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The Ferreed 

By A. FEINER 

(Manuscript received August 20, 1963) 

The advantages of the ferreed as a switching network crosspoint led to an 
early decision to adopt it for use in electronic switching systems. The 
prospect of large-scale use of the device gave impetus to a search for an 
economical, easily fabricated component. This paper describes the con
siderations which influenced the choices of a suitable magnetic material, 
magnetic circuit geometry, and coil design that were made for the produc
tion model. 

I. INTRODUCTION 

The concept of the ferreed was presented in an earlier article in this 
journal.I The purpose of this paper is to describe the evolution of this 
device during its further development. 

To recollect, a ferreed is a device born of marriage between miniature 
sealed reed contacts (see Ref. 2) and an external magnetic circuit 
containing remanently magnetizable members. Operation or release of 
the sealed contacts can be controlled by setting the remanent members 
in one of two magnetic states by means of short current pulses. 

Among the several useful properties that can be brought about in 
the ferreeds by selection of the proper magnetic configurations and coil 
design is the ability to respond to coordinate excitation - a vital re
quirement for any device considered for a network crosspoint. 

Recognition of the potential advantages of a switching network cross
point with metallic contacts, absence of holding power and the ability 
to operate in times much shorter than prior electromechanical devices 

1 
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led to an early decision to adopt it for the network of No. 1 ESS (Elec
tronic Switching System) - the new telephone switching system sched
uled for its commercial debut in 1965. 

The intended application of the ferreed in the switching network of 
No.1 ESS, where it would appear in very large numbers (14-20 cross
points per line), gave impetus to a search for an economical, easily 
fabricated embodiment. Several important choices had to be made with 
regard to the geometry of the magnetic circuit, the winding configuration 
and the remanent magnetic material. At the same time, the require
ments of the sealed reed contact were reexamined, and a modified ver
sion of it known as the 237B contact was adopted for ferreed use. 

II. THE CROSSPOINT FERREED 

2.1 Choice of Remanent Material 

All original work on the ferreeds was based on the use of a specially 
developed cobalt ferrite as the remanent material. In time, certain 
inherent difficulties became apparent: notably, a strong temperature 
dependence of the magnetic properties and low flux density, leading to 
structures of large cross section and poor efficiency. Furthermore, as 
more thought was given to the ferreed as a system component, it was 
found that the originally postulated microsecond speeds for the actuation 
of the ferreed were neither required nor practical from the standpoint 
of driving requirements. 

These considerations opened the way to a search for a metallic sub
stitute. Several chromium and tungsten steel compositions were investi
gated and found wanting due to lack of squareness and fullness of the 
hysteresis loop - properties whose importance were stressed in Ref. 1. 

The attention soon centered on a recent addition to the list of cobalt
iron-vanadium alloys - Remendur. The name of this alloy refers to its 
primary magnetic characteristic, i.e., a remanence greater than 17,000 
gauss. This is coupled with a square hysteresis loop and a coercive force 
from 1 to 60 oersteds. With a nominal composition of 48 per cent cobalt, 
48 per cent iron, 3.5 per cent vanadium and 0.5 per cent manganese, 
Remendur bridges the gap between the high coercive force of Vic alloy 
and the low coercive force and high permeability properties of 2V
Permendur and Supermendur. Fig. 1 shows a hysteresis loop obtained 
on a Remendur strip developed for ferreed use. Of importance to the 
ferreed application is the squareness EriEs and fullness vHoBolHcBr 
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Fig. 1 - Hysteresis loop of Remendur used in ferreeds. 

of the hysteresis loop. This property implies that the energy expendi
ture in establishing a desired end state approaches a minimum, and 
that the excess flux generated in the same process is small-important 
in view of the interference problems present in ferreed arrays. 

2.2 Choice of Geometry 

There exist two basic forms of ferreed structures - the parallel and 
the series ferreeds. These are illustrated in Fig. 2. The choice of Remen
dur, the need for tight magnetic coupling between the remanent mem
bers and the reed contacts, and the relative ease of fabrication led to 
adoption of the series structure for the crosspoint ferreed. 

That structure is shown in Fig. 3 in the form used in the ESS network. 
Mounted on each side of the reed contacts, which are molded together 
in plastic to form a single piece part, and extending approximately over 
the length of the glass envelopes, are two flat plates of Remendur. 
Notches on the plastic and on the plates permit accurate relative posi
tioning of the two. 

The reeds and the remanent plates are inserted into plastic coil forms 
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Fig. 2 - Principles of parallel and series ferreeds. 

molded into a steel plate. This steel plate acts as a common shunt for 
the whole array - it divides each crosspoint magnetically into two 
separately controllable halves, greatly reducing the energy requirement 
for producing the release state in which, as shown in Fig. 4, the two 
halves of the remanent members are magnetized in opposing directions. 
The same steel plate acts as the mechanical backbone of the whole 
array. 

2.3 Coil Design 

The differential excitation mode was selected to provide coordinate 
addressing of crosspoints. Fig. 5 reviews this principle as applied to a 
series ferreed. Each crosspoint has two sets of windings - one for each 
coordinate. Each set contains a winding of N turns on one side of the 
shunt plate and one with a larger number, typically 2N, on the other 
side. The 2N-turn winding is connected series opposing the N-turn 
winding. One pair of windings is in series with the corresponding pairs 
of all crosspoints in the same row, while the other is in series with the 
pairs of all crosspoints in the same column of the array. As the paired 
windings oppose each other, energization produces the release state in 
every crosspoint energized, except the one where both pairs of windings 
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are energized simultaneously - the crosspoint at the intersection of the 
energized row and the column. 

The logic inherent to differential excitation was found to be well 
suited to network array operation, in which, in general, only one cross
point in each row or column need be operated. 

No separate release actions are required, as operating a crosspoint 
automatically releases other crosspoints associated with the same row 
and column. 

The design of the coils has to take in account the energization re
quirements of a single crosspoint as well as the system requirement 
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Fig. 4 - Field distribution of the crosspoint ferreed in the operated and released states. 
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Fig. 5 - Winding configuration for differential excitation of the series ferreed: 
(a) winding pattern, (b) mirror symbol notation. 

calling for simultaneous pulsing of 32 winding pairs in the process of 
establishing a connection through two stages of ferreed switches. 

In ESS, these considerations led to the adoption of coils with windings 
of 18 and 39 turns wound with 25-gauge copper wire. With these coils, 
the nominal operating current pulse of 10 amperes peak amplitude and 
250 microseconds duration insures adequate margins for both operation 
and release of the crosspoint. 

The coils are wound directly on the coil forms by a machine that 
winds eight rows (or columns) of crosspoints simultaneously in a con
tinuous succession, each with a single length of wire. This eliminates 



8 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

soldered connections between coils, thus reducing the winding cost and 
improving the reliability of the assembly. 

The winding sense is reversed in adjacent crosspoints. This magnetic 
"checkerboarding" was found to be an effective means for reducing 
magnetic interaction phenomena as well as the noise pickup in the 
transmission pairs due to ferreed energizing pUlses. 

2.4 Crosspoint Arrays 

Switching network considerations led to selection of an 8 X 8 cross
point array as a basic network building block. In Fig. 6, such an array 
is shown. In addition, specifically for the concentrating stages of the 
network, several other array types were required: a switch providing 
each of 16 input terminal pairs with an access to 4 out of 8 available 
outputs, and 8 X 4 and 4 X 4 switches. It was found that each of these 
arrays could be derived from the basic 8 X 8 apparatus unit by suitably 
changing the connections of the control windings and the voice-pair 
strappings. Fig. 7 shows these connections for all the developed ferreed 

Fig. 6 - An 8 X 8 ferreed switch with covers removed. 
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switch types. As can be expected, this standardization of the physical 
size and component parts of the switches has eased the manufacturing 
and the network equipment design problems. 

The connections shown between the ends of the row and column 
control winding chains stem from the access scheme adopted in the 
network design. In this scheme, identical current is applied to both 
coordinates by connecting them effectively in series when energizing a 
crosspoint at their intersection. 
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Fig. 7 - Control winding interconnection for three types of two-wire switches: 
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III. DESIGN TECHNIQUE 

When the problem of designing the ferreed was first approached, it 
was found that the usual lumped-constant, linear magnetic circuit 
approach, while sufficient to yield a workable device, did not provide 
the means for its optimization; neither did it give an assurance of 
margins in face of tolerance allowances that have to be made for the 
whole structure, and variations in reed contact properties and in the 
magnetic properties of Remendur. Several attempts were made to refine 
the analytical tools toward this end. While providing qualitative in
sight into the operation of the device, they were frustrated from attain
ing the ultimate goal of a quantitative, explicit solution by the complex
ity of the problem caused by the rather difficult geometry and the 
essential nonlinearity of the magnetic materials. 

As a result, the refinements in the ferreed design had to be based 
largely on experimental techniques. Over the years, numerous experi
mental ferreed study techniques have been devised. These include the 
use of search coils with integrators, hysteresis measurements of reeds 
and the remanent magnetic members, Hall probes in the crosspoint 
structure and the reed gap, and reversible permeability measurements 
of the reeds. Supplemented by experiments in which the component 
parts of the structure, their positioning and the driving conditions 
underwent systematic variations, these techniques were instrumental 
in arriving at the present structure. 

The use of Hall probes provided two study techniques. First, Hall 
probes were employed to measure longitudinal magnetic field intensity 
along the ferreed axis, after applying varying operate and release pulses. 
Second, via the use of specially constructed sealed reeds with Hall 
probes mounted in the gap of the reed, it was possible to measure the 
resultant magnetic flux density in the reed gap under varying operating 
conditions. The drawback of the techniques lies in the upsetting of the 
ferreed magnetic circuit by the absence of the reed or introduction of a 
permanently open reed structure. 

Reversible permeability measurements of the sealed reeds, accom
plished via inductance measurements of small sense coils at about 100 
kc, provided a convenient means of determining the instantaneous ap
plied mmf to the sealed reeds under varying operating and interference 
conditions. The technique was especially useful because it permitted 
the use of ordinary sealed reeds under actual operating conditions, and 
it was free of drift problems since no integrator circuits were involved. 
On the other hand, the nature of the reversible permeability character-
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istic of the sealed reed is so insensitive in the released state of the sealed 
reeds as to make its use not suitable in that region. 

IV. OTHER FERREED TYPES 

4.1 The Bipolar Ferreed 

In the process of designing a ferreed switching network, the need 
arose for a device containing a pair of contacts that would be indi
vidually controllable. A typical use for this device is disconnection of the 
line current sensing element at the line circuit whenever a connection 
is established in the switching network (cutoff relay function). A postu
lated property of this device - to respond to control current pulse polarity 
to open or close its contacts - was found to permit integrating the con
trol access with the one for the crosspoints. 

An adaptation of the parallel ferreed principle, shown in Fig. 8, 
provided a suitable embodiment meeting this need. Of the two parallel 
remanent members, one consists of a permanent magnet material, 
Cunife I; the other, surrounded by a single coil, of Remendur. Con
tact closure or release depends on the polarity of the current pulse 
applied to the coil. Eight such devices packaged together form a single 
apparatus unit compatible in its length with the crosspoint units. 

4.2 The Four-Wire Crosspoint Array 

For use in switching networks requiring two separate directions of 
transmission, the two-wire crosspoint design has been extended to 
permit the operation of four contacts at every crosspoint location. The 
four contacts are arranged in a square pattern and are surrounded by an 
open-ended box formed by four remanent plates. The windings are 
similar to those of the two-wire array and again an eight-by-eight size 
has been chosen; Fig. 9 shows an individual crosspoint and an over
all view of the unit. 

V. SUMMARY 

Out of the original concept of the ferreed originated a whole class of 
useful switching devices. Characterized by small size, high speed of 
operation and absence of holding power, they permit retaining the 
desirable aspects of metallic contacts in the environment of electronic 
switching machines without creating undue time compatibility problems. 
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TABLE I - SUMMARY OF FERREED CHARACTERISTICS 

Switch Dimensions (Inches) Operate and Contact Characteristics Release Pulse 
-

Max. Max. Peak Width Max. Oper- Surge Code Type Height Width Length Amp!. Res. ate Life 
(A) (/-Is) (ohms) Time Cur-

(ms.) rent 

----------------
242 A 2-wire 8 X 8 
--------- 200 
242 B 2-wire (2) 8 X 4 6% 2H 9~i 9 to 
--- 500 
242 C 2-wire 16 X 4/8 0.2 3 3A* 2 X lOst 
--- ----------

200 
252 A 4-wire 8 X 8 9% 2~B 9~ 9 to 

300 
--- ------------------

1

1
% 

200 
241 B 2-wire 1 X 8 2H 9~ 6 to 5t 3 3A 2 X 106 

500 

* To protect the contacts, crosspoints are operated and released in a dry cir
cuit - maximum surge current refers to current value applied to closed contacts. 

t Minimum life of 2 X 106 operations with contact resistance below 0.2 ohm. 
t This contact breaks a maximum of 40 rna in its operation. 

Table I gives a summary of the characteristics of the ferreed codes now 
in existence. 
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Recent Developments in Bell System 
Relays - Particularly Sealed Contact 

and Miniature Relays 

By A. C. KELLER 

(Manuscript received February 25, 19(3) 

Relays are among the most important electromechanical devices. They 
have been in use for many years and continue, in modern form, to be essen
tial elements in modern Bell System and military applications, including 
electronic switching systems. 

The most important recent developments are miniaturization, sealed con
tact relays using glass-enclosed contacts, and "remanent" type devices. 

Ferreed and bipolar ferreed coordinate arrays and individual units are 
new and important switching elements. These devices make use of minia
ture glass-enclosed contacts in combination with "square loop" magnetic 
material* such as ferrite or certain iron alloys. They are magnetic "latch
ing" units and are operated or released by short pulses. 

I. INTRODUCTION 

An important article entitled "Relays in the Bell System" was pub
lished l in the B.S.T.J. in 1924. This was a comprehensive article on 
relays which were then in use in the Bell System, and it gave some in
formation on typical applications. Since that time, a few articles have 
appeared in the B.S.T.J. covering relays, particularly the article2 in 1952 
describing the general purpose wire spring relay. This is the most widely 
used relay in Bell System equipment at the present time. In addition 
there have been several comprehensive publications on the design of 
relays3,4 and several new forms of the wire spring relay, namely the 
"two-in-one" relay5 and a magnetic latching form of this device. Minia
ture wire spring relays have been and are being studied. 

* In this paper, this is a remanent material of suitable coercive force range, 
generally intermediate between the common permanent magnets and the mate
rials used for memory, such as cores, thin films, etc. 

15 
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It is the purpose of this paper, in part, to bring together in one article 
some of the newer relays of importance to the Bell System, including a 
few which are experimental at this time. In this survey, the most im
portant recent developments are miniaturization, sealed contact relays 
using glass-enclosed contacts, and magnetic latching devices. Frequency 
sensitive relays6 are included, as are ferreed7 and bipolar coordinate 
arrays. Such arrays consist of individual units of miniature glass-enclosed 
contacts (typically 2 or 4 at each crosspoint) in combination with a 
suitable "square loop" magnetic material such as certain ferrites or 
certain iron alloys which have controllable magnetic remanence. These 
devices are magnetic latching devices and can be operated or released 
by pulses as short as 5 microseconds. Arrays of this type are important 
units in Bell System electronic switching systems such as No. 1 ESS.8 

Relays are made in larger quantities by the Bell System than ever 
before, and also more relays are made by more manufacturers outside 
the Bell System than ever before. The increasing use of relays is of 
interest in view of the rapid development of solid-state switching devices 
and systems and their higher switching speeds. In general, solid-state 
devices operate in microseconds or better compared with milliseconds or 
longer for electromechanical devices. The reasons9 for the continued use 
and expansion of the uses of relay type switching devices are: (i) relays, 
with their large ratio of open to closed contact impedance, often result 
in equipment designs which are simple and inexpensive yet fast enough 
to make unimportant any increase in switching speed; (ii) relays can be 
used singly and in small numbers without the associated common con
trol equipment often required to take full advantage of the sensational 
speeds of solid-state switching devices; (iii) the rapid expansion of 
switching of all kinds requires more of many types of switching equip
ment, including both solid-state and electromechanical types; and (iv) 
relays and solid-state devices are developing a compatibility, and in 
fact combinations of both have been developed, notably the ferreed. 
Compatibility has accelerated the miniaturization of new relay designs 
because they are often used together. Relay size reductions of lo or more 
in volume have been achieved. 

Reliability is also becoming increasingly important, and lower failure 
rates are often required under more severe operating conditions. In 
military applications, this relates particularly to vibration, shock, 
temperature and humidity. Miniature relays often perform better under 
vibration and shock conditions than larger types because of the lower 
inertia of the moving parts and the higher natural frequencies of their 
smaller parts. 
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II. MINIATURE SEALED CONTACTS AND RELAYS USING THESE 

There are two general classes of sealed contacts of the glass enclosed 
type. These are the dry reed10 type and the mercury-wettedll type. 

Relays using the larger form of dry reed sealed contacts have been 
described in previous papers. 10 Two new miniature dry reed sealed con
tacts are shown in Fig. 1, and for comparison the larger 224A type,t° 
which has been in Bell System applications for a number of years, 
particularly in the digit register package in the No.5 crossbar system. 
All of these sealed contacts, shown in Fig. 1, consist of two magnetic 
reeds sealed in a glass tube. Dry reed sealed contacts are free from ex
ternal influences such as dust, corrosive atmospheres, and ambient 
pressures, and are relatively free of temperature effects. They do require 
a high degree of care and control during manufacture if maximum per
formance and uniformity are needed. In general, the mating contact 
surfaces are plated with gold, silver, rhodium, etc., or combinations of 
these, sometimes diffused under a controlled atmosphere. These opera
tions are necessary in order to achieve a low and stable contact resistance 
and to avoid sticking, which may be the case with certain soft precious 
metals. The 237A (or G29) was the first of the miniature dry reed 
sealed contacts to be applied in systems applications. As described in 
Ref. 10, it is essentially a scaled-down (1 to 3) version of the larger 
224A sealed contact. 

Fig. 1- Dry reed sealed contacts: top, miniature type 237A (G-29); center, 
miniature type 237B; lower, standard type 224A. 
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The 237B miniature dry reed sealed contact was developed specifically 
for the crosspoint contacts of the switching network in electronic 
switching systems, although it is now also applied in certain relays in 
such systems and is suitable for general applications. The new require
ments for the crosspoint application are: (i) higher breakdown volt
age - of the order of 880 volts, (ii) closer operate and release values, 
and (iii) contact resistance of less than 0.2 ohm during 1,000,000 opera
tions. These new and more severe requirements made it necessary (i) to 
pressurize the sealed contacts, (ii) to control tolerances more closely, 
and (iii) to improve the contact life by combinational plating of gold and 
silver. In addition, the reeds of the 237B design have been simplified 
by eliminating the "hinge" sections at a slight sacrifice in size. The in
crease is from the 237 A length of 0.875 inch to 1.00 inch. 

Operation of such contacts is by the application of a magnetic field, 
and several different methods are shown in Fig. 2. Fig. 2(a) shows the 
operation by passing the current through a winding surrounding the 
sealed contact. Fig. 2(b) shows one elementary form of ferreed where 
the operation results from pulse operation and magnetizing a "square 
loop" ferrite element. In this case the sealed contact remains closed with
out holding power because it is "magnetically latched." Release is by a 
pulse smaller in magnitude and of opposite polarity. Figs. 2(c) and 2(d) 
show other ferreed structures. 

Typical values for the operating characteristics of these sealed con
tacts in air core coils are as shown in Table 1. These operate ampere
turn values are minimum values in a simple air core test winding and, 
in general, faster speeds are obtained by increasing the applied ampere
turns. The minimum operate times as listed result, in general, by apply
ing several times* the minimum operate ampere-turns. 

Although sealed contacts can be operated by pulses of sufficient dura
tion in the circuit shown in Fig. 2(a), the contact will remain closed 
only during an interval approximately the time that the current flows 
through the winding. Pulse operation of most interest is associated with 
"magnetic latching." This can be done by using a magnetic bias either 
by a suitable remanent member - as shown in Fig. 2(b) - or by a 
biasing winding. The operating time of such devices can be of the order 
of that obtained with normal neutral operation of sealed contacts. 
However, the ferreed type of operation can result in "effective" operat
ing times very much faster and in the microsecond region. 

There is another form of magnetic latching of sealed contacts which 
uses remanent reeds for the elements of the sealed contact. In this case, 

* Operate time is a function of applied power (El). 
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TABLE I - TYPICAL OPERATING CHARACTERISTICS 

Sealed Contact Operate Release Approximate 
(Ampere-Turns) (Ampere-Turns) Minimum Operate Time 

(milliseconds) 

224 A 90 ± 12 34 ± 8 about 1.0 
237 A (G29) 34 ± 12 18 ± 8 " 0.5 
237B 30.5 ± 5.5 15 ± 4 " 0.5 

discussed in Refs. 7 and 12, the contacts are also locked by residual 
magnetism. As is the case with series or parallel ferreeds using non
remanent reed contacts, remanent reed sealed contacts may be operated 
by pulses shorter than the time of contact closure, but they may also be 
operated with longer pulses of lower power because the operation is 
dependent essentially on the input pulse energy. The advantage of 
remanent reeds is chiefly in the lower energy levels when they are used 
as crosspoints in a switching network, although these energy levels are 
somewhat higher than required to operate soft reeds in permanent 
magnet latching relays of this type. In comparing remanent reed sealed 
contacts and remanent sleeve crosspoints, the minimum energy in 
microwatt seconds, Elt* for operate and release, is important. Estimates 
are shown in Table II. 

The energy relations also show how it is possible, in a given ferreed 
or remanent reed device, to trade time for the magnitude of the pulse 
current. For example, a 5-microsecond operate time would require a 
pulse of about 10 times the current value of that required to operate 
the same device (with a different winding) in 50 microseconds, etc. 

Conventional type relays using the miniature 237 A and 237B sealed 
contacts are shown in Fig. 3. Fig. 3(a) shows the 237 A (G-29) sealed 
contact in a 2-make relay (GA 53702) as used in certain missile systems. 
Fig. 3(b) shows the 311A relay, which is a 3-make switching system 
relay using the 237B sealed contact. These relays are operated, under 
nominal conditions, at about 0.2 watt and 0.32 watt, respectively. Other 
designs with break contacts or transfer contacts have been made of 
similar size. Such relays make use of permanent magnets to bias thp. 
break contacts closed in the unenergized condition. By energizing the 
coil, these contacts are caused to open. Break and transfer contacts of 
this type have been made using the larger 224A sealed contact and have 
been described in a previous article.13 There are limitations relating to 

* E = applied steady-state voltage in volts 
I = peak current in amperes 
t = time in seconds 
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TABLE II - INPUT REQUIREMENTS FOR OPERATE AND RELEASE 

FOR Two SEALED CONTACTS PER CROSSPOINT 

Operation Release 

Nlo Eltmin NIR EItmin 

Remanent reed contact 32 94 36 80 
Remanent sleeve crosspoint 100 1900 70 900 
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reoperation at high currents through the coil and also to variations with 
operating current of the break and make sequence in such transfer con
tacts. In particular, break-before-make contacts cannot always be 
assured under all operating conditions. For this reason several forms of 
3-element transfer sealed contacts have been studied to provide break
before-make action under all conditions. One such experimental dry 
reed transfer14 sealed contact is shown in Fig. 4(a). In this particular 
form, all 3 reeds are made of magnetic material. Fig. 4(b) shows the 
design relations required for good operation and a sketch of the device. 
Other dry reed transfer sealed contact forms are also under consideration. 

III. FERREEDS AND BISTABLE DEVICES USING MINIATURE SEALED CON

TACTS 

Ferreeds were first described in an article7 in the B.S.T.J. in 1960. 
Figs. 5 to 7 show several ferreed units. Fig. 5(a) shows one of the origi-

Fig. 3 - Relays using miniature sealed contacts: (a) 2 make contact missile 
relay GA 53702, (b) 3 make contact relay type 311A. 
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Fig. 5 - Ferreed designs: (a) photograph of 1960 design, (b) drawing of 1960 
design. 
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nal parallel type ferreeds described in the 1960 article. Fig. 5(b) is a 
drawing of the same device. Fig. 6(a) shows another later series ferreed 
in which a sleeve of a "square loop" material (Remendur*) of the iron 
alloy type is used. Fig. 6(b) shows the flux patterns for the ferreed 
shown in Fig. 6(a). Fig. 7 shows a crosspoint using Remendur plates. 
An important characteristic of all of the ferreeds shown in Figs. 5 to 7 
is the balanced magnetic release arrangement that eliminates marginal 
requirements on the release current. 

In all cases one remanent member remains magnetized (half the 
remanent member in the series ferreed) while the field in the other 
member (or half member) is reversed in changing states. The field 

* Remendur is an alloy of vanadium-iran-cobalt. 
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energy* which must be supplied to the operating coils to reverse mag
netization is of the order of 3 to 5 times the remanent field energy of the 
remanent member and of the order of 10 or more on a pulse energy basis. 

There should be no inherent difference in the performance of the 
parallel and series type ferreeds except (a) due to the energy require
ment and (b) due to the dynamic characteristics in the sleeve or plate 
series ferreed where the flux through the reeds is necessarily reversed 
during each pulse. In this case the field due to the operating winding is 
in the opposite direction to the field supplied by the remanent members 
when the winding is not energized. The energy requirement mentioned 
in (a) can be less for the parallel type due to somewhat smaller air 
return reluctance, but on the other hand, the sleeve or plate series type 
provides better magnetic coupling. 

The ferreeds having operate times down to about 5 microseconds use 
"square loop" ferrite magnetic materials. Somewhat simpler, less ex
pensive and less temperature-sensitive forms of ferreeds use iron alloy 
metallic remanent materials in sleeve, plate, etc., form at some sacrifice 
in speed. However, speeds of about 50 microseconds or less are quite 
feasible. In any of these ferreeds, the magnetic material is set to the 
magnetized condition in microseconds. As a result of this, the sealed con
tacts close about 0.2 to 0.5 millisecond later. For almost all practical 
circuit conditions, this can be taken as operation in microseconds be
cause circuit elements of this type are not usually required to release 
until other circuit operations are completed. Typical important ferrite 
characteristics for ferreed operation are coercive force, He, of 30-35 
oersteds at maximum field, H, of 1000 and saturation flux density, B, 
of 4500 gauss, with corresponding remanence BR about 2800. Typical 
magnetic characteristics of an iron alloy (Remendur) used with ferreeds 
are: He, 37-42 oersteds at maximum field, H, 100 and saturation flux 
density of 21,000 gauss, with corresponding remanence BR of 17,000. 

3.1 Fen'eed and Bistable Arrays 

In switching networks for electronic switching systems,8 arrays and 
equipment assemblies of individual ferreed units are needed, for ex
ample 8 by 8, 1 by 8, etc. These have been needed in 2-wire and 4-wire 
forms. Accordingly, in the 8 by 8 array of the 4-wire type, 256 sealed 
contacts are needed. In one form, such arrays use four flat plates of 

* The field energy is proportional to the product of the saturation flux for the 
reeds and the magnetomotive force required to develop this flux. Better magnetic 
coupling between the remanent members and the reeds will reduce the field energy 
required. 
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Remendur which are rolled in such a direction as to give the maximum 
magnetic properties in the direction of the reed axes. 

The operation of a ferreed array is somewhat similar to that of a 
crossbar switch in that a particular crosspoint is operated by the simul
taneous operation of particular vertical and horizontal rows. A particu
lar crosspoint is thereby operated and held in this condition without 
holding power. The winding arrangements of the ferreed elements are 
such that the other crosspoints remain unoperated. To release the cross
point, in effect, reverse currents reset the magnetic material to the un
magnetized condition; hence the sealed contacts open. Fig. 8 shows an 
8 by 8 ,2-wire array or switch. 

The ferreed shown in Figs. 6(a) or 7 is the basic crosspoint element of 
the array shown in Fig. 8. This form contains 2 miniature dry reed sealed 
contacts surrounded by a sleeve (flat plates are more recent) of remanent 
magnetic material (Remendur). The magnetic shunt plate, positioned at 
the midpoint of the sleeve, separates the sleeve or plates magnetically 
into two independent halves. When the two halves are magnetized 
series-aiding, the flux return is through the reeds, causing the sealed 
contacts to close. When they are magnetized in series-opposition, the 
sealed contacts open. 

Each end of each crosspoint has two windings. A winding on one end 
is connected in series-opposition, with the winding of half the number 
of turns on the other end, as shown in Fig. 6(a). When either of the two 
sets of windings is energized, the two ends of the sleeve or plate are 
poled oppositely and the sealed contacts are opened. When the two sets 
of windings are energized simultaneously with equal currents, the two 
ends are poled series-aiding and the sealed contacts close. 

In a typical switch, 64 ferreed erosspoints are assembled together to 
form an 8 by 8 switch. Internal to the switch, the windings of rows and 
columns form a common multiple. To close a crosspoint, current is 
passed in one column and out one row via a common multiple. The cross
point at the intersection of the column and row then closes. At the same 
time, current passes through one of the two windings of all other fer
rends in the same row and column, causing any that are operated to 
release. This is a differential mode of operation, called "destructive 
mark"; it is characterized by the absence of specific network release 
operations, i.e. "taking down" connections. Connections are "taken 
down" as a direct result of, and at the same time as, connections that 
are set up. 

Bipolar ferreeds are also needed in switching systems. Fig. 9 shows 
the magnetic circuit of one form of an individual bipolar element. A 
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(a) 

(b) 

Fig. 8 - 8 by 8, 2-wire ferreed switch: (a) complete switch, (b) switch with 
cover removed. 
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combination of a "square loop" material is used together with a perma
nent magnet arranged as shown in relation to the sealed contacts. In 
this case more than one sealed contact may be used at each crosspoint. 
The bipolar unit gives a cutoff relay action. Fig. 10 shows a 1 by 8 unit 
of the 2-wire type. These open or close the reed contacts in response to 
the polarity of the current through a single winding. 

IV. MERCURY-WETTED SEALED CONTACTS AND RELAYS 

Fig. 11 shows a number of mercury-wetted sealed contacts of the 
transfer contact type. The 226D type is one of the smallest and most 
recent types. It is different from the others shown in that it is a break
before-make contact. The break-before-make action is the result of 
design changes, Fig. 11, of the pole-piece contact elements. Sealed con
tacts with mercury-wetted contacts are important because they have 
been shown to have the least contact chatter, often none, also have the 
longest operating life of any relays yet designed, and can exceed one 
billion operations. 

The small size of the 226D mercury sealed contact can be packaged 
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Fig. 10 - 1 by 8 assembly of 2-wire bipolar ferreeds. 

in a small-size relay. However, two new relay designs using the new 
mercury sealed contact, the 314A and the 315A, do not require size 
reduction because they are chiefly expected to replace larger Bell System 
relays, namely the 255 and 280 types in certain applications where im
proved performance is needed. 

The 314A is expected to replace the 255 type polar relay in telegraph 
circuits and to reduce maintenance in these. Fig. 12 shows the 255 re
lay and the new 314A relay. As can be seen, these are plug-in types and 
are interchangeable. 

The 315A shown in Fig. 13 is a plug-in type and is expected to replace 
some of the codes of the 280 type polar relay, particularly those used in 
the No.5 crossbar system, in order to improve performance and reduce 
maintenance. This is important in that the 280 type relays used in the 
No.5 crossbar system show the highest relay trouble rate in terms of 
troubles per 1000 relays per year. However, 280 type relays are used in 
smaller numbers, in such systems, to perform special and exacting func
tions. 

All of the mercury sealed contacts discussed, or used by the Bell 
System up to the present time, are required to operate in a vertical 
position within certain limits, usually ± 30 degrees. lVIilitary applica
tions, particularly, would be served by an "all-position" mercury sealed 
contact. Several forms of such contacts have been built and studied. 
lVIost of these have been judged to be rather complicated and relatively 
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expensive to control and manufacture. A more recent and simpler ex
perimental design is shown in Fig. 14. Basically, this is a modification of 
the 226D sealed contact shown in Fig. 11 but modified in two ways: 
(i) excess mercury is removed during manufacture, including the usual 
pool of mercury, and (ii) armature changes have been made to improve 
the contact performance under shock and vibration conditions. By re
ducing the amount of available mercury for replenishment at the contact 
surface, the life of the sealed contact is reduced, but several million op-

Fig. 11- Mercury-wetted sealed contacts: left, 218 type; left center, 222 type 
make-before-break contact; right center, 226B type make-before-break contact; 
right, 226D type break-before-make contact. 
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3 

Fig. 12 - Telegraph relays: left, standard 255 type; right, new 314A type us
ing 226D sealed contact. 

erations are possible. For many applications this is adequate. This relay 
is described in detail in an article15 in the Bell Laboratories Record. 

V. MINIATURE ARMATURE TYPE RELAYS 

5.1 Rotary Armature Relays 

A miniature relay of this type was described in a paper16 in 1959. 
Fig. 15(a) is a photograph of this relay and Fig. 15(b) is a drawing of its 
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Fig. 13 - Polar relays: right, standard 280 type; left, new 315A type using 
226D sealed contact. 

Fig. 14 - Experimental "all position" mercury-wetted sealed contact model 
'1'-116. 
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major clements. It has been in manufacture for military applications as 
the GS 57668 relay. It is of the "crystal can" size and has a rotary 
armature operating two transfer contacts symmetrically arranged. As 
compared with similar relays it has the following advantages: (i) im
proved contact reliability, particularly in dry circuits, by the use of 
twin precious metal contacts in a separate sealed contact chamber free 
of all organic materials; this eliminates the so-called "brown powder" 
problem in which organic polymers are formed with resulting high-re
sistance contacts; (ii) elimination of bearing friction and the associated 
erratic performance; this is accomplished by using a reed type spring 
armature suspension; and (iii) a magnetic design of improved sensi
tivity with corresponding reduced effect due to stray magnetic fields. 

5.2 Telstar Satellite Type Relays17 

Fig. 16 shows a relay similar to the "crystal can" relay shown in Fig. 
15 except that it operates or releases on pulses. It uses magnetic latch
ing so that no holding power is required. This relay is used in the Bell 
System Telstar satellites; in fact nine each are used in Telstar I and 
Telstar II. Fig. 16(a) is a photograph of the relay, and Fig. 16(b) is a 
drawing of the chief features. It is characterized by the dual armatures 
in which the two armatures are connected together by a small permanent 
magnet. Fig. 16(c) shows the control circuit in Telstar I using the relay. 

5.3 JJ!1 A and III B M in'iature Relays18 

A new series of relays known as MA and MB types has recently 
been developed, primarily to save space for equipment installed on the 
premises of Bell System customers. Manufacture of these was started at 
the Western Electric Co. plant at Kearny, N. J., in 1962. Fjg. 17 shows 
the lVIA and MB relays. The MA relay has a maximum contact capacity 
of 4 transfer contacts and the MB, which uses some of the same piece 
parts, has a maximum contact capacity of 6 transfer contacts. 

These relays have most of the basic features of the standard wire 
spring relay (Ref. 2), namely: (i) code card operation to provide a simple 
means for a wide variety of contact combinations; (ii) low stiffness, 
pretensioned springs; (iii) coplanar spring groups to simplify welding 
and handling and to standardize assembly in manufacture; (iv) contact 
materials and contact forces identical with the standard wire spring 
relay; (v) essential elimination of locked contacts because of the card 
operation; (vi) twin precious metal contacts; etc. The basic contact 
springs are shown in Fig. 18 before and after shearing the ends of the 
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Fig. 18 - Contact springs for MB type relay. 

contact spring groups. Typical contact and winding information and 
operating currents are given in Table III. As is the case for the standard 
general purpose wire spring relay, a few code cards are sufficient for a 
large number of contact combinations. 

The MA and ME relays do not have the sensitivity* or the contact 
capacity of the wire spring relays, but they are much smaller, i.e., about 
lo the volume, and they are suitable for mounting on printed circuit 
boards. One such typical plug-in printed circuit package is shown in 
Figs. 19(a) and 19(b). The same principles used in the MA and ME 
relays can also be used in crossbar switch designs to reduce the size and 
weight to about 15 per cent of the present types. 

* Ampere-turn sensitivity of the 6 transfer MB relay is about 185, compared 
with 160 for the AF wire spring relay and 220 for the AK (5 transfer) relay. How
ever, because of the larger coil on wire spring relays, the relative power sensitivi
ties for 6 transfer relays are about: 0.45 watt for the MB, 0.18 for the AF, 0.14 for 
the AJ, and 0.55 for the AK relay. 
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TABLE III-SOME TYPICAL MA AND MB RELAY CODE 
INFORMATION 

Code Springs 
I 

Winding Resistance Operate Current 

(ohms) (amperes) 

MAl 4 transfers 915 O.OlG 

MA3 2 makes} 590 0.013 
2 breaks 

MA4 3 transfers } 915 0.016 
1 continuity 

MA7 3 makes } 2100 0.0078 
1 transfer 

MA 11 2 transfers } 590 0.021 
2 continuities 

MB 1 G transfers 590 0.024 r transfers } 
MB3 1 continuity 915 0.018 

2 makes 
1 break 

MB4 G makes 915 0.016 r continuities ~ MBG 2 makes 915 0.0175 
1 early break 

MB7 {3 transfers 590 0.024 
3 continuities 

VI. FREQUENCY SENSITIVE RELAY-THE VIBRATING REED SELECTOR 
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Another miniature device, shown in Fig. 20, is a frequency sensitive 
relay called the 215 type tuned reed selector.6 Fig. 21 shows a drawing of 
the basic operating principles. The selector shown in Fig. 20 has been in 
manufacture at the vVestern Electric Co. in North Carolina, starting in 
1962, primarily for the Bell System BELLBOY radio paging service.19 The 
selector is basically a highly precise and stable miniature tuning fork 
associated with a lightweight contact. It is smaller and more stable, 
and is an improved design for manufacture compared with an earlier 
similar device known as the type 212 selector.2o These devices are very 
sensitive, responsive only to sustained frequencies of the order of 0.5 
second, and insensitive to noise interference. Fig. 22 shows the data over 
a wide temperature range for two of these devices, operating at nominal 
frequencies of 517.5 and 997.5 cycles per second and at corresponding 
bandwidths of about 1.1 and 1.3 cycles per second. Sufficient stability 
has been achieved so that, for the BELLBOY service, 33 different fre
quencies spaced 15 cycles apart are provided in less than one octave 
between 517.5 and 997.5 cycles. By using three different frequencies at 
a time, more than 5000 combinations are possible for selective ringing 
of a particular customer. 
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(a) 

(b) 

Fig. 19 - Plug-in printed wiring board with MB type relays: (a) apparatus 
side, (b) wiring side. 

Stability of materials and design have been measured, and these 
show the total frequency change from -40°C to +80°C to be less than 
0.5 cycle and the bandwidth change to be less than 0.2 cycle. At operat
ing power levels of 100 microwatts, the intermittent contact will close 
to a low-resistance level over 20 per cent or more of the cycle time. An 
important factor in this has been the use of a nickel-iron-molybdenum 
alloy21 (Vibralloy). This material has controlled elastic and magnetic 
properties. 
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exceeding a contact current of a few milliamperes. In the BELLBOY appli
cation a transistor oscillator is triggered to give an audible signal. 
However, the short contact closures occurring at a rate of hundreds per 
second may therefore control pulses that have an integrated or average 
power that is a substantial fraction of a watt. For example, only small 
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Fig. 21- Tuned reed selector schematic. 
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of 517.5-cycle unit, (b) temperature characteristics of 997.5 cycle unit. 
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Fig. 23 - Direct operation of mercury-wetted relay from low-level frequency 
frequency signals via tuned reed selectors. 

changes in frequency or sensitivity were measured over a test period of 
1500 hours in a 12-volt circuit with a 240-ohm resistor giving a closing 
current of 50 milliamperes. The power capacity of the contacts can, in 
fact, be used to operate relays or other devices directly: for example, 
mercury sealed contact relays with large contact current capacity. One 
such circuit is shown in Fig. 23. In this circuit the selector contact is 
used as a synchronous rectifying means to generate dc from the same 
ac source that operates the selector. When the input frequency corre
sponds to that of the selector, the contact closes in synchronism once 
each cycle to send unidirectional pulses to the capacitor and relay in 
parallel. The capacitor serves to smooth the pulses so that the relay 
winding has nearly a constant current in it. Combination circuits using 
reed selectors and mercury-wetted contact relays provide a simple 
means of selectively controlling substantial powers to perform a mul
tiplicity of functions over a single pair of wires. 

VII. REMARKS 

In the telecommunications field, rapid advances are being made in 
many new areas of technology. Devices and systems based on these will 
naturally be compared and evaluated for Bell System applications with 
older devices and systems. In such comparisons, care is needed to do 
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this, not only with devices at hand but with the possibilities that pres
ently exist on the basis of general advances made in the older fields. 
One of the older and important areas is that of electromechanical devices 
such as the relays discussed in this article. Decisions can then be made 
and devices chosen, not on the basis of technology, but on the basis of 
the best performance, cost, and over-all systems requirements. Relays, 
in modern form, sometimes in miniature form, can be expected to be 
important devices in the future as they have been in the past. 
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Overflow Traffic from a Trunk 
Group with Ball(ing* 

By PETER LINHART 

(Manuscript received April 18, 1963) 

A stream of telephone calls is submitted to a group of trunks, the first
choice group, according to a recurrent process. We allow balking on this 
trunk group; i.e., if a call finds k of the first-choice trunks busy it may be 
served, with probability Pk , or may fail to be served, with probability qk . 
A call which fails to receive immediate service on the first-choice trunk group 
is submitted to a second-choice trunk group, the overflow group. We also 
allow balking on the overflow group. Calls which fail to receive immediate 
service on the overflow group are lost to the system. Holding times have 
negative-exponential distribution. 

We give methods for finding the joint distributions of numbers of busy 
trunks on the first-choice and overflow groups, at overflow instants (i.e., 
instants at which calls are submitted to the overflow group), at arrival in
stants, and at arbitrary instants. We consider the transient as well as the 
limiting distributions (and demonstrate the existence of the limiting distri
butions) . 

The methods developed are illustrated by several examples. Numerical 
results are given for the blocking in the particular case that the first-choice 
group constitutes a random slip, while the overflow group is full-access 
(common). 

1. INTRODUCTION 

1.1 Balking and Overflow Traffic 

A telephone call is submitted to a group of m trunks. This call may 
fail to occupy a trunk, even though not all m trunks are busy. There 
may be a number of reasons for such a failure, e.g.: the calling line may 
not have access to any idle trunks, some equipment other than the 

* This paper represents part of a doctoral dissertation submitted to the Sub
committee on Applied Mathematics, Columbia University. 
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trunk itself may be required to complete a connection and this equip
ment may be busy, or the m trunks may be merely first-stage links in 
a connecting network and there may be no free path through this net
work. Whatever the cause of the failure, we shall say that the submitted 
call ballcs (although the word is perhaps more appropriate in queueing 
theory applications). In this paper we shall restrict ourselves to the case 
in which the probability of balking depends only on the number of 
busy trunks: if an arriving call finds k trunks busy, it is served, with 
probability Pk , or balks with probability qk (Pk + qk = 1). If all trunks 
are busy, an arriving call cannot be served, and therefore qm = 1. Thus 
we subsume blocking under the term balking. 

The traffic which overflows from a trunk group with balking has 
different characteristics from that which overflows from a full-access 
group. [By a full-access trunk group we mean one for which qk = 0 
(k < m), qm = 1.] Suppose recurrent traffic is submitted to a full-access 
group (when we refer to recurrent input traffic we mean that the inter
vals between arriving calls are independent, identically distributed 
random variables). Suppose further that the holding times of calls have 
negative-exponential distribution. Then, as Conny PalmI has shown, 
the overflow traffic is also recurrent. This is not the case for traffic 
overflowing from a trunk group with balking. 

The traffic which balks on the first-choice group may be submitted 
to an overflow group of, say, 1\1{ trunks. There may also be balking on 
the overflow group. Now L. Takacs2 has treated in detail the process 
of numbers of busy trunks in a trunk group with balking to which a 
recurrent stream of calls of negative-exponential holding times is sub
mitted. Thus, if the first-choice group is full-access, we know how to 
describe what goes on on the overflow group. However, if the first-choice 
group is not full-access, the stream of calls submitted to the overflow 
group is not recurrent, and therefore further analysis is required to 
describe the process of numbers of busy trunks on the overflow group. 
We attempt to treat this problem in the present paper; in so doing, we 
are led to consider the joint distribution of numbers of busy trunks on 
the first-choice and overflow groups, which is also of interest in itself. 

1. 2 Mathematical Description of the Problem, and Some Notation 

Calls are submitted to a group of m trunks, the first-choice group, at 
successive instants Tl, T2, ••• , Tn, •••• The interarrival times, ()n = 

Tn - Tn-l (n = 2, 3,4, ... ), are independent, identically distributed 
random variables with common distribution function 

P{()n ~ x} = F(x), 
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and we specify further that P{ T1 ~ x} = F(x). We assume that the 
{en} are not lattice variables (i.e., that the interarrival times are not 
confined to multiples of a constant), that F(O) = 0 and that 

o < a < 00, 

where 

a = 100 

xdF(x) 

is the mean interarrival time. 
Note that the class of recurrent inputs just described includes, among 

others: Poisson arrivals, equally spaced arrivals, and, as previously 
remarked, arrivals which are themselves overflows from a full-access 
trunk group to which a Poisson process of calls with negative-exponential 
holding time is submitted. 

If the nth call receives service, then its holding time is a random varia
ble, Xn. The {Xn} are independent and identically distributed, with 
common distribution function 

{0
1 - e-x 

P{Xn ~ x} = 
for x ~ 0 

for x < 0 

and are independent of the arrival process {Tn}. 
Note that we are measuring time in units of the mean holding time; 

thus a = 1/ a is the submitted traffic in erlangs. 
An arriving call which finds k trunks of the first-choice group busy is 

served with probability Pk , or balks with probability qk. We have 

Pk + qk = 1 

qm = 1. 

(k = 0, 1, ... , 1n) 

A call which balks on the first-choice group is immediately submitted 
to a second group of M trunks, the overflow group (we allow the case 
J.lf = 00). We denote the sequence of instants at which calls are sub
mitted to the overflow group by {TN} (N = 1, 2, 3, " . ). If such a 
cal1 finds K trunks of the overflow group busy, it is served, with prob
ability GK , or balks, with probability HK • We have 

(K = 0, 1, ... , M) 

(if M < 00). 

We make the following plausible restriction on the balking proba
bilities 
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PTe > 0 for k < m 

GK > 0 for K < 1vI. 

A call which balks on the overflow group is said to be blocked. It im
mediately disappears from the system and is not resubmitted; i.e., lost 
calls are cleared. 

We now define the following random variables: 

Ht) = number of busy trunks on first-choice group at time t 
~n = H Tn -) 
~/ = H'PN -) (the superscript "0" means "overflow".) 

:E(t) = number of busy trunks on overflow group at time t 
En = E( Tn -) 

ENo= E(TN-). 

We also define the following probabilities, which it will be our object 
to determine: 

P{~NO = k, ENo = K} = PO(k,K,N) 

lim PO(k,K,N) = PO(k,K) 
N-+OCJ 

P{~n = k, :En = K} = P(k,K,n) 

lim P(k,K,n) = P(k,K) 

P{~(t) = k, E(t) = K} = P(k,K,t) 

lim P(k,K,t) = P*(lc,K). 
t-+OCJ 

When one of the variables k or K in one of these probabilities is not 
written, it is understood to be summed over, e.g. 

M 

P(lc,t) = L P(lc,K,t). 
K=O 

A quantity of particular interest in applications is the blocking 
m M 

B = L L qkH KP(lc,K). 
k=O K=O 

We shall also have occasion to refer to the blocking on the first-choice 
group 

m 

b = L q,,~P(lc). 
k=O 
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Further notation will be introduced as it is needed. The notation will 
as far as possible conform to that of Takacs.2 We shall, when possible, 
use lower-case letters to refer to the first-choice group and the corre
sponding capital letters for the overflow group. Equations of Ref. 2 
will be denoted by a T: e.g., "(T44)." We note here only the following 
definitions: 

SO(s) = i~ e-sx dF(x) 

C
T 

= IT so(j) 
j=l 1 - so(j) 

(Co = 1) 

() lIT so(s + j) 
Cr S = 1 (+ .) 

j=O - SO s J 

1.3 Previous Results 

Let us denote the interoverflow times by eN = TN - T N-I . As we 
have mentioned, if the first-choice group is full-access, the {eN} are 
independent and identically distributed. In this case let us denote their 
common distribution function by 

G(x) = p{eN ~ x} 

with Laplace-Stieltjes transform 

'Y(s) = i~ e-sx dG(x). 

Takacs3 solves a recurrence of PalmI to obtain 

m+l (m + 1) 1 . 
~ r Cr-I(s) 

'Y(s) 
t (m) 1 
r=O r CT-I(s) 

A. Descloux4 gives convenient recurrence formulas for calculating 
'Y(s) and the moments of G(x) in the case of Poisson input, i.e., when 

{

I - e-ax (x ~ 0) 
F(x) = 

o (x < 0) 

Some results exist for P(k,K) in the case of Poisson input [for which, 
and only for which, as we shall see, P*(k,K) = P(k,K)]. The first of 
these is due to L. Kosten. 5 He considers a full-access first-choice group 
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and an infinite full-access overflow group. Let llS denote binomial 
moments with respect to the overflow group by 

M (K) U(k,R) =;; R P(lc,K). 

Then Kosten finds 

U(k,R) = CoR(a) Com(a)C/(a) 
CRm(a)CR+Jm(a) . 

(2) 

(See also the appendix by J. Riordan to a paper of R. 1. Wilkinson. 6) 
The polynomials in (2) are defined by 

k k (j + R - 1) a
k
- i 

CR (a) = ?: . (/, _ .) , 
J=O J c J. 

(3) 

so that Co'(a) = akjk!, if we agree that (-~) = 1. J. Riordan (Ref. 

7, p. 120) remarks that these polynomials are closely related to the 
Poisson-Charlier polynomials Cn(x,a); in fact 

CRk(a) = Ck ( -R,a). 

E. Brockmeyer,S N. Bech,9 and K. LundkvistlO consider a problem 
which differs from Kosten's only in that M is finite (GM = 0). Brock
meyer finds 

P(lc,K) (4) 

where 

Y 8 = t ( -1) J-8 (J - 1) aJ 
J=8 S - 1 

(8 = 1,2, ... ,M) 

1 
Yo = C1m+M(a) 

1 1 ~ (L - 1) m+ L ( ) 
aJ = C1m+M(a) . CJm(a) 6 J _ 1 Co a . 

We do not consider here more complicated trunking situations (graded 
multiples, alternate routing arrangements in which the overflow group 
is at the same time the first-choice group for other sources of traffic). 
See, however, Wilkinson,6 and R. Syski (Ref. 11, chapters 7,8, 10). 

Takacs2 gives, for arbitrary qk, methods of finding P(k,n), P(7c) , 
P(k,t), and P*(k). Thus in what follows we shall take the attitude that 
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everything we need concerning the first-choice group only is, in principle, 
known. 

1.4 An Example 

This paper grew out of the following problem, in which both balking 
and overflow are involved. Subscriber lines are connected to the m 
trunks of the first-choice group in such a way that each line has access 
to only "I of them. We refer to a particular set of "I trunks as the access 
pattern for a particular line or group of lines. Equal traffic is submitted 

to each of the (~) possible access patterns. When a connection is made, 

any idle trunk in the subscriber's access pattern is equally likely to be 
selected. This arrangement is referred to as a random slip, or Erlang's 
ideal grade. It is easy to see that the balking probabilities are 

qk = 0, for o ~ k < "I, and 

qk 
- (~) 

for "I ~ Ie ~ m. 
- (~)' 

Traffic which balks on the first-choice group is submitted to a full
access overflow group of JJ1 trunks. If a call is blocked on the overflow 
group, it is lost. 

Such an arrangement may be economically desirable. The average 
traffic carried per trunk (for a given blocking probability, B) is less than 
for a full-access group of m + M trunks, but the traffic per crosspoint 
is greater. Knowing the costs of trunks and of crosspoints, and given 
m + JJ1 and the desired value of B, one wishes to select "I and m so as 
to minimize the cost per unit, of carried traffic. We shall give some nu
merical results for this arrangment. 

II. THE STATE OF THE SYS'l'EM AT OVERFLOW INSTANTS 

2.1 Transient Behaviour 

Unless the first-choice group is full-access, the overflow process {TN} 
is not recurrent and the sequence {EN°} is not a Markov chain. However, 
the sequence of pairs of random variables {~NO, EN°} is a homogeneous 
1Vlarkov chain. This may be seen as follows. Suppose we know that 
H TN-) = Ie and E( TN-) = K. TN is an arrival instant; because the 
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arrival process is recurrent and independent of the holding times, the 
history of the system before TN has no effect on the epochs of future 
arrivals. TN is an overflow instant; whether or not the overflowing call 
is accepted by the overflow group depends only on the value of K. Be
cause of the exponential distribution of holding times, the stochastic 
behaviour of the system after TN is independent of the ages of calls in 
progress at TN. Thus the values of H T N- ) and Z( T N- ) determine the 
whole future stochastic behaviour of the system. Therefore we are led 
first to a consideration of the probabilities PO(le,K,N). 

If Ht) = le, Z(t) = K, then we say that at time t the system is in 
the state (le,K). The values of ~No are limited to those le for which qk > o. 
We denote the set of such integers le by ct. As initial conditions we take 
~(O+) = i, Z(O+) = I < 00. (It is not required that i E ct.) Under 
these initial conditions, we seek PO(le,K,N) for le E ct; K = 0, 1,2, ... ; 
N =1,2,3, .... 
Let us now define the following quantities: 

Gjk(x) = P{~N+lo = le, 8N+l ~ x I HTN+) = j} 

= P{~N+lo = le, 8 N +1 ~ x I ~N = j} 

= P{~lO = le, Tl ~ x I HO+) = j} 

with Lap]ace-Stieltjes transform 

'Yik(S) = forT:> e-sx dGik (x) 

° M(K) ° U (le,R,N) = ~R R P (k,K,N) 

V'(k,R,N) = "fR (~) GKP'(k,K,N) 

VO(le,-I,N) = O. 

We may now state: 

(R = 0, 1, ... , N[) 

(R = 0, 1, ... , M) 

Theorem 1: The distribution PO(k,K,N) is uniquely determined by 
the binomial moments UO(k,R,N); the latter are determined by 

U"(k,R,l) = (~) 'Y;k(R) (5) 

UO(k,R,N + 1) = L 'Yjk(R) [UO(j,R,N) + VO(j,R - I,N)]. (6) 
jEa. 
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Proof: The transition probabilities for the homogeneous Markov 
chain {~NO, :eN°l are given by 

p0(j,J; k,K) = P{~N+1° = k, :eN+1° = I{ I ~No = j, :eNo = J} 

= 10
00 

P {:eN+1° = I{ I :eNo = J,8N+1 = x} dGik(X). 

I t is easy to see that 

= GJ (J 11) e-XK (1 _ e-X )J+I-K 

+ IIJ (~) e-XK(l _ e-X)J-K. 

Thus 

p"(j, J; Ie, J() = f dG;k(X) [ GJe i 1) e-XK (1 - e-X
)J+1-K 

+ IIJ(~) e~K(l - e-X)'-KJ . 

(7) 

Now 
m M 

PO(k,K,N + 1) = L L p°(j,J;k,K)p°(j,J,N). (8) 
j=O J=O 

Substituting (7) in (8), and taking the Rth binomial moment with 
respect to the overflow group, we obtain 

+ IIJ(~) ] e-
xu 

P"(j, J, N) 

= ft. t; "t;k(R) [(~) + GJ(R ~ 1)] P"(j, J, N) 

= L 'Yik(R) lU°c'i, R, N) + you, R - 1, N)], 
iEa. 

which is (6). 
For N = 1, we have 
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so that 

U'(k, R, 1) = f dG;.(x) (~) e-llX 
= (~) 'Y;k(R), 

which is (5). 
From the definition of UO(k,R,N), we have 

i-x (_1)R-K (~) U'(k, R, N) 

= i-x (_1)R-K (~) J~ (~) P'(k, J, N). 

(9) 

Now, for any finite N the double series on the right contains a finite 
number of terms, even if M = 00. This is so because 

PO(k,.J,N) = 0 for k + .J ~ i + I + N, 

and we have assumed I < 00. 

Thus the double series can be rearranged, and one obtains readily 
that the binomial moments determine the probabilities according to 

P'(k, K, N) = .~ (_1)R-K GD U'(k, R, N). (10) 

In (5) and (6), the quantities 'Yik(R) occur as coefficients. We regard 
these coefficients as known because they can be expressed in terms of 
certain quantities determined by Takacs.2 Let 

Mik(X) = E {number of Tn in (o,x] for which ~n = k I HO+) = i}, 

with Laplace-Stieltjes transform 

f.1.ik(S) = lr:1'J e -8X dMik(X). 

Takacs gives a method for finding the f.1.ik(S) [(T70), in which, however, 
the index i is implicit]. The way in which the quantities f.1.ik(R) deter
mine the 'Yik(R) is expressed in the following lemma (in which, it is to 
be noted, values of the indices j,k, etc. are no longer restricted to the 
set a). 

Lemma 1: Define Mi/(X) = E {number of TN in (O,x] for which ~No = 
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k I HO+) = i}, with Laplace-Stieltjes transform 

J.l.ikO(S) = 1«> e-SX dMikO(x). 

55 

Let J.l.o,R be the square matrix with elements J.l.ikO(R); j,k = 0, 1, ... , m. 
Let 'YR be the square matrix with elements 'Yik(R); j,k = 0, 1, ... , m. 

Then,jor R = 1,2, ... , 

'YR = J.l.0,R(E + J.l.0,R)-l (11) 

where E is the (m + 1) by (m + 1) unit matrix. 
Since, obviously 

(12) 

(11) provides the desired relation between the 'Yik(R) and the J.l.jk(R). 
Proof: We shall first show that 

m 

J.l.jkO(R) = 'YJk(R) + L 'Yjz(R)J.l.z/(R) (13) 
1=0 

for R = 1,2, .... 
Suppose HO+) = j, and consider a given R-tuple of trunks on the 

overflow group which are al1 busy at t = 0+. If Tl = x, the probability 
that the overflow at Tl will find this R-tuple still busy is e -RX. 

