alternate ex
planation. This event can be compared with the changes produced in 
the high energy proton distribution by the magnetic storm of Septem
ber 22, 1963, and observed with Relay 125 and the Telstar® 2 satellite.5 

In both cases only L shells with values above 1.9 were affected, and the 
effect is more pronounced at higher x's. However, the storm produced a 
decrease in flux whereas an increase was observed in 1962; the effects of 
the storm were more severe at larger L's, whereas in this event, a max
imum fractional change was observed near L = 2.05; and the effect 
of the storm was sudden, i.e., the flux decrease took place within 24 
hours, while the increase observed in 1962 was gradual and required 
a month to complete. Increases in flux having some of the features 
described here were observed with Explorer 7. 26 However, it is dif
ficult to be certain that those increases were caused by protons with 
energies above 18 MeV, rather than electrons with energies greater 
than 1.1 JVleV. 

The high-energy protons appear very stable over the seven months 
covered by our data. In particular, no effects associated with the 
USSR high-altitude nuclear tests of October 22, October 28, and No
vember 1, 1962, or the large magnetic storm of December 18, 1962 have 
been observed. 

In summary, changes through time in the observed values of the 
flux are generally less than 20 percent, although they may be larger 
in some regions of space. We have not been able to detect a diurnal 
effect. Often, secular changes are not separable from other variables, 
an exception being an apparent change in the. position of the cutoff. 
An event which appears to comprise a measurable redistribution of 
the proton flux over an appreciable volume of space and period of 
time has been noted. We do not know whether the redistribution is 
in energy or space, and find no indication of the mechanism in the 
data. 

XI. THE CUTOFF 

As discussed in Sections V, 6.3, and 7.5, the cutoff function, Xc (L) , is 
defined in terms of our instrument, model and fitting procedure. For 
L < 2, the value of xc(L) corresponds to the position on the given L 
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shell at which the omnidirectional flux is of the order of 1 proton/cm2 

sec, more than three orders of magnitude below the highest flux in 
the belt. However, because the flux is falling so fast with x, this 
position is almost certainly very close to the place at which the flux 
becomes O. The last statement is not true for L > 2. Here, although 
the value of xc(L) (the place at which y = 0) still corresponds to 
the point at which the limit of sensitivity of our instrument is 
reached, the position of Xc is not so well-defined by the fit. In addition, 
one has only to examine Fig. 23 to realize that Xc may be significantly 
removed from the value of X at which the flux falls to zero. 

The Model-I HTB coefficients of Table IV define the cutoff func
tion, and we have made use of a modification of R. H. Pennington's 
mirror trace program* to calculate the minimum altitude correspond
ing to Xc (L) for L < 2.2. This inversion was accomplished using the 
Jensen and Cain magnitude field coefficients for 1960/3 the same set 
used to calculate x and L (see Table I). (Other sets of coefficients are 
available.27 However, using the GSFC (7/65) coefficients28 does not 
produce significantly different altitudes.) 

The minimum altitude is smallest in the Southern Hemisphere over 
the Atlantic Ocean. Fig. 44 shows the results in graphical form. The 
minimum altitude is ::::::270 km near the equator (L = Lo :::::: 1.13), 
decreases to a minimum of ::::::160 km at L = 1.6, and increases very 
rapidly thereafter. For L less than 1.5, the standard error in altitude, 
derived from the standard error in Xc (see Fig. 22), is about 10 km, 
which is roughly the accuracy of the inversion procedure as we used 
it. The standard error in altitude for L > 1.5 is indicated by the 
dashed lines in Fig. 44. At L = 2, where the cutoff mechanism is only 
partially atmospheric, the standard error is nearly 50 km. 

The minimum near L = 1.6 in the altitude curve of Fig. 44 appears 
to reflect the existence of the South American magnetic anomaly. 
Although Rc(L) [see (5)] increases monotonically with L for L > 1, 
the increase is apparently not fast enough to override the influence of 
the anomaly. This result is true for all the sets of coefficients pro
duced in many trial fits as well as for the HTB coefficients in Table 
IV. We have not yet carried out the obvious next step of averaging the 
atmospheric density over the orbital path of the protons to see 
whether or not the shape of Fig. 44 can be explained on the. basis of 
present models of the atmosphere. 

Although the shape of the minimum altitude curve remains the 

* Kindly communicated to us by D. J. Williams. 
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same, the value of the altitude is sensitive to the method of select
ing the sample (see Section 7.1). For example, the. minimum value of 
altitude calculated from the CB coefficients is 100 km (again at 
L = 1.6), 60 km lower than the 160 km calculated from the HTB 
coefficients. The weighting of the HTB sample emphasizes the high 
x data and gives better representation, and therefore a better ex
pectation of fitting well, near the cutoff. However, the Telstar® 1 satel
lite, with its eccentric orbit and relatively high (950 km) perigee, could 
not give detailed information about particles near the top of the atmos
phere, and this is reflected in the results of the analysis. 

In conclusion, the curve of Fig. 44 probably represents the quali-
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Fig. 44-The minimum altitude reached by > 50 MeV protons as a function 
of L. This altitude is determined in geographic coordinates from the transform 
of xc(L). The dashed curves are ± one standard error. 
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tative behavior of the minimum altitude of the cutoff reasonably well, 
but the uncertainty in the value of the altitude is larger than a 
simple examination of the standard error plotted in the figure would 
lead one to believe. The implications of these results for the details 
of the cutoff mechanism have not been examined in detail; however, 
it is clear from the sudden upturn of the curve in Fig. 44 that the 
mechanism is principally atmospheric for L less than about 1.9 and 
principally nonatmospheric on higher L shells. 

XII. COMPARISON WITH OTHER WORK 

12.1 Introduction 

When making comparisons among the various high-energy proton 
measurements it is desirable that the results be extensive in time and 
space, reported in terms of omnidirectional fluxes at various positions, 
and that these positions be expressed in magnetic coordinates de
rivable from the B,L set. A list of some experiments which meet these 
desiderata is given in Table VII. 

Following a presentation of flux maps, comparisons among these 
experiments are made with respect to the following features: the 
absolute intensity at one point in the belt, as close to the maximum of 
intensity as is practical; the intensity vs L in the equatorial plane; 
the behavior of the intensity on selected L shells; the flux near the 
top of the atmosphere, and the equatorial pitch angle distribution. 
Comparisons covering a larger range of proton energies have also 
been made by Vette29 and Fillius.20 

One of the difficulties encountered in making comparisons among 
the various bodies of data is that most of the results have been pub
lished in graphical form, rendering it necessary to scale numerical 
values from small plots, an inaccurate procedure at best. A welcome 
exception is the Explorer 15 data, which McIlwain18 has made avail
able by means of a series of interpolation functions in the form of a 
FORTRAN computer program. 

12.2 Telstar® 1 Flux 1Yiaps 

For this discussion, the Telstar® 1 HTB results have been converted 
to omnidirectional flux, J, where J = 47ry2/g. (Note that the value of 
g derives from the assumptions of Appendix A regarding the energy 
spectrum.) This procedure provides an estimate of the flux of protons 
with energies between 50 and 130 MeV at positions, ex, L), in mag-



TABLE VII - SOME SATELLITE MEASUREMENTS OF THE 

HIGH-ENERGY TRAPPED PROTONS. 

Orbit 
Approx. period perigee, R. 

covered in reference apogee, R. 
Satellite incl, deg 

Explorer 4 7/26/58 to 1.041 
1958 d * 1.347 

50 
Injun 1 7/61 to 1.14 

1961 02 12/61 1.16 
67 

1961 aol 10/21/61 to 1.59 
(H2) ** 1.55 

96 
1962 d 4/9/62 to 1.54 

(H3) ** 1.44 
87 

Telstar® 1 7/10/62 to 1.15 
1962 ad 2/21/63 1. 90 

45 
Explorer 15 10/27/62 to 1.049 

1962,BX1 1/27/63 3.72 
18 

Relay 1 5/1/64 to 1.21 
1962,Bpl 9/22/64 2.14 

48 
Injun 3 12/24/62 to 1.037 

1962,Br2 9/28/63 1.44 
70 

-- -- -------

* Not stated. Re-entered atmosphere 10/23/59. 
** Not stated. 

Approx. energy 
Instrument range 

Anton 302 Geiger > 43 MeV 
tube (shielded) 

Anton 213 Geiger > 40 MeV 
tube (shielded, 
SpB) 

scintillator > 59 MeV 

scintillator > 59 MeV 

solid-sta te 50-130 MeV 
detector 

scintillator 40-110 MeV 

scintillator > 35 MeV 

scin till a to r 40-110 Me V 

--
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MAGNETIC 
INVARIANT EQUATOR 

1.5 2.0 

R 
2.5 3.0 

Fig. 45 - Omnidirectional isoflux contours derived from the HTB coefficients 
and plotted in R,A. space. Dashes indicate extrapolation beyond the region in 
which data were acquired. Long dashes form contours of constant percent standard 
deviation. 

Label 1 A 1 B 1 c 1 D 1 E 1····1 L 
Omnidirectional 5 X 103 2 X 103 1 X 103 5 X 102 2 X 102 1 X 100 protons/ 

flux (J) cm2 sec 

netic space on the basis of the presently provided nl0del and fit to the 
HTB data. 

For ease of reference, Telstar® 1 HTB flux maps are presented in 
three. commonly used forms: Fig. 45 shows contours of constant flux 
in R,A coordinates; Fig. 46, contours of constant flux in B,L co
ordinates; and Fig. 47, log flux vs log B curves for various values of L. 
These three graphs give an overall picture of the particle distribution. 
In these figures, dashed lines are used to indicate the extrapolation of 
fitted values to regions not penetrat.ed by the satellite. Note the way 
the geometry of the coordinate transformations affects the extrap
olated regions. In particular, the functional extrapolation in B,D 
coordinates gives much more curvature to the contours than might 
be anticipated. The difference between the functional and straight 
line extrapolation in B,L can be as large as a factor of 2 in the 
flux (a shift of 0.2 in L) at L = 3. Except for the region of the 
secondary local maximum in the flux near L = 2.2, this functional 
extrapolation compares surprisingly well with the measurements made 
on higher altitude satellites.5 , 18 

In the altitude range covered by the data, a single. maximum is 
observed. This maximum in the omnidirectional flux of ~ 6 X 103 

protons/cm2 sec is located on the magnetic equator at R = L = 1.46. 
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The intensity falls abruptly near the bottom of the belt (the top of the 
atmosphere) and decreases more gradually toward the sides and top 
of the belt. On a given L shell, the intensity is a maximum at the 
magnetic equator, and deceases monotonically as the distance from 
the equator increases. 

Neglecting the uncertainties in the calibration of the instrument 
(-25 to +50 percent), which are discussed in Appendix A and are 
mentioned in the next subsection, the estimated standard deviation of 
the estimate of J is less than 2 percent of J over much of the region of 
space discussed in this section. Smoothed contours of 1 percent, 2 
percent and 5 percent standard error are plotted as the dotted 
lines in Fig. 45. Near the cutoff, where the counting rate is falling to 
zero, the standard deviation in Xc (see Figs. 44 and 22) is a useful 
indication of uncertainty in the flux. Other information concerning 

0.30rr--------r~--------_.----------._--------_.--------__, 

0.25 

0.20 

til 
til 
:;) 
« 0.15 l!) 

~ 
0) 

0.10 

MAGNETIC 

0.05 INVARIANT /' 
EQUATOR 

OL-________ -L ________ ~ __________ ~ ________ ~ ________ ~ 

1.0 1.4 1.8 2.2 2.6 3.0 

L 

Fig. 46 - Omnidirectional isoflux contours derived from the HTB coefficients 
and plotted in B,L space. Dashes indicate extrapolation beyond the region in 
which data were acquired. Labeling is given in Fig. 45. 
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slipped one decade in J. All curves rise from J = 1 proton/cm:! sec. Dashes indi
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standard deviations may be found in Sections 7.4 to 7.6 and 8.4, Figs. 
22, 23(a), 23(c), and 24 . 

. The equations defining Model II (see Section 4.6) and coefficients 
of Table V, together with the transformation equations among various 
magnetic coordinate systems, allow accurate relative flux values to 
be easily calculated in any coordinate system. 

12.3 Comparison of Absolute Intensities 

The solid curve in Fig. 48 is the fitted omnidirectional equatorial 
flux of 50-130 MeV protons measured by the Telstar® 1 satellite. The 
points are fluxes observed on other satellites (Table VII) at the mag-
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Fig. 48 - Values of equatorial omnidirectional flux, for the satellites indicated 
in the legend, corrected to the energy range 50-130 MeV and plotted at the ap
propriate value of L. An integral power-law energy spectrum [see (17)] of ex
ponent -M, where M is given is a function of L by the dashed curve, was used 
in making the corrections. References are given in Table VII. 
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netic equator and corrected to 50-130 MeV by using a single-com-: 
ponent integral energy spectrum of the form 

N(>E) ex: E- M 
• (17) 

The values of M at the magnetic equator are plotted as the dashed 
line in Fig. 48. These values were taken from Gabbe and Brown,5 and 
are consistent with those of Brown, Gabbe, and Rosenzweig,s and also 
those of Fillius and Mclhvain,34 and Freden et aI,s5 where the data 
overlap. Because of uncertainties in the geometric factors of the de
tectors (see Appendix A) and changes in the belt with time (see 
Section X), one might expect agreement only within a factor of about 
2. On this basis the agreement in absolute intensity is quite reason-
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Fig. 49 - Values of equatorial omnidirectional flux, for the satellites and en
ergy ranges indicated in the legend, plotted against L. The dashed curve is the 
ratio of Telstar® 1 to Explorer 15 measurements. References are given in Table 
VII. 



PROTON DATA FROM TELST AR 1 1411 

able. However, the Telstar® measurements are somewhat on the low 
side, and those of Imhof and Smith32 (H2 and H3 on Fig. 48) are 
much higher than the other observations. 

The point.s represent measurements taken before, after, and during 
the Telstar® 1 experiment so it is unlikely that changes in the flux 
with time explain these differences. It is difficult to account for the 
discrepancies in absolute flux in terms of the spectral correction, 
unless more complex spectral forms than those of Appendix A are 
considered, because the comparisons are among results of detectors 
whose threshold energies are close to 50 MeV. The most likely sources 
of the differences are errors in absolute calibration. It follows that 
a good deal of caution should be exercised in drawing conclusions 
about temporal effects and energy spectra from measurements made 
with different instruments. 

12.4 Intensity vs L in the Equatorial Plane 

Fig. 49 is a plot of the omnidirectional equat.orial flux for each of 
the satellites listed in the legend of the figure. The data are from de
tectors having several different energy ranges and no spectral cor
rections have been made. The general features of the data in these 
energy ranges have been noted previously in the literature. The flux 
increases rapidly with L, goes through a maximum near L = 1.5 and 
then decreases. The decrease is not as rapid as the initial rise and in 
this energy range the flux generally does not decrease monotoni
cally18, 20 for L > 2. Excepting the measurements of Imhof and 
Smith,32 the flux decreases with increasing energy, indicating a falling 
energy spectrum. 

The dashed line in Fig. 49 is the ratio of the 50-130 MeV proton flux 
measured with Telstar® 1 to the 40-110 MeV proton flux measured with 
Explorer 15. This ratio is a good qualitative index of the energy spec
trum near 45 MeV, and in these circumstances the change in this index 
is independent of the absolute calibrations of the instruments. The 
ratio is seen to decrease monotonically as L goes from 1.25 to 1.9, 
indicating, in agreement with the references cited in the previous sub
section, a softer spectrum* at higher L. 

12.5 Intensity vs B on L Shells 

In Fig. 50 [parts (a), (b), and (c)] measurements from various 
satellites are compared on the three L shells, 1.3, 1.5, and 1.8. The 

* A softer spectrum contains a larger fraction of low-energy particles. 
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Explorer 15 and Inj un 3 measurements have been compared in more 
detail by. Valerio.l!) Observe that J decreases monotonically with B 
on all the L shells and the shape of J vs B is very similar for all the 
measurements on the same shell except for the lowest L shell where 
the dependence on the energy response of the detector is most im
portant. Information concerning the energy spectrum near 45 MeV 
is contained in the changes in the ratios of the measurements, and in 
these circumstances the changes are independent of the absolute 
calibrations of the instrument. 

To cast more light on the qualitative behavior of the energy spec
trum, the ratio of the 50-130 MeV proton flux measured with the 
Telstar® 1 satellite to the 40-110 MeV proton flux measured with Ex
plorer 15 has been calculated as a function of B for fixed L. The results 
are plotted in Fig. 50 (d). All the ratios increase with increasing B for 
L from 1.2 to 1.9 inclusive. The values of B in the plot cover the range 
from the magnetic equator to a magnetic dipole latitude (A) of about 
30°. The increase in the ratio indicates a spectrum that hardens with in
creasing B in the neighborhood of 45 MeV. At L= 1.8 Freden et aP5 
find a spectrum that hardens with increasing B for proton energies 
between 10 and 35 MeV, but softens with increasing B for proton 
energies above about 55 MeV. Our results suggest that this change in 
behavior cannot have occurred below 50 MeV. 

12.6 The Intensity Near the Top of the Atmsophere 

The position of the 8-protons/cm2 sec flux contour from the Telstar® 1 
satellite is plotted in B,L coordinates in Fig. 51 (a), together with our 
own extrapolation of the published Injun 3 datal!) to a flux of about 10 
protons/cm2 sec,* and the 16-proton/cm2 sec flux contour from Explorer 
4. The purpose of this figure is to test whether or not the altitude 
dependence of contours of constant counting rate at low altitudes is 
consistent with other data. The qualitative agreement of the results 
plotted in Fig. 51 (a) is quite good, especially for L < 1.8, where the 
atmosphere is controlling. A number of effects may contribute to the 
divergence of the results for L > 1.8. Among them are: temporal ef
fects, this region of the belt is shown to be subj ect to temporal varia
tions in Section X; instrumental effects, the instruments are near their 
threshold sensitivities in a region of magnetic space in which the en
ergy spectrum may be anomalous; and biases in the fitting procedure, 

* Valerio l !) states that his fits (and therefore his Fig. 8) are not intended to 
represent the data accurately at low altitude. 
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examination of residuals give some. indication of a slight bias in the 
fitted function in this region. 

It is difficult to get direct insight into the altitude dependence 
from a B,L plot, so the values of B have been transformed into mini-
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Fig. 51- Comparison of isoflux contours obtained from three satellites near 
the top of the atmosphere. Part (a) B, L coordinates, part (b) minimum altitude 
(near the South American magnetic anomoly). References are given in Table VII. 
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mum altitude by using the procedure mentioned in Section XI. The 
minimum altitudes are plotted against L in Fig. 51 (b). It is character
istic of all three bodies of data that the minimum in the minimum 
altitude curve does not occur at minimum L. 

It is tempting to consider whether the lower altitude of the Explorer 
4 points, coupled with the lower low-energy threshold and high flux asso
ciated with the Explorer 4 measurements, might imply that the exo
sphere was less dense when the Explorer 4 measurements were made. 
However, the uncertainty in the position of the Telstar'E contour (see 
Section XI) is so large that the use of this figure to refute the hy
pothesis that the atmosphere contracted23 between 1958 (;:::::; solar 
maximum), when the Explorer 4 measurements were made, and 1962, 
when the Telstar® data were taken is precluded, even if one were pre
pared to overlook the possibility that the energy spectrum at these low 
altitudes is anomalous36 and consequently that the calculated geometric 
factors of the instruments may be in substantial error near the cutoff. 

12.7 Equatorial Pitch Angle Distribution 

The solid curves in Fig. 52 (a) represent the equatorial pitch angle 
distributions, at various values of L, calculated from (8) and the co
efficients in Table V. When these are compared with the equatorial 
pitch angle distributions obtained from the Injun 3 data/9 which have 
been replotted as the dashed curves in Fig. 52 (a), they are found to 
be very similar in shape, although the Telstar® curves are a trifle 
flatter. This would be anticipated from the previous discussion of the 
tendency of the energy spectrum of protons with energies near 45 MeV 
to harden at high values of B. The shape of the distributions are, how
ever, appreciably different from those derived by Lenchek and Singer37 

from consideration of possible injection and loss mechanisms. This· 
may be seen in Fig. 52 (b) which contains the present results as the 
solid lines, and the results of Lenchek and Singer37 as the dashed lines. 

12.8 Other Bodies of Data 

A portion of the considerable body of relevent high-energy proton 
data, some of which does not meet the requirements for inclusion in 
Table VII, is noted here. The earliest measurements of proton intensi
ties were made on Explorers 1 and 3 by Van Allen.3s His historic esti
mate of ;:::::; 2 X 104 protons/cm2 sec with energies >40 Me.V at the heart 
of the inner belt (x = 0, L ;:::::; 1.56) has been substantiated by all the 
measurements reported to date. In particular, the high-energy proton 
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rived from the HTB coefficients using (8). The dashed curves in part (a) are 
Injun 3 results (from Valerio19 Fig. 8). The dashed curves in part (b) are the 
results of the theoretical calculations of Lenchek and Singer,37 taken from their 
Fig. 10 and arbitrarily normalized to reasonable values of j at x = o. 
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measurements made in the inner belt by Explorers 6, 12, and 14 and 
Pioneers 3 and 4, have been noted by Frank et aP9 to agree with each 
other and with those on Explorers 1 and 3. Reference to some measure
ments made with ballistic probes may be found in the article by Freden 
et a1.35 

XIII. QUO VADIS 

The mathematical model which has evolved along the lines summa
rized in Section IV has provided a very satisfactory representation of 
the high-energy proton data from the Telstar® 1 satellite, as discussed 
in both statistical and physical terms in Sections VI through XII. It is 
appropriate to consider how this work might be extended. 

13.1 Further Improvements within the Present Scheme 

The final fit of Model II has a mean square error which is less than 
twice the variance to be expected on the assumption of a Poisson dis
tribution of the count data. Some of this excess is surely due to "ex
perimental error." However, one might seek some additional improve
ment by the addition of more parameters to the fitting function as 
indicated in Model III of Section 4.7. Such fits, carried out on an 
approximately 1000-point selected data set, will almost surely lead to 
a reduction in the mean square residuals because of the increased free
dom the additional parameters provide. However, as noted in Section 
4.7, preliminary work with Model III has not led to a really substan
tial improvement, either statistically or aesthetically as judged by plots 
of the residuals. 

Additionally, one might try to improve further on the representative
ness of the sample by simple iteration. Using the HTB fit to lVlodel II 
to determine new x,L cells, another sample might be selected and fitted. 
The very small differences between the Model-I CB fit and the Model-I 
(or II) HTB fit do not suggest that this would be fruitful in the present 
case. If the preliminary fit used for determining the x boundaries of 
the cells were a poorer fit, iteration would clearly be worthwhile. 

A further extension of the procedure for designating representative 
cells would involve the development of a two-dimensional version of 
the basic idea and procedure outlined in Section 7.1. Specifically, one 
would try to define approximately 1000 x,L cells within each of which 
the preliminary fit to y (x, L) has the same range. In the present case, 
the anticipated gain from this refinement did not seem to justify the 
practical difficulties. However, a practical, well-defined algorithm for 
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such a process in several dimensions simultaneously might prove very 
useful. 

13.2 A nother A pproach to the Model 

All the models presented so far are of the form 

y(x, L) = A(L)· b(x; ei(L)) , (18) 

where A (L) represents the variation in intensity along the magnetic 
equator and b (x; edL» represents the variation with x on an L-shell. 
:The {ei (L)} adjust the nature of the dependence on x, as a function 
of L. This approach arises from the L-shell orientation of the adiabatic 
theory of trapped particle motion. 

Alternatively, one might focus attention on the shape of y as a func
tion of L at constant x, rather than on y as a function of x at constant 
L. It is shown in Fig. 19 (a) and discussed in Section 7.2 that y (x, L) 
as a function of L for fixed x forms a simple nesting set of curves at 
successive values of x. This is a consequence of the monotonic decrease 
of y with x at any fixed L. With this orientation, a model might be 
expressed as: 

y(x, L)= F(L; Pi(X)), (19) 

where F (L) is the shape of a constant-x section, whose parameters, 
the {Pi}, are expressed as functions of x. Although this approach would 
not contain the L-shell orientation of the particle motion explicitly, it 
seems to offer very significant practical possibilities. 

13.3 Full Data Utilization 

In the two-,dimensional fits that were carried out, only a selected set 
of data were used, either chosen at random within a set of narrow, 
contiguous L-slices, as in the fit of Section VI, or chosen on the basis 
of a preliminary fit to the data as in Section VII. All the data were 
examined by residual plots and mean square residual measures of the 
fits, but only a small part of the data were actually used in determin
ing the values of the fitting parameters. With this procedure, informa
tion is clearly being lost that could be used to "better" determine the 
function. 

Several methods have been applied in the past to allow all of an 
existing body of satellite data to influence the mathematical descrip
tion of that data. The most direct method uses interpolation or smooth
ingfunctions. It is often the case that consecutive satellite observa
tions from a particular detector are closely enough spaced to determine 
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the local spatial variation. Under these conditions a sequence of data 
points can be averaged or fitted to a local smoothing function. A num
ber of points in a sequence may thus be replaced and represented by a 
single point which is determined by them all. The replacement may 
also be made at some particularly convenient coordinate location, for 
example, at one of a fixed set of L or x values on which functional 
fitting may subsequently be carried out. This method has been used 
on the data of Explorer 15, portions of which have been described by 
McIlwain,18 Roberts40 and Brown.41 

In the context of the high-energy proton data from the Telstar@ 1 
satellite, a different but analogous procedure could be used. Rather 
than selecting at random one data point within each of approximately 
1000 x,L cells, all points within a given cell could be used to determine 
a value. which would represent the observable at the central point of 
the cell. This might be done by simply averaging the points within the 
cell, but the cell size is large enough so that the x and L dependence 
within the cell generally cannot be neglected. A more representative 
procedure would be to fit the points within an x,L cell with a local 
smoothing function. This function can be the same function with which 
the finally selected data values would be fitted across the complete 
range of x,L space (see Appendix B.7). Although in the present case 
the average number of points per cell is about 40, in many cells the 
number of points is fewer than the number of coefficients of the Model 
II function, and some coefficient constraint would be required. This is 
not a substantial objection, however, since the function is only being 
used for smoothing and does not need to be capable of elaborate varia
tion over an x,L cell. 

A procedure of this kind greatly reduces the chance that members 
of a final 1000-point set will be nonrepresentative and acknowledges 
the experimental weight of adjacent observations in fixing the values 
of the set. Accordingly, one would expect a reduction in the mean 
square. residuals overall the data, from a fit to such a smoothed sample. 

The procedure of smoothing within a cell could be used with larger 
x, L cells (with more points per cell) to define a point set smaller than 
1000. It can of course also be used with much larger bodies of data 
up to a maximum of 1000 points per cell with the existing computer 
program. 

13.4 Extension to Other Cases 
There are very evident values in being able to communicate the 

essence of a large body of data in terms of a mathematical model with 
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a small number of coefficients. This is very effectively accomplished by 
the present empirical representation of the Telstar® 1 high-energy 
protons, but the model is very specialized. As previously noted, includ
ing a wider range of space such as that explored by the Telstar® 2 
satellite requires modification of the function. Characterizing the pro
ton distribution for substantially lower energy protons may well re
quire functions outside the generality of even Model III. Treating 
electrons in almost any region of space requires treating time as well 
as position variables because a complete set of measurements of the 
spatial distribution of the particles cannot readily be obtained in a 
time short compared with significant time variations. 

No single formulation yet exists which is capable of coping in a use
ful way with the range of measurements of particles trapped in the 
magnetic field of the earth. However, the success of the present formu
lation as it has been evolved and the general methods that have been 
developed gives us confidence that other and more complicated cases 
can be treated. 

XIV. SUMMARY AND CONCLUSIONS 

This section provides a summary, with references, for the entire 
document including the appendices. 

14.1 General Accomplishment 

The main accomplishment is the development of a relatively simple 
(empirical) mathematical model which gives a statistically accurate 
representation of the spatial distribution of high-energy protons meas
ured with the Telsta~ 1 satellite. 

14.2 The Data 

14.2.1 Space and Time Coverage (Sections I and II) 

The data were acquired between July 1962 and February 1963 within 
the region of space bounded by 1.09 Re ~ R ~ 1.95 Re and 0 ~ X ~ 58°. 
Inside these boundaries good temporal and spatial coverage were 
achieved. 

14.2.2 Energy Range and Instrumental Sensitivity (Appendix A) 

The nominal energy interval of the detector is 50 < E < 130 MeV 
and its nominal geometric factor is 0.143~g:g;~ cm2 ster. The in
strument is effectively omnidirectional and the lower threshold of 
sensitivity is ~1 pro ton/ cm2 sec. 
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14.2.3 Telemetry (Section II) 

Each observation consisted of the number of counts registered in 11 
seconds. With this was associated the time at which the telemetry was 
received, and auxilliary information. 

14.3 The 1I1odels 

14.3.1 Coordinate System (Section III) 

Each model relates the omnidirectional intensity of high-energy pro
tons to a two-dimensional magnetic space whose coordinates, x,L, de
rive from a mapping of the earth's main magnetic field onto an axially 
symmetric dipole field through the adiabatic invariants of the particle 
motion. 

14.3.2 General Form and Properties (Section IV) 

The models have the form of a product, A (L) . G (x,L) , in which 
the first term expresses the equatorial intensity as a function of L, and 
the second term describes the diminishment of intensity, as a function 
of increasing x, for fixed L. The functional expressions for G (exclud
ing Gill) transform in closed form to equivalent pitch angle distribu
tions. 

14.3.3 Specializations (Sections IV and IX) 

Retrospectively, all the models may be considered to be specializa
tions of Model III, but historically the two-dimensional models evolved 
from a series of one-dimensional fits on L-slices. These fits led to the 
L-slice model which was then generalized empirically to the two-di
mensional Model 1. Model I was in turn specialized to Model II to 
overcome some statistical (nonlinearities and high correlations) and 
interpretive difficulties encountered with l\10del 1. 

14.4 Fitting 

14.4.1 Criterion (Section III and Appendix B) 

The least squares criterion was used in deriving estimates of the 8 
(or 9 or 10) coefficients required by the models to fit the data. 

14.4.2 Scale (Section III and Appendix B) 

To stabilize the variance of the observations, the models have been 
fitted to the square root of the observed counting rate. 
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14.4.3 Sampling (Sections 6.1, 6.9, 7.1 and Appendix B.3) 

Coefficients of Models I and II were estimated by fitting samples 
containing about 1000 of the nearly 80,000 available observations. 
Sampling is necessary to avoid exaggerating the importance of regions 
of x,L space where data are abundant, and also for compatability with 
existing computer programs. A method of sample selection based on a 
preliminary fit has been developed to provide a good overall represen
tation of the data. Before selecting the sample, the data were parti
tioned to remove instrumental effects and outliers identified by study
ing residuals from preliminary fits. 

14.5 Quality of Fit 

14.5.1 Criteria of Judgment (Sections VI to IX and Appendices B 
and C) 

Judgments regarding the quality of fit were largely based on graph
ical studies of residuals, the behavior of the fit at the boundaries of 
the radiation belt and various statistical measures. Residuals (equal 
to observed minus fitted), on the square root scale, were particularly 
useful as sensitive indicators of the quality and nature of the fit. 

14.5.2 Comparisons Among 1I10dels (Sections V and IX) 

The L-slice fits give good one-dimensional representations of very 
limited regions of data. Both the standard errors of the coefficients and 
the correlations among coefficients are high compared to the corre
sponding measures derived from the two-dimensional fits. The fits of 
Models I and II to the 960-point HTB sample are practically equiva
lent. However, Model II is superior in the following respects: one less 
coefficient is required, standard errors are uniformly smaller, correla
tions among the coefficients are uniformly smaller, the index of non
linearity is very much smaller, and more of its coefficients have a phys
ical meaning. 

14.5.3 Coordinates (Sections VI and VII) 

Plots of residuals vs x, L, time, etc. indicate the general adequacy 
of x,L coordinates for the organization of the data. 

14.5.4 Quantitative Measures (Sections VII, VIII, IX, and Appendices 
B and C) 

Typically, the fits account for nearly 99 percent of the variability 
about the data mean. The mean square error of fit is about It times 



PROTON DATA FROM TELST AR 1 1423 

as large as would be anticipated on the basis of assumed Poisson sta
tistics. Even in the worst of quite small spatial regions, the mean 
square residual does not exceed 2i times the Poisson-based prediction. 
Probability plotting procedures indicate that the residuals are closely 
normally distributed and lead to an estimate of the variance which is 
about twice the Poisson-based prediction. 

14.5.5 General Limitations (Appendix C) 

Statistical examination of all the data, categorized in x,L cells de
fined from a preliminary fit, indicates that it is unlikely that the fit 
given by the present model could be significantly improved by any 
simple modification based on x,L coordinates alone. 

14.6 Numerical Values of Fitted Coefficients, Standard Errors, etc. 

14.6.1 L-Slices (Section V) 
Coefficient values and other statistics for four L-slices appear in 

Table II, and values of coefficients for a large number of L-slices are 
shown in Figs. 8 to 10. 

14.6.2 Models I and II (Sections VI to IX, also Sections V, XI, and 
XII) 

1Vlodel II is the preferred model. Coefficients, standard errors, cor
relations, and other summary analysis-of-variance statistics appear in 
Table IV for Model I and Table V for Model II. The coefficient func
tions: (i) square root of average counting rate, y(x,L); (ii) square 
root of average equatorial counting rate, A (L); and (iii) position of 
cutoff, Xc (L); are well-determined and applicable values, standard 
errors, and correlations appear in Figs. 19 and 24 for y (x, L) (and 
Figs. 45 to 47 for the flux) ; Figs. 8, 11,21, 22, and 30 for A (L); and 
Figs. 9, 12, 22, 23, and 30 for XC (L) (and Fig. 44 for altitude). 

14.7 Some Physical Results 

14.7.1 Flux 111 aps (Section XII) 

Flux maps are given in B,L and R,A coordinates and as J,B contours 
for constant L, based on the fitted model and using a calibration of the 
detector assuming certain single-component energy spectra. Neglecting 
uncertainties of calibration, the relative fluxes have a standard error of 
about 2 percent. The value of the maximum flux is (5.7~~::) X 
103 protons/cm2 sec at L = 1.46 on the magnetic equator. 
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14.7.2 The Cutoff (Section XI) 
The minimum geographical altitude corresponding to the fitted cut

off function was computed. This altitude varies as a function of Land 
has a value of about 270 km at the magnetic equator at L = Lo = 1.13 
and a minimum of about 160 km at L = 1.6. The shape of this L de
pendence suggests that the interaction between the protons and the 
residual atmosphere is of major importance in determining the cutoff 
for values of L less than 1.9. For larger L values, the loss mechanism 
determining the cutoff is of different origin. 

14.7.3 Temporal Effects (Section X) 

The general spatial distribution of high-energy protons is very stable 
in time over the period covered by the present data; however, using 
residuals as a sensitive indicator, we find t,vo temporal effects that are 
distinguishable from instrumental effects. Firstly, there appears to be 
an increase in the flux in the 1.9 < L < 2.2 region during the 30-day 
period starting about day 280, 1962. This increase varied from about 
5 to 90 percent depending on both x and L. Secondly, there is an indica
tion of a qualitative increase in the altitude of the cutoff over the pe
riod of the observations. The present results indicate that any diurnal 
variability of the earth's magnetic field would have an upper limit of 
0.003 Gauss at L ;:::::; 1.5. 

14.7.4 Comparison with Other Experiments and Theory (Section XII) 
The absolute fluxes measured in this experiment agree well (within 

a factor of two) with other extensive experimental measurements, but 
the present values are in general slightly lower. Spatial distribution of 
the flux agrees very well with other measurements but differs appreci
ably from published theoretical calculations. 

14.8 Extensions (Sections XIII, IV, and Appendix B) 
The methods developed in this work have lead to a very satisfactory 

representation of the high-energy proton data from the Telstar® 1 
satellite. 

vVith the better methods of utilizing data and selecting samples 
noted in this paper, and with more general functional forms (some 
approaches to which have been indicated), it should be possible to rep
resent the radiation intensity for other more extensive and less "well
behaved" bodies of data than the one treated here. J\10st aspects of 
the statistical methods developed are generally applicable to problems 
of modeling data mathematically. 
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APPENDIX A. 

The Instrument 

Energetic electrons and protons were measured on the Telstar® 1 
satellite by a group of detectors in all of which the sensitive element 
was a phosphorous-diffused silicon diode specially developed for such 
particle measurements. 7 The active volume of the device is the disk
shaped space-charge region of the diode under reverse bias. For the 
detector measuring protons with energies above 50 lVleV, the reverse 
bias was approximately 100 volts, the space-charge region was approx
imately 2.8 mm in diameter and 0.39 mm thick, and the diode was 
shielded by about 12 mm of aluminum over a solid angle of 27l" and 
somewhat more than 12 mm of aluminum equivalent over the remain
ing hemisphere (see Fig. 53). 

The thickness of the space-charge region of the detector was meas
ured with protons from a cyclotron. A calculation of the path-length 
distribution for unscattered particles in the space-charge region and in 
the surrounding shielding materials has been made. These calculated 
results have been combined with range-energy information, and the 
properties of the associated electronic circuits, to give the geometric 
factor of the instrument, 9 (E), as a function of the energy, E, of pro
tons incident on the spacecraft. The geometric factor varies with the 
reverse bias voltage and the temperature of the detector, both of which 
affect the effective thickness of the active volume of the diode. Fig. 54 
is a graph of 9 (E) vs E for a bias voltage of -97.5 volts and a temp
erature of 20°C, the nominal operating conditions of the instrument. 
Note that protons with energies below 50 lVleV were not detected. 

The geometry of the detector and shield is only approximately omni-
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directional. However, the satellite. was spin stabilized, the symmetry 
axis of the detector was nearly perpendicular to the spin axis of the 
satellite, and the telemetered counting rate was an average over at 
least 15 revolutions of the satellite. This averaging process tends to 
remove any directionality inherent in the detector geometry. A sensi
tive analysis noted in Section 7.10 failed to show any directional de
pendence in the data. 
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For a differential energy spectrum N(E), where N(E)dE is the number 
of protons with energies between E and E + dE, the average geometric 
factor, g(El' E 2), of the detector for particles with energies between 
Eland E2 is defined by 

100 

g(E)N(E) dE 

fE. N(E) dE 
El 

(20) 

The function g(50 lVleV, E2) has been evaluated numerically for various 
values of E2 and forms of N(E). The values of g(50 MeV, 130 MeV) 
are plotted in Fig. 55 as a function of n for the single-component power
law spectrum N(E) ex: E-n, and also as a function of Eo for the single
component exponential spectrum N(E) ex: exp( -EjEo). It may be 
seen from the figure that g(50 IVleV, 130 MeV) varies by less than 
6 percent from 0.143 cm2 ster for 0 < n < 7.5 and 10 MeV < Eo < 
90 MeV. These ranges of n and Eo include most experimentally de
termined values by a comfortable margin.3

,5,29,34,35 The omnidirectional 
flux, J(El' E2), of protons with energies between El and E2 is given by 

47r y2 
J(El' E2) = g(El' E2) , (21) 

where y2 is the counting rate of the detector. In the body of this paper, 
the values El = 50 MeV, E2 = 130 MeV and 

g == g(50 MeV, 130 MeV) = 0.143 cm2 ster (22) 

are used. The flux J(50 IVleV, 130 l\1eV) is designated simply by J, 
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Fig. 55 - Dependence of average geometric factor on the exponent of a dif
ferential power-law energy spectrum and the e-folding energy of an exponential 
energy spectrum. 
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and the counting rate to flux conversion is considered to be independent 
of the proton energy spectrum. 

While the relative value of g shows a variation of less than 6 percent 
for the wide range of single-component energy spectra noted above, 
the absolute value of g is less well specified. Variations in the ambient 
temperature and reverse bias voltage may change the effective geo
metric factor by as much as 25 percent. The difficulty of dealing with 
the complexities in shielding geometry, caused by embedding the 
instrument in the spacecraft, introduces additional uncertainties in 
the absolute value of g. These uncertainties are in the range of - 2G 
to +50 percent. 

No provision was made for recalibrating the detector once the 
satellite was in orbit. However, the evidence, which is discussed in 
Section X, concerning the temporal variations of the proton distribution 
is that neither the detector nor the associated circuit elements were 
substantially affected by the space environment. Instrumental (e.g., 
temperature and bias voltage) effects are often quite different in char
acter from temporal changes in the proton belts and may be separated 
from them in many circumstances. It is, of course, possible to postulate 
instrumental effects that will be inextricably confounded with certain 
secular changes that might take place in the proton distribution. 

APPENDIX B. 

Some Statistical Details 

B.l Introduction 

This appendix presents, heuristically, some facts and formulae con
cerning the statistical analysis of the data. While a variety of statis
tical principles, precepts and procedures were employed as guides, the 
main judgments came from empiricism, scientific intuition and com
mon sense. Various kinds of plots of residuals, used informally, have 
been of key importance, both for evaluation and for suggestion. 

Simply stated, the objective was to produce a statistically accurate 
analytical description of the intensity distribution of high-energy pro
tons in space surrounding the earth. The process of analysis involved 
the empirical evolution of a mathematical model, in interaction with 
the application of fitting and evaluative techniques. The data source 
and processing have been described in Sections II and III. The itera
tive and interactive processes of the final stages of model development, 
fitting, data partitioning and data sampling are described in Sections 
IV to IX. 
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Appendix B.2 deals with the basis for use of the square root trans
formation, Y, of the counting rate data, yz. Appendix B.3 discusses the 
selection of a sub-sample use.d in fitting. The use of the method of least 
squares in nonlinear model fitting, to estimate unknown coefficients, 
or functions of the coefficients, and their standard errors and correla
tions is reviewed briefly in Appendix B.4. Some remarks on construc
tion of sums of squares contours, often referred to as confidence re
gions, and of indices of local nonlinearity of the model are given in 
Appendix B.5. Appendix B.6 discusses se.veral issues relevant to the 
interpretation of the analysis of variance results. Appendix B.7 de
scribes a mode of "smoothing" data within cells, which could have 
been used in conjunction with the sub-sampling procedure. Appendix 
B.8 concerns the technique of probability plotting. 

B.2 The Square Root Transformation 

It appears a reasonable assumption (supported by some empirical 
evidence) that, in the absence of geophysical disturbances, at a fixed 
point in space relative to the earth, the number of counts Z, recorded 
in the detector in 11 seconds, will vary in time according to a Poisson 
distribution, i.e., 

-p z e 11 
Probability {Z = z} - z! ' z = 0, 1, 2, 3, ... , (23) 

where the parameter of the distribution, v, is the mean value of Z. 
With this statistical model, the average intensity of radiation in the 

region of space measured by the detector is proportional to v, where 
the proportionality factor depends on the counter geometry and effi
ciency. The objective is to develop a function which describes how v 

varies in space, based on observations of the quantity Z at different 
positions in the satellite orbit. 

For the Poisson distribution, the variance of Z is also v, i.e., the 
average of the squared deviations, (Z - v p, is v. Thus, as the value of 
v changes, the variance of the associated random variable Z also 
changes. Hence, the scatter of Z about its average value will be differ
ent in different regions of space as the average intensity fluctuates. 

Working with the experimental data on the scale of Z has two draw
backs. Firstly, if one fitted a mathematical model to the data using a 
least squares criterion, the different observations would have variable 
weight, which would require appropriate, troublesome, allowance in 
the fitting procedure. Secondly, graphical judgment of the adequacy of 
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any particular fit would be difficult because of the variable scatter of 
the data about a fitted function in different regions. 

Thus, the square root transformation, Y, of the counting rate 
(y2 = Zjll counts per sec) was used to "stabilize" the variance and 
the model-fitting procedure employed unweighted nonlinear least 
squares on Y (but with some data weighting as discussed in Section 
7.1 and Appendix B.3). 

Heuristically, consider the linear Taylor's expansion of Z about JI 

_ 1- . _;- (Z - v) 
vZ= VV+ _I 

2vv 

Then, the variance of VZ is approximately 

If 

then 

- (1)2 
Val' (VZ) == 2V~ Val' (Z - v) + 

Val' (Z - v) 0: v, 

_1- Iv 1 
Val' (v Z) a: - - = -

4v 4' 

that is, Val' (VZ) would be approximately a constant. 

(24) 

(25) 

. (26) 

(27) 

Discussions of this transformation are given by Bartlett42 and 
Anscombe. 43 If the distribution is in fact Poisson, then Anscombe shows 
that the average value of VZ is approximately 

V~ - ~ - ___ 7_x 
8Vv 128v" 

while the variance of VZ is, asymptotically, 

! {I + ~ + 172 + ... }. 
4 8v 32v 

Again for the Poisson distribution, Bartlett gives exact values of the 
dependence of the variance of VZ on v, summarized in the following: 

v:ioi 0.5 I 1 I 2 i 3 i 4 i 6 i 9 i 15 

Var VZ:iOiO.310i0.402iO.390iO.340iO.306iO.276iO.263iO.256 

For a Poisson distribution, a transformation of the form V Z + 1/2 
or VZ+ 3/8 or (VZ + V Z + 1 - 1) will improve the variance 
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stabilization at smaller v values. In the present application, such a 
modification would have appeared physically artificial and incon
venient. lVIoreover, the actual variance of the observations exceeds 
the Poisson variance (see Appendix C) and the "correction" was thus 
felt to be unwarranted. Some response to the (empirically defined) 
variance instability remaining after the square root transformation 
was made in the form of some weighting in the data selection (described 
in Section 7.1 and Appendix B.3). 

Of course, if one wished to adopt the assumption of a Poisson dis
tribution as an absolute basis for procedure, instead of as a guide, then 
one might choose to use maximum likelihood to estimate the coeffi
cients of the model. This would mean developing a procedure for de
termining values of the coefficients [of the function v (x,L)] which 
would maximizc 

II e-v(x.L) [vex, L)Y Iz!. 
observations 

In the present casc, a general program for nonlinear least squares was 
available while a procedure for Poisson likelihood maximization would 
need to be evolved. Apart from this practical consideration, however, 
it seemed more robust to use the Poisson assumption as a guide to 
developing an appropriate transformation preliminary to fitting by 
least squares. The point is that the square root transformation will 
effect an approximate variance stabilization not only when the. variance 
is equal to the mean (as in the case of the Poisson distribution) but 
also when, more generally, the variance is proportional to the mean. 
Empirical vindication of this caution is given in Appendix C. More
over, the least squares approach enables the approximate. statistical 
interpretation of results using familiar procedures from linear multiple 
regression methods. 

The present analysis is based on the quantity Y, where y2 = count
ing rate = Zlll counts per sec. Thus, if in fact Z were a Poisson vari
able, 

Val' (Y) == (l\)(i) = 0.023, (28) 

as a reasonable approximation. vVhen the average. counting rate ex
ceeds 1/11, this value of 0.023 is a lower bound on the variance of Y, 
even with the Poisson assumption. lVloreover, there are many other 
possible sources of intrinsic variability and experimental error in this 
situation. 
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A further benefit which one might expect from the square root trans
formation in this circumstance is that the distribution of residuals 
would tend to be more symmetric and more nearly normal (Gaussian). 

Some empirical properties of this square root transformation in the 
present body of data are given in Appendix C. 

B.3 Sample Selection 

As a practical requirement, the available multivariable, multicoeffi
cient, nonlinear least squares fitting program could operate with a 
maximum of 1000 data points. Hence, the 41,135 HTB observations 
needed to be sampled or condensed at a 1 in 40 ratio. 

As in all real sampling or experimental design situations, many com
peting criteria and practical difficulties were relevant. Perhaps the 
overriding point, explicitly understood here (and probably true in most 
actual model fitting problems), is that the model which was being de
veloped was not the "truth" but was really just a smoothing function 
which one wanted to fit well over a wide region of space. Thus, it was 
not appropriate to think of estimating the model coefficients, say, so 
as to optimize their apparent (indicated) statistical reliability, nor 
would it be appropriate to try to use all the available data in an 
equally weighted manner, since accidents of orbital position and in
strumental behavior would have too great an effect on the distribution 
of data points. 

The procedure developed for the present use is outlined in Section 
7.1, with pertinent remarks also in Section 13.3 and Appendix B.7. 

