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Unit-Cube Expression for Space-Charge 
Resistance 

By S. M. SZE and W. SHOCKLEY* 

(Manuscript received November 17, 1966) 

A simple analysis shows that the unit-cube conductance is a figure of 
merit in semiconductor device design theory. The unit-cube conductance, 
G, is given by 2J(Vd where [( is the permitt~·vity of the semiconductor and 
Vd is the limiting drift velocity. 

The space-charge resistance, Rsc , due to carrier generated under ava
lanche condition is derived for p-n junctions. It is found that for parallel
plane structure, Rsc = 1 JGN, where N is the number of unit cubes l:n the 
depletion region with cube edge equal to the depletion width or N = AjW2 

where W is the depletion width and A the junction area. The disturbance 
in voltage caused by the space-charge effect is given by IIGN = JW2/G 
where I and J are the current and current density, respectively. Similar 
results are obtained for p-n junctions with coaxial-cylinder and concentric
sphere structures. 

For silicon, the value of G is approximately 40 jJ.mhos. The transconduct
ance of a silicon surface-controlled avalanche transistor in terms of the 
unit-cube expression is about 12.5 N jJ.mhos. 

A simple analysis of "avalanche resistance" can be given for the 
limiting case in which carriers are generated at one boundary surface 
of the depletion region of a p-n junction and travel across the depletion 
region with a limiting drift velocity Vd. Structures satisfying these 
conditions can be of the n +pp + form. It will be shown that the quantity 

*Stanford University and Bell Telephone Laboratories. 
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2Kvd (where K is the permittivity of the semiconductor) is a figure of 
merit in semiconductor device design theory which limits the perform
ance of space-charge-limited devices. This quantity is a combination 
of "material constants" similar to F BVd (where F B is "breakdown field") 
which limits the frequency-power performance of transistors1

•
2 and 

Klu (u is the conductivity) which limits the gain-bandwidth produce 
of solid-state devices. 

For a structure in which the space-charge layer is bounded by parallel 
planes of area A and spacing W, it will be shown that the effective space
charge resistance can be interpreted as due to N unit-cube conductances 
in parallel, where the unit-cube conductance G is given by 

(1) 

and N is number of unit cubes in the depletion layer with cube edge 
equal to the depletion width, or 

N = AIW2. (2) 

The space-charge resistance is then given by 

Rsc = liNG. (3) 

For coaxial-cylinder and concentric-sphere structures, similar results 
are obtained for the Rsc . The number of unit cubes (or curvilinear 
cubes), however, depends on the radius of the surface upon which ava
lanche occurs and the length of the cylinder (for the coaxial-cylinder 
structure). These functional dependences are derived below. 

An interesting application of the space-charge resistance and the 
unit-cube expression is given for a surface-controlled avalanche tran
sistor (SeAT). 4 

1. PARALLEL PLANE STRUCTURE 

As represented in Fig. lea) the depletion layer of an n+pp+ structure 
extends through the p layer with a doping of Na , and is bounded by 
the planes at x = 0 and x = W. When the applied voltage V is equal 
to the breakdown voltage VB the electric field E(x) has its maximum 
absolute value F B at x = 0 and decreases to F B - (qN aWl K) at x = W. 
This insures breakdown at x = O. Furthermore, if qNaW IK < 0.9 FB , 
then the field is everywhere ~ F IdlO, so that holes have their limiting 
drift velocity Vd all across W. 

The space-charge current, I, is given by 

(4) 
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b 

(a) (b) 

Fig. 1- p-n junction geometry of (a) parallel plane, (b) coaxial cylinder, 
and (c) concentric sphere structures. 

where p is the carrier-charge density and A. the area. Since E at x = 0 
is assumed to be equal to F B , the disturbance ~E(x) in the electric 
field due to p is 

Ix 
~E(x) =-

AKvd 
(5) 

so that the disturbance in voltage caused by the carriers (i.e., the average 
field times W) is obtained by integrating ~E(x) 

~ VB = I(~2)(2;vJ = :G· (6) 

The total voltage is thus 

(7) 

which verifies the interpretation of G and N. 

II. COAXIAL CYLINDER STRUCTURE 

Consider first that the maximum field occurs at the inner surface. 
As shown in Fig. 1 (b) the depletion layer extends through the intrinsic 
region of an n+ip+ coaxial-cylinder structure and is bounded by the 
cylinders of radii r = a and r = b. When V = V R , the electric field 
E(r) has its maximum absolute value F B at r = a, and decreases to 
FBa/b at r = b. 

The space-charge current per unit length, 1/ L is given by 

I 
L - 27rTpVd (8) 
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SO that p varies as 1/r. Integrating Poisson's equation leads toa dis
turbance !lEer) in the electric field and !l VB in the voltage due to p 
given by 

!lEer) = per - a) = I (1 _ ~) 
K 27rKvdL r 

(9) 

and 

(10) 

where 

[ 2b
2(1 - ~ - ~b In -a b)] 

=----27r-b--=L----= == 2:b
ci' (11) 

Ac is the area on the outer cylinder surface that corresponds to one 
unit-cube conductance G. 

(12) 
for a --7 O. 

Equation (10) may be interpreted as the resistance of N unit curvilinear 
cubes in parallel. These cubes are formed by intersection of equipotential 
surfaces with the orthogonal family of electric field lines. Each cube has 
a conductance (2Kvd) , and the number of cubes N is given by (11). 
The area Ac approaches (b - a)2 when a --7 b, and approaches 2(b - a)2 
when a --7 0, and consequently remains finite even as the inner cylinder 
approaches a line. 

The maximum field may be caused to occur on the outer surface 
r = b by adjusting the chemical charges in the depletion layer appro
priately, such as a p+pn+ structure with the pn+ junction at r = b, 
the p+p boundary at r = a. In this case, the area Ac approaches (b - a)2 
when a --7 b, and approaches 2b2 In (bla) when a --7 O. Hence, the space
charge resistance has the same value as given by (10) and (11) when 
a --7 b, but approaches infinity as a --7 O. 

III. CONCENTRIC SPHERE STRUCTURE 

As shown in Fig. 1 ( c), the depletion layer extends through the in
trinsic region of an n +ip + concentric sphere structure and is bounded by 
the spheres of radii r = a and r = b. When V = VB' the electric field 
E(r) has its maximum value FB at the inner surface r = a, and decreases 
to FBa2

1b
2 at r = b. 
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The space-charge current is given by 

The quantities LlE(r) and Ll V lJ are given as follows: 

where 

I (b a) I 
LlVB = (2Kvd)27r In;;, - 1 + b === NG = IRsc , 

1 
N-

As 
=== 47rb2 

As ~ (b - a)2, for a ~ b 

A. ~ CfJ, for a ~ 0 

841 

(13) 

(14) 

(15) 

(16) 

(17) 

and A. is quantity of area on the outer sphere surface that corresponds 
to one curvilinear unit-cube conductance G. When a is finite or a ~ b, 
(15) may be interpreted as the resistance of N unit curvilinear cubes 
in parallel, where each cube has a conductance (2Kvd) and the number 
of cubes N is given by (16). Unlike the n+ip+ coaxial-cylinder case, 
R.c of the concentric-sphere structure approaches infinite resistance as 
the inner sphere approaches a point. 

F B can occur on the outer sphere for a p +pn + structure, for example. 
The results of A. are the same for both limiting cases as given in (17). 

An interesting application of the unit-cube expression is that for a 
surface-controlled avalanche transistor (SCAT)4 with a total junction 
perimeter of P and a space-charge layer W. Because the space-charge 
resistance is finite for an n + ip + coaxial cylinder structure as the inner 
cylinder approaches a line [see (12)], it is feasible to make calculations 
for SCAT on the basis of an avalanche line source. There are N = P jW 
such unit cubes around the edge, and the total transconductance, gm , 
is4 

(18) 
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TABLE 1-UNIT-CUBE EXPRESSIONS (TV === b - a) 

Structures Parallel 
plane 

Coaxial 
cylinders 

Concentric 
spheres 

-------------- ------------------------
N a~b a~O a~b 

(No. of unit cubes) 

-----------------------------------_._--
Cube edge 

(cm) 
w w w 

--------------------1------1--------------

or 

Rse 
(ohms) 

1 
GN 

gm = (!)(2KVdN) === R1 • 
7r 7r. se 

(19) 

For a silicon SCAT with a device geometry of P 1000 J..L and W = 

0.5 J..L, there are 2000 unit cubes with cube edge 0.5 J..L. The space-charge 
resistance is 12.5 ohms, and the transconductance is 25,400 J..Lmhos. 

Another application is to calculate the voltage disturbance .1 VB in 
a Read diode. 5 For a silicon Read diode with drift region of 10 J..Lm and 
an operating current density of 1000 amp/cm2

, the value of .1 VB' as 
obtained from (6), is approximately 25 volts. 

A summary of the number of unit cubes and other pertinent quantities 
is presented in Table 1. It has been shown that the unit-cube conductance 
(2Kvd) is a figure of merit in semiconductor device design theory. The 
unit-cube expressions are shown to be useful for calculation of the space
charge resistance. 
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Comparison of M-ary Modulation Systems 

By IRA JACOBS 
(Manuscript received September 22, 1966) 

Consideration of large alphabet digital communication systems is of both 
theoretical and practical interest. Although performance bounds on optimum 
systems for the Gaussian channel are available, constructive methods for 
approaching these bounds are unknown, except in a few very special cases. 
Specific systems have been proposed and evaluated relative to these bounds, 
but exact evaluation of error probability is generally a d'ifficult numer'ical 
task. It is of interest to consider simpler performance criteria which permit 
comparison of various systems without extensive computation. 

An easily evaluated criterion (based on the alphabet size and minimum 
distance between signal vectors) is shown to yield a simple sufficient condi
tion for one system to be better than another (smaller error probability 
for the same energy-per-bit). The criterion is applied to orthogonal, bi
orthogonal, simplex, and more general permutation modulation systems. 
In addition to comparing the various systems, we cons'ider ways of obtain
ing good special cases of permutation modulation. Finally, we assess a 
recently proposed system (liN-orthogonal phase modulation") and show 
that it is generally inferior to more conventional techniques. 

1. INTRODUCTION 

The choice of waveforms for communicating over the Gaussian 
additive noise channel is a classic problem in communication theory. 
Orthogonal modulation systems (i.e., digital communications in which 
the alphabet consists of orthogonal waveforms) are known to result 
in good power efficiency at the expense of poor bandwidth utilization. 1

•
2 

As the alphabet size ~I is increased, the energy-per-bit E required to 
achieve a given error probability P e diminishes, but the information 
rate to bandwidth ratio (R/W) diminishes even more rapidly. Bi
orthogonal and simplex modulation afford somewhat improved per
formance, but are likewise restricted to low values of R/W. 

There is considerable interest in finding large alphabet systems 
which have both good power efficiency and good bandwidth utilization. 

843 
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Slepian3 has given bounds on what can be achieved, but constructive 
techniques for approaching these bounds are generally unknown. 

Although computer evaluation is ultimately required for precise 
knowledge of error probability, it is of interest to consider simpler 
performance criteria which permit at least a qualitative comparison 
of various systems without extensive computation. It is the purpose 
of this paper to demonstrate the utility of the latter approach. 

After defining the problem more precisely in Section II, some well
known bounds on the error probability are employed in Section III 
to obtain a simple analytic criterion for comparing systems in the limit 
of low P 6 • In Section IV this criterion is applied to systems (PSK, 
FSK, biorthogonal, and simplex) for which extensive exact computa
tions are available and for which the conclusions drawn are already 
well-known. After these illustrative examples, permutation modula
tion4 is considered in Section V and N-orthogonal phase modulation5

•
6 

in Section VI. It is shown that the former can yield better performance 
than conventional techniques, but that the latter is generally inferior. 
Finally, in Section VII limits on our performance criterion, obtained 
from sphere-packing arguments, are presented. 

II. COMMUNICATION SYSTEM MODEL 

We consider an M -ary modulation system of equienergy waveforms 
Si(t), i = 1, ... ,M, on (O,T), having the correlation matrix 

(1) 

Es is the energy of each waveform so that Pii = 1, and -1 ~ Pi, ~ 1. 
It is conventional3

• 7 to define a normalized information rate, 
(2 log2 M)/n, where n ~ M is the rank of the correlation matrix (di
mensionality of the signal space). We choose to call this normalized 
rate the "information to bandwidth ratio, R/W" motivated by the 
relations 

R = log2 JIIJ = 2 log2 ~1 
W WT n 

(2) 

where the second equality follows if we set n = 2TW, which is at 
least partially justified for large n by the work of Pollak and Landau.8 

For our purposes, the right-hand side of (2) may be considered as the 
definition of R/W. 

It will be assumed that in addition to Pi. = 1 that each row of the 
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correlation matrix can be written as a permutation of the first row. 
Considering the \vaveforms as vectors in an n-dimensional linear vector 
spacc, this means that each waveform sees an identical environment 
of neighboring waveforms. This restriction is a desirable one if it is 
desired to transmit each waveform with equal a priori probability. 
The restriction is satisfied by the various modulation systems mentioned 
in the introduction. * Slepian9 has termed such systems "group codes 
for the Gaussian channel." 

It is assumed that the receiver observes a waveform z(t) on the 
interval (0, T) 

z(t) = Si(t) + n(t), (3) 

where net) is a sample function from a white Gaussian noise process 
of spectral density NQ ; i.e., 

(n(t)n(t'» = ~o oCt' - t). (4) 

On the basis of this observation we wish to decide with minimum prob
ability of error (P.) which of the M waveforms was transmitted. The 
optimum (minimum P e) receiver is known10 to consist of M matched 
filters which give 

(5) 

where 

(6) 

and decision that the kth waveform was transmitted is made if Zk > Zj 

for all j ~ k; i.e., the decision is made on the basis of the largest matched 
filter output. 

From (6), the Xj are zero-mean Gaussian variates with covariance 

(7) 

* The only commonly employed M-ary system (known to the author) which does 
not satisfy this restriction is M-Ievel amplitude modulation. 
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The error probability of this system is given by* 

(8) 

where P(Xl' ... , XlIf) is the multi-variate zero-mean Gaussian dis
tribution with covariance given by (7), and the region of integration 
Qi is defined by the condition 

Qi = region in which 1 + Xi > Pij + Xj for all j ~ i. 

Clearly P e is a function of M parameters: E./No , P12 , P13, ••• , Pll1f , 

the first of which is a signal-to-noise ratio, the remainder of which 
describe the correlation properties of the modulation system. 

Landau and Slepianll have proved the long-conjectured result that 
P e is minimized for a given M (but n unrestricted) by the simplex 
configuration in which the correlation matrix has the formt 

{- ~:~ i 
i = j 

Pij simplex. 
i ~ j 

The rank of this matrix is n = M - 1 so that 

2 log2 lJl 
(R/W)simplex = lJII - 1 . 

(9) 

(10) 

For this case the expression for P e may be reduced to a single integrallO 

and numerical results are readily obtained.13 

Weber14 has derived locally optimum configurations when M /2 ~ 
n ~ M - 1. For n = M /2 a local optimum is the biorthogonal con
figuration in which the signal vectors are located along the coordinate 
axes (+ and -) of the n-dimensional vector space such that 

~ = J 

pij i = j - (-I)j biorthogonal. (ll) 

i ~ j, j - (-1) j 

* Actually this is the error probability assuming the ith signal is transmitted. 
However, under the assumption of equal a priori transmission of all signals, and the 
permutation property assumed for the correlation matrix, this probability is inde
pendent of i and is equal to the system probability of error. 

t The "local optimality" of the simplex configuration (viz., that P t has a local 
minimum) had been proved previously by Balakrishnan.12 
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The rank of this 1I[ X M matrix is ll[ /2 so that 

(~) hiorthogonal = 4 l~~ 1\[ . (12) 

In this case P e may also be expressed as a single integral which is 
readily evaluated by machine techniques. Although for a given value 
of M, biorthogonal modulation requires slightly more energy-per-bit 
to achie.ve a given Pe than simplex,* it is noted that (for large 11[) 
R/W for biorthogonal is essentially twice that of simplex. Further
more, for biorthogonal half of the waveforms are the negatives of the 
remaining half; consequently, l1f /2 rather than 11f matched filters are 
required. For these reasons biorthogonal is generally preferred to sim
plex, and indeed has been employed for deep-space communications.15 

The disadvantage. of both simplex and biothogonal modulation is 
that good power efficiency is associated with large values of M (as it 
must be for any modulation system) which from (10) and (12) imply 
small values of R/W. Weber's14 results indicate locally optimum sys
tems with R/W between simplex and biorthogonal, but these are then 
also restricted to relatively small R/W. 

Optimum systems (in the sense of minimum Pe ) are not known for 
n < 11f/2. However, bounds on the error probability of optimum sys
tems have. been obtained7 and evaluated.3 (The upper bound i~ ob
tained by random coding arguments, and the lower bound by sphere' 
packing arguments.) These bounds are extremely useful in assessing 
the performance of specific systems; however, to do so involves ex
plicit evaluation of P e for the specific systems of interest. This is at 
best a difficult numerical task. Furthermore, we may find in comparing 
two systems that one is better if we are interested in Pe ~ 10-3

, 

whereas the reverse is true when Pe ~ 10-6
• Also, in comparing sys

tems with different values of l1f it may be unrealistic to compare P e, 

since P e is the word error probability, and the systems contain a dif
ferent number of bits per word. Comparison on the basis of bit error 
probability involves a difficult conversion from word to bit error 
probability which involve coding arguments separate from the modula
tion system performance.16 For all of these reasons it is desirable to 
find a simpler criterion than Pe which permits at least a gross com
parison of modulation systems. 

* If the comparison is made for a fixed RITV rather than M then biorthogonal 
requires less energy per bit. The simple unqualified statement that simplex is 
the optimum modulation system is misleading. 
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III. BOUNDS ON ERROR PROBABILITY 

One approach to comparing modulation systems is to obtain lower 
and upper bounds on the true error probabilityiC' 

(13) 

and to say that system 1 is better than system 2 if P U1 < P1'2' 

If two systems are close in performance, the ahove procedure may 
not enable us to determine which is better unless the bounds are close. 
On the other hand, close bounds may bc difficult to evaluate and may 
not lead to a simple performance criterion. We adopt the viewpoint 
here that it is desirable to have bounds, which although quite loose, 
lead to a simple sufficient condition for determining when one. system 
is better than another. 

Let 

P = max Pii = max Pli • (14) 
;.,&i ;>1 

That is, p is the largest non-diagonal entry of the correlation matrix. 
It is readily established thatt 

~( - ~!o (1 - p)) ~ p. ~ (M - 1)~( - ~!o (1 - p)) , (15) 

where 

1 j'" ~(x) == _ r;:;- dy exp (_y2 /2). 
v 27r -00 

(16) 

The lower bound is obtained by observing that Pc for an M-ary system 
can be no less than that of the binary system containing nearest 
neighbor waveforms. The upper bound follows from 

p. ~ t, <p( - ~lJ;. (1 - p,,)) ~ (M - 1)<P( - ~i. (1 - p)) (17) 

where the first inequality in (17) is a consequence of the symmetry 
property of the system and the fact that the probability of a union of 
events is less than the sum of the probabilities of the events. The 

* We consider here bounds on word error probability, which, however, may be 
easily converted to bounds on bit error probability. For example, if a word is in 
error at least one bit is in error, and at most all bits are in error. Hence, 
P!/log2M and Pu are lower and upper bounds on the bit error probability. 

t These bounds are generally well known and appear widely in the literature; 
e.g., Refs. 7, 17, 18, 19. Also, as noted in the previous footnote, these bounds on 
word error probability are readily converted into bounds on bit error probability. 
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second inequality in (17) follows simply by observing that a sum of 
(111 - 1) terms is no greater than (111 - 1) times the largest term. 

In comparing modulation systems with different alphabet size it is 
more appropriate. to consider the energy per bit E rather than the 
signal energy Es , where 

(18) 

Indeed, the parameter EINo is an appropriate measure of the power 
efficiency of a modulation system. The Shannon channel capacity 
formula requires that EINo > loge2 to achieve arbitrarily small Pe, 
conventional systems generally require values of E INo at least 4 times 
the Shannon minimum.:! 

In terms of the parameter E INo the error probability bounds may 
be rewritten 

cp( - ~~o K) ~ Pe ~ (NI - I)CP( - ~!o K) , (19) 

\vhere 

I( ~ (1 - p) log2 M. (20) 

We. will say that system 1 is "better" than system 2 if 

Several conclusions are apparent from (21). 

(i) In the limit of large E INo, Kl > K2 is sufficient to ensure that 
system 1 is better than system 2. (If Kl > K2 we will say that sys
tem 1 is "asymptotically better" than system 2.) 

(ii) If system 1 is asymptotically better than system 2, then there 
exists a value of EINo above which system 1 is better than system 2. 
Below this value of EINo our formalism is generally inadequate to 
determine which system is better. (The critical value of EINo may 
be obtained by replacing the inequality in (21) by an equality.) 

(iii) A binary system that is asymptotically better than an J.l1-ary 
system is always better than the 1vI -ary system. 

Thus, we can always determine quite simply which of two systems is 
asymptotically better, and may, in many special cases, be able to make 
comparisons at specific E INo of interest. 

It should be emphasized that the above comparison is on the basis 
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of the Pe obtained with the two systems when operated at the same 
average power and information rate. To complete the comparison, the 
bandwidth requirements of the two systems should also be considered. 
Thus, the parameter R/W, as well as K should be. used in comparing 
systems. 

In the following sections of this paper specific systems will be con
sidered and represented by points on a K, R/W plot. This will enable 
an immediate comparison of the asymptotic performance of systems 
having the same R/W. It should be noted that Gilbert17 used a simi
lar plot in his 1952 paper which addressed the. same subject con
sidered here. Gilbert employed a (SNR, R/W) plot in which the effec
tive signal-to-noise ratio (SNR) was obtained for a given Pe by using 
the upper bound in (19). Since the SNR is related to our I/K, better 
systems correspond to smaller SNR. Our purpose in writing this paper 
is not to argue that our plot is a better way to present the results 
than Gilbert's. (Indeed, since in general, Pe is much closer to the. upper 
than to the lower bound, his method of comparison is somewhat bet
ter, although somewhat less convenient to use.) Our purpose rather is 
to resurrect these old methods which have been largely discarded 
since the advent of high-speed computation, and to illustrate their 
applicability to recently proposed modulation systems. 

IV. PHASE, FREQUENCY, BIORTHOGONAL AND SIMPLEX MODULATIONS 

4.1 Phase-Shift Modulation 

For M phasors uniformly spaced on the unit circle, p 

Therefore, 

]( = 2 log2 M sin2 ~. 

cos 27r/M. 

(22) 

Note that K = 2 for both M = 2 and M = 4* and falls off thereafter. 
Since the dimensionality of the signal space is n = 1 for 111 = 2 and 

n = 2 for M > 2, it follows that R/W is given by 

R {2 for !VI = 2, 
W-

log2 M for M > 2. 
(23) 

* K is maximized (for integer 1\;1) when M = 3. In practice, it is generally 
desirable to consider only those values of M which are integer powers of 2 (i.e., 
each symbol conveys an integer number of bits). We shall restrict our numerical 
examples to such cases. 
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TABLE I - PHASE-SHIFT MODULATION 

K 

2 
2 
0.88 
0.30 
0.098 
0.030 

R/W 

2 
2 
3 
4 
5 
6 
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Table I lists the ]( and RjW values for phase-shift modulation, and 
these are denoted by dots in Fig. 1. It is apparent that .1.1f' = 2 and 
.1.11 = -4 are asymptotically better than the higher-order systems, and 
from our previous results this implies that the binary system is always 
better than the general lv[ -ary case with 111 > 4. -x- Recall that we are 
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Fig. 1 - (K,RIW) plot for phase-shift, orthogonal, biorthogonal, and simplex 
modulations. 
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consistently using the term "better" to mean smaller Pe for a given 
E /No• Large alphabet phase modulation may still be desirable because 
of the larger R/W. 

4.2 Frequency Shift (Orthogonal) 1Ilodulation 

For J.1{ orthogonal signals (e.g., frequency-shifted signals with es
sentially non-overlapping spectra), p = 0 and 

[( = log2 M. (24) 

The dimensionality of the signal space is the number of orthogonal 
vectors, n = M, so that 

(25) 

Table II lists the K and R/W values for orthogonal modulation, and 
these are denoted by circles in Fig. 1. Larger values of 111 correspond to 
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8 
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TABLE II -ORTHOGONAL MODULATION 

K 

1 
2 
3 
4 
5 
6 

R/W 

1 
1 

3/4 
1/2 
5/16 
3/16 

systems which are asymptotically better, at the expense, however, of 
smaller values of R/W. It is clear that binary orthogonal is inferior 
to binary and quarternary PSK both in terms of a smaller K and 
smaller R/W.t 

4.3 Biorthogonal Modulation 

A biorthogonal system consists of 1II/2 orthogonal waveforms and 
their negatives. The maximum correlation coefficient is p = 0 for M ~ 
4, but p = -1 for M = 2. Therefore, 

K - {2 for M = 2, (26) 

log2 M for M ~ 4 (M even). 

* This conclusion is confirmed by the exact calculations of Pe for M-ary PSK 
by C. R. Cahn.20 

t Binary FSK may still be employed, of course, for simplicity reasons or 
because the channel phase cohprence may not be consistent with phase-shift 
modulation. 



Since n = M/2, 

M-ARY MODULATION SYSTEMS 

R 
TV 

4 log2 Jl;[ 

III 

853 

(27) 

Table III lists the I( and R/W values for biorthogonal modulation, 
and these are denoted by :O's in Fig. 1. Note that lY[ = 2 and lY[ = 4 
biorthogonal are equivalent, respectively, to binary and quarternary 
PSI(. 

Clearly, for fixed R/W, biorthogonal is asymptotically better than 
orthogonal. For example, consider 111 = 4 orthogonal and M = 16 
biorthogonal, both of which have R/W = 1. From (21), the biortho
gonal system is better than the orthogonal system for all E/No > 2.5, 
which corresponds to all Pe of practical interest. (Pe < 3 (10)-2). 

4.4 Simplex Modulation 

In simplex modulation, the lV[ code vectors form a regular simplex 
in 111 - 1 dimensions. (All vectors are equally spaced from all other 
vectors. This corresponds to an equilateral triangle in two dimensions, 
and a regular tetrahedron in three dimensions.) All correlation coef
ficients are equal and are given bylO,12,13 p = -1/ (M - 1). Therefore, 

Since n = M - 1, 

R 
W 

2 log2 ]Y[ 

III - 1 

(28) 

(29) 

Comparison of (28), (29) with (24), (25) indicates that for large M 
simplex modulation is essentially identical to orthogonal modulation. 
Table IV lists the J( and R/W values for simplex modulation, and 
these are denoted by 6 's in Fig. 1. A quick glance at Fig. 1 indicates 

TABLE III-BIORTHOGONAL MODULATION 

2 
4 
8 

16 
32 
64 

K 

2 
2 
3 
4 
5 
6 

R/W 

2 
2 

3/2 
1 

5/8 
3/8 
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that depending on the R/W of interest, biorthogonal or PSK modula
tion offers the best asymptotic performance of the systems considered 
so far. (The dashed line in Fig. 1 is drawn through these "best" 
points.) Note that although simplex provides the largest I( for a fixed 
value of M, it does not do so for fixed R/W.* 
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4 
8 

16 
32 
64 

TABLE IV -SIMPLEX MODULATION 

K 

2 
2.67 
3.43 
4.26 
5.16 
6.10 

R/W 

2 
1.33 
0.86 
0.53 
0.32 
0.19 

V. PERMUTATION MODULATION 

Slepian4 has recently described an exceedingly general modulation 
system (permutation modulation) for which all of the systems con
sidered in the previous section are special cases. The optimum de
modulation algorithm is particularly simple, but the actual evaluation 
of Pc, and the finding of good special cases is somewhat more complex. 
We restrict ourselves here to a special subclass of permutation modula
tion. This subclass is suggested both as the simplest generalization of 
biorthogonal systems, and because perusal of Slepian's results indicate 
that systems taken from this subclass are amongst the better of the 
moderate-sized alphabet examples which he considers. 

Following Slepian we define an (n,m) permutation modulation sys
tem as follows. The time interval T is divided into n subintervals (n = 
2TW). The first waveform of the alphabet consists of a signal with 
amplitude unity in the first m subintervals (m < n), and zero ampli
tude in the remaining subintervals. The remainder of the waveforms 
consist of all possible permutations of the subintervals, allowing also 
all combinations of plus and minus amplitudes. For example, the 
(3,2) system contains twelve waveforms which we may represent as 

(1,1,0), (1, -1 ,0), (-1,1,0), (-1, -1 ,0), 

(1,0,1), (1,0,-1), (-1,0,1), (-1,0,-1), 

(0,1,1), (0,1,-1), (0,-1,1), (0,-1,-1). 

* For the special case jl1 = 2, simplex, biorthogonal and PSK are all 
equivalent. 
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In general, it is easily seen that the alphabet size lv[ is given by 

(30) 

It is also noted that the special case (n,l) corresponds to biorthogonal 
modulation.* 

This (n,m,) modulation clearly satisfies the symmetry requirements 
of our theory. All members of the alphabet have equal energyt and the 
correlation matrix has the desired permutation property. It is readily 
seen that the maximum correlation coefficient is given by 

Thus, 

m - 1 
p = ---. 

m 

K == (log2 .M)(l - p) 

= 1 + ~ 10g2 (:J 
so that (n,m) modulation always achieves K > 1. Also 

R = 2 10g2 Jl;[ 
TV - n 

= 2m ](. 
n 

(31) 

(32) 

(33) 

Equations (32) and (33) suggest that (n,m) modulation may achieve 
both large values of K and large RjW, which was not possible with 
any of the systems described in the previous section. 

5.1 (n,2) Modulation 

Since m = 1 leads to biorthogonal modulation which has many de
sirable properties, it is natural to look next at the special case m = 2. 
From (32) and (33) it follows that for (n,2), 

K = ![1 + log2 n(n - 1)] (n ~ 3) (34) 

and 

R 4K 
W = -;;:. (35) 

* In Slepian's terminology, the (n,m) modulation described here is a variant 
II system in which ml = n - m, m2 = m and}J-l = 0, /1-2 = 1. 

t With the normalization employed above, the signal energy is m. However, 
all code words may be multiplied by a constant to achieve any desired E •. 
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values of the K and R/W are given in Table V and are plotted as .'s 
in Fig. 2. (For reference, Fig. 2 also contains the biorthogonal and 
PSI{ results from Fig. 1.) Thus, similar to biorthogonal, as n becomes 
large K increases but R/lV decreases. It is seen from Fig. 2 that (n)2) 
modulation gives better performance (larger K for a given R/W) than 
biorthogonal or PSI{. ie-

5.2 (2m,m) Modulation 

(2,1) corresponds to M = 4 biorthogonal, which from our earlier 
results gives K = 2, R/W = 2. It is seen from Table V that (4,2) 
gives ]( = 2.30, R/W =, 2.30 which corresponds to both better 
asymptotic performance and better bandwidth utilization. It is ap-

TABLE V - (n,2) MODULATION 

n 1IJ = 2n(n - 1) K R/W 

3 12 1. 79 2.38 
4 24 2.30 2.30 
5 40 2.66 2.13 
6 60 2.95 1.97 
7 84 3.19 1.82 

parent from (33) that whenever n =, 2m) R/W = ](, and an im
mediate question is how large can we make these two quantities. 

With n = 2m, it follows from (32) that 

1 (2m) K = 1 + m log2 m . (36) 

Use of Stirling's approximation when m » 1 gives 

(2m) ~ 1 22m 

m V7rm (37) 

SO that for large m) K ~ 3. It is easily shown that K increases mono
tonically towards this asymptotic value as m is increased. Thus, 
(2m, m) modulation does not permit attainment of arbitrarily large 
values of ]() and hence cannot attain arbitrarily low Pe with finite 
E /No • This is consistent with Slepian's statement4 that permutation 
modulation cannot approach channel capacity arbitrarily closely at 
non-zero R/lV. 

* This is, of course, achieved only at the expense of a larger alphabet size. It 
may also be noted from Table V that the alphabet size is not generally; a power 
of 2 which may also be a practical disadvantage. 
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5.3 (lem,m) 1I1odulation (Ie > 1) 

857 

-

• 6 

As an immediate generalization of the above, consider the more 
general case n = km where k > 1.* Then, from (33) 

and from (32) 

R 2 - =-K TV Ie 

1 (lem) K = 1 + m log2 m . 

(38) 

(39) 

Again using Stirling's approximation for large m, (assuming also that 
(k - 1) 1n » 1) 

( lem) ~ 1 ~ Ie _ (~_)km(k _ l)m (40) 
m V 27rm Ie - 1 Ie - 1 . 

* Of course k should be chosen so that km is an integer. 



858 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 11)67 

Thus, in the limit of large m, for fixed k > 1, 

(41) 

For large k, the right-hand-side of (41) increases as log k; however, 
as seen from (38) RjW diminishes as k-1

• The locus of ](, RjW values 
obtained with different values of k (but large m so that the approxima
tion (41) applies) is shown by the solid curve in Fig. 2. In the limit 
as k ~ 1 (but m always sufficiently large such that (k - 1) m » 1), 
K ~ 1 and RjW ~ 2. As k increases, both RjW and ]( increase until 
k ~ 1.5 at which point RjW ~ 3.2 and K = 2.3. Further increases in 
k result in a reduction in RjW but continued increase in K. 

The above results indicate that (n,m) codes can be found with 
RjW as large as octary PSK (RjW = 3) and with considerably better 
asymptotic performance. 

VI. COMBINED PHASE-SHIFT AND ORTHOGONAL MODULATION 

In the previous examples we have compared by approximate meth
ods modulation systems which have already been analyzed exactly. 
Although perhaps additional insight into the relative performance of 
these systems has been obtained, many of our conclusions may be 
inferred from existing exact calculations. We now wish to consider a 
new system, recently proposed by Reed and Scholtz,5,6 which (to our 
knowledge) has not yet been evaluated numerically. 

Consider an alphabet M divided into M f groups, each group con
taining Mp members. Thus, 

(42) 

The different groups may be considered to be sufficiently separated in 
frequency so that waveforms from different groups are orthogonal. 
Within a group the waveforms have the correlation properties as
sociated with phase-shift modulation. Thus for Mp ~ 4 the maximum 
correlation coefficient is p = cos (2'71/Mp ) , and 

K = 2 sin
2 JJ~ (lOg2 Mp + log2 M f)· 

p 

(43) 

Since each group requires a two-dimensional sub-space 

(44) 
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Thus, 

RjJV = log2 1v! f + log2 .Lv! p. 

jllf .Lll f 
(45) 

In the special case of j11, = 1 it is apparent that this system reduces to 
simple phase-shift modulation (Section 4.1). In the special case of 
.1.11p = 4 it reduces to the biorthogonal case (Section 4.3). A question 
of interest then is whether choices of .1.11 p > 4, J.11, > 1 lead to better 
performance than either phase-shift or biorthogonal modulation.* 

In Fig. 3 the K and RjW values (obtained from 43 and 45) are 
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Fig. 3 - (K,RIW) plot for combined phase-shift and orthogonal modulation. 

shown for the combined phase orthogonal modulation. The solid curves 
are for constant values of 111, (noted on the curve); the uppermost 
point on each such curve corresponds to Mp = 4, and each lower point 
corresponds to j11p increased by a factor of two. The dashed curve 
goes through the .1.11p = 4 points (biorthogonal). It is apparent from 
this figure that in this class of systems, for RjW ~ 2, the Mp = 4 
biorthogonal systems give the largest value of K. For RjW ~ 2, the 
.1.11, = 1 phase-shift systems give the largest value of K. Thus, in terms 

* Reed and Scholtz5 ,6 are concerned largely with an algebraic method of 
generating waveforms with the above correlation properties, rather than in a 
comparative evaluation of performance. 
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of asymptotic performance, choice of 111p > 4, 111, > 1 always gives 
poorer performance than systems which achieve the same RjW with 
either l1{p = 4 (biortbogonal) or l1{t = 1 (simple phase shift). 

For example, consider 111, = 2, 111p = 8. This yields RjW = 2 and 
K = 1.17. However, RjW = 2 is also achieved with 111, = 1, 111p = 4 
(quaternary PSI() , and for this case K = 2. From (21) we can con
clude that the latter system is better than the former for all E jNo > 
2.5, which includes all Pc of interest. The. significance of these results 
is that we can make this comparison with only a simple slide-rule 
calculation. 

In the above comparison we considered only Mp ~ 4. The case of 
Mp = 1, 11{, > 1 is the orthogonal modulation previously considered. 
The case of Mp = 2, M, > 1 gives the same performance as biorthog
onal but achieves only i the RjW and consequently is of little in
terest. The case of Mp = 3, 11{, > 1 consists of orthogonal combina
tions of two-dimensional simplexes ( equilateral triangles). Reed and 
ScholtzG conjecture that for M = 311{" the three-phase orthogonal 
system gives a smaller Pc than any other collection of 311{, signal func
tions in a space of dimensionality 2j11,. Although this conjecture may 
well be true, we wish to point out that if the comparison is made on 
the basis of fixed Rjll' (rather than fixed M) then biorthogonal is 
asymptotically better than three-phase orthogonal. One way of seeing 
this is by noting that three-phase orthogonal has the same K but 
smaller RjW than the four-phase (biorthogonal) system of the same 
dimensionality. To increase the RjW of the three-phase system re
quires a reduction in K which makes it asymptotically poorer than 
the corresponding biorthogonal system. 

VII. BOUNDS ON K 

It has been shown that the (I{,RjW) plot provides a useful tech
nique for comparing the performance of various modulation systems. 
Although our main concern here is in the comparison of specific sys
tems, it is still natural to ask whether there are bounds on what may 
be achieved in the (K,RjW) plane. 

It is apparent from the definition of K 

K = (1 - p) log2 JJ1 (46) 

that if no constraint is placed on alphabet size or signal space 
dimensionality, K can, in principle, be made arbitrarily large for any 
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RjW. This corresponds to the fact that the Shannon channel capacity 
formula implies that arbitrarily small Pc may be achieved at all 
(finite) RjW with finite EjNo• 

If M is held fixed but n is unconstrained, then the maximum I( is 
achieved by the simplex modulation12 (Section 4.4) for which case 
I( = [l11j(lVI - 1)] log21\;I and RjW = (2Iog211f)jl\;I - 1. 

Perhaps of more practical interest is the opposite case where the 
signal space dimensionality n is fixed, but 1\;1 is unconstrained. Here, 
sphere-packing arguments may be used to show that3 

- (n - 1 1) 
M ;£ 2jl o - p )/2 -2- '2" ' (47) 

where Ix(p,q) is the incomplete beta-function which is extensively 
tabulated.:n Thus, for a given p -and n, an upper bound to 111 may be 
calculated from (47). Since Ix(p,q) is monotonic increasing in x, this 
also gives a lower bound on p for fixed 111 and n. Considered in this 
latter context we can then determine an upper bound on K with which 
is associated a given value of RjW = (2jn) log2_i11. This upper bound, 
IC, is plotted in Fig. 4 as a function of RjW for n = 5 and n = 10. 
Both curves indicate that Ku achieves a maximum value. This is un
derstandable since for large RjW, 1 - p decreases more rapidly than 
log2M increases. On the other hand, as RjW decreases, log2111 keeps 
decreasing, whereas 1 - p is of course always less than 2. Thus, it is 
not surprising that there exists an RjvV at which IC is a maximum. 

It should be noted, however, that Ku is an upper bound which likely 
cannot be achieved. For example, when RjW = (2jn) log22n, cor
responding to lVI = 2n, the optimum configuration is widely con
jectured to be the biorthogonal case.14 The corresponding K and RjW 
values for biorthogonal with n = 10 and n = 5 are shown by the 
points marked (l0,1) and (5,1) on the dashed curves of Fig. 4. These 
points lie well below the upper bounds. 

Biorthogonal is a special case (m = 1) of the (n,m) permutation 
modulation considered in Section V. Fig. 4 (dashed curves) shows the 
K and RjW values for the (lO,m) and (5,m) cases. As must be, 
these curves lie below the upper bounds given by the solid curves. 

Finally, we note from Fig. 4 that (n,m) permutation modulation 
possesses the interesting feature that as m is increased (for a fixed n) 
a maximum RjW is achieved. Both the properties of the maxima of 
Ku and the maxima of the RjW of (n,m) modulation are probably 
worthy of further study. 
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Fig. 4 - Bounds on (K,R/TV) for fixed n and comparison with permutation 
modulation. 