Thus 

'Yik(R) = 1«> e-Rx dGjk(x) 

is the probability that this R-tuple is still busy at Tl and that H T1 - ) 

= k. 
Again, if this R-tuple remains busy just until t = x, the expected 

number of overflows from k to find it busy is M jk ° (x). Therefore the 
unconditional expectation of the number of overflows from k to find 
it busy is 

1«> MjkO(X) d(1 - e-RX ) = 1«> e-RX dllfjkO(x) = J.l.jkO(R). 

Denote (temporarily) by [J.I. jk ° (R) Il] the expected number of overflows 
from k to find this R-tuple still busy, on the condition that H T1-) = l 
and the R-tuple is still busy at t = T1-. 

Then, by the principle of total expectation, 
m 

J.l.ikO(R) = L (J.i.jkO(R) Il1'¥iz(R). (14) 
1=0 
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Now because of the exponential holding-time distribution 

[]LikO(R) III = ]Ll/(R) for l ~ Te 

and 

(15) 

(16) 

Substituting (15) and (16) into (14), we obtain (13). Equation (13) 
may be written 

(17) 

Thus, to prove the lemma, it remains to show that (E + ]L0.R) is 
nonsingular. 

From (17) 

Therefore 

(E - "/). (E + ]L0,n) = E 

det (E - "In) . det (E + ]L0.n) = 1. 

Since clearly both det (E - "Ill) and det (E + ]L0.R) are finite (for 
R > 0), it follows that det (E - "Ill) ~ 0 anu uet (11) + ]L0 .R) ~ 0, 
which completes the proof of the lemma. 

We note, for later use, that we have also shown that 

(18) 

We need a separate method for findjng "Iik(O), the above argument 
being invalid because ]LikO(O) = 00 for allTe E ct. 

We notice that "Iik(O) = Gik ( 00) = P{HT1-) = k I HO+) = j}. 
The quantities "I ik( 0) are determined by the following system of 

equations: 

'Y;k(O) ~ qk f.~ dF(x) «) e-'%(1 - e-');-' + ta P. 'Y'+l.' (0) . 

. f.~ dF(x) U) e-'%(1 - e-%);-' (j, k ~ 0,1, ... ,m). 

This may be seen as follows: 

(19) 

The event {H Tl -) = k} can occur in these mutually exclusive ways: 
(i) the first arrival after t = 0 encounters k busy trunks on the first

choice group, with probability 
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and overflows, with probability qk ; 
(ii) the first arrival after t = 0 encounters l busy trunks and does 

not overflow [so that H 7\+) = l + 1]; the next overflow following 
this occurrence is from k [probability 'Yl+l.k( 0)]. 

For each k, (19) is a set of linear equations in the 'Yi/C(O). These 
equations determine the 'Yik(O) uniquely if the coefficient matrix is 
nonsingular (for each k). Call this matrix A (k). If we can show that 
I 11 i/k

) I > L A j/k) for each j, it will follow from the theorem of Levy-
Z"'i 

Hadamard-Gerschgorin (Ref. 12, p. 79) that det 11(k) ~ O. That is, 
we want to show that 

t. p. f dF(x) U) e-'x (1 - e-X
);-' < 1. (20) 

The left side of (20) is evidently strictly less than 

t 100 

dF(x) (j) e-ZX (1 - e-X
) i-I = 1, for each j, Q.E.D. 

1=0 0 l 

Equations (5) and (6) may be solved, in some cases, by means of 
generating functions. 

Let 
00 

UO(k,R,w) L UO(k,R,N)wN 

N=l 

00 

VO(k,R,w) = L VO(k,R,N)wN 

N=l 

Note that it follows from (10) that 

};, P'(k,K,N)wN ~ .~ (_I)R-K (~)U'(k,R,w). (21) 

From (5) and (6) we obtain 

U'(k,R,w) ~ ~ (~)'Yik(R) + ;~ 'Y;k(R)[U'(j,R,w) 
(22) 

+ V'(j,R - 1,W)1}. 

We illustrate the use of (22) by a simple example. 
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Example 1: 
If the first-choice group is full-access (the only element of a is m), 

then UO(k,R,N) and VO(k,R,N) vanish except for k = m. For sim
plicity, we assume that i = m; then the only relevant element of the 
matrix 'YR is 'Ymm(R), and (22) becomes: 

U"(m,R,w) = w 'Y.""(R)[(~) + U"(m,R,w) + V"(m,R- 1,w) 1 
whence 

U"(m, R, w) = 1 ~ :m~:~iR) [(~) + V"(m, R - 1, w) J. (23) 

'Ymm( s) is the Laplace-Stieltjes transform of the interoverftow-time 
distribution, i.e., it is just the function 'Y (s) given by (1). Thus (23) 
is exactly equivalent to (T32) , and merely serves to illustrate our remark 
(Section 1.1) that if the first-choice group is full-access, we can use the 
methods of Ref. 2 to describe the behaviour of the sequence {2 NO}. 

2.2 The Limiting Distribution PO(k,K) 

Theorem 2: The quantities PO(k,K) = lim PO(k,K,N) exist, are 
N-+oo 

strictly positive, form a probability distribution independent of the initial 
state, and are uniquely determined by the binomial moments UO (k,R) = 

Kf;,(~)P"(",K); the latter are determined by 

UO(k,R) = qk L J).ik(R) VO(j,R - 1) (R 1, 2, . . . , M) (24 ) 
iEa 

and 

(25) 

where 

V"(k,R) = };. (~) GKP"(k,K). 

Proof: We first show the existence of the limiting distribution. 
In this section, we use theorems given in Feller/3 chapter 15, sections 

5 and 6. 
The Markov chain {~NO, 2 N°} is evidently irreducible (since Pk > 0 

for k < m) and aperiodic. Therefore lim PO(k,K,N) exists. Since it is 
N-+oo 
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irreducible, the chain has either all transient, all recurrent null, or all 
recurrent non-null states. 

If a state (k,K) is transient or recurrent null, then lim P(k,K,N) = 0. 
N-+oo 

Therefore, to show that all states are recurrent non-null it will suffice 
to show that for some state (k,K), lim p°(lc,K,N) > 0. It will then 

N-+oo 

follow that this is so for all states, and that L p°(lc,K) = 1. We look 
kEa. 

at the state (0,0): 
To see that lim PO(O,O,N) > 0, we compare our system (with arbi-

N-+oo 

tral'y balking probabilities) to the special system for which m = 0, 
kI = 00, H K = ° (always assuming the same input process). For this 
special system, write PI ENo = K} = PO(K,N), and take as initial 
condition: E(O+) = i + I. 

It is clear that for any system with AI = 00, and with the same 
initial condition, 

for each N, whence 

lim PO(O,O,N) ~ lim j3°(O,N). 
N-+oo N-+oo 

But it is known3 that lim j3°(O,N) > 0; thus 
N-+oo 

lim PO(O,O,N) = PO(O,O) > ° 
N ..... oo 

and all states are recurrent non-null. Hence, since the chain is also irre
ducible and aperiodic, it is ergodic. 

We now know also that a unique stationary distribution exists and 
that it coincides with the limiting distribution. From (6), we must 
have 

UO(k,R) = 2: 'Yjk(R)[U°(j,R) + VO(j,R - 1)]. (26) 
jEll 

Denote by UO,R the row-vector with components U°(lc,R), ° ~ k ~ m. 
Then (26) may be written 

Uo,R = (UO,R + VO,R-l)'YR. 

Thus, from (18), 

(27) 
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Writing out (27) in components, and using (12), we obtain (24). 
We now prove (25). Denote by c(n) the event that the nth arrival 

overflows. Thus, 

b = lim P{ c(n)}. 
n-+OO 

Now, 

PO(k,K) = lim P{~NO = k, 2No = K} = lim P{~n = k, 2n = K I c(n)} 
N-+oo n-+oo 

But 

p{c(n) I ~n = k, En = K} = p{c(n) I ~n = k} = qk. 

Therefore 

(28) 

and 

J.f 

J.f qk L P(k,I{) 
UO(k,O) = L PO(k,I{) 

K=O 

K=O 

b 

= qk P(k) QED b , ... 

To complete the proof of Theorem 2, it remains to show that the 
binomial moments UO(k,R) uniquely determine the probabilities 
PO(k,K). This proof will be easier after we have discussed the stationary 
distribution at arrival moments, P(k,K), and we therefore defer it 
until then. 

It is sometimes convenient to work with the double binomial moments 

BO(r, R) = t (~) UO(k, R) 

C'(r, R) = t, (:) V'(k,R). 

In terms of these, (24) and (25) of Theorem 2 become 
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m 

L [jJr(R) - OJr(R)]C°(j,R - 1) 
j=O (29) 

(R = 1, 2, ... , AI) 

R'(r, O) = ~ t: (;) qk P(k). (30) 

Here we have used the following definitions: flr( s) and glr( s) are the 
lth differences of <POr( s) and '!rOr ( s) : 

{Zr(S) = t (_1)z-J (~) <pjr(s) 
j=O J 

(31) 

OZr(S) = t (-1)z-j (~) '!rjr(S) 
j=O J 

(32) 

where <Pjr(s) and '!rjr(s) are defined, following Takacs [(T59), (T60)], by 

<Pjr(S) = L Pjk(S) m (k) 
k=r r 

and must satisfy [(TGl) and (T62)] 

cp(s) 
1 - cp(s) 

and 

<pjr(S) 1 [(j) ( )] 
Cr(S) = Cr-l(S) r + '!rj,r-l S 

as well as the relations in r implied by their definitions [see (T25)], 

'!rjr(S) = f (l) (11 1
-

rpr)<PjZ (S). 
Z=r r 

(33) 

(34) 

(35) 

(36) 

(37) 

Examples of the application of the methods of this section will be 
found in Section V. 

III. THE STATE OF THE SYSTEM AT. ARRIVAL INSTANTS 

3.1 Transient Behaviour 

The sequence {~n, 2n} is clearly a homogeneous lVlarkov chain. We 
assume initial conditions ~(O+) = i, 2(0+) = I, and seek the dis-
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tribution P(k,K,n). We no longer restrict our attention to states (k,K) 
for which qk > 0, but consider all states (k,K), 0 ~ k ~ m ~ 00, ° ~ K ~ M ~ 00. 

We shall prove the following: 
Theorem 3: The distribution P (k,K, n) is uniquely determined by the 

double binomial moments 

7n J,f (k) (K) B(r,R,n) = t; ~R r R P(k,K,n); 

the latter are determined by 

B(r,R,1) = \?,+" (~) (~) 
(r = 0, 1, . . . , m; R = 0, 1, ... , 111) 

B(r,R,n + 1) = CPr+R(B(r,R,n) + D(r - 1,R,n) 

+ C(r,R - 1,n) - E(r,R - 1,n)] 

(r = 0, 1, ... , m; R = 0, 1, ... ,111; n = 1,2, ... ). 

Here 

m M (k) (K) C(r,R,n) = t;;; r R GKP(k,K,n) 

m M (J,) (K) D(r,R,n) = ~ K~: R PkP(k,K,n) 

7! m J,f (k) (K) E(r,R,n) = ~ 6 r R PkGKP(k,K,n) 

and all these quantities are defined to be zero if r < ° or R < 0. 

(38) 

(39) 

Proof: If the arrival at Tn finds the system in the state (j,J), it may 
either get on the first-choice group, with probability pj , or balk on the 
first-choice group with probability qj ; in the latter case, it may get on 
the overflow group, with probability GJ , or balk there too, with prob
ability H J. Thus the transition probabilities are given by 

p(j,J;k,K) = P{tn+l = k, Zn+l = K I tn = j, 2:n = J} 

= f dF(x) {p; e t 1) e-<'(l - e-<);+I-' (~) e~K(l- e~)J-K 

+ q; 0,) e-<'(l - e-<)H [ GJ (T 11) e-<K(l _ e-·)J+1-K (40) 

+ IIJ (~) e-·K (l - e-·)J-K]}. 
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Now 
m M 

P(k,K,n + 1) = L L p(j,J;k,K) P(j,J,n). (41) 
j=O J=O 

Substituting (40) in (41) and taking binomial moments with respect 
to both the first-choice and overflow groups, we obtain: 

m 111 { (. + 1) (J) B(r,R,n + 1) = cpr+R {; t; Pi J r R 

+ qj (n [GJ e ! 1) + HJ (~)]} P(j,J,n). 

Note that the quantity in braces in (42) is 

Substituting (43) in (42), we obtain (39). 
For n = 1, we have 

(42) 

P(k,K,l) = f dF(x) (0 e-x'(1 - e-x)'-k (~) e-XK(l - e~)I-K; 

taking binomial moments with respect to both trunk groups, we obtain 
(38). 

From the double binomial moments, one obtains the probabilities 
P(k,K,n) by using: 

U(k,R,n) = t. (-1),-' (~) B(r,R,n) (44) 

and 

P(k,K,n) = i (_l)R-K (~) U(k,R,n). (45) 

Clearly P(k,K,n) = 0 for k + I( ~ i + I + n; it follows that the 
sums in (44) and (45) contain a finite number of terms for finite n, 
even if M = 00, and there are no problems about convergence. 

Equations (38) and (39) may be solved, in some cases, by means of 
generating functions; we give an example. 

Example 2: 
'Ve consider the simplest possible case, in which 

(k = 0 1 ... m - 1) " , 
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In this case, 

and 

M=oo 

(K = 0, 1,2, ... ). 

C(r,R,n) = B(r,R,n), 

E(r,R,n) = D(r,R,n), 

D(r,R,n) = B(r,R,n) - (~) B(m,R,n). 

Substituting (46), (47), and (48) in (39), we get 

B(r,R,n + 1) = CPr+R[B(r,R,n) + B(r - 1,R,n) 

- (r ~ 1) B(m,R,n) + (~) B(m,R - 1,n)]. 

Let 
00 

B(r,R,w) = L B(r,R,n)wn
• 

n=l 

From (38) and (49): 

B(r,R,w) = Wcpr+R [(i) (RI) + B(r - 1,R,w) 
1 - Wcpr+R r 

- (r ~ 1) B(m,R,w) + (~) B(m,R - 1,w) 1 
The solution of (50) is 

B(r,R,w) = rr+R(w)\~(7)rH~(W).i:(·I)t(~) 1 
L (n:) 1 8=0 S j=O J rj+8-1( w) 
j=O J rj+R( w) 

_ ;t (7) r;+R~'(W). I:' (I) t (~) 1 t (n:) 1 8=0 S j=O J rj+8-1 (w) 
j=O J rj+R-l(W) 

1 
_ (I) t (~) 1 ~ 

R j=r+l J rj+R-I(W) J 

(46) 

(47) 

(48) 

(49) 

(50) 
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where we have defined 

(r = 0, 1,2, ... ) 

3.2 The Limiting Distribution P(k,K) 

Theorem 4: The quantities P(k,K) = lim P(k,K,n) exist, are strictly 

positive, form a probability distribution independent of the initial state, 
and are uniquely determined by the double binomial moments B(r,R) = 

m (k) III (K) :f r U(lc,R), where U(k,R) = t;R R P(k,K); the B(r,R) are given 

by 

B(r,R) 
(51) 

(1' = 0,1, ... , m; R = 0,1, ... , M). 

Here 

C'(r,R) = t, (~) (~) GKP'(k,K). 

Proof: That the limits P(k,K) exist and are independent of the initial 
state again follows from the fact that the Markov chain {~n, En} (n = 
1, 2, ... ) is irreducible and aperiodic. To show that the P(k,K) are 
strictly positive and form a probability distribution, we must show that 
there exists some state (k,K) such that P(k,K) > 0. This can be done 
by a method similar to that used in the proof of Theorem 2; we omit the 
argument. It follows that a unique stationary distribution exists and 
that it coincides with the limiting distribution. We express this stationary 
distribution in terms of the stationary distribution PO(k,K) in the 
following way: 

Consider the arrival which occurs a t 'Tn (under equilibrium conditions) . 
It either overflows, with probability b, or does not, with probability 

(1 - b). 
If it overflows, the probability that it encountered the state (J,J) is 

p0(J,J). 
If it does not overflow, let us denote the probability that it encountered 

the state (j,.J) by PP(j,J). 
We note that 

P(j,J) = bp°(J,J) + (1 - b)PP(j,J). (52) 
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Suppose that On+l = x. 
If the arrival at Tn encountered the state (j,J) and overflowed, the 

probability that the arrival at Tn+l encounters the state (k,K) is: 

(Oe-Xk (l - e~)j-k[G{J ~ 1)e~K(1 _ e-x)J+I-K 

(53) 

+ HJ(i)e~K(l - e-X)J-Kj = a(x), say. 

If the arrival at Tn encountered the state (j,J) and did not overflow, 
the probability that the arrival at T n +l encounters the state (k,K) is: 

~ t l)c-X'(l - e-X)Hl-k(i)e-XK(l - e-X)J-K = /3(x), say. (54) 

Taking account of both these possibilities, and removing the condition 
on On+l , 

P(k,K) = t, to 10
00 

dF(x)[bpO(j,J)a(x) + (1 - b)P¢(j,J){3(x)]. 

Using (52), 

m .lIf 100 
P(k,K) = ~ ~ 0 dF(x) {bpO(j,J)[a(x) - ,sex)] + P(j,J){3(x)}. 

Taking binomial moments with respect to both trunk groups, and 
using (53) and (54), 

m .lIf { 0' [(j) ( (J + 1) (J)) B(r,R) = C{)r+R ~ t; bP (J,J) r GJ R + HJ R 

- ~ ~ 1) (~)J + P(j,J) ~ ~ 1) (~)} (55) 

= C{)r+R{B(r,R) + B(r - 1,R) 

+ b[CO(r,R - 1) - BO(r - 1,R)]}. 

The solution of (55) is 

B(r,R) = B(m,R) + b [2:1 BO(j,R) _ i: CO(j,R - 1)J. (56) 
Cr+R Cm+R j=r CHR j=r+l Cj+R- 1 

Now note that, from (28), 

bBO(m,R) = B(m,R). (57) 

Substituting (57) in (56), we obtain (51). 
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To complete the proof of Theorem 4, it remains to show that the 
double binomial moments B(r,R) uniquely determine the probabilities 
P(k,K). It is clear that the B(r,R) uniquely determine the U(k,R) 
through the equation 

U(k,Il) = t. (_l)'-k (~) B(r,R) (58) 

because 1n is finite. Thus we must show that 

P(k,K) = ~ (_l)R-K (~) U(k,R) (59) 

when 11,£ is infinite; it will suffice to show that the series on the right 
converges absolutely. 

From (39) we have 

B(O,R) = -1 CPR [C(O,R - 1) - E(O, R - 1)]. (60) 
- CPR 

Now, 

m AI (k) (K) C(O,R) - E(O,R) = 6];; R qkGKP(lc,K) ~ B(O,R). (61) 

Therefore, 

B(O,R) ~ -1 CPR B(O,R - 1). 
- CPR 

(62) 

Now 

lim CPR = lim cp(s) = F(O+) = ° 
R-+oo 8-+00 

whence 

lim~=O. 
R-+oo 1 - CPR 

Thus 

lim B(O,R) = 0. 
R-+oo B(O,R - 1) 

(63) 

Equation (63) is sufficient to insure that 

~ (~) B(O;R) 

converges. 
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Consider for simplicity the case m = 1. Then we have 

B(O,R) = U(O,R) + U(l,R). (64) 

At least one of the statements 

lim U(O,R) = ° 
R~rfJ U(O,R - 1) 

(65) 

lim U(1,R) = ° 
R~rfJ U(1,R - 1) 

(66) 

must be true, for if both failed to be true, then for some € > ° there 
would be terms for which 

U(O,R) 
U(O,R - 1) > € 

U(1,R) 
U(1,R - 1) > € 

for arbitrarily large R; it would follow that for arbitrarily large R 

B(O,R) 
B(O,R - 1) 

which contradicts (63). 

U(O,R) + U(1,R) 
U(O,R - 1) + U(1,R - 1) > € 

Say (65) is true. Then the series 

R~ (~) U(O,R) 

converges; thus 

l.f (R) M (R) M (R) R~ K U(l,R) = {; K B(O,R) - 6 K U(O,R) 

converges, and this proves (59) for m = 1. The generalization to 
arbitrary m is straightforward. 

Corollary: We can now easily complete the proof of Theorem 2 by 
remarking that [using (28)] 

bu"(k,R) ~ b 1;. (~) r(k,J) 

~ t. (~) q,P(k,J) ;;; 1;. (~) P(k,J) ~ U(k,R) 

so that the series 
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converges absolutely, Q.E.D. 
We again defer examples to Section V. 

IV. THE STATE OF THE SYSTEM AT ANY TIME 

4.1 Transient Behaviour 

Let 

B(r,R,t) ~ t. t. (~) (~) P(k,K,t) 

with Laplace transform 

{3(r,R,s) = 1~ e-stB(r,R,t)dt. 

Let Mi/K(t) be the expected number of arrivals in (O,t] to encounter k 
trunks busy on the first-choice group and K on the overflow group, on 
the condition that HO+) = i, 2:(0+) = I, with Laplace-Stieltjes 
transform 

IK -8X IK 1
~ 

J..Lik (s) = 0 e dJl;[ik ex). 

We also define several kinds of double binomial moments: 

= t f (k) (K) J..Li/K(S) 
k=r K=R r R 

Theorem 5: 

CPi/R(S) = ~(s + r + R) 
1 - ~(s + r + R) 

[(i) (1) IR( ) I R-l( ) I R-l( )] . r R + 'It i .r-l S + X ir • S - Y ir • S • 

(67) 
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Proof: Consider a certain set of r first-choice trunks and a certain set 
of R overflow trunks. We shall call the union of these two sets an (r,R)
tuple of trunks, and if the r first-choice trunks and the R overflow trunks 
are all busy at time t, we shall say that this particular (r,R)-tuple of 
trunks is busy at time t. Thus, when the system is in the state (k,K), 

the number of busy (r,R)-tuples is (~)~). Let us make the conven

tion that there is always one busy (O,O)-tuple. The expected number of 
busy (r,R)-tuples at time t is evidently B(r,R,t). 

Let us now calculate the expected total number of encounters between 
arriving calls and busy (r,R)-tuples in the interval (O,t]. Denote this 
expecta tiOIl by E i/ R ( t) . 

If the nth arrival occurs in (O,t], and if (~n = k, Zn = K), then the 

nth arrival encounters (;) (~) busy (r,R)-tuples. Thus 

co m M (k) (K) l co 

Ei/R(t) = 2: 2: 2: R dP{Tn ~ u, ~n = k, Zn = K}. 
n=l k=r K=R r 0 

But 
co 

2: P{Tn ~ u, ~n = k, 'En (68) 
n=l 

Therefore 

with Laplace-Stieltjes transform 

Ei/R(S) = <Pi/R(S). (69) 

But Ei/R(S) can be found in another way. If (~n = k, 'En = K), then 
at time Tn+, the system is in the state (k + I,K) with probability Pk , 
the state (k,K + 1) with probability qkGK , or the state (k,K) with 
probability qkHK • Thus the expected number of busy (r,R)-tuples at 
time Tn+, under the stated condition, is 

p.e ~ 1) (~) +q. (;) [GK (K t 1) + HK (~)J 

= (;) (~) + P. (r ~ 1) (~) + q,GK (;) (R ~ 1), 
and the expected number of busy (r,R)-tuples created by the nth arrival, 
under the stated condition, is 
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Now the probability that the life of a busy (r,R)-tuple will be longer 
than x is exp (- (r + R)x). Thus the expected number of encounters 
between arriving calls and created (r,R)-tuples in the interval (O,t] is: 

co m lIf it 
~1 k~l K'Jt-l 0 dP {Tn ~ U~ ~n = k,2:n = K} 

.1t

-

u 

e-(r+R)x dlvf(x) 

where 111 (x) is the expected number of arrivals in an interval of length 
x, when there was an arrival at the start of the interval. 111 (x) has 
Laplace-Stieltjes transform 

p.(s) 
so(s) 

1 - so(s) • 

Equation (70) is a convolution. Recalling (68), we see that (70) has 
Laplace-Stieltjes transform, 

We must not forget the (r,R)-tuples which were busy initially; the 
expected number of encounters between arriving calls and these is 

G) (~) t, J.' dP{Tn ~ ule-(,+Rlu = G) (~) J.' dM(u)e-(,+Rlu 

with Laplace-Stieltjes transform 

G) (~) 1'(8 + r + R). 

Adding (71) and (72) we get 

so(s + r + R) 
1 - so(s + r + R) 

[(i) (1) IR() X I,R-Ie) y I,R-I( )] . r R + 'lri,r-l S + ir S - ir s. 

Now comparing (69) and (73), we obtain (67). 

(72) 

(73) 
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Theorem 6: The distribution P (le,K,t) (t > 0) is determined by 

R( R ) = 1 - cp(s + r + R) 
fJ r, ,s cp (s + r + R) 

1 IR( ) 
S + r + R <Pir s. (74) 

Proof: ,¥ e have 

P(1"K,t) = (D e-"(J - c-')i-k (~) e-'K (1 - e-')l-X[I - pet)] 

ao m M It 
+ ~l f,; ko 0 dP {~n = j, En = J, T n ~ u} 

. {Pi C t 1) e-"-"'(1 - e-,·-·,);+l-k (~) 

-(t-u)K(1 -(t-U)J-K + (j) -(t-u)k ·e - e qj k e (75) 

· (1 - e-"~')i-k [GJ (J ~ 1) e-,.-·'K 

· (1 - e-,·-·')J+I-X + HJ (~)c-"-"K 

· (1 - e-'·-·')J-X]} [1 - F(t - u)]. 

This may be seen as follows: either no calls arrive in the interval (0 ,t], 
or the last call to arrive in that interval is the nth (n = 1,2, ... ), i.e. 
the nth call arrives at time u and no calls arrive in the interval (u,t]. If 
this call encounters the state (j,J) it may get on the first-choice group 
(probability Pj), the overflow group (probability qjGJ ), or neither 
(probability qjH J). Then enough calls must end in the interval (u,t] so 
that the state at time tis (k,K). 

From (75), and keeping in mind (68), 

B(r,R,t) = (i) (1) e-t(r+R)[l - F(t)] + f: t It dMi/J(U) 
r R j=OJ=O 0 

and taking the Laplace transform, 
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( R ) = 1 - <p(s + r + R) [(i) (1) + .:1'... IR( ) + ,T,. IR() 
(3 r, ,s s + r + R r R '±',r S ~"r-I S 

(76) 

+ X,/,R-\S) - y,/,R-'(S) J, 
From (76) and (67) we obtain (74). 

It remains to show that the double binomial moments uniquely de
termine the probabilities P(k,K,t). As in the proof of Theorem 4, it will 
suffice to show that for all t > ° 

lim B(O,R,t) = 0. 
R-w~ B(O,R - I,t) 

From (67), for R > I, 

IR( ) < <p(s + R) .:1'... I,R-I( ) 
<PiO S =I-<p(s+R),±,tO s. 

But, for all 8 > 0, 

'1'11erefo1'o 

Now from (74), 

{3(O,R,s) 
{3(O,R - I,s) 

lim <p (s + R) = 0. 
R-+rfJ 1 - <p(s + R) 

1 - <p(s + R) <p(s + R - 1) 
<p(s + R) 1 - <p(s + R - 1) 

(77) 

(78) 

(79) 

s + R - 1 <I>i/
R (s) 

s + R <pil,R-I(S) 

and so 

lim {3(O,R,s) = lim <Pi/R(S) = 0, (80) 
R-+rfJ {3(O,R - I,s) R~rfJ <PiOI,R-I(S) 

SInce 

. <p( s) 
hm ( 1) = 1. 
8-+rfJ <p S -

From (80), and the inversion formula for the Laplace transform, the 
result (77) follows. 

Example 3: 
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Consider the case 

qk = ° 
qm = 1 

M=oo 

HK = H, GK = G (G + H = 1) 

(Ie = 0, 1, ... , m - 1) 

(K = 0, 1,2, ... ). 

This example may be of some practical interest. It represents a situa
tion in which some equipment, other than a free trunk, is needed to set 
up a connection on the overflow group. If this equipment is serving a 
large number of trunk groups, the chance of its being idle may be sub
stantially independent of the situation on the particular overflow group 
being considered here, and may be represented by a constant, G. 

In this case we have 

and 

Xi/R( s) = Gif>i/R( s) 

Yi/R( s) = G'Jf i/R( s) 



OVERFLOW TRAFFIC 75 

The expression for {3(r,R,s) can now be obtained from (82), using (74). 

4.2 The Limiting Distribution p* (k,K) 

Theorem 7: The quantities P*(k,K) exist, are strictly positive, form a 
probability distribution, are independent of the initial state, and are uniquely 
determined by the double binomial moments 

B*(r,R) = 1;, tn (~) (~) P*(k,K); 

the latter satisfy 

B*(r,R) a 1 - SOr+R B(r,R), 
- r + R SOr+R 

for r + R > 0 (83) 

B*(O,O) = 1. 

Proof: To prove the existence, we consider the limit of (75) as t -+ 00 • 

Clearly the first term goes to zero, and we have 

}.f t m 

P*(k,K) = lim L: f L: dNl i /
J (u) 

t_oo J=O 0 j=O 

. f .(j + 1) -(t-u)k (1 _ -(t-u) )j+1-k (J) lPJ Ie e e [( 

·e-(/-U)K (1 _ e-(/-U»J-K + q; G) 
·e-(/-u)' (1 - e-(/-u»;-, [GJ (J i 1) 

(84) 

It follows from Smith's "fundamental theorem, ,,14 the assumption 
that F(x) is not a lattice distribution, and the fact that P(j,J) > 0 for 
all j and J, that the limit in (84) exists and is given by 
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P*(k,K) = ~ ~ P(!,J) i~ dU[1 - F(u)] 

-{Pi ~ to 1) e-u'(l _ e-U );+I-' 

-(~() e-UK(l _ e~)'-K + q;«) e-UK(l _ e~/-' (85) 

-[ GJ (J i l)-e-uK(l _ e-U )J+I-K 

+HJ(~)e~k(l - e~)J-KJ}_ 

It is clear from (85) that P*(k,K) > ° for all (k,K), since the integrands 
are all strictly positive. (Note also that we have assumed a > 0.) The 
dependence on (i,l) has disappeared, and it is easy to show from (85) 
that 

m M 

L L P*(k,K) = 1. 
k=O K=O 

Thus B* (0,0) = 1. To show (83), we take a different tack: 
Consider any state (k,K). Transitions into the state (k,K) are of four 

types: 

(k - I,K) -7 (k,K) 
(k,K - 1) -7 (k,K) 
(k + I,K) -7 (k,K) 
(k,K + 1) -7 (k,K) 

(type a) 
(type b) 
(type c) 
(type d). 

Transitions out of the state (k,K) are also of four types: 

(k,K) -7 (k - I,K) 
(k,K) -7 (k,K - 1) 
(k,K) -7 (k + I,K) 
(k,K) -7 (k,K + 1) 

(type a') 
(type b') 
(type c') 
(type d'). 

Denote by Ny(t) the expected number of transitions of type y in the 
interval (O,t]. 

If we consider the process only at times when the state (k,K) exists, 
transitions of type (a') form a Poisson process of density k, and transi
tions of type (b') form a Poisson process of density K. Thus, 

(86a') 
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(86b' ) 

Similarly, 

NcCt) = (k + 1) it P(le + 1, K, t)dt (86c) 

Nit) = (K + 1) it P(k, I( + 1, t)dt. (86d) 

Now {~n = k, :en = K} is a recurrent event, with mean recurrence 
time [a/P(k,K)] > 0. Thus, from the "elementary renewal theorem,,,15 

1
. 111i/K(t) P(k,K) 
Im---

t-+rf.l t a 

But clearly, 

so that 

lim Nd,(t) = qkGKP(k,K) = bGKPO(k,K) . 
t-+rf.l t a a 

(86d') 

Similarly, 

lim Nb(t) = GK_1bpO(k, K - 1) 
t-+rf.l t a 

(86b) 

lim Nc,(t) = PkP(k,K) = P(k,K) - bP°(le,K) 
t-+rf.l t a a 

(86c') 

lim Na(O = P(k - 1, K) - bP°(le - 1, K) . 
t-+rf.l t a 

(86a) 

We now notice that in any interval (O,t], the number of transitions out 
of the state (k,K) can differ from the number of transitions into the 
state (le,K) by at most 1. From this remark, and all the equations (86), 
it follows that 

(Ie + K)P*(le,K) + aP(k,K) - abHKpO(k,K) 

= ab[GK_1PO(k,K - 1) - pOCk - I,K)] + aP(k - I,K) (87) 

+ (Ie + I)P*(k + I,K) + (K + I)P*(k,K + 1). 

Taking the double binomial moment of (87), one obtains 
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* { (m + 1) (r + R)B (r,R) = a B(r - 1,R) - r B(m,R) 

+ b [C"(r,R - 1) - B"(r - 1,R) + (m;- 1) B"(m,R) J}. 
(88) 

We now note that, according to (51), 

a [B(r - 1, R) - (m ;- 1) B(m,R) J 
_ bC [~BO(j,R) ~ CO(j, R - OJ 
- a r+R-I L.J - L.J 

j=r-l CHR j=r CHR- 1 
(89) 

_ ab (m ;- 1) B"(m,R). 

Putting (89) into (88), we obtain (83). 
It is now easy to see that the R*(r,R) determine the P*(k,K). For 

from (83) 

r B*(O,R) = lim r + R - 1 ~R-I B(O,R) 
;~ B*(O, R - 1) R-+rfJ r + R ~R B(O, R - 1) 

= lim B(O,R) = 0. 
R-+rfJB(O,R - 1) 

Corollary: For Poisson input, P*(k,K) = P(k,K). 
Proof: For Poisson input, F(x) = 1 - e-uX, ° < a < 00; a = l/a. 
Thus 

SO(s) = _a_ 
a + s' 

a 
SOr=--

a+r 

*. _ a r+R _ B (r,R) - r + R -a- B(r,R) - B(r,R) , 

and since the double binomial moments determine the probabilities 
uniquely, the result follows. 

Examples will be found in the next section. 

V. EXAMPLES FOR THE STATIONARY PROCESS 

5.1 Categories of Examples 

In this section we will try to find the stationary binomial moments 
BO(r,R), B(r,R), and B*(r,R) for certain special cases, or categories 
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of cases. In the easiest cases we will succeed in finding explicit expressions 
for all these moments; in a harder case we will find explicit expressions 
only when R = 1 or R = 2; in the most complicated example (the ran
dom slip with overflow group, mentioned in Section I), the treatment is 
numerical, and only the results for the over-all blocking, B, are reported. 

If the first-choice group is full-access, the situation is particularly 
simple, since overflow can only occur if ~n = m; the vector equations 

(2'1) for U'(k,R) then become scalar, and B'(r,R) = (~) U'(m,R). 

If the balking on the first-choice group is arbitrary, but the overflow 
group is infinite with no balking, or with constant balking probability, 
as in Example 3 above, some simplification occurs. For then, 

and hence (24) becomes a recurrence relation, although the quantities 
it relates are vectors. In such a case it is straightforward to find the first 
few moments of the distribution on the overflow group. 

In cases in which neither of the above simplifications occur, the form 
of the balking probabilities may still be such as to facilitate calculation; 
an example of this is the random slip with overflow group. 

5.2 Full-Access First-Choice Group 

We suppose 

qk = ° 
qm = 1. 

(lc = 0, 1, ... , m - 1) 

Equations (24) reduce to the single equation 

and from (13), 

J.tmm(R) 
"f(R) (R 1,2, ... ). 

1 - "f(R) 

"f(R) is given by (1); it easily follows that 

(90) 

(91) 
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Noting that, from the definitions, 

(91) becomes 

Cj(R) - Cj+R 
- CR- 1 ' 

f:(~)_1 
(R) - j=O J Cj+R-l 

J1.mm - f: (~) _1 . 
j=O J Cj+R 

We also know [from (25)] that 

UO(m,O) = P~m) = 1. 

Example 4: 

(92) 

(93) 

(94) 

We now consider a slight generalization of the system considered by 
Brockmeyer (see Section I) . Namely, let 

qk = 0 

qm = 1 

HK = H 

HM = 1. 

In this case we have 

(lc = 0, 1, ... , m - 1) 

(J{ = 0, 1, ... , J'v! - 1) 

V"(m,R) = G [U"(m,R) - en U"(m,M) 1 
Thus, from (90), 

U"(m,R) = I'mm(R)G [ U"(m,R - 1) - (R ~ 1) U"(m,M) ] (95) 

(R = 1, 2, ... , M). 

The solution of (95) is 

Now, from (93), 
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R 

II jlmm(Q) (R = 1,2, ... ). 
Q=l 

Thus, 

f (rr:) ~ 
= (m)GR i=O J C f 

r f (rr:)_1 
i=O J C i+R 

M (~) m (m) 1 L-L. -
J=R GJ f=O J Ci+J 

M (~) m (m) 1 L-L. -
J=O GJ i=O J C i+J 

We notice [see (T54)] that 

~(m) 1 1 1 f=o j Cf = b = P(m)' 

Thus, from (51), 

M (~) m (m) 1 L-L .-
B( R) = GRC J=R GJ i=O J C f+J 

r, r+R (M) 
L-Lrr:-M J m ( ) 1 
J=O GJ i=O J Ci+J 

'1(t. (7h~ - ;t, (7)~lf 
f (1~) _1 f (rr:) _1 
i=O J C i+R i=O J C i+R- 1 

B*(r,R) follows from (83). 

(R = 1, 2, .. " 1l;[). 

81 

(97) 

(98) 

(99) 

When G = 1, (99) is the generalization to recurrent input of Brock
meyer's result, (4). It can indeed be verified that (99), for Poisson input 
and for G = 1, agrees with (4). 

For infinite full-access overflow group (M = 00, G = 1), (99) becomes 

r f (rr:) _1 f (rr:) _1 ) 
B(r R) = C 1i =r J Ci+R - i=r+l J Ci+R- l • (l00) 

, r+R f (rr:) ~ f (rr:) _1 
i=O J C i+R i=O J C i+R- 1 

Equation (100) IS the generalization to recurrent input of Kosten's 
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result, (2). Again it can be verified that (l00), for Poisson input, agrees 
with (2). 

5.3 Constant-Balking Overflow Group 

We suppose that NI = 00 

(K = 0, 1, 2, ... ). 

Then (24) becomes 

UO(k,R) = qkG L J).jk(R) U°(j,R - 1) (R = 1,2,3, ... ). (101) 
jEa 

Example 5 
Suppose further that 

(k = 0, 1, ... , m - 1) 

This might describe a system in which some auxiliary equipment is 
needed to set up a connection on the first-choice group, some other 
auxiliary equipment is needed to set up a connection on the overflow 
group, and the probability that the auxiliary equipment is idle is con
stant, but this probability is different for the two groups. This is a rather 
plausible system, except that the overflow group is infinite. 

We note that the blocking for such a system is 
m 00 

B = L L qkHKP(k,K) = H[q + pP(m)]. 
k=O K=O 

It is easy to show by the methods of Ref. 2 that in this example 

B(r,O) (102) 

so that in particular 

P(m) = B(m,O) 
1 

f (m)_l 
j=O j piCj 

Thus, 
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Instead of (101), we use (29), which in our case becomes 
m 

BO(r,R) = G 2: [fjr(R) - gjr(R)]B°(j,R - 1) 
j=O (103) 

(R = 1,2, ... ). 

In this case we have, from (37), 

"'i,(8) ~ p [<1>,,(8) - (~) <l>im(S) 1 (104) 

We can solve (35), (36), and (104) to obtain 

(105) 

From (105), flr( s) - glr( s) can easily be calculated by observing 
that in this example 

I,,(s) - g,,(s) ~ qf,,(s) + p (~) I'm(s). 

Then, from (103) one obtains 

j
p (m) + qprCr(R) t (m) k 1 

BO(r R) = G r k=r k p Ck(R) 
, m () 1 

(; ~ pkCk(R) 
(106) 



84 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 19G4 

Noting that, from (30) and (102), 

, qB(r,O) + p (~) B(m,O) 

B (r,O) = q + pB(m,O) (107) 

= [qp'C, t, (7) pk~k + p (~) ] [q 1;. (7) pk~k + p r 
we can use (106) to find BO(r,l), BO(r,2), etc., and in particular, the 
first and second moments of the distribution on the overflow group only, 
at overflow instants, BO(O,l), BO(0,2). The formulas are long; we quote 
only: 

(l08) 

5.4 Other Cases 

Once BO(r,R) is known, it is straightforward to determine B(r,R) 
and B*(r,R), using (51) and (83) respectively. [If BO(r,R) is known, 
CO(r,R) can be determined, for use in (51), from the relation, which 
follows from their definitions: 

(109) 

see (T45).] The problem is thus to determine BO(r,R), from (29) and 
(30), or equivalently to determine UO(k,R) from (24) and (25). We 
consider the latter method. 

To use (24) and (25), one must first of all determine J.l. jk (R) for all 
relevantj, k, and R [say, from (T70)], as well as P(k) [say, from (T44) 
and (T45)]. Then the VO(k,R) must be expressed in terms of the 
UO(k,R); in general VO(k,R) can be expressed in terms of the UO(k,J), 
with J ~ R, by a relation analogous to (109): 

V'(k,R) = tn (~) (!J.J-nGn)U'(k,J). (110) 

When (1l0) is substituted in (24), one obtains a set of simultaneous 
equa tions for the U O (k,R). Equation (25) serves as a boundary condi
tion. If M is finite, (24) can be used to express UO (k,M - 1) , 
UO(k,JJf - 2), .. , , UO(k,O) successively in terms of UO(k,M), and 
(25) can then be used to determine UO(k,M). 
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When the UO(k,R) are known, one finds the BO(r,R) by taking bi
nomial moments, and then the B(r,R) from (51). The probabilities 
P(k,K) then follow by inverting the binomial moments, and the over-all 
blocking is determined by 

m .M 

B L L qkHKP(k,K). 
k=O K=O 

Example 6 
We consider the system described in Section I 

(k = 0, 1, ... , m) 

(K = 0, 1, ... ,111 - 1) 

H.M = l. 

The IBlVl 7090 computer at lVlurray Hill was programmed to find the 
blocking probability B for certain values of the parameters, namely: 

m + AI = 10 

'Y + ];[ = 6. 

The calculations were carried out for two kinds of input: 
(i) Poisson 
(ii) That sort of recurrent input which is itself the overflow from a 

group of mo trunks to which a Poisson stream of calls (with negative
exponential holding times) of mean intensity ao is submitted. Note that, 
since Poisson traffic is completely characterized by one parameter (its 
mean, in our case ao), this sort of recurrent input is completely charac
terized by two parameters (ao and mo). 

Note also that this program allows one to calculate B for certain more 
complicated trunking arrangements, in the case of Poisson input, e.g., 
2 common trunks overflowing to a random slip of 3 on 7 which in turn 
overflows to 1 common trunk. (This arrangement also involves a total 
of 10 trunks and 6 crosspoints per line.) 

The results (blocking probability B as a function of input traffic a) 
are shown in Tables I and II and Fig. 1. The cases treated were mo = 0 
(Poisson input, a = ao) and mo = 2, in which case, of course, 

a = al/ (1 + ao + ~2); 
'Y was given the values 2,3,4,5,6. (Note that if 'Y = 6, then M = 0; there 
is no overflow group.) 



TABLE I - RANDOM SLIP. BLOCKING AS A FUNCTION OF SUBMITTED TRAFFIC, FOR RECURRENT INPUT (mo 2) 

Blocking, for the Configurations 
ao (call-hours) a (call-hours) 

2/6 + 4 3/7 + 3 4/8 + 2 5/9 + 1 6/10 

1.0 0.2000 4.111 X 10-8 2.711 X 10-8 2.928 X 10-8 5.785 X 10-8 4.619 X 10-7 

1.5 0.4655 1.272 X 10-6 8.990 X 10-7 9.132 X 10-7 1.425 X 10-6 6.594 X 10-6 

2.0 0.8000 1.398 X 10-5 1.039 X 10-5 1.024 X 10-5 1.290 X 10-5 4.402 X 10-5 

2.5 1.179 8.454 X 10- 5 6.534 X 10-5 6.338 X 10-5 7.870 X 10-5 1.891 X 10-4 

3.0 1.588 3.451 X 10-4 2.757 X 10-4 2.654 X 10-4 3.101 X 10-4 6.064 X 10-4 

3.5 2.018 1.066 X 10-3 8.762 X 10-4 8.407 X 10-4 9.417 X 10-4 1.575 X 10-3 

4.0 2.461 2.675 X 10-3 2.253 X 10-3 2.161 X 10-3 2.348 X 10-3 3.484 X 10-3 

4.5 2.916 5.713 X 10-3 4.917 X 10-3 4.727 X 10-3 5.020 X 10-3 6.792 X 10-3 

5.0 3.378 1.074 X 10-2 9.421 X 10-3 9.073 X 10-3 9.486 X 10-3 1.196 X 10-2 

5.5 3.847 1.823 X 10-2 1.625 X 10-2 1.570 X 10-2 1.621 X 10-2 1.935 X 10-2 

6.0 4.320 2.846 X 10-2 2.573 X 10-2 2.492 X 10-2 2.552 X 10-2 2.921 X 10-2 

6.5 4.797 4.149 X 10-2 3.797 X 10-2 3.688 X 10-2 3.751 X 10-2 4.158 X 10-2 

7.0 5.277 5.714 X 10-2 5.286 X 10-2 5.148 X 10-2 5.208 X 10-2 5.635 X 10-2 

-- ---- -- -

TABLE II - RANDOM SLIP. BLOCKING AS A FUNCTION OF SUBMITTED TRAFFIC, FOR POISSON INPUT (mo 0). 

Blocking, for the Configurations 
ao (call-hours) a (call-hours) 

2/6 + 4 3/7 + 3 4/8 + 2 5/9 + 1 6/10 

1.0 1.0 1.010 X 10-6 6.673 X 10-7 6.771 X 10-7 1.141 X 10-6 6.407 X 10-6 

1.5 1.5 2.203 X 10-4 1.573 X 10-5 1.527 X 10-5 2.099 X 10-5 6.975 X 10-5 

2.0 2.0 1. 750 X 10-4 1.324 X 10-4 1.265 X 10-4 1.554 X 10-4 3.664 X 10-4 

2.5 2.5 7.890 X 10-4 6.250 X 10-4 5.943 X 10-4 6.815 X 10-4 1.257 X 10-3 

3.0 3.0 2.474 X 10-3 2.034 X 10-3 1.935 X 10-3 2.124 X 10-3 3.307 X 10-3 

3.5 3.5 6.032 X 10-3 5.112 X 10-3 4.881 X 10-3 5.204 X 10-3 7.174 X 10-3 

4.0 4.0 1.225 X 10-2 1.064 X 10-2 1.020 X 10-2 1.067 X 10-2 1.347 X 10-2 

4.5 4.5 2.167 X 10-2 1.922 X 10-2 1.857 X 10-2 1.909 X 10-2 2.263 X 10-2 

5.0 5.0 3.449 X 10-2 3.113 X 10-2 3.010 X 10-2 3.073 X 10-2 3.481 X 10-2 

5.5 5.5 5.054 X 10-2 4.627 X 10-2 4.490 X 10-2 4.553 X 10-2 4.989 X 10-2 

6.0 6.0 6.938 X 10-2 6.429 X 10-2 6.259 X 10-2 6.316 X 10-2 6.755 X 10-2 

6.5 6.5 9.044 X 10-2 8.464 X 10-2 8.264 X 10-2 8.309 X 10-2 8.734 X 10-2 

7.0 7.0 1.131 X 10-1 1.067 X 10-1 1.045 X 10-1 1.048 X 10-1 1.087 X 10-1 
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SUBMITTED TRAFFIC, a, IN CALL- HOURS 

Fig. 1 - Blocking, B, vs submitted traffic, a. 

Before commenting on the results, we mention parenthetically several 
special features introduced into the calculation by the special form of the 
balking probabilities and by the kind of input process considered in this 
example. First, as to finding the P(lc): (T44) and (T45) read, in our 
notation 

B(r,O) = -1 cpr D(r - 1,0) 
- CPr 

(111) 

D(r,O) = t, (~) (l1h p,)B(j,O). (112) 

In the present example, 

CPr _ ao C r rno ( ao ) 
1 - CPr - r Cr+1

mO(ao) 
(r = 1,2, ... ) (113) 
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and 

(j = r + 1, r + 2, ... ). (114) 

Also, since the overflow group is full-access (although finite), the 
relation (110) becomes 

V'(k,R) ~ U'(k,R) - (~) U'(Ic,M). (115) 

In Tables I and II and Fig. 1, we have used the notation 'Y/m + M 
to describe a random-slip configuration in which each line has access to 
"'lout of the m first-choice trunks and all the overflow trunks, except that 
the case "'I = 6, m = 10, ]1.1 = 0 is referred to as 6/10. The curves in 
Fig. 1 have been drawn, to avoid crowding, only for 4/8 + 2 and 6/10. 

The following conclusions can be drawn from these results: 
(i) The blocking is higher, for the same mean traffic, when mo = 2 

than when mo = O. This is consistent with the intuitive notion that 
overflow traffic is "peaky". 

(ii) In a practical range of blocking (B = 0.001 or 0.01),4/8 + 2 
is the "best" arrangement and 6/10 is the "worst" of those considered, 
from the point of view of the traffic capacity of the system for a fixed 
blocking probability. It can be seen from the curves that if one wanted 
an arrangement using 6 crosspoints per line and 10 trunks, one would 
gain about 8 per cent (for mo = 2) or 6 per cent (for mo = 0) in traffic 
capacity at B = 0.01, by using the arrangement 4/8 + 2 instead of 
6/10. At a blocking probability B = 0.001, these gains would be about 
16 and 11 per cent respectively. Such increases in traffic capacity are 
not negligible; they seem to be larger for peaky traffic than for Poisson 
traffic. 

(iii) For higher blockings ("overload" conditions), the advantage of 
4/8 + 2 relative to 6/10 diminishes. 

A study for a practical case would involve calculations of the block
ing for other values of "'I + ]1.1, a knowledge of the relative costs of trunks 
and crosspoints, and of course many other considerations, such as the 
relative costs of building and controlling 4/8 + 2 and 6/10 switches. 
Also, in such a study, one would want to keep in mind the approxima
tions implicit in the model used in this paper. For example: 

(i) In reality, blocked calls may wait or be resubmitted. 
(ii) In reality, the number of traffic sources (lines) is finite, so that 
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the arrival process after any instant is dependent on the number of 
trunks busy at that instant; thus the input is not, in reality, recurrent. 

(iii) As a further result of the finiteness of the number of lines, the 

complete set of ( ~ ) access patterns required for 11 perfect random slip 

probably could not be used, and even if it could, equal traffic would not 
be submitted to each access pattern (so that the blocking experienced 
by different subscribers would be different). 
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On the Properties of Some Systems 
that Distort Signals - II 

By I. W. SANDBERG 

(Manuscript received April 19, 1903) 

In this paper we study the recoverability of square-integrable bandlimited 
signals (with arbitrary frequency bands) that are distorted by a frequency
selective time-variable nonlinear operator and subsequently are bandlimited 
to the original bands. The distortion operator characterizes a very general 
class of systems containing linear time-invariant elements and a single 
time-variable nonlinear element. The subsequent bandlimiting of the sys
tem's output signals can be thought of as being due to transmission through 
a channel that performs filtering. 

Our principal result asserts that, under certain conditions that are satis
fied by many realistic systems, it is possible to uniquely determine the band
limited input to the system from a knowledge of the bandlimited version of 
the output, in spite of the intermediate distortion which generally produces 
signals that are not bandlimited to the original frequency bands. We show 
that the input signal can be determined by a stable iteration procedure in 
which the approximating functions converge to their limit at a rate that is 
at least geometric. 

1. INTRODUCTION 

In this paper we study the recoverability of square-integrable band
limited signals (with arbitrary frequency bands) that are distorted by a 
frequency-selective time-variable nonlinear operator and subsequently 
are bandlimited to the original bands. The distortion operator character
izes a very general class of systems containing linear time-invariant 
elements and a single time-variable nonlinear element. The subsequent 
bandlimiting of the system's output signals can be thought of as being 
due to transmission through a channel that performs filtering. 

Our principal result asserts that, under certain conditions that are 
satisfied by many realistic systems, it is possible to uniquely determine 
the bandlimited input to the system from a knowledge of the band
limited version of the output, in spite of the intermediate distortion 

91 
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which generally produces signals that are not bandlimited to the original 
frequency bands. Of course the distortion operator is assumed to be 
known. We show that the input signal can be determined by a stable 
iteration procedure in which the approximating functions converge to 
their limit at a rate that is at least geometric. When the physical sys
tem consists of only a single nonlinear element, our result reduces to 
that of Landau and Miranker,1 and Zames.2 

In the electronic circuitry of a communication system, it is often the 
case that an ideally linear amplifier is supplied with an approximately 
bandlimited input signal and that the circuitry subsequent to the ampli
fier introduces approximate bandlimiting. Under the assumption that 
the bandlimiting is ideal, our results imply that in many cases it is possi
ble to completely reverse the effect of nonlinear distortion that may be 
introduced by such an amplifier due to the malfunctioning of, for ex
ample, a transistor or its bias supply, even though, as is typically the 
case, the transistor may be in a feedback loop. Of course it is necessary 
to know the properties of the distorting circuit. Results of this type may 
be useful in situations in which received signals are recorded and the 
time delay introduced by the recovery scheme is not important. For 
example, it is conceivable that this type of result may be useful in im
proving the quality of distorted signals obtained from a transmitter in 
a space vehicle containing a television camera, in which the distortion 
is due to a faulty video amplifier. 

Section II considers some mathematical preliminaries. In Section III 
we state our principal results after discussing in detail a mathematical 
model of the physical system to be considered which focuses attention 
on the influence of the time-variable nonlinear element. Sections IV 
and V are concerned with the proof of the results. In particular, Section 
V considers the rate of convergence and stability of the recovery proce
dure. Section VI is concerned with some results that relate to the neces
sity of the conditions introduced earlier. 

II. PRELIMINARIES 

It is assumed that the reader is familiar with the contraction-mapping 
fixed-point theorem stated in Part 1.3 ,4 

As in Part I, £2 denotes the Hilbert space of complex-valued square
integrable functions with inner product 
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in which (j is the complex conjugate of g. The norm of j [i.e., (f,f)!] is 
denoted by \\ j II. The intersection of the space £2 with the set of real
val ued functions is denoted by £2R • 

We take as the definition of the Fourier transform of j( t) in £2 : 

and consequently 

F(w) = L: Jet) e- iwt 
dt 

Jet) = 21 (rfJ F(w) eiwt dw. 
7r LrfJ 

With this definition, the Planche reI identity reads: 

27r L: j(t)q(t) dt = i: F(w)g(w) dw. 

As the notation above suggests, lower and upper case versions of a letter 
are used to denote, respectively, a function and its Fourier transform. 

We shall be concerned with the following subspace of £2R : 

eBen) = {J(t) I Jet) G £2R; F(w) = 0, WEn} 

where n is a union of disjoint intervals. The measure of n is denoted by 
M(n), which, unless stated otherwise, is not assumed to be finite. In par
ticular, n may be the entire real line. 

The operator that projects an arbitrary element of £2R onto eBen) is 
denoted by P. In electrical engineering terms, P is an ideal filtering 
operation. 

The symbols I and 0 denote, respectively, the identity operator and 
the null operator (i.e., OJ = ° for all j c £2). 

III. MATHEMATICAL DESCRIPTION OF THE PHYSICAL SYSTEM AND STATE

MENT OF PRINCIPAL RESULTS 

Consider a nonlinear time-variable element imbedded in a linear phys
ical system. Let 81 and 82, respectively, denote the system's input and 
output signals, and let v and w, respectively denote the input and output 
signals associated with the nonlinear device, which is assumed to be 
characterized by the equation 

w = cp( v,t) = cp[v], (1) 

where cp( v,t) is a real-valued function of the real variables v and t. 
It is assumed that v, W, 82 c £2R , 81 c eB ( n), and that there exist well-
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defined linear operators r and A, with domain eB(n) X £2R, such thatt 
v = r[Sl, w] and S2 = A[sl , w]. 

We shall be concerned throughout with the four linear operators A, 
B, C, and D derived from r and A in the following manner: 

v = r[Sl ,w] = r[Sl , 0] + r[O,w] 

= AS l + Cw 

S2 = Arsl, w] = A[sl, 0] + A[O,w] 

= Ds! + Bw. 

3.1 Representation of the Operators A, B, C and D 

We assume throughout that 

Af = L: aCt - r) f(r)dr, 

Cf = L: c(t - r) f( r)dr, 

Bf = L: bet - r)f(r)dr 

Df = L: d(t - r) f(r)dr 

(2) 

(3) 

where each of the real symbolic functions aCt), bet), c(t), and d(t) is 
most generally the sum of an element of £2R and a delta function. It 
is assumed throughout that I C(w) I and I B(w) I are uniformly bounded 
for all wand that I A (w) I and I D(w) I are uniformly bounded for all 
w [; n. It follows that C and B are bounded mappings of £2R into itself 
and that A and D are bounded mappings of eB(n) into itself. 

3.2 The Projection Operation and the Basic Flow Graph 

We shall suppose that S2 , the system's output signal, is the input to a 
device that projects signals in £2R onto the subspace eB(n). This device 
may be thought of as representing an ideal transmission channel of the 
low-pass, bandpass, or multiband type. If the output of the device is 
denoted by S3 , then clearly 

(4) 

where 

P = pew) = 1, w [; n 

= 0, wEn 

and TS2 denotes S2 , the Fourier transform of S2 • 

t This assumption is almost invariably satisfied in mathematical models of 
physical systems of interest. 
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c 

p 

Fig. 1 - Signal-flow graph characterization of the relation between SI , S2 , S3 , 

v, and w. 

The equations we have introduced give rise to the signal-flow graph 
shown in Fig. 1 which summarizes the basic situation. 

Our primary interest is in (i) obtaining conditions under which S3 

uniquely determines Sl , when Sl is known to lie in the same subspace as 
S3 [i.e., in (B(n)], and (ii) obtaining a technique for recovering Sl • 

3.3 The Time-Variable Nonlinear Element 

We shall denote by tf;(w,t) the inverse nonlinear characteristic; that 
is, tf;(<p[v],t) = v for all v and t. It is assumed throughout that tf;(O,t) = 0 
for all t, that tf; [wet)] is a measurable function of t whenever W is measur
able, and that there exist two positive constants a and {3 with the 
properties that !(a + (3) = 1 and 

a (WI - W2) ~ tf; (WI , t) - tf; (W2 , t) ~ {3 (WI - W2) ( 5 ) 

for all t and all WI ~ W2 • Of course no loss of generality is introduced by 
the normalization !(a + (3) = 1, which happens to be convenient for our 
purposes. Observe that 0 < a ~ l. 