The method of Section 7.1 yielded 960 observations to which the 
model was then fitted using unweighted least squares. The 960 sampled 
o bserva tions were selected so as to be roughly speaking, "widely 
spaced," the metric being change in average counting rate. Thus, the 
challenge of fitting the 960-point sample, as measured by sum of 
squares of residuals, is greater, on a per-observation basis, then would 
be that of fitting the entire body of 41,135 HTB observations, very 
many of which are quite close together. The "model bias" difficulties of 
the entire body of data are concentrated in the sample. The statistical 
fluctuation would be approximately the same, on a per observation 
basis, in the sample as in the whole body of data. 

BA Estimation Procedure 

The unspecified coefficients of the models defined in Section IV were 
estimated so as to minimize the sum of squares of deviations between 



PROTON DATA FROM TELSTAR 1 1433 

the observed Y and fitted y, for the sample array of data. The itera
tive, multivariable, multicoefficient, nonlinear least squares fitting 
was executed using a computer program due to Huyett and Wilk/4 

based on a procedure outlined by vVilk45 (see also Lundberg, Wilk and 
Huyett) .40,47 

The classical statistical properties of least squares estimation, 
namely unbiased estimates with minimum variance, apply in the case 
of statistically uncorrelated observations having equal variances and 
with the coefficients to be estimated occurring linearly in the model 
(see, for example, vVilks16). In the present case, even with the square 
root transformation, the observations do not have equal variances but, 
for practical purposes, the weighting implied by the selection proced
ure (see Section 7.1) compensates adequately. The model is, however, 
quite nonlinear in the coefficients. Still, one hopes that the attractive 
statistical properties of linear least squares carry over approximately 
to the nonlinear case because, in small enough neighborhoods, non
linear functions can be linearly approximated. (An index for measur
ing model nonlinearity is described in Appendix B.5.) In any case, 
the least squares criterion is geometrically appealing and primitively 
meaningful. 

Among the by-products of the fitting procedure, applied to the par
ticular array of data in x,L space, are approximate values for the 
standard errors of the estimated coefficients, a matrix of approximate 
pairwise correlation coefficients for the estimated coefficients, an anal
ysis-of-variance table giving the sum of squares accounted for and 
not accounted for by the fitted model, a list of residuals (equal to 
observed minus fitted), and various plots. 

The least squares estimates of single-valued functions of the coeffi
cients, such as A(L), xc(L), or y(x, L) are simply the same functions 
of the estimates of the coefficients (since least squares is an invariant 
process). Approximate variances and correlations of functions of the 
coefficients may be derived as follows: If Of = (Ol, ... , Op) denotes 
the coefficients of the model, and 0 their estimates, then the approximate 
covarIance of the estimates g(O) and h(O) of the functions g(O) and 
h(O) is 

Covariance (g({}), h(O) 

= Cov (g({}), h(O» 

= Statistical average of {(g(O) - g(O»(h({}) - h(O»} 
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,,[ag((J)J[ah((J)J[ (A A)l. + 2 f<1 --;;e; 0 a(J; 0 Var (Ji) Var (Oi ]'Pii , (29) 

where Pi; is the correlation of Oi and 0; . The formula for the approx
imate variance of g(O) is then just a specialization of the above, putting 
g = h. 

Some associated facts and issues are worth mentioning here. First, 
the approximate statistical correlations Pi; of the estimated coeffi
cients of the model, or of functions of these, depend on (i) the distribu
tion of the sample in x,L space, (ii) the values of the coefficients and 
(iii) the nature of the mathematical model; but do not depend on the 
actual adequacy or appropriateness of the fit. Similarly, the approximate 
standard errors of estimates are each made up as a product of which 
one term depends upon the square root of the mean square of the 
residuals of fit and the other depends only on the same factors as do 
the Pii' Second, the various statistical measures, such as standard 
errors of estimated coefficients which are obtained from the fit to the 
960-point HTB sample are, in a narrow statistical sense, conservative 
because they refer to the sample only and do not make allowance for 
the fact that the fitted model does indeed fit very well to the entire 
body of 41,135 HTB data. Thus, if statistical fluctuations were the 
only factor in the uncertainty of the estimates, one might further 
reduce this uncertainty by some factor, roughly approximated by 
6 ~ V41,135/960. This view of statistical uncertainty does not, 
however, give appropriate weight to the "model bias", which will not 
be eliminated by any number of observations. Third, all the summary 
statistical measures, which are referred to as standard errors, correla
tions, confidence regions, etc., should be used and interpreted in a 
data analytic way, i.e., as indicating facets of the body of data and the 
adequacy of its description by the model and analysis-rather than in 
terms of some supposedly "true" model or hypothesis which one IS 

trying to evaluate in probabilistic terms. 

B.5 Sums oj Squares Contours, ((Confidence Regions" and 
Nonlinearity Indices 

The models of Section IV are defined up to the values of the un
specified coefficients. Any set of values for these coefficients may be 
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said to provide a "fit" to the 960-point sample of data. Thence one can 
define a sum of squares function of the set of coefficients as 

SS (coefficients) = L (observed - "fitted") 2, (30) 

which will take on various (positive) values as one varies the values 
of the coefficients. In the space of the coefficients there exist then, in 
principle, contours of this "sum of squares" function. 

While standard errors provide information on reasonable allowances 
for the estimate of a single parameter in the light of the fit of the 
model to the actual body of data, they do not carry any information 
on the joint statistical properties of the estimates. A reasonable (ro
bust and primitive) indication of joint statistical behavior is provided 
by these "sum of squares" contours in coefficient space. 

In the case of models in which the unknown coefficients occur lin
early, these contours are a family of ellipsoids defined by certain sim
ple quadratic functions of the coefficients. The orientation and shape 
of this family of ellipsoids indicate the interdependence of the esti
mates of the coefficients in the light of the data, and show which 
coefficients are well-determined and which poorly. However, the in
terpretive value depends heavily on geometrical appreciation and, for 
more than a few coefficients, high-dimensional representation cannot 
be achieved directly. 

The ellipsoid (even in the linear case) is not defined, in general, by 
its one-dimensional proj ections. (The standard error of a coefficient 
estimate is half the length of the projection of the unit ellipsoid of 
the family onto the coefficient axis.) But, as a matter of simple geo
metrical fact, all pairs of two-dimensional proj ections do uniquely de
fine the ellipsoid. Thus, one practical means of a complete graphical 
representation of the high-dimensional ellipsoid is in terms of all possi
ble pairwise planar projections. 

For the case of linear models, on the basis of a series of assumptions 
-namely that the differences between the model and the observations 
are due to statistical fluctuations which are normally and independ
ently distributed all with zero mean and the same variance-some may 
choose the abstract probabilistic interpretation of these ellipsoids as 
"confidence regions" (see, for example, Wilks16). If this interpretation 
is used, it is necessary that the distinctions and relationships between 
the j oint, pairwise and marginal confidence coefficients and regions or 
intervals be understood. Details will not be provided here. Briefly, if 
a nine-dimensional ellipsoid were specified to have a confidence coeffi
cient of (39, then any two-dimensional projection would have a con-
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fidence coefficient of f32, interpreted marginally. The relation between 
f39 and f32 is indicated by the following: 

~ {32 

0.13 0.90 

0.25 0.95 

0.50 0.984 

0.75 0.997 

0.90 0.9994 

0.95 0.99995 

In the present case, the model is nonlinear and the fluctuations are 
not normal. Contours of the sums of squares function as a function of 
the coefficients can, in principle, be obtained for a given body of data 
and will not be ellipsoids. In practice, however, obtaining these con
tours is so laborious as to be virtually impossible. 

However, one may consider a linear (planar) approximation to the 
nonlinear model in the neighborhood of the least squares estimates of 
the coefficients and thence obtain expressions for a family of ellipsoids 
which may be reasonably good approximations to contours of the sums 
of squares function. An index of the effective nonlinearity of the 
model is the nonconstancy of the sums of squares of residuals on these 
ellipsoids and this can be normalized by division by the value of the 
minimum sum of squares. Such measures are presented and discussed 
in Sections VIn and IX. 

Given that the linear approximation is adequate, the nonnormality 
of the observations should not deter those who seek (and who believe 
in) the general probabilistic confidence interpretation since the statis
tical process is likely very robust. 

Sections VIn and IX contain specific examples of some of the pair
wise projections of these "approximations to sum of squares contours." 
Specifically, the size of the 9-dimensional ellipsoid was such that, if 
all the statistical assumptions applied, a joint 0.99 confidence coeffi
cient could be attached. Since a complete set of pairwise proj ections 
for nine coefficients involves 36 ellipses only a few are shown. As a 
summary indicator of the nature and behavior of these ellipses the 
quantity 

(31) 
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is tabulated (in Tables IV and V), where p is the correlation of the pair 
of coefficients involved. The value of 1 - lal is the ratio of the area of 
the actual ellipse to that of the largest ellipse which could be inscribed 
in the rectangle formed by the horizontal and vertical tangents to the 
actual ellipse (see Wilk48

). The range of a is -1 ~ a ~ 1 and large 
values of lal (say above 0.75) corresponds to narrow ellipses with major 
axis oblique to the coordinate axes, and represent situations of high 
interdependence of the coefficient estimates. 

B.6 The Analysis of l1ariance 

The analysis of variance provides a summary description of the 
apportionment of the "variability" of a body of data in the light of 
the model employed for analysis, where variability is defined in terms 
of sum of squares. 

Given n observations, one may visualize an n-dimensional observation 
space, whose coordinates represent the possible values of each of the 
n observations. The data are then represented by a fixed point in this 
space. 

The model, having p unspecified coefficients, implies certain functional 
relationships amongst the coordinates of the observation space. Thus 
the model effectively defines a constraining "surface" of p dimensions, 
and each point on this surface corresponds to some set of. values of 
the unspecified coefficients of the model. The least squares estimate 
of the coefficients corresponds to that point on the constraining surface 
which is closest to the actual data point. If the coefficients in the model 
occur linearly then the constraining surface is a hyperplane which 
ordinarily, by definition of the observations, contains the origin, and, 
if the model includes a constant term, also contains the equiangular 
line (corresponding to the mean). 

The squared distance of the data point to the origin is then the total 
sum of squares, L y~, while its shortest squared distance to the 
constraining surface is the error or residual sum of squares, associated 
with lack of fit. The difference between these may be termed the model 
sum of squares and, for linear models, this is actually the squared 
distance from the least squares estimates point to the origin. * If a 
constant term is included in a linear model, then the model sum of 
squares may be further decomposed additively in terms of the squared 

* In the linear ease, the model sum of squares is easily computed directly as 
the squared length of the projection onto the hyperplane of the line joining the 
data point and the origin. This fact is used in the present iterative computer pro
gram in checking convergence. 



1438 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967 

perpendicular distance (call it Di) of the least squares estimate point 
to the equiangular line and the squared distance (call it D;) along the 
equiangular line, from the foot of that perpendicular, to the origin. 
This latter quantity D; is usually termed the sum of squares due to 
the mean. The squared distance of the above-defined point on the 
equiangular line to the data point is called the corrected total sum 
of squares, L (Yi - y)2 and is just L Y~ - D;. The ratio of the 
squared length Di to the corrected total sum of squares is defined as 
the squared multiple correlation, R2, and often used as a measure 
of accomplishment of a model. It is easy to show that R2 defined above 
is equal to 

1 _ sum of squares for error 
total corrected sum of squares 

This latter quantity is computable even when the model is nonlinear 
and/or does not contain a constant term. 

One may define contours of sums of squares of residuals in the con
straining surface as the loci of the intersections with the surface of 
given radii from the observation point. In the event that the constrain
ing surface was a hyperplane, which would be true if the unspecified 
coefficients in the model occur linearly, then these loci (or contours) 
would be a family of p-dimensional spheres. For nonlinear models, 
this will be approximately true for a sufficiently small neighborhood 
of the least squares point. 

The particular form of the model, in regard to the unspecified co
efficients, defines a coordinate system within the constraining surface. 
Three cases are worth distinguishing. First, the constraining surface 
is a hyperplane and the coefficients are linear. Second, the surface is 
a hyperplane but its coordinates are nonlinear. The second case may 
be reduced to the first by appropriately transforming the coefficient 
coordinate system. Third, the surface is nonlinear. In this case one 
can approximate the surface by a hyperplane in a small neighborhood. 
Thus, in a sufficiently small neighborhood, the situation can be re
garded as linear. 

The approximately or exactly linear coordinates implied by the 
model will in general be nonorthogonal. Thus, the representation of 
the spherical (exact or approximate) contours in an orthogonal co
ordinate system for the coefficients yields a family of ellipsoids. In the 
sense of measuring lack of fit by sums of squares between fitted and 
observed values, these contours in coefficient space constitute sets 
whose members are "equidistant" from the data point. 
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B.7 A Procedure jar Smoothing in Cells 

In Sections 7.1, 13.3 and Appendix B.3, discussion of why and how 
to sample and possibly "smooth" the data has been given. One specific 
practical possibility is now described. 

Suppose one has a preliminary fit of the model, represented by 
g(Wi ; 0), where 0' = (Ol, O2 , ••• , Op) are the fitted coefficient values 
and Wi denotes the independent variables. Suppose this preliminary 
fit is used to partition the space of the independent variables (here 
x and L) into some approximation of equirange cells, as described 
earlier. As argued in Section XIII, it may be profitable to "smooth" 
the data in each cell so as to yield a value generally representative 
of all the observations in that cell, instead of using a random selection 
from the cell. 

A sensible smoothing function for each cell is, clearly, the model 
g(w; e). A simple procedure is, for each cell separately, to carry out 
one stage of linear adjustment, doing the linear least squares regression 
of {Y i - g(Wi ; O)} on 8g/8e l 10, •.. , 89/8ep 10, to obtain the regression 
coefficients 8' = (8 1 , ••• , 8p ), for that particular cell. Then the smooth
ing function for that cell would be g(w; (J) where {J = 0 + 8. A rep
resentative "smoothed observation" for that cell might then be the 
quantity g(w; (J), where w is, say, the mid-point of the cell. 

This process permits each cell, overall, to determine a single value 
to represent it in the entire fitting process and diminishes the chance 
that a random selection from a cell may be unnecessarily nonrepresenta
tive of that cell behavior. 

If one had wished to fit to all the available data, then the smoothed 
cell values would be weighted in proportion to the number of data 
in the cell. In the present case, this was deliberately not done. 

The goodness of fit of a model to smoothed cell values, not dif
ferentially weighted, cannot be statistically judged directly from the 
analysis of variance since the residuals are no longer individually 
statistically comparable and the mean square residual is not an estimate 
of the error variance of the observations. However, the fitted model 
can be assessed by functions of its residuals from the original data 
(or a sample thereof). 

B.8 Probability Plotting 

The techniques of probability plotting are useful for data analysis 
in a wide variety of circumstances. (See vVilk and Gnanadesikan17 for 
a general discussion of probability plotting techniques.) For instance, 
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in the present work, plots of residuals against various variables have 
provided invaluable guidance, but one is also interested in the dis
tributional behavior per se of the collection of residuals. As presented 
in Section 8.1, normal and half-normal probability plots have been 
used for this purpose. 

The rationale for such probability plots is roughly as follows: If one 
draws a random sample of size n from a population which is normally 
distributed with mean fL and variance (T2 then the ordered observations 
would be expected to approximate, roughly, to a linear function, fL + 
(TZi(n), of appropriate "representative" values zi(n) from a standard 
normal (fL = 0, (T2 = 1) distribution. Thence a plot of the ordered ob
servations against the zi(n) would tend to be linear, with intercept 
approximately fL and slope approximately (T. For the representative 
value, Zi (n), corresponding to the ith ordered observation, one can use 
the standard normal quantile for the proportion (i-c!) In. 

This plotting technique displays the individual observations in a 
sample graphically and does so against a backdrop such that the ex
istence of outliers and asymmetry, as well as other distributional prop
erties, are sensitively indicated. Of course such plots are usually profit
ably supplemented by others that order or partition the data according 
to information extraneous to the responses themselves. 

We expect the mean of the residuals, Y - y, in the present study (see 
Section 8.1) to lie near o. Also we expect that their variances will be 
approximately the same, since that is the purpose of the square root 
transformation. As a further benefit of the square root transformation 
we expect that the distribution of the residuals will tend to be sym
metric and to approach normality; thence the present application of 
normal probability plotting of the residuals. The fact that these resid
uals are not entirely statistically independent-since they derive from 
a commonly estimated fitted function-is a minor issue since the num
ber of observations is so much larger than the number of fitted coeffi
cients. 

Half-normal probability plotting employs the ordered absolute re
siduals plotted against standard half-normal (standard normal folded 
at 0) distribution quantiles. Such a plot eliminates any symmetry-type 
information but provides an incisive focus in bringing together on the 
plot the largest departures from fit. 

Probability plots can provide very sensitive indications of distribu
tional peculiarities especially in regard to "overly" large values. Some
times the indications are of little practical interest, such as minor 



PROTON DATA FROM 'l'ELSTAR 1 1441 

lumps which one can see in Fig. 29, but in other regards, such as in 
est.imating an "intrinsic" error standard deviation, t.he plots may per
mit a good judgment on how to discount. or correct for apparently 
aberrant values which might otherwise have an undue influence, say, 
on mean square error. 

Error standard deviations may be estimated from normal or half
normal probability plots as the "slope of the linear configuration." 
Typically, it will not be relevant to make a great show of objectivity 
in this process since t.he declared purpose is to permit an informal dis
counting of unexpected distributional peculiarities. Thus, in Fig. 29, 
one takes the slope as defined essentially by the bulk of residuals, 
ignoring the few largest. 

APPENDIX C 

Statistical kI easures Over All the HTB Data 

This appendix presents various statistical measures over all the 
41,135 HTB data. These measures concern the fit of 1Vlodels I and II 
and the partition of the x,L space (as described in Section 7.1 and 
Appendix B.3) into 1034 cells of which 813 were non empty of obser
vat.ions. The partit.ion is such that the range of y within cells is rela
tively small. For each cell, two functions are used: (i) The mean 
square deviation (1VISD) defined as 

1 n 

IVISD (u) = n _ 1 ~ (u j - U)2, (32) 

where the cell has n observations and Uj denotes some function of a 
cell observation, e.g., Y j or Y; , and u is the mean of the Uj in the cell; 
(ii) The mean square residual (MSR) defined as 

1 n 
l\1SR (Y) = - L (Yj - Yj)\ 

n j=1 

(33) 

where Yj is the fitted value (from 1Vlodel I or II) corresponding to the 
observed Y j . 

C.1 E1r/,pirical Justification of Square Root Transformation 

Figs. 56 and 57 show plot.s of MSD (Y2) versus the cell mean of y2 
and MSD (Y) versus the cell mean of Y, respectively. It is seen that 
MSD (Y2) shows a distinct and maj or dependence on the average 
value of the counting rate, y2, while MSD (Y) does not show syste-
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matic increase relative to the average value of Y, except, as expected, 
in the close neighborhood of zero counting rate. 

A more detailed analsis of the results of Fig. 56 indicates that the 
dependence of MSD (Y2) on cell mean of y2 is somewhat curvilinear 
having larger slope for larger y2 values. This curvilinearity is very 
likely mainly due to the mode of definition of the x,L cells. The 
procedure used tends to produce cells which are "too large" in regions 
where the counting rate is also large, thus leading to an apparent 
extra increase III MSD(Y2) with y2. At all values, however, the 
dependence of MSD(Y2) on y2 is greater than the slope 0.09 (=1/11) 
which would be associated with the Poisson distribution. The em
pirically observed slope varies from about 0.15, based on small values, 
to 0.3, based on large values of the MSD (Y2). 

These results suggest that one cannot hope to achieve, by means of 
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Fig. 56 - Cell MSD (P) vs cell mean of y2 for the x, L cells defined in Sec
tion 7.1 and Appendix B. 
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Fig. 57 - Cell MSD (Y) vs cell mean of Y for the x, L cells defined in Section 
7.1 and Appendix B. 

any fitted model based on x,L coordinates, on the scale of Y, a mean 
square residual (error) as low as 0.023 which is associated with the 
Poisson assumption. 

Although the Poisson assumption provided a useful stimulus toward 
a profitable transformation of the data, these results confirm that 
it would have been unwise to have tied oneself too closely to the 
assumption as a complete basis for analysis, as for instance in basing 
the fit on maximization of the Poisson likelihood function (see 
Appendix B.2). Possible sources of variability and error in the data, 
beyond Poisson fluctuations in counts, have been discussed elsewhere 
in this paper. 

C.2 Determination of lVeights 

The sample selection procedure involved "weighting" the 813 non
empty cells by selecting 2, 3/2, or 1 observation per cell. The observed 
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MSD (Y) were classified into three groups defined by: 0 ~ IVISD ~ 
0.013; 0.013 < IVISD ~ 0.02; 0.02 < l\1SD. The x,L coordinates of the 
midpoints of cells so identified are shown in Fig. 58. The actual assign
ment of weights was based on applying contiguity considerations to this 
plot. 

C.3 Analysis of Variance Over All the HTB Data 

Table VIII summarizes the analysis of variance over all the 41,135 
HTB data. The table covers the fit of Models I and II to all the data, 
using the estimated coefficients (see Tables IV and V) from the fit 
to the 960-point sample. Also, one can regard the collection of 
averages of the Y values in each of the 813 nonempty cells as pro
viding a fit depending on 813 fitted quantities. The corresponding 
"error" ( cell deviations) is the pooled cell MSD (Y) . Finally, the 
residuals of the fit of Model I (or II) can be "fitted" by 813 cell 

1.0.------,---...,------,---,---..-------,----,---.-------,-----, 

0.8 

0.6 

0.4 

0.2 

0

0000 

000000000000000000000000000000000000 

0 0 

CELL MSD (Y) 

• 0 ~ MSD ~ 0.013 
4 0.013< MSD ~ 0.02 

o 0.02 < MSD 

o~_~ ____ ~_~ ___ ~ ____ ~ __ ~ ___ ~_~~_~ __ ~ 
1.0 1.4 1.8 2.2 2.6 3.0 

L 

Fig. 58 - Positions of centers of regions in x, L space having certain ranges of 
cell MSD (Y). The ranges are indicated in the legend. 
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TABLE VIII-ANALYSIS OF VARIANCE OVER ALL THE HTB DATA 
(41,135 POINTS MINUS 226 OUTLIERS). 

Due to 

Total (41,135-226) 
Mean 
Corrected total 
Model I residuals 
Model II residuals 
Cell deviations 
Cell dev. of Model I res. 
Cell dev. of Model II res. 

Model I 
Model II 

dJ. 

40,909 
1 

40,908 
40,900 
40,901 
40,096 
40,085 
40,086 

Multiple R2 value 

0.988 
0.988 

Sum of squares Mean square 

230,267.45 
115,755.39 
114,512.07 

1,411.3 0.0345 
1,419.6 0.0347 
1,541.4 0.0384 
1,167.0 0.0291 
1,166.9 0.0291 

averages of the residuals, leading to an "error" which is the pooled 
cell MSD (Y - y), i.e., due to the cell deviations of the 1Vlodel I (or 
II) residuals. 

The fits to all the data provided by Models I and II are equally 
good, as was true for the 960-point sample. The mean square resid
uals over all the data (about 0.035) is lower than the value (about 
0.036) obtained for the sample even though the fit of the model was 
determined by the sample. This bears out the expectation (see Ap
pendix B.3) that the mode of selection of the sample is such that the 
sample was harder to fit on a per-observation basis than the entire 
body of data. 

The cell means provide overall a poorer actual fit than Model I or II, 
and allowing for the number of fitted coefficients, the mean square for 
cell deviations exceeds that for the models by about 12 percent. 

Fitting cell means to the model residuals yields an additional sub
stantial reduction in the sum of squares of the model residuals and a 
mean square of about 0.029, which is some 17 percent lower than the 
value for the models. If in fact the models gave an "unbiased" fit every
where, then one would expect that the values of pooled MSR (Y) and 
pooled MSD (Y - y) would be nearly the same. The excess of the 
former is due mainly to systematic inadequacies of the fit (see 
Appendix CA). 

The value 0.029 represents virtually a lower bound on the achiev
able 'mean square error' for this body of data. Despite its downward 
bias from the substantial number of 'zero counting rate' observations, 
it exceeds the 'Poisson' variance of 0.023 by about 25 percent. This 
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excess is probably due to a combination of factors, including incom
plete elimination of temperature and bias voltage instrumental effects, 
as discussed further below. 

The 'improvement' of the MSD (Y - y) over MSR cannot be taken 
to mean that some smooth "simple" adjustment of the model based on 
x,L coordinates might be found so as to yield similar improvement. 
Some of the bias apparently associated with x,L coordinates in dif
ferent regions may be due to artifactual association with temporal, 
instrumental, or other small effects and such corrections could not be 
made overall in terms of a "simple" x,L dependence. 

C.4 Analysis of the Excess Variation 

A study of plots of cell MSD (Y) against each of y, x, and L 
indicates that large MSD values occur mainly in the 1.2 < L < 1.7 
region, at high average counting rates. This excess is due largely to 

0.20 ~---T,---"""""-,---.,--,---,r-----T,---..,--1---,--1----. 

I-

0.15 I-

I-

:s I-
0:: 
(f) 

2 0.101- + 

--l 
--l 
W 
U 

r- + + 

r .+ + + 

o 2 

: 
+ + 

.. +. .. 

, , I 
4 6 

CENTRAL (FITTED) y' FOR CELL 

Fig. 59 - Cell MSR (Y) vs central value of y' for cell. 

-

-

-

-

-

-

-

-

-

-

-

: + 

.. ++.-

-
, 

8 



PROTON DATA FROM TELSTAR 1 1447 

1.0r---,-----,---..,------:---.-----r---.---,----r-----, 

0.8 

0.6 

0.4 

0.2 

." .. 
0.. .. .......... 0000000000000 •••••• 

........ 
0 .... 

...... 
...... 

CELL MSR (Y)/MSD (Y) 
• RATIO < 2/3 

o 2/3 ~ RATIO ~ 3/2 

• 3/2 < RATIO 

Ok-__ ~ __ -L __ ~_~~_-L __ ~ ___ L-__ ~ ___ -L_~ 

1.0 1.4 1.8 2.2 2.6 3.0 
L 

Fig. 60 - Positions of centers of regions in x, L space having certain ranges of 
cell MSR(Y)/MSD(Y). The ranges are indicated in the legend. (Plotted 
points are mid-points for the cells. Points appearing to the right of the boundary 
R = 2.0 Re represent cells which have data only in one corner.) 

the hybrid mode of x,L cell formation, in which the L-slices were 
equal length intervals, while within each L-slice, the x segments were 
chosen to have equal increments of y. Thus, at L values where y is 
large, the x,L cells will tend to have a larger y range. 

The tendency of lVISD to rise with cell average counting rate is 
not mirrored by cell MSR behaviour. As shown by Fig. 59, the level 
of l\lSR is not dependent on y except, as expected, for those cells 
where the counting rate is near zero. Roughly speaking, the average 
level of cell MSR for y values away from zero is about 0.04, in agree
ment with the probability plot estimate of Section 8.1. Of course, Fig. 
59 shows both smaller ordinate values and less dependence on the 
abscissa values than the comparable plot of Fig. 57. 

The relation of cell lVISR to cell MSD is partially indicated in Fig. 
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60, showing positions in x,L space of various ranges of the value of 
the ratio MSR/MSD. One sees that MSR t.ends to exceed MSD along 
the "outside" of the data region. The excess along the R = 2 Re 
boundary is due mainly to model bias or inadequacy. The excess at 
high L-high x is probably associated with temporal effects. The large 
ratios along the left edge of the data, which is the cutoff region, is 
likely a reflection of deficiency of the function. The excess of l\IISR 
over l\1SD is associated in the main with small y values. 

Fig. 61 shows cell mean square deviations of residuals, MSD (Y -y), 
plotted against y. This plot shows less scatter (most. noticably for 
MSD(Y - y) > 0.075) than that of Fig. 59, and a lower average level 
of MSD (Y - y) for 11 > 0, as expected. The high values of lVISD (Y - y) 
are not related to y as such but rather, as other plots show, with 
"extra fluctuations" in the 1.2 < L < 1.7 region. This is probably 
associated with the coarse HTB data partition which does not com-
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pletely take care of the temperature and bias voltage instrumental 
effects. 
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Gold Doped Silicon Compandor Diodes 
For N2 and N3 Carrier Systems 

By K. R. GARDNER and T. R. ROBILLARD 

(Manuscript received May 2, 1967) 

Companding has proven to be a valuable technique for improving 
the signal-to-noise ratio of voice transmission at baseband frequencies. 
A compandor consists of a compressor element which reduces the dy
namic range of a transmitted signal in a predetermined lnanner and an 
expandor element which restores the signal range at the receiver. Prac
tical Bell System applications to date have used electron tubes, ger
manium point-contact semiconductor diodes and unpassivated silicon 
mesa diodes. Each of these variolosser elements had serious short
comings. Two new diode pairs have been designed which eliminate the 
problems of impedance range control and linearity, diode noise and 
electrical stability. The new design utilizes heavy gold doping of a 
planar oxide-passivated wafer design to produce a bulk cont.rolled de
vice capable of unusually high manufacturing yields. 

1. INTRODUCTION 

Compandors are a special application for a diode because the diodes 
are used as variolossers and the electrical parameter which must be 
controlled is the small signal forward impedance as a function of bias 
current. Furthermore, control of impedance is required over two orders 
of magnitude. Other requirements are low noise and good stability. The 
484/489A and 484/489B diode pairs, which are electrically identical 
and differ only in mechanical outline, are silicon "planar" diodes which 
were designed for use in this application. The new devices were de
signed to replace two pairs of troublesome unpassivated "mesa" type 
devices in both the N2 and N3 carrier systems. 

A comprehensive diode design was not previously available for this 
application. Diodes were obtained by selection from available types at 
low yield. This paper discusses the theoretical and empirical design 
and the fabrication of the new diodes. 

1451 
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II. CIRCUIT FUNCTION OF COMPANDORS 

Noise is an important problem associated with long distance tele
phone transmission. Elimination or reduction of this undesirable effect 
is a consideration in the design of all transmission equipment. Noise 
occurs in transmission from many sources such as thermal noise, ex
ternal interferences, and crosstalk. The compandor circuit, which was 
first introduced into the Bell System in the transatlantic radio circuit 
in 1932/ is one of the methods used to reduce noise. While the first 
compandor circuits used vacuum triodes l as the variolosser units, later 
compandor circuits used semiconductor diodes when they become 
available. 

A compandor2 is composed of two-parts, compressor and expandor, 
one at each end of a transmission path. The compressor circuit com
presses the dynamic range of the transmitted signal power by taking 
the square root of the signal (although other functions could be used). 
If the maximum signal levels are transmitted at the same power with 
compression as they would be without compression, then the minimum 
signals will be transmitted at relatively higher power with compression 
than without. Therefore, a higher signal-to-noise ratio results for the 
minimum signals on the transmission path if compression is used. At 
the receiving end of the transmission line the expandor circuit squares 
(expands) the signal to its original dynamic range. 

The N2 and N3 carrier system compandors3 compress a 50-dB signal 
range into a 30-dB range for transmission. Therefore, 30-dB higher 
noise may be potentially tolerated in the transmission path. At the 
receiving terminal the expandor portion of the compandor expands the 
signal range to its original value of 50 dB and restores the signal to its 
original form. Since a compandor is an interchangable plug-in unit and 
the compressor and the expandor in the same unit do not work together, 
it is necessary that all compressor circuits track closely with all ex
pandor circuits. 

The core of the compressor and expandor circuits is a pair of vario
losser diodes. The stringent requirements on the compandor circuits are 
reflected in stringent requirements on the variolosser diodes. This paper 
reports the development of two diode pairs which meet the unique re
quirements of these circuits. 

III. 'l1HE DIODES 

3.1 General Description 

The first semiconductor diodes used as the compandor variolossers 
were selected from available types. While the New York-London long 
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wave radiotelephone circuit (1932) used vacuum triodes,I the Nl 
carrier system used germanium point-contact diodes;4 the PI and 0 
carrier systems used silicon alloy diodes;5 and the N2 carrier system 
originally used diffused silicon, ,mesa diodes.3 Several problems 
arose with the use of these state-of-the-art-diodes although care
ful selection and circuit adjustment could correct most of them. The 
major problems of high device cost, high noise, and periodic supply 
shortages arose directly from a lack of understanding of the physical 
mechanism controlling the forward impedance characteristic. 

It was possible, by designing a new diode, to overcome all of the 
problems and at a much lower cost. The new design uses silicon planar 
techniques coupled with controlled gold doping and heat treatment to 
produce the desired diode characteristics. 

The following parameters are used to characterize the diodes for the 
compandor applications: 

(i) The small-signal forward impedance," Z" at a specified mid
range dc dias current. 

(ii) The ratio, R 1 , of the small-signal forward impedance at a 
specified lower current to the impedance at the above mid-range 
current. 

(iii) The ratio, R::" of the impedance at the mid-range current to the 
impedance at a specified higher current. 

(iv) The impedance difference between the diodes of a pair measured 
separately at the idling current. 

( v ) Noise generated by the diode over the current and frequency 
ranges of interest. 

Table I shows the limits for these parameters for both the mesa and 
the planar type diodes. 

3.2 Design Theory 

The primary parameter to be controlled was the small-signal for
ward impedance, Zt. The theoretieal forward impedance of the semi
conductor diode may be obtained by differentiation of the current
voltage equation. For semiconductor diodes the relationship is: 

f F = fs(exp qV /nkT - 1), (1) 

where 

f. = saturation current, 

*For simplicity the expression 'small-signal forward impedance' will often be 
shortened to 'forward impedance' or 'impedance' in this paper. 
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Therefore, 

q electronic charge, 
V applied voltage, 
n experimentally determined constant 

commonly between 1 and 2, 
k Boltzmann's constant, 
T absolute temperature. 

aV nlcT 
Z, == aI- = -[ exp - q V InleT. 

F q 8 

For forward bias, V, greater than a few nlcT I q (leT I q = 0.026 volts 

T ABLE I - SALIENT CHARACTERISTICS 

Planar compressor l\'[esa compressor 
Parameter and expandor and expandor Units 

Z" Forward impedance, at 
50 p.A de bias 

For single diode of pair 900 ± 35 1045 ± 125 ohm 

For diode pair in series 1800 ± 70 2070 ± 70* ohm 
RI, Impedance ratio = 

Z, at 10 p.A de 
Z, at 50 p.A de 

For single diode of pair 5.0 ± 0.2 4.9 ± 0.4 

For diode pair in series 5.0 ± 0.2 4.9 ± 0.2* 
R 2, Impedance ratio = 

Z, at 50 p.A de 
Zj at 300 }LA de 

For single diode of pair 6.0 ± 0.2 6.2 ± 0.5 

For diode pair in series 6.0 ± 0.2 6.15 ± 0.2* 

Parameter Compressor only Compressor only Units 

/lZj = Difference in impedance 
of diodes of pair measured 
separately: 

At 2 p.A de bias 2000 max 2000 max ohms 

At 10 p.A de bias 500 max 500 max ohms 

Vn = Noise voltage of single 
diode or pair at 2.5p.A de 
bias. Bandwidth 200-
3500Hz. Parallel resist-
ance 17,000 ohm. 20 max p.Vrms 

* Computer selected. 
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at room temperature) one has exp qV /nkT » 1 and to a good approxi
mation* 

z - nkT L. 
f - q IF (2) 

It is this ZrIF functional relation which is used in the design of the N2 
and N3 compandor circuits. 

There are five sources of current in a forward biased p-n junction; 
diffusion, bulk recombination, surface recombination, channel and 
tunneling currents. The total diode current is given by 

IF = ID (diffusion) + IBR (bulk recombination) 
+ I SR (surface recombination) + I CL (channel) 
+ IT (tunneling). (3) 

The diffusion current6 at small bias is given by 

ID = Id(exp qV /nkT - 1), 
where 

Id = qA[Pn(Dv/Tp)l + nv(Dn/Tn)l] 
and Tp = lifetime of holes on n side of junction, 

Tn = lifetime of electrons on P side of junction, 
P" = hole concentration in n-region, 
nv = electron concentration in p-reglOn, 
Dp = diffusion constant for holes, 
Dn = diffusion constant for electrons, 
A = area. 

At high forward bias (injection) the current will be given by 

I D = I d( exp q V /2kT - 1) 

(4) 

(5) 

and in the intermediate range the current equation will be similar to (1). 
The bulk recombination currene ,8 for bias voltages, V, greater than 

several kT / q is given by 

IBR = Irg exp qV /2kT, (6) 

where 

=~(kT)~A 
2 qE To ' 

= intrinsic carrier concentration, 

* The error is less than 1 percent for voltages greater than 0.2 volts and less 
than 0.1 percent for voltages greater than 0.3 volts. 
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E = electric field at junction, 
and To = lifetime. 

The exact voltage dependence of (6) depends in a complicated way 
on the physical parameters of the junction, but in a given range may 
be described by 

(7) 

where nbr ~ 2 and accounts for the voltage dependence of Iru , while 
I br is the voltage independent factor. 

Surface recombination current may be described by a similar eqUa
tion;8 

I SR = Isr exp q V InsJeT, (8) 

where nar > l. 
Channel currentS at V > leT I q may be described by 

lcL = Ie! exp q Vine! leT , (9) 

where nel = 1 up to 4 or 5 or more for poorly stabilized surfaces. 
By considering the five currents in parallel one may calculate a 

small-signal impedance for each current, and the forward impedance 
of the diode may be expressed as five impedances in parallel. 

l = _1_ + _1_ + _1_ + _1_ + -L 
Zj leT nbrleT nsJeT nedeT ZT 

(9) 

qlD qlBR qlsR qlCL 

or l = ~ (I D + I BR + I SR + I C L + leT). 
Zj leT nbr nsr ne! qZT 

(10) 

Diffusion current cannot be made dominant over recombination 
current in silicon except at high current densities where the value of the 
multiplier, n, may be modified by carrier injection. In both mesa and 
planar diodes the diffusion current was reduced by using heavily doped 
starting material (approximately 0.005 ohm-em p-type silicon). The 
use of such low resistivity material had the further advantage of re
ducing the series resistance of the bulk silicon to about 0.04 ohms. At 
all currents of interest the 0.04 ohms made a negligible contribution to 
the diode impedance. 

The bulk recombination current was greatly enhanced by introduc
ing trapping centers by heavily gold doping the diodes. The effect on 
the diode parameters of various gold doping levels was investigated by 
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varying temperature and time of gold diffusion and subsequent heat 
trea tments. These effects are discussed in detail in Section 3.4.3. 

From the previous equations and measurements on existing diodes 
the relative values of the five currents and their contributions to the 
total impedance may be compared. As an example, values are calcu
lated for a bias of 0.4 volts and diode parameters which approximate 
those of the actual diodes. 

The diffusion current is calculated from (4) as 

ID = 10-9 A = O.OOIJLA, 

where the following values are assumed: 

Tn = Tp = 10-10 sec (Ref. 9) 
N n = N p = 2 X 1019 cm- 1 (0.005 ohm-em) 
JLp = 30 cm2/volt sec (Ref. 10) 
JLn = 75 cm2/volt sec (Ref. 10). 

The bulk recombination current is calculated from (6) by using the 
approximation 

E = (1/;0 - V)/W, 

where % is the built-in voltage and W is the space-charge width. The 
bulk recombination current is 

IER = 30JLA »ID = O.OOIJLA. 

Estimates of surface recombination and channel currents were made 
from measurements on planar type diodes. These estimated values 
were much smaller (by several orders of magnitude) than the bulk re
combination current. Likewise, the observed magnitude of the forward 
tunneling current is negligible since doping levels are relatively light 
and the j unction is graded. 

Hence, bulk recombination current is dominant and the junction 
impedance becomes 

(11) 

By way of contrast the impedance of the mesa diode was primarily 
dependent on surface damage introduced during mechanical formation 
of the active diode wafer. High surface recombination (mechanically 
damaged) wafer edges were created when the diffused slices were dia
mond sawed into wafers. A portion of this damage was then removed 
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by chemical etching to set the diode multiplication factor, n, and hence 
forward impedance to the nominal value. 

3.3 Mesa Diode Deficiencies 

System and manufacturing experience pointed out three major 
shortcomings of the unpassivated mesa design. The first of these short
comings was lack of good control of the nominal impedance value and 
range. Manufacturing problems were experienced until the planar re
design efforts delineated the physical mechanisms controlling forward 
impedance. Even with this understanding manufacturing control could 
not be improved sufficiently to obtain narrow distributions of im
pedancc; a computer selection of individual diode pairs was necessary 
for reasonable yields. 

A second electrical characteristic which could not be controlled 
in the manufacturing operation was the noise voltage produced by the 
device in the 200-3500 Hz band. The N2 and N3 systems require that 
the noise voltage be less than 20 microvolts for the compressor pair 
and 40 microvolts for the expandor pair when operating at a direct 
current of 2.5 microamperes. This characteristic was checked on a non
parametric basis at the equipment assembly location; and, quite fre
quently, shipments of diode pairs would be found which exhibited 
excessively high noise. 

Finally, the short-term stability objectives of the systems could 
never be achieved with the unpassivated device. 

As shown in this paper, the redesigned device readily meets all noise 
and stability objectives and permits manufacture of diodes at very 
high yields without the need for computer matching. 

3.4 Planar Diode Design 

3.4.1 Structural Features 

While the primary compandor diode design effort was directed toward 
understanding and controlling the physical variables associated with 
the active semiconductor chip, the encapsulating structure was also 
changed to provide an assembly more suited to printed circuit board 
mounting. As shown in Fig. 1, each diode pair of the mesa type was 
composed of two metal package diodes molded in epoxy and glued to
gether with an epoxy cement. This arrangement is costly and results in 
a double ended structure whose leads must be trimmed and formed for 
mounting. The redesign diode structures are simply two TO-18 en-
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Fig. 1 - Outline of mesa diode pairs and package outline. 

capsulations which are snap fitted into an acytal copolymer plastic 
block. The lead arrangement shown in Fig. 2 (a) was used for im
mediate production and field replacements; the straight-through lead 
arrangement shown in Fig. 2 (b) is being used in new equipment which 
incorporates modified circuit boards. The latter structure requires 
neither lead trimming nor forming for insertion. Code and date mark
ings are molded into the plastic carrier which eliminates the need for 
coding individual finished devices. The plastic carriers are bullet
shaped to identify polarity and are color coded to provide positive 
differentiation of compressor and expandor pairs in the equipment as
sembly areas. The leads of the device are solder coated to facilitate 
wave soldering to printed circuit boards. 

The essential features of both mesa and planar type wafers are 
depicted in Fig. 3. Fig 3 (a) shows the mesa structure used in the 
earlier diode. In this case, a p-n junction is formed approximately 

=:[QO~= = 0 = 

(a) 
484 AlB 

(b) 
489 AlB 

Fig. 2 - Outlines of 484A/B and 489A/B diode pairs. 
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Fig. 3 - (a) Mesa structure of component diodes. (b) Planar structure of 
component diodes. 

0.0002 inch below both faces of a one-inch diameter silicon wafer by 
gaseous diffusion producing a p-n-p structure. One of the p-n junctions 
is then removed from the wafer by mechanical lapping. The lapped 
slices are next plated with nickel and gold to form ohmic contacts. The 
wafers are then cut into 0.045-inch square chips by a diamond sawing 
operation to produce the final chip. This chip is subsequently eutectic
bonded to the package mounting stud, etched to remove a controlled 
amount of sawing damage (thus adjusting the impedance to the nom
inal value), and finally spring contacted during final encapsulation to 
complete the device. A cut-away view of this structure is shown in 
Fig. 4. 

DIODE WAFER, 

FZ=1':::::\\I:;; *, 
~ "---..--iWI 

/ 

SOLDER JOINT ... / I::::::!::~~...J 

',- WELD 

Fig. 4 - Cut-away view of mesa diode package. 
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Fig. 3 (b) depicts the mechanical features of the planar wafer. In this 
case, a p-n junction is formed in the p-type silicon by diffusing phos
phorus through a 0.008-inch hole cut into the protective layer of silicon 
dioxide. Since the starting crystal is very heavily doped with boron 
(approximately 2 X 1019 atoms/cc), it is difficult to overdope this ma-
terial and produce a deep junction; in this device, the junction lies 
0.0003 inch below the initial surface of the silicon. As explained else
where, the silicon is also very heavily gold doped by a high tempera
ture diffusion to control the recombination-generation current and 
thus the diode 'multiplication factor which in turn controls diode im
pedance. An aluminum contact is evaporated and alloyed selectively 
into the hole in the oxide to complete wafer fabrication. The planar 
wafer is next eutectic-bonded to a gold-plated TO-18 header and a 
thermo compression wire bond is made between the metal button and 
the header lead. Final closure of the device is accomplished by resis
tance welding a Kovar can to the gold-plated Kovar header. A barium 
oxide impregnated porous nickel cylinder is brazed to the top of the 
can and serves as a moisture getter. A cut-away view of the individual 
planar device is shown in Fig. 5. 

3.4.2 Fabrication Process 

lVIany of the basic processes used to fabricate these diodes are com
mon to other planar silicon devices and have been presented else
whereY· 12 This section, then, will deal mainly with those processes 
which determine the forward impedance, noise and stability aspects of 
the device. A basic flow chart of the 'major assembly operations is 
presented in Fig. 6. In this chart, the header assembly operations, 
getter fabrication, activation and assembly operations and the semi
conductor crystal growing operations are not shown. 

DIODE 
WAFER"-

r-------.,.),---- BaO GETTER 

__ -KOVAR CAN 

", 
-- GLASSED HEADER 

o 0 
Fig. 5 - Cross-section view of planar component diode. 
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SILICON 
SLICE 

p=0.005 
OHM-CM 

LAPPED AND 
CHEMICALLY 

POLISHED 
SLICE 

THICKNESS 
0.006 

WINDOW ETCHED 
SLICE 

0.008 CIRCULAR 
WINDOWS 

WINDOW ETCHED 
SLICE 

0.0055 CIRCULAR 
WINDOWS 

ENCAPSULATED 
DIODE 

Fig. 6 - Flow chart for fabrication of planar diodes. Only fundamental opera
tions are shown. 

The first fundamental design choice involves the selection of resis
tivity type and doping level. The choice of p-type silicon allows use 
of a junction diffusant (phosphorus) which can be easily cleaned off 
of the surface of the wafer contact area. The choice of very heavily 
doped starting material is also of paramount importance in producing 
a stable. device. It has been demonstrated13 that alkali ions, a universal 
source of contamination, can electrolize through a protective silicon 
dioxide layer at high temperature under reverse bias and invert the 
conductivity type of the p-type material surrounding the junction. 
This inverted area can cause high channel currents to flow and also 
drastically increase the capacitance of a device when operated under 
reverse bias. 

When operated in the forward direction, a "channeled" device will 
exhibit a multiplication factor of typically 2-4 and occasionally up to 
10. Obviously, such changes would drastically shift the impedance 
levels of the device. However, with starting material doped to a level 
of 2 X 1019 atoms/cm3

, it is estimated from the curves of Ref. 14 that 
1013 surface charges/cm2 would be necessary to invert the material. 
Contamination levels of this magnitude are not encountered if mini
mal care is exercised in the oxide growing, diffusion and contact evap-
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oration steps. Hence, as discussed in Section 3.2, the choice of heavily 
doped starting material essentially eliminates the contribution of 
channel recombination-generation current to the total diode current 
when compared to the bulk recombination-generation current. Also, 
as calculated in Section 3.2, the diffusion current contribution to the 
total diode current for this (or any practical) starting resistivity is 
also negligible compared to the bulk recombination-generation current. 

The next pair of design choices, heavy gold doping and planar oxide
passivated technology, combine to produce a very large bulk con
trolled recombination-generation current and a negligibly small sur
face current contribution. As indicated in Fig. 6, the. polished slice is 
first oxide passivated and then is selectivly etched to open 0.008-inch 
circular holes in the oxide using photolithographic techniques. Kodak 
Thin Film Resist (KTFR) is used as the emulsion in the photo-shap
ing operation. After junction diffusion, the junction assumes the shape 
shown in Fig. 3 (b). The junction diffuses laterally as well as verti
cally. Lateral diffusion under the oxide layer provides a p-n junction 
which terminates at the semiconductor surface at a low surface charge 
location (under the passivating oxide). The low surface ch~rge results 
in low surface recombination current. Thus, the resultant low resistiv
ity, planar, oxide-protected, heavily-gold-doped combination results in 
a device which is completely bulk controlled and capable of being 
predictably controlled in manufacture. 

