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Design of a ISO-megacycle Pocket 
Receiver for the BELLBOY Personal 

Signaling System 

By A. E. KERWIEN and L. H. STEIFF 
(Manuscript received January 28, 1963) 

A highly sensitive pocket receiver with a code-responsive signaling device 
has been designed for the iSO-megacycle BELLBO Y personal signaling 
system. Ten transistors in a single-IF, superheterodyne receiver circuit con­
vert the Fll! signaling wave to produce excitation of a sound generator through 
a tuned reed selector circuit. Printed wiring and novel packaging techniques 
are employed to produce a receiver of acceptable size and weight. A recharge­
able battery with provision for home charging or a primary battery is used 
for power supply. 

A discussion of design problems and an analysis of circuit performance is 
included. Sensitivity sufficient to signal in a 20-microvolt per meter field is 
achieved. 

r. INTRODUCTION 

This paper will describe the electrical and physical features of the 55A 
radio receiver and certain associated apparatus, which were designed for 
use in BELLBOY personal signaling systems operating in the 150-mega­
cycle common carrier band of frequencies. The receiver is pocket-sized 
and provides, in effect, an extension of the telephone bell to the cus­
tomer's pocket so that he may be alerted while away from his office, 
home, or base location. An incoming signal, bearing the customer's 
specific code, triggers the receiver. The receiver then emits a continuous 
tone, in response to which the customer calls his base telephone to re­
ceive his message, or responds in some other prearranged manner. 

The requirements and applications of this service have been covered 
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in a previous paper.l In the present paper, discussion is concerned with 
the requirements placed on size, cost, and performance of the receiver, 
and the various circuit and equipment features which were used to 
achieve these ends. Major problems encountered in both the electrical 
and mechanical design are discussed in some detail, and an analysis of 
the circuit performance is included. 

The 55A radio receiver is a ten-transistor superheterodyne circuit 
packaged in a molded plastic case. It has a self-contained antenna and is 
powered by a battery mounted in a detachable case. When a recharge­
able battery is used, a charger is provided, which will accept the battery 
case and permit the battery to be charged by placing the assembly in 
any convenient 117 -volt ac outlet. 

II. OBJECTIVES 

To meet system objectives for personal signaling service, the receiver 
must be able to respond to a calling signal when hand-held or pocket­
borne, when located within or outside of buildings, whether some dis­
tance from or close to the transmitter site, and in many and varied en­
vironments. The receiver must therefore be very sensitive. It must also 
possess good stability against temperature variations, against shock and 
vibration of transportation or handling, and against normal drift in volt­
age of the battery source. 

In addition to the above general requirements, the following per­
formance objectives were set on the receiver: 

(a) The receiver should be designed to permit reception on any as­
signed channel in the frequency range from 152.51 to 152.81 megacycles. * 

(b) The receiver should respond to a carrier frequency which is fre­
quency-modulated with three audio-frequency tones, simultaneously ap­
plied, each at a deviation of 1.3 kilocycles. Each receiver must respond 
to only one combination of tones sent out from the base transmitter. (In 
a fully loaded system, 3200 useful codesl are derived from the combina­
tions of the three out of thirty-two available tone frequencies in the 
range from 500 to 1000 cycles.) 

(c) The local oscillator of each receiver must possess a frequency sta­
bilityof ±0.0005 per cent, or better. (The base transmitter frequency is 
maintained to ±0.0001 per cent, or one part per million.) 

(d) The receiver must respond to this specified wave for any environ­
mental field strength between 26 and 100 db above one microvolt per 
meter. 

* The actual receiver is capable of being tuned to frequencies somewhat be­
yond this range, but performance in such circumstances would be subject to 
restrictions, especially regarding occupancy of the image frequency band. 
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(e) With 30-kc channel spacing, the receiver must have a selectivity 
of at least 80 db against an adjacent channel carrier. 

(f) All requirements should be met in an ambient temperature range 
from 50 to 110 degrees F. 

(g) Radiation from the receiver must meet requirements of Part 15 
of the FCC rules governing restricted radiation devices. For the fre­
quencies of interest in this receiver, these requirements are: the field due 
to the 75-mc local oscillator must not exceed 50 ,uv/m at a distance of 
100 feet. The field due to the 150-mc conversion frequency must not 
exceed 100 ,uv /m at a distance of 100 feet. 

(h) In addition to the FCC requirements, radiation from the receiver 
must not be strong enough to cause the sensitivity of a second similar 
receiver at 5 feet distance to be reduced by more than 6 db. 

(i) The receiver should operate from a self-contained, rechargeable 
battery with provisions for home charging. The receiver should operate 
without recharging the battery for at least 10 hours. As an alternate the 
receiver should operate from a disposable battery, which should provide 
at least 75 hours of operation before replacement. 

(j) The signaling sound output of the receiver, when it is carried in an 
inside pocket, should be clearly audible in a reasonably strong noise en­
vironment. 

The needs of the customer, as well as economic considerations, af­
fected the design of the receiver package. To suit the customer, who 
must carry the receiver, it needed to be as small and light as possible, 
and attractive as well. It was required to be completely self-contained, 
with no appended antenna or battery box. However, the cost and ease 
of manufacture, as well as reliability in operation and ease of repair, are 
factors which tended to place a limit on the smallness and compactness 
of so complex a unit. Naturally, the final design represents an economi­
cally feasible compromise between these opposing influences. 

Such objectives naturally posed very difficult design problems. The 
premium on small size and weight limited the available power from the 
battery. Therefore, to obtain a suitable interval of service before re­
charge, the current drain of the receiver had to be minimized. Also, the 
size and number of circuit components had to be kept small, which called 
for utmost simplification of the circuits. 

III. ELECTRICAL DESIGN FEATURES 

3.1 General Circuit Description 

The selectivity and sensitivity requirements dictated the choice of a 
superheterodyne circuit with at least one low intermediate frequency. In 
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the early work, conventional approaches using either a crystal filter or an 
electromechanical filter were explored, but the complexity and large 
number of components involved seemed contradictory in the face of 
space and cost limitations. Therefore a less conventional solution involv­
ing a single, very low intermediate frequency was adopted. 

The circuit of the receiver is considered for convenience of discussion 
as consisting of the following major parts: RF circuits, IF circuits, dis­
criminator, reed circuit and sound oscillator. These sections will be de­
scribed briefly, referring to the circuit schematics, Figs. 1 to 4. 

The RF circuit (Fig. 1) consists of the antenna, two RF amplifier 
stages, the RF mixer, and the local oscillator. Shielding is indicated by 
the broken lines. The output of the mixer is the 6-kilocycle IF, which is 
delivered to the IF amplifier. The first IF stage is included within the 
shielding of the RF compartment. In the IF circuits (Fig. 2), the input 
signal is amplified by one transistor amplifier, passed through a low-pass 
filter which acts as the IF filter, and is then amplified by two more IF 
amplifiers. The fourth IF stage is operated as a limiter. Thh: stage is an 
overloaded amplifier which, for medium to strong signals, produces a 
square-wave-like output. This output is delivered to the discriminator 
(FM detector), shown in Fig. 3. The audio output from the discriminator 
is passed on to the reed circuits (Fig. 4). Here the tone content is ampli­
fied to a strength sufficient to operate the tuned armatures of the reed 
selector units.2 Only when the signal contains the proper code will all 
three reeds be simultaneously stimulated. In that case, a circuit through 
the reed contacts delivers an impulse to the sounder circuit, which 
triggers it into oscillation. This causes an audio transducer to emit a 
continuous tone which signals the customer. To stop the audio sound 
output, the user must operate a miniature pushbutton, which then re­
sets the circuit and places the receiver in readiness for the next call. 

3.2 IF Plan 

While the use of a single conversion and the low (6-kc) intermediate 
frequency in this receiver was a practical solution to the space and cost 
problem, it brought with it an interesting set of associated problems, some 
advantages and some disadvantages. One advantage was that the IF 
filter became a simple low-pass structure, inexpensive when compared 
to an electromechanical or crystal bandpass filter which would be re­
quired for a higher IF. Also, the IF amplifier could be designed to use 
relatively inexpensive alloy junction transistors. From an interference 
standpoint, the single, low IF remains an advantage only as long as its 
lone image response falls in an unoccupied space in the spectrum. The 
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choice of the 6-kc IF frequency was predicated on the assumed use by 
this service of one of the common-carrier mobile channels. Thus the 
image frequency, which is spaced 12 kc from the received carrier, falls 
within a channel width of ± 15 kc (see Fig. 5). 

Conventional superheterodyne receivers, with intermediate frequencies 
considerably higher than that used herein, obtain image rejection by 
means of RF selectivity. Such selectivity eliminates thermal noise con­
tributions in the vicinity of the image frequency. Since no rejection of 
the image frequency exists in this design, a 3-db penalty in the noise 
figure must be accepted. 

Another disadvantage of the low IF comes about from I1fnoise3 modu­
lation in the high-frequency beating oscillator. This noise modulation, 
characterized by sidebands which are strongest in the vicinity of the 
oscillator frequency, is detected by the mixer and appears as extraneous 
noise energy in the IF amplifier. In receivers employing higher inter­
mediate frequencies, the II! noise modulation is less significant. 

Because the frequency of the local oscillator is so close to the incoming 
signal frequency, no attenuation of the oscillator frequency is achieved 
in the RF amplifier tuned circuits. Therefore, the opportunity for spuri­
ous outputs of oscillator energy via reverse transmission through the 
amplifier is greater than would exist if the IF were considerably higher in 
frequency. This can produce interference in other nearby receivers as 
discussed in the next section. 

To include the necessary sidebands of the intermediate frequency, and 
at the same time to attenuate the signaling tone frequencies, the IF 
amplifier was designed to cut off frequencies below 2 kc (Fig. 6). The 
discriminator output filter was designed to attenuate the IF residue above 
2 kc. In the crossover region near 2 kc, the tandem gain of the IF amplifier 
and the reed amplifier remained sufficient to require very careful control 
of these characteristics to avoid instability due to inadvertent over-all 
feedback. 
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3.3 Frequency Stability 

As many as twenty base transmitters may be used in a large metropoli­
tan area to provide the required coverage. To prevent the generation of 
beat tones in the receiver, which might interfere with signaling, the fre­
quencies of base transmitters are held to an accuracy of one part per 
million (±O.OOOI per cent).! 

Although oscillator radiation from the receiver has been kept within 
the stated requirements, there may be instances (as when two customers 
meet in conversation) in which a beat due to the difference of two local 
oscillators will occur in the mixer stages of each. If this beat is high 
enough in frequency it will be transmitted through the IF, causing de-
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sensitization. If it is too low to pass through the IF, it may still be carried 
to the reeds as a tone modulation on the desired signal. In this latter case, 
if its frequency coincides with that of one of the three reeds, it could 
conceivably cause false signaling in response to any code containing the 
other two reed frequencies. 

In an attempt to maintain these beat frequencies below the IF trans­
mission band, the oscillators are adjusted within ± 125 cps at the fac­
tory. The crystals maintain this frequency within ±600 cps of the 
original adjustment throughout the temperature range + 10 to +45 
degrees C. If the temperature coefficients are oppositely signed, it 
would then be possible for two such oscillators to differ by as much as 
1450 cps at some temperature within the range. In addition to this, if 
two crystals did not enter service at the same time, an aging factor could 
add to or subtract from this difference. Thus, it is evident that desen­
sitization due to direct feed into the IF is possible. However, it is con­
sidered improbable that the deviations due to extreme temperature, op­
posite-signed coefficients, and age difference would all add during a 
chance meeting of two customers. 

In considering the probability of false signaling due to a beat within 
the reed frequency range (500 to 1000 cps), it is necessary to remember 
that each of the three reeds responds only to an extremely narrow fre­
quency band (about 1.2 cps). Thus the probability of the beat falling into 
one of these slots is indeed small. Since such interference also depends on 
the coincidence of a number of low probability factors, it is not expected 
to be a serious field problem. 

The positioning of the IF signal in the band of transmission defined 
by the filter and the low frequency cutoffs of the amplifier is affected by 
all deviations of the oscillator and transmitter combined. Thus the total 
of all such deviations, including the peak deviation due to modulation, 
ideally should be contained within the IF transmission bandwidth. This 
bandwidth is approximately 8.5 kilocycles. 

TABLE I 

Cause of Deviation 

Base Transmitter: 
Oscillator (tolerance ± 0.0001%) 
Peak modulation (deviation ±3.9 kc) 

Receiver: 
Temperature (±4 ppm between lOoC and 45°C) 
Crystal aging (±5 ppm first year) 

Total 

Max. Range 

0.3 kc 
7.8 kc 

1.2 kc 
1.5 kc 

10.8 kc 
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Table I lists the factors involved in determining the required receiver 
IF bandwidth. 

If we add the inaccuracy of the initial setting of the oscillator fre­
quency, which is held within ±125 cps, it is obvious that peaks of modu­
lation may often be in danger of spilling outside the IF transmission 
bandwidth. Fortunately, peak modulation due to the addition of three 
sinusoidal tones occurs only a small percentage of the time. Thus these 
peaks may be degraded without serious loss of signaling sensitivity. 

Experiments have been performed in which the frequency has been 
deliberately moved off-center in the IF band. By this means it has been 
demonstrated that a displacement of ±1.5 kc produces less than 2-db 
degradation of signaling sensitivity. 

3.4 Battery Considerations 

The limitation on space and weight was one of the most serious factors 
in the choice of a suitable battery. A 3-cell, nickel-cadmium battery 
supplies about 3.7 volts and possesses the advantage that it can be re­
charged on a routine basis. For this purpose a simple home charger is 
provided, which may be supplied to the customer by the telephone 
company. A mercury battery with a nominal voltage of 4 volts is also 
available. This battery will provide service for about two weeks of aver­
age usage, before replacement. 

Because of the limited battery capacity, circuits were required which 
provided the necessary gain with the lowest possible power drain. Special 
circuit designs were evolved, in some cases, to accomplish these objec­
tives. For example, it was determined early in the development that 
greater gain in the RF circuits, for a given dc power input, could be ob­
tained by operating the two diffused-base, germanium transistors in 
series from a dc standpoint, rather than in parallel. 

Although the receiver is already in commercial service, development is 
continuing to improve the characteristics and life of the rechargeable 
battery. The outcome of this development may necessitate modifica­
tions in the battery case and also in the charger. 

3.5 Power Level Diagram 

Fig. 7 shows a block diagram of the receiver and an associated graph 
giving the power level in dbm of both signal and noise at significant 
points through the circuit. The noise is shown for the absence of signal. 
The signal is shown for the just-operate condition of the reeds, and the 
signal powers given at the reed driver amplifier (RDA) input and output 
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are those for one of the three signaling tones. The signal values shown 
prior to the discriminator are for the power in the RF and IF wave re­
gardless of modulation. 

A readily measured reference is the level at the IF test point, where a 
signal-to-noise ratio of about -2 db exists for the just-signaling condi­
tion. 

The levels in the early sections of the receiver are based on measure­
ments of the IF amplifier gain, on laboratory measurement of the RF 
gain available in circuit jigs, and on computed values of noise at the RF 
input. The method of constructing the level diagram fixed the mixer 
output on the basis of measurements at IF, and the mixer input on sig­
naling sensitivity input data and the measured value of RF gain. The 
difference between mixer input and output indicates 18-db conversion 
loss. The difference between signal-to-noise ratios at the first RF input 
and at the IF test point indicates a noise figure of 15 db, which agrees 
reasonably well with the result of the noise figure analysis to follow. 

A signal level point is provided at the left of the chart showing the 
power per unit area in space carried by a signal wave whose field strength 
is at the required value, i.e., 26 db above 1 microvolt per meter. This is 
derived in the discussion of antenna effectiveness to follow. 

3.6 Noise Figure Analysis 

Since there is no image rejection, the available RF noise power must 
be calculated in a bandwidth twice that of the IF. For 8.5-kc IF band­
width, therefore, the RF noise bandwidth is 17 kc. The available noise 
power (at 290 degrees Kelvin) is 

Pn = KTB 

= 1.38 X 10-23 X 290 X 17 X 103 X 103 mw 

= 6.8 X 10-14 mw 

10 log P n = -131.7 dbm. 

The input impedance of the RF amplifier transistor is determined by 
measurement from data in Fig. 9, which will be discussed later in con­
nection with the neutralization of the RF stages. This impedance is 

Zi = 25 + j38.6. 

Data on typical receivers indicated that the RF power input to this 
impedance required to cause 3-db increase of the energy measured at IF 
stage 3 output was approximately 
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P8 = -117.5 dbm. 

Assuming no further change in the signal-to-noise ratio at points be­
yond the IF test point, the difference in db between P nand Ps is the 
noise figure 

F t = -117.5 - (-131.7) = 14.2 db. 

This correlates with the 15-db change in signal-to-noise ratio which 
appears between the RF input and the IF test point on the level diagram. 
Measured noise figures on a few sets ranged from 11 to 14 db. 

The noise figure results from contributions of excess noise in each of 
the earlier stages of the receiver. The importance of each contribution 
is shown by the well-known formula4 for over-all noise figure, 

F2 - 1 Fa - 1 
F t = F1 +--+--+··· Al AIA2 

in which FI , Fz , Fa, etc. are noise figures for the successive individual 
stages, and AI, A2 , etc. are the power gain ratios of the successive in­
dividual stages. 

Assume AIA2 = 23 db, which is the gain of the two RF stages shown 
on the level diagram, and assume that the individual stage gains, Al and 
A 2 , are equal. Then 

Al = 14.14 (power ratio) 

AIA2 = 200 (power ratio). 

Also assume Fl and F2 are each 8 db or a power ratio of 6.3. 
Then, for Fe = 14.2 db (or 26.3 power ratio), the contribution of the 

remainder of the set may be calculated: 

5.3 Fa - 1 
26.3 = 6.3 + 14.14 + 200' 

Solving, we get 

Fa = 35.9 db. 

I t is thus apparent that the third term, containing the noise figure of 
the mixer, is the heaviest contributor to the over-all result. About 18 db 
of this is due to the conversion loss, as indicated on the level diagram. A 
considerable amount is attributed to the noise figure of the diode. An­
other very considerable portion is the result of 1/! noise modulation 
carried by the local oscillator energy. 

Although, in the above discussion, no stage beyond the mixer was con­
sidered, there is at least a noticeable contribution from the first IF tran­
sistor which may be harmful if not controlled. 
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3.7 Antenna Effectiveness 

The antenna effectiveness is largely dependent on which way the re­
ceiver, or the person wearing it, is facing relative to the transmitter. As 
has been noted by Mitchell and Van Wynen,t the presence of the human 
body provides gain in some orientations, while in others it provides shield­
ing, resulting in rather severe loss. Antenna effectiveness, averaged over 
all orientations, is a useful criterion. 

According to Schelkunoff and Friis,5 the effective area of a receiving 
antenna is the ratio of the maximum power received at its terminals from 
a linearly polarized wave, to the power per unit area in the wave. Thus 

where 
A = Effective area of the antenna in square meters. 
E = Field intensity of the wave in microvolts per meter. 
P r = Power received by the load connected to the antenna terminals. 
A receiver of average sensitivity will signal satisfactorily in a field of 

+26 db relative to 1 J.l.V 1m averaged over all orientations (or 20 micro­
volts per meter). 
Thus 

E = 20 X 10-6 volt per meter. 

As shown on the level diagram, assume the signaling power to be -120 
dbm at the antenna output, or 

P r = 1.0 X 10-15 watt. 

Thus the effective area of the antenna, when worn on the body and aver­
aged for all orientations, is 

2407r(1.0 X 10-15) 
400 X 10-12 

= 1.886 X 10-3 square meter. 

The effective area of a half-wave dipole antenna is 

A = 0.13A2. 

For 150 mc, 

A = 2 meters and 

A = 0.52 square meter. 

Therefore the gain of the receiver antenna averaged over all orientations, 
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with respect to a half-wave dipole, is 

Gav = 10 log (0.001886/0.52) = -24.4 db. 

Some experimental information showed that, on the average, the gain 
at optimum orientation with respect to the field is about 6.8 db above 
the average gain. Thus 

Gmax = -24.4 + 6.8 = -17.6 db (at optimum). 

Note that the power per unit area carried by the wave is 

E2 400 X 10-12 

VV = 240~ 240~ 

= 0.053 10-12 watt 

-132.8 dbw 

-102.8 dbm. 

This point is plotted as antenna input power on the level diagram, Fig. 7. 
A number of other antenna types were tested in the course of the de­

velopment. The present design is probably not as great in effective area 
as some other configurations which were tested. It was adopted in pref­
erence to types which produced undesirable coupling of the antenna to 
other circuits of the receiver, resulting in instability, and other types 
which suffered de tuning due to body presence. 

3.8 RF Neutralization 

Partial neutralization of the RF amplifier transistors was accomplished 
by providing an inductor between emitter and collector of the common­
base amplifier, as shown in Fig. 1. 

From a statistical analysis based on a modest sample of transistors in 
the early stages of production, element values were assigned to an equiva­
lent circuit of a typical transistor. This network is shown in Fig. 8(a). 
Fig. 8(b) shows Z F as the neutralizing element applied. This network is 
resolved in Fig. 8(c) into two parallel networks Nl and N 2 • 

The y-parameters of these two networks were calculated and a well­
known theorem of matrix algebra was applied. This states that each of 
the y-parameters of the combined network is equal to the sum of the cor­
responding parameters of the two component networks. Applying this, 
the feedback parameter (Y12) for the combined network was computed 
in terms of the neutralizing element (Z,) and equated to zero. Solving, 
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Fig. 8 - (a) Assumed equivalent circuit for RF amplifier transistor; (b) as­
sumed equivalent circuit with neutralizing impedance added; (c) component net­
works used in analysis of neutralization. 

the admittance (liZ!) required for perfect neutralization was found to 
be 

(liZ!) = -0.002155 - jO.000873. 

This represents a coil of reactance +j1142 ohms in parallel with a resis­
tor of -463 ohms connected between emitter and collector. Since a 
negative resistance is impractical in this circuit design, the coil alone was 
used to give only partial neutralization. 
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By taking into account the capacitance of the inductor and its mount­
ing, very good agreement was found between the computed value of in­
ductance and the value which was found to be most effective by experi­
ment. 

Results of impedance measurements of the input and output of an 
amplifier stage which employed a transistor of median characteristics, 
according to the above-mentioned analysis, are shown in Figs. 9 and 10. 
The test circuits are shown on the figures. These show that in each case 
the use of the neutralizing coil (LN = 0.68 Jlh) has little effect on the 
measured value of reactance, but the variation of resistance is consider­
ably improved. It is to be noticed that the measuring terminals, in each 
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Fig. 10 - RF amplifier, neutralization effect on output impedance. 

case, are shunted by a choke, whose reactance is included in the meas­
ured values together with circuit strays. 

I t is interesting to compare the measured values of input impedance 
with those calculated for the "median" transistor from its equivalent 
circuit. The calculated impedance is 

Zi = 25 + j38.6 
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which corresponds to 85 ohms resistance in parallel with +j55 ohms re­
actance. From the curves, assuming 500 ohms load, the values are 89 
ohms in parallel with +j82 ohms reactance. 

3.9 Bias Stabilization 

For uniformity of performance with variations due to ambient temper­
ature, battery voltage, and the normal tolerances on components, some 
stabilization of the transistor bias is necessary. The design must accom­
modate the difference in battery voltage between the mercury battery 
(4 volts) and the standard nickel-cadmium rechargeable battery (3.7 
volts). Since neither battery affords a surplus of energy to be consumed 
in biasing circuits, only a modest degree of stabilization was possible. 

The general principles of bias stabilization are treated in many texts 
on transistor circuit design: for example, in Chapter 6 of Shea.6 The basic 
bias circuit used widely in the 55A receiver is shown in Fig. 11. The effect 
on the collector current (Ie) of the variations of the saturation current 
(leo) due to temperature, is designated as a factor S, which it is de­
sired to minimize. The best stability is thus achieved when the emitter 
resistor (Re) is made as large as feasible and the parallel combination of 
Rl and R2 is made as small as feasible. 

Fig. 12 shows the bias circuit used in the RF stages, where the tran­
sistor currents are connected in series. An emitter resistor (R1) stabilizes 
the current of the first transistor, while the base bias voltages of both 
transistors are fixed by the resistor chain R2, R3 , and R4 across the 
battery. The factor S for the first transistor is estimated to be about 4.5. 
The first collector current which is stabilized to this degree is auto-

S=~ 
dIco 

S = _k_, WHERE k = I+~ + Re 
k-a R2 R, 

k-lX = l-lX + Re + Re 
R2 R, 

FOR GOOD VALUES OF lX, L-lX ~ 0 

t+ Re + Re 
S R2 R, 1 
~ Re Re = 1 + -=R--=R-

R2 +R;'" R: + R~ 
• S Rx .. ~ 1+R; 

IN WHICH, 
R;r = R t IN PARALLEL WITH R2 

Fig. 11 - 55A receiver - bias stabilization, single stage. 
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matically the emitter current of the second transistor. Thus, we might 
say that the emitter current of the second RF transistor is stabilized by 
the output resistance of the first transistor, which is relatively high. 

On the basis of Fig. 11, the factor S for the IF amplifier stages is about 
9.5. This poorer stabilization of the IF stages is in part compensated for 
by the fact that the IF transistor characteristics are carefully controlled, 
particularly with respect to leo. Temperature variation tests showed that 
satisfactory stability has been attained. 

3.10 Semiconductor Devices 

In the design of this receiver, advantage was taken of the best avail­
able semiconductor devices, and in fact, the demand created through this 
application has had considerable influence on the characterization of the 
devices used. To meet the requirement of small size of the receiver, it 
was necessary to miniaturize the encapsulation of the transistors and 
diodes. 

Gold-bonded germanium diodes are used both in the mixer and in the 
discriminator. 

A set of seven germanium alloy junction transistors, coded as the 28A 
transistor, is used in the IF amplifier, limiter, reed amplifier and sound 
oscillator stages. These are mechanically and electrically the same as the 
WE 17 A transistor but individually identified as to the range of the 
parameter hIe (beta). Although each set uses the full range of beta found 
in normal 17 A production, by the identification it is possible to install 
the low-beta and high-beta transistors in the stages which can benefit 
most from these characteristics. 

The RF transistors (WE 26A), when connected in the common-base 
amplifier circuit, are capable of about 12 db per stage gain. These trans is-
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tors are designed to maintain this characteristic at the low values of 
collector-to:-basevoltage which result from operating the two RF ampli­
fiers in series. 

IV. CIRCUIT DESCRIPTION 

The following sections will describe the circuit in some detail, making 
use of the Figs. 1 to 4, which together form a complete schematic of the 
recelver. 

4.1 RF Section 

Fig. 1 shows the radio frequency circuits of the antenna, the two RF 
amplifiers, the mixer, and the local oscillator. 

The self-contained antenna is a "loop-stick" type, consisting of 
about 2t turns of copper ribbon wound in a helix on a high-Q ferrite 
core 2 inches long and i inch in diameter. 

The inductance of the antenna winding is tuned to series resonance by 
a variable capacitor (C1), connecting to the input of the first RF ampli­
fier stage. Since the input of the transistor is shunted by a capacitor 
(C36 ), the transistor is tapped across a portion of the capacitive branch 
of the resonant antenna mesh. 

The RF amplifier stages consist of two diffused-base pnp transistors 
(WE 26A) in a common-base configuration. The coupling networks 
between the two transistors and between the second transistor and the 
mixer provide the necessary impedance transformations. The inductors 
are self-supporting coils which are tuned by manually stretching and 
compressing their length by use of an insulated pick inserted through 
openings provided in the shield around the RF circuits. The ratio of the 
two capacitance values in the pi networks determines the transformation 
ratio. 

As discussed earlier, partial neutralization is accomplished by a fixed 
inductor in series with a dc blocking capacitor, connected from emitter 
to collector of each transistor. Neutralization is required to minimize 
interaction of tuning of the antenna, interstage, and mixer circuits. It 
also minimizes leakage of local oscillator energy to the antenna. 

The amplified RF signal is combined with the second harmonic of the 
75-megacycle, crystal-controlled, local oscillator* in the mixer diode 
(CR1) to produce the intermediate frequency as the difference between 
these two frequencies. The second harmonic energy from the local oscil-

* At the start of this development, a 150-megacycle crystal with the required 
stability was not considered to be feasible. 



I50-MC POCKET RECEIVER 549 

lator is capacitively fed to the emitter of the second RF amplifier transis­
tor. It is then amplified simultaneously with the signal before being 
impressed on the mixer diode. The shunt capacitor (C39 ) which follows 
the mixer diode provides RF ground, which causes the full RF voltage 
to be developed on the diode. Series inductor La passes to the IF 
amplifier the difference frequency that is developed on the mixer load 
resistor (RIO). 

The method used here, which derives the second harmonic directly 
from the oscillator and amplifies it to a value suitable for mixing, pos­
sesses advantages over the direct injection of the 75-megacycle oscillator 
frequency into the mixer. The latter method would require third-order 
mixing, with inherently greater conversion loss than is achieved by the 
present method, which involves second-order mixing. Another advantage 
of the circuit used is that the 75-megacycle energy radiated from the 
receiver is more effectively attenuated. 

A quartz crystal, oscillating on the fifth overtone in the 75-megacycle 
range, is used with a WE 26A diffused-base transistor to form the local 
oscillator circuit. The circuit may be thought of as a common-emitter 
amplifier in which the crystal provides a feedback path from collector 
to base. A slug-tuned coil (Is) in series with the crystal is used to set 
the frequency. 

The collector-to-emitter impedance of the oscillator consists of two 
resonant meshes. One (L4 and C12 ) is resonant near 75 megacycles 
while the other (L6 and Cn) is resonant near 150 megacycles. The volt­
age developed across the latter is fed to the injection point on the second 
RF amplifier. 

This type of oscillator possesses inherent l/f noise modulation3 which 
is apparently a function of the individual transistor, and is particularly 
troublesome because of the low value of the intermediate frequency. The 
resistor (R7) between emitter and ground provides feedback which 
reduces the noise modulation to within tolerable limits. This resistor is 
bypassed at RF. 

4.2 IF Section 

Fig. 2 shows the schematic circuit for the three stages of IF amplifica­
tion and the limiter stage. All four stages are similar, using alloy junction 
transistors in the common-emitter configuration with bias stabilization 
as shown in Fig. 11. 

Filtering in the IF amplifier is controlled primarily by the package 
filter, which appears on the schematic as a block between the first and 
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second IF stages. This is a low-pass filter with the ground terminal 
common to input and output. The filter cuts off at approximately 10 
kilocycles. 