VIII. CONCLUSION 

The main conclusion to be drawn is that the ](, RjW plot provides 
an exceedingly useful technique for comparing modulation systems. 
We have restricted ourselves to modulation systems in which the 
signal alphabe.t consists of equienergy waveforms for which all rows 
of the correlation matrix are permutations of a given row. (Geo
metrically, the alphabet consists of M points on the surface of an n
dimensional sphere such that all points see exactly the same environ
mcnt.) This class of systems, although somcwhat limited, is sufficiently 
broad to cover most systems of theoretical and practical interest. 
Given two systems in this class such that](l > ](2; then in the limit 
of large EjNo (low Pe) Pel < P e2 for the same EjNo. Furthermore, 
we have obtained a simple sufficient condition on the E jNo above 
which this inequality is valid. These results are in reality not new. 
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They are implicit in the results of Shannon7 and in many other works.19 

What is perhaps new is that many interesting results and comparisons 
can be obtained by such simple techniques. 

Considerably more precise comparisons can of course be made by 
exact computation of Pc rather than by comparison of K. The latter 
procedure however is considerably quicker and allows ready con
sideration of entire classes of systems (e.g." the (n,m) permutation 
modulation and the combined phase-shift orthogonal modulations 
considered in the previous sections). The comparisons discussed here 
are not meant to supplant exact evaluation, but rather as a coarse sieve 
for delineating systems worthy of more extensive calculation. 
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Combinatorial Solution to the Problem of 
Optimal Routing in Progressive Gradings 

By V. E. BENES 

(Manuscript received June 10, 1966) 

The grading or graded multiple proposed by E. A. Gray is a certain 
kind of one-stage, two-sided, partial access telephone connecting network 
for switching customers' lines to trunks all having the same destination. 
Its essential feature is that traffic from lines not having identical access 
patterns can be offered to a common trunk, and so pooled. In a progressive 
grading the trunk groups are partially ordered in a hierarchy, i.e., some 
provide primary routes, others function as secondary routes which handle 
traffic overflowing from primary routes, as well as originating traffic, etc., 
up to final routes. 

A call which is using an overflow or "later" trunk when it could be using 
a primary or "earlier" group is said to make a "hole in the multiple". 
I t was recognized early in the development of gradings that such holes were 
undesirable. 

The problem of optimal routing in telephone networks, considered in 
general in the author's earlier work, is here specialized to progressive grad
ings. It had been shown that for networks with certain combinatorial 
properties the optimal choices of routes for accepted calls (so as to minimize 
the loss under perfect information) could be described in a simple and in
tuitive way in terms of these properties. The present paper gives a proof 
that all progressive gradings have such a combinatorial property, associated 
with the hierarchical nature of the grading. The optimal poUcy for routing 
accepted calls is related to the phenomenon of "holes in the multiple", 
and can be paraphrased in the traditional telephone terminology thus: 
filling a hole in the multiple is preferable to using a final route, and filling 
an earlier hole is preferable to filling a later one. 

1. INTRODUCTION 

The term 'hierarchical' has often been used to describe connecting 
networks in which the possible routes for a call are ordered, with the 

865 
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order determining the routing decisions in that the earlier routes are 
hunted over before the later. The Bell System's toll network is often 
cited as an example of a hierarchical network. Recently, J. H. Weber 
has used the word 'hierarchical' in a more technical sense to describe 
trunking networks" ... in which at least some of the trunk groups are 
high usage; i.e., traffic which is not carried can be overflowed to other 
groups, at least some of which are finals, which have no alternate 
route."l 

In this paper, we consider some ways in which the concept of a 
hierarchy of routes is relevant to the problem of optimal routing as 
formulated in previous work.2 Naturally, such a hierarchy can be 
relevant to routing only if it is in a suitable way related to those 
combinatorial properties of the network which distinguish the 'good' 
from the 'poor' ways of completing calls. (Examples of such properties 
were given in Ref. 2.) It shall be shown that natural hierarchies as
sociated with certain gradings hold the key to the routing problem in 
these one-stage networks. 

It is now known2 that if a network possesses one of certain com
binatorial properties, then this property can be used to describe in a 
simple way the optimal choices of routes for accepted calls so as to 
minimize the loss under perfect information. The next natural ques
tion is, then, what networks possess some of these properties? We 
shall prove that the members of an important subclass of connecting 
networks, that of progressive gradings, all have a combinatorial prop
erty similar to the strongest of those of Ref. 2; this property is as
sociated with a natural hierarchy of routes, and leads to a solution of 
the routing problem for accepted calls. 

II. GRADINGS 

We first discuss and clarify some of the usage and terminology as
sociated with gradings. Since about* 1905 the noun 'grading' and the 
adjective 'graded' have been used in telephony to describe a certain 
kind of one-stage two-sided network for connecting customers' lines 
to trunks all having the same destination. Roughly speaking, a grading 
has this property: some trunk is such that two lines have access to 
it which do not have access to the same trunks. The essential feature 
is that traffic from distinguishable lines (i.e., ones not having identical 
access patterns) can be offered to a common trunk. 

* E. A. Gray proposed the "graded multiple" in 1905, and was granted a 
patent for it (No. 1002388) in 1911. 
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It appears, though, that the word 'grading' has been used in a wider 
sense in Europe than in the United States. In particular, the American 
usage3 implies a certain order in the pattern of access that the lines 
have to the trunks, whereas in the European meaning this implication 
is absent. The order implicit in the American usage amounts to this: 
the trunks are partitioned into groups which are so partially ordered 
that no group has more than one successor in the ordering; a line that 
has access to one group has access to all groups that follow it in the 
ordering. (This ordering usually determines the order in which the 
lines hunt over the trunks.) Thus, e.g., a trunk group with no predeces
sors in the ordering can be used by exactly one group of lines, for 
which it is the "primary" route. In one European sense of "grading," 
however, a trunk group which is the first one hunted over by one line 
group may be the nth one (n > 1) hunted over by some other line 
group.4 The distinction drawn here is of some importance, inasmuch 
as the order structure implicit in the American usage gives rise to a 
natural hierarchy of routes that is directly relevant to routing, whereas 
in the more general case this hierarchy is not necessarily present. 

Recently, in an effort to establish a uniform terminology, the 
nomenclature committee of the International Teletraffic Congress de
cided5 that the terms 'grading' and 'graded multiple' should be in
terchangeable, and the structures described in R. 1. vVilkinson's paper3 
as graded multiples be called, more specifically, progressive graded 
1nultiples or progressive gradings, the word 'progressive' here re
ferring to the order structure we have described as characteristic of 
the American usage. The usage recommended by this committee is 
adopted herein. 

Since the present work can be viewed as a continuation of Ref. 2, 
we take the liberty of assuming familiarity with the notations and 
concepts used there, and we include only occasional reminders of the 
meanings of important notions. 

III. HIERARCHIES OF ROUTES 

It will be convenient to have a notation for routes. A route r for a 
call c is just a way in which c can be put up or realized in a network v, 
and so it can be identified with the state in which the only call in pro
gress is c using route r. Thus, a route for c is any element of -y-1(C).* 
We use the variables q and r (over the set L1 of states with one call in 
progress) to denote routes. 

* We recall that ifxis a state, ')'(x) is the assignment of inlets to outlets realized byx. 
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By a hierarchy of routes we mean a partial ordering :J contained in 

It is apparent that ;2 can hold only between alternative routes for 
the same call. (Of course, not every hierarchy of routes is relevant to 
routing; only those that have a suitable relation to the ways in which 
calls in progress block new calls will be of interest. The problem is 
to clarify the meaning of 'suitable'.) 

A hierarchy of routes, being a partial ordering of the states with one 
call in progress, can be extended to, or can induce, a partial ordering 
of the whole set S of states in several natural ways. Since :J can hold 
only between alternative routes for the same call, it is reasonable to 
confine attention to extensions which hold only between states that are 
equivalent inthe sense of ~ in Ref. 2, i.e., are (possibly) different ways 
of realizing the same assignment. An obvious first candidate for such 
an extension is given by the condition 

x ~ y and r ~ x, q ~ y, r ~ q imply r;2 q. (1) 

However, we eschew this definition in favor of a stronger one: let us set 

x ;2 y == x is reachable from y by sequentially moving calls in pro
gress from routes that are lower (later) (in the sense of 
;2 on L 1) to routes that are higher (earlier).* 

It is intended here not merely that, as in (1), each call have a higher 
route in x than in y, but that it should be possible to pass from y to x by 
a sequence of equivalent states each differing from the previous one 
in that one call has been rerouted on a higher route. This stronger 
condition is rendered formally by first defining 

x Q y == I x n y I = I x I - 1 and either 

x - (x " y) ;2 y - (x u y) or 

I x I = 1 and x ;2 y 

and then setting 

:J = I u Q U Q2 U •.. 

= transitive closure of Q. 

(2) 

* In an attitude prejudiced and justified by the principal results (Theorems 1 and 
2) we are working toward, we use the words 'lower', 'earlier', and their antonyms so 
as to suggest consistently that lower routes are less desirable than higher, earlier ones 
are preferable to later, etc. 
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IV. PROGRESSIVE GRADINGS 

In a one-stage connecting network v = (G,I,fJ,S), with I the set of 
customers' lines (inlets) and fJ that of trunks (outlets), the graph G 
giving network structure is determined entirely by the access relation 
A such that 

lAt == line l has access to trunk t. 

The set S of states of v can be represented by the set of all subsets of 
A which are one-to-one correspondences. The range of x, rng (x), is 
the set of trunks which are busy in x. 

The access relation A can be used to give a simple definition of a 
progressive grading. We use X X Y for the Cartesian product of X 
and Y, i.e., the set of pairs (x,y) with x c X and y c Y. If X is a set, 
I X I denotes the number of elements of X. 

Definition: v is a progressive grading if and only if it is a one-stage 
network for which there exist partitions II and Z of fJ and I, respectively, 
and a partial ordering ~ of II, such that for T, U, V c II and L c :e 

(i) (L X T) " A ~ 0 implies (L X T) ~ A, 

(ii) (L X U) ~ A, V ~ U imply (L X V) C A, 

(iii) U ~ T, V ~ T imply U ;;; V or V ;;; U 

(iv) 1 L I ~ I UTI· 
T:(LXT)~A 

The first condition simply says that if a line has access to some trunk 
from a group T, then all lines in its line group have access to every trunk 
in T. The second condition says (roughly) that a line with access to 
a trunk group T has access to all groups that are later than T in the 
partial ordering. The third condition says that a trunk group is followed 
(in the partial ordering) by at most one other group; if the "later" 
groups are thought of as overflow groups, this means that each group 
has at most one group to which to overflow traffic. Finally, the fourth 
condition rules out the relatively uninteresting cases in which some line 
group has access to more trunks in toto than there are lines in the group. 

It is apparent that if a trunk group Tl is later than one T2 , then every 
line with access to T 2 has access to T 1 • This is the "progressive" prop
erty. In analogy with the intuitions expressed in Ref. 2, it should be 
better to use an earlier trunk group than a later one, if both are available. 
Thus, the structure of a progressive grading at once suggests the con
jecture that optimal routing will consist of using the early routes in 



870 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1967 

preference to the later or (to anticipate a bit) overflow groups. This 
conjecture is true and follows from Theorem 2. In traditional telephone 
terminology (see E. C. Molina's appendix in Ref. 3) it states that filling 
a hole in the multiple is preferable to using a final route, and that 
filling an earlier hole is preferable to filling a later one. 

A line group L is said to be a bye if it has access only to "overflow" 
trunk groups, i.e., if 

inf {T:LAT} 
;;; 

is not minimal in ~, where we have written LAT for (L X T) C A. 
It is easily seen that in a progressive grading a hierarchy of routes 

can be defined by this rule: r ~ q if and only if r f"J q and g(q) ~ g(r), 
where g(r) is the trunk group used by route r.* This is the natural 
hierarchy of routes associated with a progressive grading; here r :> q 
if and only if r f"J q and r is on an "earlier" trunk group than q. In this 
instance, ~ is also a simple ordering on each g('Y-\'Y(r»). These simple 
orderings forming the hierarchy of course correspond exactly to the 
preference relation among routes suggested by the natural intuition 
(already mentioned) that there is no point in using a later or "overflow" 
trunk when an earlier one is available, because possibly fewer lines have 
access to the latter. The relation ;;;2 defined above on L1 extends by 
(2) to all of S. 

V. PARTIAL ORDERING OF PROGRESSIVE GRADINGS 

In a proof to be given later we shall use the fact that the set of pro
gressive gradings can be partially ordered by a relation ~ according 
to the following definition of covering: VI covers V2 if and only if V2 is 
obtained from V1 by removing, for some line group L, either (case 1) a 
trunk from the first (in ~ 1) trunk group to which L has access together 
with one line of L if L has access to more than one trunk, or (case 2) 
the trunk to which L has access together with L itself if L has access 
to exactly one trunk. That is, if VI is defined by partitions III , 2:1 , a 
partial ordering ~ 1 of III , and an access relation A) , then VI covers V2 

provided that there exist t c II) and l c L c 2:2 with 

T = inf {U c IIl:(L X U) C A} 
~1 

such that V2 is defined by (case 1) 

* Note the shift to the converse. 
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TI2 = TIl - {T} + {T - {t}} 

Z2 = Zl - {L} + {L - {l}} 

~2 = ~ 1 with T - {t} for T throughout 

A2 = Al - (1 X {t}) - ({l} X n), 

if T ~ {t} or Al " (L X n) ~ (L X {t}), and by (case 2) 

TI2 = TIl - {T} 

~ 2 = ~ 1 - (TIl X {T}) 

A2 = Al - (1 X {t}) - (L X n), 

if T = {t} and Al n (L X n) C (L X {t}). 

871 

For practical purposes a network in which some line group has access 
to no trunks is in all respects equivalent to the same network with those 
lines omitted. For this reason the definition of covering was divided into 
cases 1 and 2, so as to build this equivalence right into the definition. 

As we have said, VI covers V2 if and only if V2 results from VI by ripping 
out (i) some trunk from a "primary" group, (ii) a line with access to 
it, and (iii) all crosspoints associated with these terminals, with the 
proviso that if this leaves some lines with access to no trunks, then these 
lines are also to be removed. Because of this, there exists a natural or 
canonical map JL of the states S(Vl) of VI into those S(V2) of V2, defined 
roughly by the condition that JLX is what is left of x after the line and 
trunk that define the covering of V2 by VI have been ripped out. The 
canonical map can be defined formally very simply, as follows: A state 
x of VI is representable as a subset of Al which is also a one-to-one cor
respondence; similarly, a state of V2 is just a one-to-one map contained 
in A 2 ; what is left of x after the ripping-out process is just 

JLX = x " A2 • 

Thus, if JL corresponds to ripping out line l and trunk t, and x = {(l,t)}, 
then JLX = () = zero state. If x = {(l,t l )} or x = {(ll' t)} with II ~ l 
and tl ~ t, then again JLX = zero state. If x = {(ll' tl )} u y, with II = l 
or tl = t, then JLX = JLY. It is easy to see that if JL rips out land t, then 
JLS is isomorphic with the "cone" 

{ x G S:x ~ {( l, t) } }, 

because it does not make any difference whether land t are present in 
the system and connected to each other, or are just absent. That is, 
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J.l.S is essentially the set of states of S that remain available if l is con
nected to t with a holding-time of + 00. 

This notion of a canonical map provides many useful notations. 
It is convenient to extend the J.I.-notation as follows: For T cIT Y -{tl if t e T and T "" {tl, 

J.l.T = T n range (A2) = IT(j if t ¢ T, 

if T = {t}. 

Clearly, J.l.T is what is left of the trunk group T after the line l and the 
trunk t associated with J.I. have been ripped out. Also, we set 

J.I. ~ = {(J.l.T 1 , J.l.T 2) :T 1 ~ T 2 , J.l.T 1 ~ (j, and J.l.T 2 ~ (j} 

J.I.-;;;}. = {(J.l.x,J.l.y):x -;;;}. y, J.l.X ~ (j or x = (j, and J.l.Y ~ (j or y = (j}. 

The relation J.I. ~ can be seen to be identical with ~ 2 ; it is a useful 
mnemonic; it defines the hierarchy of routes in the "reduced" system 
V2 ; the partial ordering induced in S(V2)[ = J.l.S(Vl)] by this hierarchy is 
precisely J.I. :J. 

VI. PRELIMINARY RESULTS 

In Ref. 2, for a general partial ordering R, the notation 

sup Acx 
R 

was used for the set 
{y:z c Acx implies yRz} n Acx 

whenever this set was nonempty. The notation was chosen to denote 
a set of R-maximal elements of Acx , rather than an actual R-maximal 
element itself, so as not to prejudge the question as to how many there 
were. It will be shown that if the network v under study is a progressive 
grading, and R = :J = natural hierarchy, then unless c is blocked in 
x (and Acx is empty) Acx always has a ~-maximal element which is 
unique to within equivalence under permutations of lines within their 
line groups and trunks within their trunk groups. . 

Let now x be a state and let c c x be a call which is not blocked in x. 
It is apparent that for y, z E Acx we have either g(y - x) ~ g(z - x) 
or g(y - x) ~ g(z - x). Hence, there is a Yo c Acx such that 

g (Yo - x) ~ g( w - x) 

Yo - x -;;;}. w - x 

Yo Q w 

Yo :J w 
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for all W E: Acx , and Yo is unique to within equivalence. (Recall the con
struction of Q in Section III, and the fact that ~ is I u Q.) Hence, 

sup Acx (sup Acx for short when the context permits) 
::::l 

exists, and equals T(Yo), T(·) being the natural homomorphism of S 
into the quotient S/(~ n ~). (See Ref. 2.) 

We now consider policies cp( • , .) such that 

( )f = x - h if e is a hangup h, 
cp e,x 

l E: sup Acx if e is a new call c not blocked in x. 
(3) 

Such a policy expresses the routing rule of always choosing the earliest 
available trunk in the natural hierarchy characteristic of a progressive 
grading. 

The relation B (for "better") was defined in Ref. 2 by the condition 
x B Y if and only if x t'.J y and every call blocked in x is also blocked 

in y. 

By Theorem 1, to be proved shortly, it will follow that x ~ y implies 
x B y, which in turn implies sex) ~ s(y). Thus, the policies <p(.,.) coin
cide with the "maximum s(·)" policies suggested in Ref. 2. (See Ref. 
2 for notations.) 

Lemma 1: If the line of c is not involved in the canonical map J.I., and 
Acx ¢ (), then 

Proof: Let l* be the line of c, and suppose that 

y E: sup Acx . 
2 

Let land t be the line and trunk, respectively, associated with J.I.. There 
exists a trunk t* such that 

y = x u {(l*, t*) } 

J.l.y = J.l.X u {(l*,t*)} 

t* E: inf {T:T ~ rng (x) and l* AT}. 
;;; 

Let T* denote the set (trunk group) achieving the infimum on the right. 
Since t is busy in x and t* is not, t ¢ t*. Thus, T* ¢ {t}, a:nd J.I.(T*) ¢ (). 

We first observe that l*AT implies l*A 2J.1.T, since c is not involved 
in J.I.. 
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We next show that J-L'P ~ rng (J-Lx) implies T ~ rng (x). If not, then 
there exists i l E J-LT, hence E T such that i l ¢ rng (J-Lx) and tl E rng (x). 
But 

rng (J-Lx) = rng (x) - {t}. 

Hence, tl = t = trunk removed by J-L. But this is impossible since tl E J-LT, 
while t ¢ J-LT. 

Now T* ~ T for every T such that T ~ rng (x) and l*AT. From the 
two previous paragraphs, it follows that 

(J-LT*)(J-L ~)J-LT 

for every T such that J-LT ~ rng (J-Lx), l*AJ-LT, J-LT ~ e. That is, 

J-LT* = inf {T:T ~ rng (J-Lx), l* AT}. 

Now t* E T*, t* ~ t, so t* E J-LT*. If now W E Ac(l'x) , then 

Thus, 

(W - J-Lx)(J-LC){(l*,t*)} 

w(J-LC)(J-LX U {(l* ,t*)}) 

w(J-L~JJ-LY· 

J-LY E sup Ac(l'x) , 
1''; 

and since y was arbitrary within sup Acx , the lemma is proved. 
;;2 

Lemma 2: In a progressive grading, Q C B. 

Proof: Let x Q y. This implies that there exists Z E Bx " BII such that 
x - Z ;;;2 Y - z, i.e., 

g(y - z) ~ g (x - z). 

Now let c be a call from line l which is blocked in x but not in y. Then 
c is not blocked in z either. The only trunk which is busy in x and not 
in z is that used by the call "((x - z). Thus, since c is blocked in x and 
not in z, g(x - z) is a trunk group usable for the call c. However, by 
property (ii) of progressive gradings, {l} X g(y - z) C A, i.e., l has 
access to the group g(y - z) as well. Hence, some trunk of g(y - z) 
is idle in x, since the call "((x - z) has a choice of routes in state z, one 
of these being on g(y - z). Thus, c is not blocked in x, and x By. 

Theorem 1: In a progressive grading, the partial ordering ;;;2 induced by 
the natural hierarchy of routes is contained in B. 
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Proof: Immediate from Lemma 2 and the facts that ~ is the transitive 
closure of I u Q, and that B is transitive. 

Lemma 3: If x ~ y, then x is obtainable from y by moving calls to earlier 
routes in such a way that each call is moved at most once. 

Proof: The result is true if only one move is made. Suppose it to hold 
if n moves in toto are made. Let x be obtainable from y by sequence of 
(n + 1) moves. The trunk groups available for a given call c form a 
set simply ordered by ~, and so can be indexed 1, 2, ... , the ~ -earlier 
receiving the lower integer. For c ~ "I (x) , let n(c,x) be the index of the 
group used by c in x. Some call c that is moved in obtaining x from y 
achieves 

min {n(cl , x) I Cl moved in getting x from V}. 

Starting in state y it is possible to move such a call (once) directly to 
its route in x, to get a state z in which it is still possible to carry out 
exactly each of the moves that take y into x except those involving c. 
These are at most n in number, so each call involved need be moved at 
most once. 

A policy <p(".) is said to preserve a relation R C "-l if x R y implies 

<p(e,x) R <p(e,y) 

for every event e that is either a hangup or a new call not blocked in 
either x or y. It has been shown in Ref. 3 for a general network that if 
<p preserves B then it embodies the optimal routing policy for accepted 
calls. 

The main theorem we prove (Section VII) states that a sup Acx 
policy, i.e., one satisfying (3), preserves ~. The method to be used in 
the proof of this result is illustrated in part by the following remarks: 
consider linear arrays x, y, z, ... each of n urns, n ~ 2, each urn con
taining at most one ball, with fewer than n nonempty urns per array. 
Let x ~ y mean that x is obtainable from y by moving balls to the left. 
Let <pX denote the result of adding a ball in the leftmost empty urn. 

Observation: If x ~ y, then <pX ~ <py. 

Proof: The result is obviously true for n = 2 by enumeration. Let it 
hold for a given value n ~ 2, and consider arrays x, y of n urns satisfying 
the hypotheses. Let l/;z denote the result of removing the leftmost urn 
from z, and bz that of adding an urn containing one ball at the left of 
z. There are two cases: (i) the leftmost urns are empty in both x and 
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y, or both nonempty in x, y; (ii) in y, but not in x, the leftmost urn is 
empty. 

Case (i): epx = b1/;x, epy = b1/;y, 1/;x :J 1/;y; hence, epx :J epy. 
Case (ii): In obtaining x from y some ball moved into the leftmost 

urn. Obtain z from y by moving just this one ball to the leftmost urn. 
Then x ~ z ~ y, epx :J epz, epy = b1/;z, epz = bep1/;z. Since ep1/;z is obtained 
from 1/;y by removing some ball, and replacing it in the leftmost empty 
urn of the resulting array, we have ep1/;z ~ 1/;y, and so epz :J epy. 

In cases 3 and 4 of the proof of the next theorem, the analog of the 
inductive index n will be the partial ordering of the set of progressive 
gradings. 

VII. PRINCIPAL RESULT 

Theorem 2: In a progressive grading v let :J be the partial ordering in
duced by the natural hierarchy of routes in v, and let ep be a policy with the 
property that 

ep(c,x) E sup Acx , 
~ 

Then ep preserves :J. 

C E x, c not blocked in x. 

Proof: The proof is by induction over the partial ordering :J of the 
set of progressive gradings which is defined by the definition of covering 
given earlier. A grading v that is minimal in ~ has no "overflow groups", 
i.e., ~ = identity relation, so that no trunk group has a successor in 
the order ~ characteristic of v. Thus, v consists entirely of trunk groups 
serving line groups on a one-to-one basis, so that for some n 

where 

A = U (Li X T i ), 

1, 

1, 

i=l 

,n} 

, n}, with I Til = 1. 

In this minimal case ~ is the identity relation, and ep obviously preserves 
it. 

As a hypotheses of induction, we now suppose that every progressive 
grading covered by v has the property that any sup Acx -policy preserves 
:J. Let now x :J y in v and let e c x. The induction argument will have 
four cases, the last two of which are analogous to the observation made 
earlier. 
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Case 1: x ;2 y, and e is a hangup h. There is a sequence x = Zl , Z2 , ••• , 

Zn = Y with 

Zj Q Zj+l j = 1, ... ,n - 1. 

This sequence indicates how one would get y from x by moving calls 
to "preferred" routes. By Lemma 3 it is no restriction to assume that 
no call is rerouted more than once. Let the route of h be r in x and q in y. 
If h is one of the calls whose route is changed in the above sequence, say 
to take Zk into Zk+l by changing the route of h from r to q, then 

x - r = Zl - r, Z2 - r,· .. , Zk - r = Zk+l - q, ... , Zn - q = y - q 

is a sequence which shows that (x - r) ;2 (y - q). If the route of h is 
not changed, then r = q and the same conclusion follows. 

Case 2: x =:) y, and e £ x is a new call c blocked in x. By Theorem 1, 
x By, so c is also blocked in y. Then, 

Acx = {x}, 

cp(c,x) = x 

cp(c,x) =:) cp(c,y). 

cp(c,y) = y 

Case 3: x =:) y, e is a new call c not blocked in either x or y, and the line 
group L of c is not a bye. Let 

T = inf {S:LAS}. 
~ 

Subcase 3.1: T is full in neither x nor y. Then there exist routes r, q 
such that g(r) = g(q) = T, 

cp(c,x) = x u r, cp(c,y) = y u q, 

r === q modulo trunk permutations within T, and clearly 

cp(c,x) =:) cp(c,y) 

since c was put up on group T in both cases. To see this, if x = 
Zl , Z2 , ••• , Zn = Y is a sequence with 

Zi Q Zi+l j = 1, ... ,n - 1, 

showing that x =:) y, then 
x u r = Zl U r, Z2 u r, ... ,Zn U r = y u r, Y u q is a sequence which 
shows that 

(x u r) Q (y u q). 
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This is because we can assume without loss of generality that the trans
formations which change y into x reroute a call at most once, and thus 
move no calls onto T. (Lemma 3.) 

Subcase 3.2: T is full in both x and y. Since L is not a bye, there exist 
l, meL and t, U c T with 

(l,t) c x and (m,u) c y. 

Because l, m and t, u are respectively interchangeable, i.e., since lines 
and trunks are permutable within their respective groups, no loss of 
generality is incurred if it is supposed that l = m and t = n. Let J..L be 
the canonical map corresponding to ripping out land t. 

Then v covers VI , where VI is defined by ripping land t out of v, i.e., by 

J..LII = ITl = {IT - {T} + {T - {t}} 

IT - {T} 

J..L'Z = 'Zl = {~ - {L} + {L - {l}} 

::. - {L} 

JL~ ~,~ {: _ ;~h:'{;l;,tl replacing T throughout, 

tLA = Al = {A - (I X {t}) - ({ l} X £1) 

A - (I X {t}) - (L X £1) 

with 
case 1 == T ~ {t } 

case 2 == T = {t } 

or A f"\ (LT) ~ (L X {tD 

and A f"\ (LT) C (L X {tD. 

in case 1 

in case 2, 

in case 1 

in case 2, 

in case 1 

in case 2, 

in case 1 

in case 2, 

The line of c is not involved in J..L, and Ac% ~ 0, ACII ~ o. Hence, Lemma 
1 gives 

tLCP(c,x) c sup Ac(I'%) 

1'2 

J..Lcp(c,y) c sup Ac(I'V) • 

1'2 

Since x :::::) y, and either both J..LX = 0, J..Ly = 0, or neither, we have 

(J..LX,J..LY) c J..L:::::). 

Let ~ be a policy for VI with 

Hd,J..Lz) c sup Ad(l'z) , 
1'2 

Vd c J..LZ. 

(4) 

(5) 
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The hypothesis of induction and (4) give 

He,}lx)(}l~)~(e,}ly) . 

However, by (6) and (5) 

}lep( e ,x) (}l~ )~( e ,}lx) 

(}l~)He,}ly) 

(}l~ )}lep(e,y). 
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(6) 

But ep(e,x) differs from }lep(e,x) and ep(e,y) from }lep(e,y), only in having 
an additional line l and an additional trunk t connected to each other. 
Hence, 

ep(e,x) ~ ep(e,y). 

The argument of subcase 3.2, basic to Theorem 2, can be appreciated 
by looking at it thus: x ~ y means 3 Zl, •.• , Zn with z. Q Zi+l , i = 

1, ... , n - 1, Zl = x, Zn = y. Since 

e = {( l, t)} ~ x n y 

we have r ~ z. , i = 1, ... ,n because we can assume that the call 
using r is not moved as y is transformed into x by moving calls. Thus, 

(Zi - r) Q (Zi+l - r), 

(x - r) Q (y - r). 

i=I,···,n-l 

But the "cone" {z:z ~ r} is isomorphic to the states of a grading (VI of 
the proof) covered by V and the isomorphism, viz., }l restricted to the 
cone, has the basic property, for x, y in the cone 

x ~ y if and only if (}lx)(}l~)(}ly). 

Subease 3.3: T is full in x, but not in y. Since L is not a bye it is ~
minimal, and hence there exists a call d with d ~ "I(x) f'\ "I(Y) such that 
d is on T in x is not on Tin y, and can be moved to T in state y to give 
rise to a new state Z without rendering impossible any the remaining 
moves which transform y into x. Thus, x ~ Z ~ y. Since x f'\ Z ~ 0, 
subcase 3.1 gives ep(e,x) ~ ep(e,z). Further, the route of e in ep(e,z) is 
no higher (later) in ~ than the one in y left by d as it was moved to 
T to give rise to state z. Hence, to within equivalence 

ep(c,Z) ~ ep(e,y). 

Case 4: x ~ y, e is a new call c not blocked in either of x or y, and the 
line group of e is a bye. There is at least one other line group L which 
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is not a bye. Let 

T = inf {S:LAS}. 
~ 

Subcase 4.1: L X T n x =;t. e, L X T n y =;t. e or L X T n x = e, 
L X T n y = e. Since L is not a bye, there exist l, m GLand t, U G T 
with 

(l,t) G x, (m,u) t: y 

or 

(l,t) ¢ x, (m,u) ¢ y. 

(In the second instance, property (iv) of the definition of a progressive 
grading has been used to conclude that there must be idle lines on L 
if there are idle trunks on T.) 

As in subcase 3.2, no loss of generality is incurred if it is supposed 
that l = m and t = u. Let J.L be the canonical map corresponding to 
ripping out land t. The argument now continues as in subcase 3.2. 

Subcase 4.2: (L X T) n x =;t. e, (L X T) n y = e. Since L is ~-minimal, 
there exists a call d with d ~ ,,(x) n ,,(y) such that d is on T in x, is 
not on T in y, and can be moved to T in state y to give rise to a new 
state z without rendering impossible any of the remaining moves which 
transform y into x. Thus, x ~ z ~ y. Since x n z =;t. e, subcase 3.1 gives 
cp(c,x) ~ cp(c,z). 

Let l* be the line of c, r be the route of d in y, Td = g(r), and 

Tc = g(inf {S:l* AS,S g: rng (y)}). 
~ 

Here Tc is the earliest group c could be put on in y. Let also y; denote 
the operation of moving d from Td to T, and for any call 1 

AI = {g(r):1 = ,,(r)} 

{ S :the line of 1 has access to S}. 

Case (i): Td G Ac n Ad , Td ~ Tc . Then moving d from Td to T means 
that c can use Td in z, so cp(c,z) ~ cp(c,y), because cp(c,z) results from 
cp(c,y) by moving first d to Td and then c to Td , so actually 

cp(c,z) ~ y;cp(c,y). 

Case (ii): Ac n Ad = e, or Ac n Ad =;t. e and either 
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or 

or 

or 

In all these cases tJ;cp(c,y) = tJ;(c,tJ;y) = cp(c,z), whence 

cp(c,z) ~ cp(c,y). 
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Integral Equation for Simultaneous 
Diagonalization of Two 

Covariance I(ernels 

By T. T. KADOTA 

(Manuscript received January 20, 1967) 

Let K1(s,t) and K 2(s,t), - T ~ s, t ~ T, be real, symmetric, continuous 
and strictly positive-definite kernels, and denote by Kl and K2 the cor
responding integral operators. Let x(t) be a sample function of either of 
two zero-mean processes with covariances Kl(S,t) and K 2(s,t). We prove 
a generalized version of the following: If the integral equation 

-T ~ t ~ T, 

has formal solutions Ai and 1/!i(t) which may contain a-functions, and 
if {K 11/! d forms a complete set in £2 [ - T, T], then (i) the two kernels have 
the following simultaneous diagonalization: 

Kl(S,t) = L (Ie 1/!i)(s)(K1 1/!i)(t), 
i 

Kls,t) = L Ai(Kl1/!i)(s)(Kl1/!i)(t), 
i 

uniformly on [- T,T] X [- T, T], and (ii) the sample function has an 
expansion 

x(t) = L (x,1/!i)(K1 1/!i)(t) 
i 

in the stochastic mean, uniformly in t, and the coefficients are simul
taneously orthogonal, i.e., 

where (X,1/!i) is obtained by formally integrating 1/!i(t) against x(t). 

1. INTRODUCTION 

Let K1(s,t) and K 2(s,t), -T ~ s, t ~ T, be real, symmetric, con
tinuous and strictly positive-definite kernels, and denote by Kl and 

883 
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K2 the integral operators with kernels K1(s,t) and K2(S,t). We have 
previouslyl established that, if K;! K2K;! is a densely defined and 
bounded operator on £2 (the space of all square-integrable functions 
on [- T,T]) and if its extension to the whole of £2 has eigenvalues 
Ai and complete orthonormal eigenfunctions 'Pi(t), i = 0, 1, ... , then 
the two kernels have the following simultaneous diagonalization: 

L (Kt'Pi)(S)(Kl'Pi)(t) , 
i (1) 

uniformly on [- T,T] X [- T,T]. In addition, if x(t) is a sample func
tion of either of two (separable and measurable) zero-mean processes 
with covariances K1(s,t) and K 2 (s,t) with associated measures PI and 
P 2 , then 

x(t) = L ?7i(x)(KI'Pi)(t) (2) 
i 

in the stochastic mean, uniformly in t. Moreover,* 

wheret 

(3) 
n-+oo 

in the stochastic mean, and {'Pin} is any sequence of functions in the 
domain of K;! such that lim II 'Pi - 'Pin II = 0. 1

•
2 Furthermore, if the 

two kernels have continuous 2rth derivatives (a2r jasrat')Kp(s,t) , p = 
1, 2, then (1) and (2) can be differentiated term-by-term r times while 
retaining the same senses of convergence. 1 

We remarked in Ref. 1 that, if 'Pi is in the domain of K;!, 1/Ii = K;!'Pi 
satisfies the integral equation 

and 

-T ~ t ~ T, 

?7i(X) = (X,1/Ii) a.s. (almost surely), 

(K.t'Pi)(t) = (IC1/Ii)(t). 

(4) 

(5) 

Slepian (private communication) has long conjectured that, if (4) 
admits formal solutions Ai and 1/Ii , i = 0, 1, ... ,where 1/Ii may contain 

* E p, P = 1, 2, denotes the expectation with respect to Pp. 
t For any j, g e £2, (f,g) denotes the inner product of j and g, and II f II the norm 

of j. 
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a-functions and their derivatives, then the expansion coefficients and 
functions of (2) are given by formally substituting such if;i into (5).* 
This conjecture, proved here, is significant since it provides a concrete 
means of obtaining the expansions (1) and (2). To illustrate the point, 
consider the following pair of covariance kernels: 

For this pair, (4) admits the following formal solutions5 

cos fhT 
fZk(t) = cos fht + a + (3 [oCt - T) + oCt + T)], 

k = 0,1, ••• , 

- ) • A sin OkT () ) if;Zk+l(t = sm Okt + a + {3 [a t - T - a(t + T ], 

corresponding to 

where Ok and Ok are positive solutions of 

(a + (3)Ok tan OkT = a{3 - O~ , 

-(a + (3)Ok ctn OkT = a{3 - O! , 

respectively, indexed in ascending order. Thus, formally, 

(X,fZk) = i: x(t) cos Okt dt + :o~O: [x(T) + x(-T)], 

(x, fZk+l) = f_TT xU) sin Okt dt + s~n :k~ [x(T) - x( - T)], 

Through a direct calculation, we previously5 established that 

(i) K~!K2K~! is densely defined and bounded, 

(6) 

(8) 

(9) 

(10) 

(ii) its extension has eigenvalues Ai given by (7) and complete 

* Similar conjectures have been made elsewhere.3 ,4 
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orthonormal eigenfunctions CPi given as 

n 

CPi = Ci l.i.m. L J.1.t(~i , flj)flj , 
j=O 

(iii)"'i = Ci(X,lftJ a.s.,* KtCPi = CiKllfti, which verifies Slepian's 
conjecture for this example. Here Ci is a normalization constant given by 

[ 
2a (r 1 (a + (3)a(3 )]-! 

C2k = a2+ O~ '1 + O! + (a2 + (32) O~ + a2(32 , 

(that is, C2k+l is obtained by replacing Ok with Ok in C2k), J.1.pj and fpj , 
p = 1, 2,'j = 0, 1, ... , are the eigenvalues and orthonormal eigenfunc
tions of Kp , and (~i , f]j) is defined analogously to (9). 

In this paper we prove the generalization of (i), (ii), and (1:ii), starting 
with abstract kernels K1(s,t) and K 2(s,t) and a generalized version of 
the integral equation (4). 

II. MAIN RESULT 

Theorem: Let Kp(s,t), p = 1, 2, 
strictly positive-definite kernels 
(a 2T/asTat)Kp(s,t). If there exist 
{tm}: - T ~ tm ~ T, and {Ad: 

- T ~ s, t ~ T, be real, symmetric, 
with continuous 2rth derivatives 
sequences of real numbers {ailm}, 

° < b1 ~ Ai ~ b2 , i = 0,1, ... , (11) 

for some constants b1 and b2 , and sequences of square-integrable functions 
{ ~ i 1 }, which satisfy the equation 

r [fT (al ) q a
Z I] L -at1 K 2 (s,t) ~iZ(t) dt + L ailm atl K 2 (s,t) 

1=0 -T m=l t=tm (12) 

T [IT (a Z

) q a
Z I] = Ai t; -T 7Jil K1(s,t) ~il(t) dt + ]; ailm at l K1(s,t) t=t

m 
' 

-T ~ s ~ T, 

such that the right-hand side of (12) forms a complete set in £2 , then 
(i) K~!K2K~! is a densely defined and bounded operator on £2 , 
(ii) its extension to the whole of £2 has eigenvalues and complete ortho

normal eigenfunctions, which are the Ai and 

cp;(s) = ~ [(Kfol~il)(S) + j; ailmKtol(S,tm)] , (13) 

* This portion is proved in a separate article. 6 
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(ii'l:) 11i and [(tepi of (2) can be given, respectively, by 

11i(X) = ~ [(x(l) ,1/Iil) + j; ai Zmx(l) (tm) ] a.s. 

887 

(14) 

and by the right-hand side of (12) without Ai . Here, [(;oz , p 1, 2, 
denotes an integral operator whose kernel is defined as 

1 ) '"' 1 (I) ) [(~oz(s,t = L.J J.L~dpi(s)fpj (t l = 0, 1, ... ,r, (15) 
j 

in the mean in s, uniformly in t. 

Remarks: 

('t) K!oz (s,t) of (15) is well defined since 

p = 1,2, (16) 

uniformly in (S,t).7 It follows from this that (15) converges in the 
mean in (s,t) as well. Hence, from Fubini's theorem, Kfoz(s,t) is a 
square-integrable function of t for almost every s. Thus, epiCS) of (13) 
is well defined. We assume without loss of generality that ept , i = 
0, 1, ... , are normalized. 