The gold doping level must next be selected to provide the desired 
value of diode multiplication factor and hence forward impedance. 
Since many mesa devices are currently in field service, and since both 
the N2 and N3 were designed to accommodate this device, it was de.
sirable to attempt to set the impedance level at a value of 1035 ohms 
at 50 microamperes or a multiplication factor of approximately 2. Since 
values of the multiplication factor at room temperature from gold 
doping as high as 1.85 had been reported in the literature,S this ap
proach appeared to offer promise of successfully achieving the desired 
objective. As shown in Fig. 7, the impedance level of the device is a 
very strong function of the gold diffusion temperature. As can be seen 
from this combined plot of impedance and maximum solid solubility15 

of gold in silicon as a function of temperature, the impedance level is 
directly related to only the bulk properties of the device as calculated 
in Section 3.2 and discussed previously in this section. The impedance 
values presented in this plot were achieved with other impedance con
trolling variables held constant. In particular, the time and tempera-
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ture used for contact sintering to provide contact adherence were held 
at 3 minutes and 625°C, respectively. Fig. 16 presents the variation 
of impedance level with contact sintering time at 625°C. It can be 
seen that maximum impedance results when the contact is not sin
teredo Heat treatment of the gold-loaded slice (even without metal 
contacts present) results in lowered impedance probably through an 
oxide-gettering or precipitation mechanism. vVith minimum contact 
sintering, average values of impedance as high as 990 ohms at a for
ward current of 50 microamperes have been achieved for a gold diffu-

. sion temperature of 1300°C. The corresponding multiplication factor 
for these experimental conditions is 1.91. For good mechanical adher
ence of the contact it was desirable to sinter the contact at about 
625°C for 9.5 minutes (a standard process) ; hence, the impedance level 
of the redesigned device was set at 900 ± 35 ohms for a gold diffusion 
temperature of 1300°C. This shift in impedance nominal from the mesa 
component diode nominal value of 1045 ± 125 ohms necessitated a 
change of a few resistor values in the compandors. 

As discussed in Section 3.3, noise in the low audio frequency range 
was a serious problem with the mesa diode. 'Vhile a detailed study of 
the physical noise mechanisms in silicon was not undertaken in this 
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development, design information was obtained which clearly indicates 
methods of controlling this important parameter. Control of the II! 
low-frequency noise results as a by-product of heavy gold doping for 
impedance control. As illustrated in Fig. 10, the noise voltage of the 
device in the 200-3500 Hz band when biased in the forward direction 
at 2.5 microamperes is independent of the gold level up to about 1200°C 
then drops sharply and begins to level out beyond 1300°C. Since. the 
mesa device saw no high temperature gold diffusion, no beneficial ef
fect of the gold was realized. 

As seen from Fig. 10, at the specified diffusion temperature of 1300°C 
the bulk of the planar component diodes are approaching the test set 
lower limit of 2.4 microvolts and no devices are approaching the com
pressor or expandor limits of 20 and 40 microvolts, respectively. This 
parameter is now easily controlled in manufacture; hence, both com
pressor as well as expandor limits have been set at 20 microvolts. 

After oxidation, diffusion and contacting, the slices are simply dia
mond scribed, cracked apart, eutectic (gold-silicon) wafer bonded and 
thermocompression wire bonded to the TO-18 header. Finally, the metal 
can containing an activated moisture getter is resistance welded to the 
assembled header. The excellent device stability which will be pre
sented in a later section is attributable to the use of very low resistiv
ity semiconductor material, to extremely high gold doping and to the 
use of oxide passivation techniques. 

The design factors discussed in this section combine to produce a 
de.vice with a very narrow range of impedance, a low noise voltage, 
extremely stable electrical characteristics and which can be produced 
with good manufacturing control. 

3.4.3 Design Variables 

The diffusion of gold into silicon is a complex process involving 
interstitial-substitutional equilibrium.16 In addition, both diffusion 
constant and solid solubility are partially dependent on the concentra
tion of other impurities such as boron and phosphorusY, 18 Because 
complete data were not available on the entire ranges of interest of 
diffusion temperature or boron and phosphorus concentration, and be
cause data were not available on the effect of annealing which would 
necessarily occur during the contad sintering, the effects of gold diffu
sion temperature and time and contact sintering time were determined 
empirically. A matrix experiment was performed where one parameter 
was varied, and then another etc., holding the other parameters con
stant. 
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Selected results of the experiments are shown· in Figs. 7 through 16. 
Each point represents the average of about 40 diodes. Unless indicated 
otherwise, the gold diffusion temperature was 1300°C, the gold diffu
sion time was 10 minutes, and the. sintering time was 3 minutes. 

The effect of gold diffusion temperature on Z (50pA), R1 , R;!, noise 
voltage, capacitance and forward voltage is shown in Figs. 7 through 
12. Below about 1200°C the gold diffusion has little effect, but at 
higher temperatures the diode parameters depend mainly on the gold 
solubility. Above 1200°C the spread of measurements was also much 
smaller, which indicates that the bulk rather than the surface prop-
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erties were dominant. This information resulted in the choice of a high 
gold diffusion temperature of 1300°0. 

The effect of gold diffusion time on Z (50pA), forward voltage and 
noise voltage is shown in Figs. 13 through 15. At times greater than 10 
minutes the forward voltage and noise did not change with time. How
ever, the diode impedance and hence the multiplier, n, did change 
which means that an equilibrium condition was not reached. Since 
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gold is known to precipitate or collect in phosphorus doped silicon 
dioxide1D and at dislocations, as well as to form a complex with phos
phorus, equilibrium would not be expected only on the basis that solid 
solubility had been reached. Ten minutes was chosen for the diffusion 
time. 

The importance of contact sintering time can be seen in Fig. 16 
which shows forward impedance, Z (50p.A), as a function of sintering 
time. A sintering time of 9.5 minutes was chosen because it corresponds 
to a standard transistor process which results in good contact adher-
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ence and because the slope of impedance versus sinter time is low at 
that time. 

Studies were carried out in which the diffusion depth was varied 
from 0.3 to 0.8 mils while holding the gold diffusion to the standard 
conditions. There was no effect on diode parameters. 
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3.4.4 Electrical Characteristics 
The salient electrical characteristics of the planar diodes namely: 

forward impedance, impedance ratios and impedance differences are 
summarized in Table 1. The impedance of a typical unit is shown in 
Fig. 17 in the range of 1.uA to lOrnA bias. Impedance measurements are 
made at a frequency of 1000 Hz. In the frequency range of interest, 
the capacitance has negligible effect on the impedance. In the worst 
case, at the highest frequency of interest (3500 Hz), and at a forward 
current bias of lO.uA, the capacitive reactance is more than two orders 
of magnitude greater than the resistive component. Therefore, the dif
ference between the total magnitude of impedance and the resistive 
component is less than 0.01 perccnt. The dependence of forward im
pedance with temperature is shown in Fig. 18 for Z (50.uA). The tem
perature coefficient of 0.85 ohms/oC is less than would be predicted 
directly from (2) and implies a temperature dependence of the multi
plier, n, which has been noted elsewhere.s 

Although no requirements are placed on forward voltage, a plot of 
forward voltage versus forward current for a typical component diode. 
is shown in Fig. 19 for completeness. It is, of course, the linearity of 
this semilogarithmic plot which results in the excellent impedance con
trol of the new diodes with current. 

The stability requirement placed on the diodes is that the impedance 
value, Z (50.uA) , should not drift with time; in particular it should not 
drift in the first few minutes of application of bias. The short term 
drift, as has been noted, was a problem with the mesa diodes. No short 
term drift has been detected in the planar diodes by a test system 
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Fig. 17 - Typical forward impedance versus bias current at 25°C for compo
nent diode. 

capable of detecting a drift of 1 ohm (0.1 percent change). Likewise, 
no long term drift has been detected either. In one life study a sample 
of 24 component diodes showed a drift of less than 0.5 percent (which 
was test set limit) after 4000 hours of greatly accelerated switched 
power aging (10 = 50 rnA, V R (peak) = 5V) at an ambient of 150°C. 
Another important characteristic is the noise generated by the diodes 
in the frequency range 200 Hz to 3500 Hz (C message weighting). The 
noise appears as a hissing sound to the listener when no voice signal 
is present. Measurements are made with 17,000 ohms in parallel with 
the diode or diode. pair which is what appears in the actual circuit. 
Since the diode impedance at 2.5 p.A is comparable to 17,000 ohms, and 
the noise voltages add as the square root of the sum of the squares, 
the measured noise voltage of two diodes in series is actually less than 
the noise voltage of either diode singly. The circuit requirement was 
less than 20 p. V rms for a compressor pair and 40 p. V rms for an ex
pandor pair. Therefore, by requiring a single diode to have less than 
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20-fL V rms noise, the pairs are guaranteed to meet the 20-fL V rms limit. 
Most diodes had noise voltages less than or comparable to the test set 
limit of 2.4 fL V rms. A check of 862 diodes produced during the devel
opment showed only 1 device to fail the noise limit. 

Measurements made on noisy mesa diodes and other diodes produced 
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during the development of the planar diode and the. reasons for the 
noise improvement are discussed in the next section. 

3.4.5 Noise Discussion 
The decrease of noise voltage with increasing gold doping can be 

seen in Fig. 10." Based on measurements made on units with measur-
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Fig. 20 - Noise voltage squared as a function of forward bias current, IF, for 
two noisy development diodes. 

able noise, the noise is II! noise over the. audio frequency range, i.e.; 

~v~ = (eonstlf)~f 

or 

~i~ = (eonstlf)~f, 

where Vn = noise voltage, in = noise current and t..! = small frequency 
range. 

Measurement as in Fig. 20 shows that the dependence of noise volt
age on total de current, IF, is 

* Except for the noise voltages plotted in Fig. 10, which are measured as 
described in the last section, all noise voltages are equivalent open circuit 
voltages. All noise currents are equivalent short circuit currents. 
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Because of this dependence of noise voltage on forward current, the 
noise limit is specified at the low current of 2.5 p.A. 

Note that because in = vn/Zt and Zt = nkT /qIJi" 

(12) 

The decrease of noise at a given forward bias current, IF, with in
creasing gold doping may be explained in the following manner. As 
recombination-generation centers are increased, the forward voltage, 
V F, required to attain a given forward current decreases. If there is 
a secondary current (much less in magnitude than the. recombination
generation current), which is the noise generating current, and if the 
noise due to this current increases with increasing forward bias volt
age, then adding gold decreases the forward voltage for a specified 
current and the decreased forward voltage results in lower noise. This 
secondary current is quite likely associated with surface, bulk or chan
nelleakage components or excess tunneling current derived from anom
alous intermediate energy states. 

If the above explanation is correct, the noise current measured at a 
specified forward voltage should be the same for various gold doping 
levels. The noise current is compared for a forward voltage of 0.463 
volts for several groups from Fig. 10. The reason for comparing noise 
currents rather than noise voltages will be. made clear shortly. Average 
noise voltages from Fig. 10 were corrected for test set noise and for 
the parallel 17,000-ohm resistor and converted to noise current. 

v! (corrected) = v! (measured) - v! (set) where v! (set) = 2.4Jl V 

Vn = Vn (open circuit) = Vn (corrected) (1.7 X 104 + Z,)/1.7 X 104 

in = vn/Z,. 
The V -I characteristics of each group gave the bias current, IF, for 

V F = 0.463 volts for that group. The empirical equation (12) was used 
to find the noise current at this new current, since the constant in (12) 
could be found from the measurement at 2.5 p.A above. Calculations 
were made for gold diffusion temperatures of 1150, 1200, 1225, and 
1250°C where the greatest change in noise appeared to take place. The 
results, in Table II, are in rather good agreement with the hypothesis 
that the noise current depends only on the voltage V F. 

The fact that the noise must be described as a current generator 
(rather than a voltage generator) follows logically from a circuit anal
ysis of the physical diode. An equivalent circuit for the diode is given 
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TABLE II - NOISE CURRENT AND DC CURRENT AT V ll' = 0.463 VOLTS. 

Gold diffusion temperature 1150°C 1200°C 1225°C 1250°C 
IF 3.75,uA 2.5,uA 6.0,uA 21,uA 
in (short circuit) 1.05nA O.95nA 1.03nA 1.36nA 

in Fig. 21 (a), where Ia is the diode current calculated earlier and Ix 
is an excess current. 

An equivalent ac circuit including noise sources is given in Fig. 21(b), 
where x refers to excess current quantities and d to the dominant diode 
current quantities. If it is assumed that Ix «Id , Zx» Zd and inx » ind , 
the circuit of Fig. 21(c) results. The Thevenin equivalent of Fig. 21(c) 
is shown in Fig. 21(d). The noise voltage, Vn , is dependent on quantities 
related to two independent currents. The noise voltage measured at a 
specified voltage, changes with gold doping because Z, (which equals 
nkT / IF) changes with gold doping, while inJ: remains constant. Thus, 
the noise current is directly related to the noise mechanism, while the 
noise voltage is indirectly related. 

As previously mentioned, there are several candidates for the cur
rent which produces the excess noise. It does not appear to be asso
ciated with bulk recombination current because gold doping does not 
change it. It could be associated with surface, channel or bulk leakage 

+ 

(a) (b) 

(c) (d) 

Fig. 21- Equivalent circuits of diode with noise sources. 
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currents since II! noise has been widely reported for these. components. 
It could also be the excess current associated with tunneling20 since II! 
noise has been reported for this current in germanium.21 While these 
diodes do not exhibit measurable tunnel current, they are near the 
tunnel diode. doping levels. 

IV. CONCLUSIONS 

A new semiconductor compandor diode has been developed in which 
the critical small signal forward impedance characteristics are con
trolled by bulk material properties. The heavy gold doping employed 
in this design forces bulk recombination-generation currents to domi
nate over all surface, channel and diffusion currents and results in a 
low-noise device with well-controlled electrical characteristics. Oxide 
passivation and very low resistivity semiconductor material combine 
to produce an extremely stable device capable of being manufactured 
at yields governed almost exclusively by assembly workmanship. These 
devices were initially designed for use in the N2 and N3 Carrier Sys
tems and have also been incorporated into the 3A Echo Suppressor 
System as a variolosser element. 
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Noise-Lil~e Structure in the Image of 
Diffusely Reflecting Objects in 

Coherent Illumination 
By L. H. ENLOE 

(Manuscript received April 13, 1967) 

Holographic and other imaging systems utilizing coherent light introduce 
a speckled or noise-like pattern in the image of a diffuse object which 
severely degrades image quality. It is desirable to understand this effect 
quantitatively. Intelligent design in many cases requires knowledge of 
the mean-square value, spatial power spectral density, and autocorrelation 
junction of the noise-like fluctuations. These quantities have been deter
mined for the image of a uniform diffuse object. Major results are: 

(i) The mean-square value of the fluctuation in the image intensity 
is equal to the square of the mean intensity. 

(ii) One can decrease the relative magnitude of the noise-like fluctua
tions at the cost of a corresponding increase in the aperture required of 
the optical system (or hologram) over that required to resolve the desired 
image in a spatial frequency sense. Ina holographic facsimile or TV 
system, this calls for a corresponding increase in electrical bandwidth. 

(iii) The improvement in (i1,J is not possible for direct viewing with 
the human eye, since the resolution of a healthy eye is known to be limited 
by diffraction at the iris. 

1. INTRODUCTION 

Holographic and other imaging systems using coherent light have 
been receiving considerable attention lately.!, 2, 3, 4 Most analyses on 
this subject assume that the object reflects specularly, or transmits 
8pecularly if the object is a transparency, i.e., the reflectivity or 
transmissivity of the object varies smoothly. Most objects, however, 
are more nearly diffuse reflectors. When the image of a diffusely re
flecting object is formed it will be covered with a noise or grain-like 
structure5, 6, 7 which is the speckle pattern which one sees when laser 
light is used to illuminate an object. 

1479 
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In this paper we investigate the noise-like or speckled nature of 
the image of a uniform diffuse surface. It should be emphasized that 
we are interested in the properties of the image in contradistinction 
to the direct backscattered field studied by Goldfisher.8 vVe show 
that the intensity consists of two parts. The first is the mean or en
semble average intensity and is proportional to the intensity which 
would be obtained if incoherent light were used for illumination. This 
is the desired component of the image and might be likened to a 
signal. The second part of the image is the speckled or noise-like 
component which tends to obscure the average intensity. This noise
like component occurs because of the random phase angles associated 
with the scattering centers comprising the microstructure of the dif
fuse surface. The spatial autocorrelation function and power spectral 
density of the speckle pattern in the image are found, and are shown 
to be dependent upon the size of the aperture stop. It is shown that 
the variance of the intensity fluctuation is equal to the square of the 
mean intensity. The fluctuation may be reduced, however, if one is 
willing to sacrifice resolution by recording the image on film whose 
resolution is much poorer than that set by the aperture of the optics. 
Unfortunately, this alternative is not available when viewing with the 
human eye, since the resolution of a healthy eye is known to be de
termined by the diffraction limit of the iris.9 This seems to place 
definite limitations upon the use of coherent light in visual systems. 

II. ARBITRARY APERTURE 

The model which we shall use for a diffuse object is shown in 
Fig. 1. Although the object is shown to be a granular transparency, 
it could equally well have been shown as a reflector without loss of 
generality. The essential point is that a monochromatic coherent light 
wave of unit intensity is assumed to be scattered by a random set of 
point scatterers. Each scatterer is assumed to be a unit scatterer which 
is many wavelengths in depth from its neighbor. The relative phase 
of the wave scattered from each scatterer may be assumed to be a 
random variable which is statistically independent of the phase of the 
waves scattered from other scatterers. Any phase change between 0 
and 271" is equally likely. Multiple scattering will be neglected. 

The scattered field just to the right of the granular transparency 
can be expressed by the equation 

K 

F ( ) '" ~( ) iOi o X, Y = L.J u x - Xi , Y - Yi E , (1) 
i=l 
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Fig. 1-A uniform wave of coherent light is incident on a transparency com
posed of randomly distributed unit point scatterers. Light collected by the 
aperture A, placed in the far-field, is imaged by lens L on plane P. 

where (h is the relative phase of the wave scattered from the scatterer 
located at x = Xi, Y = Yi. (h, Xi and Yi are assumed to be random vari
ables uniformly distributed in the intervals (O,27r), (-X,+ X) and 
(- Y,+ Y), respectively. Notice that because of our assumptions, the 
statistics of the scattered field are independent of any deterministic 
variation in the phase of the illuminating field. 

A Fourier transform relationship exists between the scattered field 
given by (1) and its far-field. The far-field is given by 

Fl(~' '1]) = i:<IJ i:<IJ Fo(x, y)i(27r/Xd)(X~+UTJ) dx dy 
(2) 

K 
""" i8i+i(27r/Xd) (xiHlIiTJ) 
.£..J € , 
i=l 

where we have suppressed the time factor €+illt. Notice that each scat
terer has produced a plane wave, and that the slope of the phase front 
of each wave with respect to the ~, 'I] axes is determined by the position 
(Xi' Yi) of the random scatterer. 

Let the far-field Fl(~' '1]) be passed through an aperture having an 
amplitude transmission function H(~, '1]), and then through a lens which 
is placed a distance z behind the aperture. Since the field at the back 
focal plane of a lens is a Fourier transform like function of the field in 
front of the lens, an image of the granular transparency, as modified 
by the aperture, will be formed in the back focal plane, and is given bylo 

F2(V, w) = €ic(V 2 +W 2
) i+<IJ<IJ f_+<IJ<IJ H(~, 'I])Fl(~' 'I])i(27r/Xf) (~V+TJW) d~ d'l] 

(3a) 
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where c = 7r(z - f)/}'/' and where h(t, u) and H(~, 7]) are Fourier 
transform pairs in the sense 

f
+OO f+oo 

h(t, u) = -00 -00 H(~, 7])i27r(~t+T/") d~ d7]. (3b) 

Notice that except for the unimportant phase factor E
f
c(v'+w

2

) , (3a) 
differs from (1) for the field at the granular transparency only in that 
h( ) functions have replaced the delta functions. That is to say, the 
delta function of light from the scatterer at (x, , y,) is reproduced as a 
broadened h( ) function located at v = - (f/d) Xi , W = - (f/d)y, . 
The image is reversed, and magnified by the factor m = t / d. Notice 
that because of the random phase 0, of each, the impulse functions will 
add vectorially in a random fashion when they overlap one another. 

The situation is analogous to passing shot noise impulses through 
a low-pass filter having an impulse response h ( ). The impulses are 
broadened into h () pulses whose width depends inversely upon the 
filter bandwidth. In the coherent light case, however, the process is 
two dimensional and the applied impulses have random phase angles 
distributed uniformly between 0 and 271", rather than being constrained 
to be positive impulse functions as is the case for shot noise. 

The quantity of greatest interest to us is the intensity of the image, 
which is found by mUltiplying the image field by its conjugate. 

lev, w) = F2 (v, w)F~(v, w) (4) 

= ± ± h(!!...- + Xk , ~ + Yk).h*(!!"'- + Xi ,~+ Yi)€;(lJk- IJ
;). 

k~1 .=1 'At 'Ad 'At 'Ad 'Af 'Ad 'At 'Ad 

The uniform diffuse object is assumed to exist in the region - X ~ 
x ~ +X, - Y ~ Y :::; + Y. The number K of point scatterers in this 
region is a random variable, as are their positions (Xi, Yi) and their 
relative phase angles (h. We may, therefore, obtain the ensemble 
average of the image intensity I by averaging (4) with respect to the 
2K + 1 random variables consisting of the K positions (Xi, Yi), K 
phase angles Oi, and K itself: 

i = L:~ ... L:~ [t, h(~t + :a' :t + ;a)';"J 
. [± h*(!!"'- + Xi ~ + Yi)€ -flJ;J 

i=1 'At 'Ad ' At 'Ad 

. W(XI , Yl ; X2 , Y2 ; ... XK , YK ; 01 ; ••• OK ; K) 

·dx1 dYI ... dXK dYK dOl; ... dOK dK, (5) 
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where W () is the multi-dimensional probability density function. 
Now the positions (Xi, Yi) are considered to be statistically inde

pendent variables, as are the relative phase angles (}i. They are also 
independent of K, so we may simplify (5) to obtain 

1 = i:oo 

W(K) dK 

[ 
K K 1+

x 
dXl 1+

x 
dXK 1+

Y 
dYK 12

". dOl 12l1" dOK . LL -... - - -... -
k=l i=l -x 2X -x 2X -Y 2 Y 0 271" 0 271" 

.{,H"-·')h(~f + :~ , ~f + ~) .h·(~f + :,1 ' ~f + ~d)}]. (6) 

We see that the above expression vanishes unless Oi = Ok, i.e., i = k. 
Further, all of the h( ) functions have the same shape so that if the 
size of a resolution element in the image is small compared to the 
field of view, i.e., the extent of h(vl'Af, wl'Af) is small compared to X 
and Y, then we may replace the limits of integration ±X and ± Y by 
± 00 to obtain 

(7) 

Pi (u, v) is the autocorrelation function of the aperture impulse 
function h(~, 'f}), i.e., 

1
+00 1+00 

Pl(U, v) = -00 -00 h*(t, T)h(t + u, T + v) dt dT 
(8) 

= L:oo L:oo 

H(~, rJ)H*(~, rJ)ei27raU+'1V> d~ drJ. 

If we now assume that the number of scatterers per unit area of the 
transparency has a Poisson distribution of mean N, then the mean 
intensity is 

(9) 

Next we wish to determine an expression for the autocorrelation 
function of the intensity, from which we may determine the spatial 
power spectral density and variance of the noise-like fluctuations. The 
autocorrelation function of the intensity as given by (4) is 

R(T, t) = 12 (v, w)I2(v + T, w + t) 

(~ ... (~[ t, h(~f + :,; '~f + ~';)';"J 
(10) 
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. [ t, h*(;t + :~ , :t + ~d)' -;e,] 

.[f h(v + T + Xm W + t + Ym)eiOm] 
m=l At Ad' At Ad 

.[-£h*(V+ T + Xn w+ t+ Yn)e- iOn ] 
n=l At Ad' At Ad 

. W(XI , YI ; X2 , Y2 ; ... XKYK ; 01 ; ••• OK , K) dXI ... dK. 

Because of the statistical independence of the phase angles f)i, posi
tions (Xi, Yi) and ](, and because of the assumed uniform distribution, 
we may simplify (10) to 

R(T, t) = L:rfJ 
W(K) dK 

. -£ -£ -£ -£ j+rfJ dXI j+rfJ dYI .. . j+rfJ dXK j+rfJ dYK 
k=l i=l m=l n=l -rfJ 2X -rfJ 2Y -rfJ 2X -rfJ 2Y 

.12 

... dOl •. . 12 

... dOK [ei(Ok-o.+om-On)h(!!..... + Xk ~ + Yk) 
o 27r 0 27r At Ad ' At Ad 

.h*(!!..... + Xi ~ + Yi)h(V + T + Xm W + t + Yrn) 
At Ad ' At Ad At Ad ' At Ad 

.h*(v + T + Xn W + t + Yn)] (11) 
At Ad' At Ad· 

We see that the integral vanishes unless 

i = k and n = m 
or 

n=k and ~ = 1n, 
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Now, we have two subcases here. There are K(K-l) terms for which 
k =F m, and there are K terms for which k = m. 

R(r, t) = 1:00 

K(K - I)W(K) dK 

·{[4iy rro rro 1 h(;/ + ~ , :/ + ;:J I' dx dy J 
1 

1 1+00 1+ 00 (v X w y ) + 4X Y _ 00 -00 h * A f + Ad ' Af + Ad 

.h~ t T + :d ' w ~ t + i:d) dy dx n 
+ 2 1:00 

KW(K) dK 

. [4iy rw r~ 1 h(;/ + :d ' :/ + i:d) I' 

·1 h~ t T + :d ' w ~ t + i:d) I' dy dx J. (13) 

Assuming that the distribution of scatterers W (K) is Poisson and 
using the definition of h () given in (3b), straightforward evalua
tion of the integrals in (13) yields 

R( t) = 1-2 [1 + 1 Pl(rlfA, tlfA) 1

2J + 2 i ( If A tlfA) (14) 
r, Pl(O, 0)2 Pl(O,O) P2 r, , 

where Pl (u, v) is defined in (8) and 

P2(U, v) = 1:00 1:00 

1 her, t) 12 1 h(r + u, t + v) 12 dr dt 

= autocorrelation function of the magnitude squared of 
the aperture impulse function. 

The spatial power spectral density is found by taking the Fourier 
transform of (14). After simplification we obtain 

Seq, p) = 1:00 1:00 

R(r, t)E- i21r
(r

Q
+t

P
) dr dt 

= l'{ o(q, p) + p,i~)~), 11I("A/q, "Afp) I' ® 11I("A/q, "Afp) I' 

2(fA)2 2} + PleO, 0)1 1 H(Afq, Afp) ® H(Afq, Afp) I, (15) 
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where ® stands for convolution. In particular we define 

F(Xjq, Xfp) ® G(Xfq, Xfp) 

= i:rn i:rn 
F*(x, y)G(Xfq + x, Afp + y) dy dx. (16) 

Equation (9), which gives the mean intensity of the image, and 
(15), which gives the power spectral density of the intensity fluctua
tions, are the maj or results of this section. 

III. CIRCULAR APERTURE 

Now consider the special case of a circular aperture of radius T e, 

and let it be located on axis so that 

H(t, ~) = {~, 
where 

l' = +V~2 + rJ 2
• 

The average intensity in the image plane is given by (9) and is 

i = d2X2N PI(O, 0) = 7rN(Ad1'c)2, 

where Pl (0,0) was evaluated from the integral 

f
+rn f+rn 

PI(O, 0) = -rn _.., 1 H(~, rJ) 12 d~ drJ = 7r1'; • 

(17) 

(18) 

(19) 

Evaluation of the integrals in (15) gives the power spectral density 

Seq, p) = p[o(q, p) + J:z {I - ~ sin-1 (~) - ~ (~)~1 _ (~)2 
7rSc 7r 2se 7r 2se 2s

e 

where 

q, p = image plane spatial frequencies in rectangular coordinates, 

S = +Vq2 + p2 

Se = TelfX = cutoff frequency produced by diffraction at the circular 
aperture. 

d2x2N 
F=--2 

27rTc 

= overlap factor. 
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The overlap factor F warrants some discussion. Basically it is equal 
to the average number of point scatterer image centers contained 
within an area equal to that occupied by the image of a single 
scatterer. That is, a single point scatterer located at (0,0) in the 
object plane would produce a point in the image plane at (0,0) 
having intensity 

I ~ 1 h(~f ' At) I' 

_ [2Jl(2i;C V?+W2)]2 
- Io . 

2i;c Vv 2 +-~2 

The intensity is downll approximately 50 percent at (2nTc/f"A) 
V vi + wi = V2, and the area covered by the image of the point 
scatterer at this 50 percent value is A = 7I"(vi + wi) = f2"A2/271"r~ . For 
a diffuse object, the average number of imaged scattering centers per 
unit area in the image plane is ii = (d/f)2R. If we define the overlap 
factor F as the average number of scatterer image centers falling in the 
area of one of these images we have 

For a truly diffuse surface, the overlap factor F » 1 so that (20) re
duces to 

Seq, p) = J2[o(q, p) + ~ {1 - ~ sin-1 (28 
) 

7I"8c 71" 8c 

which is plotted in Fig. 2. Note that it is symmetrical about the 
vertical axis. For very small spatial frequencies, (21) can be approxi
mated by 

-2[ 1 ] Seq, p) = I o(q, p) + -2 • 
7I"8c 

(22) 

The total fluctuation or noise power occurring in spatial frequencies 
less than some frequency 81 is 

(23) 
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IV. CONCLUSIONS 

We have found that the image of a uniform diffuse object illumi
nated with monochromatic coherent light consists of two parts. The 
first is the mean or ensemble average given by (18), for a circular 
aperture, and is proportional to the intensity which would be obtained 
if noncoherent light were used for illumination. This is the desired 
component and might be likened to the signal component of the 
image. The square of this term appears as the first term in (20), 
(21), and (22), and as the delta function in Fig. 2. The second part 
of the image is a grainy or noise-like component which tends to 
obscure the mean intensity or signal. This noise-like component 
occurs because of the random phase angles associated with the point 
scatterers comprising the microstructure of the diffuse object. This 
component is shown as the second term in (20), (21), and (22), and 
as the continuous part of the power spectrum in Fig. 2. Integration of 
(21) shows that the variance of the noise-like fiuctuations in the 
intensity is equal to the square of the mean intensity (or to the signal 
power). This is fortunate to the extent that when the signal is small, 
the noise is likewise small. However, while our analysis was for the 
particular case of a uniform diffuse surface, we can safely predict 
that for nonuniform diffuse objects fine detail in the image will be 
largely obscured by the noise-like fiuctuations if resolution is limited 
by diffraction. 

The noise-like fiuctuations in the image can be reduced if one 
records the image on film whose modulation transfer function has a 
bandwidth which is much smaller than the diffraction limit of the 
optical system. The high-frequency noise in Fig. 2 will not be resolved 
in this case. For instance, if one requires the "signal-to-noise" ratio 
to be increased from unity to 103 (30 dB), then from (23) we see that 

s (q,p) =7TS2 8 (ct p) + I-.E. SIW 1 (~) _.£ (~) J1_ (~)2' 
-121 2 C ' 7T 2Sc 7T 2ScV 2Sc 17TS C 

1.0 

Fig. 2 - Section of the spatial power spectral density for a uniform diffuse 
surface imaged through a circular aperture. The complete two dimensional 
spectrum is obtained by rotating the above curve about the vertical axis. 
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the diffraction bandwidth Se of the improved optical system must be 
103/

2 = 31.6 times the bandwidth SI resolvable by the film, and there
fore by the whole system. (Since most transducers produce a signal 
which is proportional to the intensity of the incident light, it seems 
appropriate to consider the square of the mean intensity as signal 
power and the variance of the intensity fluctuations as noise power.) 

Although we have analyzed the very special optical system shown 
in Fig. 1, our results are not critically dependent upon the placement 
of the aperture. The aperture could be the lens aperture rather than 
an independent physical device, or it could be the aperture defined 
by the finite size of a hologram, for instance. Our results should also 
hold approximately for the human eye, since the resolution of a 
healthy eye is known to be determined by the diffraction limit of the 
iris.9 The predicted value of unity for the signal-to-noise ratio is the 
right order of magnitude for what one observes when laser light is 
used for illumination if one is careful to hold the eye stationary and 
hence not average the noise out as a function of time. Although 
moving the eye tends to average out the noise, the residual noisiness 
remains objectionable. This places definite limitations upon the usc 
of coherent light in visual systems. 

The author wishes to thank Nlcssrs. C. B. Rubinstein and A. B. 
Larsen for helpful discussions. 
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The Excitation of Planar Dielectric 
Waveguides at p-n JunctiollS, I 

By J. McKENNA 

(Manuscript received April 26, 1967) 

The fields excited within a planar dielectric waveguide by an externally 
incident electromagnetic field are studied in this paper. The dielectric 
waveguide fills the half space z > 0, while the half space z < 0 is air. 
The waveguide is formed by a nonuniform, anisotropic, nonabsorbing, 
dielectric medium. Different choices of the dielectric tensor for this medium 
yield different waveguides. Certain models which are particularly relevant 
to electro-optic diode waveguides and laser diode amplifiers are studied 
in some detail. An arbitary incident field will, in general, excite not only 
a finite number of propagating modes, but also a background of continuum 
modes. Integral representations of the total transmitted field within the 
waveguide as well as of the reflected field are obtained. The representation 
of the total transmitted field can be decomposed into a finite sum of discrete 
propagating modes, a continuum propagating field, and an evanescent 
field. Explicit evaluation of the fields depends on the solution of a pair 
of integral equations. In practice, the dielectric tensor of the waveguide 
differs but little from the dielectric constant of the surrounding material. 
A n approximate solution is found for this case, and numerical results 
will appear in a following paper. 

1. INTRODUCTION 

Recently there has been great interest in the guiding of light by the 
p-n junction region in certain piezoelectric semiconductors, for it has 
been noted that the Pockels effect due to the electric field within the 
p-n junction can be used to modulate light which propagates parallel 
to the junction plane. l -4 This effect was first observed, and has been 
most intensively studied, with visible light in GaP junctions,! but it 
has also been observed with infrared light in GaAs junctions.1

,4 

All treatments of the effect so far have assumed that the p-n junc
tion region, which has a higher dielectric constant than the surround-

1491 
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ing, normal GaP, behaves like a dielectric waveguide.1- 5 A detailed 
analysis of this waveguide would require a knowledge of the optical 
properties in the neighborhood of the junction. However, since these 
properties change significantly in a fraction of a wavelength, it is ex
tremely difficult to investigate them individually by experimental 
means. In order to get around this difficulty it has been necessary to 
adopt an indirect approach based on analyzing a number of different 
mathematical models and comparing their predictions with experiment. 

As part of this program Nelson and McKennaG have investigated 
the possible discrete modes which can propagate in a number of dif
ferent models and have studied in considerable detail the properties of 
the lowest-order mode of each polarization. Recent experimental work 
has made it increasingly clear, however, that a knowledge of the dis
crete modes alone is not enough to provide an understanding of these 
p-n junction dielectric waveguides. This is because a beam of light, 
when focused on the face of a junction waveguide, excites within the 
waveguide not only a finite number of discrete modes, but also a back
ground of continuum modes. In many cases this background light is 
intense enough to mask important features of the discrete propagat
ing modes. Thus, unless an understanding of this background light is 
available, the task of comparing the predictions of different mathe
matical models with experiment is almost impossible. An understand
ing of the electromagnetic boundary value problem involved also has 
great relevance to understanding what happens when light is intro
duced into a laser diode amplifier. 

The purpose of this paper is to study in some detail a class of math
ematical models of the excitation of dielectric waveguides. These mod
els are simple enough so that the mathematical analysis can be per
formed and the background light can be investigated carefully. At the 
same time, it is felt that the models are realistic enough so that their 
predictions can be compared with experiment. 

The models can be described as follows. The waveguide consists of 
the half space z > 0, as shown in Fig. 1, while the region z < 0 is air. 
The waveguide itself is assumed to be formed by a nonuniform, aniso
tropic, non absorbing dielectric. The components of the dielectric ten
sor are functions of the coordinate x only, and for each value of x the 
dielectric tensor is diagonal in the fixed coordinate system shown in 
Fig. 1. As an example, for the GaP electro-optic diode modulator stud
ied in NM this corresponds to the cases where the junction field is in 
the [111] or [100] directions. Each such model is determined by its 



I 
I 
I 

2W 

(a) 

PLAN AR DIELECTRIC WAVEGUIDES 1493 

(b) 

Fig. 1-Symmetric step model illustrating the coordinate system used in all 
the models. The dielectric tensor is always diagonal in this fixed coordinate sys
tem. 

dielectric tensor whose diagonal elements we will denote by ](n (x) 
(n=x,y,z). 

It was shown in NM that the amount of absorption encountered in 
GaP electro-optic diode modulators was too small to affect significantly 
the shape of the modes. It is, therefore, felt that the study of absorp
tionless models here is well justified. It was also shown in NN[ that 
the detailed analytical form of the functions K.n (x) is not important 
when only the lowest-order discrete mode of each polarization can 
propagate. The most important features of the discrete modes can be 
determined by studying models for which the functions ](n(x) are 
step functions (piece-wise constant). Although it is possible to carry 
out a good deal of the analysis without specifying the functions ](n(X) , 
the final detailed results naturally depend on the choice of ](n(X). We 
shall concentrate here on two models, the symmetric step model and 
the asymmetric step model. The symmetric step model is defined by 
the equations6 

= ](0 , 

I x 1< w 

Ix I> w 

and the asymmetric step model is defined by the equations6 

I x 1< w 

(1) 

(2) 

(3) 
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= Kl , X < -w (4) 

= K2 , X > w, (5) 

where K2 < 1(1, and len> K j ~ 1, m = x, y, z, j = 0, 1, 2 (see Fig. 
2). In the case of the GaP electro-optic diode modulators there are 
relations of the form6 

lCn = n 2(l + Om), 

Ko = n 2 (1 - .1), 

(m, = X, y, z) 

K j = n2(1 - ~j), (j = 1,2). 

(6) 

(7) 

In (6) and (7) n is the index of refraction of normal GaP, the quan
tities Sin are linear in the junction field (the linear electro-optic effect), 
and 0 ~ ISml < ~ « 1. 

In Section II we will write down general integral representations for 
incident waves in the region z < 0, as well as integral representations 
for the resulting reflected and transmitted fields. These integral rep
resentations will involve a number of unknown functions. Some of 
these functions are determined directly from the structure of the wave
guide and are independent of the incident field and the boundary con
dition at z = O. The remaining unknown functions are determined by 
the incident field and the boundary conditions at z = O. We show that 
these functions satisfy a set of linear integral equations. The results 
of Section II are independent of the specific form of Km (x) and the 
incident field. In Section III we explicitly calculate the unknown func
tions which depend only on the structure of the waveguide for the 
symmetric and asymmetric step models. In Section IV we obtain ap
proximate solutions of the integral equations for a special class of 

Km (x) Km (x) 

-w w -w 
(a) (b) 

Fig. 2- (a) The function Km(x) for the symmetric step model. (b) The 
function Km(x) for the asymmetric step model. 
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wa veguide models. The remaining unknown functions are determined 
for these models in terms of the incident field. In a second paper on 
this subject we will give asymptotic expansions and numerical results 
for the fields within the waveguide. for the symmetric and asymmetric 
models when they are excited by a Gaussian incident wave. 

II. A GENERAL DESCRIPTION OF THE FIELDS 

In this section we study formal solutions of Maxwell's equations 
which describe an incident wave in the region z < 0 moving to the 
right and striking the waveguide from the left, a reflected wave in the 
region z < 0, and a transmitted wave in the region z > o. The fields 
are assumed to be monochromatic and independent of the coordinate 
y. We write for the total electric and magnetic field vectors 

ECx, z, t) = Re CeCx, z)eiwt
), HCx, z, t) = Re (h(x, z)eiwt

), (8) 

and for the total electric displacement and magnetic induction vectors 

DCx, z, t) = Re (d(x, z)e iW t), BCx, z, t) = Re (b(x, z)eiwt
), (9) 

where Re denotes the real part and w = 27Tf is the angular frequency 
of the radiation. Then Maxwell's equations are 

v X e = -iwb, 

V X h = iwd, 

V·d = 0, 

V·b = o. 
(10) 

From our assumptions about the model, the constitutive equations can 
be written as 

b = /.Loh, d = EoK·e, (11) 

where Eo and /.Lo are, respectively, the permittivity and permeability 
of free space. The dielectric matrix K = K(x, z) is the unit matrix 
for z < 0, and for z > 0 it is a diagonal matrix whose diagonal elements, 
KnCx) Cn = x, y, z), are functions of x only. It is a straightforward 
matter to show that any solution of Maxwell's equations satisfying 
the above assumptions can be written as the linear combination of a 
TE solution and a TM solution. We consider these solutions separately. 

2.1 TE Fields 

We first look for TE Eolutions having the form 

e(x, z) = [0, eyCx, z), 0], hCx, z) = [hxCx, z), 0, hz(x, z)]. (12) 
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In the region z < 0, ey must satisfy the Helmholtz equation 

a2ey a2ey 2 

ax2 + az2 + k ell = 0, (13) 

where the free-space wa venumber k, is defined by 

k = W(foJ.l.o)! = 271"/)... 

and )... is the free-space wavelength. The total field in z < 0 is the sum 
of the incident field e~i) and the reflected field e~r) and both e~i) and e~T) 
are solutions of (13). In the region z > 0 there is only the transmitted 
field which satisfies the equation 

(ley + (ley + 7.2 T? ( ) 0 ax2 ai iii .L~II X ell = . (14) 

A solution of (13), which can be found by separation of variables, 
and which describes a general incident field due to sources in z < 0 
at a finite distance from the plane z = 0, is 

where 

Q(l) III ~ k (16) 
-iVl2 

- k2
, Il I ~ k. 

The components of the magnetic field vector can be obtained with the 
aid of Maxwell's equations by differentiating (15). Let ~ (zo) denote 
the strip - 00 < x < 00, 0 :::; y :::; 1, lying in the plane z = zoo Then 
the time averaged power incident on ~ (z), z ~ 0, is independent of z 
and is 

Pi = -! Re i: e~i)(x, Z)h~il(X, z)* dx 

= (471"WJ.l.O)-1 i: Vl?~2 I 8!il(l) 12 dl, (17) 

where >of denotes complex conjugation. vVe will assume that 

(15) is to describe an incident field due to sources at z = - 00, then 
it is easy to see that we must have 8~i) (l) = 0, Ill> k. Since the incident 
field must be specified, it will always be assumed that 8~i) (l) is known. 
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A solution of (13) describing a general wave reflected from the wave
guide surface z = 0 is 

e~r)(x, z) = 2~ i: 8~T)(l) exp I iQ(l)z - ilx} dl. (18) 

\Ve will always assume that the source of the incident radiation is 
perfectly absorbing so that e~i) (x, z) + e~r) (x, z) is the total field in 
the region between the source and the surface of the waveguide at 
z = o. It will be seen that because of the boundary conditions at z = 0, 
8~i) (l) generally does not vanish outside some finite l interval. Because 
of the factor exp {iQ(l)z}, that part of the integral in (18) between 
the limits -le and le, J~k { } dl, represents a traveling field, while 
the remainder of the integral represents an evanescent field which 
damps out very rapidly in the negative z direction. The time averaged 
power reflected back through the strip ~(z), z ~ 0, is 

Pr = (47rWlLo)-1 i: Vk 2 
- l2 1 8;r)(l) 12 dl. (19) 

\Ve now turn to the transmitted field. 'Ve use the method of separa
tion of variables, and we seek transmitted waves which are linear 
superpositions of solutions of (14) of the form 

e;t)(x, z) ~ ell(x) exp {-iV -vz}. (20) 

In (20) v is a real separation parameter, and if v > 0, v-=; = -iVv. 
If (20) is substituted into (14) we get the eigenvalue equation 

~;~ + (eKJx) + v)e ll = O. (21) 

Equation (21) defines a singular, self-adjoint, second-order boun
dary value problem on the interval - 00 < x < 00. The theory of this 
equation is well known, and we refer the reader to Coddington and 
Levinson7 for a detailed treatment. \Ve give a summary here of those 
properties of such equations which we will need. 

For all the models under consideration, the functions Km (x) are 
positive, bounded functions, which are bounded away from zero, and 
which are differentiable except for at most a finite number of step dis
continuities. Equation (21), therefore, defines a problem which is called 
limit-point type at both plus and minus infinity. This means that for 
arbitrary, complex v, (21) possesses exactly one solution (up to a con
stant factor) which is square integrable over 0 < x < 00, and exactly 
one solution which is square integrable over - 00 < x < O. 
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For a given real number v, let ~l(X, v) and ~2(X, v) be the two solutions 
of (21) which satisfy the conditions that ~i(X, v) and ~~(x, v) be con
tinuous and which satisfy the initial conditions 

~1(0, v) = 1, ~i(O, v) = 0, (22) 

~2(0, v) = 0, ~~(O, v) = 1, (23) 

where' = d/dx. Equation (21) also determines a 2 X 2 matrix-valued 
function p(v), - 00 < v < 00, having the following properties: (i) p(v) 
is Hermitian (Pik(V) = Pk~(V». (ii) p(v) - p(u) is positive semidefinite 
if 11 > J.L. (iii) Pik(V) is of bounded variation on every finite interval. 
The matrix p(v) is called the spectral density matrix and its construction 
is outlined in Section III. Then if f(x) is any square integrable function 
(f~~ I f(x) /2 dx < 00), we can define two transformsoff(x), gi(V) (j= 1,2), 
such that 

~ L: j;, {g,(v) - L: f(x)I''(x, v) dX} 

.{g.(v) - L: f(x)I',(X, v) dX}' dp;.(v) = O. (24a) 

This is referred to as convergence in the mean with respect to the 
measure p(v), and in the manner of Fourier transforms of £2 functions, 
we write 

(j = 1,2). 

In terms of these transforms, the Parseval equality 

i: 1 f(x) 12 dx = i .tl .[: gi(V)*gk(V) dpik(V) , 

and the expansion 

f(x) 

(24b) 

(25) 

(26) 

are valid. Equation (26) is defined in terms of convergence in the 
mean. The set of real points v at which the functions Pjk(V) are noncon
stant is the spectrum of (21). The set of points where any Pjk(V) is 
discontinuous is the point spectrum and for each such value of v, (21) 
has exactly one square integrable solution. The continuous spectrum 
is the set of points of continuity of P (v) which are in the spectrum. In 
Section III we will exhibit the spectral density matrices for two im
portant models. 