It follows from (5) that 

(3-\Vl - V2) ~ <p(Vl ,t) - <p(V2 ,t) ~ a-l(Vl - V2) 

for all t and all Vl ~ V2 • Observe that W [; £2R if and only if v [; £2R • 

3.4 Assumptions Regarding \ A(w) \, \ B(w) \, and \ D(w) \ 

In addition to the uniform boundedness of \ A(w) \, \ B(w) \, \ C(w) \, 
and \ D( w) \ mentioned earlier, it is assumed, unless stated otherwise, 
that there exists a union of disjoint intervals nD such that nD C n, 

\D(w) \ = 0) 
\ B (w) \ ~ kl W [; nD , 

\ A(w) \ ~ k2 
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and 

where ki , k2 , and k3 are positive constants. In most cases of engineering 
interest either nD = n or nD is the null set. t 

3.5 Statement of Principal Results 

Our main result is 
Theorem I: Let A, B, C, D, a, and 1/; be as defined in Sections 3.1, 3.3, and 
3.4. Let 

inf I C - AD-1 B-1 I > 1 - a 
w,(fl-flD) 

inf I C - 1 I > 1 - a. 
w¢fl 

Then to each S3 G eBen) there correspond unique functions SI G eBen) and 
w, v, S2 G £2R s1tch that 

S2 = DS1 + Bw 

v = As! + Cw 

V = 1/;[w] 

[-i.e., such that (1), (2), (3), and (4) are satisfied]. Furthermore ij 

v = ASI + Cw 

v = 1/;[w] 

where k4 is a positive constant that depends only on A, B, C, D and 1/;. 

Suppose that 1/;[w] = Cw + AS1 {i.e., (2) with v = 1/;[w]} possesses a 
unique solution w G £2R for any SI G eBen) and that if 1/;[w] = Cw + AS1 

t The assumptions in this section facilitate a common treatment of these two 
important cases. Observe that, with the exception of these cases, it is assumed 
here that I D(w) I is discontinuous on n. However, as indicated in the Appendix 
this is by no means a necessary condition for the recoverability of 81 • 
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in which 81 e eB(Q) and ill e £2R, 1\ W - ill II ~ k511 81 - 811\, where k6 
is a constant that does not depend on 81 or 81. [A direct application of 
Theorem II (in Section IV) shows that this is the case if inf Ie - 1 I > 

CAl 

(1 - a).] It follows directly from the properties of t/I and the assump
tions regarding A, B, C, and D that if 81 e eB(Q), there exist unique 
functions v, 82, 8a e £2R such that (1) (2), (3), and (4) are satisfied. 
Let 4» denote the operator that associates with each 81 e eB(Q) the corre
sponding 83. The assumptions regarding t/I[w] = Cw + AS1 together with 
the boundedness of Band D imply that 4» is a bounded mapping of eB(Q) 
into itself. Under the conditions stated in Theorem I, 4» possesses a 
bounded inverse. 

The invertibility conditions are established in Section IV and the 
boundedness of 4»-1 is considered in Section V. 

The method used to establish the invertibility conditions is construc
tive. In particular, 4»-IS3 can be computed in accordance with a stable 
iteration procedure for which the successive approximations converge 
in the £2R norm at a rate that is at least geometric. The approximations 
converge also in the supremum norm at a rate that is geometric or 
greater if }L(Q) is finite. 

As indicated earlier, in most cases of engineering interest either 
QD = Q (the single-loop feedback system case), or QD is the null set 
(i.e., the magnitude of the "direct transmission" D(w) is uniformly 
bounded away from zero on Q). The invertibility conditions stated 
above are satisfied in many cases of practical interest. 

The situation considered by Landau and Miranker,l and Zames2 cor
responds to one in which A = B = I, D = C = 0, and QD = Q. The 
inequalities are obviously satisfied in this case. In fact they are satisfied 
when QD = Q and C (w) = 0, w £' Q. More generally, observe that the in
equalities are met if and only if (C - AD-1 B), for all w e (Q - QD), and 
C, for all WE Q, are bounded away from the disk centered in the complex 
plane at [1,0] and having radius 1 - a where ° < a ~ 1. 

IV. DERIVATION OF INVERTIBILITY CONDITIONS 

In the following discussion we shall denote by P D the operator that 
projects elements of £2R onto eB(QD ). That is, 

PDj = T-1P DTj, j e £2R (6) 

where 

PD = PD(W) = 1, 

= 0, 
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and, as before, Tf denotes the Fourier transform of f. Recall that D is 
an invertihle mapping of m(n - nD ) into itself, that A and B are in
vertible mappings of menD) into itself, and that D annihilates menD). 
We shall denote by :5-1 the inverse of the restriction of D to m(n - nD ), 

and by A-I and 13-\ respectively, the inverses of the restrictions of A 
and B to menD). 

From (3) and (4) 

Sa = DS1 + PBw, 

and from (2) and ¥trw] = v 

¥trw] = Cw + As1 • 

(7) 

(8) 

Our 0 bj ective is to determine w in order to find SI from (7) and (8). 
The corresponding functions S2 and v can of course be computed from (3) 
and v = ¥trw]. 

Since D annihilates menD), PDS3 = PDBw and, since PD and B com
mute, 

...... -1 
PDw = B PDS3. (9) 

The problem therefore reduces to the determination of (I - PD)w. 
Before proceeding it is convenient to set Wa = PDw and Wb = (I - PD)w, 
and to introduce 

Definition I: Let 

'11(x) = {3 - x, x ~ 1 

= x - lX, x ~ 1. 

From (8), 

since C and A commute with (I - PD ). From (7), 

(P - PD)S3 = D(P - PD)SI + (P - PD)Bw, 

and 

Thus, 

(I - PD)¥t[wa + Wb] = CWb - Afj-\P - PD)Bwb + Afj-\P - PD)Sa 

from which 
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(1 - PD ) {~[Wa + Wb] - ~OWb} 

= [C - AD-1(P - PD)B - ~ol]wb + AD-1( P - PD)S3 

where ~o is a real constant to be chosen subsequently. 
Thus, regarding [C - AD-1(P - PD)B - ~oI] as a mapping of the 

orthogonal complement of ffi(£2n) into itself, and assuming that it pos
sesses a bounded inverse [C - AD-1(P - PD)B - ~oI]-\ 

where 

RWb = [C - Aj)-l(p - PD)B - ~oI]-l(1 - PD){¥t[wa + Wb] - ¥tow/;l 

- [C - AD-1(P - PD)B - ¥to1]-lAj)-1(p - PD)S3. 

The operator R is a mapping of a complete metric space into itself. 
We next establish a condition under which R is a contraction. Let H = 
[C - AD-1 (P - P D) B - ¥to1]-1, and let f and g belong to the orthogonal 
complement of ffi(a D ). Then 

II Rf - Rg II ~ II H(I - PD) 1I·1I¥t[wa + f] - ¥t[wa + g] - ¥toU - g) II 
~ II H (1 - P D) II 1] ( ¥to) II f - gil, 

smce 

Thus R is a contraction for some ¥to if 

r = inf II H (1 - P D) II 1] ( ¥to) < 1. (12) 
fo 

It turns out that the optimal choice of ¥to is unity, the median of a and 
B. Consequently we could have simply set ¥to = 1 at the outset. However, 
we prefer to establish the significance of this choice. 

4.1 Evaluation of II H(1 - P D ) II 

Let H = [C - AD-\P - PD)B - ¥to]-l with the understanding that 
D-1(P - P D) = 0, w E (a - aD). Our result ist 

Lemma I: 

IIH(1 - P D ) II = esssup IH(w) I· 
WinD 

t The notation ess sup Q(w) denotes inf sup Q(w) where m, is an arbitrary zero-
w m wtm 

measure subset of the real line. 
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Proof: 
The norm of H(! - PD ) is sup{II z II; IIf II = I} where z = H(! -

PD)f and f [: £2R. An application of the Plancherel identity yields, in 
terms of the frequency domain representation of H, 

Hence 

sup{ II z II; II f II = I} ~ ess sup I H(w) I· 
w¢f!D 

However if ess sup I H (w) I < 00, for any € > 0 there exists a set of 
w¢f!D 

nonzero measure 8 which is disjoint from QD and such that I H(w) I ~ 
ess sup I H (w) I - €, W [: 8. Since I F (w) I is permitted to be nonzero only 

w¢f!D 

on 8, it follows that 

sup{ II z II; II f II = I} ~ ess sup I H(w) I - €. 
w¢f!D 

Thus if ess sup I H(w) I < 00, 

w¢f!D 

" H(! - P D ) II = ess sup I H(w) I. (13) 
w¢f!D 

It is clear that (13) remains valid if ess sup I H (w) I = 00. This proves 
w¢f!D 

the lemma. 
It follows from (12) and Lemma I that 

r = inf ess sup I [C - AD-\P - PD)B - 1f'O]-l I 7J(1f'o). (14) 
fo w;f!D 

4.2 Determination of 1f'o and Statement of Theorem II 

The following lemma indicates that the optimal choice of 1f'o is inde
pendent of [C - AD-1(P - PD)B]. 

Lemma II: Let ~ be a complex number and suppose that 

I ~ - 1f'o 1-17J( 1f'o) < 1. 

Then 

Proof: 
Suppose first that 1f'o ~ 1 and that 

I~ -1f'ol > k({3 -1f'o), k > 1. 
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Then, since I ~ - 1/10 I ~ I ~ - 1 I + I 1 - 1/10 I, 
I ~ - 11 + 11 - 1/10 I - k(1 - 1/10) > k(fj - 1), 

and hence I ~ - 1 I > k(fj - 1). Suppose now that 1/10 ~ 1 and that 

I ~ - 1/10 I > k( 1/10 - a), k > 1. 

Then, 

I ~ - 1 I + 11/10 - 1 I - k(1/Io - 1) > le(1 - a), 

and hence I ~ - 1 I > le (1 - a). 
It follows from (14) and Lemma II that if r < 1, 

r = ess sup I [C - AD-1(P - PD)B - 1]-1 1'17(1) 
w¢flD 

= ess sup I [C - AD-\P - PD)B - 1]-1 I (1 - a). 
w¢flD 

At this point we are in a position to state 

Theorem II: Let A, B, C, and D be the bounded linear operators defined in 
Section 3.1. Let D, but not necessarily A and B, have the properties stated 
in Section 3.4. Let n-1 denote the inverse of the restriction of D to (B(nD ), 

and let PD denote the operator that projects elements of £2R onto (B(nD ). Sup
pose that 

where 

rl = ess sup I [C - AD-1B - 1]-1 I (1 - a) 
we(fl-flD) 

r2 = esssup I [C - 1]-11 (1- a). 
",;fl 

Then for any Wa and g, respectively elements of (B(nD ) and its orthogonal 
complement with respect to £2R , there exists a unique Wb in the orthogonal 
complement of (B(nD ) such that 

(I - PD)1/I[wa + Wb] = [C - An-\p - PD)B]Wb + g. 

In fact, Wb = lim Wbi where 
i-.co 

Wb(Hl) = [C - An-1(p - PD)B - 1]-\1 - PD){1/I[wa + Wbi] - Wbi} 

- [C - An-1(p - PD)B - 1]-1g 

and WbO is an arbitrary element in the orthogonal complement of (B(nD ). 
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If Wb is a solution corresponding to Wa and {j, 

Proof: 

With the exception of the last inequality, the proof follows from the 
fact that if r < 1, R (with 1/;0 = 1) is a contraction mapping of a complete 
metric space into itself. t The inequality is obtained as follows. Let 
J = [C - Aj)-\P - PD)B - 1r1 (i.e., let J be H with 1/;0 = 1). Then, 
SInce 

Wb = J(1 - PD){1/;[wa + Wb] - Wb} - Jg, 

Wb - Wb = J(1 - PD){1/;[wa + Wb] - 1/;[Wa + Wb] - (Wa + Wb) 

+ (wa + Wb)} - J (g - (j). 

Therefore 

II Wb - Wb II ~ II J(1 - PD) II '7(1) II Wa - wa + Wb - Wb II 

+ II J(1 - PD ) 11·11 g - (j II, 

and since r = II J(1 - P D ) II '7(1), '7(1) = (1 - a), and 

II Wa - wa + Wb - Wb II ~ II Wa - wa II + II Wb - Wb II, 

/I Wb - Wb /I ~ 1 ~ r /I Wa - wa II + (1 _ r)r(1 - a) II g - (j /I. 

With regard to the "essential supremum" notation used in the state
ments of Lemma I and Theorem II, it is of course true that 

ess sup I H(w) I = sup I H(w) I 
W;OD W;OD 

in at least almost all cases of engineering interest. 

4.3 The Complete Recovery Scheme 

Let us now consider our over-aU objective, the recovery of SI . From 
(8) and (11), using the definition of X-t, 

(P - PD)SI = j)-I(p - PD)Sa - fj-l(p - PD)Bw 

PDS1 = X-1pD { 1/;[w] - Cw}. 

t In particular, our assumption regarding the inverse of [C - AD-l(P - PD ) -

B - 11 is satisfied, since I C - AD-l(P - PD ) - 1 I is bounded away from zero 
for all w in the complement of f2D • 
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Therefore, 

81 = (P - P D)81 + P D81 = [j)-l(p - P D) - X-1CB-1p D]S3 

+ X-IPD{~[B-lpDS3 + Wb]} - j)-I(p - PD)Bwb 
(15) 

where we have used (9), the fact that (P - PD)Bwa = 0, and the 
identity X-IPDCB-IPDS3 = X-1CB-1P DS3 . This proves the first part of 
Theorem 1. The second part, which is concerned with the boundedness 
of 4J-t, is considered in Section 5.1. 

We define SIn, the nth approximation to SI , by 

SIn = [f)-I(p - P D) - X-1CB-1P D]S3 + X-IPD{~[B-lpDS3 + Wbn]} 

(16) 
- j)-I(p _ PD)BWbn 

where Wbn is the nth approximation to Wb as defined in Theorem II. Ob
serve that 

SIn - SI = X-1P D{ ~[B-lpDS3 + Wbn] - ~[B-1pDS3 + Wb]} 

- j)-I(p _ PD)B(Wbn - Wb), 

from which, using the right inequality of (5) satisfied by ~, 

\\ SIn - 81 \I ~ { \I X-1PD \I {3 + \I f)-1(p - PD)B \I } \I Wbn - Wb \I. (17) 

An argument very similar to that used in the proof of Lemma I suffices 
to show that 

\I X-IPD \I = ess sup \ A-I \ (18) 
WenD 

\I f)-I(p - PD)B \I = ess sup \ D-1B \. (19) 
We(n-nD) 

Our assumptions regarding A and B imply that the right-hand side of 
(18) and the right-hand side of (19) are bounded. Therefore, since Wb = 
lim Wbn , (17) implies that SI = lim 81n • 

The convergence of SIn to SI established in the last paragraph is in 
the mean-square sense. If }.L(n) < 00, it is also true that SIn converges 
to SI pointwise uniformly in t, that is 

lim sup \ SIn - SI \ = o. 
n-+oo t 

This result follows from the inequality:t 

t This inequality is proved in Ref. 1 for the case in which n is a single interval 
centered at the origin. The extension to arbitrary sets of finite measure is trivial. 
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r.. 
Ln Wbn -O-I(p-P

O
) B 

s 3 

'8-1 P. 
D I 

I 

7/1 A'- I P
D 

Fig. 2 - Idealized recovery scheme. 

sup I jet) I ~ ~~~)y II j II, f E <B(n) 

and the fact that SIn, SI E eBen). 

Wa I I 2 I en-I) 

I I I 

B'-I PD 
7/1 7/J 7/J 7/J 

(I-Po) I (I-PD) (I-PD) I 

J Wbl J Wb2 J 

I I I 
53 Wbn 

-AD-'(I-PD) 
I I 

Fig. 3 - The iterative operation Ln . 

4.4 Signal-Flow Graph for a Complete Recovery Scheme 

One complete idealized scheme for obtaining the nth approximation to 
SI , based on (16) and the solution for Wb given in Theorem II with g = 
AD-\P - PD )S3 and WbO = 0, is summarized in Fig. 2. The iterative 
operationt Ln is shown in detail in Fig. 3 in which, as defined earlier, 

t In the special case in which DD is the null set and C - AD-l P B = 0 identically 
in w, W = ~[A:5-1S3] and hence the iteration stage is not required. The condition 
that C - AD-IPB vanish identically in w, under which «Il is by no means a trivial 
mapping of eBen) into eB(D), is equivalent in engineering terms to requiring that 
the feedback transmission, for w t D, and the null feedback transmiSSIOn, for we 
D, both vanish. 
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J = [C - AD-1(P - PD)B - 1]-1. Fig. 4 shows a flow-graph representa
tion of J in terms of [C - Afi-1(p - PD)B] and elementary operations. 
The flow graphs in Figs. 2 and 3 simplify in obvious ways in the impor
tant special cases in which D = 0 on eB(Q) or D possesses a bounded 
inverse on eB(Q). 

The analog implementation of the scheme presented in Fig. 2 requires 
consideration of the time delay inherent in the approximation of the 
impulse response functions corresponding to the nonrealizable operatorst 
P and PD , as well as the time delay that might be required in the ap
proximation of J. These considerations imply that time delay sections 
must be inserted at various points in the recovery system and that the 
time variation of the nonlinear elements must be staggered. Of course 
the output of the recovery system will be a delayed version of an ap
proxima tion of SI ( t) . 

-I 1 
0 

I 
I 

J =4 
[C-:-AO-1 (P-PD)B] 

Fig. 4 - Flow-graph representation of the operator J. 

There are many variations possible in the implementation of the re
covery system. For example, the iteration can be performed with a 
recording device and a single typical stage of the type used in Fig. 3. 

V. RATE OF CONVERGENCE AND STABILITY OF THE RECOVERY SCHEME 

The key element in the recovery scheme is of course the iteration pro
cedure. We show first that the approximating functions Wbi conyerge to 
their limit Wb at a rate that is at least geometric. This type of convergence 
is a direct consequence of the fact that Wbi = RiwbO where R is a con .. 
traction mapping. 

Since 

" Wbi - Wb II II [Wb(i+l) - Wbi] + [Wb(i+2) - Wb(Hl)] + ... II 
~ II Wb(Hl) - Wbi II + II Wb(i+2) - Wb(i+l) II + 

Repeated applications of the inequality: 

t Of course we are ignoring the cases in which P = lor PD = O. 
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lead to 

II Wbl - Wb(l-l) II = II RWb(l-l) - RWb(l-2) II 

~ r II Wb(l-l) - WbU-2) II, l ~ 2 

i 
r II Wbi - Wb II ~ -1 - II Wbl - WbO II· -r 

(20) 

If WbO = 0, Wbl = J(I - PD)1f[B-IPD83] - JAfi-1(p - P D)83 , and 
hence 

i 

II Wbi - Wb II ~ 1 ~ r II J(I - P D ) {1f[B-I
Pn83] - B-IPD 83 

- AD- l (P - PD )83} II 

~ 1 ~rIlJ(I-PD)1I {7](1) IIB-1PDII 

+ II Af)-\P - P D) II} II 83 II 

~ ri+l {II B-IP
D 

II + II AD-
l

(P - P n ) "} II 83 II 
l-r I-a 

where, in accordance with the arguments used in the proof of Lemma I, 

II B-I P D II = ess sup I B-1 I 
weflD 

II AD-l (P - P D ) II = ess sup 1 AD-l I. 
we(-flD) 

5.1 Stability of the Recovery Scheme 

We consider here the degree of immunity of the recovery scheme to 
two important types of errors. 

It is assumed first that the input to the recovery system, which we 
shall denote by 83, differst from 83. Let overbarred symbols denote signals 
due to the input 83. We have from (15) 

II 81 - 81 II = II [f}-I(p - P D) - A-ICB-IP D](83 - 83) 

+ A-lpD{1f[B-IPD83 + Wb] - 1f[B-IPD83 + Wb]} 

- [:O-\p - PD)B](Wb - Wb) II 

~ II f}-\p - P D) - A-ICB-1p D 11·11 83 - 8311 
(21) 

+ II A-IP D II {3{ II B-1PD 11·11 83 - 83 II + II Wb - Wb II } 
+ II f)-l(p - PD)B 11·11 Wb - Wb II. 

t The departure of Sa from 8a might be due to the presence of noise in either 
the transmission channel or the initial stages of the receiver. 
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However, from Theorem II with g = AD-l(P - PD )S3, 

/I Wb - Wb /I ~ 1 ~ r II j3-
l
P D 1/·11 S3 - 83 II 

(22) 

+ (1 _ r)~l _ a) II AD-l(P - P D ) II· II 83 - 83 II· 

In view of our earlier assumptions which imply the boundedness of all of 
the norms in (21) and (22), it is evident that there exists a positive 
constant k4 such that 

(23) 

for all 83 , 83 E eBen). In other words, our assumptions imply that ~-l 
is bounded. This means that the error in the recovered signal is at most 
proportional to the error in the input to the recovery system. In par
ticular, the recovered signa] depends continuously on the input to the 
recovery system. 

We show next that the recovery scheme is not critically dependent 
upon either an exact knowledge of the operator J or the projection prop
erty of PD. Specifically, we shall compare the functions Wb and 'Wb 
defined by 

where Q and 8 are bounded linear mappings of £2R into itself. We assume 
that r < 1 and that 

r = II Q II '7(1) < 1. (26) 

Hence R is assumed to be a contraction mapping of £2R into itself. Note 
that inequality (26) is satisfied if r = II J(I - PD ) II '7(1) < 1 and 
II J(I - PD ) - Q II is sufficiently small. A comparison of Wb and 'I1Jb 
yields an estimate of the error, due to the departure of Q from J(I - PD ) 

and to the departure of 8 from J, in the limit function approached by 
the iteration procedure in the recovery system. 

From (24) and (25), 

Wb - 'I1Jb = (8 - J)AD-l(P - PD)S3 + J(I - PD){l/t[wa + Wb] - Wb} 

- Q{ l/t[wa + Wb] - Wb} + Q{ l/t[wa + Wb] - Wb} - Q{ l/t[wa + Wb] - 'I1Jb}, 

from which 
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" Wb - Wb II ~ " (S - J)AD-\P - Pn)S3" + "[J(1 - Pn) - Q] 

{1f[w] - Wb} II + II Q 111](1) II Wb - Wb II, 
and 

1 --1 II Wb - Wb" ~ 1 '_ f " (S - J) AD (P - P n) S3 /I 

1 + 1 _ f" [J(1 ~ Pn) - Q]{1f[w] - Wb} /I. 

Therefore, if the departure of Q from J(1 - Pn ) is not too large (i.e., 
if f < 1), the error in the limit function approached by the iteration 
technique is, for fixed S3 (and hence fixed w), at most a linear combina
tion of two terms, one that approaches zero as II S - J II approaches 
zero, and another that approaches zero as " J(1 - Pn ) - Q " approaches 
zero.') 

VI. 'SOME NEGATIVE RESULTS 

In this final section we consider some results that relate to the neces
sity of the conditions introduced earlier. 

The equation 1f[w] = Cw + As1 , in which S1 E CB(£1), plays a central 
role in defining the mapping <Il. As stated in Section 3.5, Theorem II 
implies that this equation possesses a unique solution W E £2R if 

inf I C - 1 I > 1 - a. (27) 
w 

It :i8 of interest to note that there exists a function 1f such that the 
equation 1f[w] = Cw + AS1 possesses no solution W E £ZR for any non
identically zero AS1 if (27) is not satisfied, £1 is a bounded set, and C = 

cI ,vhere c is a real constant. This follows directly from the fact that if 
(27) is violated, a ~ C ~ (2 - a) = (J. Specifically, throughout a 
neighborhood of the origin let 1f be independent of t and linear in W with 
slope c. Then clearly, 1f[w] - cw = 0 whenever I W I < e where e is some 
positive constant. Since AS1 is assumed to be nonzero almost everywhere, 
the validity of our assertion is evident. 

Let U denote the mapping of the orthogonal complement of CB(£1n) 
into itself defined by UWb = (1 - Pn)1f[Wa + Wb] - EWb, where Wa E 

CB(£1n) and E = C - AD-\P - Pn)B. Theorem II asserts that U 
possesses a bounded inverse if E(w) = C - AD-1(P - Pn)B, for all w 
contained in. the complement of £1n , is bounded away from the disk in 
the complex plane centered at [0,1] and having radius (1 - a). 
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Theorem I I I: Let "I be a real constant and let Zl denote an open interval 
contained in the complement of rlD such that E (w) is continuous on Zl and 

inf I E (w) - "I I = O. 
WEEl 

Let 1/; be independent of t and continuously differentiable with respecl'~to· x 
on an interval Z2 where 

inf Id1/;(x) - "II = O. 
xeZ2 dx 

Then U does not possess a bounded inverse. 

Remark: Note that the hypotheses regarding 1/; are satisfied if 1/; is ,inde
pendent of t, continuously differentiable with respect to x, and "I is any 
point on the real-axis diameter of the disk mentioned above. Of course 
we assume that 

inf d1/;(x) = a 
x dx ' 

Proof of Theorem III: 
We need the following lemma. 

and sup d1/;(x) = (3. 
x dx 

Lemma I I I: Let ~] denote the real interval [- T, T], let, EI and E2 be'real 
positive constants, and let h( t) be a continuous real function defined On':~l • 

Then there exists a function get) in the orthogonal complement of ffi(fb) 
(assuming that UD is a proper subset of the real line) such that 

I h ( t) - g (t) I ~ EI, 

where ~2 is a set of points contained in disjoint intervals of total measure 
not exceeding E2 • 

Proof: 

If the complement of rlD contains an interval centered at the origin, 
the result is known and in fact is true with ~2 the null set. The following 
very direct argument makes use of the known result to treat the case in 
which the complement of UD does not contain an interval centered at the 
origin. 

Let WI and W2 be real positive constants such that the interval [WI - W2 ) 

WI + W2], where WI > W2, is contained in the complement of rlD • Let U' 
be an interval of length 2W2 centered at the origin. Let U' be an interval 
of length 2W2 centered at the origin. Let {ti , t2 , ••• ,tn} = {t I t E ~l ; 

cos WIt = O}. Let I j denote an interval of length E2/n centered at ti. For 
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any f3 > 0, there exists a function let) E CB(n') such that 

Il(t) - ~ I ~ f3, t E (ill - il2 ) 
cos WIt 

n 

where il2 = U I j. Choose f3 such that f2 = f3 inf cos W2t. It is 
j=l tI:(~1-~2) 

evident that let) cos wIt possesses the properties of get) stated in the 
lemma. 

To prove Theorem III it suffices to show that for any f > 0, there exist 
two functions Wlb and W2b, belonging to the orthogonal complement of 
CB(nD ), such that II WIb - W2b II = 1 and IIlf[wa + Wlb] - If[Wa + W2b] -

E(WIb - W2b) II < f. 

Let f4. , f5, and f6 be arbitrary positive constants. Since i~ I E(w) -
"'£"='1 

"I I = 0 and E( -w) is equal to the complex conjugate of E(w), there 
exists an W3 E Zl such that I E( ±W3) - "I I ~ !f4. Let ITI and IT2 denote 
two finite intervals of equal length ,ueITI) contained in Zl and centered, 
respectively, at -W3 and +W3. Let (Wlb - W2b) E CB( TIl U IT2) with II Wlb -

W2b II = 1. Choose ,u( TIl) and T such that 

sup I E(w) - "I I ~ E4, II Wlb - W2b IIltl>T ~ E5 
wdll t/:~3 

where il3 is any subset of ill = [- T, T] with measure not exceeding k6 , 
a sufficiently small positive constant. The second inequality can always 
be satisfied since, in accordance with the inequality stated in ~ection 
4.3, sup I Wlb - W2b I ~ [7l"-l,u(ITl)]!. 

t 

Since inf I [dlf (x) / dx] - "I I = 0, there exists a real constant Xo E Z2 
:I:/:Z2 

such that 

I
lf[Wa + Wlb] - If[Wa + W2b] - "I I ~ f6 

Wlb - W2b 
(28) 

whenever I Wa + Wlb - Xo I and I Wlb - W2b I are sufficiently small. We 
may assume that ,u( TIl) is so small that the condition on I Wlb - W2b I is 
satisfied. Choose WIb in accordance with Lemma III so that (28) is 
satisfied on (ill - il2 ) where il2 is a set of measure not exceeding k6 . 
Let (ill - il2)* denote the complement of (ill - il2)' Observe that 

Illf[wa + Wlb] - If[Wa + W2b] - E( WIb - W2b) II 
~ IIlf[wa + Wlb] - If[Wa + W2b] - "I ( WJb - W2b) II 

+ II (E - "II) (Wlb - W2b) II 
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~ f6 II Wlb - W2b II + II ~[Wa + Wlb] - ~[Wa + W2b] - l' (Wlb - W2b) II (1l
1
-1l2)* 

+ II (E - 1'1) (Wlb - W2b) II 
~ f6 + ({3 + I l' I ) fS + II (E - 1'1)( Wlb - W2b) II 
~ f6 + ({3 + I l' I ) fS + f4 • 

This completes the proof. 

APPENDIX 

The purpose of this appendix is to briefly indicate an alternative 
technique for determining sufficient conditions for the recoverability of 
SI • 

Instead of the assumptions stated in Section 3.4 suppose that for some 
rea] constant ~o : 

inf I D - B(~o - C)-IA I > 0 
wen 

II (~o1 - C)-1 II TJ(~o) = ess sup I (~o - C)-1 I TJ(~o) = q < 1. 
w 

These inequalities imply that {PD + PB( ~oI - C)-IA} possesses a 
bounded inverse on <B(n) and that for any g [: oC2R the equation ~[w] = 
Cw + g possesses a unique solution W [: £2R • 

From 

~[W] = Cw + AS1 , (29) 

and ~[w] = ~ow + ~[w] we have 

S3 = {PD + PB(~o1 - Cy-1A}SI - PB(~o1 - C)-I~[W]. (30) 

Equation (30) can be written as 

SI = MS1 + {PD + PB(~o1 - C)-lA}-IS3 

where 

Of course the dependence of the right-hand side on SI is through w. 
Let ill be the solution of ~[w] = Cw + AS1 corresponding to S1 = 81. 

Then by arguments similar to those leading to Theorem II, 

II W - ill II ~ -1 1 II (~o1 - C)-1 AP 11·11 S1 - 81 II· 
-q 
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ThusM is a contraction mapping of (B(Q) into itself if 

p = II {PD + PB(lfoI - C)-lA}-lpB(lfoI - C)-l II 

77(lfo)[1/(1 - q)] II (lfol - C)-lAP II < 1. 

Hence if the received signa] 83 is known to be related to the transmitted 
signal 81 c (B (Q) by (29), 81 can be recovered if our assumptions are 
satisfied and if p < 1. Using arguments similar to those leading to 
Lemma I, 

p ~ CS~:':lP ID(lbo _ ~) + BA I n(lbo) 1 ~ q e"':,,~up lib, ~ cl· 
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1 t is proved that the integral equation 

/1 G(x )F(xy)H (y )f(y) dy = Af(x) 
-1 

has at least one nonzero eigenvalue if F is any integral function of finite 
order, G and H are any bounded functions on [-1,1], and the trace of the 
kernel G(x)F(xy)H(y) does not vanish. In particular, this theorem furnishes 
the first rigorous proof that the kernel exp [ik(x - y)2], which arises in the 
theory of the gas laser, has an eigenvalue for arbitrary complex k. 

r. INTRODUCTION AND SUMMARY 

In an idealized model of the gas laser or optical maser, as studied by 
Fox and Lil,2 and others, electromagnetic radiation is reflected back and 
forth between two infinitely long metal strips which are mirror images of 
each other. A typical field quantity, such as the current density, at the 
surface of each reflector satisfies the integral equation 

II exp{i[k(x - y)2 - hex) - hey)]} fey) dy = Af(x), (1) 
-1 

where k is a dimensionless real parameter which depends on the width 
and spacing of the reflectors and the wavelength, and h(x) is a real func
tion specifying the departure of the reflecting surfaces from parallel 
planes. 

The eigenfunctions of (1) represent the field distributions at the re
flectors of the possible modes of oscillation of the laser, and the eigen
value A corresponding to a particular mode represents the complex factor 
by which the field strength is multiplied as a result of one reflection and 
transit between the reflectors. From the magnitude of A one can deduce 

113 
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the amount of amplification which would have to be provided by an ac
tive medium between the reflectors in order just to sustain oscillations 
in the given mode, while the phase of "A determines admissible reflector 
spacings for oscillations at a particular frequency. 

The mathematical interest of (1) centers around the fact that its 
kernel K(x,y) is complex symmetric but not Hermitian;* that is, 

K(x,y) = K(y,x) but ]((x,y) ~ K(y,x). (2) 

The ordinary theory of Hermitian kernels does not even suffice to prove 
the existence of eigenvalues of complex symmetric kernels. Fox and Lit 
have made extensive calculations of the eigenvalues and eigenfunctions 
of (1) for h(x) = 0 by iterative numerical techniques up to about Ie = 60 
(in applications Ie may be as large as a few hundred) ; but heretofore there 
has been no formal mathematical proof of the existence of solutions 
exceptt for I Ie 1« 1, w'hich is not a case of physical interest. 

This paper contains a proof of the follow'ing 
Theorem: Let G(x) and H(x) be any bounded functions on the interval 

-1 ~ x ~ 1, and let F(z) be any integral function of finite order such that 

11 G(x)F(x2 )H(x) dx ~ O. 
-1 

(3) 

Then the integral equation 

11 G(x)F(xy)H(y)f(y) dy 
-1 

"Af(x) (4) 

has at least one nonzero eigenvalue. 
As a corollary, it follows that the integral equation (1) has at least one 

eigenvalue for arbitrary complex Ie, provided only that 

11 e-2ih (x) dx ~ O. 
-1 

(5) 

Furthermore if h(x) is an even function of x, then (1) has at least two 
eigenvalues for all but certain exceptional values of Ie, a particular excep
tional value being Ie = O. 

The idea of the proof is quite simple. The assumption that F(xy) in 
(4) is an integral function of finite order means that ultimately the coeffi
cients of its Taylor series in powers o~ xy fall off with extreme rapidity. 

* The kernel is normal in the special case h(x) = kx2. The eigenfunctions of 
exp (-2ikxy) are prolate spheroidal wave functions, as pointed out in connection 
with lasers by Boyd and Gordon.3 

t If I k 1«1 then exp [ik(x - y)2] is nearly unity, and the existence of at lpast 
one eigenvalue follows from perturbation theory; see Sz.-Nagy.4 
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If we truncate the Taylor series after a finite number of terms, (4) is 
replaced by an integral equation with a kerneJ of finite rank. The eigen
values of such a kernel are merely the latent roots of a finite matrix, and 
these are not all zero if their sum, which is the trace of the matrix, does 
not vanish. The limiting value of the trace is just the left side of (m, 
and does not vanish by hypothesis. By taking more and more terms of 
the series for F(xy) , we obtain a sequence of larger and larger matrices, 
whose elements ultimately vanish very rapidly with distance from the 
upper left corner. We show that it is possible to pick one eigenvalue from 
the set of eigenvalues of each succeeding matrix in such a way that the 
resulting sequence of numbers has a nonzero limit point. This limit point 
is an eigenvalue of the infinite matrix, and hence an eigenvalue of the orig
inal integral equation. 

Details of the argument just sketched are given in a series of lemmaR 
in the next section, followed by the proof of the main theorem. Since the 
existence proof makes heavy use of asymptotic inequalities, it does not 
generally provide a practical technique for obtaining numerical results. 
The important practical question of finding approximate expressions, 
valid for large le, for the eigenfunctions and eigenvalues of equations stich 
as (1) is a separate problem, as is also the question whether any particular 
equation has a finite or infinite number of eigenvalues. 

For a gas laser with finite (not strip) mirrors of arbitrary, dissimilar 
shape and size, the integral equation still has a complex symmetric 
kernel,2 although the domain of integration is two-dimensional and the 
kernel is more complicated than that of (1). The existence of eigenvalues 
in the most general case still remains to be settled. 

II. MATHEMATICAL DETAILS 

We shall use the following notation referring to an n X n matrix: 

A(n) (aij), i = 1, 2, ... , n; j = 1, 2, ... , n; 

n 

L I aij I, i = 1, 2, ... , n; (6) 
j=l 

n 

SeA (n») = LA (n)(i) 
i=l 

If the superscript is omitted, n is understood to be infinite. 
Lemma 1: 

n 

I det A (n) I ~ II A (n)(i). (7) 
i=l 
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Proof: Using Hadamard's inequality, 

(8) 

Lemma 2: 

I det(A (n) + B(n») - det A (n) I 
n n (9) 

~ II fA (n)(i) + B(n)(~.)] - II A (n)(i). 
i-I i-I 

Proof: Thelemma is obviously true for n = 1. To proceed by induction, 
assume it is true for all determinants of order n - 1, and expand the 
determinants in (9) by minors of the first row. Let Clj be the algebraic 
complement of ali + bli in A (n) + B(n), and let Ali be the algebraic com
plement of ali in A (n). Then 

n 

det(A (n) + B(n)) '"'" ( + b )C = L.J ali Ii Ii 
i-I 

n n 
(10) 

= det A (n) + L: al;(Cl; - AI;) + L: bl;Cl; . 
i-I i-I 

By Lemma 1, 

n 
(11) 

~ II [A (n\i) + B(n\i)]. 
i-2 

By the inductive hypothesis, 

n n 

I Clj - Alii ~ II [A(n)(i) + B(n)(i)] - IIA(n)(i). (12) 
i-2 i-2 

where we have used the fact that the right-hand side is increasing as a 
function of the A (n)(i) and B(n)(i). Hence (10) gives 
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I det(A Cn) +,BCn
» - det A Cn) I 

;;; A en' (1) {IT, [A en' (i) + Ben' (i)l -IT, A en' (i) } 

n 

+ B(n)(l) II [A (n)(i) + BCn)(i)] (13) 
i=2 

= IT [A (n\i) + BCn)(i)] - IT A (n\i), 
i=l i=l 

and the induction is complete. 
N ow let CB be the Banach space* whose elements are all bounded se

quences of complex numbers, e.g., 

x = (Xl, X2 , ••• , Xi, ••• ) 

with norm 

II x II = sup I Xi I· 
i 

Let A be a linear matrix operator on the space CB, defined by 
00 

(AX)i = L aijXj, 
j=l 

i = 1,2, .... 

(14) 

(15) 

(16) 

Ax will be an element of CB provided that sup A (i) is finite .. The norm of 
i 

A is defined by 

II A II = sup { II Ax ,,; II x II I}, (17) 

and it is easy to show that 

II A II = sup A(i). (18) 
i 

Henceforth we shall restrict our attention to matrix operators for 
which 

00 

S(A) == L A(i) < 00. (19) 
i=l 

Such operators are completely continuous, because they can be ap
proximated by the sequence {A Cn)} of completely continuous operators 
which converges in norm to A. Here A (n) is a matrix whose elements co-

* The standard definitions and theorems which we shall require from functional 
analysis may be found in Kolmogorov and Fomin. 6 
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incide with those of A for 1 ~ i ~ nand 1 ~ j ~ n, and are zero other
wise. 

A complex number A is said to be in the spectrum of an operator A if 
the operator A - AI has no inverse. An eigenvalue of A is any value of 
A for which there exists a nonzero x satisfying the homogeneous equation 

Ax - AX = o. (20) 

If A is completely continuous and if A (~ 0) lies in the spectrum of A, 
then A is an eigenvalue of A. In finite-dimensional space the eigenvalues 
are the latent roots of the matrix A (n); that is, they are the roots of the 
characteristic equation 

det (A (n) - AI(n)) = o. (21) 

Lemma 3: If A (n) has A as an eigenvalue, then A (n) + Ben) has A', 

where 

I X - X'I ;:::; {IT. [A(n'(i) + B(n'(i) + I X Il 

n }l/n - IX [A (n) (i) + 1 A IJ 
(22) 

Proof: Denote the eigenvalues of A en) + B(n) by AI, A2, ... , An . 
Then 

1 (A - AI) (A - A2) ... (A - An) 1 

= I det (A (n) + B(n) _ AI(n)) _ det (A (n) _ AI(n)) I, (23) 

the second determinant being equal to zero because A is an eigenvalue of 
A (n). Let 

D(n) = A (n) _ AI(n) , (24) 

so that 
n 

D(n)(i) = L 1 aij - AOij 1 ~ A (n)(i) + 1 A I. (25) 
j=l 

Then, using Lemma 2, 
n n n 
II ! A - Ak 1 ~ II [D(n)(i) + B(n)(i)] - II D(n)(i) 
k=l i=l i=l 

n 

~ II [A (n\i) + B(n)(i) + 1 A IJ (26) 
i=l 

n 

- II [A (n)(i) + I A I], 
i=l 
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since the right side of the first line is an increasing function of D(n) (i). 
It follows from (26) that for at least one of the factors I A - Ak I the 
inequality (22) holds. 

Lemma 4: Let A be an infinite matrix with S (A) < 00. Suppose that 
from the eigenvalues of the sequence of finite matrices {A (n)} we can pick a 
sequence {A (n)} such that A (n) does not approach zero as n -1- 00. ThenA has 
a nonzero eigenvalue. 

Proof: The A (n) are bounded, since in fact 

I A(n) I ~ II A(n) II = max A(n)(i) ~ SeA). (27) 
i 

Also for sufficiently large n we can pick a subsequence which is bounded 
away from zero, and which therefore has at least one nonzero limit point. 
Suppose that the subsequence A (p) converges to the limit point A ~ 0, 
as p runs through some increasing sequence of integers. We assert that 
A is an eigenvalue of A. If it were not so, then (A - AI)-1 would exist 
and therefore be bounded. Suppose (A - AI) -1 were bounded, and let 
x(p) be the characteristic vector of A (p) corresponding to A (p). Then we 
would have 

x(p) = (A - AI)-\A - AI)x(p) 

(A - Al )-1[A (p)x(p) - A (p)x(p) 

+ (A - A (p) )x(p) - (A - A (p) )x(p)] 
(28) 

(A - AI)-l[(A - A(p»)x(p) - (A - A(P»)X(pt 

where in the last equation A (p) represents an infinite matrix which coin
cides with A in a square of side p in the upper left corner, and has zeros 
elsewhere. Taking norms, we have 

!I x(p) II ~ II (A - AI)-1 II II (A - A (p) )x(p) - (A - A (p) )x(p) II 
~ II(A - AI)-111 [II A - A(p) II + I A - A(P) 1111 x(p) II, (29) 

or 

II (A - AI)-111 ~ IIA _ A(p) 111+ IA _ A(P) I' (30) 

But since both II A - A (p) II and 1 A - A (p) 1 go to zero as p -1- 00, we 
derive a contradiction. 

Theorem: Let A be an infinite matrix with S (A) < 00 and with Tr (A) 
~ 0. If 

S(A) - SeA (n» < (cinE) n, 

for some c, E: > 0, then A has a nonzero eigenvalue. 

(31) 



120 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

Proof: Since Tr(A) ~ 0 and Tr(A (n» ~ Tr(A), it follows that for 
n ~ nl (say) and some 0, > 0, we have I Tr(A (n» I ~ o. Since the trace 
is the sum of the eigenvalues, A (n) must have at least one eigenvalue 
A (n) such that 

I X (n) I ~ o/n. (32} 

We shall in fact show that if nl is a sufficiently large fixed integer, and if 

j = 1,2,3, ... (33) 

then for each j there exists an eigenvalue which is uniformly bounded 
away from zero, i.e.~ 

A (ni) ~ O/2nl. (34) 

Then by Lemma 4 the theorem will be proved. 
We substitute into Lemma 3 as follows: 

I A I = I A (ni) I = t, 
(35) 

A(n) = A(ni) , 

where it is understood that A (nj) now represents the original matrix 
A (ni) augmented below and to the right with enough zeros to give it 
dimensions nj+l X njH. Then (22) becomes 

I A (ni) - A (ni+l) I 

{

ni+1 ni }lfni+l 
~ g [A (ni+l) (i) + t] - (1i+1-ni g [A (ni) (i) + t] (36) 

;;;; {V: [A(i) + tj - t"H'-"; fi [A (n;'(i) + tj rn
;+,. 

Since 

(37) 

we can rearrange (36) to get 

Hence 
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since we already know that t ~ Blnj. 
Now consider 

it [1 + njA(i)] ;£ it exp [njA(i)] ;£ exp [njS(A)] . (40) 
t=1 (5 t=1 (5 (5 

Also 

If [1 + njA(i)] ;£ exp [nj i: A(i)] 
i=n j+1 (5 (5 i=n j+1 

;£ exp ~j [S(A) - SeA (n j)] (41) 

~ exp [~; (~,)n] ~ 1 + 2;; (;,)n;, 
provided that nl and hence nj are sufficiently large, where in the next 
to last step we have used (31) and in the last step we have used eX 

;£ 1 + 2x for 0 ;£ x ;£ 1, say. Finally, 

ft [1 + n;A (;;l(il] 
= it [1 + nj A(i) - nj {A(i) - A (nj)(i) I] 

i=l (5 (5 

~ it [1 + n.iA(i)] 
t=l (5 

- nj f {[A(k) - A (nj)(k)] it [1 + njA(i)]} (42) 
(5 k=l t=l (5 

~ it [1 + njACi)] 
t=l (5 
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Substituting (40), (41), and (42) into (39) yields 

I A(ni+l) I> {n o(2 + no) (c )ni nB(A)11/n i +1 

1 - J 1 _ exp-J __ ~ 
I "A (ni) I = <> n/ <> f 

1 _ [n j (2 + nj )]1/2n i ~ 
<> n//2

' 

(43) 

where in the last step we have used the fact that nj+l = 2nj and have 
set 

Cl = C
1

/
2 exp [S(A) /20]. 

If we assume in advance that 

o ~ 2, nl ~ max (2, 4/e), 

then 

where 

Hence (43) and (46) imply 

and by induction 

I A (ni+l) I > i-I 
1- c2r , I "A(ni) I = 

I A(nJ ) I J-l 0 

jVnl5l ~ 11 [1 - c2rJ-l]. 

But if C2 ~ 72, say, then 

fJ (1 - C2ri-
1

) = exp [t log (1 - C2ri-
1
)] 

~ exp [-2 f: C2ri-
1

] = exp [-~J > 72, 
j=1 1 - r 

where the last step requires 

C2 < 72(1 - r) log 2 = %(1 - 2-E
/
4

) log 2, 

(44) 

(45) 

(46) 

(47) 

(48) 

( 49) 

(50) 

(51) 
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and by (47) this inequality can always be satisfied for large enough nl . 
But (49) and (50) imply 

A (nj) ~ 72A (nl) ~ 0/ (2nl) > 0 (52) 

for all j, and so the theorem follows from Lemma 4. Q.E.D. 
An integral function of finite order p is a function. F(z) which has no 

singularities in any finite region of the z-plane, and whose maximum 
modulus M (r) on the circle I z I = r satisfies 

log M(r) < rk (53) 

for all sufficiently large r when k > p, but not when k < p. Such a func
tion may be expanded in a Taylor series, 

00 

F(z) = L anzn
, (54) 

n=O 

which converges for all z, and whose coefficients satisfy6 

(55) 

for all sufficiently large n, where E is any fixed nu,mber less than 1/ p. 

Alternatively, for any fixed E < 1/ p, there exists a constant c such that 
for all n > 0 

I an I ;;; Ln ~ l).fl. (56) 

We are now ready to prove the result stated in Section I. 
Theorem: Let G(x) and H(x) be any bounded functions on the interval 

-1 ~ x ~ 1, and let F(z) be any integral function of finite order such that 

L: G(x)F(x
2
)H(x)dx ~ O. (57) 

Then the integral equation 

L: G(x)F(xy)H(y)f(y)dy = Af(x) (58) 

has at least one nonzero eigenvalue. 
Proof: Expand F(xy) in a Taylor series, so that the integral equation 

becomes 

Let 
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00 

f(x) = G(x) L fn an_1Xn-\ (60) 
n=l 

where {fn} is a bounded sequence of complex numbers; the an's tend to 
zero fast enough so that f(z)/G(z) will be an integral function of finite 
order. 

Since the powers of x are linearly independent, (59) is equivalent to 
the matrix equation 

Af = Aj, (61) 

where 
1 

aij = aji = (ai_laj_l)1/2 r G(t)H(t)ti+i-2dt , (G2) 
1-1 

i = 1,2, ... ; j = 1,2, .... 

Since G (x) and H (x) are bounded in -1 ~ x ~ 1 and the Taylor co
efficients of F(z) satisfy (56), it is clear that 

M ( )i/2 ( )j/2 
I aij I ~ i + j - 1 ~ ~ (63) 

In preparation for an application of the preceding theorem, consider 

SeA) - SeA (n)) ~ 2 t t. ~ (;)i/2 (~)j/2 
i=n+l j=1 ~ + J - 1 ~E f 

(G4) 
00 [( )i/2 i 1 ()i/2J 

= 2M L ~ L. +. 1!;. . 
i=n+l ~. j=1 ~ J - r 

Now (C/j')j/2 is bounded asj -1- 00, and 

i 1 j2i-l dx [2i - 1J L :s; - = log -- (65) 
j=1 i + j - 1 - i-I X i - 1 ' 

which is bounded for i ~ n + 1 ~ 2. Hence with a new bounding con
stant we have 

(66) 

Choose log n ~ (2 + log c)/e, so that n E ~ ce2
; then 

00 (C1l2)i /00 (C1/2)X /00 (C1/2)X L -:s; - dx:S; - dx . + ,,"E/2 - XE/2 - nE/2 
~=n 1 "n n 

( / E) n/2 ( 1/2)n _ en < ~ 
(log c - e log n)/2 = n E

/
2 

(67) 
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and so from (66) 

S(A) - S(A (n') ~ (::,)" , (68) 

where Cl is a new bounding constant and El = E/2. 

Finally we have 

Tr (A) = ~ aii = ~ ai-l L: G(t)H(t)t
2i

-
2 

dt 

= 1: G(t)H(t)F(t
2

) dt, 

(69) 

and this does not vanish by hypothesis. Hence all the conditions of the 
previous theorem are satisfied, and the integral equation has a nonzero 
eigenvalue. Q.E.D. 

Since exp ( - 2ikz) is an integral function of finite order 1 , it is an 0 bvi
ous corollary that the kernel exp i[k(x - y)2 - h(x) - h(y)] has a non
zero eigenvalue for arbitrary complex k, provided only that hex) is 
bounded and that 

11 e -2ih(x) dx ~ O. 
-1 

(70) 

Furthermore if hex) is an even function of x and if f(x) is an even func
tion which satisfies 

i 1 

exp (ifk(x2 + y2) - hex) - hey)]} cos (2kxy)f(y)dy = 7~Xf(x), (71) 

then f(x) also satisfies (1). But the theorem just proved obviously holds 
for arbitrary finite limits of integration and applies to the kernel of (71), 
so (71) has at least one nonzero eigenvalue if 

11 exp (2i[kx2 - hex)]} cos (2kx2)dx ~ O. (72) 
o 

Similarly if h(x) is even and if f(x) is an odd function which satisfies 

il exp {i[k(x2 + y2) - hex) - hey)]} sin (2kxy )f(y)dy = 7~iXf(x), (73) 

then f(x) also satisfies (1), and (73) has at least one nonzero eigenvalue 
if 

11 exp {2i[kx2 - hex)]} sin (2kx2)dx ~ O. (74) 
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At least one of (72) and (74) will be satisfied whenever (70) holds. Except 
for certain particular values of k, one of which is evidently k = 0, both 
(72) and (74) will be satisfied, and (1) will have at least two distinct 
eigenfunctions corresponding to nonzero eigenvalues. 
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Deposition of Talltalum Films with 
an Open-Ended Vacuum System 

By J. W. BALDE, S. S. CHARSCHAN, and J. J. DINEEN 

(Manuscript received July 19, 1963) 

New devices using vacuum-deposited metal films require a high-speed, 
low-cost method of vacuum deposition. The capability of the open-ended 
multiple-chamber deposition equipment has been investigated to determine its 
suitability for depositing tantalum nitride thin films. This was accomplished 
by examining the measurable electrical properties of the deposited film and 
by determining the stability of resistors made from these films. 

Tantalum films produced by the open-ended deposition system were found 
comparable to those produced by many bell-Jar systems. It was possible to 
control the addition of nitrogen to the, films, and tantalum nitride films of 
satisfactory stability were obtained. Because the open-ended deposition 
method can produce large quantities of suitable thin films, it is expected 
that this will be an important process in the manufacture of future products. 

I. INTRODUCTION 

Tantalum thin film circuit techniques developed at Bell Telephone 
Laboratoriesl can produce resistor and capacitor circuit elements and 
associated interconnections. Such tantalum film circuits have high sta
bility and good reliability, superior to that of discrete components with 
their multiple interconnections.2 

The Western Electric Company has developed a continuous open
ended vacuum system for deposition of these tantalum films. This sys
tem provides for the passage of substrates through a sequence of cham
bers which vary in pressure from atmospheric pressure to high vacuum 
and then back to atmospheric pressure. The design of this system and the 
details of its operation have been previously reported.3 

This open-ended system has advantages for quantity deposition of 
thin films. All vacuum chambers remain at their operating pressures; no 
time is lost pumping down prior to deposition. Work chambers need not 
be exposed to room atmosphere and possible contamination. Degassing 
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and preheating operations can be restricted to the substrates and asso
ciated carriers; repeated degassing of the system is unnecessary. Sub
strate motion is continuous through the system; no operator handling 
or manipulation is required. 

The open-ended deposition process differs in a number of ways from 
earlier work with batch processes using bell-jar vacuum chambers. 
Chamber materials and hardware are very different from those devel
oped for round bell-jar enclosures. Substrates move through the sputter
ing glow zone, continuously passing the cathode. This motion pro
duces thermal gradients which result from the dynamic equilibrium con
ditions for a given substrate speed. Deposited films are the result of an 
integration of the effect of each part of the cathode, rather than the re
sult of a static pattern of deposition. Film thickness can be controlled 
by the length of chamber and the speed of substrate motion as well as 
by deposition rate. 

II. TEST PROCEDURE 

To investigate the effects of these changed deposition conditions, the 
product of the open-ended machine was examined to ascertain whether 
the films have satisfactory properties, and also to determine that there 
was no adverse effect on the subsequent processing operations. The evalu
ation of the quality of film deposition in the open-ended system consisted 
of the following parts: 

First, examination was made of the tantalum film deposited without 
any intentional nitrogen addition. The properties of tantalum film could 
be strongly altered by contaminant gases from atmospheric leaks or by 
outgassing of material in the sputtering chamber. Examination of this 
tantalum film quality should reveal any inadequate cleaning or adverse 
effeet from the deposition method. 

Second, the properties of the films were examined as a function of the 
amount of nitrogen added to the sputtering atmosphere. This establishes 
the ability to add sufficient nitrogen to produce useful resistor films, as 
demonstrated by stability, resistivity, and temperature coefficient meas
urements. 

Third, the reproducibility and control of the tantalum nitride deposi
tion process were examined by repeat depositions at the same operating 
point, and by the examination of many depositions which deviated 
only slightly from the operating point for most suitable film properties. 

Fourth, an examination was made of uniformity of deposition over the 
width and length of the substrate. 
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III. MEASUREMENT PROCEDURE 

Satisfactory film quality is judged initially by measuring three film 
properties: thickness (1), specific resistivity (p), and the temperature 
coefficient of resistance (a). In order to insure that the variability of film 
properties is due to the machine processing system and not to errors in 
the measurement of the properties, the test details and procedures were 
evaluated. 

A test pattern was developed to insure that all films would have their 
properties measured on the same effective area and at the same position 
on the substrate. The zigzag test pattern for a 1.5-inch by 3-inch substrate 
is shown in Fig. 1. It consists of 20 resistors with a nominal line width of 
0.015 inch, each having a path length of 144 squares. The resistors are 
interconnected by a center stripe and have separate terminal tabs for 
each resistor. The test resistors are defined by using silk-screen techniques 
to apply a resist to a tantalum-coated substrate. The unwanted film is 
removed by etching. 

3.1 Film Thickness Measurement 

In preparing films for thickness measurements, hot sodium hydroxide 
is used to remove the unwanted tantalum film without appreciable etch 

Fig. 1 - Resistor pattern for film property evaluation. 
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of the glass substrate surface beneath the deposited film. After the resist 
has been removed, the films are measured using a Talysurf instrument.4 

For thickness measurements of the 1200-A films deposited in this open
ended vacuum system, the 10" error of measurement is 56 A. 

3.2 Specific Resistivity 

The specific resistivity is computed as follows 

p = Rs A X 10-2 microohm-cm 

where Rs is sheet resistance in ohms per square and A is thickness in 
angstroms. 

The sheet resistance of an unetched film is determined by a four-point 
probe measurement in ohms per square. For convenience, these measure
ments are made using a simplified direct-reading meter of 1 per cent ac
curacy. 

3.3 Temperature Coefficient of Resistance Measurement 

After the test resistor pattern has been defined by etching, connections 
are made to the center stripe and the appropriate tab areas. The resist
ance is measured at,30°C and at 60°C. The temperature coefficient of 
resistance is then computed as follows: 

TCR( ) = R60 - Rso X 106 m/oC 
a Rsof).T pp 

where R30 and R60 are in ohms and f).T is in degrees centigrade. Error of 
measurement studies indicate a 10" error of 3 ppm/oC. 

IV. ANALYSIS OF UNDOPED TANTALUM FILM 

In order to show that the machine process is reproducible at a useful 
quality level, a series of experiments were run. For this experimental 
work, one 1.5-inch by 3-inch coated lime glass slide was produced per 
minute. A carrier 5 inches in length was used to bring the substrate 
through the chambers. The chamber lengths were such that the carrier 
and substrate remained in the first four chambers for a total of 15 minutes 
of high temperature preheating at four decreasing pressure levels. The 
pressure levels used for this experiment are shown in Fig. 2. Table I gives 
the preheating power and the sputtering conditions used. 

The results of these experiments, shown in Fig. 3, indicate that films 
deposited in this manner have a specific resistivity of 240 microohm-cm 
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TABLE I - EXPERIMENTAL OPERATING CONDITIONS 

Preheat Stations i!il i!i2 i!i3 i!i4 

Preheat lamp input, watts 300 300 300 220 

Sputtering potential, vdc 4500 
Sputtering current, rna 500 
Sputtering pressure, microns (gauge) 32 
Cathode-anode spacing, inches 2.0 
Experimental cat~ode area, in2 158 
Deposition rate, A/min 300 

and a temperature coefficient of resistivity of +56 ppm/DC at a nominal 
thickness of 1190 A. The quality of these films is comparable to that ob
tained by batch processes using bell-jar systems. 