(ii) For the example in Section I, r = 0, q = 2, tl = T, t2 = - T, and 

1/I2k.O(t) = C2k cos fht, 

cos OkT 
a2k.0.l = a 2 k.0.2 = C2k -; + {3 , 

sin {j/P 
a2k+l.0.l = -a2k+l.0.2 = C2k+l -; + {3 , 

the right-hand side of (12) without Ai is given by (10), and completeness 
of {cos Okt, sin Okt} follows from (18) and a gap-and-density theorem.s 

III. PROOF OF THEOREM 

For notational simplicity, we write K pk1 , p 
operator whose kernel is 

1, 2, for the integral 

k,l=O,I, ... ,r. 

[(pOO and [(!oo are abbreviated as before by Kp and K!, respectively. 
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(i) For any f, g E £2 , 

(K.tod,K.!ozg) = (f,K.pkZg) , 
n 

.I. • ~.I. (I)) K.~ozg = l.l.m. LJ fJ.~dpi fpi ,g . 
i=o 

To prove (17), note 

IIi: f(s)g(t)K.tOk(U,S)K.toz(u,t) ds dt du 

= j~: I f(s)g(t) ~ fJ.pd~~)(s)f~!)(t) ds dt 

= (f ,K.Pkkg) , 

(17) 

(18) 

where the second equality follows from the mean convergence of (15) 
and the third from the uniform convergence of (16). To prove (18), 
consider 

which vanishes as n ---7 00 since (16) converges uniformly in (s,t). 
(ii) ](;!K.t and K.;!K.~ are densely defined and bounded on £2 • 

To prove this, apply K.;! on both sides of (12) and use (18) to obtain 

t, [ Kloz1/;" + t, a"mKj,,(. ,1m)] ~ A.K;lId~; . 

Then, for each i, 

X: II K.;!K.i<Pi 112 

= t {(]{~Okif;ik , K.~oZif;il) 
k,Z=O 

+ J;, a"ma;'n(Kl,,(· ,1m), Kl,,(· ,In»} 

~ ,to {(,y" , K,,,,y,, + t, a"mK,,,(· ,1m») 

+ t, a;,n[ (K,,,,y,,)(tn) + t, a"mK,,,(ln , 1m) ]} 
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~ Ai k t [ (K[Ok if- ik , Kto! if-" + 1;, a"mK [" ( . ,1m) ) 

+ 1; aikn(Kfok(.,tn), Ktoztfiil + l1t aizmKfoz(.,tm ))] 

= Ai II CPi W, 
where the second equality follows from (17) and (18), the third from 
k time differentiation of (12) and from (17) and (18), and the last 
from (13). Hence, with CPi being normalized, 

i = 0,1, ... 

Now {CPi} is complete since the right-hand side of (12) without Ai , 
which forms a complete set by hypothesis, is equal to I(tcp; , and Kt 
is strictly positive-definite. Hence, from (11), K;tKt is densely defined 
and bounded. 

To prove that K~t K~ is also densely defined and bounded, define 
eP; as the normalized right-hand side of (13) with the subscript 1 re
placed by 2. Completeness of {ePi} is similarly deduced via (12). Now, 
by following the same procedure with the roles of Kl and K2 inter
changed, we obtain 

"K~tK~ePi W = Ai, i = 0,1, .... 

Then, the assertion follows immediately from (11). 
(iii) The ranges of Kt and K~ are equal, namely, 

Kt(£2) = K~(£2). 

To prove this, denote by Land M the extensions to the whole of 
£2 of K;tKt and K~tK~ respectively, which exist as a result of (ii). 
Since the domains of KlL and KfM are £2 , which is also the domains 
of Kt and K~ , we have 

Then, from the first equality, Kt(£2) C K~(£2)' while, from the second, 
K~(£2) C Kf(£2). Hence, the assertion holds. 

(iv) 
n 

Kloz(· ,t) = l.i.m. L: K~fljfi:>Ct), -T ~ t ~ T, (19) 
i=O 

(20) 
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To prove (19), note first that tii , j = 0, 1, ... , are in the domain 
of K;! as a result of (iii) and also that (K;!tli' I{~tli) = Oii from 
orthonormality of {tId. Thus, {K;!tId and {K~/I;} form a pair of 
mutually reciprocal bases of £2 . Hence, 

n 

l.i.m. L K~tIi(K;!flj , K~OI(· ,i». (21) 
i=O 

But from (15) 

00 

L (fli , f2i)t~~>Ct), l=O,I,··· ,r, (22) 
i=O 

uniformly in t. Now, since {/2d is an orthonormal basis of £2 , 

n 

tii = l.i.m. L (fIi , t2i)t2i . 
i=O 

But, according to (22), the right-hand side converges uniformly. Hence, 
the above partial sum must converge uniformly to IIi. Suppose for 
some le, 0 ~ k < r, 

00 

t~~>Ci) = L (fli , f2i)t~~>Ci) (23) 
i=O 

uniformly in t. Then, from (22), 

00 

t~~+I)(i) = L (fIi , t2i)t~~+I)(t) 
i=O 

uniformly in t.9 Hence, by induction, (23) holds for every le, 0 ~ Ie ~ r. 
Therefore, from (22), 

(K;!tli , K~OI(· ,i» = fi:)(i), l = 0,1, ... , r. 

Then, (19) follows from (21) and the above. 
To prove (20), we expand Kloe g relative to {K~/li}: 

and note from (18) and (23) that 

00 

(K;!tli , I{~olg) = L (fli , f2i)(f~~) ,g) = (ti~) ,g). 
i=O 

(v) To prove (i) of the theorem, we note from (ii) and (iii) that 
K~! K~ is everywhere-defined and bounded on £2. Hence, its adjoint 
(K~!K~)* is also everywhere-defined and bounded. Now, for any 
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I € £2 and g € l)(K;!), the domain of K;!, we have (K;!K~/,g) = 
(/,K~K;!g). Thus, K~K;!g = (K;!KD*g, g € l)(K;!). Hence, K~K;! 
is bounded. Since l)(K;!) is dense in £2 , we conclude that K;!K2K.;! 
is densely defined and bounded. 

(vi) To prove (ii) of the theorem, define 

<;".(t) ~ ~ I't, ~ [( f" , f::') + j;, a"mfn'(tm) ]t,,(t) , 
and note <Pin € l)(K;!) and lim II <Pi - <Pin II = o. Then 

(24) 

n r[ q -'J 
l~~~. K 2K;!<Pin = l~~~. f; t; (t/!il, In)) + ]; ailmliJ)(tm ) /(,dIi 

~ t, [ K,,,f,, + j;, ailmK,Ol(· ,tm) ] 

where the second equality follows from (19), (20), (15) and (18), and 
third from (12) and (13). Now denote by Q the extension of K;!K2K;! 
to the whole of £2 . Then, 

KfQI = l.i.m. K2K;!ln 
n-+ co 

for any I E £2 and {fn}: In € l)(K;!), lim II I - In II = 0, since 

II KrQI - K2K;!ln II ~ II KlQ(f - I,,) II + II (KtQ - K2K;!)/n II 
which vanishes as n ~ 00. Therefore, Q<Pi = Ai<Pi. Lastly, since {<pd 
is complete in £2 , {Ai} constitutes the entire spectrum of Q. 

(vii) To prove (iii) of the theorem, note from (3), (24) and (vi) that 

7Ji(X) 
n r [ q ] 

l~~~. f; t; (t/!il' Ii:) + ~ ailmli:)(tm) (IIi' X). 

Now 

E, I (x()) ,f,,) - ~ (x,j,,)(f::' ,fill r 
" 

= (t/!il ,KllZt/!il) - L J.Lt;(t/!il ,fi:))2, 
;-0 



892 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1967 

both of which vanish as n ~ co by virtue of (16). Also, with the use 
of (17) and (18), 

E, 1 (x(l) ''''il) - ~ (X,flf)(j~:' ''''il) I' 
n 

(if;iZ ,K2zz if;il) - 2 L (if;iZ , f~:»)(flj , !(2ozif;il) 
j=O 

n 

+ L (if;iZ , f~:»)(if;il , f~r»)(fli ,!(2flk) 
i ,k=O 

E,I x(l)(/) ~ (x,f,,)fi;'(/) I' = K'li(t,/) - 2 ~ f~:'(/)(K",f'i)(/) 

+ it fi;'(/)fi;'(/)(f" ,K,flk) = II K!,,(· ,I) - ~ K!f,;/i;' (I) 11', 
both of which vanish as n ~ co by virtue of (19) and (20). Therefore, 
upon combination of the above results, (14) is proved. 
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Principles of Design of Magnetic Devices for 
Attitude Control of Satellites 

By M. S. GLASS 
(Manuscript received December 29, 1966) 

Magnetic devices mounted within an orbiting satellite interact with 
the earth's magnetic field and produce torque to modify the attitude or 
angular adjustment of the satellite axis of spin. The satellite environment 
dictates that these devices be designed for minimum weight or minimum 
power consumption, or a suitable compromise between these two minima. 
Principles of design of magnetic devices to satisfy these requirements are 
developed in this paper. The resulting design equations and charts enable 
the ready optimization of design and selection of preferred materials. 
While most of this work was directed initially at the Telstar ® satellite 
project, the design charts and formulas are found useful in other areas 
of magnet design. AI ethods of magnetic measurement devised for the satellite 
are discussed. 

1. INTRODUCTION 

Satellites with directional instrumentation, such as the antenna sys
tem of the communications satellites, require attitude control to keep 
this instrumentation properly on target. For example, a spin imparted 
to the satellite at time of launch gives it a sort of gyroscopic stability. 
However, complete attitude control requires some available torque to 
correct the direction of the spin axis. 

In the orbiting satellite the earth's gravitational field is balanced by 
centrifugal force, leaving the earth's magnetic field as a convenient 
means for interaction torque. Suitable interaction with the earth's 
magnetic field can be set up by electromagnets, or by air-core coils of 
large area, either of which can be turned on or off at will to provide 
attitude correction as needed. Small permanent magnets can be de
signed and installed to cancel out residual magnetic moment in the 
satellite, which if permitted to interact with the earth's field could 
cause precession of the spin axis. Other miscellaneous torque applica-
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tions of magnets in the satellite have been proposed and investigated. 
Limitations of payload and of available power in the satellite gen

erally make it necessary to design with quantitative accuracy and to 
optimize the factors which control weight and power consumption. To 
this end, the magnet designer may select from various geometries of 
magnet and coil and from various available materials. This selection 
and optimization is facilitated by the use of suitable design formulas 
and charts. In this paper~ we review the derivation and illustrative 
use of such formulas and charts. While the work reported here has 
been aimed specifically at certain problems of the Telstar® satellite, 
it is evident that the technique of magnet design presented here is ap
plicable to any similar set of problems. 

For the convenience of the magnet designer who buys magnets and 
magnet wire by the pound, measures them in feet, inches, or mils, 
and measures torque in pound-inches, all of the derived design 
formulae and graphs are built around the practical units (inches, 
pounds, oersteds, gauss, etc.). This avoids the necessity of converting 
units, which is time consuming and can lead to costly errors. There 
is included for convenience a table of the most frequently used con
version factors (Table I). 

II. QUANTITATIVE DESIGN OF AIR-CORE COIL FOR TORQUE 

The torque characteristic of the air-core coil is derived from the 
galvanometer formula which, in some textbooks, is written in MKS 
units: 

107 T 
NIA (ampere-turn-meter2

) = 471" H: (weber-meters) (1) 

TABLE I - CONVERSION FACTORS 

1 unit pole (emu) = 47r maxwells 

103 

1 oersted = 47r ampere turns per meter 

= 2.02 ampere turns per ineh 

1 weber-meter 
1010 

= 4;- emu 

8.85 X 103 • 
47r lb-m per oersted 

1 newton-meter = 107 dyne-em 

= 8.85lb-in 
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TABLE II - CHARACTERISTICS OF WINDINGS 

Copper 

R(ohms) 
0.75 X 1O-6N2P 

A 

E(volts) 
0.75 X 1O-6NP(NI) 

A 

W(watts) 
0.75 X 1O-6P(N1)2 

A 

Wgt.(lbs.) 0.321 AP 

(Power X W gt.) 0.241 X 1O-6P2(NI)2 

N I Required ampere turns 
N Number of turns used 
A Cross section area of winding (inch2) 

(N times the section area of a single turn) 
P: Average length of turn in winding (inch) 

and may be written in practical units: 

Aluminum 

1.21 X 1O-6N2P 
A 

1.21 X 1O-6NP(NI) 
A 

1. 21 X 1O-6P(NI)2 
A 

0.0983 AP 

0.119 X 1O-6P2(NI)2 

895 

NIA(ampere-turn-inch2
) = 1.667 X 106 ~: lb-in/oersted). (2) 

Here To is the maximum torque exerted on the coil when its axis is 
perpendicular to the field H a, and NIA is the required product of am
pere turns and area enclosed by the coil to deliver that amount of 
torque. 

It is convenient to set up a table of formulas from which one may 
translate the geometry and ampere-turn characteristics of the coil into 
power and weight requirements. The power and weight will depend 
upon the winding material used, but practical considerations usually 
limit this to copper or aluminum. So one may take the weight and 
resistivity characteristics of copper and aluminum from handbook 
tables and with the aid of Ohm's Law derive the formulas of Table II. 
Using (2) and Table II, one may estimate readily the power and 
weight of an air-core coil to satisfy specified torque requirements. It is 
evident that copper has the advantage in lower power consumption, 
but that aluminum offers a greater advantage in weight reduction. If 
power and weight are of about equal importance, then the power
weight product should be minimized. It is evident that aluminum has a 
factor-of-two advantage over copper in this characteristic. 
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III. QUANTITATIVE DESIGN OF MAGNETIZED BARS FOR TORQUE 

A magnetized bar, either a permanent magnet or the core of an 
electromagnet, displays a moment, or normalized torque, proportional 
to the product of the volume of the bar by the intrinsic induction 
within the bar. The magnetic moment, J11m , is identified as normalized 
torque in the familar equation 

(MKS) , (3) 

and the relation between magnetic moment, intrinsic induction in the 
bar, and the geometry of the bar is given by another familiar equation 

M =B-H A .S 
m 47r (emu) (4) 

in which B - H is the intrinsic induction, A is the cross-section area 
of the bar at the median plane, and S is the effective distance between 
poles. For a magnet of length l and diameter d, one may define a 
shortening factor, Rs = Sll, which evaluates the effect of recession of 
the poles, and rewrite (4) as 

B-H 
111m = 47r AlRs . (5) 

The shortening factor, R s, has been evaluated by Okoshi.l Okoshi's 
values are plotted as a function of lid of the bar in Fig. 1, with a 
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Fig. 1- Effective shortening of magnets with increasing aspect ratio. 
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broken line extrapolation guided by experimental data. If one com
bines (3) and (5) after conversion to practical units, the result is 

Ji
a 

(lb-in per oersted) = 1.55 X lO-6(B - H)AlRs (6) 

and the required volume of bar to produce a specified magnetic mo
ment is given by rearrangement of (6) 

(7) 

3.1 Optimum Bar Shape-The Load Factor 
vVhen a bar of ferromagnetic material is placed in a field of 

strength Ho, it assumes a state of magnetization which is commonly 
described by the equation 

H = H 0 - D B(B - H) 

which may also be written 

Ho - H 
B-H (8) 

Here Ho is the applied magnetizing field, and Band H describe the 
condition of magnetization within the bar. The demagnetizing factor, 
DB, which is partially defined by (8) is used to express the dependence 
of the intrinsic induction within the bar upon the aspect ratio (ljd) of 
the bar. It has been tabulated and charted as a function of ljd by 
Okoshi,l Bozorth and Chapin/ and others. These sources agree upon 
the value of DB for long slender magnets. For shorter magnets, where 
there is some disagreement, we find the Okoshi data to be in agreement 
with experiment. 

In plotting the characteristics of magnetic materials we normally 
plot the intrinsic induction (B - H) or the flux density (B) as the 
dependent variable, and the field strength (H, or Ho) as the in
dependent variable. Hence, the ratio 

B - H 1 
=-= V 

Ho - H DB 
(9) 

becomes the slope of the generalized load line of the magnetized bar. 
This reciprocal of the demagnetizing factor is found useful in numerous 
magnetic calculations and possibly deserves a name and symbol of its 
own. We have elected to call it the loading factor, with the symbol V, 
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and have plotted it as a function of lid in Fig. 2. In the electromagnet 
core operating below saturation, H is generally negligibly small compared 
with either B or Ho , and the expression for the loading factor reduces 
to U = BIHo. In the permanent magnet, Ho disappears and the ex
pression for loading factor becomes U = (B - H) I ( - H). For long 
magnets, (lid> 5) H is negligibly small compared with B, and the 
loading factor is further simplified to U = B I ( - H). In this restricted 
form the loading factor is identified with the "permeance coefficient" 
and similar terms used in the literature of permanent magnets. 

In Fig. 3 we illustrate the application of the loading factor to the 
analysis of permanent magnets and electromagnets. For this illustra
tion each is assumed to have lid "-' 33 so that the loading factor, U "-' 
400. In the permanent magnet (Remendur) the magnetomotive force 

u 
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- 1 0 ,---r---r-~r_r_---/.,..-/-r-,.-, --t-----+--i 

_ 8 t---+---+--+-l-+--/~+_/~---+--l --t---+--i 
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Fig. 2 - Variation of load factor with aspect ratio. 
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Fig. 3 - Application of load factor to magnet design: (a) permanent magnet 
(Remendur 38), (b) electromagnet (Permalloy 45 core). 

is generated within the magnet and varies with the loading of the 
magnet as indicated by the B, H curve. (Here H is sufficiently small 
so that B is indistinguishable from B - H). The operating point is 
determined by the intersection of the B, H curve with the load line 
of slope U. This is a fixed point for a particular magnet with a par
ticular condition of magnetization. The conditions of Fig. 3 were chosen 
to match the characteristics of Remendur. In the electromagnet when 
operated below saturation, H is negligibly small so the load line rep
resents the relation between flux B in the bar, and applied field, Ho , 
up to the region (around B = 10,000 for Permalloy 45) where the core 
material starts saturation, and the characteristic starts deviating from 
the straight load line. 
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3.2 Design ot Permanent Magnets tor High Torque-Weight Ratio 

The weight of the magnet in pounds is 

Wm = Alp, (10) 

in which p is density of magnet material in Ibs/in3
• One may combine 

(10) with (6) to obtain 

~ = 1.155 X 10-
6 

(B - H)Rs . (11) 
WmHa p 

Here the left-hand side of (11) is the normalized torque-weight ratio. 
The design objective is to maximize this ratio. 

The dependence of the operating point of the permanent magnet 
upon the load factor, U, has been illustrated in Fig. 3. On similar charts 
one may plot intrinsic induction (B - H) as a function of field (H) 
for various magnet materials as in Fig. 4. Values of Band H for these 
plots may be derived readily from the regular demagnetization curves 
supplied by magnet manufacturers. Then, for a particular value of 

2K 1.5K 1K 
OERSTEDS 

O.5K 

Fig. 4 - Intrinsic induction of permanent magnets; (a) directional grain 
ceramic, (b) Alnico 9, (c) Alnico 5. 
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II d one may pick off the corresponding value of U from Fig. 2, and 
using this as the slope of the load line may find the value of (B - H) 
for a particular magnet material at the point of intersection. This 
value of (B - H) and the value of p appropriate to the material may 
be inserted in (11) to give the normalized torque-weight ratio. For 
example, at lid = 4, U '"'-' 17.5. The load line of that slope intersects 
the intrinsic induction curve for Alnico 5 at (B - H) '"'-' 10,000. In
serting this value and the value of Rs in (11) and using p = 0.26 for 
Alnico, one obtains 

(12) 

Repeating this procedure for various values of lid and for various 
materials, one can assemble the necessary data to plot the curves of 
Fig.5. 

It is evident that for each magnet material there is a value of lid 
above which the torque-weight ratio is essentially constant, and below 
which the torque-weight ratio falls off rapidly with decreasing lid. 
This follows the shape of the demagnetization curves of Fig. 4. This 
value of lid is large for magnets having low coercivity, and small for 
magnets having high coercivity. One would normally design the mag
net to operate on the fiat part of the characteristic to obtain high 
torque-weight ratio. 

3.3 Design of Electromagnets for Torque 
The electromagnet is assumed to consist of a cylindrical core of 

ferromagnetic material with a solenoid wound around it. The design 
formula for the core is the same as that for the permanent magnet and 
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is given in (7). This gives the required volume to produce a specified 
moment, operating the core at a specified value of flux density. The 
ampere-turn requirements are derived as follows. 

In terms of equivalent ampere turns, the applied field is given by 

(13) 

If, as is usually the case in the electromagnet, H is negligibly small 
compared with Ho, then one may combine (8) and (13) to obtain 

NI = 2.02lDB (B - H). (14) 

If one multiplies each side of (14) by (Al)k and collects terms, one 
obtains 

(15) 

But, 

(1l)! = (lld),S(7r/4)-!. (16) 

Combining (15), (16), and (6) 

(17) 

Since DB and Rs are functions of aspect ratio (lid) one may define 
an aspect ratio factor, 

Fa = D B (R s)-l(lld)i (18) 

and chart it as a function of (lid) as in Fig. 6. Then combining (17) 
and (18), gives 

NI = 1.9 X 10
6 (~l)i ~oa· (19) 

For any proposed geometry of an electromagnet with specified value 
of magnetic moment (ToIHa) the ampere-turn requirement may be 
determined from (19) and then translated into power and weight re
quirements by reference to Table II. 

3.4 The Semi-Permanent Magnet 

A permanent magnet material with low coercivity and high rema
nence, as exhibited by Remendur in Fig. 3, offers the inviting possi-
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Fig. 6 - The aspect ratio function (Fa). 

bility of easy magnetization and reversal of field by means of short 
pulses of current through a winding. Between pulses it acts as a perma
nent magnet, with polarity determined by the direction of the preced
ing pulse. Thus, it provides a switchable field with very low expendi
ture of power. It requires, however, for complete demagnetization, or 
"knock-down," much more sophisticated circuitry. Also, the certainty 
of complete demagnetization from an applied pulse or series of pulses, 
depends to a considerable extent upon the preceding history of the 
magnet. For this reason, it is not likely to replace readily the simple 
air-core coil or electromagnet unless the available power is so 
severely limited as to justify the added circuit development effort. 

IV. INTERCOMPARISON-AIR-CORE COILS AND ELECTROMAGNETS 

In the preceding sections we have developed design formulas and 
design graphs which enable us to estimate with fair quantitative ac
curacy the size and weight of various magnetic structures to satisfy 
torque requirements as specified. Intercomparison of the air-core coil 
and electromagnet offers an interesting illustration of the use of these 
techniques. VVe consider a typical example which assumes a spherical 
satellite of 45 inches effective diameter in which there is required an 
available magnetic moment of 0.2 lb-in per oersted which can be 
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turned on or off at will. It is further assumed that an upper limit of 
nine pounds weight and twelve watts power consumption is to be 
imposed upon the magnetic circuitry. 

First, we assume that an air-core coil is laid out around the equator 
of the satellite to enclose maximum area, and that this area is 

A = ~ (45)2 = 1590 in2. 

Substituting this value of A in (2) gives the required ampere turns, 

1.667 X 106 

NI = 1.590 X 103 0.2 = 210. 

The average length per turn of winding is 4571" = 141 inches. Using the 
formula for aluminum from Table II we can show that the power X 

weight product is 

power X weight = 0.119 X 10-6 (141)2(210)2 = 105. 

1£ we use the total weight allowance of nine pounds for the winding 
then the required power is 

105 power = - = 11.7 watts. 
9 

This is within the permitted 12 watts, so we have shown that it is 
feasible to use an equatorial coil. 

Turning now to the design of the electromagnet, one inserts TolHa = 
0.2 and (B - H) = 10,000 in (7) to show that the required volume of 
core material is 

I - 0.866 X 10
6 

0 2 - 17 32 . 3 vo - 104 • - • In. 

Assuming density of 0.26 Ibsjin3, the core will weigh 4.5 pounds. 
The characteristics of the winding, however, are closely dependent 

upon the aspect ratio of the core. To illustrate this point we consider 
two shapes, one to be 10 inches long, the other to be 45 inches long 
to just fit in along the spin axis of the satellite. For the 10-inch core, 

~ (lO)d2 = 17.32; d = 1.485"; lid = 6.73; Fa = 0.1. 

Substituting these values in (19) gives the required ampere turns, 

1.9 X 106 

NI = (17.32)i (0.2)(0.1) = 5640. 
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If we assume the average diameter of the winding is 1.6 inches then 
the average length of turn, P 1= 5.05 inches. vVe insert these numbers 
into the power X weight formula for aluminum in Table II and obtain 

power X weight = 0.119 X 10-6 (5.05)2(5.64)2 X 106 = 97. 

If we let the winding weigh 4.5 pounds to use up the residue of the 
weight allotment, then the power requirement is 21.5 watts. Since the 
maximum allowable power dissipation is 12 watts" it is evident that 
the 10-inch electromagnet, as described, cannot satisfy the require
ments. 

For the 45-inch core: 

~ (45)d 2 
= 17.32; d = 0.7"; lid = 64; Fa = 0.012 

and substituting these numbers in (19) gives the required ampere 
turns, 

1.9 X 106 

NI = (17.32)i (0.2)(0.012) = 680. 

If we assume that the average diameter of the winding is 0.85 inch, 
then the average length of turn, P = 2.67 inches, and 

power X weight = 0.119 X 10-6 (2.67)2(680)2 = 0.39. 

So we may use 0.5 pound of winding to bring the total weight only to 
five pounds, and the required power will be only 0.78 watt. This 
illustrates the advantage of the long slender electromagnet over the 
short one for purposes of producing torque. 

It is evident that the specified conditions of the example can be 
satisfied by the equatorial coil or by the long slender electromagnet. 
On the basis of the calculated results one might well prefer the 
electromagnet, which satisfies the requirements with a substantial 
saving of power and weight. However, other factors must be con
sidered. It is not likely to be convenient to mount the magnet full 
length along the spin axis because of interference with other equipment. 
In a core of this length, a very small amount of residual magnetization 
after removal of current will result in a considerable magnetic mo
ment, rather than the desired zero magnetic moment which is charac
teristic of the de-energized air-core coil. The weight distribution of 
the electromagnet along the spin axis decreases the spin stability, 
while the weight distribution of the equatorial coil enhances the spin 
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stability of the satellite. For these and other reasons the equatorial 
coil remains a favored method of attitude control in the communica
tions satellite. 

v. OPTIMUM DESIGN OF PERMANENT MAGNETS FOR FRICTION DAMPING 

There have been various proposals to provide friction damping of 
roll or precession of the spin axis by mounting a small magnet within 
a hollow spherical enclosure attached to the satellite. The magnet 
would tend to maintain its alignment in the earth's field and to pro
vide damping through friction contact with the interior of the sphere. 
For this application, if it exists, or for any similar application, one 
would wish to design for maximum normalized torque and minimum 
normalized period of oscillation in the field and within the confines 
of the sphere. 

5.1 Design for Maximum Moment within Limiting Spheres 
Referring to (6) and dividing through by D3 where D is diameter 

of sphere in inches, and D3 = (d2+l2)3/2, 

H~D3 = 0.91 X 10-6 ljd[1 + (ljd)2r![B - H]Rs . (20) 

The relation expressed by (20) is displayed in Fig. 7 for the. same 
magnet materials for which the torque-weight relation was shown 
in Fig. 5. 

5.2 Design for Minimum Period of Oscillation within Circumscribed 
Sphere 

A magnet used to damp out roll or precession should have a natural 
period of oscillation in the earth's field much shorter than the period 
of the motion it is to damp out. This would suggest a magnet designed 
to have minimum period of oscillation with a spherical enclosure. 

The moment of inertia of the cylindrical magnet around a diameter 
through its equator is given by 

M, ~ ~ ;* ld'[~~ + ~'2J (21) 

and dividing through by D5, 

Mi -6 (ljd) [3 + 4(l/d)2 
D5 = 42.6 X 10 p [1 + (ljd)2t/2 (22) 

* y = 384 in/sec/sec. 
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Fig. 7 - Normalized moment within limiting sphere; (a) ceramic, (b) Alnico 
9, (c) Alnico 5. 

Combining (20) and (22) and collecting terms, one obtains, 

J.lli Ha 46.8p[3 + 4(lld)2] r: n2 = Rs[B - H][l + (ljd) 2] . 
(23) 

The period of oscillation is given by 

[M; 
T = 27r\jrr: sec. (24) 

Combining (23) and (24) yields, 

TVHa I p[3 + 4(ljd)2] 
-n- = 42.8\jRs[B - H][l + Clld)2( (25) 

This normalized period of oscillation is displayed graphically as a 
function of lid in Fig. 8. In designing a magnet for friction damping 
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one would probably select the best compromise between maximum 
torque displayed in Fig. 7 and minimum period of oscillation as shown 
in Fig. 8. This would suggest the use of Alnico 9 and design for l/ d "-' 1.5. 

VI. CHARACTERISTICS OF SPHERICAL AND SPHEROIDAL MAGNETS 

The spheroids are a family of solids the surfaces of which are 
generated by ellipses revolving around an axis. Revolution around a 
major axis generates a prolate spheroid for which ljd > 1. Revolution 
around a minor axis generates an oblate spheroid for which lid < 1. 
Revolution of a circle around a diame.ter generates a sphere for 
which lid = 1. 

Values of load factor, U, for spheroids are plotted in Fig. 1. The 
volume of the spheroid is only two thirds that of a cylinder having 
the same land d, so (11) becomes, for spheroids, 

~ _ 1.733 X IO- 6(B - H)Rs 
WmHa - P 

(26) 

From solutions of (26) one may plot curves for normalized torque
weight ratio. In Fig. 9 we show a curve for spheroids of Alnico to
gether with a curve for cylinders of Alnico borrowed from Fig. 5. 
While the spheroids show a somewhat better torque-weight ratio 
than the cylinders, it is doubtful whether the advantage is sufficient 
to offset the added cost of shaping and mounting. 

The sphere might have unique advantages mounted in a spherical 
enclosure for friction damping. For the sphere of diameter D, one may 
rewrite (6) 



MAGNETIC DEVICES FOR ATTITUDE CONTROL 909 

Ji
a 

= 1.155 X 10-6(B - H) ~ 'D3R s . (27) 

Dividing through by D3 and inserting value of Rs, gives 

(28) 

This is an expression for the. total normalized torque that can be 
packed into a specified spherical enclosure. Solutions of (28) for 
various magnet materials are collected in Table III. The moment of 
inertia of the sphere is 

Mi = 0.111fD2 = 0.1 ~ D5~. 

Combining (27) and (29) 

AfiHa 0.1(n-!6)D5p 
---rr:- = 1.155 X 10-6(7r/4)(B - H)D 3gR s 

Combining (24) and (30) 
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Fig. 9 - Comparison, spheroidal and cylindrical magnets of Alnico 5. 

(29) 

(30) 

(31) 
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TABLE III - MAGNETIC CHARACTERISTICS OF SPHERES 

To To TVHa -- --
Material p (B -H) WmHa HaD3 J) 

Ceramic 0.15 3700 3.81 X 10-2 3.0 X 10-3 0.514 
Alnico 9 0.26 4600 2.73 X 10-2 3.74 X 10-3 0.613 
Alnico 5 0.26 1900 1.13 X 10-2 1.54 X 10-3 0.955 

Equations (26), (28), and (31) define for the sphere the same 
normalized quantities which are plotted for the cylinder in Figs. 5, 7, 
and 8. Solutions of these equations for various magnet materials are 
listed in Table III. The combination of the table and the three figures 
gives all the information required to select the preferred material and 
geometry for a specified application and to arrive at a quantitative 
design of the magnet. 

VII. SATELLITE MAGNETIC MEASUREMENTS 

Satellites with spin stabilization introduce two magne.tic measuring 
problems-measurement of "drag" and measurement of residual mo
ment. The "drag" results from eddy currents induced in the rotating 
metal shell of the satellite by the earth's magnetic field. The energy 
dissipated in these eddy currents must be derived from the rotational 
energy of the satellite, and there results a decay of the spin rate. 
One wishes to evaluate the rate of this decay to forecast when the 
spin rate will fall below the minimum required for stability. The 
moment measurement is to detect any residual magnetic moment 
perpendicular to the axis of spin which will interact with the earth's 
magnetic field to induce precession of the spin axis. After an accurate 
measurement this moment is canceled out by mounting in the satellite 
a small permanent magnet of equal moment and opposite polarity. 
Both measurements-drag and moment--can be made conveniently 
with a specially designed coil array. 

7.1 The Telstar® Coil Array 

The drag test requires a reasonably uniform field over the volume 
of the satellite. A paper analysis reveals that this can be provided 
by an array of coils of reasonable size with a particular distribution 
of ampere turns. Two coils, each of radius r, and of N turns are spaced 
±r/4 from an assumed zero point on a common axis. Two other coils, 
each of radius r, and 7N /3 turns, are spaced ±r from the assumed 
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zero along the common axis. The coils are connected in series to run 
at the same current so that the outer coils have effectively 7N/3 times 
as many ampere turns as the inner pair. The arrangement of coils and 
the resulting distribution of field along the axis are shown in Fig. 10. 

lt was established by measurements that the region of uniform 
field extended out radially from the axis to include a spherical volume, 
the radius of which is roughly two thirds the radius of the coils. 
Hence, an array of coils five feet in diameter easily provided uniform 
field over the volume of the satellite. (If a conventional Helmholtz 
array were used the coils would have to be about 10 feet in diameter 
to achieve reasonably uniform field over the same volume.) This 
array was mounted on a turntable and rotated around the satellite 
which was supported by a calibrated torque suspension. From the 
result of this drag measurement it was possible to calculate the rate 
of decay of satellite spin in the earth's magnetic field. 

7 .2 ~{easurements of Magnetic Moment 

The magnetic moment perpendicular to the spin axis of the satellite 
was measured by rotating it within a coil array similar to the one 
used for drag tests except that the windings were connected to an inte
grating fluxmeter. One reasons intuitively that if a magnetic object is 
aligned parallel to the axis of the coils and rotated 180 0

, it will give a 
deflection of the integrating fluxmeter proportional to the moment, 
and that the proportionality constant will be unaffected by the position 

7N/3 N N 7N/3 

o o o o 

1.0 

i r---- -------UNIFORM FIELD (± 0.5%) - -- -- - - ----1 
/'r'" ---~ 

/ ~ 
/ 0.8 

0.6 
r r/2 o 

I 
r/2 r 

i 
-------------COIL AXIS -------------

Fig. 10 - Field distribution along axis of Telstar® array. 
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of the magnet in the array as long as it is within the volume in which 
the array produces uniform field. This intuitive reasoning has been 
confirmed by various measurements. The proportionality constant 
for the array is established by calibration with a small air-coil, of 
known NIA for which the moment can be calculated from (2). A 
two-to-one scale down of the array has proved to be convenient for 
bench measurements of magnetic moment of small magnetic objects. 
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APPENDIX 

Definition of Symbols 

The following letter symbols have been adopted for use in this paper. 

A = section area of magnet or winding. 
B flux density. 
(B - H) intrinsic induction, 
d diameter of magnet. 
D diameter of enclosing sphere. 
DB demagnetizing factor. 
Fa = aspect ratio factor, as defined in text. 
g gravity (384 in/sec/sec). 
H field strength in magnet. 
Ha ambient field, or field of interaction. 
H 0 applied magnetizing field. 
l length of magnet. 
M mass. 
Mi moment of inertia. 
Mm = magnetic moment. 
N I ampere turns. 
Rs shortening ratio, from recession of poles. 
To torque between magnet and perpendicular field. 
T period of mechanical oscillation. 
U load factor, reciprocal of demagnetizing factor. 
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Nonlinear Optical Coefficients 

By F. N. H. ROBINSON 

(Manuscript received January 18, 1967) 

We consider, from a number of different viewpoints, the tensor coefficients 
which describe second harmonic generation, optical rectification, and the 
Pockels or linear electro-optic effect in acentric crystals. Stationary per
turbation theory is used to calculate the low-frequency limit of the intrinsic 
electronic nonlinearity neglecting all effects due to local fields or lattice 
polarization. Solid methane is used as an example and the result used to 
estimate the coefficient in hexamethylene tetramine. The calculated result 
is within a factor of 2 of the experimental figure. The method is susceptible 
to further refinement and, since it requires only a knowledge of ground 
state wave functions, and is essentially very simple, it appears to offer a 
useful approach to the calculation of the coefficients. 

The classical anharmonic oscillator model is briefly covered and the model 
is related to a quantal treatment. We find that the anharmonic potential 
used in the model is directly related to the actual crystalline potential. It 
can also be related to the charge distribution in the electronic ground state. 

Local field corrections and the effects of lattice polarization are presented. 
These alter the nonlinear properties in a simple and obvious way, but one 
which has been misunderstood in some of the literature. 

Our results form a theoretical background to Miller's empirical rule 
relating the nonlinear coefficients to the linear susceptibilities. An extensive 
table of Miller-reduced tensor coefficients collated from the published litera
ture is presented. 

Finally, we draw together some of the threads of the previous sections. 
An appendix deals with the vexing question of definitions. 

1. INTRODUCTION 

Second harmonic generation, optical rectification, and the linear 
electro-optic effect are particular aspects of a process in which two 
fields, E~ei{H and El ei-r t, generate a polarization 

P a iat 
ie 

913 

(1) 
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Our concern is with the tensor coefficients d~fk'Y which (Nye1
) necessarily 

vanish in centric (centrosymmetric) crystals and which, in acentric 
crystals, are subject to symmetry restrictions, (Kleinman2

) which often 
leave only one or two independent components. 

Experimentally, the values of the allowed components of d in different 
materials and at different frequencies range from about 2.10-10 esu 
(cm/stat volt) to about 6.10-5 esu. This range may be contrasted with 
the linear optical susceptibility X which is between 0.1 and 0.3 for the 
vast majority of materials and only quite exceptionally exceeds unity. 
There is, however, a connection between the tensor d and X which is 
expressed by an important empirical rule due to Miller.3 If we write 
d~fk'Y as 

(2) 

where Xi~ is the ii component of X at a frequency (x, and if we have chosen 
a principal axis system for x, then the allowed components of D.ijk 

for all effects and all materials are similar in magnitude. We shall see 
in a later section that for very many materials in both the visible and 
10 p, region of the spectrum (PateI4

), D.iik is near 3 X 10-6 esu. No 
materials with D. above 20 X 10-6 esu have yet been found and very 
few are known to have a value below 0.2 X 10-6 esu. In the case of 
NH4H zP04 where the best measurements of s.h.g., optical rectification 
and the electro-optic effect are available (Francois,5 Ward, 6 Carpenter7

) 

the value of D.123 from all three effects is 3 X 10-6 esu within the experi
mental error of 15 percent. The fact that s.h.g., a purely optical effect, 
leads to the same value of D. as rectification and the electro-optic effect 
indicates quite clearly that the basic mechanism of the nonlinearities 
is common to all three effects and must therefore reside in the electronic 
motion of the system. In the next section, we shall concentrate on this 
aspect of the problem and neglect the effects of local fields and lattice 
polarization. 

A number of authors, (see Section IV for references) have given quantal 
treatments of the optical nonlinearities whose end result is an expression 
for the coefficients d~fk'Y in terms of sums of rather inaccessible matrix 
elements. Useful as these expressions are, in establishing some of the 
general properties of the coefficients, they are not a practical step on the 
road to calculating the coefficients from other empirical quantities. At 
the other extreme, the classical anharmonic oscillator model has been 
used to demonstrate some of the qualitative features of nonlinear be
havior (see Section III). This treatment, though simple and appealing, 
suffers from the defect that the relation between the parameters of 
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the model and those of the real system is obscure. In Section IV, we 
shall remedy this defect and show that the two approaches are closely 
related. 

First, however, we give an approximate method of calculating the 
low-frequency limit of the coefficients from stationary perturbation 
theory in a form in which it has been successfully applied to the linear 
properties of n electron atoms (see, e.g., Dalgarn08

). 

II. MAGNITUDE OF THE COEFFICIENTS 

At low frequencies, i.e., well below any electronic resonance we can 
use stationary perturbation theory to calculate, to arbitrary order in 
the applied field Jj} the energy W of the ground state. The polarization 
is then given by 

(3) 

We shall assume that we are dealing with a crystal containing N identical 
atoms or molecules in unit volume whose individual ground state energies 
are w, so that W = Nw. 