Although the filter is a low-pass network, the over-all transmission of 
the IF amplifier exhibits a bandpass characteristic (Fig. 6). The low­
frequency cutoff of about 2 kc is caused by the blocking capacitors 
between transistors. 

The limiter is operated as an overdriven amplifier. Because of the 
high gain developed in the preceding stages, even the no-signal noise 
experiences a small degree of amplitude limiting in this stage. Thus any 
signal which rises out of the ambient noise is limited in this stage. 
Stronger signals are limited in progressively earlier stages. 

4.3 Discriminator 

Fig. 3 shows the discriminator circuit, which converts the FM IF 
signal into the original tone frequencies of the coded signal. It is seen to 
be a form of rectifier circuit using diodes with the load connected through 
a low-pass output filter. The circuit configuration resembles that of a 
voltage doubler rectifier. This circuit also bears a strong resemblance to 
that of a "storage counter" described in the literature.7 

The low-pass output filter provides a cutoff of about 2 kc, in order to 
prevent the passage of the IF to the following stages. The filter has es­
sentially zero loss to the recovered signal tones whose frequencies lie 
between 500 and 1000 cycles per second. 

I t is not necessary for the applied signal to be limited for this dis­
criminator to function, but it may simplify understanding if the applied 
IF signal is considered to be a square wave whose frequency varies ac­
cording to the modulating wave form. 

The output capacitor (C25 ) is continually charged by the rectification 
of the IF wave and discharged by current flow through the load resistor 
(R26). The output filter separates C25 and C26 at the IF, but effec­
tively connects them in parallel at the signal frequency. Therefore the 
charge is shared at the slower rate, and the rate of discharge is in effect 
determined by a time constant, (C26 + C26 )R26 • 

Referring to the input of the discriminator circuit, it is seen that a 
positive pulse will cause the shunt diode (CR4) to conduct while the 
series diode is non-conducting. Thus, the series input capacitor (C24 ) 

is charged at a rate dependent on its capacitance value multiplied by the 
effective resistance of the diode (CR4). This rate is made high by choice 
of a small value of capacitance, so that approximately full charge is 
reached during the positive half-cycle of the IF wave. 
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Upon the reversal of the input wave, the shunt diode becomes non­
conducting and the series diode (CR3 ) conducts. Because of the voltage 
reversal, the stored charge on C24 adds to the drive voltage, and assists 
in charging the output capacitor (C25 ). The measure of charge delivered 
to the output capacitor is determined by the change in the quantjty 
stored on C24 during the cycle. Since the charge on C24 becomes com­
pletely reversed from its initial value, to a nearly equal but oppo­
sitely poled value, the net charge delivered to the load capacitor is nearly 
twice the maximum charge stored on the input capacitor. 

The time constants of input capacitor charge and output capacitor 
discharge are chosen so that, for the unmodulated IF carrier, the output 
voltage on the load resistor (R26 ) stabilizes at about half its maximum 
possible value. 

During modulation, the intermediate frequency varies at the signal 
rate from its unmodulated value (6 kc) to a maximum value (near 10 
kc) and then to a minimum value (near 2 kc). When the frequency in­
creases, the increments of charge are delivered to the load capacitor 
(C25 ) more rapidly and the output voltage therefore rises. Similarly, 
when the IF frequency decreases, the increments of charge arrive less 
frequently, and the output voltage falls because of the drain to a lower 
value. Time constants are chosen to allow these variations to follow the 
signal wave frequency. 

4.4 Reed Circuit and Sound Oscillator 

Fig. 4 shows the circuits of the reed amplifier stages, the reed selectors 
and the sound oscillator. The output from the discriminator is applied to 
a two-stage transistor amplifier using the transistors Q8 and Q9 in com­
mon-emitter configuration. The first of these transistor amplifiers gets 
its base bias from the rectification of the discriminator, combined with 
the base current flowing in the load resistor of the djscriminator. A 
resistor (R28 ) biases the emitter of this amplifier and provides bias 
stabilization, and at the same time furnishes the impedance across which 
feedback is introduced from the output of the second amplifier (Q9). 
This second amplifier is biased on both base and emitter in the same 
manner as the IF amplifiers. The three windings of the reed selectors 
(RD1 , RD2 , and RD3) forming the load are coupled by a blocking 
capacitor (C29 ) which keeps the direct current from saturating the cores 
of these selectors. The capacitor CI5 provides negative feedback, 
effective at the IF frequencies. This provides stability against IF re­
generation and reduces noise without reducing the reed frequency gain. 

The sound oscillator chcuit uses a transistor oscillator whose positive 
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feedback is accomplished through a transformer (Tl). This couples the 
collector back to the base of the transistor (QlO). When the reed selectors 
are quiescent, the oscillator is also at rest. When a signal is received 
which causes all three reeds to respond, the simultaneous operation of 
their contacts causes an impulse to be applied to the base of the oscillator 
transistor. This impulse is amplified and returned through the trans­
former to the base in proper phase to start a buildup of oscillation. Once 
started, the oscillation continues regardless of the excitation of the 
reeds. The hearing-aid type transducer which is the load of the oscillator 
gives forth an audible tone which alerts the customer. The customer 
may then stop the oscillation and reset the circuit for further signaling 
by simply closing the reset switch (a miniature pushbutton-type). 
Capacitor C31 and resistor R32 are connected to ground from a point 
between the contacts of RDI and RD2. These furnish a reservoir of 
charge whenever RDI is energized, so that if RD2 and RD3 become 
simultaneously energized there will be adequate pulse energy to set 
off the sounder oscillator. A diode (CRs) across the primary of the 
feedback transformer (T1) is polarized to absorb impulses caused by 
mechanical shock and thus diminish the probability of false signaling 
due to this cause. However, the receiver is automatically triggered when 
the receiver is first energized. This serves as an indication of the condi­
tion of the battery, since the oscillator will not function with a dis­
charged battery. 

v. TEST METHODS AND TECHNIQUES 

5.1 The Testing Problem 

In most other FM receivers such as, for example, those used in mobile 
telephone service, the receiver is tested as a unit without connection to 
its antenna. Test requirements are based on magnitudes or frequencies 
of energy applied to the input terminals of the receiver. Similarly, in 
such applications the efficiency of the antenna is determined by its 
energy yield into a standard terminating impedance, when the antenna 
is immersed in a standard strength of radio field. 

In the development stages of the 55A pocket receiver, these same ap­
proaches were followed. Field measurements were made in which anten­
nas of various types were compared with a half-wave dipole and with 
each other by connecting them through a transforming device to the 
input of a field strength measuring set. Also, the sensitivity, selectivity, 
and noise figure of the receiver were tested by connecting the appropri-
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ate test generator to the emitter input of the first RF amplifier through a 
suitable coupling transformer. 

While these methods were useful in giving relative results, their abso­
lute significance was always in doubt. The antenna, when connected to a 
cable leading to a field strength set, experiences a field which is distorted 
by the coupling to that cable. Also, it is then difficult to evaluate it in its 
true relation to the human body. Furthermore, the tests on the receiver 
were always in doubt because of the difference between the input coupling 
used and that which exists in the normal connection to the antenna in the 
assembled set. 

To overcome these uncertainties, a method was devised by which the 
assembled receiver could be bench tested as a complete unit in a suitable 
test jig. These results were then correlated with the field performance of 
the receiver when carried normally by a person. 

5.2 RF Circuit Tuning 

The RF amplifiers are tuned with the local oscillator disabled by 
operation of a switch on the test jig. This switch places an RF ground 
on the collector of the oscillator transistor. As a result of a signal coupled 
to the antenna, rectified current flows in the mixer diode, and is measured 
across the diode load resistor (RIO). The antenna capacitor (C1 ) and the 
in terstage tuning coils (L2 and L3 ) are then adj usted to maximize this 
current. 

5.3 Local Oscillator Adjustments 

With no signal input to the antenna, and with the oscillator operating, 
the rectified current of the mixer diode is a measure of the injection of 
local oscillator energy. This is brought to final adjustment by varying 
the slug position in the coil (L6) of the oscillator circuit. A coarse ad­
justment of the injection is available in the initial alignment by selecting 
the value of the oscillator emitter resistance (R7). 

The local oscillator may be adjusted to the correct frequency by the 
slug of the coil (L5) which is in series with the crystal. 

5.4 Calibration of Test Jig 

Considerable discussion of signaling sensitivity and the field tests 
which were made to measure it is given in the paper by Mitchell and 
Van Wynen.1 Signaling sensitivity is defined as the field in db above one 
microvolt per meter required to just trigger the receiver. A number of 
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receivers whose sensitivity had been tested under free field conditions 
were used to calibrate the test jig. Thus the voltage from the modulated 
signal generator to the input of the jig, which is needed to produce trig­
gering, could be interpreted in terms of the free field strength. In this 
way, meaningful measurements of signaling sensitivity are made in the 
jig setup for aligning the receivers in the laboratory, or in production. 

5.5 Noise Measurement 

By means of the jig, an rms type voltmeter may be connected to the 
IF test point at the collector of the third IF transistor. This measures the 
no-signal noise voltage at the test point. When a signal is supplied to the 
antenna coupling coil, the energy required to cause a 3-db increase in the 
voltage at the test point is a measure of sensitivity, which is related to 
noise figure as discussed elsewhere. Oscilloscopic observations at the IF 
test point show qualitatively the fact that neither the input to double the 
energy nor the input of mojulated signal required for triggering is visi­
ble as a change from the random noise pattern. This shows qualitatively 
the fact that triggering occurs even for signal levels commensurate with 
the average noise in the IF band, or lower, as is indeed shown on the 
level diagram. Thus signals strong enough to produce limiting and FM 
quieting are not essential for the operation of the receiver. This is to a 
large extent an advantage derived from the exclusion of much of the 
noise energy by the very sharp frequency response of the reed selectors. 

It is interesting to note that even after FM demodulation and band 
limiting by the 2-kc low-pass filter, the noise lies in a band nearly 2000 
times greater than the bandwidth of a reed (about 1.2 cycles). 

VI. MECHANICAL DESIGN 

6.1 General Features 

The mechanical design of the 55A receiver was influenced strongly by 
the inclusion of several required features. The receiver was designed to 
enable the customer to recharge and change batteries easily and to enable 
the telephone company to insert the reed selectors without the use of 
tools. It was necessary to include a changeable number card which could 
be exposed for viewing, but which would automatically remain hidden 
from view during normal operation of the receiver. The on-off switch and 
the audio transducer were placed in the top end of the receiver for opti­
mum accessibility and audibility, respectively, when the receiver is 
pocket-borne. Moreover, it was necessary to reconcile such seemingly 
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incompatible objectives as small size and reliability, light weight and 
ruggedness, and low cost and high performance. Obviously, at the out­
set of the mechanical design, it was not possible to set absolute values on 
all these objectives. The design became a problem in optimizing, and the 
realistic approach of making the receiver as small, light, and inexpensive 
as possible, consistent with high performance, reliability, and rugged­
ness, was taken. It was necessary to refrain from "gilding the lily," per­
formance-wise, even if this penalized size or weight only slightly. For 
in the final analysis, if the receiver were incapable of being carried in a 
pocket, its market would diminish. 

The receiver contains an antenna, thirty-eight capacitors, thirty-three 
resistors, four diodes, fifteen inductors, ten transistors, one transformer, 
one crystal unit, three reed selectors, one audio transducer, two switches, 
and one filter (which itself contains three inductors and five capacitors), 
all mounted on a 4.85 X 2.24-inch printed wiring board. The printed 
wiring substrate is I6-inch thick epoxy glass. This material was selected, 
rather than the less expensive and more commonly used XXXP phenolic 
substrate, because of its superior mechanical and electrical properties. 

6.2 Circuit Layout and Shielding 

The circuitry was laid out in a smooth, logical pattern, so that the 
mechanical flow from top to bottom is in the same sequence as the elec­
trical flow. As shown in Fig. 13, the antenna is at the top of the receiver. 
In sequence toward the bottom, the antenna is followed by the RF ampli­
fier, RF mixer, local oscillator, IF amplifier and limiter, discriminator, 
reed circuit, and battery. The audio transducer is placed against the top 
of the receiver case where it will be most easily heard by the customer. 
The reed selectors are placed near the bottom of the circuitry, adjacent 
to the battery. Removal of the battery case uncovers a number card, 
which, upon its removal, in turn uncovers an access port through which 
the reed selectors may be inserted or extracted. 

The RF amplifiers, oscillator, and first IF amplifier are contained in a 
three-compartment copper enclosure so that portions of these circuits 
are shielded from each other and from the remainder of the circuitry. 
The can cover, not shown in Fig. 13, is soldered into place, and the can 
is soldered to a "ground plane" on the printed wiring board. Ground 
planes run on both sides of the printed wiring board, covering as much 
area as possible. This minimizes the ground circuit impedance, reduces 
the coupling between ground paths, and contributes to the stability of 
the circuit. 
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Fig. 13 - Layout. 

6.3 Space Conservation 

Space was conserved on the printed WIrIng board by using mInia­
turized components and by mounting all axial-lead components per­
pendicular to the printed wiring board. In some instances, where the tops 
of several components were electrically common, the lead of one com­
ponent was bent into a common bus, which was connected to the tops of 
all the components in the group, thus eliminating land areas and further 
conserving board space. This arrangement is shown in Fig. 14. Although 

Fig. 14 - Component wiring for space conservation. 
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conductor spacings and widths were made as large as possible, for maxi­
mum board reliability, space considerations necessitated basing the 
printed wiring pattern on minimum path width, spacing, and land area 
diameter of 0.030, 0.040, and 0.075 inch, respectively. 

6.4 Case Design 

The operational requirements had a direct bearing on the design of 
the receiver case. The case consists of three main parts - two dish­
shaped covers, which enclose the circuitry, and a battery case. These are 
shown in Fig. 15. The battery case is designed to accommodate a nickel­
cadmium rechargeable battery. The battery case is a plug-in unit, and 
enables a discharged battery to be unplugged from the receiver, battery 
case and all, and inserted into a battery charger which, in turn, plugs 
directly into a 117-volt ac wall outlet. If necessary, a fully charged bat­
tery, in another battery case, can be plugged into the receiver for unin­
terrupted service. For special circumstances, a battery case designed to 
accommodate a nonrechargeable mercury battery is available. 

The battery case is equipped with nickel-silver prongs which mate with 
contacts in the receiver case. The battery is equipped with slotted nickel 
tabs as shown in Fig. 16. Connection between the battery and the nickel­
silver prongs is effected by means of screws which fasten the battery 
tabs to an extension of the nickel-silver prongs. The battery tabs and 
the connecting screws are located off-center with respect to the battery. 
This allows the battery to be inserted into the battery case only if it is 
properly oriented. Furthermore, the receiver case is designed so that the 

Fig. 15 - Case parts. 
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Fig. 16 - Battery. 

prongs of the battery case can make contact with the circuitry only if the 
battery case is properly oriented. This series of orienting devices render 
it virtually impossible to inadvertently damage a receiver with an im­
properly oriented battery. 

6.5 Contact Design 

The mating contacts in the receiver were designed for minimum space 
consumption. They are made of extra hard spring-tempered nickel-silver 
wire, and are in the shape of the letter U. They are housed in cavities in 
the wall of the receiver case in a manner which permits the battery con­
tacts to be inserted, through holes in the receiver case, into the mouth of 
the U. The cavities in which they are housed are large enough to permit 
the contacts to float into proper alignment with the pins of the battery 
holder. Connection is made to the circuitry by means of flexible jumper 
wires. The U -shaped contacts are shown in Fig. 17. 

To be assured of reliable electrical contact between the prongs of the 
battery case and the U-shaped contacts in the receiver, the contact force 
and the working stress in the contacts were calculated. Calculations re­
vealed a contact force of 0.460 lb. The contacts produce a wiping action 
upon mating and exert this force at two points. These features tend to 
increase the reliability of the electrical contact, and it is expected to 
provide trouble-free service. Calculations indicated a maximum work­
ing stress of 67,000 psi in the spring. Inasmuch as this is less than the 
safe working stress, 80,000 psi, for the nickel-silver alloy of the spring 
contact, it can be assumed that the spring will not lose its properties. 

6.6 111 aterials and Special Features 

The receiver case is molded of an acetal resin. This is a tough thermo­
plastic material which exhibits a high resistance to abrasion and cold 
flow. The battery case is molded of nylon, also a thermoplastic material 
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Fig. 17 - Contacts. 

with excellent bearing properties. These properties were used to advan­
tage in the design of the fastening device which permits the battery case 
to be snapped onto or off from the receiver case. The snap mechanism is 
molded as an integral part of the battery case and the receiver case, and 
obviates the need for hardware of any kind. A cross-sectional view of the 
snap is shown in Fig. 18. 

The battery case was subjected to 20,000 snap-on-snap-off cycles. The 
pull-off force dropped from an initial value of seventeen pounds to a 
final value of nine pounds. This drop in pull-off force is not judged to be 
serious, since even the lower value is considered adequate to hold the 
battery case securely in place. It is estimated that the average customer 
will recharge his battery once a day. At this rate, 20,000 on-off cycles 

Fig. 18 - Snap fastener of case. 



560 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1963 

will not be achieved for over fifty years. For customers who are unable 
to exert the necessary force to unsnap the battery holder, acoin slot is 
provided, permitting the customer to pry it off with minimum exertion. 

When carried in a pocket or on a belt, the receiver is held in place by 
means of a die-cast zinc clip. It has a brushed satin finish with the Bell 
System emblem depressed and colored dark blue. The clip is shown in 
Fig. 19. 

A special switch, which is reliable, durable, compatible with printed 
wiring, and capable of blending harmoniously with the physical appear­
ance of the receiver case, was designed. The switch contacts are a gold­
silver-platinum alloy. They are welded to phosphor bronze flat springs, 
which are in turn mo,tmted on the printed wiring board. The switch is 
actuated by a thumb wheel, which rotates on a molded axle protruding 
from the edge of the case. The thumb wheel is also molded of nylon and 
is designed with a protrusion which hits against the inner surface of 
the receiver case when the thumb wheel reaches either the "on" or 
"off" position. This device limits the rotation of the wheel and imparts a 
comfortable feel and a pleasant click to the switch. A model of this 
switch has been on life test in the laboratories for several months. As of 
the time of this writing, it has undergone over five million on-off cycles 
without any discernible degradation in performance. The switch is shown 
in Fig. 20. 

Fig. 19 - Pocket clip. 
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Fig. 20 - Switch. 

6.7 Battery Charger 

For normal use each customer is supplied with a cordless plug-in bat­
tery charger. The charger circuit consists of a diode rectifier, two resistors, 
and a neon indicator lamp. The circuitry is housed in a molded nylon 
case, which serves the dual purposes of case and structural support for 
the components. The charger plugs directly into a wall outlet - a feature 
which imposed two important restrictions on the design. The charger 
had to be made of nonflammable materials, and the "fall-out" torque­
the product of the weight of the charger and the distance from the wall 
outlet cover to the center of gravity of the charger - had to be held to a 
low value. A fall-out torque not exceeding six inch-ounces was set as the 
design target, for it was judged that below this value the probability of 
a charger inadvertently falling out of a wall outlet would be negligible. 

N onflammability was achieved by specifying nylon for the housing. 
The inside of the housing is used as the structural support for the cir-
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cuitry, eliminating the need for additional supporting media, such as 
printed wiring boards or brackets. In this manner, it was possible to 
produce a charger which weighed only 3.1 ounces, including the battery 
and the battery case, and which exerted a fall-out torque of only 1.45 
inch ounces. 

The battery case, containing the discharged battery, is disengaged 
from the receiver and plugged into the charger. The prongs in the battery 
case make contact with U-shaped contact springs, which are identical to 
those used in the receiver. The same system of orienting devices used to 
prevent insertion of an improperly oriented battery in the receiver is 
similarly used in the charger. The charger is equipped with a neon indi­
cator lamp, which glows only when charging current is flowing. The 
charger is shown in Figs. 21 and 22. 

The use of molded plastics contributed significantly to the realization 
of the objectives. The plastic parts are attractive, rugged, light in weight, 
intricately shaped and inexpensive. The case halves, in addition to serv­
ing as a closure, were designed with built-in functional refinements which 
eliminated the need for attached hardware in such places as the battery 
case snap, the switch axle, the speaker support, the pocket clip axle bear­
ings, and the printed wiring board support. After tooling costs, these 
features are obtained virtually free of charge. 

6.8 Subjective Qualities 

The BELLBOY personal signaling receiver is a consumer product, to 
be worn on the person of the customer. Outwardly, the receiver was given 
a tailored appearance to satisfy the needs of the well-dressed customer. 
The appearance of boxiness was averted by adding barely discernible 
compound curves to the surface. These curves actually add slightly to 

Fig. 21- Charger. 
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Fig. 22 - Battery being charged. 

the over-all dimensions of the receiver, but impart an appearance of ele­
gance and compactness. The finished product, shown in Fig. 23, is 5i 
inches long, 2! inches wide, and i ~ inch thick, and weighs 11 ounces, 
including the battery. 

The receiver case and battery case are different shades of gray, the 
battery case being the darker of the two. This not only adds to the ap­
pearance of the receiver, but avoids what would otherwise have been a 
troublesome color-matching problem which would have been manifest 
upon supplying replacement battery cases. 

VII. CONCLUSION 

In both the electrical and mechanical design of this receiver, emphasis 
has been placed on reliability in fulfilling service objectives and on con­
venience to the customer. In connection with 'the 'latter, the esthetic 
qualities essential to consumer acceptance have not been overlooked. 
The reactions of the consumer have been sampled by means of field trials 
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Fig. 23 - Finished product. 

using development models. In the first commercial installation, which 
went into service at Seattle in April, 1962, the performance of the re­
ceiver has been satisfactory, and it is expected that additional installa­
tions will follow. 
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A "Thermodynamic" Theory of Traffic 
in Connecting Network~s 

By v. E. BENES 

(Manuscript received October 22, 1962) 

Two new theoretical models for representing random traffic in connecting 
networks are presented. The first is called the "thermodynamic" model and 
is studied in detail. The second model is formulated in an effort to take 
methods of routing into account and to meet certain drawbacks of the "ther­
modynamic" model in describing customer behavior; since it is more realistic 
than the first, it leads to results that are vastly more complicated and must be 
described in another paper. 

The "thermodynamic" model is worth considering for four reasons: 
(1) It is faithful to the structure of real connecting systems. Indeed it is 

an improvement over many previous models in that it only considers physi­
cally accessible states of the connecting network, while the latter suffer the 
drawback that a large fraction of the network states on which calculation is 
based are physically meaningless, being unreachable under normal opera­
tion. 

(2) It gives rise to a relatively simple theory in which explicit calculations 
are possible. 

(3) The "thermodynamic" model provides a good simple description of 
traffic in the interior of a large communications network. 

(4) It has an analogy to statistical mechanics which permits us to be 
guided by the latter theory as we try to use the model to understand the 
properties of large-scale connecting systems. 

The two models to be described differ in only one respect. In the first (the 
"thermodynamic") model, the system moves from a state x to a state y that 
has one more call in progress, at a rate A; the effective calling-rate per idle 
inlet-outlet pair is thus proportional to the number of paths usable in x from 
that inlet to that outlet. In the second model, the calling-rate per idle inlet­
outlet pair is set at A, and is then spread over the paths usable in x from that 
inlet to that outlet in accordance with some routing rule. This provides a 
mathematical description of routing, and avoids the unwelcome feature that 
a single customer's calling-rate depends on the state of the network. 

567 
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The "thermodynamic" model is based on the single postulate that the 
"equilibrium" probabilities of the states of the connecting network maximize 
the entropy functional for a fixed value of the traffic carried. These probabili­
ties have the same geometric or exponential form as the canonical M axwell­
Boltzmann distribution of statistical mechanics. The theory developed applies 
to any connecting network regardless of its stnlcture or configuration. The 
number of calls in progress is analogous to the energy of a physical system. 
As in statistical mechanics, important averages can be expressed as loga­
rithmic derivatives of a generating function analogous to the partition func­
tion of physics. 

It is possible to give an interpretation of the maximum entropy postulate 
in terms of random behavior at the inlets and outlets of the connecting net­
work; this interpretation leads to a stochastic progress Zt of the familiar 
1\1 arkov type, for which the canonical distribution is invariant. The transi­
tion rate matrix of Zt is self-adjoint in a suitable inner product space, so 
that the approach of Zt to equilibrium is easily studied, with resulting appli­
cations to traffic measurement. 

1. INTRODUCTION 

Like the physicist, the traffic engineer is faced with the study of an 
extremely complex system which is best described in statistical terms. 
The great success of the theoretical methods of statistical physics has 
given rise to a fervent hope, sometimes voiced among traffic theorists, 
that similar methods exist and can be found for the study of congestion. 
Indeed, the problems are much the same: one desires a small amount of 
"macroscopic" information about averages, based in a rational way on 
vast complexities of detail. A. K. Erlang was probably influenced by 
statistical mechanics when he introduced his method of "statistical 
equilibrium" into traffic theory. This method has had great success in 
dealing with problems of the birth-and-death type, like trunking and 
queueing, but as applied to more complex cases it has led mostly to alge­
braic and combinatory difficulties. Nothing as elegant or powerful as 
statistical mechanics has resulted so far. 

We shall present two traffic models in this paper. The first is the out­
come of a deliberate attempt to ape the methods of physicists in statis­
tical mechanics, and thus to realize, at least in part, the hope mentioned 
above. It is called the "thermodynamic" model, and it is treated in de­
tail. The second model is introduced later in the paper in an attempt to 
avoid certain drawbacks that appear in the interpretation of the "ther­
modynamic" model. Since it has independent interest and leads to in­
volved, more realistic results, it is studied in detail in a later paper. 
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The approach taken in the "thermodynamic" model bears a close 
analogy to the methods of statistical mechanics, and is based on the 
single postulate that the "equilibrium" probabilities of the states of the 
connecting network maximize the entropy functional for a fixed value of 
the traffic carried. We develop a theory, briefly summarized in the next 
paragraph, by deducing the consequences and interpreting the meaning 
of the one basic assumption. 

The state probabilities that maximize the entropy for a given carried 
load form a distribution function over the set of states that has the same 
geometric or exponential form as the canonical (or Maxwell-Boltzmann) 
distribution of statistical mechanics. The theory applies to any connect­
ing network, regardless of its structure or configuration. The number of 
calls in progress is analogous to the energy of a physical system. As in 
statistical mechanics, important averages can be expressed as logarith­
mic derivatives of a generating function analogous to the partition func­
tion of physics. It is possible to give an interpretation of the maximum 
entropy postulate in terms of random behavior at the inlets and outlets 
of the connecting network. This interpretation leads to a stochastic 
process Zt of the familiar Markov type, and is such that any stochastic 
process based on it satisfies the maximum entropy postulate. The transi­
tion rate matrix A of Zt is self-adjoint in a suitable inner-product space; 
its characteristic values are real and non-positive, and can be studied by 
classical variational methods. In terms of these characteristic values the 
approach of Zt to equilibrium can be studied, with resulting applications 
to traffic measurements. It turns out that the covariance of any function 
of Zt is strictly positive. The paper ends with a time-dependent or non­
stationary generalization of the maximum entropy postulate that has 
close analogies with the statistical "derivation" of thermodynamics. 

1I. PRELIMINARIES 

In order to give an adequate summary and discussion of our theory in 
Section III, it is necessary to present first its concepts, terminology, and 
notation. Virtually all the notions about to be discussed have appeared 
in earlier papers by the author1 •2 so only a brief resume is given here. 

Let S be the set of possible (or permissible, or both) states of a connect­
ing network, and let x, y, ... be variables ranging over S. The elements 
of S are partially ordered by inclusion ~, where x ~ y means that x 
can be obtained from y by removing zero or more calls. Furthermore, 
the states x ~ S can be arranged in an intuitive manner in the state-dia­
gram, the Hasse figure for the partial ordering ~. This figure is con­
structed by partitioning the states in rows according to the number of 
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calls in progress. The unique zero state (in which no calls are in progress) 
is placed at the bottom of the figure; above it comes the row of states 
with one call in progress; and so on. The figure is completed by drawing 
a graph with the states as nodes, and with lines between states (in adja­
cent rows) that differ in exactly one call. In an earlier work2 we made the 
assumption that in a given state at most one call could be in progress 
between a given inlet and outlet; it is convenient to discard this assump­
tion here. 

If the connecting network under study is in a state x, it can move only 
to states which are neighbors of x, i.e., are obtainable from x by adding a 
new call or terminating a call in progress. It is useful to divide the neigh­
bors of x into two sets Ax and Ex where 

Ax = set of states immediately above x, i.e., accessible from x by add­
ing a new call, 

Ex = set of states immediately below x, i.e., accessible from x by a 
hangup. 

For any set X, the notation I X I is used to denote the number of cle­
ments of X. The states x € S can be defined2 as sets of chains on a graph, 
one chain for each call in progress. Hence it is natural to usc I x I to 
mean the number of calls in progress in x. The kth level Lk is the set of 
all states with k calls in progress, i.e., 

I x 1= k}. 

III. SUMMARY AND DISCUSSION 

We start, in Section IV, with a brief informal discussion of what is 
meant, heuristically as well as precisely, by "equilibrium." 

In Section V we formulate and discuss the maximum entropy postulate, 
according to which a suitable "equilibrium" distribution {qx, X € S} of 
probability over S is obtained by choosing the probability vector q so 
as to maximize the entropy functional 

H(q) = - L: qx log qx 
XES 

for a given value of the average number of calls in progress, i.e., for 

L: I x I qx = m. 
XES 

Various heuristic arguments are adduced to support the prima facie 
reasonableness of this principle. In Section VI it is shown that the 
maximizing probability vector q is given by 
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A1xl 

qx = CP(A) , 

cp(~) = L ~Ixl 
XES 

XES 

and A is a constant determined uniquely by the equation 

m = A(d/dA) log CP(A). 
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Because of their close similarity to corresponding notions from sta­
tistical mechanics, the vector q and the function cp( .) are henceforth 
called the canonical distribution and the partition junction, respectively. 

In Section VII we have collected together various properties of the 
partition function, most of them based on the partial ordering ~ of S. 
Among these are expressions for <p( .) in terms of the lVI6bius function 
for ~, and in terms of several sets of "characteristic polynomials" 
associated with ~ and S. 