4.1 Process Controllability 

The process controllability for these films was estimated from control 
charts to have a standard deviation of 11 microohm-cm in specific re
sistivity and 27 ppm/DC in temperature coefficient of resistance~ Film 
thickness was shown to be controllable, with a standard deviation of 50 
A about a mean of 1190 A. Based on these results, the process was deemed 
to be controllable and reproducible for tantalum films. 

V. NITROGEN DOPING 

Tantalum films without intentional additives are used primarily to 
make capacitors. Work done by Gerstenberg and Mayer5 has established 
that the resistors with the best stability were made when one to five per 
cent of nitrogen is added to the sputtering atmosphere, the amount de
pending on the pumping and geometry characteristics of the particular 
system. This nitrogen reacts with the tantalum, and the resulting film 
contains appreciable tantalum nitride. Having established that the open
ended vacuum deposition system could produce satisfactory tantalum 
films, it was next necessary to investigate the ability of the system to 
produce nitrided tantalum resistors with suitable component properties. 

The properties of the films of tantalum nitride depend on the environ
ment in the sputtering chamber. Geometry, voltage, current, pressure, 
gas composition, and gas thru-put all affect the film properties. Slight 
differences in chamber materials, glow region, gas flow paths, or thermal 
gradients can also have a major effect on the amount of nitrogen needed 
to produce film with satisfactory properties. It is customary, therefore, 
to investigate the relationships between film properties and nitrogen 
quantity in any new deposition system. This is done by experimentally 
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determining the characteristic curve for each of the important nitrogen
film property relationships. These characteristic curves must be deter
mined for each vacuum system, and the proper operating point chosen 
for each. The influence of trace impurities of nitrogen in the open-ended 
vacuum system was therefore explored by a series of characterization 
experiments in the machine processing system. The experimental pro
cedure did not materially differ from that used in the earlier undoped 
experiments. The operating conditions previously stated in Table I 
were again held in all cases. The only additive was the controlled flow 
of nitrogen gas, which was mixed with the argon prior to entering the 
sputtering chamber. 

A single experiment, of the series used for this purpose, consisted of 
establishing an operating point by adjusting the flow of nitrogen gas 
until the sheet resistivity was some desired value, and holding it at that 
value to within ±1 ohm/square. Sample slides were sent through the 
machine at 10-minute intervals to determine that the sheet resistivity 
was in contlol, thus assuring that drifts were removed from the system. 
Then 20 consecutive slides were given a film deposition in the machine. 

Each experimental lot was sampled as follows: four consecutive slides 
in the center of the lot were processed into resistors; four slides were used 
to determine the initial film characteristics; and four more were used to 
examine such physical properties as adhesion, visual defects, and the 
anodizability of these films. The remaining slides were held as spares for 
future exploratory studies. 

5.1 Nitrogen-Doped Film Characteristics 

The influence of nitrogen on the characteristics of these resistors after 
processing is shown by the curves in Fig. 4. The data presented here show 
that doped films from this machine processing system exhibit a charac
teristic form similar to that previously reported for tantalum nitride films 
produced in bell-jar systems. 6 Films with low resistivity and high posi
tive temperature coefficient are formed in the vicinity of 0.30 to 0.40 
per cent nitrogen. 

5.2 Accelerated Life Test Data 

The ultimate criteria for satisfactory films are the observed qualities 
of the circuit elements made from the films. Resistors made of tantalum 
and tantalum nitride should have a stability characteristic of less than 1 
per cent drift in resistance in a 20-year lifetime. Accelerated aging tests, 
used by J. S. Fisher,7 permit relative judgments to be made much 
earlier than 20 years - in fact, tests of standard pattern resistors at 
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twice rated load can differentiate between performances of resistors in 
about 3 months. 

The resistor pattern used for accelerated life testing consists of 24 re
sistors, each rated at 0.5 watt. This resistor pattern is shown in Fig. 5. 
Twelve resistors are arranged on each side of a common center strip on 
the 1.5-inch by 3-inch alkali-free glass substrate (Corning Code 7059). 
Each resistor is formed by a zig-zag pattern of lines 0.008 inch wide, con
taining 364 squares. The components are defined by using a conventional 
photo-resist (KMER) * and etched in a hydrofluoric-nitric acid mixture. 

Fig. 5 - Product stability test pattern. 

Nichrome and gold are evaporated in turn onto the terminal areas. The 
films are bath-anodized to 30 volts in citric acid.s Oven baking at 250°C 
in air for five hours is used to stabilize the films. Resistors are then sepa
rated into individual units and trim anodized to 15,000 ohms ±1 
per cent wherever possible. For initial sheet resistance of greater than 
40 ohms/square, it is necessary to trim anodize to a maximum of 20,000 
ohms ± 1 per cent. 

The stability of resistors, for the range of nitrogen additive from 0.0 
to 1.84 per cent, was studied by placing eight resistors under double-

* Kodak Metal Etch Resist, Eastman Kodak Company. 
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rated power life test, four from each of two slides in the center of the lot. 
This life test consists of a dc power load of one watt in ambient air at 
30°C ± 5°C, and corresponds to 40 watts/in2 of tantalum film. 

The performance of these films under such conditions can be seen in 
Fig. 6. The stability characteristics change rapidly with slight varia-
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Fig. 7 - Life test time cross section. 

tions in amounts of nitrogen doping. The data shown here for resistance 
change (6.R/R) were obtained on the same films whose nitrogen doped 
characteristics prior to life tests were shown in Fig. 4. 

The 0.0 per cent nitrogen lot shows almost 9 per cent increase in 1000 
hours. The 0.2 per cent nitrogen film appears to be more stable. The 0.44 
per cent nitrogen film, at the bottom of the figure, exhibits a decrease in 
resistance in the first 1000 hours. However, as more nitrogen is added, 
the decrease in resistance is reduced until it has almost disappeared in 
the vicinity of 1.56 per cent nitrogen. 

These data can be analyzed in a different manner by plotting time 
cross sections of the data against per cent nitrogen. Fig. 7 shows that 
this data-display technique produces a curve with the same charac
teristic form as the tantalum properties previously plotted. The dip in 
the curve occurs at the same per cent nitrogen for 6.R/R as it does for 
the other film properties. This minimum in each property has been previ
ously observed in product produced in bell jars. It is believed that in the 
vicinity of the dip the product possessed greater metallic purity than at 
other nitrogen levels. 

The films that were made with about 1 per cent nitrogen added to the 
sputtering atmosphere seem to provide the least total resistance change 
on this plot. Re-examination of Fig. 6 shows, however, that these films 
went through a large negative change in resistance before returning to 
original value. If films with consistent behavior are chosen instead, those 
with a nitrogen additive of about 1.48 per cent are to be preferred. 

When changes in resistor films having 1.44 to 1.56 per cent nitrogen 
are examined on a log-log plot (as in Fig. 6), the drift behavior is found to 
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be quite linear, with a trend line that can be defined by the equation: 

loglo ~R/R = -3.74 + 0.63 loglo t. 

This drift rate produces resistance changes at 1000 hours that are com
parable to those reported from batch process bell-jar-deposited films. 

Many research workers are expending considerable experimental work 
to establish equivalency of accelerated power aging rates to the aging 
rate of resistors when used at the more normal power dissipation of 20 
watts/in2• Such work indicates that the 1.48 per cent nitrogen resistors 
should have an average change of 0.4 per cent in 20 years under normal 
load. With allowance for the variability of film from run to run, this 
group of films should be processable into resistors with maximum aging 
change of less than 1 per cent. Of course, considerably more time must 
elapse and more correlations must be established before the exact equiva
lency of normal aging to such accelerated aging can be determined. 

VI. NITROGEN DOPED FILM REPRODUCIBILITY 

Since nitrogen doping adds a new and major variable to the operating 
conditions of the machine processing system, experimental runs were 
made to demonstrate the reproducibility of the doped film properties. 
Over a typical five-month period, for example, six runs were made at a 
particular nitrogen level of 1.28 per cent. The machine processing system 
was adjusted to the standard operating conditions previously mentioned. 
The average values of the three resistor characteristics lX, p, and Rs for 
each run are shown in Table II. 

6.1 Reproducibility of Life Performance 

The stability of tantalum resistors was discussed previously in connec
tion with the characterization curves of Fig. 6. To evaluate the ability 

T ABLE II - NITROGEN-DOPED FILM REPRODUCIBILITY 

Sputtering Date Temperature Coe/I. of Specific Resistivity p Sheet Resistance 
Resistance a ppm;oC 1l12-cm Rs12/0 

10-2 -79 300 25.2 
10-25 -81 375 26.6 
11-1 A.M. -82 334 26.5 
11-1 P.M. -87 374 27.9 
1-23 -78 392 27.6 
2-15 -73 318 28.1 

----------
Average -80 349 27.0 

Std. dev. ±5.5 ±33 ±1.1 

(These standard deviations were estimated from the range of the data.) 
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Fig. 8 - Accelerated life test of resistors with 1.40 to 1.56% nitrogen. 

of this system to produce films of consistent stability, the aging charac
teristics of tantalum films with 1.48 ± 0.08 per cent nitrogen were 
examined. Resistors were processed from 8 separate runs of film having 
the previously mentioned nitrogen levels. The results of accelerated 
aging tests of these resistors are shown in Fig. 8. Sufficient power was 
applied to each resistor to produce a power dissipation of 40 watts per 
square inch of tantalum area. While there is some spread of resistance 
change due to the variation in nitrogen content, these resistors do con-
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sistently exhibit closely similar aging rates. The difference between 
films shows up as changes in resistance at the 20-hour measurement. 

VII. FILM UNIFORMITY 

Post-deposition processing of tantalum films requires that the resistor 
film be anodized to achieve stability and to adjust the resistance of the 
film to a required value.s Using etch techniques, multiple networks can 
be produced from a single substrate. Economical processing should be 
performed on the full substrate area, rather than on an individual re
sister or network. Economic production of large volumes of stable thin 
film circuits, then, requires not only that the deposition process produce a 
high output of film-coated substrates at a low cost, but also that the 
properties of the deposited films be uniform over the area of the sub
strate. 

The resistance of the tantalum-nitride film produced in the open
ended system has a variation of 5 per cent over an effective length of 
2.8 inches (see Fig. 9). This variation is comparable to that of bell-jar 
product, and makes possible production of resistor networks with a toler
ance of ±3.0 per cent on the individual resistors. The resistance variation 
is not random, but has a definite pattern of higher resistance near the 
ends of the substrate. Since the substrate moves through the deposition 
zone at a constant speed, this suggests some effect of the substrate 
carrier on the film uniformity. 

Typical tantalum-nitride film properties from a single open-ended 
system, under controlled production conditions, may vary 50 micro ohm
cm in resistivity, 100 A in thickness, and 20 ppm/DC in temperature 
coefficient. This variability in film properties does not contribute signifi
cantly to the complexity of subsequent processes. However, if film deposi-
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tion is accomplished by using the larger number of bell-jar systems which 
would be required to meet the same production demand, the film prop
erties would be influenced not only by the variability of a single chamber, 
but also by the chamber-to-chamber variability of the associated bell
jar systems. Compensation for this total variability will significantly 
influence the complexity and even the design of some of the subsequent 
process equipment and hence the over-all manufacturing cost of thin 
film resistor networks. The use of the open-end system to deposit tan
talum should simplify quantity manufacture and reduce costs signifi
cantly. 

VIII. CONCLUSION 

At the present stage of the developmental work, it can be concluded 
that the open-ended in-line vacuum concept can be used to deposit large 
quantities of tantalum for thin film resistors. Each machine can coat 
two 5-inch by 5-inch substrates per minute. One such machine, on one
shift operation, can therefore produce approximately 4,000,000 square 
inches of metal film per year. Such films have exhibited the required 
stability, uniformity and reproducibility. Further work is in progress to 
optimize film characteristics. The work to date has established the feasi
bility of manufacturing production using this new deposition concept. 
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Digital Troposcatter Transmission 
and Modulation Theory 
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In tropospheric scatter transmission beyond the horizon, the amplitude, 
phase and frequency of a received sine wave exhibit random fluctuations 
owing to variable multipath transmission and noise. The probability of 
errors in digital transmission over such random multipath media has been 
dealt with in the literature on the premise of flat Rayleigh fading over the 
band occupied by the spectrum of transmitted pulses. This is a legitimate 
approximation at low transmission rates, such that the pulse spectrum is 
adequately narrow, but not at high digital transmission rates. The proba
bility of errors is determined here also for high transmission rates, such that 
selective fading over the pulse spectrum band must be considered. Such 
selective fading gives rise to pulse distortion and resultant intersymbol 
interference that may cause errors even in the absence of noise. 

TroposcaUer transmission can be approximated by an idealized multi
path model in which the amplitudes of signal wave components received 
over different paths vary at random and in which there is a linear variation 
in transmission delay with a maximum departure ±Ll from the mean 
delay. Various statistical transmission parameters are determined on this 
premise, among them the probability distribution of amplitude and phase 
fluctuations and of derivatives thereof with respect to time and with respect 
to frequency. The probability of errors in the absence of noise owing to such 
fluctuations is determined together with the probability of errors owing to 
noise, for digital transmission by binary PM and F M. Charts are pre
sented, from which can be determined the combined probability of errors from 
various sources, as related to the transmission rate and certain basic param
eters of troposcaUer links. 
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INTRODUCTION 

In tropospheric transmission beyond the horizon, narrow-beam 
transmitting and receiving antennas are used in a frequency range from 
about 400 to 10,000 megacycles. The received wave can be considered 
the sum of a large number of components of varying amplitudes, re
sulting from a multiplicity of reflections within the common volume at 
the intersection of the antenna beams. These various components arrive 
with different transmission delays owing to path-length differences, 
and each will exhibit a variation in amplitude owing to structural 
changes within the common volume, caused largely by winds. When a 
steady-state sine wave is transmitted, the received wave will conse
quently exhibit variations in its envelope and phase, commonly referred 
to as fading. When a signal wave is transmitted, its various frequency 
components will suffer unwanted amplitude and phase variations with 
resultant transmission impairments that depend on the particular 
carrier modulation method. These impairments are discussed herein 
for digital transmission by carrier phase and frequency modulation. 

Various properties of the transmittance of troposcatter channels 
have been dealt with in several publications.1,2 ,3,4 These properties 
include the expected average path loss and systematic seasonal varia
tions from the average, together with the probability distributions of 
slow and rapid fading or fluctuations from the mean. Other important 
properties from the standpoint of systems design and performance are 
the distribution of duration of fades and the fading rapidity or rate. 

The above various properties relate to transmittance variations with 
time at a particular frequency. Of basic importance is also the variation 
in transmittance with frequency at any instant, i.e., the amplitude and 
phase characteristics of trophospheric channels. These will be highly 
variable quantities, as illustrated in Fig. 1. At a fixed instant the 
characteristics may be as indicated in Fig. l(a) and at a later instant 
as in Fig. l(b). Such fluctuations will give rise to a distortion of the 
spectrum of received signals, with resultant transmission impairments 
of various kinds, depending on the modulation method. In addition, 



146 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

random noise at the receiver input must be considered as in conventional 
stable channels. Owing to the above random fluctuations, diversity 
transmission is ordinarily required to insure adequate performance. 

At present, frequency modulation is used for transmission of multi
plexed voice channels over troposcatter links. With this method, pro
nounced intermodulation noise is encountered5 ,6 owing to the types of 
transmittance variations with frequency indicated in Fig. 1. With digi
tal transmission, these variations will give rise to pulse distortion and 
resultant intersymbol interference that may severely limit the trans
mission rate. 

In evaluation of error probabilities in digital transmission, it is neces
sary to consider variations in the average path loss over a convenient 
period, such as an hour, relative to the average over a much longer 
period, say a month. These slow fluctuations in loss are closely approxi
mated by the log-normal law; i.e., the loss in db follows the normal 
law.! In addition, consideration must be given to rapid fluctuations in 
loss relative to the above hourly averages. These are closely approxi
mated by the Rayleigh law, which also applies for the envelope of 
narrow-band random noise. They are ordinarily more important than 
slow fluctuations, particularly in digital transmission, in that they cannot 
be fully compensated for by automatic gain control. Nearly all theoreti
cal analyses of error probabilities in digital transmission over fading 
channels are based on a Rayleigh distribution together with various 
other simplifying assumptions, as outlined below. 

The simplest assumption is flat or nonselective Rayleigh fading over 
the channel band, in conjunction with a sufficiently slow fading rate 
such that changes over a few pulse intervals can be disregarded. These 

ATTENUATION 

PHASE __ .... -------_ .... 
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..... .............................. _-
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Fig. 1 - Illustrative variations in attenuation and phase characteristics with 
frequency at two instants tl and t2 . 
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are legitimate premises in transmission over line-of-sight radio links, 
where fading is much slower than on tropospheric links and is virtually 
nonselective over rather wide bands. With these simplifying assumptions 
Turin7 has determined error probabilities in binary transmission over 
noisy channels with ideal synchronous (coherent) detection and envelope 
(noncoherent) detection. His analysis includes the effect of correlation 
between successive pulses and also postulates a nonfading signal com
ponent, such that the results in one limit also apply for nonfading chan
nels. 

On the same premise of slow, flat Rayleigh fading, PierceS has deter
mined the optimum theoretical diversity improvement for frequency 
shift keying with dual filter reception employing coherent and non
coherent detection of the filter outputs. Dual filter detection is ordi
narily assumed in place of the usual method of frequency discriminator 
detection that does not lend itself as readily to theoretical analysis. 

The error probability with two-phase and four-phase modulation 
with differential phase detection has been determined by V oelcker9 on 
the premise of flat Rayleigh fading at such a rate that the change in 
phase over a pulse interval must be considered. Moreover, he considers 
the probability of both single and double digital errors, with both single 
and dual diversity transmission. 

Voelcker's analysis is applicable to transmission at a sufficiently slow 
rate such that amplitude and phase distortion can be ignored over the 
relatively narrow band of the pulse spectra. However, it does not apply 
to high-speed digital transmission that requires sufficiently wide pulse 
spectra such that the amplitude and phase distortion indicated in Fig. 
1 must be considered. For this case the duration of pulses will be so 
short that the phase changes considered by Voelcker can be disregarded. 
Instead, it now becomes necessary to take into account pulse distortion 
and resultant intersymbol interference caused by the erratic variations 
with frequency in the amplitude and phase characteristics illustrated 
in Fig. 1. An evaluation is made herein of error probabilities on the 
latter account, which has not been considered in previous publications. * 

From the solutions for the above two limiting cases of low and high 
transmission rates, it is possible by simple graphical methods to esti
mate the error probability for the general case in which both time and 
frequency variations in the amplitude and phase characteristics must 
be considered. Charts are presented of error probabilities in digital 
transmission by binary PM and FM as related to various basic param
eters of tropospheric scatter links and of the signals. Among these 

* For reference to a recent related paper, see Section 8.9. 
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parameters are the average signal-to-noise ratio, the bandwidth of the 
pulse spectrum, the fading bandwidth of the troposcatter link, and the 
maximum departure from the mean transmission delay, which is re
lated to the length of the link and the antenna beam angles. 

The ana1ysis shows that a principal source of pulse distortion and 
resultant transmission impairments is a component of quadratic phase 
distortion. On this premise, an evaluation has been made in a companion 
paper* of intermodulation distortion in analog transmission by FM and 
PM, that conforms well with the results of measurements.5,6 

I. CHANNEL TRANSMISSION CHARACTERISTICS 

1.1 General 

Transmission performance with any modulation method depends on 
the statistical properties of the signals and of channel noise, together 
with various properties of the channel transmittance or transmission
frequency characteristic. When the latter varies with time, the usual 
methods of determining network response to specified input waves must 
be modified in various respects, that result in appreciable complications 
in the analytical methodslO and in certain conceptual difficulties. How
ever, when the time variations in transmittance are slow in relation to 
those in the input waves, it is legitimate to assume that the trans
mittances are constant over an appreciabJe number of pulse intervals. 
With relatively slow random fluctuations as encountered in troposcatter 
systems at representative transmission rates, it is thus permissible to 
determine the responses for various essentially time invariant transmit
tances that can be encountered. In evaluating transmission performance, 
the various transmittances that can be encountered must be weighted 
or averaged statistically in a manner that depends on the signal prop
erties and the modulation method. 

Among the statistical properties of troposcatter transmittances are 
the probability distribution of the envelope of received carrier waves 
together with the autocorrelation function of the envelope with re
spect to time and with respect to frequency. These are discussed here, 
while other statistical properties will be considered in later sections. 

1.2 Tropospheric Scatter Waves 

To determine an appropriate model for the random process in trop
ospheric scatter transmission, it is necessary to consider the physics 

* See part 2 of this issue of the B.S.T.J., to appear. 
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of this phenomenon, as dealt with in various publications. Though these 
may differ in their assumptions regarding the exact mechanism of the 
reflections, they appear to agree that they occur as a result of hetero
geneities within the common antenna volume indicated in Fig. 2. If the 
transmission medium were uniform, no reception would be possible. 
Owing to the numerous heterogeneities in the common volume, a very 
large number of reflections will occur, and the received wave can be 
considered the sum of a large number of components of different ampli
tudes and different transmission delays. Over any short interval, the 
envelope of a received sine wave will depend on the frequency, as will 
the phase. Because of variations in the heterogeneities caused largely 
by winds, the envelope and phase of a received carrier will vary with 
time. 

Fig. 2 - Illustrative antenna beams and common antenna volume. 

The transmittance of troposcatter channels is dealt with here, based 
on an idealized model discussed further in the Appendix, and certain 
statistical parameters obtained from experimental data are discussed. 
Two limiting cases that permit simplified analysis are considered. In 
one case the transmission band is assumed sufficiently narrow, such that 
the attenuation characteristic can be considered constant and the phase 
characteristic linear over the narrow band. There will then be fluctua
tions with time in the attenuation accompanied by independent varia
tions in the slope of the phase characteristic, a condition referred to 
as nonselective flat fading and ordinarily assumed in random multipath 
digital transmission theory. The other limiting case is that of digital 
transmission at a sufficiently high rate so that time variations in the 
transmittance can be disregarded over an appreciable number of pulse 
intervals. In this case it is necessary to consider erratic variations with 
frequency in both the attenuation and phase characteristics. 
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Fig. 3 - Illustrative dependence of envelope and phase of transmittance with 
frequency u from a reference frequency Wo at a specified time II . 

1.3 Troposcatter Transmittance 

Let a sine wave of frequency w be transmitted, and let w = u.:o + u, 
as indicated in Fig. 3, where Wo is a conveniently chosen reference fre
quency. In complex notation the received wave is then of the general 
form 

e( u,t) = r( u,t) exp[ -icp( u,t)] exp( iwt) (1) 

where r( u,t) and cp( u,t) are random variables of the time t for a fixed 
w or u, and of U for a fixed time t. The channel transmittance is then 

T( u,t) = r( u,t) exp[ -icp( u,t)]. 

The following general relations apply 

r( u,t) = [U2( u,t) + V2( u,t)]! 

cp(u,t) = tan-1 [V(u,t)/U(u,t)]. 

(2) 

(3) 

(4) 

As shown in the Appendix, in the case of idealized tropospheric 
channels the functions U and V can be represented in the following form 

(5) 
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V(u,t) = f bj(t) sin .(j7r - ull) 
j=-oo J7r - ull 

II = maximum departure from mean transmission delay 
owing to path length differences. 
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(6) 

In (5) and (6) the coefficients aj(t) and biCt) vary at random with 
time t and for a given t vary at random with j. Owing to the latter 
variation with j, there will be a random variation in U and V with the 
frequency u taken in relation to the reference frequency 0:0 • 

Equations for an idealized troposcatter channel, as given in the 
Appendix, show that aj(t) is related to the sum A(x,t) + A( -x,t) of 
two random processes and bj(t) to the difference A(x,t) - A( -x,t). 
The two random processes A(x,t) and A( -x,t) will have equal rms 
amplitudes, in which case aj(t) and bj(t) will have zero correlation 
coefficient. They will then also be independent random variables, pro
vided A(x,t) and A( -x,t) have a Gaussian probability distribution, 
which appears to be a legitimate approximation since each will be the 
sum of waves from a large number of reflections. 

A further assumption underlying (5) and (6) is that there is an in
finite number of transmission paths. An additional approximation that 
will be made in the following analysis is that there will be independent 
random fluctuations in the signal components received over the various 
paths. Actually there will be some correlation between the fluctuations, 
particularly for paths with small separation. In effect, there will be a 
limited number of essentially independently fading paths. 

The above assumptions entail certain statistical properties of tropo
scatter channels, as outlined below for time and frequency variations. 

1.4 Transmission Loss Fluctuations 

On troposcatter links there is a certain average transmission loss over 
a year, which depends on the length of the link, on the properties of the 
terrain and on climatic conditions. Experimental data indicate that 
there will be systematic monthly and seasonal departures from this 
yearly average, owing principally to slow temperature changes. The 
average loss during a winter month may thus be up to 20 db greater 
than the average during a summer month. That is, the departure in 
transmission loss from the yearly mean may be ±10 db. 

During each month there will be a more or less random fluctuation 
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in the hourly average loss from the mean of the month. This fluctuation 
has been found to be almost independent of frequency and seems to be 
associated with the variations in average refraction of the atmosphere 
and resultant variation in the bending of beams. This fluctuation in 
the hourly average loss relative to the monthly average has been found 
to follow closely the log-normal law. That is to say, let the monthly 
median loss be 

(7) 

and the hourly average loss be 

a= (8) 

where In = logE, r m is the monthly rms amplitude of the envelope 
r(u,t), and r the rms amplitude over an hour. (Other reference times 
could have been chosen, as will appear below.) 

The probability that the average hourly loss exceeds a specified value 
al = In r12 is then given by 

(9) 

where erf is the error function and 0" a the standard deviation in trans
mission loss expressed in nepers, when a and am are expressed in nepers 
as above. For links 100 to 200 miles in length, a representative value of 
O"a appears to be about 0.9 neper (8 db). 

In addition to the above slow variations in the average hourly loss, 
there will be more rapid fluctuations in the envelope r( u,t), owing to 
changes in the multipath transmission structure caused principally by 
winds. This type of fluctuation follows a Rayleigh distribution law. 
According to this law the probability that the instantaneous value r 
of the envelope exceeds a specified value rl is 

per > rl) = exp( -r//r2) (10) 

where r is the hourly rms value referred to above. 
It may be noted that while the log-normal law for slow variation has 

been determined solely by measurements, the Rayleigh law for rapid 
fluctuations follows by theory when the received wave is the sum of a 
large number of variable components. 

The probability distribution (10) can be related to the monthly rms 
value of r( u,t) with the aid of (9) by 

(11) 
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where per) is the probability density function corresponding to (9), 
which is 

(12) 

It will be recognized that (11) will yield the same result regardless 
of the period over which the rms value f is taken, since f simply plays 
the role of an intermediate parameter that disappears after integration. 

The above probability functions relating to average loss or the dis
tribution of the instantaneous values of r( u,t), are independent of the 
frequency. In addition to the above distribution there are others which 
are important from the standpoint of transmission systems design and 
performance, as discussed in the following section. 

1.5 Time Autocorrelation Functions of Transmittance 

Expressions for the probabilities of rapid changes in the amplitude 
and phase of the transmittance with time will be considered in Section 
II. These involve the autocorrelation functions of the components U 
and V defined by (5) and (6), or the corresponding power spectra. Both 
have the same autocorrelation function and power spectrum, so that 
only U( u,t) needs to be considered. 

The time autocorrelation function of U( u,t) depends on the variation 
in aj(t) with time. These are related to changes in the physical structure 
of the common volume and to resultant variations in the heterogeneities 
that are responsible for tropospheric transmission. The rate at which 
these occur depends on the velocity and directions of winds and on 
temperature changes. Under these conditions the autocorrelation func
tion will vary with time, and it becomes necessary to consider a certain 
median autocorrelation function and corresponding power spectrum, 
as discussed in Section 1.6. 

Let '!F( T) be the autocorrelation function of variations in U( u,t) with 
t. The corresponding one-sided power spectrum is then 

2100 

W ( ')') = - '!F( T) cos ')'T dT 
7r 0 

(13) 

where,), is used to designate the radian frequency of spectral compo
nents to avoid confusion with the frequency w of the transmitted wave. 

The autocorrelation function '!F( T) or the corresponding power spec
trum W (')') of the components U and V cannot be determined as readily 
by measurements as the autocorrelation function '!FTC T) of the envelope. 
The latter is related to '!F( T) byll 
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'lFr(r) = 'IF(0){2E[K(r)] - [1- i(r)]K[K(r)]} (14) 

where 

K( r) = 'IF( r)/'lF(O) 

E = complete elliptic integral of second kind 

J( = complete elliptic integral of first kind. 

(15) 

For r = 0, 'lFr(O) = 2'lF(0). Hence the autocorrelation coefficient of 
the envelope can be written 

(16) 

With the aid of (16), the autocorrelation coefficient K( r) of each 
quadrature component can be determined from measurements of Kr( r). 

1.6 Observed Time Autocorrelation 

Observations of the autocorrelation function of rapid fluctuations 
indicate that the autocorrelation function 'IF( r) of the components U 
and V is nearly Gaussian and is given by 

'IF( r) = 'IF(0) exp( -(///2). 

The corresponding power spectrum obtained from (13) is 

TV(')') = 'IF(0) (2/7r(i)! exp( -')'2/2c/) 

(17) 

(18) 

where 'IF(0) is the average power in each component as obtained with 
r = 0 in (17) . 

The equivalent bandwidth of a flat power spectrum We')') W(O) 
is given by 

'Y = vi (7r/2) (J ~ 1.25(J. (19) 

As noted in Section 1.5, there will be a certain median autocorrelation 
function and corresponding median values of the power spectrum, of 
(J and of ')'. Measurements2 indicate that these median values depend on 
the antenna beamwidths and that the fading rate is not quite propor
tional to frequency. Furthermore, there can be appreciable departure 
from the median values. From measurements of the median number of 
fades per minute, the median value of (J can be determined, with the aid 
of equation (26) in Ref. 2. These measurements indicate that for a 
particular antenna arrangement (J ~ 0.1 cps at 460 mc and about 1.3 
cps at 4110 mc. The corresponding equivalent bandwidths of a flat 
power spectrum are thus 'Y ~ 0.125 cps, or 0.8 radian/sec. at 460 mc, 
and a- ~ 1.6 cps, or about 10 radians/sec. at 4110 mc. The measurements 
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further indicate that there is a probability of about 0.01 that the fading 
rate exceeds the median value by a factor of about 7 at 460 mc and a 
factor of about 3.5 at 4110 mc. 

1.7 Frequency Correlation Function of Transmittance 

Returning to (5) and (6), let the time t be fixed, and consider varia
tions in U and V with u. The coefficients aj and b j will then have certain 
values that vary with j, and there will be a certain variation in U and 
V with 1.1,. At a different time there will be another set of coefficients 
and a different variation with u. The form of (5) and (6) indicates that 
if u is regarded as a time variable and ~ as a frequency, U( u) would 
be the variation in time owing to impulses of amplitudes aj and bj 
impinging at time intervals 7r on a flat low-pass filter of bandwidth ~. 
That is to say, the autocorrelation function of components U and V 
for a difference v = W2 - WI in frequency is 

W(v) = w(O)(sin v~/v~). (20) 

The corresponding power spectrum of the variation in U and V with 
frequency 0 is 

2100 

W(o) = - w(v) cos vo dv 
7r 0 

= w(O) 

=0 

for 

for 

O<o<~ 

~ < O. 

(21) 

(22) 

When w( v) is given, it is possible to determine the autocorrelation 
function wr ( v) for variations in r( u,t) with u. Expression (14) applies 
with v in place of T, for the autocorrelation function of time variation 
with frequency. 

For an autocorrelation function (20), the corresponding correlation 
coefficient is 

K( v) = (sin v~/v~). (23) 

The corresponding autocorrelation coefficient of the envelope, as ob
tained from (16), is 

K,(V) = E(Si:;~) - ~[1 - s~::)~J K(Si:;~). (24) 

For various values of v~ the correlation function of the envelope is 
given in Table I and is shown in Fig. 4. 
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TABLE I -- AUTOCORRELATION FUNCTION OF ENVELOPE 

vd = 0 7r/2 7r 37r/2 00 

Kr (v) = 1 0.9 71"/4 0.78 71"/4 

The autocorrelation functions (23) and (24) apply for certain idealized 
conditions outlined in the Appendix and in Section 1.3. For one thing, 
the average power received over each elementary path is ass~med the 
same. For another, a linear variation in the transmission delay with 
angular deviation from the mean paths is assumed, with maximum 
departures ± Ll from the mean delay. Furthermore, an infinity of trans
mission paths is assumed, with independent random fluctuations in the 
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Fig. 4 - Frequency autocorrelation coefficient Kr(V) of envelope for autocorre
lation coefficient K(V) of components U and V. 

signal components received over the various paths, though there will 
be some correlation between the fluctuations in the signal components 
received over various paths. 

In spite of the various approximations, it appears possible to obtain 
a reasonably satisfactory conformance with the results of measure
ments of the autocorrelation functions of the envelope, as shown in 
Section 1.9. 
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1.8 Differential Transmission Delay ~ 

Exact determination of the equivalent maximum departure from the 
mean transmission delay requires consideration of the beam patterns 
as affected by scattering. On the approximate basis of equivalent beam 
angles a, the following relation applies, with notation as indicated in 
Fig. 5 

(25) 

where {J ~ a, V is the velocity of propagation in free space, L is the 
length of the link, and 

(26) 

where Ro is the radius of the earth and the factor K is ordinarily taken 
as 4/3. 

The equivalent beam angle a from midbeam to the 3-db loss point 
depends on the free-space antenna beam angle ao and on the effect of 
scatter, which is related in a complex manner to 00 and the length L, 
or alternately O. Narrow-beam antennas as now used in actual systems 
are loosely defined by ao ~ 20/3. For these a ~ ao on shorter links, 
while on longer links a > ao owing to beam-broadening by scatter. 
Analytical determination of a for longer links appears difficult, and only 

Fig. 5 - Definition of antenna beam angles a, take-off angle f3 and chord angle 
(J to midbeam. With different angles at the two ends, the mean angles are used in 
expressions for A. In applications to actual beams, a would be the angle to the 
3-db loss point. 
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limited experimental data are available at present. For broad-beam 
antennas, exo > 2()/3 and beam-broadening by scatter is in theory in
appreciable. 

By way of numerical example, let L = 170 miles and K = 4/3, in 
which case () = 0.016 radian. Since exo = 0.004 radian « 2 ()/3 , it is 
permissible to take ex = exo. With (3 ~ exo, (25) gives ~ = 0.08 X 10-6 

second. 

1.9 Observed Frequency Variations in Transmittance 

In Fig. 6 is indicated the shapes of the envelope vs frequency varia
tions that can be obtained from (3) when the components U and V 
are given by (5) and (6). These fluctuations will vary with time but 
will have the characteristic shapes indicated in Fig. 6, which resemble 
shapes obtained in sweep-frequency measurements on a link of the 
length for which the above value of ~ applies.2 

A better indication of the adequacy of the present idealized tropo
scatter model is obtained by comparing the autocorrelation coefficient 
of the envelope as given by (24) with the correlation coefficient derived 
from observations. In Fig. 7 is shown the theoretical coefficient for 
~ = 0.08 X 10-6 second together with coefficients obtained from three 
experimental runs considered representative.2 

The bandwidth capability can be defined as the maximum baseband 
signal spectrum that can be received with some coherence between 
spectral components at the maximum and minimum frequencies. This 

Fig. 6 - Illustrative rectified envelope vs frequency characteristic r(u) ob
tained with expressions (5) and (6) in (3). The amplitudes Ci at the radian fre
quencies Ui = j-lf/fl from the carrier are Ci = (ai2 + bi

2)!. The amplitude of the 
envelope at any intermediate frequency u depends on the amplitudes and phases 
of all Ci between j = - 00 and j = 00. In sweep-frequency measurements with a 
radian frequency sweep from -7r/fl to 7r/fl from the carrier, the envelope varia
tions might be like that in any of the intervals a-b, b-c, c-d, etc. 
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Fig. 7 - Theoretical vs observed envelope autocorrelation functions. Above: 
autocorrelation coefficient obtained from (24) with A = 0.08 X 10-6 second. Be
low: autocorrelation coefficients given in Fig. 70 of Ref. 2 and derived from meas
urements of envelope variations with narrow-beam antennas on four days: l. 
Sept. 13, 1957; 2. Sept. 30, 1957 (considered very unusual); 3. Oct. 15, 1957, and 
4. Nov 8, 1957. The value of A derived from (25) for the experimental link is A = 
0.08 X 10-6 second. 

bandwidth is equal to the separation between Cj and CHI in Fig. 6, which 
corresponds to the separation between null points in (23), for which 
K(V) = a and Kr(V) = 11"/4. It is given by 1/2~ cps and for ~ = 
0.08 X 10-6 second is 6.3 me/second. 

With a smaller spectral bandwidth, distortion will be reduced and 
transmission performance improved. A more realistic appraisal might 
be half the above maximum bandwidth, or 3.15 mc/second, for which 
'(r( v) = 0.9. In Ref. 2 the criterion k2

( v) = 0.6 corresponding to Kr( v) = 
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0.904 has been selected, and twice this spectrum bandwidth as required 
in double sideband transmission is quoted in Table VII of the reference. 

The mathematical model represented by (3) to (6) is based on certain 
idealizations outlined in Section 1.7 and in the Appendix. It appears 
from the above that certain theoretical transmittance variations based 
on this model conform sufficiently well with observed variations for the 
model to be acceptable. * In order to determine expected performance 
with digital transmission, it is necessary to consider certain other sta
tistical properties of tropospheric channels based on the above model, 
as discussed in sections that follow. 

II. TRANSMITTANCE VARIATIONS WITH TIME 

2.1 General 

As discussed in Section 1.2, the transmission vs frequency charac
teristic of a tropospheric scatter channel is a highly variable quantity, 
as indicated in Fig. 1. One way of avoiding transmission impairments 
owing to variations in transmittance with frequency is to transmit by 
narrow-band modulation of a number of different carriers. The amplitude 
vs frequency characteristic can then be regarded as virtually constant 
over each narrow band, and the phase characteristic as linear, as indi
cated in Fig. 1. With this method, it is permissible to assume flat fading 
within each narrow band, but the various narrow channels will not fade 
independently. In addition to such flat fading there will be variations in 
the phase and frequency of each received carrier with time. Owing to 
the narrow bandwidth of each channel, the duration T of a signal or 
sampling interval may be relatively long, and it becomes necessary to 
consider the above amplitude, phase and frequency variations over this 
interval T. The probability distribution of these variations are basic 
to later considerations of various digital transmission methods and are 
discussed here. They can be obtained from expressions given by Rice 
for narrow-band random noise.12 

2.2 Amplitude and Phase Distributions 

Let the frequency wand thus u = w - Wo be fixed, and consider only 
time variations in rand cpo The probability density of cp is simply p( cp) = 

1/271", since each phase is equally probable. Since the components U and 
V are the sum of a very large number of independent random variables, 
in accordance with (5) and (6), each component U and V will have a 

* This conclusion appears to be supported by the results of recent measure
ments of K(V) for a lOO-mile path.24 
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normal law or Gaussian probability density. The probability density 
of the envelope in this case follows the Rayleigh law, and the probability 
that the envelope r exceeds a specified value r1 is given by 

(27) 

where f is the rms amplitude of the envelope or the transmittance taken 
over an appropriately long time. 

The average received envelope power is in this case :p'2 = 8 = 2S, 
where S is the average carrier power, i.e., the average power within 
the envelope. The probability that the received envelope power at any 
instant exceeds a specified value 81 = 2S1 is 

The median value Sm of S is obtained from P( S ~ Sm) 
gives Sm = 8 In 2. Hence, in terms of the median value 

(28) 

!, which 

(29) 

The distribution represented by (28) or (29) is shown in Fig. 8. 
The above distribution of rapid fades is to be disti~guished from the 

distribution of slow variations in the envelope, or in attenuation, dis
cussed in Section 1.4. 

2.3 Distribution of Envelope Slopes (r') 

One measure of the rapidity of the above amplitude variations is the 
fading bandwidth discussed in Section 1.G. From this fading bandwidth 
can be derived the probability distribution of the slope r' = dr(t)/dt 
in the envelope. 

The rapidity of changes in the envelope and phase depends on the 
time rate of change in the heterogeneities in the common volume -- that 
is to say, the variations with respect to time of the coefficients aj(t) 
and b j( t) in (5) and (G). These changes are characterized by the auto
correlation function of U(t) and V(t), or by the corresponding power 
spectrum. When the power spectra of U and V are the same, and are 
specified, the probability distribution of r' = dr(t)/dt and cp' = dcp(t)/dt 
can be determined. These distributions are the same as for random noise 
of specified power spectrum. The probability that I r' I exceeds a speci
fied value I r/ I follows the normallaw12 

P( I r' I ~ I r/ I ) = erfc (k/2!) (30) 
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k = r//'1' 

'1' = rms amplitude of r' 

= [!(b2 - bI
2/bo)]! 

bn = i oo 
W( 'Y h,n d'Y. 
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(31) 

(32) 

The above result (30) follows from equation (4.6) in Ref. 12 for Q = 0, 
by integration with respect to R = r between 0 and 00, and in turn 
with respect to R' = r' between r/ and 00. 

Expression (30) can alternatively be written 

P[ I r' I ~ k'1'] = erfc (k/2~). (33) 

In the particular case of flat power spectrum W ( 'Y ) 

width 1, (32) gives 
VV of band-

bo = W1; 

and (31) becomes 

'1' = '11/6! ~ 0.405'11. 

The fading bandwidth in the above case is 1 radians/second. 
With a Gaussian spectrum (17) expression (32) gives 

bo = '!F(O); bi = cr(2/Jr)!'!F(0); b2 = (i'!F(O) 

and (31) becomes 

_, _ (1 I)! 
r = rO" 2 - ;. 

~ 0.42'10" ~ 0.34'1)i 

where )i is the equivalent bandwidth given by (19). 

2.4 Distribution of Phase Derivative (cp') 

(34) 

(35) 

In considering a small phase change tlcp, and over a small interval 
tlT, it is legitimate to use the probability distribution of the phase 
derivative cp' = tlcp/ tlT, which is given by [Section 5 of Ref. 12] 

" k P(I cp I ~ I CPI I) = 1 - VI + k2 (36) 
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in which 

k = (bo/b2) !CPl' = (bo/b 2)! (IlCPl/ Ilr) 

where bo and b2 are given by (32). 
Expression (36) can alternatively be written 

for k» 1. 

For a flat power spectrum W ('Y) = W of bandwidth ..y 

(37) 

(38) 

(b2/bo)! = ..y/3! ~ 0.58..y. (39) 

For a Gaussian spectrum (17) 

(b2/bo)l = (]" ~ 0.8)i (40) 

where)i is the equivalent bandwidth given by (19). 

2.5 Distribution of Frequency Derivative (cpl!) 

The probability of exceeding a small variation Ilw in frequency over 
a brief interval Ilr can be determined from the probability distribution 
of cpl! = Ilw/ Ilr. 

The probability that cpl! exceeds a specified value cpI" is given by 

P( I cp" I ~ I cp/') = P( I cpl! I ~ lebo/b2 ) 

1 2k r~ dx 
- -:; Jo [g(x) + k2]g(x) (41) 

where 

_ ~ r~ tan-1 (k/g!(x» dx 
7r Jo (1 + x2)! 

Ie = bOcp1l! /b2 

g (x) = (a - 1 + 4x2
) (1 + x2

) 

a = bob4/b2
2

• 

(42) 

(43) 

(44) 

Expression (41) is obtained from relation (6.10) of Ref. 12 for 
p(r,cp,cp',cpl!) for Q = 0, by integration with respect to r, cp and cp', be
tween 0 and 00, 0 and 2rr and - 00 and + 00, respectively, and in turn 
by integration with respect to cpl! between CPt" and 00. Considerable 
simplification is required to obtain (41). 
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For very large values of k the following approximation applies 

where In = logE' 
For a flat spectrum W ('Y) = W of bandwidth .y 

a = 9/5 and (46) 

For a Gaussian power spectrum (18) 

a = 3 and (47) 

The quantity (bdbo)! is the rms frequency of the power spectrum 
and bdbo is the "variance." 

The probability distribution (41) as obtained by numerical integra
tion is shown in Tables II and III for flat and Gaussian power spectra. 
For large values of k, approximation (45) is shown in parentheses. 
These probability distributions are shown in Fig. 9. 

III. TH,ANSl\UTTANCE VARIATIONS WITH FREQUENCY 

3.1 General 

In the previous section a sufficiently narrow signal band spectrum 
was assumed such that amplitude and phase distortion over the narrow 
band could be neglected. In this case it was necessary to consider time 
fluctuations in the transmittance over a pulse duration T that would be 
relatively long owing to the narrow spectrum bandwidth. 

The other extreme of wideband transmission will now be considered, 
in which the duration of a pulse would be short enough for fluctuations 
in transmittance over a pulse interval to be disregarded. In this case 
it becomes necessary to consider variations in the transmittance with 
frequency over the much greater signal spectrum band. The variations 
in the amplitude and phase characteristics with frequency will fluctuate 
with time, so that it becomes necessary to determine the resultant 

TABLE II - PROBABILITY DISTRIBUTION P( I <P" I > k.y2/3) 
FOR FLAT POWER SPECTRUM 

k = 0 1 2 3 4 5 10 20 50 

----------------
100 

1 .538 .381 .321 .269 .238 .158 .100 .051 .031 (.03) 
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k = 0 

1 

TABLE III - PROBABILITY DISTRIBUTION PC I cpl! I > k,(2) 

FOR GAUSSIAN POWER SPECTRUM 

1 2 3 4 5 10 20 50 

------------------
100 

.595 .447 .369 .317 .280 .182 .113 .057 .033 (.03) 

transmission impairments on the basis of certain probability distribu
tions. 

In a first approximation the departure from a constant amplitude vs 
frequency characteristic will be a characteristic with a linear slope, as 
indicated in Fig. 10, that will vary with time. Similarly the departure 
from a constant transmission delay over the channel band can be approxi-
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Fig. 9 - Probability that cP exceeds "variance" of fading power spectrum by 
factor k for fiat power spectrum with bandwidth .y and "variance" 1'2/3 and for 
Gaussian power spectrum with "variance" 0'2. 
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Fig. 10 - First approximations to random departures from constant amplitude 
and delay characteristics are represented by linear variations with frequency. 

mated by a linear variation in transmission delay. The probability 
distributions of the slopes of these linear variations in the amplitude 
and delay characteristics are the same as for corresponding variations 
with time, with appropriate modification of the basic parameters, as 
discussed in the following. 

3.2 Amplitude and Phase Distributions 

Let the time t be fixed, and consider only variations in rand cp with 
the frequency w of a number of transmitted sine waves. 

Each sine wave could be regarded as a spectral component of a carrier 
pulse of very short duration with an essentially flat and continuous 
spectrum about the carrier frequency. In this case u rather than t is 
changed in expressions (5) and (6) for the two components U(u,t) and 
V(u,t). There will in this case be a particular variation with u for each 
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time t. When observations are made for a sufficiently large number 
of specified ti;mes, the resultant probability distribution of the amplitude 
and phase will be the same as discussed in Section 2.2 for variation in 
time for a given frequency u. 

3.3 Slope in Amplitude Characteristic (f) 

At a particular time, the envelopes r( u,t) of the received sine waves 
will vary with frequency u. The slope of the envelope will be designated 
dr(u,t)/du = r. It will have a probability distribution as given by (30) 
for the time rate of change in r( u,t). This probability distribution is 

P( , r , > 'h' ) = P( , f , ~ kt) = erfc (k/2!) (48) 

where erfc is the error function complement and 

k = fI/t 

r = rms value of f 

except that now 

(49) 

(50) 

where W(o) is the power spectrum given by (21). When W(o) is given 
by (22), (50) gives bo = w(O)/~; b1 = w(0)~2/2; b3 = w(0)~3/3 and 
(49) yields 

t = f~/6! (51) 

where r = '1'(0) t is the rms amplitude of the envelope. 

3.4 Envelope Delay Distribution 

The envelope delay at a particular time t and frequency u is given 
by cP = dcp( u,t) /du. The probability distribution of this delay cP is given 
by (36) or (38). Thus 

P( 'cP' > 'cPl' ) = P[, cP' ~ k(b2/bo)t] 

k 
= 1 - VI + k2 

where as before 

k = (bo/b 2 ) tcPl 

where bo and b2 are given by (50). 

(52) 

(53) 
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For a flat power spectrum (22) 
! 1 

(bdbo) = Ll/3' ~ 0.58Ll. (54) 

3.5 Distribution of Linear Delay Distortion 

The slope cp = dcP/du at a particular time represents linear delay 
distortion. The probability that cp exceeds a specified value cp, is given 
by (41),or 

P( I ~ I > I ~ll) = F( I ~ I ~ leb2/bo) 

1 21e 100 

dx 
- -:; 0 (g(x) + le2)g(X) (55) 

_ ~ 100 

tan-
1 

(Ie/g!(x)) dx 
7r 0 (1 + x2)! . 

For very large values of Ie (45) applies, or 

P(I q; I ::0; kb,/bol ::>! :k [1 + In (~ + 1)] (56) 

where now 

k = boipI/b2 

g(x) = (a - 1 + 4x2)(1 + x2
) 

a = bob4/b 2
2 

and bn is given by (50). 
For a flat power spectrum (22) 

bdbo = A
2
/3. 

(57) 

(58) 

(59) 

(60) 

The probability distribution (55) as a function of k is given previously 
in Table II for a flat power spectrum and is shown in Fig. 9. 

IV. ERRORS FROM TRANSMITTANCE VARIATIONS WITH FREQUENCY 

4.1 General 

As discussed later, the error probability in digital transmission over 
noisy channels with selective Rayleigh fading can be approximated by 
combining the probability of errors from three basic sources. One of 
these is errors from random noise determined in the presence of flat 
Rayleigh fading. The second source is errors from time variations in the 
transmittance, which is important at low transmission rates. The third 
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source is errors from transmittance variations with frequency, which 
becomes important at high transmission rates and puts an upper bound 
on the transmission rate for a specified error probability. In this section 
an approximate evaluation is made of errors on the latter account. 

As a first approximation, the statistical properties of transmittance 
variations with frequency, ordinarily referred to as selective fading, can 
be represented by the probability distribution (48) of rand (55) of (cp). 
The first of these represents a linear slope on the amplitude vs frequency 
characteristics, and the second represents a linear variation in trans
mission delay. Errors will occur even in the absence of noise, when r 
or cp exceeds certain maximum values. These maxima will depend on 
the spectrum of pulses in the absence of distortion, on the pattern of 
transmitted pulses and on the carrier modulation method. After these 
maximum values are determined, it is possible to determine the proba
bility of encountering them with the aid of the probability distributions 
of rand cp given in Section III. 

4.2 Carrier Pulse Transmission Characteristics 

It will be assumed that a carrier pulse of rectangular or other suitable 
envelope is applied at the transmitting end of a bandpass channel. The 
received pulse with carrier frequency Wo can then be written in the 
general form 13 

where 

poet) = cos (wot - t/;o)Ro(t) + sin (wot - t/;o)Qo(t) (Gl) 

= cos [wot - t/;o - ~o(t)]l\(t), (62) 

Poet) = [R02(t) + Q02(t)]!, 

~o(t) = tan-1 [Qo(t)/Ro(t)], 

Ro(t) = Poet) cos ~o(t), 

Qo(t) = Poet) sin ~o(t). 

(63) 

(64) 

(65) 

(66) 

In the above relations Ro and Qo are the in-phase and quadrature 
components of the received carrier pulse and Poet) the resultant enve
lope. The time t is taken with respect to a conveniently chosen origin, 
for example the midpoint of a pulse interval or the instant at which 
Ro(t) or Poet) reaches a maximum value. 

Let Soc u) be the spectrum of received pulses at the output of the 
receiving filter, i.e., at the detector input, and t/;o( u) the phase function 
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of the spectrum, as illustrated in Fig. 11. The functions RoCt) and 
Qo( t) are then given by13 

Ro = Ro- + R/, Qo = Qo- - Q/, 

- l1w

O Ro = - SoC -u) cos rut + '!ro (-u)] du, 
7r 0 

(67) 

1 100 

R/ = - So(u) cos rut - '!ro(u)] du, 
7r 0 

(68) 

l1 w
O Qo- = - Soc -u) sin rut + '!ro( -u)] du, 

7r 0 
(69) 

Q/ = ~ 100 

So(u) sin rut - '!ro(u)] duo 
7r 0 

(70) 

The upper limit Wo can ordinarily be replaced by 00, since SoC -wo) = O. 
Let S ( u) be the spectrum in the absence of amplitude distortion, 

and A ( u) the amplitude characteristic of the channel. The received 
spectrum is then, for a time invariant channel 

So(u) = S(u)A(u). (71) 

4.3 I deal Pulse Spectra and Pulse Shapes 

In carrier pulse transmission over an ideal channel the sideband 
spectrum of carrier pulses at the detector input will be symmetrical 

AMPLITUDE 
CHARACTERISTIC OF 

SPECTRUM AT CHANNEL 
OUTPUT I """, 1 

CARRIER 
/ ... --FREQUENCY 

Wo 

FREQUENCY, W ~ 

Fig. 11 - Amplitude and phase functions of pulse spectrum at channel output, 
i.e., detector input. 



172 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

about the carrier frequency. As discussed elsewhere,14 it is possible to 
realize optimum performance in binary transmission by AM, PM and 
FM with an infinite variety of pulse spectra at the detector input, with 
the general properties illustrated in Fig. 12. With all of these spectra, 
pulses can be transmitted without intersymbol interference at intervals 

T = 7r/fJ = 1/2B (72) 

where B is the mean bandwidth in cps to each side of the carrier fre
quency, as indicated in Fig. 12. 

A desirable pulse spectrum in various respects is a raised cosine 
spectrum as illustrated in Fig. 13, given by 

~ 
w 

S(u) = S( -u) = ~ COS2~ ~ 
[2 4[2' 

-u 

!+--Sl= 2778 

wo-Sl 

I 
I 

Wo 

Wo 

SI (u) 

u 

n 

wo+,n 

-w~-+---w 

(73) 

Fig. 12 - General properties of ideal spectra of carrier pulses at channel out
put (detector input) that permit pulse transmission without intersymbol inter
ference at intervals T = 7r/Q = 1/2B. 
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(b) 

~---.- T= -' ---~------ T ---------~----- T ------~ 
2B 

Fig. 13 - (a) Raised cosine bandpass pulse spectrum and (b) carrier pulse 
transmission characteristic t i.e' t envelope of a carrier pulse. 

The corresponding carrier pulse at the detector input as shown in 
Fig. 13 is given by 

poet) = Poet) cos (wot - seo) 

where 

sin nt cos nt 
poet) = Ro(t) - --nt 1 _ (fU/7r )2' 

4.4 Linear Variation in Amplitude Characteristic 

Let t/;o(u) = 0 and 

A(u) = 1 + cu 

where c is a constant. In this case (71) becomes 

So(u) = S(u)(l + cu). 

(74) 

(75) 

(76) 

(77) 
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When the received spectrum in the absence of distortion has even 
symmetry about the carrier frequency Wo, such that S( -u) = S(u), 
(77) in (67) to (70) gives 

2100 

Ro(t) = - s( u) cos wt du 
7r 0 

(7S) 

2100 

Qo(t) = - ~ use u) sin ut du 
7r 0 

(79) 

(SO) 

In the case of a raised cosine spectrum, Ro(t) is given by (75) and 
(SO) yields 

=0 for t = O. 

At the first sampling points before and after t 
±(7r/n) and(Sl) yields 

At the next sampling points t = ±2 T = ±27r /n 

Qo( ±2T) = ±cn/307r. 

0, t 

(S2) 

±T = 

(S3) 

(84) 

From (S3) and (S4) it appears that only the first sampling points 
t = ± T need to be considered in determining the effect of linear am
plitude distortion. 

4.5 Probability of Errors from Linear A mplitude Distortion 

The rms amplitude of the component Qo( ± T) is given by 

Qo( ± T) = en/37r = eB /3 (S5) 

where B = 2n/27r and e is the rms amplitude of i' as given by (51) or 

(86) 

Thus (85) becomes 

(S7) 
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The rms amplitude of Ro(O) is f. Hence 

_ = Qo(T) = Btl 
7J flo (0) 3 . 6! . 

(88) 

This is the ratio of rms intersymbol interference at the first sampling 
points to the rms value of the peak pulse amplitude. 

The probability of exceeding the above ratio by a factor Ie is, in ac
cordance with (48) 

P(7J ~ leij) = erfc (1e/2}). (89) 

The probability of error will depend on the carrier modulation method. 
In general, however, the approximate allowable peak value of 7J in the 
absence of noise is 

~ ~ ~. (90) 

The probability of exceeding this value, corresponding to 
Ie = 3· 5!/2Btl is 

P e = erfc (3.3!/2Btl) ~ erfc (2.6/Btl). (91) 

This probability is much smaller than that resulting from a linear 
variation in delay over the transmission band. For example, if B = 106 

cps and tl = 10-7 sec, l/Btl = 10-1 and P e = erfc (26), which is negligi
ble. 

4.6 Linear Variation in Envelope Delay 

It will be assumed that the phase distortion component is given by 

'l'o( u) = cu2
, (92) 

which corresponds to a linear delay distortion given by 

'l'o' (u) = 2cu. (93) 

In this case expressions (57) to (70) give for a raised cosine spectrum 

417r/2 
Ro( -t) = RoCt) = - cos2 X cos aX cos bX2 dx 

7r 0 
(94) 

417r/2 
Qo( -t) = Qo(t) = - cos2 X cos aX sin bx2 dx, 

7r 0 
(95) 

where 

a = 4(t/T), b = (4/7r) (d/T); T = (l/B) 

in which the delay d is defined as in Fig. 14. 
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---LINEAR DELAY 
DISTORTION 

_-PULSE SPECTRUM 

Fig. 14 - Raised cosine pulse spectrum with linear delay distortion. 