If H 0 is the Hamiltonian of an unperturbed molecule, its Hamiltonian 
in the field Jj} is 

H = H 0 + h = H 0 - eJj}· R, (4) 

where 
n 

eR = e L rm (5) 
m=l 

is the dipole moment operator of the molecule, and the sum extends over 
all n valence electrons. We can neglect the core electrons because of 
their high binding energies. If we expand w in increasing order in Jj} as 

W = Wo + Wl + W2 + Wa, etc. , (6) 

the term W l gives the permanent dipole moment of the molecule, W 2 

gives the linear susceptibility and Wa gives a polarization quadratic in 
E which leads to the desired nonlinear coefficients. The electric field 
will perturb the state function 0/ and we shall write the perturbed func
tion as either 

0/ = % + 0/1 + 0/2 + ... or I) = 10) + 11) + 12) + .... (7) 

Knowledge of 0/ or I ) to first order in E is sufficient to determine Wl , W2 , 

and Wa for 
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WI = (01 h 10) 

W2 = (01 h 11) 

W3 = (II h 11). 

(8) 

Moreover, the correct value of 1/11 or I 1) is determined by the require
ment that it minimize w. Thus, we can obtain I 1) by a variational 
procedure and the only element of choice left to us is that of the trial 
wave function. 

Minimizing w is equivalent (see Dalgarno and Lewis9
) to the simpler 

problem of minimizing 

(lilt 11) + 2(01 h 11), (9) 

where the notation Ho or h means Ho - (0 I Ho I 0) or h - (0 1 h I 0). 
As a trial function, we tak~ 

11) = Ah 10) 

so that (9) becomes 

The minimization with respect to A gives 

A = (01 h2 10) _ 
(01 hHoh 10) = 

(01 h2 10) 
(0 I hHh 10)· 

The unperturbed Hamiltonian of the system is of the form 

li2 n 

Ho = --2~ L V! + Vo 
m m=1 

and so, in the denominator of (12), 

Thus, 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

where dr is an element of configuration space and we have used H 1 0) = 
o. Equation (15) can be written as 

(01 hHoh 10) = - e
2

2

h
2 

E.! L V m1/l! L E·rm' dr, (16) 
m m m' 
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and integrated by parts, to give 

(0/ hfI)~ /0) = +~2~ B·E ~ J 1/;: dr, (17) 

where the discarded first integration part vanishes at the limits, if 
these are infinite, or if they are the boundary of a cell in periodic lattice, 
provided only that B does not vary appreciably within a cell (dipole 
approximation) . 

If we are dealing with isolated atoms I 1/;~ dr = 1 and we have 

(18) 

a somewhat unfamiliar form of the sum rule. If, on the other hand, 
we are dealing with overlapping molecules in a periodic lattice, the 
variational problem is to minimize the contribution to w from a single 
cell of the lattice. Thus, in (11) and all succeeding equations, the inte
grals implied by the expectation values are to be taken only over the 
interior of a cell. This will also apply to all integrals involved in evalua
ting W 2 = (I I 11, I 0) and W3 = (I I 11, 11). In this case (18) remains un
changed. This can be shown to be a general consequence of time reversal 
invariance and the commutation rule 

(p, q) = ih. (19) 

We now have 

(20) 

or 

(21) 

From this we obtain the second-order energy 

(22) 

where ao = h2/mi = 0.53 A. If we let E = Ex , 0, 0, and R = X, Y, Z 
this gives 

(23) 
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and the atomic polarizability is 

a = _4_ (X2)2. 
nao 

(24) 

For the H atom, this gives a = 4a~ instead of the correct value 4.5a~, 
while for the helium atom, taking an effective nuclear charge Z = 
27/16 gives 1.8 X 10-25 ccs. The experimental value is 2.1 X 10-25 ccs. 
In general, (24) is a lower limit to a, if we evaluate (X2) correctly as the 
expectation value of the mean square moment of all the electrons. If 
the electrons are uncorrelated 

(25) 

where (£2> refers to one electron. We used this procedure in helium since 
the two electrons are in orthogonal spin states and are automatically 
uncorrelated. In more complicated atoms correlation exists and almost 
always results in 

since electrons repel each other. Thus, while (24) is a lower limit we 
cannot say anything about the sign of the error in 

a = 4n (£2)2. (27) 
ao 

We note, in passing, that, in a solid with overlapping molecules, a the 
polarizability is large. This leads to an element of instability in the situa
tion for as a increases the screening of the coulomb potential becomes 
more effective and the electrons less localized leading to a further in
crease in a and eventually metallic behavior. For this reason, most 
materials, which are not regular insulators, are metals. Those rare 
materials which have values of N a appreciably greater than 0.3 (n > 2.2) 
owe their existence to a rather delicate balance of forces. 

The third-order energy is 

W3 = (II It 11) = - (n~;2 Y(CE ·fl)2)2e3(CE ·fl)3 . (28) 

In most cases a is very nearly isotropic and we have 

!aE2 = - W2 = (~;~: )«(E ·fl)2? (29) 

so that 

W3 (30) 



NONLINEAR OPTICAL COEFFICIENTS 919 

With N molecules in unit volume this gives a nonlinear coefficient 

(31) 

where 

Tiik = (il/l/tk) = (RiRiRk) - (Ri)(RiRk) - (Ri)(RkRi) 

- (Rk)(RiR i) + 2(Ri)(Ri)(Rk)' (32) 

Equation (31) is the central result of this section. It expresses diik in 
terms of the linear (corrected for local fields) susceptibility X and a 
cubic moment (third-order semi-invariant) of the electronic distribution 
in the ground state. 

If we neglect overlap and, for simplicity, also assume that the electrons 
are uncorrelated so that Tiik = ntiik where tiik refers to a single electron 
we have 

(33) 

and Tiik is now apart from numerical factors the octupole moment of 
the charge distribution. If the electron density in the molecule is per) 

Tiik = III rir/\p(r) d
3
r. (34) 

If we account for local fields through a Lorentz correction the correct 
value of X to insert in (33) is obtained from 

n 2 
- 1 47r 

n2 + 2 = 3 x (35) 

and the observed value of d iik (see Section V) is 

d~~: = (n2 t 2y diik . (36) 

At first sight (33) seems to imply that d is proportional to X in conflict 
with Miller's rule. However, X depends on N /n(il2? ~ nN (r2)2 and N is 
inversely proportional to (r2)! so that X ~ nr, while d ~ r4. Thus, d is 
in fact more nearly proportional to X4 than x. 

We now consider as an example, the tetrahedral molecule methane 
CH4 , which crystallizes in the tetrahedral space group F43m with a 
lattice parameter ~6 A and a molar volume of 32 ccs. If we take Car
tesian axes along the sides of the cubic cell, the bonds point in the 111, 
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and tetrahedrally related, III, III, III, directions. From symmetry, 
there is only one independent component of d iik , in which all the sub
scripts are unequal. 

The shortest c-c distance is 4.2 A and from the size of the free molecule 
we conclude that overlap is unimportant. 

Turner, Saturno, Hauk and ParrlO have used one center wave functions 
to calculate the electronic density p in the molecule. From this we can 
obtain t123 using (34). 

The result is 

(37) 

and this is not very sensitive to the limits of integration. The experi
mental molar susceptibility of CH4 is 1.6 ccs and so X = 0.05. Thus, if 
we neglect correlations between the eight valence electrons we have 
from (33) 

d123 = 3 X 10-9 esu. (38) 

In a similar way, neglecting correlations, we can calculate the molar 
susceptibility from (27). Turner et al's charge density leads to 

(x 2
) = 3.3 X 10-17 cm2 

and so, with eight valence electrons, we obtain a = 6.5 X 10-24 and 
X = a molar susceptibility of 3.9 ccs, rather over twice the experimental 
value. 

This is a clear indication that the electrons are correlated. However, 
the correlation enters twice in X but only once in d (since we have ex
pressed d in terms of the experimental x). Thus, d problaby lies between 
2 X 10- 9 and 3 X 10- 9 esu. 

To see whether 3 X 10- 9 esu is a reasonable value for d123 we compute 
the Miller reduced tensor d/x3 = ~123 = 24 X 10-6 esu. 

This is quite exceptionally high. Most materials have allowed com
ponents of ~ near 3 X 10-6 esu and only one coefficient in LiNb03 

(9 X 10-6
) and ~123 in hexamethylene tetramine (15 X 10-6

) approach 
this value. 

However, we believe it is in fact not far wrong. In most materials 
geometric factors conspire to reduce d by various factors of cos () and 
the atomic groups are in the first instance less aspherical than CH4 • 

In CH4 the effects of every electron are directly additive. 
Hexamethylene tetramine (HMT), the other exception to Miller's 

rule, is, like methane, a tetrahedral molecule N 4 (CH2)6 in a tetrahedral 
i43m crystal. The 4 nitrogen atoms form the 111 III, III, III, corners 
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of a regular tetrahedron and the CH2 groups occupy the edges but the 
N-C-N bonds are bent outwards in such a way that all the angles are 
very nearly tetrahedral. The carbon atoms occupy the six sites 2, 0, 0 
etc. (see Kitaigorodskiill). 

The refractivity of the molecule as a whole can be very satisfactorily 
accounted for by a system of additive bond refractions. (See LeFevre12 

for a review of bond refractions.) The three basic units are 12 C-H 
bonds pointing in the I, I, I, and related directions, 4 nonbonding orbitals 
on the nitrogen atoms pointing in the 111 and related directions, and 
12 N-C bonds in the 111 directions. 

Since the refractivities are additive, these units appear to act inde
pendently in determining the molar refractivity. Le Fevre (loc. cit.) gives 
values of R = (47r/3)La (where L is Avagadro's number) of 2.8 ccs for 
each unbonded nitrogen pair, 1.65 ccs for each C-H bond and 0.62 ccs 
for each N-C bond. Thus, the N-C bonds make a rather small con
tribution to x, and probably even less to d since they have an ap'proxi
mate inversion centre at the centre of the bond (C and N are similar 
atoms as compared with C and H). We therefore neglect them. 

The 12 CH bonds in the III direction are roughly equivalent to 3 
methane molecules in the molecular volume 105 ccs, and further the 
electrons will be less correlated than in methane. Thus, their contribution 
to d 123 is 

d~;; = -yg5 ·jl~·3 X 10-9 = -2.7 X 10-9 esu. (39) 

To calculate the effect of the nonbonding nitrogen electrons we assume 
that they occupy SP3 hybrid orbitals directed along 111 etc. with Slater 
radial wave functions AI' exp (- 2.5r /2ao). It is then straightforward 
to show that for one electron 

tXYZ = -0.055 X 10-24 cm3
• 

The contribution of the 4 nitrogen atoms to X is 

N = ~. 4 X 2.8 = 0 02~5 
X 47r 105 . D 

and so 

d~3 = -1.7 X 10-9 esu. 

(40) 

(41) 

Thus, the total value of d123 is -4.5 X 10- 9 esu. This could be slightly 
increased by the effects of atomic overlap, and possibly by contributions 
from the N-C bonds. It could be either increased or decreased by elec
tron correlations on individual CH2 groups. The experimental values 
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for the electro-optic effect Heilmeyer13 and second harmonic generation, 
Heilmeyer, ackman, Braunstein, and Kramer,14 when corrected for local 
field effects using a Lorentz factor, both give d = ±S.2 X 10- 9 esu. 
Thus, our calculation is within a factor 2 of the observed value. 

This method is therefore capable, in simple cases, of predicting the 
magnitude of d rather successfully. Moreover, the experimental value 
of d for HMT suggests that we were correct in assuming that CH4 
will have an anomalously large reduced tensor ~123 • 

The fact that the division of a complex molecule such as HMT into 
simple components leads to a reasonable value for d leads us to hope 
that a similar procedure will be possible in other cases. It might then 
be possible to assign empirical values of d to basic components such as 
the C-H bond or the N: nonbonding pair, and to combine these ad
ditively (with a proper attention to geometry) to predict the values of 
d for even more complex molecules. This would not be surprising since 
a similar procedure (see LeFevre loco cit.) works very satisfactorily for 
the linear susceptibilities. 

It is then obvious that large nonlinear effects will only result, if the 
molecule contains polarizable groups disposed in an arrangement which 
results in a ground state of, far from inversion, symmetry. The large 
value of ~ in HMT results from the fortunate coincidence that the 
most polarizable components are themselves strongly asymmetric and 
so oriented that their effects are additive. The much smaller values of 
~ commonly observed can then be explained as partly due to no group 
in the crystal being quite so asymmetric as N: or CH2 in HMT and 
partly due to unfavorable geometric relations between the groups. For 
example, if our approach is correct we should expect the analogous 
compound adamantane (CH)4(CH2)6 in which the nitro gens are re
placed by CH groups with the CH bond along 111, etc. to have a d123 

appropriate to 2 (= 3 - 1) CH4 molecules in 105 ccs, i.e., d123 ~ 2 X 10- 9 

esu or about half the value for HMT. 
Exceptionally small values of ~ will occur in materials where most 

of the molecule possesses local inversion symmetry, so that only a 
fraction of the molecule contributes to d, while the whole molecule 
contributes to x. We shall consider an example of this in a later section. 

Overlap between adjacent molecules is neccessarily bound to lend 
further uncertainty to the calculation in materials with a pronounced 
band structure, but it seems possible that rough approximations should 
be obtainable from, for example, the relation between bandgap and 
the corresponding separation in the isolated atoms. In fact, since what 
we actually require is Tiik/n, which, if the electrons are uncorrelated, 
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is simply 

(42) 

we may expect that this factor will, to some extent, be self-cancelling. 
Finally, we may remark that very much better approximations to 

d iik can obviously be made if we know the ground state wave function 
explicitly and also use more sophisticated trial wave functions in the 
variational calculation. It is at first sight surprising that a knowledge 
of the ground state wave function alone is sufficient to determine X and 
d which, in the more usual treatments involve the properties of excited 
states. However, we should remember that a knowledge of the exact 
ground state wave function is, except in pathological circumstances, 
sufficient to determine the unperturbed Hamiltonian; thus, the whole 
spectrum of states. 

III. THE CLASSICAL ANHARMONIC OSCILLATOR MODEL 

Although the considerations of the preceding section are sufficient 
to determine the magnitude of d at low frequencies, they offer little 
guide to the variation of d with frequency and, if recast in terms of time 
dependent perturbation theory they tend to lose their attractive sim
plicity. In the next section we shall show that a more familiar form of 
time dependent theory leads to results which can be represented in 
terms of a classical anharmonic oscillator model. Here, we discuss the 
properties of the model itself. 

We assume that unit volume of the material contains N optical elec
trons which move in a potential 

(43) 

where a sum over repeated subscripts is implied. The potential Viik 

obviously satisfies'Viik = Viki , etc. 
In a field E~ei{3t the equation of motion is 

(44) 

and the linear response obtained by neglecting V iik is 

(45) 
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There will be a similar response to a field E~ei-y t and, if we introduce 
these responses back into the nonlinear term in (44) we obtain a re
sponse at the sum frequency a = (3 + ')' given by 

(2) 3Viike
2 

1 1 1 (E~E"( + E"(E~)eiat 
Xi = ---:;;;:r- n~ _ a 2 n~ _ (32 n~ _ ')'2 1 k k 1 • (46) 

The resulting polarization is N ex;2) and so the nonlinear coefficient is 

(47) 

Thus, the symmetry of diik mimics that of V iik if we neglect the res
onance denominators. 

The linear susceptibility obtained from (45) is the familiar expression 

(48) 

and so if we express d~fk"( as 

(49) 

the reduced Miller tensor is 

(50) 

which is frequency independent and has the same symmetry as V iik . 
If we assume that V iik is electrostatic in origin its order of magnitude 

will be e2 
/ d4 where d is an atomic spacing and we shall also have N d3 ~ 1. 

Thus, 

(51) 

With d equal to 2 A this is 2.5 X 10-6 esu, about the mean value of D. 
for most materials. In a later section, we shall give another estimate of D.. 

The potential ViikXiXiXk distorts the shape of the ground state of 
the harmonic oscillator and as a result the system acquires a cubic 
moment tiik [defined in (32)] which we now calculate. 

Let I 0) represent the unperturbed ground state wave function in 
the absence of the anharmonic term and I p) be an excited state, then 
the perturbed wave function is 

I ) = 10) - L' <pi V 10) Ip). 
p lLwp 

(52) 
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The expectation values of even operators such as (xD, (XiXi) are un
altered by V, while the expectation value of an odd operator such as 
Xi or XiXiXk is given by 

(53) 

It will suffice if we calculate tiik with i ~ j ~ k. Since (XiXi) = 0 if 
i ~ j we only require (XiXjXk) and contributions to this come only from 
the 6 = 3! terms in V with i ~ j ~ k. The only state which contributes 
to the sum is I p) = 11,1, I) with an energy li(Q l + Q2 + Q3). The matrix 
element is 

and so 

t123 = (X 1X 2X 3 ) = -12(2:Y li Q1 Q2Q3(Q~ + Q2 + Q3) 

It is straightforward to show that a similar result 

holds for all the components of tilk • 

(54) 

If we substitute this relation in (47) and take the limit as a{3'Y ~ 0 
we obtain 

(55) 

This is twice the value obtained in (33) because there we treated ti;k 

as a fixed property of the ground state which was then perturbed by E; 
whereas here we have considered an even ground state perturbed by E 
and a fixed potential. 

Thus, if the real system has a cubic moment tiik in the ground state, 
the equivalent anharmonic oscillator model requires an anharmonic 
potential 

(56) 

and this will result in a cubic moment t: ik = !ti;k in the oscillator ground 
state. 

In the real crystal tiik may be an accessible quantity. It obviously is 
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in molecular crystals of strongly covalent compounds such as CH4 • 

But, in ionic crystals it may be more sensible to consider the ions as 
spheres perturbed by a crystal potential V~jk. In a later section we 
shall see that there is a simple relation between the model potential 
and V~jk • 

The classical anharmonic oscillator model has previously been used 
by Bloembergen,15 Garrett and Robinson16 and Kurtz17 to give a qualita
tive account of nonlinear phenomena. The latter authors also discuss 
in some detail its relation to Miller's rule. 

Obviously, the model is the nonlinear analogue of the classical har
monic oscillator model used with such success for the last 60 years in 
the discussion of linear behavior such as dispersion, and, just as the 
harmonic model is directly related to the results of a quantum mechan
ical treatment, we may expect the anharmonic oscillator to have a 
similar basis. In the next section we explore this relation. 

IV. TIME DEPENDENT QUANTAL TREATMENT 

A number of authors Bloembergen/5 Armstrong, Bloembergen, 
Ducuing and Pershan/8 Butcher and McLean/ 9 Kelley,20 Cheng and 
Miller21 and Ward22 have given rigorous quantal treatments of optical 
nonlinearities in solids. We select an expression due to Armstrong, 
et al (loc. cit.) which expresses the nonlinear coefficients in terms of the 
energies hwp of excited states and the matrix elements (0 1 Xi 1 p), 
(p 1 Xi 1 q), etc. of the dipole operator between states. The ground state 
is (0 I. 

This expression is valid, either for an assembly of N isolated atoms 
in unit volume or, in the dipole approximation, for a real solid where 
the wave functions overlap. In the latter case, the solid must be divided 
into cells of the periodic lattice, and N is then the density of cells, while 
the matrix elements are to be evaluated only over the interior of a cell. 
The periodicity of the lattice ensures that contributions from parts of 
the wave function outside a cell cancel in the crystal as a whole. 

To avoid a plethora of subscripts we let each of X, y, and z serve to 
represent anyone of the components and we can then write the expres
sion for d as 

(57) 
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This expression vanishes if the states 10), I p), etc. have a definite parity, 
its value therefore depends on the existence of matrix elements whose 
presence is contingent on the absence of inversion symmetry. For this 
reason, it is almost impossible to make an informed guess about its 
magnitude or behavior. 

An analogous expression for the linear susceptibility is 

w _ 2Ne
2 

,,"lJ,XnpYpn 
Xxv - t L...J 2 2 a p Wp - W 

(58) 

and in both expressions an operator x is to be understood as the total 
operator for the contents of a cell, i.e., the sum of the individual electron 
operators. Of course, we can neglect the core (nonvalence) electrons on 
the grounds that they are too tightly bound to contribute to the optical 
properties. 

A familiar approximation to X is obtained if we note that in (58) the 
variation of the summand with I p) is almost exclusively due to the 
matrix elements. These not only obey selection rules, but also decrease 
rapidly in magnitude as the state I p) increases in energy, and therefore 
overlaps the ground state less and less. For example, in the H atom with 
a IS ground state the matrix element Xop vanishes unless p is one of 
the states 2P, 3P, etc. Moreover, as we go from the 2P state to the 8P 
state XopXpo decreases by over a hundredfold. At the same time, Wp 

changes by less than 30 percent. Thus, except near a resonance, we can 
treat wp as a constant [2, somewhere near the first allowed transition and 
write (3.2) as 

(59) 

where the primed sum excludes p = O. Now 

== «(x - (x»(y - (y») (60) 

where a ( ) denotes a ground state expectation value. Thus, 

w 2Ne2 n 
XXV = h(n2 _ w2) «(x - (x»(y - (y»). (61) 

We shall not pursue the further manipulations of (61) using the sum 
rule which lead back to (27) but we remark that in many cases a form 
such as (61) for X, involving a single Sellmeier or classical oscillator 
term, gives an excellent account of optical dispersion, and that when 
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applied to the hydrogen atom, with hQ set equal to Ii/a" the 18 - 2P 
energy, it leads to a value of X at low frequencies 

x= 

which exceeds the correct value 4.5 a~ by 32/27 or 18 percent. 
Before we can adopt a similar procedure with the nonlinear coefficient 

we must first satisfy ourselves that there is no essential difference be
tween a sum with three matrix clements and one with two. In X all 
matrix elements terminate on I 0) but in d it is quite possible in a term 
such as xopypqZqO , with p ~ q corresponding to highly excited states, of 
great spatial extent, that the term ypq may be large enough to compensate 
for the smallness of XOpZqO • If this were the case it would be possible for 
the exact value of the sum to depend critically on cancellations between 
large terms involving highly excited states. The removal of the frequen
cies Wp , etc. as a single average would then have disastrous results on 
the sum. 

We will advance three arguments why this is unlikely. Consider first 
an even higher-order calculation, that of the fourth-order Stark shift 
of the ground state of atomic hydrogen due to a field F. In atomic 
units this is given by an exact calculation (Dalgarn023

) as 

(62) 

We can also express W(4) (Dalgarno, loco cit.) as 

Our procedure treats WpWq and Wr as a single constant Q and leads to 

W(4) = -~; {«(x - (X»)4) - 2«(x - (X»2?}. (63) 

For the H atom (x) = 0, (X2) = 1 a.u. and (x4
,) = 9/2 a.u. so that, if 

we set Q = 3/8 a. u., the 18 - 2P energy difference 

(64) 

This is close to the correct result (36), but despite the fact that we have 
taken the lowest possible value of Q it is too small. This is a clear indica
tion that some cancellation of higher terms, which we have aggravated 
by our cavalier treatment of Wp , etc., is occurring. This is not surprising 
for, if in the triple sum we consider the lowest possible sequence of levels 
18 2P 2S 2P 18 for which Wp = Wq = Wr = Q the product of the matrix 
elements is 5 a.u. while for the sequence IS 8P 8S 8P 18 the product 
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is 10 a.u. made up of a contribution of 0.0033 from the two 18 SP 
elements and 3000 from the S8 SP elements. 

However, this is not quite so serious as it appears, for in a real solid 
no matrix element can exceed the linear dimensions of a cell say 5 a.u. 
so that the product in the low transition would remain at 5 a. u. while 
the product for the upper transition would be reduced to O.OS. 

Our final argument is empirical. If cancellations between large terms 
are critically important, the relevant feature of our procedure is the 
change in the ratio wp/ Wq it causes for highly excited neighboring states. 
In hydrogen the ratio of the 18 - SP energy to the 18 - 7P energy 
is 1.005 and we replace this by unity. In a time dependent theory res
onance denominators appear, and if the sum is really so critically 
balanced, we expect the observed quantity, in this case the hyper
polarizability, to vary rapidly with frequency when w2 ~ 0.005 Q2, 

i.e., at a frequency 10 times lower than the first absorption edge. In 
nonlinear optics, no such variation is observed until one of the frequen
cies approaches much more closely (about 70 percent) to the absorption 
edge (Chang, Ducuing, and Bloembergen24

). 

Taken together these arguments give us reasonable grounds for 
hoping that the sums will not bite us if we remove Wp , etc. from under 
the summation sign. 

In the sum in (57) there is no restriction on p or q, in particular terms 
with either p = 0 or q = 0 occur. These will lead to trouble if we attempt 
to approximate the sums as they stand. We therefore first segregate 
all such terms. Let { } denote the entire summand in (57), then 

p 

", ", { } _ :r" YorZro _ ~ ", xorYro_ L...J L...J Xoo L...J 2 2 Zoo L...J 2 2 
II a r Wr - 'Y 'Y r Wr - a p 

LL{ } 

a" ZorXro (3 ", YorZro 
- Yoo Q L...J --2 --2 - Xoo - L...J 2 (:12 

fJ r Wr - a a r Wr - fJ 

+ fi" XorYro + :r", _ ZorXro _. 
Zoo L...J 2 (:12 Yoo (:I L...J 2 2 

'Y r Wr - fJ fJ r Wr - 'Y 
(65) 

Three single sums remain unprimed, but because a = JJ + 'Y the terms 
with r = 0 cancel and so we may regard all the sums as primed. 

We can now remove Wp , Wq and Wr as a single average Q, and this leads 
to an expression containing terms such as 

p 
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Each of the sums on the right is now a ground state expectation value. 
When all the terms are collected together we obtain 

AT, 3 n2(3 n2 + (3"1 - cl) 
d;:z"f = h~ (n2 _ (i)(n2 _ (32)(n2 _ "(2) {(xyZ) - (X)(yZ) - (y)(z:r) 

- (z)(a:y) + 2(:t:)(y)(z)} (66) 

which we can also write as 

(G7) 

in terms of the, by now, familiar cubic moment Txllz • This expression 
bears an obvious resemblance to (61) for x. 

Our expression (66) or (67) would be very nearly exact if all the optical 
levels had very nearly the same energy. It would then correspond to 
the fictitious two level system (see Refs. 15, 16, 18) often used to oblit
erate some of the intractable features of (57). Unlike this model, how
ever, our expression retains the geometry of the system implicit in the 
selection and sum rules. 

Equation (66) is possibly valid up to a frequency where one of a, (3, 
or "I approaches the first allowed transition frequency. At somewhat 
lower frequencies, it is legitimate to drop the term (3"1 - a

2 in the numer
ator. This then allows us to make a further generalization at no increase 
in complexity. 

By removing Wp and Wq from (57) as a single average we have tacitly 
neglected the possibility that the system might be birefringent. We 
can remedy this by noting that in (57) each frequency Wp or Wq 

is uniquely associated with a matrix element such as Xop or ZqO which 
terminates on the ground state I 0) and therefore also appears in x. 
Thus, we can consistently introduce three averages nx , nil , and nz as
sociated with correspondingly polarized transitions. If we follow this 
process through all its tedious ramifications, we find that, except in 
the term (3"1 - a 2 which we are omitting, it leads to the surprisingly 
simple result that D(n,a,(3,'Y) is replaced by 

(fl8) 

Thus, 
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If we compare this with the result for the classical anharmonic oscillator 
obtained by combining (54) with (47) we see that they are identical 
except for a factor 2 which once again arises because in one case we 
assumed that T xyz was a fixed parameter while in the other it was V XYZ • 

We now see that the classical model is equivalent to the quantal 
treatment, except near a resonance, in the following sense. 

If we construct the model, by choosing nx , ny, and nz to give the 
correct linear properties then we must choose the anharmonic term in 
the potential to produce a cubic moment in the ground state of the model 
equal to ! the corresponding moment in the real system. The dynamical 
properties of the two systems are then equivalent and the model can 
be used to treat more complicated systems where the quantal treatment 
is too difficult. 

We now consider the relation of V~yZ to the actual potential respon
sible for the existence of T xyz • Obviously, the relation is obtained by 
requiring that both potentials yield the same cubic moment, one in the 
model, the other in the real system. In this case, there will be no factor 
of 2. 

For simplicity, we consider only a system which is isotropic before 
the application of the anharmonic potential. Further, we restrict our
selves to atoms in which there is only one valence electron. Our results 
will, however, be directly applicable to atoms with more electrons if 
we can neglect electron correlations. 

\rYe already have an expression for the oscillator (54) which we can 
write as 

r' l' - - l Ii ~;~ 
.jl.- - • a nwo ' (70) 

where Wo , the classical frequency, also corresponds to the first allowed 
transition, and 

a = (2~;;)~ (71) 

is a measure of the extent of the system in one dimension. The direct 
proportionality between Tiik and the corresponding component of 
V iik occurs because the oscillator Schrodinger equation separates in 
Cartesian coordinates. In general, as we shall show, it will only hold if 
V = ViikXiXiXk, the crystal potential, satisfies Laplace's equation. 

We will consider a more general potential of the form 

v = L: V:tlrnp~(e, cp), (72) 
nlm 
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where p~ is an associated Legendre polynomial norma1ized to unity. 
This potential satisfies Laplace's equation only if n == l. 

If the unperturbed ground state wave function is 1/;0 the first-order 
correction 1/;1 due to V satisfies 

Sinee T is an odd moment we need only eon sider odd terms in V (in 
fact only l = 1 and l = 3) and for these El vanishes since 1/;0 has definite 
parity. 

We let 

(7~) 

and then 

but, since 

110 = -~ '\7;l + TT 
2n~ v 0 , 

this leads to 

(7·1) 

Now 1/;0 is a function of r alone and so we can write 

f = L V:lanl(r)P~(8,cp), (7f» 
nlm 

where anI (r), which does not depend on m, satisfies 

L t!.- r2 aa _ ill_-t-_!2 a + ') dO' ~!Q~ 1/;0 = '0!~ r" (7n) 
}'2 dr ar 1'2 ... ar ar 1/ 2

• 

The perturbed ground state is therefore, 

I/; = {I + L V:lanl(r)P~(e, cp)} 1/;(/1') (77) 
nlm 

and in this new ground state we can easily evaluate expectation values 
such as 

(rVp-;l') = ""' VI' {3 " L...J nX vnX , (78) 

where 

(79) 
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In evaluating Tiik we shall need (Xi), (X~), and (XiXiXk). The even 
moments are unchanged by V and we obtain the odd moments by ex
panding Xi and XiXiXk in terms of Legendre polynomials and powers 
of r. 

We omit most of the gruesome details of the calculation, and further 
restrict V to contain only terms of the type 

v = ViikXiXiXk + XiXi = L: V~r3p; + V~r3p;, + V~rP;'. (SO) 
m 

The term in V 3,,; which does not satisfy Laplace's equation is necessary 
to obtain the most general form of the cubic part of the potential 
ViikXiXiXk. This contains 10 independent parameters while P~ has only 
7. The missing 3 are supplied by P~. 

If this term is absent, we have 

(Sl) 

and then 

(S2) 

With all the terms present we obtain 

(Xi) = 1,/1131 Si + 1/1111Xi (S3) 

(x~) = :iY,/1333 Viii + 3 {225/1331 - 1 h-/1333} Si + 1,/1311Xi (84) 

(XjX~) = 3\/1333 Viii + hh/1331 - rf 5/1333} Si + lr;/1311Xi (8f» 

(XiXiXk) = 3\/1iik V iik , (86) 

where it is to be understood that i ~ j ~ k. 
If we let 

(87) 

then since (;t;iXj) = 0, i ~ j, and (Xi )(Xj )(Xk) is third order in V, we 
obtain 

+ {f5/1311 - 1'Y/111dXi (89) 

Tiik = -ir;/1333 V iik . (90) 
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For a harmonic oscillator 
r. 6 4 I 

i3333 = -35 !!- i3331 = -85~ i3311 -15~1 
hwo hwo 

h
2

Wo l 
4 4 (91) a 

i31:n -15 !!- a r 
i31 :13 -[)- = i3111 -3-, hwo ' hwo ' hwo 

2 
J 1'= a 

and it is easy to check that the coefficients of Si and X. vanish, so that 
we recover (70). 

If V satisfies Laplace's equation Si = 0 and in the absence of all 
internal field Xi every component is given by 

(92) 

Thus, in this case Tiik and the reduced Miller tensor D.iik have the same 
symmetry as V iik • Therefore, since Si = 0 we have 

(93) 

If i is an axis of 3-fold or higher symmetry, D.iii 

ample, 
D.ikk and so, for ex-

D.333 = - 2D.311 • (94) 

This relation is rather well obeyed by the coefficients for the 6-mm 
erystals listed in the Table 1. Signs are available only for the electro-optic 

TABLE I 

l\laterial 'Wavelength J1. I ~333 X 10 6 esu 
~~----'--

~311 X 106 esu Hatio 

Linear Electro-optic 

ZnO optical 1.5 -0.8 -2.1 
ZnS optical o. ~) -0.45 -2.0 
CdS optieal 1.2 -O.fl!) -2.2 

Second Harmonic 

ZnO 1.06 q .:> 
~). d 1.1 ±3.0 

ZnS 10.6 4.9 2.45 ±2.0 
CdS 1.06 3.2 1.6 ±2.0 
CdS 10.6 5.4 3.3 ±1.6 
CdSe 10.6 4.8 2.4 ±2.0 

,-
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coefficients and so the s.h.g. results represent moduli only. References 
to the experimental data are given in conjunction with later tables. 
In the case of the electro-optic data, the experimental figure is for .1113 

and we have assumed that Kleinman's rule (Kleinman2
) holds and that 

this is equal to .1311 • Except for s.h.g. in ZnO the ratio is - 2 within 
the experimental error. 

If, on the other hand, the sole perturbation in V is the field X,. , we 
have 

(95) 

and the expected ratio is +3. In crystals where both terms occur in 
V with arbitrary strength, any value of the ratio is possible. This is 
observed in the ferro-electric crystals BaTi03 ratio +! and LiNb03 

where it is + 1. 7 for the electro-optic effect and ± 11 for s.h.g. It is 
perhaps somewhat surprising that the ratio is so exactly - 2 in the 
6-mm crystals since this is a polar point group and an internal field 
X3 is not forbidden by symmetry. 

If V does not satisfy Laplace's equation, (it need only satisfy Poisson's 
equation) there is no direct relation between the components of Tiik 

and those of V iik even in the absence of a field Xi , although, Slllce 
:cyz is a spherical harmonic, we still have 

(96) 

However, since the coefficients of Si vanish for the harmonic oscillator 
we may expect them to be small in other cases. We gain some support 
for this view by considering the hydrogen atom for which 

_ (105)2 ~~ 3538.5 a~ _1485 a! 
(3:1:1:1 = 8 hw\' (3:m = - 2.16 hWI' (3:1I1 = 64 hWl 

i31:!:l = 
130;') a~ -----
128 nWl ' 

315 a~ ---
16 hw\ ' 

, (97) 

? 

'Y = a~ 

where as usual ao = t~2 /mi and liWl = 3/8(e2 / ao) is the first allowed 
transition (IS - 2P) energy. 

The coefficient of V iik in each term of Tiik is then -315/16(a~/liwl) 
while the coefficient of Si in Tiii is a factor 23/200 smaller. In Tij; it 
is 23/600 smaller. Thus, in the absence of Xi the non-Laplacean terms 
m V cause no more than an 11 percent departure from the relation 

_ 31.5 a~ T7 
16 hWl iih' 

(98) 
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Since we expect the dominant terms in V to satisfy Laplace's equation 
it appears that Tiik' f:. ijk and the model potential V~jk will be very 
nearly proportional to the corresponding terms in V. 

The potential V' required in the model is related to the crystal 
potential by 

(99) 

For a hydrogen atom this gives V~jk ~ 5Vijk thus, insofar as real atoms 
behave like hydrogen atoms, a model with the same spatial extent 
a ~ ao and the same first allowed transition Wo ~ WI will require a 
potential roughly five times as strong as the actual potential. This 
reflects the obvious fact that a harmonic oscillator is a stiffer system 
with more sharply localized (1/1 ~ e- r

') wave functions than an atom 
(1/1 ~ e- r

). 

We have now shown that, with an appropriate choice of parameters 
a classical anharmonic oscillator model is a very good approximation 
to the intrinsic electronic nonlinearities of real systems. 

In the next section, we use the model to consider the effect of lattice 
polarizability which we have so far neglected. 

V. LOCAL FIELDS AND LATTICE POLARIZATION 

We have already remarked in the introduction that the seat of the 
nonlinearities resides in the electronic motion. It is, however, consider
ably modified by local field corrections and in the case of optical rectifica
tion and the linear electro-optic effect by lattice polarization. 

Miller's rule states that d~fk'Y is proportional to the product of the 
observed linear susceptibilities Xi~ , etc. at the appropriate frequencies. 
If one of these is dc we are to take the actual dc susceptibility and not 
the extrapolated long wavelength limit of the optical susceptibility. 

At first sight, it seems plausible that this is simply the effect of in
ternal fields, which cause the local field experienced by an atom to be 
greater than the applied field. We now examine this hypothesis and 
show that it is inadequate. 

Microscopic calculations yield the polarization of single atoms due to 
local fields. In the linear case, if we have N atoms per unit volume of 
polarizability a 

P = NaE l (100) 

and the local field is related to the applied field E by 

El = E + rp. (101) 
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In some cases the Lorentz value of r = 471"/3 is applicable and we then 
obtain the well-known relation between the refractive index n, or the 
dielectric constant € = n2 and a. 

n
2 

- 1 _ 471" N _ R 
n2 + 2 - 3 a - V ' 

where V is the molar volume and R is the molar refractivity. 
In general, 

P = Na(E + rp) = -~ E 
1 - rNa 

and the observed susceptibility is 

Na El 
X = 1 _ rNa = E iVa 

while 

}11 = (1 + rx)E = ~-. 
;jL 1 - rNa 

(102) 

(103) 

(104) 

(l05) 

In nonlinear optics the two driving fields Ej and El are obviously 
modified according to (105) but, as Armstrong, Bloembergen, Ducuing 
and Pershan 18 have shown, there is a further factor in P. This arises 
because the nonlinear polarization 

(106) 

produced directly on the atoms, further polarizes the surrounding 
medium. 

We have 

P~ = p~ + rNaP~ , (107) 

so that 

(108) 

Thus, if d~~/ lS the (calculated) intrinsic coefficient, the observed 
coefficient is 

D~t"t = (1 + rX~i)(I + rX~i)(I + rxJk)d~tk"t. (109) 

Therefore, even if d does not vary with x, D will do so. This is, however, 
not enough to explain the observed variation of D with x. For example, 
in semiconductors it is very likely that r is small if not zero and yet 
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the measured values of D appear to obey Miller's rule and be propor
tional to x3

• Thus, the intrinsic coefficient d itself must have a similar 
dependence on X, 

If we write 

(110) 

in terms of the measured susceptibilities (i.e., n Z 
- 1), which is the con

tent of Miller's rule, and then use (104) to express D in terms of the 
atomic polarizabilities we obtain 

D~tk'Y = (1 + rX~i)(l + rX~j)(1 + rxZk)N3a~ia~iaJkfj,ijk (111) 

so that from (109) 

(112) 

Thus, the reduced tensor is the same whether or not we apply loeal 
field corrections as long as we do it consistently. To obtain a more or 
less constant value of fj, we must have d varying as a 3

• 

Since fj, for NH4HzP04 derived from the purely optical s.h.g. effect 
agrees with fj, from the quasi-static electro-optic effect to within 10 per
cent, although the values of d differ by a factor of 12 and in BaTi03 

the two values of fj,311 are within a factor 2 while the d's differ by 300 
it is clear that lattice polarization has a direct effect in d not described 
by local field terms. 

We repeat that optical nonlinearities have an electronic origin. 
Electrons in atoms do not move in a harmonic potential. Second har
monic generation, which can only involve electronic motion, is much 
the same in covalent organic materials, ionic crystals and ferro-electrics. 
Large values of d2w are associated exclusively with large refractive in
dices. Thus, nonlinearities in the ionic motion playa secondary role 
in nonlinear optics; however important they may be in determining 
the ferro-electric properties. 

We shall attempt to construct a model, just sufficiently general to 
exhibit the gross features of ferro-electric behavior, and show that it 
modifies the nonlinear optical behavior exactly as predicted by Miller's 
rule. The model is not put forward as an explanation of ferro-electricity 
although it has a venerable past in that connection, but as a demonstra
tion that a simple system with singular dielectric properties behaves 
in a way consistent with Miller's rule. 