PLAN AR DIELECTRIC WAVEGUIDES 1499 

vVe can now write down a formal expression for the transmitted 
field: 

(27) 

The two initial value solutions ipj(x, v) (j = 1, 2), as well as the func
tions pjdv) (j, k = 1,2) are determined, independently of the bound
ary conditions at z = 0, by (21) and we can assume that they are 
known. The two unknown functions gj(v) (j = 1, 2) in (27) are de
termined by the field at z= 0, since with the aid of (24) we can write 

gi(V) = i: e~!)(x, O)CPi(X, v) dx. (28) 

It is clear that because of the factor exp {-iV -vz}, the parts of the 
integrals f~ctJ in (27) represent the propagating portion of the trans
mitted field, while the parts f~ reprent the evanescent portion of the 
transmitted field. With the aid of the Parseval relation, (25), we can 
write down an expression for the time averaged power transmitted 
across any ~(z), z ~ 0, 

P t = (2WJJ.O)-l i .tl iOoo V -vgi (V)*gk(V) dpik(V), (29) 

We now make use of the conditions that ell(x, z) and h:x(x, z) must 
be continuous at z = 0 in order to write down a set of integral equations 
which determines 8~r)(l), gl(V), and g2(V), 

2~ i: [8~i)(l) + 8~r)(l)]e-ilx dl = i.tl i: CPi(X, V)gk(V) dpik(V), (30) 

2~ i: n(l)[8~i)(l) - 8~r)(l)]e-ilx dl 

i .tl i: ~CPi (x, V)gk(V) dpik(V), (31) 

Although there appear to be only two equations in three unknown 
functions, because of (24) and (26), (30) and (31) are sufficient to 
determine the unknown functions. We indicate formally why this is' 
true, although it will be clear from the results of Section IV that this 
scheme must be modified in specific cases. We do not go into these 
modifications, because in Section IV we use a different scheme to get 
approximate solutions. With the aid of (24b), solve (30) and (31) for 
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gj(V), giving the four equations 

glv) = i: CPj(x, v) dx 2~ i: [8;i)(l) + 8;T)(l)]e- iIX dl, (32) 

~gj(v) = i: cplx, v) dx 2~ i: n(l)[8;i)(l) - 8;T\l)]e- iIX dl, (33) 

for j = 1, 2. On eliminating gj(v) between these equations we get the 
two equations in the unknown 8;r) (l). 

i: CPi(X, v) dx 2~ i: (V -v + n(l))8~T)(l)e-ilx dl, 
(34) 

= i: CPi(X, v) dx 2~ i: (- V -v + n(l»8;i)(l)e-
iIX 

dl, 

for j = 1,2. Now from (26) we can write f(x) = fdx) + hex) where 

2 100 
fk(X) = t; -00 cplx, V)gk(V) dpjk(V) (Ie = 1, 2), (35) 

i: fk(X)CPi(X, v) dx = 0ikgi(V) (j, k = 1,2), (36) 

and 0ik is the Kronecker delta function. It is this decomposition of 
an arbitrary f(x) into components lying in the two subspaces spanned 
by CPl(X, v) and CP2(X, v) which is reflected in the two integral equations 
(34). The solution of (34) with given j yields the component of the 
reflected field lying in the subspace spanned by the corresponding 
C{)i(X, v). Let 8;~) (l), j = 1, 2, denote the two solutions. Then 8;T) (l) = 
8;~) (l) + 8~;) (l) describes the total reflected field. With this result 
gi(V) (j = 1,2) can be obtained from either (32) or (33). We have been 
unable to obtain exact solutions for the integral equations (30)-(31) 
for any of the models considered here. However, in Section IV approx
imate solutions are obtained for certain situations of interest. 

2.2 TM Fields 

We next seek TM solutions of Maxwell's equations of the form 

e(x, z) = (ex(x, z), 0, ez(x, z», hex, z) = (0, hl/(x, z), 0). (37) 

In the region z < 0, hy must satisfy (13). In the region z > 0, hy must 
satisfy the equation 

:x {(IIK ,(x)) a;;} + :z {(1IK ,(x» ~:,} + k'h, ~ o. (38) 
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Just as for the TE fields, a general incident field due to sources in 
z < ° at a finite distance from the plane z = ° is 

h~i)(X, z) = 2~ f_: 3C~i)(l) exp {-iQ(l)z - ilx} dl. (39) 

The time averaged power due to this wave which is incident on ~(z), 
z ~ 0, is 

Pi = ! Re i: e;i)(x, Z)h~i)(X, z)* dx = (47l"WEof l i: Q(l) I JC~i)(l) 12 dl. 

(40) 

We assume that J~oo I JC~i)(l) 12 dl < 00 and J~oo I Q(l) II JC~i)(l) 12 dl < 00. 

As for the TE field if the sources of the TJ.l1 field are at z = - 00 

then JC~i) (l) = 0, Il I > k. Furthermore, it will always be assumed 
that JC~i) (l) is known. 

A solution of (13) describing a general reflected wave is 

h~r) (x, z) = 2~ i: JC~r) (l) exp {iQ(l)z - ilx} dl. (41) 

Just as in the case of the TE field, h~r) (x, z) can be split into a prop
agating field and an evanescent field. The time averaged power re
flected back through the strip ~ (z), z ~ 0, is 

(42) 

The transmitted field is again treated by separation of variables, 
and we write 

h~t)(x, z) ~ huCx) exp {-iV=; z}. 

Then hy (x) satisfies the eigenvalue equation 

K(x) :x {(l/K,(X)) d;;} + (k'K,(x) + .)h, ~ o. (43) 

Equation (43) is not in the canonical form of a self-adjoint boundary 
value problem. However, if we make the change of variables 

u = iX 

{Kx(t)} -1 dt, 

(43) is transformed to the equation 

(44) 

:iu [{K,(U)K,(u)}-' d;~J + (k'K,(u) + .)h, ~ o. (45) 
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This equation defines a self-adjoint boundary value problem,8 and 
even though the function {K:z:(u)Kz(U)} -1 may have step discontinuities, 
the techniques of Ref. 7 can be shown to be still valid. Equation (45) 
is limit-point at u = ± 00, and so on transforming back to the variable 
x, the following statements can be made. 

For a given real number v, let 1/II(X, v) and 1/I2(X, v) be the two solu
tions of (43) which satisfy the requirements that 

1/Ii(X, v) and {Kz(x)} -11/1~(X, v) 

be continuous for all x, and which satisfy the initial conditions 

1/11(0, v) = 1, 

1/12(0, v) = 1, 

(IIK.(O» 1/I~(0, v) = 0, 

(IIKz(0»1/I~(0, v) = 1. 

(46) 

(47) 

Equation (43) determines a 2 X 2 spectral density matrix <T(v) whose 
construction is given in Section III. If I(x) is any square integrable 
function of x, we define two transforms of I (x) , 

(j = 1,2), (48) 

where. equality in (48) is defined in terms of convergence in the mean 
with respect to the measure <T (v). In terms of these transforms, the 
Parseval equality 

i: \ f(x) \2 {K:z:(x)r
1 

dx = i.t1 i: hi(v)hk(v)* d<Tik(V), (49) 

and the expansion 

(50) 

are valid. The last equality is again defined in the sense of convergence 
in the mean. 

We can write down a formal expression for the transmitted field 

(51) 

The two initial value solutions tf!j(x, v) (j = 1, 2), as well as the func
tions <Tjk (v) (j, k = 1, 2) are determined, independently of the bound
ary conditions at z = 0, by (43) and we can assume that they are 
known. The two unknown functions hj (v) (j = 1, 2) in (51) are de
termined by the field at z = 0 since. with the aid of (48) we can write 
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(52) 

'Vith the aid of the Parseval relation, (49), we can write down an ex
pression for the time averaged power transmitted across any l (z), 
z > 0: 

PI = (2WEo)-1 j .t1 i: ~ hj(v)*hk(v) dCTjk(V), (53) 

We can now make use of the conditions that ex(x, z) and hlJ(x, z) 
must be continuous at z = 0 in order to write down a set of integral 
equations from which JC~r) (l), h1(V), and h2(V) can be determined. 

2~ i: [JC~i)(l) + JC~r)(l)]e-ilX dl = j.t1 i: y;;(x, v)hk(v) dCTjk(V), (54) 

~ JeX) n(l)[JC~i)(l) - JC~r'(l)]e-ilX dl 
271" -eX) 

(55) 

Just as in the case of the TE field, the solution of (54) and (55) re
duces to the solution of the two integral equations 

l eX) 1 JeX) 
= -eX) Y;i(X, v) dx 271" -eX) {- V -v/Kix) + n(l)} 

·JC~i)(l)e-ilx dl, (j = 1,2). (56) 

III. THE SPECTRAL DENSITY MATRIX FOR SEVERAL MODELS 

3.1 General Outline of the Construction 

In Section II it was shown that the determination of the transmitted 
field for a given model depended on a knowledge of the initial value 
solutions lPi(X, v) and Y;j(x, v) (j = 1, 2) and the spectral density ma
trices p(v) and CT(V). In this section we study these functions in some 
detail for two simple but important models, the symmetric step model 
and the asymmetric step model. These calculations illustrate the 
technique for treating the whole class of piecewise constant models. 

We first outline the general construction of the spectral density 
matrices.7 The solutions of (21) have the property that the functions 
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CPi(X, v), cp;(X, V) (j = 1, 2) are entire functions of v for each fixed x, 
when v is a complex variable. The first step is to determine the two 
functions of v, moo(v) and m_oo(v) such that when 1m v > 0, CP1(X, v) + 
moo (V)CP2 (x, v) is a square integrable function of x over [0, 00] and 
CPt (x, v) + m_ oo (V)CP2 (x, v) is square integrable over [-00,0]. The ele
ments of the spectral density matrix are then given by the formula 

where JL and v are real, 1m denotes the imaginary part, and for arbi
trary complex v 

Mll(V) = (m_~(v) - m~(v))-1, (58) 

1I112(v) = M21(V) = !Cm_~(v) + m~(v))(m_~(v) - m~(v)rt, (59) 

1I122(v) = m_~(v)m~(v)(m_~(v) - m~(v)r1. (60) 

Equation (57) defines Pik(V) uniquely at points of continuity up to 
an arbitrary, additive constant. The functions lIfik(v) (j, k = 1, 2) 
are meromorphic if 1m v ~ 0 and all their real poles are simple. The 
point spectrum consists exactly of the points which are real poles 
of one of the Mik(v). There are at most a countable number of such 
points. Let Vo be a real pole of 1I1ik(v) and let aik be the residue there, 

(61) 

Then it follows from (57) and (61) that 

Pik(VO + 0) - Pik(VO - 0) = -Re (a jk). (62) 

If Vo is not a pole of any Mik(v), and 1m 1I1ik(vo) ~ 0 for some (j, k), 
then Vo is a point of the continuous spectrum and 

(63) 

If Vo is not a pole of any Mjk(v) and 1m l11jl~(v) = 0 for all (j, k) in 
some neighborhood of Vo, then Vo is not in the spectrum and 

dpik(v) = 0 

in a neighborhood of vo. 

(j, k = 1, 2) 

3.2 TE Fields tor Symmetric Step Model 

(64) 

We now apply these formulas to the symmetric step model for the 
case of the TE field. The functions Kn(x) (n = x, y, z) are defined by 
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(1 and 2). Equation (21) has constant coefficients in the two regions 
Ixl < wand Ixl > w. Since ell(x, z) and hz(x, z) must be continuous 
at x = ±w, the desired solution of (21) must be continuous and have 
a continuous derivative. We have 

I x I ~ W 

= cos (WI/w) cos {wo(1 x I - w)} 

- (wu/wo) sin (wllw) sin {woe I x I - w)}, 

<P2(X, v) = (l/w v) sin (WI/x), I x I ~ W 

<P2(X, v) 

where 

= (l/w lI) sin (WI/w) cos {wo(x - w)} 

+ (l/wo) cos (WIIW) sin {wo(x - w)}, 

x ~-w 

(n = 0, x, y). 

(65) 

I x I ~ W (66) 

(67) 

x~w (68) 

(69) 

(70) 

In (70) (t)n is defined as a single-valued function of v in the complex 
plane cut along the real axis from -.k2 Kn to 00. That branch is chosen 
which is positive real on the upper side of the cut. Simple calculations 
now yield 

moo(v) = - m-oo(v) 

{w v sin (wllw) + iwo cos (wllw)} {cos (wyw) - i(wo/wv) sin (wIIW)} -1. 

(71) 

Therefore, 

lv[l1(V) = -1/{41lf22(v)} = 1/{2m-oo(v)}, 

JlfI2(v) = M21(V) = O. 

(72) 

(73) 

In order to determine the spectrum, we begin by decomposing the 
whole real axis into the union of three intervals 

II = [- 00, -k2K II], 12 = (-k2KI/ , -k2K o), 13 = [-k2KO , 00]. (74) 

From (57) and (73) it is clear that p12(V) and p2dv) are constant for 
all v, hence 

(75) 

It is easily seen that ll111 (v) and ll122 (v) are real and have no poles or 
zeros in 11. Therefore, 11 contains no points of the. spectrum, and 

Pii(V) = Pii(-oo), (j = 1,2). (76) 
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In the interval 12 , llfll(v) and M22(V) can each have a finite num
ber of poles, and from (72) it follows that the poles Mll (v) are the 
zeros of 1\122 (v) and vice versa. The real poles of M 11 (v) are the real 
solutions of 

WII sin (w lIw) + iwo cos (Wllw) = 0 

and the real poles of M22 are the real solutions of 

cos (Wllw) - i(wo/w lI) sin (w llw) = O. 

For v € 12 , roy is real while roo is purely imaginary. If we let 

b(v) = WIl(v) , 

(77) 

(78) 

(79) 

then (77) in the single unknown v can be replaced by the set of three 
equations 

-P = k2KO + p2, -P = k2K1I - b2, b tan bw = p, (80) 

in the two positive real unknowns band p and the original unknown 
v. Similarly, (78) can be replaced by the set of equations 

-P = eKo + p\ -P = k2K1I - b2, b cot bw = -po (81) 

These equations are well known and their solutions have been deter
mined.6,9 The set of equations (80) has a finite number of real solu
tions and always has at least .one solution for all positive values of the 
parameters, w, k, Ky - Ko. These are the even modes of NM. We 
denote corresponding values of 11 by VIj, j = 1, 2, ... , R I . The set of 
equations (81) also has a most finite number of solutions, although if 
(Wk)2 X (Ky - Ko) is small enough it has no real solutions. These are 
the odd modes of NM. We denote the values of v corresponding to these 
roots V2j, j = 1, 2, ... , R2 • The points Vlj, V2j, which are all in the in
terval 12 , comprise the point spectrum of (21). Let 

op(v) = lim {p(v + €) - p(v - E)}. (82) 
E->+O 

Then with the aid of (62) it is easy to show that 

OPl1(Plj) = P(Pl;)/ {l + WP(Pli)} , OP22(Pli) = 0, j = 1, 2,· .. ,R l , (83) 

OPl1(P2j) = 0, OP22(P2i) = b2(v2i)p(P2i)/{1 + WP(V2i)}, 

j = 1, 2, ... ,R2 • (84) 

With the aid of (65) through (69) and (77) through (79) it is readily 
shown that 
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cos (b(Vli)x) , I x I ~ w 

I x I ~ W 

1507 

(85) 

(86) 

(87) 

cos (b(Vli)w) exp {P(V1i)(W - I x\)l , 

{1/b(v2j)} sin (b(V2j)X) , I x I ~ w 

{1/b(v2i)} sin (b(V2j)W) exp {P(V2i)(W - x)}, x ~ W (88) 

'P2(X, V2i) -'P2( -x, V2i)' x ~ -w (89) 

It is also true that 

i: 'Pj(x, Vjk)2 dx = 1/ OPii(Vik) , k = 1, 2, ... ,Ri , j = 1, 2. (90) 

The remaining points in 12 are not in the spectrum. 
Finally, in the interval Is it is readily shown that .L),[11 (v) and l\![22 (v) 

have no poles. It is shown easily then that the whole interval Is is in 
the continuous spectrum, and in this interval 

(j = 1,2), (91) 

where 

, ( ) 1 [2 . 2 ( ) + 2 2 ( )J-1 P11 V = 271" Wy SIn WyW Wo cos WyW Wo, (92) 

, ( ) 1 [2 2 ( ) + 2 . 2 ( )J-1 2 P22 V = 271" Wy cos WyW Wo SIn WyW WyWo. (93) 

In summary, the spectrum of (21) consists of the points Vjk, k = 
1,2, .. " R j , j = 1,2, and the interval Is. Equation (27) for the trans
mitted field can be written as 

2 Rj 

e~t)(x, z) = :E :E OPij(Vik)gi(Vjk)'Pi(X, Vik) exp {-i~ z} 
j~l k=l 

+ t, iOk'KG exp {-iV -v Z}'Pi(X, v)gi(v)pL(v) dv 

+ t. loo exp {- Vv Z}'Pi(X, V)gi(V)Pj,(v) dv. (94) 

The terms in the first, double summation in (94) are just the possible 
TE modes which can be excited in the waveguide. The terms in the 
second summation represent the propagating continuum field while 
the terms in the last summation represent the evanescent part of the 
transmitted field. A useful interpretation of the propagating continuum 
field can be obtained as follows. Consider within the waveguide in the 
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region x < -wan incident plane wave of the form 

e~O)(x, z, v) = exp {-i~ z - iwo(v)x} , (95) 

so that if () is the direction ,of propagation of this wave (measured 
clockwise from the positive z axis), then 

cos e = ~/k YKo, sine = wo(v)/k YKo . (95) 

On striking the region of higher dielectric constant, Ixl < w, part of 
this wave will be reflected and part of it will be transmitted through 
the region Ixl < w. Denote by x+ (x, z, v) this total electromagnetic 
field set up by the incident wave, (95). Similarly, denote by x- (x, z, v) 
the total electromagnetic field set up by the incident wave in the region 
x>w 

e~O)(x, z, v) = exp {-i~ z + iwo(v)x}. (97) 

In Fig. (3) we give a schematic description of x+ and x- . Then it can 
be shown that for -eKo ~ v ~ 0, 

exp {-i~Z}<Pi(X,V) = ai(v)x+(x,z,v) + bi(v)x-(x,z,v) (j = 1,2). 

(98) 

For the above values of v the directions of propagation of the incident 
waves for x+ and x- fill the interval -7r/2 ~ e ~ 7r/2. Thus, the prop
agating continuum field is just a wave packet of plane waves appropriate 
to the medium defined by the dielectric tensor Kn(x). 

Similarly, the evanescent part of the field can be interpreted as a 
superposition of waves bound to the surface z = 0 and propagating in 

:x: 

W·~----~--------------- W~----------f----------

~------~------------.z ~------~~----------~Z 

-Wr---------~~--------- -W·~-----*---------------

Fig. 3 - A schematic diagram of the plane waves appropriate to the dielectic 
medium in the symmetric step model. The wave X+ is incident on the junction 
region from the positive x direction, while x- is incident from the negative x 
direction. 
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the positive and negative x directions. The distinction between the 
propagating and evanescent parts of the transmitted field is further 
shown in the expression for the time averaged transmitted power, (29), 
which for the symmetric step model is 

2 Rj 

P, = (2WJ.lO)-1 L: L: v=;-; 1 gi(Vjk) 12 OPjj(Vjk) 
j=1 k=l 

(99) 

As this expression shows, the evanescent part of the field transmits no 
energy on the average. 

3.3 T M Fields For Symmetric Step Model 

The TM fields of the symmetric step model can be treated similarly. 
Equation (43) has constant coefficients in the two regions I x I < W 

and I x I > w. Since ez(x, z) and hll(x, z) must be continuous at x = ±w, 
the solutions of (43) must be such that if;i(X, v) and {l/IC(x) }if;~(x, v) 
(j = 1, 2) are continuous. We have 

if;l(X, v) = cos (Krwxx), 1 x 1 ~ W 

= cos (Krwxw) cos {wo(1 x I - w)} 

{(wxKo)/(woKrJ} sin (Krwxw) sin {wo(1 x 1 - w)}, 

if;2(X, v) = {Kg/wx} sin (Krwxx) , I x I ~ w 

= {Kg/wx} sin (Krwxw) cos {wo(x - w)} 

+ {Ko/wo} cos (Krwxw) sin {wo(x - w)}, 

if;2(X, v) = - tf;i -x, v), 

where 

x ~ -w 

and Will and wo are defined in (70). Next, 

(100) 

I x I ~ w (101) 

(102) 

x~w (103) 

(104) 

(105) 

m~(v) = -l1Loo(V) = {(wx/Kg) sin (Krwxw) + i(wo/Ko) cos (Krwxw)} 

. {cos (Krwxw) - i(Kgwo/Kowx) sin (Krwxw) r 1 
• (106) 

Therefore, 

Mll(v) = -1/{4M22(v)} = 1/{2m_oo(v)}, (107) 

llf12(v) = M21(V) = 0, (108) 
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and from (57) and (108) we have 

-00 < v < 00. (109) 

The spectrum in the case of TM fields is determined in the same 
way as in the case of TE fields, and we merely state the results. There 
are no points of the spectrum in the interval 11 = [- 00, -.k2K ill ] , 

O"ii(V) = O"ji( - 00), dO"jj(v) = 0, v c II (j = 1,2). (110) 

The interval 12 = (_k2Kill' -k2KO) contains a finite number of points 
in the point spectrum. The points of discontinuity of 0"11 (v) are the 
real solutions of 

(wx/KrJ sin (Krwxw) + i(wo/Ko) cos (Krw:r:w) = 0, (111) 

while the points of discontinuity of 0"2Z(V) are the real solutions of 

If we let 

(113) 

then (111) in the single unknown v can be replaced by the set of equa
tions 

bKo tan bw = pKz , 
(114) 

in the two positive real unknowns band P' and the original unknown 
v. In the. same way, (112) can be replaced by the set of equations 

-v = eKo + p2, -v = k2Kx - K:r:b2/Kz, bKo cot bw = -pKz . 
(115) 

The set of (114) has a finite number of real solutions and for all posi
tive values of the parameters Ko/Kz, Kill/Kz, W, k2 (Kill - Ko) there is 
always at least one solution.6 , 9 These are the even modes of NM. The 
corresponding values of v are denoted by VIj, j = 1, 2, "', 81 . The set 
of equations (115) also has at most a finite number of solutions, al
though if (wk)2 (Kill - Ko) is small enough it has no real solutions. 
These are the odd modes of NM. The corresponding values of v are 
denoted by V2j, j = 1, 2, "', 82 • The points VIj, V2j are the point spec
trum of (43) and they all lie in the interval 12 • Furthermore, 

oO"l1(Vlj) = S(p(Vlj», O0"22(Vlj) = 0, j = 1, 2, ... , 8 1 , (116) 

OO"U(V2i) = 0, O0"22(V2i) = b(V2i)2S(p(V2i»/K~ , j = 1,2, ... , 8 2 , (117) 
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(118) 

From (100) through (104) and (111) through (113) it follows that 

1/Il(X, Vlj) = cos (b(Vlj)X), I x I ~ W (119) 

= cos (b(Vli)W) exp {p(Vlj)(w - I x D}, 1 x I ~ W (120) 

1/I2(X, V2j) = {Kz/b(V2j)} sin (b(V2i)X), I x I ~ W (121) 

1/I2(X, V2j) = - 1/12 ( -x, V2j). 

It is also true that 

x ~-w 

x ~ w, 
(122) 

(123) 

i: 1/Ij(X,Vjk)2{Kx(x)}-ldx = l/o(Jjj(vjk), k = 1,2,···, Sj, j = 1,2. 

(124) 

The remaining points in 12 are not in the spectrum. 
The continuous spectrum is the interval 13 = [- k2 K o, 00]. For 

points of the continuous spectrum 

(j = 1, 2), (125) 

where 

(J~l(V) = 2~ [K~w; sin2 (Krwxw) 

+ KxKzw~ cos 2 (KrWxw)rlKoKxK.wo , (126) 

(J~2(V) = 2~ [K~w; cos2 (Krwxw) 

+ KxKzw~ sin2 (Krwxw)r11(ow:wo . (127) 

To summarize these results, the spectrum consists of the points Vjk, 

k = 1, 2, ... , Sj, j = 1, 2 and the interval 13 , and the transmitted field 
can be written in the form 

2 Sf 

h!t)(x, z) = L L (Jii(Vik)h i(Vik)1/Ii(X, Vjk) exp {-iv -Vik z} 
j=1 k=1 

(128) 
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Just. as for the TE fields, the terms in the first, double summation in 
(128) are the possible TM modes which can be excited in the wave
guide. The terms in the second summation represent the propagating 
continuum field while the terms in t.he last summation represent the 
evanescent part of the transmitted field. Just as for the TE fields, the 
propagating part of the continuum field can be interpreted as a wave 
packet of reflected and refracted plane waves, and the evanescent. part 
of the field can be interpreted in terms of surface waves at z = O. 
Equation (53) for the transmitted energy is 

2 s· 
PI = (2W€o)-1 L: :t vi -Vik \ hi(Vik) \2 OCTU(Vik) 

i=1 k=1 

(129) 

3.4 TE Fields For Asymmetric Step 111{ odel 

We now turn to the second of the two models which are studied in 
detail and examine the TE fields for the asymmetric step model. The 
functions Kn (x) (n = x, y, z) are defined by (3) through (5). Equa
tion (21) has constant coefficients in the regions Ixl < w, x > w, x < 
-w, and we seek solutions which are continuous and have continuous 
first derivatives. Then 

\ x \ ~ w 

= cos (wyw) cos {W2(X - w)} 

- (Wu/W2) sin (wyw) sin {W2(X - w)}, 

= cos (wyw) cos {WI (x + w)} 

+ (Wy/WI) sin (wyw) sin {WI(X + w)}, 

~2(X, v) = (l/wy) sin (wyw), I x I ~ w 

where 

= (l/w lI) sin (w lIw) cos {W2(X - w)} 

+ (1/w2) cos (WlIw) sin {W2(X - w)}, 

- (l/w lI) sin (WlIw) cos {Wl(X + w)} 

+ (l/wI) cos (WlIw) sin {Wl(X + w)}, 

x~w 

x ~ -w 

X>w 

x ~ -w, 

(n=I,2,x,y). 

(130) 

(131) 

(132) 

(133) 

(134) 

(135) 

(136) 
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As before Wn is defined as a single-valued function of v in the complex 
plane cut along the real axis from - k 2 J(n to 00. Then 

moo(v) = {WI/ sin (WI/w) + iwz cos (WI/w)} 

. {cos (WI/w) - i(W2/WJ sin (WI/w) r 1 
, (137) 

m_oo(v) = - {WI/ sin (WIIW) + iWl cos (WI/w)} 

. {cos (wllw) -i(wJw,J sin (WI/w) r 1 
• (138) 

From (58) through (60) and (137) through (138) we obtain 

(j, k = 1, 2), (139) 

where 

Nu(v) = -![(1 - WIWZ/W!) + (1 + w1wz/w!) cos (2wl/w) 

- i{(Wl + wz)/WI/} sin (2wl/w)], (140) 

N1Z(v) = NZ1(v) = (i/2)(Wl - wz), (141) 

N zz(v) = ! {(w! - WIWZ) - (w! + WIWZ) cos (2wl/w) 

+ iWI/(Wl + wz) sin (2wl/w)} , (142) 

D(v) = (WI/ + WIWZ/WI/) sin (2wllw) + i(Wl + wz) cos (2wllw), (143) 

To determine the spectrum we note first that in the interval 11 = 
[-00, -k 2J(y], the functions 1vfjk (v) (j, k = 1,2) are analytic and 
real. This interval, therefore, contains no points of the spectrum and 

(j, k = 1,2), (144) 

The only real poles of the functions M jk (v) are in the interval 12 = 
(_k2J(y, _k2J(d. These poles are the real solutions of D(v) = O. In 
12 , Wy is real while W1 and W2 are purely imaginary. If we let 

(n = 1,2), (145) 

then the equation D (v) = 0 is equivalent to the set of four equations 

in the three positive real unknowns b, P1, P2 and the original unknown 
v. These equations and their solutions have also been studied in de
taiP· 6 In order that (146) have a solution, it is necessary and suffi-
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cient that 

KI/ > Kn (n = 1,2), (147) 
2wk(KI/ - 1(1)! > tan -1 {(Kl - K 2)/(KI/ - Kl)}!. 

If conditions (147) are satisfied, D (v) = 0 has a finite number of real 
solutions, Vii j = 1, 2, ... , R which all lie in the interval 12 • This is 
the first significant difference between the symmetric and asymmetric 
step models. The symmetric step model always has at least one point 
in its point spectrum while the asymmetric step model may have no 
point spectrum. 

We can write, assuming that (146) and (147) are satisfied. 

0Pik(VI) = -Nik(VI)/D'(VI), j, k = 1,2, l = 1,2, ... ,R, (148) 

where D' (v) = (d/dv) D (v). If we make use of (145), it is easy to show 
that 

{OPI2(VI)}2 = OPn(VI) OP22(VI) , l = 1,2, ... ,R. (149) 

Neither of the functions <l'l(X, Vi) or <l'2(X, Vi) is square integrable over 
- 00 < x < 00 for j = 1, 2, ... , R. However, because of (149), they 
appear in (27) for e;t> (x, z) only in the combination 

cf>(x, Vi) = VOPl1(Vi) <l'l(X, Vi) 

+ {OPI2(Vi)/ VOPn(Vi) } <l'2(X, V;), j = 1,2, ... ,R. (150) 

If we define 

cf>o(x, Vi) = VOPn(Vi) cos (b(vi)x) 

+ {OP12(Vi)/ VOPn(Vi) b(vi)} sin (b(vi)x) , (151) 

then because of (146) 

I x I ~ w (152) 

= cf>o(W, Vi) exp {P2(Vi)(W - X)}, x ~ w (153) 

= <po( -w, v;) exp {Pl(Vi)(W + x)}. x ~ -w (154) 

Thus, the functions <I> (x, Vj) are square integrable, and, as we. shall see, 
are just the possible propagating modes in the wave guide. The re
maining points in the interval 12 are not in the spectrum. 

The remainder of the real axis, the interval - k2 Kl ~ II ~ 00, forms 
the continuous spectrum. To show this, consider first the interval 
13 = [-eKl' -k2K 2]. In 13 , wI/ and WI are real, while W2 is purely 
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imaginary. The functions lYlik(v) have no poles in 13 and their imaginary 
parts are not zero. We introduce the notation 

wy(v) = b(v) , (155) 

Then we can write 

(j, k = 1,2), (156) 

where 

rl(v) = cos bw + (p2/b) sin bw, (157) 

r2(v) = b sin bw - P2 cos bw, (158) 

A(v) = {b sin 2bw - P2 cos 2bw}2 

+ {(PIP2/b) sin 2bw + PI cos 2bw} 2. (159) 

For v t 13 it is clear from (131), (134), and (155) that CPl(X, v) and CP2(X, v) 
both grow exponentially as x ---7 + 00. However, from (156) we see 
that in (27) for e~t) (x, z), the functions C{Ji(X, v) (j = 1, 2) appear only 
in the combination 

when v t 13 . However, 

A(x, v) = cos {b(x - w)} - (p2/b) sin {b(x - w)}, 

= exp {P2(W - x)}, x ~ w 

= (cos 2bw + (p2/b) sin 2bw) cos {Pl(X + w)} 

(160) 

I x I ~ w (161) 

(162) 

+ (I/PI)(b sin 2bw - P2 cos 2bw) 

·sin {PI(X + w)} , x ~ -w. (163) 

Equations (161) through (163) represent the second important differ
ence between the symmetric and asymmetric step models. In the sym
metric model all the components of the continuum field are oscillatory 
functions of x on both sides of the waveguide while in the asymmetric 
model some of the components of the continuum field are exponentially 
damped on one side of the waveguide. The physical interpretation of 
A (x, v) will be discussed later. 

In the remaining interval, 14 = [_k2K2' 00], the functions (On (n = 
1, 2, y) are all real and the functions Mj7';(v) (j, k = 1, 2) have no 
poles. Therefore, 

(164) 



1516 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967 

where 

~(v) = (w; + W1W2)2 sin2 (2w yw) + W~(Wl + W2)2 cos2 (2wllw), (168) 

The spectrum for the TE fields of the asymmetric model consists of 
the (possibly empty) set of points Vj , j = 1, 2, ... , R and the interval 
-lc2Kl ~ v ~ 00. The transmitted field can now be written in the 
following way. 

e;"(x, z) = t, {~ {op,,(v,) r1op,,(v,)g,(v,)} exp {-iV=;; z}<I>(x, Vi) 

1 j-k'K2 { 2 } +; -k'K
1 

exp {-i-V=; z} A(x, v) ~ ri(v)gi(V) {Pl(V)/ ~(v)} dv 

(169) 

The expression for e~t) (x, z) has been split up into a sum of parts in 
order to facilitate its physical interpretation. The first part represents 
the possible discrete, propagating modes which can be excited in the 
system. The form of these modes has been studied in detail elsewhere/· 6 

and as pointed out earlier, unless condition (147) is satisfied, no such 
modes can be excited. In order to interpret the second term, consider 
within the waveguide in the region x < -wan incident plane wave 
of the form 

(170) 

At the surface x = -w, part of this wave will be reflected and part 
will be transmitted. However, at the surface x = w, the wave will 
suffer total internal reflection. The total electromagnetic field set up 
by e~O)(x, z, v) is proportional to A (x, v) exp {-iY-vz}. The second 
term is then just a superposition of plane waves which are totally 
reflected at x = w. In Fig. 4 we give a schematic description of these 
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W~----------~-----------

~------~~--~---------z 

-w~----~~---------------

Fig. 4 - A schematic diagram of the totally reflected wave in the asymmetric 
step model. The wave is incident on the junction region at x = -w where it is 
partly reflected and partly transmitted. The partly transmitted portion is then 
totally reflected at x = w. 

waves. In microscopy the theory of the Becke line is based on just such 
a superposition of totally reflected plane waves. 10 The third term is a 
superposition of plane waves which are reflected and refracted at 
x = ±w. The last term is a superposition of waves bound to the surface 
z = 0 and propagating in the positive and negative x directions. 

The time averaged, transmitted power is 
R 

P t = (2WJ.Lo)-1 L -v=;; I VOPl1(VI)gl(VI) 
Z=l 

+ {oP12(vz)/ VOPl1(VI)} g2(VI) 12 

+ (2WJ.L07r)-1 i~:~:' v-=-; I rl(v)gl(V) + r2(v)g2(V) 12 {Pl(V)/ A(V)} dv 

+ (2wl'o)~' (K. v-=-; tt, g;(v) *g,(v) p;,(v) } dv. (171) 

3.5 TA1 Fields For Asymmetric Step A10del 

The TM fields for the asymmetric model present no new features, 
and we merely record the results. We have 

Ix I ~ w (172) 

cos (Krwxw) cos {W2(X - w)} 

- (WxK2/W2Ku) sin (Krwxw) sin {W2(X - w)}, x ~ w (173) 

= cos (ICwxw) cos {Wl(X + w)} 

+ (WXKl/WlKu) sin (Krwxw) sin {Wl(X + w)}, x ~ -w (174) 
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t/;2(X, v) = (Kg/w",) sin (Krw",x), I x I ~ W (175) 

= (Ku/w",) sin (Krw",w) cos {W2(X - w)} 

+ (K2/W2) cos (Krw",w) sin {W2(X - w)}, x ~ W (176) 

= -(I(Jw",) sin (Krwxw) cos {Wl(X + w)} 

+ (K1/WI) cos (Krwxw) sin {Wl(X + w)} , x ~ -w (177) 

where wn(v) (n = x, 1,2) arc defined in (136) and Kg and K,. are de
fined in (105). Next, 

m<>':J(v) = {(wx/Kg) sin (Krwxw) + i(w2/I(2) cos (Krwxw)} 

. {cos (Krwxw) - i(W2Kg/wJ(2) sin (I(rwxw) rt, (178) 

m-<>':J(v) = - {(wx/I(g) sin (Krwxw) + i(Wl/K1) cos (Krwxw)} 

. {cos (I(rwxw) - i(WIKg/WxKl) sin (ICwxW)} -1. (179) 

Then from (58) through (60) , (178), and (179) we obtain 

(j, k = 1,2), (180) 

where 

Nll(v) = -![(1 - WIW2K~/w~KIK2) 

+ (1 + wlw2K~/w~ICK2) cos (2Krwxw) 

- i(Kg/Wx)(Wl/Kl + W2/K2) sin (2Krwxw)], (181) 

N 12(V) = N 21 (V) = (i/2)(Wl/K1 - W2/K2), (182) 

N2lv) = ![(w~/K~ - WIW2/KIK2) 

- (w;/K: + W1W2/KIK2) cos (2Krwxw) 

+ i(wx/Kg)(WJKl + W2/K2) sin (2Krwxw)] , (183) 

D(v) = (wx/Kg + WIW2Kg/wXKIK2) sin (2Krwxw) 

+ i(Wl/Kl + wdK2) cos (2Krwxw). (184) 

There arc no points of the spectrum in II = [- 00, - k2 Ie;]. The 
only real poles of the functions M jk (v) are in the interval 12 = (-k2K:JJJ 
_k2Kl)' In 12 , Wx is real while WI and W2 are imaginary. If we let 

n = 1,2, (185) 
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then the equation determining the poles, D (v) = 0 is equivalent to the 
set of equations 

(186) 
tan 2bw = (pJC/bKl + P2Kz/bK2)/(1 - PIP2K;/b2K1K2). 

In order that these equations have a solutiori, it is necessary and suf
ficient that5 , G 

IC > Kn (n = 1,2), (187) 
2wk{Kz(Kx - K1)/IC}i > tan-1 {KxKz(Kl - K 2)/K;(Kx - Kl)}i. 

If conditions (187) are satisfied, D (v) = 0 has a finite number of real 
solutions in 12 , Vj, j = 1,2, .. " S. 

If (186) and (187) are satisfied, we can write 

OCTik(Vl) = -Nik(Vl)/D'(Vl), j, k = 1,2, l = 1, 2, ... , S. (188) 

Just as for the TE fields, it is true that 

{OCT12(Vl)}2 = OCTll(VZ) OCT22(VZ) , l = 1,2, ... ,S. (189) 

Because of (189) the functions 1/!l(X, vz) and 1/!2(X, vz) appear in (49) 
for h~t) (x, z) only in the combination 

w(x, Vi) = V OCTll(Vi) 1/!l(X, Vi) 

+ {OCT12(Vi)/ V OCT 11 (V,.) } 1/!2(X, Vi), 

If we define 

Wo(x, Vi) = V OCT11(Vi) cos (b(v,.)x) 

j = 1,2, ... , S. (190) 

+ {Kz OCT12(Vi)/ V CTll(Vi) b(Vi)} sin (b(Vi)X) , (191) 

then because of (186) 

w(x, Vi) = wo(X, Vi), I x I ~ w (192) 

= Wo(W, Vi) exp {P2(Vi)(W - x)}, x ~ W (193) 

= Wo(-w, Vi) exp {Pl(Vi)(W +x)}. x ~ -w (194) 

The remaining points in 12 are not in the spectrum. 
The remainder of the real axis, the interval -eK l ~ v ~ 00 forms 

the continuous spectrum. In the subinterval 13 = [-eKI' -eK2 ), 

Wx and WI are real while W2 is imaginary. If we let 

V t 13 , (195) 
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then we can write 

(j, k = 1,2), (196) 

where 

Sl(V) = cos bw + (P2Kz/bK2) sin bw, (197) 

S2(V) = -(P2/K2) cos bw + (b/Kz) sin bw, (198) 

.1 (v ) = {(b / K z) sin 2bw - (P2/1{2) cos 2bw} 2 

+ {(PlP2Kz/bKIK2) sin 2bw + (Pl/K1) cos 2bw}2. (199) 

When v I: 13 , y"l(X, v) and y,,2(X, v) appear in (51) for h~t) (x, z) only in 
the combination 

(200) 

We have 

E(x, v) = cos {b(x - w)} 

- (P2Kz/bK2) sin {b(x - w)}, I x I ~ w (201) 

= exp {P2(W - x)}, x ~ w (202) 

{cos 2bw + (P2/C/bK2) sin 2bw} cos {Pl(X + w)} 

+ (l/Pl) {(bKl/Kz) sin 2bw 

- (P2Kl/K2) cos 2bw} sin {Pl(X + w)}, x ~ -w. (203) 

In the remaining interval, 14 = [-k2 K 2 , 00], the functions Wn (n = 
1,2, x) are all real and we can write 

(204) 

where 

CTil(V) = .! (wl/Kl + W2/K2) {(w;/K~) cos2 (Krwxw) 
7r 

+ (w lwdK1K 2) sin2 (Krwxw)} /~, (205) 

. {w;/K~ + WlW2/KIK2} sin (Krwxw) cos (Krwxw)/~, (206) 

CT~2(V) = ! (wx/KrJ2(Wl/Kl + W2/K2) {(wlwdK1K 2) cos2 (Krwxw) 
7r 

+ (wx/Kg)2 sin2 (Krwxw) }/~, (207) 
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:D = {(Wx /Kg)2 + (W1W2/KlK2)}2 sin2 (2Kr wxw) 

+ (Wx /Kg)2(W1/Kl + W2/K2)2 COS
2 (2K rwxw). (208) 

To summarize, the spectrum for the TM waves of the asymmetric 
model consists of the (possibly empty) set of points VI , l = 1, 2, ... , S, 
and the interval -eI{l ~ V ~ 00. The transmitted field can be written 
as 

S 2 

h~t) (x, z) = L: L: {Oo-11(Vi) r! Oo-lk(Vi)hk(Vi) exp {-i V -Vi Z }w(x, Vj) 
j=l k=1 

+ j.tl iOk'K. exp {-i~ z} Y;i(X, v)hk(v)o-ik(V) dv 

+ i .t1 1~ exp {- V~ z} Y;i(X, v)hk(v)o-tk(V) dv. 

The time averaged, transmitted power is 
S 

(209) 

P t = (2WEo)-1 L: V -vl:::-I Vo-U(Vl) h1(Vl) + {0-12(Vl)/Vo- l1 (Vl)}h2 (Vl) \2 
1=1 

(210) 

IV. APPROXIMATE SOLUTION OF THE INTEGRAL EQUATIONS 

In Section II we obtained general expressions for the reflected and 
transmitted fields for the TE fields in (18) and (27) and for the T1J1 
fields in (41) and (51). In (27) and (51) there appear the functions 
C{)i(X, v) and Y;i(X, v) and the spectral density matrices p(v) and o-(v). 
A technique for determining these quantities in certain cases was 
illustrated in Section III by explicitly calculating them for the sym
metric and asymmetric step models. In order to complete the determina
tion of the reflected and transmitted fields, the functions 8~r) (l), 3C~r) (l), 
gk(V), and hk(v) must be calculated. In Section II we showed that 
these functions were determined by the integral equations (30)-(31) 
and (54)-(55). 

We have been unable to solve these integral equations exactly for 
the general case. However, there are certain cases of great physical 
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interest, such as the electro-optic diode modulator, where excellent 
approximate solutions can be obtained. Let 

mn = min Kn(x) , (n = x, y, z) (211) 
z 

and assume that 

(n = x, y, z). (212) 

Then the incident field impinges on an essentially uniform, plane 
dielectric interface, and the reflected field can be calculated as if the 
region z > 0 were a uniform dielectric. Let ]{n (n = x, y, z) be suitably 
chosen, constant values for the dielectric tensor for z > O. Then it is 
readily shown that for the TE fields 

and for the Tll1 fields 

x~r>Cl) = Rh(l)X~i) (l), 

where the reflection coefficients are 

(213) 

(214) 

Re(l) = {n(l) - kyn(l/ky)} {n(l) + kyn(l/ky)} -1, (215) 

Rh(l) = {kzn(l) - n(l/kz) }{kxn(l) + n(l/kz) rt, (216) 

kn = (l{n)! (n = x, y, z), (217) 

and D(l) is defined in (16). In this approximation, the total fields at 
z = 0 for the TE and TM fields are, respectively, 

(218) 

(219) 

where the transmission coefficients are 

n = e, h. (220) 

Now that ey(x, 0) and hy(x, 0) are known, g,(v) (j = 1, 2) can be cal
culated from (28) and hi(V) (j = 1, 2) can be calculated from (52), 
since ey(x, 0) = e~t) (x, 0) and hll (x, 0) = h~n (x, 0). 

We illustrate some features of the calculation of gk(V) and hk(v) with 
the symmetric and asymmetric step models. We first note that if these 
models are used to study an electro-optic diode modulator, typical 
values of the parameters defining the dielectric tensors in (1) through (7) 
are6 n = 3.31, .1 ,....., 10-3

, on ~ 2 X 10-4 (n = X, y, Z), .11 = 0.96.1, 
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A2 = 1.04 A. Then J11n - mn ~ 1.4 X 10-2
, mn ~ 10.9. Condition 

(212) is thus well satisfied. 
For the symmetric step model we let j{n = 1(0 (n = x, y, z). If the 

functions S; i) (l) and X; i) (l) are sharply peaked about l = 0, then 
(218) and (219) can be further approximated by 

ell (x , 0) = Te(O) i1l" I: e~i)(l)e-ilx dl = Te(O)e~i)(x, 0), (221) 

hy(x, 0) = Th(O)h~i)(X, 0). (222) 

The. calculation of gk (v) and hk (v) is now reduced to quadra tures. If 
the incident field is not sharply peaked, we define 

cpj(l, v) = 21 100 

CPj(X, v)e- i1x dx, (223) 
11" -00 

so that 

( 100 (i) 

gj v) = -00 T.(l)Sy (l)cpj(l, v) dl, . (225) 

hj(v) = I: Th(l)X~i)(l),¥j(l, v) dl, j = 1,2. (226) 

If v is in the continuous spectrum, <I>j(l, v) and wj(l, v) are distributions 
which are easily determined with the aid of the relationll 

(227) 

where 0(0') is the delta function and when 1/0' appears under an integral 
sign, it is assumed that the Cauchy principal value is taken. If v is in 
the point spectrum, ipj(l, v) and '¥j(l, v) are ordinary functions. 

For the asymmetric step model we letKn = !(K1 + K 2 ), (n = x, y, z). 
For this model, a straightforward application of (28) and (52) fails 
in general if v is the point spectrum or if v e 13 , because cp;(x, v) and 
if;j(x, v) now grow exponentially as x tends to either plus infinity or 
minus infinity. This apparent difficulty is merely a reflection of the 
manner of convergence of the integrals defining gk(V) and hk(v). For 
our purposes here, it is enough to note from (169) and (209) that 
when v is in the point spectrum, the functions gk(V) and hk(v) do not 
appear independently, but only in the linear combinations 



1524 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967 

2 

L {OPll(Vi)} -lOPlk(Vi)gk(Vi) i: ell(x, O)<p(X, Vi) dx, j = 1,2,"" R, 
k=l 

(228) 

j=I,2,···,S. 

(229) 

The integrals on the right of (218) and (219) are now well defined. 
Similarly, if V £ 13 , the relevant quantities to calculate are 

t. rk(v)gk(V) = i: ell(x, O)A(x, v) dx, (230) 

t sk(v)hk(v) = i: hix, O)Z(x, v) dx. (231) 

If v £ 14 , (28) and (52) can be applied directly. Now, all the techniques 
discussed in the case of the symmetric model can be applied here. 

V. SUMMARY 

In Section I we have defined a class of dielectric waveguide models. 
The waveguide is formed by an anisotropic, nonuniform dielectric 
filling the half space z > O. The dielectric tensor is diagonal in the 
fixed coordinate system of Fig. 1, and the diagonal matrix elements 
are functions of x only, Kn(x) (n = x, y, z). 

Integral representations for the incident, reflected, and transmitted 
fields were given in (15), (18), and (27), respectively, for the TE fields, 
and in (39), (41) and (51), respectively, for the TM fields. These rep
resentations are very general, holding for a large class of functions 
Kn(x) and incident fields. These integral representations, however, con
tain the unknown functions <Pi (X, v), 1fi(X, v), Pik(V) and O"ik(V) (j, k = 1,2), 
which are determined solely by the dielectric tensor, Kn(x), and the 
unknown functions gk(V), hk(V), (k = 1, 2), e~r) (l), and x~r) (l), which 
also depend on the incident field and the boundary conditions at z = O. 
It was shown that this latter group of unknown functions are the solu
tions of two sets of integral equations, (30)-(31) for the TE fields 
and (54)-(55) for the TM fields. These equations are very complicated, 
and we have been unable to solve them exactly for any specific models 
of interest. 

In Section III we gave a detailed calculation of the functions <Pi(X, v), 
1fzCX, v), Pik(V), and O"ik(V) (j, k = 1, 2) for both the symmetric and 
asymmetric step models. These calculations are important in their own 
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right, since the symmetric and asymmetric step models have been 
used extensively in the study of the electro-optic diode modulators. 1

-
6 

However, these computations also illustrate the technique for treating 
the whole class of piecewise constant models. This is important, for 
it is not yet completely established which is the correct model to use 
in exploring the behavior of the electro-optic diode modulator, and 
it is felt that any actual physical situation can be well approximated 
by a piecewise constant model. 

I t should be noted that the success of the techniques used in this 
paper depends on being able to obtain exact analytic solutions of (21) 
and (43), or at least good analytic approximations to these solutions. 
There are a number of other models for which the exact solutions of (21) 
can be obtained, for example the continuous dielectric constant models 
described in Section III of NJJI. It is, however, much more difficult 
to find models, other than the piecewise constant models, for which 
(43) is solvable in terms of known functions. Nevertheless, the pos
sibility remains of investigating the TE fields for a fairly wide varity 
of models. 

The calculations of Section III provide a method of determining 
the discrete modes which is different from the methods used in earlier 
treatments. 5

•
6

•
9 These calculations showed also that the asymmetry 

of the background light is accentuated in the asymmetric step model 
by total internal reflection at the junction region boundary. 

Finally, in Section IV it was shown that good approximations can 
be found for the functions gk(V), hk(V), x~r) (l), and 8~r) (l) in certain 
cases of physical interest. In particular, these approximations are valid 
for the electro-optic diode modulator. These approximations do not 
depend on a particular choice of the incident field. 