The above integrals have been evaluated by numerical integration 
and are tabulated elsewhere.13 The functions Ro(t) and Qo(t) are shown 
in Fig. 15, as a function of tiT = tB for various values of dlT = dB. 
The phase has been adjusted to 0 at t = 0, hence the notation Roo and 
Qoo. 

4.7 Maximum Tolerable Linear Delay Distortion 

Intersymbol interference at sampling points owing to linear delay 
distortion is significantly greater than that resulting from a linear slope 
in the amplitude characteristic. Moreover, pulse patterns that cause 
maximum intersymbol interference with linear delay distortion will not 
give rise to intersymbol interference from a linear slope in the am
plitude characteristic, and conversely. For this reason it suffices to 
consider the more important component, i.e., linear delay distortion. 

The reduction in tolerable noise power owing to linear delay distor
tion has been determined elsewhere13 for binary AM with envelope 
detection, binary PM with synchronous detection, and binary FM with 
frequency discriminator detection. For these methods the reduction 
in noise margin is shown in Fig. 16 as a function of the parameter 
A = dlT = d·B. In the same figure is shown the reduction in noise 
margin for two-phase and four-phase modulation, with differential 
phase detection as determined by methods similar to those for the other 
modulation methods in the above reference. These methods essentially 
consist in determining the maximum intersymbol interference that can 
be encountered, considering the pulse shapes shown in Fig. 15 and all 
possible pulse patterns over the number of pulse intervals that contribute 
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Fig. 15 - Carrier pulse transmission characteristics for raised cosine pulse 
spectrum and linear delay distortion. For negative values of tiT = t· jj the char
acteristics are the same as shown for positive values. 

significantly to intersymbol interference. Exact analytic determination 
of the maximum impairments does not appear feasible, and it becomes 
necessary to resort to trials for selection of the worst condition. It should 
be noted that with binary PM with differential phase detection the 
optimum threshold level differs from zero owing to a bias component 
in the demodulator output.I3 The curve in Fig. 16 and the analysis that 
follows assume automatic adjustment to the optimum threshold level, 
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Fig. 16 - Maximum reduction in noise margin owing to linear delay distor
tion: 1, binary AM with envelope detection; 2, binary FM with frequency dis
criminator detection; 3, binary PM with differential phase detection; 4, binary 
PM with synchronous detection; 5, four-phase modulation with synchronous 
detection; 6, four-phase modulation with differential phase detection. 

and a significantly greater error probability would be encountered with 
zero threshold level. 

It will be noted that the noise margin is reduced to zero for certain 
values AO of A. These values apply for certain combinations of baseband 
pulses in about four pulse positions. The probability of this and other 
pulse patterns must be considered in evaluating error probability as 
discussed below. 

4.8 Probability of Errors from Linear Delay Distortion 

As A is increased slightly above the value AO mentioned above, inter
symbol interference increases rapidly. Thus errors will occur for a value 
Ae of A only slightly greater than AO', for certain combinations of two 
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pulses, occurring at times - rp and + T relative to the sampling instant 
t = O. There are four possible combinations of these two pulses. For 
one of these (say 1, 1), an error will occur if A ~ Ac. For another (say 
-1, -1), an elTor will occur if A ~ -Ac. For the other combinations 
( -1, 1) and (1, -1), intersymbol interference will cancel so that the 
probability of error is zero. The probability of error is thus 

1\ = H l + l) P ( I A I ~ I 1\ c I ) 
= lP( I A I ~ I A,. I ) 

(OG) 

where P( I A I ~ I Ac I ) is the probability that the absolute value of 
A is greater than Ac . 

For a given value Ac 
delay distortion is 

dell the cOlTesponding slope <P of the lineal' 

<Pc = de/27r i3 
= Ac/27ri3

2
• 

The following relation applies 

P( I A I ~ I Ae I ) = P( I <P I ~ I <Pc I ). 

(97) 

(08) 

The probability distribution represented by the right-hand side of 
(98) is given by (55) with <PI = <Pc • For small probabilities (56) applies, 
so that in view of (96) and (98) the error probability is 

Pc = iP( I <P I ~ I <Pc I ) 

= _1 [1 + In (~ + I)J 27rkc 2 

(99) 

where 

kc = 3<pc/ /1'2 

= 31\e/27r /1
2i32

• 

(100) 

vVith (100) in (00) 

/1'2i3
2 

[ (' 3A
c )J Pc = -- 1 + In 1 + ~ . 

3Ae 47r/1 B 
(101) 

From Fig. 16 it will be noted that for binary AM and FlYI, and for 
billary PlY1 with differential phase detection, Ao ~ 1.8. For these cases 
it appears a legitimate approximation to take Ae = 2. On this premise 
the elTor probabilities given in Table IV are obtained for various values 
of the parameter /1B. 
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TABLE IV - PROBABILITY OF ERRORS IN A DIGIT OWING '1'0 LINEAR 

DELA Y DISTORTION IN ABSENCE OF NOISE FOR BINARY AM, FM 
AND Pl\1 (WITH DIFFERENTIAL PHASE DETECTION) 

10-3 

3.1 X 10-8 2.4 X 10-6 1.6 X 10-4 8 X 10-3 

The above error probabilities are shown in Fig. 17 as a function of 
!J.B. If, for example, !J. = 10-7 second and B = 105 cps, then !J.B = 10-2 

and P e = 1.6 X 10-4
• Pulses could in this case be transmitted at a 

rate of 100,000 per second with a minimum error probability P e = 1.6 X 
10-4

• In the presence of noise the error probability will be greater, as 
discussed in a later section. 
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Fig. 17 - Error probability in binary AM. FM and PM owing to linear delay 
distortion for maximum departure A (seconds) from mean transmission delay. 
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The error probability with four-phase modulation and differential 
phase detection can be determined in a similar way. In this case Ao ~ 0.9 
and Ae ~ 1 in (101). 

V. ERRORS FROM TRANSMITTANCE VARIATIONS WITH TIME 

5.1 General 

As mentioned in Section 4.1, transmittance vadations with time is a 
second basic source of error in digital transmission. In transmission at 
low rates the bandwidth 13 of the pulse spectra will be narrow, so that 
fading can be regarded as constant over the spectrum band. Errors 
from selective fading, as considered in Section IV, can then be disre
garded. On the other hand, the duration of a signal interval T may then 
be sufficiently long so that consideration must be given to random 
fluctuations in the amplitude, phase and frequency of the carrier between 
one signal interval and the next. Errors may occur owing to such fluctua
tions even in the absence of noise. The probability of errors in this 
account is evaluated here. 

5.2 Amplitude Variations 

The amplitude of a received wave will fluctuate with a Rayleigh 
distribution (10). Because of the great range of fluctuation, it is essential 
to provide automatic gain control at the receiver to prevent overloading 
and resultant adverse effects. Such gain control is activated by circuitry 
that integrates the received wave over a number of signal intervals T. 
With FM and PM only a few pulse intervals are required, for the reason 
that the received carrier wave is essentially independent of the pulse 
patterns. It is thus possible to provide effective gain control against rapid 
variations in the received carrier wave that occurs over a few signal 
intervals. Moreover, with FM and PM the distinction between marks 
and spaces is made by positive and negative deviations from zero thresh
old level in the detection process. This permits the use of limiters at 
the input to the detectors, to prevent the adverse effect of rapid fluctua
tions in the amplitude of the received carrier wave owing to fading. These 
advantages in applications to fading channels are not shared by AM, 
for reasons outlined below. 

In binary AM or on-off carrier transmission, the received wave may 
be absent over a large number of consecutive signal intervals T. Hence 
automatic gain control must be activated by circuitry that integrates 
the received pulse train over a very large number of signal intervals T; 
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otherwise gain would be increased during long spaces, regardless of the 
fading condition. For this reason automatic gain control is inherently 
slow, in relation to the duration of a signal interval. It may thus be 
ineffective as applied to transmission at slow rates. With transmission 
at high rates, however, such that variations in the received wave owing 
to fading are inappreciable even over a large number of signal intervals, 
it may be possible to implement effective gain control. 

At low transmission rates, such that fading is virtually constant over 
the band of the pulse spectrum, intersymbol interference can be made 
inappreciable., In this case it is possible to employ limiting prior to 
detection, and this method may then be more effective than automatic 
gain control, or could be used in conjunction with it. The limiter would 
slice the received wave at an appropriately selected level L. In the 
choice of the optimum slicing level it is necessary to consider the proba
bility of errors during a mark owing to fading such that the received 
wave is less than L. In accordance with (10) this probability is 

PCr ~ L) = 1 - exp C _L2/l) 
CI02) 

~ L2/r2. 

A second consideration in the choice of L is the probability of errors 
owing to noise during a space, which is increased as L is reduced. The 

. optimum threshold level considering both effects is determined in Sec
tion 6.9. 

Owing to even small intersymbol interference, the use of a limiter as 
postulated above may be precluded in actual systems. For example, 
let L be 10 per cent of the rms signal amplitude r, and let intersymbol 
interference be 5 per cent of L when the received signal is just equal to 
L. When the received signal is increased by a factor 20, intersymbol 
interference would be increased correspondingly and would be equal to 
L. Hence errors would occur even in the absence of noise. This is the 
inherent reason why limiting is generally ineffective as applied to binary 
AM. However, even if intersymbol interference could be disregarded, 
the error probability in the presence of noise will be greater than with 
binary PM or FM, as shown in Section 6.9. 

5.3 Carrier Frequency Variations 

In transmission over troposcatter links, random fluctuations will 
occur in the carrier frequency, which may be important from the stand
point of receiver implementation with any modulation method. Such 
fluctuations can be limited at the input to the IF filter with the aid of 
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signal-tracking oscillators for demodulation of the received radio fre
quency wave. The frequency of such oscillators may be controlled by 
feedback from the mixer output or from the detector output. The follow
ing expressions apply for the probability distribution of carrier fre
quency fluctuations without such frequency control at the receiver. 

The probability distribution of frequency variations is given by 
(38). For a Gaussian fading power spectrum, the probability that the 
frequency variation cp' = LlW exceeds leer is thus 

(103) 

The equivalent fading bandwidth is in accordance with (19) -y ~ 1.25er. 
The probability that LlW exceeds le-y is thus 

(104) 

Since er and -yare nearly proportional to the carrier frequency, it 
follows that the frequency fluctuations encountered with a specified 
probability will be nearly proportional to the carrier frequency. By 
way of example let -y ~ 2 radians/second or about 0.3 cps. The proba
bility that the frequency fluctuation exceeds 30 cps is in this case ob
tained from (104) with k = 100 and is 3 X 10-5

• It appears that for 
bandwidths of the pulse spectra in excess of about 5000 cps, frequency 
fluctuations will not be important. However, for narrow band spectra 
the random frequency excursions may become excessive and give rise 
to errors, particularly with frequency modulation, as discussed below. 

5.4 Frequency Variations over a Signal Interval 

It will be assumed that the carrier frequency excursion is limited with 
the aid of a signal-tracking oscillator, or that a demodulation process is 
used in binary FM in which the change from mark to space is based on 
comparison of the frequencies in adjacent signal intervals of duration 
T. If the separation between mark and space frequencies is 2n01 , an 
error will occur if the frequency is changed by + n01 for a space and 
by -n01 for a mark. 

From (41) it is possible to determine the probability of errors owing 
to frequency changes ±n01 over a signal interval of duration T. The 
maximum permissible value of cp" is determined from 

CPmax"T = ±n01 (105) 

where the positive sign applies for a space and the negative sign for a 
mark. 
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With an ideal pulse spectrum the pulse interval is given by T = 7r/Q, 
so that (105) can be written 

<p" max = ±nOln/7r. 

5.5 Error Probability in Binary F M 

The error probability is in this case 

P e = !P( I <p" I ~ I <Pmax" I ) 

(lOG) 

(107) 

where the factor! occurs when the probability functions is defined in 
terms of the absolute values as in (41). 

The parameter k defined by (42) in this case becomes 

k max = <Pmax" /ei 

= nOln/7ri. 
(108) 

With frequency discriminator detection, nOl 

spectrum, 13 = 2B = n/7r and 
Q. For a raised cosine 

(109) 

Employing (45), the probability (107) of an error becomes 

(110) 

In the above relation, (J is in radians/second while 13 is in cps. The 
equivalent fading bandwidth is, in accordance with (19), l' ~ 1.250-. 
The ratio of the maximum bandwidth 13 in cps to1' in cps is thus 

13 27r13 513 
J.L=--=--~-. 

l' /27r 1.250- (J 

(111) 

The probability of error (110) is given in Table V for various ratios J.L. 

These error probabilities are shown in Fig. 18. 

TABLE V - ERROR PROBABILITIES WITH BINARY FM FROM 

FLAT RAYLEIGH FADING IN ABSENCE OF NorSE 

J.L = 10 100 1000 10000 

fJ/u = 2 20 200 2000 

6 X 10-3 9.3 X 10-5 1.4 X 10-6 1.8 X 10-8 
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Fig. 18 - Error probability in binary FM in absence of noise, owing to fre
quency variations over a pulse interval T resulting from flat Rayleigh fading. 

5.6 Phase Variations over a Signal Interval 

The probability density of the carrier phase is 1/27r, such that any 
phase may be encountered unless the carrier phase wander is limited 
by phase tracking oscillators in the demodulation process. In a digital 
phase modulation system where appreciable phase wander may be 
expected, the preferable demodulation method is differential phase 
detection. With this method the phase error will be limited to that 
encountered over a signal interval T. 

From (36) it is possible to determine the probability of an error for 
a given maximum tolerable phase change e over an interval T. For 
Ie » 1 the following relation applies 
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1 
P CI ~' I ~ I ~/ I) - 2k2 

_ b2 T2 
- 2bo 02' 

vVith a Gaussian fading power spectrum (40) applies and 

P[ I~' I ~ (~/)] = (fiT
2
j2ri). 

5.7 Error Probabilities in P 111 

(112) 

(113) 

(114) 

With two-phase modulation e = ± (-71-j2) , while with four-phase 
modulation e = ±(7r/4). Hence the probability of error with these 
methods as obtained from (114) is, for two-phase modulation 

P e ~ (2/7r2)fiT2 ~ 0.2(lT2 (115) 

and for four-phase modulation 

P e ~ (8/7r2)(iT2 ~ 0.82a-2T2. (116) 

These expressions apply provided the signal duration is sufficiently 
short so that the change in phase is small and can be considered linear 
over the interval. lVlore accurate expressions that do not involve this 
assumption have been derived by Voelcker9 for the error probability. 
Thus, with two-phase modulation the error probability is actually 

P e = ![1 - K(T)] (117) 

and with four-phase modulation 

] J 1 2 ('11)[2 2(T)]-! t -1 K(T) (118) 
. e = "2 - ;. K - K an [2 _ K2( T)]! 

where K( T) = K( T) for T = T, i.e., the autocorrelation function for 
each quadrature component as defined by (15). 

For a Gaussian fading spectrum, K(T) as obtained from (17) is 

(119) 

For a-T « 1: 

(120) 

With the latter approximation in (117) and (118), the error pro ba
bility with two-phase modulation becomes 

(121) 
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and with four-phase modulation 

P, = G +~) u'T' :::,; O.82u'T' (122) 

which are to be compared with (115) and (116), respectively. The 
somewhat greater inaccuracy with two-phase than with four-phase 
modulation comes about since the phase change ±C7I/2) cannot be 
considered small as required for (114) to apply. 

In the above relations T is the interval between phase changes, which 
is related to the bandwidth of the baseband pulse spectrum. With 
idealized spectra of the type shown in Fig. 12, the interval is 

T = 1/2B (two-phase) 

= 1/4B (four-phase) 

where B is the equivalent mean bandwidth. 

(123) 

(124) 

In the particular case of pulses with a raised cosine spectrum, the 
maximum bandwidth is 

so that 

B = 2B 

T = l/B (two-phase) 

= 1/2B (four-phase). 

(125) 

(126) 

In terms of the above bandwidth the error probabilities (115) and 
(116) are thus the same for both two-phase and four-phase modula
tion and are given by 

P e ~ O.05(a/B)2 

~ O.2(ff/B)2. 

(127) 

(128) 

The above relations apply for any number of. phases. For this reason 
the capacity of a noiseless channel could be increased indefinitely by 
increasing the number of phases. There will, however, be certain limita
tions in this respect owing to intersymbol interference, as in stable 
channels. 

The above error probability is shown in Table VI for various values 
of B/ff and J.L = 5B/ff, where J.L is the ratio defined by (111). It will be 
noted that these error probabilities are somewhat smaller than with 
binary FM as given in Table V. 

The above probabilities of an error in a single digit are shown in Fig. 
19, as a function of p.. 
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TABLE VI - ERROR PROBABILITIES WITH DIFFERENTIAL Pl\l 

FROM FLAT RAYLEIGH FADING IN ABSENCE OF NOISE 

p. = 10 100 1000 10000 

BIO' = 2 20 200 2000 

2 X 10-3 2 X 10-5 2 X 10-7 2 X 10-9 

As noted in Section 1.6, there will be a certain median value of.:y and 
thus a certain median value of J.l. and corresponding median error proba
bility. During certain intervals, the error probabilities will be signifi
cantly smaller or significantly greater than the median error proba
bilities. 
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Fig. 19 - Error probability in binary PM with differential phase detection 
in absence of noise, owing to phase variations over pulse interval T resulting from 
flat Rayleigh fading. 
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VI. ERRORS FROM NOISE WITH FLAT RAYLEIGH FADING 

6.1 General 

As mentioned in Section 4.1, a third basic source of errors in tropo
scatter transmission is random noise. The probability of errors from 
noise depends on the modulation and detection methods and on their 
implementation. For optimum performance it is in the first place neces
sary to have appropriate pulse spectra such that intersymbol inter
ference is avoided in transmission over ideal channels. Moreover, the 
error probability depends on the division of spectrum shaping between 
transmitting and receiving filters. The minimum error probabilities 
with various modulation and detection" methods as quoted here are 
based on optimum design in the above and various other respects, such 
as accurate sampling of pulse trains. The probability of errors from 
noise in actual systems will be greater owing to various imperfections in 
implementation. 

6.2 Signal-to-N oise Ratios 

In carrier pulse transmission over an ideal channel, the sideband 
spectrum of the carrier pulses at the detector input will be symmetrical 
about the carrier frequency. As discussed elsewhere,14 it is possible to 
realize optimum performance in binary transmission by AM, PM and 
FM with an infinite variety of pulse spectra at the detector input with 
the general properties discussed in Section 4.3. 

The error probability in digital transmission over noisy channels is 
ordinarily specified in terms of the average signal-to-noise ratio at the 
input to the receiving filter that ordinarily precedes the detector. This 
signal-to-noise ratio is ordinarily taken as 

p = SIN 

S = average carrier power at detector input 

N = average noise power in a flat band B = 1/2T at 
input-to-receiving filter. 

When S represents the average signal power in a fading channel, the 
designation p = SIN will be used in place of p. 

The above reference band B is the minimum possible bandwidth in 
baseband pulse transmission without intersymbol interference. The 
minimum possible bandwidth in double sideband transmission as used 
in binary AM, PM and FM is 2B. 

The error probability as related to p will depend on the division of 
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spectrum shaping between transmitting filters and the receiving filter 
at the detector input. With optimum division, the error probability is 
the same as for transmission over a flat band B to each side of the carrier 
frequency.14 Such a flat channel band is ordinarily assumed or implied 
in theoretical analyses, though not feasible in actual systems. 

6.3 Error Probabilities with Flat Rayleigh Fading 

Let r be the signal amplitude and peo(r) the error probability of errors 
owing to random noise in transmission over a stable channel with signal 
amplitude r. In the presence of fading, let the probability density of 
various signal amplitudes be p(r). The error probability in transmis
sion over fading channels is then 

P e = 1~ PeO(r )p(r) dr. (129) 

With Rayleigh fading the probability density p(r) is the derivative 
of (27) with respect to rl . With r in place of rl the probability density is 

per) (2r/r2) exp (_r2/r2) (130) 

(r/ S) exp (r2/2S) (131) 

where S = 'l/2 is the average signal power. 

6.4 Binary PM with Synchronous Detection 

In binary PM, marks and spaces are transmitted by phase reversals. 
With ideal coherent or synchronous detection the error probability 
in transmission over a stable channel is 

° 1 / i P e ="2 erfc (p 2) . (132) 

The error probability with Rayleigh fading as obtained from (129) 
is, in this case 7.9 

P, = ~ [ 1 - ~ ~ 1) 'J ~ ;p (133) 

where p = SIN = ratio of average received signal power with Rayleigh 
fading to average noise power as previously defined. 

6.5 Binary PM with Differential Phase Dection 

With binary PM and differential phase detection the error proba
bility in transmission over a stable channel isI5 

P OI -p 
e ="2e . (134) 
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The error probability with Rayleigh fading is, in this case 9 

P e = 1/2(p + 1). (135) 

6.6 Binary FivI with Dual Filter Detection 

With this method two receiving filters are used, centered on the space 
and mark frequencies WI and W2 , as indicated in Fig. 20, with sufficient 
separation to avoid mutual interference between the space and mark 
channels. Complementary binary amplitude modulation is used at the 
two carrier frequencies, and the two baseband filter outputs are com
bined with reversal in the polarity of one. 

The error probability in transmission over stable channels with co
herent detection isI6 

PeO = ! erfc (p!/2) 

and with noncohcrent detection is16 

P e 
0 = ! exp ( - p /2) . 

r----- 4B=4/T ----1 
I I 
I I 
I I 

(a) 

1-------4B-------r------ 4B -------l 
I WI W2 

I I I 
I I I 

I I I 

MARK SPACE 

(b) 

(136) 

(137) 

Fig. 20 - Comparison of channel bandwidth requirements in binary FM with 
(a) frequency discriminator detection and (b) dual filter detection. 
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Comparison of (136) with (132) shows that the error probability 
P e with Rayleigh fading is obtained by replacing in (133) p with p/2. 
This yields for coherent detection 

1 [ ( p )!] 1 
P e = 2 1 - p/2 ~ 2p' (138) 

Comparison of (137) with (134) shows that P e is obtained by re
placing in (135) P with p/2, in which case, for noncoherent detection 

P e = l/(p + 2). (139) 

6.7 Binary F M with Frequency Discriminator Detection 

With this method a single receiving filter is used, with space and mark 
frequencies as indicated in Fig. 20. Pulse transmission without inter
symbol interference over a channel of the same bandwidth as required 
for double-sideband Al\tf is in this case possible for certain ideal ampli
tude and phase characteristics of the channels, as shown elsewhere.14 

The error probabilities in the absence of fading depends on the charac
teristics of the bandpass channel filters and the post-detection low-pass 
filter, and are difficult to determine exactly. Approximate evaluations14 

indicate that for a given error probability, about 4 db greater signal
to-noise ratio would be required than for binary Pl\tf with coherent 
detection, when no post-detection low-pass filter is used. Recent exact 
evaluations by Bennett and Salz,17 indicate 3 to 4 db increase in the 
required signal-to-noise ratio over a variety of filter shapes. With an 
optimum post-detection low-pass filter, a small improvement may be 
realized, such that about 3 db increase over binary Pl\tf with coherent 
detection would be expected. On this basis it appears that the error 
probability will be virtually the same as for binary FM with dual filter 
coherent detection, such that the principal advantage over the latter 
method is a two-fold reduction in bandwidth. 

6.8 Binary AM with I deal Gain Control 

It will be assumed that the receiver can be implemented with ideal 
automatic gain control, such that the output in the presence of a mark 
would have a fixed levell and in the presence of a space would be zero. 
This condition can be approached at sufficiently high transmission rates, 
such that the received wave prior to gain control changes insignifi
cantly over a large number of pulse intervals of duration T. Under this 
condition the fading bandwidth is negligible relative to the bandwidth 
of the baseband pulse spectrum. 
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On the above premise and with ideal coherent (or synchronous) 
detection, the optimum threshold level for decision between marks and 
spaces would be l/2. The tolerable peak noise amplltude before an error 
occurs would be l/2, as compared with l for blnary PlYI, resulting in 
6 db reduction in noise margin. On the other hand, the average trans
mitter power is 3 db less than with binary PlYI. Hence this method 
would have a 3 db disadvantage compared to binary PlYI with synchro
nous detection. 

Accordingly, (132) would be replaced by 
o 1 

P e = ! erfc (p/4)" (140) 

and (133) would be replaced by 

(141) 

The above relations are the same as (136) and (138) for binary FlYI 
with dual filter coherent detection, and (141) is virtually the same as 
(135) for binary PlVI with differential phase detection. Hence binary 
AM offers no advantage in slgnal-to-noise ratio even at sufficiently 
high transmission rates such that ideal gain control could be imple
mented. 

6.9 Binary AJvI with Optimum Fixed Threshold Detection 

At low transmission rates, such that the received wave can change 
appreciably over a few pulse intervals owing to fading, gain control 
cannot be effectively implemented, as discussed in Section 5.2. Without 
effective gain control, there will be a certain optimum threshold for 
distinction between marks and spaces. This optimum level and the cor
responding signal-to-noise ratio is determined here on the premise that 
no gain control is used. This threshold level could be implemented by 
either a predetection or a postdetection limiter. Assume a probability 
! of a mark being present; in the absence of noise, the probability of 
errors in marks is, in view of (102) 

(142) 

where L is the threshold level. In the presence of noise the error proba
bility will be only slightly greater than (142). 

A second consideration in the choice of L is the probability of errors 
during a space. This error probability is obtained from (137) with 
p = L2/N and is 

(143) 
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where n is the instantaneous noise amplitude and N the average noise 
power. 

The combined error probability is 

P e = ~[1 - exp (-}l/2) + exp (-p}l/2)] 

where 

P = SIN. 

The optimum L or }l is obtained from the condition dPe/d}l 
yields the following relation for the optimum value }lo 

exp ( - }lo/2) = P exp (- p}lo/2) 

or 

2 In P 4.606 loglo P 
}lo = P _ 1 = P - 1 

(144) 

(145) 

O. This 

(146) 

(147) 

In practicable systems p » 1, in the order of 100 or more, and }lo « 1. 
With (147) in (144), the following approximation is obtained for the 
minimum error probability 

1 [ In - ] 
Pe,min ~ 2 p -PI + exp (-In p) . (148) 

The above error probability is significantly greater than with binary 
PM or FM. The error probability (148) is thus greater than for binary 
FM with dual filter coherent detection by a factor of at least In p. 
For p = 1000 (30 db) this factor is about In p ~ 7. Hence about 10 
loglo 7 ~ 8.5 db greater average signal power would be required than 
with binary FM. This assumes that excessive intersymbol interference 
is avoided, which may not be feasible for reasons mentioned in Section 
5.2. Since it is evident that binary A1VI is at a considerable disadvantage 
in signal-to-noise ratio as compared to binary P1VI and FM, it will not 
be considered further herein. 

0.10 Combined Rayleigh and Slow Log-Normal Fading 

In the previous determination of error probabilities, rapid Rayleigh 
fading was assumed, with a fixed mean signal-to-noise ratio p over the 
interval under consideration. It will now be assumed that in this interval 
there is a slow log-normal variation in path loss and thus in signal-to
noise ratio at the receiver, in conjunction with rapid Rayleigh fading. 

Let P e be the error probability with Rayleigh fading as previously 
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related to the mean signal-to-noise ratio p = rl/n2, where S is the rms 
signal amplitude and n the rms noise amplitude. If p( s) is the proba
bility density of the rms amplitudes with slow fading, the probability 
of error in an interval during which the rms amplitude exceeds SI is 

Pe,I = let'J Pe(s)p(s) ds. 
81 

(149) 

For p » 1, the expression for Pe('S) is of the general form 

(150) 

For binary PlVI with differential phase detection and for binary PM 
with coherent dual filter detection, c = t. 

The probability density pes) is given by (12), or in the present 
notation 

(151) 

where So is the median rms amplitude and rY is the standard deviation 
of the fluctuation in s. 

With (150) and (151) in (144) 

Pe,I = c _; ! {et'J _2/1 -2';' exp [ - (In s/so)2/2rY2] ds (152) 
V 271" rY J 81 S n s 

= -2c _; jet'J ~ exp [_ (t In p/ PO)2 /2rY2] dp (153) 
v271" P1 P 

where po = so2/n2 on PI = sI2/n2. 
Solution of (153) yields the relation 

Pe,I = Pe''Y/(rY, K) (154) 

where 

(155) 

and 

2 {I 2 } 'Y/(rY, K) = t exp (2rY ) erfc V8rY [4rY + In K] • (156) 

For PI = 0, In K = - 00 and erfc (- 00) = 2. Hence for this case 

'Y/ = exp (2rY2). (157) 
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This is the factor by which the error probability taken over a long inter
val is greater than without a log-normal variation in signal-to-noise 
ratio and only rapid Rayleigh fading. 

Instead of modifying the error probability as above, an alternative 
method is to use an equivalent mean signal-to-noise ratio Pe that is 
smaller than P by the factor exp( -2(i). Thus 

pe = P exp (-2(i). (158) 

When Pe , P and u are all expressed in db, expression (158) can alterna
tively be written 

(159) 

For example, with a representative value Udb 8 db, the last term 
in (159) is 7.4 db. Thus the charts in the later Figs. 21 and 22 apply 
when P is taken 7.4 db less than the median signal-to-noise ratios with 
log-normal fading. 

VII. COMBINED ERROR PROBABILITY 

7.1 General 

In Sections IV to VI, three basic sources of errors in digital transmis
sion over troposcatter links were discussed, and expressions were given 
for the probability of error from each of these sources in the absence 
of the others. In a first approximation, the error probability considering 
all three sources can be evaluated by taking the sum of the three error 
probabilities. Approximate expressions are given here for the resultant 
error probabilities, together with charts that facilitate determination 
of error probability as a function of the binary pulse transmission rate, 
when the basic system parameters are known. These are the average 
signal-to-noise ratio p, the mean fading bandwidth 7, and the maximum 
departure ~ from the mean transmission delay. The error probability 
for a given transmission rate can be reduced by various means that may 
or may not entail an increase in total transmitter power or bandwidth 
or both. For a given total transmitter power and bandwidth, the most 
effective means to this end is diversity transmission over independently 
fading paths, as discussed briefly herein. 

7.2 Combined Error Probability 

As a first approximation, the error probability is given by 

P e ~ Pe(l) + p/2) + P
e

(3) (160) 
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where 

P e (I) = probability of errors in the absence of noise owing to inter
symbol interference caused by frequency selective Rayleigh 
fading (Section IV) 

P e (2) = probability of errors in the absence of noise owing to random 
variations in carrier phase or frequency (Section V) 

P e (3) = probability or error owing to random noise with nonselective 
Rayleigh fading (Section VI). 

As will be evident from the preceding discussion, and from charts 
that follow, P e (I) can be disregarded when P e (2) must be considered, and 
conversely, for error probabilities P e (3) in the range of practical interest. 
Hence in actual applications (160) will take one of the following forms 

P e ~ p}l) + P e(3) 

P e ~ P e(2) + p}3). 

In addition, there are intermediate cases in which P e ~ P e (3). 

(161) 

(162) 

In an exact determination of the error probability (161) it is neces
sary to consider the net effect of random intersymbol interference on 
the probability of errors owing to random noise, and similarly an exact 
determination of the error probability (162) the probability distribution 
of random phase deviations is involved. Intersymbol interference at a 
particular sampling instant may reduce or increase the tolerance to 
noise, and the net effect considering all pulse patterns may be such that 
(161) is a legitimate approximation. Similarly, random fluctuations 
in the slope of the phase characteristic may decrease or increase the 
tolerance to noise at a particular sampling instant, and the net effect 
considering all sampling instants may be such that (162) is a valid 
approximation. This is evidenced by the following exact relation derived 
by Voelcker9 in place of (162) for binary PM with differential phase 
detection 

(163) 

Since p would ordinarily exceed 100 (20 db), it follows that in this case 
(162) is a very good approximation to (163). 

The exact error probability (161) depends on the probability distribu
tion of phase distortion in conjunction with the probability distribution 
of intersymbol interference, which involves consideration of all pulse 
patterns. The combined probability distribution, and in turn the exact 
error probability, would be very difficult to determine, and hence the 
inaccuracy involved in (161) cannot readily be assessed. However, if 
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the probability distribution of intersymbol interference were the same 
as that of the reduction in tolerance to noise owing to random fluctua
tions in the slope of the phase characteristic, the inaccuracy in (161) 
would be no greater than that indicated by (162) versus (163). In 
most engineering applications, substantially greater inaccuracy would 
be permissible in the estimation of error probability, such that (161) 
and hence (160) can be considered permissible approximations in the 
present context. 

The above expression (160) is applied below to binary PM and FM. 

7.3 Binary PM with Differential Phase Detection 

For binary PM with differential phase detection P e (1) IS given by 
(101) with All = 2 or 

(1) .1 B 3 2 -2 [ ( )] 
P e = -6- 1 + In 1 + 27rLl2ii . (164) 

This error probability is given in Table IV as a function of LlB. 
The error probability P e (2) is obtained from (117), or approximation 

(121) 

p/2
) = Ml - K(T)] 

~ 0.25(o-T/ ~ 0.06(0-/ in 2 

~ 0.039(;Y / B)2. 

The error probability p}3) is given by (135) or 

p}3) = 1/2(.0 + 1). 

7.4 Error Probability Charts for Binary PM 

(165) 

(166) 

(167) 

(168) 

In Fig. 21 are shown the error probabilities Pe(l), Pe(2) and P e (3) as 
a function of the transmission rate, for a raised cosine spectrum. The 
error probability P e (1) depends on the maximum deviation .1 from the 
mean transmission delay, and curves are shown for a number of values 
of .1. The probability P e(2) depends on the mean fading bandwidth 'Y, 
and curves applying for several values of'Y are shown. Finally, the error 
probability P e (3) depends on .0, and is shown for a number of different 
values of p. 

By way of illustration, the combined error probability obtained from 
(170) is shown by the dashed line in Fig. 20 for the particular case in 
which .1 = 10-7 second, 'Y = 2 cps and .0 = 104 (40 db). 

The error probability as a function of transmission rate shown by 
this dashed line could apply to a variety of tropospheric scatter links, 
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Fig. 21 - Probabilities of errors in binary PM with differential phase detec
tion: 1, curves for various departures from mean delay show error probabilities 
in absence of noise owing to pulse distortion from selective fading; 2, curves for 
various mean fading bandwidths -y show error probabilities in absence of noise 
owing to random phase variations caused by fiat fading; 3, curves for various 
mean signal-to-noise ratios p show error probabilities owing to noise for fiat Ray
leigh fading; 4, dashed curve shows approximate combined error probability for 
p = 40 db, Ll = 10-7 second, and .:y = 2 cps. 

since ~ depends on the length of the link and on the antenna beam 
angles. Moreover, p depends on the transmitter power, the length of 
the link, and the antenna beam angles. Hence, given values of ~ and p 
can be realized for a great variety of conditions. 

7.5 Binary FM with Frequency Discriminator Detection 

With frequency discriminator detection, the minimum required band
width for a given pulse transmission rate is the same as for binary PM, 
and half as great as that required with dual filter detection. 
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The error probability P e (1) is in a first approximation the same as 
(161) for binary PM with differential phase detection. For the error 
probability p/2

), approximation (110) applies, or 

(169) 

This error probability is given in Table V as a function of RIa'. 
The probability of error owing to noise is, in a first approximation, 

the same as given by (139) for dual filter detection with coherent detec
tion, or 

(170) 

7.6 Error Probability Charts for Binary FM 

In Fig. 22 are shown the error probability P e (1), P e (2) and P e (3) for 
binary FM as a function of the transmission rate. The curves apply for 
a raised cosine pulse spectrum, and the same basic parameters a', 'Y and 
p as shown in Fig. 21 for binary Pl\1. The error probability for the partic
ular set of parameters previously assumed in Section 7.4 is shown by 
the dashed curve. 

Comparison of the curves in Figs. 21 and 22 shows that the error 
probabilities are the same with both methods except at very low trans
mission rates. This applies only as a first approximation and with idea,] 
implementation of both methods. 

7.7 Diversity Transmission Methods 

In diversity transmission, either space, frequency or time diversity 
can be used. The performance would be the same with these methods, 
and is an optimum when there is no correlation between the diversity 
paths. This entails adequate separation of receiving antennas in space 
diversity, adequate frequency separation in frequency diversity, or 
adequate time intervals between repetition of signals in time diversity. 

With anyone of the above three methods, different combining or 
decision procedures can be used at the receiver, as discussed in considera
ble detail by Brennan.17 The optimum method from the standpoint of 
minimum required signal power for a specified error probability is known 
as "maximal ratio combining," in which the gain of the receiver in each 
path is made proportional to the input signal-to-noise ratio. This method 
is difficult to implement, and a simpler but somewhat less efficient 
method is "equal gain combining," in which the various receivers have 
equal gain and the demodulator baseband output are combined linearly. 
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Fig. 22 - Probabilities of errors in binary FM with frequency discriminator 
detection: 1, curves for various departures A from mean delay show error proba
bilities in absence of noise owing to pulse distortion from selective fading; 2, 
curves for various mean fading bandwidths 'Y show error probabilities in absence 
of noise owing to random frequency variations caused by flat fading; 3, curves 
for various mean signal-to-noise ratios p at detector input show error probabili
ties owing to noise for flat Rayleigh fading; 4, dashed curve shows approximate 
combined error probability for p = 40 db, A = 10-7 second and 'Y = 2 cps. 

This entails a demodulator in each diversity channel and common gain 
control of the various channels. The need for a demodulator in each 
diversity channel and common gain control is avoided with "selection 
diversity," in which the receiver having the largest signal is selected. 
Though this method is somewhat less efficient than equal gain combin
ing, it has greater flexibility in that it can be used in conjunction with 
both linear and nonlinear modulation and detection methods, with path 
selection on the basis of predetection as well as post detection signals. 

The principal diversity techniques would thus be space, frequency 
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or time diversity, in conjunction with "equal gain combining" or "selec
tion diversity." The error reduction afforded by the two latter methods 
is discussed below. 

7.8 Error Probabilities with Equal Gain Diversity 

The error reduction afforded by equal gain diversity transmission has 
been determined by Pierce8 for binary FM with coherent and nonco
herent dual filter detection, on the premise of sufficiently slow flat 
Rayleigh fading, such that errors from noise alone need to be considered. 
For binary PM with differential phase detection, the error probability 
with equal gain diversity transmission has been determined by Voelcker, 9 

considering both errors from noise [P e (3)] and errors from time variations 
in the transmittance [p}2)]. Voelcker has also determined the error 
probability with dual diversity transmission for four-phase modulation 
with differential phase detection, considering errors from transmittance 
variations with time alone. For all of the above cases, the following 
approximation applies for the probability of single digit errors with 
dual diversity transmission over independently fading paths 

(171) 

where P e ,1 is the error probability for transmission over a single path 
(no diversity). For four-phase modulation, Voelcker's more exact 
expression, when reduced to small error probabilities, gives a factor 
47r(3 + 7r)/(2 + 7r/ ~ 3.13 in place of 3 in (171). 

The mechanism responsible for error reduction by diversity trans
mission in the above cases also applies to transmission over channels 
with selective fading when the errors are caused principally by inter
symbol interference. With independently fading transmission paths 
there will be no correlation between intersymbol interference in the 
various channels, even though the signals are the same. Hence relation 
(171) would also be expected to apply for the combined error probability 
P e given by (160). 

For small error probabilities, the following approximate expression 
is given by Pierce8 for the error probability owing to noise with flat 
Rayleigh fading for binary FM and multi diversity transmission 

(2m - 1)! m 

Pe,m ~ '( _ 1) , Pe,1 m. m . 

P e ,2 ~ 3Pe,1
2 

Pe,3 ~ lOPe} 

Pe,4 ~ 35Pe,1
4
. 

(172) 

(173) 

(174) 

(175) 
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The optimum number of diversity paths will depend on a variety of 
considerations, among them the available bandwidth and transmitter 
power, system complexity, and the source of errors. When the errors 
are caused by noise it is possible to realize a certain minimum total 
average signal power for a specified error probability Pe,m, by appro
priate choice of m. As shown by Pierce18 and Harris/9 the minimum 
total average signal power is attained for any specified error probability 
when m is so chosen that in each diversity channel p ~ 3, or about 5 
db, for binary FM with dual filter noncoherent detection. The number 
of diversity paths required to realize the minimum total average signal 
power is rather large, and the signal power reduction that can be realized 
with more than four paths is fairly small. For example, Pierce18 shows 
that for an error probability Pe,m = 10-4

, the minimum average signal 
power is realized with m = 16, for which the total signal-to-noise ratio is 
16.7 db, corresponding to a signal-to-noise ratio per channel of 4.7 db 
(p = 2.95). With m = 1 the average signal-to-noise ratio is 40 db and 
with m = 4 is 19.4 db. Hence only a ~mall additional reduction in signal 
power is realized when the number of diversity paths is increased from 
m = 4 to m = 16. 

7.9 Error Probabilities with Selection Diversity 

Equal gain diversity as considered above entails a linear addition 
of the baseband outputs of the various demodulators, and would be less 
effective in conjunction with nonlinear demodulation methods, such 
as binary FM with frequency discriminator detection. With the latter 
method, switch or selection diversity reception would probably be pref
erable, in which only the receiver having the largest signal is selected. 
With this method the following relations apply for m-diversity transmis
sion when the errors are caused by noise and when receiver selection is 
based on the largest carrier signal at the detector inpue 

Pe,m ~ 2m
-

1mlPe,t (176) 

P e ,2 ~ 4Pe ,1
2 (177) 

P e ,3 ~ 24Pe ,l 
3 (178) 

P e ,4 ~ 192Pe,t (179) 

For equal error probability, the average signal power with selection 
diversity must be greater than with optimum diversity by a factor 
equal to the mth root of the ratio of the factors in (176) and (172). The 
power must thus be increased by 0.62, 1.27 and 1.85 db for m = 2, 3 
and 4, respectively. 



204 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

7.10 Multiband Digital Transmission 

The curves in Figs. 21 and 22 suggest that for a given total transmitter 
power and channel bandwidth, the error probability can be reduced by 
transmitting at a slower rate over each of a number of narrower channels 
in parallel. An approximate optimum bandwidth for each channel would 
be such that p}l) + Pe(2) is minimized. This can be accomplished with 
separate transmitters and receivers for each channel, such that mutual 
interference between channels is avoided. Hence the adverse effects of 
selective fading can be overcome with the aid of more complicated 
terminal equipment, without the need for increased signal power or 
channel bandwidth. 

An alternative method that is simpler in implementation is to trans
mit the combined digital wave from the parallel channels by frequency 
or phase modulation of a common carrier, as ordinarily used for trans
mission of voice channels in frequency division multiplex. This method 
entails some mutual interference between channels, as well as greater 
channel bandwidth and carrier power than with direct digital carrier 
modulation, as discussed below. 

With the above method, the spectrum of the modulated carrier wave 
will have greater bandwidth than with direct digital carrier modulation. 
To avoid excessive transmission distortion of the combined wave, the 
bandwidth between transmitter and receiver must be at least twice 
that with digital carrier modulation. Hence, at least 3 db greater average 
carrier power is required in order that the noise threshold level of the 
common channel be comparable with that of direct digital carrier modu
lation. 

With such multiband transmission, intersymbol interference owing 
to selective fading is avoided, in exchange for mutual interference be
tween the various channels owing to intermodulation distortion caused 
by selective fading. Such intermodulation distortion is dealt with else
where (this issue, part 2) for a modulating wave with the properties of 
random noise, which is approximated with a large number of binary 
channels in frequency division multiplex. The results indicate that 
under this condition intermodulation distortion will cause less trans
mission impairment than does intersymbol interference in direct digital 
transmission. Hence multiband transmission by common carrier modula
tion permits a reduction in error probability in exchange for at least a 
twofold increase in bandwidth and carrier power. However, this reduc
tion in error probability may be less than can be realized with direct 
digital carrier modulation in conjunction with a twofold increase in 
bandwidth and signal power with dual diversity. 
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Error probabilities in binary multiband transmission by frequency 
modulation of a common carrier are dealt with by Barrow21 on the premise 
of slow flat fading over the combined band, so that only errors owing to 
noise need be considered and intermodulation distortion can be dis
regarded. 

VIII. SUMMARY 

The objective of this analysis has been to develop a transmission and 
modulation theory for troposcatter systems, applicable to digital trans
mission by AM, FM and PM at any speed and based on a realistic 
idealization of troposcatter transmittance properties. The basic model, 
together with the analytical procedure and certain basic assumptions, 
are reviewed here. 

8.1 Troposcatter Transmittance 

Based on certain physical considerations, an idealized multipath 
transmittance model is developed in which the received component 
waves vary at random in amplitude and phase and have transmission 
delays owing to path length differences which vary linearly with angular 
deviation from the mean path with maximum deviations ±d from the 
mean delay. With this type of model, a Rayleigh probability distribu
tion is obtained for the envelope of a received carrier wave in conform
ance with observations. 

To facilitate determination of transmission performance, two basic 
statistical parameters are required aside from the signal-to-noise ratio 
at the receiver. One of these is the autocorrelation function of envelope 
variations with time at a given frequency. The other is the autocorrela
tion function with respect to frequency at a fixed time. 

The first of these, the time autocorrelation function, depends on the 
rapidity of changes in the atmospheric structure within the common 
antenna volume. It has been determined by a number of observations 
with some theoretical support, as given in certain publications. 

The second basic parameter, the autocorrelation function with respect 
to frequency, has been determined by observation on a particular link. 
These observations conform well with the autocorrelation function 
determined analytically herein on the premise that the maximum delay 
deviation ±d noted above is given by the path length differences 
based on the beam angles between the 3-db loss points. * 

With the aid of this idealized model, endowed with the above basic 
parameters, as determined by observation or theory, it is possible in 

* This conclusion appears to be supported by the results of recent measure
ments on a lOO-mile path.24 
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principle to determine analytically the associated idealized transmission 
performance with any modulation method. Though an exact solution is 
possible in principle, it appears intractable and is not essential for 
engineering purposes. An approximate solution for transmission at 
any digital rate is derived herein. To this end certain basic statistical 
parameters are determined from the above two autocorrelation func
tions. 

8.2 Variations in Transmittance with Time 

In Section II, distributions are given for the time rate of change in 
the envelope and for the first and second derivatives of the phase func
tion. These probability distributions permit approximate evaluation of 
changes in the envelope, phase and frequency over a signal or pulse 
interval for narrow-band signal spectra. 

8.3 Variations in Transmittance with Frequency 

The corresponding probability distributions with respect to varia
tions in transmittance with frequency are given in Section III and permit 
approximate determination of random attenuation and phase distortion 
over the band of the signal spectra owing to the selectivity of fading. 
From these random variations it is possible to determine the correspond
ing pulse distortion together with resultant intersymbol interference in 
carrier pulse trains and error probability in the absence of noise. 

8.4 Errors from Selective Fading 

As a next step in the determination of error probability, an approxi
mate evaluation is made in Section IV of the probability of errors from 
intersymbol interference with selective Rayleigh fading in the absence 
of noise. In a first approximation it turns out that attenuation distortion 
can be neglected in comparison with phase distortion. Furthermore, the 
latter can be approximated by a component of quadratic phase distor
tion, or corresponding linear delay distortion. Intersymbol interference 
owing to quadratic phase distortion is determined for various carrier 
modulation methods, and an approximate relation is derived for the 
resultant error probability in the absence of noise. 

8.5 Errors from Nonselective Rayleigh Fading 

With transmission at sufficiently slow rates, errors ·can occur in the 
absence of noise, owing to changes in amplitude, phase or frequency over 
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a pulse interval, caused by nonselective Rayleigh fading. The proba
bility of errors on this account is determined in Section V on the approxi
mate basis that changes over a pulse interval are proportional to the 
time derivatives of the amplitude, phase or frequency, depending on the 
modulation method. Comparison with available exact solutions for 
phase modulation shows that the inaccuracy resulting from this approxi
mation is inappreciable. 

8.6 Errors from Random Noise 

In Section VI expressions are given for the probability of errors from 
random noise with fiat Rayleigh fading, as derived in various publica
tions for different digital carrier modulation methods. In addition, an 
expression is derived for error probability with rapid Rayleigh fading 
in conjunction with slow log-normal fading, as encountered on tropo
scatter links. 

8.7 Combined Error Probability 

In the final Section VII the combined error probability is determined 
on the approximate basis that it is the sum of the error probabilities for 
the three basic sources assumed above. Charts are presented from 
which can be determined the approximate combined error probabilities 
for binary phase and frequency modulation over a single path, and 
approximate expressions are given for the error probability with diversity 
transmission over independently fading paths. 

8.8 Basic Approximations 

The idealized model of troposcatter transmission assumed herein is of 
course an approximation, as are the idealizations regarding the per
formance of the carrier modulation methods. Even with exact mathe
matical analysis based on this model, the predicted performance would 
not conform entirely with that observed on actual systems. 

In determining error probability from the idealized model, two basic 
approximations were used to obtain numerical results. One is that the 
maximum departures ±~ from the mean transmission delay can be 
determined from the beam angles taken between 3-db loss points. On 
short links with narrow-beam antennas, these are virtually equal to the 
free-space antenna beam angles, but for long links are greater owing to 
beam broadening by scatter. The second approximation is that errors 
from distortion owing to selective fading are caused principally by a 
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quadratic component of phase distortion. This is the first component 
that gives rise to distortion in a power series expansion of a nonlinear 
phase characteristic as a function of the frequency from the carrier. 

The same two basic approximations have been used in a companion 
paper (this issue, part 2) in a determination of intermodulation noise in 
analog transmission by FM of signals with the properties of random 
noise. Theoretical predictions based on free-space beam angles are in 
this case in reasonable agreement with measurements on two tropo
scatter links 185 and 194 miles in length, with narrow-beam antennas. 
Measurements on links 340 and 440 miles long give intermodulation 
noise that would correspond to beam angles and maximum delay differ
ences ±il that are greater than for free space by factors of about 1.35 
and 2.15, respectively. 

The above measurements also show that as the bandwidth increases, 
actual intermodulation noise will be progressively smaller than predicted 
on the premise of quadratic phase distortion. Translated to digital 
transmission, the error probabilities Pe(1) owing to selective fading as 
determined here on the premise of quadratic phase distortion would 
represent an upper bound, that should conform well with actual error 
probabilities when the latter do not exceed about 10-2 in Figs. 21 and 22. 

8.9 Comparison with Recent Related Publications 

Since the completion of the galley proof of this paper an article by 
Bello and N elin22 has appeared, dealing with errors in binary transmis
sion owing to frequency selective fading by a different analytical pro
cedure than used here. Numerical results are presented for error prob
abilities in dual and quadruple diversity transmission by binary FM 
with dual filter incoherent detection and binary PIVI with differential 
phase coherent detection. These results are based on an assumed Gaus
sian correlation function, or power spectrum, of the selectivity of fading 
with frequency. A comparison is made below of the above numerical 
results with those obtained on similar premises from relations presented 
here. 

For a Gaussian power spectrum of correlation bandwidth Be as used 
in the above paper, the corresponding value of (7"2 in (18) is (7"2 = 2 (7rBe)-2. 
Expression (55) applies with b2/bo = (7"2 in place of il2/3. With this sub
stitution and with T = 13-1, expression (101) and Fig. 17 apply, with 
il·B = 0.79(BeT)-r, where (BeT)-l is the parameter appearing in Figs. 5 
and 9 of the above paper for the irreducible error probabilities. 

Binary FIVI with dual filter detection as assumed in the above paper 
can be considered equivalent to ideal complementary binary AM over 
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each of two channels. When the frequency selectivity of fading is suffi
cient to cause errors in one or the other of these channels, the above 
method is essentially equivalent to dual diversity transmission by AlVI 
over two independently fading channels. On this basis, binary F1VI with 
dual diversity and dual filter noncoherent detection is approximately 
equivalent to binary A1Vl with quadruple diversity. The error probabil
ities determined on the latter premise with L).. B = 0.79(BcT)-1 in (101), 
or in Fig. 17, in conjunction with (172) for m = 4, conform reasonably 
well with those given in Fig. 5 for dual diversity with 1/; = 0 and n = 1. 
Complete agreement is not possible for the reason that the results in 
Fig. 5 assume a rectangular shape of undistorted pulses, whereas the 
present analysis is based on a more realistic pulse shape with a raised 
cosine spectrum, as indicated in Fig. 13. 

In the case of binary PM with differential phase detection, the rela
tions presented here with L).. B = 0.79(BcT)-1 yield error probabilities 
that are significantly smaller than those given in Fig. 9 of the above 
paper. This is to be expected, since the present relations are based on 
detection with an optimum threshold level, whereas those in the above 
paper assume zero threshold, which is not the optimum owing to the 
presence of a substantial bias component in the demodulator output, 
when pulse distortion is pronounced.13 1Vloreover, the shapes of the un
distorted pulses are different, as noted above. 

It is evident from the above considerations that apparently unrelated 
and possibly misleading results can be obtained unless comparisons are 
made of binary modulation methods of equal bandwidths with optimum 
implementation of each, as was done in Fig. 17. 

The above article called attention to another paper23 by the same 
writers that refines Voelcker's original analysis9 of errors in transmission 
over narrow-band channels owing to transmittance variations with time. 
Their results show that for a Gaussian power spectrum of the fading 
rate as assumed herein, Voelcker's analysis is exact, though this is not 
true for all forms of power spectra. 
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APPENDIX 

Transmittance of Troposcatter Channels 

Owing to the differences in path length from transmitter to receiver 
via the various heterogeneities in the common volume, the various 
components of the received wave arrive with different delays. For 
analytical purposes it is convenient to assume a certain mean reference 
path with delay To and to express the transmission delay via other 
paths relative to the delay To . Actually there will be a large number 
of paths with the same delay To as the mean path and a large number 
of paths for each other delay. In the present analysis the approximate 
model indicated below is assumed, with a single vertical scatter plane 
midway between transmitter and receiver. 

The amplitude of the wave component arriving over a path at the 
distance x above the mean path is taken as A(x,t) and the delay over 
this path as 

T(x) = To + o(x). 

The wave component arriving via this path is then 

ex(w,t) = A(x,t) cos w[t - To - o(x)]. (180) 

Le4 L be the distance between transmitter and receiver and H the 
height of the mean path. In this case 

o(x) = s(x)/v (181) 
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where v is the velocity of propagation and SeX) the path length difference 
given by 

(182) 

In actual systems H « L. Furthermore, the maximum value x of x is 
ordinarily much smaller than H. On these premises the following ap
proximation applies 

o(x) = (2H/Lv)x = x/c (183) 

where c = vL/2H. 
It will further be assumed that there is an infinite number of paths, 

in which case the received wave becomes 

e(w,t) = L: A (x,t) cos wet - 7'0 - x/c) dx (184) 

= cos wet - To) foX [A (x,t) + A ( -x,t)] cos (wx/ c) dx 

+ sin wet - To) foX [A (x,t) - A ( -x,t)] sin (wx/ c) dx. 

(185) 

It will now be assumed that 

foX [A(X,t) + A( -x,t)] dx = O. (186) 

This appears to be an appropriate physicall'equirement, for the reason 
that reflections occur as a result of variations in the electrical properties 
of an elementary volume, relative to that of the common volume. No 
reflections occur with a uniform common volume. In a heterogeneous 
common volume, each positive reflection must be accompanied by an 
equal negative reflection, which is reflected in condition (186). More
over, under this condition there is no reflection along the mean path of 
the transmitted beam. That is, with x = 0 in (185), e(t) ~ 0 provided 
( 186) applies. 

Condition (186) can be insured if the following Fourier series repre
sentations are used for x ~ x 

00 

A(x,t) + A( -x,t) L a(m,t) cos mrrx/x (187) 
m=l 

and 
00 

A (x,t) - A ( -x,l) L b( m,t) sin mrrx/x. (188) 
m=l 
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With m = 1, 2, 3, etc., as above, the area under each harmonic com
ponent vanishes, such that condition (186) is satisfied. 

With (187) and (188) in (185), the following relation is obtained 

e(w,t) = cos wet - T) U(w,t) + sin wet - T) V(w,t) (189) 

where 
co 

~x cos m7rx/x cos wx/c dx U(w,t) L a(m,t) (190) 
m=l 

co 

~x sin m7rx/x sin wx/c dx V(w,t) = L b(m,t) (191) 
m=l 

Evaluation of the integrals yields the following expressions 

U(w,t) t !A(m,t) [sin (m7r - wA) + sin (m7r + WLl)] (192) 
m=l m7r - wLl m7r + wA 

V(w,t) 

where 

~ [sin (m7r - wLl) _ sin (m7r + WA)] 
LJ !B(m,t) 
m=l m7r - wA m7r + wA 

A(m,t) = xa(m,t) 

B(m,t) = xb(m,t) 

A = x/c. 

(193) 

(194) 

It will be noted that A is the maximum departure from the mean 
delay To. 

In evaluation of (192) and (193) it is convenient to introduce a new 
reference frequency Wo in place of 0, and to choose this reference fre
quency such that 

(195) 

Thus 

(196) 

where -7r < uA < 7r, and u is the deviation in frequency from Wo • 

The functions (192) and (193) are then replaced by 

U(u,t) = t !A(m,t) {sin [em - n)7r - UA] 
m=l (m - n)7r - ULl 

+ sin [em + n)7r + UA]} 
sin (m + n)7r + uA 

(197) 
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V(u,t) :t tB(m,t) {Sin [em - nhr - uLl] 
m=l (m - n)~ - uLl 

_ sin [em + n)~ + ULll} 
sin (m + n) ~ + uLl . 

(198) 

In troposcatter transmission it turns out that m is of the order of 
100 to 1000. For this reason the second terms in the above series, In 

(m + n)~, can be neglected. With this simplification and with m -
n = }, expressions (5) and (6) are obtained. 

Expression (189) can then be written in the form 

e( w,t) = r( u,t) cos [we t - T) - cp( u,t) 1 
where rand cp are given by (3) and (4). 

The channel transmittance is accordingly given by (2). 
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Au-n-Type GaAs Schottky Barrier and 
Its Varactor Application 

By D. KAHNG 

(Manuscript received July 19, 1963) 

Evidence is presented to' show that A u-n-type GaAs rectifying contacts 
are majority carrier rectifiers of the Schottky type. These diodes may be 
characterized by a Richardson constant of 20-60 amp / cm 2 del and barrier 
heights oj l.oS, 0.97 and 0.91 volts, corresponding to the (111), (111) and 
(110) orientations of GaAs substrate. 