In Fig. 1, we illustrate a moderately realistic one-dimensional model 
in which electrons of mass m are coupled to ions of mass M in a lattice. 
Forces act between like and unlike particles and of these by far the 
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Fig. 1 - A realistic one-dimensional model. 

strongest is KmM which is responsible for the electronic optical spectrum. 
The remaining forces determine the lattice spectrum. The important 
nonlinearities are associated with K Mm • The linear behavior of this 
model is formidably complicated and we therefore assume that its 
salient features are already evident in the much simpler model of Fig. 2. 

The electron of mass m1 = m is coupled to the ion of mass m2 = M 
by the force constant kl2 which replaces KmM . It is anharmonic. The 
electron and the ion are also coupled to rigid supports representing the 
rest of the crystal by forces kl and k2 . It is as though we had gone di
rectly from the Born-Von Karman theory of specific heats to the Ein
stein theory without mentioning Debye. 

Let Xl be the displacement of the electron of charge e1 and X2 that of 
the ion of charge e2 . We shall assume that the potential energy is 

cp = !k1xi + !k2x; + !k12 (Xl - X2)2 + v1lxl - X2)3 (113) 

so that the anharmonic term is exclusively associated with the "atomic" 
binding of the electron to its parent ion. It will be convenient to define 
V21 = -V12' The equation of motion in a field EfJeifJ t is then 

mi j\ + kiXi + k12 (Xi - Xi) + 3Vii(Xi - Xi)2 = eiEfJeifJ t (114) 

and the linear response neglecting v, i is 

(1) 
Xi 

(k i - md3
2
)e; + k1lel + e2) EfJ 'fJt 

(kl + k12 - m,(32)(k2 + kl2 - mll) - ki2 .. e 

With N units in unit volume, the polarization is 

pfJ = N(elxi 1
) + e2x~1)) 

(115) 
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Fig. 2 - A simplified one-dimensional model. 

and so 

N 
ei(k2 - m2(32) + e;(lc1 - ml(32) + k12 (el + e2)Z 

X= 2( 2) 2' (k1 + k12 - ml{3 ) k2 + k12 - m2{3 - k12 
(116) 

At an optical frequency w well above (k2/m2)! the ionic resonance 

(117) 

while at dc 

o _ N lc2ei + kle~ + k12 (el + ez)2. 
X - klk2 + k12kl + k12k2 

(118) 

To obtain the sum frequency polarization due to two fields EfJeifJ t 

and E"" e i-y t we substitute the linear responses back into the nonlinear 
term in (114). The result is a nonlinear coefficient 

where 

f(a) 
(k1 + k12 - ml(2)(k2 + k12 - m2(2

) - ki2 ' 

If we express dafJ ..,. as xaxfJx"" ~ we have 

~ = - ;~2~ g(a) g({3) g("() , 

where 

(119) 

etc. (120) 

(121) 
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g(a) etc. (122) 

We note first that if, as seems most reasonable, e2 = -el then g(a) = 
g({3) = g("() = 1. In any case at optical frequencies g(w) ~ 1 for all 
reasonable values of ed el and at de 

g(O) 

which is also near unity if e2 ~ - el . Thus, to all intents 

(124) 

which is exactly the result obtained by neglecting the ionic motion. 
Thus, .1 is an intrinsic electronic property and the effect of ionic 

motion is entirely contained in its effect on x. We note, however, that 
in some ferro-electrics, where the departure from inversion symmetry 
is both small and temperature dependent, .1 will also be temperature 
dependent. 

If kl' k12 , and k2 are all positive, the dc susceptibility is greater 
than the low frequency limit of x'" but not dramatically so. There is, 
however, no reason why one of these constants should not be negative. 
Negative compliances are familiar in classical mechanics, a well-known 
example is the common automatic door stop which exhibits a positive 
compliance as the door is first opened but a negative compliance when 
the door is almost fully open. The force between atoms as a whole in a 
lattice exhibits a positive compliance but if we separate this force into 
nuclear-nuclear and electron-electron repulsion and nuclear-electron 
attraction, it is quite reasonable to assume that at the equilibrium 
distance the latter component has a negative compliance. 

It is immaterial which term in (113) we take as negative although 
on physical grounds it seems most suitable to take kl and this is also 
a convenient choice. 

Provided that 

(125) 
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or 

_ 7. k'..! + kl'..! 1 
rJ - -/Vl k 7 < 

2/\;12 
(12G) 

the system remains in stable equilibrium at Xl = X2 = o. 
The natural resonance WI and W2 of the system satisfy 

(127) 

and so as rJ ~ lone of these frequencies ~o. At the same time the dc 
susceptibility (for simplicity we take -e2 = e1 = e) 

21-rJ~~-
o Ne k 1,! + 1.:2 

X =-
k12 1 - rJ 

(128) 

becomes infinite, while the low-frequency limit of the optical suscepti
bility remains finite. 

If rJ exceeds unity there is a spontaneous polarization limited only 
by terms such as wx~ which we have failed to include in cpo 

All this is reminiscent of ferro-electric behavior if rJ is temperature 
dependent and the Curie point corresponds to rJ = l. 

The inclusion of a term wx~ in cp will, in fact, make rJ temperature 
dependent, for the effect of this term is to replace k2 by an effective value 
for low-frequency displacements 

(129) 

where x; is the mean square thermal displacement. As a result if rJo 1S 

the value at T = 0 we have 

rJ = rJo(1 - AT k12 k ) 
k2 + 12 

(130) 

and so 

k2 + A( k12 T _ rp ) 
o Ne2 k12 k12 + k2 0 

X =-
k12 ACT - To) 

(131) 

if we define To as the temperature at which rJ = 1. This is of course a 
crude approximation to a Curie-Weiss Law. 

By ascribing all the temperature dependence to changes in k2' it 
is obvious from (117) that X'" is temperature independent. For rJ to 
be equal to unity, it is not necessary for - kl to be of the same magnitude 
as k12 , all we require [see (126)] is that - kl be near k2 . Thus, from (117), 
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we do not expect any very anomalous values of XW in ferro-electrics, 
except in so far as materials with a high electronic polarizability are 
more likely to be ferro-electric. 

We have now shown that it is possible to incorporate in our model 
features which lead to quite different behavior for the optical and dc 
dielectric constants without either invalidating Miller's rule or even 
changing the value of L1 which is essentially a purely electronic property. 

We should, therefore, expect the temperature variation of D~:k'Y to 
correspond to that of Xi~X~iXkl and this is well borne out by the measure
ments of Zwicker and Scherrer25 of the electro-optic coefficients and 
Bass, Franken, and Ward26 of the optical rectification coefficients in 
the dihydrogen phosphates. Both coefficients are directly proportional 
to the dc dielectric constant which obeys a Curie Weiss Law. 

In KDP there is almost no change of the s.h.g. coefficient (Van de 
Ziel and Bloembergen27

) with temperature above or below the Curie 
point, in accord with our expectations, but at the Curie point there is 
a small discontinuous change. In an orthorhombic coordinate system 
d321~ and d322~ are equal above To but below To , d32l~ increases and d322~ 
decreases while at the same time Xu - X33 decreases and X22 - X33 

increases. With a constant L1 this is not compatible with Miller's rule. 
However, at the transition there is a change in crystal class in which 

a l increases and a2 decreases, J ona and Shirane.28 It is not unreasonable 
to assume that this increases T311 and decreases T322 by more than 
enough to compensate for the changes in Xu and X22 • 

VI. MILLER'S RULE 

The classical anharmonic oscillator model, which we have shown to 
be a good approximation to the behavior of a real system, leads directly 
to that part of Miller's rule which refers to the geometric properties 
and frequency dependence of the nonlinear coefficients in a single 
material. We have also in (51) advanced a crude argument to show that 
L1 will not vary much from material to material. 

When we examine the experimental data we shall see that the allowed 
eomponents of L1 are between 1 X 10-6 and 6 X 10-6 esu for most mate
rials but that there are a few materials with significantly higher values 
and a number with values as low as 0.1 X 10-6 esu. 

In most cases, these exceptional values have a rather simple explana
tion and we have therefore to explain a constancy of L1 to within a 
factor of about 10. 

Neglecting the effects of lattice polarization and local field corrections, 
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which we have shown are irrelevant, the results for the classical an
harmonic oscillator model are, from (50) and (56), 

(132) 

This is also the result from the static perturbation treatment of Section 
II. 

If we use 

(133) 

we arrive at 

(134) 

Now the volume occupied by the oscillator is both l/N and 8 (r2 )! and 
so 

104( 2)1, Tiik 
f).iik ~ r - (1'2)4 esu (135) 

where we have inserted numerical values for ao and e. This expresses 
f).ijk as the product of a scale factor (r2)! and a dimensionless shape 
factor T /r3

• Whether we assign to each oscillator the volume per valence 
electron, per atom or per group of atoms, (r2 )! is likely to be between 
0.75 and 3 A; so that f). will be sensibly constant near 3 X 10-6 esu, if 
the shape factor is of the order of 0.01 to 0.05. We have from Turner, 
Saturno, Hank and Parr'slO results for CH4 a shape factor of 0.05, 
and so this range of shape factors is not unreasonable. It corresponds 
to a linear distortion 0.021 ~ 25 percent. It is also not unreasonable 
that the distortion should be of this general order, wherever it is al
lowed by symmetry_ We may speculate that much smaller values of T/r3 

would imply very weak interatomic forces and much larger values would 
lead to a structure unstable relative to a more symmetric arrangement. 

Thus, qualitatively, the relative constancy of f). reflects relatively 
constant shape factors, although we can hardly claim that this is more 
than a sophisticated form of dimensional analysis. It does, however, 
suggest that L\ is determined primarily by the geometric properties of 
the molecular and crystal structure. 

Large values of f). will occur only when the molecules themselves 
depart considerably from inversion symmetry and are arranged in the 
crystal in such a way that the effects of individual parts of the molecule 
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are additive. Small values of .1 will occur when sections of the molecule 
have local near inversion symmetry or when their disposition in the 
crystal favors the cancellation of effects from different atomic groupings. 
However the molecules are arranged in the lattice, .1 will be small if 
the molecules themselves have near inversion symmetry, or consist 
of uncoupled parts with the same property. 

In Tables II, III, and IV, we present 50 values of .1 derived from 

TABLE II - SECOND HARMONIC COEFFICIENTS 

Units of d 10-9 esu Units of .:l 10-6 esu 

----------------------
~laterial Class A}J. dl23 .:l Hef. 

-----------------------
HMT = N4 (CH2)6 43m 1.06 30 17 1 
ZnS 43m 1.06 153 3.5 3 
ZnS 43m 10.6 146 4.5 2 
ZnSe 43m 1.06 200 2.5 3 
ZnSe 43m 10.6 370 6.6 2 
ZnTe 43m 1.06 660 2.9 3 
ZnTe 43m 10.6 440 3.6 2 
CdTe 43m 10.6 800 7 2 
GaP 43m 1.06 525 1.3 4 
GaP 43m 1.06 255 0.6 3 
GaAs 43m 1.06 1,500 1 4 
GaAs 43m 10.6 1,760 3.7 2 
InAs 43m 10.6 2,000 3.2 2 

-- ----
d321 .:l 

----------------------
KH2P0 4 42m 1.06 3 3.6 33.6 5 
KD2P04 42m 1.06 2.7 3.2 2.7 3.2 5 
KH2As0 4 42m 1.06 3.4 2.6 3.2 2.5 4 
NH4H2P04 42m 1.06 2.9 3.15 3. 3.15 5 

--------------------
da33 .:l d311 .:l dn3 .:l 

--- ---------
ZnO 6mm 1.06 43 3.3 13 1.1 14 1.1 4 
ZnS 6mm 1.06 84 1.9 3 
ZnS 6mm 10.6 180 4.9 90 2.45 102 2.7 2 
CdS 6mm 1.06 186 3.2 96 1.6 105 1.8 2 
CdS 6mm 10.6 210 5.4 126 3.3 138 3.6 2 
CdSe 6mm 1.06 500 3.4 3 
CdSe 6mm 10.6 260 4.8 136 2.4 148 2.6 2 
BaTiOa 4mm 1.06 42 1.0 111 2.45 105 2.35 5 

---------------------
d222 .:l 

------------------- -
LiNbOa 3m 1.06 250 9 36 1.1 19 0.55 6 
LiNbOa 3m 1.152 32 1.05 15 0.45 6 

dlll Ll 
Si02 32 1.06 2.5 1.9 4 
AIP04 32 1.06 2.5 2.2 4 
Se 32 10.6 380 2.1 2 
Te 32 10.6 25,400 4.3 7 



946 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 19tn 

TABLE III-OPTICAL RECTIFICATION COEFFICIEN'l'S 

Units of d 10-9 esu Units of ~ 10-6 esu 

--------------------
Material Class XI-' d123 ~ 

ZnTe 43m 0.694 3650 14 
1.06 1040 5 

------
d321 ~ 
------

KH 2P0 4 42m 0.694 50 3.2 
KD 2P0 4 42m 0.694 105 2.9 
NH4H 2P0 4 42m 0.694 132 3.0 

daaa ~ dall ~ 

CdS 6mm 0.694 700 7 900 9 

-----

Hef. 

S 
8 

8 
8 
9 

s 

published s.h.g. data, 7 values from optical rectification data and 50 
from electro-optic data. Definitions and conventions are discussed in 
the appendix and a separate list of references is given for the data in 
the appendix. Probable errors vary from measurement to measurement. 
It is probably safe to say that no measurement has an accuracy better 
than ±10 percent and in many cases the probable error is greater. That 
for the s.h.g. data at 10.6 J1. is 30 percent and except for ADP the rectifica
tion data is only good to a factor of 3. In addition, a few materials have 
diseordant results reported by different groups and this suggests that, 
especially in the case of crystals which are difficult to grow, the data 
should be regarded rather critically. In the case of CuCl, Sterzer, 
Blattner and Miniter29 have constructed a modulator whose behavior 
is consistent with the higher value of the electro-optic coefficient. This 
casts some doubt on the low value for CuBr reported in conjunction 
with CuCl. In the case of the linear e-o coefficient in HMT, Heilmeyer's13 
value d I23 = 32 X 10-9 esu is the most recent and reliable. 

The average of all the s.h.g. data is .1 = 3.3 X 10-6 esu, and only 
two coefficients d123 in HMT and d333 in LiNb03 exceed 6 X 10-6 esu 
by more than the probable error. One coefficient d222 in LiNb03 is 
unambiguously less than 1 X 10-6 esu. The sole accurate rectification 
coefficient, .1123 in NH4HP04 , is 3 X 10-6 esu which is remarkably 
dose to the values 3.15 and 3.2 X 10-6 esu for s.h.g. and the electro
optic effect. 

Whereas the s.h.g. data have a rather compact distribution about 
3 X 10-6 esu the linear e-o data are more straggled. The mean value 
is 2.3 X 10-6 esu but there are a considerable number of materials 
with .1 < 1 X 10-6 esu. The difference between the averages .18hg and 
.1'0 is not due to the different materials in the two lists, it persists if we 
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TABLE IV - ELEC'l'lW-Op'l'IC COEFFICIEN'l'S 

Units of d 1O-~ esu units of ~ 10-6 esu 

----------------------------------------------
~Iaterial Class X HeL 

---------1--- -------------------------------
liJ\lT = N4(CH2)6 
liMT = N 4(Clb)6 
Hl\lT = N4(Clh)6 
Bi4(Ge04)3 
tiodalite 
CuCI 
CuCI 
CuBr 
ZnS 
ZnSe 
ZnTe 
Gal' 
GaAs 
NaCI03 
K2Mg2(S04)S 
(NH4)2Mn2(S04}a 
(NH4)2Cd2(S04) 3 
NaV02(CHsCOO)a 
NaaSbS4' 9H20 
Tren Chloride 

43m 
43m 
43m 
43m 
43m 
43m 
43m 
43m 
43m 
43m 
43m 
43m 
43m 

23 
23 
23 
23 
23 
23 
2:~ 

0.5 

0.65 
0.55 
0.60 
0.63 
1.02 
0.59 

32 
6 

55 
22 
9.5 

28 
110 
22 
74 

120 
440 
150 
215 

2.5 
< .26 
4.3 
5.7 
5.3 

10 
!l.5 

14 10 
2.3 11 

21 12 
0.8 assumed . = (j 13 
1.8 14 
0.75 Hi 
3 15 
0.4 aS81111lt'd • 10 Hi 
0.9 17 
0.8 18 
1.5 IV 
0.3 20 
0.3 !H 
0.6 22 

<0.1 assumed. = G 23 
0.5 assumed. = V 24 
0.6 2-1 

~ .:1 : assumed. = (i 
~5 
2G 

2.7 27 
~--------I--- ------ ---' _____ ------------------- ----

,1333 ~ d ll 3 ~ 

z;;z;_. -~~1-6;;;;;;- 0:.3 ----------------------------- ---
50 1.5 2G 0.8_ Idll3 28 

ZnS Gmm 0.63 67 0.9 ~H g t5J d333 neg;. 28 
CdS (imrn 0.63 110 l.2 48 28 
----------- --- -- ------

Material Class X d123 il dm ~ HeL 
--------- _._- ------------
JUhP04 42m 0.55 +65 4.0 -50 1.7 constant stress 29 
hJhP04 42m 60 3.7 constant strain 30 
KD2P04 42m 160 4.0 constant stress 31 
KH2As04 42m 77 3.7 84 1.7 constant stress 32 
HbH2As04 42m !l2 3.5 constant stress 32 
NH4H2P04 42m +55 4.4 -146 3.4 constant stress 32,2!l 
NH4H2P04 42m 36 3.2 constant strain 29 

dll3 
d311 

BaTiOa ----14mI~10 63 1000- --1- ----- 320 ------ 03 + "33-
3.3 X104 1.4 constant strain ?~ 
6.6 X104 1.9 constant stress 3D 

--------- --- -- ------- --------------------
d1l3 

d333 
d33s 

LiNb_O_3 _____ I~~_JO.63 860-~ 840- ~~ 280- 1.2 =-110 0.3 + __ ~= 
dm ~ 

_·_-------1---- -------- -----------------------------
Si 02 32 0 . 5 3 .2 0 .\) 22 
K2S206 32 0.55 l.4 0.4} 11 
8 r S206' H20 32 0.55 0.65 0.15 I (j 11 
C6H1206NaBr'lbO 32 0.55 0.65 0.15 aSSlllIle, • = ) 11 

CsC4H406 I~ 0.55 --i::-~I.-----------.-------------~--
C(CH20H)4 1-4-1--~ -7---------------------- -J7-
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eliminate all materials not common to both lists and may therefore, be 
either a real effect or a systematic error. 

A few materials [e.g., SrS20 6·H20, C6H1206NaBr·H20 and K2Mg2 
(S04)3] have very low values of A. The latter is especially interesting 
since the isomorphous (NH4)2Cd2(S04)3 and (NH4)2Mn2(S04)3 salts 
have somewhat larger values. The ammonium cadmium salt is known 
to be ferro-electric at very low temperatures and the ammonium man
ganese salt is also suspected of ferro-electricity (Jona and Shirane28

). 

More significant, perhaps, is the fact that the divalent ions have very 
nearly regular octahedral coordination (Zemann and Zemann30) and 
so form a unit with near inversion symmetry and contribute little to d. 
The main contribution comes from the monovalent ions and their 
irregularly placed neighbors. The difference between the potassium and 
ammonium salts would then be due to the difference in the polariza
bility of the two ions. For 1(+ the refractivity is 2.45 ccs and for NH: 
it is 4.05 ccs (see Le Fevre12). If this enters d as a cube the expected 
ratio of the d coefficients would be 4.5. The observed value is greater 
than about 5. Note also that NH~ itself lacks inversion symmetry. 

The tabulated values of A show that Miller's rule is an excellent rough 
guide to the probable value of d. If the component is allowed by sym
metry 

(13G) 

However, the rule by itself is not infallible. Occasionally, a value of 
d much higher than that predicted by (136) will occur. In some cases, 
(e.g., d333 in LiNb03) this is accompanied by a very low value of another 
coefficient and it is then plausible to assume that this is due to a partic
ularly critical geometric configuration. In other cases, (e.g., HMT) it 
is quite clearly due to the coincidence of a number of favorable factors. 
The atoms, the molecule and the crystal all have the same symmetry 
and moreover, as we saw in Section 1, all the separate contributions to 
d have the same sign. Thus, it is likely that the value of A ~ 15 X 10-6 

esu for HMT represents something of an upper limit to what is possible. 
More often (136) will overestimate d. This is especially likely to 

occur if the molecules themselves, or large sections of the molecule have 
near inversion symmetry, but it may also occur if the crystal structure 
itself departs only very slightly from a centro-symmetric structure. 

VII. CONCLUSION 

If reasonably good ground state wave functions are available, the 
direct perturbation method of Section II seems most suitable as a 
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basis for calculating the magnitudes of the coefficients. It gives the 
intrinsic nonlinear coefficient 

(137) 

in terms of the intrinsic low-frequency limit of the optical suscepti
bility xa and a cubic moment in the ground state. If the electrons are 
uncorrelated, this can be replaced by 

(138) 

and tiik can be obtained from the charge distribution. From (138) we 
obtain the reduced tensor 

3 tiik 

f1 ijk = aoe (£)2 

and we can then incorporate this directly in lVliller's rule using the 
observed susceptibilities Xi~ , etc. to obtain d~/k'Y . 

This continuation of the basic perturbation calculation with Miller's 
rule appears to be the most straight-forward approach to the coefficients. 
Apart from the cubic moment tijk it involves only experimental 
quantities. 

The analogy with the classical anharmonic oscillator established in 
Section IV seems most likely to be fruitful in qualitative discussions 
of the general behavior of the coefficients. It appears to have both 
empirical and theoretical justification. 

Obviously, on this basis further generalizations of NIiller's rule are 
possible. For example, we might expect the fourth rank tensor d~/k~o 
which describes induced second harmonic generation, the Kerr effect, 
ete. to satisfy a relation of the form 

(140) 

A calculation based on fourth-order perturbation theory and a lavish 
use of sum rules leads to 

(141) 

where (l) is the mean square radius of the charge distribution and 
Qiikl is the semi-invariant 

QiikZ = (XiXjXkXZ) - 2(XiX j)(XkX ,) 

if we assume that all odd moments vanish. 

(142) 
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If we take (r2 )! as 1 A this gives 

3 10-10 Qiikl 
Aiikl ~ X (r2)2 esu. (143) 

We have seen that in the lower-order processes T /r3 is of the order of 
2 X 10-2. This does not imply that Q/r4 is of the order (2 X 10-2

)4/3 I'o-J 

5 X 10-3 for whereas T is nonzero only because of asymmetric molecular 
and intermolecular forces, Q is nonzero even for free atoms or ions. For 
example, in the hydrogen atom QiiiJ (r2/ = 5/18 and QiiiJ (r2/ = 
1/9 so that we expect A to be of the order of 3 X 10-11 to 10-10 esu. 
For calcite with Xoptical = 0.1 and Xdc = 0.55 this gives a value of d 
between 3 X 10-14 and 10-13 esu. Bjorkholm and Siegman31 have meas
ured 3 X 10-14 esu. 

We have seen that the reduced tensor Aijk is proportional to the cubic 
moment, 

and it is therefore clearly symmetric in all its indices. This is in agree
ment with Kleinman's2 hypothesis and follows from the origin of the 
nonlinear behavior in the electronic motion. 

Finally, we remark that nothing increases d like large values of the 
linear susceptibilities yet, although, the values of most allowed reduced 
tensor components Aiik are near 3 X 10- 6 esu they can vary by a factor 
100:1. The molecular geometry will often indicate which end of the 
range is likely to apply to a particular material. 
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APPENDIX 

We have throughout adopted a notation, originally introduced by 
Bloembergen15 and his colleagues, in which two fields with complex 
time dependence E~eif3t and E1eht produce a polarization p~.eiat at 
the algebraic sum frequency a = {3 + I' according to 

(144) 
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If the actual fields vary as cos WIt and cos W2t there will be terms in 
P at WI + W2 and WI - W2 obtained from (144) by letting (3 = WI , WI , 

etc. where WI = -WI. 

This notation has several advantages in theoretical calculations for 
much the same reason that the use of complex numbers simplifies ac 
circuit theory, and for much the same reason it has a number of dis
advantages in calculating numerical values. For this reason, it has not 
gained general acceptance by experimentalists who tend to use a number 
of different notations, some of which, especially in electro-optics, are 
of respectable antiquity. The difference between the two notations 
introduces various factors of 2. These are independent of the general 
reluctance of physicists to state unequivocally whether they are using 
peak or rms fields. In particularly fertile ground, these various factors 
can luxuriate and blossom as factors of 8 in the final answer. We use 
peak fields in all our definitions. 

If the applied field is 

!Jt) = (0, F2 cos wt, /1\ cos Qt), (145) 

it has components E~ = E~ = !F2' E~ = E~ = !F3 and the 1 com
ponent of E(t) is 

P 1(t) = i{d~2~F2F3ei("'+ Il)t + ee} + i{dl~~F3F2ei(w+ ll)t + ee} 

+ l.{d'" OF F i(w- Il)t + } + l.{dllwF F i(w- ll)t + } 
4 123 2 3e ee 4 132 3 2e ce , (146) 

where we have used d~~~ = d~~~ and suppressed the first superscript, 
which is always the algebraic sum of the second and third superscripts. 

We can also write (146) as 

PI(t) = !{d~2~ + dl~~}F2F3 cos (w + Q)t 

+ !{d~2~ + dl~~}F2F3 cos (w - Q)t. (147) 

If W = Q, this gives 

P1(t) = !{d~~3WW + d~;2"'w }F2F3 cos 2wt + !{d~~3W + d~f2w }F2F3 . (148) 

N ow the usual experimental definition would be 

P 1(t) = (di~3 + di;2)F2F3 cos 2wt + (d~23 + d~32)F2F3 (149) 

and so we see that 

(150) 

(151) 
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If we let n = 0, we have 

P l(t) = (d~2~O + d~a02W)F2F3 cos wt. (152) 

The experimental definition reads 

P 1(t) = d~23F2Fa cos wt (153) 

i.e., 

(154) 

so that it is possible to contract the last two suffices according to the 
scheme 

11 ~ 1 22 ~ 2 33 ~ 3, 32 = 23 ~ 4, 31 = 13 ~ 5, 12 = 21 ~ 6. 

(155) 

Thus, d2i~ (i = 1 ... 3, p = 1 ... 6) represents di2i~ and, for example, 
d25 == d2a1 = d213 • 

PI cos 2wt = (di;3 + di~2)F2Fa cos 2wt 

= 2di;aF2Fa cos 2wt = d21~' 2F2F3 cos 2wt. (156) 

It is therefore common to define the "vector" fr 

so that 

6 

Pi = L: dipfrp . (158) 
p=l 

vVith this notation d21~ = d122~ = d1~1~ ~ d122~ + d)23~ but also d21~ = d121~ . 
In the electro-optic case, the subscripts referring to optical fields 

can be contracted 

p = 1 ···6, k = 1.3. (159) 

The alternative ordering (155) leads to dk~ . 
N ate that in this case, since d operates on two distinct fields, one 

optical the other dc, there is no possibility of constructing a "vector" 
such as fr. The sum implied in the definition of dp~ is 

a 

0Xp = 0Xi; = L: d;kE~c. (160) 
k~l 

Electro-optic data are often presented as coefficients rpk in the sus
ceptibility ellipsoid. If n is the refractive index (assumed isotropic), 
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(161) 

The dimensions of d and r are those of an inverse field. 
In the MKS system, the units are meters per volt, in the cgs system 

they are centimeters per stat-volt. One MKS unit is 3 X 104 esu and 
so numerical values of d in esu are the larger numbers. 

We have not discussed the influence of a mixed use of rms and peak 
fields but we note that if rms fields are used throughout the values of 
the coefficients will all be v2 times larger than if peak fields are used 
throughout. No one is, however, likely to use an rms dc field. 

Experimental values of the electro-optic coefficients are usually 
expressed in absolute units and the only ambiguity that can occur is 
associated with whether the measurements were made at constant stress 
(unclamped) or constant strain (clamped). It is safe to assume that 
constant stress is implied by the absence of any definite statement to 
the contrary. 

Second harmonic coefficients are sometimes given in absolute units 
but more often relative to the coefficient d322~ in KH2P04 • An absolute 
measurement of this by Ashkin, Boyd, and Diedzic32 gave 

but this is now believed to be too large. The most recent measurements, 
Francois5

, Bjorkholm,33 give 

d;;l = !d;;t W = 1.38 X 10-9 esu ± 12 percent 

for the coefficient in NH4H 2P04 • Relative measurements show that it is 
identical in KDP and ADP. We have used a rounded off, compromise 
value 

(162) 

in compiling the tables. It affects all values of d2w at optical frequencies 
but not at 10.6 J..I.. 

It will be apparent that in comparing theory or experiment with 
experiment, considerable care is needed to be sure that like definitions 
are being compared with like. 
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A High-Capacity Digital Ligllt Deflector 
U Sillg W ollastoll Prisllls 

By w. J. TABOR 

(l\Ianuscript received December 27, 1965) 

A high-capacity digital light deflector (DLD) using lVollaston prisms 
as the passive elements is described. It is shown that, for a 1-cm aperture, 
approximately 4(10)6 resolvable positions with a crosstalk ratio of 17 dB 
are theoretically possible. A manually-operated model was constructed 
that gave i (1 0) 6 resolvable positions with a crosstalk ratio of 20 to 28 dB. 
The output positions of the model showed resolution approximately equal 
to that set by diffraction theory. 

The problems associated with imperfect modulators are discussed and 
the characteristics of three different schemes of operation are calculated. 
Results from experiments with one such scheme, the reflection mode of 
operation, are given. They compare favorably with the calculations. 

I. INTRODUCTION 

A digital light deflector (DLD) is a device that can switch a light 
beam to a number of distinguishable. positions and has been previously 
described by a number of authors.1-4 Such a device can be made from 
a number of modulators and passive deflectors. The modulator, for 
this application, is one that is capable of switching the sense of 
polarization, and the deflector unit is a passive element which has 
different optical paths corresponding to the two senses of polarization. 
A basic unit of a DLD is shown in Fig. 1. It has been previously 

., t 

MODULATOR 

PASSIVE 
DEFLECTOR 

t 

Fig. 1-Basic unit in a digital light deflector. 
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shownl
-

3 that n such units in series can generate 2n distinguishable 
positions. 

A modulator can be made from any material which can become 
birefringent with the application of an external signal. A minimum of 
7r retardation is needed in order to switch the sense of polarization. 
Examples of modulators that have been considered for this applica
tion are Kerr cells,5 stressed plate shutters/ and crystals such as 
KDp3 and KTN7,8 which exhibit an electro-optic effect. The Kerr 
cells, although very fast, cannot be used at high repetition rates be
cause of heating difficulties. Stressed plate shutters, since they depend 
on mechanical strain, are limited to lower frequencies. The most at
tractive modulator materials are the electro-optic crystals and are the 
ones that are being seriously considered for the DLD. 

The passive deflectors that have been considered for this application 
are uniformly thick sections of properly oriented uniaxial crystals 
such as calcite/' 3 prisms of the same materials,t and Wollaston 
prisms.4 The uniformly thick pieces of calcite are used with con
verging light for the maximum number of resolvable positions2

, 3 but 
with such use suffer from aberrations that are caused by the variation 
of angle in the converging beam. A converging beam of light passing 
through a thick piece of calcite oriented for a displaced beam shows 
aberrations which for the most part appear like astigmatism. Prisms, 
when used with plane waves, can deviate the angle of the plane wave 
without distortion, and therefore, a DLD using prisms can give results 
that are limited only by diffraction theory. A DLD using prisms 
also uses much less birefringent material than one based on uniformly 
thick pieces of the same material. A disadvantage of simple prisms is 
that the difference in angle between the tw~ oppositely polarized 
beams is only a small variation superimposed on the much larger 
normal type prism deflection. This difficulty can be minimized if the 
prisms are immersed in an oil whose index of refraction is near that of 
the prism. Wollaston prisms do not have the deflection associated with 
simple prisms-instead, the only deviation is that between the two 
oppositely polarized' beams-and are therefore well suited for DLD 
use. 

In this paper, the design of a high-capacity DLD using Wollaston 
prisms will be discussed along with experimental results which will 
show that this system does lead to densities limited primarily by 
diffraction effects. The problem of an imperfect modulator is also 
discussed, and calculations on several systems are given which relate 
the signal to background ratio to the modulation efficiency. 
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II. CAPACITY OF A DLD 

Since a ,Vollaston prism is used tu deflect a beam in angle, it is 
convenient to think of the operation of a DLD in terms of angular 
space. Later it will be convenient to place a lens after the DLD 
which will focus the beams of light, each with a different angle. with 
respect to the axis of the lens, into corresponding points on the image 
plane. 

The capacity of a DLD is determined by the values of two angle:::;. 
One is the largest angle that is allowed in the system and the other 
is the minimum angular separation between adj acent positions. The 
capacity of the DLD is then just the square of this ratio. The 
minimum value is determined by either diffraction effects or imperfec
tions in the. optical system, and the largest value is determined by the 
maximum angular aperture of the system. First, let us consider the 
lower limit set only by diffraction theory. The light emerging from a 
circular aperture illuminated by a uniformly intense plane wave will 
have a spread of angles that is caused by diffraction. The intensity of 
the light as a function of angle is given by the well-known Airy func
tion (Fig. 2).9 The smallest deflection angle in a DLD must be suffi
ciently large so that the deflected beam must be resolved from the 
undeflected one. If we set the criterion that the two beams should be 
separated in angle such that in the far field the first dark ring of 
each beam overlap, then the minimum angle is given by 2.44 AID 
where A is the wavelength of light and D is the diameter of the circular 
aperture (Fig. 2). 

It is possible to estimate the crosstalk, e.g., the ratio of light within 
the first dark ring to the light within a circle of equal size as the first 
dark ring but displaced, by examining the Airy function. The light 
within the first dark ring contains 84 percent of the total energy/ and 
a ring displaced by one diameter (corresponding to a separation of the 
two directions of 2.44 AID) falls within an annulus of 1.22 AID to 3.66 
AID which contains 10.6 percent of the total energy.9 Since a circle 
can be surrounded by six circles of the same diameter, this displaced 
ring contains somewhat less than i (10.6 percent) = 1.77 percent. 
The crosstalk ratio is then 84/1.77 = 47 or 16.7 dB. For a separation 
between the beams of twice the above, i.e., 4.88 AID, the crosstalk 
ratio can be estimated to be 210 or 23.2 dB. 

If, in addition to diffraction effects, the wavefront is distorted further 
by some aberration, then the focused spot size will increase and thereby 
decrease the capacity of the DLD. The amount of wavefront distortion 
depends somewhat on the type of aberration, but for wavefront distor-
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tion of 'A/4 or less the increase in the focal spot size is not very significant. 10 

The aberrations in the DLD will result from inhomogeneities in the 
material and from poorly worked surfaces. It should be emphasized 
that the value of 'A/4 is the maximum variation allowed after passing 
through the entire DLD, and therefore, the maximum variation for 
any individual unit is much less. For a DLD with 106 resolvable posi
tions, the total number of units would be 20, i.e., 220 is approximately 
106

; and therefore the maximum wavefront error in any unit should 
be less than 'A/4V20 r--./ 'A/20 where by using the square root we have 
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Fig. 2 - Far-field diffraction at a circular aperture (the Airy pattern). 
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assumed random irregularities. The requirement that a modulator 
have an optical distortion of less than A/20, not allowing for any im
perfections in the remainder of the optics, is extremely difficult and will 
probably represent a serious problem for some time to come. The high 
requirements placed on individual components is a direct result of the 
large number of such elements that must be placed in series for the 
complete DLD. 

The maximum angular aperture of a DLD is limited by a number 
of effects: (i) the response of the Wollaston prisms, (ii) the walk-off 
of the beam as it is deflected to larger and larger angles, (iii) the 
angular aperture of the modulators, and (iv) the angular aperture of 
the output lens. These limitations will now be considered in more 
detail. 

The deviation angle. of a Wollaston prism is not constant but is a 
function of the incident angle (see Appendix A) and at some angle 
the deviation will vary sufficiently such that the array of angles is no 
longer uniformly spaced. Calculations based on the equations in 
Appendix A indicate that if the Wollaston prism with the smallest 
deviation is placed first in the DLD and the next largest second, etc., 
for a total of 20 stages and a maximum angle of deviation of 8°, the 
array is uniformly spaced to within 10 percent. 

As the beam traverses through the DLD, the deflection angle can 
become larger and larger and unless the apertures of the prisms and 
modulators are very large, the beam will eventually strike the sides of 
the apparatus. It is clear that the \Vollaston prism with the. largest 
deviation angle should be placed last in the DLD in order to minimize 
the spreading of the beams. With this arrangement approximately lh 
of the beam is intercepted by the apparatus for a 20-stage deflector 
with a maximum deviation angle of 8°. This latter figure is not a 
result applicable in all cases because it depends on the specific lengths 
of the elements in a DLD. 

The relative retardation in a modulator is also a function of the 
incident angle. How rapidly this function varies depends on the type 
of modulator. In KDP and similar crystals the angular aperture is 
very small (less than 1 minute of arc for 30 dB extinction between 
crossed polarizers for a crystal thickness of 0.089 inchesll ) since these 
crystals are uniaxial, with a large birefringence, and will, therefore, 
give large relative retardation for even small angles away from the 
crystal axis. Techniques are reported that compensate the birefrin
gencell ,12 in KDP but the degree of success is not made clear. Because 
of the limited angular aperture, crystals in the class with KDP are 
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not considered attractive for the DLD. In CuCI and other crystals in 
this class, the angular aperture can be very large because they are 
cubic crystals in the field-free case and are therefore optically iso
tropic. Angular apertures of ±25° have been reported13 for this 
material. KTN is also a cubic crystal, but the electro-optic effect in 
this crystal is quadratic in contrast to the linear effect in most other 
materials useful as modulators. Therefore, KTN is usually biased by a 
dc voltage in order to reduce the value of the modulation voltage, and 
this bias reduces the angular aperture of the modulator; however, as 
shown in Appendix B, the angular aperture can still be ± 10° for 
reasonable bias fields. 

The lens at the output of the DLD will focus the beams to points 
on the image plane. If this lens is not perfect, the spots will be larger 
than that calculated by diffraction theory, and the capacity of the 
DLD will be reduced. Since the choice of lens will depend on the 
application of the DLD, it is not possible to state very precisely what 
the angular aperture could be; however, ± 10° seems reasonable for 
most applications. 

The calculations on the capacity of the DLD have been based on a 
plane wave of uniform intensity resulting in an Airy pattern in the 
far field. By placing a filter in such a beam which attenuates the light 
as a function of the radial distance, it is possible to greatly reduce the 
energy in the rings at an expense of slightly increasing the size of the 
central disk.14 If such a filter could be effectively incorporated in the 
DLD, the crosstalk between resolvable positions could be greatly 
reduced without significantly reducing the overall capacity. 

As an illustrative example, we will calculate the number of re
solvable positions assuming that the minimum angle is set by diffrac
tion theory which corresponds to 2.44 AjD for 16.7-dB crosstalk and 
to 4.88 AjD for 23.2-dB crosstalk, and that the maximum angle is 
± 10°. For a wavelength of 6000l\. and an aperture of 1 cm, this cor
responds to a two-dimensional array of approximately 4 (10) 6 re
solvable positions with a crosstalk ratio of 16.7 dB and (10)6 positions 
with a crosstalk of 23.2 dB. These two cases imply 22 basic units in the 
first case and 20 units in the latter. If one can learn to use much 
larger angles, then the number of positions will increase; however, on 
the other hand, if components are optically imperfect so that diffrac
tion-limited performance is not possible., then these numbers will be 
reduced. 

Thus far the DLD has only been considered in conjunction with a 
diffraction-limited beam; however, images may also be transmitted 
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through the deflector. Since it takes a number of diffraction-limited 
points to make up an image, the capacity of a DLD in terms of images 
will obviously be less. 

III. PERFORMANCE OF A MANUALLY-OPERATED DLD 

At the present time it is not possible to construct a large capacity 
DLD using electro-optic modulators since these materials are not 
available in the quantity and quality required. In order to check the 
performance of this system, it is necessary to replace the electro-optic 
modulators with half-wave plates and thereby replace electronic acti
vation with mechanical rotation. 

A system as shown in Fig. 3 was constructed consisting of 18 mica 
half-wave plates, 7 pair of quartz Wollaston prisms, and 2 pair made 
from calcite. The aperture of the system was 18 mm and the wave
length was 6328 A. The smallest deviation angle in the system was 1 
minute and the largest was 40

; the smallest deflection angle cor
responds to 8.3 AID, which is a separation somewhat larger than that 
considered earlier in this paper. The aperture of the pinhole was (0.001 
inches which is larger, by a factor of approximately 4, than that re
quired to give a diffraction-limited divergence to the wave emerging 
from lens 1. This system when used with an aperture of this size 
should be considered to be deflecting an image rather than operating 
with a diffraction-limited beam. The purpose of using a spot of this 
size is that the ratio of light in the central disk to that in the diffrac
tion rings is much higher than when a diffraction-limited beam is 
used, hence the crosstalk between adj acent positions should decrease 
when compared to the diffraction-limited case. 