The canonical distribution q is placed in a dynamic context in Section 
VIII. This is done by defining a lVIarkov process Zt (taking values on S) 
for which q forms a stationary distribution. The transition rate matrix 
A (infinitesimal generator) of this process allows one to give interpre­
tations of this dynamic context in terms of calling rates and mean 
holding-times. An informal description of the process Zt is this: if it is in 
state x, it moves to a state y E Ax at a rate A, and to a state y E Bx at a 
rate set at unity by convention. 

A full discussion of the analogy between the "thermodynamic" 
theory of traffic and statistical mechanics is given in Section IX. For 
purposes of illustration, we mention that the number of calls in progress 
corresponds to the energy of a statistical mechanical system, and that 
the constant A is related to the calling rate and corresponds to the 
tempera ture (up to a monotone transformation). 

The reasonableness of Zt as a description of an operating connecting 
network is discussed and criticized in detail in Section X. Two possible 
interpretations of the inlets and outlets are considered: in one, the 
inlets and outlets are the ultimate terminals of the system, beyond 
which there is no more switching equipment; in the other, the inlets 
and outlets arc switching centers such as PBX's, frames, or individual 
crossbar switches, acting as sources of traffic for a network under study. 
In the first interpretation, there can be at most one call in progress on 
an inlet or an outlet; in the second, there may be several. 

Regardless of which interpretation of the inlets and outlets is adopted, 
the transition rate matrix A for Zt must be interpreted as saying that 
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the calling rate between an inlet and an outlet in a given state x is 
proportional to the number of free paths that x provides between that 
inlet and outlet. This assumption is unacceptable for the interpretation 
of inlets and outlets as ultimate terminals; it is not entirely unreasonable 
if the inlets and outlets are local switching centers. 

Section XI is devoted to describing, as an alternative to Zt , a Markov 
stochastic process on S based on the assumption that the calling rate 
between an idle inlet terminal and an idle outlet terminal is a constant 
A. This calling rate is then spread over the possible ways of realizing 
the call in question in the current state of the network in accordance 
with some method of routing. A mathematical description of such a 
method of choosing routes for calls is given. This description leads 
directly to a transition rate matrix Q for a process Xt in which every 
idle inlet-outlet terminal pair has a calling rate A in every state. The 
possibility that Zt may be a useful perturbation of Xt is considered. 

In Section XII it is observed that the rate matrix A for Zt is a self­
adjoint operator in a suitable finite-dimensional inner product space. 
This implies that the characteristic values of A are real and nonpositive, 
and leads to bounds on the rate of approach of Zt to equilibrium. These 
bounds can be applied to estimate the covariance of Zt , and the sampling 
error incurred in measuring carried loads by averaging Zt , or discrete 
observations of Zt • In particular it is shown that the dominant (i.e., 
that of smallest nonzero magnitude) characteristic value rl of A satisfies 

- (m/(i) ~ rl < 0, 

where m and () are (respectively) the mean and standard deviation of 
the load associated with the equilibrium probability vector q for Zt , so 
that 

m = L:: I x I qx , 
XES 

()2 = L:: (I x I - m )2qx . 
XES 

In Section XIII we give a formula for the covariance of any process 
ft defined by applying a function f( . ) to Zt , i.e., 

This covariance is always positive. Applications of this formula to traffic 
averages are described briefly in Section XIV. Finally, Section XV con­
siders a time-dependent generalization of the variational principle on 
which the "thermodynamic" theory of traffic is based. 

We conclude this section with an appraisal of the "thermodynamic" 
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theory presented herein. This will take the form of a list of comments, 
first pro, then con, and then a defense. 

1. There exist theories3 ,4 for connecting networks in which it is as­
sumed that the links of the system are busy or idle with a given probabil­
ity, all independently of one another. It can be verified that an over­
whelming fraction of the states of the system so considered are in fact 
not physically meaningful states that the system can reach under nor­
mal operation. The theory presented here is based only on permitted, 
physically meaningful states, and so is not open to this serious objection. 

2. The theory provides a uniform method of treating any connecting 
network in that the calculation of equilibrium probabilities always re­
duces to that of the partition function. In most other treatments the 
nature of the algebraic process of calculating probabilities depends heav­
ily on a detailed account of the network configuration; in our theory it 
depends on the network only via the numbers I L1 I, I L2 I, . . . . 

3. The maximum entropy principle can be given a certain informal, a 
priori justification. It provides a "conservative, worst possible case" 
approach to problems and processes of fantastic complexity. This is be­
cause it can be interpreted as enjoining that an "equilibrium" distribu­
tion of probability for given carried traffic correspond to a condition of 
maximum ignorance of the actual state of the connecting network. 

4. The canonical distribution q that results from the maximum en­
tropy postulate can be embedded in a dynamic model of traffic by de­
fining a Markov process Zt for which q is the invariant or stationary dis­
tribution. This dynamic model is described by a transition rate matrix 
which is a self-adjoint operator, a fact which makes it possible to study 
the time-dependent behavior of Zt in a simple approximate way, with 
applications to traffic measurement, for instance. 

5. A very serious drawback of the "thermodynamic" theory is that its 
natural interpretation in terms of calling rates appears to be unreason­
able in most practical cases. For this reason it will probably remain an 
amusing curiosity, rather than become an engineering tool. 

6. The problem of calculating the partition function <p(,) is, as in 
statistical mechanics, very difficult except in cases of unrealistic sim­
plicity. Thus, even if its assumptions are granted, our "thermodynamic" 
theory does not afford much progress in calculating quantities of inter­
est. 

7. The theory can take into account only one of the many different 
possible methods of routing calls in operating networks. Thus it cannot 
help the designer choose among alternative methods. 

By way of defense against the objections just raised, these points can 
be made: 
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(i) Comment 5, that the interpretation of the "thermodynamic" 
theory in terms of calling rates is unreasonable, depends on a natural, 
but not necessarily valid or compelling, assignment of causes for new 
calls. 

(ii) Although the calculation of <p(,) is hard, it is at least a definite 
combinatory problem solvable in principle by counting; thus at least 
part of the problem of obtaining state probabilities is disposed of. 

(iii) It is doubtful whether routing methods make as much as an or­
der of magnitude of difference in carried loads in large systems; hence it 
is reasonable to ignore them in a relatively crude theory such as the 
present one. (See however, Benes, Ref. 11.) 

The theory presented in this paper should be judged by its success in 
practice as well as by its agreement with our preconceptions. I believe 
that in spite of the major failings mentioned, the theory musters interest 
enough to warrant its presentation to traffic engineers, if only because 
its concepts and results may prove useful in more realistic approaches. 

IV. EQUILIBRIUM 

Quantities that are of interest in the design of a connecting network, 
such as the average load carried, the variance of the load, or even the 
probability of blocking, can often be calculated from a knowledge of 
some "equilibrium" or "stationary" state probabilities {qx, X € S} for 
the network of interest. These probabilities are usually assumed or 
proven to be of "equilibrium" type in the sense that they have some 
physically reasonable invariance property. 

Since the concepts of stationarity and equilibrium can assume many 
precise forms of varying strength, it is important to consider briefly 
some of these senses. The strongest notion, of course, is that of strict 
stationarity of a stochastic process, defined by the condition that all the 
finite-dimensional distributions be independent of time, i.e., be transla­
tion-invariant. A whole class of weaker notions can be obtained by re­
quiring only that the distributions of dimension not greater than n be 
invariant. The notion of wide-sense stationarity, defined by the condi­
tion that the covariance depend only on the difference of its arguments, 
is still another concept of stationarity, formulatcd for a moment rather 
than a distribution. Again, Markov processes are described as homogene­
ous or stationary if their transition probability operators are time-in­
variant. 

"Equilibrium" is a word that usually connotes a stable, quasi-static 
random behavior which is perhaps a condition of attraction for a process, 
in the sense that a process not in equilibrium tends toward it. Ergodic 
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Markov processes with denumerable state spaces are typical examples. 
It is to be remarked, though, that use of the word "equilibrium" usually 
implies a nondegenerate limiting behavior for a process Yt under study 
as t ---t 00. Thus a time-homogeneous Markov process may not have a 
genuine "equilibrium" distribution because it in some sense "blows up," 
e.g., the process may take values on the integers and the probability 
mass may move out toward + 00, even though the transition probabili­
ties are time-independent. In such a case, clearly, no first-order distribu­
tion can be assigned which is time-invariant. 

The analytical expression of "equilibrium" often takes the form of a 
statement to the effect that an operator has zero as a characteristic value. 
Perhaps the most familiar example of such a statement arises in the case 
of a Markov process in continuous time with a transition rate matrix A; 
the equilibrium equation is Aq = 0, for a probability vector q. * 
This equation, together with its connections to semigroups, to Markov 
processes, and to the notion of statistical equilibrium used in traffic 
theory, is discussed immediately below. 

A traditional analytical method in telephone traffic theory is that of 
"statistical equilibrium," due to Erlang. 5 This method may be described 
heuristically as follows: A notion of equilibrium is defined by the prop­
erty that the rate of flow of probability into (or onto) a state equals that 
out of (or from) the state; this equilibrium is expressed in a set of equa­
tions among the state probabilities, the so-called statistical equilibrium 
equations; the "equilibrium" state probabilities are then taken to be 
(or defined by) the solution of these equations. 

The method of statistical equilibrium can be interpreted in the mathe­
matically rigorous context of semigroups of positive operators, here the 
matrices of transition probabilities {Q(t), t real} for a Markov process 
Xt taking values in S, with 

Q(t) = (qXy(t» 

qXy(t) = PI' {state of system is y at t if it was x at OJ. 

The generator A of the semigroup is the matrix of transition rates or the 
derivative 

A = lim ACt) - I = Q'(O). 
t~O t 

The matrix A expresses the relative probabilities of the various changes 

* We are using the convention (Aq)x = L ayxqy, rather than the more usual 
y 
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that can take place in a small amount of time, and indeed 

Q ( t) = I + At + 0 ( t) as t ~ o. 
In terms of the generator A the equation of statistical equilibrium can 
be written as Aq = 0, which expresses the fact that the vector q of 
state probabilities is an eigenvector of A corresponding to a zero eigen­
value of A. From the semigroup property 

Q(t + s) = Q(t)Q(s) 

it follows that 

Q(t) = exp At 

XES, t real 

the last equation expressing the invariance of q under the transition 
probability matrices Q( . ). 

V. THE MAXIMUM ENTROPY PRINCIPLE 

In the method of statistical equilibrium, the state probabilities are 
calculated a posteriori from a prior equation expressing an equilibrium or 
invariance principle. This equation is either postUlated or is derived 
from assumptions that lead to a Markov stochastic process as a model for 
the operating network. 

In the present work we use a variational principle rather than an equi­
librium principle as a basis for calculating "equilibrium" state proba­
bilities. In drawing this distinction we refer only to the immediate form 
of the assumptions and derivations, and imply no absolute distinction, 
since an "equilibrium" principle can almost always be given a "varia­
tional" form. For example, if A is a transition rate matrix for an ergodic 
Markov process, and A is self-adjoint with respect to an inner product 
(. , . ), then the "equilibrium" probability vector q, i.e., the solution of 
Aq = 0 is equally well described as the vector which maximizes the 
Rayleigh quotient 

(Aq,q) 
(q, q) . 

It will turn out that the probabilities {qx, XES} derived from our 
variational principle also have an invariance property expressible, as in 
the example given, in terms of the self-adjoint generator A of a Markov 
semigroup by the equation Aq = O. This equation can be interpreted 
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as a "statistical equilibrium" equation, and the elements of A related 
to calling-rates and hangup rates, in the various states x € S. 

However, instead of starting with a suitable matrix A to represent 
the infinitesimal dynamic behavior, and solving Aq = 0 in order to 
obtain an equilibrium distribution {qx, XES} over the states of the 
system, we shall directly choose a certain q, to be used as an "equi­
librium" distribution for calculating quantities of interest, according 
to this criterion: The entropy functional 

H ( q) = - L qx log qx 
XtS 

is to be as large as possible subject to the conditions 

XES 

L I x I qx = m, 
XES 

where m is a given number, the average load carried. The first two condi­
tions ensure that only bona fide probability distributions are considered, 
while the third enjoins that q give rise to m as the mean number of calls 
in progress in equilibrium. This criterion or method for choosing a prob­
ability distribution over S we call the maximum entropy principle; it is 
exactly analogous to that used in statistical mechanics, provided that 
the number of calls in progress is interpreted as the energy of the me­
chanical system. We have already stated that this principle leads to a 
unique q which is exactly the same as would be obtained by a particular 
choice of A, given later, and solving Aq = 0; this matrix A has a definite 
interpretation in terms of system behavior during small periods of time. 

A measure of justification for using the maximum entropy principle 
can be obtained from five arguments: 

(1) Insofar as a high value of the entropy functional is an indication 
of a low degree of information, so far can use of the principle be inter­
preted as postulating that an equilibrium distribution {qx, XES} corre­
sponds to a condition of maximum ignorance subject to a given average 
number of calls in progress. The principle may thus be said to represent 
a "safe" or "worst case possible" approach to the problem. Exactly the 
same principle is used in statistical mechanics to obtain the canonical 
distribution. In both cases it is a reasonable and systematic way of 
throwing up our hands. 

(2) The principle is appealing for the obvious reasons of unity, uni­
formity, simplicity, and elegance. 
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(3) It leads to a theoretical structure similar to that of statistical 
mechanics. As in the physical theory, statistical quantities of interest are 
calculated from a partition function, characteristic of the network under 
study, that depends on purely combinatory properties of that network. 

(4) The principle of maximum entropy leads to a unified theory ap­
plicable to all connecting networks. That is, the resulting "equilibrium" 
distribution depends algebraically on the structure of the network in a 
way that in a sense is uniform for all networks. 

(5) The principle can be given a dynamic context in terms of Markov 
processes. This context permits the study of the approach to equilibrium 
in time. with important applications to sampling error. 

VI. THE CANONICAL DISTRIBUTION 

In the next few sections we develop some of the principal consequences 
of the maximum entropy principle, and examine their similarity to 
statistical thermodynamics. In the present section we determine the 
distribution {qx, XES} which maximizes H(q) for a given average load 
carried. The following lemma is no doubt well-known, especially to 
physicists; since its application in traffic theory is relatively new, its 
detailed proof is included for completeness. 

Lemma 1: Let f( .) be a nonnegative function defined on S, and let 

won = L: ~!(x). 
XES 

The maximum of 

H(q) - L: qx log qx 
XES 

subject to the conditions 

XES 

(1) 

(mf a given positive number in the closed (2) 
convex hull of the range of f( . ),) 

H(q) = logw(w) - mf log w, 

where w is the unique positive solution of 

w(d/dw) logw(w) = mf. 
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The maximum is achieved by the choice 

qx = [w'(x) /'lr( w)], 

= exp {-aI/ex) - a2 -I}, 

579 

xeS 
(3) 

where al , a2 are (the values of Lagrange's multipliers) determined by any 
two of the relations 

a2 = log 'lr(e-U1 ) - 1, 

mf = L f(x) exp (-ad(x) - az - 1), 
XES 

w = exp {-ad. 

Proof: With al and a2 as Lagrange's multipliers, we form the expression 

h = - L qs log qx - al L f(x)qx - a2 L qx, 
XES XES XES 

differentiate with respect to each qx , and set the resulting derivatives 
equal to zero. This gives the equations 

xeS (4) 

whose solution is (3). The multipliers at and a2 are to be determined 
from the conditions Lus qx = 1 and Lusf(x)qx = mf. The first gives 

1 = e-u2
-

l L exp [-ad(x)]' 
XES 

a2 = log 'lr(e-U1 ) - 1, 

while the second yields 

mf = e-U2
-

1 L f(x) exp [-ad(x)] 
XES 

L f(x) exp [-ad(x)] 
XES 

L exp [-ad(x)] 
XES 

Setting w 

equation 
exp {-al}, it is found that w should be a solution of the 

w(d/dw) log'lr(w) = mf > O. (5) 

From the fact that 

d
d
a

2

2 
log 'lr(e-U) = --h- L (f(x) + ~ IOg'lr(e-U »)2 e-uf(x) 

'lr(e ) XES da 

>0 
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it is easily shown (Khinchin,6 p. 77) that there is exactly one solution 
w of (5), and that w is positive. 

A relative extremum of H(q) in q ~ 0 ~ubject to (1) and (2) must 
satisfy equations (4). Since these have only one solution there is only 
one such extremum. To show that it is a maximum it is enough to 
show that the matrix of second derivatives of H(q) with respect to the 
components qx of q is negative definite. However, this is straightforward, 
since 

if x ~ y 

if x = y 

In Lemma 1 we let 

fer) = I x I 
= number of calls in progress in state x 

and we obtain 
Theorem 1: Let m > 0; let 

<I>(~) = L ~lxl; 
XES 

and let A be the un~'que (positive) root of 

m = A(d/dA) log <I>(A). 

The maximum of H (q) = - Lus qx log qx, subject to the conditions 
that q be a probability vector over S and that Lus I x I qx = m, is 

Hmax = log <I>(A) - m log A 

and is achieved by the vector q with components 

A1xl 

qx = <I>(x) , XES. 

This is the distribution of probability over S that is determined 
uniquely by the maximum entropy principle; as noted before, it is the 
canonical distribution. The function 4>(.) is called the partition function 
of the connecting network whose states form the set S. Since m deter­
mines A uniquely and vice versa, we can use A as the parameter that de­
termines the average traffic level instead of m. Indeed, m is a monotone 
increasing the function of A ~ O. Also it can be seen that moments of 
the distribution of the number of calls in progress (other than the mean) 
can be calculated from 4>( . ) by logarithmic differentiation. 
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VII. PHOPEHTIES OF THE PAHTITION FUNCTION 

In this section we exhibit various identities and relationships that are 
typical of the partition function <p(,), This function is the generating 
function of the number of states in a given level; that is 

w 

<I>(O = L ~k / Lk /, w = max / x /. 
k=O XES 

Thus the problem of calculating A, <I>( . ), and q in our model reduces 
to the calculation of the sequence 

/ Lo I, / Ll /, ... 

and vice versa. 
Remark 1: 

1 
I Lk I = k YEf:_l I Au I 

L I Ax I = L I x I = <I>'(1) 
XES XES 

The first part of this result was proven as Theorem 1 in Ref. 2, and it 
implies the second part. 

The Mobius function /-L( .) of the partially ordered system (S, ~) is 
defined recursively by 

/-L(O) = 1, /-L (x) = - L /-L (y ) if x > 0, XES. 
v<x 

We have remarked in previous work (Ref. 2, Section VII) that if S is 
a class of network states, then /-L( • ) takes on the simple form 

/-L(x) = (_l)lxl lx/!. 

We define the generating function M( . ) by 

M(~) = L tlxl/-L(X). 
XES 

Since 

<I>(~) = L t ixi = L (-t) Ixl /-L(X) 
XES XES / X/ ! 

it can be seen that (except for a change of sign in the generating variable) 
<I>( • ) is the exponential generating function associated with Al( . ). Thus 
we have 
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Remark 2: 

Proof: 
w 

M(~) = :L ~k \ Lk \. (-I)kk! 
k=O 

= ~<X) e-U<I> ( -~U) duo 

In analogy with Birkhoff,1 p. 15, (12), we define for each x € S a 
characteristic polynomial by the recursion formula * 

Px(O = ~Ixl - :L py(~). 
y<x 

This is related to the Mobius function fJ,( .) by the fact that if fJ,y(') 
denotes the Mobius function for the set {:r: x ~ y}, then 

Px(O = :L ~IYIfJ,y(x). 
y;$,x 

However, the partial ordering of the cone { x: x ~ y} is again of the 
same form as that of S; i.e., there are exactly (I x - y I)! at:cending 
chains between y and x, all of length I x - y I. Hence, by ref. 7, p. 15, 
(11), 

(-1) Ix-yl 
(I x _ y /)! = fJ,(x - y) 

and 

= ~Ixl + :L ~IYIfJ,(x - y). 
Y<X 

Let now 

* Actually, Birkhoff's polynomial Px[~] equals ~pA~). The definition we use is 
more convenient for our purposes. 
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The lVIobius inversion formula gives 

~Ixl = L /-L(x - y)qy(~) 
l1<X 

pxC~) = L f.L(x - y)Py(~). 
y<x 

To calculate qx( . ) explicitly, we note that if 0 ;;; k ;;; / x /, then, using 
the cup n for set intersection, 

1 Lk n {yo y ~ xl 1 ~ (i % I), 

Le., there fire exactly (i % I) states with" calls up below any state x. 

Hence 

qz(~) = L~lvl = (1 + ~)Ixl _ ~Ixl. 
v<x 

Let us write 

where rye . ) are functions to be determined. Using the Mobius inversion 
formula once more, we find that one choice of the rx's is 

rx(~) = L f.L(x - y)~lvl, 

so that 

and 

Pz(~) (1 + ~)Ixl 

~ (i % I) ~k 
Izi 
L ~k. number of elements of Lk less than or equal to x. 
k=O 

It is apparent that 

cJ>(1 + ~) 
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Since for ° ~ k ~ I x I there are precisely 

elements in Lk that are below x, we have 

<P(1 + ~) = L Px(~). 
XES 

The preceding results yield the following identities for <p( . ) : 

<P(A) L A1xl = L L fJ.(x - y)qy(A) 
XES XES y<x 

= <p(1 + A) 

VIII. A REVERSIBLE MARKOV PROCESS FOR WHICH THE CANONICAL DIS­

TRIBUTION IS INVARIANT 

We shall describe an ergodic reversible Markov process Zt, taking 
values in the set S of states, and having the property that its stationary 
distribution over S is precisely the canonical distribution derived from 
the maximum entropy postulate. This Markov stochastic process can 
be used to place the canonical distribution into a dynamic context by 
exhibiting it as invariant under a semigroup of positive operators, viz., 
the transition matrices of the Markov process in question. The transi­
tion rate matrix A of this process, i.e., the generator of the semigroup, 
then provides several interpretations (cL Section X) of this dynamic 
context in terms of behavior at the terminals of the networks, i.e., in 
terms of calling rates and mean holding-times. 

Let XES be a possible state of the network. In Section II we have 
introduced the sets of states Ax and Ex with 

Ax = set of states immediately above x, i.e., accessible from x by 
adding a new call, 

Ex = set of states immediately below x, i.e., accessible from x by a 
hangup. 

The process Zt to be considered can be described heuristically by 
saying that if Zt = x then Z(.) is moving to each Y E Ax at a rate A > 0, 
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to each Y E Bx at a rate unity, and to any other state at a rate zero. Its 
transition rate matrix A = CaXY) is given by 

(- 1 x 1 - A 1 Ax 1 

a,,, = l~ 
if y = x 
if ye B.r: 
if y e Ax 
if y ~ Ax U Bx and y ~ x. 

With this matrix we can define a Markov process Zt in the usual way. 
(Cf. Doob.8 ) A discussion and critique of possible physical interpre­
tations of the rate matrix A is given in Section X. 

The probabilistic interpretation of the rate matrix A is that if Zt = x 
there is a conditional probability Ah + o(h) that Zt+h = y, for y E Ax ; 
there is a conditional probability h + o(h) that Zt+h = y, for y E Bx ; 
there is a conditional probability 1 - Ah 1 Ax 1 - h 1 x I - o(h) that 
Zt+h = x; all other events have a conditional probability o(h), as h ~. o. 
The constant A is the calling rate per idle path. 

An alternative informal description of the Markov process Zt is as 
follows: the length of time spent in any state x is a random variable 
independent of all other lengths of time spent in a state, having a 
negative exponential distribution with a mean 

1 

1 x 1 + A 1 Ax I· 
At the end of a stay in x, a new state is chosen (independently of every­
thing except x) from Ax U Bx according to the probabilities 

for elements of Ax 

1 x 1 + A 1 Ax 1 

for elements of Bx. 

The equation Aq = 0 is the matrix-vector form of the statistical equi­
librium equations for the process Zt • These equations can be written out 
and solved explicitly, as follows: Aq = 0 is equivalent to 

XES. (6) 

We find by substitution that qx taken proportional to Alxl gives a solu­
tion. Hence the unique normalized (to be a probability vector) solution 
is 

Alxl Alxl 

qx = L Alxl = <P(A) • 
:l:E8 
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This is precisely the canonical distribution of probability over S which 
was obtained earlier from the maximum entropy principle. Thus, one 
sense in which the canonical distribution is an equilibrium distribution 
is that it is invariant under the transition probability matrices of Zt • 

It will be noticed that the vector q has components which satisfy not 
only the statistical equilibrium equation (6) for Zt, but also the mnch 
stronger condition 

x,y € S, 

which is an analog of the principle of detailed balance. In the language 
of probability, this condition is that of reversibility; that is, it is equiva­
lent to the condition that the process Zt look the same whether seen 
forward or backward in the sense that for any two times t and s 

PI' {Zt = x and Zs = y} = Pr {Zt = y and Zs = x}. 

The reversibility of Zt has important statistical consequences, explored 
in Sections XII-XIV. However, an immediate consequence is the 
following form of the Boltzmann H-theorem for Zt : 

Remark: Let 

where 

PI' {Zt = y I Zo = x}. 

Then 

(d/dt)Hx(t) ~ o. 
The proof of this is well-known, being just Pauli's proof of the 

quantum-mechanical H-theorem from the principle of detailed balance. 
(See Tolman,9 p. 464.) 

IX. ANALOGY WITH STATISTICAL MECHANICS 

As its name suggests, the canonical distribution of probability over S, 
implied by the maximum entropy principle, resembles the canonical 
ensemble of statistical mehcanics and thermodynamics. This analogy 
extends to several other concepts arising either in traffic theory or in 
statistical mechanics, and will now be described. It is assumed that the 
reader is familiar with the rudiments of statistical mechanics; a lucid 
account can be found in Khinchin.6 

Let us consider a conservative mechanical system embedded in a heat 
bath, and assume that it is described by a canonical ensemble. It can 
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exchange energy with its surroundings; its energy is a randomly varying 
quantity. The basic identification we make is of the number of calls in 
progress in a connecting network with the energy of this mechanical 
system. In other words, new calls in the operating network are analogous 
to increments of energy in the mechanical system, while hangups repre­
sent decrements of energy. The average energy is identified with the aver­
age load carried by the network. 

The surfaces of constant energy in the phase-space of the mechanical 
system are analogous to the levels Lk , i.e., the sets consisting of the 
various states with k calls in progress for k = 0, 1, 2, .... The number 
1 Lk 1 of ways of putting up k calls, on which our theory rests, is the 
analog of the area of a surface of constant energy. Just as the canonical 
density function is constant over the surfaces of constant energy and 
maximizes the entropy for a given average energy, so is the canonical 
probability vector q constant over each Lk and maximizes H (q). 

The partition function of statistical mechanics is defined (cf. Ref. 6, 
p. 79) by 

Z(a) = f e-aJl(x) dV(x); 
r 

where r is the phase-space, x f r is a typical state, H (x) is the total 
energy of state x (here given by the Hamiltonian function), and dV is 
the volume element of phase-space. In a similar way, the partition 
function <p( .) is the generating function of the numbers 1 Lk I, k = 
0, 1, 2, .... The set S of states corresponds to the phase-space r, 
H (x) is analogous to 1 xl, the volume measure on r is analogous to the 
counting measure on S, and e -a replaces ~. 

In Khinchin's development6 of statistical mechanics the temperature 
is defined as inversely proportional to the unique root 0 of the equation 

(d/dO) log Z(O) = average energy. 

Specifically, the absolute temperature T is given by 

o = (lcT)-\ 

where k is Boltzmann's constant. In our model for a connecting net­
work the analog (modulo a logarithmic transformation) of 0 is the 
solution A of 

(d/dA) log <P(A) = average load carried. 

Thus it is tempting to identify (log A)-l as proportional to the "tem­
perature" of the traffic system. 

The matrix A, introduced in Section VIII as the "transition rate" 
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matrix for the process Zt, provides a sense in which the canonical 
distribution q is of "equilibrium" type. The reversibility of Zt is analogous 
to the detailed balance property of transition matrices in statistical 
mechanics. (Cf. Tolman,9 pp. 165 and 521.) This property also implies 
that a form of the Boltzmann H-theorem is valid for Zt , as we saw in 
Section VIn. 

The analogies between our thermodynamic model of traffic and 
statistical mechanics can be collected in the following tabulation: 

STATISTICAL MECHANICS 

Energy 
Partition function 

Entropy 

Temperature 
Area of surface of given 

energy 
Transition rate matrix 
Detailed balance 
Equilibrium 
Heat bath 
Phase space r 
Volume measure on r 

x. DISCUSSION AND cm'.rIQUE 

TRAFFIC THEORY 

Calls in progress 
Generating function cJ>( .) of number of 

ways of putting up k calls, 0 ~ k ~ w 

- L: qx log qx 
XES 

{log (calling rate per idle path) }-l 
I Lk I = number of ways of putting up k 

calls 
A 
Reversibility of Zt 

Aq = 0 
Idle customers' needs 
Set S of possible states 
Counting measure on S 

It is now reasonable to consider possible physical interpretations of 
the stochastic process Zt and of the transition rate matrix A in terms of 
items describing behavior at the inlets and outlets of the connecting 
network, such as calling rates, holding-times, and routing rules. Obvi­
ously, transitions of Zt from a state x into Ex represent hangups, while 
transitions from x into Ax represent new calls; the entries of A indicate 
the "rates" at which these events occur in the different states. However, 
the reasonableness, and so the acceptability, of Zt as a model for traffic 
depends on the interpretations of Zt and A in physical terms. Hence we 
must inquire whether (and how) the rates entered in A can be viewed as 
realistically describing the terminations of calls in progress, the occur­
rence of new calls between inlets and outlets of the network, and their 
routing or disposition. 

In general, to construct a Markov process as a model for traffic in a 
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connecting network whose states form the set S, it is usually sufficient to 
give, for each state x € S, and each inlet u and outlet v, 

(i) the hangup rate for the various calls in progress in x, 
(ii) the calling rate between u and v in state x, 

(iii) the method for disposing of requests that encounter congestion, 
receive busy tone, etc., 

(iv) the method for choosing routes of new calls. 
A particular choice of the items (i)-(iv) leads to a transition rate matrix, 
and so to a Markov process. We shall assess the reasonableness of Zt as 
a model for traffic in terms of items (i)-(iv) above by exhibiting two 
choices of (i)-(iv) that both lead to the rate matrix A of Zt • 

In the dynamic model Zt described in Section VIII, the role of the in­
lets and outlets is open to (at least) two different interpretations, each 
of which induces a corresponding interpretation of the transition rate 
matrix A. 