The final results of this paper then are integral representations for 
the fields for both the TE and T M fields. Of the various functions in 
the integrands, some have been determined exactly and good approxi
mations have been found for the remainder for a number of important 
models and for arbitrary incident fields. 

These integral representations are complicated in appearance, but 
when z is large enough, asymptotic expansions of them can be found 
which lend themselves to numerical analysis. In a subsequent paper 
asymptotic expansions of the transmitted fields will be presented for 
the symmetric and asymmetric step models in the case that the inci
dent field is Gaussian and numerical results for cases of experimental 
interest will be presented. 
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Demagnetizing Fields in Thin 
Magnetic Films 

By D. B. DOVE 
(Manuscript received January 31, 1967) 

Demagnetizing fields play an important role in the operation of many 
thin magnetic film devices. A requirement of high packing density leads to 
strong localization of induced changes in magnetization; and, therefore, to 
correspondingly large demagnetizing fields and drive currents. A treatment of 
the demagnetizing field problem for thin film materials is given here for 
film properties and fields which are nonuniform along the hard anisotropy 
axis. Specifically considered are saturating fields, variations in film thick
ness and anisotropy constant, interaction between films, and the effect of 
easy direction bias fields. 

I. INTRODUCTION 

The behavior of the magnetization in thin magnetic films of large 
lateral extent subject to a uniform applied field may be calculated 
directly from a knowledge of film properties and field strength. The 
calculation of the behavior of magnetization in the presence of non
uniformity of film properties or of applied field, however, must take 
into account the demagnetizing field that arises from a local non
uniformity of magnetization. Such a situation occurs in many problems 
of practical interest. Internally generated fields give rise to a number 
of effects when nonuniform fields are applied to thin uniaxially ani
sotropic films.I.2 For example, the hard axis field required for satura
tion may be several times the anisotropy field and the induced mag
netization component may spread to regions where the applied field 
is very small. The occurrence of such effects in thin films has been 
considered by Rosenberg3 using a calculus of variations approach and 
by Kump and Greene4 and Kump5 using an iterative numerical pro
cedure. More recently Dove and Long6 have shown that there is a 
simple solution to the nonuniform field problem in the case of non
saturating spatially periodic applied fields, and have treated localized 

1527 
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fields by using a Fourier series technique. Good agreement was found 
with Kerr-effect probe measurements on flat and cylindrical permalloy 
films. 

The purpose of the present work is to show how the Fourier series 
technique permits straightforward solution of a number of thin film 
magnetostatic problems. Flat and cylindrical film geometries are 
treated; however, the results are of special interest to the case of 
cylindrical films with axial hard direction, owing to the circumferential 
flux closure. Specifically, we consider the cases of; 

(i) nonuniform hard axis field, 
(ii) nonuniform saturating field, 

(iii) variation in film thickness, 
(iv) variation in anisotropy constant, 
(v) external fields due to magnetization distribution in film, flux 

linkage with conductors, magnetic shielding, 
(vi) interaction between parallel films, keepers, and 

(vii) nonuniform hard axis field in presence of easy direction bias 
field. 

It is assumed that the quantities of interest vary along the film hard 
axis only and that properties and fields are uniform along the easy 
axis. Film thickness is taken to be sufficiently small that the direction 
of magnetization always lies in the plane of the film, exchange forces 
are neglected, being insignificant for cases considered, and anisotropy 
dispersion effects are not included. 

II. GENERAL CONSIDERATIONS 

We consider demagnetizing field effects that arise in thin uniaxially 
anisotropic films when relevant parameters vary only along the hard 
anisotropy axis. Many applications fall within this category and will 
be treated in following sections. Many of the results may be applied 
to thin films of other types of magnetic materials in the range where 
they exhibit a constant permeability, if the effective anisotropy field 
is taken to be equal to the saturation magnetization divided by the 
permeability. 

Although the demagnetizing field may be found if the magnetization 
distribution is known, and conversely a knowledge of the field enables 
the distribution to be found, there is considerably greater difficulty in 
determining both distribution and field directly. In the thin film case, 
the Fourier series technique provides a means of representing the field 
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distribution for which the demagnetizing field can be found quite 
generally. The rotation of magnetization within a film may then be 
found by balancing, for example, (for nonsaturating fields) anisotropy 
torque versus the torque due to applied field and demagnetizing field. 
This leads to equations relating the coefficients of the various series 
which in a practical application may be most conveniently evaluated 
by computer. 

The number of terms included in the series determines the resolu
tion with which a particular curve may be delineated. However, a 
series with, say, 100 terms may be made to fit ordinates at 100 loca
tions exactly, with oscillations about the required curve elsewhere. 
The procedure followed here is to use the series to calculate ordinates 
at the 100 locations, and a smooth curve is then drawn through the 
calculated ordinates. Refs. 7 and 8 have been found of value for the 
evaluation of integrals occurring in the following sections. 

Numerical examples, where given, refer to nonmagnetostrictive 80/20 
NiFe films. The films are finely polycrystalline and are characterized 
by a uniaxial anistropy. The easy direction is taken to be circumferen
tial in the cylindrical film case. 

III. NONUNIFORM HARD AXIS FIELD 

This case has been discussed previouslyG but is included here briefly 
for completeness. Let x represent distance along the film hard direc
tion, M is the value of saturation magnetization, T the film thickness, 
I( the anisotropy constant and O(x) the angle which the direction of 
magnetization (at x) makes with the film easy anisotropy direction. 
We now assume that the applied field H(x) may be adequately repre
sented over a range ->,./2 to +>,./2 by the series 

00 

H(x) = L: hn exp (27rinx/A) (1) 
n=-oo 

and that the resulting hard direction component of magnetization 
111 (x) may be similarly represented, 

00 , 

i11(x) = M L: 'inn exp (27rinx/A). (2) 
n=-C(,I 

The distribution M(x) gives rise to a local (positive) pole density at 
location (X, Y) of amount -div M(X, Y). This gives rise to a field 
dH at (x, y) distance R from (X, Y) given by 

. (dVOI) (1) dH(x, y) = -dlV M(X, y). R2 . (R)\R 
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Fig. 1-A divergence of magnetization at (X,Y) gives rise to a field dH at 
(x, y). The x direction is taken to coincide with the film hard (anisotropv) direc
tion. Under no applied field the direction of magnetization lies along the y, or 
easy, direction. 

where dH is parallel to R, as in Fig. 1. Since the only variation of mag
netization is along the x direction, variation with thickness being ne
glected, then div M reduces to dM (X) / dx where M (X) is the x direction 
component of M, at X. 

The field dH has both easy and hard direction components, however, 
symmetry ensures that the resultant field Hm(x) , obtained by integrating 
over the film volume, lies along the hard direction. Then, we find, for a 
flat film 

Hm(x) = _foo foo dM(X) (x -3 X) dX dY T, (3) 
Y=_~ x~-~ dx R 

where T is the film thickness. Substituting R = [(x-X) '2 + (y - Y) 2]! 

and integrating over Y we have 

Hm(x) = -2T f~ dM(X) _1_ dX. 
X=-oo dx x - X 

Now substituting for 111 (X) in terms of the Fourier series, we have 

Hm(x) = +2TM f~ f mn(27rin) exp (27rinX/'A) dX 
_~ n=-~ 'A x - X 

and evaluating the integral, 

~ 

Hm(x) = 2: anmn exp (27rinx/'A), (4) 
-~ 
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where an = 47T'2TJl!In/A., n > 0, and lLn = an. A similar result holds for 
cylindrical films having a circumferential easy direction, where x now 
refers to distance along the cylinder axis. In this case, we find 

an = 47rllf(T /a)(27rna/'A)2Jo(27rna/'A)J(o(27rna/'A) , 

where a is the cylinder radius and 10 , ](0 are modified Bessel functions. 
The local rotation O(x) of magnetization away from the easy direc

tion due to the applied field is determined by balancing the torque due 
to the applied field against the torques due to anisotropy and the 
demagnetizing field 

2]( sin (J(x) cos (J(x) + MHm(x) cos (J(x) = MH(x) cos (J(x), all x. (5) 

We note that sin O(x) = l11(x)/M, and providing cos O(x) # 0, we 
may rewrite (5) as 

~ Jl!~) + Hm(x) = H(x). (6) 

If the field is sufficiently large that O(x) becomes equal to 7T'/2 then the 
film is said to have saturated (at x) and the torque equation (5) is 
replaced by 111 (x) = M. In the nonsaturating case the series represen
tations (1), (2), (4) are now substituted in (6) giving 

HK 2: 'Inn exp (27rinx/'A) + 2: an'lnn exp (27rinx/'A) 

= 2: hn exp (27rinx/'A), 

where HK = 2](/.1VI. Equating coefficients of corresponding terms gives 
the result, 

'Inn = hn/(HK + an). 

Hence, the series for the M(x) distribution may be obtained in terms 
of the coefficients of the applied field and geometrical parameters an 

which automatically take into account the demagnetizing field, 

Jl!I(x) = J.lf ~ HK ~ an exp (27rinx/'A). (7) 

As an example, we consider a wire at distance d from a flat film, 
lying parallel to the film easy direction. A current 1 along the wire 
produces a hard direction field component given by H (x) = 
CdI/(d2 +x2

) , where the origin for x is taken directly beneath the wire, 
and C is a calibration constant whose value depends on the units used, 
(C = 78.8 for d and x in mil inches, I in amperes, H in oersteds). It is 
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next assumed that the field is repeated at intervals A along the hard 
direction in such a way that the field over one wavelength is given by 

C dI 
H(x) = d2 + X 2 , 

To determine the Fourier coefficients we proceed in the usual way, and 
find that for A sufficiently large H (x) is given to a good approximation 
by the cosine series, 

H( ) Chr + 2Chr ~ -2'l1"nd/~ 2 /' x = ~ -,- L..J e cos 7I"nx I'. 
1\ 1\ n~l 

Substituting into (7) we have 

CIM7I" 2CIM7I" 00 e-21rnd/~ 
J.l1(x) = 'H. + ~ L H + cos 271"nx/~. (8a) 

1\ K n=l K an 

If such a drive wire arrangement is used to apply a field to a 
cylindrical film, there is some variation in axial field strength across 
the cylinder. In many cases of interest, the cylinder diameter is 
small compared with axial dimensions and there is very tight magneto
static coupling around the circumference. We therefore take the ef
fective axial field as that applied along the wire axis, a reasonable 
approximation for many cases. The result (8a) then applies to the 
cylindrical film case provided an is given the appropriate value. 

When a field is applied by a circular loop of radius d around the 
film (of radius a), it may be shown that the axial field at the surface 
is given by the series, for A sufficiently large, 

H( ) = CI7I" + 2CI7I" ~271"nd K (27rnd)I (27rna) 27rnX 
x, a ~ A ~ A 1 A 0 A cos A ' 

where K 1, Io are modified Bessel functions. The field is defined over 
-A/2 to +A/2 and d > a. The axial component of magnetization in 
a cylinder excited by such a field is then, 

271"nd K (27rnd)I (27rna) cos 271"nx 
llf(x) = CIM7I" + 2ClJ.1171" t A 1 A 0 A A. (8b) 

AH K A n=l H K + an 

Similar results may be derived for fields applied by more complicated 
drive wire or drive strap arrangements. It can be noted that the effect 
of superimposing several applied fields results simply in superimposing 
the magnetization distributions obtained for the fields separately. 
Hence, one approach to designing a magnetization distribution of a re
quired shape is to approximate the shape by superimposing a set of 
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known distributions. Many distributions of practical interest may be 
described by a cosine series and discussion in the following sections is, 
for clarity, limited to the cosine rather than the full series. Results for 
the full series may be readily derived, if required. 

Fig. 2 (a) to (f) shows the relative fall off in applied field H (x) 
and in axial magnetization component 111 (x) for a range of drive 
strap geometries. The plots are for a 1 /-tm thick cylindrical permalloy 
film of 5.0 mil diameter. Curves a, b, c, d correspond to drive strap 
half widths of 1.0, 5.0, 10.0, 20.0 mils, respectively. In Fig. 2 (a), 
(b) the distance between drive strap (or return strap) and film axis 
is 3.5 mils. Fig. 2 (c), (d) and (e), (f) correspond, respectively, to a 
distance of 5.0 and 10.0 mils. It can be noted that the magnetization 
distributions extend to a considerable distance and do not vary as 
strongly as the applied field. The fields of Fig. 2(a), (c), (e) are 
shown to normalized scale, however, the peak field or drive current 
required to just saturate the axial component at x = 0 varies signifi
cantly with geometry, and is shown in Fig. 3. 

In a plated wire memory, the local state of a region of film may be 
assigned as positive or negative depending on the remanent circum
ferential component of magnetization. To read out the circumferen
tial component in a nondestructive manner, a local axial field is 
applied by a drive strap surrounding the wire at the location of in
terest, and the signal appearing across the ends of the plated wire 
is measured. The signal is due to the circumferential flux change 
integrated along the wire (neglecting capacitive or other emfs). The 
circumferential component distribution is obtained simply from the 
axial component using the relation, M(circumferential) = (.1112 

- 111 
(axial) 2) 1. The total area under this curve is proportional to the signal 
obtained when the circumferential component has been set completely 
into one direction. It is convenient to equate the integrated circum
ferential component to an equivalent length of film that has every
where a 90° rotation of magnetization. Fig. 4 shows the equivalent 
lengths of film for the curves of Fig. 2. 

If now a locally reversed region is established and the readout field 
applied again, the signal will have decreased, since the reversed region 
contributes to the signal with reversed sign. It has been found previ
ously6 that the presence of a domain wall has little effect on the macro
scopic magnetization distribution; hence, the curves of Fig. 2 may be 
used to estimate the new signal. In this case, the area under the cir
cumferential plot is taken negatively over the length of the reversed 
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region and positively for the remainder. Fig. 5 shows curves of net 
equivalent length versus width of reversed region. Curves a, and h 
correspond to strap half width of 1.0 mil but half separations of 3.5 
and 5.0 mils, respectively. Curves c and d correspond to strap half 
width of 10.0 mils, and half separations of 5.0 and 10.0 mils, rcspl'C
tively. 

IV. NONUNIFORM FIELDS LARGE ENOUGH TO PRODUCE LOCAL SATURATION 

When the local effective field reaches the value HI( then the local 
magnetization rotation has the value 7r/2; hence, Jl1 (x) = Jl1, the 
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1.0 
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0.8 0.8 

30.6 0.6 
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Fig. 2 - The curves denoted a, b, c, d refer, respectively, to a parallel drive strap 
arrangement of half widths 1.0, 5.0, 10.0, and 20.0 mils. (a) and (b) correspond 
to a strap-to-film axis distance of 3.5 mils, (c) and (d) correspond to 5.0 mils and 
(e) and (f) to 10.0 mils. (a), (c), and (e) give to normalized scale the field 
H(x)/H(O) applied along the axis of a 5.0 mil diameter, 1,um thick cylindrical 
permalloy film with HK = 3.0. (b), (d), and (f) show the resulting axial mag
netization components M (x) / M due to the actual (i.e., non-normalized) ap
plied field. 

saturation value. A further increase in the field cannot therefore, pro
duce any further increase in 1\;1 (x) and it is necessary to modify the 
preceding discussion to take the effect of saturation into account. 

We assume that the magnetization distribution is monotonic, and 
the width of the saturated region is specified at the outset. The cur
rent required to produce this degree of saturation may then be found 
for a given drive strap geometry, and the resulting magnetization dis
tribution is calculated. This somewhat arbitrary procedure renders 
the problem tractable. 

If the film has saturated over a region -R ~ x ~ R then the 
material within this region has 1\;1 (x) = j1;[ a constant; hence, 
dlVI (x) I dx vanishes within this region. It is convenient to introduce a 
modifying function S (x), having period A, that is zero over the range 
-R ~ x ~ R, but is otherwise unity. The product S(x)dM(x)ldx 
then has the property of being zero over - R ~ x ~ R but is otherwise 
equal to dM (x) Idx. By introducing this product into the integral for 
the demagnetizing field in place of dM (x) I dx, we have effectively 
modified the integral without changing the limits of integration. Let 
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Fig. 3 - Current in drive strap required to just saturate the film of Fig. 2 at 
x = 0, for the several drive strap geometries of Fig. 2. 

H (x) and M (x) be represented by the finite series 

N N 

H(x) = 2: hn cos 27rnX/A, M(x) = M 2: mn cos 27rnxlr.., 
o o 

also let S(x) be represented by a cosine series, then 

00 

Sex) = 2: Sn cos 27rnx/r.., 
n=O 

where for the required step function 

So = 1 - (2R/r..) , = .:.-4R (Sin 27rnR Ir..) 
Sn r.. 27rnR Ir.. ' n > O. 

Differentiating the series for M (x) , we have 

dM(x) 27rM ~ . 
-d- = --"\- L.." nmn sm 27rnxlr..· 

x 1\ n=O 

Then the product may be written, 

Sex) dJ.VfdX(x) -- 27rM ~ ~ 2 . I . 2 / --r..- f::'o f::'o sinmn cos 7rJx r.. sm 7rnX r.. 

MooN -T t; ~ sinmn(sin 27r(j + n)x/r.. - sin 27r(j - n)xlr..). 
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This represents a series of the form Ao + Alsin 27rx/>" + 
may rearrange by grouping the coefficients to obtain 

1537 

and we 

where 0; = 1 when p = n, but is otherwise zero, and the series for Sex) 
is terminated for subscripts greater than 2N. Using this final series in 
place of the series for dM(x)/dx in the integral (3) for the demagnetizing 
field we obtain, 

N {I N } Hm(x) = L: 2- L: (Sin-pi - Sn+p + soo;)pmp an cos 27rnx/"'A, 
n=l n p~l 

(9) 

where the an have the values calculated previously for the nonsaturat
ing case. There are now several conditions that the magnetization dis
tribution must satisfy: it has the value .il1(x) = .il1 over the range 
-R ~ x ~ R and satisfies the torque equation (6) outside this range, 
and finally, the amplitude of the applied field is such that M (x) 
determined from (6) has also the value JJ1 at x = ±R. The required 
field value is given by the calculation for any particular drive strap 
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Fig. 4 - The change in circumferential component of magnetization averaged 
along the film is proportional to the signal obtained during readout. This is ex
pressed in terms of equivalent length of film that would produce the same signal 
when uniformly excited to saturation. The plots are derived from the axial com
ponent distributions of Fig. 2. 
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configuration. We now substitute the series (1), (2), and (9) into 
the torque equation (6) and gathering coefficients, we obtain, 

H KmO = ho for n = 0 

and the set of N equations,' 

n = 1,2, ... ,N. (10) 

These N equations constitute a set of linear simultaneous equations in 
the N unknown coefficients m n • These equations may be expressed, 

f
Z 
W 
...J 

~ 
::> 

n=1,2,···,N, 

30~----~-------.------.------.------~ 
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Fig. 5 - Change in net equivalent length of film (proportional to output signal 
during NDRO), versus width of reversed domain established beneath drive strap. 
Curves a, b refer to strap half width of 1.0 mils, and strap to film axis distances of 
3.5 and 5.0 mils, respectively. Curves c and d refer to strap half width of to.O mils 
and strap to film axis distances of 5.0 and to.O mils, respectively. The curves are 
derived from the axial distributions of Fig. 2. 
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Fig. 6 - (a) Theoretical curve and experimental points taken with the Kerr 
effect probe6 for a saturated cylindrical film. The broken curve shows the relative 
fall off of the axial applied field. (b) The field is applied by a parallel drive wire 
arrangement shown in cross section. The current I applied in the drive wires is 
1.14 A. 

where the Cnp are given by 

C"P = {~';; (s,"_P' - s"+p) + (~a" + Hx)o:}. 
Such a set of equations may be conveniently inverted by computer 
for any particular case giving the mn coefficients in terms of the hn's. 
Since the mn and hn coefficients are linearly related, a scale factor, e.g., 
current in drive strap, is applied to H(x) to ensure that the distribu
tion has a value 111 at x = ±R. The resulting series indicates a non
uniform distribution for .Lll(x) within the range -R ~ x ~ R, but, by 
the action of Sex), this produces no demagnetizing field and therefore 
does not influence the distribution obtained outside the range. The 
value of 1I1(x) is therefore set equal to 111 inside the saturation range. 
The plot obtained within this range reflects instead the value of 
(H - Hm)/HK • 

Fig. 6 (a) shows a plot of the axial magnetization distribution where 
the film has saturated over a length of 30 mils, for a cylindrical film 
of 5.2 mil diameter, 0.69Jl.m thickness and HI( = 3.1 Oe. The broken 
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Fig. 7 - Axial component of magnetization for the cylindrical film of Fig. 6 
when driven to different degrees of saturation. 

curve of Fig. 6(a) shows a normalized plot of the applied field. The 
field is applied by a drive wire, and the separation between drive and 
return wire is 20 mils as shown in 6 (b). The calculation indicates a 
current of 1.14 amps to produce this degree of saturation. The points 
represent measurements made previously6 using the Kerr Effect probe. 

Fig. 7 shows the axial magnetization component for the geometry 
of Fig. 6 where the film has saturated to widths of 0, 10,20, 30, 40 mils. 
The applied field is shown in Fig. 8, curve a, versus width of saturated 
region produced by the field. Curve b is for a drive strap of half width 
10 mils and strap to film axis distance of 10 mils. The shape of the 
curve does not appear to vary markedly with drive strap geometry. 
It can be noted that little increase in current is required to extend the 
saturated region from 1 to 10 mils, but that saturation to greater 
widths requires increasingly larger currents. 

V. FILM THICKNESS VARIATION 

Now let T(x) be the variable film thickness and assume that T(x) 
and H (x) have the same periodic distance A, then we may write 

co 

T(x) = 2: tn cos (27rnx/'A). 
n=O 
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In the thin film approximation, magnetization variations within the 
thickness of the film are neglected and demagnetizing fields are cal
culated from the net pole density per unit area of film. To take into ac
count a variation in thickness we take the product T (x) 111 (x) as the 
total magnetization component in the hard direction and evidently the 
pole density is then given by - (d/dx) [T(x)lvI(x)]. 

Taking the product of the series, we obtain 

Jjf { N 
T(x)lIf(x) = 2 tomo + ~ tpm1' 

+ 1;, ~1np[(to+p + tlo-ol) + too::] cos 2""",/). }, 

hence, replacing 111 (x) by T (x) 111 (x) in (3), the demagnetizing field 
is given by 
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Fig. 8-Current required to produce a given width of saturated region along 
a cylindrical film of radius 2.6 mils, thickness O.69J,Lm, H K = 3.1 Oe. Curve a is for 
the arrangement of Fig. 6. Curve b is for a parallel conductor drive strap of width 
20 mils situated at ±10 mils from the film axis. 
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where o~ = 1 when n = p but is otherwise zero. Substituting into the 
torque equation (6), and equating coefficients we have finally 

and 

t;; [~. (t.+. + 1,._., + loo~) + Iho~ ] 11t. = h. , n = 1,2, ... ,N 

i.e., 

~ [~. (t.+. + 1,._., + 100;) + HKo; }n. = h. - a.l.ho/HK • (12) 

This last expression represents a set of linear simultaneous equations 
which may be solved numerically to give the coefficients lnn in terms 
of tn and hn. The calculation, when applied to the case of a flat film 
strip having an ellipsoidal cross section along the hard direction, sub
ject to a uniform field, predicts a uniform demagnetizing field of 
magnitude very close to that indicated by the tables of Osborne!} based 
on the solution of Maxwell's equation for the general ellipsoid. Fig. 9 
shows the magnetization distribution ncar an edge of a uniform thick
ness (0.22,um) flat film with HI( = 2.62 Oe. The points represent data 
taken with the Kerr effect probe. 
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Fig. 9 - Magnetization component near the edge of a fiat film of thickness 
O.22p,m, and H K = 2.62 Oe. The applied field is uniform and equal to H K. The 
edge runs parallel to the film easy direction. The points show measurements 
taken with the Kerr effect probe. 
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Fig. 10 - Axial magnetization component for cylindrical film segments of differing 
length due to the field from a parallel wire drive strap at distance ±7.5 mils from 
film axis. Curves a, b, and c refer to segments of length 40, 80, 160 mils, respectively. 
d refers to a continuous film. The current in the drive wire is 0.5 A. (b) shows a 
cross section of the drive wire arrangement. 

Fig. 10 shows, for comparison the magnetization distribution for a 
nonsaturating hard direction field applied to 5.2 mil diameter cylindri
cal film segments of differing lengths, but uniform thickness of 0.7,um, 
and H K = 3.0. The field is applied by a parallel drive wire arrangement 
of separation 15 mils. Finally, Fig. 11 shows the axial magnetization 
distribution for a uniform field applied to a cylindrical film having a 
circumferential cut. Film radius is 2.6 mils, thickness is 1.0 ,um and H K 

= 3.0 Oe. It is to be noted that the present technique has a spatial 
resolution limited both by the number of terms of the series that can 
be retained for computation, and by the basic limitation that exchange 
forces are neglected. vVe cannot, therefore, expect to obtain detail of 
magnetic behavior very close to an edge, for example, or for an ex
tremely narrow scratch. 

VI. ANISOTROPY MAGNITUDE VARIATION 

Let us assume that the anisotropy constant IS represented by a 
cosine series, i.e., 

K(x) I:: kn cos 27rnx/'A. 
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Fig. 11- Plot of axial magnetization component for a 5.2 mil diameter cylindri
cal film with a circumferential gap. The curves show the result for a 4 mil, 6 mil 
and wide gap. The axial applied field is uniform and equal to 3.0 oc. Film thickness 
is 1.0,um and HK = 3.0 Oe. 

Then substituting into the torque equation (6), and gathering terms 
we find 

(13) 

and 

t {~ CIc.+, + k,._" + koo;) + a,o;}"" = h. , 

n = 1,2, .,. ,N. (14) 

Together these equations represent N + 1 linear simultaneous equations 
in N + 1 unknown coefficients mp , and may be solved by computer. 
This calculation may be used for example to find the local behavior of M 
at the junction between two regions with differing anisotropy constants, 
or to find the effective permeability of a film having some systematic 
variation in anisotropy constant. A simplified discussion of this latter 
problem has been given previously.lO Fig. 12 shows the effect of using a 
high H K buffer region surrounding a normal H K section of film. Curve a 
shows the distribution for a uniform wire with H K = 3.0, b shows the 
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modification when HK is increased to a value HK = 15 for all distances 
beyond x = 10 mils and c shows the result when HK is further increased 
to 30 oe in the buffer region. The effectiveness of the high HK buffer 
region in sharpening the distribution can be noted. This is achieved, 
however, at the expense of greater current required to just saturate at 
x = O. For curves a, b, c the currents are 0.50, 0.79, and 0.93 A, re
spectively. Fig. 12(b) shows a cross section of the parallel conductor 
drive strap arrangement. 

VII. FIELD EXTERNAL TO FILM 

Combs and 'Vujekll have calculated the field external to a thin film 
rectangular slab assuming a pole distribution concentrated at the 
edges of the slab. vVe now calculate the field external to a continuous 
film subject to various applied field conditions where the details of the 
effective pole distribution form the essential part of the problem. The 
results of previous sections may be adapted to find the field external 
to films which have a hard axis variation in thickness or anisotropy 
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Fig. 12 - (a) Effect of high H K buffer region surrounding a normal H K section of 
cylindrical film. Curve a shows the magnetization component for a uniform 
film with H K = 3.0. Curves band c show the result when H K is increased to 15 and 
30 Oe, respectively for distances greater than 10 mils to either side of the drive 
strap centerline. (b) Details of drive strap arrangement. The currents required to 
just saturate the film at x = 0 are 0.5, 0.79, and 0.93 A for the cases a, b, and c, 
respectively. 
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but these cases are not considered in detail here. Consider the field at 
some distance d from the surface of a flat film and at distance x 
along the hard axis. The external field H fit parallel to the film due to 
the distribution of poles over the film surface may be found by evalu
ating the integral 

dll/(x) (x - X) dX dY T 
dx 

[dZ +-Y-z;-;-' +-(-X-_-X-:-)n::2]""-~ . 

Substituting for jvI (x) and performing the integration we find 

(15) 

H (d) 47lllfT ~ -2trdn/X 2 /" (16 ) me X, = --->-.- ~ nmne cos 7rnx 1\. a 

This is the external field parallel to the plane of the film given as a 
function of distance d from the film. For a cylindrical film the result is 

00 (2 )2 Hme(X, d) = -47raTiV[ ~ -~ Ko(27rnd/>-.) 

·lo(27rna/>-.)m n cos 27rnx/>-', (16b) 

where a is the cylinder radius, and d is the distance from cylinder axis 
to the location at which the axial component of field is measured, 
(d > a). The field inside the cylinder may be similarly derived, the 
result is 

00 (2 )2 Hme(x, d) = -47raTlVI ~ ~ Ko(27rna/>-')lo(27rnd/>-.)mn cos 2mx/>-., 

where now d < a. Along the cylinder axis 10 (0) = 1. Fig. 13 shows a 
plot of the axial component of the demagnetizing field for several values 
of distance from film axis. The cylindrical film is assumed to have a 
diameter of 5.2 mils, H [( = 3.0 Oe, thickness is 1.0p.m, and is excited by 
a one turn loop of radius 7.5 mils. 

The flux coupling a parallel wire loop parallel to a flat film surface 
and to the film easy direction with the conductors at ±D from the 
surface may now be found. The flux F per unit length of the parallel 
conductor loop is then 

F F 47rllf(x)T - 2 faD Hme(x, z) dz. 

Substituting for Hm6 and rearranging, we find 

N 

F = 47rMT L mne-2trnD/X cos 27rnx/>-.. (17) 
n=O 
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Fig. 13 - External axial component of field due to the distribution of mag
netization along a cylindrical film. (The field due to the drive strap is not in
cluded.) The field is plotted along lines parallel to the film axis, at several dis
tances from the axis. The film has a thickness of 111m, H K = 3.0 Oe, diameter 
5.2 mils, and is subject to the field from a one turn circular loop of diameter 15 
mils. Curves a, b, and c refer to distances of 2.6, 5.0, and 10 mils from the axis, 
respecti vely. 

If the magnetization distribution is due to the field from a parallel 
wire loop with conductors at ±d from the film surface, then using ex
pression (8a), we have 

F(x) = 7rCIlIl + 27rCIlIl L e-27rn
(D+d) cos 27rnx/A. (18a) 

47rT "AHK"A HK + an 

It can be noted that F(x)/47rT is formally equivalent to the magneti
zation component in the film at the plane of the loop due to a current 
I in a loop with conductors at ± (D + d) from the film. The mutual 
inductance between two loops (not necessarily enclosing the film) may 
then be found directly from the above results. 

The flux linkage between the film and drive loop is obtained by set
ting x = 0 and D = d. A current I in the loop gives rise to a magneti
zation component M (0, I, d) at x = 0, and the flux linking the loop is 
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given by 111 (0, I, 2d) , using (18a). The fractional flux linkage is there
fore M(O, I, 2d)/M(0, I, d). 

At x = 0, thc expression (18a) may be evaluated in closed form; the 
result is, 

:;~ = - 4!~T exp (2dHK /47rMT)Ei( -2dHK /47rMT). 

Hence the fractional flux linkage (FFL) is 

FFL = exp (p.d)Ei(-2p.d)/Ei(-p.d), 

where p. = 2HK/4rr111T and Ei is the exponential integral. This is a 
useful parameter which shows the degree of coupling between loop and 
film, and is plotted in Fig. 14 as a function of d, for a flat film of thick
ness O.Ip.m, HK = 4.0 Oc. 

The result for cylindrical films is more complicated. In this case it 
can be shown that 

F(x) _ 2CI7rNJ 
4rrT - )... 

~ d(¥rKo(~)Io(~)Kl(~)Io(~) cos~~ 
. ~ HK + 41r~T (27a)'Koe7a)Io(27a) , 
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Fig. 14 - Fractional flux linkage between a flat film of thickness O.1,um, H K 

= 4.0 Oe, and a pair of parallel wire conductors as a function of distance from 
film to the conductors. The parallel wire conductors serve as both drive and 
sense windings. 
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where the cylinder has radius a, thickness T and is excited by the field 
from a circular loop of radius d. F (x) gives the amount of flux picked 
up by a loop of radius D at an axial distance x from the drive loop. 

VIII. INTERACTION BETWEEN PARALLEL FIL1\IS 

Consider two plane parallel films (denoted 1 and 2) of thickness T 
and T' and anisotropy fields HK and H~ , respectively, separated by a 
distance w along a normal to the film's surface. A nonuniform field is 
applied along the (parallel) hard directions by a drive strap. Let the hard 
direction fields be H(x) and H'(x). The field acting on film 1 due to the 
distribution within film 2 we denote by H(X)12 , and similarly the field 
acting on 2 due to film 1 is H(X)21 . These fields are taken to act along the 
film's common hard direction, and the films are assumed to be sufficiently 
thin that fields normal to the surface have negligible effect. 

The torque equation determining the local rotation of magnetization 
within the two films may be written 

HK sin O(x) = H(x) + Hm(x) + H 12 (X) , film 1 (19) 

H~ sin O'(x) = H'(x) + H'm(x) + H 21 (X) , film 2. (20) 
Let .LvI (x), 111' (x) be the hard direction components of magnetization 
in the two films, then from previous sections we have (assuming cosine 
distributions) 

H(x) = L hn cos 27rnx/}.. 

H'(x) = L h~ cos 27rnx/}.. 

Hm(x) = -(3T L nmn cos 27rnx/}.., H'm(x) = -{3T' L nm~ cos 27rnx/}.. 

H 12(X) = -(3T' L n111,~ exp (-27rnw/t..) cos 27rnx/}.. 

H21CX) = -(3T L nmn exp (-27rnw/}..) cos 27rnx/}.., 
where f3 = 4iT2111/A. Noting that sin O(x) = ~1(X)/l11 and sin 0' (x) 
111' (x) /jl1, we substitute the above series into the two torque equations 
and equating coefficients, we obtain, 

HKmn = hn - {3nTmn - (3nT'm~ exp C-27rnW/}..)}. 

H~m~ = h~ - {3nT'm~ - (3nTmn exp C -27rnw/}..) 

Solving for mn and m~ , we have finally 

mn = [h _ (3nT'h~ exp (-27rnW/t..)] 
n H~ + {3nT' 

. [H + {3 T _ {32n
2
TT' exp (-47rnw/t..)]-1 

K n H~ + {3nT' (21) 
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m~ = [
h' _ (3nThn exp (-27r1lW/~)J 

n HK + (3nT 

. [HI + Q T' _ (32n
2
TT' exp (-47r1lW/~)J-l 

K fJ
n HK + (3nT (22) 

These expressions can be compared with the results when the films are 
present singly, i.e., at large separations, 

mn = (hn)(HK + (3nTt l 

m~ = (h~)(Hk + (3n'l")-l. 

Evidently the calculation can be extended to a greater number of layers 
and it is immaterial whether the drive fields are applied positively or 
negatively provided the fields are appropriately assigned, that is, the 
field may be generated by conductors located between or completely 
to one side of the films. The equations relating the coefficients mn , m~ 
may be concisely expressed in matrix form, 

{[~K :J -i3n[~ ~,J -i3n exp (-2K1tW/A{~' ~J}[:~J = [~J 
(23) 

The three matrix terms of the left-hand side represent in turn the effect 
of anisotropy, demagnetizing field, and interaction between films. The 
extension to three or more films is straightforward. Fig. 15 shows the 
effect of fiux closure between two films only 2 mils apart subjected to the 
field from a drive wire sandwiched between them. The films have equal 
thickness of 0.1 ,um and anisotropy field H K = 4.0 Oe. Since the fields are 
applied in opposite directions in the two films the demagnetizing fields 
tend to cancel and the magnetization distribution widths are smaller 
than for similar films well spread apart. Curve a shows the coupled 
distribution, and b shows the distribution with one film removed. The 
current required to just saturate the films is 0.127 A, with one film re
moved the current required rises to 0.170 A. With films of thickness 
1000 A, separations of order a few mils are essential for this effect to be 
appreciable. 

We may use the results (21) and (22) to examine the effect of a keeper 
layer. The action of the keeper is to modify the field applied to the film 
and to provide some degree of fiux closure. Consider the case of a fiat 
film situated between two drive wires, distance d from the film, with a 
keeper layer distance w > d from the film. Let primed quantities refer 
to the keeper, and unprimed refer to the film. The keeper typically has a 
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Fig. 15 - (a) Effect of fiux closure between two identical fiat films, separated by 
a distance of 2 mils. The field is applied by a single wire placed between the 
films as shown in (b). The films have a thickness of O.1,um and H K = 4.0 Oe. 
Curve b shows the result when one of the films is removed. The current required 
to just saturate the films at x = 0 now rises from the bifilm value 0.127 A to 0.170 
A for a single film. 

thickness of mils or tens of mils and hence 47r2MT' /"A » Hk for reason
able values of M and "A. Equation (21) then reduces to, 

1nn = [hn - h~ exp (-27rnw/"A)]/[HK + f3nT(l - exp (-47rnw/"A)]. (24) 

The field applied to the film in the absence of the keeper is H(x) = L hn 

. cos 27rnx/"A, where for the present case 

h _ 2CI7r 
o - "A ' 

4CI7r 
hn = -"A- exp (-27rnd/"A). 

I is the current in the drive wires. The field applied to the keeper is 
given by L h~ cos 27rnx/"A where h~ = 0, 

2CI7r 
h~ = -"A- {exp (-27rn(w + d)/"A) - exp (-27rn(w - d)/"A)}. 

Then, mo = 2C I 7r /"AH K , and 

mn = CI(27r/"A)[2 exp (-27rnd/"A) - exp (-27rn(2w + d)/"A) 

+ exp (-27rn(2w - d)/"A)]/[HK + f3nT(l - exp (-47rnw/"A))]. (25) 
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It can be noted that the terms in the numerator are equivalent to the 
coefficients of the field due to the drive strap directly, and to images 
of the drive straps, with the keeper as mirror. The image property of 
the keeper layer is well known and has had considerable application 
to the discussion of keepers, see, for example, Refs. 12 and 13. The 
effect of the mutual interaction between keeper and film is to modify 
the an factors (an = (3nT for a flat film) by a term 1 - exp ( - 47l"nw jA). 
The influence of this term is two fold, (i) the spreading of the mag
netization component is reduced and (ii) the drive field required is 
reduced. 

Fig. 16 shows the effect of a keeper layer on the distribution in a 
flat film of thickness 0.2flm, HJ[ = 4.0 Oe. Field is supplied by a pair 
of drive straps of width 10 mils carrying a current of 0.22 A, at a dis
tance of 5 mils from the film. The keeper layer is taken to be 6 mils 
from the film. Curve a shows the hard direction component in the 
absence of the keeper, b shows the effect only of the image fields 
due to the presence of the keeper, and c shows the final result when 
image fields and partial flux closure are taken into account. 
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Fig. 16-(a) Effect of a keeper layer on the magnetization distribution in a flat 
film of thickness 0.2,um, HK = 4.0 Oe. Field is applied by parallel drive straps of width 
10 mils at ±5 mils from the film. The keeper layer is taken to be 6 mils from the 
film as shown in (b). Curve a shows the hard direction component in the absence 
of the keeper, Curve b shows the effect of the image fields only when the keeper 
is present, and Curve c shows the final result when image fields and flux closure 
are taken into account. 
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The effects of a flat keeper layer on the. response of a cylindrical 
film are not amenable to calculation by the present method owing to 
the mixed geometry. 

The case of a cylindrical film with a concentric cylindrical keeper 
is next considered. The discussion closely parallels that for flat films 
and leads to a result analogous to (24), 

where for cylindrical geometry an = 47rM(T / a) (27rna/'A) 2 
10 (27rna/'A) 

. 1(0 (27rna/'A) . The field is applied by a loop (of radius d) around the 
cylindrical film (of radius a), and hn , h~ are the Fourier coefficients of 
the field at the surface of the film and at the keeper (radius A), respec
tively. The axial field from a circular loop of radius d, at distance a from 
the axis and x from the plane of the loop, is given by14.15 

H(x, a) = CI[ K(k) + ~ ~ ~: ~ :' E(k) ]i[(a + d)' + x'JI, 

where I( and E are complete elliptic integrals of the first and second 
kinds, respectively, and k 2 = 4da/[ (a + d)2 + X2]. 

It can be noted that the effect of the keeper is to modify the applied 
field and to reduce the demagnetizing field. Fig. 17 shows a practical 
approximation to such a keeper geometry. Fig. 18 shows a plot of axial 
magnetization component in a l,um thick permalloy film with HI( = 
3.0 Oe plated on a 5.2 mil diameter wire, subject to the field from a one 
turn circular loop of diameter 7.5 mils carrying a current 0.3 amps. 

'\ 
,_ DRIVE 

STRAP 

~ , 
' .......... CYLINDRICAL FILM 

Fig. 17 - A possible practical approximation to a cylindrical keeper geometry. 
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Fig. 18 - Effect of a cylindrical keeper layer on the axial magnetization dis
tribution in a cylindrical film of thickness 1.0,um, H K = 3.0 oe, diameter 5.2 mils. 
Field is applied by a one turn loop of radius 7.5 mils. Keeper radius is taken to 
be 10 mils. Curve a shows the distribution with no keeper present, curve b shows 
the effect of the keeper in modifying the applied field, and curve c shows the final 
result when field modification and flux closure are taken into account. 

The keeper radius is taken to be 10 mils. Curve a shows the distribu
tion with no keeper present, b shows the effect of field modification 
alone when a keeper cylinder of diameter 20 mils is in place, and c 
shows the final result when field modification and flux return are taken 
into account. 

IX. NONUNIFORM HARD DIRECTION FIELD IN PRESENCE OF EASY 

DIRECTION BIAS FIELD 

In this case the torque equation has to be modified to include the 
easy direction field HE (x), then 

2Ksin O(x) cos O(x) = 111(H(x) - Hm(x)) cos O(x) -llIHE(x)sin O(x). (27) 

Providing cos 0 =F 0, we may write, 

HK sin O(x) = H(x) - Hm(x) - HE(X) tan O(x), (28) 

where HK = 2KjM and it is assumed that HE is parallel to the easy 
direction component of magnetization. It is convenient to represent 
HE (x) tanO(x) by a series 
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N 

HE(x) tan e(x) = L dn cos 27rnx/Tr. 
n=O 

Substituting into the torque equation (28), and gathering coefficients, 
we have 

(HK + cxn)mn = hn - dn , n = 0, 1,2, ... , N. 

The coefficients dn are now complicated functions of the lnn's and this 
equation cannot be solved directly. Instead we use an iterative proce
dure as follows: H (x) is given a peak value insufficient to produce 
saturation in the case HE = 0 and then successive approximations are 
found for the lnn coefficients. In the first approximation we take 

tan (I(x) may now be found from sin (I(x) = Al(x)/J.l1, and the Fourier 
coefficients dn of the product HE (x) tan (I (x) , may be obtained. In the 
next approximation, we take 
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Fig. 19 - (a) Axial magnetization component for a cylindrical film with 
uniform easy direction bias field of 1.0 oe. The nonuniform hard direction field 
is applied by the drive strap arrangement shown in (b). In curve a, the bias field 
aids the rotation of magnetization for large x. A reverse domain is assumed to 
have been written into a width 20 mils, for x < 10 mils therefore the bias field 
opposes the rotation of magnetization. Curve b corresponds to zero bias field. 
Curve c corresponds to a reversal of bias field where it is assumed that the re
versed region has been erased. 
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We now find, as before, new coefficients dn ; hence, new coefficients mn , 
until the mn coefficients change by less than, say 5 percent per iteration. 
The curves for H(x) and M(x) are then plotted. The whole procedure 
may be repeated as necessary. The bias field may be a constant HE or be 
a step function changing from HE to -HE at some location x = R. The 
step function corresponds to the case of a domain wall being present at 
x = R. The use of the step function provides a formal way of treating 
the modification to the torque equation, due to HE and the easy com
ponent of M being parallel for x < R, and antiparallel for x > R. 

It is to be noted that the torque balance becomes unstable for certain 
combinations of applied fields. The critical fields are related by [H(x) -
Hm(x)]i + HJ = Hi, where it is assumed that HE is antiparallel to the 
easy direction component of M. This limitation does not apply when 
HE and the easy direction component of M are parallel. 

Fig. 19 shows a typical axial magnetization distribution for a cylindri
cal film, and corresponds to the procedure of "writing" into a region of 
film. A current in the plated wire produces a uniform easy direction bias 
field of 1.0 oe and an external drive strap produces a nonuniform hard 
direction field. The greater spread of the curve a compared with the 
zero bias field distribution [shown by curve b] is due to the bias field 
lowering the effective anisotropy to HK - HE for rotations less than 
about 40°. The attempt to "erase" by reversing the bias field, curve 
c, raises the apparent anisotropy to HK + HE over much of the curve, 
and hence the film response is generally reduced. In curve c it is as
sumed that the reversed region has been erased. It will be appreciated 
that the present calculation assumes at the outset that a domain 
wall has some given location. The resulting distribution must then 
be inspected to decide whether the location chosen was appropriate 
or even stable under the applied field. In a practical case, wall location 
is affected by additional factors such as dispersion and creep, and is not 
discussed further here. Experiments on flat films show that the reversed 
region is not totally erased by simple reversal of bias field. Fig. 20(a) is a 
Kerr effect picture showing a reverse domain of width 20 mils, written 
in by a bias field of 1 Oe and a peak drive field of 5.0 Oe (11 mil strap, 
10 mils from film). Fig. 20(b), shows the result of reapplying the fields 
with reversed bias. Fig. 20(c) shows the result of first demagnetizing 
the film into a fine domain structure, the width of the domain established 
is now much wider. In this case, the effect of the bias field changing the 
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(a) 

Cb) 

(c) 

FILM 

Cd) 
-- DRIVE STRAP 

Fig. 20 - (a) Kerr effect picture showing reversed domain (light) in a flat 
film written in by an 11 mil drive strap situated 10 mils beneath the film. (b) 
When bias field is reversed, the domain is not completely erased. (c) Width of 
domain written after first demagnetizing film with a large uniform hard axis 
field. (d) Shows the drive strap arrangement to the same scale. 

apparent anisotropy is much reduced, but the film now has an appre
ciable remanent state; hence, significant hard direction local demag
netizing fields exist in addition to the field introduced by the effect 
of the external fields. The relevance of such considerations to domain 
wall creep processes, under practical operating conditions, warrants 
further study but is not pursued here. 

X. CONCLUSION 

Demagnetizing fields play an important role in the operation of 
many thin magnetic film devices. The requirement of high packing 
density as in a memory, leads to strong localization of induced changes 
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in magnetization, and to correspondingly large demagnetizing fields 
and drive currents. 

In an open flux structure attempts to confine magnetization changes 
by using segmented films or high anisotropy buffer regions are suc
cessful only at the expense of a considerable increase in drive field 
requirement. To some extent flux keeper layers may be used to modify 
applied fields and to permit partial flux closure, with in consequence, 
both a lowering of drive currents and a reduced spread in induced 
magnetization component. 

The method of calculation given here permits a detailed examina
tion to be made of the effectiveness of such procedures, and has been 
applied to a variety of thin film demagnetizing field problems. Kerr 
effect probe measurements6 are in good agreement with calculation 
although relatively little data is at present available. The results have 
particular applicability to cylindrical film problems, where axial varia
tion of field or properties is of primary concern. 
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Some Properties alld Limitations of 
Electrollically Steerable Pllased 

Array Alltellllas* 

By D. VARON and G. 1. ZYSMAN 

(Manuscript received April 4, 1967) 

This paper is a treatl1wnt on linear and planar phased arrays of current 
sources, whose amplitudes are uniform and scan-invariant. By recognition 
that the radiation impedance of an array element is an analytic function 
of a complex scan variable, a powerful mathematical tool becomes avail
able for the investigation of some important properties of the impedance 
as a function of scan. For example, it is proven that in a finite array the 
impedance seen by such a scan-invariant current source cannot be per
fectly matched over a continuous scanning range using lossless, linear, 
passive and time-invariant elements. This result is extended to the infinite
array case by treating the latter as a pericdic structure, and assuming 
that the Green's function of the unit cell is analytic with respect to the 
scan variable. The theory includes both linear and planar arrays. Among 
other results it is shown that the element impedance in an infinite array 
must be of a specific mathematical form. It is hoped that by recognizing 
the limitations imposed thereby, useful guidelines will be established for 
achieving optimal match of an array into space. 