Fig. 4 is a picture of a focal plane taken with this apparatus. It 
shows the 218 ~14 (10) 6 resolvable positions. This picture was taken 
by setting each half-wave plate in the halfway position so that light 

WOLLASTON 
PRISM 1 .... , 

POLARIZER \ { 

WOLLASTON 
/ PRISM 2 

I LLUMI NATION ~----1---t---1--rHtr=:W-1J.l-'-:; ETC. 
~ 

APERTURE LENS1 f 
HALF WAVE/ 

PLATE t 

~ 
\ HALF WAVE 

"PLATE 2 

LENS 2 

Fig. 3 - Arrangement of elements for a high capacity DLD. 

FOCAL 
PLANE 
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Fig. 4 - 218 ~ HlO)6 resolvable positions of the experimental apparatus. 

was divided equally into both polarizations. In this way all 218 po
sitions are simultaneously illuminated. Fig. 5 is an enlargement of an 
arbitrarily-selected subsection of Fig. 4 and shows the resolution 
much more clearly. 

Fig. 6 is an enlargement of a single position taken under two cases: 
(i) the pattern on the top illustrates the focused beam with the DLD 
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removed from the system, and (ii) the pattern on the bottom is the 
same focused beam with the DLD in the system. The degradation of 
the pattern on the bottom is a result of the optical imperfections in 
the many elements that make up the DLD. A comparison of the two 
patterns shows that the DLD did not increase the size of the central 
disk by an appreciable factor but did make it much more irregular. 
Fig. 6 was overexposed in order to show the weaker diffraction rings 
much more clearly. 

The crosstalk ratio between adjacent positions was measured by 
first setting the DLD so that only one position was present at the 
focal plane. A O.OOI-inch aperture was placed at the focal point, ad
justed in position for maximum light transmission, and the amount 
of light was measured by a detector. The aperture was then moved 
to an adj acent position, and the amount of light passing through 
the opening was again measured. The ratio of these two numbers 
is the crosstalk. The measurements were made for various settings 
of the DLD and the values ranged from 20 to 28 dB. The range in the 
measurements is presumably due to imperfections in the optical 
system which cause the focused spot to be irregular and unsymmetric 
in shape. The irregular shape is also evident from Fig. 6. 

Fig. 5 - An enlargement of a section of Fig. 4. 
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Fig. 6 - The degradation of the focused beam pattern by the DLD. (The 
pattern on the top was taken without the DLD in the system and that on the 
bottom with the DLD in the system.) 

The performance of this system is probably worse than the "'/4 
tolerance discussed previously in the paper but is probably not much 
worse than a wave or so; this latter figure was not measured directly 
but was estimated from diagrams which show spot patterns as a 
fu~ction of various aberrations.1o

,15 

IV. DLD PERFORMANCE RESULTING FROM IMPERFECT MODULATORS 

It is anticipated that an electronically activated modulator will be 
the weak link in DLD performance for some time to come; it there.fore 
is important to know how an inefficient modulator will affect the 
performance of a DLD. In this study, we assume that the Wollaston 
prisms in the DLD are perfect and that the modulator can be charac
terized by a single term, E, which is defined as 

E = ~ = light intensity in the desired polarization 
b light intensity in the undesired polarization (1) 

with 
a+b=1. 

A perfect modulator by this definition has an infinite efficiency. 
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With perfect modulators the image plane would have one bright 
spot at the desired position and the remaining 2"-1 positions would 
be completely dark. 'Vith imperfect modulators, and for simplicity 
we assume that they are all imperfect to the same degree, some light 
will fall on every position. The resulting intensity distribution on the 
focal plane has been studied by others16

,l'i and is also given in 
Appendix c. It is shown there that the intensities in the focal plane 
of an n unit DLD can be generated by the expansion of an [1 
+ (l/E)]n where the first term an gives the intensity of the desired 
position, the second term n (an/E) implies n positions with intensity 
an/E, the third term [n(n-1)/2](an/E2) implies n(n-1)/2 positions 
of intensity an / E2, etc. The sum of all the coefficients in the expansion 
of (1 - l/E)n is equal to 2" so that each position in the focal plane can 
be assigned to one of these terms. 

It can also be established that the polarization of the even powers of 
E, i.e., an, anjE2, anjE\ etc. have the opposite sense of polarization 
from that of the odd powers of E, i.e., an/E, anjE3, etc. This result 
can be determined from the basic definition of the efficiency (1). 

The requirement on the modulator efficiency is determined by the 
particular application of the DLD. If the deflector will be used to 
accomplish localized heating or welding, to supply energy for a switch, 
or to be used as a printout or display, then the ratio of the intensity 
at the desired location to that at the next highest position is impor
tant. This ratio must be sufficiently large so that the intensity at the 
desired location must be great enough to cause the reaction, and yet 
the intensity at the next brightest position must be. less than that to 
cause the reaction. For example, it is possible that for processes that 
depend on heating 10 dB is a sufficient ratio, whereas for a visual 
display 30 dB or greater may be necessary so that the eye will not be 
confused by multiple images. The intensity in the desired position, 
as previously stated, is an and that in the next highest case is an / E 
for the opposite. polarization and an /E2 for the same polarization. 
Therefore, this ratio is l/E when there is no polarization selection and 
1/E2 when polarization selection is used. In general, it should always 
be possible to eliminate the opposite polarization so that the first 
troublesome term will be a1t/E2. 

The DLD can also be used as a memory device.2 In this application 
a memory is placed in the focal plane which is constructed such that 
at each of the focused points an opaque or transparent spot is present. 
This code is suitable for a binary organized memory where, for 
example, the opaque position can represent 0 and the transparent 
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position can represent 1. The nature of the position can be read by 
placing a detector behind the memory and then directing a light beam 
to the desired location. The presence of an opaque position is de.
termined by no response at the detector, and similarly a transparent 
position will result in a positive response. 

When the modulators are imperfect, the undesired be.ams of light 
will also strike the memory plane and have some chance of reaching 
the detector with the possibility of causing erroneous results. For 
error-free operation the detector must receive more light when the 
DLD is addressed to a transparent position than when it is addressed 
to an opaque position, and for future reference let us call the ratio of 
these two intensities the signal-to-background ratio, R. The least light 
that can reach the detector when the DLD is addressed to a trans
parent position is an, i.e., the main beam alone, while the most light 
that can reach the detector when the DLD is addressed to an opaque 
position is I tot - an, i.e., all the light except for the main beam. The 
minimum signal-to-background ratio is then 

an 
Rmin = I n 

tot - a 
(2) 

The R min ratio defined by (2) is not an unreasonable mInImUm in 
that a memory plane can be designed to give ratios very close to the 
values calculated by this equation. 

Three different ways of interrogating the memory will be discussed, 
and for each case calculations will be made for the signal-to-back
ground ratios. The first case is where all of the light is allowed to 
strike the memory plane; the second uses a polarization selection 
before the memory so that only light polarized in the same sense as 
the main beam will reach the memory plane; and the third is the 
reflection mode of operation. To prevent confusion the subscripts 1, 2, 
3 will be used on the R min ratios for the three cases mentioned. 

4.1 Case J-All Light From The DLD Allowed to Reach The Memory 

In this case I tot = 1 since a + b = 1. Therefore, 

~ + n(n - 1) (1 ) + nen - 1) en - 2) (1_) + 
E 2! \£2 3! \E3 

(3) 
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The signal-to-background ratio for this case is plotted as a function of 
modulator efficiency, E, for se.veral values of n in Fig. 7. It shows that 
for an n = 20 DLD with an (Rmin) 1 ratio of 5 dB, a modulator 
efficiency of 18.6 dB is required. 

4.2 Case 2-Polarization Selection Before The Memory 

If polarization selection is used after the DLD, which would require 
an additional modulator and polarizer, the odd powers of E can be 
cancelled from (2) and the (Rmin ) 2 ratio becomes 

1 
(4) 

n(n - 1) (l_) + n(n - l)(n - 2)(n - 3) (l_) + 
2! E2 4! E4 

This ratio, (Rmin ) 2, is plotted as a function of efficiency in Fig. 8. It 
shows that for n = 20 and (Rmin ) 2 = 5 dB, a modulator with an 
efficiency of 14.0 dB is required. This case represents an improvement 
of 4.6 dB over the first case. 
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Fig. 7 - Minimum detector ratio versus modulator efficiency for a DLD where 
the detector is placed behind the focal plane. 
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4.;) Case 3-Reflection M ode of Operation 

An alternate way18 of reading the memory plane is shown in Fig. 9. 
In this case, the light is reflected from a mirror located just behind 
the memory and is redirected through the DLD to be detected 
after passing through a second aperture. The second aperture elimin
ates a large part of the background and therefore the ratio, R min , for 
the same modulator efficiency is considerably improved. The deriva
tion of the Rmin ratio for this reflecting mode of operation, (Rmin) 3, is 
given in Appendix D and only the result is shown here: 

1 

( 1) n(n - 1) (1 ) 
n Jj;2 + --~ pf.! + 

U» 

(R min ) 3 is plotted as a function of E in Fig. 10. With this mode of 
operation a modulator with an efficiency of only 9.1 dB is required to 
give an (Rmin ) R ratio of 5 dB or better. The reflection mode of opera
tion therefore represents an improvement, when measured by reduced 
requirements on the modulator, of 9.5 dB over the first case and 4.9 dB 
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Fig. 8 - Minimum detector ratio vs modulator efficiency for a DLD wi th 
t he detector placed behind the focal plane and with polarization selection. 
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Fig. 9 - Arrangement of elements for the DLD using the reflection mode of 
operation. 

over the second case. It should be emphasized that the improvement 
ratios given here are strongly dependent on the choice of the Rmill 

ratio, which was taken to be 5 dB in this paper. For larger R min 

ratios the improvement in the E ratio would be even greater and vice 
versa. 

A disadvantage of the reflection mode is that a low f-number lens 
must be used at the output of the DLD. The reason for this is that 
the light reflected from the plane mirror must enter the output end of 
the DLD, and this requires that the focal plane be approximately 1;2 
the linear dimension of the aperture of the DLD. One can show that 
this requires a lens of f: 1.5 or so if the angular spread of the DLD is 
± 10°. If a lens is designed to have a spherical focal surface and a 
spherical mirror is used as the reflector, then the lens can have any f 
number. 

Any light reflected from the surfaces in the DLD when used in the 
reflection mode can be prevented from entering the aperture near 
the detector by giving a slight tilt to the elements that make up the 
DLD. It is possible to choose an angle such that no reflection is 
centered on the aperture. 

V. EXPERIMENTS WITH THE MANUALLY-OPERATED DLD EQUIPPED WITH 

POOR MODULATORS 

The experiments that will be described in this section make. use of 
the n = 18 manually-operated DLD where the half-wave plates have 
been substituted for the electro-optic modulators. This is the same 
apparatus as used in Section III. 
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Fig. 10 - Minimum ddodor ratio yerSliS modlllntor efficiency llsing the rc
fledion mode of operation. 

Ideal half-wave plates have. the property that if the angle between 
the polarization direction and the axis of the half-wave plate is 0 
then the plane of polarization emerging from the plate will be rotated 
by 20 from its original direction. For maximum efficiency, the half
wave plates are oriented at 0 = 0 if no switching action is desired and 
at 0 = 45° if the other polarization is desired. The practical maximum 
efficiency for the. split mica plates used in this experiment ranged 
from 30 to 40 dB, which is high enough to give almost perfect DLD 
behavior. In order to simulate poor modulators, the wave plates are 
set at 0 = E for the predominantly unswitched case and at 0 = 45° - E 

for the predominantly switched case. The angle E can then be adjusted 
to achieve any degree of modulator efficiency. 

To illustrate the behavior of a DLD under the influence of poor 
modulators, the half-wave plate.s were set for E = 10 dB, and a 
picture, which is shown in Fig. 11, was taken at the focal plane. This 
picture shows some characteristics which will now be enumerated: 

(i) The· desired spot is shown as the brightest point in the upper 
left-hand quadrant and is vertically polarized. 
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(ii) Some of the 18 points whose intensity is liE of the main 
beam are shown in the lower right-hand quadrant and are horizontally 
polarized. 

(iii) Some of the 153 points whose intensity is llE2 of the main 
beam are shown in the upper left-hand quadrant and are vertically 
polarized. 

(iv) Some of the 816 points whose intensity is llE3 of the main 
beam are shown in the lower right-hand quadrant and are horizontally 
polarized. 

Fig. 11 - Focal plane intensity distribution with modulators set at E = 10 dB. 
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(v) The points in the upper left-hand quadrant are vertically 
polarized and those in the lower right-hand quadrant are horizontally 
polarized. A polarization selector in this case would eliminate the 
entire lower side. It will always eliminate the side that is opposite to 
the one that contains the main beam. 

(vi) There are no points with significant intensity (> IjEn/2) in 
either the upper-right or lower-left quadrant. 

As all of the focal plane is not shown in this figure, some of the 
background positions are missing in order that an enlargement could 
be presented. In this exposure there is a total of approximately! 4.6 
times more light energy in the background than in the main beam. 

The performance of the reflection mode of operation was compared 
to the theoretical calculation by making use of the properly mis
oriented half wave plates. For two reasons (5) cannot be directly 
used: (i) In this experiment a memory was used that contained only 
one opaque position and for such a case the signal-to-background ratio 
using this equation is not accurate, and (ii) equation (5) assumes 
that the opaque positions are also perfectly absorbing which is not 
valid 'for this experiment in that the opaque position reflected 4 
percent of the incident power. A signal-to-background ratio for this 
particular experiment can be calculated as follows. When the DLD is 
addressed to a transparent position the light reaching the mirror is 
ltot and the light striking the mirror when the DLD is addressed to 
the opaque position is ltot - (1 - r) an where r is the power reflec
tion coefficient. The ratio of these two values is 

(R ) ltnt = lint. - (1 - r)a" + (1 - r)an 

exp 3 = I tot - (1 - r)a" I tot - (1 - r)a" J tot - (1 - r)a" 

(.~l_-_r~)a_n _ 
1 + n 

_a_+ ran 
(Rmin)3 

1 + (1 - r) 
_l_+r 
(Rmin)3 

(6) 

The calculated and experimental values of (Rexp) 3 are summarized 
in Table T. The first column lists the modulator efficiency, the second 
column contains the calculated (Rexp) 3 and the third column lists the 
measured values. 

The agreement between the calculated and measured quantities 
agree very well and indicate that the behavior of the reflection mode 
of operation is adequately understood. 
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-----------------------------------------------------------
dB 

30 
20 
10 

n. PARALLELLING THE OUTPUT 

Calculated in dB 

14.0 
13.8 
7.0 

:l\Ieasured in dB 

14 
14 
8 

In the DLD thus far discussed, only one memory in the output 
focal plane is used (see Fig. 3), and therefore the memory is read one 
bit at a time. For some applications it may be advantageous to 
parallel the output as shown in Fig. 12 in order to increase the bit 
capacity of the DLD. With this scheme the number of bits read with 
each setting of the DLD is equal to the number of memory planes; 
the memory now corresponds to one with word organization. Fig. 12 
shows four such memory planes but by going to a three-dimensional 
array it is possible to parallel 30 to 40 such planes and still use only 
one output lens providing the maximum angular aperture of the DLD 
is limited to a total angle of 12° or so. If additional lenses are em
ployed, then any number of memory planes can be incorporated. 

This scheme of paralleling is directly applicable to cases 1 and 2, 
which were discussed in Section IV, but will not work for the reflection 
mode since there is no way to distinguish between different memory 
planes when the light is redirected through the DLD. In order to 
parallel the output of the reflection mode, three different schemes have 
heen devised: (i) to use different wavelengths for each memory plane 
and separate the colors before and after the DLD,19 (ii) to modulate 
a monochromatic beam at each memory plane with a different fre
quency and then to separate the different frequencies after reflection 
through the DLD,20 and (iii) to arrange the memory planes to have 
different distances between the output of the DLD and the memory 
plane and to use a short pulse of light; the different planes can now 
be read since each plane will return the pulse to the detector at a 
different time.21 

One difficulty that can arise in the paralleling schemes is that very 
low I-number lenses must be used to refocus the output plane into 
repeated images (Fig. 13). The first lense placed after the DLD can 
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Fig. 12 - One method of paralleling the output of the DLD. 
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have a reasonable 1 number since the light beams are still confined to 
the aperture of the DLD. The second lens must have 1:1 or so if the 
output of the DLD has a total angle of approximately 12°. Additional 
lenses must have even lower 1 numbers (Fig. 13). The practical solu
tion to this problem is to perform all of the paralleling within the 
first focal length. This scheme will not work with the reflection mode 
where the time of flight varies for each memory plane since one lens 
implies only one distance between it and the various memory planes. 

VII. MEMORY MEDIA 

The problem of reading a memory has been discussed in earlier 
sections of this paper; we will now consider the problem, which is 
again primarily the result of imperfect modulators, of using the DLD 
to write into a memory. Two general types of materials will be 
considered for use as a memory medium. One is a medium where the 
process is linear in terms of total exposure, i.e., the effect on the 
medium of n pulses of light of intensity lin, each lasting for a time 
aT, is the same for any value of n; and the second is one which has a 
threshold in terms of the light intensity. An example of the first type 
is a photographic film and of the second is a memory based on a 
transparent ferrimagnetic garnet at its compensation temperature. 22 
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A linear medium has the disadvantage, for this application, in that 
it integrates the light striking its surface. Therefore, when the photo
graphic film is being exposed by a DLD with poor modulators, the 
problem of the background light must be considered. This problem 
is different from that considered in Section IV because in that case 
the DLD was set for one address and the question was asked what is 
the light intensity distribution over the whole focal plane. In this 
case, we ask what is the total amount of light energy striking one 
position on the memory plane when the DLD is addressed to all of 
the positions. When the DLD is set for one address, the total exposure 
over the whole plane is an[1 + (liE) ]n~T where ~T is the duration 
of the exposure. This result is evident from the discussion in Section 
IV. When one sits at a position and the DLD is addressed to all 
positions and dwells at each position for the same time ~T, the total 
exposure at that position is also an [1 + (liE) ]n~T. This latter result 
has been previously publishedl1 and is also proven in Appendix C. 

The following calculations, which represent worst cases for writing, 
can be performed. The first case that will be considered is the situation 
where all of the light is allowed to strike the memory plane and the 
second case makes use of polarization selection. In both cases it will be 
assumed that all points will be addressed, except for one. 

---2f2 ---+---2f2 ---
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Fig. 13 - Lens requirements for re-imaging the output focal plane of the DLD. 
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7.1 Case J-All Dight from the DLD Allowed to Reach the Memory 

In this case the light striking any of the addressed positions will 
have an exposure of nearly an(l + IjErl1T and the exposure at the 
one position that was not addressed will be [an(l + IjEr - an]AT, 
and the ratio of these two values is 

n( It an(l + tt n 
a 1 + E -a n a 

lIfl + 
a:{l + ~t " an(l + ~t n 

an(l + ~t -a -a 

7.2 Case 2-Polarization Selection Before the Memory 

In the same way as in the first case one can derive 

n. -a 
(7) 

(8) 

The exposure. ratios J1fl and NI2 are plotted as a function of modula
tor efficiency in Figs. 14 and 15. These plots can be used to determine 
the minimum modulator efficiency required for a certain exposure 
ratio. 

From the exposure ratio and the properties of the medium, e.g., 
photographic film, the density ratios of the positions can be calculated. 
These two ratios do not have to be the same, as a material such as 
photographic film can be very linear in terms of exposure but the ex
posure vs film density can be very nonlinear. 

For a theshold medium the problem is much simpler. The only re
quirement is that the most intense beam must be greater than threshold 
and that the next highest position be less than threshold. As men
tioned in Section IV, this ratio is ljE when no polarization selection 
is used and IjE2 when polarization selection is used. 

YIII. ANALOG CONTRASTED WITH DIGITAL DEFLECTION 

The same large number of resolvable positions as described in this 
paper could, in principle, be achieved by means of an analog deflec
tion; an example of this is a prism of an electro-optic material with 
electrodes placed on the parallel surfaces. It is ne.cessary to induce an 
increase of 277" retardation along the base of such a prism in order to 
deflect the beam by one resolvable position. Therefore, for a lOG posi
tion deflector it is necessary to have 2 (10) 377" along the X bank and 



DIGITAL LIGHT DEFLECTOR 979 

17.S.-------,-----.---,---,----.----,---,--,.-. 

IS.O f------t----t-----Ir-----+----t---__I----:;~_t_T__"7"--_i 

en 
~ 12.Sf------t----t-----I,----+----t---T__I~~-+_--_i 

m 
U w 
o 
z 
-~ 10.0 f------t----t-----Ir-----+---r-----t.L....-..;~__I---+_--_i 

:{ 
0 
~ 7.5 0: 

W 
a: 
:::> 
en 
0 
Q. 
X 5.0 w 

2.5 

10.0 12.S 15.0 17.5 20.0 22.5 25.0 27.5 30.0 
MODULATOR EFFICIENCY, E, IN DECIBELS 

Fig. 14 - Exposure ratio vs modulator efficiency for a DLD where all of the 
light is alIo'wed to reach the memory plane. 

2 (10) 37l' along the Y bank for a total of 4 (10)37l' total retardation. With 
a DLD, a total retardation of 207l' can accomplish the same number 
of resolvable positions. Therefore, it is evident that the DLD makes 
very efficient use of the variable retardation. The reason for this ef
ficiency is that the DLD makes use of the fixed retardation in the 
passive elements whereas the analog deflector must generate all of the 
retardation. In addition, the DLD can be designed for any separation 
between the beams and still not require any more than the 207l' varia
ble retardation. The analog reflector, on the other hand, cannot 
separate the beams any further without supplying additional retarda
tion. 

IX. CONCLUSION 

The construction and characteristics of a high-capacity DLD haye 
been described, and it has been demonstrated that the number of 
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Fig. 15 - Exposure ratio vs modulator efficiency for a DLD when' polnTizatioll 
i'pI('('tion is used. 

l'esolvable positions that can be attained is reasonably close to that 
allowed by diffraction theory. The effect of imperfect modulators on 
the performance of the DLD has also been discussed. 

The discussion presented here does not mention the problems as
sociated with the high-speed switching of an electro-optic modulator, 
which is a problem that must be solved if the DLD is to have broad 
application. This problem has been studied by S. K. Kurtz.23 
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APPENDIX A 

Optical PropeTties of a TVollaston Prism 

The formulas necessary to trace the two wave normals through a 
'Vollaston prism in a direction as shown in Fig. 16 are given below: 

. 1. 
8m {3 = - sm 'Y 

no 

no tan a = - tan {3 
n. 

sin (e + e) = s~n {3 sin (e + a) 
sma 

sin a = no sin e 

. 1. 
sm {3 = - sm 'Y 

no 

sin (e + 0) = no sin (e + (3) 
n. 

sin b = ne sin 0, 

where the symbols are defined in Fig. 16. 

(9) 

(10) 

A useful approximate formula for calculating the total deviation angle 
of a Wollaston prism, ~, (~ = a + b) for perpendicular incidence, 
'Y = Ois 

L\ = ( I a I + I b I )"( =0 = 2 I no - n. I tan e + .... (11) 

The variation of ~ with respect to a variation in 'Y at perpendicular 
incidence, (a~/a'Y)"(=o , can be calculated from (9) and(10) to be 

(a~) _ cos e{cos 0 _ cos e } (12) 
a'Y "( =0 - cos b cos (e + 0) cos a cos (e + e) , 
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.C AXIS 

~ 

C AXIS 

Fig. 16 - Diagram for wa,'c normal paths in a "\Vollnston pri:o;m. 

which to a good approximation can be reduced to 

(at:,.) (1 1 ) 2 -a = (no - ne) - + - tan e. 
'Y 'Y=o ne nu 

APPENDIX B 

Angular Aperture oj a j11 odulator 

This calculation is valid for materials that are cubic, and therefore 
optically isotropic, in the absence of an electric field and become 
uniaxial, with the optic axis parallel to the electric field, in the pres
ence of an electric field. 

Fig. 17 describes the placement of the crystal with respect to the 
incident radiation. The xy plane is the first surface of the modulator, 
and the second surface is parallel to the first and passes through the 
point Z equals - T. The induced C axis of the crystal is parallel to the 
y axis. The light ray makes an angle 'Y with the z axis, and the inter
section of the plane of incidence with the xy plane makes an angle a 

with the x axis. The relative retardation between the extraordinary 
and ordinary ray can be calculated to be 
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R(e - 0) 
" ." . 2 . ,> J1 COS- a Sll( 'Y Slll a S1O- 'Y 2 

- ---2-- - ---2--

n. no 

_ 11, [1 _ ~n2 'YJ~} 27rT 
o n! Ao' 

(14) 

where no and no are the ordinary and extraordinary indices of refrac
tion and Ao is the free-space wavelength of the light. Equation (14) 
reduces the familiar (no - no) (27fT /Ao) for perpendicular incidence. 

Since no and ne are nearly the same in this case, we will expand 
(14) in terms of powers of (ne - no) and drop terms containing (no -
no) 2 and higher. We will also expand sin y using a power series in y. 

The result of these substitutions is 

R(e - 0) = {1 - ~ (cos2 
a - ~)'Y2 

no 

[ _1 (2 1) _ 1, (cos
2 

a _ !) J-y4 
3· n20 cos a - 2 .. 

no 2 8 

[ 2 (2 1) 2 (cos
2
a 1) + 4- 2 cos a - 2 -:;-4 --') - 8-

uno uno ~ 

+ 16 (~ cos
2 

a _ ~) J'Y6} 27rT(np - no) . (15) 
no 8 16 Ao 

:x: 

-T 

Fig. 17 - Coordinate axes showing the placement of the uniaxial crystal with 
respect to the incident radiation. 
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Equations (14) and (15) can be used to describe. the interference 
pattern obtained with a uniaxial crystal whose C axis is parallel to 
the crystal surface is placed between crossed polarizers. This pattern 
can be observed in any standard text on optics.24 

In order that a modulator switch the sense of polarization, it is nec
essary that the retardation be changed by 7r. In general, the retarda
tion will be changed from N7r to (N + 1)7r with the. application of an 
electric field. The retardation as a function of incident angle for the 
largest retardation, (N + 1)7r, using terms only up to "ll, becomes 

R = (N + 1)".{1 + ~ (cos' Oi - th'}' (16) 

The angular aperture of a modulator is determined by the value of 
y where the change in retardation from 7r becomes serious enough to 
cause unwanted behavior. If we call this change in retardation t:..R, 
then the value of y that corresponds to this 6.R can be calculated from 
(16), i.e., 

[ n!~ J! 
'Y = (N + 1)7I"(cos2 a -!) . (17) 

li'rom (17) one can see that the angular aperture for a given material 
is inversely proportional to V N + i so that we can write 

'Yunbissed 
'Ybissed = VN+i' (IS) 

i.e., to the same degree of performance the angular aperture of a mod
ulator biased to N 71" is decreased by the factor 1/ VN+l of the 
unbiased case. 

For a material with a linear electro-optic effect, it is most sensible 
to use N = 0 in order to use the lowest voltages; this will result in the 
maximum angular aperture. For a quadratic material like KTN, it is 
sometimes more efficient to use a biasing dc voltage in order to reduce 
the modulation voltage. In that case, an N of 10 or 20 might be used. 
If we decide that the maximum retardation error is AR = 0.020671", 
corresponding to a minimum extinction of 30 dB between polarizers, 
then the angular aperture of KTN is ±26° in the unbiased case, ±7.So 
for N = 10, and ±5.7° for N = 20. 

The angular aperture of biased KTN can be increased by placing 
a properly oriented positive uniaxial crystal such as quartz in series 
with the biased KTN modulator. This technique can be used to elim
inate the terms in 'Y2 from the total retardation and thereby increase 
the angular aperture to approximately that of the unbiased case. 
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APPENDIX C 

Intensity Distribution in a DLD 

Assume that we have a DLD consisting of n stages made up of 
modulators with an efficiency, E = alb, a + b = 1. We again assume 
that only the modulators are imperfect, and that every modulator can 
be characterized by the same efficiency. 

Any light beam incident to a modulator is broken up into two 
beams, an ((a" beam for the desired polarization and a "b" beam for 
the oppositely polarized position. A table can be made up which lists 
the total number of paths through the DLD (Table II). Since we have 
a choice at each modulator as to whether an a or b path is taken, the 
different paths are characterized by all possible combinations of the 

Incident 
heam 

1st 
~I()dulator 

TABLE II 

2nu 
Modulator 

ard 
:Modulator 

et,c. 
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a and b terms. Let us consider the paths containing an r number of b 
terms and an (n - r) number of a terms. The total number of pos
sible ways of grouping these terms is given by 

n! (In) 
(n - r)! r! 

and the associated intensity of these beams is a (n-r) bt
'. The total 

number of all paths is then given by summing r through its range 

n , L n. (n-rlb r 

r=O (n - r)! r! a 
(20) 

where the intensity terms have been included. These terms can also be 
generated by 

(a + br (21) 

since the terms n!j (n - 1') !r! are also the coefficients of the binomial 
expansion, 

From the definition of E, (21) can also be written 

(22) 

To derive (22), the DLD was set for one address and the intensity 
at each point was determined. We now ask what are the different in
tensities that arrive at a particular position when the DLD is ad
dressed to all possible positions. 

In order to address the DLD to every position, the state of the 
modulators can be arranged according to Table III. In this table, 0 
means no change in the state of polarization and 1 refers to a change 

TABLE III 

Modulator number 

etc. (n - 2) (n - 1) n 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

etc. etc. etc. 
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TABl .. E IV 

Address of main beam and setting of 
DLD, Ao 

Address of the position at which we wish 
to compare intensity, An 

Intensity division at each modulator 
between Ao and An 

Intensity at Ao 

Intensity at An 

987 

OOIOt 

(H)OlO 

I I (Ii/a) (li/a) (b/ll) 

to the opposite sense of polarization. Table III is a partial listing. The 
complete table is made by first writing the nth column which con
sists of alternating D's and l's for a total number of 2n entries; the 
(n - l)th column is written by entering pairs (21) of the D's and l's 
for a total of 2n; the (n - 2)th column by entering 22 of D's and l's, 
etc. The sequence of addresses in Table III would place the main beam 
once at each location on the focal plane. The O's and l's that appeal' 
in any horizontal row is the address of that beam. 

We must now be able to compare intensities between that of the 
main beam, which we shall call A o, and some arbitrary position, which 
we shall call An. Table IV illustrates the technique. Table IV was 
constructed by using a rule that sets the intensity ratio at 1 for 
modulators that have the same setting and b/a at modulators that 
have different settings. 

We now wish to determine all of the intensities at some arbitrary 
position, say An = ... 010 while the DLD is addressed to all positions. 
Using Table III which lists all of the addresses and Table IV which 
illustrates the comparison rule, we can construct a table (Table V) 
which lists the intensity ratios at An = ... 010. 

Table V is similar to Table III in appearance in that for any 
vertical column a 0,1 in Table III is changed into 1, b/a or bfa, 1 to 
make Table V. 

Table V is one that lists all possible combinations of the entries 1, 
b / a and therefore is calculable from the same general formula as that 
deduced for Table II, i.e., 

(23) 
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It is evident that Table V would not change, except for a different 
ordering of the horizontal rows, no matter what the particular address 
of An. Therefore, (23) is the same for all points An. 

Equation (23) will list the intensity ratios between Ao and some 
point An. If we multiply though by the intensity of Ao = an, then (22) 
becomes 

(a + b)" 

which is the desired result. 

'fABLE V -LIST OF IN'l'ENSI'l'Y RA'l'IOS A'l' POIN'r .. ·010 WHEN 

DLD IS ADDRESSED TO ALL POSITIONS 

Modulator number 

etc. (n - 2) (n - 1) n 
---~------- ---------

1 b/a 1 
1 b/a b/a 
1 1 1 
1 1 b/a 

b/a b/a 1 
b/a b/a b/a 
b/a 1 1 
b/a 1 b/a 
etc. etc. etc. 

APPENDIX D 

R Ratio For The Reflection 111 ode Of Opel'ation~f 

(24) 

A beam of light traveling through the DLD breaks up into 2n exit 
beams due to the imperfect modulators. These intensities are given by 
the terms in the expansion of (a + b) n as shown in Appendix C. We 
now need to ask how much of the light comes back through the 
second aperture after being re.flected from the focal plane (see Fig. 9). 

Let us consider one term of the expansion of (a + b )n, say an-'·br. 
We state that this system is reciprocal and that if an-rbr of the 
incident beam exits the DLD, then if unity power were directed 
through the DLD in exactly the opposite direction the same fraction 
of power, i.e., an-rbr, will pass through the aperture. 

Thus, for an n unit DLD there will be. 2n exit terms and each of 
these terms, for example an-rbr, will generate one term that contributes 

* This appendix represents the results of calculations performed jointly by 
J. T. Sibilia and the author. 
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to the intensity at the second aperture; and for the example above that 
corresponds to (a/H'b") 2. The total number of terms that exit through 
the second aperture is then the sum of the squares of the exit terms 
and can be generated by (a2 + b2 )n. 

Before we can add up the 2n terms in the second aperture, we must 
know something about the relative phases of the terms. Each of the 
2n exit terms in the expansion 0 f (a + b) n traverses through a dif
ferent optical path length in the DLD. The reason for this is be.cause 
light traverses through some of the prisms as an ordinary ray and 
others as an extraordinary ray, and the combinations of such paths 
are different for each of the 2n exit beams. Thus, unless the DLD has 
been specifically designed to the contrary, each path has a different 
phase delay in passing through the DLD. 

A term in the. expansion (a2 + b 2 )n such as a 2 (n-r)b 2r represents an 
E field of [a 2 (n-r) b~rp and a phase factor cpo Consider the sum of all 
the nl/(n - 1') 11"! terms of the type a2 (n-r)b 21

' 

[a 2
(II-r) l/r]!(~l + ~:!. + ... + ~n!/(n-r) !r!)' (2;") 

The intensity of the sum of all a2 (n-r) b:!.n terms is gIven by the 
square of (25) 

(2G) 

A series of phase terms such as in (26) can add as follows: 

n' --_._- for random phase:::; 
(n - 1")! r! 

[ . n!" ,J2 for the same phase. 
_(n - /').1". 

As explained earlier, all of the phases are, in general, different, and so 
we will use the random phase addition. The intensity at the second 
aperture is then the. sum of all of the terms in (a2 + b2 )n. 

The R ratio, the ratio of the light from the main beam, a2n, to the 
light from the remaining positions, (a2 + b2)n - a2n, is then 

a2n 

R3 = (a2 + b2y _ a2n 

1 1 
(27) 

1 

which is the same as that used in Section IV. 
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rrransistor Distortion Analysis Using 
Volterra Series Representation 

By s. NARAYANAN 

(Manuscript received January ::\, 1967) 

Intermodulation distort'ion due to nonlinear elements in transistors is 
analyzed using V olterra series representation. It '£s shown that this technique 
is well suited for the analysis of transistor distortion where the nonlinearities 
are small but frequency dependent. An ac transistor model incorporating 
four nonlinearities is briefly described. The nonlinear nodal equations of 
the model are successively solved by expressing nodal voltages in terms of 
the Volterra ser~es expansion of the input voltage. Based on this analysis, 
a digital computer program has been developed which computes the second 
and the third harmonic distortion for a given set of input frequencies and 
transistor parameters. The results compare favorably with measured values. 
This method also enables the derivation of closed form ac expressions for a 
simplified model; these expressions show the dependence of distortion on 
frequency, load and source impedances, bias currents and voltages, and 
the parameters of the transistor. The technique is also extended to cascaded 
transistors, and simplified expressions for the overall distortion in terms 
of the distortion and gain of indivl:dual transistors are derived. Finally, a 
few pertinent practical applications are discussed. 

1. INTRODUCTION 

Solid-state long-haul analog communication systems are being de
signed for higher frequencies to meet the growth in demand. One of 
the more critical and significant problems facing the system designer 
is intermodulation noise arising from transistor nonlinearities. Thus, 
an analysis of transistor distortion at higher frequencies is a practical 
problem; this paper investigates the transistor distortion using the 
Volterra series as an analysis tool. 

Transistor distortion has been investigated in some detail previously. 
Many authors have considered the exponential nonlinear relation be
tween emitter current and emitter-to-base voltage which is important 

991 
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at low currents.l.2.3.4.5 The effect of frequency on this nonlinear source 
alone has been reported.5 Three nonlinearities (exponential, avalanche, 
and hFE at de) have been examined by Riva, Beneteau and Dallavolta.6 

For currents up to 20 mA and frequencies up to 100 kHz, Meyer7.8
•

9 

has developed a more accurate and complex model obtaining the non
linearities from h-parameters. However, he takes into account the fre
quency dependence by assuming that the h-parameters can be written 
as h' + jwh". Moreover, he does not take into account avalanche dis
tortion, nor has he extended the model to higher currents (100 mA) and 
frequencies (20 MHz). The model described here considers four non
linearities; they are, exponential, avalanche, hF E , and collector capaci
tance nonlinearities. These nonlinearities are superimposed on a linear 
ac equivalent circuit.1o .11 Much of the initial development of the model 
with three nonlinearities was done by Thomas.1o 

The transistor model is analyzed using a Volterra series representa
tion; this series is a generalization of the power series. In a now classic 
report, Wiener applied this analysis technique12 to find the response 
of a nonlinear device to noise. 13 Bose has carried the theory further. 14 

Following a series of lectures by Wiener/5 the theoretical framework, 
higher-dimensional transforms, and optimization with Gaussian inputs 
were considered by Brilliant,16 George/7 and Chesler/8 respectively. 
Barrete9 has treated statistical inputs. The synthesis problem has been 
examined by Van Trees,20 who also applied the method to phase-locked 
100ps.21 The technique has been extended to discrete systems,22.23.24 and 
a class of time-variant systems.24 .25 More recently the theory of the 
convergence of the series has been treated.26 This work relies more on 
George's work on the higher-dimensional transform theory.17 

Even though much work has been done in this area, the Volterra 
series has not found a wide application in solving nonlinear system 
problems due to several reasons; if the rate of convergence is not rapid, 
the higher-degree terms, which are cumbersome to handle, cannot be 
neglected; hence, it cannot conveniently represent gross nonlinearities. 
It is not simple to invert the multidimensional transforms to the time 
domain, and it is not a useful technique to determine the stability of a 
nonlinear differential equation. 

The Volterra series method does, however, offer certain distinct 
advantages in analyzing transistor distortion. Since transistor distortion 
is frequency dependent, the power series is inadequate to characterize 
it; the Volterra series does indeed represent frequency dependent sys
tems. The nonlinearities in the transistors under consideration are 
extremely small so that the second- and third-degree terms suffice to 
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characterize them. Since the output corresponding to sinusoidal input 
signals is of interest, there is no need to find the inverse of the higher
dimensional transforms; the output can be expressed in terms of the 
transform of the kernel. The higher-dimensional transforms of the 
kernel are complex numbers when Si = jWi , where Si is the complex 
variable in the transform domain; hence, these kernels can be numeri
cally evaluated using the computer (see Section IV). Moreover, for a 
slightly simpler model closed form ac expressions can be derived. Since 
the kernels retain phase information, this approach will be useful for 
the AM-to-PM conversion problem at IF frequencies. Finally, in an 
amplifier two or more transistors are cascaded; the nonlinear behavior 
of such cascaded transistors is a significant problem. The Volterra series 
approach can be easily extended to study such cascaded transistors. 

II. AN INTRODUCTION TO VOLTERRA SERIES REPRESENTATION 

A brief exposition of Volterra series with pertinent reference to the 
problem under consideration is presented below. For further details 
the reader is referred to the references cited. 

Consider a simple memoryless nonlinear system described by the 
following power series; let yet) be the output and xCt) the input; the 
system is represented by 

(1) 

where Cl , C2 , C3 are constants. For a time-invariant system with memory 
(capacitors and inductors in an electrical network), the linear term 
(c1x(t)} is replaced by the convolution integral (x(t) = 0; t < 0) 

Yl(t) = it cl(t - r)x(r) dr. (2) 

In the transform domain, (2) may be written 

(3) 

This transform domain representation of the system [Cl(S)] has been 
an invaluable aid to the communication engineers since it brings into 
focus the frequency behavior of the system. 