One possible interpretation of the inlets and outlets is to take them 
seriously as actual terminals or customers' lines. They are then the outer­
most portions of the network under study, the original sources for traffic 
that enters the system, beyond which there is no more connecting or 
switching equipment. From any inlet, or to any outlet, there can be at 
most one call in progress. In this case the rate matrix A can be inter­
preted as saying that in a state x each call in progress is terminating at 
a unit rate, that the calling rate from an idle inlet u to an idle outlet v is 

A' number of available paths from u to v in state x 
= A·number of states covering x which include a (u,v) call, 

and that of the possible routes for a new call one is chosen at random 
(equal probability for all). The reader can verify that this choice of 
(i)-(iv) does in fact lead to the rate matrix A. Note that this description 
does not provide for the generation of blocked calls. 

The choice of a unit hangup rate per call in progress is tantamount to 
measuring time in units of mean holding-time, with the convenience that 
carried and offered loads come out in the standard units of erlangs. This 
unit hangup rate can be obtained as a consequence of assuming that the 
holding-times are negative-exponentially distributed with mean unity, 
mutually independent, and independent of the random process describ­
ing new calls. This assumption of "negative exponential holding-times" 
is a standard one in congestion theory. (See e.g., Syski,I° p. 9.) 

More interesting (and questionable!) is the fact that under this inter­
pretation the calling rate in a state x between an idle inlet u and an idle 
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outlet v depends on the number of ways in which a call from u to v 
could be put into the network in state x. This calling rate can therefore 
change in time as the state changes, even if u and v remain idle. It can 
be argued that this is an unrealistic feature, and that therefore Zt is not 
a wholly reasonable model for telephone traffic in a network whose in­
lets and outlets are interpreted as terminals or customers' lines. For 
surely the idle calling parties do not know the state of the system, nor 
the number of paths available for a call between them, and so they can­
not (let alone do not) adjust their calling rates accordingly. 

In a sense, it would be more intuitive and reasonable to assign a call­
ing rate A to each idle pair (u,v) of terminals (an inlet u and an outlet v) 
irrespective of the state x of the system. This basic calling rate for each 
idle pair (u,v) is then distributed over the states that cover x and realize 
(u,v) [assuming that (u,v) is not blocked, so that there are such states] 
in accordance with some routing rule. A stochastic process Xt on S based 
on this idea is described in Section XI, and is studied in detail in a work 
(Benesll) to appear later. 

From an a priori viewpoint, Xt is a more reasonable model for traffic 
than Zt • The objection (described above) to letting the calling rate for 
an idle pair depend on the state is severe. Nevertheless it does not neces­
sarily destroy the usefulness of the process Zt for describing traffic. Three 
comments are relevant here: 

(1) If all calls can be put up in at most one way, then Xt and Zt coin­
cide. 

(2) If calls can be put up in only a few ways, it may often be possible 
or useful to regard Zt as a small perturbation of Xt obtained by raising 
various calling rates. This idea is explored in Section XI. 

(3) Even if Zt is not in any precise sense a small perturbation of the 
a priori reasonable model Xt , it deserves to be considered as a model of 
traffic. It must not be forgotten that the usefulness of a theory rests 
more on its success in predicting than on its meeting criteria of reason­
ableness that are adduced a priori. 

However, it is possible to give the inlets and outlets a second interpre­
tation, different from the one that assigns them the role of "outermost 
terminals." This interpretation makes Zt a fairly reasonable model of 
traffic, in the a priori sense we are discussing. It consists in letting each 
inlet or outlet represent a point from which several or many calls can be 
in progress to other points in the system. Physically, such an inlet or out­
let might be a PBX or central office serving a locality. As such, it would 
itself contain a connecting network which is left out of account in the 
model. It no longer necessarily makes sense to speak of busy and idle 
inlets, or outlets. 
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To give an intuitive rationale for this interpretation and for the as­
sumption about calling rates that corresponds to it, let us pick an inlet­
outlet pair (u,v) and think of u and v as (possibly geographically sepa­
rated) points between which there may be several calls in progress. For 
example, the network under study might be a toll network, and u and v 
might be local central offices acting as sources of traffic for the toll sys­
tem. Or, for a second example, u and v might be distinct switches in a 
large network inside a central office. 

In such situations, it is natural to expect that if in a state there are 
many paths available for a call from u to v, then there is a larger proba­
bility that a requested call from u to v arise in the next small interval of 
time h than if there were very few paths between u and v available. In 
other words, it is reasonable that the calling rate in x for (u,v) calls be 
a monotone increasing function of the number of paths available in x 
for such calls. 

A particularly simple monotone function is the linear one, and we shall 
assume that the calling rate for an idle pair (u,v) in x is 

A·number of paths available in x for (u,v) call, 

and that of the available paths one is chosen at random. Again, no pro­
vision is made for the generation of blocked attempts, since these will not 
affect the state probabilities when blocked calls are refused. 

We observe that Ax can be partitioned and written as 

Ax = U Ax(u,v), 
(u,v) 

where 

Ax(u,v) {y: y covers x and realizes (u,v)} 

with 

I AxCu,v) I = number of paths available in x for a (u,v) call. 

Since routes for new calls are chosen at random we find that the transi­
tion rate from x to y € Ax is exactly A, so that this second interpretation 
also leads to the rate matrix A. 

XI. A MARKOV MODEL BASED ON TERMINAL-PAIR BEHAVIOR 

We now revert to interpreting inlets and outlets as the ultimate ter­
minals of the connecting network. In Section X it was suggested that 
under this interpretation an a priori reasonable model (a stochastic 
process Xt) can be obtained by postulating an effective calling rate 
A > 0 per idle inlet-outlet pair. This can be done by assuming that each 
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idle inlet calls an arbitrary outlet at a rate A, and vice versa, with at­
tempted calls to busy terminals rejected with no change of state. The 
total attempt rate in a state x (excluding calls to busy terminals) is 

A' {number of idle } 
inlet-outlet pairs in x . 

If I is the set of inlets, and n that of outlets, with I and n disjoint, this 
has the quadratic form 

A(III-lxl)(lnl-lxl)· 
As before, we assume a unit hangup rate per call in progress, with 

blocked calls rejected. The description of Xt can be completed, finally, 
by specifying a method of routing. This we do by introducing a "routing 
matrix" R = (rXy) with the following properties: Let x be a state, and 
let II be the partition of Ax induced by the equivalence relation "-' of 
"having the same calls up, possibly on different routes"; then 

rxy ~ 0 

rxy = 0 unless y € Ax 

L rx.y = 1 for Y € II. 
YfY 

We note that LYfS rxy is exactly the number sex) of attempts which 
would be "successful" if they arose in state x, and that II consists of 
exactly the sets Ax( u,v) for {( u,v)} idle and unblocked in x. 

The routing matrix R is to have this interpretation: each time the 
can {( u,v)} is to be completed in state x, a state y is chosen inde­
pendently from Ax( u,v) with probability rxy and the call is routed so 
as to take the system to state y. 

The foregoing assumptions lead to a rate matrix Q for Xt defined by 

(1 
J Arxy 

qxy = 1_ I x I - AS( x) 

lo 

if y € Ex 
if y € Ax 
if y = x 
if y € (Ax U Ex)' and y ~ x. 

This matrix is exactly like A except that for y € Ax the rate from x to y 
is not A but (the in general smaller quantity) Ar xy , and that the diagonal 
terms are correspondingly increased so as to keep row sums equal to 
zero. For each Y € II, rxy for y E Y represents a distribution of the calling 
rate of some idle unblocked pair (u,v) over Ax( u,v) = Y. Indeed A 
results from Q if all the rxy are replaced by unity. The process Xt can be 
defined in terms of its rate matrix Q. 
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The assumptions leading to the rate matrix Q and to the process Xt 

have much a priori appeal; Xt itself is discussed in detail in a forth­
coming paperll already mentioned. Here we shall merely consider 
whether Zt may be regarded as a perturbation of Xt • Since each process 
is determined by its respective rate matrix, and since we are interested 
mostly in equilibrium behavior, we restrict attention to asking how 
different are the respective equilibrium distributions over S for Xt and 
Zt • Thus, if p and q are probability row-vectors satisfying Qp = 0 and 
Aq = 0 respectively, how different is p from q? 

To give a precise estimate, we introduce the norms 

Illl! II 
X,Y 

" v II L: I Vx I 
x 

for matrices and vectors, respectively. Since Ap 
Qq = (Q - A)q, we find 

II II < 2 II Q - A II 
p-q =l-IIQ-AII· 

The norm of Q - A, in turn, can be seen ·to be 

II Q - A II = 2A L: L: (1 - r xy) 
XES YEA", 

= 2A L: (IAxl- sex)) 
XES 

= 2A{<I>'(1) - L: s(x)} 
XES 

where 

(A - Q)p and 

sex) = number of pairs that are idle and not blocked in x. 

Letting 

J.L = max number of ways a call can be realized 

we find I Ax I ~ J.Ls( x), and hence 

II Q - A " ~ 2A(J.L - 1)L: sex) 
X.S 

~ 2A(p, - 1)<1>'(1). 

Let 

w=maxlxl 
XES 
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so that <P'(1) ~ w 1 S I, and 

II Q - A II ~ 2A(J.I. - l)w 1 S I· 
The average contribution (per state) to II Q - A II is then 

II QI~ IA II ~ 2A(J.I. - l)w. 

XII. THE APPHOACH TO EQUILIBRIUM 

It is known from the theory of Markov processes that the matrix 
Q(t) = (qxy(t)) of the transition probabilities 

qXy(t) = Pr {z(t + s) = y I z(s) = x}, t ~ ° 
of the process Zt satisfies the Kolmogorov equations 

(d/dt)Q(t) = AQ(t) = Q(t)A, Q(O) = I, 

and that the study of the time-dependent (as opposed to the asymptotic, 
or equilibrium) behavior of Zt can be carried out in terms of the charac­
teristic values of A. Knowledge of the transition probabilities is essential, 
for example, in calculating the sampling error incurred in such load 
averages as 

1 n 

- L \ Znr \, 
n j=l 

1fT 
T 0 \ Zt \ dt, (7) 

where T is the interval between successive discrete observations of 
I Zt I, and (0, T) is an interval of continuous observation of I Zt I. In this 
section we study the manner in which Zt approaches equilibrium in 
terms of the two principal characteristic values of A, i.e., that of largest, 
and that of smallest nonzero, magnitude. Applications to estimating the 
covariances of functions of Zt , and to studying sampling error for the 
traffic averages in (7), are described in Sections XIII and XIV, re­
spectively. 

Our study of the approach to equilibrium is based on the observation 
that the matrix A of transition rates for the process Zt is symmetrizable, 
i.e., is a self-adjoint operator in a suitably chosen inner-product space 
of finite dimension I S I. The probabilities 

A1xl 1 
qx = <P(A) = J.l.x 

are all strictly nonnegative, and we use their reciprocals J.l.x as weights 
in defining an inner product, 



THEORY OF TRAFFIC 595 

(8) 

and a norm, 

We now remark that for all states X,y from S, 

or alternatively 

ayxpx = a.ryJ1y. 

Indeed, this remark is the basis for the solution q given in Section VIII 
for the statistical equilibrium equations (6) of the process Zt ; it has 
the important consequence that A is self-adjoint with respect to the 
inner product defined by (8), viz. 

Lemma 2: (Ar,s) = (r,As), for any I S I -vectors r,s. 
Proof: A is a real matrix, so 

In a similar way we prove 
Lemma 3: 

y x y 

(Ar,s) = -! L: L: ayxqy(sxJ..Lx - X yJ1y)(J1:l.r;r; - pyry). 
x y 

Proof: Since the matrix whose elements are ayxJ1x is symmetric, we 
have 

(Ar,s) 

Now 

because Aq = 0, and 

" " 2_ L.J L.J ay;r;qyJ1y Syr y 
x y 

° 
because L:x all;r; = o. This proves the lemma. 
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Theorem 2: The characteristic values of A are real and nonpositive. 
Zero is a simple characteristic value corresponding to the characteristic 
vector q, normalized to unity. 

Proof: The result follows from the known properties of self-adjoint 
transformations. (See Ref. 12, pp. 153-155.) 

The characteristic values of A will all be of the Rayleigh quotient 
form 

(Av,v) :s;;0 
(v, v) -

for some vector v; by Lemma 3 this form is nonpositive. The probability 
vector solution q of Aq = 0 is unique so that zero is a simple charac­
teristic value. Furthermore, if ° > rmax = rl ~ ... ~ rlsl-l = rmin is 
an arrangement of the characteristic values in decreasing order, the 
variational description of the characteristic values (Ref. 12, p. 111) 
implies that with II v 112 = (v,v), 

rmax = rl = max {(Av,v) I v 1- q, II v II 1} 

rmin = rlsl-l = min {(Av,v) I II v II = 1}. 

The alternative notations rmax and rmin identify the two "dominant" 
characteristic values, and are introduced for later convenience to en­
hance the symmetry of the theory. 

One can now estimate rl from below by substituting suitable trial 
vectors in the Rayleigh quotient. Choosing a vector v with components 

\x\- m 
XES, 

where 

m = L \ x I qx = A ~ log cll(A) 
XES a/\ 

,,' = ~ <I x I - m)'q, = )..' (::, + :)..) log <I>()..), 

it is easily seen that (q,v) = 0, that II v II = 1, and that 

1 '" '" (I Y \ - m I x \ - m)2 (Av, v) = - 2- L..J L..J ayxqy - ----
X Y U U 

In equilibrium, the average rate of new calls equals the average rate of 
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hangups, as can be verified from the equilibrium equations Aq = O. 
That is, 

L I y I qy = X L qy I Ay I, 
YES YES 

and we find 

a generalization of a result known (Ref. 13, p. 147) for the simple 
busy signal trunk group (classical Erlang model). 

In general, letting f( . ) be any function defined on the set S of states, 
but not identically a constant, we define 

Choosing now a vector v with components 

f(x) - mf vx = ._------'-
CTff.J,x 

we obtain (by repetition of previous reasoning) 

as a lower bound for rl . 
We now define a set of vector-valued functions {cx(t), XES, t ~ O} by 

the condition 

Y € S. 

The function cx (') describes the approach to equilibrium from the 
initial state x at time t = O. 

Theorem 3: For t ~ 0 

II cx(O) II exp (rmint) ~ II cx(t) II ~ II cx(O) II exp (rmaxt). 

Proof: Since qy and qXy(t) are both distributions in y, we have 

SO that cx ( t) ..1 q. Also 
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1t /I Cx(t) W = 2 ~ [qXy(t) - qy] 1t qXy(t)Jl-y 

= 2 (C., i C.) 
= 2(cx , Acx ) 

since (d/dt)cz = Acx ; that is for each y € S, 

Hence, II Cx " being nonzero, we find 

2rmin ~ (d/dt) log II Cx W ~ 2rmax 

and Theorem 3 follows by integration. The argument just given is es­
sentially reproduced from KramerY 

XIII. COVAHIANCES OF FUNCTIONS OF Zt 

For the purposes of this section it is convenient to introduce an inner 
product ( . , . )', closely related to but different from ( . , . ) of the previous 
section, and defined by 

The associated norm is denoted by II r II' = (r,r)'!. The point of the 
"prime" notation is explained by the fact that the transpose A' of A is 
self-adjoint with respect to ( ',' )'. 

Remark: Where A' is the transpose of A 

(A'r,s)' = (r,A's)'. 

Proof: 
L L a:ryr ySxqx = L L aYXsxr yqy 

x y x y 

Let f( .) be a function defined on S, and define a stochastic process 
ft by the condition 

ft = f(Zt). 

Theorem 4: The covariance of ft is given by 
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where the vector f is defined by 

fx = f(x) - L f(x)qx, 
XES 

= f(x) - m,. 

Proof: The covariance of ft is 

L L qxqxy(t)fxfy = (f,Q(t)'f)' 
x y 

= (f,(exp tA)'f)' 

= i: t, (f, A,nf)' 
n=O n. 

599 

with Q(t)' denoting the transpose, and not the derivative, of Q(t). The 
covariance of ft is thus the exponential generating function of the series 
of numbers 

(f,A,nf) , n = 0,1,2, .... 

These can be calculated with the help of the following results: 
Lemma 4: Let the matrix elements of A n be axy (n). Then 

Proof: 

(n) ~ q:Laxy = qx L..J aXUlaUlU2· .. aun_lY 
Ul,···,Un_l 

L aUIXaU2Ul· .. aYUn_lqy 

Un_l,···,Ul 

Lemma 5: Let Q be the diagonal matrix of elements qx, x (; S. Then 

Proof: 
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From the three preceding results we obtain 
Theorem 5: The covariance of ft is 

R,(t) = :t C, (A nQf,Qf) , 
n=O n. 

where the vector f is as in Theorem 4, and Q is the diagonal matrix of 
elements qx , XES. 

It is readily seen that An, n ~ 1, is again a self-adjoint operator with 
respect to (".), and that its characteristic values are precisely the 
nth powers of those of A. Also, for any vector v and n ~ 0 

(A n ) {~O if n is odd 
V,v ~ 0 if n is zero or even 

so that by the variational description of characteristic values we have 

rmin n, n odd } ~ (An v,v) ~ {rmax n, n odd (10) 

r max
n

, n even (v,v) rminn
, n even 

provided that v ..1 q (in the inequalities involving rmax). Returning now 
to the vector Qf of Theorem 5, we find 

II Qf 112 = L q/f/Jlx 
x 

and 

L qx(Q, )xJlx = L q:rfx = 0, 
x x 

so that Qf ..1 q. Letting v = Qf in (10), we obtain 

a/rmin n ~ (A nQf,Qf) ~ a/rmax n, n odd, 

a/rmax n ~ (A nQf,Qf) ~ aj rmin n, n even. 

Unfortunately, these inequalities do not give useful bounds for the 
covariance R,(·). However, such bounds can be obtained from the 
formula of Theorem 5 in an elegant way by applying the spectral 
theorem to A. 

Theorem 6: Let ai, "', ak denote the distinct characteristic values of A, 
and let Ei , i = 1, "', k, denote the perpendicular projection on the sub­
space of all solutions Ar = air. Then the covariance R,( . ) of ft is given by 

k 

R,(t) = L (EiQf,Qf)eait , 
i=O 
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with 1 ~ k ~ 1 S I, Q the diagonal matrix of elements qx, X € S, and f 
given by fx = f(x) - mi' 

Proof: By the spectral theorem for self-adjoint operators (Ref. 12, 
p. 56) we can write 

k 

A L aiEi 
i=O 

and 
k 

A n
= LatEi • 

i=O 

We can now calculate with formula (9) of Theorem .5: 

= i: ± (ai~r (EiQf,Qf) 
11=0 i=O n. 

k 

= L (EiQf,Qf) eai
! • 

i=O 

This proves Theorem 6. Since we know that zero is among the charac­
teristic values (indeed, it is a simple one), one of the a's, say ao , will 
be zero. We may reasonably expect R I ( . ) to approach zero for large t; 
hence the constant, i.e., ao , term of R I ( .) should be zero. This can be 
seen as follows: the subspace associated with zero consists of vectors 
proportional to the equilibrium vector q, because zero is a simple charac­
teristic value; but we have already verified that q ..1 Qf; hence 

(Eor,Qf) = 0, all r. 

U sing this we prove the 
Corollary 1: RI(t) ~ 0 for all t, and in fact 

o ~ a/eTminl!1 ~ RI(t) ~ a/eTmaxltl, allt. 

Proof: Since the Ei of Theorem 6 are perpendicular projections, they 
are linear, self-adjoint, and positive in the sense of Ref. 12, p. 140; the 
usual term for positive is nonnegative semidefinite. Hence 

(Eir,r) ~ 0 

for any vector r. Since (Eor,Qf) = 0 if Eo is associated with the zero 
characteristic value, the result follows from Theorem 6, using 

k 

LEi = I, 
i=O 
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k 

L: (EiQf,Qf) = " Qf W = a/. 
i=a 

XIV. APPLICATIONS TO SAMPLING ERROR 

Let us suppose that n samples of the process ftC = f(Zt» are observed 
during an interval of equilibrium of Zt at intervals r apart, and that the 
normed sum 

n 
-IS -1 ~f n n = n LJ jT 

j=1 

is used as an estimate of E {It}. We find that 
n 

Val' {Sn} = L: (n - I j j)Rj(jr), 
j=-n 

where R j ( • ) is the covariance of ft. By using the identity 

n . -2' u 1 - e -2nu 2 

j"[;n (n - I J I)e IJI = n ctnk 'If, - 2 csck u, 

= Vn ( 1"), 

together with Corollary 1 of Section XIII, we find that 

u/vn( -!rrmin) ~ Var {Sn} ~ u/vn( -!rrmax). 

In a similar way, if ft is observed continuously over an interval 
(O,T) of equilibrium of Zt and the time average 

1 iT M(T) = T a f(Zt) dt 

is used as an estimate of E {Ie}, then 

Val' {1I1(T)} = 2T-2 ~T (T - t) Rj(t) dt, 

and Corollary 1 gives 

u/ iT (T - t) lmin
t dt ~ Val' {1I,f( T)} ~ u/ iT (T - t) lmax

t dt. 
a a 

xv. A GENERALIZATION 

As an extension of the maximum problem posed and solved in Section 
V we shall seek functions 

q;I;(t), XES, tl < t2 
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such that for each t in [ti ,t2] 

2: qx(t) = 1, 
XES 

2: I x I qx(t) = met) > 0 
XES 

J
t 2 

H(q(t» dt = maximum. 
tl 

In other words, we look for a time-dependent distribution of proba­
bility over S with prescribed mean values for the function 1·1 on S, such 
that the integral of the entropy functional over (ti ,[2) is a maximum. 

The Euler equations for this problem assume the trivial form (with 
Ll ( .) and L 2 ( .) as Lagrange's multipliers) : 

(aHjaqx) - LI(t) I x I - L 2(t) = 0, xeS 

or, writing out the H -derivative, 

xeS. 

The argument of Lemma 1 following equation (4) shows that qx( .) is 
given by 

A(t) Ixl 

q X ( t) = ell (A ( t» it ~ i ~ t2 

where A( . ) is the unique solution of the equation 

t; I x I A(t) Ixl (d ) 
met) = cI>(A(t» = udulogcI>(u) u=}.(t). 

This solution has the form of the canonical distribution at each time 
point in [tl ,i2], and Theorem 1 in effect is just the special case of this 
result that arises when met) == m. It is apparent that the form of this 
solution does not depend on what interval [ti ,tz] was considered, so we 
may assume that m( . ), and hence also A( .) and q( . ), are defined on 
the real axis. 

Let us define the matrix-valued function A(t) by A(t) = (aXy(t) 
where 

rl 
~ A( t) 

a",,(t) = l~ I x I - XCt) I A.I 

if y e Bx 
if y E Ax 
if x = y 
otherwise. 

In other words A(t) is obtained from the transition rate matrix A or Zt 
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by replacing the constant 'A by the function 'A( • ). Then for each t 

A(t)q(t) = 0 

i.e., 

{I xl + 'A(t) 1 Ax I}qx(t) = :E qy(t) + 'A(t) :E qy(t). 
yEAx VEBX 

Thus an analog of the statistical equilibrium equation holds at each 
point in time, and in this sense, a system described by {q( t) ,It ~ t ~ t2 } 

may be said to be locally in equilibrium throughout the interval (t l ,t2 ). 

Let us now redefine the process Zt to be the time-dependent Markov 
process corresponding to the (time-dependent) transition rate matrix 
A(·). We know that if 'A(.) were a constant function with the particular 
value 'A ( u), then the process Zt would have a stationary or equilibrium 
distribution over S given by 

We may therefore expect that if 'A( . ) is not constant, but changes only 
slowly with time, and if Zo has the absolute distribution (vector) q( 0), 
then Zt for t > 0 has a distribution approximately given by q( t). Let us 
see in detail how this occurs. 

The transition probability matrix 

Q(tl ,t2 ) = (qxy(tl,i 2 )), 

qxy(tl,i2) = Pr {Zt2 = Y 1 Ztl = x}, 

is now indexed by two time parameters instead of one, because of the 
time-dependence of Zt • The forward Kolmogorov equation for Q( .,. ) is 

(a / at)Q( u,t) = Q( u,t)A (t), U < t, 

or 

-[I y 1 + 'A(t)s(y)]qXy(u,t) 

+ :E qxz(t) + 'A(t) :E qxz(t) 
ZEAy ZEBy 

with Q(t,t) = I. It is easily seen that 

Q( u,t) = exp ft Q( w) dw, 
u 

the exponential of a matrix being defined by the usual series in powers 
of the matrix. Therefore if 

Pr {zo = x} = qx(O), 
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then 

Pr {Zt = x} = L Pr {Zo = y}qyX(t), 
YES 

and the absolute distribution of Zt is given by the vector 

Q(O,t)q(O). 

We now write 

Q( O,t) exp tACt) + {exp f.' A(u) du - exp tA(t)}, 

observe that 

it A(u) du - tACt) = it udA(u) 
o 0 

and make this heuristic argument: Since dA/du is small, Q(O,t) is 
approximately exp tA (t) ; however, for t fixed and u varying 

exp uA(t) 

is the transition probability matrix of a process Zt obtained by setting 

X(u) == X(t). 

This matrix approaches, as u ~ 00, the matrix each of whose rows is 
q(t). If t is large compared to the time it takes this to happen, we may 
expect, by Theorem 3, that 

exp tACt) 

have rows all approximately equal to q(t), so that 

distr {Zt} ~ q(t). 

The informal argument just given can be made precise. For the 
purposes of this last section, we again introduce the vector norm 

"f" = L I Ix I XES 

and the matrix norm 

II 21£ II = L I mxy I· 
X,YES 

Also, we use the following result: 

Lemma 6: Let M,N be I S I-dimensional square matrices, wZ:th 
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c = ! SUp I mxy I + ~ SUp I n Xll I 
X,YES X,YES 

Then for integers k ~ 1 

II Mk - N k II ~ (2c I 8 j)k-l II M - N II. 
Proof: There obtains the identity 

Mk _ N k = !(M + N)(Mk- 1 
_ N k- 1

) + !(M _ N)Mk- 1 + N k- 1
). 

If (bxy ) are the elements of Band (bx /
k ») are those of B\ then 

sup I bx/
k) I ~ I 8 I· SUp I bx/k-l) I· SUp I bxy I· 

x,y X,Y X,Y 

Hence, with k > 1 

I (k-l) + (k-l) I < I 8 Ik- 2(2 )k-l sup mJ,Y nxy = c, 
X,Y 

and 

II (M - N)(Mk- 1 + N k- 1
) II ~ (2c 18 j)k-l·11 M - Nil. 

Also, 

II (~1 + N)(Mk- 1 
- N k- 1

) II ~ c I 8 1·11 Mk- 1 
- N k- 1 IJ· 

Thus 

II Mk - N k II ~ c I 8 1·11 M k- 1 
- N k- 1 II + ! II M - N II (2c I 8 I )k-l 

~ II M - N II (2c I 8 I )k-l 

. {(!) k-l + ~ I: (c I 8 i); (2c I 8 !) -;} 
2 ;=0 

~ II M - N II (2c 18 I)k-l. 
Using the lemma we find that the norm of 

exp jt A(u) du - exp tACt) 
o 

is at most 

~ II (1' A(u) dU)" - t'A"(t) II e' - 111ft II L: 0 ~ -- u dA(u) 
n=l n! f 0 

where 
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I t can be verified that 

III,' udA(u) 11= 2 ];/1,' ud).(u) I 
yul x 

~ 2 t2<1> , (1). sup I X' (u) \. 
UE[O,t) 

Thus if X' ( . ) is small on [O,t] the distribution of Zt is nearly 

(exp tA ( t) ) q ( 0 ) 

(in the sense of the vector norm of this section). By Theorem 3, how­
ever, this will be nearly q(t) (in the sense of the norm defined by q(t)) 
if t is large compared to the time it takes exp uA (t) to approach its 
limit as u --+ 00. 
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Flexural Vibrations of a Propped 
Cantilever 

By R. L. PEEK, JR. 

(Manuscript received January 11, 1963) 

The equations for the flexural vibrations of a propped cantilever beam 
have been used to compute a number of the vibration characteristics of such 
beams for the first five modes over the range of prop locations from 50 to 100 
per cent of the length. Plots of these characteristics are included in the paper. 
This material has been prepared primarily for use in studies of contact 
spring vibration, and such application is briefly discussed. The mathe­
matical treatment used to obtain the relations given is outlined in an 
Appendix. 

1. INTRODUCTION 

In relays and other switching apparatus, contact chatter and certain 
types of wear are aS30ciated with vibrations of the contact springs. As 
an aid in the study of these vibrations, the general theory of beam 
vibration has been used to develop an analytical treatment applicable 
to the important class of contact springs which can be considered as 
propped cantilever beams of uniform cross-section. 

In almost all common types of switching apparatus, the contact 
springs are cantilever beams, clamped at the terminal end, which carry 
the contact at the free end. When the contact is open, the spring is 
usually propped or supported by a card or stud, and is therefore a 
propped cantilever. In some devices, the spring is supported at both 
the stud and contact when the latter is closed, and is then a doubly 
propped cantilever. In others, the spring is supported only at the contact 
when the latter is closed, and is therefore a singly propped cantilever in 
both operate and release, although the prop location differs for the two 
cases. Sometimes the mating contact is mounted on another spring, 
which constitutes a flexible prop, as contrasted with the (relatively) fixed 
and rigid prop provided by a card or stud. 

The relations given here apply only to a uniform cantilever with a 
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single rigid prop. Some contact springs rigorously conform to these 
limitations, and the treatment is approximately applicable to a much 
larger number of cases. A more general treatment of relay spring vibra­
tion is given in Chapter 7 of Ref. 1. This includes an outline of approxi­
mate methods of analysis applicable to nonuniform springs and to those 
which are doubly propped, or supported by a compliant prop, such as a 
spring-mounted mating contact. The treatment given here may be used 
in applying these more general methods, but the present discussion is 
confined to the cases where it is directly applicable. 

1.1 A pplication to Chatter Studies 

The contact chatter of primary interest is that occurring with closed 
contacts, usually immediately following closure. With a fixed mating 
contact, the moving spring is a cantilever propped at the contact. 
Vibration results in modulation of the contact force and therefore of 
the contact resistance. If the amplitude of the force modulation exceeds 
the static contact force, a transient open occurs. The timing and dura­
tion of these opens can therefore be related to the force modulation and 
to the amplitudes and frequencies of the spring vibrations. The latter 
may be directly observed, or predicted from an analysis of the excitation 
of this vibration involved in operation. 