GaAs Schottky barrier varacior diodes constructed on epitaxial films may 
be designed to yield a high cutoff frequency. Performance calculations in a 
practical case yield a "dynamic quality factor" of 50 at 6 gc under favor
able conditions. A "dynamic quality factor" of about 20 at 6 gc should ce 
obtainable with present fabrication technology. 

I. INTRODUCTION 

It has been demonstrated that under suitable conditions a metal-to
semiconductor rectifying contact may exhibit characteristics predictable 
from the simple theories advanced by Schottky! and Bethe.2 An example 
of this type of system is the Au-n-type Si Schottky barrier which was 
reported earlier.3 In the present paper evidence is presented to show 
that Au-n-type GaAs is also such a case. 

The main features of a metal-to-semiconductor contact are that it 
may be designed as a majority carrier rectifier, i.e., noninjecting recti
fying junction, and that the junction is accurately describable in terms 
of an ideal step junction. The first feature implies that the frequency 
response of the diode is limited only by RC charging time or transit 
time rather than by minority carrier lifetime. High cutoff frequency 
can be achieved through the use of an epitaxial structure. Such diodes 
may find application in high-speed switching, microwave detection and 
mixing, harmonic generation, or parametric amplification using the 
diode as a varactor. The first of these applications, fast switching, has 
been discussed elsewhere.4 

215 
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The second feature, the ideal step junction, makes the Schottky bar
rier highly promising as a varactor. The step junction configuration 
when combined with epitaxy yields advantageous varactor performance 
in that its capacitive sensitivity with voltage is much higher than that 
of a graded junction; yet no loss in Q and breakdown voltage results 
from the high capacitive sensitivity. The case of a retrograded junction5 

is less favorable. 
The choice of GaAs as the semiconductor part of the Schottky bar

rier varactor is based on two facts. First, its electron mobility is the 
highest among the common semiconductors available, thus allowing 
realization of minimum RC product while maintaining the capacitance 
of the unit small to facilitate diode broadband coupling to a microwave 
circuit. Secondly, doping close to degeneracy permits its operation at a 
low temperature without deterioration in performance due to carrier 
freeze-out. 

In the following, the physical properties of the Au-n-type GaAs 
Schottky barrier are examined and a simple theory of a varactor design 
on the basis of the barrier properties is presented. The theory is used 
to calculate the expected performance of the varactor subject to prac
tical considerations such as the thickness of the epitaxial layer, parasitic 
resistances arising from the wafer and the contact, and available pump 
power. 

II. PHYSICAL PROPERTIES OF Au-n-TYPE GaAs SCHOTTKY BARRIER 

Vacuum deposition of gold 1000 A thick confined to a circular area 
of 2 X 10-3 cm2 on suitably etched n-type GaAs surfaces results in 
diodes whose typical forward characteristics are as shown in Fig.' 1. 
Notice that the characteristics follow the equation 

II = 18 exp [( qjkT) V] (1) 

very closely, indicating nearly ideal Schottky barrier behavior. Here I I 
is the, forward current, Is' the saturation current, q the electronic charge, 
k the Boltzmann constant, T the absolute temperature, and V the for
ward voltage .. 

Note also that Is depends on the substrate orientation. Is is smallest 
for a (l11)-directed*"substrate and increases for the (ill) and (110) 
directions in that order. This suggests that the barrier height is sensitive 
to GaAs orientation. 

* The (111) direction is defined to be perpendicular to the surface which gives 
a smoother appearance after an etch, 
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Fig. i - Semilog plot of typical forward characteristics for three substrate 
orientations; n is the slope parameter, namely, 

d(lnlj ) = !L 
dVj n kT' 

For a uniformly doped substrate, the barrier capacity depends on the 
reverse voltage in accordance with the well-known equation 

~~ (;~y (2) 

where C is the capacity, A the junction area, E the permittivity, N the 
donor concentration, and V T the total voltage across the junction in
cluding the built-in voltage, V D • This is demonstrated when 1/C2 vs 
V R (applied voltage, reverse direction positive) plots are made as shown 
in Fig. 2. Such plots should be linear if (2) is closely followed, and they 
yield information on the diffusion voltage (built-in voltage) of ~he barrier 
as well as on the ionized donor density. :Table I shows data for the three 
orientations mentioned earlier. Two ")separate evaporation runs were 
made for each orientation. Each set of N and V D corresponds to a single 
diode. For the narrow range of donor concentrations measured, the 
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Fig. 2 - I/C2 vs applied voltage for diodes constructed on (111)-oriented GaAs 
surface. 

equilibrium Fermi level of the substrate is about 2 kT below the con
duction band edge. The energy difference of these two levels is denoted 
by E FC • The barrier height, ({J, is determined from 

(3) 

where V D = Vint + kT/q (Vint is the measured voltage intercept from 
Fig. 2. For details of this procedure see Ref. 3). Since Is in (1) can be 
written as 

Is = AnT2 exp - (q({J/kT) (4) 

one may proceed to calculate An , the Richardson constant, to check 
the validity of the model which led to (1) and (2). Is can be determined 
from the forward characteristics by plotting [In If - (qV/kT)] vs If. 
The resulting calculated An's are shown in the last column of Table 1. 
The expected An is of the order of 100 amp/cm2deg2

• Since the calcula
tion of AR is very sensitive to ({J values, the results may be deemed to 
be in satisfactory agreement with this expectation. 

It is of interest here to calculate the minority carrier contribution to 
the forward conduction. The hole injection efficiency, ,,(, can be written 
as6 

(5) 



SCHOTTKY BARRIER 219 

TABLE I 
-

I 
Orientation N VD <I> Ave <I> AR 

1016 cm-3 (volts) (volts) (volts) (amp/cm2 deg2) 

111 5.8 0.95 1.03 
5.8 0.95 1.03 
5.8 0.95 1.03 
7.1 0.95 1.03 1.03 45 
9.02 0.94 1.02 

-
111 7.2 0.93 1.02 

7.2 0.87 0.95 
7.2 0.88 0.96 0.97 20 
8.4 0.90 0.98 
8.4 0.88 0.96 

110 5.0 0.84 0.92 
5.0 0.84 0.92 
5.0 0.83 0.91 
5.3 0.83 0.91 0.91 20 
6.2 0.80 0.88 
6.4 0.82 0.90 
7.6 0.89 0.97 

where jp is the hole current density, js the electron saturation current 
density, pn the equilibrium minority carrier density of the substrate, 
Dp the diffusion constant of holes and Tp the hole lifetime. The upper 
limit of 'Y estimated, using Dp = 20 cm2sec-t, Tp = 10-12 sec, and js = 
2 X 10-11 amp/cm2 for n-type GaAs of 1016 carrier concentration, is 
5 X 10-4

• Indeed, the assumption of Tp = 10-12 sec implies that the holes 
do not diffuse any appreciable distance. If one makes an assumption of 
longer hole lifetime, 'Y then would be even lower than the value above. 
The'Y calculated above applies, strictly speaking, only at the origin of 
the V-I curve. For high forward current range, the calculation ought to 
be modified to include hole drift as well as diffusion. 7 

The Au-n-type GaAs Schottky barrier then can be characterized by 
the set of physical parameters cp and AR as given in Table I for the 
various substrate orientations. It can also be treated as a noninjecting 
rectifier, at least for small forward currents. 

III. EPITAXIAL SURFACE BARRIER VARACTOR PERFORMANCE 

Assume that the surface barrier diode is constructed on an epitaxial 
film of thickness d grown on a substrate material of a resistivity ps. 

For the sake of simplicity assume that for the maximum applied reverse 
voltage V m , the space charge just extends through the entire thicknes~ 
d of the epitaxial n region so that 

(6) 
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Here Vo is the dc bias voltage including the built-in voltage V D , and 
VI is the pump amplitude. 

The series resistance, Rs at a voltage V < V m is given by 

R = Peed - s) + R = ~ (2 IqN)!(V ! - V!) + R 
8 A 8S A E m 8S 

(7) 

where Pe is the resistivity of the epitaxial film, A is the junction area, 
Rss is the contribution from the substrate and contacts, and s is the 
space charge width corresponding to V given hy 

(8) 

The a~sumption used in arriving at (6) does not lead to loss of generality, 
since the series resistance due to unswept-out epitaxial region may be 
incorporated into Rss in (7). The performance may now be calculated 
in terms of the "dynamic quality factor," Q, of the diode as defined by 
Kurokawa and Uenohara.8 This formulation is based on the assump
tion that the undesired sidebands are open-circuited. Experimental re
sults are in closer agreement with the open-circuit assumption than with 
the closed-circuit assumption.9 

The figure of merit Q as defined in Ref. 8 may be modified to include 
the variation of the resistance, (7), to give 

- 1 DI 
Q = 2w Ro (9) 

where DI is the Fourier coefficient of the first harmonic of the elastance, 
l1C, w is the operating frequency, and Ro is the zero-order term of the 
Fourier expansion of R s , [cf. (7)]. Equation (9) may be rewritten in 
combination with (2) and (7) as 

1 -------------------------
2w P 1 1 1 A (2ElqN)';Yo(Vm' - V·) + Rss 

(10) 

where the symbols ;Yo and ;YI are used to indicate the zero- and first
order terms of the Fourier expansion of the expression inside the brackets 
following the symbols. Since 

v = Vo + V I cos wpt (11) 

and 

Vm = Vo + VI (12) 
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where Wp is the angular frequency of the pump, (10) can be expressed 
as 

1. _ ') 1 - [1/(1 + a)]!5=o( VI + a cos wpt) 
~ - ... W€Pc 1 

Q [1/(1 + a)]25=1( VI + cos wpt) 

+ 2wAR88(€qN/2Vm)~ 
[1/(1 + a)]!5=I(VI + acoswpt) 

(13) 

where 

(14) 

The first term of (13) is the Q associated with the average loss in the 
epitaxial film region, and the second is the Q associated with the external 
loss. We have 

(15) 

Fig. 3 shows the pertinent values for 5=0 and 5=1 of VI + a cos wpt as 
functions of a. Since these quantities show weak variations with a, one 
may take the values at a = 1. (By definition a is never greater than 
unity.) Then 

Qi 1'..1 0.58 ~ (16) 
W €Pe 

where em is the minimum capacity corresponding to V m , f m is the cut
off frequency corresponding to em, and f is the operating frequency. 

More accurate calculation of Qi and Qe is possible whenever the pump
ing condition is specified. Namely, when Vo , the sum of the built-in 
voltage and the dc bias, and the pump amplitude are specified, the value 
of a is fixed. Now, corresponding to this a, more accurate numerical fac
tors in (16) and (17) can be obtained from Fig. 3. 

It is interesting to note that Q is a function of a but not of Vo or VI 
separately, provided the change in RS8 due to changes in Vo or VI is 
taken into account. Nonuniform epitaxial film doping would not allow 
the use of Fig. 3 for the numerical values in (16) and (17). However, the 
essential form of these equations is retained and the appropriate values 
of the numerical factors are calculable once the doping profile is specified. 

The optimum Qi is determined by smal1est pe one can practically use 
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Fig. 3 - Pertinent Fourier coefficients. 

( I)! -- ;rl 
pea) = 1 + a 1 

( 
1 )2 1 - -- ;ro 

l+a 

subject to the maximum static capacity for circuit matching require
ment. We now define the static capacity of the unit as 

(J = 1 28C 1 
;ro(1/C) ~ . m a: V m! • (18) 

Equation (18) indicates that V m should be made as large as possible for 
this purpose. The extent to which V m can be made large depends on two 
quantities, the breakdown voltage corresponding to a given doping level, 
N, and the pump amplitude. Let us examine the case where the maxi
mum conductivity usable is limited by the breakdown voltage and the 
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epitaxial film thickness. The relationship between the breakdown field, 
Eb ,assumed here to be a constant for simplicity, and the maximum space 
charge thickness, (or the epitaxial layer thickness), d, is 

Eb ~ (q/e)Nd. (19) 

If dm is the smallest thickness of epitaxial film practically attainable, then 

(20) 

where J.I. is the electron mobility. For E b • e ~ 5 X 10-7 volt-fd/cm2 

and dm = 10-4 cm, (20) yields an optimum doping level of 3 X 1016 

cm -3, which corresponds to Pe ~ 0.04 ohm-cm, assuming J.I. = 5000 cm2
/ 

volt-sec. These figures will lead to Qi ~ 390 at 6 gc. 
Now let us calculate Qe, using the doping level obtained above for 

A = 2 X 10-5 cm 2 (0.002-inch diameter circle). Also assume that 
Rss ~ 0.5 ohm. Then (17) yields Qe ~ 57, and (15) gives a Q of 50. 

The above calculation of dynamic quality factor was made assuming 
no limitations on the pump amplitudes and ideal breakdown voltage of 
about 25 volts. If one now assumes that only one-half of the epitaxial 
layer is penetrable, due to high leakage current, then Qe becomes 24 and 
Q = 22. If one is able to reduce the epitaxial thickness to 5 X 10-5 cm, 
the improvement is not very significant, in that Qe becomes 29 and Q = 27. 
In addition, if Rss = 0.8 ohm this would affect Q drastically, yielding Q 
of only 17. These figures for Q would undoubtedly deteriorate in actual 
cases because the package capacity is not taken into account, although 
the additional external circuit loss (for instance, the cavity loss) may be 
incorporated in Rss . 

Clearly, the ultimate value of Q attainable is more heavily dependent 
on Qe than on Qi . Qe is determined by Rss and em . In a low-noise ampli
fier V m may be advantageously made small, say about 10 volts or less. 
V m should also be such that no appreciable reverse current flows. This 
means that the epitaxial layer thickness should be slightly larger than 
that dictated by (20), although Qe is somewhat sacrificed. The relaxation 
on V m leads to a higher optimum epitaxial layer doping than that previ
ously calculated. This is compatible with the necessity of having the 
layer thickness in excess of that dictated by V m • Equation (20) gives 
optimum doping of 8 X 1016 cm -3 or 0.02 ohm-cm for V m = 10 volts 
and a corresponding layer thickness of OAJ.I.. If the total layer thickness 
is IJ.l. (compatible with present technology), then there is a contribution 
to Rss from the 0.6 J.I. thick unswept-out layer. This could be partially 
compensated for by reducing the capacitance through use of a smaller 
junction area. The smallest junction area usable is, in turn, limited by the 
package capacity. Choice of an O.OOl-inch diameter circular area leads 
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to an unswept-out layer resistance of 0.2 ohm and em, corresponding to 
V m , of 0.13 pf. The total RS8 then is 'approximately 0.8 ohm, which 
leads to Qe of 52 at 6 gc. Qi is increased to 780 by virtue of lowered epi
taxial resistivity, yielding an over-all Q of 50 at 6 gc. These figures are 
optimistic, since the influence of package capacitance is again neglected. 

IV. CONCLUSIONS 

, The Au-n-type GaAs Schottky barrier can be characterized by the 
physical parameters, barrier height cp, and Richardson's constant An . 
The values of these parameters were found to be An = 20-60 amp/cm2 

deg2 and cp of 1.03,0.97 and 0.91 volts, corresponding to (111), (111) and 
(110) orientation. It was shown that the barrier is essentially noninject
ing for small forward currents. 

The combination of the surface barrier rectifying junction with a GaAs 
epitaxial structure may lead to a dynamic quality factor, Q, of 20 at 6 gc 
with the presently available technology. In fact, one may look forward 
to achieving Q of as much as 50 at 6 gc, either for low-voltage varactors 
(V m ~ 10 volts) or high-voltage units (V m ~ 25 volts). The latter may 
be useful for high-power applications such as harmonic generation, as 
opposed to low-noise operation, for which the former is more suitable. 
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Gold-Epitaxial Silicon High
Frequency Diodes 

By D. KAHNG and L. A. D'ASARO 

(Manuscript received July 19, 1963) 

A diode based on the properties of an evaporated gold contact on n-type 
epitaxial silicon has speed comparable to point contact diodes~ The space 
charge region at zero bias can be designed to penetrate up to the impurity 
tail at the interface, thus reducing senes resistance.' An encapsulated diode 
was made with a i-mil diameter gold contact on an epitaxial layer 1.5 mi
crons thick having a surface doping of 1 X 1015 donors per cm3• The zero
bias RC product of this diode is less than 1 X 10-12 second. Under forward 
bias the electron transit time through the epitaxial layer is less than 2 X 
10-11 second. The breakdown voltage of experimental diodes is greater than 
10 volts. Stress aging experiments in an inert atmosphere show n() deteriora
tion of electrical properties at temperatures up to the gold-silicon eutectic 
(370°C). This diode was used as a harmonic generator at "11 gc with 'an 
efficiency comparable to that of a gallium arsenide point contact diode. 

1. INTRODUCTION 

The metal-semiconductor rectifying contact in a variety of configura
tions called "point contact" has long been used for micrO\v'ave rectifica
tion and amplification. This investigation shows that metal-semicon
ductor diodes can be designed and fabricated by large-area techniques 
with speeds adequate for application as fractional nanosecond switches 
or microwave mixers. In particular, a gold n-type silicon contact will be 
considered here. An estimate of the response time can be obtained from 
a calculation of the transit time of electrons through the space charge 
region and the RC time. The series resistance and capacitance of the 
diode are made small by using an epitaxial structure. Since the hole in
jection in these diodes at low currents is negligibly small, the response 
time can be independent of hole lifetime. In what follows, design of these 
diodes will be discussed, and the predictions of the preliminary design 
will be compared with experiment. 

225 
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II. DIODE STRUCTURE AND FABRICATION 

The structure of the diode is shown in Fig. 1. An epitaxial layer of 
n-type silicon is grown on an n+ substrate. A layer of gold is evaporated 
in a small dot over the epitaxial layer. The metal-semiconductor con
tact formed in this way has an internal potential which results in a space 
charge region in the silicon near the gold. The doping and thickness of 
the silicon is chosen so that at zero bias the space ch,arge region of thick
ness w occupies most of the epitaxial layer. The remaining portion, s, is 
a region of high doping due to diffusion of impurities from the substrate.1 •2 

Experimental diodes were fabricated as follows. Silicon wafers of re
sistivity 4 X 10-3 ohm-cm with faces perpendicular to the (Ill) direc
tion were deposited with epitaxial layers of silicon by the hydrogen re
duction of silicon tetrachloride.1 •3 The film thickness in a typical diode 
is 1.5 microns. The surface doping of the n-type layers is 2 X 1014 to 
1 X 1015 donors per cm3• The undeposited side of the wafers was provided 
with gold-antimony evaporated and alloyed ohmic contacts. These 
wafers were then subjected to cleaning consisting of oxidation and oxide 
removal steps. The wafers were cleaned immediately prior to gold evap
oration. Gold evaporation was carried out in a vacuum of less than 2 X 
10-6 mm Hg. Gold was evaporated through a molybdenum mask, con
fining the gold to a circular area 1 mil in diameter. After evaporation 
some of the diodes were etched, using the gold dot~ as masks. The etch
ing removes the epitaxial region outside of the gold dots, thus prevent
ing formation of large-area channels near the gold dots. 

III. RESPONSE TIME 

The low-current response time is determined by the transit time of 
electrons through the space charge region and the RC charging time. The 
transit time is given approximately by Tt = w/v s , where w is the space 
charge width and Vs is the average scattering limited velocity in the space 
charge region. The RC charging time can be estimated from the resist-

} 
n-TYPE 
EPITAXIAL LAYER 

Fig. 1 - Structure of a gold-silicon epitaxial barrier diode. 
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ance of the unswept-out region of the epitaxial layer plus the spreading 
resistance in the substrate and the capacitance of the contact 

RC - C J d + CaPsd - a pe X -2- (1) 
region 

8 

where Ca is the capacitance per unit area of the diode, Pe is the resistiv
ity of the epitaxial layer in region s, Ps is the resistivity of the substrate 
and d is the diameter of the contact. 

Calculation of the response time can be made for a case where the 
donor distribution in the epitaxial layer is known. In layers a few mi
crons thick, the effect of diffusion from the substrate and the effect of 
the process of epitaxial growth on the distribution of impurities! need 
to be considered. The doping profile (concentration N versus distance x) 
may be approximately characterized by the form1

,2 

N = ~8 erfc 2.JDt + N o* e-cJ>x + AU - e-cJ>X) (2) 

where the first term is due to diffusion from the substrate of doping 
Ns with an effective diffusion coefficient D for a time t (an approxima
tion), the second term is the substrate contribution to the film doping 
through the exchange of dopant between the solid and gas phase with 
parameters N o* and ¢, and the last term is the gas phase contribution 
to the film doping with an asymptotic value A for thick films. An exam
ple of an impurity distribution obtained in the fabrication of experi
mental gold-silicon epitaxial diodes is given in Fig. 2. The diffusion 
and exchange contributions to the doping are much larger than the gas 
phase contribution in the thicknesses used here. Within the lower doped 
region, one may approximate by a uniform doping for estimates of per
formance, since the film thickness is smaller than 1/ ¢. 

The width of the space charge region at equilibrium in a uniformly 
doped material is given by 

W = e~~Dy (3) 

where € is the dielectric constant, V D is the diffusion potential (shown 
in Fig. 3), q is the electron charge, and N is the donor concentration. 
In a typical case for these diodes the donor concentration in the region 
in which the exchange contribution dominates may be 1 X 1015

• The 
barrier potential for the gold-silicon contact (Vo in Fig. 3) is known 
from measurements of the forward and reverse characteristics and the 
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Fig. 2 - Impurity profile components for an epitaxial silicon film. 

capacitance-voltage relation,4 and is 0.79 ± 0.02 ev for silicon dopings 
from 0.1 to 10 ohm-cm. At Nd = 1 X 1015

, the Fermi level is 0.25 volt 
below the conduction band, leading to V D = 0.54 volt, and w = 0.67 
micron. Since the edge of the space charge region falls in the diffusion 
tail, the series resistance of the diode is due to the doping in this tail. 
Integration over the doping distribution in Fig. 2 yields a zero-bias 
series resistance of 4.0 ohms. 
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Fig. 3 - Shape of the potential barrier under zero and forward bias. 
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The zero-bias capacitance can be found from 

C = (e/w)A (4) 

where A is the diode area. For a I-mil diameter diode, the expected zero
bias capacitance is about 0.05 pf. The capacitance of the encapsulation 
raises the total to about 0.3 pf, making the zero-bias RC product equal 
to 1.2 X 10-12 second for the diodes with a series resistance of 4 ohms. 

The transit time of majority carriers through the space charge region 
at zero bias leads to an upper limit on the response time. For the case 
given above under zero bias, the transit time obtained from an assumed 
scattering limited velocity of 5 X 106 cm/sec is 2 X 10-11 second. Under 
forward bias the width of the space charge region decreases, and hence 
the response time may be shorter than this estimate. 

IV. HOLE INJECTION CONSIDERATIONS 

The hole injection ratio is defined as 

(5) 

where jp is the hole current and jn is the electron current crossing the 
junction. Diffusion theory5 allows this expression to be written as 

(6) 

where Dp is the diffusion constant for holes, pn is the equilibrium con
centration of holes in n-type material, Lp is the diffusion distance for 
holes, and jns is the saturation value of the electron current, which can 
be obtained in terms of "diode" theory6 as 

jns = AT2e-flvo • (7) 

For N d = 1 X 1015 and the experimental values of A (= 40) and Vo 
(=0.79 ev) from Ref. 4 one obtains 'Y ~ 1 X 10-7• Under low-current 
conditions the hole injection will not have a significant effect on the re
sponse time. 

With increasing forward bias, the series resistance increases as the 
space charge region moves towards the gold-silicon junction. In the case 
of an extreme forward bias, the assumptions used earlier are not valid, 
and the hole current increases.7 The series resistance may then be con
ductivity modulated and falls with continuously increasing current. 

V. BREAKDOWN VOLTAGE 

The avalanche breakdown voltage can be roughly estimated from the 
published ionization rate of electrons.8 One may obtain the breakdown 
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voltage in terms of empirically derived constants a and b as 

VB = bw/ln aw (8) 

which gives VB = 36 volts with w = 0.9 micron. Experimental diodes 
show breakdown voltages which occasionally approach this value. Newer 
data based on microplasma free junctions would predict higher values. 9 

VI. ELECTRICAL MEASUREMENTS 

Experimental diodes in encapsulations typically show the following 
properties: breakdown voltage at 10 pamps, 25 volts; series resistance 
at 100 ma, 3 ohms; zero-bias capacitance, 0.35 pf. These diodes have 
a forward V-I characteristic given in Fig. 4. The forward characteristic 
can be described by the empirical relation 

I = Is exp nXT (V-IR) (9) 

in which n is an empirical quantity and R is a series resistance. The 
"diode" theory6 predicts the forward characteristics of the form of (9) 
with n = 1. The departure of n from unity may be attributable to cur
rents generated at traps within the space charge region.4 Experiments on 
diodes of larger diameter suggest that these traps are located around the 
periphery of the diode, at the gold-silicon interface. In general, n is a 
continuously varying quantity with the current. The series resistance 
may decrease in the high current density region due to increased minority 
carrier injection.7 Characteristics of other diodes normalized to I-mil 
diameter mesas are given for comparison in Fig. 4. 

VII. RESPONSE TIME MEASUREMENTS 

The response time of the experimental diodes was examined by a pulse 
recovery measurement. No storage time as large as the resolving time 
of the equipment, which is 1 nanosecond, was found. 

A further measurement of an experimental diode was made by A. F. 
Dietrich using a method previously described for generating carrier 
pulses at a frequency of 11 gc.1° In this method the RF pulses are gener
ated directly from the harmonics of the envelope frequency that is found 
at the beginning or the end of the pulse transient of the diode. The power 
output at 11 gc was comparable to that previously obtained with a sili
con snap-back diode (FD-IOO) or a GaAs point contact diode. These 
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Fig. 4 - Forward bias voltage-current characteristics of a gold-epitaxial sili
con diode, in comparison with other diodes. Diode diameters are 1 mil, except for 
the GaAs point contact. The dotted line has a slope of n = 1.2. 

results indicate that the response time of the diode under forward bias of 
60 rna is roughly 0.1 nanosecond. 

VIII. STRESS AGING EXPERIMENT 

A group of eight diodes was subjected to stress aging in an effort to 
establish the expected reliability of the gold-silicon contact. These diodes 
\vere all mounted on the same header in order to provide an equal stress 
condition. Heating them in an inert atmosphere for one-hour periods at 
increasing temperatures up to the gold-silicon eutectic temperature 
(370°C) produced no significant degradation in their forward or reverse 
characteristics. Another group of eight diodes was heated at 360°C for 
64 hours. These diodes also showed no significant degradation in their 
V-I characteristics. In another experiment, diodes heated in air showed 
rapid degradation above 200°C. These experiments indicate that the 
gold-silicon contact can probably be made adequately stable for device 
use. 



232 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 19G4 

IX. CONCLUSIONS 

The design described above has been found to yield experimental de
vices which are sufficiently fast and stable to be useful as computer di
odes or as microwave mixer diodes. Another design in which the space 
charge region penetrates part way through the epitaxial layer may also 
be of interest as a varactor. One may expect that the large-area tech
niques used in the design and fabrication of these diodes will lead to more 
reproducible and stable devices than point contact diodes with similar 
frequency response. 
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On the Discrete Spectral Densities 
of Markov Pulse Trains 

By R. D. BARNARD 

(Manuscript received August 12, 1963) 

General formulae and existence criteria are derived for the discrete power 
spectral densities of first-order Markov pulse trains, viz., infinite pulse 
trains in which each pulse corresponds to one member of a finite set of speci
fied waveforms and depends statistically on the previous pulse alone. These 
results are obtained through a distribution theoretic decomposition of the 
spectral formulation given for such pulse trains by Huggins and Zadeh. 

I. INTRODUCTION 

An important problem related to first-order Markov pulse trains is 
that of calculating the discrete and continuous power spectral densities 
of such processes. The spectral formulation first given by Huggins l and 
later extended by Zadeh2 is perhaps the most appropriate and straight
forward solution of this problem, the results being conveniently expressed 
in terms of the customary flow diagrams and recurrent event relations . 
associated with Markov systems. As regards discrete spectra, however, 
their formulation lacks complete generality in two respects: (i) the limit 
notions of distribution theory, although essential for discrete components, 
are not incorporated; (il,) discrete components do not appear explicitly. 
In this paper we reformulate the Huggins-Zadeh result on a distribution 
theoretic basis, and derive both explicit relations and existence criteria 
for the discrete spectral densities. It is intended also that the analysis 
illustrate the distribution theoretic techniques required in cases involv
ing more general spectral formulations. 

II. BACKGROUND 

The infinite pulse trains under 'discussion are treated as first-order 
Markov processes in that each pulse is assumed to correspond in wave
shape to one member of a finite set (alphabet) of real time functions 

233 
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gi(t), and to depend statistically on the previous pulse alone. More 
precisely, we consider random processes of the form 

00 

x(t) = L dn(t - tn), tB(-oo, (0) (1) 
n=-OO 

(2) 

where 

dn(t) B {gi(t) ! gi B L I ( - 00,(0); i = 1,2, ... ,Ml (3) 

P{dn = g1 I dn- I = gj ; dn- 2 = gk ; ... } = P{dn = gi I dn- I = gj} (4a) 

P{(tn+l - tn) ~ T I dn = gi; dn+! = gj j T ~ O} = Cij(T) (4b) 

with tn signifying the nth occurrence time, and Cij the cumulative transi
tion distributions.* For fixed i and j, Cij gives independently of n (i.e., 
the pulse position) the conditional probability of a direct transition from 
pulse gi to pulse gj within T seconds after the occurrence of the former. 
As in related studies, the statistical and combinatorial structure of (1) 
is represented by the usual flow diagram of Fig. 1 in which nodes, or 
"states," symbolize pulses gi, and directed links indicate possible 
transitions. t 

The flow diagram in conjunction with signal flow graph techniques 
yields directly the more complex probability functions of general inter
est.t Most important to the development here are the cumulative dis
tributions for first occurrences or recurrences, viz. 

P{ (tn+m - tn) ~ T for some m ~ 1 I dn+m = gi ; dn = gi ; 

dn+m ~ gj(m = 1, "', m - 1); T ~ O} = qij(T). 
(5) 

As indicated, qij denotes the conditional probability of a first occur
rence (recurrence if i = J) of state j within T seconds after an occurrence 
of state i. Although less basic than Cii , functions qij are entirely suffi
cient for the calculation of spectral densities; consequently, in this paper 
the set {qij} is regarded as initially specifying the Markov process in 

* As applied here, the terms "cumulative distribution" and "distribution" 
pertain to probability theory and distribution theory, respectively. 

t Zadeh2 identifies the occurrence of state i with the generation of a unit impulse 
at node i, the impulse in turn functioning as the input to a linear filter with im
pulse response gi ; the corresponding responses due to all the nodes of the system 
are added directly to give the original pulse train. 

t The expositions by Hugginsl and Aaron3 illustrate in detail the various flow 
diagram methods by which transition and recurrent event probabilities of higher 
order are calculated. 
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• 

Cjj 

Fig. 1 - Flow diagram. 

accordance with the following constraints: 
(i) To comply with the usual probability conventions, we assume qij 

to be monotonically increasing, sectionally continuous, and such that 

o ~ qij( T) ~ 1, 

qij( T) = 0, 

T e [0, 00) 

Te(-oo,O). 
(6) 

Under these conditions both qij and the probability densities iij( T) == 
cJ ( T) exist as distributions, or generalized functions. * (Earlier in
vestigations have used iii exclusive of qiJ') 1 ,3 

(ii) For pulses to occur with certainty and at distinct times (in < 
tn +!), it is required that 

qij( T) ---7 1 ( T ---7 00) 

qij(O) = qij(O+) = o. 
(7) 

(8) 

Condition (7) merely asserts that every state is accessible from every 
other state, i.e., that the system is irreducible. 

Assuming the specification of pulse trains x(t) by either qij or iii and 
denoting the spectral density of x( t) by Sxx(f), we prove below that 

* Briefly, an ordinary functionJ(t) is an element of the space of distributions, or 
generalized functions, provided [1 + t2]-NJCt) e L i ( - 00,(0) for some N ~ OJ more
over, for such functions as J(t) there exist distribution derivatives of all orders 
and generalized Fourier transforms. 4 ,5,6 
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(9)* 

where 

Gi(S) 1~ Yi(r)e-STdr = ,r,·Yi 

Fij(S) = 1~ e-ST dqij( r) -1~ e-STfij( r) dr = ,r,·fij 
o 0 

S = a + 27rif, s = a - 27rif, i = V-I, 

(i = j) 

(i ¢ j) 

f = frequency 

1 
- Fi/(O) 

and lim(D) { .} signifies a distribution limit (cf. Ref. 4, p. 107, and Ref. 
5, p. 183). The presence of lim (D) and the conjugated variable s in rela
tion (9) is especially significant, both features constituting the essential 
modification of the spectral density expression given by Zadeh (cf. Ref. 
2, Eq. 9, and Ref. 1, Eq. lOb). These two formulations prove equivalent, 
however, relative to continuous spectra. Specifically, if f is such that 
Fii(27rif) r£ 1, then the distribution limit reduces to an ordinary limit, 
and Sxx represents the same point value of the continuous spectral 
density as results from Zadeh's expression. On the other hand, analyzing 
discrete spectra t requires a proper interpretation of functions 

1 
1 - Fii(S) 

in the vicinity of points S = 27rif for which Fii(27rif) = 1; hence, the 
notion of distribution limits is in general necessary. Another item to be 
noted in (9) is the functional form of Yl . Although it is assumed that 
Y i e Ll , one can relax this restriction in certain cases by first considering 
an infinite sequence of functions y/m

) e Ll such that y/m
) ---* Yi E Ll 

(m ---* (0), and then performing a second limit operation on the corre-

* The quantity [Fii(1 - F ii)-l + Oii] == Uii(S) in (9) corresponds to the Laplace 
transform of what Huggins terms the "expectation density" [cf. Ref. 1, Eq. (1Ob), 
p.80]. 

t The term "discrete" relates to both the discrete power spectrum and the line 
spectral density composed of Dirac delta functions. 
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sponding density functions Sxx (m). An example illustrating this approach 
appears in Appendix A. 

The following development deals primarily with the distribution 
theoretic formulation of (9) and its decomposition into discrete and 
continuous components. A detailed proof of this formulation and an 
analysis of the two types of components are given in Sections III and IV, 
respectively. Discrete spectral density expressions for the basic classes 
of first-order Markov pulse trains are derived in Sections 4.3, 4.4, 4.5, 
and 4.6 (cf. Theorems II -VI). 

HI. THE HUGGINS-ZADEH SPECTRAL DENSITY FORMULATION 

In deriving Sxx, we find it convenient first to decompose x(t) into M 
separate pulse trains which consist individually of identical pulses; i.e., 
we set 

where 

n~oo 

00 

Xi(t) L gi(t - tm(i» 
m=-oo 

tm (i) {t Id } e n n = gi 

tm (i) < tm+l (i) 

tm(i) <0 

tm(i) ~ 0 

(m < 0) 

(m ~ 0). 

Therefore, by standard spectral theory7 Sxx can be written as 

where 

Ni = sup {m I tm(i) e [-T, T]} 

Mi = inf {m I tm(i) e [-T, T]} 

ff· == 1: dt e -21rift (i=V-I). 

(10) 

(11) 
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It is noted here that SXiXi' the cross-spectral density of Xi and Xj, 

holds for both stationary and nonstationary processes. 
Combined with the relation 

Ni 

5='XiT = Gi (27rij) L exp (-27rijt m (i») 

(11) reduces to 

SxAf) 

where 

Mi 

LL Gi ( -27rif)Gj(27rif)Sij(f) 
i j 

To transform the summation indices in (14), we let 

tn (j) - tm (i) = Tm,k (ij) > 0 

(12) 

(13) 

(15) 

where integer k ~ 1 indicates the number of occurrences of state j in 
the interval (tm(i), tn (j)]; further, to eliminate the variation of summation 
indices across the ensemble, we define a weighting factor 'Y/m,k (ij) such 
that 

(ij) {I; 
'Y/m,k = 

O· , 

tm (i) and in (j) e [- T,T], 

tm (i) or tn (j) E [ - T, T], 

tm (i) < in (j) 

tm (i) < tn (j). 
(16) 

These definitions along with condit jon (8) relating to distinct occurrence 
times yield 

N, Nj 00 00 

~ ~ [') f( (j) (i»)] ~" (ij) (2 'j' (ij)) L.JL.Jexp -~7r1, tn - tm = L.J L.J 'Y/m,k exp - 7r1, 'Tm,k 
Mi Mj k=l m=-oo 

00 00 
(17) 

+ ~ ~ (ji) (2 f (ji» + ~ N L.J L.J 'Y/m,k exp 7r1, 'Tm,k Uij iT 
k=l m=-oo 

with NiT equal to the number of occurrences of state i in the interval 
[-T,T]. 

As random variables for the time difference between occurrences, 
'Tm,k (ij) are characterized statistically by the cumulative distributions 
qij • In particular, (15) and (5) imply that 

P{ (ij) <} ( ) 
'T m ,l = 'T = qij 'T • (18) 

Moreover, since the quantity 
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gives the approximate probability of two specific occurrences of state 
j within r seconds after that of state i, it follows that the total probability 
of all such mutually exclusive events is expressed as 

p{ Tm,,"J' ;:;; T} = 1,' qi;( T - T')dq;;( T') '2 q,/2) ( T), (19) 

Generally 

PI (ij) < l _jT (k-l) ( ') d (') _ (k) () (1 > 2) l Tm,k = T I - 0 qij T - T qjj T = qij T Ie = (20) 

qi/1)( T) == qij( T). 

At this point we introduce a basic device with which to simplify the 
summations in (17) as well as justify the interchange of various limit 
operations employed below. If functions qij are specified so as to vanish 
not only for T ~ 0 fcf. (6)] but also in an arbitrarily small neighborhood 
( - E, E), then there can be only a finite number of states in any finite 
time interval (i.e., P{ -T ~ tm(i) ~ T} = 0 for all I m I sufficiently 
large), and the summations in (17) remain finite. Despite this initial 
restriction on qij, the spectral density proves continuous in E; conse
quently, the resultant spectral formulation is viewed as having a final, 
nonexplicit limit corresponding to E ---7 O. Such a limiting procedure is 
entirely sufficient for physical pulse trains. 

For evaluating the expectation in (14), we first define 

Pm (i) ( t ) = P { t m ( i) ~ t} 

(1 (x ~ 0) 
p.(x) = 10 

l (x < 0) 

5(x) 

Hence, for any state i 

lim (D) ~ L I T

-

T 

dPm(t) 
T 2T m -T 

dp.(x) 
(lX' 

= lim (D) ~ L 100 

[p.(T - T - t) - p.( -T - t)] dPm(t) 
T 2T m -00 

= lirr:,'D) 2~ E {f 1:-' ~(t' - t..) dt'} = Ii,?' 2~' E{N'Ti 

= [E {t.. (i) - t..-,''' }I-I = [[ Tdq;;( T ) JI, 

(21) 

(22) 

(23) 

(24) 
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On the other hand, since . 

; 1 - e-ST 

----"7T 
S 

1

1 - e-ST 
I, ' 

---' :$; T 
S -

(S-"70) 

(Res ~ a ~ 0) 

the dominated convergence theoremS yields 

," , [ , '100 (1 -ST) J-l lim 1 _ ~-.. ( )= Pi = lim - e dqii(T) 
8~O n S s~O 0 S 
a>O a>O 

[1
00 

- J-1 
1 = 0 Tdqii(T) = li;n 2T E{Nir} , 

Thus, again by the convergence theorem, there results 

100 -27riJT d (k) ( ') 
pi' e qij T 

o 

(25) 

= 1~(D) 2~ [T [ ~ L-' dPm(t) J e-
2•ij

, dq,;'''(T) (26) 

= li~(D) 2~ ~ [T [L-' dPm(t) J e-"ij, dqi;'''(T), 

Fundamental to the analysis of (26) is the following distribution the
oretic identity, a detailed proof of which appears in Appendix B: 

lim (D) f 100 
e -27ri/T dq i/k>C T) = lim (D) F ij (s ) (27 ) 

N~oo k=l 0 a~O+ 1 - Fjj ( s) , 

From (26) and (27) it is found that 

N 100 
I, '. (D) ~ -27ri/T d (k) ( ) 
1m L...J Pi e qii T 

N k=l 0 

= lim (D) flim(D)~ t 1
2T [l T

-
T 

dPm(t)Je-27rifTdqi/k)(T) 
N k=l T 2T m=-oo 0 -T 

= lim (D) ~ t t 12T [I T
-

T 
dP m(t)J e-27ri

/T dqi/k) (T) 
T 2T k=l m=-oo 0 -T 

I, (D)i\ 1 E f ~ ~ (ij) (2 f (i j»} 
=: 1~ 2T l "T' ~ 'f1m,k exp - 7rt Tm,k 

(28) 

I ' (D) Fij(S) 
= Pi 1m 

a~O+ 1 - Fjj(s) 

Hence, (13), (14), (17), (25), and (28) combine to give 
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(29) 

IV. DISCRETE AND CONTINUOUS SPECTRA 

The evaluation of the distribution limit in relation (9), as shown be
low, centers mainly on analyzing the asymptotic behavior of functions 

1 - Fjj(s) 
(Re S = a ~ 0) (30) 

as the variable S approaches singular points along the frequency axis, 
viz., points s = 27rif for which F j/27rif) = 1; the results of this analysis 
together with certain general properties of F ij serve to resolve Sxx into 
discrete and continuous components. 

Considering singularities of (30) first, one notes that 

F j j ( 0) = 100 

dq j j ( T) = lim q j j ( T) - q j j ( 0 ) = 1 
o T~1Xl 

(31) 

(32) 

(Re s > 0) 

(33) 

Consequently, for all processes point s = 0 is singular, points in the open 
half plane Re s > 0 are nonsingular, and the existing singularities on the 
frequency axis occur in conjugate pairs. In establishing notation, we 
define 

S},n e {s I Fjj(s) = 1; Re s 

(34) 

fj,o = 0 

p;,n ~ [f.~ T exp ( -8;,n d dq;;( T) T' 
pj,n = pj,-n 

(35) 

Pj,O = pj 
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= 1 {1~ [1 - exp [- (s - sj,n)rl] 
S - Sj,n 0 S - Sj,n 

(36) 

. exp ( - 8;,nT ) dqjj( T ) f' 
1 

"-' pj,n 
S - Sj,n 

(S ~ Sj,n , Re S > 0) 

On the basis of this asymptotic result it is found convenient to rearrange 
(30) as 

(37) 

where 

(38) 

(39) 

(40) 

(41) 

The summations in (37) are considered for the moment to be finite and 
to involve only those singularities present in a frequency interval 
(-jA,jA)' 

4.1 Functions Qij and Rij 

It is shown next that for j e (-J A , j A) functions Qij and Rij can be 
identified as contributing respectively to the discrete and continuous 
spectra: 

(i) That functions Qij give rise to only discrete components follows 
immediately from the relation 
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~ . (D) 2a 
.7' pj,n h~ [a2 + 47r2(j - h,n)2] 

= ![GiGjFij]f L pj,n lim(D)·g:·exp [-(a 1 t I) + 27rifj,nt] (42) 
n a 

= ![GiGjFij]f L Pj,ng:·lim(D) ·exp [- (a 1 t I) + 27rifj,nt] 
n a 

= ![GiGjFij]f L Pj,ng:·exp (27rifj,nt) 
n 

= ![GiGjFij]f L Pj,nO(j - fj,n). 
n 

(ii) As regards functions.Rij , we first determine the behavior of func
tions Sij in the neighborhood of points Sj ,n . Substituting definition (35) 
into (40) yields 

() F [
1 pj,n ] Sij S I"-' ij -

1 - Fjj S - Sj,n 

pj,nFij {1~ [r _ 1 - exp [- (s - Sj,nh]] 
1 - F jj 0 S - Sj,n 

(43) 

(S ~ Sj,n, Re S > 0) 

which implies that functions Sij are both bounded and integrable in 
(-'-fA, fA), and that points Sj,n correspond to simple poles with residues 
pj,nFij ( Sj,n). Since functions Sij are integrable, they can contribute to 
only the continuous portion of the power spectrum. Regarding functions 
Tn (ij) next, we note that 
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limeD) Gi(s)Gj(s)Tn (ij)(S) 
a-+O+ 

- 1 [G- G F ] l' (D) [ 47ri(f - fi,n) ] 
-"2 i j ii' l~ 0:2 + 47r2(f _ h,n)2 

= ![GiGiFiJ,lim(D)·~·[(Jt(-t) - Jt(t)) 
a 

. exp ( -0: I t I + 27rifi,nt )] 

= ![GiGjFij]f~' [(Jt( -t) - Jt(t)) exp (27rih,nt)] 
(44) 

= ![(M;F,;lf [ - 27ri(f ~ i;.nJ -> 00 (j -> f;.n). 

Hence, in a deleted neighborhood of Sj,n , functions Tn (ij) appear to pre
dominate all other terms of Sxx. For showing that functions Tn (ij) in 
fact sum so as to remain bounded, we set all pulses equal to zero except 
one, viz., gi . If under this condition Sxx becomes unbounded asf ~ fj,n, 
then (44) and (9) give 

2 - - [ -1 ] Sxx(f) "-' pj{ I Gi I [Pj,nFji - Pj,nFjil}, 27ri(f - fi,n) , 
(45) 

(f ~ fi,rJ 

However, since the factor in braces is continuous at fj ,n , the sign re
versal of the unbounded factor indicates that Sxx assumes, contrary to 
definition, arbitrarily large negative values; therefore, 

Pj,nF jj(27rifj,n) - pj,nF jj( - 27rifi,n) = 0 

which by (34) becomes 

pi,n = Pi,n = pj,-n (46) 

[The trivial case pj ,n = 0 need not be considered inasmuch as the associ
ated terms in (37)-(41) vanish identically under this condition]. Condi
tion (46) is sufficient as well as necessary for the ratio 

Fjj (27rif) - Fjj ( -27rif) = [F .. '( . ) - F· .'(-. )] + O(f - j. ) 
27ri(f - fi,n) JJ SJ,n JJ SJ,n J.n 

= [~ - ~J + O(f - fi,n) (47) 
pj,n pj,n 

= O(f - fi,n) (f ~ fi,n) 

to be bounded in a neighborhood of point h ,n • Similarly, allowing two 
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pulses to be nonzero and arbitrary yields 

8xx (f) ~ p,p;,n[G ,GjF 'j - G;G ,F <ill [2""; (f -~ !;.nJ 

+ pj , p"m[G;G,Fji - G,GjFj,]1 [2"";(f -~ !"m) ] (f ---t J;,,,) 

(48) 

where the second term is present provided fj,n = fi,m . It is evident that 
with the second term absent and both gi and gj arbitrary the first term 
cannot be made to vanish identically ath,n ; thus 

Sj,n = Si,m = Si,n == Sn (49) 

and 

{GiGj[PiPj,nFij - PjPi,nF ji] 

+ GjGi[PjPi,nF ji - PiPi,nFij]}fn = O. (50) 

Again because of arbitrary gi and gj there results 

(51) 

As in (47), this is a necessary and sufficient condition that (48) be 
bounded in a neighborhood of pointf = fj,n = fn ; thus, for f e ( -fA ,fA) 
functions Tn (ij), Sij, and sums Rij contribute to only the continuous 
spectrum. It is important to note that although the use of Rij is neces
sary for an appropriate decomposition of Sxx, the complete continuous 
spectrum can be obtained directly from relation (9) with f ~ fn [cf. 
(9) et seq.]. Nevertheless, from a computational standpomt functions 
Rij might be more suitable. 

4.2 General Formulation for Discrete Spectra 

At this point we consider in detail both formulae and existence criteria 
for the discrete spectral density. With respect to the complete spectra] 
density, the substitution of definition (37) into (9) gives at once the 
decomposition 

Sxx(f) = lia~~) {~~ Gi(s)Gj(S)[PiQij(S) + PjQii(S)]} 

+ li~~:) {~Pi 1 Gi(s) 12 + f=i= [piRij(S) + pjRji(S)]} (52) 

where according to the properties of functions Qij and Rij [cf., (42), 
(51) et seq.] the first term in braces consists of discrete components only, 
and the second is bounded for f e ( -fA, fA)' Consequently, on letting 
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Sxx (d) (f) denote the discrete spectral density in the interval (-fA, fA), 
we obtain 

which by (42), (46), (49), and (51) becomes 

Sxx(d)(f) = ! ~~ GiGj[PiFij L Pj,nO(j - in) 
~ J n 

+ P)l'ji ~ pi,nO(j + fn) ] 

= ! ~~ GiGj[piFij L Pj,nO(j - fn) 
~ J n 

+ p)l'ji ~ Pi,-nO(j + f-n) ] (54) 

L:L: GiGjFij L: PiPj,no(f - fn) 
i j n 

. Gj(27rif) Fij(27rif) JO(f - fn). 

Since the interval ( -fA, fA) is arbitrary, the sum over n in (54) can be 
extended as a distribution limit to include all the singular points along 
the frequency axis; hence, this expression represents the general formula 
for the discrete spectral density. In the sections immediately following, 
formula (54) is applied to the two fundamental classes of first-order 
Markov pulse trains: entirely random and stochastically uniform pulse 
trains. 

4.3 Discrete Spectra of Entirely Random Pulse Trains 

We define the processes under discussion to be entirely random if for 
at least one state i 

() 
A ( ) +" (ii) ( (ii)) 

qii T = qii T L...J ak J.I. T - Tk . 
k 
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where qii is either continuous and strictly increasing in some interval 
(TA, TB), i.e. 

qJ(T) > 0 T e (TA, TB) (56) 

or qii vanishes identically and the set of parameters Tk (ii) consists of two 
or more incommensurate elements. Processes of this class are character
ized more completely by the following theorem: 
Theorem I: A pulse train is entirely random if and only if for any state i 

Fii(27rif) ~ 1 

Fii(O) = 1. 

(f ~ 0) 
(57) 

For such processes all first recurrence distributions qii have the same form. 
Proof: The second condition of (57) is merely a restatement of the gen
eral result given by (31). To establish the sufficiency of the first condi
tion, we consider the only possible form for q ii not representable by (55), 
VIZ. 

(58) 

This yields 

(59) 

whence 

(n = 0, ±1, ... ). (60) 

Therefore, any qii satisfying (57) must be representable by (55), and the 
process entirely random. To establish necessity, we consider (55) to be 
satisfied for at least one state i. Under condition (56) 

I [
TB -21ri/r d A 

( ) 1-liTB -21ri/TA I d I e qii T - e qii T 
TA TA 

(f ~ 0) 

whence 

1 (f ~ 0), 
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On the other hand, with qii == 0 and 'Tk (ii) incommensurate 

(f ~ 0). 

Thus, (57) is necessary for state i. Finally, since Fii(27rifi,n) = 1 and 
fi,n = fn for all i [cf., (31), (34), and (49)], the realization of (57) for 
any qii necessarily implies the same realization and consequently the 
same form for all qii . 

Theorem I, although essential to the treatment of discrete spectra, is 
not the only test for identifying entirely random processes; a somewhat 
more direct test is afforded by the cumulative distributions Cii' In par
ticular, functions qii have form (55) provided at least one of the functions 
Cii does also. This fact follows from a basic property of irreducible 
processes, viz., the property that each density. fii == qil ( T) equals a 
specific combination of positive sums and convolutions of all the densities 
cd ( T) .1,3 

As regards singular points Sn and discrete spectra, it is clear from The
orem I and (34) that the point 8 = 80 = 0 constitutes the only singularity 
of entirely random processes; therefore, the formulation given by (54) 
becomes 

Sxx (d) (J) [2t~ PiPi,oGi(O)Gj(O)Fij(O) ]o(f) 

[~~ PiPiGi(O)Gi(O) ]o(f). 

This expression leads immediately to the following result: 

(61) 

Theorem II: The discrete spectral density of entirely random pulse trains is 
given by 

(62) 

which vanishes if and only if 

L: [ ~ PiO,(t)] dt = O. (63) 

Comparing (62) with (54), we note that Theorem II applies to the 
oU), or dc, component of all the processes treated in this paper. 

4.4 Discrete Spectra of Stochastically Umjorm Pulse Trains 

Processes not classified as entirely random are defined here to be 
stochastically uniform. It is evident that the only first recurrence dis-
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tributions representing the uniform process, i.e., satisfying neither defini
tion (55) nor the criteria of Theorem I, must be of the form 

(64) 

'"" (ii) - 1 
~Ci.k -

k 

where parameters Ti are assumed to have the largest values possible. 
Under this specification 

00 

L Ci.k (ii) exp ( -27riikTi ) 
k=l 

Hence, on letting io denote the state for which 

(i = 1, ... ,M) 

we find that all the singular values in satisfying 

Fioio(27rif~) = 1 

are given by 

(n = 0, ±1, ... ). 

Furthermore, since 

1 

for all states ref. (34) and (49)], then 

T iO = Ti == T (i = 1, ... , j1([) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

which in turn implies that all F ii are periodic over an interval of length 
T-\ and all functions qii have the basic form 

(71) 

Considering also relations (65), (68), and (35) it is seen that 

[ 
'"" (ii)]-l 

pi,n = L;: TCi.k = pi,O = Pi. (72) 

Finally, results (68), (70), and (72) combine with (54) to give the 
following theorem: 



250 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

Theorem III: The discrete spectral density of stochastically uniform pulse 
trains is given by 

Sxx (d) (f) 

= [f=t= p,p,G,( -27rij)G,(27rij)F,,(27ri!) l~!(f -nj7') (73) 

T = n/fn 
Fii(27Cifn) = 1 

which vanishes if and only if 

[~~ PiPjGiGjFij]nlT = 0 (n = 0, ±1, ... ) (74) 

or if 

(-00 <f< 00). (75) 

At this point we consider a special but very important subclass of uni
form pulse trains, namely, that of uniformly positioned pulses. 

4.5. Discrete Spectra of Uniformly Positioned Pulse Trains 

Pulse trains are defined to be uniformly positioned over a reference 
interval of length To if the time intervals between successive pulses can 
assume only the discrete values kTo(k = 1, 2; ... ), i.e., if function qij 

take the form 
00 " ( .. ) L..J ak tJ J.L( T - kTo) 
k=l 

o ~ ak(i
j
) ~ 1 

L a/ij) = 1 
k 

(i, j = 1, ... , M) 

(76) 

where To constitutes the maximum value for which this representation 
is valid. With qij so specified there results 

(77) 

Consequently, for a particular state i the condition 

(k' = 1, 2, ... ) 
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ak (ii) = 0 (Ie ~ KIe') (78) 

holds for some maximum K ~ 1, the corresponding function Fii is 
periodic over an interval of length (KTo)-\ and the singular values fn 
satisfying (69) are given by 

n n 
fn = [(To - T' (79) 

In addition, as values fn are independent of i, condition (78) must for all 
states hold for the same value of K, the specific value in any particular 
case being determined either from one set of coefficients ak (ii), from (79), 
or from the recurrence pattern associated with one node of the _ flow 
graph. For all K ~ 1, relations (77) and (79) yield the general condi
tions 

Pi; (21ri ;) = 1 

P" (21ri K"ro) = Pii(2,nj.) 
= 1 (K ~ 1; 1,,) = 1, ... , .Ll1; (80) 

n = 0, ±1, ... ). 

Combining these conditions with (79) and Theorem III, we obtain 

+ ~1 {[ ~ ~ PiPjGi( -2,nj)G;(2,nj) 

. Pi; (2,n ~;,) J.t 0 ~ - ;0 - K~')}· 
The following theorem is based on this last expression: 
Theorem IV: The discrete spectral density of pulse trains uniformly posi
tioned over a reference interval of length To is given by 
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S.:d'(f) ~ 1 ~ p,G,(27rij) I' nt~ 0 V - ;.) 
+ ~1 {[~ 11 PiPjG,( -27rij)Gj(27rij)F,j (2"i i~o) ] 

. t 0 (f - ~ - ~)} 
n=-oo To KTo 

J( ~ 1~fJ(J(;:;; 1; i,j ~ 1, 000,111; n ~ 0, ±l, 000) (82) 

F ii(27rij'-n) =] J 
which vani8hes if 

(83) 

Lt 11 p,pjF'j (2"i J(~'.) L: gJ r )gj( r + t) dr = 0 
(84) 

(k = 1, ... , I{ - 1). 

A special case of Theorem IV is noted as follows: 
Theorem V: The discrete spectral density of uniformly positioned pulse 
trains corresponding to K = 1 is given by 

which vanishes if 

n 
fn =

To 

(8.5) 

(86) 

Titsworth and Welch9 have proved Theorem V for special pulse trains 
in which pulses are nonoverlapping and transitions occur every To 
seconds. This theorem is also implicit in the classic work of Bennett on 
synchronous pulse trains [cf. Ref. 10, Eq. (35), p. 1509]. 

4.6. Aaron's Discrete Spectral Formulation for Special Classes of Pulse 
Trains 

The analysis in Sections 4.3 and 4.5 yields the following theorem, a 
result first obtained by M. R. Aaron:3 

Theorem VI: The discrete spectral density of entirely random pulse trains 
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and uniformly positioned pulse trains for which I{ = 1 [cf. (7S) et seq.] is 
given by 

(S7)* 

where 

Uii = Fii[1 - Fiir
1 + 0ii (SS) 

and Res [.] denotes the residue of the quantity in brackets at s sn = 

27f'ifn • 

Proof: From relations (36), (72) and Theorem I we find that 

~~s [~'~):::gn = p,G;(2,njn)Fj ,(2"ijn) (89) 

for either the entirely random or l{ = 1 case. On the other hand 

(i, j = 1, ... , M) (90) 

in both cases [cf., (79) and (SO)]; thus, 

Res [ 4= GiUiiJ = 2;: p iGi(27rifn). 
8 n ~ ~ 

(91) 

Inserting this expression into either (61) 01' (S5) gives formula (S7). 

V. SUMMARY 

Theorems I through VI, which constitute the principal results of the 
preceding sections, give explicitly the discrete spectra of first-order 
lVIarkov pulse trains. As presented, these theorems provide fundamental 
existence criteria for not only the analysis but also the synthesis of such 
processes. It is important to emphasize again that the distribution the
oretic techniques employed in extracting discrete components from the 
Huggins-Zadeh formulation are applicable also to more general spectral 
formula tions. 
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APPENDIX A 

Entirely Random Square Waves 

For illustrating the techniques that often apply to cases in which 
gi E Ll , we consider a random square wave process of the form 

x(t) = a L (-1) n-l[JL(t - tn-I) - JL(t - in)] (92) 
n 

X' ( t) == y ( t) = 2a L ( - 1) no (t - in) (93 ) 

where y represents a two-state pulse train with pulses related by 

gl = -g2 = 2ac(i) E L1 

a = constant > 0 
(94) 

and an entirely random statistical structure (cf. Section 4.3) specified 
by Cl2 , C21 , and 

Cu = C22 = O. (95) 

(Note that states 1 and 2 can be identified with the +a and -a portions 
of the square ,vave x.) Thus, in accordance with definitions (4b) and (5) 

(96) 

whence 

Fu = F22 = F12F21 

1 
- Fu/(O) = P2 == p. 