A generalization of the second-degree term, C2[X(t)]2, is the double 
convolution integral 

(4) 
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The output depends on the past values of the input; the above expression 
involves a product of the input with itself, thus representing a quadratic 
system. C2(t - Ti ,t - T2) is known as the second-degree Volterra kernel. 

A two-dimensional Laplace transform can be defined for (4) after 
introducing dummy variables tl and t2 . As shown in Appendix A, (4) 
becomes 

2 

Y2(Sl ,S2) = C2(Sl ,S2) II X(Si). (5) 
i=l 

When two sinusoidal signals at frequencies fa and fb are applied 
(Appendix A), the output at the harmonic frequency fa ± fb is given 
by [i C2(fa ± fb) 1 cos (27r(fa ± !b)t + ¢a±b)]. Since in general C2(fa , fb) 
will not be equal to C2 (fa , -/b), different values of distortion at different 
harmonic frequencies are directly reflected in the kernel. Moreover, as 
in the power series case, the 2f product is less by a factor of two. 

Likewise, the third-degree term [Ca(X(T»a] can be generalized to a 
triple convolution integral; 

In the transform domain (6) may be written 

a 
Ya(Sl , S2 ,sa) = Ca(Sl , S2 , sa) II X(Si). 

i=l 
(7) 

The magnitude of the signal at the harmonic frequency fa + f b - f e 

due to the three fundamental signals at fa , /b and fe is given by 1 Ca(fa , 
fb, -fe) I. The constants like 1/4 for a '3fa' product are the same as 
obtained from the power series approach. 

Later in the paper (in Section IV) the cascade relations in the trans
form domain are frequently used; their physical significance is discussed 
in detail in Section VI. (See also Fig. 1.) The cascade formulae and the 
procedure for deriving them are given in Appendix A. 

The second and third harmonic distortion are defined as the second 
and third harmonic power in dBm, respectively, when the fundamental 
power at the output of the transistor is at zero dBm (one milliwatt). 
In the analysis of the model in Section IV, the output voltage is ex
pressed in terms of a Volterra series of the input voltage. Thus, the 
kernels C1(Sl), C2(Sl , S2), and Ca(Sl' S2, sa) are the voltage transfer 
ratios; for a given load RL , the second and the third harmonic distortion 
in dBm are given by the following expressions: 
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= 20 log! I G2 (fa ± fb) I VIO 3RL 
2 I CI(fa) I I GI(±fb) I 

= 20 log! I G3 (fa ± fb ± fJ I IO-
3
R L 

4 I GI(fa) I I CI(±fb) I I CI(±fJ I 

Vg 

F3(s"S2,S3) 

Z= F{X) 

Fig. 1-Two cascaded systems. 

z 

III. THE JUNCTION TRANSISTOR NONLINEAR MODEL 

995 

(8)* 

(9)* 

z 

A model is a simple but realistic representation of a physical phe
nomenon in terms of measurable parameters such that the phenomenon 
can be analyzed, and controlled if possible. The linear equivalent circuit 
of a transistor is one such example. In reality, several elements of the 
transistor equivalent circuit are not linear but are linearized versions 
of nonlinear functions; they are the first-degree terms of the Taylor's 
series expansion of the nonlinear functions. Hence, a logical way to 
develop the nonlinear model is to consider the second- and third-degree 
terms of the Taylor's series expansion; thus, the emitter resistance 
(exponential nonlinearity), current gain (hFE and avalanche nonlin
earity), and the collector capacitance (collector capacitance nonlin
earity) have been represented by nonlinear voltage dependent current 
generators whose parameters are higher-degree Taylor's series terms. 
This approach has another advantage in that it is difficult to measure 
the nonlinearities since they are small; but, it is not too difficult to 
measure the overall functions and to curve fit with the known theoretical 

* The factors ! and i normalize the distortion to 21 and 3f products. 
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-Lc LL 

~L2 
9 ( V2 , V3 - v, ) 

C2 

Fig. 2 - Common-emitter nonlinear equivalent circuit. 

or empirical relations. These nonlinearities are superimposed on the 
linear equivalent circuit (Fig. 2). The nonlinearities are described next. 

3.1 Exponential Nonlinearity 

The emitter current, IE, is related to the emitter voltage, V 2 , by 
the exponential relation 

I" = A [ exp (q ~T) - 1 ] + B, (10) 

where K = Boltzmann's constant, 

q = electron charge in coulombs, 

T = Temperature in degrees Kelvin, 

and A and B are constants which depend on the transistor parameters 
(Ref. 27; p. 181, p. 249). An experimental curve of the emitter current 
IE and the emitter-to-base voltage Vbe is shown in Fig. 3. This non
linearity is expressed as a voltage-dependent current generator by a 
Taylor's series expansion of (10) as follows: 

(11) 

where the Taylor's series coefficients are derived in terms of known 
parameters, the emitter resistance r e1 and the emitter bias current IE ; 
i.e., 
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(12) 

The collector current is a nonlinear function of the emitter current 
at higher values of current (hF E nonlinearity) and of the collector-to-base 
voltage at higher values of voltage (avalanche nonlinearity).27 hFE' 
the ratio of 10 to IB , is plotted as a function of collector current 10 
in Fig. 4. It is seen that the following empirical relation6 matches the 
experimental result (Fig. 4): 

h - _~JL~"-_ 
FE - 1 ' 

1 + a log2 __ 0_ 

lemax: 

(13) 

where hFE max is the maximum value of hFE , 1 e max is the value of 1 c 

at which hFE max occurs, and a is a constant. 
The avalanche nonlinearity is due to avalanche mUltiplication which 

occurs at higher collector-to-base voltage. It is determined from the 
collector characteristic which is a plot of collector current (1 e) and 
collector-to-emitter voltage (VeE), (Fig. 5). The empirical Miller's 
avalanche multiplication factor is given by 
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Fig. 3 - Exponential nonlinearity - measured curve. 

(14) 
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300 

where V CEO is the sustained voltage, and the exponent n is determined 
by experiment. From expressions (13) and (14), the ratio I cVsIE is 
given by 

hFEmax: 1 

1 + h FE max: + a log2 (I I C ). 1 
Cmax: 

( V )n' V::o 

where VCBO V cEo/nVI - a and VCB f"../ V CE • 
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The ac ic can be expressed in terms of ie and Vcb[V3 - Vl] by a Taylor's 
series expansion of (15). Since ie is a function of emitter voltage V2 , ic 
is represented by a current generator g(V2 , V3 - vl); for convenience in 
notation it is separated into a linear term gl (V2 , V3 - vl), a second
degree term g2(V2 , V3 - Vl) and a third-degree term g3(V2 , V3 - Vl). 
The linear term equals M o(alK l)v2 + llfl (v3 - Vl). The second-degree 
term is given by a2MoKi(v2)2 + m2(v3 - Vl)2 + (a lJl.f l)ICv2(va - Vl). 
The coefficients al , a2 , £II 1 , m2 , etc., and the third-degree term are 
given in Appendix B. 

3.3 Collector Capacitance Nonlinearity 

The collector capacitance is a nonlinear function of collector-to-base 
voltage (V CB) since the depletion layer width is a function of V CB • 

The exact functional relationship is determined by plotting the common
base imaginary part of h22 as a function of collector-to-base voltage 
(V CB) as shown in Fig. 6. 9 It is evident from the figure that Cc follows 
the 1/3 voltage law (Ref. 19; Equation 5-96); 

N 
N 

..c 
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o 
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Fig. 6 - Collector capacitance nonlinearity - calculated and measured curves. 
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This nonlinearity is represented as a frequency (differentiation) and 
voltage-dependent current generator as follows: 

icc = 'Y(Va - VI) 

where 1'1 = Cc , and where 1'2 and 'Ya are known from (16). 
'The above nonlinear current generators are incorporated in the linear 

equivalent circuit as shown in Fig. 2. The linear equivalent circuit 
parameters are obtained from the equivalent circuit characterization. 
They can, for example, be computed from the h-parameters at different 
frequencies. In general, the distortion is not a critical function of the 
linear parameters. (Figs. 14 to 17). 

All the nonlinear coefficients (K2 , CX2 , m2 , etc.) are easily obtained 
from a simple computer program. The parameters to be specified along 
with typical values for transistor type A-2436 are listed in Appendix C. 

IV. THE VOLTERRA KERNELS FOR THE NONLINEAR MODEL 

The Volterra series method is applied to the model to compute the 
second and the third harmonic distortion. The voltage at each node is 
a nonlinear frequency-dependent function of the input voltage. Each 
nodal voltage is expressed by a Volterra series expansion of the generator 
voltage; since the nonlinearities are small only three terms are con
sidered. The kernels at each node are determined from Kirchoff's current 
equations. 

4.1 Nodal Equations 

The Kirchoff's current law is applied at each node; the currents are 
next expressed in terms of the generator voltage VII , the three nodal 
voltages VI , V2 , and Va , and the known linear and nonlinear parameters. 
The impedances are represented by their transforms and 0 denotes 
that it operates on the voltage across it. The nodal equations are given 
below. 

1 0 (VI - v2) = K(v2) + (sC2) 0 V2 + (1) 0 (V2 - Va) - 'Y(va - V2) 
1'b rc (19) 

- g(V2 , Va - VI), 
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(sC 3) 0 (V 3 - VI) 

+ (ZL\S») 0 V3 , 

(20) 

where K(v 2), ')'(V2 - V3) and g(v2 , Va - VI) are the nonlinear current 
generators. 

4.2 Solution Using Volterra Series 

Since each nodal voltage is to be expressed in terms of three Volterra 
kernels, there are nine unknown Volterra kernels to be determined from 
the three equations. The problem of solving for nine unknowns from 
three equations is resolved by noting that the polynomials x, x2 and 
x3 are linearly independent; hence, each degree term is separately 
and successively solved. The linear kernels are first determined; then 
the second-degree kernels are determined in terms of the linear kernels; 
lastly, the third-degree kernels are evaluated in terms of the first- and 
second-degree kernels. 

Let A1(s), B1(S), C1(s) denote the transforms of the linear kernels 
at nodes one, two and three, respectively. From the nodal equations 
(18) to (20), the following vector matrix equation is derived. 

where 

PE(S) = 

1 1 
--+s(Ca+CI)+
Z~(s) rb 

1 
--+ml 

n 

- sCa -1111 

jz~(s)l 
1 ~ f 

1 1 
-+SC2+ -+KI(l-a) +8),1 
n To 

1 
- - +aIKI-S)'l 

ro 

-sCa 

---ml-S),l 
Tc 

1 1 

(21) 

- +sCa + -- +ml + S)'I 
rc ZL(S) 

(22) 

Equation (21) is solved by inverting matrix PEeS) and post-multiply
i ng by the vector 
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For a given frequency S = jw, the computation is done numerically. 
The second-degree terms are equated next in (18) to (20). There are 

two types of second-degree terms; those arising from the unknown 
second-degree kernels [for example, (SI + s2)CtA 2(st, S2)] and those 
arising from the known nonlinear coefficients and the known linear 
kernels [for example, K2 n~=t Bl (Si)]' The terms associated with the un
known second-degree kernels are the same as were associated with the 
unknown linear kernels in (21), but at the harmonic frequency (SI + S2)' 
The following vector matrix equation is obtained for the second-degree 
kernels: 

o 

[g2(Bt , Cl - At) B 2(Sl , S2) 

+'Y2(Ct - B l) - K 2(Bl)] = PE(SI + S2) (23) 

[-g2(Bt , Cl - At) 

'-12(Cl - B l)] 

where g2 and 12 represent the second harmonic contribution due to 
g2(V2 , V3 - VI) and 'Y2(V3 - v2 ); hence, 

2 

g2(Bl , Ct - AI) = [a lK 2 + a2K ;] IT Bl(sJ 
i=l 

+ al~lKl [Bl(Sl)[Cl(S2) - A l (S2)] 

+ B l(S2)[Cl(Sl) - Al(Sl)]] 
2 

+ m2 IT [Cl(Si) - Al(Si)] (24) 
i=1 

2 

1(2(B1) = K2 IT Bl(Si) (25) 
i=l 

2 

12(Cl - B l) = K 2(SI + S2)')'2 IT [C 1(Si) - Bl(Si)]. (26) 
i=l 

P E (SI + S2) is the matrix PEeS) with S replaced by (SI + S2)' 
The vector on the left side of (23) is known. Thus, the unknown kernels 

are determined by inverting the matrix PE(St + S2) and post-multiplying 
by the vector on the left-hand side of (23). When SI = jWb , the inversion 
of the matrix and the post multiplication by the vector can be done 
numerically. 
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The procedure for obtaining the third-degree kernels is almost the 
same; the significant difference is that the vector on the left side not 
only contains terms arising from the third-degree nonlinear parameters 
but also includes second-degree coefficients which give rise to third
degree terms by the interaction of the first- and the second-degree 
kernels. These interaction terms are denoted by 1(23 , a23 , 123 , respec
tively. For example, K 3(B 1) = K3 II~=1 Bl(Si), whereas K 23 = 2k2B 1(SI) 
B 2(S2, S3) which shows the interaction of the first- and the second
degree kernels. The third-degree kernels are derived from the following 
equations: 

j[MB' , ~' - A,l°:- 1,(C: - B~ 
- !(3(B1) + g23 + 1'23 + K 23J 

[- a3(BI , C1 - AI) - 13(C l - B l ) 

- a23 - 123J 

J A,C', , " , ',ll 
= P E(Sl + S2 + S3) 1B3(Sl , S2 , S3)[ , 

C3(Sl , S2 , S3) 

where a3 , a23 are given in Appendix B. 

(27) 

A computer program has been developed which calculates the kernels 
and the second and the third harmonic distortion. It uses existing pro
grams to invert the matrix PEeS). The nonlinear coeffici~nts are com
puted from the known and measured parameters. Computed and meas
ured results at different currents are given in Fig. 7. The program has 
been extended to common-base and common-collector configurations. 

V. SIMPLIFIED DISTORTION EXPRESSIONS, THEIR PHYSICAL SIGNIFICANCE 

AND COMPARISON WITH EXPERIMENTAL RESULTS 

Another advantage of the Volterra series method is that it permits 
derivation of closed-form expressions for second and third harmonic 
distortion. These equations show the interaction between the various 
nonlinear parameters and the effect of frequency. 

The model includes the base resistance (rb), the emitter resistance 
(re.) , the diffusion capacitance (C2 ) , the load (R L ) and the source im
pedances Zg(S) , and three nonlinearities, namely, exponential, ava
lanche, and hFE nonlinearities. In the computer program Cbc , Cbe , 
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Fig. 7 - Comparison of experimental and computcd rcsults. 

rc , Cc , m1 and collector capacitance nonlinearity have been taken into 
account. The expressions given below are for the common-emitter 
configuration. 

5.1 The Second Harmonic Distortion Term 

The second harmonic distortion in dBm (8) is given by 

111 I"J 20 1 O'!. ~ /10-
3

1 [ (rb + Zg(S»' (KJ + sC2) + 1 ] 
2a±b I"J . °b 2 '\J RL (rb + Zg(§»' [K1 (1 - 0'1) + §C2 ] + 1 

(28) 

5.2 The Third Harmonic Distortion Term 

In the third harmonic distortion term given below, the interaction 
terms due to the first- and the second-degree kernels have not been in
cluded mainly to reduce the complexity; in certain cases, they may be 
significant. 

1 10-
3

1 [ (rb + Zg(§»' (sC2 + K J) + 1 ] 
jlI3.~b=< ~ 20 log =1 RL (rb + Z,,(§»' (IC(1 - 0'1) + §C2) + 1 
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where 8 1 = jwa , S2 = jWb , S3 = ±jwc and ~ 
S1S2 + S2S3 + S3S1 • 

5.3 Physical Interpretation of the Distortion Terms 

The interaction of different nonlinearities and their dependence on 
load impedance, source impedance, bias currents, bias voltage and 
frequency is indeed somewhat complex. However, the closed form ex
pressions derived above give a general qualitative picture which will 
be discussed now. 

5.3.1 Effect of Frequency 

It is important to know the effect of frequency on distortion. The 
distortion depends not only on the frequencies of the fundamental tones 
but also on the harmonic frequency of interest. As shown in Fig. 8, 
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M 2 due to a + b product is better than M 2 of a - b product by 10 dB 
with the two tones at 8.32 and 7.266 MHz. These measurements were 
made with the transistor biased at 100 rnA, 10V and with RL = 50Q 
and Rg = 50Q. In curve (a) of Fig. 8, the fundamental tone was in
creased from 2 MHz to 10.5 MHz and signals at 2f and 3f were measured. 
It is seen that both M2 and M3 improved with increase in frequency. 
A theoretical explanation on the basis of dominant terms (in this range 
of parameter values) in (28) and (29) is given below. In (28) as well as 
in (29) the terms in brackets are multiplied by a frequency-dependent 
term 

(rb + Rg)(Kl(1 - al) + §C2) + 1 

In this range of frequency (§ = harmonic frequency), if K l (1 - al) ~ 
I §C2 I and if I (rb + Rg)§C2 I > 1 but Kl > I (§C2) I, then the above 
term reduces to K l /§.C2 which decreases with increase in frequency. 
However, the avalanche terms (M2' M3 , etc.) involve the terms §C2 
[in (28) and (29)] and SiC2 in the numerator. Thus, if the avalanche 
terms are dominant, as at higher voltages, there should be no net con
tribution due to avalanche terms alone. The exponential terms [K2 / (Kl)2 
and K 3/(K J)3] are multiplied by the factor 

(rb + Rg) ,sC2 + 1 
(rb + R g )· (K l (1 - al) + §C2 ) + 1 

This term is independent of frequency if (§C2 (rb + Rg) + 1) > l. 
Thus· the above discussion shows that distortion will improve with 
increase in frequency at lower voltages and if I §C2 (rb + Rg) + 1 I < l. 
To verify this statement, the voltage was increased to 20 volts and the 
input resistance changed to 225Q. The plots of M2 and M3 with fre
quency, as measured, are given in curves labeled (b) in Fig. 8. It is 
seen that M2 and M3 do not improve with increase in frequency. The 
small improvement can be attributed to the hFE terms. 

In general, increase in frequency increases distortion; this is especially 
true for the common base configuration. But as shown above, for certain 
ranges of frequency and certain values of source impedance, distortion 
can improve with frequency. 

5.3.2 Effect of Load Resistance, RL 

The load resistance is an external parameter which the circuit designer 
can vary; hence, it is useful to know its effect on distortion. The second 
and the third harmonic terms are multiplied by 1/ ~ and I/RL 
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terms, respectively; it shows that the distortion can be reduced by in
creasing RL . However, the avalanche terms M1 , M2 , and )),13 are 
multiplied by the RL term, so that increasing RL will increase the con
tribution from the avalanche terms. Thus, an increase in RL may in
crease distortion or reduce it due to cancellation. (The contribution from 
the collector capacitance terms also increases with increase in load (RL)') 
Because of the above interaction, for a given set of parameters and 
input frequencies and the harmonic frequency of interest there exists 
an optimum load RL ; this, of course, can be determined using the com
puter program. In Fig. 9, the measured values of M2 and M3 at different 
values of RL are plotted; in both cases increasing RL reduces distortion 
until the optimum value is reached and then distortion increases with 
increase in R L • 

5.3.3 Effect of Source Impedance, ZII(§) 

Source impedance is another important external parameter. The 
source impedance affects the exponential nonlinearities K2/K~ in (28) 
and K3/Ki in (29) by the factor 

(rb + Zg(s))sC2 + 1 
(rb + ZI/(§))' [sC2 + K 1(1 - al)] + 1 

At low frequencies, this nonlinearity is reduced by the factor 1/[(1 - a) 
(R g + rb)K1 + 1]. Thus, an increase in RII will reduce distortion from 
this source. However, the contribution from other nonlinearities are 
increased by 

E 
co 

-100 

-90 

"0 -80 
z 
<'l 

~ -70 
N 

L 
-60 

-50 

M3 

...--~ ~ ---r--r.. 

-v 

FUNDAMENTAL TONES 16.6,15.2, 14.5 MHz 100 rnA, 10V 
fl + f2 - f3 = 17.3 MHz; f2 - f3 = 0.7MHz A2436; NO.27 

Rg = 75n 

(EXPERIMENTAL RESULT) 

~ f----""< ;-- ~ 

o~ M2 

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 

LOAD RESISTANCE, RL , IN OHMS 

Fig. 9-Variation of M 2 , Ma with load resistance. 



1008 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1967 

It is seen from this expression that if Kl (R g + rb) (1 - al) is greater 
than 1, the other nonlinearities are not affected by the increase in Ru . 
Thus, if the exponential term is dominant, increasing Rg reduces dis
tortion at low frequencies. At higher harmonic frequencies if 
1 §C2(Zu(§) + rb) 1 > 1, the distortion terms are independent of the 
source impedance since the [rb + Zg(§)] term in the numerator and 
denominator cancel. This is well illustrated in the measured results of 
Fig. 10. The second harmonic frequency being 0.7 MHz, 1 §C2 (Rg + rb) I 

is not much greater than one up to Rg = lOOn; hence, the second har
monic distortion improves with increase in source resistance up to 
140n. Further increase in Ru does not cause much change in distortion. 
The third harmonic frequency is 17.3 MHz; hence, a change in Rg does 
not affect Ma appreciably. (I (§.C2 )· (R g + rb) I > 1) 

5.3.4 Effect of Bias Current 

Increase in bias current usually reduces distortion due to the following 
reasons. The increase in emitter bias current reduces the exponential 
terms 

Fig. 11 shows the effect of bias current on hn : terms; a2 decrease~ 

with increase in Ie by 
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1009 

it becomes zero at Ie = Ie maxie, and then becomes negative, and 
increases with further increase in Ie. The coefficient C¥3 decreases with 
bias current IE. Thus, in general, an increase in bias current has the 
effect of reducing both the second and third harmonic distortion (Fig. 7) 
(at least until C¥2 = 0). 

5.3.5 Effect of Bias Voltage 

Whereas exponential and hF E terms are functions of bias current, the 
avalanche and collector capacitance nonlinearities are affected by the 
bias voltage. The coefficient M2 increases with the voltage; but M} and 
1'1'£3 increase much more rapidly (Fig. 12). (Both the collector capacitance 
nonlinear coefficients '1'2 , '1'3 decrease with the increase in bias voltage.) 
The effects of change in bias voltage are especially pronounced at higher 
load resistance since avalanche (and collector capacitance) terms be
come dominant. The third harmonic distortion decreases more with 
the increase in voltage (Fig. 13) than the second harmonic distortion 
does. 
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The physical significance of the closed form expressions has been 
qualitatively discussed. Precise quantitative estimates can and have 
been obtained using the computer program. For example, the effect 
of varying linear parameters by fifty percent of their original values was 
studied. The results show that the distortion does not critically depend 
on the linear parameters (Figs. 14 to 17). The other transistor parameters 
such as Ie max' VeE 0 , n, etc., can also be varied. 

VI. ANALYSIS OF CASCADED TRANSISTORS 

It is often stated that in a multi-stage amplifier, the output stage 
alone determines the over-all distortion. Even though this statement 
is true to some extent, it is frequently found in practice that the effects 
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of the previous stages cannot be ignored and sometimes the previous 
stage is dominant. This is especially true if both minimum noise figure 
(which requires lower bias current) and modulation requirements are 
to be met by a two stage amplifier. Two analysis tools based on Volterra 
series are presented here which enable the study of such cascaded stages. 

The first approach makes use of the cascaded formulae mentioned 
earlier; this method illustrates the cascade phenomenon and permits 
derivation of simple cascade rules. 

Consider two cascaded transistors (Fig. 1); let the output voltage 
(V2) of the first transistor be denoted by D(v g ); the output voltage (v3 ) 

of the second stage by E(V2) and F(vg). The aim is to compute the kernels 
F1(Sl), F 2 (Sl , S2), F3(Sl , S2 , S3) knowing D and E. To calculate D(sl), 
etc., it is necessary to know the load impedance of the first stage which 
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is the input impedance of the second transistor. This can be computed; 
thus, for a given generator impedance and bias conditions, D(sl), 
D2(81 , 82), D3(SI , 82 , 83) can be determined. E(81), E 2(81 , S2) and E 3(81 , 
82 , 83) can be computed for a given load and bias conditions with Rg = 0 
(voltage V2 is directly impressed across the second). Now expression 
V3 in terms of v g is given by 

It is seen that F is related to E and D by the cascade formulae whose 
physical significance is discussed below. 

6.1 Linear Term 

The linear term is given by 

(31) 

which states that the overall gain in dB is the gain of the first stage 
in dB plus the gain of the last stage in dB. 

6.2 Second Harmonic Term 

The second-degree kernel is given by 
2 

F 2 (81 ,82) = E1(SI + s2)D2(81 ,82) + E 2(81 ,82) II DI(S;). (32) 
i=l 

The first term of the formula states that a given harmonic product 
from the first transistor D2(jwa ± jWb) is amplified by the second transis
tor at the harmonic frequency EI(jWa ± jWb). The second term shows 
that the two fundamental tones are amplified by the first transistor 
[D1(jwa)D1(±jwb)] and then the second transistor acts on these tones 
to produce distortion E2(jWa , ±jWb). 

Equation (32) is related to the second harmonic distortion (M 2) 
as follows: 

1\12 = 20 log V~ I F 2(81 , S2) I 
2 F 1 (81)F1(82 ) 

(33) 

- ')0 I vi()-3R~ -... og 2 

The second term is the second harmonic distortion of the last stage. 
The first term expresses the contribution from the first stage; it approxi-
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mat ely equals 

[
First stage second harmonic] - [gain of the last stage] . (35) 
distortion in dBm in dB 

This shows that if the gain of the last stage is high, the contribution 
from the first stage is small. Equation (35) is approximate in two re
spects; it neglects the frequency effects and the phase addition of the 
contributions from the first and the second stage. In (35), the second 
stage gain in question is actually the ratio 

El(Sl + S2) 
El (sl)El (S2) 

which involves the two fundamental and the harmonic frequencies. 
As an example, a shaping network which was introduced increased the 
gain (18 dB) at the harmonic frequen'cy (0.7) MHz) and decreased the 
gain at fundamental tones 15.2 MHz (8 dB) and 14.5 MHz (8 dB) 
with the result the overall distortion was poorer by 34 dB. 

6.3 Third Harmonic Distortion Term 

The third harmonic kernel Fa(Sl , S2 , Sa) is given by 

Fa(Sl , S2 , sa) = El(Sl + S2 + sa)Da(Sl , S2 , sa) + 2E2(Sl , S2 + sa) 
a 

·Dl(Sl)D2(S2 , S3) + E 3(Sl , S2 ,S3) II Dl(Si). (36) 
, ;=1 

The first term shows that the third harmonic product of the first stage 
[Da(Sl , S2 , sa)] is amplified by the last stage at the harmonic frequency 
[El(Sl + S2 + sa)]. The second term is the interaction term; it arises 
when the second-degree kernel of the last stage [E2(Sl , S2 + S3)] acts 
on the sum of the fundamental [Dl(Sl)] and the second harmonic output 
of the first stage [D2(S2 , S3)]' The last term shows that the second stage 
third-degree kernel [E3(S) , S2 , Sa)] acts on the fundamental tones am
plified at the respective frequencies by the first stage [Dl (sl)D l (s2)Dl (S3)]' 

From (36), the overall third harmonic distortion is related to that 
of the individual transistors by 

M3 = 20 log ~ 10-3R L I [El(S\ + S2 + S3) [Da~Sl' S2 , sa)] 

I n El(Si) IT Dl(Si) 

+ 2[E2(S; , S2 + S3)] E ~S) ~2(S2' S3)] + [E3(~1 ,S2 , S3)l (37) 

II EleSi) 1 3 II Dl(sJ II EI(Si) 
i=l ;=1 i=l 
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The first term is the contribution from the third harmonic term of 
the first stage; it is given approximately by 

[
Third harmonic distortion] - 2 [Gain of the last] 
of the first stage in dBm stage in dB . 

(38) 

The interaction term approximately equals 

[
Second harmonic distortion] + [Second harmonic distortion] 
of the first stage in dBm of the second stage in dBm 

+ 6 dB - [Gain of the last] 
stage in dB . 

(39) 

The third term in (37) is the third harmonic distortion of the last stage 
in dBm. 

It is seen that the effect of the first stage and the interaction term 
can be reduced by increasing the gain of the last stage. Equation (39) 
illustrates that the second harmonic distortion of each stage should be 
good. This may become a limitation if the first stage is biased at lower 
currents. 

In the above simplified expressions [(38) and (39)] phase addition and 
frequency effects have not been considered. In (38), 2 (gain in dB) 
actually represents 

20 I I E1(jwa ± jWb ± jwc) I. 
og El (jWa)El (±jwb)E1(±jwC ) 

In (39) the second harmonic distortion is to be measured with two 
tones, one at the fundamental and the other at the harmonic frequency 

E 2 (8 1 , 82 + 83) 

E 1(81)E1(82 + 83) 

and then multiplied by the ratio of the gain 

Moreover, the kernel must be made symmetrical by taking the average of 
three possible combinations. 

Thus, the simplified expressions (35), (38), and (39) are exact if the 
transistor performance is not frequency dependent; in general, they 
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can be used to get a qualitative picture. Equations (34) and (37) are 
indeed exact and take into account the frequency dependence. The 
computer program is being extended to calculate (34) and (37). 

An alternate approach to calculate the distortion of cascaded stages 
is to analyze the nonlinear equivalent circuit of cascaded transistors 
using the nodal technique illustrated in Section IV. The nodal equations 
are derived first; next each nodal voltage is expressed in terms of the 
Volterra series of the input voltage; the resulting vector matrix equations 
are successively solved. Since the procedure is similar, the details are 
omitted. 

Two common-collector stages were cascaded using this approach. 
(Fig. 18). The measured values at 120 mA, 10 V with 75 ohm source and 
load impedances were -87 dBm and -112 dBm for the second and 
the third harmonic distortion, respectively. The computed distortion 
values are -88.7 dBm for second and -116.6 dBm for third harmonic 
distortion. Thus, good agreement with experimental result is obtained. 

The cascade formulas are simple, physically meaningful and yield 
rules of thumb to judge the effect of the first stages. The nodal approach 
is more complicated. However, the advantage of the nodal approach 
is that it is general and can be used for an amplifier. For example, a 
cascade of common-emitter and common-collector stages involves five 
nodes; if shunt feedback is used at the input and at the output, the 
same program can be used to analyze this amplifier. (Cascade formulas 
do not take feedback into account.) In general, the nodal approach can 
be extended to study frequency-dependent nonlinear network with 
n nodes, if the nonlinearities are small. 

Fig. 18 - Common-collector - common-collector nonlinear equivalent circuit. 
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VII. ENGINEERING APPLICATIONS 

A few pertinent practical applications of the work are described 
below. These results were either first predicted by the model and then 
verified in the laboratory or first experimentally observed and then 
confirmed by analysis. 

In the initial design of L4 repeater a common-emitter-common
emitter-common-collector configuration28 was used in the power am
plifier. The third harmonic modulation performance was not as good as 
desired. This led first to the study of the output common-collector stage. 
As shown in Fig. 19, the increase in source impedance increases the 
distortion of the common-collector stage. Since the preceding common
emitter stage output impedance is high, the common-collector per
formance was not optimum. Secondly, the preceding common-emitter 
stage was studied because the gain of the common-collector stage is low. 
(see Section VI) As shown in Fig. 20, increase in load impedance beyond 
optimum RL degrades its performance radically. Since the common
collector input impedance is high, the common-emitter stage perform
ance was not optimum either. Thus, in the redesign work by Ken 
Tantarelli, the common-collector output stage is not being used. 

Another interesting application feature was the improvement in 
modulation performance of the common-emitter stage with increase 
in voltage. As shown in Fig. 8, it is a function of load impedance, and 
at about 150Q, maximum improvement was obtained. 

New coaxial systems are currently being studied to operate at higher 
frequencies. Different configurations have been examined for the output 
stage. The model showed that common-collector and common-base 
performance is poorer with an increase in frequency and thus the use 
of these stages as output stages was questioned (unless transistors with 
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higher ft's are available). Recently when a new, high-frequency modula
tion test set was built, experiments confirmed the prediction. The third 
harmonic coefficient (M3) for a + b - c product was 8 dB poorer at 
36.5 MHz (due to signals at 36.5 MHz, 40.1 MHz, and 43.1 MHz) 
compared to the value at 17.3 MHz (due to signals at 14.5, 15.2, and 
16.6 MHz). The common-emitter configuration modulation performance 
suffered only about one dB degradation. 
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This paper has presented a useful analysis tool for investigating the 
frequency-dependent nonlinear behavior of transistors. A digital pro
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proves useful in examining cascaded transistors; a few rules of thumb 
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APPENDIX A 

A.l Higher-Dimensional Transforms 

The second-degree case is illustrated as an example. From (4), 

ltl' 2 
Y2(t) = 0 0 C2(t - 71 , t - 72) IT X(7J d7i • (40) 

If the system is physically realizable, C2 (t - 71 , t - 72) = 0, for 7 i > t. 
Hence, the limits can be extended to 00. 

(41) 

Introducing dummy variables t1 and t2 , the two-dimensional trans
form is taken 

Y2(Sl ,S2) = irfJ l rfJ 

Y2(t1 , t2) exp (-Slt1) exp (-S2t2) dt1 d~ 

= l rfJ 

dt1 i~ dt2 [1~ d71 i rfJ 

d72 C2(t1 - 71 , t2 - 72) 

. n x(r,) dr, ] exp (-s,t,) exp (-s,4). (42) 

Substituting t1 - 71 = m1 , t2 - 72 = m2, and using the fact that 
c2(m1 ,m2) = 0 for mi < 0 yields 

Y2(Sl ,S2) = i rfJ 

dm1 i rfJ 

dm2 i rfJ 

d71 i~ d72 c2(m1 , m2)x(7i)X(72)' 

·exp (-sImI) exp (-S171) exp (-S2m2) exp (-S272) (43) 

= C2(Sl , S2) X (s]) X (S2)' (44) 

A.2 The Output of the I{ernels to Sinusoidal Inputs 

For the second-degree case, consider two sinusoidal signals at fre
quencies fa and fb • The input X(7) equals, 

x(r) = [exp (jw.r) +2 exp (- jw.r) ] + [exp (jw,r) +2 exp (- jw,r) 1 
(45) 

From (41) 
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. [exp (jWaT}) + exp (-jWaTl) + exp (jWbT}) + exp (-jWbTt)] 
2 2 

. [exp (jWaT2) + exp (- jWaT2) + exp (jWbT2) + exp (- jWbT2)]. (46) 
2 2 

Considering one cross term only, 

r~ dTl 100 

dT2 C2(t - Tl , t - T2) Jo 0 

. i exp (jWaT}) exp (jWbT2). (47) 

Substituting lni = t - T} , 1n2 = t - T2 and carrying out the integration 
yields 

iC2(jwa ; jWb) exp [j(wa + wb)l]. (48) 

This term occurs twice as does its complex conjugate. 
Hence, the output due to the a + b term alone is 

Ya+b(t) = I C2(jwa , jWb) I cos [(wa + Wb)t + ~a+bJ. (49) 

The 2wa term and its conjugate occur only once in (46); hence, it is 
6 db better. The response of the third harmonic kernel to three sinusoidal 
inputs is similarly treated. 

A. 3 Cascade Relations 

For the system shown in Fig. 1, the cascade formula are given below. 
The cascade relations can be symbolically written as 

Z = F(x) = E(y) = E(D[xJ) = (E 0 D)(x). (50) 

The formula. a.re 

2 

F2(Sl ,S2) = E1(SI + s2)D2(SI , S2) + E 2(SI , S2) II DI(SI) (52) 
i=1 

3 

+ 2E2 (Sl , S2 + s3)D1 (sl)D2(S2 , S3) + E3(SI , S2 , S3) II Dl (Si). (53) 
i=l 

A physical interpretation of the formula for cascaded transistor~ is 
given in Section VI. The procedure for deriving the cascade relation is 
as follows: the output Z (t) of the last stage is expressed in terms of the 
Volterra series of its input. (Only two terms are considered) 
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Z(t) = 1~ e1(t - Tl)Y(Tl) dTl 

+ 1~ 1~ e2(t - Tl , t - T2) :g yeTi) dT; . (54) 

The output of the first stage yet) is related to its input by 

yeT) = i~ dl(T - CTl)X(CT1) dCT 

+ i~ 1~ d2(T - CTl , T - CT2) n X(CTi) dCTi (55) 

Substituting (55) in (54), terms of the same degree are collected; as an 
example, the first second-degree term equals 

I dT e1(t - T) II d2(T - CTl , t - CT2) f1 X(CTi) dCT; . (56) 

Taking the two-dimensional transforms yields 
2 

El (Sl + s2)D2(Sl , S2) II X(Si). 

APPENDIX B 

The Nonlinear Parameters 

From (15), 

;=1 
(57) 

(58) 

A two-dimensional Taylor's series expansion of (58) is taken; i. is 
expressed by K(V2) and VeB = V3 - VI . Hence, 

ic = g(v2 ,V3 - VI) = gI(V2 , V3 - VI) 

+ g2(V2 , V3 - VI) + g3(V2 , Va - Vt), (59) 

where 

gl(V2 , V3 - VI) = cxIA1oKlv2 + M 1(V3 - VI), (60) 

g2(V2 , V3 - VI) = cx2MoK~(V2)2 + ln2(v3 - V1)2 

+ cx1AloK 2(v2l + cx tA'11K 1(v2)(1'3 - Vt), (61) 

and 

g3(V2 , V3 - VI) = cx3M o(K 1)3(V2)3 + m3(v3 - V1)3 

+ cx1J.112ICv2(v3 - VI):! + cx2J.l11Kiv~(v3 - VI) 

+ cx 1Jl1oK 3(v2)3 + 2cx2J.l1oKlK2(v2)3 + cx1M1K 2(V2?(V3 - Vt). (62) 
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The avalanche coefficients are given below. 

1 Mo = -----

1- (~)n 
V CBO 

(63) 

M = (M)' = n(V CBt-
1 

(M )2 
1 0 (V CBOt 0 

(64) 

M2 = !(M1)' = !(n - 1) Mt + (~t)2 (65) 
V CB Mo 

M~ = .!(M )' = ~M (n - 1) + 2Mt ) _ Mt [en - 1) + (Mt )2J. (66.) 
a 3 2 a 2 2V CB Mo 3 2(V CB)2 Mo 

The coefficients mt , m2 , and ma equal mi = ] c(MJMo); i = 1, 2, 3, 
where I C is the collector dc bias current. 

The hpE coefficients are given below: 

at = 
hPEmax + 1 + a log2 ]Ic + 2a log e log IIc 

C max C max 

1 (at)a 1 [1 I C 1 J a2 = -21 -h-- 2a oge og-I- + oge 
C PE max C max 

at [-2a2 (a2)2 1 (atY (1 )2J 
aa ="6 T + 12 (al)2 - CIC)2 hPEmax 2a og e . 

The collector capacitance coefficients are given by 

I't = k(V C Bt! 

-1 ! 
1'2 = 6 k(V CBf

a 

k (V )-~ 
I'a = 27 CB • 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

From (62) for Ua(V2 ; Va - Vt), Oa is obtained by replacing Bl (Si) for 
V2 and C1 (Si) - At(Si) for (va - VI); moreover, the kernel must also be 
symmetrical. Since the procedure is the same as for 02 it is omitted. 
The interaction terms are given below: 

02a = 2a2MoKi B l(Sl)B2(S2 , sa) 

+ 2m2 [Cl(St) - A t(St)][C2(S2 ,Sa) - A 2(S2 ,Sa)] 

+ alMIJ{l B 2 (8 t ,82)[C1(8a) - A 1(sa)] 
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+ Ci1M1[{1 B1(Sl)[C2(S2 , S3) - A2(S2 , S3)] 

123 = 21'2 [C1(Sl) - B 1(Sl)][C2(S2 , S3) - B2(S2 , S3)J 

where-denotes symmetrical kernel. 

APPENDIX C 

1023 

(73) 

(74) 

A2436 is an n-p-n silicon transistor with overlay type of construction. 
Its iT ranges from 800 to 1000 MHz. It is a power transistor with current 
capability of 1 amp and can handle 2.2 watts of power. 

Typical parameter values for transistor type 2436 27 at 120 rnA, 
10V are given below: 

Ie = 0.12 amps. 
rb 13.6 ohms 
rc 5200 ohms 
Cl (6)10-12 farads 
C2 (3.97)10- 9 farads 
C3 (9.2)10-12 farads 
Zg 50 ohms 
ZL 50 ohms 
Ven 10 volts 
V eno 350 volts 
n 2 
rel 0.2165 ohms 
a 0.38 
hFE max 122 
Ie maX = 0.633 amps. 
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Codillg for NUlllerical Data Trallsmissioll* 
By M. M. BUCHNER, JR. 