].2 A pplication to TVear Studies 

The wear associated with vibration may occur at the contact or at a 
supporting or actuating card or stud which serves as the prop to a 
contact spring. Relative motion in the direction of the spring length 
results in wear. Severe wear occurs when such longitudinal motion is 
imposed in actuation. When this is avoided by providing purely perpen­
dicular motion in actuation, wear may still be produced by the longi­
tudinal component of the vibratory motion. The relations given here 
include those between the longitudinal amplitudes and the (normal) 
displacement amplitudes, or the corresponding energy content. Thus the 
longitudinal amplitude can be evaluated from the observed displace­
ment amplitude, or from the estimated energy content of the spring 
vibration. 

II. THEORETICAL FOUNDATION 

The equations giving the spring vibration characteristics are derived 
in the Appendix to this paper. The treatment follows the usual approxi­
mate theory of beam vibration, based on the simple theory of bending, 
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and formally applicable only for displacements which are small com­
pared with the spring dimensions. These formal limitations are of little 
consequence for the present purpose, although impact causes some 
deformation other than simple bending. 

For springs of uniform section, flexural vibrations conform to a 
general differential equation (3),* having a solution of the form of (4). 
This represents a harmonic motion in which all points in the spring 
move in phase. The relative motion at different points is determined 
by the dynamic deflection curve X, a function of x only, where x is 
measured along the length of the spring. Each such deflection curve 
corresponds to a particular mode of vibration, having a corresponding 
characteristic frequency. The deflection curves for the first three modes 
of a propped spring (prop at 85 per cent of the length) are shown in 
Fig. 1. As there indicated, several modes may be present together, 
resulting in a configuration which is at any instant the sum of the 
different modes present. 

The deflection curves for the several modes, and the corresponding 
frequencies, depend upon boundary conditions determined by the way 
in which the spring is supported. For a propped cantilever, the boundary 
condi60ns, and hence the deflection curves and frequencies, vary with 
the prop location (defined by the ratio L'/L of Fig. 1). The special 
rases in which L' / L is zero and unity correspond respectively to a free 
cantilever and an end-propped cantilever. All the relations given in the 
figures are shown in the form of curves in which the quantity given is 
plotted against L' / L over the range from 0.5 to 1.0, which covers the 
prop locations applying to most contact springs. 

The frequency equation for any particular prop location is tran­
scendental in form (8). The successive roots of this equation determine 
the frequencies and deflection curves of the several modes. These roots 
do not form a simple series, and the successive frequencies are not simple 
multiples of the fundamental. In the higher modes, however, the deflec­
tion curves approach sine curves in form (except for the end sections), 
and the intervals between successive frequencies are approximately 
equal. 

From the frequency constant for a particular mode and prop location 
there may be determined all the constants of the corresponding deflection 
curve except for an undetermined multiplier (AI in the equations of the 
Appendix), which measures the amplitude or energy content T of the 
mode in question. As this constant determines both the energy content 
and the maximum deflection (or amplitude) at any point on the beam, 

* Equations are cited by the numbers identifying them in the Appendix. 
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Fig. 1 - Flexural vibrations of a propped cantilever. 

it may be eliminated from the equations to express the amplitude at 
specified points on the beam in terms of the energy content. Similarly, 
this amplitude constant may be eliminated from expressions for the 
force acting on the prop and for the longitudinal displacement there to 
give expressions for these quantities in terms of the energy content. 

III. FREQUENCY RATIOS 

The frequencies of the first five propped modes are shown in Fig. 2. 
These frequencies are given as multiples of fo , the frequency of the same 
beam as a free cantilever, and are shown plotted against the prop 
location as measured by L' /L. 

The reference frequency fo is given by equation (12): 

fo = 0.323 v(s/m), 
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where s is the static stiffness of the beam and m is its actual mass. 
Equivalent expressions are the following: 

For a circular section: f = O.1416d • /~ 
JO L2 ~ P , 

For a rectangular section: fO = O.1636t • I!i 
JI L2 ~ p' 

where d is the diameter of the circular section, t the thickness of the 
rectangular section, L is the length, and V E I p is the velocity of sound 
in the material. 

The frequencies given by these relations apply to springs of uniform 
cross-section. The added mass of the contact in relay springs reduces 
the frequency (except when propped at the contact). An approximate 
correction for the effect of the contact may be made by determining 
the effective mass m' of the spring for the mode in question by the pro­
cedure given in Section V. Then if m" is the mass of the contact, the 
corrected frequency is the product of V m' I (m' + m") and the frequency 
read from Fig. 2. 

IV. LOCATIONS OF NODES AND LOOPS 

A node is a point of zero displacement (other than the prop location), 
while a loop is a point of maximum displacement. As illustrated in Fig. 
1, the number of loops is the same as the order of the mode, while the 
number of nodes is one less than the order of the mode. Expressions 
for determining the locations of the nodes and loops are given in the 
Appendix. 

Fig. 3 gives the locations of the nodes of the second and third modes. 

V. RELATIONS OF AMPLITUDES TO ENERGY CONTENT 

For any particular mode, the amplitude at any specified point on the 
spring is determined by the energy content T. Thus an estimate of T 
may be used to estimate the amplitude at some specified point, or the 
observed amplitude may be used to determine the energy content. 

Fig. 4 gives the relation between the energy content T and the ampli­
tude XL of the free end of the spring, expressed as values of the ratio 
mw2X L2IT, where wi (27r) is the frequency and m is the total mass of 
the spring. Even when a correction is made for contact mass in deter­
mining the frequency, mw2 should be taken as the product of the mass 
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of the spring alone and the uncorrected frequency, without allowance 
for contact mass. 

The effective mass m' of the spring, in terms of end motion, is the 
kinetic energy T divided by half the square of the end velocity wX L • 

Thus the ratio m' /m is twice the reciprocal of mw2X L
2/T, given in Fig. 

4, and values read from this figure may be used to evaluate m'. 
These curves may he used to determine the energy content from 

observations of the end amplitude. When the prop is close to the free 
end, the end amplitude is smaller than that at or near the loops. When 
two or more modes are present, it is convenient to measure the amplitude 
at the node of one of the modes present. Values have been determined, 
therefore, of the ratios mWI2XI2/T, mWI2XI3/T, mw/X23/T, and mw3

2X 32/T, 
which are given in Fig. 5. As shown in Fig. 1, X l2 and X 32 are the ampli­
tudes of the first and third modes respectively at the node (X2') of the 
second mode, while X13 and X 23 are the amplitudes of the first and second 
modes respectively at the rear node (X3t') of the third mode. The loca­
tions of these nodes (X2' and X3t') are given in Fig. 3. 

When two or more modes are present and it is desired to determine 
the energy contents of the separate modes, the separate amplitudes must 
first be determined. This requires measuring the displacements at succes­
sive time intervals and using these successive displacements in a set of 
equations which can be solved for the amplitudes. If it can be assumed, 
for example, that only the first three modes are present, then the dis­
placement X at a node (such as X3/) of the third mode is the sum of the 
first two modes, and is given by: 

X = X l3 sin (WIt + CPI) + X 23 sin (W2t + CP2), 

where CPI and CP2 are the (unknown) phase angles of the two modes with 
respect to an arbitrary choice of the time origin. Let Xl be the observed 
value of X at this selected time origin, and let X 2 , X3 and X 4 be the ob­
served values of X at the times at which WIt is equal to 7r /2, 7r, and 37r /2, 
respectively. On substituting these corresponding values of X and t in 
the preceding equation, there are obtained four equations in the four 
unknowns: X l3 sin CPI , X l3 cos CPI , X 23 sin CP2 , and X 23 cos CP2 • These four 
unknowns may be evaluated from the determinant D given by: 

0 1 0 1 

D= 1 0 sin al cos al 

0 -1 sm a2 cos a2 

-1 0 sin a3 cos a3 
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where: /2 7r /2 
al = h' 2" ' a2 = J;.' 7r, 

The ratio 1d11 can be read from Fig. 2. 
The same procedure may be employed to determine the values of 

X 12 and X 32 from observations of the deflections at the node X2' of the 
second mode. (The same equations apply in this case, except that 1d11 
in the determinant terms is replaced by faliI .) A check on the accuracy 
of the computations (or of the assumption that only the first three 
modes are present) is given by comparing the values for the energy 
content of the first mode obtained (by means of Fig. 5) from the values 
found for X 12 and X 13 : these values of T should be the same. 

VI. FORCE AT PROP 

A prop, or point of simple support, is taken as restraining the beam 
from deflection, without the application of any moment (or clamping 
action). Aside from the minor variation in the instantaneous point of 
support resulting from the finite dimensions of supporting surfaces, 
this condition is satisfied by the support actually provided when a 
spring is tensioned against a stud or contact. In general, vibration 
results in a force modulation F' sin wt corresponding to each mode 
present, where wi (27r) is the frequency of that mode and F' is propor­
tional to the square root of its energy content. As the sense of this force 
modulation varies with the phase of the mode, it alternately increases 
or decreases the total tension against the prop, which includes the static 
ten'3ion and the total force modulation of all modes present. The propped 
mode equations only apply rigorously when this total tension has the 
same sense as the static tension, as otherwise the prop is no longer 
effective and the spring moves away from it. (Practically, the effect of 
such separation may be ignored if it occurs only over a short interval of 
time.) 

This force modulation is related to contact chatter, contact noise, 
and wear. When the spring is propped at the contact, an open results 
whenever the total tension becomes zero (or small enough to produce 
high contact resistance). Similarly, contact resistance variations re­
sulting from force variations produce noise. Wear, whether at a contact 
or other support, such as a card, depends upon both the longitudinal 
motion and upon the normal force, or total tension. 

If the energy content of a mode is estimated, or determined from 
amplitude observations, the amplitude of the force modulation for the 
first three modes may be determined from Fig. 6. This gives values of 
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F,2/(sT), where T is the energy content of the mode in question and s 
is the static stiffness of the spring. The latter quantity may be measured 
directly, or computed as 3EI/L3

, where E is Young's modulus for the 
spring material and I is the moment of inertia of its cross-section. 

It will be seen from Fig. 6 that F'2 / sT varies greatly in magnitude 
with the prop location. Except for the fundamental, all modes have 
prop locations for which F' is zero. These correspond to the nodes of 
corresponding modes of a free (unpropped) cantilever, in which the 
spring vibrates without deflection at the prop without requiring any 
restraint, and hence without force modulation. 

J n general, and in particular for an end prop, as with a closed contact, 
F,2/sT increases with the order of the mode. Hence a given energy 
content produces a greater force modulation, and is therefore more 
likely to produce chatter, the higher the order of the mode. (The open 
intervals, on the other hand, are necessarily shorter with the higher 
modes, because of the higher frequencies.) In relay spring vibration, 
the energy content of the fundamental is usually larger than that of the 
other modes, so that chatter commonly occurs at intervals equal to the 
period of the fundamental, but each interval may comprise a number 
of brief opens, corresponding to the shorter intervals in which higher 
modes are in phase with the fundamental. The fine chatter immediately 
following contact impact, however, corresponds wholly to higher modes, 
occurring at a time when the sense of the fundamental force modulation 
is the same as that of the sta6c force. 

VII. LONGITUDINAL COMPONENT OF VIBRATORY MOTION 

In vibration, the deflected position of the spring defines a path from 
the clamp to the prop point which is necessarily longer than the distance 
between these points measured along the rest position of the spring. The 
difference between these two lengths represents a longitudinal compo­
nent of the motion at the prop. This may be termed the vibratory slide, 
as distinguished from the slide resulting, for example, from motion of 
the prop point in actuation. The amplitude of this motion is of interest 
in connection with wear, particularly the wear of a card serving as a 
prop. The vibration characteristics affecting the wear are the amplitude 
of this vibratory slide, and the normal force on the prop, which varies 
with the force modulation discussed in the preceding section. 

The longitudinal displacement is zero for the rest position of the spring 
and attains full amplitude, or maximum displacement, for full amplitude 
of the normal deflection in either sense. The longitudinal motion there-
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fore has twice the frequency of the flexural vibration producing it. As 
shown in the Appendix, the longitudinal motion is harmonic, and as 
such has an amplitude Z /2 about a displacement Z /2 from the rest 
position, where Z is the full excursion, or double amplitude. 

When a single mode is present alone, the longitudinal motion has 
only one component, with a frequency twice that of the mode producing 
it. Values of the ratio mw2L'Z/T have been determined for the first five 
modes, and are given in Fig. 7. It will be seen that the values of this 
ratio increase with the order of the mode. To obtain comparable values 
of Z for the same energy content T, however, these values of mw2L'Z/T 
must be divided by (f/jl)2, and when this is done it is found that the 
longitudinal displacement for the same energy content decreases with 
the order of the mode. 

If two or more modes are present together, the longitudinal motion 
includes the motion that either would produce separately, and additional 
motion at frequencies, as shown in the Appendix, equal to the sums and 
differences of the frequencies of the modes present. Expressions for the 
amplitudes of the additional motions are included in the Appendix, 
and these were evaluated for the case where the first and second modes 
only are present. The additional displacement was found to be only 
five per cent of that produced by the first mode alone (for equal energy 
contents of the two modes). Thus the longitudinal motion when two or 
more modes are present differs little from the sum of the motions that 
each would produce separately for the same energy content. 

For a given total energy content, therefore, the longitudinal amplitude 
is a maximum when only the fundamental mode is present. This, how­
ever, does not suffice to show that the wear is a maximum if all the 
energy is in the fundamental, rather than distributed among several 
modes. The wear also varies with the normal force, and it was shown 
in the preceding section that the force modulation for a given energy 
content is greater the higher the mode. It would therefore be necessary 
to know the relation of wear to both longitudinal motion and normal 
force to determine how the wear varies with the distribution of energy 
among the possible modes. 

VIII. CONTACT WIPE 

There is another type of longitudinal motion that occurs at a closed 
contact (end propped spring) because the contact surface is offset 
from the center line of the spring by a distance L". This results in a 
longitudinal motion z' = Z' sin wt at the contact surface, where Z' = 
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Fig. 7 - Propped cantilever: slide amplitude at prop. 
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L"(dX/dx)L. This quantity can be evaluated from the table of the ratio 
mw2L 2(dX/dxh2/T given Section A.10 of the Appendix. 

IX. DISCUSSION 

The material contained in this paper has been prepared for referent.:e 
purposes and for use in analytical or experimental studies, primarily 
those relating to contact springs (although it is of course applicable to 
any use of propped cantilever beams). Few conclusions of engineering 
interest may be drawn directly from this material; such value as it has 
must appear in its application. The possible use of the material may be 
indicated here by a brief discussion of its application to relay spring 
vibration. 

Relay operation results in spring vibration, and such vibration may 
result in contact chatter and also in wear, particularly of such actuating 
members as studs or cards. The vibration amplitudes and frequencies 
(at least of the lower modes) are readily observed and measured, for 
example by the rapid record shadowgraph.2 To reduce chatter and 
wear, information is required as to (a) the relations between the vibra­
tion characteristics and the relay design and conditions of actuation, 
and (b) the relations between chatter and wear and the vibration 
characteristics. 

Such information may be obtained either by analysis or by direct 
experiment, but in either case the vibration characteristics are involved. 
In studying the excitation problem analytically, the amplitudes and 
frequencies must be determined from energy estimates, while an experi­
mental study requires that the energy be evaluated from observed 
amplitudes. 

The incidence of chatter can be determined directly from knowledge 
of the vibration, provided the force modulation is computed from the 
observed amplitudes by the relations given here. A similar analysis of 
wear would require knowledge of the dependence of wear (for particular 
materials) on both normal force and longitudinal displacement. Infor­
mation as to these relations is incomplete, but if available their applica­
tion would require the determination from the observed vibration of 
the resulting normal force variation and longitudinal displacement by 
means of the relations given here. 

Because of the relatively large amplitudes associated with the funda­
mental mode, it is the most conspicuous feature of relay spring vibration. 
The relation given above between the normal force and the energy 
content shows that the force modulation for a given energy increases 
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with the order of the mode, indicating the considerable effect on chatter 
that may result from the presence of higher modes. The effect of the 
higher modes on wear is less well understood. The relations given here 
show that the diversion of energy from lower to higher modes increases 
the force modulation, but decreases the longitudinal displacement. 

APPENDIX 

Derivation of Equations 

A.I Equations of Flexural Vibration 

As shown in such texts as Ref. 3, bending of a beam may be described 
in terms of the deflection y at a point located at a distance x, measured 
along the length of the beam from a clamp or other point of reference. 
Then dy / dx is the slope of the deflection curve, and, for the small 
deflections assumed in the simple theory of bending, the curvature of 
the neutral axis is given by d2y/dx2• In this simple theory, the moment 
JJ[ at the point x is given by: 

M = EI(d2y/dx
2
), (1) 

where E is Young's modulus and I is the moment of inertia of the 
beam's cross-section. The shearing force F is equal to dM / dX, and is 
therefore given by: 

(2) 

In motion, the inertia reaction of a differential element of length 
must equal the difference between the shearing forces at the ends of 
the element. Hence: 

a2y + EI a4y _ 0 
at2 pex ax4 - , (3) 

where p is the density of the beam and ex is the area of its cross-section. 
Equation (3) is the general differential equation for flexural vibrations 
of beams of uniform section, assuming the simple theory of bending to 
apply. The general form of solution is given by: 

y = X sin (wt + k), (4) 

where X is a function of x only, the solution to the equation d4Xjdx4 = 
e4X, given by 

X = A (sin ex + B cos ex + C sinh ex + D cosh ex), (5) 
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in which e is given by: 

(6) 

A.2 Modes of a Propped Cantilever 

For a propped cantilever, x may be measured from the clamped end, 
as indicated in Fig. 1. Let L be the length of the beam, and L' the value 
of x for the prop. Subject to continuity, different forms of (5) apply at 
either side of the prop: let these be Xl for x < L', and X2 for x > L', 
and write (5) as: 

Xl = AJ (sin ex + Bl cos ex + Cl sinh ex + Dl cosh ex), (5a) 

X 2 = A2 (sin e(x - L') + B2 cos e(x - L') + C2 sinh e(x - L') 

+ D2 cosh e(x - L'). (5b) 

Writing X', X", X'" for the successive derivatives of X with respect to 
ex, the boundary conditions applying are as follows: 

For x = 0, Xl = Xl' = 0, 

X" 2 , (7) 

Writing a for eL', and b for e(L - L'), substitution of the expressions 
for X J and X 2 in the boundary conditions (7) gives the frcquency equa­
tion: 

cos a . sinh a - sin a· cosh a 
1 - cos a·cosh a 

cos b· si nh b - sin b· cosh b 
1 + cos b· cosh b 

and the following expressions for the coefficients: 

Cl = -1, 

sin a - sinh a 
cos a - cosh a ' 

1 + cos b· cosh b - sin b . sinh b 
C2 = 

1 + cos b· cosh b + sin b· sinh b ' 

-B2 = D2 = sin b . cosh b - cos b . sinh b 
1 + cos b· cosh b + sin b· sinh b ' 

A 1 cos a - cosh a 1 + cos b· cosh b 
A2 1 - cos a· cosh a 1 + C?S b· cosh b + sin b· sinh b . 

(8) 

(9) 
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The ratio b I a (= L I L' - 1) is determined by the prop location. 
Then the values of a which satisfy (8) determine values of e (= aiL'), 
which correspond to values of the frequency wl(27r) given by (6). The 
successive frequencieg thus determined are those of successive modes of 
vibration. Substitution in (9) of the value of a for any particular mode 
determines the coefficients of the expression for the corresponding 
deflection curve. The one remaining coefficient, Al or A2 , measures the 
amplitude. 

A.3 The Frequency Equation 

As the mass m of the beam is equal to paL, (6) may be written in 
the form: 

(10) 

where 8 is the static stiffneRs of the beam as a free cantilever, or 3EIIL3. 
As a = eL', the values of a satisfying (8) for a given prop location, or 
value of L' I L, determine corresponding values of eL, and hence corre­
sponding values of the frequency wi (27r). 

The special case in which L' = 0, or a = 0, b = eL, is that of a simple 
(unpropped) cantilever, and (8) then reduces to: 

1 + cos b·cosh b = o. (11) 

The first three roots of this equation give values of b2
, or (eL )2, of 

3·52,22·0 and 61·8. For the higher roots, a good approximation to b 
is given by 7r( n - !), where n is an integer. From (10), the frequency 
10 of the fundamental cantilever mode is given by: 

10 = 0.323 V (81m), (12) 

and the frequency of any other mode is given in terms of 10 by: 

{ = (eL)2/3.52 
~ 0 

(13) 

For various values of L' I L, (8) has been solved numerically to 
determine the values of a and thus of eL for the first five modes. By 
means of (13), the resulting values of 1110 have been determined, and 
are plotted in Fig. 2. 

Another special case of interest is that of an end prop, for which L' = 
L, or a = eL, b = O. In this case, (8) reduces to: 

tan a = tanh a. (14) 
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The values of a (or cL) satisfying this equation are given approxi­
mately by 7r(n + 1), where n is an integer. The value of (CL)2 for the 
fundamental end propped mode is 15.50, giving a frequency 4.40 times 
fo, the frequency of the fundamental cantilever mode. 

AA N odes and Loops of Deflection Curves 

On su bsti tu ting in ( 5 ) the expressions for the coefficients for X I 
given by (9), the deflection curve for x < L' is given by: 

XI/AI = [flea) - fl(U)] (cosh U - cos u), (15) 

where u = cx, and fl ( u) is given by: 

fl(U) = sin u - sinh u . 
cos u - cosh u 

(16) 

Thus the nodes (points of zero deflection) lying between the clamp 
and the prop (x < L') occur at those values of u for whichflCu) = fICa). 
These values of u may thus be determined for any mode and prop 
location from (16) and the corresponding value of a. As u/a = x/L', 
there may thus be determined the values of the node locations x' / L 
lying between the clamp and prop. The locations of the nodes for the 
second and third modes lying in this region are plotted against L' / L in 
Fig. 3. 

The loops (points of maximum deflection) of the deflection curve 
occur at those values of u for which dX/du = O. By differentiation of 
C 15), it is found that these values of u for x < L' are those for which 
J2(U) = !tea), where f2(U) is given by: 

h (u) = c?sh u - ~os u . 
smhu + smu 

(17) 

For any mode and prop location and the corresponding value of a 
there can be determined those values of u for which f2 ( u) = fl (a) . 
From these can be determined the corresponding loop locations x/L 
lying between the clamp and plot. 

Similarly, from (5) and the coefficients of X 2 given by (9), the node 
locations lying beyond the prop, x > L', arc given by: 

o = Ba sin (u - a) + B4 sinh (u - a) 

- B6 [cos (u - a) - cosh (u - a)], 

where: 
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B3 = 1 + cos b cosh b + sin b sinh b, 

B4 = 1 + cos b cosh b - sin b sinh b, 

B5 = sin b cosh b - cos b sinh b. 

629 

The node locations in Fig. 3 lying beyond the prop have been deter­
mined from these equations. 

Similarly, the loop locations lying beyond the prop are given by: 

0= B3COS(U - a) + B4cosh(u - a) + B5 [sin (u - a) + sinh (u - a)]. 

A.5 Free-End Deflection 

On substituting in (5) the expressions for the coefficients given by 
(9), it is found that the free-end deflection XL, the value of X 2 for 
x = L, is given by: 

XL 2 (sin b + sinh b) 
A 2 - 1 + cos b· cosh b + sin b· sinh b ' 

(18) 

or by: 

XL 2 (sin b + sinh b) (1 - cos a· cosh a) 
Al (1 + cos b· cosh b) (cos a - cosh a) . 

(19) 

A.6 Energy Content 

The energy content of a vibrating beam is the integral over the length 
of po:ii·dxj2, where il, or dyjdt, is the maximum velocity (occurring at 
zero deflection, when all the energy is kinetic). Then, from (4), the 
energy content T is given by: 

2T = w
2
po: Ia

L 

X
2
·dx. (20) 

For the propped beam, the integral 

Ia
L 

X
2
·dx 

is given by: 

As shown in Ref. 3 these two component integrals are given by: 
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L' 

[3XIX I'" - XI'X/' 

L 
(21) 

[3X2X 2'" - X 2'X/' 
L' 

+ e(x - L') (X/ - 2X2'X2'" + X/'2)]. 

On substituting the boundary conditions given by (7), the expression 
for the energy content reduces to: 

2 

T = w;a [(L - L')XL
2 + L'(XL'''2 - 2XL"XL'''')], (22) 

where XL", XL''' and XL'''' are the first three derivatives of Xl with 
respect to ex at x = L', and XL is, as before, the value of X 2 at x = L. 
Expressions for the derivatives can be obtained by differentiation of 
(15), from which it is found that the second term in the bracket of (22) 
is equal to 4L'A I

2f/(a). Then (22) reduces to: 

T 1 [ L' L' (AI)2 2 ] -- = - 1 - - + 4 - - fl (a) 
mw2XL2 8 L LXI, , 

(23) 

where XL/A 1 is given by (19), and flea) by (16). Values of mw2X L
2/T 

for the first five modes have been computed from (23) and are shown 
plotted against L' / L in Fig. 4. 

As the effective mass m' in terms of motion at the free end is defined 
as the kinetic energy T divided by half the square of the end velocity, 
or (wXL)2/2, the quantity given by (23) is one half the ratio of the 
effective mass of the beam to its actual mass, or m' / (2m). 

A.7 Energy Content in Terms of Amplitude at Nodes of Other Modes 

Let X l2 be the deflection in the first mode at x = X2', the location of 
the node of the second mode. Using the value of a applying to the first 
mode (for a particular prop location L' / L), and taking u = aX2' / L', 
(15) may be used to determine Xld AI. From this and the value of 
T /(mw2A12) given by (23) there may be determined the value of 
mw2XI22/T. Such values have been determined for various values of 
L' / L, and are plotted against L' / L in Fig. 5. 

The same procedure has been used to determine the values of 
mw2X I3

2/T, mw2X 23
2/T and mw2X 32

2/T given in Fig. 5. X 32 is the ampli­
tude of the third mode at X2', while X l3 and X 23 are the amplitudes of 
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the first and second modes respectively at X31', the first (rear) node of 
the third mode. 

A.8 Force 111 odulation at the Prop 

The shearing force F on a section of 11he beam is given by (2), and its 
maximum value, or force amplitude, is therefore given by c3EI· X'" 
(where, as before, X"' = d3X/du3

). The discontinuity at the prop 
results in a difference between Xl'" and X 2'" corresponding to a force 
F' sin (wt + k) acting on the prop, where F' is given by: 

(24) 

The force F' sin (wt + k) is, of course, additive to any static tension 
acting at the prop. 

Expressions for XI''' and X 2'" at x = L' may be obtained by dif­
ferentiation of (5) and substitution of the expressions for the coefficients 
given by (9), giving: 

F' ( ) XL !3(a) 
A 1c3EI =!3 b Al - 2 !2(a) , 

where h( u) is given by: 

sin u . sinh u 
sin u + sinh u . 

(25) 

(26) 

The quantity given by the left side of (25) may be squared and 
simplified as follows: 

L 3F,2 1 

AI2EI(cL)2· Elc4L 

where, from (6), w
2
pa is substituted for c4EI, m is substituted for paL, 

and s for 3EI/L3
• As before, m is the mass of the spring and s is its 

stiffness as a free cantilever. 
It follows that F,2/(sT) is given by: 

F,2 _ (cL)2 ( F' )2 mw2Al2 
sT - -3-· A

1
c3EI . -T-- . (27) 

Using (23) and (25) to evaluate the second and third terms on the 
right-hand side of (27), the latter equation has been used to determine 
values of F,2/ (sT) for the first three modes for various prop locations 
(L'IL). The results are plotted in Fig. 6. 
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A.9 Longitudinal Component of Motion at the Prop 

The longitudinal component of the motion at the prop is the dis­
placement z in the direction of the spring length. This is equal to the 
difference between the distance from the clamp to the prop measured 
along the displacement curve and that measured along the rest position. 
As the latter distance is L', z is given by: 

z = L' - r /1 + (~~)' ·dx. 

Neglecting quantities of smaller order, this reduces to: 

z = ~ fL' (dy)2.dx. (28) 
2 10 dx 

If only one mode of vibration is present, y = X . sin (wt), where 
w/(211") is the frequency of this mode. Substitution in (28) gives the 
following expression for z: 

z = Z sin2 (wt), (29) 

where Z is given by: 

z = ~ r (~:)' ·dx. (30) 

Equation (29) shows that the maximum longitudinal displacement is Z. 
As sin2 (wt) = (1 - cos (2wt) )/2, the longitudinal motion is an harmonic 
motion of frequency 2w/(211") and amplitude Z/2 about a displacement 
Z/2 from the rest position. In other words, Z is the double amplitude, 
or full range of the longitudinal motion. 

If two modes of vibration of frequencies wm/(211") and wn/(211") are 
present together, the normal displacement y is given by: 

y = Xm sin (wmt) + Xn sin (wnt). 

In this case, substitution in (28) shows that the longitudinal displace­
ment z is given by: 

z = Zm sin2 (wmt) + Zn sin2 (wnt) + Zmn sin (wmt) ·sin (wnt), (31) 

where Zm and Zn are given by (29) for X = Xm and X = Xn , respec­
tively, and Zmn is given by: 

Z = 1L
' (dXm ) (dXn ) d 

mn 0 (dx) (dx) x. (32) 

Equation (31) shows that in this case the longitudinal displacement is 
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the sum of (i) the displacements that would be produced by each mode 
if it were present alone and (ii) an additional displacement having a 
maximum value of Zmn . From the relation: 

sin (wmt) . sin (wnt) = ! [cos (wm - wn)t + cos (wm + wn)t], 

it follows that this additional displacement corresponds to the sum of 
two motions, both of amplitude Zmn/2, having frequencies equal to 
the sum and difference of the frequencies of the two modes present. 

In the same way, it can be shown that if there are more than two 
modes present, the displacement will include the displacements produced 
by the separate modes, and additional displacements having maximum 
values Zmn corresponding to each pair of modes present. 