(97) 

We next construct a set of "smooth" approximations to Xj i.e., we 
smooth out the corners and discontinuities of each of the pulse trains x 
into a sequence {xm(t)} of continuous waveforms such that 

(m = 1,2, ... ) 
m-'oo 

(98) 
xm/(t) == Ym(t) = L (_l)ng(m\t - in'l 

n 

where 
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g(m) E Ll 

lim (D) g(m) = 2ao(t) 
m 

(m) (m) 1m) 
9 =!11 = -g2 . 
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(99) 

Since pulse trains Ym and Y have the same transition properties and 
therefore the same statistical specification Cij, the former process IS 

classified as entirely random; it then fol1ows from the condition 

L Pig/ m
) = P(gl (m) + g2 (m) = 0 

i 

and from Theorem II [cf. (62)] relating to entirely random pulse trains 
that SYmYm has no discrete components. Consequently, relations (9), 
(97), (98), and (99) yield 

47r2/Sxx(j) = lim(D) [47r2/SXmXm(j)] = lim (D) SYmYm(j) 
m m 

= li~(D' {2P 1 G(m'(2"ij) I' 

. Re [( 1 - F 12) (1 - F 21)] l 
1 - F12F21 f f 

(100) 

= 8pa2 Re [(1 - FI2 )(1 - F21)] . 
1 - F12F21 f 

The most general function Sxx satisfying this last expression is given by 

Sxx(j) = 2pa
2 

Re [(1 - FI2 )(1 - F21)] + K 1o(t) = K 2o'(j) (101) 
7r

2 f2 1 - F12F21 f 

where the first term on the right represents a continuous component, and 
constants Kl and K2 are to be determined. As spectral densities must be 
even functions, K2 = O. Regarding the discrete term, constant Kl is the 
square of the dc, or average, component of x; hence, with 

a 100 

T dC12( T) - a 100 

T dCn( T) 
ave [a;(t)] = 0 00 0 1 T dqu( r) 

= ap {{ T d[q,,(T) - q21Hl} 

= ap [F21'(0) - F I2'(0)] 

(102) 



256 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

(101) becomes 

( ) = 2pa
2 

Re [(1 - F12 )(1 - F21)] 
Sxx f 2f2 1 F F 7r - 12 121 f (103) 

+ a2p2[F2/(0) - F1/(O)]20(f). 

It is important to note here that the discrete component in (103) arises 
from the pulse structure of x and not from the singularities of [1 - F ii]-l. 
A more extensive treatment of this particular pulse train has been given 
by Aaron. l1 

APPENDIX B 

A Distribution Identity 

Essential to the formulation of the spectral density is the relationship 
between functions Fij and the limit of 

N 

L qi/k)(r) == YN(r) (104) 
k=l 

as N -7 00 [cf. (11) and (18)]. It is convenient to consider initially the 
integral 

(105) 

Inasmuch as functions qi/k
) and, consequently, YN are sectionally con

tinuous, then 

(106) 

almost everywhere in the classical sense or identically in the distribu
tion sense. Also, with qi/k

) ~ 0 [cf. (20)] function YN ~ 0, and 

O~zN(r)~zN(r+Ar) (Ar>O) 

(108) 

Considering the limit conditions on sequence {ZN}, we note first from 
definition (20) and the properties of Stieltjes convolution12 that 

100 e -8T dzN( r) = f 100 

e -8T d [IT qi/k
) (r ) dr] 

o k=l 0 0 

(109) 

(Re s = a > 0). 
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Therefore, the inverse Stieltjes transform12 yields 

ZN( T) = _1_ ja+ioo !.- [ Fij ] eST ds 
27ri a-ioo S2 1 - F jj 

1 
j

a+ioo 1 [F F N ] ij jj ST d -- - e S 
27ri a-ioo S2 1 - F jj • 

(110) 

Finally, since (6), (8) and (9) imply 

I Fij(S) I ~ 100 

e-aTdqij(r) = a 100 

e-aTqij(r) dT 
o 0 

100 

-aT < a e dT = 1 
o 

(111) 

(a > 0; i, j = 1, .. " 111) 

then 

(112) 

(a > 0) 

( 113) 

and, hence, the limit 

lim ZN(T) = ~ ja+ioo ~ [ Fij ] eST ds == Z(T) 
N-+oo 27r~ a-ioo S 1 - F jj 

(a > 0) (114) 

exists. Relative to the asymptotic properties of function Z we obtain 
from (25), (114), and (107) the conditions 

100 e-ST dZ(T) 1 Fij(S) pj 
o - S 1 - F iJ ( s) ~ S2 

Z(T) ~ Z(T + LlT) 

which by Karamata's Tauberian Theorem12 give 

(s~O,a > 0) (115) 

(LlT > 0) (116) 

p' 2 Z( T) ~ -..l T 
2 

(T~OO). (117) 

This asymptotic result together with (112) and (114) implies that 

(118) 
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Thus, function z is a proper distribution, or generaHzed function (cf. 
footnote, Section II and Ref. 6, pp. 21-23). In addition, since 

(119) 

then 

limeD) ZN( T) = z( T). (120) 
N-+oo 

The functional properties of Z as given by (112) and (117) imply also 
that 

lim (D) e-aTz( T) = z( T) 
a-+O+ 

(0' > 0). 

In combining (104), (lOS), (106), and (120), there results 

~'z"( T) = lim (D) '~'ZN"( T) = lim (D) . ~.y/ 
N N 

N 100 = l' (D) '"' -2rri/r d .. (k) ( ) 1m ~ e q~J T. 
N k=l 0 

On the other hand, (114) and (121) give 

~'Z"(T) = ~'~'lim(D) [e-aTz(T)] 
dT2 a 

= 5'.li~(D) {(::' + 2a :, + (2
) [e-"z(, l]} 

(121) 

(122) 

= lim (D) {[(27ril + 20'(27rif) + 0'2]~·[e-aTz(T)]} (123) 
a 

1
· (D) Fij(S) = 1m 

a 1 - Fjj(s) . 

We finally obtain from (122) and (123) the following identity 

1· (D)~1OO -2rriJT d .. (k)( ) = 1· (D) F .. (2 'f)[l - F j /(27ri f )] 1m ~ e q tJ T 1m tJ 7r~ 1 F (2 . f 
N-+oo k=l 0 N - jj 7r~. 

1
· (D) Fij(S) = 1m . 

a-+O+ 1 - Fjj(s) 

(124) 
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APPENDIX C 

Definitions of symbols 

x(t) - cf. equation (1) Sxx (d) (f) - (53) 
Xi( t) - (10) PI - (9) 
dn(t) - (1) pi,n - (35) 
tn - (1) g: - (11) 
tm (i) - (10) ,£ - (9) 
gi( t) - (3) p.(x) - (22) 
Gi(s) - (9) o(x) p.'(x) - (23) 
s,s - (9) Oij - (9) 
Sj,n Sn - (34), (49) Qij( s) - (38) 
a - (9) RiJ(S) - (39) 

f - (9) Sij( s) - (40) 
fj,n = .fn - (34), (49) Tn (iJ) (S) - (41) 
Cij( r) - (4b) T - (73) 
qij( r) - (5) To - (76) 
qi/k)(r) -(20) J{ - (78), (82) 
F ij( S) - (9) Uij( S) - (88). 
Sxx(f) - (9), (11) 
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Imperfections in Active 
Transmission Lines 

By H. E. ROWE 

(Manuscript received July 30, 19(3) 

The effect of discrete imperfections on the behavior of active transmission 
lines (i.e., lines wl,th distributed gain) is considered. Two cases are studied: 

1. Lines with identical, equally spaced reflectors. The transmission and 
reflection gains versus frequency are studied as functions of the magnitude 
of the reflectors. Limits on the magnitude of the reflectors to guarantee sta
bility are investigated. 

2. Lines with rlndom reflectors, having random position and/or magni
tude. The statistics of the transmission are studied; in particular, the average 
value and the variance and covariance of the transmission are determined for 
small reflections. If the reflections become large enough, instability may oc
cur, and these calculations may become inval1'd. Stability of active distributed 
systems is studied in a companion paper.1 

I. INTRODUCTION 

In the present paper we consider the theory of active transmission 
line~ (i.e., lines with gain) with discrete imperfections. Both equally 
spaced, identical imperfections and random imperfections will be con
sidered. This study was suggested by R. Kompfner as a rough mathe
matical model for the effects of imperfections in certain types of optical 
maser amplifiers, in which the optical signal is reflected back and forth 
through the active medium on essentially nonoverlapping paths by an 
array of mirrors. A. G. Fox has suggested that this mathematical model 
will also provide a description of a one-dimensional active medium (e.g., 
maser) with (one-dimensional) random inhomogeneities. 

Consider an active transmission line that provides exponential gain to 
both forward and backward waves, and further provides distortionless 
amplification. The voltage (and current) then vary as 

e-rz - forward wave, 

e+rz - backward wave, 

261 

(1) 
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r = -0: + j{3. (2) 

Since the line has gain, 

0: > O. (3) 

Since we assume distortionless transmission, the propagation constant 
{3 is related to the angular frequency w by 

{3 = w/v (4) 

where the velocity of propagation v is a constant independent of the 
frequency w. Further, the gain constant 0: is independent of w. We 
may thus interpret (3 either as the propagation constant or as the 
normalized frequency. 

Consider a line with N discrete reflectors, as illustrated in Fig. 1. 
The wave traveling to the right at a distance z is denoted by Wo(z), 
the wave traveling to the left by W1(z), as indicated in this figure. 
We take WO(Lk+) and W1(Lk+) as the right- and left-traveling waves 
just to the right of the kth reflector Ck, WO(Lk-) and W1(Lk-) as 
the right- and left-traveling waves just to the left of the kth reflector. 

Each reflector is characterized by a scattering matrix relating inci
dent and reflected waves. Thus for the typical reflector illustrated in 
Fig. 2 we have 

9 
Wo(o)-~ 

I 
I 

~-Wl(O) 
I 

(5) 

(6) 

Fig. 1 - Line with N discrete reflectors. 
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Fig. 2 - Typical reflector. 

The incident and reflected wave amplitudes are assumed normalized 
so that the power in any wave is simply the square of its absolute 
magnitude. For example, if the reflected wave is absent at the left of 
the obstacle in Fig. 2 the power in the incident wave is 1 WO(L k - ) 12; 
similarly, if the incident wave is absent the power in the reflected wave 
is 1 W 1(Lk - ) 12. We make the following assumptions: 

1. The powers in the forward and backward waves are additive; 
for example, the total power P flowing in the +z direction at the left 
of Fig. 2 is given by 

(7) 

2. The reflectors are lossless, and consequently have unitary scat
tering matrices.2 For a reflector of a given magnitude there is a single 
arbitrary phase parameter in the scattering matrix; this phase has 
been chosen in such a way as to yield a scattering matrix for the obstacle 
of the following form: 

s [ 

jc 

VI - c2 

VI.- C
2

], 

JC (8) 

O~lcl~1. 

C is a measure of the magnitude of the reflection; for C = 0 the reflec
tion is zero and the guide is perfect. c is assumed to be independent of 
frequency, although this assumption is not compatible with physical 
realizability. We note that the matrix of (8) is correct only for w (or /3) 
> O. For w (or /3) < 0 the sjgns of the diagonal terms of the matrix 
must be changed, so that the various responses will be real, even though 
unrealizable; alternately, we may change the sign of C for negative w 

(or /3). 
N ext consider the cascade connection of reflectors and ideal guide 

sections shown in Fig. 1. We require the wave matrix A corresponding 
to the scattering matrix of (8) for an obstacle. Referring to Fig. 2, 
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(9) 

-jCk] 
1 . (10) 

The wave matrix for the leth line section of length lk between reflectors 
Ck-l and Ck is given by 

(11) 

Thus the matrix X k for the cascade connection of the leth line section 
of length lk and the leth reflector is given by 

(12) 

The over-all wave matrix X for the line consisting of N sections III 

Fig. 1 is 

N 

[
11'0(0)J - [TVo(LN+)J 
11'1(0) = X 1V1(LN +) , 

X = X 1X 2 '" X N = II X/:. (13) 
k=l 

Setting 

(14) 

and referring to Fig. 1, the (complex) transmission and reflection 
losses LT and LR or corresponding (complex) gains GT and GR are given 
aA follows: 

LT = ~ = Wo(O) 
GT WO(LN +) 

_ 1 _ Wo(O) _ Xu 

Ln - G
R 

- W
1
(0) - X21 

Xu (15) 

(16) 

Wo(O), W1(0) and WO(L N +), the incident, reflected, and transmitted 
waves for the entire structure, are illustrated in Fig. 1. 

It has been necessary to state the above analysis in terms of wave 
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matrices that give the input as a function of the output (instead of 
vice versa) because the boundary conditions are known at the output. 
The output is assumed to be matched, so that in Fig. 1 

(17) 

In contrast, the reflection coefficient at the input is not known in ad

vance, and so it is not convenient to express the output [~:~f:! ~ ] 
as a matrix product times the input [~:~~~ J. 

We consider below two cases of interest: 
(a) Identical, equally spaced reflectors, 
(b) Independent reflectors with random magnitude and/or position. 

II. IDENTICAL, EQUALLY SPACED REFLECTORS 

We now assume that all reflectors have identical magnitude and equal 
spacing. Setting 

in (12), from (13) and (14) the over-all wave matrix becomes 

_ [xu X12] 1 [e +rl 
X = = (1 2) N /2 .-rz 

X21 X22 - C +JC e 

. +rl]N -JC e 
-rz e 

(18) 

By the usual methods we find: 

(20) 

(21) 

(22) 

With the help of (15) and (16) the transmission and reflection gains or 
losses may be determined. 

Consider the various Xii of (18), and in particular Xu and X21 of (19) 
and (20), to be functions of j {3l, where we recall from (4 ) that (3 is 
proportional to the angular frequency w. We recall from the discussion 
following (8) that these results are valid only for positive frequencies, 
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(3 > o. The Xii have certain general properties of interest. First, we have: 

Further, 

xii[J({31 + 7r)] 

Xii[j (7r - (3l)] 

( -1) N Xii [j{3l] , 

( -1 )N+i+ixi/[j{3l], 

{3 ~ 0, 

° ~ {3l ~ 7r. 

(23) 

(24) 

(25) 

Equation (23) shows that Xii is periodic in the normalized frequency (3, 
of period 27r / l. Equation (25) guaran tees that the over-all response 
to a real input is real. Taken together, (23) and (24) show that the 
magnitudes of the losses I LT I and I LR I of (15) and (16) are periodic 
in {3 of period 7r/l, and are symmetric about the points {3l = 0, 7r/2, 
7r, 37r /2, .... Consequently in studying the magnitudes of these losses 
at real frequencies we need consider only the range ° ~ {3l ~ 7r/2. 

Next, from (19)-(22) it might appear that the various functions 
Xii have branch points in the complex frequency plane because of the 
radicals in these equations. This is not true, however; a little study of 
these equations shows that the radicals really disappear for all (integral) 
N. Alternately, by considering the matrix multiplication of (18) it 
becomes clear that all the Xii are single-valued functions of r, and that 
no branch points can appear. 

We may thus determine the exact expression for the transmission 
or reflection gain via either (19)-(22) or direct matrix multiplica
tion in (18). However, we shall most often be interested in cases where 
the reflection parameter c is small in some suitable sense; application of 
perturbation theory to (19)-(22) greatly simplifies these relations 
and permits a useful interpretation of these results. 

Consider the radical in (21). If 

I c I « I sinh rl I (26) 

then we may expand the radical in a power series and retain only the 
first correction term. Since 

I sinh rll 2 = sinh2 al + sin2 (3l ~ sinh2 aI, (27) 

(26) will be satisfied for all {3 if 

I c I « sinh al. (28) 

Therefore 
2 

vsinh2 rl + c2 ~ sinh rl + 2 si~h rl· (29) 
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Then (21) and (22) become: 

2 
±rl C 

Q:± ~ e ± 2 sinh rl' 

TE • 2 rl sinh rl 
H+ ~ -J e --

c ' 

K ·1 rl C 
- ~ J"2e sinh rl . 
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(30) 

(3Ia) 

(3Ib) 

Substituting (30) and (31) into (19) and (20) and neglecting various 
small quantities, we obtain the following approximate results: 

1 Nrl [ ] 
Xu = (1 _ C2 )N/2 e 1 + F , (32a) 

F = ( . C )2 (e-2Nrl _ 1) 
2 smh rl ' 

(32b) 

jc -rl sinh Nr l 
X21 = (1 _ C2)N/2 e sinh rl . (33) 

We make one further assumption, often used below, that the total gain 
in the absence of reflectors (c = 0) is large; i.e., referring to (2) and (3), 

eNal » 1. (34) 

Then (32b) becomes 

F C -2Nrl 

( )

2 

= 2 sinh rl e , eNal » 1. (35) 

So far we have ignored the question of stability; it is clear that such 
an active device can oscillate under some conditions. If the device does 
oscillate, our present results for loss (or gain) lack physical significance, 
for reasons discussed below. Instability can occur only if the gain func
tions of (15) and (16) have poles in the right-half complex frequency 
plane; if all poles of GT and GR are in the left-half plane the device 
will be stable. Since from (15-16) the poles of the G's are the zeros of 
Xu, we investigate the zeros of Xu as given by the approximate expres
sions of (32a) and (35). 

For c = 0, i.e., with reflections absent, the device will be stable, and 
consequently the zeros of Xu lie in the left-half plane; It seems obvious 
on physical grounds that the device remains stable for small enough 
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values of I c I , and will oscillate only when I c I exceeds some critical 
value. Assuming this to be true, we determine the conditions for stabil
ity by finding the minimum value of I c I for which a zero of Xu appears 
on the real frequency axis, i.e., for some value of (3. 

From (32a) the zeros of Xu occur when 

F = -1. 

Equivalently, 

I F 1= 1; 

Noting that 

sinh2 rl = sinh2 (- a + j(3)l = (sinh2 al + sin2 (3l) 

_ t -1 tan (3l 
cp - an tanh al ' 

-j2cp e , 

(36) 

(37a) 

(37b) 

(38a) 

(38b) 

where the principal value of tan-1 is implied, we have from (35)-(37) 
the following approximate relation for a zero of Xu lying on the real 
frequency axis. 

2 
F - C 2Nal -j(2N{31-2cp) 

- 4(sinh2 al + sin2 (3l) e e 
-1. (39) 

Thus 

m = 0, ±1, ±2, (40a) 

2 
C 2Nal 

4(sinh2 al + sin2 (3l) e 
1. (40b) 

cp is given by (38b). Vve now fix al and find the smallest value of I c I 
for which (40) has a solution. Equation (40a), together with (38b), 
can be readily seen to have 2 (N - 1) roots ({3l) j for 0 < {3l < 27r. 
For each of these roots there is a corresponding solution c = ± I c j I 
for (40b). It is obvious that the smallest of these I Cj I corresponds to 
the smallest ({3l) j , which is that root lying closest to {3l = 0 and which 
we denote ({3l)l . 

For convenience we summarize the approximate results derived above 
in the present section. 
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1 Nfl [ J 
Xu = (1 _ C2)N/2 e 1 + F 

F = ( C )2 e -2Nf l 

2 sinh rl 
2 

C 2Nal -j(2N{3l-21{» 
-.--:--:::-::------=-----,--.,---::-::- e e , 
4(sinh2 al + sin2 f3l) 

t 
-1 tan {3l 

<p = an . 
tanh al 

I c I « vsinh2 al + sin2 (3l 

eNal » 1. 
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(41a) 

(41b) 

(41c) 

(41d) 

The results of (41a) and (41 b) will be valid for all f3 if the condition of 
(41c) is replaced by the more restrictive condition of (42): 

I c I « sinh al. (42) 

The maximum value of the reflection coefficient magnitude I c I that 
yields a stable amplifier is given as follows, subject to the conditions of 
(41d) and (42) 

N({3l)l = tan-1 tan ({3l)1 + '!!. 
tanh al 2 

(principal value of tan -1) (43a) 

I c Imax = 2e-
Nal 

Vsinh2 al + sin2 ({3l)1 . (43b) 

In deriving (43) we required that the results of (41a) and (41 b) be 
valid for all (3. Consequently the more restrictive condition of (42) 
must hold; however, it is not obvious in advance that (42) will end up 
being satisfied in all cases. However, it is easy to show that this is in
deed so, so that the approximate limits on I c I imposed by the require
ment of stability are indeed given by (43), so long as (41d) is satisfied 
(i.e., the high-gain case). From (43a) we have 

({3l)1 < 7r/N. (44) 

From (41d) and (44) 

({3l)1 « al (45) 

and consequently 

sin2 ({3l)1 « sinh2 al. (46) 
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Equation (43b) thus guarantees that the more restrictive bound of 
(42) will always be satisfied in the high-gain case. 

The general behavior of the gain-vs-frequency (or (3l) curve is readily 
seen from (41a) and (41 b). In the second line of (41a) the first factor 
and cp vary slowly with {3l, while the factor e -j2N{3l varies rapidly. The 
angle of F increases steadily as {3l increases from ° to 27r; the magnitude 
of F is largest at (3l = 0, 7r, 27r, ... , and decreases rapidly away from 
these points. Therefore the gain G T of (15) plotted vs {3l (or frequency) 
will have an oscillatory behavior, with the magnitude of oscillation 
greatest near (3l = 0, 7r, 27r, "', and quite small elsewhere. The larger 
N, the more rapid will be the rate of oscillation. 

It is instructive to consider a few numerical examples. We consider 
the following two cases: 

20 10glO eNal == 20 10glO eaLN 

30 db, total gain in (i) and (ii) below 
(i) 20 10glO eal = 1 db, gain per section 

N = 30, number of sections 
(180j7r)' ({3l)l = 4.05°, phase shift per section at oscillation 

/ C /max = 0.00860, maximum value of reflection coefficient 
for stability 

(ii) 20 10glO eal 
= 0.1 db, gain per section 

N = 300, number of sections 
(180j7r)' ({3lh = 0.405°, phase shift per section at oscillation 

/ C /max = 0.000860, maximum value of reflection co-
efficient for stability. 

The total gain in both cases is large, and hence / C / max has been com
puted by (43). The transmission gain G T plotted versus the normalized 
frequency {3l for these two cases is shown in Figs. 3 and 4 respectively 
for several values of c. These results are computed by direct matrix 
multiplication [see (18)J rather than via (19)-(22) or via the approxi
mate results of (41). Figs. 3(a) and 4(a) show the gain vs normal
ized frequency for three values of / c / less than / c /max as well as for 
c = / C /max [computed via the approximate results of (43)], which 
corresponds to the limiting case of stability. It is readily seen how the 
device approaches instability as c approaches / c /max . Figs. 3(b) and 
4(b) show computed curves of the "gain" versus frequency for a value 
of c greater than / c /max • Under these conditions the device is unstable, 
so that these curves have little direct physical significance; however, 
these curves do not look too different from the stable ones of Figs. 3(a) 
and 4(a). This should provide explicit warning against taking any such 
computed curve seriously without first investigating stability. 
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Fig. 3 - Transmission gain vs normalized frequency for one-dimensional ac
tive medium with identical, equally-spaced reflectors. N = 30, number of sections; 
20 IOglO eaZ = 1 db, gain per section; total gain = 30 db; c = magnitude of reflectors, 
parameter indicated on curves. 

A detailed picture of the behavior of these devices could be worked 
out in terms of the poles of the gain function in the complex plane. For 
small 'c' the poles lie in the left-half plane. As 'c' is increased the 
poles move toward the j-axis, causing greater oscillation in the gain-
frequency curve. As 'c' -7 , C 'max the closest pole touches the j-axis, 
causing the gain to approach infinity at one frequency. Finally, as 
, c , becomes greater than, c 'max this pole moves to the right-half plane 
and the "gain"-frequency curve becomes finite. As , c , increases further 
the first peak decreases, but the next pole approaches the j-axis, so that 
the second peak increases, approaches infinity, and eventually decreases. 
The different peaks in the gain-frequency curve behave in a similar 
manner as the various poles cross the j-axis in succession. 

Figs. 5 and 6 show similar curves for the reflection gain GR' GR 

approaches infinity for the same values of , c , and (3l as does G T ; this 
must be so, since for the limiting case of stability, power must emerge 
from both ends of the device in the absence of any incident wave. As in 
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Fig. 4 - Transmission gain vs normalized frequency for one-dimensional ac
tive medium with identical, equally-spaced reflectors. N = 300, number of sec
tions; 20 loglo eal = 0.1 db, gain per section; total gain = 30 db; c = magnitude 
of reflectors, parameter indicated on curves. 

Figs. 3(b) and 4(b), the curves of Figs. 5(b) and 6(b) correspond to 
instability and hence lack direct physical significance. 

If the total gain in the absence of reflectors is not large, then the 
above results of (43) are not valid, and the approximate results of (41) 
are not valid over the entire range of permissible values of c. It is in
teresting to examine the exact computer solutions for one such case. 

(iii) 20 10glO eal 0.1 db, gain per section 
N 50, number of sections 

20 10glO eNal 
_ 20 10glO eaLN 

(180/7r) . ({31)1 

Ie Im.ax 

5 db, total gain 
5°, phase shift per section at oscillation 
0.065, maximum value of reflection coefficient for 
stability. 

Gain-frequency curves for several values of c are shown in Figs. 7 and 
8. The values of ({3l)l and Ie Imax given above have been determined 
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Fig. 5 - Reflection gain vs normalized frequency for one-dimensional active 
medium with identical, equally-spaced reflectors. N = 30, number of sections; 
20 loglo eal = 1 db, gain per section; total gain = 30 db; c = magnitude of reflec
tors, parameter indicated on curves. 

from these curves. As above, Figs. 7(a) and 8(a) show the transmission 
and reflection gains for the stable case, / c / ~ / C /max , while Figs. 7 (b) 
and 8(b) show the "gains" for an unstable case. The general comments 
given above for examples (i) and (ii) apply also to this case. The 
approximation of (43), which was valid in examples (i) and (ii) above, 
would have predicted ({3l)l = 3.37°, / C /max = 0.0135 for the oscilla
tion conditions; this approximation is quite inaccurate in the present 
low-gain case, particularly for / C /max . 

Straightforward calculation based 011 (18) or (19)-(22) in the peri-
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Fig. 6 - Reflection gain vs normalized frequency for one-dimensional active 
medium with identical, equally-spaced reflectors. N = 300, number of sections; 
20 loglo cal = 0.1 db, gain per section; total gain = 30 db; c = magnitude of re
flectors, parameter indicated on curve. 

odic case, or (12) and (13) in the general case, will of course always lead 
to some definite result for Xu as a function of frequency, whether or not 
the device is stable. However, only if we are assured that the device is 
sta ble will Xu have the desired physical significance of the steady -sta te 
loss function LT . If the device is unstable it will of course oscillate, and 
ultimately the linear behavior assumed here must break down. However, 
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Fig. 7 - Transmission gain vs normalized frequency for one-dimensional ac
tive medium with identical, equally-spaced reflectors. N = 50, number of sections; 
20 loglo eal = 0.1 db, gain per section; total gain = 5 db; c = magnitude of reflectors, 
parameter indicated on curves. 

by demanding that the device be at rest at t = 0 and examining the 
initial build-up of oscillation, the mathematical significance of Xu may 
be examined in the unstable case. Suppose the device is initially at rest, 
and a sinusoidal input is applied at t = O. The total response may be 
divided into a steady-state response, whose envelope is constant with 
time, and a transient response, whose envelope ultimately grows or 
decays exponentially with time in the unstable and stable cases re
spectively. The steady-state response is given by Xu in both cases. In 
the stable case, since the transients ultimately decay with time, only 
the steady-state response remains. In the unstable case the steady-state 
response retains the same mathematical meaning, but since the tran-
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sient response grows exponentially with time, the steady-state response 
loses much of its physical significance. 

III. RANDOM REFLECTORS 

In the present section we consider active devices with reflectors having 
random position and/or magnitude; different reflectors are assumed 
statistically independent. Since the imperfections are random, the loss 
(or gain) is also a random variable, and we seek various statistics of the 
loss-frequency curve. The loss LT is determined from (12)-(15); we study 
the average loss and the second-order statistics of the fluctuations about 
the average, i.e., the variance and covariance of the loss fluctuations. The 
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form of (12)-(15) requires us to study the loss statistics rather than the 
gain statistics, which are of more direct interest. However, if the loss 
fluctuations about the average are small, then the loss and gain fluctua
tions will be almost identical (except for a change in sign), and their 
statistics will thus also be approximately identical. 

As discussed above, (12)-(15) yield the transmission loss LT only if the 
device is stable. If the device is unstable so that oscillation occurs, then 
the steady-state response LT given by (12)-(15) loses much of its physi
cal significance, as discussed in the previous section. The statistics of 
LT computed below are effectively averaged over all cases, so that these 
results will not be meaningful unless the probability of oscillation is so 
small that for practical purposes it may be ignored. Thus the results be
low are valid in the limit of very small reflections, in analogy to the per
turbation case of the previous section. In a companion paper! useful 
sufficient conditions guaranteeing stability are obtained; these stability 
conditions extend the range of validity of the present calculations to finite 
reflections. 

Three different statistical models of an active device with random 
reflectors are considered in the present paper: 

(i) random magnitude and spacing 
(ii) equal magnitude, random spacing 

(iii) random magnitude, equal spacing. 
Thus for case (i) in (12)-(15), Ck and lk will be random variables with 
'1ppropriate distributions; we assume that the different Ck and lk are 
independent random variables. In case (ii) the Ck are all equal to the 
same constant Co, the lk are independent random variables. In case (iii) 
the Ck are independent random variables, the lk equal to the same con
stant lo . Case (ii) has been suggested by R. Kompfner as being appli
cable to certain optical maser amplifiers. 

In cases (i) and (iii) we will assume that Ck is symmetrically dis
tributed about 0, with a distribution narrow compared to 1. 

We assume in the present paper that lk is always a large number of 
wavelengths, so that 

(47) 

We further assume in cases (i) and (ii) that the distribution of lk about 
its mean is very narrow with respect to the mean, but wide compared 
to 27r/{3. These assumptions are compatible with conditions existing in 
certain optical amplifiers to which these results might be applied. For 
certain calculations we need assume in addition only a smooth, sym
metrical distribution for lk about its mean. However, for certain other 
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calculations we must be more specific; here we will assume a Gaussian 
distribution for lk , as follows: 

__ 1_ -(lk- l o)/2u 2 

P(lk) = V27r0"1 e 1 , (48) 

where lo is the expected value and O"l2 the variance of lk , 

lo (lk), 

(lk2) - (lk)2. 
(49) 

In accord with (47) and the discussion immediately following, we assume 
that 

27r/{3 « 0"1 « lo ; cases (i) and (ii). (50) 

Note that in case (iii) lk = lo, as stated above, and O"z = O. 
In the following work we make use of the Kronecker matrix product.3 

For convenience we define this product and summarize some of its 
properties. 

Consider two matrices A and B with elements aij and bij • The ma
trices A and B need not be square, have the same dimensions, or be 
conformable; their dimensions are completely arbitrary, so that the 
ordinary matrix products AB or BA may not exist. The Kronecker 
product, written as A X B, (as opposed to the ordinary matrix product, 
written as AB) is defined as follows:3 

... J 

... 
(51) 

A X B has been written in (51) in partitioned form, with each sub
matrix consisting of a scalar element of A, aij, multiplied by the entire 
matrix B. 

Kronecker products have the follo'wing useful properties:3 

A X B X C = (A X B) X C = A'X (B X C) (52) 

(A +B) X (C+D) = A X C+A X D +B X C+B XD (53) 

(A X B) (C X D) = (AC) X (BD). (54) 

As stated above, products without X's in (52) indicate ordinary matrix 
products, and the two matrices to be so multiplied must be conformable. 
Equa tion (54) may be extended to yield 

(AI X BI ) (A2 X B2) ... (AN X BN) 
(55) 
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We now return to the results of Section I for the transmission of a 
general active device. From (13) we have (see Fig. 1) 

(56) 

The output is assumed matched [see (17)], so that 

(57) 

In computing the loss LT of (15) we might as well set 

WO(LN +) = 1, (58) 

so that by (15) LT = Wo(O); (56) then becomes 

[w~(~J XIX,··· X N m· (59) 

Now, in determining the average loss and the loss fluctuations about 
the average we are not particularly interested in the phase variations 
caused by the variation in total length, which may be large compared 
to the optical wavelength but is small compared to the average total 
length. Further, the variations in gain per section will also be small 
compared to the average gain per section. These considerations suggest 
the following transformations of (59) l which remove these more or less 
irrelevant contributions to the loss and phase variations. From Fig. 1, 
the total length LN is 

Next define .£ T and CR as follows: 

From (12) we define a new matrix Y ,C in terms of X k as follows: 

where 

(60) 

(61) 

(62) 

(63) 

(64) 
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Then from (60)-(64), (59) may be written 

e +rLN [:;J - Hll Y Hl2 Y HIN Y [lJ 
Ul - e . Ie . 2··· e . N 0 

= e+"LN. Y1Y, ... YN m. (65) 

Cancelling out the eHLN factor on both sides of (65), 

(66) 

where £r is defined in (61), Y k in (64). 
Equation (66) is suitable for studying the statistics of the normalized 

loss £r, which contains the essential information regarding the loss 
fluctuations of the device. The quantity (R has to do with the reflected 
wave at the input corresponding to a unit output wave, and will not be 
of further interest here. The factor e HLN = e -aLN ei{3LN removed from 
the unnormalized loss Lr in (61) is of course a random variable, but 
for a given amplifier it has constant magnitude and delay. 

We now compute (£r), the expected value of the normalized loss £r . 
Since the c,. and lk are assumed independent random variables, the 
different Y k of (66) are independent random matrices in all three cases 
discussed above. Taking the expected value of both sides of (66), and 
noting that the different Y k have the same distribution, we have 

where (Y) is obtained from (64) as 

[

/1 \ 
\Yl - c2 / 

(Y) = 
+ . / c \ (-2rl) 
J\~/ e 

(67) 

Note that the independence of Ck and lk for a given k has been used in 
obtaining (68); the subscript k has been omitted in the above relations, 
since the statistics of the different Ck'S and of the different lk'S are iden
tical. Finally, since we neglect the small variations in the gain per 
section, we may set 

( -2rt) f"'V 2alo( -i2(31) e f"'Ve e , (69) 
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where lo is given in (49) as the average length of the sections. Then (68) 
becomes 

[ 

/ 1 \ 
\~/ 

(y> = 

+ . 2a1o / c \ ( -i2/31> 
Je \~I e 

·1 C \l 
-J \y'l - c21 

2alo 1 1 \ ( -i2/3I>J • 
e \y'1 _ c2/ e 

Now in cases (i) and (iii) above we have 

(70) 

(71) 

since the distribution of c is assumed symmetric about O. In cases (i) 
and (ii) we have 

(e -i2/31> ~ 0, (72) 

in view of the assumptions about the distribution of l. Consequently 
(70) becomes in the three cases: 

<v/-)G ~J 
(Y) ~ Vll_ eo' [~ -t], 

/ 1 \ [1 0] 
\~/ 0 e2aloe-i2/3lo ' 

case (i) 

case (ii) 

case (iii) . 

From (67) and (73) we have the following final results: 

1 1 \N 
\y'1 - c2/ ' 

(v/-coJ, 

cases (i) and (iii) 

case (ii). 

(73) 

(74) 

The result for case (ii) in (74) may be regarded simply as a special case 
of the results for cases (i) and (iii). Since in cases (i) and (iii) the 
distribution of c is assumed narrow compared to 1, we may in some 
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calculations make the following approximation in (74): 

/ 1 \ ~ 1 + 1 ( 2) \Vl=&/ ~ 2" C , (75) 

where (c2
) is the mean square value of the magnitude of the reflection 

coefficient. 
Equation (74) shows that in all three cases the presence of random 

reflections has increased the expected value of the loss; further, the 
average loss is independent of (3 and hence of frequency. Since (£T) ~ 0, 
if the deviations of £T from its expected value are very small (as they 
must be in useful amplifiers), then we will have approximately 

(76) 

This approximate relation permits us to estimate the variance of the 
magnitude of the loss, as discussed below. We note that 

(77) 

Next consider the mean square value of the loss, < 1 £T 12) = (£T£T*)' 
First note from (51) that 

(78) 

From (66), (55), and (78) we have 

(79) 

where Y k is given in (64). Taking the expected value of both sides of 
(79), again making use of the independence of the different Y k matrices 
and the fact that they have the same distributjon, we have 

(80) 

where (Y X Y*) is obtained from (64) and (51) as shown in (81). 
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j c
2 

\ ( Hal) + . j c \ ( +4al) 
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We again omit the subscript k in the above, since the statistics of the 
different c/s and of the different lk'S are assumed identical. 

We now apply the same assumptions used above to (81). As in (69), 
neglecting the small variations in gain per section leads to 

( -2rl) rov 2alo( -i2{3l) 
e rove e , 

(82) 

( 
4al) rov 4a1o 

e rove , 

where 10 as before is the average l('ngth of the sections [see (49)]. Further, 
we make use of (71) for cases (i) and (iii), and (72) for cases (i) 
and (ii). The resulting forms for (Y X Y*) differ in the three cases, 
but after some simplification the final quantity of interest, ( I oCT /2) 
(oCT£T*), is given by the following single relation in all three cases: 

1 c

2 

\ ]N [ll \1 - c21 

e4a1o 1_. _1_\ oj 
\1 - c21 

(83) 

In case (ii), we have in (83) 

/_1_\ = _1_ l_c_
2 
_\ = ~ 

\1 - c21 1 - co2 ' \1 - c21 1 - c(?· 
(84) 

Equation (83) gives the desired result ( / oCT /2) in terms of the nth 
power of a real matrix. The matrix power may of course be written out 
explicitly in the usual way, but for the sake of simplicity this will not 
be done here. Some numerical examples are worked out in the next 
section. The variance of the loss, denoted (J' £, /, is given by 

( / oCT - (oCT) 12) 

( / oCT n - I (oCT) /2. 

The variance of the magnitude of the loss is given by 

(J'1£'TI
2 == ([/ oCT / - ( / oCT / )]2) = (/ oCT /2) - ( / oCT / )2 

~ ( / oCT /2) - I (oCT) /2 == (J'£,/, 

(85) 

(8Ga) 

where the approximation of (86a) follows from (76). From (77) we have 

(86b) 

In these results ( / oCT 12) is given by (83), (oCT) by (74); the approxima-
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tion of (86a) should be good when ITI£TI/(£T) « 1. We see that for all 
three cases ( / £ T /2) and IT £ / are independent of (3 and hence of fre
quency. 

Finally we study the covariance of the loss £T, denoted R£T( T), de
fined by 

R£T( T) = (£T({3 + T )£T*({3» = R£T *( - T). (87) 

It will appear below that the expected value in (87) is indeed dependent 
only on T, and not on (3, within the approxi;mations of the present treat
ment. If we regard the loss £T({3) as a random process, then the Fourier 
transform of R£T( T) yields the power spectrum of the random processes 
£T({3). R£T( T) thus gives information about both the dc and ac com
ponents of £T({3); of particular interest are the mean square magnitude 
and the rate of fluctuation of the ac component of the loss. The total 
"power" (dc plus ac) P T of the random process £T({3) is 

(88) 

The dc "power" P de of £T({3) is 

P de = R £, T ( (0) = R £ T ( - 00 ) , (89) 

where the limits as T ~ ± 00 exist. Both ac and dc "powers" are neces
sarily pure real, and are of course independent of (3, since R£T( T) is 
independent of (3 in general. Let us define the dc component of a given 
£T({3) curve as 

(90) 

where the bar indicates an average over (3. Then it is easy to show that 
the dc power of (89) is also equaJ to 

P de = R£T( (0) = R£T( - (0) = (/ £Tdc /2), (91) 

where £Tdc is given by (90). Let us now define the ac component of a 
given £T({3) curve by 

(92) 

Then the covariance R£T (T) of the ac component £Tac({3) and the ac ac 
"power" P ae of the normalized loss £T({3) are given as follows: 

R£T (T) = (£Tac ({3 + T )£Tac *({3» = R£T( T) - R£T( 00 ) , (93a) ac 

P ae = (/ £Tac({3) /2) = R£T(O) - R£T( (0) = R£T (0). (93b) ac 
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For convenience we define the covariance of ffi(/J) as an auxiliary 
quantity, although this quantity is not of present interest to us: 

Rm ( T) = < ffi(/J + T) m*(/J». (94) 

We have 

(95) 

From (66), (55), and (95) 

[
<£T(/J !£;;~*(/J»l = <Y(/J + ) X Y*(/J»N [~l <m(/J + T )£T*(/J) T 0 

Rm( T) 0 

(96) 

where we again make use of the independence of the different Y k and 
the fact that they have the same distribution. Using the various assump
tions given above in (69), (71), (72), and (82), and making appropriate 
simplifications in the different cases, we obtain the following final 
common result for cases (i), (ii), and (iii): 

In addition to the usual approximations, we have used 
<e -i2({HT)I) ~ 0 

(97) 

(98) 

in cases (i) and (ii) in obtaining the result of (97). This approximation 
implies that I T I «/J; i.e., we examine the covariance and hence the 
loss over only a relatively narrow (electrical) band. In the analysis we 
often use the quantity R£ T( 00 ), which gives the dc "power" [see (91)]; 
this is justified because the covariance computed from (97) will approach 
its asymptotic value R£T( 00 ) for values of T satisfying the requirement 
I T I «/J. We assume the distribution of l is the Gaussian distribution of 
(48), and note that <e -i2Tl) is simply related to the corresponding charac
teristic function. 4 Thus 

(99) 

t Note that this result justifies the approximations of (72) and (98) [subject to 
the condition of (50)]. A similar result for (erl ), where l' is complex, may be readily 
derived, and justifies the approximation of (69) and (82). 
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In case (iii) we have (Jz = 0 in (99). Thus we have as our final result: 

[ 

j 1 \ 
\1 - c2j 

= 4alo j c
2 

) -j2Tlo -2(TO"Z)2 
e \1 _ c2 e e 

j 2) ]N [ ](100) c 1 
\1 - c2 

4alo j 1 \ -j2Tlo -2(T'rz)2 0 
e \1 _ c2j e e 

j 1 \ _ 1 j c \ _ co
2

• 

\1 - c2j - 1 - co2 ' \1 - c2j - 1 - co2 ' 

Uz = 0; 

case (ii) 
(101) 

case (iii). 

Certain general properties of R£T( T) are readily deduced from (100). 
First, R£T( T) is independent of (3 and dependent only on T, as assumed 
above in (87). Second, for T = 0, (100) becomes identical to (83), as 
it must. Finally, for T ~ 00, we have incases (i) and (ii) from (100) and 
(101) 

j 1 \N 
\1 - c2j , 

case (i) 
[also case (iii) - see below] 

case (ii). 

(102) 

R£T( 00) is real, as stated above. We recall from (91) that R£T( 00) is 
the dc "power" of £T({3). The ac "power" is given by (93). 

Now, in case (iii) the covariance R£T( T) is periodic, which implies 
that the random process £T({3) is periodic;4 however, this is obvious 
from the original formulation of the problem. R£T( 00) no longer exists 
in the strict sense; the dc "power" is now the average value (over T) 
of R£ T( T). It turns out that we may approach case (iii) by considering 
case (i) and allowing Uz to approach 0 in (100). [This violates the con
dition imposed by (50) and used in the approximations of (72) and (98) 
and so the limiting process Uz ~ 0 is forbidden in some of the above 
results; careful examination shows that it is valid to allow Uz ~ 0 in 
(100).] Then R£T(T) does approach the limit of (102) as T ~ 00; and 
so we take the first result of (102) as the dc "power" in case (iii), as 
well as in case (i). 
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In general 

(£T({3)/ ~ P dc == (/ ~ /2), 

U,r,/ ~ Pac == ( / £Tac({3) /2) . 

(103) 

(104) 

However, in case (ii) only - i.e., reflectors of identical magnitude and 
random spacing - (103) and (104) are true with the ~ replaced 
by =, as seen from (74) and (102). 

The matrix power of (100) is easily written explicitly in the usual way, 
but the results would be rather complicated. Numerical examples are 
worked out in the next section. 

IV. NUMERICAL EXAMPLE - RANDOM REFLECTORS 

Consider an optical amplifier with random reflectors of the type given 
in case (ii) of Section III: i.e., the reflectors have identical magnitude but 
random spacing. Assume: 

20 10glO ea10 = 1 db, nominal gain pel' section 

N = 30, number of sections 

20 loglo eNa10 = 30 db, nominal total gain. 

Fig. 9 shows the average norma1ized loss and the rms fluctuatjon of the 
normalized loss about its average value, plotted versus Co, the magni
tude of the reflectors; As seen from example (i), Section II, instability 
is possible if / Co / > 0.00860. Therefore the curves of Fig. 9 are solid 
for Co <0.00860, dotted for Co > 0.00860. However, this is intended only 
as a symbolic reminder of the question of stability. We do not know 
whether or not instability can occur for / Co / < 0.00860. Even though 
we know that instability can occur for / Co / > 0.00860, the probability 
of instability might remain so small for some greater range of Co that 
these curves would provide a useful approximation. In Ref. 1, Section 
VI, equations (122)-(131) we show that stability is guaranteed for 
/ Co / < 0.00590, assuming that the maximum fractional variation in 
spacing of the reflectors [v in (124) of Ref. 1] is small compared to 1. 
This is indicated in Fig. 9. 

All of the above results have been independent of the precise distribu
tion of the lk' the spacing between reflectors, except that the conditions 
of (47) and the following sentence must be satisfied. However, the 
covariance of the loss depends explicitly on the probability distribution 
of the lk . For our present example we therefore assume that the differ-
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Fig. 9 - Average normalized loss and rms fluctuation about the average for 
one-dimensional active medium with randomly spaced reflectors of identical mag
nitude. N = 30, number of sections j 20 loglo ea10 = 1 db, nominal gain per section j 
nominal total gain = 30 db. 

ent lk are independent, with the Gaussian probability density given in 
(48)-(50). We further assume the following numerical values: 

((J"z/lo) = 0.01, Co = 0.005. (105) 

Thus, the spacing between successive reflectors is accurate to about 1 
per cent, and the magnitude of the reflectors would guarantee stability 
in the equally spaced case of Section II. Of course a practical device 
would probably be built much more accurately, but the values in (105) 
are suitable for illustrating the general behavior. Fig. 10 shows the 
(complex) covariance R£Tac(T) of the ac component £Tac (/3) of the 
normaljzed loss for this case as a function of the normalized variable 
(lO/7r)T, for 0 < (lO/7r)T < 4. Fig. 10(a) shows the magnitude 
/ R£Tac ( T) I and Fig. 10(b) the phase L R£Tac ( T) + 58 lOT; note that 
the linear component of phase has been removed in the plot of Fig. 
10(b). The covariance is seen to be approximately a damped periodjc 
fUllction of Tj Fig. 11 shows a plot of the magnitude of the covari
ance at the points T = n(7r/lo), which correspond closely to the max
ima of / R£Tac( T) /. 
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Fig. 10 - Covariance of ac component of normalized loss for one-dimensional 
active medium with randomly spaced reflectors. uzllo = 0.01; Co = 0.005, magni
tude of reflectors; N = 30, number of sections; 20 loglo ea10 = 1 db, nominal gain 
per section; nominal total gain = 30 db. 

We would expect some resemblance between the covariance of Figs. 
10 and 11, for reflectors with identical magnitude but random spacing, 
and the (nonrandom) case of ~ection II for reflectors with identical 
magnitude and spacing. For the nonrandom case we have seen that 
the loss is periodic; consequently the covariance will also be periodic, 
and will look something like that of Figs. 10 and 11 for the random case 
except that it will not be damped. Note that the large linear component 
-58 lOT that has been removed from the phase curve of Fig. 10(b) 
implies that the power spectrum of the random process £Tac({3) is con
centrated around the angular "frequency" - 58 lo ; this angular "fre
quency" corresponds to the rate of variation of the loss for two reflectors 
whose separation is equal to the nominal spacing of the two end re
flectors in the random case. 
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Fig. 11 - Approximate maxima of covariance of ac component of normalized 
loss for one-dimensional active medium with randomly spaced reflectors (see Fig. 
10). uzllo = 0.01; Co = 0.005, magnitude of reflectors; N = 30, number of sections; 
20 10glO eaZo = 1 db, nominal gain per section; nominal total gain = 30 db. 

v. DISCUSSION 

The question of stability has been discussed for the periodic case at 
the end of Section II. There it is pointed out that these calculations are 
valid only if the device is stable, i.e., does not oscillate. The same is true 
in the random case. In the periodic case we can determine by calculation 
the limits of stability, and this has been done in the examples of Section 
II. Stability in the random case is studied in Ref. 1. 

Various higher-order transmission statistics may be calculated by 
methods similar to those used above, but the complexity of the calcu
lations increases with the order of the statistics. In addition, statistics of 
the real and imaginary parts of the normalized loss £T may be readily 
determined by similar methods. 
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Stability of Active Transmission Lines 
with Arbitrary Imperfections 

By H. E. ROWE 

(Manuscript received August 23, 1963) 

Two sufficient conditions for the stability of one-dimensional active 
transmission lines with arbitrary imperfections (i.e., discrete or continuous 
reflections) are derived. The first stability condition guarantees stability 
for any arb'itrary distribution of reflection. The second stability condition is 
restricted to a special case of interest that includes discrete reflectors with 
nom'l'nally equal magnitude and spacing; the stability condition for this re
stricted class is greatly improved over the general stability condition de
scribed above. 

These results, aside from the'ir own interest, provide rigorous justifica
tion for previous calculai'ions for the gain statistics of such a device with 
random discrete reflectors. l They may also be used to find an upper bound 
on the probability of instability of such a device with random reflectors. 

Certain types of optical maser amplifiers and traveling-wave tubes pro
vide examples of practical demces with distributed gain to which these re
sults, or similar ones, might be applied. 

1. INTRODUCTION 

The preceding paperl has considered the theory of active transmis
sion lines with discrete imperfections. First, lines with equally-spaced 
identical reflectors were studied; in particular, gain-frequency curves 
were determined as functions of the various parameters, and the sta
bility of the device was studied under these special conditions. It was 
pointed out that the mathematical expression for gain would yield a 
perfectly definite result for any values of the parameters, but that this 
mathematical result would have physical significance only if the device 
is stable, i.e., does not oscillate. 

N ext, the case of random imperfections was studied.l Here the statis
tics of the transmission were determined in terms of the statistics of the 
discrete reflectors, which were assumed to have random position and 

293 
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magnitude. Again, these results have physical significance only if the de
vice is stable (or if the probability of instability is negligible). However, 
in the random case no precise information about stability was given; 
the computed statistics of the transmission were felt to be valid if the 
rms magnitude of the discrete reflectors was sufficiently small, but only 
intuitive feelings of what was "small enough" were available. 

In the present paper we derive a sufficient condition for stability of an 
active transmission line with arbitrary reflectors; we further show (by 
one example) that this sufficient condition cannot be greatly improved 
(if at all) in the general case. This result gives useful information re
garding the range of validity of the calculations of the preceding paperl 

for the transmission statistics of active transmission lines with random 
reflectors. This general bound on stability may be improved if additional 
information is known about the distribution of reflectors; one such case 
of interest is treated. 

The mathematical model chosen for this problem is discussed in detail 
in Ref. L A line with N discrete reflectors is shown in Fig. 1 (which is 
identical to Fig. 1 of Ref. 1). The wave traveling to the right at distance 
Z is denoted by Wo(z), the wave traveling to the left by Wl(z); WO(L k +) 
and Wl(L k +) are the right- and left-traveling waves just to the right 
of the kth reflector, as indicated in this figure, while T¥o(Lk-) and 
Wl(L,.~-) are the right- and left-traveling waves just to the left of the 
kth reflector. 

In the absence of reflections the forward and backward waves vary as 
-rz 

ex e 

+rz 
ex: e 

- forward wave 

- backward wave 

r------------------LN------------------i 

r------------- Lk------------l I 

rllT-l2-Tl31 i-lk-1 r lw1 
o I I I I I - I 1° 

C1 C2 C3 Ck-l Ck CN-I CN 

"-----------'-1----'-1 -----1....1 I I --- I 10 9- I I 

Wo(O)-~ Wo(Lk+)--j Wo(LN+)--j 

(1) 

I I I 

~-Wl(O) k i+-w1 (Lk+) :--W1(LN+) 
I Lk = L lL I I 

L=1 

Fig. 1 - Line with N discrete reflectors. 
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where 

r = -0: + j{3, 0: > 0. (2) 

The line has gain, so that 0: > 0. From (12) of Ref. 1, the wave matrix 
for the cascade connection of the kth line section of length lk and the 
kth reflector is 

I Ck I ~ 1, (3) 

[
WO(Lk-l+)] = Xk.[JVo(Lk+)] 
W 1(Lk- 1+) W 1(Lk+) 

(4) 

where I Ck I is the magnitude of the reflection coefficient for the kth re
flector. The over-all transmission matrix for the entire line of Fig. 1, 
denoted by X, is given by the matrix product of (13) of Ref. 1: 

(5) 

(6) 

For convenience, denote the elements of the over-all transmission 
matrix X as in (14) of Ref. 1. 

X = [xu X12]. 

X21 X22 

(7) 

X is given by (3) and (5). Assume the device is operated as an amplifier 
with matched input and output; setting W 1(LN +) = 0, the complex 
transmission gain G T is given by 

G
T 

= WO(LN +) = ~ 
Wo(O) Xu • 

(8) 

Now Xn is a function of r and of all of the l.1c'S and Ck'S. We may concep
tually investigate stability in the following way. Imagine that Ck is re
placed by ECk throughout this analysis; E is a variable parameter that 
scales the magnitudes of all of the coupling coefficients. Let E be increased 
from 0, and for each value of E examine Xu [which in (8) is the reciprocal 
of the transmission gain, and so may be regarded as the transmission 
loss] as a function of frequency w (or of the phase constant {3, which is 
assumed proportional to frequency, since the line is distortionless)l over 
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the entire range - 00 < w < + 00. We determine in this way the mini~ 
mum value of I Xu I for each value of E. As E increases, this minimum value 
of I Xu I will eventually just drop to zero, for a critical value of E which 
we denote by Ec. Thus, as E -7 Ec the gain I G T I -7 00 for a particular 
value of w, and the device oscillates. Ec is the dividing line between sta
bility and instability; if €c > 1, the original device, with the parameters 
Ck and lk , is stable. 

Such calculations have actually been carried out in Ref. 1 for devices 
with identical, equally-spaced reflectors. In this case the gain G T is a 
periodic function of frequency w, so that only a finite portion of the fre
quencyaxis (i.e., one period) must be investigated. In general, however, 
G T is not periodic; since we cannot investigate numerically the entire 
w-axis, it is not obvious how to investigate stability for the general case. 

In the remainder of this paper we determine a sufficient condition 
that guarantees the stability of a general active line with arbitrary dis
crete imperfections. In particular, consider such a device, illustrated in 
Fig. 1, characterized by (3), (5), and (6), with arbitrary a, Ck, and lk. 

We show below that any such device satisfying the condition 

N -aLN 8 tanh-1 I Ci I < 2 sinh-1 e
V2 

(9) 

must be stable. Many practical devices will have large gain, and hence 
must have small reflections. In such cases e-aLN « 1 and I Ci I « 1; under 
these conditions a slightly poorer stability condition derived from (9) 
is useful. 

N [-aLNJ ~ I Ci I ~ tanh 2 sinh -1 e _ /_ . 
~=l V 2 

(10) 

In the high-gain case the right-hand side of (10) may be made simpler 
still by further degrading this stability condition. We may show, for 
example, that 

[ 
-aLNJ 

tanh 2 sinh-1 e
V2 

~ 0.932 V2 e-aLN, 8.686aLN ~ 10 db. (11) 

Thus a slightly poorer version of (10) is 

N 

L I Ci I ~ 0.932 V2 e-aLN
, 8.686 aLN ~ 10 db. (12) 

i=l 

The stability condition of (12) is valid when the one-way gain of the 
active medium exceeds 10 db. As the lower bound on the one-way gain 
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of the active medium increases beyond 10 db, the numerical factor 0.932 
on the right-hand side of (12) increases, approaching 1 as the lower bound 
on the gain approaches infinity. This is readily seen from (10); as 
aLN ---7 00, e -aLN ---7 0, so that the sinh -1 and tanh functions in (10) may 
be approximately replaced by their arguments for sufficiently large aLN . 

However, direct calculation with (10) is straightforward; the result of 
(12) (or similar equations) is intended principally to illustrate the gen
eral behavior. 

Thus (9) or the successively poorer versions of (10) and (12) guaran
tee that the device. will be stable, even for the worst possible choice of 
the Ck and lk. Equations (9), (10), and (12) are each sufficient, but 
not necessary, conditions for stability. These results are derived in 
Sections II, III, and IV. In addition, a better bound is obtained for a 
special case in which the reflection coefficient is distributed more or less 
uniformly with distance z along the active line, in a certain sense to be 
described more precisely in Section V below; these results include many 
cases of interest. Finally, some numerical examples illustrating the use 
of these two different types of bounds are given in Section VI. 

II. DIFFERENTIAL EQUATIONS EQUIVALENT TO MATRIX RELATIONS 

Consider the following differential equations: 

WOf (z) 

W/(z) 

- rWo(z) + jr(z) W1(z), 

-jr(z)Wo(z) + rWl(Z). 
(13) 

These relations have the form of the coupled line equations with a gen
eral continuous coupling coefficient. In the present case, Wo(z) and W1(z) 
are the right- and left-directed traveling-wave complex amplitudes, and 
r(z) is the continuous reflection that couples the two waves to each other. 
Equation 13 is readily obtained as a limiting form of the matrix relations 
of (3), (5), and (6) by assuming very small, closely spaced discrete re
flectors whose magnitude varies slowly with distance. Thus in the matrix 
relations of Section I above set 

lk = LlZ. 