(l\Ianuscript received June 2, 1966) 

'Phis paper considers the effectiveness of error-correcting codes for the 
transmission of numerical data. In such a situation, errors in the nu
merically most significant positions of a message are of greater con
sequence than are errors in the less significant positions. A measure 
of transmission fidelity based upon the average magnitude by wh't'ch the 
numbers delivered to the destination differ from the transmitted numbers 
is developed and is referred to as the average numerical error CANE). Codes 
are compared by comparing the ANE that results from their use. 

Significant-bit codes are defined and the AN E resulting from their use 
is determined. For constant-symbol-rate transmission, the relative effect
iveness of various coding schemes is analyzed when the error probability 
in the channel is small. The AN E resulting from the use of certain specific 
codes is numerically evaluated and compared. 

I. INTRODUCTION 

The usual approach to coding is to ignore the actual meaning of the 
transmitted symbols and to represent them in a purely statistical 
manner. As a result, all message errors are assumed to be equally 
costly and codes have been sought that simply reduce the probability 
that a message is received in error. 

While this may. be appropriate for the transmission of some types 
of data, there are situations in which other criteria of goodness are 
of greater merit. If, for example, one is interested in the transmission 
of the temperature of a satellite, the probability that a particular 
observation is transmitted incorrectly may have little direct relation 
to system performance whereas a measure of the average magnitude 
by which the received data differ from the data actually transmitted 
could prove useful. 

* The material presented in this paper is based' upon the dissertation, Goding 
for Numerical Data Transmission, submitted by the author to The Johns Hopkins 
University in conformity with the requirements for the degree Doctor of 
PhilosophY. 
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This paper develops a criterion of transmission fidelity for numeri
cal data transmitted over a binary symmetric channel based upon the 
average numerical error which occurs. Significant-bit codes are de
fined and the average numerical error resulting from their use is de
termined for a binary symmetric channel with independent errors. For 
constant-symbol-rate transmission, the relative effectiveness of various 
coding schemes is analyzed when the probability that a symbol is 
received in error is small. In order to obtain a feeling for the utility 
of coding, the average numerical error resulting from certain specific 
codes is numerically evaluated. 

II. PRELIMINARIES 

Throughout this paper, the channel is taken to include all operations 
performed upon the symbols during transmission. A binary symmetric 
channel is defined to be a binary channel such that 

(i) the channel always gives one of the binary symbols at its output, 
(ii) the probability that any particular sequence of errors occurs is 

independent of the symbols transmitted. 

In some sections, we shall consider a binary symmetric channel with 
independent errors. This is a binary symmetric channel for which 
the errors occur independently with probability p where 0 ~ p ~ t 
,and p = 1 - q. 

The elements of the Galois field of two elements are denoted by 0 
and 1. Let the symbol EB denote component by component modulo 2 
addition of vectors (or n-tuples) whose components are field elements. 
The set of all such vectors forms a vector space r of dimension n over 
the field of two elements. Because a field element can be viewed as a 
vector with one component, EB will also be used to denote the addition 
of field elements. 

A binary group code V is a subset of r which forms a group. Over 
the field of two elements, any set of n-tuples that forms a group is 
indeed a vector space. Therefore, a binary group code V forms a sub
space of r. The dimension of V is k. 

The implementation of a binary group code can be viewed in the 
following manner. The encoder receives k binary information symbols 
(called a message) from the source and determines from the message 
(n - k) binary parity check symbols (called an ending). The message 
and ending may be interleaved or transmitted sequentially to form a 
block of length n (called a code vector). The decoder operates upon 
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the blocks of n binary symbols coming from the channel in an attempt 
to correct transmission errors and provides k binary symbols at its 
output. The notation (n,lc) is used to denote such a code. 

Consider the message (mk , mk-l, ••• , m1). The code vector used 
to transmit this message will have mk , mk-l , ••• ,ml in the k informa
tion positions. The (n - k) parity check positions that form the ending 
are denoted by el , e2, ... , en-k . The order in which the information 
positions and the parity check positions are arranged for transmission 
is arbitrary. 

Let H denote the parity check matrix for a binary group code. H 
is an (n - k) X n matrix whose entries are field elements. An n-tuple 
v is a code vector if and only if 

vfi = 0, (1) 

where fi denotes the transpose of H. H can be wrjtten in a form such 
that each column of H that corresponds to a parity check position in a 
code vector is a distinct weight* one (n - k)-tuple. When this is done, 
let C,(l ~ l ~ k) denote the column in H that is in the position that 
corresponds to position m, in a code vector. 

For a binary symmetric channel, the order in which symbols are 
transmitted can affect code performance. For the binary symmetric 
channel with independent errors, the order in which symbols are trans
mitted does not affect performance. In the latter case, we can write 
Has 

H = (Ck , Ck- 1 , ... , C1ln - k), (2) 

where I n - k denotes the (n - k) X (n - k) identity matrix. 

III. FORMULATION OF A CRITERION OF CODING EFFECTIVENESS 

A system for transmitting observations performed upon some physical 
process over a binary channel is shown in Fig. 1. So that the relation
ship between the observed numbers and the code will be clear, a general 
formulation will be presented. 

If each quantization step is of uniform size, the quantizer output 
can be represented as A + Bi where A and B are constants and the 
integer i indicates the quantization level. The "source scale-to-binary 
converter" receives A + Bi from the quantizer and transmits i to 
the encoder. The "binary-to-source scale converter" receives some 
integer j from the decoder and delivers A + Bj to the destination. 

* The weight of a vector v is the number of nonzero components in v and is denoted 
by w[v], The distance between two vectors u and v is w[u EB vJ. 
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Let PI' {j I i} be the probability of receiving j at the decoder output 
when i served as the encoder input and let Pr {i} be the probability 
that i is sent. The average numerical error CANE) that occurs is 

ANE = L L I (A + Bj) - (A + Bi) I Pr {j Ii} Pr {i}. (3) 
i 

If all values of i are equally likely to be observed and if the range 
for -£ is 0 ~ -£ ~ 2k - 1, Pr {i} = 2-k

• The range for j is thus 0 ~ j ~ 
2k - 1 and (3) becomes 

B 2k_l Zk-I 

ANE = ?" L L I j - i I Pr {j I i} . 
..., i=O i=O 

Because B is a constant not dependent upon the particular coding 
Rcheme implemented, B may be set equal to 1 when comparing the 
effectiveness of different codes. Accordingly, we shall consider the 
expression 

1 Zk-l 2k_1 

ANE = 9.k L L I j - i I Pr {j Ii}. 
.- i=O i=O 

(4) 

For a specified value of k, a given coding scheme is considered perferable 
to some other coding scheme if the ANE resulting from the implementa
tion of the given code is less than the ANE resulting from the alternative 
code. 

The code enters (4) through the terms Pr {j I i}. Thus, for a binary 
symmetric channel, the ANE will, in general, be dependent not only 
upon the error statistics of the channel but also upon the order in which 
the symbols are transmitted. 
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It is possible to simplify (4) to an expression that involves terms of 
the form Pr {j I O} exclusively. This reduces the number of terms by a 
factor of 2k and demonstrates that knowledge of the error probabilities 
conditional upon zero being sent is sufficient to evaluate the ANE. 
However, it is necessary to develop some notation and to present two 
lemmas before proceeding to simplify (4). The proofs of the lemmas are 
omitted because the lemmas follow from the group property of the 
code. 

When the integer i is to be sent, let us assume that the message 
ultilized is the k-bit binary representation of i (which is denoted by 
R(i») such that 

B(i) = (mk' m"-I, ... ,m1), 

where 

l = m,,·2k- 1 + mk-l ·2"-2 + ... + m 1 • 

The ending Ei = (el' e2, ... , e,,-k) required to encode B(i) is chosen 
so that the resulting code vector C(i) satisfies (1). 

Lemma 1: For any values of the integers i and j, 0 ~ i ~ 2k - 1 and 
o ~ j ~ 2k - 1, there exists an integer l such that Pr {j I i} = Pr (l I 0 I 
where B(l) = B(i) EB B(j) and 0 ~ l ~ 2" - 1. 

Lemma 2: Let R(l) = B(i) EB R(j) as in Lemma 1. For fixed i(O ~ 
i ~ 2k - 1), as j successively takes on the values 0, 1, 2, ... , 2" - 1, l 
takes on each of the values in the range 0 ~ l ~ 2k - 1 once and only once. 

Theorem 1: Let all messages be equally likely to be transmitted and let 
the channel be binary symmetric (but not necessarily with independent 
errors). For these conditions, the average numerical error is 

k 2;-1 

ANE= L2 i
-

1 L Pr{iIO}. (5) 
i=l i=2 j -' 

Proof: By Lemmas 1 and 2, for each value of i and for a specified 
value of l, there will be a unique integer jz such that Pr {iz Ii} = Pr {ll O} 
where R(l) = R(i) EB R(jz). From (4), 

(6) 

where we have used the fact that I jz - i I = 0 when l = O. 
For each value of l (1 ~ l ~ 2" - 1), we wish to determine 

L~:~l I jl - i I. Let a(O ~ a ~ k - 1) be the largest integer such that 
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2a 
~ l. Define i' and jf as 

B(jz) = BU') EB B(2a) (7a) 

B(i) = BUD EB B(2a) or BUD = B(i) EB B(2 Ci

). (7b) 

Then 

B(i) EB B(jz) = B(i') EB BUD = B(l). (7c) 

Because l > 0, i -=;C jz and i' -=;C jf . Suppose i > jz . Then jz = i' - 2a 

and jf = i - 2a by (7). It follows that jz - i = _2 a 
- i + i' and 

jf - i' = _2 a + i - i'. Conversely, if i < jz , jz = i' + 2a and jf = 
i + 2a. Thus, jz - i = 2a - i + i' and jf - i' = 2a + i - i'. 

Therefore, 

/ jz - i / + / jf - i' / = / 2 a + i - i' / + / 2 a 
- i + i' /. (8) 

But B(i) = B(2a) EB B(l) EB B(i') by (7). Thus, / i - i' I < 2a and, 
from (8), 

/ jz - i / + / jf - i' / = 2· 2
a 

• 

Because of the symmetries involved, 
2k_1 2k_1 

2 L / jz - i / L / jz - i / + / jf - i' / = 2
k
·2

a
+

1
• 

i=O i=O 

Thus, (6) becomes 
2k_1 

ANE = L 2a Pr {l / O} 
Z=1 

or 
k-1 2 a + 1 -1 

ANE= L2a L Pr{l/O}. 
a=O Z=2 a 

QED 

In (5), notice that Pr {O I O} does not appear and that the terms Pr {i / O} 
are not weighted linearly in i but that the weighting coefficients go 
in steps as powers of 2 with several conditional probabilities having 
the same weighting coefficient. Notice that the weighting coefficient 
for Pr {i I O} is 2 i

-
1 where (j - 1) is the largest power of 2 in i. All errors 

with the same coefficient are of the same seriousness and a good code 
must reduce these sets of probabilities rather than simply minimize the 
probability that a few very large errors occur. 

Because the set of messages B(i) (2 i- 1 ~ i ~ 2i - 1) gives rise to 
the set of conditional probabilities whose weighting coefficient in the 
ANE expression is 2 i

-
1

, we shall call these messages the j-Ievel messages 
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and the corresponding conditional probabilities, Pr {2 i- 1 I O} through 
Pr {2i - 1 I O}, the j-Ievel conditional probabilities. The O-level message 
is defined to be B(O) and the O-level conditional probability to be 
Pr {O 10}. 

The j-Ievel messages have the following interesting characteristics. 

(i) Component mj in each message is 1. 
(ii) Components mi(j + 1 ~ i ~ lv) in each message are O. 

(iii) Every possible (j - I)-tuple occurs once and only once as com
ponents ml through mi-l of some j-Ievel message. 

For a perfect error-correcting code used with a binary symmetric 
channel with independent errors, it is possible to compute the j-Ievel 
conditional probabilities and thus the ANE from a knowledge of the 
weight distribution of the code vectors on each level (these weight 
distributions have been referred to as level weight structures.) 1 The 
problem of efficiently computing the level weight structures from knowl
edge of the parity check matrix has been discussed previously.l 

IV. SIGNIFICANT-BIT CODES 

In order to permit the error-correcting capabilities of a code to 
correspond somewhat to the significance of the information positions, 
it is possible to formulate a type of code which uses a sub code to protect 
the (Ie - ko) most significant positions of a message and simply transmits 
the remaining symbols unprotected. The name significant-bit code 
(SB code) is used for this type of code. An SB code is specified by the 
parity check matrix H SB and the ANE resulting from the use of an 
SB code is ANE SB • 

The code utilized to protect the (k - ko) most significant informa
tion positions will be named the base code. Because it is confined to 
the (k - ko) most significant positions, we can abstract the base code 
and study it as a separate entity. Accordingly, the base code vectors 
are (n - ko)-tuples of which the first (k - ko) positions are the base 
messages. 

Although the concept of SB codes is applicable to any binary sym
metric channel, we shall assume independent errors in the following 
analysis. Thus, from (2), the base code is specified by the base parity 
check matrix H B where 

H B = (C'-ko , C'-ko-l , ... ,CUn-k). 

In this case, the code vector C (i) = B (i) IE,; where the symbol I 
indicates that C(i) can be partitioned into the k-tuple B(i) and the 
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(n - k)-tuple Ei . Let B(i) be partitioned so that B(i) = B'(i') I B"(i") 
where B'(i') denotes the (k - ko) most significant positions of B(l:) 
and B"(i") denotes the ko least significant positions of B(i). Then 

C(i) = B'(i') I B"(i") lEi. 

The range for i' is 0 ~ i' ~ 2k
-

ko 
- 1 and for iff is 0 ~ iff ~ 2ko - 1. 

Let Prn {i' I j'} denote the probability of receiving i' when j' is sent 
using the base code. By Theorem 1, the ANE for the base code (ANEn) is 

k-ko 2i-l 

ANEn = L2i
-

1 L Pl'B Ii' IO}. (D) 
;=1 i'=2i-' 

Because the ba::;e code is used exclusively to proted the (k /;;0) 

most significant information positions, H SH must have the form 

H SB = (C[,-ko , C[,-ko-l , ••• ,C~ , Ci 0 ... 0 111 -.) 

'-y---' 

ko 
columns 

where 0 is used to represent an all-zero column of H SB and where 
the C ~ (1 ~ l ~ k - ko) are the columns of H n • The coset leaders2 
in the standard array2 for the SB code must be obtained from the 
coset leaders in the standard array for the base code by expanding the 
base coset leaders in length to n-tuples by inserting ko zeros in informa
tion positions 1 through ko of the expanded vectors. Because all vectors 
in column i of the standard array for the SB code will have B"(i") 
in information positions 1 through ko , 

Pr {i IO} = p,d l1 "(i")lqk o-W[ll"(i"») Prn Ii' IO}. (I 0) 

We shall now show that ANE sn can be expressed in terms of the 
properties of the base code. 

Theorem 2: Let the base code be defined as above. For a binary symmetric 
channel wl:th independent errors and when all messages are equally likely 
to be transm'£tted, 

't'O 

ANEsH PrB {O I O} L 2i-lpqko-i + 2ko ANEB . (11) 
;=1 

Proof: Define 

ko 2i-l 

ANE' L 2 i
-

1 L Pr {i 10} 
;=1 i=2i-' 
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and 
k 2;-1 

ANE" = L 2 j
-

1 L Pr {i I O} . 
j~ko+l i~2;-1 

From Theorem 1, ANE SB = ANE' + ANE". 
Let us first analyze ANE'. For 1 ~ j ~ ko, the sum of the j-level 

conditional p~obabilities is 
'2;-1 2;-1 

L PI' {i 10} = L pw[B"Ci")]q"o-w[Il"Ci")] Prn {O 10} 
i='2 i - 1 i' '=2;-1 

where we have used (10) and realized that i' = 0 for all messages on 
this level. Because every (j - I)-tuple occurs as components nL1 through 
nLj-1 of some j-Ievel message and nLj = 1 in every j-Ievel message, 
there are 

( 
j - 1 ) 

w[B"(i")] - 1 

messages of weight w[B" (i")] on the j-Ievel. Thus, 

i~' Pr {i I O} = PrB {O 10} t G = ~)plqk"-l 
= PrB {O I 0 }pqk

o
-

i 

Hind 

11,0 

ANE' = Pl'B {O 10} L 2i-Jpqko-i. 
j~1 

Now consider ANE". On level ko + ~ (1 ~ ~ ~ k - ko), i has the 
range 2

ko + t - 1 ~ i ~ 2ko +t - 1. Divide this range into 2 t - 1 sets of con
secutive integers each of size 2ko. Let the integer 0 index these sets 
where 0 ~ 0 ~ 2t - 1 

- 1. For a particular value of 0, as i increases 
from 2

ko + t - 1 + 02k
o to 2ko + t - 1 + (0 + 1)2kO - 1, i' = 2~-1 + 0 and i" 

runs through the range 0 ~ i" ~ 2k
o - 1. Thus, using (10), 

2ko+ t-l + (0+1) 2ko-1 

L Pr {i 10} 
i~2ko+t-l+02ko 

2 ko -l 

= L pW[lJ"Ci")]qko-w[R"Ci")] PrB {2t - 1 + 0 I O}. 
i' '=0 

As i" runs through the range 0 ~ i" ~ 2100 
- 1, each possible ko-

tuple occurs once and only once. Therefore, 
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= Prn {2~-1 + 0 10}. 

Because of the manner in which the sets were chosen, ANE" can be 
expanded as 

k-k o 2~-1-1 2ko+~-1+(0+1)2kO-l 

ANE" = L 2ko+~-1 L L Pr {i I O}. (13) 
~=l 0=0 i=2ko+~-1+02ko 

Substituting (12) into (13), we obtain 
k-k o 2~-1 

ANE" = 2ko L 2~-1 L Prn {if 10} 
~=l i'=2t- 1 

which, from (9), is exactly 2k
o ANEn • QED 

Notice that the situation le = leo can be included in this formulation 
if we define ANEn = 0 and Prn {O I O} = 1 when le = leo • Thus, uncoded 
transmission can be regarded as an SB code in which le = leo • 

The interpretation of (11) is interesting. The quantity L~::'l 2i-Ipqko-i 

is the ANE that results from the uncoded transmission of leo-tuples. 
Thus, ANE SB is the ANE for uncoded transmission of leo-tuples weighted 
by Prn {O I O} plus 2ko times ANEn • 

(11) enables the computation of ANE sn from the properties of the 
base code. Because the base code involves messages of length (le - leo), 
it is easier to analyze than the entire SB code. 

V. CONSTANT-SYMBOL-RATE TRANSMISSION 

Consider two error-correcting codes which are denoted as Viand 
V2 • Let VI be an (nl , Ie) code and V2 be an (n2 , le) code where nt 
mayor may not be equal to n 2 • Let £1 denote the minimum weight 
of the nt-tuples that are not coset leaders in the standard array for 
Vt . Similarly, let £2 denote the minimum weight of the n2-tuples that 
are not coset leaders in the standard array for V2 • 

For a binary symmetric channel with independent errors, Pr {i I O} 
for VI is 

n1 

Pr {i 10} = L Tiipiqn1-i 
i=£l 

where T ii is the number of nl-tuples of weight j in the column headed 
by C(i) in the standard array for VI . Thus, for VI , the average nu-



merical error (ANE)) is 

where 

Similarly, for V'l , 
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n1 

L (Jip i qn 1
-

i , 
i=C1 

ANE2 = t 'Yipiqn.- i , 
;=£2 

where the 'Y j are the appropriate constants. 
However, 

and 
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Thus, for p sufficiently small, if £1 > £2, ANEI < ANE2 and VI 
results in less ANE than V 2 . 

The minimum weight of the vectors that are not coset leaders in an 
SB code is 1. Thus, consider two SB codes denoted by V SBI and V SB2 
where V SB1 is an (n1 , k) code and V SB2 is an (n2' k) code. V SB1 protects 
the (k - k01 ) most significant positions and V SB2 protects the (k - k02 ) 
most significant positions of a message. By reasoning analogous to 
that above, for p small, if kOl < k02 and if the base codes used in V SB1 
and V SB2 correct all weight one errors, then V SB1 results in less ANE 
than V SB2 . 

We thus have the following ranking of codes for p small. The ranking 
(in order of increasing effectiveness) assumes that the schemes are 
compared for the same value of k. 

(i) Uncoded transmission. 
(ii) An SB code protecting (k - ko) positions where k ~ ko . 

(iii) An SB code protecting (k - ko + k') positions where k' > O. 
(iv) An e-error-correcting code where e ~ 1. 
(v) An (e + e')-error-correcting code where e' > O. 

To obtain a feeling for the utility of coding for numerical data trans
mission over a binary symmetric channel with independent errors, the 
ANE resulting from certain codes for k = 26 will be evaluated for 
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constant-symbol-rate transmission. Ref. 3 contains similar information 
for Ie = 1, 4 and 11. 

Let ANEuc denote the ANE when no coding is used. Contrary to 
the concept of code equivalence that is obtained under the assumption 
that all errors are equally costly (i.e., when probability of message 
error is used as the measure of code performance), the ordering of the 
columns of the parity check matrix can affect code performance. Thus, 
for the (31, 26) perfect single error-correcting code (PSEC code), every 
ordering of the columns of the parity check matrix could yield a distinct 
ANE. Upper and lower bounds on the ANE for this code are obtained 
in Ref. 3 and are denoted herein as ANEuB and ANELB , respectively. 

By numerical computation, the ordering in (14) was found to result 
in as small an ANE as any other ordering tried. The number actually 
tried was by necessity a small fraction of all possible orderings of the 
26 columns. However, notice that C 12 through C26 each have a one in 
the same position thus assuring us that the number of weight three 
code vectors on levels 12 through 26 will be the theoretical minimum for 
this code (by Theorem 9 in Ref. 3). For values of p that are of primary 
interest (less than 10-1

), this assures us that it is not possible to find 
a different ordering that will result in a significantly better performance 
(although there are other orderings that in fact give equal performance). 
Let ANEp denote the ANE that results from the code specified in (14). 

11111111111111100000000000 1 
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 100 0 0 

H p = 1 1 1 1 00 0 0 1 1 1 1 000 1 1 11 000 1 1 lOIs . 
11001100110011011001101101 
10101010101010110101011011 

(14) 

If the columns of (14) are regarded as the 5-bit binary representations 
of integers, then the ordering from left to right corresponds to decreasing 
integer value (with powers of two omitted because they appear in I.~). 
Similar ordering was observed to be preferable for the (15, 11) PSEC 
code3 and, by exhaustive search, actually found to be as good as any 
other ordering for the (7, 4) PSEC code3

• 

Table I compares ANELB , ANEuB and ANEp • For convenience 
(and so that the values given will agree with the data plotted in Figs. 
2, 3, and 4), the ANE has been normalized by dividing by 226 

- 1 
(i.e., the full-scale value). 

The following SB codes are considered. For each, H B and the nota
tion used for the resulting ANE in Figs. 2, 3, and 4 is given. Theorem 
2 permits the computation of the ANE for these codes from a knowl
edge of the base code. 
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TABI~E 1-VALUES OF ANELB , ANEuB A 1'; I> ANEI' 
DIVIDED BY 2:!ll - 1 

p 

lO-a 
10-4 

10-3 

10-2 

10-1 

(). 41992 '10-8 

0.41920 '10-6 

0.41212· 10-4 

0.34850 '10-2 

0.90222' 10-1 

Base Code 1: (3, 1) PSEC eode. 

"\NEp 

0.41994 '10-8 

0.41931'10-6 

0.41310'10-4 

0.35659 '10-2 

0.10446 

lIB = [~ J~l 
The ANE is denoted as ANE(3 ,1) • 

0.42993.10-8 

0.42932.10-6 

O. 42329 . 10-4 

O. 36894· 10-2 

0.12817 

Base Code 2: (5, 1) perfect double error-correcting code. 

The ANE is denoted as ANE(5 ,I) • 

1 
1 
1 
1 

1037 

Base Code 3: This base code uses independent (3, 1) PSEC eocles to 
protect the two most significant information positions. 

1 0 I 1 0 
Hn = 0 1 14 

o 1 

Because the codes are used independently, the required conditional 
probabilities for the base code can be readily calculated. The ANE 
is denoted as ANE(3 ,I) ,(3,1) . 

Base Code 4: (7, 4) PSEC code. 

I

rl 1 1 0 

HB = 1 1 0 1 
Ll 0 1 1 

The ANE is denoted as ANE(7 ,4) • 

l 
J~j 

Base Code 5: This base code uses a (3, 1) PSEC code to protect the 
most significant information position and a (7, 4) PSEC code to protect 
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the next four most significant information positions. 

1 000 0 
1 000 0 

HB 0 1 1 1 0 15 
o 1 101 
o 1 0 1 1 

The ANE is denoted as ANE(3 ,1) ,(7,4) • 

Base Code 6: (15, 11) PSEC code. 

[

1 1 1 1 1 1 1 0 0 0 0 
1 1 1 1 000 1 1 1 0 

H B = 1 1 0 0 1 1 0 1 1 0 1 14 

1 0 101 0 1 101 1 

The ANE is denoted as ANE o5 ,11) • 

Figs. 2, 3, and 4 present ANEuc , ANEuB , ANELB , ANE p , and 
the ANE of the SB codes considered. In each case, the ANE has been 
normalized by dividing by 226 

- 1. For clarity, logarithmic scales are 
used as p decreases from 10-1 until p becomes sufficiently small so 
that the results for small p apply. 

The following observations can be made for constant-symbol-rate 
transmission. 

(i) Improvements in transmission fidelity are obtainable by the 
utilization of codes. It should be noted that no one code is the most 
desirable for all p (0 < p < !) and in some cases the codes that are 
best for small p turn out to be less effective than uncoded transmission 
for the larger values of p. 

(ii) For k = 26, it can be shown that the probability that a message 
is received in error when the PSEC code is used is less (for 0 < p < !) 
than the probability that a message is received in error using any of 
the SB codes considered. Thus, under the criterion of minimizing the 
probability that a message is received in error, the PSEC code is pref
erable to any of the SB codes considered. 

However, when the ANE is used as a measure of code effectiveness 
for numerical data transmission, we observe that the SB codes are 
preferable to the PSEC code for certain values of p. Thus, when com
paring codes, the ranking obtained using probability of message error 
as the performance index may not correspond to the ranking obtained 
using ANE as an index. We can conclude that probability of message 
error and ANE are not equivalent measures of code performance and 
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0.35,-----------------------. 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.2 0.3 0.4 0.5 
p 

Fig. 2 - Constant-symbol-rate transmission; k = 26. 

that, in some cases, the ANE can be reduced by using a code whose 
probability of message error is not minimal. 

(iii) For k = 26, consider the relative performance of the PSEC 
code and the SB codes. When p is small, the PSEC code will be effective 
because it can correct all single errors (the only type that have much 
probability of occurring) whereas a single error in certain positions 
of an SB code will result in a message error. For larger values of p, 
there is an increasing chance that an error pattern will occur which the 
PSEC code cannot correct. The SB codes become effective in this situa-
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tion. If mUltiple errors occur during transmission such that the errors 
occurring in the (k - ko) most significant information positions and the 
check positions form an error pattern correctable by the base code, 
this will be corrected leaving any errors in the ko least significant 
information positions uncorrected. Therefore, the most costly portion 
of a large number of error patterns can be corrected. As p increases, 
the number of positions in the base code must decrease so that un
correctable error patterns in the positions covered by the base code 
have a sufficiently small probability of occurrence so that the base code 
can operate effectively. In other words, as p increases, more and more 
protection must be provided for the significant bits so that the most 
(~ostly errors are prevented. 

ANE LB " /ANE (3,1) 

ANEuB .... ..\ / ./ANE (5,1) 
fO-2r---------------------------------~--~~~~~----~ 

I 
co 
I\j 
N 

.......... 
W 
Z « 

4 

4 

2 

2 

p 

Fig. 3 -- Constant-symbol-rate transmission; Ie = 26. 
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2 --
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/ 

/ / 
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/ / 
/ / 

~ / / ('V 
~~/ /~ 
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/ ~fv~' 
/ /'?'~ 

/ / 
/ / 

/ / 
/ / 

/ / 
/ 

/ 

4 6 8
10

- 5 
p 

Fig. 4 - Constant-symbol-rate transmission; k = 26. 

4 6 8
10

- 3 

(iv) For p small, the ANE from uncoded transmission is approxi
mately (2k - l)p. For small p, the ANE as a fraction of full scale for 
uncoded transmission is thus very nearly independent of k. 
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I. INTRODUCTION 

B.S.T.J. BRIEFS 

Realizability Conditions for 
the Impedance Function of the 

Lossless Tapered Transmission Line
A Critique 

By E. N. PROTONOTARIOS 

(Manuscript received March 6, 1967) 

In a recent briee in the B.S.T.J., Zador presents, without proof, 
realizability conditions for the input impedance of the lossless tapered 
transmission line terminated in unit resistance. Upon a careful examina
tion of the brief, it appears that the conditions are not accurate. The 
following analysis clarifies this point and, incidentally, provides alterna
tives to Zador's necessary conditions. 

Consider a nonuniform line (Fig. 1) with inductance per unit length 
£(x) and capacitance per unit length e(x) such that (to follow Zador) 

£ (x) e(x) = 1. 

Let Vex,s) and lex,s) be the voltage and current along the line with 
polarities as indicated in Fig. 1. The equations of the line are 

dV(x,s) 
dx 

-s£(x)l(x,s) 

dl(x,s) _ -se(x) Vex,s). 
dx -

Eliminating lex,s) and taking into account that £(x) 

:x (e(x) d~~,s») = s2e(x) V(x,s). 

N ate also that 

lex,s) = e(x) dV(x,s) 
--s- dx 

l/e(x) we get 

Hence, we can identify Zador's y(x,s) and c(x) with Vex,s) and e (x), 
respectively. From the reference polarities of the voltages and currents 
in Fig. 1, we see that for a unit resistance termination at x = 0 we must 

1047 
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oo-----------------------+-----x 
I L 

I I 

+--Z(s) 

I I 

r---X---1 I 
~-----------L------------~ 

Fig. 1.-1,ossl{'ss tapered transmission line. 

have 

V(O,s) = -l(O,s). 

Hence, if we impose the condition (following Zador) 
yeO,s) = V(O,s) = -i 

then for unit resistance termination we should have 

y'(O s) = dV(0,s2 = sV(O,s) = _~. 
, dx e(O) e(O) 

The driving point impedance, for any termination, should read 

Z(s) _ ~ y(l,s) . 
- eel) y' (l,s) 

Thus, the signs are wrong in Ref. 1. This is not the crucial error however. 
In this paper, we will show that the difficulties in Zador's paper 

arise from the following facts: 

(i) He does not consider the matched line. Unmatched lines tend 
to have almost periodic behavior for large real frequencies and hence 
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the network functions do not have limits at infinity. This point will 
be made more precise in the sequel. 

(ii) Multiplication of Z(jw) by exp (-2jlw) in property (iii) of the 
necessity statement introduces periodic behavior at infinity even in the 
matched case. 

(iii) Physical meaning has not been attached to the Ni and Di . 
These should obviously be identified with the well-known ABCD 
parameters to correct (ii) of the necessity conditions. 

II. COMMENTS ON ZADOR'S BRIEF 

Property (iii) in the necessity statement does not appear to be true 
as stated. One can easily construct many counter examples. 

Example 1: The uniform line with (following Zador's notation) c(x) = 1 
and length l = 1, terminated in a I-ohm resistor. Obviously c(x) satisfies 
the conditions stipulated by Zador, i.e., c(x) is positive and continuously 
differentiable in the interval 0 ~ x ~ 1. Clearly the driving point 
impedance is 

Z(jw) 1. 

Therefore, 

few) = Re exp (-2jlw)Z(jw) = cos 2w. 

Clearly cos 2w does not have a limit for w ~ ± 00 • 

Consider now a less trivial counter example. 

Example 2: The exponential line terminated in a unit resistance. With 
Zador's notation c(x) = exp 2x, and l = 1. In this case by solving Zador's 
(1) with the subsequent boundary conditions (appropriately corrected) 
we find 

where 

Z(jw) ACiw) + B(jw) 
C(jw) + D(jw) , 

1( ') 1 { - /2-1 + sin y~~} 
.0. ]W = - cos v w - _ / 2 

e vw - 1 

B( ' ) 1 {. sin Vw~} JW =- JW 
e Yw2 

- 1 

C( ' ) _ { . sin Vw2--=--!} 
JW -eJw y2 

w - 1 

(1) 

(2) 

(3) 

(4) 
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{

A / 2 1 _ sin V W 2 
- I}. D(jw) = e COSy w -

Vw2 
- 1 

(5) 

It turns out that 

1 1 
R = Re Z(jw) = D2 _ C2 = K(w) (6) 

. BD - AC 2w sin2 V w2 - 1 
X = 1m Z(jw) - J D2 _ C2 = K(w) (w2 _ 1) (7) 

where 

K( ) 
{ 

. A / 2 1}2 2' 2 - ~1 w A / 2 _ sm y w - + w sm 2 v w - 1. -e2 = COSyw - 1 Vw2 
- 1 w - 1 

(8) 

Hence, 

few) = Re exp (-2jw)Z(jw) = R cos 2w + X sin 2w 

__ 1_ [ 2 _ 2w sin
2 Vw~ sin 2wJ. 

- K(w) cos W w2 - 1 (9) 

Obviously few) does not possess a limit for w -7 ± 00. 

Example 3: Consider now the class of transmission lines which have 
a positive bounded and twice differentiable c(x) in the interval 0 ~ x ~ l. 
It can be shown (see e.g., Ref. 2) that the ABCD parameters satisfy 
the following asymptotic relations, for w large:* 

A(jw) = ~ cos lw + O(~) (10) 

B( 'w) =' sin lw + o(!) 
J J Yc(O)c(l) W 

(11) 

C(jw) = jyc(O)c(l) sin lw + o(~) (12) 

D(j<,J) = ~~ig) cos lw + O(~). (13) 

These results follow from the classical theory of the asymptotic 
behavior of the eigenfunctions of Sturm-Liouville problems.3 The 
WKBJ method is a related subject. Schelkunoff has discussed these 

* The line is driven at the point x = l. The product of the inductance per unit 
length and the capacitance per unit length is assumed to be unity. 
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matters in an elementary way in at least one of his textbooks4 (he does 
not include the O(I/w) term). 

If the line is terminated at x = 0 with a resistance Ro , we have for 
the driving point impedance 

Z( ·w) = RoA(jw) + B(jw) . 
J RoC(jw) + D(jw) 

(14) 

Substituting from (10), (11), (12), and (13) we find that for large w 

Z( ·w) = Roc(O) [1 + . (1 - R~C2(0)) sin lw + o(.!)J (15) 
J c(l) J Roc(O) {cos lw + jRoc(O) sin lw} w 

and 

R = Re Z( ·w) = Roc(O) [1 + (1 - R~c\O~) sin2.l~ + o(.!)J (16) 
J c(l) 1 - (1 - RoC (0)) sm lw w 

. ' (1 - R~C2(0)) sin 2lw (1) 
X = 1m Z(Jw) = 2c(l) [1 _ (1 _ R~C2(0)) sin2 lw] + 0 :; . (17) 

Hence, if Roc(O) ~ 1, Z(jw), Re Z(jw), and 1m Z(jw) do not have limits 
for w ~ ±oo. 

Similarly, few) = Re exp (-2jlw)Z(jw) does not have a limit for 
w ~ ± 00. When Roc(O) 1, i.e., when the line is "locally matched" 
at x = 0, we have 

Z(jw) = l + o(.!) 
c(l) w 

(18) 

R = Re Z(jw) = -~ + o(.!) 
c(l) w 

(19) 

X = 1m Z(jw) = O(~). (20) 

In this case, 

few) = Re exp (-2jlw)Z(jw) = ctl) cos 2lw + o(~). (21) 

Clearly, few) does not have the asymptotic behavior stipulated by 
Zador; it does not even have a limit (because of the cos 2lw term). 

Note that the asymptotic formulas (10), (11), (12), and (13) are 
also valid for a continuous positive c(x) which is piecewise twice dif
ferentiable. This can be proven by partitioning the line at the dis
continuity points and finding the overall ABCD matrix by multiplying 
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the ABeD matrices of the sectionR of the line which now have a twice 
differentiable c(x). 

Hence, property (iii) of Zador's necessity statement could be replaced 
by the following: If (i) c(x) is a positive continuous and piecewise 
twice differentiable function of the real variable x, (ii) the line is term
inated in a unit resistance and c(O) = 1, then the following relation 
is valid for large w: 

Z(jw) = _1 + 0(1). 
c(l) w 

(22) 

Another substitute will be discussed in the following. Let p(jw) be the 
voltage reflection coefficient at x = l for the unit resistance terminated 
line, then 

1 1 + p(jw) 
Z(jw) = cO) "1-- p(jw)' (23) 

For a c(x) which is continuous and twice differentiable in the interval 
o ~ x ~ l with 

c(O) = 1 
(24) 

dc(O) = cic(l) = 0 
dx dx 

we can see, using Schelkunoff's results on wave propagation in stratified 
media,5 that for w large 

p(jw) = 0(~2)' 
From (23) we have in general for I p(jw) I < 1 

Z(jw) = J_ {I + 2p(jw) + 2p2(jW) + ... }. 
c(l) 

Hence, using (25) we get 

for large w. 

(25) 

(26) 

(27) 

To generalize (following Schelkunoff5) if c(O) = 1 and the first 11 

derivatives of c(x) are continuous functions of x and vanish at the 
boundaries then for large w 

(28) 
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and therefore, 

Z(jw) = dn + O(WLt )' (29) 

Property (ii) in the necessity statement of Zador is also wrong. 

Proof: The input impedance of the unit-resistance terminated line may 
be written, in terms of the ABeD parameters, as follows: 

Z(s) = A(s) + B(s) = Q(s). 
C(s) + D(s) pes) 

(30) 

Consider a line with a twice differentiable c(x). In thiR case .il (s), 
/3(s), C(s), and D(s) are entire functions of order 1 and type l (see 
Hef. 2), i.e., 

A(s) ~ CtCI. 

B(s) ~ C2C
lS 

C(s) ~ C3C
ls 

D(s) ~ C4C
ls 

(31) 

(where C1 , C:!, Ca, C.t arc positive constants) for real s ~ + 00. Note 
also that 

and 

A(s) = A( -s) 

B(s) = - B( -s) 

D(s) = D( -s) 

C(s) = - C( -s) 

liB - CD == 1. 

(32) 

In order to find Zador's representation with the Ni , Di (i = 1,2) 
functions we should be able to find an entire function cp(s) ~ 0 such 
that when we multiply both the numerator and denominator of Z(s) 
in (30) by this entire function, we get functions Ni , Di (i = 1,2) with 
the properties stipulated by Zador. 

\Ve will have 

NI(s) = Ev [Q(s)cp(s)] = A(s) cp(s) + cp( -s) + B(s) cp(s) - <p( -s) (34) 
2 2 

N
2
(s) = Odd [Q(s)cp(s)] = A(s) 'P(s) - :£( -8) + B(s) <p(s) + :£( -s). (35) 

2 2 
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Similarly, 

Hence, 

D(s) <p(s) +2 <p( -s) + C(S) <p(s) -2 <p( -S) 

D(s) <p(S) ~ <p( -S) + C(S) <p(s) +2 <p( -S) . 

(36) 

(37) 

(38) 

From (34), (35), (36), and (37) it follows that the functions (<p(s) + 
<p( -s))/2 and (<p(s) - <p( -s))/2 should be of type 0 in order that 
Zador's Ni and Di be of type l. Consequently, the functions <p(s) and 
<p( -s) themselves are of type o. Therefore, it is impossible to find 
an <p(s) such that <p(s)<p( -s) = exp 2ls as Zador stipulates. So property 
(ii) in Zador's necessity statement could be replaced by 

NIDI - N2D2 = k2, 

where k is a constant. Then Ni , Di (i = 1,2) are proportional to the 
ABCD parameters with proportionality factor k. 

From the above it follows that the sufficiency part as stated is in
accurate. It might be possible to alter the sufficiency conditions to 
make them valid. In this case a proof must be given. The author has 
done related work6 on realizability conditions for nonuniform RC lines 
and is familiar with the difficulties involved in proving sufficiency 
conditions of this form. 

Finally, Zador's conjectures do not have an obvious physical in
terpretation and hence they should be justified. 
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