To evaluate the maximum longitudinal displacements, it is necessary 
to obtain expressions for Z from (30) and Zmn from (32). This may be 
done by a procedure paralleling that used by Timoshenko (loc. cit.) to 
derive (21). As c4x = d4X/dx4 for any mode, cm

4dXm/dx = d5X m/dx5 

and cn
4dXn/dx = d5X n/dx5

• By crOSR multiplication and subtraction 
there is obtained: 

( 4 _ 4) 1LI dXm dXn d 
Cn Cm d d x o X X 

= 1 dXm d Xn _ dXn d Xm L'( 5 5 ) 

o dx dx5 dx dX 5 
. dx (33) 

where the second equation is obtained by integration by parts. 
In this equation, Xm and Xn are the expressions for the deflection 

curve Xl for the portion of the beam between the clamp and the prop 
location, corresponding to the modes of frequencies Wm/ (27r) and 
wn /(27r). Equation (33) may be used to provide an expression for 
Zmn by substituting the boundary conditions (7), which eliminate the 
first two terms, and by using the derivatives of (15) to express the 
remaining terms. There is thus obtained: 

(34) 

where !1(U), !2(U) and h(u) are given by (16), (17), and (26), and 
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!4( u) is given by: 

h(u) 
sin u·cosh u - cos u·sinh u 

cos u - cosh u 
(35) 

An expression for Z, the integral of (30), may be obtained from (33) 
by considering X as a function of c and letting Cn - Cm equal Bc, where 
Bc is a small quantity. Then cn

4 
- cm

4 = 4cn
3 ·Bc, neglecting quantities 

of smaller order, and similarly, Xn = Xm + (dXmldc) ·Bc. On making 
these substitutions in (33) and neglecting quantities of higher order of 
Bc than the first, this equation reduces to: 

where the subscripts nand m have been dropped because, for Bc negli­
gible, c and X apply to a single mode. 

As before, substitution in this of the boundary conditions (7), and 
of the derivatives of (15), gives finally: 

L'Z = ~ [ + !3(a) -!4(a) _! ( )] 
A12 2 a !2(a) 1 a , (36) 

where Z is the (double) amplitude of the longitudinal motion for a 
single mode. By evaluating the right-hand side of (36) for particular 
modes and values of L' 1 L, and dividing these by corresponding 
values of TI(mw2A/) given by (23), values are obtained of the ratio 
mw2L'ZIT. Values of this ratio, determined in this way, are shown 
plotted in Fig. 7 against L' 1 L for the first five modes. 

The ratios given in Fig. 7 may be used to determine the maximum 
longitudinal displacement for a given energy content when only one 
mode is present. When two or more modes are present, the maximum 
displacement is the sum of the displacements for the individual modes 
and the additional term or terms Zmn. The magnitudes of these ad­
ditional terms depend upon the division of the kinetic energy among 
the modes involved. For the case of two modes present together, the 
one additional term present, is, from (34), proportional to AmAn , and 
therefore to the square root of T mTn , the corresponding energies, whose 
sum T m + Tn equals the total kinetic energy T. It is easily shown that 
for a given value of T, TmTn, and therefore AmAn , is a maximum for 
T m = Tn = T 12. In this case, 

= Wm • l(mw2A2) (m~2A2) . 
2wn 11 T m T n 
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By evaluating the right-hand side of this equation [by means of (23)}, 
and multiplying the result into the corresponding value of the right­
hand side of (34), values may be obtained of the ratio mWm 2L' Z mn/ T. 
This was done for the case where m = 1 and n = 2, where the first 
two modes are present. The resulting values of mW12L'ZldT are directly 
comparable with those of mw/L'Z/T for the first mode alone, shown 
in Fig. 7. The values for mW12J/Z12/T were all less than 3 as compared 
with values for mw/L'Z/T of about 50. It follows that the additional 
displacement resulting from the cross product term is minor. 

A.I0 Angular End Displacement 

To estimate contact wipe for a spring propped at the contact, there 
is required an expression for the angular displacement at the prop, 
when this is at the end of the spring. This is given by: 

( dX) = cXL '. 
dx L 

As in this case, L' = L, and a = cL, this equation can, by differentia­
tion of (15), be expressed as follows: 

L (dX) = 2a(1 - cosa·cosha) 
Al dx L cos a - cosh a . 

(37) 

Values of the right-hand side of this expression have been determined 
for the first five modes. By squaring these, and dividing them by the 
corresponding values of T/(mw2A12), there have been obtained the 
following values of mw2L 2(dX/dxh2/T. 

Mode 

1 

A.ll Use of Equations 

2 
3 
4 
.5 

mw
2
L2 (dX)2 

T dx L 

16.416 
49.700 

103.68 
178.60 
271.44 

Many of the relations given here have been expressed in numerical 
form, and are shown in the figures. If additional relations are required, 
they may be computed from the equations given in this Appendix (or 
from expressions derived from them). 

If such computation is required, it should be noted that all relations 
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involved in flexural vibrations of the type considered here can be ex­
pressed as dimensionless ratios which are, directly or indirectly, de­
pendent on the roots of the frequency equation, and hence on the 
appropriate values of a, a pure number, equal to eL'. The similar 
number b, appearing in expressions relating to the part of the beam 
between the prop and the free end, is equal to e(L - L'), and there­
fore equals a(L/L' - 1). The frequency, w/(27r), is related to a by 
(6) (of which (10) is an alternate form), and the frequency ratios are 
therefore functions of a only. Similarly, such ratios as F'/(sT), 
mw2X L

2/T, and mw
2L'Z/T discussed above are all functions of a only. 

Values of a have been determined for the first five modes for values 
of L' /L in the range from 0.5 to 1.0. To use the equations in this range 
and for these modes, these values of a may be easily obtained from 
Fjg. 2, as the values off/fo given there are [from (13)) equal to (eL)2/3.52 , 
so they may be used to evaluate eL, and hence a( = eL'). 

For values of L' /L outside this range, or for modes of higher order, 
values of a must be determined by solutjon of (8) for the case in question. 
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Numerical Computation of Phase from 
Amplitude at Optical Frequencies 

By D. E. THOMAS 

(Manuscript received January 31, 1963) 

This paper presents phase tables for use in determining phase from 
amplitude or vice versa at optical and higher frequencies. The new tables, 
combined with tables previously published by the author, are believed to 
make possible the determination of phase from amplitude or vice versa of 
any minimum phase function occurring in any area of the physical sciences, 
and at any place in the frequency spectrum. The phase is determined by a 
summation process based on Bode's straight-line approximation method. 
The paper gives a brief historical background of the method, discusses the 
application of the numerical phase summation technique to optical and 
higher frequencies, describes the derivation of new tabulations useful at 
these frequencies, and gives quantitative examples of their use. A table 
expanding the existing tables of phase of a semi-infinite unit slope near 
f /fo equal to one is given. Additional tables of phase of a unit line segment 
and a new straight-line element, the unit wedge, are given. Finally, there is 
a brief discussion of the potential of the method in solving physical and 
engineering problems. 

I. INTRODUCTION 

The fact that nature ties the real and imaginary components of a 
complex variable function of frequency inextricably together, when the 
variable represents some physically real quantity or phenomena, has 
been recognized to varying degrees for nearly half a century. For 
example, Kramers1 in 1927 noted the general relations between the 
refractive index and absorption resulting from the simple relationships 
to the real and imaginary parts of a complex dielectric constant. Because 
one of the relations was contained in an earlier paper of Kronig's,2 this 
relationship is commonly known in the physical science world as the 
Kramers-Kronig relation. The awareness of the relationship between 

637 
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the real and imaginary parts of the impedance of an electrical network 
emerged about the same time as the Kramers-Kronig work. 3•4 

The usefulness of a quantitative solution to the general real and 
imaginary component relationship was soon recognized. Bode has pro­
vided us with a key to the solution of this problem (Ref. 5, Ch.XIV). 
He gives general integral equations relating the two components, but 
points out what many have since discovered, namely, that the general 
integrals can be readily evaluated for only the simplest of functions. 
Bode, however, presents a practical numerical integration technique for 
summing the imaginary component associated with a multiple straight­
line approximation to the real component as a function of frequency 
(Ref. 5, Ch. XV). The accuracy of this summation is limited only by 
the number of straight lines used to approximate the true real compo­
nent and the accuracy to which the imaginary contribution of each of 
the straight line segments to the total imaginary component is known. 
The author has published tables for accomplishing this summation at 
telecommunication and radio frequencies. 6 These tables made possible 
the computation of the nonlinear phase from which the delay distortion 
(dispersion) to be expected in a projected transatlantic repeatered sub­
marine telephone cable system was determined and the delay distortion 
correction required to make existing coaxial cable systems suitable for 
the transmission of television programs. Van Vleck utilized the Kramers­
Kronig relation while studying microwave propagation during World 
War II to establish that a significant difference in the refractive index of 
the atmosphere between wavelengths of 3 cm and 1 cm would lead to 
an unreasonably high absorption, in contradiction with experiment.7 

The invention of the optical maser and the availability of coherent 
light directed attention to the possibility of transmission of intelligence 
beyond the microwave frequencies to the optical frequencies. The 
realization of the potential usefulness of the numerical imaginary compo­
nent summation at optical frequencies resulted from a discussion initiated 
by a colleague, W. L. Faust. This discussion concerned a proposal by 
Miller and Lopez8 that the difference in determination of the velocity 
of light obtained from measurements at optical frequencies and at 
microwave frequencies could be explained by the difference in delay time 
experienced by a wave reflected from a high-quality reflecting surface at 
optical and microwave frequencies. This is a recurrence at optical fre­
quencies of the delay distortion problem which the earlier phase tables 
were computed to solve at telecommunication frequencies. These tables 
were, therefore, extended to make possible similar computations at op­
tical frequencies. 
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A use for this extension soon arose. Bennett,9 in his analysis of hole 
burning effects in a He-N e optical maser, needed the phase associated 
with an emission line, Gaussian in shape, but truncated due to an in­
crease in RF power to the maser. The extended tables provided the 
answer to Eennett's problem and the motivation for writing this paper. 

This paper will have two objectives. First, it will extend the nu­
merical computation of the imaginary part from the real part or vice 
versa of a physical complex variable as a function of frequency from 
telecommunication and radio frequencies to optical and higher fre­
quencies. Secondly, it will describe a mathematical tool which has 
proved extremely useful in the telecommunications field and which, it 
is believed, can be equally useful in the physical sciences. 

II. THE NUMERICAL PHASE COMPU'l'ATION TECHNIQUE 

In all the discussion to follow, the five statements listed below will 
apply. 

(a) Loss, attenuation, gain, or amplitude, all designated as A, and 
phase, designated as B, will be used interchangeably with real and imag­
inary parts, respectively. This is because attenuation in nepers, which is 
equal to loge of the magnitude of a complex voltage or current loss ratio, 
or loge of the amplitude of a complex variable expressed in polar form, 
and their associated polar angles in radians are identically and respec­
tively interchangeable with real part and imaginary part of a complex 
variable expressed in rectangular coordinates in the numerical computa­
tions to be discussed. In communications problems loss in decibels and 
angle in degrees rather than nepers and radians respectively are in 
common use. However, if nepers and radians are considered as the basic 
units and decibels and degrees as derived units, there will be no difficulty. 

(b) Since Be, the phaEe at We = 2rrje, is given by Bode (Ref. 5, p. 335) 
as 

B _1 fOX) dA 1 I W + We I d e-- -oge--- W 
rr 0 dw W - We 

(1) 

an amplitude characteristic constant from frequency j = 0 to j = 00 

contributes nothing to the phase. Therefore, a constant amplitude can 
be added or subtracted from any amplitude characteristic without 
affecting the associated phase characteristic. 

(c) Since frequency, j, appears only as a ratio in (1), all frequencies 
can be changed in the same ratio without changing the attenuation­
phase relationship in magnitude or form. 
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(d) All frequencies will be considered on a log frequency scale. Linear 
frequency scale is permitted in the narrow-band summations only 
because log I and I are linearly related over a very narrow band. A 
narrow band will be considered one in which the total frequency range 
of interest is less than 10-3 times the center frequency. All other bands 
will be referred to as broad bands. 

(e) As seen from (1) above, the phase is determined from the inte­
grated slope, dA/dw, of the amplitude characteristic, A. The slope of a 
given straight line section of a straight-line approximation to an ampli­
tude characteristic will be designated by k, and k will be defined as (An -
An-I) in nepers divided by loge (!n/In-l) where An and A n- l are the am­
plitudes at frequencies In and In-l respectively on the straight line sec­
tion. A unit slope designated by k = 1 will be one in which there is 
a change in A of one neper between two frequencies which are in the 
ratio e = 2.7183. When A is expressed in decibels a unit slope is a change 
of 6.02 decibels per octave or 20 decibels per decade. 

2.1 Phase Summation Using the Semi-infinite Unit Attenuation Slope 

The numerical phase computation is based on a straight-line approxi­
mation to the amplitude characteristic, A. A hypothetical attenuation 
(real part) characteristic plotted on a log frequency scale along with its 
straight-line approximation is shown in Fig. l(a). In Fig. l(b) this 
straight-line approximation is in turn broken down into the sum of a 
series of so-called semi-infinite constant slopes of attenuation. A semi­
infinite slope is an attenuation characteristic which has a constant 
magnitude from 0 to some frequency I and a constant slope from I to 
I = 00. Thus, in Fig. 1 (b), the first semi-infinite slope, kl' has the 
constant slope kl extending from 10 to 00 rather than terminating at II 
as in Fig. 1 (a). Beginning at II a semi-infinite slope equal in magnitude 
to kl but opposite in sign adds to the +k1 slope to produce the straight 
line segment of our amplitude approximation extending from 10 to II . 
This process is continued until the complete approximation is obtained. 
The semi-infinite unit (k = 1) slope of attenuation or real part is the 
fundamental element of all the numerical phase summations. The phase 
associated with a semi-infinite unit slope is given by Bode (Ref. 5, 
pp. 342-43) as 

(2) 
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Fig. 1 - (a) Straight-line approximation to attenuation. (b) Semi-infinite 
slopes which add to produce straight-line approximation. 

where B(xc) is the phase in radians at frequency fc , x = f/fo, Xc = 

fe/fo , Xc < 1.0, and fo is the frequency at which the unit slope begins. 
B(xc) has a value of ° at Xc = 0, increases monotonically to 7r/4 

radian at Xc = 1, and to 7r/2 radians at Xc = 00 with odd symmetry 
about Xc = 1 on a log frequency scale. From the odd symmetry of B(xc) 
around Xc = 1, B(xe') for fe' > fo is given by 
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B(xc' = 10/1c') = 7r/2 - B(Xc = Xc'). (3) 

B(xc ) is the function which was tabulated in the tables of Ref. 6. 
The phase associated with a semi-infinite slope of magnitude len is 

len times B(xc) of (2). To get the total phase associated with the straight­
line approximation and thus with the true amplitude characteristic within 
the limits of error of the approximation, it is only necessary to sum 
the phase contributions of each of the semi-infinite slopes making up 
the straight-line approximation. Thus, the total phase (J(f) at frequency 
1 is given by 

(J(.f) = k1 ( (Jo - (JI) + le2 ( (Jl - (J2) + ... kn( (In-I - (Jr.) (4) 

where (In is the phase of a semi-infinite unit slope commencing at In , 

k - (An - An-I) in nepers _ (An - An-I) in decibels (5) 
in - loge (.f n/ In-I) - 20 10glO (fn /1 n-l) • 

A separate summation must be made for each frequency at which the 
total phase is desired. 

Note the following: 
(a) That, as expected, adding or subtracting a constant amplitude 

to the characteristic does not affect the phase summation of (4). 
(b) That initial and final amplitudes need not be the same. 
(c) The amplitude need not approach a constant at high or low fre­

quencies but may have a constant slope extending to 1 = 0 or 00. This is 
common in electrical networks. A slope extending to 00 is covered by 
B(xc ) of (2). The phase of a slope extending to 0 can be read from the 
B(:cc) tables for the constant slope extending to co by reading the phase 
for Il.fo < 1 from Table IV designated 1 > 10 and the phase for 1011 < 1 
from Table III designated 1 < 10 (see Ref. 6, B.S.T .. L, p. 881). 

Complete step-by-step examples of summing phase using (4) and 
the tables of phase of a semi-infinite unit attenuation slope are given in 
Ref. 6. 

2.2 Phase Summation Using the Unit Attenuation Line Segment 

When the value of kn as given by (5) is substituted in (4), (4) can 
be rewritten as 

(J(I) = :t (A - A ) (In-I - (In 
n=I n n-I loge (l,jln-I) 

(6) 

where (An - An-I) is the change in amplitude or real part (nepers) on 
the straight line segment of the approximation to the amplitude charac­
teristic between In-I and In, and ((In-l - (In) Ilogc (In/ln-l) is the phase 
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contribution of a straight line segment of attenuation or real part 
having a one-neper change in amplitude between frequencies fn-l and 
fn and a constant amplitude below and above fn-l and fn , respectively. 
This line segment is identified in its position by the geometric mean of 
fn-l and fn , V/nfn-l and by a slope parameter, a, defined as the ratio of 
this geometric mean frequency to fn-l . 

The "unit line segment" was introduced by Bode (Ref. 5, Ch. XV, 
Charts V-IX), who gave graphical plots of the phase associated with 
this element as a function of Xe = fe/fo with (a) as a parameter. In a 
reasonably precise phase summation over a broad band of frequencies, 
using these charts involves a nonlinear interpolation between curves 
for different values of a. Therefore, it often proves easier to sum the 
phase using (4) and the semi-infinite slope charts or tables. 

However, in narrow-band problems at optical frequencies, the unit 
line segment is extremely useful in fast and accurate phase summation. 
A unit line segment for use with narrow bands is illustrated in Fig. 2. 
By virtue of the fact that logefl2/f = loge (f + ~fI2)/f = ~fI2/f12 when 
~f12 < 10-3fI2 , to better than the accuracy to which the amplitude 
data is likely to be known, a linear frequency plot of amplitude may be 
used. 

The phase of the unit line segment of Fig. 2 will be designated as <I> 

and will be identified in tabulation by its frequency width ~f and the 
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Fig. 2 - Unit attenuation line segment. 
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difference, AJ12 , between its geometric mean frequency J12 = vIM = 
(f1 + J2) /2 and f. 

U sing unit line segments having a phase contribution of tP, (6) can 
now be written 

()(f) = (AI - AO)cf>Ol + (A2 - A 1)<I>12 + ... (An - An-1)<I>(n-l)n (7) 

where cf>(n-1)n is the phase contribution of a unit attenuation line seg­
ment of width Af = fn - fn-1 and a Af12 of (fn-1 + fn) /2 - f. 

<I> is evaluated in the next section and tabulated in Table V for f12 = 106
• 

<I> is always positive for a positive slope and increases monotonically 
from 0 at f = 0 to a maximum at f = f]2 beyond which it decreases 
monotonically to 0 at f = 00. As a function of Af12 it has even symmetry 
about Aft2 = 0 so that 

cf>( Af12) = <I>( - A!t2). 

Note the restriction of Fig. 2 and of Table V that f12 = 106
• This 

restriction applies only if the initial and final values of the amplitude 
of the characteristic are not the same. If they are not the same, the 
problem must be expanded or contracted about f = 0 to a center 
frequency of 106 by multiplying all frequencies by the ratio of 106 to 
the center band frequency. If they are the same, then the problem can 
be linearly expanded or contracted about its center frequency to best 
fit the range of Af12 of Table V, and the phase will expand and contract 
to bear the same relationship to the magnitude. Proof that this is per­
missible will be given in Section 3.2. If the initial and final values are 
not the same, they can be made the same by truncating the main high-Q 
portion of the band from the rest of the band on a constant amplitude 
line. The phase of the truncated portion having equal initial and final 
amplitudes can then be summed using the permissible linear expansion 
or contraction of the band about its center frequency. The residue is 
then evaluated using the semi-infinite slope summation if the residue 
becomes a broadband problem. If the residue remains a narrow-band 
problem, the line segment summation may be used by expanding or 
contracting about f = 0 to make the center frequency equal 106

• In 
reassembling the problem and adding the phase of the two parts, the 
inverse frequency transformations must, of course, be made. 

An example of phase summation using the unit line segment phase of 
Table V in (7) will be given in Section 4.2. 

2.3 Phase Summation Using the Unit Wedge of Attenuation 

The unit wedge of attenuation is a convenient element for very ac­
curate narrow-band phase summation. Although it has been developed 
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primarily for use with an automatic computer, it is equally useful for 
rapid but less precise desk computer phase summation. 

The summation is limited to characteristics having equal initial and 
final amplitudes. If they are not equal they can be made so by the 
division of the problem into two problems by constant amplitude 
truncation as discussed in Section 2.2. 

Since it is assumed that An = A o , An and Ao can each be made 0 by 
subtracting a constant amplitude Ao from the amplitude characteristic. 
Equation (7) can then be written: 

O(f) = Al (<POI - <P12) + A 2 ( <P12 - <P23) + " . A n- l (<PCn-2)(n-l) - <PCn-l)n). 

Each of the terms of the above equation is a magnitude An multiplied 
by the phase difference of two unit line segments of the type illustrated 
in Fig. 2. The first line segment extends from f = n - 1 to f = nand 
the second from the terminal of the first at f = n to f = n + 1. If the 
widths 6.f of these two line segments are equal, they produce the "unit 
wedge of attenuation," which is the third type of amplitude element 
used in the numerical phase summation. In using this element the 
straight-line approximation is limited to equal frequency interval seg­
ments. Therefore, the hypothetical problem of Fig. 1 is no longer useful 
in the discussion and a new problem shown in Fig. 3 will be used. In 
Fig. 3 the amplitude characteristic is plotted on a linear frequency 
scale consisting of equally spaced intervals between frequencies which 
are designated as either f or n. The straight-line approximation is now 
obtained by taking exact values of A at even values of n on the true 

t 
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Fig. 3 - Phase summation using wedge element. 
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amplitude characteristic. Since the accuracy of phase summation is 
greatest at the midfrequency of the straight line segments approximating 
the amplitude characteristic, phase will be summed at odd values of n. 
For rapid desk computing using a less accurate approximation, it may 
be desirable to take A's which lie off the true curve. This will be covered 
in Section 4.3. 

The total phase at f associated with the full magnitude characteristic 
of Fig. 3 is then given by the sum of the individual phases contributed 
by each successive line segment from A4 to A6 , A6 to As, ••• A n- 2 to 
An • Therefore, from (7) 

O(f odd) = (A6 - A 4)<PM12=5-f + (As - A 6)<PM12=7-f + ... 
+ (An-2 - A n- 4)<I>M12=(n-3)-1 + (An - A n- 2)<PM12=(n-1)-f 

and since the initial value A4 and the final value An are zero 

O(f odd) = A 6( <P6f!F5-1 - <l>M12=7-f) + ... 
+ A n-2 ( <l>M 12=n-3-1 - <PM 12=n-1-f) ( 8) 

L: An( <l>M12=n-U+l) - <PA!12=n-U+IH2) 
n even 

in which the <I>'s all have a ilf of 2. 
Eaeh term of (8) represents the phat;e due to a wedge of attenuation 

in the shape of an isosceles triangle having an amplitude An and a base 
width of 4 frequency intervals. The firt;t of such amplitude elements in 
Fig. 3 is defined by points (A = A4 = 0, f = 4), (A6, f = 6), and 
(A = 0, f = 8), the second by (A = 0, f = 6), (As, f = 8), and 
(A = 0, f = 10), etc. These amplitudes add to approximate the true 
curve. When the amplitude An is unity, this element is called a unit 
wedge of attenuation, and its phaEe contribution is designated by 'l'. 
'l' is identified by a subscript which is equal to 500 + its lower frequency 
line t;egment's il!t2 or by 500 + n - (f + 1). The 500 is added to 
n - (f + 1) to avoid negative subscripts in tabulation. Equation (8) 
can now be written 

O(f odd) = L: A n'l'500+n-(f+1) (9) 
n even 

where 

'l' is given in Table VI for 500 + n - (f + 1) even from 0 to 1000. In 
summing phase using (9) the center of the band of the problem is placed 
at n = 500. The band is then linearly expanded or contracted about 
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n = 500 to get a maximum number of amplitude evaluations consistent 
with the frequency range of the phase summation desired. With 'l' 
tabulated for 500 + n - (f + 1) even from 0 to 1000, the maximum 
and minimum permissible values off and n are related as follows 

500 + f + 1 > n > f + 1 - 500. 

Thus, for a low value of n cven = L and a high value of n evcn = H, the 
phase () at f can be summed only for odd values of f betweenf = H - 501 
andf = L + 499. 

The ease and accuracy of automatic computer summation of phase 
using the unit wedge tables and (9) will be demonstrated in Section 4.3. 
A fast and good phase summation using a less accurate straight-line 
approximation and a desk computer will also be illustrated. 

2.4 Requirements on the Complex Variable for the Numerical Method to be 
Applied 

A rigorous discussion of the requirements which must be met by a 
complex variable if the phase computed from its amplitude charac­
teristic is to represent its true phase is beyond the scope of this paper 
(see Ref. 5, eh. XIII). Briefly, it is required that the function be an 
analytic function of frequency in the right half p (p = iw) plane and 
that its real and imaginary components be even and odd functions of 
frequency, respectively, on the real frequency axis. 

Actually, if there is sufficient information available to rigorously 
determine the applicability of the method, the numerical phase sum­
mation technique will usually not be needed. Fortunately, when it is 
needed the phase summed by the numerical method almost always 
contains the desired information in spite of the fact that a portion of 
the phase referred to as nonminimum 5 phase may be missed in the 
summation. For instance, in a long electrical, optical, acoustical, or 
other transmission path, where a long path is defined as one in which 
the length is many multiples of the wavelength of the transmitted 
signal, there will be an integer multiple of 21r radians which will not be 
included in the phase summed by the techniques described. However, 
the phase summed will, in general, contain all of the phase nonlinearity, 
and in this type of problem the nonlinear phase is usually the phase of 
interest. Therefore, delay distortion in television transmission lines was 
successfully delay distortion equalized using phase data obtained by 
numerical phase summation based on the loss or absorption charac­
teristics of the lines. Also, in Bennett's He-Ne maser problem,9 the 
nonlinear phase in the truncated Gaussian line was obtained by nu-
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merical phase summation in spite of the fact that an integer multiple 
of 271" radians in the total phase was missed in the numerical summation. 

Similar situations exist with regard to nonminimum imaginary part 
complex variables where a portion of the imaginary component is 
missed in the summation. Here again, however, the minimum possible 
imaginary part associated with the real part which is obtained by the 
numerical summation, is usually of sufficient interest to make the 
summation valuable. 

There is one important type of nonminimum phase function for which 
the numerical summation may not be useful. A good example of such a 
function is an electrical bridge having zero transmission or infinite loss 
at a real frequency due to bridge balance. This violates the requirement 
that the function be analytic in the right half p plane. In this case, 
the phase summed may be the true phase or it may depart radically and 
nonlinearly from the true phase over a wide frequency band centered at 
the infinite loss frequency (Ref. 6, B.S.T.J., p. 896). By analogy to the 
electrical case, the application of the numerical phase summation to 
optical or other amplitude characteristics having infinite loss obtained 
by interference (as in an interferometer) or multilayer reflection inter­
ference should be approached with caution if not entirely avoided. 

2.5 Computation of Amplitude from Phase 

So far only the determination of phase from amplitude has been 
considered. The same technique and tables can be used for the reverse 
computation. However, since a constant amplitude does not change the 
phase, the amplitude determined from a given phase characteristic 
must contain an additional arbitrary constant. This is taken into 
account by considering the attenuation determined as the difference 
between the true attenuation and the attenuation at either zero or 
infinity. 

In the reverse computation the complex variable A + iB is replaced 
by either iw(A - Aoo + iB) or (A - Ao + iB)/iw. The multiplication 
by iw or its reciprocal has the effect of interchanging the real and 
imaginary components and their even and odd symmetry charac­
teristics. Thus in iw(A - Aoo + iB), the real component becomes -wB 
with even symmetry and the imaginary component becomes iw(A - Aoo) 
with odd symmetry. Similarly in (A - Ao + iB)/iw, the real compo­
nent becomes B / w with even symmetry and the imaginary component 
becomes -i(A - Ao)/w with odd symmetry. The transformed variables 
are then in suitable form for determining B from A using the same 
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formula and tables and the same techniques as were described for de­
termining A from B. It must be remembered, of course, that the values 
of A determined from the summation will include an arbitrary additive 
constant (Ref. 5, pp. 320-330). 

III. COMPUTATION OF PHASE TABLES 

3.1 Semi-Infinite Unit Slope Phase Computation 

The original tables of phase of a semi-infinite slope of Ref. 6 are 
adequate except for the very steep slopes which may occur at micro­
wave frequencies and frequently occur at optical frequencies. For 
instance, in the first optical problem to which they were applied, the 
delay distortion or time dispersion at the surface of a mirror/o the 
critical phase values fell within the final 60 of 9,640 tabulated values of 
phase in radians falling in the vicinity of x = fifo = 1.0. Therefore, 
the extension of the earlier tables is limited to values of fifo> 0.9999. 
In this region, the best expression for obtaining the phase B is given 
by Bode as 

where 

From (2) 

1 -; Xc 
Yc = 1 + xc; 

1 - Yc 
Xc = 1 + Yc' 

( 11) 

B(xc) = ~ [1 - Yc + ! (1 - Yc)3 + ... ] = _ ~ loge Yc (12) 
7r 1 + Yc 9 1 + Yc 7r 

to better than 2 X 10-14 radian for (1 - Yc) < 10-4
• 

Substituting (12) in (11) 

as 

and 

2(yc - 1) 
Yc ---? 1.0, loge Yc = Yc + 1 
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B( ) = ~ - ~ [1 - Yc I e(1 + YJ] 
Yc 4 1 + oge 1 . 

7r Yc - Yc 
(13) 

Equation (13) is good to 3 X 10-13 radian for Yc > 0.9999. This equation 
was used to compute B(yc) to 12 significant figures for 

Yc = .99990( .041) .99998( .055) .999995( .0 65) 

.999998( .062) .9999998( .061) 1.0. 

These values were then extended by the numerical integration technique 
described in Ref. 6 to obtain B(yc) for 

y c = .999900 ( .051) .999980 ( .0 65) .9999980 ( .062) 

.9999998( .0 61) 1.0. 

These values were then graphically interpolated to obtain 11 significant 
figure values of B(yc) for 

Yc = .999900( .051) .999980( .061) 

.9999998( .075) 1.0. 

These final values were rounded to 9 figures to obtain the values given 
in Table III. The odd symmetry of B(xc) about Xc = 1.0 was used to 
obtain Table IV in accordance with (3).* 

The initial 12-figure computations were good to ± 1 in the 12th 
figure. The maximum error in numerically integrating and graphically 
interpolating to 11 significant figures is estimated to be less than 5 
figures in the 11th figure. The nine-figure tables are, therefore, believed 
to be subject only to rounding errors in the last figure. 