Assume that Ck varies slowly with k. Then we set 

Ck = r( kLlZ) . LlZ, 

(14) 

(15 ) 

where r(z) is a continuous function. We now let LlZ ---70 so that the num
ber of discrete reflectors ---7 00; during this process the continuous func
tion r(z) is fixed and the Ck determined by (15), so that the magnitudes 
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of the individual reflectors ~ ° as ilz ~ 0., Then the matrix relations of 
(3), (5), and (6) will yield the continuous differential equations of (13). 
The analysis is straightforward and quite similar to that of Ref. 2 for a 
similar problem, and so will not be given here. The above discussion of 
(13) as an appropriate limiting continuous form of the matrix relations 
of Section I is given only to provide some physical motivation for con
sidering (13), and plays no part in the mathematical analysis to follow. 

The case of isolated, discrete reflectors, characterized by (3), (5), and 
(6), may conversely be regarded as a special case of continuous reflection 
in (13), in which the continuous reflection r(z) becomes a sum of suit
able a-functions, one located at each discrete reflector. Thus we show 
that if r(z) in (13) is given by 

N 

r(z) = L tanh-1 Ci·a(Z - L i ), (16) 
i=l 

where in Fig. 1 Li is the total distance from the input of the line to the 
ith reflector, then the solutions to (13). at the output of the line, i.e., 
WO(LN +) and W1(LN +), are given in terms of the input conditions 
Wo(O) and W1(0) by (3), (5), and (6). . 

Consider the typical kth section of line, of length lk , followed by the 
kth discrete reflector, as illustrated in Fig. 1. In the ]ine section between 
the (k - l)th and the kth reflectors r(z) = 0, from (16). Therefore in 
this region the solution to (13) has the form of (1); the forward and 
backward waves are uncoupled, and have the same propagation constant. 
We may thus write the solution between the (k - l)th and kth reflectors 
in the matrix form 

(17) 

where W(L k - ) indicates a wave amplitude evaluated just to the left of 
the kth reflector, W(L k +) just to the right. 

We next evaluate the transmission matrix for the kth reflector, i.e., 
the kth a-function of (16). This calculation may be performed by setting 

tanh-1 
Ck 

r(z) il (I8) 

0, otherwise. 

We then determine the matrix T(il), 

(19) 
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Then as Ll ~ 0, r(z) ~ tanh-I 
Ck·O(Z - L k ), and lim T(Ll) T(O) 

.1.-0 

yields a matrix relating the wave amplitudes JVo and WI on the two sides 
of the kth 0-function of r (z ) [see (16)]. This analysis is again similar in 
motivation, although different in detail, to that of Ref. 2 for a similar 
problem. Since r( z) in (18) is constant throughout the region of interest, 
(13) becomes a linear differential equation with constant coefficients, and 
is readily solved by the usual techniques. The solution for general Ll may 
be written in matrix form, yielding T(Ll) of (19), as follows: 

T(Ll) = 

(20) 

.1 ± y'-
K± = -J . 

tanh- I Ck ' (21) 
TA 

tanh-I 
Ck 

1 = i TLl (22) 
K+ - K_ 2 y' 

yI- = 11 + ean;~' Ck)' (23) 

Taking the limit as Ll ~ 01 (20)-(23) yield 

[
Wo(Lk+)] [Wo(Lk-)] = T(O)· 
W 1(Lk +) W 1(Lk -) 

(24) 

where 

1 [1 jCk] T(O) == lim T(Ll) = V . 
.1.-0 1 - Ck2 -jCk 1 

(25) 

Inverting (24), 

(26) 

where, from (25) 

(27) 
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(28) 

where X k is as given in (3). Equation (28) is identical to (4). Finally, 
the solution to (13), with r(z) given by (16), is given by (3), (5), 
and (6). 

The equivalence of (13) and (16) with (3), (5) and (6) is useful be
cause the original matrix problem may thus be regarded as a special 
case of a pair of differential equations. Stability appears to be more 
readily studied for the more general continuous case described by the 
differential equations; these results may then be applied to the special 
discrete case of interest here. 

III. SOLUTION BY SUCCESSIVE APPIWXIMATIONS (PICAIW'S METHOD) 

We summarize the solution of (13) by successive approximation, fol
lowing the same general approach as in Ref. 3 for a similar problem. First, 
it is convenient to make the following transformations: 

TVo(z) = e -rz. Go(z) 

W1(z) = e+rz·G1(z). 

Substituting (29) into (13), we have 

G'o(z) = jr(z) e+2rzG1(z) 

G1'(z) = -jr(z) e-2rZGo(z). 

(29) 

(30) 

Assume that the device is operated as an amplifier with matched input 
and output. It proves convenient in the following analysis to take the 
input at the right-hand end of the amplifier" i.e., at z = L N, where LN 
is the total length, and the output at the left-hand end, i.e., z = 0; this 
is just opposite to the choice made in Ref. 1 and in Section I above 
[particu1arly in (8)]. The useful output is then the left-directed traveling 
wave at z = 0, i.e., W1(0), corresponding to an input taken to be the 
left-directed traveling wave at z = L N, W1(LN). Since the device is 
matched at both ends, Wo(O) = 0; WO(LN) ~ 0, since this quantity 
corresponds to the reflected wave at the input end (i.e., at z = L N ) 

of the amplifier. 
N ow assume for convenience a unit-amplitude output wave: 

W1(0) = 1. (31) 
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As noted above, since the output is matched, 

WO(O) = O. (32) 

We seek TV1(LN ), the input corresponding to the output of (31); since 
unit output has been assumed in (31), the complex transmission gain 
G 1, will be 

1 
GT = W1(L

N
) , 

(33) 

where W1(LN ) is the solution to (13) subject to the initial conditions of 
(31) and (32). 

The transmission gain is readily stated in terms of the solutions to 
(30), which were obtained from (13) via the transformation of (29). 
Thus, consider (30) subject to the initial conditions 

GO(O) = 0, 

G1(0) = 1, 
(34) 

obtained from (31) and (32) via (29). The complex transmission gain 
G T of the amplifier is then given by 

G -nN 1 
T = e . G

1 
(L N) , 

(35) 

where G1(LN ) is the solution to (:30) subject to the initial conditions of 
(34). 

vVe now seek the solution to (30), with the initial conditions of (34), 
via Picard's method of successive approximations. 4

,5 Assume the 
(n - I)th approximation to the solution is available; let us denote this 
approximation by GO(n-l)(Z) and G1(n-1)(Z). Then the (n - l)th 
approximation is substituted into the right-hand side of (30) and the 
right-hand side integrated to yield the nth approximation. 

GO(n)(Z) = j 1z 
res) e+2rsGl(n_l)(S) ds. 

G1(n)(Z) = 1 - j 1z 
res) e-2rSGO(n_l)(S) ds. 

(30) 

We take the initial (Oth) approximation as simply the initial conditions 
of (34): 

GO(O)(Z) = 0, 

Gl(O)(z) = 1. 
(37) 



302 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

Writing 

we have 

GO(n)(Z) - GO(n-l)(Z) = (JO(n)(Z), 

G1(n)(Z) - G1(n-1)(Z) = 01(n)(Z), 

n 

L: OO(k) (Z), 
k=l 

n 

G1(n)(Z) = 1 + L 01(k)(Z). 
k=l 

From (3G) and (38), the O's of (39) are given as follows; 

(38) 

(39) 

OO(n)(Z) = j 1z 

res) e+2rSgl(n_l)(S) ds, n ~ 1. (40) 

gl(n)(Z) = -j 1z 

res) e-2rSgO(n_l)(S) ds, n ~ 1. (41) 

OO(O)(z) = 0, Ol(O)(Z) = 1. (42) 

From (40)-(42) 

OO(n)(Z) = 0, 

01(n)(Z) = 0, 

n even. 

n odd. 
(43) 

Thus only odd terms appear in the top summation of (39), and only 
even terms appear in the bottom summation of (39). 

We next obtain bounds on the magnitudes of the terms in the series 
of (39), thus showing that these series converge as n ~ 00 for all finite 
Z, so that the solutions to (30) subject to the initial conditions of (34) 
are 

00 

Go(z) L OO(n)(Z), 
n=O 

00 
(44) 

G1(z) = L gl(n)(Z), 
n=O 

with OO(n) (z) and 01(n) (z) as given by (40 )-( 42). The analysis is sug
gested by that of Ref. 3. We show that: 

= 0, n even. 

I gO(n,(Z) I < [{ I r(s) I dsT 

= n! 

(45) 

n odd. 
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[I.' I res) IdS]" 
< 2az =--____ _=_ 

= e nl 
Igl(n)(Z) I . 

n even. 

(46) 

= 0, n odd. 

where from (2) 

r = -a +j{3, a = -Re r > O. (47) 

Suppose that (46) is true for some even n. Then from (40) 

z [it I r (s) I dS] n 
I gO(n+1)(Z) I ~ i I ret) I e-

2at 
e+

2at 
0 I dt 

o n. 

~ ~! tTl,' I res) IdS]" d[J.' I res) IdS] (48) 

[{ I res) I dsr
l 

- (n + I)! 

in agreement with (45). Substituting this result into (41), 

od[J.' I res) IdS] 
(49) 

[ t I res) I dS]n+2 
+2az 10 

= e =-------,(-n-+-2---.,.)-!-=---- , 

in agreement with (46) . Noting (42) and (43), the results of (45) and 
( 46) hold for all n by induction. 

The bounds of (45) and (46) guarantee the convergence of the series 
solutions of (44) under quite general conditions. It is readily seen that 

I G,(z) I ~ sinh [{ I res) IdS]' 

I Gl(z) I ~ e+2
., cosh [{ I res) IdS] 0 

(50) 
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The series solutions of (44) converge for all finite z, so long as the con
tinuous reflection coefficient is absolutely integrable, 

i Z , r (s) , ds < 00. (51) 

In particular, note that r(z) may contain a-functions, as in (16), so that 
the above bounds may be applied directly to the discrete case of Sec
tion 1. 

The solutions to (30) given by (44) and (40)-(43) thus converge for 
all finite z in the case of interest. However these formal mathematical 
solutions have physical significance only when the device to which they 
apply is stable, i.e., does not oscillate. In the following section we use the 
bounds of (45) and (46) to obtain a sufficient condition guaranteeing 
stability in the general case. 

IV. BOUNDS ON STABILITY - GENERAL CASE 

Consider a general amplifier described by (13) or equivalently by 
(30). Assume the total length. is given by LN. We may investigate 
stability as indicated following (8). Replace the continuous reflection 
coefficient r(z) by E·r(z), where E is a numerical parameter. Let E be 
increased from 0, and for each value of E determine the maximum value 
of the transmission gain 1 G T 1 as a function of frequency w. From (35) 
the maximum value of 1 G T 1 corresponds to the minimum value of 
1 G1(LN ) I· As E approaches a critical value, denoted above by Ec , 

1 G T Imax -7 00 and 1 G1(LN ) 'min -7 0; if Ec > 1 the original device is 
stable. 

From (40)-(44), 
00 

G1(LN ) = 1 + L:: gl(n)(LN ). (52) 
n=2 

n even 

Noting that r(z) has been temporarily replaced by E ·r(z), for sufficiently 
small E a lower bound on the magnitude of G1(LN ) is given by 

00 

, G1(LN ) , ~ 1 - I: I gl(n) (LN ) , • (53) 
n=2 

n even 

Both sides of (52) and (53) are functions of frequency w, through their 
dependence on the propagation constant (3. Using the result of (46) in 
(53), 

00 [l LN 

I E·r(s) , dSJn 
, G1(LN ) , ~ 1 - L:: i aLN 0 (54) 

n=2 n! 
n even 
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Since the expression on the right-hand side of (54) is independent of 
the propagation constant (3 and hence of the frequency w, this expression 
is also a lower bound on / G1(LN ) /min, the minimum value of / G1(LN ) / 

as a function of w. 

As E increases from 0, the lower bound on / G1(LN ) /min given by (55) 
steadily decreases, and for some particular value of E ~ Ec approaches o. 
Therefore if 

f [tN 

I ,",(s) I dsJ < e-2• LN 

n=2 n! 
(56) 

n even 

stability is guaranteed. If (56) is satisfied for E = 1, then stability is 
guaranteed for the original amplifier, with reflection coefficient r( z). 

Consequently, a sufficient stability condition for an active transmis
sion line with a general continuous reflection coefficient r(z), described 
by either (13) or (30), assuming the device to be matched at both ends, 
is given by 

f [t
N 

I ,(s) I dsJ < e-'.LN. 

n=2 n! 
(57) 

n even 

This may be written 

(58) 

or further 

[l LN ] / res) / ds 
. h2 0 1 -2aLN 

sm 2 < "2 e . 
(59) 

Finally, taking the square root of both sides of (59) we obtain 

(60) 
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or equivalently 

(61) 

as sufficient conditions for stability for a general active transmission line 
with an arbitrary continuous reflection coefficient r(z). 

We may now apply the result of (61) to the discrete case of Section I 
above by making use of the results of Section II. As noted in Section II, 
if the continuous coupling coefficient r(z) is a series of a-functions of 
the form given in (16), then the solution to (13) is identical to that for 
the discrete case, given in (3), (5), and (6). Since the stability condition 
of (61) holds true in general, it may be applied to the discrete case by 
substituting (16) into (61), yielding 

(62) 

Equation (62) is a sufficient condition for stability for a general active 
transmission line with arbitrary discrete reflectors, having reflection co
efficients Ci located at arbitrary positions along the line. Equation (62) 
is the result stated in Section I as (9). This inequality is a sufficient con
dition for stability; if the inequality is satisfied, the device must be 
stable. This condition is not necessary for stability; many devices that 
violate (62) or (9) are stable. 

The weaker bounds of (10) and (12) are readily obtained from the 
basic result of (62) or (9) by straightforward use of inequalities. From 
(62) or (9) we must have 

e-aLN 

tanh-I / Ci / < 2 sinh-I V2 i = 1,2, ... N. (63) 

Since the function y = tanh-I x is concave upward for x > 0, 

t h
-I tanh -I Xm 

an x < ·X, 
Xm 

O<x<xm <1. (64) 

Therefore, from (63), 

e-aLN 

-I 2 sinh-I 72 
tanh I Ci / < [ ] ./ Ci / • e-aLN 

tanh 2 sinh-I V2 
(65) 
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Therefore if the relation 

t. I cd ~ tanh [2 sinh -1 ~J (66) 

is satisfied, then the condition of (62) must also be satisfied, so that (66) 
is a slightly poorer sufficient condition for stability; this result was given 
in (10). Finally, since the function y = tanh [2 sinh -1 x] is concave 
downward for x > 0, 

t h [2 . h-1 ] > tanh [2 sinh -1 xm ] 
an SIn x = ·X, (67) 

Xm 

As a particular instance let us choose Xm 

(67) becomes 
(1/V2Q) = 0.2236; then 

tanh [2 sinh -1 x] ~ 1.863 x, 
1 

o ~ x ~ V20 = 0.2236. (68) 

By using (68) to decrease the right-hand side of (66), we obtain the 
slightly poorer sufficient condition for stability 

N 

L I Ci I ~ 
i=l 

e-aLN 

1.863 V2 
(69) 

= 0.932 y'2 e-aLN 
, 

given in (12). 

V. BOUNDS ON STABILITY - SPECIAL CASE, INCLUDING REFLECTORS OF 

NOMINALLY EQUAL MAGNITUDE AND SPACING 

The bounds on stability derived in Section IV in the general case 
guarantee stability for the worst possible arrangement of reflectors. 
Thus in many cases the sum of the magnitudes of the reflectors may far 
exceed the bound given by (9), (10), or (12) without causing instability. 

These general bounds guarantee stability even if we have no informa
tion whatever about the distribution of reflectors. If we do have such 
additional information, it should be possible to make use of it to find im
proved bounds. As a trivial example, in the treatment of equally spaced, 
identical reflectors in the previous paper1 exact stability conditions were 
obtained; we will see in Section VI that for this case the sum of the 
magnitudes of the reflectors at the boundary of instability may far ex
ceed that given by (9), (10), or (12). 

In the present section we consider a somewhat restricted special case 
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in which the reflection coefficient is almost uniformly distributed in a 
certain sense. We assume that 

R·(z - j) ~ foil I res) I ds ~ R·(z + g), 
(70) 

R > 0, j ~ 0, 9 ~ 0, 

where R, j, and 9 are constants. Equation (70) states that the indefinite 
integral of the absolute magnitude of the reflection coefficient is con
strained to lie between two straight lines of the same slope R, separated 
by the horizontal distance h given by 

h == f + g, h ~ 0. (71) 

It turns out that the final bounds of this section are better the smaller 
the separation h. This is to be expected, since the smaller the separation 
of the two straight lines given by the right- and left-hand sides of (70), 
the more constrained is the reflection coefficient r (z) . 

The presence of sufficient length of perfect (i.e., reflectionless) active 
line at either end will needlessly increase j and hence h in (70) and (71), 
and hence needlessly degrade the final stability condition given below. 
Such a length of perfect line cannot affect the stability, but merely alters 
the gain of the device (assuming it is stable). Therefore for purposes of 
the present stability analysis sufficient lengths of perfect active line 
should be removed from each end so that h is minimized, and hence the 
best possible bound is obtained. Removal of any additional lengths of 
perfect active line from either end will do neither good nor harm to the 
final stability condition. 

A few examples serve to illustrate the general nature of the restriction 
of (70). First suppose that r(z) is equal to a (positive) constant, 

r(z) = ro. (72) 

Then (70) is true with 

R = ro 

j = 0, 9 = ° (73) 

h == j + 9 = 0. 

The separation h [of (71)] between the straight lines of the two sides of 
the inequality of (70) is zero in this case. Equations (13) or (30) are 
readily solved exactly for the reflection coefficient of (72) by slight modi
fication of the results of (18)-(23), in particular by first replacing 
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tanh -1 Ck ~ roLl and subsequently replacing any remammg Ll's by 
Ll ~ L, where L is the total length, in these equations. From this exact 
solution precise stability conditions may be obtained for the case of 
constant (continuous) reflection coefficient; we expect the bounds of the 
present section to agree with this exact result when we set! = g = o. 

Similarly, the parameters of (73) apply to the bounds of (70) when 
the (continuous) reflection coefficient is a square wave of constant 
absolute value ro, with arbitrary transitions between the +ro and the 
- ro sections. 

The above two examples utilize a continuous reflection coefficient. 
However, our particular present interest lies in some of the discrete cases 
of the preceding paper.1 First, consider the case of identical, equally
spaced reflectors of Section II, Ref. 1; the relations of (70) are illustrated 
for this case in Fig. 2. A less-restricted case is provided by the case of 
reflectors of identical magnitude but random spacing" where the fluctua
tion in spacing is very small compared to the average spacing, treated in 
Section III of Ref. 1. The relations of (70) for this case are shown in 
Fig. 3; the randomness in spacing has resulted in a slightly wider separa-

NK 

I 
I 

4K 

3K 

2K 

lK 
o~ ____ ~ ____ ~ ____ ~ ____ ~ _______ _ 

N 

r(z)=K·L: o(z-L·1.o) 
L=l 

r(z) 

~----~----~----~----~--.-------,-~ o 3to 
z-

PARAMETERS OF EQUATION 70 

R=K/1.o f =1.0 9 = 0 

Fig. 2 - Identical, equally spaced reflectors. 

Nto 
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r(z) =K·'L (} (z-Ld 
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I I I I 

Z

PARAMETERS OF EQUATION 70 

R =K/1o f = \.2510 9 =0.41 0 

I 

Fig. 3 - Identical, randomly spaced reflectors. 

~ 

tion than in Fig. 2 between the dashed lines that enclose the staircase 
curve of 

foZ I res) Ids. 

Since in this case the magnitudes of the reflectors are strictly constant, 
the "risers" of the staircase have the same size, while the "treads" vary 
in length. It is clear that if the magnitudes as well as the spacings of the 
reflectors vary slightly, both the "risers" and the "treads" of the stair
case will vary slightly, but otherwise the behavior will be much the same 
as in Fig. 3, so that the restriction of (70) may be satisfied with small 
separation between the straight-line bounds. 

While the discrete cases of the preceding paragraph, which have re
flectors of nominally equal magnitude and spacing, are of principal in
terest here and supply the motivation for the analysis of the present 
section, discrete reflectors having quite different distributions from the 
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above may also fall within the restriction of (70) with small separation 
of the bounding lines; one such case is illustrated in Fig. 4. (Note that 
reflectors of both signs are indicated in the lower drawing of this figure, 
by o-functions with both positive and negative magnitudes.) 

The above cases, which satisfy the restriction of (70), may be re
garded as having the absolute magnitude of the reflection coefficient 
more or less constant in a certain sense, in that 

[Z I res) I ds 
• 0 

is approximately proportional to z [see (70)]. Thus we seek bounds on 
stability in the case of (70) that are similar to those obtained for constant 
reflection coefficient [see (72)]. 

We again use the solution by successive approximation given in Sec
tion III above. The discussion of (29 )-( 43) remains appropriate for our 

R'(z+gJ-, / 
'/ / 

/ 
/ 

/ >< __ z 

/ -[ Ir(sl/ds 
/ 0 

~ 
// '---R·(Z-f) 

r(z) = SUM OF a-FUNCTIONS 

z-

Fig. 4 - More general case satisfying the restrictions of (70). 
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present purposes. However, greatly improved bounds over those obtained 
in (44)-(51) may be obtained because of the additional restriction of 
(70) imposed in the present section; in contrast, the bounds of (44) -( 47) 
of Section III hold true in general, and specifically when the restriction 
of (70) is not satisfied. 

Consider the series solutions of (44). From (42) 

gl(O)(Z) = 1, 

Note also (43). We show that: 

I 01(0)(Z) I < R' (L + h)' e'·' 

I gl(n)(Z) I = 0, 

I gO(n)(Z) I = 0, 

I OO(n)(Z) I < R Ge" + h) 

gO(O)(Z) = o. 

n even, n ~ 2. 

n odd. 

n even. 

n odd. 

In (75) and (76), Rand h are the parameters of (70) and (71). 
First, from (40), (42) or (74), and (47), 

I gO(1)(z) I ~ foz e-2as I res) Ids = foz e-2as d [fo8 I ret) I dt] 

= e-'·' [ I r(t) I dt + 2" [ e-'a. [1.' I r(t) I dt] ds, 

(74) 

(75) 

(76) 

(77) 

where we have made use of integration by parts. Using (70) in (77), 
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+ R [1 -2:-'·' - ze-'·' + g(1 - e-'·')] 

= :a (1 - e -2az) + Rg < :a + R (I + g), 

313 

(78) 

where in the final step we have used thefactthatl ~ o. Finally, substitut
ing the definition of h from (71) into (78), 

I gO(1)(z) I < R (2~ + h). (79) 

Equation (79) agrees with (76) for n = 1. 
Next, from (41), (47), and (79), 

I gl("(Z) I < R C1
", + h) { e+'·' I r(s) Ids 

= R C~ + h) { e +,., d [1' I r (t) I dt] 

= R (2~ + h ) e +2., { I r (t) I dt 

(80) 

- R G", + h) 2", { e+'·' [{ I r(t) I dt] ds. 

Using (70), (80) becomes 

I gl(2)(Z) I < R2 (21a + h) e2az
. (z + g) 

- R' (L + h ) 2" { e'·' (s - J) ds 

= R' (2~ + h) r· (z + g) (81) 

_ R2 (~ + h) r1 - e
2az 

+ ziaz + 1(1 - e2aZ )] 
2a L 2a 

< R' (L + h) e'·' [21", + f + g] . 
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Finally from (71), (81) becomes 

I g1(2) (z) I < R' (21" + h)' e'·', (82) 

which agrees with (75) for n = 2. 
We now establish the bounds of (75) and (76) by induction. Suppose 

that (75) is true for some even n ~ 2. Then from (40) and (47), 

( 
1 )(nI2Hl 

R n 
- + h 

< 2a I 

(~ - 1) ! 

(83) 

where 

l
z 

[ ( ) ](nI2)-1 [1 8 

] I == 0 s + ~ - 1 h dol ret) I dt . (84) 

Integrating (84) by parts, 

[ ( ) ]

(nI2)-1 [ r ] 
I = z + ~ - 1 h J

o 
I ret) I dt 

( ) l z [ ( ) ](nI2)-2 
- ~- loS + ~- 1 h (85) 

{f I r(t) I dtJaB. 

Using (70) and (71), we have from (85) 

[ ( ) ]

(nI2)-1 

I ~ z + ~ - 1 h R(z + g) 

( ) l z [ ( ) ](nI2)-2 
- R ~ - los + ~ - 1 h (s - j) ds 

[ ( ) ]

(nI2)-1 

= Z + ~ - 1 h R(z + g) 

(Z [() ](nI2)-1 
- R.l

o 
(s - f) d s + ~ - 1 h 
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[ ( ) ]

CnI2)-1 

= z + ~ - 1 h R(z + g) 

[ ( ) ]

CnI2)-1 [( ) ]CnI2)-1 
- R(z - f) z + ~ - 1 h - Rf ~ - 1 h 

l z [ ( ) ]Cn
I
2)-1 + R 0 s + ~ - 1 h ds 

(86) 

where the last step follows from the preceding one because n ~ 2 [from 
(75)],f ~ 0 [from (70)], and h ~ 0 [from (71)]. Using the inequality 

Xk + exk
-

1 < [x + (e/k)t, 

(86) yields 

x ~ 0 and e > 0, (87) 

I < (i) [. + (~ - 1) h + h r = (~) [z + nh]"/'. (88) 

(89) 

Recalling that n is some even integer ~ 2 in (89), (89) agrees with (76). 
Next, from (41) and (47), using the result of (89) 

( 
1 

) 
<nI2l+1 

Rn+1 
_ + h 

< 2a J 

(~)! 
I gl(n+2)(Z) I (90) 
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where 

J "" f e+""(s + nh)n'2 d [f I r(t) I dtl (91) 

Integrating (91) by parts, 

.T = e
2
·,(z + nh)"'2 [f I r(t) I dt] 

- 2" f e+""(s + nh)"'2 [f I r(t) I dt] ds (92) 

- ~ f C+2·'(8 + nh) (n/2)-1 [f I r(t) I dt] ds. 

Using (70) and (71), we have from (92) 

J ~ e2az (z + nhr/2R(z + g) 

- R2a i Z 

e+2aS (s + nh)n/2 (s -j) ds 

- R !!.lz e+2aS (s + nh)(n/2)-1(s - j) ds 
12 0 

= e2az(z + nhr/2R(z + g) 

- R iZ 

(s - j) d [e+2aS (s + nhr/2] 

= e2az (z + nhr/2R(z + g) - R(z - j)e2az(z + nh)n/2 

- Rj(nh)n/2 + R iZ 

e+2aS (s + nh)n/2 ds 

= Rhe2az(z + nh)n/2 - Rj(nh)n/2 

R (h)n/2 R n 1z 
2aS( + h) (n/2)-1 d - - n - - - e s n s. 

2a 2a 2 0 

From (71), h ~ 0, so that (93) yields 

J < R (;a + h) e
2az

(z + nhr/2. 

(93) 

(94) 
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Substituting (94) into (90), 

(
1 )' [ R' (J- + h) (z + nh) r 

I gl(n+2)(Z) I < R' 2" + he'·' "(~} (95) 

Recalling that n is some even integer ~ 2 in (95), (95) agrees with (75). 
Noting (79) and (82), the results of (75) and (76) hold for an n by 
induction. 

We now use the results of (75) together with (74) to obtain bounds 
on stability for those cases where the reflection coefficient r(z) is re
stricted as in (70). This analysis is almost identical to that of Section IV, 
(52) -( 57), for the general case, modified by replacing the relation of 
(46) by that of (75). Thus, making the substitution 

[ lz/r(s)/dS]n (1 )2 
-0 -7 R2 - + h 

n! 2a 

r ( 1 ) [ ( ) ]}CnI2)-1 { R2 2a + h z + ~ - 1 h 
(96) 

throughout (54)-(57), we obtain, corresponding to (57), the following 
sufficient condition for stability in the present case, after a minor modi
fication of the summation index: 

LN is the total length of the device. The summation of (97) is found in 
closed form by the analysis given in the Appendix. Using the final result 
of the Appendix (137), the final results of this section may be sum
marized as follows: 

If the reflection coefficient r( z) (continuous, discrete, or a combination 
of both) satisfies the condition 

R·(z - j) ~lzlr(s) Ids ~ R'(z+g); 

h == j + g; 

R > 0, j ~ 0, g ~ 0 

h ~ o. 

(98a) 
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then a sufficient condition for stability of the active line (with reflection) 
IS 

(98b) 

where 

2 (1 ) 1 o=R -+h h<-
2a e 

(98c) 

and rl is given by 

rl < e. (98d) 

The results of (98) are illustrated in Fig. 5, which shows the maximum 
value of R for which stability is guaranteed by (98) versus the nominal 
total gain 20 10glO eaLN

, with 20 10glO eah as a parameter. 
A greatly simplified but slightly poorer version of the stability condi

tion of (98) may be obtained in the high-gain case. As one example, 
suppose the one-way gain of the active line exceeds 10 db, 

8.686 aLN ~ 10 db, (99) 

If 0 satisfies the sufficient stability condition of (98b), it must also 
satisfy the weaker inequality 

~ < 2ah -2aLN 

u 1 + 2ah e • 

Substituting (99) into (100), 

o < 0.1. 

From (98d), rl is a monotonic increasing function of o. Therefore 

rl < 1.118. 

Further, since from (98d) 

orl = In rl, 

orl is a monotonic increasing function of rl , so that 

Orl < 0.1118. 

Now writing out the right-hand side of (98b), 

(100) 

(101) 

(102) 

(103) 

(104) 

exp [ -2aLN (1 + ::~) ] ~ exp (-20iL N ) exp ( - I~N Or!), (l05) 
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Fig. 5 - Exact and approximate bounds on R for which stability is guaranteed. 

we investigate the exponent of the second factor on the right-hand side 
of (105). From (l00), 

LN ~ 2aLN -2aLN < 2rvLN e-2aLN 'r! . h Uri < 1 + 2ah e . r! L(, 

(106) 

The right-hand side of (106) is a monotonic decreasing function of 2aLN 
for2a"L N > 1. Therefore, substituting from (99) and (102), (106) yields 

~v or! < 0.2574. (107) 

exp [ - J~v 8r1J > 0.7731. (108) 
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Finally, using (104) and (108) in (98b), we obtain the following suf
ficient condition for stability, subject to (98a); 

R < 0.8287 1 ~a2ah e-
cxLN

; 8.686aLN ~ 10 db. (109) 

The stability condition of (109) is slightly poorer than the stability con
dition of (98b), (98c) , and (98d) , from which it was derived. As the lower 
bound on the gain of the active line increases beyond 10 db and ap
proaches 00, the numerical factor 0.8287 in (109) increases and ap
proaches 1. Equation (109) or a similar result is useful in illustrating the 
general behavior; however calculations using the basic result of (98) are 
straightforward. The result of (109), with the numerical factor 0.8287 ~ 1, 
is also shown as the dashed curves of Fig. 5, illustrating the way in 
which this approximate stability condition approaches the exact result 
of (98) in the high-gain case. 

VI. EXAMPLES AND DISCUSSION 

Consider first an active line with two discrete reflectors of equal mag
nitude c at the ends of the line, Z = 0 and Z = L 2 • C is of course real; 
for convenience we assume c > O. In this simple case the exact stability 
condition is readily found, and may be compared with the two bounds 
derived above. From (8) of Section I, the transmission gain of this de
vice in the stable region is 

where from (1)-(7) 

1 
G T =-, 

Xu 
(110) 

(111) 

The condition for stability is readily found as described following (8) 
[this procedure is similar to that used in Section IV, (52)-(57), and 
Section V, (96)-(97), in obtaining bounds on stability]. Replacing c 

by EC, where E is a numerical parameter greater than 0, and using (2), 

(112) 

For small enough E the minimum value of Xu , and hence the maximum 
value of gain G T of (110), occurs at 

(113) 
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Hence 

I I -2aL2[1 ()2 +2aL 2] Xu min = e - EC e . ( 114) 

As E increases from zero, instability will take place at a value of E for 
which 

I Xu Imin = 0, 
( 115) 

Hence the original device (with E = 1) will be stable if 

c < e-aL2
• (116) 

Equation (116) is an exact condition for stability for the active line 
described above, with two equal reflectors at tl:e ends. We now comr:are 
this exact result with the bounds described above. 

Consider first the bound of (9) or (62). This result is a sufficient con
dition for stability for any arbitrary distribution of discrete reflectors, 
and so must apply to the special case above. Setting N = 2, Cl = C2 = c, 
this general bound guarantees stability if 

- aL 2 

h- 1 • h-1 e tan C < sm V2 . (117) 

Equation (117) yields 

(118) 

as a sufficient condition for stability for an active device with two equal 
reflectors of magnitude c at the ends. Comparing the bound of (118) 
with the exact stability condition of (116), we see that the general 
bound of (9) or (62) is conservative in the present special case; i.e., 
the device with two equal reflectors at the ends remains stable for the 
reflector magnitude c larger than that guaranteed by the general bound 
of (9) or (62) by a numerical factor that varies from V3 to V2 as the 
gain aL2 varies from ° to 00. Therefore the general bound on stability 
given in (9) or (62) cannot be improved by a factor greater than V2 
[i.e., this factor to multiply the right-hand side of (9) or (62)]; of course 
it may be that no improvement at all is possible, and that some distribu
tion of reflectors can be found for which (9) is satisfied as an equality at 
the boundary of instability. 

Next, consider the bound of Section V, (98), applied to the above 
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special case, i.e., two discrete reflectors of identical magnitude c at the 
ends of the active line. In (98) we set h = L z , R = (tanh-1 c)/L2 , 

to yield the following (precise) bound on stability: 

(119a) 

where 

s: == (t h-1 )2.1 + 2aL2 
u an c 2aL

2 
(119b) 

and rl is given by 

( 119c) 

The bound on c for stability is readily determined numerically from 
(119) as a function of aL2 • However, when the one-way gain of the active 
line is large, aL2 » 1, the bound of (98) takes on the form of (109), 
with the numerical factor 0.8287 ~ 1 since aL2 » 1 (i.e., the gain is 
taken to be very large, not simply greater than 10 db). Thus the ap
proximate bound on stability in the present case becomes 

t h-l '" 2aL2 - aL 2 

an c < 1 + 2aL
2 

e ; (120) 

The symbol <: indicates that the relation of (120) is not a precise bound, 
but merely gives a good numerical approximation to the precise bound 
if aL2 is large enough. Comparison of the (imprecise) bound of (120) 
with the exact stability condition of (116) shows that in the high-gain 
case, aL2 » 1, where c « 1, the specialized bound of Section V, (98), 
yields bounds on the magnitude of the reflection c in the present special 
case (two equal reflectors at the ends of the active line) that approach 
those of the exact condition for stability. Consequently the bounds of 
(98) cannot be further improved (in their present form). 

The case of N identical, equally spaced reflectors was studied in Sec
n of Ref. 1, where simple expressions for stability were found in the high
gain case. If the total gain is large and the gain per section small, com
parison of (109) (with the factor 0 .8287 ~ 1) and (98a) with (43) of 
Ref. 1 shows again that the bound on stability of (98) cannot be 
further improved. It is of interest to see how close the bounds of (98) 
come to the exact value corresponding to instability in a few cases of 
interest. For this purpose we consider examples (i), (ii) , and (iii) of 
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Section II, Ref. 1. In (98) we set 

h = l, R 
tanh- l c 

l 
(121) 

and compute upper bounds on I c I that guarantee stability. It is also of 
interest to compare the general bound of (9) or (62) for this case. 
Table I summarizes these results. The bounds of (98) are quite good 
when the total gain is high, aLN » 1, and when the gain corresponding 
to the distance l is small, al « 1; for these conditions the stability condi
tion of (98) gives much better results than the more general stability 
condition of (9), because in the former we have made use of additional 
information regarding the distribution of reflectors. 

TABLE I - IDENTICAL, EQUALLY SPACED REFLECTORS 

N = number of reflectors 
Gain (db) = 20 loglo eNal == 20 loglo eaLN = one-way gain of active line 

in db 
I C 'max = maximum value of Ie' for stability, as determined in Section 

II, Ref. 1 
Bound on Ie' - (98) = maximum value of 'c , for which stability is 

guaranteed by (98) 
Bound on 'c I - (9) or (62) = maximum value of 'c , for which sta

bility is guaranteed by (9) or (62). 

Case N Gain, db Ie Imax Bound on I c I Bound on I c I 
(Sec. II, Ref. 1) (Sec. II, Ref. 1) (98) (9) or (62) 

(i) 30 30 0.00860 0.00590 0.00149 
(ii) 300 30 0.000860 0.000710 0.000149 

(iii) 50 5 0.0650t 0.01105 0.0130 

t Note that for this case in Ref. 1 the high-gain approximation given there was 
inappropriate, so that this result was obtained by use of a computer. 

Finally, we consider the application of the above stability conditions 
to some of the problems involving random reflectors studied in Ref. 1. 
The stability of the various deterministic cases discussed above in the 
present section has been treated exactly here or in Ref. 1 without using 
the new results of the present paper; these cases have been discussed in 
the present section both to show that any possible improvement in these 
general stability conditions must be quite small, and to provide partial 
confirmation of these results. However, the application of (9) and (98) 
to cases involving random reflectors provides the principal motivation 
for the present analysis, since no other information whatever is available 
regarding stability in these cases. 

Let us consider the example of the first part of Section IV, Ref. 1, in 
which the average normalized loss and the rms loss fluctuation were 
determined for an amplifier with reflections having identical magnitude 
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but random spacing. The following parameters were chosen for this 
illustration: 

lk = spacing between (k - l)th and kth reflectors [(3) and Fig. 1] 
lo = (lk), average value of lk , independent of k 
Ck = magnitude of kth reflection coefficient [( 3) and Fig. 1] 
Ck = Co ; all reflectors identical, Co > 0 (122) 
N = 30, number of sections 
20 10glO eNa10 = 30 db, nominal total gain 
20 10glO ea10 = 1 db, nominal gain per section. 

The following assumptions were made in these calculations of Ref. 1: 
(a) lk is always a large number of wavelengths; 

(3lo » 27r. (123) 

(b) The distribution of the lk about their mean lo is very narrow with 
respect to the mean, but wide compared to 27r / {3; further, this 
distribution is smooth and symmetrical about lo . 

The probability density for lk did not have to be further specified for 
the calculation of average loss and rms loss fluctuation in Ref. 1. (Note 
however that in the calculations of Ref. 1 for the covariance of the loss, 
the specific form of the probability density for lk must be known, and 
was assumed to be Gaussian in Ref. 1.) The average loss and the rms 
loss fluctuation for the amplifier of (122) were given in Fig. 9 of Ref. 1 
versus co, the magnitude of the reflections. These curves were shown 
dotted for Co > 0.00860, because it was known that instability is possible 
in this range, in particular for lk = lo, i.e., equally spaced reflectors [see 
Section II, Ref. 1 and case (i), Table I]. However it was noted that this 
was only a symbolic reminder of the unsolved question of stability; these 
results are valid for small enough Co, but how small was not known from 
the results of Ref. 1. 

We illustrate the utility of the results of the present paper by applying 
them to this problem; these results provide useful information concern
ing stability in this case, and of course in many similar problems. For 
convenience we make one further assumption in addition to those 
mentioned following (122) : 

(c) The distribution of lk about its mean lo is strictly bounded; in 
particular 

Ilk - lo I ~ vlo ; 

further, we assume for convenience that 

v < 1. 

(124) 

(125) 
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v is in (124) the upper bound on the fractional deviation in spacing from 
its average value; the restriction of (125) requires that lk ~ 0, and so 
prevents the order of the reflectors from being altered. In practical cases 
we will be interested in small values of v, 

v« 1. (126) 

We determine upper bounds on the reflector magnitude Co that guaran
tee stability, as a function of v, the maximum fractional deviation in 
spacing between reflectors. For v = 0 the reflectors are equally spaced; 
Ref. 1 or Table I shows that stability is guaranteed if 

Co < 0.00860, v = o. (127) 

Next, the bound of (9) guarantees stability independently of the par
ticular distribution of reflectors. Eince however the total length may 
vary somewhat, we must in (9) set 

LN == Lao = 30lo(1 + v), (128) 

yielding 

Co < 0.00149(0.03162r (129) 

as a sufficient stability condition. 
Finally, we apply the bound of (98) to this example. We set 

R = tanh-
1 

Co 

lo 
(130) 

h = (1 + 60v)lo (131) 

and make use of (128) in (98) to obtain a sufficient stability condition. 
The sufficient stability conditions of (127), (129), and (98) are 

plotted in Fig. 6; the result of (129) is identified as originating from (9), 
and that of (127) from Section II of Ref. 1. The curves of Fig. 6 have 
been plotted out to fractional spacing variations v of 10 per cent; over 
this region the stability condition of (98) is superior to that of (9). 
However the bound of (9) [i.e., (129)] will be superior to that of (98) 
for large enough v. Note that the factor (0.03162f in (129) arises from 
the fact that the total length and hence the total gain is subject to 
statistical fluctuation [a similar factor occurs in using (98) for the 
problem]; in the range of probable interest, i.e., for very small fractional 
spacing fluctuations v, this numerical factor will be close to 1. The fact 
that the limit of the bound of (98) as v ~ 0 is substantially below the 
maximum value of Co given by (127) is due to the fact that the nominal 
gain per section in the example of (122) is 1 db, which is not too small; 
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as the gain per section decreases these two quantities win approach each 
other, as indicated above. 

These results, plotted on Fig. 6, show that the range of Co over which 
the calculations of Section IV of Ref. 1 are guaranteed to be valid. If the 
maximum fractional variation in the spacing between reflectors is very 
small, then the results plotted on Fig. 9 of Ref. 1 are valid for Co up to 
approximately 0.00590. 

The stability conditions of (9) and (98) may be applied to a variety 
of similar problems. In the above example we have found the maximum 
value of Co for which stability is guaranteed, i.e., for which the probability 
of oscillation is zero, as a function of the maximum departure of the 
spacing between reflectors from its average value. The results of (9) 
and (98) may also be used to determine an upper bound on the proba
bility of oscillation in similar problems where no absolute guarantee of 
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stability can be given, e.g., perhaps in cases where the probability dis
tribution for the spacing deviations is not strictly bounded. 

The main emphasis of the present paper has been on the discrete 
case; the continuous case was introduced only as an intermediate step 
leading to the desired results. However, it is clear that related problems 
with continuous reflection may be studied for stability using the general 
results derived above. 

Finally, the present calculations have assumed for definiteness a rather 
special model; i.e., the forward and backward gains have been assumed 
equal and a particular form has been taken for the matrix of the dis
crete reflectors. These assumptions are not essential to the analysis; 
similar results can be derived for many related cases of interest, such as 
systems using isolators to partially attenuate the backward waves, etc. 
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APPENDIX 

Summation of the Series S = t (z + ont 
n=O n! 

The summation of (97) was initially performed by a method suggested 
by S. O. Rice, employing contour integration; this method is straight
forward but lengthy. A much shorter analysis presented by the unknown 
referee is given here. It has been shown that6 

00 ( b)n-l 
eax = 1 + L a a - n yn 

n=l n! 
(132) 

where 

y = xebx and I yb I < (lIe). (133) 

Differentiate (132) with respect to y and then set y = 1 to obtain 

e(a-blx t [(a - b) - nbr 
1 + bx - n=O n! 

(134) 

where 

x = e-bx and I b I < (lIe). (135) 
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Finally, set 

a z - 0, b -0, x (136) 

to obtain 

:t (z + on)n 
n=O n! 

where rl is given by (137) 

rl < e. 

REFERENCES 

1. Rowe, H. E., Imperfections in Active Transmission Lines, B.S.T.J., this issue, 
p.261. 

2. Rowe, H. E., and Warters, W. D., Transmission in Multimode Waveguide with 
Random Imperfections, B.S.T.J., 41, May, 1962, pp. 1031-1170. See particu
larly Sections 2.3.2 and 2.3.3. 

3. Rowe, H. E., Approximate Solutions for the Coupled Line Equations, B.S.T .J. 
41, May, 1962, pp. 1011-1029. 

4. Ince, E. L., Ordinary Differential Equations, Dover, New York, N. Y., 1956. 
5. Bellman, R., Stability Theory of Differential Equations, McGraw-Hill, New 

York, N. Y., 1953. 
6. Bromwich, T. J. I'a., An Introduction to the Theory of Infinite Series, Mac

millan, N. Y., 1955. 



Contributors to This Issue 
JOHN W. BALDE, B.S.E.E., 1943, Rensselaer Polytechnic Institute; 

Western Electric Company, 1943-.lVIr. Balde's early work at Western 
Electric and at Bell Laboratories was in the development of airborne radar 
and computer systems and auxiliary test equipment. From 1957-1959, 
he served as a member of the teaching staff of the Western Electric 
Graduate Engineering Training School. Since 1959, he has been engaged 
in thin film process research at the Western Electric Engineering Re
search Center at Princeton, where he is currently a research leader in 
thin film evaluation. Member, Sigma Xi. 

R. D. BARNARD, B.E.E., 1952, and M.E.E., 1955, Polytechnic Institute 
of Brooklyn; Ph.D., 1959, Case Institute of Technology; Bell Telephone 
Laboratories, 1959-61; faculty, Wayne State University, 1961-62; 
Bell Telephone Laboratories, 1962-. Presently, he is primarily con
cerned with theoretical problems in signal theory and control. Member, 
IEEE, American Physical Society, Sigma Xi, Eta Kappa Nu and Tau 
Beta Pi. 

SIDNEY S. CHARSCHAN, B.S.M.E., 1949, Columbia University; West
ern Electric Company, 1951-. Mr. Charschan's early work was in 
plastics development, where he was associated with the first cast resin 
and glass reinforced plastics designs. In 1958, he transferred to the West
ern Electric Engineering Research Center, Princeton, N. J., where, at 
present, he is a research leader for a group working on the development 
of special vacuum systems. He is a registered professional engineer of 
the State of New York. 

L. A. D'AsARO, B.S., 1949, and lV1.S., 1950, Northwestern University, 
Ph.D., 1955, Cornell University, Bell Telephone Laboratories, 1955-. 
IVIr. D'Asaro's work at Bell Laboratories has been mainly concerned 
with exploratory development of semiconductor devices. These have in
cluded PNPN switches, the stepping transistor, Esaki diodes and gallium 
arsenide lasers. He is at present supervising work on high-speed diodes. 

329 



330 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

Member, American Physical Society, IEEE, Sigma Xi, and Phi Beta 
Kappa. 

JOHN J. DINEEN, B.S.E.E., 1957, Northeastern University; Bell 
Telephone Laboratories, 1957-1958; Western Electric Company, 1958-. 
Mr. Dineen was first engaged in closed-circuit television systems studies 
and later in the development of a microwave radar receiver for the Nike 
Zeus system. He went to Western Electric's Engineering Research 
Center at Princeton, N. J., in 1960, where he conducted manufacturing 
process systems studies. lVlore recently he has engaged in the evaluation 
and analysis of thin film manufacturing processing systems. He is cur
rently attending the Western Electric Company-Lehigh University 
Masters Degree Program and is majoring in operations research. l\1em
ber~ IEEE, Tau Beta Pi and Eta Kappa N u. 

ALEXANDER FEINER, M.S. (Electrical Engineering), 1952, Columbia 
University; Bell Telephone Laboratories, 1953-. He has been engaged 
in the application of electronic techniques to switching. He presently 
heads a department responsible for development of switching networks, 
trunks and scanners, and for transmission aspects of No.1 ESS. Member, 
Sigma Xi. 

DAWON KAHNG, B.Sc., 1955, Seoul University (Korea); l\1.Sc., 1956 
and Ph.D., 1959, Ohio State University; Bell Telephone Laboratories, 
1959-. He has been engaged in exploratory studies of surface field 
effect transistors and epitaxial film doping profiles. l\1ore recently, he 
has been engaged in hot electron device research and development of 
surface barrier microwave diodes. Member, IEEE, Sigma Xi, and Pi M u 
Epsilon. 

ARTHUR C. KELLER, B.S., Cooper Union, 1923; M.S., Yale University, 
1925; E.E., Cooper Union, 1926, Columbia University, 1926-1930; 
Western Electric Company, 1917-1925; Bell Telephone Laboratories, 
1925-. He is at present Director, Switching Apparatus Laboratory, 
having previously been Director of Component Development, Director, 
Switching Systems Development, and Director of Switching Apparatus 
Development. Mr. Keller's experience in the Bell System includes 
development and design of electromechanical devices, sound recording 
and reproducing apparatus, electronic heating and sputtering equipment, 
telephone switching apparatus and systems, and, during World War II, 
sonar equipment and systems; he holds patents in all of these fields. The 



CONTRIBUTORS TO THIS ISSUE 331 

division which he heads is responsible for exploratory studies of and the 
development, design, and preparation for manufacture of electromechan
ical switching apparatus for telephone systems. 

JVlember, American Physical Society, Yale Engineering Association, 
SJVIPTE, and Society for Experimental Stress Analysis; Fellow, IEEE 
and Acoustical Society of America. For his contributions to sonar, he 
received two U.S. Navy citations. In 1962 he received the Emile Berliner 
Award of the Audio Engineering Society. In 1963 he was elected to the 
Board of Directors of the Waukesha IVlotor Co. 

PETER LINHART, B.A., 1948, Princeton University; M.A., 1950, 
University of California, Berkeley; Ph.D., 1963, Columbia University; 
Bell Telephone Laboratories, 1956-. Mr. Linhart was first engaged in 
systems engineering work relating to electronic switching. He later did 
mathematical studies of various remote line concentrators compatible 
with various switching systems - e.g., a concentrator switch consisting 
of a random slip with common overflow group. His present work con
cerns patterns of test calls for a specific distributed remote line con
centrator. 

SAMUEL P. JVIORGAN, B.S., 1943, JV1.S., 1944, and Ph.D., 1947, Cali
fornia Institute of Technology; Bell Telephone Laboratories, 1947-. A 
research mathematician, Mr. Morgan has been particularly concerned 
with the applications of electromagnetic theory to microwave and other 
problems. As Head, JVlathematical Physics Department, he now super
vises a research group in various fields of mathematical physics. Fellow, 
IEEE; member, American Physical Society, Sigma Xi, Tau Beta Pi and 
A.A.A.S. 

D. J. NEWMAN, B.A., 1951, New York University; PH.D., 1958, Har
vard University. Dr. Newman worked as an industrial mathematician 
from 1953 to 1957. Instructor and lecturer, JVlassachusetts Institute of 
Technology, 1957-59; Assistant Professor of Mathematics, Brown Uni
versity, 1959-60; Associate Professor of IVlathematics, Yeshiva Uni
versity, 1960-. He has been a mathematical consultant to Bell Labora
tories since January, 1961. Member, Mathematical Association of 
America and American Mathematical Society. 

HARRISON E. ROWE, B.S., 1948, JV1.S., 1950, and Sc.D., 1952, M.LT.; 
Bell Telephone Laboratories, 1952-. He was initially associated with 
a group engaged in systems research. He later worked on mode conver-



332 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1964 

sian problems arising in multimode waveguides. Presently, he is con
cerned with problems relating to optical systems. Member, lEE E, 
Sigma Xi, Tau Beta Pi, and Eta Kappa Nu. 

IRWIN W. SANDBERG, B.E.E., 1955, M.E.E., 1956, and D.E.E., 1958, 
Polytechnic Institute of Brooklyn; Bell Telephone Laboratories, 1958-. 
He has been concerned with analysis of military systems, particularly 
radar systems, and with synthesis and analysis of active and time
varying networks. He is currently involved in a study of the signal
theoretic properties of nonlinear systems. Member, IEEE, Society for 
Industrial and Applied Mathematics, Eta Kappa Nu, Sigma Xi and 
Tau Beta Pi. 

ERLING D. SUNDE, Dipl. Ing., 1926, Technische Hochschule, Darm
stadt, Germany; American Telephone and Telegraph Co., 1927-1934; 
Bell Telephone Laboratories, 1934-. He has made theoretical and 
experimental studies of inductive interference from railway and power 
systems, lightning protection of the telephone plant, and fundamental 
transmission studies in connection with the use of pulse modulation 
systems. He is the author of Earth Conduction Effects in Transmission 
Systems, a Bell Laboratories Series book. Fellow, IEEE; member, 
A.A.A.S., American Mathematical Society. 



B.S.T.J. BRIEFS 

Quantum Efficiency of the 
Green and Red Electroluminescence of GaP 

By A. Pfahnl 

(Manuscript received November 19, 1963) 

Gallium phosphide crystals were grown from polycrystalline material 
in a solution of gallium contained in evacuated and sealed-off quartz 
tubes. 1 For the regrowth, the tube with the GaP-Ga mixture was heated 
to 1250°C and cooled at a rate of 1.5°C per minute. After separation of 
the GaP crystals from the adherent Ga, Zn was diffused into the crystals, 

Fig. 1 - Red electroluminescent gallium phosphide crystal photographed in its 
own light; p-n junction prepared by diffusion of Zn at 800°C for four hours. Length 
of the straight side of the crystal about 1.5 mm. 
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leading to red (7000 A) electroluminescent junctions. The diffusion was 
done in an evacuated and sealed-off quartz tubp, using as a source2 a 
Zn + GaP mixture. The efficiency of the emission was determined with 
an integrating sphere and a photomultiplier with 8-1 response calibrated 
in absolute units, and was found at room temperature to be about 
1.0 X 10-3 photons per electron for the best samples. Red electrolumines
cence in GaP was previously reported to have efficiencies of about 10-4 

(see Ref. 3) and 10-4 - 10-3 (see Ref. 4). 
If silver contacts are alloyed onto the rough side of the solution-re

grown GaP crystals, green electroluminescence can frequently be ob
served at the contact area. Th~ efficiency of the green emission was 
found to be 4 X 10-5 photons (5550 A) at 3000 K observed outside the 
crystal per recombining electron-hole pair for the best samples. This com
pares with efficiencies of 3 X 10-5 measured by Gershenzon et al. 5 and 
efficiencies smaller than 10-4 as indicated by Allen et a1. 3 

The figure shows one of the red electroluminescent crystals with a Zn
diffused junction photographed in its own electroluminescent light. 
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~!{atching of Optical ~1odes 

By H. Kogelnik 

(Manuscript received November 19, 1963) 

In experiments with coherent laser light it is frequently necessary to 
transform a given Gaussian beam1 ,2 into a Gaussian beam with certain 
desired parameters. It is required, for example, to transform the light 
beam emerging from a laser. oscillating in a fundamental mode in order 
to provide for optimum injection into a light transmission line2 ,3 (con
sisting of a sequence of lenses), or for optimum coupling into a spherical 
mirror interferometer.4 In these cases one has to "match" the incoming 
beam to the natural mode of the system in question. Lenses inserted in 
the beam perform the matching transformation. The design of a match-



B.S.T.J. BRIEFS 335 

ing configuration has to take full account of the lawsI ,2,3 that govern 
optical modes. This leads to a somewhat complex analysis. 5 The results, 
however, are quite simple matching formulae which are presented in 
this brief. A matching experiment is described for illustration. 

The given beam is characterized by its minimum beam radiusI ,6 (spot 
size) WI and by the location of the beam waist. The problem is to trans
form this beam into another with a minimum radius W2 . The quantities 
WI and W2 determine a characteristic "matching length" 10 given by 

(1) 

where A is the wavelength. One beam is transformed into the other if a 
lens with a focal length 1 larger than 10 is spaced between the two beam 
minima as shown in Fig. 1. The distances d1 and d2 between the lens and 
the beam minima have to satisfy the following matching conditions 

d l 1 ± WI 11 _102 

(2) 7- W2 P 

d2 1 ± W211 _ 10
2 

(3) 7- WI f2 

where the same sign should be used in both equations. From (2) and (3) 
it follows that matching is not possible if 1 < 10 . If one chooses 1 = 10 
then dl = 10 and d2 = 10 ; the beam minima are located in the two focal 
planes of the lens. 

When one uses more than one lens to achieve the desired beam trans
formation, the above matching formulae are still applicable. Then 1 is the 
focal length of the lens combination, and d1 and d 2 are measured from 
the principal planes. If the modes of two given optical systems are to be 
matched, one need not evaluate the beam parameters WI and W2 , which 
are functions1 , 6 of A and the system parameters: the matching parame-

f 

Fig. 1 - Matching configuration. 
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ters 10 , Wi , d] , and d2 are independent of A and can be expressed III 
W2 

terms of the system parameters alone. 
In our experimental study the light beam was taken from a He-Ne 

gas laser oscillating in a fundamental mode at A = 0.63 micron. The 
laser cavity consisted of a concave mirror of 1 meter focal length and a 
flat output mirror. The mirror spacing was 1.7 meters. The (minimum) 
beam radius at the flat is computed! as Wi = 0.37 mm. This beam was 
passed through a matching lens and then injected through a slit into a 
mirror system formed by two concave mirrors of 12.5 meters focal length 

(a) (b) 

(c) (d) 

Fig. 2 - Photographs of beam spots on mirror. 

spaced 50 centimeters apart. The injection angle was so chosen that the 
beam was reflected back and forth between the mirrors many times be
fore it was finally intercepted, with the points of beam impact on each 
mirror forming a circular pattern. Such a beam configuration was 
described and analyzed in Ref. 7. As the beam passes back and forth 
between the mirrors its radius is changed in the same way as for trans
mission through a sequence of lenses2,3,8 with corresponding parameters. 
The minimum beam radius of a fundamental mode of this sequence is 
computed as W2 = 0.7 mm. 

From the above data one obtains a matching length of 10 = 1.3 meters. 
A lens of a focal length of f = 1.3 meters was available and was used as 
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matching lens. 'Therefore, spacings dt = d2 = .io = .r = 1.3 meters were 
required for matching. 

A mirror of the multiple-pass system was slightly transparent and 
Fig. 2 shows photographs of the beam-impact points taken through this 
mirror. In Fig. 2(a) the arrow marks the point where the injected beam 
strikes the mirror first. After one return trip the point of impact is the 
neighboring point to the right. Subsequent impact points after a cor
responding number of return trips appear counterclockwise on a circle. 
The beam was intercepted after 14 return trips. For illustration we show 
Fig. 2(b), where the beam was intercepted after 12 return trips. In both 
cases mode-matching conditions were fulfilled and all beam radii at im
pact are seen to be the same. In Fig. 2 ( c) one can see how the beam radii 
at the mirror vary periodically9 if some mismatch is introduced: the 
spacing d t was misadjusted by about 25 em. Fig. 2(d) shows the elliptical 
pattern obtained for another injection angle. Here the modes were 
matched again and all beam spots are of equal size. 
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