1. INTRODUCTION 

The class of antennas widely known as phased arrays includes es
sentially two types of radiators: stationary and steerable ones. The 
first operates at fixed amplitude and fixed relative phase between the 
array clements. Consequently, the antenna characteristics, such as ra
diation pattern, input impedance, and mutual coupling between ele
ments, remain unchanged during the entire operational lifetime of the 
antenna. The steerable antenna is characterized by time varying ex-

* This work was supported by the U. S. Army under contract DA-30-069-
AMC-333(Y). 
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citation. The relative phase between adjacent elements is varied either 
mechanically or electronically to bring about a variation in the orien
tation of the beam. In most instances scanned arrays are large. in size 
and may contain several thousand elements. Their illumination has a 
linear phase taper. As a result the antenna characteristics become scan 
dependent. The relationship between scan angle and various param
eters of interest such as gain, element impedance, and mutual coupling 
between elements have been the subject of intense investigation in re
cent years.l

• 2 One particular direction has been towards improvement 
of the impedance match over wide scanning ranges.3 At present the 
merit of a matching technique can be determined only relatively to 
other techniques. To the best of the authors' knowledge an absolute 
mathematical criterion, based on physical realizability requirements, 
has not been formulated. Some investigators4.5 claim that a perfect 
match of an infinite array for all scan angles (at which the active im
pedance is not infinite, zero or purely reactive) can be achieved by an 
infinite set of interconnecting network elements. However, the proof 
is based on the assumption that the scan-dependent equivalent load 
impedance at the array-space interface remains unchanged after the 
sources have been interconnected by coupling clements. Although this 
assumption has been successfully applied3

•
5 to improve the matching 

capability of an infinite array, it is incorrect to use it in a perfect 
matching scheme. 

In this paper a new mathematical approach to phased array anal
ysis is presented. The model for the analysis is a phased array of ideal 
current sources (electric or magnetic) of scan-invariant uniform am
plitude. This model is further discussed in Section II. The analysis 
itself is based on the general laws of antenna theory and on those 
properties which are common to all phased arrays represented by the 
model. 

The first part of the theory is devoted to finite arrays and is treated 
in Section III. The starting point of the theory is a theorem which 
establishes that the radiation impedance of an element in a finite array 
is an analytic function of the scan angle. Further, it is shown that an 
element in a linear or planar phased array cannot be perfectly matched 
over a continuous scanning range by using lossless, linear, passive and 
time-invariant elements. Then it is demonstrated that the directions 
in space of the beams' maxima are eigenvalues of a Laplacian differ
ential operator with periodic boundary conditions which are related to 
the phase taper of the array, and several useful properties of those 
eigenvalues are derived. 
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The second part of the theory appears in Section IV and is devoted 
to infinite arrays, which play an important role in the analysis of large 
phased arrays. The investigation is based on a transformation bet"ween 
the scan angle and a complex variable 8 = a + j{3, which can be in
terpreted OIl 0 < a ~ 1, {3 = 0 as the trigonometric sine function of the 
angle between the plane of the array and the direction in which a chosen 
grating lobe propagates. It is subsequently shown that the element 
impedance, as a function of 8, is restricted to a specific mathematical 
form. Recognition of the limitations imposed thereby may provide new 
insight into the behavior of such arrays. 

II. PRELIM IN ARY REMARKS 

The model chosen for the following treatment is a linear or planar 
phased array excited by a set of ideal current generators of uniform 
amplitude and linear phase taper. The description ideal implies that 
the sources have no internal impedance and are invariant under any 
loading. This means that except for the relative phasing between con
tiguous generators the currents are scan independent. Frequently in 
antenna analysis induced currents are replaced by equivalent sources 
by application of the equivalence principle.G Such currents are not part 
of the sources. The induced currents are accounted for automatically 
by fulfillment of the requirement that the tangential component of 
the electric field has to vanish on all conductors. In general, the source
current amplitude in each element of the array may be a function of 
scan. However, this dependence is generally unknown and is often 
neglected in theoretical work. The types of excitations commonly used 
are the "free excitation" and "forced excitation".* The first assumes a 
generator with a scan-invariant internal impedance which is capable of 
delivering scan-invariant incident power. In the latter a constant termi
nal voltage or current is maintained. As pointed out by Oliner and 
lVIalech free excitation is easier to realize in high-frequency technology 
than forced excitation. The latter, however, is more tractable here. 
The results of this study remain valid for scan-dependent excitation 
as well, provided the current density of the source is a smoothly vary
ing function of scan angle and can be analytically continued into a 
complex scan-angle plane. 

Under the assumption that the array is excited by a uniform ampli
tude and a linear phase taper, the current density excitation function 

* A. A. Oliner and R. G. Malech, Ref., 1, pp. 209-211. 
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of an ).11 -element linear array (Fig. 1) is given by 

_ jlO(X - ma, y, z)e
imif

, 

lex, y, z, 1/;) -

o otherwise 

ma ~ x ~ (m + I)a, 

m = 0, 1, ... , 1.11 - 1, 
(1) 

and that of an 1.11 X N element planar array of rectangular symmetry 
(Fig. 2) is given by 

ma ~ x ~ (m + 1)a, 

nb ~ y ~ (n + I)b, 

m=0,1,2, ,M -1, 

n = 0,1,2, ,N - 1, 

o otherwise. 

(2) 

The above currents can be either electric or magnetic the latter being 
regarded as equivalent to ideal electric voltage sources. 

Note that the spherical coordinate systems in Fig. 1 and 2 differ 
from those commonly used in phased array analysis. The poles are 
located at endfire instead of broadside and the ranges of colatitude and 
azimuth are such that the upper hemisphere is spanned by 0 ~ (J ~ 7r, 

o ~ «) < 7r. This convention is chosen for reasons of mathematical 
convenience. The results derived in Section III are valid for linear 
as well as planar arrays. The inclusion of both cases in a single 
treatment is facilitated by a generalized notation for the current 
density excitation function. The steering phases m1/; and m1/;z + 
n1/;y are replaced by an equivalent "steering coefficient" (J'm,,(<{)pq) in 
the plane of scan oriented at azimuth angle <{)pq • The steering coefficient 

Fig. 1- Linear phased array. 
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UPPER HEMISPHERE z 
o ~¢pq < 'IT 

o ~ 8pq)~ 'IT 

Fig. 2 - Planar phased array. 

is derived by its relatiom;;hip to the direction of a beam's maximum, 
which is determined for linear arrays by the equation 

tf + 2p7r = ka cos ()po 

and for planar arrays by 

p = 0, ±1, ±2, ... ± 00 (3) 

tfx + 2p7r = ka cos ()plJ. cos i.pplJ. 

tfy + 2q7r = kb cos ()pq sin i.pplJ. 

p = 0, ± 1, ±2, ... ± 00 (4a) 

q = 0, ±1, ±2, ... ± 00, (4b) 

where k is the wave number in the medium, and ()pq is as shown in Fig. 
1 and 2. The steering coefficient is then defined by 

(jmn(i.ppq) = k(ma cos i.pplJ. + nb sin i.pplJ.) 

p, q = 0, ±1, ±2, ... ± 00. (5) 

Equations (1) and (2) can now be written as 

at i.pPIJ. = canst. 

Jo(x - ma, Y - nb, z) exp (j(jmn cos ()plJ.) , 

ma ~ x ~ (m + l)a, 

° otherwise 

nb ~ Y ~ (n + 1) b, 

m = 0,1, 

n = 0,1, 

,M -1, 

,N - 1, 

(6) 
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Under the above generalization the excitation function for the 
linear array becomes a special case, q = 0, N = 1, <ppq = 0, and the 
period in the v-direction extends from - 00 to + 00 ; or alternatively 
p = 0, }JI[ = 1, <ppq = 7r /2 and the period in the x-direction extending 
from - 00 to + 00. Since the phase constant exp {j<Tmn(<ppq) cos Opq} 
is independent of (p, q), any Opq may be chosen as the independent 
variable of scan. The subscript pq will henceforth be omitted whenever 
the mathematical expressions are independent of (p, q). 

The time dependence eiwt is assumed throughout the analysis. In 
a steerable array the phase taper is time dependent. However, it is 
understood that the rate of change of the phase taper is very small 
in comparison to the angular frequency, i.e., dif;/dt « w, since only 
under that condition do the classical concepts of directivity and radia
tion impedance remain meaningful. If if;(t) is a step function it is as
sumed that the time interval is long enough to allow all transients 
to reach negligible values before a new step is initiated. 

The formal solution of the array problem is obtained from l\1ax
well's Equations via a vector potential A(x, y, z, 0) which is a solution 
of the inhomogeneous reduced wave equation 

(7) 

where J.l. is the permeability of the medium. The magnetic field is given by 

H = ! V X A, 
J.l. 

and the electric field (under Lorentz gauge) by 

E = -jw(A + ~2 VV.A). 

(8a) 

(8b) 

The solution to (7) over infinite space V can be written in closed 
form in terms of a dyadic Green's function 7 

A(x, y, z, 0) = J.l. Iv S(X, y, z I ~, 11, r) 'J(~, 11, r, 0) d~ d11 dr, (9) 

where g(x, y, z I ~, 11, r) is a solution of 

a2§ a2g a2g 2= 

ax2 + ay2 + ai + k 9 = -1o(x - ~) o(y - 11) o(z - r), (10) 

j being the unit dyadic axax + ayay + azaz • The boundary conditions 
which S has to satisfy are derivable via the Vector Green's Theorem* 

* P. M. Morse and H. Feshbach, Ref. 7, p. 1767. 
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by imposition of the requirement that the tangential component of 
the electric field has to vanish on all conductors. This guarantees that 
all induced currents are accurately determined. 

It can be shown8 that the average complex power delivered by the 
mnth element in the array is 

(11) 

where 

Jmn(X, y, z, e) = J(x, y, z, e), 

ma ~ x ~ (m + l)a, nb ~ y ~ (n + 1) b (12) 

the asterisk (*) denotes complex conjugate, and V mn is a simply con
nected volume occupied by Jmn. If Smn is a surface obtained by taking 
a cross section through V mn, the total current, I mn , flowing through 
the cross section Smn is 

Imn = If J·ds. 
Smn 

(13) 

The element radiation impedance, Z1lln, is defined in terms of the com
plex power by 

Pmn=illmnI 2 Zmn. (14) 

By (10) and (13) via (8b) and (9), the element radiation impedance 
can be defined directly in terms of the array geometry and the excita
tion: 

Zmn(e) = I I~n 12 Ivmn IvJ!n(X, V, z, e) ·G(x, V, z 11;, 11, t) 

. J(I;, 11, t, e) dT dv, (15a) 

where dT = d~d'Y]dt, dv = dxdydz, and 

G(X, y, z 11;, 11, t) = jWJl.(J + f2 VV) 'S(x, v, z r 1;,11, t). (15b) 

Operator \l operates on (x, y, z). The quantity II "'n12 is introduced for 
the purpose of normalization, and may depend on the choice of the 
cross section Smn. 

The definition of the impedance includes both linear and planar ar
ray elements. It is consistent with the commonly known definition of 
impedance!) if the latter is viewed as a relation between the average 
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complex power delivered by the generator and the rms current flowing 
into the load. The definition given by (15) is necessary in view of the 
fact that in a system excited by distributed currents, a terminal volt
age in the time domain is not always uniquely defined. In a system 
excited by magnetic currents, (15) defines the element admittance if 
the permeability JL is replaced by the permittivity€ and the electric 
currents by their magnetic counterparts. 

In the following theoretical discussion, it is assumed that the phased 
arrays are excited by a uniform amplitude and a linear phase taper. 

III. FINITE ARRAYS 

Theorem 1: The element radiation impedance in a finite, steerable, linear 
or planar phased array of scan-invariant current sources, radiating into 
a linear, loss less, passive and time-invariant system, is an entire function 10 

of the scan angle 0 in any given plane of scan, with an essential singularity* 
at 0 ~ 00. 

Proof: By (15a) 

1 Irs 12 Zrs = f f Jr~(x, y, z, O)·G(x, y, z I~, 7], r)'J(~, 7], r, 0) drdv. 
V" V 

(16) 

On expanding (16) in a double sum of integrals over all cells {(m, n) }, 
m = 0, 1, .. ',111 - 1; n = 0, 1, .. " N - 1, and using the relationships 
of (6) followed by a change of variable in each term of the sum, one 
obtains 

lIf-1 N-l 

L L Zmnrs exp [j(CTmn - CTrs) cos 0], (17a) 
m=O n=O 

where 

Zmnrs = -I II 12 f f Jt(X, y, Z) 
rs Voo Voo 

·G(x + ra, y + sb, Z 1 ~ + ma, 7] + nb, r)'Jo(~, 7], r) dr dv. (17b) 

In any given plane of scan 'P is constant, so that 

CTmn - CTrs = k[(m - r)a cos cp + (n - s)b sin cp] = CTm-r,n-s (18) 

is independent of e. Both cos e and the exponential function are entire 
functions. t Consequently, the exponential function appearing in (17a) 

* R. V. Churchill, Ref. 10, Sec. 68, p. 157; Sec. 112, p. 270. 
t R. V. Churchill, Ref. 10, Sec. 21, p. 47; Sec. 23, p. 50. 
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is an entire function of an entire function, which is likewise entire! 
(entire functions are also called integral functions). Zrs (fJ) is a finite 
sum of entire functions and is also entire. 

The nature of the essential singularity at (J ~ co is obtained by first 
expanding cos () in the complex ()-plane 

cos (Or + jOi) = cos Or cosh Oi - j sin Or sinh Oi . (19) 

Then, if I Oi I -7 00 in such a way that (<Tmn - <Tr8 )Oi > 0, the mnth 
term behaves as exp {I <Tmn - <Trs I sin Or exp [I Oi In Q.E.D. Note 
that even when ]o(x, y, z, 0) is scan dependent, Zrs(O) is analytic pro
vided ]0 (x, y, z, 0) is analytic. However, other isolated singularities 
may exist. 

Corollary la: Re {Zrs} and :0 Re{Zrs} are entire functions of 0 each 

with an essential singularity at 0 -7 00. Proof appears in Appendix A. 

Theorem 2: The power radiated by an element in a finite, steerable, linear 
or planar phased array of scan-invariant current sources, radiating into 
a lossless, linear, passive and time-invariant system cannot be kept con
stant over a continuous scanning range with lossless, linear, passive and 
time-invariant network elements and scatterers only. 

Proof: Let G(x, y, z I ~, '1], r) be the dyadic Green's function of the 
entire system including all equalizing elements. The radiation impedance 
of the mnth element of the array is given by (15a) for a lossless, linear, 
passive, time-invariant system. If the array is radiating constant power 
over a continuous scanning range, the real part of the radiation im
pedance, Rrs(O) = Re{ Zrs}, must remain constant in that range and 

(20) 

where 0 = Or + jOi . By Corollary la, ~ [Rrs(O)] is analytic in the ao 
closed O-plane and has an essential singularity at 0 --7 00. However, 
if the derivative vanishes along the line 01 ~ Or ~ O2 it must vanish 
everywhere in the O-plane*. Hence, it cannot have an essential singu
larity at infinity. The contradiction implies that Rrs(O) cannot be 
constant over a continuous scanning range. Q.E.D. 

Equations (3) and (4) specify the directions of the beams' maxima, 
however, not all of them correspond to real directions in space. Whereas 
'Ppq is real for all (p, q), (Jpq can be either real or imaginary, as may be 

* P. M. Morse and H. Feshbach, Ref. 7, Vol. I, p. 390. 
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seen from the solution of (4): 

-1 (t/;y + 2q7r)a 
CPpq = tan (t/;x + 2p7r) b ' o ~ CPT/q < 7r (21a) 

_ -1 t/;x + 2p7r _ -1 t/;y + 2q7r 0 < 0 < 
Opq - cos k - cos kb· ,= pq = 7r. a cos CPpq SIn CPpq 

(21b) 

If Opq is real it is said that the beam is in real space. By way of mathe
matical generalization it is said that all those beams having an imaginary 
Opq are in "imaginary space". If Opq = 0, or Opq = 7r, it is said that the 
beam is in a grazing position between real and imaginary space. It 
can easily be verified from (21) that for a given phasing (t/;x, t/;y) every 
pair (p, q) corresponds to a unique direction (cpPfJ' Opq) in the complex 
domain 0 ~ cP < 7r, 0 ~ Re{ O} ~ 7r. These directions are the char
acteristic directions of the system. They are directly related, through (4), 
to the eigenvalues of 

a2F a2F 2 

-a 2 + -a· 2 + r F(x, y) = 0 
x Y 

(22) 

with the following periodic boundary conditions 

F(x, y) = F(x + a, y) exp (- jt/;x), (23a) 

aF aF . 
ax (x, y) = ax (x + a, y) exp (-Jt/;x), (23b) 

F(x, y) = F(x, y + b) exp (- jt/;y), (23 c) 

aF aF . 
-a (x, y) = -a (x, y + b) exp (-Jt/;J. (23d) 

y Y 

The eigenfunctions, which form a complete orthogonal set in the 
interval 0 ~ x ~ a, 0 ~ y ~ bare 

F .. (x, y) = exp [j(,yz + 2p.-) ~J exp [M, + 2q,r) tJ ' 
p,q=0,±1,±2,···±00. (24) 

By (4) they can also be written as 

Fpq(x, y) = exp Uk cos Opq(x cos CPpq + Y sin cPpq)}. (25) 

The eigenvalues {rpq} are 

p, q = 0, ±1, ±2, ... ± 00. (26) 
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The results thus derived lead to several interesting conclusions which 
are summarized in the following lemmas. 

Lemma 1: Every steerable linear or planar phased array with a linear 
phase taper has only a finite number of beams in real space. Proof appears 
in Appendix B. 

For every pair of phasing (1/1:&, 1/Iy) there exists an infinite set of 
characteristic directions {epa, cPpq}. As the array is scanned by varying 
the values of (1/Ix, 1/Iy) in the intervals -7r ~ 1/Ix ~ 7r, -7r ~ 1/Iy ~ 7r 

some characteristic directions will go through a grazing position going 
from imaginary to real space or vice versa. We shall call such char
acteristic directions "transitive characteristic directions".* Since the 
condition for a grazing position is I cos epq I = 1, it follows from Lemma 1 
that the number of transitive characteristic directions is finite. 

Lemma 2: The radiation impedance of an element in a linear or planar 
phased array can be expanded by an infinite series over all characteristic 
directions of the system. Proof appears in Appendix C. 

IV. INFINITE ARRAYS 

In analyzing large arrays it has been found useful to approximate 
the behavior of the center elements by the behavior of identical ele
ments in an infinite array of the same geometry,u This approximation 
is motivated by the fact that the performance of the center elements 
is strongly affected through mutual coupling by contiguous elements, 
but very weakly by elements far away.13 

The formulation of the infinite array problem may be obtained from 
the results derived for finite-size arrays by letting the number of 
elements Jl1 and N approach infinity. The infinite array problem can 
also be treated as a periodic structure by application of Floquet's 
theorem. In the following, the latter approach is adopted, but first it 
is demonstrated that both methods are consistent. 

The electric field of an infinite array as given by (8b) must satisfy 
the same periodicity conditions as the source function, i.e., 

E(x + ma, y + nb, z) = E(x, y, z) exp [jCTmn(CP) cos eJ. (27) 

* Note the distinction made between "grazing position" and "transitive charac
teristic direction". A beam associated with a transitive characteristic direction 
may attain a grazing position for a particular phasing, but may also point in other 
directions. 



1572 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967 

On the other hand, the electric field 

E(x, y, z, e) = - [G(x, v, Z I~, 'f], t)'J(~, 'f], t, e) dT (28) 

can be expanded in an infinite sum of integrals using the relationships 
of (6): 

00 00 

E(x, y, z, e) = - L L exp (jO"mn cos e) 
m=-Ci'.) n=--oo 

. Iv .. G(x, y, z 1 ~ + ma, 'f] + nb, t)· Jo(~, 'f], t) dv, (29) 

where Voo is the volume occupied by Jo . Define a new Green's function 

Go(x, y, z 1 ~, 'f], t) 
00 00 

= L L exp (jO"mn cos e)G(x, v, z I ~ + ma, 'f] + nb, t) (30) 
m=-oo n=-oo 

and notice that 

Go(x, v, z 1 ~ + Ma, 'f] + Nb, t) = exp (-jO"!lfN cos e)Go(x, y, z I~, 'f], t) 
(31) 

since by (5) 

O"m + !If ,n+N = O"mn + O"!lfN • (32) 

From (27) and (31) it follows that Go(x, y, Z 1 ~, 'f], t) can be expanded 
by the eigenfunctions (25) as 

00 00 

Go = L L gpq(z 1 t)Fpq(x, y)Fp~(~, 'f]), (33a) 
p=-oo q=-oo 

where 

(33b) 

Substituting (30) via (33a) into (15a) for the center element, m = 
n = O,one obtains 

00 00 

Zoo = L L Zpq, (34a) 
p=-oo <1=-00 

where 

Zpq = 1 I~o 12 [00 Ivo. J~(x, y, z) 

. gpq(z 1 t)F:q(~, 'f]) Fpq (x , y). Jo(~, 'f], t) dT dv. (34b) 
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Equation (34) is an alternate representation to (86) for the radiation 
impedance of the infinite array element and it demonstrates that 
Lemma 2 is valid for infinite arrays as well. _ 

By substituting the new representation for Go, (30), (33), into (29) 
and noting that the electric field satisfies the homogeneous reduced 
wave equation in the source-free region, one obtains for the unbounded 
space 

00 00 

E(x, y, Z) L L 8 pqFpq(x, y) exp (-'Ypq , z i) , z , > dmax , (35a) 
p=-oo q=-oo 

where 

and dmax is the projection on the z-axis of the largest distance between 
two points on the surface enclosing Voo. It can be seen that the electric 
field in the source-free region, above the central area of a large array 
may be approximated by a finite number of homogeneous plane waves 
propagating in the real characteristic directions, and an infinite num
ber of nonhomogeneous plane waves, exhibiting exponential decay in 
the direction perpendicular to the plane of the array. The latter are 
interpreted as waves propagating in the imaginary characteristic di
rections. 

In an infinite array all elements are embedded in an identical en
vironment, and therefore the power radiated by each element is the 
same. There is no net power flow into a unit cell through the "side 
walls". Consequently, the quantity Re{/loo/2zpq } of (34b) is equal to 
the power propagated by the plane wave (p, q) within a unit cell in 
the direction perpendicular to the plane of the array. By Lemma 1 
there is only a finite number of plane waves with transitive charac
teristic directions (see footnote p. 1571). Let them be distinguished 
from all other plane waves by assignment of the subscript (p, q) = 
(T, v). 

ETV = 8 TVFTvCX, y) exp (- jk , z I sin ()n), 

H TV = 3CTVF TV (x , y) exp (- jk , z , sin ()TV) , 

where Fn(x, y) is given by (26), and 8 TV by (35c). If 

I z , > dmax (36) 

I z I > dmax , (37) 
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then 

(39) 

The power radiated by a (r, v) plane wave per unit cell into the upper 
hemisphere is 

1 la lb P rv = 2' Re 0 0 (ETV X Hr~) ·az dx dy. (40) 

Substitution of (36) through (39) into (40) gives 

P _ ab. *[ 1 . 12 + 1 . 12 + sin (Jrv 1 . 1
2J (41) rv - sIn (Jrv BTP ax Brv ay ,. (J* BTV az 

'YJo SIn TV 

where 'YJo = (p./ E)!. From (41) a radiation resistance per wave is defined as 

(42) 

Since the entire system is passive and lossless, then by conservation 
of energy, the power P rv must originate from the element itself. Hence, 

(JTV real, (43) 

where ZTV is given by (34b). 
From (41) it follows that when a wave (r, v) is in real space Rrv 

is real, and when it is in imaginary space R rv is imaginary (in which 
case Re {zrv} = 0). Hence, of all the elements comprising the source's 
load, Rrl' appears either resistive or reactive, depending upon the 
scan angle. Such properties of a load, which are unknown in lumped 
network theory, are a consequence of the losslessness postulate. When 
propagation is possible power is carried away from the source. When 
propagation is inhibited there is no net loss of power and the load 
must be reactive. By Lemma 1 only Re{zrv} has those properties. 
All other ZPQ' (p, q) ~ (r, v) and 1m {ZTV} always retain their dis
sipative or reactive characteristics. Further, there is only a finite 
number of terms having Re{zp(l} > O. In practical phased arrays the 
spacing between the elements and the scanning range are such that 
only one such term exists at a time. 

The following two definitions summarize the properties described 
above: 

Definition 1: An O-type network function is a scan-dependent immit
tance (impedance or admittance) which is seen by the source as resis-
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tive when the beam is in real space and as reactive when the beam is 
in imaginary space, and it behaves like an open circuit for impedance 
and like a short circuit for admittance in the grazing position. 

Definition 2: An E-type network function is a scan-dependent immit
tance (impedance or admittance) which remains either resistive or re
active when the beam passes through the grazing position. 

The motivation behind the nomenclature introduced by the two defi
nitions will become clear later, in Theorems 4 and 5. The O-type and 
E-type immittances are of distinct mathematical form. To arrive at it 
consider first the following transformation: * 

s = sin (Jmn 

x = cos <Pmn , 

(44) 

(45) 

where (m, n) is one particular transitive characteristic direction out 
of all (T, v). Given s and X all other characteristic directions are 
uniquely determined. By (4) 

1/;x = lcaxVI=? - 2m1r' 

1/;11 = kbv'l - x2 VI=? - 2n7r, 

(46) 

(47) 

where (1 - x2
)! ~ 0 for all possible X and (I - S2)! > 0 if 0 ~ (Jmn < 7r/2, 

and (1 - S2)! < 0 if 7r/2 < (Jmn ~ 7r. Then by substitution of (47) 
into (22) all other characteristic directions are found: 

where 

t 
kab(l - X2)t(1 - l)! + 2(q - n)7ra 

an <PPI2 = kabx(l _ S2)! + 2(P - m)7rb 

kax(l - i)! + 2(p - m)7r. 
ka cos <PPI2 

(48a) 

(48b) 

(48 c) 

This suggests that when characteristic direction (m, n) is scanned in a 
plane X = const, each of the components ZPI2 of the total input impedance 
as given by (34) can be expressed as a function of the same variable 8. 

The conformal mapping between the Bmn-plane and the s-plane is shown 
in Fig. 3. In view of the branch cut -1 ~ a ~ 1 it will be understood 
that s = a denotes s = a - jO if 0 ~ (Jmn ~ 7r /2 and s = a + jO if 
7r/2 ~ Bmn ~ 7r. Let s = STP be the value at which characteristic direc-

* Recall that 8m" and <pm" are not in the conventional spherical coordinate sys
tem (see p. 1564). 
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Fig. 3 - Conformal mapping 8 = sin Omn. 

tion (r, v) is in grazing position. At this value 

(49) 

Of all values {Srv} there is at least one which satisfies (49) for Srp = O. 
From (48) it is obvious that f!n(O) = 1, and there may be other transi
tive characteristic directions (r, v) ~ (m, n) which attain their grazing 
positions at s~v = O. 

Theorem 3: In an obstacle-free space, the impedance function Zpq(s), 
associated with the characteristic direction (p, q), is an analytic function 
of the complex variable s = a + j(:J, with branch points at s = Srv and an 
essential singularity at I s I -7 00. If (p, q) = (m, n) then ZmnCs) may 
have a simple pole at s = Smn = O. 

Proof: The general definition of Zpq is given by (34b) in which the 
8pq dependence is contained in the Green's function component 
gpq(z I r)Fp~(~, 17)Fpq(x, y). The Green's function is derived from (10) 
via (15b). Green's function g(x, y, Z I ~, 17, r) satisfies the same periodic 
boundary conditions as Go (x, y, Z I ~, 17, r) and can be expanded in a 
series similar to (33a): 

00 00 

9 = L L Cpq(z I r)F1)ix, y)F:q(~, 7]). (50) 
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By substitution of (50) into (10) and use of the orthogonality property 
of Fpq(x, y) one obtains a differential equation for Cpq(z I t") 

d
2Cpq 2 = = o(z - t") 
dz2 - ,,/pqCpq(Z I t") = -I ab 

(51) 
,,/pq = jlc sin Opq 

with the additional requirement that as I Z I -+ 00, Cpq behaves as an 
outgoing or evanescent wave. The solution of (51) for free space is 

= = 1 
Cpq(z I t") = I '). b~ . 0 exp { - jlc I Z - t" I sin Opq} (52) 

-Ja C SIn pq 

gpq(Z I n is obtained from Cpq(z I n through an operator (511)q : 

gpq(z I t") = jW}lCRpq.Cpq(z I t"), 
where 

(53a) 

(53b) 

!D pq being given by (38). Substitution of (52) into (53a) followed by 
substitution into (34b) gives 

Zpq = 2 bk I I W}l12 . 0 1 1 ]t(x, y, z) a 00 SIn pq Yoo Y oo 

·cRpq • Jo(~, 7], t") exp Uk cos Opq[(x - ~) cos CPpq 

+ (y - 7]) sin cPpq] - jk I Z - t" I sin Opq} dr dv. (54) 

The integrand is an entire function of Opq with an essential singularity 
at I 1m {Opq} I -+ 00. Hence, * if J o (x, y, z) is piecewise continuous, 
the integral is also an entire function with the same essential singularity. 
By (48) 

(55) 

By Lemma 1, 

f~is) ~ 1 if (p, q) ~ (r, v). (56) 

From Fig. 3 it is readily seen that I s I < 00 when I Opq I < 00 which 
implies, via (48), (55) that I cos Opq I < 00 and I sin Opa I < 00 as long 
as I s I < 00. Thus, the singularities introduced by the transformation 
(44), (45) ,are the branch points at s = Srp. Also if (p, q) = (m, n)t 

* E. J. Copson, Ref. 11, Sec. 5.5, pp. 107-109. . 
t Recall that (m, n) is the characteristic direction which defines the transforma

tion from (..pz, ..py) into (8, x), (44)-(47). 
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Zpq may have a simple pole at S = O. (Note, for example, that for hori
zontal polarization, Jo = axJo, there is a simple zero in the plane of 
scan corresponding to CPmn = 0, at S = 0.) Q.E.D. 

The above proof can be applied separately to the real and imaginary 
parts of the right-hand side of (54). If Zpq = Rpq(s) + jXpq(s), then Rpq(s) 
and Xpq(s) are analytic functions of s, real on the real axis of s, with 
an essential singularity at I S I ~ 00, branch points at S = STY' and 
possibly simple poles at S = o. 

In systems other than obstacle-free space, the normalized complex 
power Zpq(s) has different forms. Except for isolated values of s, the 
radiated power and the stored energy per unit cell are bounded and 
continuous functions of S over those portions of the real and imaginary 
axes of the s-plane which have physical meaning. Hence, it is reasonable 
to postulate that an analytic continuation of Zpq as a function of scan 
can be made into a region of the complex s-plane which includes por
tions of both the real and imaginary axes. It may be of interest to 
note that the impedance function Zpq(s) derived by L. Stark14 for the 
planar dipole array over a ground plane is analytic. The regularity 
of Zpq(s) depends directly on the regularity of gpq(z I t; s). The singu
larities of Zpq in the s-plane are determined by the boundary conditions 
which gpq(z I t; s) satisfies. 

Theorem 4: An E-type immittance function V(s) is an even function of s. 

Proof: Let the complex variable s be defined with respect to the transi
tive characteristic direction (m, n). Once (m, n) is chosen, the proper 
branch of (1 - S2)! in (48) is uniquely determined. Let (k, l) denote 
all other transitive characteristic directions which reach their transitive 
position simultaneously with (m, n). Formally, this implies 

(T,V) = (m,n), (k, l). (57) 

As a consequence of Definition 2 and Lemma 1, V(s) is recognizable as 

V(s) = {Rpq(S) 

Xpq(s) 

(p, q) ~ (m, n), (k, l), 

all (p, q), 
(58) 

where Rpq(s) + jXpq(s) =zpq(s), Zpq given by (54). Thus, (58) estab
lishes the connection between the defined E-type function and physical 
quantities corresponding to Rpq (s) and Xpq (s). Consider Definition 2 
which states 

V(s) 

V(s) 

V*(s) = 0 

V*(s) = 0 

s = a 0 < a < 1, 

s = j{3. 

(59a) 

(59b) 
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Since V (s) is analytic and also real on the real axis of s, 
rewritten as'* 

V(s) V(s*) = 0 

V(s) - V(s*) = 0 

On the real axis 

s = a 0 < a < I, 

s = j{3. 

V(a) - V(a) = O. 

On the imaginary axis 

V(j{3) - V( - j(3) = O. 

1579 

(59) may be 

(60a) 

(60b) 

(61a) 

(61b) 

By analytic continuationt of (61 b) from the imaginary axis to a point s 
in the complex plane one obtains 

V(s) - V( -s) = O. (62) 

Hence, V (s) is an even function of s. Q.E.D. 

Theorem 5: An O-type immittance W(s) is an odd function of s. The 
proof is similar to that of Theorem 4 and it appears in Appendix D. 

It has been shown in Theorem 2 that a finite phased array cannot 
be perfectly matched over a continuous scanning range. The proof is 
limited to finite arrays and cannot be directly extended to infinite ar
rays since the representation of the element impedance by (17a) does 
not guarantee convergence in the complex O-plane if the limits of the 
summations are extended to infinity. In treating the infinite array, the 
element impedance is derived by symmetry considerations from which 
it is concluded that the net complex power radiated from each element 
is conserved entirely within the unit cell of that element. It has been 
shown that the two definitions are consistent. Although the problem of 
whether an infinite array can be perfectly matched is of academic in
terest only, it is worthwhile noting that as for finite. arrays, the answer 
in this case is also negative. To show this the reader may recall that 
the impedance has been defined as normalized power and postulated to 
be an analytic function of the scan variable s = a + jf3. The normaliza
tion constant is 110012 given by (13). If the complex power as a func
tion of scan is represented by 

Pes) = / 100 /2 [R(s) + jX(s)], 

* P. M. Morse and H. Feshbach, Ref. 7, Vol. I, p. 393. 
t Morse and Feshbach, Gp. Cit., p. 389. 

(63) 
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then by Lemma 1, the term R (s) is a finite sum of analytic functions 
of the complex variable s. Consequently, R (s) is an analytic function 
of s. In general, it may be represented as 

R(s) = E(s) + 0(s) , (64) 

where E(s) is an even function of sand 0(s) is an odd function of s. 
Under conditions of perfect match over a continuous range, constant 
power, P r , is radiated over that range. Since R(s) is analytic it implies 
R(s) = P r 1 100 1-2 everywhere in the s-plane. Since a constant is even, 
0(s) = O. Further, E(s) must have a branch cut on the real axis of the 
s-plane in the interval [-1,1]. But the branch cut does not exist if 
E(s) = P r 1 100 1-2

• The contradiction implies that Pes) in (63) cannot 
equal a constant over a continuous range of s. 

Theorem 6: The resistance and reactance functions of an element, or their 
derivatives, in an infinite linear or planar phased array of current sources 
are discontinuous when a grating lobe is in a grazing position. 

Proof: In an infinite array the grating lobes are plane waves propagating 
in the characteristic directions. By Theorems 4 and 5 the element 
impedance Z(s) in an obstacle-free space can be written as 

Z(s) = pes) + Q(s) . 
s 

(65) 

For real values of s, P(s) is an even complex function of s bounded at 
s = 0, and O'(s) is an even real function of s nonzero at s = O. On the 
real axis of s 

Q(a) 
Z(a) = pea) + -. 

a 

On the imaginary axis of s 

Z(j{3) = P(j{3) - j Q(j{3) . 
{3 

(66a) 

(66b) 

A grating lobe is in its transitive position at s = O. The pole discon
tinuities are established by showing that 

Re {lim Z(a) - lim Z(j{3) } lim Q(a) = 00 (67a) 
a ..... O fJ ..... O a ..... 0 a 

1m {lim Z(a) - lim Z(j{3)} lim Q(j{3) = 00. (67b) 
a"'" 0 fJ ..... O fJ-+O {3 
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The pole discontinuity has to be interpreted as an invalid mathe
matical solution at the. transitive position, It is a result of the idealiza
tion introduced by the concept of an "infinite array." If Rmn(s) has a 
simple zero at s = 0, as is the case when a horizontally polarized array 
is placed above a ground plane, then the active impedance in the 
neighborhood of s = 0 can be written as 

Z(s) = R(s) + jX(s) , (68a) 

where R (s) and X (s) are real functions of s (real for s real). 

00 

R(s) L aisi (68b) 
i=O 

00 

Xes) = L 2i b2iS • (68c) 
i=O 

When the beam whose transitive ch ara cteristi c direction IS in real 
space, S = a 

00 

Ra ~ R(a) = L aic/ (69a) 
i=O 

and when it is in imaginary space, s = j(3 

Rfj ~ Re {R(j{3)} = i: (-1) i a2i{32i. (69b) 
i=O 

The discontinuity in the derivative of the resistance is 

l ' dRa l' dR{3 
1m -- - 1m -d{3 = aI' 
<>->0 da (3->0 

(70) 

Similarly, the reactance. 
00 

X <> ~ X(a) = L b2ia
2i (71a) 

i=O 

00 

X{3 ~ 1m {Z(j{3)} = L (-I)i[b2i{32i + a2i+I{32i+l] (71h) 
i=O 

l ' dX" l' dX{3 
1111-- - Im-- = -a l • 

<>->0 da {3--->0 d{3 
(72) 

The proof can be generalized for any order algebraic singularity or 
zero at s = 0, For example, if there is a zero of multiplicity N the dis
continuity will be in the Nth derivatives of the resistance and react
ance, A noninteger order zero yields a discontinuity after a sufficient 
number of differentiations. Q.E.D. 
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V. SUMMARY AND CONCI ... USIONS 

A new mathematical approach to phased arrays has been adopted 
to investigate and discover various properties of the radiation imped
ance of an array element as a function of scan angle. The underlying 
idea of the method is the treatment of the impedance as an analytic 
function of a complex scan variable, which enables one to prove that 
an array element subj ect to the model chosen cannot be perfectly 
matched over a continuous scanning range by using lossless, linear, 
passive and time-invariant elements. 

The first half of the theory is devoted to finite arrays. It is shown 
that the directions (in space) of the beams' maxima are eigenvalues 
of a Laplacian differential operator with periodic boundary conditions, 
which are related to the phase taper of the array. It is proven that 
there exists only a finite number of real eigenvalues. The known con
cept of imaginary space is then adopted to accommodate the imagi
nary eigenvalues. Furthermore, it is demonstrated that all beams except 
a finite number are completely confined either to real space or to 
imaginary space, and that only a finite number of beams may attain 
a grazing position. The unique properties of the latter beams have 
been found to play an important role in the investigation of infinite 
arrays, to which the second half of the theory is devoted. 

The interest in infinite arrays, apart from its academic aspect, stems 
from the good approximation it provides for the behavior of the cen
ter portion of a large finite array. It has been found that the infinite 
array element impedance as a function of scan is restricted to a spe
cific mathematical form. It is the authors' hope that recognition of the 
limitations imposed by that form may provide useful guidelines in 
achieving optimal match of an array to space. 
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APPENDIX A 

Proof of Corollary 1 a 

a 
Corollary la: Re{Zr.} and ae Re{Zrs} are entire functions of e each 

with an essential singularity at e -+ 00. 
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Proof: Denoting 

Zmnr. = Pmnrs + jXmnr. (73) 

one obtains from (17 a) 

.M-l N-l 

L L {Prnnrs cos [Brnnrs(e)] - Xmnrs sin [Brnnr.(e)]} , (74) 
rn=O n=O 

where 

(75) 

and 

a .M-l N-l 

aeRr.(e) = - ~ ~ B~nr.(e){Pmllrs sin [Bmnr.(e)] 

+ Xmnrs cos [Bmllr8( e)] } • (76) 

Since cos e is an entire function of 8, cos [B lIlnrs (8) ] and sin [B1Ilnl•s (8) ] 
are entire functions of an entire function, and are therefore entire. The 
existence of the essential singularity can be demonstrated in a similar 
fashion to that in Theorem 1. Q'.E.D. 

APPENDIX B 

Proof of Lemma 1 

Lemma 1: Every steerable linear 01' planar phased array with a linear 
phase taper has only a finite number of beams in real space. 

Proof: A beam (p, q) is in real space if I cos 8pq I ~ 1. Dividing (4a) by 
ka and (4b) by kb, squaring and adding, one obtains 

(77) 

or 

(78) 

Necessary conditions for the above inequality to be satisfied are 

I l/Ix + p I ~ ~ 1 
21r a 

(79) 

(80) 
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Since 

_1 < 1/;x < 1: and 
2=27r=2 

a 1 
Ipl~X+2 

b 1 
1 q I ~ X + 2' 

Hence, both p and q are bounded. Q.E.D. 

APPENDIX C 

Proof of Lemma 2 

(81) 

(82) 

Lemma 2: The radiation impedance of an element in a linear or planar 
phased array can be expanded by an infinite series over all character
istic directions of the system. 

Proof: The current density excitation function of a finite-size array 
given by (1), (2) satisfies the periodic boundary conditions (23) in 
the finite domain occupied by the array. Let this domain be denoted 
by D. The current density can, therefore, be uniquely expanded in D 
in terms of the eigenfunctions (25): 

00 00 

J(x, y, z) = U(x, y, D) L L jpq(z)Fpq(x, v), (83) 
p=-oo q=-oo 

where 

1 l a l U 

jpq(Z) = db 0 0 Jo(x, y, z)Fp~(x, y) dx dy (84) 

and V (x, y, D) is a two-dimensional unit step function 

U(x, 1/, D) ~ {~ (x, y) 111 D, 
(85) 

otherwise. 

Substitution of (31a) into (15a) yields 

00 00 

Zmn = L L Zmnpq , (8Ga) 
p=-oo q=-rx; 

where 

1·'Zmnpq = -I I 1 121 1 J!n(X, y, z) .G(x, y, Z 1 ~, r], ?;) 
mn Vmn V 

Q.E.D. 
·jpQ(?;)Fpq(~, r])U(~, r], D) dT dv. (86b) 
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APPENDIX D 

Proof of Theorem 5 

Theorem 5: An O-type im,mittance TV (s) is an odd function of s. 

Proof: Let the complex variable s be defined with respect to the tran
sitive characteristic direction (m, n). Let (k, l) be all other transitive 
characteristic directions which reach their transitive position simul
taneously with (m" n). Then as a consequence of Definition 1 and 
Lemma 1 

TY(s) = Rva(s) (p, q) = (m, n), (le, l), (87) 

where Rpq(s) = Re{zpq}, Zpq given by (54). Thus, (87) establishes the 
connection between the defined a-type function and a physical quan
tity corresponding to Rpq(s). From Definition 1 

W(S) - vV*(s) = 0 S = a, 

W(S) + W*(s) = 0 

O<a<l 

S = j{3. 

(88) 

(89) 

Since W (s) is real on the real axis of s, (88), (89) may be rewritten as 

On the real axis 

W(s) - W(s*) = 0 

W(s) + W(S*) = 0 

S = a 

S = j{3. 

vV(a) - W(a) = O. 

On the imaginary axis 

vV(jf3) + W( - jf3) = O. 

(90) 

(91) 

(92) 

(93) 

By analytic continuation of (93) from the imaginary axis to a point 
s in the complex plane one obtains 

W(8) + W( -8) = O. (94) 

Hence, W (8) is an odd function of 8. Q.E.D. 
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An Energy-Density Antenna for 
Independent Measurement of the 

Electric and Magnetic Field 
By W. C.-Y. LEE 

An energy-density antenna which can measure both the E field and H 
field of a plane wave simultaneously has been developed, consisting of two 
small orthogonal semiloops over a ground plane. Hybrids were used to take 
the sum and difference of the loop outputs, giving voltages uniquely pro
portional to the E and H fields. The loop dimensions and optimum con
figurations were experimentally determined by measurements at a frequency 
of 836 MHz in a man-made free-space environment. Energy-density com
putation from the measured E and H fields of a standing wave in free space 
showed that the maximum-to-minimum range of the energy density is much 
less than that of either the E or H fields alone. 

I. INTRODUCTION 

A new way of reducing the signal fading encountered on a mobile 
radio transmission path is being investigated.1 One source of fading 
is due to the fact that plane waves propagating in opposite directions 
at the same frequency produce a standing wave with nulls in the elec
tric field every half free-space wavelength. The magnetic field also 
has nulls like the electric field but displaced a quarter wavelength 
from the electric field nulls. The electromagnetic energy density of 
such a pure standing wave is constant. If we sample E and H in free 
space and amplify the signals by the appropriate relative gains, 
square and add them, we obtain a signal proportional to electromag
netic energy density 

(1) 

The resulting output would be constant as we move through this 
idealized standing wave pattern. This method of energy-density uti
lization may be helpful in overcoming the rapid fading due to motion 
through the more complicated standing wave patterns in the mobile 
radio electromagnetic field. To utilize the energy concept, we need an 
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antenna that has three outputs independently proportional to the 
field components Ez, Ha;, and Hy at any point in the field (assuming 
vertical polarization). Since neither the ordinary loop antenna nor the 
shielded loop antenna can be used in this particular case, an investiga
tion ,vas undertaken to develop a suitable antenna. 

This paper describes a particular antenna* which satisfactorily meets 
these requirements. The antenna consists of two small orthogonal loops 
and will be described later. Measurements on such an antenna and 
several other comparable ones were made in a simulated free-space 
environment. 

II. METHOD OF TESTING THE PROBES 

Fir!3t of all, we need a method of test which tells us how well the 
antenna is responding to the H field alone. As mentioned before, the 
nulls of the E and H field in an ideal standing wave pattern are ,\/4 
apart. Therefore, if we can establish such an ideal pattern, the E nulls 
can be located accurately by a whip antenna; then the positions of the 
H nulls are known. Then we can test the magnetic probe in this en
vironment, looking for nulls at these H -null positions. 

A conducting ground plane 16 feet X 3 feet was surrounded with 
commercially available absorbers (minimum absorption is 17 dB one
way) to provide a man-made free space. Two waves traveling in 
opposite directions were produced by exciting two identical trans
mitting antennas from a common source. These two transmitting 
antennas "8" and "N," approximately 12 A apart, were ,\/4 whip 
antennas operating at 836 MHz over the ground plane as shown in Fig. 
1 (a). The receiving antenna under test could slide in a slot about 2 A 
long which is in between the two transmitting antennas. E fields were 
first tested separately from the two transmitting antennas in order to 
make sure that the reflections in the man-made free space were small, 
and that the individual fields were sensibly constant along the length 
of the slot~ The two curves shown in Fig. 2 are the amplitudes of the 
signal from each of the transmitting antennas. The field from the "N" 
antenna had a maximum-to-minimum variation range of about 2.5 dB, 
and that from the "8" aritenna a variation range of about 3.5 dB. 

*A brief description of this antenna appears in two papers: (1) Theoretical and 
Experimental Study of· the Properties of the Signal from an Energy Density 
Mobile Radio Antenna, presented at the IEEE Vehicular Communications Con
ference on December 2, 1966, in Montreal, Canada. (2) Statistical Analysis of 
the Level Crossings and Duration of Fades of the Signal from an Energy Density 
Mobile Radio Antenna, B.S.T.J., 46, February, 1967, pp. 417-448. 
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Fig. 1- (a) Experimental set-up. (b) Energy-density antenna-double orthog
onalloop antenna. 

These variations, due to residual reflections, were felt to be acceptable. 
Since the average amplitudes of signal strength of two transmitting 
antennas were not quite the same, II-dB attenuation was put on "S" 
antenna, and 10 dB on "N" antenna in order to get a good standing 
wave. The peak-to-null value of the standing wave produced when 
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Fig. 2 - Amplitude of signal strength along the slot receiving from one trans
mitting antenna only. 

both transmitting antennas were excited was then 23 dB, as shown in 
Fig. 3. We should remember that the measured standing wave was ob
tained from two E fields. Then we know a standing wave of the H 
field exists which will have the same peak-to-null value but a A/4 
shift from the standing wave of the E field. 

III. TYPE OF ANTENNAS TESTED 

3.1 Single-Ended Loop 

A semiloop with one end grounded and the other end as output can 
be used as a magnetic field probe. However, the size of the loop is 
critical. Large errors are obtained in measuring the magnetic fields 
unless its diameter is less than 0.01 A (about 0.14 inch diameter at 
836 MHz).2 

3.2 Double-Ended Loop 

A semiloop with two output ends can be used as a combined electric 
and magnetic probe:l If the double-ended loop is in the field of a plane 
wave, the sum of the two outputs of the semiloop is proportional to the 
E field, and their difference. to the H field. If the plane of the loop is 
in line with the direction of propagation the output is proportional to 
the total H field, otherwise only to a component of H field. This would 
be a limitation in using this type of probe for general purposes. 