In order to extend the range of use of Tables III and IV of this paper, 
values of B(xc) for Xc = .9970( .0001) .9999 from the Ref. 6 tables are 
included. 

3.2 Unit Attenuation Line Segment Phase Computation 

Fig. 2 shows a unit attenuation line segment meeting the restrictions 
that 11J12 < 10-3J12 and J12 = 106

• The phase associated with this ampli­
tude element will be designated as <P. It is determined by the difference 
between the phase of a positive semi-infinite slope beginning at A = 0 
at Jl and extending to infinity, passing through amplitude A = 1.0 at 

* Tables of phase functions are numbered the same as tables previously men­
tioned (Ref. 6). Therefore Tables I and II do not appear in this paper, since angles 
are given in radians only. Furthermore, additional tabulations in the present 
paper are numbered consecutively, even though the numbers sometimes duplicate 
table numbers used in illustrative examples in Ref. 6. 
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f2 and the phase of a semi-infinite slope of equal magnitude but opposite 
in sign beginning at A = 1.0 at f2 • In accordance with the definition of 
slope given by (5), the slope k of these semi-infinite slopes will be 

or 

k = A = 1.0 = 1 
loge f2/fl I iI2 + Lll/2 

oge fl2 - Llf 12 

11k = loge 1 + Llf 12fl2 = flf 
1 - Llf 12fl2 f12 

(14) 

to better than 1 in 1010 for the maximum value of Llf = 40 for which 
cp will be tabulated. Referring to Fig. 2, cP will therefore be given by: 

cP = k[BUlfl) - BUlf2)] (15) 

(10 6ILlf)[BUlfl) - BUlf~)]'f < fl (16) 

= (10
6
1 Llf) [BUllf) - BUlf2) ],112 > f > fl (17) 

in which the B's are the phases of semi-infinite unit slopes of attenua­
tion. <I> need be evaluated only for f < fl2 since <I> ( Llf12) = cp( - Llf12) as 
a result of the even symmetry of <I> about f = f12 . 

Referring to Fig. 2, when f < fl , f If I is given by 

flit = it - Llfl = 1 _ DiI = 1 _ Llfl2 - Llfl2 
fl iI 106 

and BUlfl) of (16) is read from Table III for f < fo. When f > fl' 
ftlf = 1 - [(LlfI2 - LlfI2)/l0 6

] and BUl/f) of (17) is read from Table 
IV for f > fo. Since f < fl2 < f2 ,flf2 = 1 - [(LliI2 + LlfI2)/l06

] and 
BUlf2) of (16) and (17) is always read from Table III for f < fo. 

Equations (16) and (17) and the approximations to fliI and flh 
above may be used to evaluate cP for Llf12 < 50, Llf < 40 to an accuracy 
of better than 0.0002 radian. This is sufficient since <I> is only given to 
0.001 radian in Table V. These equations were therefore used to 
compute <I> of Table V for Llfl2 = 0 (1) 50 for each of the following 
Llf's: 2, 4, 6, 10, 20, and 40. 

For LliI2 > 50, Llf < 40, and f < fl' (15) is used to compute <P. 
However, the B's are determined from (13) with Yc = YI = flfl' or 
Y c = Y2 = f Ih . Thus 

<I> = k[B(YI) - B(Y2)] 

= 2f12[1 - Y2 10ge e(l + Y2) _ 1 - Yl 10ge e(l + Yl)]. (18) 
'lrLlf 1 + Y2 1 - Y2 1 + YI 1 - YI 
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The error in <P as determined from (18) is less than 10-7 radian for 
Y12 = j 1ft 2 > .999, 13.f < 40. 
Referring to Fig. 2 

1 - Y2 = 1 - flf2 = 1 _ f2 - 13.f2 = 13.h 
f2 h 

1 + Y2 = 1 + h - 13.h = 2 (1 _ 13.h) 
/2 2f2 

1 - y, ~ X', 1 + y, ~ 2 (1 - ~~:) . 
Substituting in (18) 

!Jl = 2ft2 [ N, log 2e1, ( 1 
- U;) 

7r13.f 2f2 (1 - ~f:) e ah 

13.ft 2ef1 (1 - ~ffl)l 
----:-----.,....- log . I 
2ft (1 _ b..f1) e afl 

2f1 

(IH) 

and as shown in the Appendix, (19) can be reduced to: 

<I> = _1_ [13.f 1 2ef12 _ 13.f 1 2e[I2] _ 13.ft2 
7rb..f 2 oge af2 lOge aft 2nJ12 (20) 

(b..f < 40,1000 > af12 > 50). 

The error term b..fl2/27rf12 is only 1.6 X 10-4 radian for b..f12 = 1000. 
Since <I> in Table V is only given to 0.001 radian, this error term is 
dropped. <P as given in (20) can then be further reduced, as shown in 
the Appendix, to 

(21) 

loge 10 [ 2f12 b..ft b..f2] = -- loglO e + loglO - - - loglO - . 
7r af2 b..f af1 

(22) 

<I> was computed using (22) for af = 10 at b..!I2 = 50(2) 80(5) 160(10) 
300, and for b..f = 40 at b..f12 = 50(2) 100(5) 130. Five figures to the 
right of the decimal were retained in spite of the fact that the error 
term of (20) puts an error of as much as 5 in the last figure, since in 
deriving unit wedge phase from this data, for <P (b..!I2) differences of 
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A!I2 - A!I2' = 2, the difference error is moved out to 3 in the 7th figure. 
The computed data was then graphically interpolated to give <P for 
A/ = 10 at A/12 = 50(1) 300 and <I> for A/ = 40 at A/12 = 50(1) 130. 
The final data was rounded to 3 figures to the right of the decimal and 
is subject only to rounding errors. In tabulation, however, the A/ = 10 
values are tabulated for A/ ~ 20 at A/12 = 50(1) 130 and for A/ ~ 40 
at A/12 = 130( 1) 300. This introduces a maximum error for the tabulation 
of 0.0015 radian for A/ = 20, A/12 = 50 and 0.0011 radian for A/ = 40, 
A/12 = 130 to give a maximum percentage error in <P as tabulated 
between A/12'S of 50 and 300 of 0.05 per cent. 

For A/12 > 300 it is shown in the Appendix that (21) can be reduced 
to 

1 2/12 1 (A/)2 
<I> = ;;: loge A/12 + 2471" A/12 (23) 

(A/ < 40, 1000 > A/12 > 300) 

The error term (1/2471")(A1/A112)2 has a maximum at A/ = 40, 
A/12 = 300 of 2.3 X 10-4 and can be neglected. Equation (23) can then 
be written for J12 = 106 

-'" - loge 10 (60 I Ah2) 
'±' - -71"- . - OgIO 2 

(24) 

(AJ < 40, 1000 > AJ12 > 300). 

Equation (24) was used to compute <I> for AJ ~ 40 at AJ12 = 300(10) 
1000 as tabulated in Table V. 

One other source of error must be considered. In using the tables the 
actual center of the line segment being summed will not be at J12 = 106 

but may depart from this by half the band spread of the problem. For 
a band of 103 this will be 500. Equation (23) may be used to evaluate 
this error. It will be given by 

Max J12 ~ 106 error = ! loge :J
1

12 - ! loge 2J12A~ 500 
71" u 12 71" 12 

1 I 2J12 500 10-4 d· 
= ;. oge 2h2 ± 500 = ± 271" J12 < ra Ian 

which is acceptable for our tabulation. 
Recapitulating, the Table V phase values may be considered to be 

reliable to ±0.002 radian or less than 0.1 per cent, which is better than 
the amplitude approximations which are usually used for the unit 
attenuation line segment phase summation. 
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The reason for the restriction on center-band frequency in line seg­
ment phase summation when the initial and final amplitudes are not 
the same is now apparent. f12 appears as a factor term in all equations 
for <1>. Since ct> was computed for f12 = 106

, the problem must be trans­
formed to a center frequency of 106 by multiplying all frequencies by 
the ratio of 106 to the actual center frequency. This does not change 
the attenuation-phase relationship, since all frequency terms in the ct> 
expression appear as ratios. 

N ow consider the problem when the initial and final amplitudes are 
the same, as shown in the hypothetical problem of Fig. 4. Note that the 
entire amplitude characteristic can be constructed of trapezoidal ele­
ments by successive constant amplitude truncations. A typical element 
is abed. Its phase at f is given by the sum of the phases of the two line 
segments ab and ed. Thus: 

(25) 

and from (21) 

( ! ) (Llf ) - 1 [1 2eh2 Llh 1 Llh 
<I> Ll 12 - ct> 34 -:; oge Llh - Afa oge Ah 

I 2ef34 + Llh 1 Llf4] 
- oge Af4 Afb oge Af3 

1 [1 2eh2 Llf4 
=:; oge Llf2 2e(!12 + F) 

Llf1 Llh Llh Llf4] 
- Afa loge Ah + Afb loge Af3 

(26) 

1 [ Llf4 Llh Llh 
=:; loge Llf2 - Ll!a loge A!l 

Llh Llh] F + Afb loge Llf3 - 7rf12' 

F If12 < 10-3 by the narrow-band limitation of our problem, w the second 
term of (26) is less than 0.0003 radian, which is negligible. Note that 
f12 has disappeared from the first term and that the phase is now de­
pendent only upon ratios of linear frequency intervals. Although! was 
chosen <f1 in obtaining (26), the dependence of ct>(Ll!12) - <I>(Llh4) on 
ratios of linear frequency intervals only, can be shown for all values of f. 
The problem can, therefore, be linearly expanded or contracted about 
its center frequency to best fit the range of tabulated values of ct> with-
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t i-Llfa-1 r-Llfb-1 
<{ I -L--r 

I I I 

I 
IAab=-Acd 

I 
d -L. 

~---.~=---~--~~--------~------~--~~~~~--­
o 

LINEAR FREQUENCY, f, F < 1O-3 f 12 

Fig. 4 - Line segment phase summation. 

out changing the attenuation-phase relationship, as noted earlier III 

Section 2.2. 

3.3 Unit JVedge Phase Computation 

The phase contribution of a unit wedge of attenuation is given by 
(10) as 

where 11f = 2 for both <I>'s and nand f are even and odd integers respec­
tively. If f of (10) is n + b then 

(27) 

If f of (10) is n - b then 

(28) 

Because of the even symmetry of cp about f = f12 and therefore about 
6.:h.2 = f - f12 = 0, 

and 

Therefore, from (27) and (28) 

'fr 499--b = - 'fr 499 +b • (29) 
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'lr600+ n-Cf+1) for 500 + n - (j + 1) even from 500 to 600 was computed 
using the II-figure tables of B(xc ) - before reduction to 9 figures for 
tabulation - to compute the <I> values needed in (10). The cI> values 
were computed in accordance with the procedure given in Section 3.2 
for <I> (b.j < 40, b.j12 < 50). The extension of this cI> computation to 
b.j12 = 100 is permissible because of the small value of b..f = 2. The 
use of II-figure tables of B(xc ) good to only five in the final figure is 
permissible because small differences (b.f = 2) in this table are good 
to at least one more significant figure. The final figure in the tabulated 
values of 'lr depends upon differences in the 11th figure in B(xc ). They 
are, therefore, estimated to be good to better than ±2 in the last figure. 

'lr600+ n-Cf+1) for 500 + n - (J + 1) even from 600 to 1000 was computed 
using 5 decimal figure values of cI> computed before rounding for tabula­
tion in accordance with the procedure given in Section 3.2 for 1000 > 
b.fl~ > 50. In accordance with the discussion of the reliability of these 
computations in Section 3.2, the resultant 5-decimal figures of 'lr are 
estimated to be reliable to better than ±2 in the final figure. Values of 
'lr500+ n-u+1) for 500 + n - (f + 1) < 500 were obtained from the 
values for 500 + n - (f + 1) ~ 500 using (29). 

Table VI, giving 'lr500+n-U+1) for 500 + n - (f + 1) even from 0 to 
1000 to 5 decimal figures, was tabulated using the above data. 

IV. EXAMPLES OF PHASE SUMMATION 

4.1 Semi-Infinite Unit Slope Phase Summation 

Summation of phase using the semi-infinite slope of attenuation is 
described in Section 2.1 and fully illustrated in Ref. 6. Therefore, an 
actual numerical summation is not considered necessary here. 

4.2 Unit Line Segment Phase Summation 

A part of the truncated Gaussian problem solved for Bennett9 will 
be used to illustrate unit line segment phase summation. Fig. 5(a) shows 
the top portion of a Gaussian amplitude characteristic, A, normalized 
to a peak amplitude of unity and truncated at A = 0.712 and A = 0.5. 

The characteristic has a half width at half maximum of 800 mc, 
corresponding to the full Doppler width at half maximum for neon 
atoms at the temperature of the He-Ne optical maser. It has a center 
frequency of approximately 2.6 X 1014 cps, corresponding to the fre­
quency of oscillation of the maser. Since the ratio of the bandwidth to 
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center frequency is ten orders of magnitude smaller than the narrow­
band requirement, and the initial and final amplitudes of the truncated 
section are the same, a linear frequency summation scale was chosen 
for convenience in unit line segment summation as shown on Fig. 5(a). 

The phase wanted is the phase due to that portion of the Gaussian 
lying between A = 0.5 and A = 0.712. Since the two sides of this area 
which are defined by the Gaussian are essentially straight lines, the 
characteristic was approximated by the two straight lines, ae and e' e, 
and the three constant amplitude lines A = 0.712 from e to e', A = 0.5 
from iT = 0 to i = 0, and A = 0.5 from i = 80 to iT = 00. This ap­
proximation was then broken into four line segments, ab, be, e'd, and de. 
The desired phase is then given by (7) as 

e(f) = (Ab - Aa)cJlab + (Ae - Ab)cJlbe + (Ad - Ae' )cJle'd + (Ae - A d)cJld6 

and since 

(Ab - Aa) = (Ae - A b) 

= 0.106 neper, 

(J(f) = 0.106[cJlab + cJlbc - cJle'd - cJlde] radians. 

From Fig. 5, b.f = 6 for all the line segments, and 

ab has a center frequency of 3 and its b.i12 = I (3 - f) I, 
be has a center frequency of 9 and its b.i12 = I (9 - i) I, 

e'd has a center frequency of 71 and its b.i12 = I (71 - i) I, 
de has a center frequency of 77 and its b.f12 = I (77 - i) I. 

(30) 

Table VII gives the entire tabulation and phase summation of (30). 
The first column gives frequency, i, at which phase is to be summed. The 
second column gives b.i12 for line ab at each value of i, and the third 
column gives cJlab for I).f = 6 from Table V for each value of I).f12 at f. 
This is repeated for cJlbc , cJlc'd, and cI>de • Note the orderly recurrence of 
values of cI>, which made for easy tabulation. 

A desk computer was used to sum the four unit line segment phase 
contributions horizontally [cJlc1d and cI>de negatively from (30)] and then 
multiply the sum by 0.106 to get (J(f) of the last column in radians. This 
summed phase is plotted as B on Fig. 5(b). The precision of the summa­
tion is demonstrated by the smoothness of the data. 

The ease of the computation is illustrated by the fact that the ap­
proximation and phase summation was completed in one hour. 
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4.3 Unit Wedge Phase Summation 

The quantum-mechanically derived expression for the complex di­
electric constant, E = El - iE2 , will be used to illustrate phase summation 
using the unit wedge for three reasons. 

First, E is defined by a Lorentzian whose real and imaginary parts 
are known. Phase summation of E can therefore be checked against 
known data. Secondly, it is derivable from the classical equation for a 
damped harmonic oscillator which occurs repeatedly in science and 
engineering.l1 Finally, the real part of E is summed from the imaginary 
part and serves to illustrate the reverse summation discussion in Section 
2.5. 

The formula for complex dielectric constant given by Van Vleck 
(Ref. 7, p. 644) can be written as the sum of two Lorentzians as follows 

E - 1 = A - :i { v + v } (31) 
2 (v - va) - iAv (v + va) - iAv 

where v = frequency (f), Av = half bandwidth at I E - 1 I = 0.5 
maximum, and A is a constant. 

For a narrow band about Vo only the first term of (31) is important 
and (31) can therefore be written 

E - 1 = A _ Ava { 1 } 
2 (v - va) - iAv . 

(32) 

From (31), A is seen to be EO - 1 where EO = E(V = 0). Substituting 
for the isolated A term in (32), and separating into real and imaginary 
parts (32) becomes 

( ) . Ava [ (va - v) . Av ] ( ) 
El - EO - U2 = 2 (v _ VO)2 + AV2 - '" (v _ V02)2 + Av2 · 33 

It is desired to obtain refraction from absorption, and the absorption 
term is in the imaginary part of (33). Therefore real and imaginary 
must be reversed by multiplying by iw or i27rv as discussed in Section 
2.5. Since 27rV is effectively constant across a narrow band, (33) need 
only be multiplied by i to obtain 

.( ) Ava [AV . va - v ] 
E2 + '" El - EO = 2 (v _ va) 2 + AV2 + '" (v - va) 2 + AV2 . (34) 

Multiplying (34) by 1/ A€ where AE = Avo/2Av, a constant which does 
not change the real-imaginary relationship, (34) becomes 
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~ + i (El - EO) = 6.l + i 6.v (VO - V) (35 ) 
Ae AE (v - voP + Av2 (v - VO)2 + 6.v2 • 

Van Vleck plots (Ed 6.E)27r 10glO e and (El - EO) / 6.E in his atmospheric 
absorption study at microwave frequencies (Ref. 7, Fig. 8.2). Equation 
(35) is also identical with the expression for the impedance of a parallel 
RLC circuit having a half width of 6.f which shows the recurrence of 
the damped harmonic oscillator problem noted above. 

The real and imaginary parts of (35), hereafter designated as A and 
B, respectively, were arithmetically computed to four significant figures 
for Vo = 106,6.v2 = 103• A and B are plotted in Fig. 6(a) on anf (also n) 
scale chosen for summation convenience in summing by (9). Because of 
the even and odd symmetry of A and B respectively about the center 
frequency, only half of the curves are shown. 

Amplitude A data for phase summation were taken for n even from 
250 to 750 from the four figure computed values of A. However A was 
cut off linearly from A = 0.016 at n = 258 to A = 0 at n = 250, even 
though A was decreasing very slowly for n < 250. In accordance with 
Section 2.3, phase can then be summed between f = 249 and 749 odd. 
Equation (9) then becomes 

750 

B(f = 249 to 749 odd) L An'lt500+n-Cf+l) (36) 
n=250 
even 

B(f) of (36) was summed on the 7090 computer. 
The difference between B(!) summed and four-figure B(f) computed 

from (35) are plotted as the "Error in Radians - Precision Summa­
tion" in Fig. 6(b). The maximum error between f = 419 and 499 is only 
0.001 radian. For f < 419, the error gradually increases. This is due to 
the arbitrary cutoff of A at n = 250 noted above. If a correction is made 
for this cutoff, the error at f = 369 drops from point a = +0.0022 
radian to point b = 0.0002 radian [see Fig. 6(b)1. This shows that the 
potential overall accuracy of the phase summation is equal to the ac­
curacy of the amplitude data. 

In order to illustrate the accuracy of an order of magnitude poorer 
approximation to A, the summation frequency scale was reduced by a 
factor of 10 to the scale for for n marked "Desk Computer Summation." 
Now A changes an order of magnitude more in frequency interval of 
Llr = 2 then on the precision f or n scale. Therefore a better approxi­
mation to A is sometimes obtained by taking straight line terminal 
points off the true A curve. The points selected are indicated and 
several of the resultant line segments making up the approximation are 
shown in dotted lines. 
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The summation performed was 
520 

8(f = 491 to 499 odd) L AnW500+n-U+l) • 
n=480 
even 

This summation required 30 minutes with a desk computer and pro­
duced the good approximation to the true phase shown on Fig 6(a). 

V. VALUE OF THE NUMERICAL PHASE SUMMATION TECHNIQUE 

A knowledge of the imaginary as well as the real part of experimentally 
observed physical phenomena adds a new dimension to the under­
standing of the phenomena especially when the physical mechanisms 
involved are only partially understood. Consider for instance the 
difficulty of solving the time dispersion of reflection at the surface of a 
mirror as discussed in Ref. 9. This problem was easily solved using the 
phase tables, with no need for a quantitative knowledge of the physical 
mechanisms involved. 

When the phenomena can be represented by a Lorentzian or Gaussian, 
as is often the case, the numerical solution of phase is not necessary. 
For instance a Lorentzian approximation to the common-base current 
gain of a transistor revealed that the high common-emitter current gain 
is obtained at the price of a corresponding loss in frequency band.12 

However this approximation was not good enough for later study of 
VHF transistors. Here a knowledge of the numerical relationship be­
tween amplitude and phase made possible an understanding of current 
gain and phase from simple amplitude measurements only. The results 
not only prove good for all types of junction transistors but also reveal 
rather than require information on the gradient of the base layer impu­
rity distribution. I3 And the computations of delay distortion mentioned in 
the introduction, although theoretically possible, would have been 
extremely difficult without a knowledge of the numerical computation 
of phase. 

Finally, consider the potential range of usefulness of the phase tables. 
It is believed that the phase tables presented in Ref. 6 combined with 
the phase tables of this paper are sufficient to sum the phase of any 
minimum phase function occurring in any area of the physical or 
engineering sciences and in any part of the frequency spectrum. 
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APPENDIX 

Equation (19) of Section 3.2 is reduced to (20) as follows: leaving 
out the coefficient 2f12/rrAf and treating only the portion in brackets 

[ 

j),f, log 2ef, ( 1 - UD 
2h (1 _ A.h) e IJ..f2 

2f2 
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= _1_ [b. f2 loge 2e!I2 _ b.fl loge 2e!I2] _ b.f122 X b.f 
7rb.f b.f2 .6.fl 27r.6.ffI2 b.f12 

(b.f < 40, 1000 > b.!I2 > 50) 

= _1_ [b.f I 2ef12 _ b.f I 2ef12] _ b.f12 
7r.6.f 2 oge b.f2 lOge .6.fl 27r f12 

(b.f < 40, 1000 > .6.!I2 > 50) 

which is the value of cf> given in (20). The first term of (20) can be 
further reduced as follows 
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_1_ [.1J 1 2ef12 - .1f 1 2ef12 J 
7r.6.f 2 oge .1f2 lOge .1h 

= _1_ [(.1 f + .1f) 1 2ef12 - .1f 1 2ef12J 7r.1f 1 oge .1/2 lOge .6.h 

- 1 \.1f 1 2eh2 .6.f I 2eh2 X .1/2 J 
- 7r.1f oge .1f2 - l

oge.1h 2ef12 

_ 1 [1 2ef12 .1h I .1f2J 
-;. oge .1f2 - .1f oge .1h 

which is the value of 1> given in (21). 
Equation (21) can be still further reduced for .1f12 > 300 as follows. 

Leaving the factor 1/7r and taking only the bracketed terms of (21) 

1 2e[I2 _ .1h 1 .1h 
oge.6./2 .6.f oge .1h 
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which when mUltiplied by 1/7T" becomes 

1 1 2f12 + 1 (Af )2 
;; oge Aft2 247T" Aft2 

which is the expression for <I> in (23). 
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TABLES III AND IV - TABLES OF PHASE OF A 

SEMI-INFINITE UNIT ATTENUATION SLOPE 

f/fo or fo/f Table III f < fo B in 
Radians 

Table IV f > fa Bin 
Radians 1st Difference 

.999 700 0.784 4618 0.786 3346 .04281 710 4898 3065 282 720 5180 2783 283 730 5464 2500 284 740 5748 2216 286 

.999 750 0.784 6033 0.786 1930 .04287 760 6320 1643 288 770 6608 1355 289 780 6898 1066 291 790 7189 0775 293 

.999 800 0.784 7481 0.786 0482 .04294 810 7775 0188 295 820 8071 0.785 9893 298 830 8368 9595 299 840 8668 9296 302 

.999 850 0.784 8969 0.785 8994 .04303 860 9273 8691 306 870 9578 8385 308 880 9886 8077 311 890 0.785 0197 7766 314 

.999 900 0.785 0510 79 0.785 7452 48 .0 53154 901 0542 33 7420 94 
902 0573 91 7389 36 58 
903 0605 51 7357 75 61 
904 0637 15 7326 11 64 

67 
.999 905 0.785 0668 83 0.785 7294 44 .053171 906 0700 53 7262 73 

907 0732 27 7230 99 74 
908 0764 05 7199 22 77 
909 0795 86 7167 41 81 

84 
.999 910 0.785 0827 70 0.785 7135 57 .0 53188 911 0859 58 7103 69 

912 0891 50 7071 77 92 
913 0923 45 7039 82 95 
914 0955 44 7007 83 99 

3202 
.999 915 0.785 0987 46 0.785 6975 81 .0 53207 916 1019 52 6943 74 

917 1051 62 6911 64 10 
918 1083 76 6879 50 14 
919 1115 94 6847 33 17 

22 
.999 920 0.785 1148 16 0.785 6815 11 .053226 921 1180 41 6782 85 

922 1212 71 6750 56 29 
923 1245 05 6718 22 34 
924 1277 43 6685 84 38 

42 
.999 925 0.785 1309 85 0.785 6653 42 .0 53246 926 1342 31 6620 96 

927 1374 82 6588 45 51 
928 1407 37 6555 90 55 
929 1439 96 6523 31 59 

64 

667 



TABLES III AND IV - Continued 

fifo or foIf Table lUi < fa B in 
Ra ians 

Table IV f > fa B in 
Radians 1st Difference 

.999 930 0.785 1472 60 0.785 6490 67 
.053269 931 1505 28 6457 98 

932 1538 01 6425 25 73 
933 1570 79 6392 48 77 
934 1603 62 6359 65 83 

87 
.999 935 0.785 1636 49 0.785 6326 78 

.0 53292 936 1669 41 6293 86 
937 1702 38 6260 89 97 
938 1735 40 6227 87 3303 
939 1768 48 6194 79 08 

13 
.999 940 0.785 1801 60 0.785 6161 67 

.0 53318 941 1834 78 6128 49 
942 1868 01 6095 26 23 
943 1901 30 6061 97 29 
944 1934 64 6028 63 34 

40 
.999 945 0.785 1968 04 0.785 5995 23 .053346 946 2001 50 5961 77 

947 2035 02 5928 25 52 
948 2068 59 5894 68 57 
949 2102 23 5861 04 G4 

70 
.999 950 0.785 2135 93 0.785 5827 34 

.0 53377 951 2169 69 5793 57 
952 2203 52 5759 75 82 
953 2237 42 5725 85 90 
954 2271 38 5691 89 96 

3403 
.999 955 0.785 2305 41 0.785 5657 86 

.0 53411 956 2339 51 5623 75 
957 2373 69 5589 58 17 
958 2407 94 5555 33 25 
959 2442 2(3 5521 00 33 

40 
.999 960 0.785 2476 67 0.785 5486 60 .053448 961 2511 15 5452 12 

962 2545 71 5417 56 56 
963 2580 36 5382 91 65 
964 2615 09 5348 18 73 

82 
.999 965 0.785 2649 91 0.785 5313 36 .053492 966 2684 83 5278 44 

967 2719 83 5243 44 3500 
968 2754 93 5208 33 11 
969 2790 14 5173 13 20 

30 
.999 970 0.785 2825 44 0.785 5137 83 .053541 971 2860 85 5102 42 

972 2896 37 5066 90 52 
973 2932 01 5031 26 64 
974 2967 76 4995 51 75 

88 
.999 975 0.785 3003 63 0.785 4959 63 .053600 976 3039 63 4923 63 

977 3075 77 4887 50 13 
978 3112 04 4851 23 27 
979 3148 46 4814 81 42 

57 

668 



TABLES III AND IV - Continued 

fifo or fo/f Table III f < fo B in 
Radians 

Table IV ~ > fo B in 
Ra ians 1st Difference 

.999 9800 0.785 3185 03 0.785 4778 24 
.050367 01 3188 69 4774 57 

02 3192 36 4770 91 67 
03 3196 03 4767 24 67 
04 3199 70 4763 57 67 

67 
.999 9805 0.785 3203 37 0.785 4759 90 .050367 06 3207 05 4756 22 

07 3210 72 4752 55 68 
08 3214 40 4748 87 68 
09 3218 08 4745 19 68 

68 
.999 9810 0.785 3221 76 0.785 4741 51 

.050368 11 3225 44 4737 83 
12 3229 12 4734 15 68 
13 3232 81 4730 46 69 
14 3236 50 4726 77 69 

69 
.999 9815 0.785 3240 18 0.785 4723 08 .050369 16 3243 87 4719 39 

17 3247 57 4715 70 69 
18 3251 26 4712 01 69 
19 3254 96 4708 31 70 

70 
.999 9820 0.785 3258 65 0.785 4704 61 .050370 21 3262 35 4700 92 

22 3266 05 4697 21 70 
23 3269 76 4693 51 70 
24 3273 46 4689 81 70 

71 
.999 9825 0.785 3277 17 0.785 4686 10 .0 50371 26 3280 88 4682 39 

27 3284 59 4678 68 71 
28 3288 30 4674 97 71 
29 3292 01 4671 26 71 

72 
.999 9830 0.785 3295 73 0.785 4667 54 .050372 31 3299 44 4663 82 

32 3303 16 4660 11 72 
33 3306 88 4656 38 72 
34 3310 61 4652 6G 72 

73 
.999 9835 0.785 3314 33 0.785 4648 94 .050373 36 3318 06 4645 21 

37 3321 79 4641 48 73 
38 3325 52 4637 75 73 
39 3329 25 4G34 02 73 

73 
.999 9840 0.785 3332 99 0.785 4630 28 .050374 41 3336 72 4G2G 54 

42 3340 46 4622 81 74 
43 3344 20 4G19 07 74 
44 3347 95 4615 32 74 

74 
.999 9845 0.785 3351 69 0.785 4611 58 .0 50375 46 3355 44 4607 83 

47 3359 19 4604 08 75 
48 3362 94 4600 33 75 
49 3366 G9 4596 58 75 

76 

669 



TABLES III AND IV - Continued 

fifo or folf Table III f < fa B in 
Radians 

Table IV l > fa B in 
Ra ians 1st Difference 

.999 9850 0.785 3370 45 0.785 4592 82 
.0 50376 51 3374 20 4589 06 

52 3377 96 4585 31 76 
53 3381 72 4581 54 76 
54 3385 49 4577 78 76 

77 
.999 9855 0.785 3389 25 0.785 4574 01 

.050377 56 3393 02 4570 25 
57 3396 79 4566 48 77 
58 3400 57 4562 70 77 
59 3404 34 4558 93 77 