3.3 Two Orthogonal Loops 

This antenna has been proposed for receiving a linearly polarized 
wave coming from a remote source which may not necessarily be in 
line with the plane of the loop. It consists of two double-ended loops 
with their planes perpendicular to each other. The "orthogonal loop 
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antenna" has two pairs of outputs. Adding two pairs of outputs sep
arately gives two values which should be identical and expressed 
theoretically as proportional to the total E field. Subtracting two pairs 
of outputs separately gives the two components of the H field. These 
two components are the components along the rectangular coordinates 
which have been defined by the planes of the two loops. The orthogonal 
loop antenna is an electric and magnetic field probe which appears to 
be promising for probing the energy density of the total field. Hence, 
it is called the energy-density antenna. 

3.3.1 Connected Loops 

The two loops are electrically connected at the top point. Since this 
configuration can allow the two loops to be identical, the two values of 
E field obtained from the two loops are expected to be equal, the cur
rents in the two loops are correspondent to the two components of the 
H field which are normal to the planes of two loops. However, the 
connection at the top points is not exactly at the middle, which may 
introduce some errors. 
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Fig. 3 - Standing wave along the slot by using a whip antenna as a receiving 
probe. 
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3.3.2 Unconnected Loops 

The two loops are not connected electrically at the top points. In this 
configuration the two loops cannot be identical. One loop must be bent 
at the top in order to disengage the top point from that of the other 
loop. Therefore, the E field obtained from two loops may be different; 
also the two H component fields. However, the current in one loop 
may not be affected by the other due to the fact that the two loops are 
unconnected. 

IV. EXPERIMENTAL RESULTS 

4.1 Single-Ended Loop 

The standing wave along the slot was measured by using different 
sizes of the single-ended loop. Investigation of three loops, 1, 1.5, and 
2 inches in Fig. 4 shows that a 1.5-inch loop is better than the other 
two. The nulls of H field of the 1.5-inch loop are located more like the 
true H field though the. amplitude of H field is 2 dB less than the 2-inch 
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Fig. 4 - Standing wave of H fields along the slot by using a semiloop as a 
receiving probe (one end output). 
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loop. Comparing the 1.5-inch loop with the I-inch loop, the amplitude 
of the 1.5-inch loop is 3 dB higher and the nulls are still located slightly 
better than in the I-inch loop. Hence, the 1.5-inch loop is chosen even 
though it is 1/36 A off the true H field (the standing wave of the true 
H field should be exactly a A/4 shift from the E field). This was due 
to the effect of the electric field. The 1.5-inch loop is approximately 
0.1 A in diameter. This size of the loop was selected and used in the 
other types of loop configurations. 

4.2 Double-Ended Loop 

The standing wave along the slot was measured by using a semiloop 
as a receiving probe. The two outputs from the 1.5-inch semiloop were 
connected to a hybrid ring where the sum port gave the E field, and 
the difference port gave the H field. Since the plane of the loop was in 
line with the two transmitting antennas, the H field was a total H field. 
The E field and the H field outputs are shown in Fig. 5. The first null 
of the H field on the right had a slight disturbance which was prob
ably due to the imperfect free space. 

4.3 Two Orthogonal Loops (unconnected) 

This probe consisted of two semiloops 1.5 inches in diameter. The 
size of the loop was chosen from Fig. 4. The circuit arrangement is 
shown in Fig. 1 (b), except the top points of two loops were not con
nected. 

4.3.1 45° Orientation 

A double orthogonal semiloop was tested at an orientation of 45° to 
the line between the two transmitting antennas. Fig. 6 shows the two 
components of H field: H 1 and H 2. The two H components should be 
equal since the two loops were oriented 45 0 to the axis. However, the 
two loops, due to the fact they were roughly hand-made, were not 
precisely 45° to the axis. They were also not connected at the top 
points. So the fact that H 2 was higher from loop 2 than H 1 was from 
loop 1 was not a surprise. Fig. 6 also shows the E fields from the 
two loops, and we note that the nulls of the E field from loop 2 were 
lower than loop 1. The difference between the two loops was that 
loop 2 had more cross section area than loop 1. 

4.3.2 90° Orientation 

A double orthogonal semiloop was oriented at 90° to the line be
tween the two transmitting antennas. In this case, H 2 should equal 
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Fig. 5 - Standing waves of E and H fields along the slot by using a semiloop 
as a receiving probe. 

the H field and HI should read zero output. From Fig. 7 we see that III 
is 18 dB down compared with H 2, but has apparently picked up some E 
field since the peaks of HI are almost located at the nulls of H2 and 
vice versa. H 2 in Fig. 7 is almost equal to the vector sum of the two 
components, HI and H 2, in Fig. 6 (45° case.) as one would expect. E 1 

and E2 in Fig. 7 should be identical. They both represent the E field. 
In an ideal situation, El and E2 in Fig. 7 and in Fig. 6 should all be 
the same. Since the two loops were not connected at the top point, the 
maximum output from loop 1 was slightly lower than loop 2. Hence, 
the nulls of the four E's were not the same. 

4.4 Two Orthogonal Loops (connected) -- Energy-Density Antenna 

The two orthogonal loops (1.5 inches in dia.) were connected at the 
top point of two loops, shown in Fig. 1 (b). 

4.4.1 45° Orientation 

A double orthogonal semiloop was oriented at 45° to the two trans
mitting antennas. Fig. 8 shows the two components HI and H 2. Since 
the loops, due to the fact they were roughly hand-made, were not 
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oriented precisely 45° to the axis and were not actually quite sym
metrical to the center, the two components HI and H 2 were not equal. 
There was no remarkable difference between Fig. 8 and Fig. 6. Fig. 8 
shows the two E fields: EI and E 2 • Their peaks are almost the same, 
which might be due to the fact that the two loops were connected at 
the top points, but the nulls did not coincide with each other due to 
the two unsymmetrical loops. Comparing Fig. 8 and Fig. 6, we found 
that we had better results when there was a connection at the top 
points of the two loops in that the nulls of EI were somewhat deeper. 

4.4.2 90° Orientation 

A double orthogonal semiloop was oriented at 90° to the two trans
mitting antennas. Fig. 9 shows H2 which is the amplitude of the total 
H. Loop 1 picked up some E field, as HI shows, of about the same value 
as in the unconnected case. HI was almost 20 dB down compared with 
H 2 • There was no remarkable difference between Fig. 9 and Fig. 7 
except that HI in Fig. 9 picked up more like a pure E field although 
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Fig. 6 - Standing waves of H fields and E fields along the slot by using a 
double orthogonal semiloop antenna unconnected at the top point (oriented 
at 45°). 
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it has small field strength. Fig. 9 shows that El and E2 almost coin
cided, but in Fig. 7 they did not. Hence, it is better when the two loops 
connect at the top points than when they do not. 

V. ENERGY-DENSITY COl\IPUTATION 

We used the Hand E components of two connected orthogonal loops 
oriented at 45° (Fig. 8) and 90° (Fig. 9) to compute two sets of 
energy density from the measurements made in the free-space environ
ment. Since both E and H were measured in volts, the energy density 
we computed from (1) is 

Fig. 7 - Standing waves of H fields, and E fields along the slot by using a 
double orthogonal semiloop antenna unconnected at the top point (oriented 
at 90 0

). 
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Fig. 8 - Standing waves of H fields and E fields along the slot by using a 
double orthogonal semiloop antenna connected at the top point-an energy
density antenna (oriented at 45°). 

(2) 

where 

H2 alH~ + a2H 

a a weighting factor (a factor relating the level of average peak 
values of Hi and H2 components to the E field), and 

w' = the energy density in our calculation. 

From Fig. 8 we found that the maximum value of HI was about 
1 dB less than H 2. Also from Fig. 9 we found that the maximum value 
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Fig. 9 - Standing waves of H fields and E fields along the slot by using a 
double orthogonal semi loop antenna connected at the top point-an energy
density antenna (oriented at 90°). 

of either of two E fields was about 2 dB less than H 2. Hence, we might 
suggest the following equation representing the energy density obtained 
from this particular antenna: 

w' (1.122Hl)2 + H; + (1.26E2? 

(1.26?[(0.89H 1)2 + (0.795H2)2 + E;], (3) 

where £Yl = 0.89 and a2 = 0.795. From (3) we can calculate two energy
density curves, one shown in Fig. 10 for the orientation of antenna at 
45° and another also shown in Fig. 10 for the orientation of antenna at 
90°. From both curves, the maximum-to-minimum range was only 
about 2.4 dB, compared to 18-20 dB in Fig. 8 and 9 for the E and H 
fields alone. 
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Fig. 10 - The energy-density calculation of an energy-density antenna (oriented 
at 45° and 90°). 

VI. CONCLUSION AND CO:\E\IENTS 

An energy-density antenna with loops of 1.5 inches in diameter was 
selected from the measurements as the one to test in the mobile radio 
field. The connected orthogonal loops were somewhat better than un
connected ones. For two orientations of the loop in the standing wave 
field in the test environment, the computed energy density varied 
much less than any of the field components. The configuration of the 
energy-density antenna could be used at other frequency ranges by 
scaling the diameter of the loops. After an energy-density antenna was 
made, a calibration to obtain the weighting factors al and a2 was 
needed to set up a proper energy-density equation for this particular 
antenna. 

I wish to take this opportunity to thank 'V. C. Jakes, Jr., for his 
advice and suggestions. 
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Error Probability for Binary Sigllaling 
Througll a Multipath Channel 

By R. T. AIKEN 

(Manuscript received February 27, 1967) 

Error probability is considered for binary signaling through a multipath 
channel in which (i) the receiver observes a waveform comprising white 
Gaussian noise and the sum of (perhaps several) time-delayed, frequency
shifted, Rayleigh-faded versions of the transmitted waveform, (ii) the 
receiver decides with minimum error probability which of the two possible 
transmissions was sent. Results given herein for the exact minimum error 
probability necessarily depend upon a number of parameters and are 
cumbersome to use. By introducing bounds on the error probability, de
pending upon bounds on spectra of certain matrices, the number of param
eters is reduced and the less cumbersome results become applicable to any 
one of a set of channels rather than to just one channel. The error-prob
ability bounds are presented in terms of values of the distribution function, 
derived herein, of the difference of two chi-square random variables. The 
bounds are sharp when the spectra are narrow. For the case of widely 
orthogonal signals, any version of one possible transmission being orthogonal 
to any version of the other transmission, the bounds are given as a set 
of universal curves plotted versus signal-to-noise ratio for various values 
of the number of paths and of the spectral width of certain matrices. Spectral 
bounds can easily be computed when the versions for each transmission 
are nearly orthogonal. Returning to the general case, another bound is 
derived, by a technique due to Chernoff, which does not explicitly require 
spectral bounds which may neither be readily available nor be accurate 
approximations of eigenvalues. This bound is not as sharp as the previous 
bound for the case of small spectral width, but has promise for the large
width case. 

1. INTRODUCTION 

This paper considers error probability for the optimum reception 
of binary signals transmitted through a multipath channel having 
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P paths. * One of two possible signals is transmitted; the received 
waveform is the sum of P Rayleigh-faded, time-delayed, frequency
shifted versions of the transmitted signal, plus white Gaussian noise. 
That is to say, if the complex signal V2iii: xm(t) is transmitted, m = 1, 2, 
the contribution to the received waveform from the pth path is 

Ym(t; p) = V2Em apXm(t - Tp) exp [i(27rfpt + <l'p)J, 

where ap, lfip, Tp, and fp are the Rayleigh-distributed amplitude, the 
uniformly-distributed phase, the fixed time delay, and the fixed fre
quency shift associated with the pth path. The received waveform is 

p 

Zm(t) = L: Ym(t; p) + net), 
1>=1 

where n(t) is white Gaussian noise. 
The above multipath situation is a special case of a more general 

communications situation in which a receiver observes a sample Z (t) 
of a zero-mean complex Gaussian process on the time interval [0, T], 
the covariance function (z(s)z*(t)m having been selected from a set 
of two distinct functions by chance according to the prior probabil
ities {am}, m = 1,2, and the other second-moment function (z(s)z(t)m 
being zero. The receiver is to be designed so that its decision 
upon one of the two possible hypotheses is made with mini
mum average error probability Pc, where Pc = 'lamPc(m) and 
Pe(m) is the probability, when covariance indexed m is true, of 
deciding otherwise. 

The receiver-design problem has been treated in Ref. 1, rigorously 
demonstrating that optimum processing involves quadratic filtering. 
However, the filter kernels, being the solutions of integral equations, 
are difficult to determine in general; moreover, the error probability 
is not evaluated. For the multipath channel, the first difficulty is over
come in Ref. 2 and the evaluation of binary error probability is 
considered in the present paper. 

Section II presents the theory of a method that can be used to 
calculate error probability exactly. However, it is quickly appreciated 
that error probability depends in a cumbersome fashion upon a 
large number of parameters including the path strengths and the 
scalar products of the versions. To simplify this situation, this paper 
introduces bounds on the error probability which depend upon bounds 
on the spectra of certain matrices, the eigenvalues of which determine 

* Each path could comprise a multitude of randomly phased subpaths having 
essentially the same delay and frequency-shift parameters. 
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error probability exactly. Thus, the bounds are applicable to anyone 
of a set of channels rather than to just one channel. 

Section III presents these error-probability bounds in terms of 
values of the distribution function of the difference of two chi-square 
random variables and then derives this distribution function. More 
specific results are obtained in Section IV for the case of widely 
orthogonal signals, any path's version of one of the two possible trans
mitted waveforms being orthogonal to any path's version of the other 
waveform. Here, easily computed spectral bounds can be given for 
the case in which the versions under each hypothesis are nearly 
orthogonal. Section V considers the case of well-resolved paths, making 
contact with diversity theory (Ref. 3, Chap. 7), and the case of on-off 
keying. 

The error-probability bounds considered above require spectral 
bounds which may not always be easily computed and which may not 
be accurate approximations of the eigenvalues. A bound that circum
vents these difficulties is obtained in Section VI with a technique due 
to Chernoff. Comparison of this bound with previous bounds is car
ried out analytically only for the case of well-resolved paths, but 
qualitative comparison is made for more general cases. 

II. PROCEDURE TO OBTAIN ERROR PROBABILITY IN THE GENERAL CASE 

2.1 N alation 

The binary situation is a specialization of the case of j}I -ary 
signaling through the multipath channel in which the received process 
z(t) can have one of 1vI possible covariance functions, (z(s)z~f(t)m, 
m = 1,2, ... ill, of the form 

p 

2Em L O"pbp(s, In)b~(t, m) + Noo(s - t), 
p-l 

a degenerate kernel plus a white-noise kernel (Ref. 2). Here bp(t, m) 
exp (i27Tlpt)xm(t - Tp) is a time-doppler-shifted normalized version of 
the transmitted signal V2Em xm(t); the path with index p has an 
average cross section of O"p units, a delay of Tp seconds, and a doppler
shift of fp Hz. We put 

so that the average energy received from the medium is 
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since we put L: (J11 = l. 

The above covariance function can be written 

2Emo(s, m)(Jb*(t, m) + Noo(s - t), 

where b(t, m) is a vector with pth component bp(t, m) and (J is the diagonal 
matrix with pth entry (Jp, with tr (J = l. 

The optimum receiver decides according to the value of m that 
corresponds to the largest of M test statistics computed as follows. 
For each value of m, the receiver first generates the column vector 
Z(m) = N~! f dt z(t)b*(t, m) and then evaluates a test statistic com
prising a Hermitian form in Z(m) plus a bias constant. This test statistic 
IS 

where the Hermitian combining matrix is 

(2Em/No)H(m) = (2Em/No)[(2Em /No)B(m) + (J-1r\ 

the bias is given by, 

( ) _ I am det [(2E1/No)B(1) + 0"-1] 
e m - og al det [(2Em/No)B(m) + 0"-1] , 

B(m) is the correlation-function matrix f dt b*(t, m)o(t, m), and the 
hypotheses are ordered so that El = max Em . The above test statistic 
is obtained from that given in Ref. 2 by subtracting log [al det- l 

0" 

det- l H- l (l)] and multiplying all resulting terms by N o/2E1 • 

The above test statistic has a certain intuitive appeal. The components 
of the vector Z(m) are the correlations of the received signal against 
the noise-free versions of the transmitted signal that would occur 
when message m is sent. That is to say, Z(m) provides a measure 
of the projection of z(t) on the P-dimensional subspace spanned by 
these versions. Moreover, the test statistic is a measure of the likelihood 
that this P-dimensional subspace is in fact the correct subspace. Then 
the optimum receiver strategy is decision according to the most likely 
of the M possible subspaces. Also, since P dimensions are involved, 
it might be anticipated that the results are related to the case of P-fold 
diversity, cf. Section 5.l. 

Henceforth, only the binary case, M = 2, is considered. In this 
case, decision according to the larger of two test statistics is equivalent 
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to decision according to the sign of their difference. The decision events 
can then be written in term:; of one Hermitian form in a composite 
Gaussian vector 

l(Z(l)) 
Z = (No/2E1)

2 

Z(2) 

as follows. Let 

Q= 
2El H(l) 
No 

OPXP 
_ 2E2 H(2) , 

No 

where Opxp is the p X p zero matrix. Then the receiver decides upon 
m = 2 when ztQZ is less than (No/2El)0(2), and decides upon m = 1 
otherwise. 

The conditional error probabilities are thus 

P,CI) = Pr {Z'QZ < CNo/2E)O II} = F,[ (~)O ] ' 

Pe(2) = Pr {ztQZ > (No/2E)0 12} = 1 - F2[ (~)O J ' 
where E = E 1 , 0 = 0(2), and F m(x) is the distribution function of 
ztQZ conditioned upon the mth hypothesis. 

2.2 The Fundamental 111 atrices 

Since ztQZ is a function of a Gaussian vector, the distribution 
function F m(x) is determined by the conditional mean, (Z)m, which is 
the zero vector, and by the conditional covariance L(m) = (Zzt)m' 
the other second-moment matrix (ZZ)m being the 2P X 2P zero matrix. 

The conditional covariance matrix L(m) is evaluated as follows. Let 

where Lik(m) = (No/2El)(Z(j)Zt(k)m. Then, by the definition of Z(j) 
and interchange of operations, we obtain 

(Z(DZ\k)m = ~o II ds dt b*(s, j)(Z(S)Z*(t)mb(t, k) 
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= ~o II ds dt b*(s, j)2Emb(s, m)ub*(t, m)b(t, k)_ 

+ II ds dt b*(s, j) o(s - t)b(t, k) 

= ~:n B(j, m)uB(m, k) + B(j, k), 

where B(j, m) = f ds b*(s, j)b(s, m) is a cross-correlation matrix. 
Hence, 

Li\m) = (Em/E1)B(j, m)uB(m, k) + (No/2E1)B(j, k). 

Similarly, it is found that (ZZ)m is the 2P X 2P zero matrix. 
For future computations, it is convenient to write 

'where 

Qll = B-1(1) {I + (No/2E1) [B(I)ur1 
} -1, 

Q22 = -(E2/E1)B-1(2) {(EdE1)I + (No/2E1) [B (2) ur 1 r1. 
2.3 The: Characteristic-Function J'v[ ethod 

To obtain the distribution, consider the conditional characteristic 
function 

'Pm(t) = (exp (itZtQZ)m . 

It is well known, e.g., Ref. 4, that 

'Pm(t) = det- 1 [I - itL(m,)Q] = II [1 - itAk(m)r1, 
k 

where {Ak(m)} is the set of eigenvalues of the matrix L(m)Q. The 
eigenvalues are real, since L(m)Q is similar to the Hermitian matrix 
L!(m)QL!(m). 

The distribution function can now be obtained from the characteristic 
function. As a preliminary, it is noted that the characteristic function 
(1 - itA)-n corresponds to one of two distribution functions, according 
to the sign Qf A. When A is positive, the distribution function is r dx U(x) x·-1.exp (-x(~) = {I(Y/A' n - 1) (y > 0), 

-00 A (n - 1). 0 (y < 0), 

U(y)I(Y/A, n - 1), 
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where U(x) is the unit step function (unity for x > 0, zero for x < 0, 
one-half for x = 0) and where 

1 111 n -x -11 ~ yk I(y, n) = ----; dx x e = 1 - e L.J ----; 
n. 0 k=ok. 

is the incomplete gamma function. Similarly, when A is negative, the 
distribution function is 

171 d U(- ) (_X),,-l exp (x I AI-i) 
-Xl x x I A In (n - 1)! 

t -~(-y 1 " 1-', n - 1) 

= 1 - U( -y)I(Y/A, n - 1). 

(y > 0), 

(y < 0), 

To obtain the distribution function of ztQZ, the characteristic func
tion is expanded into its partial fractions. Each term will be propor,.. 
tional to (1 - itA) -n for some n, and corresponds to a term in the expan
sion of the distribution function. For example, when all eigenvalues 
are distinct, the expansion of the characteristic function is 

where 

dk(m) = II (1 _ Aj(m))-l. 
jr'k Ak(11'Z) 

The expansion of the distribution function F m(x) is then 

L dk(m) U(x)I(Y/Ak(m), 0) 
(k :).k(m) >01 

+ L dk(m)[l - U( -x)I(y/Xk(m) , OJ 
(k :).k(m) <01 

In the case of a degenerate spectrum, an eigenvalue A with multiplicity 
r contributes the sum L:=l An(1 - itA)-n to the expansion of the 
characteristic function, and the corresponding part of the distribution 
function involves I(·, n) for n = 0, 1, 2, ... , r - 1. 

It should be observed that the general approach of summing distribu
tion functions corresponding to partial fractions is fully equivalent to 
inverting the characteristic function by contour integration, the ap
proach used by Turin5 for a similar problem. (When all poles are simple, 
the expansion coefficients {dk(m)} are residues of the poles.) 
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III. UPPER AND LOWER BOUNDS ON THE ERROR PROBABILI'DY 

3.1 Error-probability Bounds from Degenerate-spectrum Variables 

Exact computation of error probability involves considerable nu
merical work in computing eigenvalues followed by evaluation of cum
bersome formulas. Moreover, an often inordinately large number of 
independent parameters must be specified. To simplify this situation, 
we consider bounds on the spectrum of L(m)Q rather than the spectrum 
itself. With a technique suggested in Ref. 6, we can obtain error
probability bounds. Although we do not obtain the error probability 
itself, the error-probability bounds apply to not just one channel but 
rather to any channel for which the spectral bounds are met. 

Observe that the characteristic function is precisely specified by 
the spectrum of L(m)Q. This spectrum is the same as the spectrum 
of I diag [A1(m), ... , A2P(m)], where I plays the role of a covariance 
matrix and the diagonal matrix plays the role of a matrix of a Hermitian 
form. Hence, the distribution of ztQZ is the same as the distribution of 

2P 

q(m) = L Ak(m) 1 Zk 1
2

, 
k=l 

where {zd are complex zero-mean Gaussian variates with covariance 
matrix (Zjz!) = Djk, (ZjZk) being zero. 

Suppose bounds on the eigenvalues are available. That is to say, 
suppose it is known that the positive eigenvalues satisfy 

(la) 

and that the negative eigenvalues satisfy 

-ji ~ Ak(m) ~ -~, (lb) 

where the J..L'S and v's are positive numbers that depend on m. Then, 
a lower bound on q(m) is the degenerate-spectrum random variable 
gem), defined by 

P 2P 

q(m) = J..L L 1 Zk 12 - ji L 1 Zk 12. 
- - k=l k=P+l 

Note that we have used the fact that the number of positive eigenvalues 
and the number of negative eigenvalues are the same, see Appendix A. 
Similarly, an upper bound on q(m) is provided by the random variable 

P 2P 

ij(m) = fi L 1 Zk 12 - ~ L 1 Zk 12. 
k=l k=P+l 
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Since q(m) ~ q(m) ~ g(m), it follows that 

Pr {g(m) ~ y} ~ Fm(Y) = Pr {q(m) ~ y} ~ Pr {q(m) ~ V}. 

Evaluation of these bounds requires the distribution function 
G(y; P, a) of the degenerate-spectrum random variable 

which is the difference of two chi-square variables each with an even 
number of degrees of freedom. The bounds become 

G[(,afly; P, ~(,afl] ~ Fm(Y) ~ G[(~fly; P, ii(~fl], 

where we use y = (No/2E)e and reiterate that the fJ.'S and v's depend 
on m. 

It is anticipated that these bounds are sharp when the spectrum 
is narrow, the spread of the positive spectrum being much less than 
any positive eigenvalue and similarly for the negative spectrum. Also, 
when e itself is not precisely known, but bounds ~ ~ e ~ e are available, 
the distribution function is bounded by 

G[(,af l1!; P, ~(,af)] ~ Fm(Y) ~ G[(~fly; P, ii(~)-l], (2) 

where J!. = (No/2E)~ and y = (No/2E)e. 

3.2 Distribution of a Degenerate-Spectrum Variable 

It will be demonstrated that G(y; P, a) equals 

(_a )P I: (P - 1 + k)(_l_)k[l - I(W , P - 1 - k)] (3a) 
1 + a k=O k 1 + a a 

when y < 0, and equals 

P-l (P - 1 + k)( 1 )k[( a)P ak ] k~ k 1 + a 1 + a + (1 + a)P ley, P - 1 - k) (3b) 

when y > 0. 
Before doing so, note that when y < 0, the parameter a serves as 

a scale size for y in the argument of lex, n), but that this is not true 
when y > 0. Nevertheless, a does act as a scale size in the following 
way. A power-series expansion of lex, n) yields 

k 

a l(y P - 1 - k) 
(1 + a)p , 

( a) P (y) P-k 1 00 (-1 r P - k n 

1 + a ~ (P - k)! ~ --;r P - k + nY, 
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and when a « 1, the factor (yla)P-k determines the small-y behavior. 
Also, this result exhibits [al(1 +, a)t as a factor for the case y > 0, 
in agreement with the expression for y < o. 

To find G(y; P, a), we consider its characteristic function 

(1 - it)-P(1 + ita)-P. 

Let the partial-fraction expansion of this characteristic function be 
P-l P-l L A p_

m
(1 - it)-(P-m) + L B p- n(1 + ita)-(P-n) . 

m=O n=O 

To evaluate A P- m , multiply by (1 - it)P and let 1 - it = r to obtain 

P-l P-l 
(1 + a - ar)-P = L Ap_mrm + rP L B p_n(1 + a - ar)-(P-n>. 

m=O n=O 

Since the second sum is analytic at r = 0, we have exhibited the Taylor 
expansion with remainder. But 

(1 + a - ar)-P = (1 + a)-p(1 - 1 ~ a r)-P 

= (1 ~ a)P ~ (P + ~~ - 1)(1 ~ ayrk, 

where we have used (7) on page 2 of Ref. 7. Hence, 

A P- m = (1 ~ a)P(P + : - 1)(1 ~ a)m 

Similarly, to obtain B P-n , multiply by (1 + ita)P and let 1 + ita = r 
to obtain 

P-l P-l ( 1 )-(p-m) 
~ Bp_nr

n + r
P 
]; A P - m 1 + ~ - ~ 

Reasoning as before, it is seen that 

B P- n = (1 ~ a)P(P + ~ - 1)(1 ~ at· 

Collecting these results, it is seen that the characteristic function is 

I: (P + k - 1)(_1 )k[(_a )P(l + ita)-(P-k) 
k=O k 1 + a 1 + a 

+ a
k 

(1 - it)-(P-k)]. 
(1 + a)P 

This immediately establishes the distribution function G(y; P, a). 
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IV. WIDELY ORTHOGONAL SIGNALS 

4.1 111 atrices for the Two Hypotheses 

We consider the special case in which the signals are widely orthogonal, 
B(l, 2) = B(2, 1) = OpxP. That is to say, all time-doppler shifted 
versions of one signal are orthogonal to all such versions of the other 
signal, a situation that would prevail in frequency-shift keying with 
widely separated frequencies. In this case, 

The "diagonal" form of the covariance matrix L(m) and of the matrix Q 
implies that the spectrum of L(m)Q comprises the specturm of Lll(m)Qll 
together with the spectrum of L22(m)Q22. This can be seen by employing 
the formulas of Schur (Ref. 8, pp. 45-46) to reduce the determinantal 
equation det [L(m)Q - AI] = 0 from order 2P to order P. For m = 1, 

Lll(l)Qll = B(l)cr, 

L22(1)Q22 = _ (No/2El) (E2/El) {(E2/El)I + (No/2El) [B(2) O'r 1 
} -1. 

For m = 2, 

Lll(2)Qll = (No/2El){I + (No/2EJ) [B(l)aT l r\ 
L22(2)Q22 = -(E2/El)B(2)cr. 

It should be observed that the spectra of the above matrices are 
simply related to the spectra of B(l)O' and of B(2)cr. When E2 = El = E, 
the spectrum of L22(1)Q22 is {-(No/2E)(1 + (No/2E)o;1)-1}, where 
{Ok} is the spectrum of B(2)0'. Similarly, the spectrum of Lll(2)Qll 
is {(No/2E)(1 + (No/2E)w;1)-1}, where {Wk} is the spectrum of B(l)O'. 

Second, it should be observed that when E2 = El = E, the forms 
of the matrices for the cases m = 1 and m = 2 are the same, with the 
roles of positive and negative matrices interchanged. To compute 
error probability for m = 1, we use the distribution function Fl(x); 
for m = 2, we use the conjugate distribution 1 - F2(x) which can be 
expressed as P{ -ztQZ < -x I 2}, the distribution function of the 
negative of the original variable evaluated at -x. Introduction of this 
random variable for the case m = 2 reverses the roles of positive and 
negative matrices, the net effect being that for both m = 1 and m = 2 
the positive and negative matrices have the same forms. 
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4.2 Bounds on Spectra, (J, and Error Probability 

It is clear that spectral bounds on L(I)Q can be obtained from spectral 
bounds on B(m)u, m = 1, 2, and similarly for L(2)Q. Consider the 
bounds on L(I)Q when El = E2 = E. The positive spectrum is bounded 
as follows: 

and the negative spectrum is bounded as follows: 

~(I) ~ -(No/2E)[I + (No/2E)(Qf 1r 1 = 

where Q ~ min Ok ~ max Ok ~ 8. 

-p -, 

Moreover, bounds on (J can also be obtained. When E1 = E2 = E 
and 0:1 = 0:2 = t (equilikely signals), 

~ . det [B(l)u + (No/2E)I] 
y = (No/2E)(J = (No/2E) logdet[B(2)u + (No/2E)IJ" 

Since a determinant is the product of the eigenvalues of the matrix, 
we have 

IIp Wk + (No/2E) 
(No/2E)(J = (No/2E) log k=l Ok + (No/2E)' 

Thus, an upper bound is 

- w + (No/2E) 
(N o/2E) e = (N o/2E)P log Q + (N o/2E) , 

and a lower bound is 

~ + (No/2E) 
(N o/2E) ~ = (N o/2E)P log 8 + (N o/2E) . 

Recall that the distribution function F 1[(No/2E)(J] is bounded from 
above by G[(!!J-\No/2E)e; P, ii(~)-1]. Further, suppose that the 
spectra of B(I)u and B(2)u are narrow about the nominal value 
(I/P) tr B(m)u = (I/P) tr u = (I/P). We can put 

1 - (3 w=o=--- - P' (4) 

where {3 is the fractional spectral half width. Then, the parameters 
required to compute the upper bound on the distribution function are 
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-1 - 1 1 + {3 + (NoP/2E) 
(g) (N o/2E) () = 1 _ {3 (N oP /2E)P log 1 - {3 + (N oP /2E) , (5a) 

-1 1 [1 J-l ii(!!:) = 1 _ {3 (NoP /2E) 1 + 1 + {3 (NoP /2E) . (5b) 

Similarly, the distribution function Fl[(No/2E)e] is bounded from below 
by G[(il)-I(No/2E)Q; P, ~(il)-I]. The parameters required for this bound 
are 

_ -1 1 1 - {3 + (NoP/2E) 
(J1.) (No/2E)Q = 1 + {3 (NoP/2E)P log 1 + {3 + (NoP/2E) ' (5c) 

~(ii)-' = 1 ~ {3 (NoP/2E) [ 1 + 1 ~ {3 (N,P/2E) r· (.5d) 

Having considered the case m = 1, the bounds for the case m = 2 
are apparent. Considering the random variable -ztQZ with e assumed 
known, the positive and negative spectral bounds are precisely the 
same as for the case m = 1, and the upper bound is 

whereas the lower bound is G[ - (il)-1(No/2E)e; P, ~(il)-l]. But e is 
unknown, and the upper bound is given by replacing - () by li, and the 
same result is obtained as previously; similarly, the lower bound is 
given by replacing - e by Q. In short, the bounds apply to both cases, 
m = 1 and 2. 

The numerical values of these bounds are given in Figs. 1 to 3 as 
functions of 2E/NoP (the signal-to-noise ratio per path) for various 
fixed values of {3 (the fractional spectral half-width) and P (the number 
of paths). The curves are nested with respect to values of the fractional 
spectral half-width {3; an increase of {3 always yields an increase of the 
upper bound and a decrease of the lower bound. A measure of the sharp
ness of the bounds (given a nominal value of error probability p.) 
is provided by the difference of the upper-bound and lower-bound 
values of 2E/NoP (in dB) for given values of {3 and P. For P e = 10-4 

and P = 4, the sharpness is 11 dB for {3 = 0.05 and 21 dB for {3 = 0.1. 
This measure of sharpness appears to be relatively insensitive to the 
value of P. An alternate measure would be the difference in error 
probability for a given value of 2E/NoP, and this measure is indeed 
markedly sensitive to P. 

In the region of the curves corresponding to high signal-to-noise 
ratio, there is an improvement in error probability associated with 
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Fig. 1-Error-probability bounds for widely-orthogonal signaling, P = 2. 

larger P; the curves become straight lines since p. becomes proportional 
to (2E/NoP)-p. However, this improvement is in part attributable 
to choosing 2E/NoP, the average per-path signal-to-noise ratio, as 
the abscissa rather than 2E/No, the total signal-to-noise ratio. To 
obtain plots vs 2E/No, one moves the P = 2n curves to the right 
by 3n dB; then, the improvement with increased P is less dramatic 
in this region of high signal-to-noise ratio. 

4.3 Computing Spectral Bounds 

It has been observed that bounds on the error probability for the 
case of widely orthogonal signals can be obtained from bounds on the 
spectrum of B(m)u, m = 1, 2. We now give several easily computed 
formulas for these bounds. 

Recall that B(m) is defined to be f dt b*(t, m)b(t, m), a matrix of 
scalar products or a Gram matrix. In general, this is uninformative, 
since a matrix is a Gram matrix if and only if the matrix is positive 
semidefinite. However, we will shortly use the fact that in our case 
the diagonal entries of B(m) are unity because of the normalization. 
N ext, note that B(m)u is similar to uiB(m)u\ a hermitian matrix 
which has real roots (since u is a real diagonal matrix with positive 
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entries, the matrices oj and u-! exist; then u![B(m)u]u -! u!B(m)u!). 
When B(m) is diagonal or nearly SO, the roots of B(m)u should be 
close to the entries of u; this is justified by the following theorem. 9 

The characteristic roots of any matrix A lie in the closed region of 
the z-plane consisting of all the disks {z: I z - Aii I ~ Lir" I Aii /, 
i = 1, 2, ... , P}. In our case, the region must be on the real line, 
and we obtain a set of not necessarily nonoverlapping intervals centered 
about {ud, the half-widths being {Lir" I Bii(m) I u;} when we take 
A = B(m)u. The spectral bounds are then the rightmost right-end point 

max [Aii + L 1 Aii I], 
i ir'i 

and the leftmost left-end point 

min [Au - L 1 Aii I] 
• ir'i 

(when it is positive). 
A family of spectral bounds is obtainable from this theorem by apply

ing it to B(m)u and to matrices similar to B(m)u, e.g., ulB(m)ul , uB(m), 
and more generally uaB(m)u1

-
a, 0 ~ a ~ 1. Thus, we have the family 
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Fig. 2 - Error-probability bounds for widely-orthogonal signaling, P = 4. 
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Fig. 3 - Error-probability bounds for widely-orthogonal signaling, P = 8. 

of upper spectral bounds 

max {()i + L ()~ I Bii(m,) I ()~-a}, O~a~l. 
i i r' i 

(6) 

The question arises: which is the smallest upper bound? It is not true 
in general that a bound is attained for the value of i that maximizes 
() i, but suppose this is the case when a = o. That is to say, suppose 
() i = maXk ()k and that 

()i[l + L I Bii(rn) I ()iJ = max ()k[l + L I Bki(m) I ()iJ. 
ir'i () i k ir'k ()k 

Then it follows that this is the smallest bound in the family, for ();/ () i ~ 1 
implies that 

and hence 

u.[ 1 + ~ I B;j(m) I ::J ~ u;[ 1 + ~ I B;j(m) I (::r"J 
~ max {()k[l + L I Bki(m) I (()j)l-aJ}. 

k jr'k ()k 
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Similarly, we have the family of lower spectral bounds 

min {cr. - L cr~ 1 B ii (1Jt) 1 cr~-a}, O~a~1. 
i j~i 

The largest lower bound is obtained when a = 1 provided that cr, 
mink crk and that 

cri[l - L 1 Bilm) IJ = min {crk[l - L 1 Bkj(m) IJ}· 
j~i k j~k 

To see this, observe that cr J cr i ~ 1 implies 

and hence 

(7) 

It should be noted that less sharp bounds are easily obtained. For 
example, the matrix crB(m) yields the upper bound 

max {cri[l + L 1 Bij(m) IJ} ~ max cri max [1 + L 1 Bij(m) IJ, 
'i~i i, ir'i 

and the right-hand side is easily computed. The corresponding lower 
bound is 

min {cri[l - L 1 BiJm) IJ} ~ [min cr;][l - max L 1 Bij(m) IJ· 
i i~i i i j~i 

These less sharp bounds are easier to compute than those obtained in 
a similar fashion from B(m)cr or from craB(m)cr1

-
a. 

Also, it should be noted that sharper bounds can be obtained by 
employing a sharper theorem of matrix theory:9 The characteristic 
roots of any matrix A lie in the closed region of the z-plane consisting 
of all the ovals I z - Au I I z - Ajj I ~ (Lk~': Aik)(Lk~j A ik), i ~ j. 
vVe do not pursue these bounds, but note that simple formulas are 
obtained only when all paths have equal strength, cri = liP. 

It is now clear that when B(m) is essentially diagonal, with 
Lj~i I Bij(m) I « 1 for all i, the path gains cri are good nominal values 
for the characteristic roots of B (m) cr. If, moreover, these path gains 
are equal, or approximately equal, then the upper and lower spectral 
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bounds are close to one another. When this narrow-spectrum condition 
prevails, the positive and negative portions of the spectrum of L(m)Q 
are also narrow, and the bounds on error probability are sharp. 

v. OTHER SPECIAL CASES 

5.1 Well-resolved Paths and the Theory of Diversity 

We consider the case in which the signals are resolvable, B(l) = 
B(2) = I, i.e., the paths are well separated in time and frequency 
so that any time-Doppler shifted version of a signal is orthogonal to 
any other version of itself. Moreover, we also assume that B(l, 2) = 

J dt b*(t, l)o(t, 2) becomes a diagonal matrix, B(I, 2) = pI where 
p = J dt XtCt)X2(t), i.e., the paths are sufficiently separated so that 
any version of one signal is orthogonal to all but the same-path version 
of the other signal. 

It is then easily seen that the covariance matrix is comprised of 
diagonal submatrices. For m = 1, 

L11(1) = U + (No/2E 1)I 

L21(1) = p*[u + (No/2E1)I] 

For m = 2, assuming E2 > 0, 

p[u + (No/2E 1)I] 

1 p 12 U + (No/2E 1)I. 

L11(2) = (E2/E 1) [I p 12 u + (No/2E2)I] 

L12(2) P(E2/E1)[U + (No/2E2)I] 

L21(2) P*(E2/El)[U + (No/2E2)I] 

L22(2) = (E2/El)[U + (No/2E2)I] . 

Moreover, the matrix Q is diagonal, being related to 

(2Em/No)H(m) = (2Em/No)[(2Em/No)I + u-1r1 = u[u + (No/2Em)I]-1. 

It then follows that L(m)Q is comprised of diagonal submatrices. 
To find the spectrum, the order of the determinantal equation can be 
reduced from 2P to P. Then the argument of the determinant is quad
ratic in ~. For the case El = E2 , a method of Turin [(22)-(23) in Ref. 5] 
can be used relating the ~k to the eigenvalues (elements) of u. 

The above example brings the present analysis in contact with the 
theory of diversity combining, see e.g., Ref. 3, Sec. 7.4. Turin,5 for 
example, considered the case in which separate waveforms are available 
and the fading is nonindependent in general. In our analysis, only one 
waveform is in general available. But in the case of well-separated paths, 
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we may assume P separate signal wa veforms have been observed. 
However, these separate waveforms must fade independently in keeping 
with our general discrete-path model, and the on-diagonal component 
matrices of L(m), viz., Ll1(m) = (No/2E1)(ZlZi)m and L22(m) = 
(No/2E1)(Z2Z;)m , are themselves diagonal matrices. It is still entirely 
possible that L 12(m), the off-diagonal component matrix of L(m), is 
not a diagonal matrix; e.g., when X2(t) is a delayed version of x1(t), 
then time overlap may preclude B(l, 2) being diagonal even though 
B(l) and B(2) are diagonal. But when we assume that B(l, 2) is also 
diagonal, then we obtain the form for L(m) exhibited above. It can be 
observed that this is precisely the result Turin obtained for the case 
of optimum diversity combining, where his not necessarily diagonal A 
becomes our diagaonal u. When B(l, 2) is not diagonal, then our 
results do not specialize to the form given by Turin, a reflection of 
the fact that the multipath channel is not in general fully equivalent 
to a diversity channel. 

5.2 On-Off I{eying 

Another example is the case of on-off keying in which E2 = O. The 
test statistic ztQZ becomes 

[(No/2E 1)!Z(1)f(2E1/No)H(1)[(No/2E 1)!Z(1)] , since Q22 = O. 

Thus, the distribution is determined by the spectrum of the matrix 
L 11 (m) Ql1, where 

L 11(m,) = omlB(l, m)uB(111" 1) + (No/2El)B(1), 

Q11 = B-l(l){I + (No/2El) [B(1)ur 1 rl. 
Observe that we no longer have the difference of positive-definite 
forms, the test statistic now being a positive random variable. The 
threshold (No/2E1)e(2) is 

(No/2E,) log det [(2~:)s(1)cr + I] 

which is positive since the eigenvalues of (2El/No)B(1)u + I are 
greater than unity. 

Assuming that the spectrum of L l1(m) (2EJNo)H(1) lies in the 
interval (!!.' il), where!: and il are functions of m, the bounds on the dis
tribution function are 

G[(pr'(No/2E) 8; P, 0] ::;;; Fm[ ~~)8 ] ::;;; G[(i'T'(No/2E) 8; P, 0]. 
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Recall that G(x; P, 0) is related to the incomplete gamma function, 

G(x; P, 0) = lex, P - 1). 

The spectral bounds must exhibit two forms of (2El/No)-dependence. 
When m = 1, L ll (I)Qll = B(I)O", and bounds on B(I)O" become!!:. and ji. 
When m = 2, L ll (2)Qll = (No/2El) {J + (No/2El) [B(I)O"rl} -t, so that 

!!:. = (No/2E1)[I + (No/2El) (02f1r 1 
, 

ji = (No/2El)[1 + (No/ 2El) (wf1r1 , 

where the spectrum of B(I)O" is confined to (02, w). 
Collecting our results, when m = 1, 

F1[(No/2E)O] ~ J{(02f\No/2E)P log [(2E/No)w + I];P - I} 

F1[(No/2E)O] ~ l{(wfl(No/2E)P log [(2E/No)02 + 1]; P - I}. 

Similarly, when m = 2 

F2 [(No/2E) 0] ~ I {[I + (No/2E)(02fl]P log [(2E/No)w + 1]; P - I} 

F2 [(No/2E) 0] ~ J {[I + (No/2E)(wfl]P log [(2E/No)CE + 1]; P - I} . 

These results permit the computation of error-probability-bound curves 
that would be universal in the same sense as the curves for widely
orthogonal signaling, i.e., the curves would apply to any element of 
the set of channels for which the spectral bounds are met. 

VI. CHERNOFF BOUNDS 

6.1 General Case 

Up to this point, consideration of spectral bounds has lead to error
probability bounds which are sharp when the spectrum comprises 
narrow positive and negative portions. These bounds are easy to employ 
when B(I, 2) = 0 and B(I), B(2) are nearly diagonal matrices. But 
in more general cases, the estimation of spectral bounds may be difficult 
and bounds may be poor approximations of eigenvalues. We turn to 
another technique of bounding error probability which does not ex
plicitly require spectral bounds. 

Consider the error probabjlity when hypothesis m = 2 is true, 
Pe(2) = Pr {ztQZ > (No/2E)O I 2}. Recall that the unit step function 
U(x) is unity for x > 0, zero for x < 0, and one-half for x = O. Then 



ERROR PROBABILITY 

Pe(2) = Pr {U[ztQZ - (No/2E)O] = 1 12} 

= 82 {U[ztQZ - (No/2E) O]}, 

1621 

where 82 denotes expectation under hypothesis m = 2. But smce 
Vex) ~ exp (fJ,2X) for any fJ,2 > 0, we have 

Pe(2) ~ 82 {exp fJ,2[ZtQZ - (No/2E)O]}. 

This average can readily be computed, since ztQZ has the same dis
tribution as 2: Ak(2) / Zk /2, where {Ak(2)} is the spectrum of L(2)Q. 
Since 8zk = 0, 8z;zt = Ojk, and 8z jzk = 0, the Gaussian variables 
{Re ztl, {1m ztl are independent with zero mean and variance equal 
to !. Thus, Pe(2) is bounded from above by 

exp [ -1',(N,/2E) oJ[ D; S exp (I', A, (2) 1 Re z, I')]', 

where the outer square appears because the product involving {1m Zk} 
has been suppressed. But a standard calculation shows, 

8 exp (fJ,2Ak(2) / Re Zk 12) = [1 - fJ,2Ak(2)r~, when fJ,2Ak(2) < 1, 

and our bound is 
2P 

exp [- fJ,2(No/2E) 0] II [1 - fJ,2Ak(2)r1. 
k=l 

Thus, 

Pe(2) ~ exp [-fJ,iNo/2E)O] det- 1 [I - fJ,2L(2)Q], (8) 

which holds for all jL2 such that ° < jL2 < [max Ak(2) ]-1. 

The above procedure is adopted from the technique due to Cher
noff (see Ref. 3, Sec. 2.5 and 7.4). Here, we do not have identically 
distributed variables; indeed, half are positive and half are negative 
random variables. 

To find the best value of jL2, we write the bound as 

{
No 2P } 

exp - fJ,2 2E 0 - In IT [1 - fJ,2 Ak(2)] 

and differentiate the argument of the exponential. A necessary con
dition for an extremum is that the derivative be zero, and this yields 

~ Ak(2) 
(No/2E) 0 = L..J 

k=l 1 - fJ,2 Ak(2) 

2P 1 
t; A-;;l.J - fJ,2 = tr {[(L(2)Qfl - fJ,21rl}. 
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If the value of 1'-2 that satisfies this equation lies within the allow
able interval [0, max-1.\,J2)], then this value of 1'-2 minimizes the 
upper bound. A minimum occurs because the second derivative of the 
argument of the exponential is positive, being 

f [ Ak(2) J2. 
10=1 I - f..L2 Ak(2) 

In a similar fashion, the error probability for 1n = I can be over
bounded. 

P e(1) = Pr {-ZtQZ > -(No/2E)O II} 

~ 01 {exp f..Ll[ -ZtQZ + (No/2E)0] } 

Peel) ~ exp [f..Ll(No/2E)0] det- 1 [I + f..LIL(l)Q]. 

The best value of 1'-1 satisfies 

(No/2E) 0 = tr {L(I)Q[I + f..LIL(I)Qr1}, 

provided this value lies in the allowable interval [0, max-1 ( - Ad1)) ]. 

6.2 Widely-orthogonal Signals 

Consider the case in which the signals are widely orthogonal, 
B (1,2) = 0, but have equal energy, El = E2 = E, and are equilikely, 
at = £Y2 = l The overbound on Pc (1) is obtained from the spectrum 
of L(I)Q which comprises the spectrum of L11 (l)Q11 together with 
the spectrum of L22 (1) Q22. Thus, 

PeCI) ~ exp [f..Ll(No/2E) 0] det- 1 [I + f..LILll(l)Ql1] det-1 [I + f..LIL22(I)Q22]. 

But the matrices used here were related in Paragraph 4.1 to B (1) CT and 
B (2) CT, and our bound becomes 

exp [f..Ll(No/2E)0] det- 1 [I + f..LIB(l)<TJ 

·det-1 {I - f..Ll(No/2E)[I + (No/2E) (B(2)<T)-lr 1 
}. 

After some manipulation, this bound becomes 

(2~or {exp [~, (:;) 8 J} 
det [B(2)<T + (:;) I J 
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where 

{
det [B(l)O" + (No/2E)IJ}Jll (N

o
/2E) 

exp [~1(No/2E) OJ = det [B(2);- + (R-;;}2E)IJ . 

The maximum allowable value of 11-1 is determined by the largest 
eigenvalue of L22 (1) Q22 which in turn is determined by the largest 
eigenvalue of B (2) 0": 

2E -1 o < ~1 < No + max (Ok), 

where {8k } is the spectrum of B (2). 
The best value of 11-1 is found from the relation 

~ Ak(l) 
(No/2E) 0 = L.J 1 + ~lAk(l) 

= tr {Ll1(l)Ql1[1 + ~ILl1(l)Ql1rl} 

+ tr {L22 (1)Ql1[1 + ~lL22(1)Qllrl}, 
where we again have exploited the decomposition of the spectrum of 
L (1) Q. After some manipulation, ,ve find 

(No/2E) 0 = tr {B(l)O"[J + ~lB(l)O"rl} 

- tr {B (2) ,{ I + (;:, - /" )B(2)U Jl 
An approximate solution can be obtained for the case of high signal
to-noise ratio. Let ~l = ill (2E/No) ; the relation becomes 

Suppose ill(2E/No)Wk » 1 and (1 
right side becomes approximately 

P P 

Equating this to (No/2E)0 and solving the resulting quadratic for the 
root applicable for the case 0 = 0 yields 

[ ( 0 ) ( 0
2 )!l-l ill = 1 + 2P + 1 + 4P2 . 
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When 8/2P is small, this value of ji,l is approximately 

! [1 - ~J 
2 4P' 

and the corresponding value of J.lI is (E/No)[l - (O/P)] which is ap
proximately at the midpoint of the allowable interval. 

In a similar fashion, the overbound on P e (2) is 

exp [-J.l2(No/2E) 8] det- l [I - J.l2Lll(2)Qll] det- l [I - J.l2L22(2)Q22], 

which becomes 

or 

exp [-J.l2(No/2E) 8] det- l {I - J.l2(No/2E)[I + (No/2E) (B(I)uf 1r 1 
} 

·deC1 [I + J.l2B(2)u], 

(2~or {exp (-~, fE o)} 
det [B(l)u + (fE) I] 

where 

{
det [B(2)u + (No/2E)I]}!J.'(NO/2E) 

exp [ - J.l2(No/2E) 0] = det [B(I)u + (No/2E)I] . 

The maximum allowable value of J.l2 is determined by the largest eigen
value of L 11(2)Qll in turn determined by the largest eigenvalue of 
B(l)u: 

2E -1 o < J.l2 < No + max (Wk) , 

where {Wk} is the spectrum of B(l)u. The best value of J.l2 satisfies 

(No/2E)O = tr {Lll (2)Qll[I - J.l2Lll(2)Qllr1} 

+ tr {L22(2)Q22[I - J.l2L22(2)Q22r1} 

(No/2E)O = tr {B(l)u[ ~ - ~,)B(l)U + IT} 
- tr {B(2)u[I + J.l2B(2)u r1} . 

Let J.l2 = ji,2(2E/No) and suppose ji,2(2E/No)Ok »1, (1-ji,2)(2E/No)wk» 1. 
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Then the right side becomes 

P P 

and the approximation of the best value of ji2 is 

[( B) ( (2)~]-1 
ji2 = 1 - 2P + 1 + 4p2 

which is approximately t[l - (B/4P)] when (B/2P) « 1. 
The foregoing results can be specialized to the case in which the 

paths are resolvable, B(I) = B(2) = I. Then B = 0, and it is easily 
seen that the best value of jim is t. Both overbounds become 

(E/2N r P det [0" + (No/2E)I] 
o dee [0" + (No/E) I] , 

and this agrees with equation 7.134 in Ref. 3. 
rt should be noted that jim = t is always an allowed value of jim • 

For the case of resolvable paths, it is the best value, and whenever 
B/P « 1 and 2E/No is sufficiently large, it is close to the best value. 
Using jim = t, we can obtain an overbound for both error probabilities, 
i.e., for Pe(m), m = 1, 2. This overbound is 

-p 1 det [B(3 - In)O" + (No/2E)I] 
(E/2No) exp (2 I B /) det [B(I)O" + (No/E)I] det [B(2)0" + (No/E)I] 

(9a) 

The factor exp (t I B D can also be written in terms of determinants. 
When det [B(l)O" + (No/2E)I] is larger than det [B(2)0" + (No/2E) I], 
we have 

1 _ {det [B(I)O" + (No/2E)I]}! 
exp biB i) - det [B(2)0" + (N o/2E)I] , (9b) 

and when the reverse inequality holds, exp (i' I () I) is the reciprocal 
of the above. 

For the case in which the spectrum of B (m) (]" lies in the interval 
(1-j3/P, 1+!3/P) where f3 < 1, the overbound can be further over
bounded. The factor involving determinants is less than 
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and I () 1/2 is less than 

P 1 + {3 + (NcP/2E) 
2 log 1 - {3 + (NoP/2E)' 

It follows that the Chernoff bound is less than 

p{ 4[1 + {3 + (NoP /2E)Ji }P 
(NoP /2E) [1 - {3 + (NoP /2E)J![1 - {3 + 2 (NoP /2E)J2 . (10) 

Numerical values of this bound are given in Fig. 4, and it has the 
same general character as the spectral-related bounds. Rather than 
sharpness given a nominal value of error probability P e, we consider 
the sensitivity measured by the change in 2E/NoP (in dB) vs 13; 
for Pe = 10-4 and P = 4, the sensitivity is 2 dB for 13 = 0.1. The 
sensitivity does not markedly increase with an increase in P, in agree
ment with the behavior of the sharpness of the previous bounds. 

Comparison of the Chernoff bound with the previous bounds is 
conveniently done for the case 13 = 0 (cf. Sec. 7.4 of Ref. 3). The 
Chernoff bound does not specify a signal-to-noise ratio (required to 
achieve a nominal Pe) excessively greater than the previous value; 
for P = 4, less than 2.2 dB difference is observed. This excess does 
decrease with increasing P. Moreover, it is entirely conceivable that in 
a broad-spectrum case with a large number of paths, an exact value of 
the Chernoff bound would be better than the spectral-bound result. 
Of course, our inexact (overbounded) Chernoff bound is poor in the 

i:= 10- 1 
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Fig. 4 - Overbounded Chernoff bounds for widely-orthogonal signaling. 
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broad-spectrum case, but a Chernoff bound using the proper values 
of the determinants should be good for two reasons. (i) Such a bound 
reflects the precise values of the eigenvalues of the matrix L (Tn) Q. 
(ii) 'Vhen P is large, the probability density function is bell shaped 
with the probability "mass" being concentrated near the mean and 
most of the tail mass being at the leading portion of the tail; then 
the tail mass can be weighted by the exponential function with little 
error. On the other hand, the spectral-bound approach suffers in the 
broad-band case since the spectral bounds are not meaningful approxi
mations of all the eigenvalues. 

VII. DISCUSSION 

Having observed that exact computation of error probability is 
cumbersome and depends upon an often inordinately large number of 
parameters, we considered error-probability bounds (2) that are uni
versal in the sense that they apply to anyone of a set of channels 
satisfying spectral bounds (1). Our bounds employ (3), the distribu
tion function of the difference of chi-square variables. For the special 
case of widely orthogonal signals, we obtained bounds employing 
parameters (5) in terms of the spectral width f3, see (4), of the 
matrices B (m) (T. Plots of these bounds showed that sharpness meas
ured in dB change of 2EJNoP with respect to f3 for a fixed value of 
error probability is not sensitive to the value of P. vVe presented a 
technique for obtaining spectral bounds for B (1n) (T when it is nearly 
diagonal, representative results being (6) and (7). This technique can 
also be applied to L (l1t) Q for the more general case in which the 
signals are not widely orthogonal. 

The case of resolvable signals (B (m) = I) made contact with the 
theory of diversity; we found that for the multipath channel to be a 
diversity channel, B (1, 2) must also be a diagonal matrix. Of course, 
the previous results also were in contact with diversity theory. vVith 
B (1, 2) = 0 (a diagonal matrix) but B (m) not necessarily diagonal, 
our results generalize those of diversity theory in the following sense. 
The special case f3 = 0 corresponds to a diversity channel with equal 
link gains, but the general case f3 # 0 can arise in the nondiversity 
situation when the matrix B (m) is not diagonal. (If B (m) were 
diagonal, B (m) = I and the diversity case prevails.) 

vVe then turned to the Chernoff bound (8) which does not ex
plicitly employ spectral bounds. The overbounded form (10) for the 
case of widely orthogonal signals was poorer than the previous bound 
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when f3 = O. Nevertheless, there is promise that in a broad-spectrum 
case, the. original form (9) would be better than the spectral-related 
bounds. A further advantage is that once the determinants are eval
uated, perhaps on an electronic computer, the error-probability hound 
is immediately obtained. In contrast, the spectral-related bounds 
require a certain amount of computation involving incomplete gamma 
functions even after spectral bounds are obtained. 
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APPENDIX A 

Here we show that the numbe.r of positive eigenvalues of LQ 
equals the number of negative eigenvalues.t:- Recall that L is positive 
definite and that Q can be written in the partitioned form 

Q = [Q
ll 

0 ] , 
o Q22 

where Qll and - Q22 are positive definite. Clearly, the number of positive 
eigenvalues of Q equals the number of negative eigenvalues. We can 
construct a family of positive definite matrices L t , 0 ~ t ~ 1, such 
that Lo = I, L1 = L, and L t is continuous in t. For example, let L t = 
(1 -:- t)I + tL; L t has positive eigenvalues {(I - t) + t'Yk} , where 
{'Yk} are the eigenvalues of L. Now the eigenvalues of LtQ are real, 
for LtQ is similar to the Hermitian matrix LtQLt = L~!(LtQ)Lt, where 
Lt and L~! exist since L t is positive definite, Moreover, the eigenvalues 
of LtQ are continuous in t, since L t is continuous in t. But LtQ never 
has a zero eigenvalue, for L t is positive definite and (L tQ)-1 = Q-IL~1 
always exists. Since the eigenvalues are real, continuous in t, and never 
zero, it follows that no positive eigenvalue of LoQ can become negative 
as t varies on [0, 1], and no negative eigenvalue of LoQ can become 
positive. The conclusion is established. 

APPENDIX B 

This appendix presents another derivation of the distribution func
tion of L:i / Zk /2 - ex L:~~1 / Zk /2. This derivation makes contact with 

* We are indebted to B. H. Bharucha for the conception of this proof. 
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the special functions that have appeared in analyses of diversity chan
nels; also, this derivation appears to admit generalization to the case 
Zk = Re Zk with <Z~Zk) = Ojk' (An odd number of variables in the real 
case corresponds to half-integer P in the complex case.) 

The density function of Li / Zk /2 is 

{ 

1'-I-x X e 

f(x) = (P ~ 1)1 
(x > 0), 

(x < 0), 

and the density function of - a L~Z:l / Zk /2 is 

g(x) = { 0 
( _x)p-lexla 

aP(p - I)! 

(x > 0), 

(x < 0). 

The density of the sum is the convolution of the densities, 

hex) = i:x(o,x) dy f(y)g(x - y), 

where the first argument of max (. , .) arises from the truncated form 
of f and the second argument arises from the truncated form of g. 
It follows that 

h( ) exp (x/a) 100 

d ( )P-l [(1 + 1) ] x = y y - x exp - - y. 
aP(p - 1) !(P - I)! max(O,x) a 

For the case x > 0, the lower limit is x. For the case x < 0, the integral 
can be cast into the form of the integral for the case x > 0 by a change 
of variable. The result differs only in the exponential factor, i.e., 

exp (-x) 
hex) 

aP(p - l)!(P - I)! 

. ( dy(y - I x llP-V-' exp [ -(~ + I)yJ ' x < o. 

The integral can be evaluated with the aid of relation (12) on page 202, 
Vol. II of Ref. 10, and the common result for the cases x < 0 and x > 0 is 

I x IP-! exp W -1) ~J (1 + a 1 x I) 
hex) = V 7ra (1 + a/-!(P _ I)! ](p-! -a - -2- , 

where ](p_!(z) is the modified Bessel function of the third kind. 
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The above expression for the density is valid for all P, noninteger 
as well as integer. But in our application, P is an integer; a relation 
on page 80 of Ref. 11 yields 

T.r ( ) ~-; -z P~ (P - 1 + k)! 
.L~P_! z = - e L.J 1 '(P _ 1 _ ') '(2 )k' 2z k=O I'C. I'C. Z 

The density is then 

h(x) = (1 ~ J exp [e ~ a) ~ - 1 ~ a 1flJ 
. P-l (P _ 1 + k)! (_I_)k.! (EJ)P-l-k. 
~(P-l)!k!(P-l-k)! l+a a a 

When x < 0, the exponential becomes exp (x/a), and when x > 0, 
it becomes exp (-x). 

Observe that when a = 1, the density is symmetric. When a < 1, 
the factor exp [(1 - a/ a)x/2] shifts the mass to the right. When a ~ 0, 
it can be shown that hex) ~ f(x). 

To obtain the distribution function G(y; P, a), consider first the 
case y < O. Since J':..ct:l dx hex) equals J~1I1 dx h( -x), the following integral 
arises in each term of the sum, 

J
ct:l d ( )P-l-k ~e-x/a ~ = (P - 1 - k)![1 - 1(1 y \la, P - 1 - k)]. 

1111 a a 

The case y > 0 is treated by considering J~ct:l dx hex) + J~ dx hex). 
The integral that arises is just (P - 1 - k) !I(y, P - 1 - k). These 
steps establish our final result, quoted above. 

Our result could also have been obtained from the Fourier transform 
of the characteristic function (1 - it)-P(1 + ita)-P. The Fourier 
transform of (a + it)-2J1.({3 - it)-2' is given by relation (12) on page 119, 
Vol. I of Ref. 10 in terms of Whittaker functions that reduce to Bessel 
functions for the case J.L = v = P /2 in view of relation (14) on page 265, 
Ref. 12. The density function can thus be obtained. 
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Precoding for Multiple-Speed 
Data Translnissioll 

By ROBERT W. CHANG 

(Manuscript received April 24, 1967) 

In certain applications, because of noise, compatibility, or other con
siderations, it is desirable that a data transmission system have the flexibility 
to operate at multiple speeds. In this paper, a precoding scheme for multiple
speed digital or analog data transmission is presented. The scheme has a 
flexibility which allows the data rate and overall channel characteristics 
to be changed simultaneously by simply changing the data format and some 
resistive elements. There is no change in the filters, the equalization, the 
transmitter signaling interval, or the receiver sampling time. By using 
partial response channels, a number of commonly used data rates are 
easily obtained, using a physically realizable precoder and correlator. With 
correct timing and the use of orthonormal siginals, the signal-to-noise ratio 
is maximized at each data rate for bandlimited white noise under the con
straints of fixed line signal power and no intersymbol interference. Timing 
error is considered in a two-speed transmission scheme, and the selection of a 
precoding matrix using eye opening as the criterion is studied. This study 
clearly demonstrates the advantage of changing the overall channel char
acteristics when changing the data rate. Eye openings obtained are equal to 
or larger than those of two conventional schemes transmitting at the same 
data rates. 

1. INTRODUCTION 

In conventional pulse amplitude modulation (PAM) data transmis
sion systems (digital or analog), the signal at the receiver input 
takes the form 

N 

set) = L akf(t - kTo) , (1) 
k=l 

where {ad are the information symbols, To is the signaling interval, 
and the signals f (t - kTo), k = 1, ... ,N, are time translates of each 

1633 
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other. It is well known1 that in order for t.hese systems to meet the 
criterion "Maximize the signal-to-noise ratio in the presence of band
limited white noise under the constraints of fixed line signal power and 
no intersymbol interference," the signals should be designed so that 
t.he overall channel characteristics are in the Nyquist I class and the 
overall amplitude characteristics are divided equally between the trans
mitting and the receiving side. Such a signal design scheme (hereafter 
referred to as Scheme I) is popular and is used even if the system de
signer is aware that the channel noise may not be white over the fre
quency band of interest. This is because the practical determination 
of the noise statistics and the realization of the corresponding optimum 
filters for a general communication complex are nearly impossible. A 
block diagram of Scheme I is shown in Fig. 1. 

In this paper, a precoding signaling scheme (Scheme II) is presented 
for multiple-speed analog or digital data transmission. Scheme II also 
meets the signal-to-noise ratio criterion above. The very distinctive 
difference between Schemes I and II is that in I the signals f(t - kTo) 
are time translates, but in II the signals are not necessarily so. This 
property allows the data rate and overall channel characteristics (such 
as represented by the eye opening) of Scheme II to be changed simul
taneously without changing the filters, the equalization, the signaling 
interval at the transmitter, or the sampling time at the receiver. 

In Scheme II, a sequence of information symbols is divided into 
blocks and the blocks are transmitted sequentially. For clarity, we 
first consider in Section II the transmission of a single block at a fixed 
data rate and the pre coder and the receiver structure. l\1ultiple block 
multispeed transmission and the use of partial response channels are 
considered in Section III. A two-speed transmission scheme, sampling 
time error, and eye patterns are considered in Section IV. 

II. TRANSMISSION OF A SINGLE BLOCK AT A FIXED DATA RATE 

A block diagram of Scheme II is shown in Fig. 2. The quantities 
H (jw) and h (t) are, respectively, the transfer function and the impulse 

NOISE 

Fig. 1- Block diagram of Scheme I. 
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NOISE 

Fig. 2 - Block diagram of Scheme II. 

response of the transmission medium. We shall consider H (jw) to be 
bandlimited, and 

H(jw) ~ 0, 

The time interval 

is the Nyquist interval. 

= 0, otherwise. 

1 
T = - seconds 

2fc 

(2) 

(3) 

Consider the transmission of a block of symbols al, ••• , aN . Each 
symbol can be an m-ary digit (m ~ 2) or a real number. The precoder 
converts al, .•. , aN into a sequence of numbers b1 , ..• , bN , and the 
number bk , k = 1, ... , N, is transmitted at t = leT. This produces 
a signal at the input to the receiver given by 

N 

set) = L bkh(t - leT). (4) 
k=l 

From (2), the impulse responses h(t - kT) are infinitely linearly 
independent, i.e., 

N 

L bkh(t - leT) = 0 for all t ==} bk = 0 for all k, (5) 
k=l 

where N can approach infinity. Equation (5) can be proven by noting 
that the equality 

N 

L bkh(t - kT) = 0 for all t 
k=l 

and (2) together imply that 

N 

L bke-iwkT = 0 for I w I ~ 27rfc • (6) 
k=l 

Equation (6) then implies that bk = 0 for all le. 



1636 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1967 

As is well known, a bandlimited signal, say g(t), can be represented 
by its time samples. The vector whose elements are the time samples of 
get) will be referred to as the time sample vector of get). For convenience, 
we shall use time sample vectors in discussing the precoder and receiver 
structures, and use the signals themselves in analyzing the overall 
channel characteristics. 

Let hk ,a M X 1 vector, be the time sample vector of h(t - l~T), where 
the value of M will be considered later. Then (4) is equivalent to the 
vector equation 

(7) 

The N vectors hk' k = 1, ... , N, are linearly independent since 
the impulse responses h(t - kT) are. Hence, the N vectors hk' k = 
1, ... , N, generate a real Euclidean vector space 8N of N dimensions. 
If the precoder were not used, we would have bk = ak and S = I:r=l akhk , 
and the information symbols ak would be transmitted as coordinates 
of the basis vectors hk of 8N • It is well known that the basis can be 
changed by a linear transformation. A precoder can be used for this pur
pose so that a suitable set of basis vectors can be chosen for each trans
mission rate of a multi-speed system based on considerations such as 
signal-to-noise ratio and the effect of timing error. 

Define 

where V represents a set of basis vectors for 8N and the prime notation 
represents transpose. Since hk , k = 1, ... , N, generate 8N , V is related 
to H by 

V =HA, (9) 

where A = [Aii] is an N X N nonsingular matrix. If ak is transmitted 
as a coordinate of V k , then 

N 

S = I: akVk = VA = HAA. (10) k=l 
But, from (7) 

S = HB. (11) 
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From (10) and (11), the precoder structure is 

B = AA. 

1637 

(12) 

Since the noise statistics and the statistics of the customer's data 
are usually unavailable, we choose here not to carry out a usual optimiza
tion study on the choice of V using such statistics. In the sequel, V is 
chosen to be a set of orthonormal basis vectors. This enables the pre
coding signaling scheme (Scheme II) to meet the following requirements: 

(i) The performance is optimum in the same sense as the popular 
Scheme I described in Section I. 

(ii) The overall channel characteristics are controlled by the precoding 
matrix A and hence by resistive elements. (In Scheme I the overall 
channel characteristics are controlled by the transmitting and receiving 
filters.) 

These requirements are met with a simple receiver structure. The 
noisy signal at the input of the receiver is 

N 

X = S + N = L: akVk + N, (13) 
k=I 

where N is the noise vector. A correlator at the receiver computes 
the decision statistics X'VI , X'V2' ... , X'V N. Since VI , V2, , V N 

are orthonormal, we have 

X'Vk = ak + N'Vk . (14) 

Because of orthonormality the decision statistic X'Vk depends only 
on ak and there is no intersymbol interference. A decision on the symbol 
ak can be made from the decision statistic X'Vk by a simple, standard 
decision rule. 

A basic difference between Schemes I and II is that in I the signals 
t(t - kTo) are time translates of each other, but in II the orthogonal 
signals V k are not necessarily time translates. A difference in operation 
between the two schemes is seen in the second requirement. In Scheme I 
the overall channel characteristics are controlled by the transmitting 
and receiving filters. But, in Scheme II, they are controlled by the 
precoding matrix. To illustrate this and also for use in Section IV, 
we derive the impulse responses of Scheme II. As shown in Fig. 3, 
the correlator can be implemented with a tapped delay line and N 
sets of attenuators. Only the jth set of attenuators is shown. The 
attenuation ratios Vii' ... , VillI shown are the values of the elements 
of Vi , and the decision statistic X'Vi is obtained by sampling the output 
of the jth summing circuit. For analytical purposes, the tapped delay 
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:x: (t) 
DELAY LINE 

Vj M - - - - - - - - - Vj 2 

Fig. 3 - Diagram defining ht} (t). 

line, the jth set of attenuators, and the jth summing circuit together 
are equivalent to a matched filter having impulse response Vj(to - t), 
where to is the sampling instant and V Jt) is a signal whose time sample 
vector is V j • Now define 

hii(t) = output of the jth summing circuit when 
ai = 1 is applied to the precoder. (1.5) 

Since ai is transmitted by the signal Vi or Viet), we have 

hij(t) = i: Vi(lo + r - t)Vi(r) dr. (16) 

From (8) and (9) 

(17) 

From (16) and (17) 

N N 100 
hii(t) = t; t; AikAil -00 h(to + r - t - lcT)h( r - IT) dr. (18) 

It is seen from (18) that, for a given transmission medium, hii(t) is 
controlled by the elements Aii of the precoding matrix. Since changing 
the precoding matrix requires only changing attenuation ratios in the 
precoder and the correlator, the overall channel characteristics are con
trolled by resistive elements. 

III. PRECODING FOR MULTIPLE-SPEED TRANSMISSION 

The transmission of a single block has been considered in Section II. 
Now consider the transmission of an infinite sequence of symbols. 
In Scheme II, a symbol sequence is divided into blocks with N symbols 
in each block. If the vectors hI, ... , hN are M X 1 as assumed in 
Section II, the blocks can be transmitted sequentially at JJfT seconds 
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intervals without interference between each other and the data rate is 

N 
R = M Rmax bauds, (19) 

where Rmax is the Nyquist rate. 
Theoretically there is no limit on the block length N; however, 

we shall restrict N to be small number such as 3 so that the precoder 
and the correlator can be easily implemented. The parameter M must 
be restricted accordingly so that R [see (19)] can be a commonly used 
data rate such as 3/4 of the Nyquist rate. These requirements are 
sa tisfied by using the popular partial response channels. 2

• 3 

Table I of Ref. 3 illustrated five classes of partial response channels. 
From the table, it is clear that if h(t) is in Class 1, then a set of sampling 
instants can be chosen (sampling time error will be considered later) such 
that h(t - T), ... , h(t - NT) are simultaneously zero at all except 
N + 1 adjacent sampling points. This means that the vectors hI , 
hN are each (N + 1) X 1 so that 

}k[=N+l 

N 
R = N + 1 Rmax bauds. 

(20) 

If h(t) is in Class 2, or 3, or 4, sampling instants can be chosen such 
that llf = N + 2. The rule can be easily extended to other classes. 

Consider now multiple-speed operation. As will be shown it is de
sirable to change the overall channel characteristics when changing the 
data rate. To make these changes, it is necessary to change the data 
format; however, it is desired that the system not be altered signifi
cantly otherwise (such as changing the filters, the equalization, the 
signaling interval, the receiver sampling time, etc.). 

The scheme developed allows the data rate and overall channel 
characteristics to be changed simultaneously by changing only the 
data format and some resistive elements. When the system operates 
as above, the data rate is (N / lYJ)Rmax bauds and the sequence of symbols 

is transmitted. If the particular channel is noisy, one may wish to reduce 
the baud rate so that signal energy per baud can be increased to combat 
noise (an adaptive technique). The data rate can be changed to 

r 
R = 111 Rmax ba uds, (21) 
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where r can be any integer from 1 to N, by inserting N - r zero digits 
into each block as follows 

al ... ar 0··· 0 a r +1 ··· a2r 0··· 0 a2r +1 ··· 

and transmitting this sequence instead of the original symbol sequence. 
The r information symbols in each block are transmitted to the first 
r summing circuits of the correlator at the receiver, while the N - r 
zero digits in each block are transmitted to the other summing circuits. 
For convenience, let us refer to the transmission path from the precoder 
to the jth summing circuit as the jth subchannel. Since there is no 
information transmission through the last N - r sub channels, it is 
no longer necessary to consider their performances. The precoding 
matrix A can be changed to improve the performance of the first r 
subchannels (such as reducing the effect of timing error). This can be 
done by changing the resistive elements in the precoder and correlator. 

To summarize, the multiple-speed transmission scheme has the 
following properties: 

(1,) Changing data rate and overall channel characteristics requires 
only changing the data format and some resistive elements. There is 
no change to the filters, the equalization, the signaling interval T, 
or the receiver sampling time. 

(i1,) With correct timing and the use of orthonormal signals, signal
to-noise ratio is maximized at each data rate for band-limited white 
noise under the constraints of fixed line signal power and no inter
symbol interference. 

(ii1,) By using partial response channels, commonly used data rates 
are easily obtained, using a physically realizable precoder and correlator. 

The discussions so far are general. To show how the method can be 
applied, and, more important, to demonstrate the advantage of changing 
the overall channel characteristics when changing the data rate, we 
consider in detail a two-speed transmission scheme in Section IV. 

IV. TWO-SPEED TRANSMISSION AND EYE PATTERNS 

Consider the following problem: The transmission medium is equalized 
for transmission at half the Nyquist rate and 

H (jw) = square root of full-cosine rolloff characteristic 

7rf 
= k cos 2fc ' Iwl ~ 27rfc (22) 

= 0, otherwise, 
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where k is a gain factor and Ie is the bandwidth. It is recognized that, 
if Scheme I is used, the system is simply the popular full-cosine rolloff 
system transmitting at half the Nyquist rate. 

The channel can be utilized more efficiently if the transmission rate 
can be changed according to the noise level. To compromise between 
efficiency and equipment complexity we choose to consider here two
speed transmission and two common data rates, ! and! of the Nyquist 
rate. 

We consider in detail how Scheme II can be used for this purpose. 
Note that H(jw) in (22) is the Class 1 partial response system function. 
Therefore, from (20) and (21) 

r 
R = N + 1 Rmax bauds, (23) 

where r can be any integer from 1 to N. To obtain! Rmax and! Rmax 

from (23), N can be 3, 7, etc. We choose N = 3 so that the precoder 
and correlator can be easily implemented. 

To obtain the higher data rate, the sequence of information symbols 
is divided into blocks with three digits in each block, where the nth 
block contains the symbols aan+I, aan+2, and aan+a. The blocks are 
applied to the precoder sequentially at 4T intervals. The precoder 
converts the symbols aan+1, aan+2, and aan+a in the nth block into 
numbers ban+ I , ban+2 , and ban+a and transmits banH at t = (4n + i)T. 

Consider the block containing a l , a2, and aa • The precoder converts 
aI, a2, and aa into bI , b2 , and ba , and transmits bI , b2 , and ba se
quentially at t = T, 2T, 3T. This produces, as discussed in the previous 
section, a signal at the receiver input as 

(24) 

where the time sample vectors hI , h2 , and ha can be written as (omitting 
a gain factor and the common zero samples) 

1 

1 

o 
o 

o 
1 

1 

o 

(25) 

Equation (25) shows that if sampling time is correct (timing error 
will be considered later), hI , h2 , and ha are limited to a 4T time interval. 
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Since each block is transmitted in a 4T.time interval, there is no inter
ference between adjacent blocks. 

The vectors hI ,h2 ,and hagenerate a three-dimensional real Euclidean 
vector space 8a . Let 

Vll V 21 Val 

VI 
V l2 V2 

V 22 Va 
V a2 (26) 

VIa V 2a Vaa 

V 14 V24 Va4 

be a set of orthonormal basis vectors for 8a and let aI, a2 , and aa 
be transmitted as coordinates of VI, V2, and Va, respectively. Then 
the signal X at the input of the receiver must also be 

X = alVI + a2V 2 + aaVa + N. (27) 

The precoder structure then is 

[
bl] [All 
b2 = A12 

_b3 A13 A23 

(28) 

where the Aij'S can be easily determined from (24), (25), (26), and (27). 
This precoder structure can be easily realized (Fig. 4). 

The correlator at the receiver which computes the decision statistics 
X'V I , X'V2' and X'Va can also be easily realized (Fig. 3, j = 1, 2, 3; 
111 = 4). 

I t is clear from Figs. 3 and 4 that the precoding matrix can be changed 
by simply changing the resistive elements (the attenuators) in the 
precoder and the correlator. 

The transmission rate is 3/4 Rmax when the system operates as above. 
To change the transmission rate to 1/2 R max , zero digits are inserted 
into the original data sequence as follows 

. . . al a2 0 aa a4 0 a5 a6 0 ... , 

and this new sequence is transmitted instead of the original sequence. 
l\;faking use of the reduced baud rate to improve system performance, the 
overall channel characteristic is adjusted simultaneously by changing 
the precoding matrix. This is the subject of the following section. 

4.1 Timing Error and Eye Opening 

So far we have not specified which set of orthonormal basis vectors 
should be used. This is because with perfect timing the system meets 
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Fig. 4 - Precoder for two-speed transmission where Ai}, i, j = 1, 2, 3, are at
tenuators. 

the signal-to-noise ratio criterion in Section III regardless of which 
set of orthonormal basis vectors is chosen. 

However, in practice, it is impossible to achieve zero sampling time 
error. In general, the receiver will sample the summing circuit outputs 
at t = to + 0 instead of the correct time to, where 0 is a random timing 
error. Then the system's performance depends on the choice of VI , V2 , 

and Va , i.e., depends on the choice of A. To determine which A should 
be used, it is necessary to specify the type of transmission and choose 
a performance criterion accordingly. 

In the sequel, we consider digital data transmission. Eye opening 
is adopted as the criterion since it is a widely accepted, practical one4 

(although considering eye openings in the presence of timing error 
leads to a difficult nonlinear mathematical problem). 

Let ri(t) be the output of the ith summing circuit when an infinite 
sequence of digits is transmitted at the higher data rate 3/4 Rmax • Then 

00 00 

1\(t) = L aan+ihii(t - 4nT) + L L aan+ihii(t - 4nT) , (29) 
n=-OO i""i n=-oo 

where hii(t), as defined in (15), is the output of the jth summing circuit 
when ai = 1 is transmitted alone. From (18) and (22) it can be shown 
that 

hii(t) = [AiIAj1 + Ai2Ai2 + AiaAiaJI(t) + [Ai2Ail + AiaAi2JI(t - T) 

+ [AilAi2 + Ai2AiaJI(t + T) 

+ AiaAilI(t - 2T) + AilAiaI(t + 2T), (30) 
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where 

(31) 

To evaluate eye opening of ri(t) at to + 0, we assume that the in
formation digits {ad are binary and that each can be t or - t (so that 
full eye opening = 1). Then 

Ei(O) = Eye opening of ri(t) at to + 0 

±oo 

I hii(to + 0) I - L: I hii(to + 0 - 4nT) I 
n= ±l 

00 

L: L: I hii(to + 0 - 4nT) I 
ir"i n=-oo 

i, j = 1, 2, 3. (32) 

Similarly, let r~ (t) be the output of the ith summing circuit when 
an infinite sequence of digits is transmitted at the lower data rate 
1/2 Rmax • Since zeros are inserted and no information digit is received 
at the third summing circuit, we need to consider only the eye openings 
Ei(o) and E~(o) of ri(t) and r~(t), respectively. 

4.2 Selection of Precoding Matrix 

I t is seen that at the higher data rate, we must consider simultaneously 
EI(o), E2(0), and E3(0), while at the lower data rate we need only to 
consider Ei(o) and E~(o). This suggests that a different precoding matrix 
should be selected for each data rate. 

The steps in selection of the precoding matrix are lengthy and are 
outlined in the Appendix. The results are summarized here. 

The precoding matrix selected for the higher data rate is 

All = 0.21, 

-0.68, 

-0.5, 

A12 = 0.62, 

A22 = 0.48, 

A32 = 0.62, 

Al3 = -0.5 

A23 = -0.68 

A33 = 0.21. 

(33) 

Eye openings obtained with this precoding matrix are given in Table I 
for 0 = 0, ±O.IT, ±0.2T, ±0.3T (it is a reasonable expectation that 
the timing error 0 will amount to no more than ±0.2T). Also given 
in Table I is the eye opening E(o) of the popular "raised cosine" rolloff 
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TABLE I-COMPARISON OF EYE OPENINGS 

Timing Error 8 El(O) E2(O) Ea(o) E(o) 

-0.3T 0.312 0.418 0.351 0.312 
-0.2T 0.559 0.625 0.575 0.551 
-O.lT 0.790 0.821 0.793 0.783 

0 1.000 1.000 1.000 1.000 
O.lT 0.793 0.821 0.790 0.783 
0.2T 0.575 0.625 0.559 0.551 
0.3T 0.351 0.418 0.312 0.312 

system/) which transmits at the same data rate 3/4 Rmax (i.e., which 
utilizes a 33.3 percent rolloff band). A glance shows that the eye openings 
El(O), E2(O), and E3(O) are equal to or larger than the eye opening 
E(o) of the conventional system. 

The precoding matrix selected for the lower data rate is 

1 
}..u = V2' }..12 = 0, }..13 = 0 

}..21 = 0, }..22 = 0, 
1 

}..23 = V2' 

where }..31, }..32, and }..33 can be arbitrary since no information digit 
is transmitted through the third sub channel. With this precoding 
matrix, the system is identical with the popular "full cosine" rolloff 
system at the lower data rate, and the eye openings E~(o) and E~(o) 
are both 1.00, 0.955, 0.896, and 0.823, respectively, for 0 equal to 
0, ±O.lT, ±O.2T, and ±O.3T. These eye openings are much larger 
than El(O) and E2(O) in Table I. This clearly demonstrates the advantage 
of changing the precoding matrix when changing the transmission rate. 

V. CONCLUSIONS 

A precoding scheme is presented for multiple-speed digital or analog 
da ta transmission. The scheme has the following properties 

(i) Changing data rate and overall channel characteristics requires 
only changing the data format and some resistive elements. There is 
no change to the filters, the equalization, the transmitter signaling 
interval, or the receiver sampling time. 

(ii) With correct timing and the use of orthonormal signals, the signal
to-noise ratio is maximized at each data rate for band-limited white 
noise under the constraints of fixed line signal power and no intersymbol 
interference. 
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(iii) By using partial response channels, a number of commonly used 
data rates are easily obtained using a physically realizable precoder and 
correlator. 

Timing error is considered in a two-speed transmission scheme. Eye 
openings are used as the criterion in selecting the precoding matrix. 
Eye openings obtained are equal to or larger than those of two conven
tional schemes transmitting at the same data rates. The study clearly 
demonstrates the advantage of changing the overall channel charac
teristics when changing the data rate. 

APPENDIX 

Selection of Precoding Matrix 

As can be seen from (32), (30), and (31), the problem of finding a 
precoding matrix for maximizing the eye openings in some joint sense 
over a certain range of the random variable 0 is nonlinear and mathe
matically intractable. In the following, we reduce the dimension and 
range of the precoding-matrix space S = {A} to a minimum by using 
constraints and properties of S, then derive a guide for searching the 
reduced space. Eye openings are obtained equal to or larger than those 
of two conventional schemes transmitting at the same data rates. 

Consider the higher data rate. The eye openings El(O), E 2 (o), and 
E3(O) are determined by the nine parameters Aii, i, j 1, 2, 3. We 
have from orthogonality of VI , V2 , and V3 

hii(tO) == 0, i, j = 1,2,3; i ~ j. (34) 

Define for i = 1, 2, 3 

W. = Ail +! . 
1 Ai2 2' 

(35) 

It can be shown from (30), (31), and (35) that (34) is equivalent to 
the constraints 

CiGi = -WiW j -!, i,j= 1,2,3; i ~ j. (36) 

Equation (36) is satisfied if and only if one of the following condi-
tions holds 

(i) W I W 2 ~ _.1 W 2W 3 ~ 
_.1 W 3W I ~ 

1 (37) 2, 2, -"2 

(i~) W I W 2 ~ _.1 W 2 W3 ~ 
_.1 W 3W I ~ 

1 (38) 2, 2, -"2 

(ii~) W I W 2 ~ _.1 W 2W 3 ~ 
_.1 W 3W I ~ 

1 (39) 2, 2, -"2 

(iv) W I W 2 ~ 
1 W2 W3 ~ 

_.1 W 3W! ~ 1 (40) -"2, 2, -"2' 
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Each of the four conditions specifies a subspace of S. Equation (37) 
corresponds to a null space because its requirements are conflicting. 
Equations (39) and (40) can be obtained from (38) by rotating the 
indexes of TV; hence, for every point P in the subspace of (39) or (40), 
there is a point Q in the subspace of (38) such that P and Q produce 
eye openings differing only in indexes (for instance, P produces EI(O) = 
a(o), E2(0) = (3(0), and E3(0) = ')'(0); Q produces EI(O) = ')'(0), E2(0) = 
a(o), and E3(0) = (3(0». Since they are the same set of eye openings, 
we need only to cover the subspace of (38) in searching for A. 

The subspace of (38) can be further narrowed. It can be shown that 
(38) holds if and only if 

(41) 

or 

TVI 1V2 ~ (42) 

Equation (42) can be obtained from (41) by exchanging TYI and TY2 • 

Thus, for the reason just cited, we need to search only the subspace 
of (41) instead of that of (38). 

To further reduce S, we divide the subspace of (41) into two subspaces 

(i) TV I W2 ~ _.1 TV2 TV3 ~ 0, -! ~ TV3 TYI ~ -1 (43) 2, 

(ii) TV1TY2 ~ _.1 TV2 TY3 ~ 0, -1 ~ TY3 TVI ~ 0. (44) 2, 

From (36), (44) can be written as 

C2C3 ~ -!, CI C2 ~ 0, -! ~ CI C3 ~ 
1 (44a) -"4' 

It can be shown from (32), (30), and (35) that simultaneously exchanging 
TVI and CI , TV2 and C2 , and TV3 and C3 does not change the eye openings. 
From this it can be shown that for every point P in the subspace of 
(43), there is a point Q in the subspace of (44a) such that P and Q 
have eye openings differing only in indexes. Since (44a) is equivalent 
to (44), this implies that only the subspace of (44) needs to be searched 
instead of that of (41). 

The space S to be searched has been reduced to only that of (44). 
The W 2 - TV3 plane is reduced to a narrow strip for all TV I ~ 0. For 
instance, for WI = -1, W3 is bounded between ° and 1, and W2 and 
TV3 are bounded in the very narrow strip shown in Fig. 5. 

Each point (TVI' W 2 , W 3 ) in the subspace of (44) determines a 
precoding matrix through (36), (35), and the orthonormality condi
tion hii(tO) = 1. 
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2 

Fig. 5 - Region of W2 and TV3 (shaded) when Wl = -1. 

Usually it is desirable that the three eye openings El(O), E2(O), 
and E3(O) be approximately equal. It can be shown from (32), (30), 
and (31) that El(O) and E3(O) are approximately equal if 

(45) 

Equation (45) defines the following region in the subspace of (44) 

I W 1 I > ~ , W 2 = - 4 ~r ~ 1 ' W3 = - 4 ~l • (46) 

E2(O) is larger than El(O) andE3(o) at one extreme of the range I W l I > ~, 
and is smaller at the other extreme. Therefore, in the region of (46), 
there are points at which El(O), E2(O), and E3(O) are approximately 
equal. A simple search of this one-dimensional region gives one of such 
points as 

W l = 0.84, W2 = -0.92, W3 = -0.3. 

This point gives the precoding matrix in (33). Table I in Section IV 
shows that by using this precoding matrix for the higher data rate, 
the system has eye openings equal to or larger than the eye openings 
of a "raised cosine" rolloff system transmitting at the same data rate. 

After the precoding matrix in (33) was obtained from the region of 
(46), the rest of the subspace of (44) was searched. About 5000 points 
were covered. It was found that no point had eye openings El(O), E2(O), 
and E3(O) simultaneously larger than those in Table 1. 

A similar study for the lower data rate produced the result in Sec
tion IV. 
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I. IKTHODUCTION 

B. S. T. J. BRIEFS 

Axis-Crossing Intervals of Sine Wave Plus Noise 

By A. J. RAINAL 

Let I(t, a) denote the stationary random process consisting of a 
sinusoidal signal of amplitude V 2a and angular frequency q plus 
Gaussian noise, IN(t), of zero mean and unit variance. Thus, 

J(t, a) = V2a cos (qt + eo) + J N(t). (1) 

eo denotes a random phase angle which is distributed uniformly in the 
interval (-7r, 7r). "a" denotes the signal-to-noise power ratio. When 
a = 0 Rice! presented some theoretical results which are very useful 
for studying statistical properties of the axis-crossing intervals and the 
axis-crossing points of I(t, 0) at an arbitrary level I. The axis-crossing 
intervals and the axis-crossing points of I(t, a) are defined in Fig. 1. 
In recent work Cobb2 presented some theoretical results concerning the 
zero-crossing intervals, the axis-crossing intervals defined by the level 
1 = 0, of J(t, a). Some experimental and theoretical results concerning 
the zero-crossing intervals of I(t, a) were reported by Raina1.3 For the 
case when the power spectral density of IN(t) is narrow-band and 
symmetrical about the sine wave frequency, Blachman4 presented some 

8L AND ¢L ARE AXIS- CROSSING INTERVALS 

t 
I (t, a) 

O+-~---r+-----~----+-~----+-~-----+r-~------~ 

•• • • • 
AXIS - CROSSING POINTS 

Fig. 1- The level I defines the axis-crossing points and the axis-crossing 
intervals of I(t, a) = y2a cos (qt + 80) + IN(t). 
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theoretical results concerning the zero-crossing points, the axis-crossing 
points defined by the level I = 0, of I(t, a). 

The purpose of this brief is to present some theoretical results which 
are useful for studying statistical properties of the axis-crossing intervals 
and the axis-crossing points of I(t, a) at an arbitrary level I. These 
results stem from a straightforward extension of Rice'sl analysis. 

II. THEORETICAL RESULTS 

Using a notation consistent with Refs. 5 and 6 we define the following 
probability functions at an arbitrary level I and arbitrary signal-to
noise power ratio "a": 

(,£) Q; (T, I, a)dT, the conditional probability that a downward axis
crossing occurs between t + T and t + T + dT given an upward axis
crossing at t. 

(ii) Q~(T, I, a)dT, the conditional probability that an upward axis
crossing occurs between t + T and t + T + dT given a downward axis
crossing at t. 

(iii) [U2 (T, I, a) - Q2(T, I, a)]dT, the conditional probability that 
an upward axis-crossing occurs between t + T and t + T + dT given 
an upward axis-crossing at t. 

This latter conditional probability is also equal to the conditional 
probability that a downward axis-crossing occurs between t + T and 
t + T + dT given a downward axis-crossing at t. 

The reader should refer to Ricel for the definition of all notation 
which is not defined in this brief. When a ~ 0, Rice'sl (38) becomes 

Q;(T, I, a) = - [27rN1r l 
[: de iCfJ 

dli [oCfJ dIUU~p(I, Ii , I~ ,I), (2) 

where N r = Rice's7 equation (2.6) or (2.7) 

p(I, Ii , I~ , J) = (27r)-2M-! 

. exp {-2~ [M,,(I(' + I~') + 2M"r,m: + 2D,I( + 2E,I~ + F.]} 

Q=~ 

Dl = M l2 [I - Q cos e] + M l3 [Q cos (qT + e) - I] 

+ M 22Qq sin e + M 23Qq sin (qT + e) 
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El = .LYI12 [Q cos (qr + e) - I] + lVIl3 [I - Q cos e] 

+ lVI22Qq sin (qr + e) + kI23Qq sin e 

Fl = .LYIll{2r-2QI[cos e+cos (qr+e)]+Q2[cos2 e+cos2 (qr+e)]) 

+ 2lVIl2Qq{ [I - Q cos e] sin e + [Q cos (qr + e) - I] sin (qr + e)} 

+ 2111l3Qq{ [I - Q cos e] sin (qr + e) + [Q cos (qr + e) - I] sin e} 

+ 2Jl1l4 {I[I - Q cos e] + Q[Q cos e - I] cos (qr + e)} 

+ lVI22(Qq)2[sin2 e + sin2 (qr + e)] + 2l.112lQq)2 sin e sin (qr + e). 

The J1£'s are given in Rice'sl Appendix I with 

m( r) = 100 

WU) cos 21Tfr dt, (3) 

where WU) = one-sided power spectral density of IN(t). When I = 0, 
NIQ~(r, I, a) is equivalent to (9) of Cobb's2 recent work. 

Equation (2) can be put in a form analogous to Rice'sl equation (47): 

Q; (r, I, a) = [47r2NlrlkI22(1 - m 2)-! 

where 

z= 

. i: exp (-G 1/2J.l;J)J(rl , h2 , k2) de, (4) 

x2 + y2 - 2r1xy 
2(1 - rD 

Ie, = -M;;,'[l - r;r'[E, - r,D,t ~,~] 
Gl = lYI-;;21 [1 - rir 1 [2rlDIEl - Di - Ei] + Fl . 

Q-;;(r, I, a) is obtained from (2) by changing the signs of the co's in 
the limits of integration. We find that Q-;;(r, I, a) is equal to the right
hand side of (4) with h2 , k2 replaced by - h2' - k2 . 

[U2(r, I, a) - Q2(r, I, a)] is obtained from (2) by changing the lower 
limit of integration of I~ to + co. We find that [U2(r, I, a) - Q2(r, I, a)] 
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is equal to the right-hand side of (4) with the function J(rl , h2' k2) 
replaced by the function Jl(rl , h2 , k2), where 

The functions J(rl , h2 , k2) and .11 (rl , h2 , k2) are expressed in terms 
of Karl Pearson's well-known tabulated function (diN) in Ref. 5. 
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