78 
.999 9860 0.785 3408 12 0.785 4555 15 

.0 50378 Gl 3411 90 4551 37 
62 3415 G8 4547 59 78 
G3 3419 4G 4543 81 78 
64 3423 25 4540 02 79 

79 
.999 9865 0.785 3427 04 0.785 4536 23 

.0 50379 G6 3430 83 4532 44 
67 3434 G2 4528 65 79 
G8 3438 42 4524 85 80 
69 3442 22 4521 05 80 

80 
.999 9870 0.785 3446 02 0.785 4517 25 

.050380 71 3449 82 4513 45 
72 3453 62 4509 64 81 
73 3457 43 4505 84 81 
74 3461 24 4502 02 81 

81 
.999 9875 0.785 3465 06 0.785 4498 21 

.0 50382 7G 3468 87 4494 40 
77 3472 69 4490 58 82 
78 3476 51 4486 76 82 
79 3480 33 4482 93 82 

83 
.999 9880 0.785 3484 16 0.785 4479 11 

.0 50383 81 3487 99 4475 28 
82 3491 82 4471 45 83 
83 3495 65 4467 61 83 
84 3499 49 4463 78 84 

84 
.999 9885 0.785 3503 33 0.785 4459 94 

.0 50384 86 3507 17 445G 10 
87 3511 02 4452 25 84 
88 3514 87 4448 40 85 
89 3518 72 4444 55 85 

85 
.999 9890 0.785 3522 57 0.785 4440 70 

.050386 91 3526 43 4436 84 
92 3530 29 4432 98 86 
93 3534 15 4429 12 86 
94 3538 01 4425 25 87 

87 
.999 9895 0.785 3541 88 0.785 4421 39 

.050387 96 3545 75 4417 51 
97 3549 63 4413 64 87 
98 3553 50 4409 76 88 
99 3557 39 4405 88 88 

88 
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TABLES III AND IV - Continued 

fifo or folf Table III ~ < fa B in 
Ra ians 

Table IV ~ > fa B in 
Ra ians 1st Difference 

.999 9900 0.785 3561 27 0.785 4402 00 
.0 50388 01 3565 16 4398 11 

02 3569 05 4394 22 89 
03 3572 94 4390 33 89 
04 3576 84 4386 43 89 

90 
.999 9905 0.785 3580 74 0.785 4382 53 

.050390 06 3584 64 4378 63 
07 3588 55 4374 72 91 
08 3592 46 4370 81 91 
09 3596 37 4366 90 91 

92 
.999 9910 0.785 3600 29 0.785 4362 98 .050392 11 3604 21 4359 06 

12 3608 13 4355 14 92 
13 3612 06 4351 21 93 
14 3615 99 4347 28 93 

94 
.999 9915 0.785 3619 93 0.785 4343 34 .050394 16 3623 87 4339 40 

17 3627 81 4335 46 94 
18 3631 76 4331 51 95 
19 3635 71 4327 56 9.1j 

95 
.999 9920 0.785 3639 66 0.785 4323 61 

.0"0396 21 3643 62 4319 65 
22 3647 58 4315 69 96 
23 3651 55 4311 72 97 
24 3655 52 4307 75 97 

97 
.9U9 9925 0.785 3659 49 0.785 4303 77 .0"0398 2G 3663 47 4299 80 

27 3667 46 4295 81 98 
28 3671 44 4291 82 99 
29 3675 44 4287 83 99 

0400 
.U!)!) 9930 0.785 3679 43 0.785 4283 84 .0 50400 31 3683 43 4279 83 

32 3687 44 4275 83 01 
33 3691 45 4271 82 01 
34 3695 46 4267 80 02 

02 
.999 9935 0.785 3699 48 0.785 4263 78 .0 50102 3G 3703 51 4259 76 

37 3707 54 4255 73 03 
38 3711 57 4251 69 03 
39 3715 61 4247 65 04 

05 
.999 9940 0.785 3719 66 0.785 4243 61 .0 50405 41 3723 71 4239 56 

52 3727 77 4235 50 06 
43 3731 83 4231 44 06 
44 3735 89 4227 37 07 

07 
.999 9945 0.785 3739 97 0.785 4223 30 .050408 46 3744 05 4219 22 

47 3748 13 4215 14 08 
48 3752 22 4211 05 09 
49 3756 32 4206 95 10 

10 

671 



TABLES III AND IV - Continued 

fifo or foIf Table III f < fo B in 
Radians 

Table IV ~ > fo B in 
Ra ians 1st Difference 

.999 9950 0.785 3760 42 0.785 4202 85 
.0 50411 51 3764 53 4198 74 

52 3768 65 4194 62 12 
53 3772 77 4190 50 12 
54 3776 90 4186 37 13 

14 
.999 9955 0.785 3781 03 0.785 4182 24 

.050414 56 3785 18 4178 09 
57 3789 33 4173 94 15 
58 3793 48 4169 78 16 
59 3797 65 4165 62 17 

17 
.999 9960 0.785 3801 82 0.785 4161 45 

.0 50418 61 3806 00 4157 26 
62 3810 19 4153 08 19 
63 3814 39 4148 88 20 
64 3818 60 4144 67 21 

22 
.999 9965 0.785 3822 81 0.785 4140 46 

.0 50422 66 3827 04 4136 23 
67 3831 27 4132 00 23 
68 3835 51 4127 76 24 
69 3839 76 4123 50 25 

26 
.999 9970 0.785 3844 03 0.785 4119 24 

.0 50427 71 3848 30 4114 97 
72 3852 59 4110 68 28 
73 3856 88 4106 39 29 
74 3861 19 4102 08 31 

32 
.999 9975 0.785 3865 51 0.785 4097 7() 

.0 50433 76 3869 85 4093 42 
77 3874 19 4089 08 35 
78 3878 55 4084 72 36 
79 3882 93 4080 34 37 

39 
.999 9980 0.785 3887 32 0.785 4075 95 

.050441 81 3891 72 4071 55 
82 3896 14 4067 12 42 
83 3900 58 4062 68 44 
84 3905 04 4058 23 46 

48 
.999 9985 0.785 3909 52 0.785 4053 75 

.050450 86 3914 02 4049 25 
87 3918 54 4044 72 52 
88 3923 09 4040 18 55 
89 3927 67 4035 60 57 

60 
.999 9990 0.785 3932 27 0.785 4031 00 

.0 50463 91 3936 90 4026 37 
92 3941 57 4021 69 G7 
93 3946 28 4016 98 71 
94 3951 04 4012 23 76 

81 
.999 9995 0.785 3955 85 0.785 4007 42 

.050487 96 3960 72 4002 55 
97 3965 68 3997 59 96 

0506 
.999 99980 0.785 3970 74 0.785 3992 53 

.0 50259 985 3973 32 3989 94 
990 3975 96 3987 30 64 
995 3978 68 3984 58 72 

95 
1.000 00000 0.785 3981 63 0.785 3981 63 
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TABLE V - cI> IN RADIANS FOR LINE SEGMENT, 

A, OF 1 NEPER; h2 = 106 CPS 

l1j = 2 111 = 4 111 = 6 111 = 10 l1f = 20 

4.936 4.716 4.587 4.424 4.204 
4.716 4.674 4.569 4.418 4.202 
4.412 4.496 4.510 4.398 4.197 
4.275 4.296 4.366 4.363 4.189 
4.180 4.192 4.214 4.307 4.177 

4.108 4.115 4.128 4.204 4.162 
4.050 4.054 4.062 4.097 4.142 
4.000 4.003 4.007 4.032 4.116 
3.957 3.960 3.964 3.980 4.086 
3.920 3.922 3.925 3.937 4.046 

3.886 3.888 3.890 3.900 3.983 
3.856 3.857 3.859 3.867 3.919 
3.828 3.829 3.831 3.837 3.876 
3.802 3.803 3.805 3.810 3.841 
3.778 3.779 3.781 3.785 3.811 

3.756 3.757 3.758 3.762 3.784 
3.736 3.736 3.738 3.741 3.760 
3.716 3.717 3.718 3.721 3.737 
3.698 3.699 3.700 3.703 3.716 
3.682 3.682 3.682 3.685 3.697 

3.665 3.666 3.666 3.668 3.679 
3.650 3.650 3.650 3.652 3.662 
3.634 3.635 3.635 3.637 3.646 
3.620 3.620 3.621 3.623 3.631 
3.606 3.607 3.607 3.609 3.616 

3.594 3.594 3.594 3.596 3.603 
3.582 3.582 3.582 3.583 3.590 
3.570 3.570 3.570 3.571 3.577 
3.558 3.558 3.558 3.559 3.565 
3.546 3.547 3.547 3.548 3.553 

3.536 3.536 3.536 3.537 3.542 
3.525 3.526 3.526 3.527 3.531 
3.516 3.515 3.516 3.516 3.520 
3.506 3.506 3.506 3.507 3.510 
3.496 3.496 3.496 3.497 3.501 

3.487 3.487 3.487 3.488 3.491 
3.478 3.478 3.478 3.479 3.482 
3.469 3.469 3.469 3.470 3.473 
3.460 3.460 3.461 3.461 3.464 
3.452 3.452 3.452 3.453 3.456 

3.444 3.444 3.444 3.445 3.448 
3.436 3.436 3.436 3.437 3.440 
3.429 3.429 3.429 3.429 3.432 
3.421 3.422 3.421 3.422 3.424 
3.414 3.414 3.414 3.414 3.417 

3.407 3.407 3.407 3.407 3.409 
3.400 3.400 3.400 3.400 3.402 
3.393 3.393 3.393 3.394 3.395 
3.386 3.386 3.386 3.387 3.389 
3.380 3.380 3.380 3.380 3.382 
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l1f = 40 

3.983 
3.983 
3.981 
3.979 
3.977 

3.973 
3.968 
3.963 
3.957 
3.950 

3.941 
3.932 
3.922 
3.910 
3.897 

3.882 
3.866 
3.847 
3.826 
3.800 

3.762 
3.725 
3.698 
3.676 
3.656 

3.638 
3.621 
3.605 
3.590 
3.576 

3.563 
3.551 
3.539 
3.528 
3.517 

3.506 
3.496 
3.486 
3.477 
3.467 

3.459 
3.450 
3.442 
3.433 
3.426 

3.418 
3.410 
3.403 
3.396 
3.389 



TABLE V - Continued 

t.j12 tJ.f ~ 20 t.j = 40 t.j12 t.j ~ 20 t.j= 40 

50 3.374 3.382 90 3.186 3.189 
51 3.367 3.375 91 3.183 3.185 
52 3.361 3.369 92 3.179 3.181 
53 3.355 3.362 93 3.176 3.178 
54 3.349 3.356 94 3.172 3.174 

55 3.343 3.350 95 3.169 3.171 
56 3.337 3.344 96 3.166 3.168 
57 3.332 3.338 97 3.162 3.164 
58 3.326 3.332 98 3.159 3.161 
59 3.321 3.327 99 3.156 3.158 

60 3.315 3.321 100 3.152 3.155 
61 3.310 3.316 101 3.149 3.151 
62 3.305 3.310 102 3.146 3.148 
63 3.300 3.305 103 3.143 3.145 
64 3.295 3.300 104 3.140 3.142 

65 3.290 3.295 105 3.137 3.139 
66 3.285 3.290 106 3.134 3.136 
67 3.280 3.285 107 3.131 3.133 
68 3.275 3.280 108 3.128 3.130 
69 3.271 3.275 109 3.125 3.127 

70 3.266 3.270 110 3.122 3.124 
71 3.262 3.266 111 3.119 3.121 
72 3.257 3.261 112 3.116 3.118 
73 3.253 3.257 113 3.114 3.115 
74 3.248 3.252 114 3.111 3.112 

75 3.244 3.248 115 3.108 3.110 
76 3.240 3.243 116 3.105 3.107 
77 3.236 3.239 117 3.103 3.104 
78 3.232 3.235 118 3.100 3.101 
79 3.228 3.231 119 3.097 3.099 

80 3.224 3.227 120 3.094 3.096 
81 3.220 3.223 121 3.092 3.093 
82 3.216 3.219 122 3.089 3.091 
83 3.212 3.215 123 3.087 3.088 
84 3.208 3.211 124 3.084 3.085 

85 3.204 3.207 125 3.081 3.083 
86 3.201 3.203 126 3.079 3.080 
87 3.197 3.200 127 3.076 3.078 
88 3.193 3.196 128 3.074 3.075 
89 3.190 3.192 129 3.071 3.073 

t.j12 t.j ~ 40 t.j12 jt. ~ 40 t.j12 t.j ~ 40 t.j12 t.j ~ 40 

130 3.069 140 3.045 150 3.023 160 3.003 
131 3.066 141 3.043 151 3.021 161 3.001 
132 3.064 142 3.041 152 3.019 162 2.999 
133 3.062 143 3.039 153 3.017 163 2.997 
134 3.059 144 3.036 154 3.015 164 2.995 

135 3.057 145 3.034 155 3.013 165 2.993 
136 3.055 146 3.032 156 3.011 166 2.991 
137 3.052 147 3.030 157 3.009 167 2.989 
138 3.050 148 3.028 158 3.007 168 2.987 
139 3.048 149 3.026 159 3.005 169 2.985 
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TABLE V - Continued 

A/12 A/ ~ 40 A/12 A/ ~ 40 A/I 2 A/ ~ 40 A/12 A/ ~ 40 

170 2.984 220 2.901 270 2.836 500 2.640 
171 2.982 221 2.900 271 2.835 510 2.634 
172 2.980 222 2.899 272 2.834 520 2.628 
173 2.978 223 2.897 273 2.833 530 2.622 
174 2.976 224 2.896 274 2.832 540 2.616 

175 2.974 225 2.894 275 2.831 550 2.610 
176 2.972 226 2.893 276 2.829 560 2.604 
177 2.971 227 2.891 277 2.828 570 2.598 
178 2.969 228 2.890 278 2.827 580 2.593 
179 2.967 229 2.889 279 2.826 590 2.587 

180 2.965 230 2.887 280 2.825 600 2.582 
181 2.964 231 2.886 281 2.824 610 2.577 
182 2.962 232 2.885 282 2.822 620 2.572 
183 2.960 233 2.883 283 2.821 630 2.567 
184 2.958 234 2.882 284 2.820 640 2.562 

185 2.957 235 2.880 285 2.819 650 2.557 
186 2.955 236 2.879 286 2.818 660 2.552 
187 2.953 237 2.878 287 2.817 670 2.547 
188 2.951 238 2.876 288 2.816 680 2.542 
189 2.950 239 2.875 289 2.815 690 2.538 

190 2.948 240 2.874 290 2.813 700 2.533 
191 2.946 241 2.872 291 2.812 710 2.528 
192 2.945 242 2.871 292 2.811 720 2.524 
193 2.943 243 2.870 293 2.810 730 2.520 
194 2.941 244 2.868 294 2.809 740 2.516 

195 2.940 245 2.867 295 2.808 750 2.511 
196 2.938 246 2.866 297 2.807 760 2.507 
197 2.937 247 2.865 297 2.806 770 2.503 
198 2.935 248 2.863 298 2.805 780 2.499 
199 2.933 249 2.862 299 2.804 790 2.494 

200 2.932 250 2.861 300 2.803 800 2.490 
201 2.930 251 2.859 310 2.792 810 2.487 
202 2.929 252 2.858 320 2.782 820 2.483 
203 2.927 253 2.857 330 2.772 830 2.479 
204 2.925 254 2.856 340 2.763 840 2.475 

205 2.924 255 2.854 350 2.754 850 2.471 
206 2.922 256 2.853 360 2.745 860 2.467 
207 2.921 257 2.852 370 2.736 870 2.464 
208 2.919 258 2.851 380 2.727 880 2.460 
209 2.918 259 2.849 390 2.719 890 2.457 

210 2.916 260 2.848 400 2.711 900 2.453 
211 2.915 261 2.847 410 2.703 910 2.449 
212 2.913 262 2.846 420 2.696 920 2.446 
213 2.912 263 2.845 430 2.688 930 2.443 
214 2.910 264 2.843 440 2.681 940 2.439 

215 2.909 265 2.842 450 2.674 950 2.436 
216 2.907 266 2.841 460 2.667 960 2.432 
217 2.906 267 2.840 470 2.660 970 2.429 
218 2.904 268 2.839 480 2.653 980 2.426 
219 2.903 269 2.837 490 2.647 990 2.423 

1000 2.419 
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T ABLE VI - i' 500+n - (f+l) IN RADIANS PER NEPER 

500 + n- \]"I' 500 + n- \]"I' 500 + n- \]"I' 
(f + 1) (f+ 1) (f + 1) 

0 - .00128 100 - .00159 200 - .00212 
2 - .00128 102 - .00160 202 - .00214 
4 - .00129 104 - .00161 204 - .00216 
6 - .00129 106 - .00162 206 - .00218 
8 - .00130 108 - .00163 208 - .00219 

10 - .00130 110 - .00164 210 - .00220 
12 - .00131 112 - .00164 212 - .00222 
14 - .00131 114 - .00165 214 - .00224 
16 - .00132 116 - .00166 216 - .00225 
18 - .00132 118 - .00167 218 - .00227 

20 - .00133 120 - .00168 220 - .00229 
22 - .00133 122 - .00169 222 - .00230 
24 - .00134 124 - .00170 224 - .00232 
26 - .00135 126 - .00171 226 - .00234 
28 - .00135 128 - .00171 228 - .00235 

30 - .00136 130 - .00172 230 - .00237 
32 - .00136 132 - .00173 232 - .00239 
34 - .00137 134 - .00174 234 - .00240 
36 - .00137 136 - .00175 236 - .00242 
38 - .00138 138 - .00176 238 - .00244 

40 - .00138 140 - .00177 240 - .00246 
42 - .00139 142 - .00178 242 - .00248 
44 - .00139 144 - .00179 244 - .00250 
46 - .00140 146 - .00180 246 - .00252 
48 - .00141 148 - .00181 248 - .00254 

50 - .00142 150 - .00182 250 - .00256 
52 - .00143 152 - .00183 252 - .00258 
54 - .00143 154 - .00184 254 - .00260 
56 - .00144 156 - .00185 256 - .00262 
58 - .00144 158 - .00186 258 - .00264 

60 - .00145 160 - .00187 260 - .00266 
62 - .00146 162 - .00188 262 - .00269 
64 - .00146 164 - .00189 264 - .00271 
66 - .00147 166 - .00190 266 - .00273 
68 - .00148 168 - .00192 268 - .00275 

70 - .00149 170 - .00193 270 - .00277 
72 - .00150 172 - .00195 272 - .00280 
74 - .00150 174 - .00196 274 - .00283 
76 - .00151 176 - .00197 276 - .00286 
78 - .00151 178 - .00198 278 - .00288 

80 - .00152 180 - .00200 280 - .00291 
82 - .00153 182 - .00201 282 - .00294 
84 - .00154 184 - .00202 284 - .00297 
86 - .00154 186 - .00203 286 - .00300 
88 - .00155 188 - .00205 288 - .00302 

90 - .00156 190 - .00206 290 - .00305 
92 - .00156 192 - .00207 292 - .00308 
94 - .00157 194 - .00208 294 - .00311 
96 - .00158 196 - .00209 296 - .00314 
98 - .00159 198 - .00210 298 - .00317 
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T ABLE VI - Continued 

500 + l' - 'IF 500 + n- 'IF 500 + n- 'IF u+ 1) U + 1) U+ 1) 

-----

300 - .00320 400 - .00644 500 +.52454 
302 - .00323 402 - .00657 502 + .23165 
304 - .00327 404 - .00671 504 + .13096 
306 - .00330 406 - .00685 506 + .09219 
308 - .00334 408 - .00700 508 + .07134 

310 - .00337 410 - .00717 510 + .05189 
312 - .00341 412 - .00732 512 + .04916 
314 - .00344 414 - .00748 514 + .04256 
316 - .00348 416 - .00767 516 + .03753 
318 - .00352 418 - .00785 518 + .03356 

320 - .00356 420 - .00805 520 + .03036 
322 - .00360 422 - .00827 522 + .02770 
324 - .00365 424 - .00848 524 + .02549 
326 - .00368 426 - .00872 526 +.02359 
328 - .00372 428 - .00895 528 +.02197 

330 - .00376 430 - .00923 530 + .02054 
332 - .00381 432 - .00950 532 + .01930 
334 - .00386 434 - .00979 534 +.01819 
336 - .00391 436 - .01010 536 + .01721 
338 - .00396 438 - .01043 538 + .01632 

340 - .00401 440 - .01079 540 +.01553 
342 - .00406 442 - .01116 542 +.01480 
344 - .00411 444 - .01158 544 +.01415 
346 - .00416 446 - .01201 546 + .01354 
348 - .00422 448 - .01248 548 + .01299 

350 - .00428 450 - .01299 550 + .01248 
352 - .00433 452 - .01354 552 + .01201 
354 - .00439 454 - .01415 554 + .01158 
356 - .00445 456 - .01480 556 + .01116 
358 - .00452 458 - .01553 558 + .01079 

360 - .00458 460 - .01632 560 + .01043 
362 - .00464 462 - .01721 562 + .01010 
364 - .00471 464 - .01819 564 + .00979 
366 - .00478 466 - .01930 566 + .00950 
368 - .00486 468 - .02054 568 + .00923 

370 - .00494 470 - .02197 570 + .00895 
372 - .00502 472 - .02359 572 + .00872 
374 - .00510 474 - .02549 574 + .00848 
376 - .00518 476 - .02770 576 +.00827 
378 - .00527 478 - .03036 578 + .00805 

380 - .00536 480 - .03356 580 + .00785 
382 - .00546 482 - .03753 582 + .00767 
384 - .00555 484 - .04256 584 + .00748 
386 - .00564 486 - .04916 586 +.00732 
388 - .00573 488 - .05819 588 + .00717 

390 - .00583 490 - .07134 590 + .00700 
392 - .00595 492 - .09219 592 + .00685 
394 - .00607 494 - .13096 594 + .00671 
396 - .00619 496 - .23165 596 + .00657 
398 - .00632 498 - .52454 598 + .00644 
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TABLE VI - Continued 

500 + n - 'l' u+ 1) 
500 + n- 'l' u+ 1) 

500 + n- 'l' U+ 1) 

600 +.00632 700 + .00317 800 + .00210 
602 +.00619 702 + .00314 802 + .00209 
604 +.00607 704 + .00311 804 + .00208 
606 + .00595 706 + .00308 806 + .00207 
608 + .00583 708 + .00305 808 + .00206 

610 + .00573 710 +.00302 810 +.00205 
612 + .00564 712 +.00300 812 + .00203 
614 +.00555 714 + .00297 814 + .00202 
616 + .00546 716 + .00294 816 + .00201 
618 +.00536 718 + .00291 818 + .00200 

620 +.00527 720 +.00288 820 +.00198 
622 +.00518 722 +.00286 822 + .00197 
624 + .00510 724 + .00283 824 + .00196 
626 +.00502 726 +.00280 826 + .00195 
628 + .00494 728 +.00277 828 + .00193 

630 +.00486 730 + .00275 830 + .00192 
632 t .00478 732 + .00273 832 + .00190 
634 + .00471 734 + .00271 834 + .00189 
636 + .00464 736 + .00269 836 + .00188 
638 + .00458 738 + .00266 838 + .00187 

640 + .00452 740 + .00264 840 + .0018G 
642 + .00445 742 + .00262 842 + .00185 
644 + .0043!) 744 +.00260 844 + .00184 
646 + .00433 74G + .00258 846 + .00183 
648 + .00428 748 +.0025G 848 + .00182 

650 + .00422 750 +.00254 850 + .00181 
652 + .00416 752 +.00252 852 + .00180 
654 + .00411 754 + .00250 854 + .00179 
656 +.0040G 756 + .00248 856 + .00178 
658 +.00401 758 + .00246 858 + .00177 

660 +.00396 760 + .00244 860 + .00176 
662 +.00391 762 + .00242 862 + .00175 
664 + .00386 764 +.00240 864 + .00174 
666 + .00381 766 + .00239 866 + .00173 
668 + .0037G 768 + .00237 868 + .00172 

670 +.00372 770 + .00235 870 + .00171 
672 +.00368 772 + .00234 872 + .00171 
674 +.00365 774 +.00232 874 + .00170 
676 + .00360 776 +.00230 876 + .00169 
678 +.00356 778 +.00229 878 + .00168 

680 +.00352 780 +.00227 880 + .00167 
682 +.00348 782 + .00225 882 + .00166 
684 +.00344 784 +.00224 884 + .00165 
686 + .00341 786 + .00222 886 + .00164 
688 + .00337 788 +.00220 888 + .00164 

690 +.00334 790 + .00219 890 + .00163 
692 +.00330 792 + .00218 892 + .00162 
694 +.00327 794 +.00216 894 + .00161 
696 +.00323 796 + .00214 896 + .00160 
698 +.00320 798 + .00212 898 + .00159 
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TABLE VI - Continued 

500 + n- 'l' 500 + n- 'l' 500 + n- 'l' (f + 1) (f + 1) (f + 1) 

900 + .00159 940 + .00144 980 +.00132 
902 + .00158 942 + .00144 982 + .00132 
904 + .00157 944 +.00143 984 + .00131 
906 + .00156 946 +.00143 986 + .00131 
a08 + .00156 948 +.00142 a88 +.00130 

910 + .00155 950 + .00141 990 + .00130 
912 + .00154 952 +.00140 992 + .00129 
914 +.00154 954 + .00139 994 +.00129 
916 + .00153 956 + .00139 996 + .00128 
918 + .00152 958 + .00138 998 + .00128 

920 +.00151 960 +.00138 1000 +.00127 
922 + .00151 962 + .00137 
924 +.00150 964 +.00137 
926 +.00150 966 + .00136 
928 + .00149 968 +.00136 

930 + .00148 970 + .00135 
932 +.00147 972 + .00135 
934 + .00146 974 +.00134 
936 +.00146 976 + .00133 
938 + .00145 978 +.00133 

TABLE VII - LINE SEGMENT PHASE SUMMATION -

TRUNCATED GAUSSIAN SECTION 

Line Line Line Line 

1 
112 = 3 

<I>ab 
112 = 9 

<I>bc 112 = 71 <I>c'd 
f12 = 77 

<I>de 
O(!) 

ab be c'd de radians 
t:.f12 t:.12 t:.f12 t:.f12 

----------------

0 3 4.366 9 3.925 71 3.262 77 3.236 0.1901 
2 1 4.569 7 4.007 69 3.271 75 3.244 0.2185 
4 1 4.569 5 4.128 67 3.280 73 3.253 0.229 4 
6 3 4.366 3 4.366 65 3.290 71 3.262 0.2311 
8 5 4.128 1 4.569 63 3.300 69 3.271 0.2254 

10 7 4.007 1 4.569 61 3.310 67 3.280 0.2105 
12 9 3.925 3 4.366 59 3.321 65 3.290 0.1781 
14 11 3.859 5 4.128 57 3.332 63 3.300 0.1433 
16 13 3.805 7 4.007 55 3.343 61 3.310 0.1229 
18 15 3.758 9 3.925 53 3.355 59 3.321 0.1067 
20 17 3.718 11 3.859 51 3.367 57 3.332 0.0931 
22 19 3.682 13 3.805 49 3.380 55 3.343 0.0810 
24 21 3.650 15 3.758 47 3.393 53 3.355 0.0700 
26 23 3.621 17 3.718 45 3.407 51 3.367 0.0599 
28 25 3.594 19 3.682 43 3.421 49 3.380 0.0504 
30 27 3.570 21 3.650 41 3.436 47 3.393 0.0414 
32 29 3.547 23 3.621 39 3.452 45 3.407 0.0328 
34 31 3.526 25 3.594 37 3.469 43 3.421 0.0244 
36 33 3.506 27 3.570 35 3.487 41 3.436 0.0162 
38 35 3.487 29 3.547 33 3.506 39 3.452 0.0081 
40 37 3.469 31 3.526 31 3.526 37 3.469 0.0000 

(J(f) = An (Constant at 0.106 nepers) (<I>ab + <l>bc - <l>c1d - <l>de). 





Bounds on Communication 

By DAVID SLEPIAN 

(Manuscript received February G, 1963) 

Six parameters oj importance in many communication systems are: (a) 
the rate at which digital inJormation is transmitted; (b) the bandwidth of 
the system; (c) the signal power oj the transmitted signals; (d) the noise 
power oj disturbances in transmission; (e) the error probability in digits 
recovered at the receiver output; (f) the length oj time that the transmitter 
and receiver can store their inputs. These six parameters cannot assume 
arbitrary values: certain sets oj values cannot be realized. Ina series oj 
curves, this paper describes the boundary between compatible and incom­
patible sets oj parameter values. In the model studied, it is assumed that 
the disturbance is additive Gaussian noise with constant power density 
spectrum in the transmission band. 

I. INTRODUCTION 

In comparing the performance of communication systems that trans­
mit information by means of signals of limited bandwidth, six quantities 
descriptive of the system and its environment are of particular impor­
tance: (i) the rate at which the system transmits information; (ii) the 
bandwidth occupied by the transmission signals; (iii) a measure of the 
power of these signals; (iv) a measure of the ambient noise which per­
turbs the transmitted signals; (v) the delay time (caused by the trans­
mitter and receiver) between the introduction of information at the in­
put of the system and the emergence of useful information at the output 
of the system; (vi) a measure of the fidelity with which the information 
at the output of the system represents the information presented to the 
input of the system. 

To compare the performance of two communication systems in a 
meaningful manner, it is usually necessary to consider the values of at 
least these six quantities for the two systems. In general, such a com­
parison will not yield a simple ordering of the two systems. Two systems 
may utilize the same bandwidth, introduce the same delay, and operate 
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in the same noise environment. The first system may transmit informa­
tion at a greater rate with somewhat better fidelity than the second, but 
may require much more signal power. Which system is to be judged bet­
ter then depends on external considerations such as the economics of 
equipment and the purpose for which communication is being established. 
These external considerations allow the engineer to assign relative 
weights or costs to the six quantities in question. 

Quite apart from these costs dictated by external considerations that 
may vary with every conceivable usage of a communication system, it 
is clearly desirable to know, in the first place, what mutual values of the 
six quantities can ever be obtained by any means. In order to provide 
such quantitative information it is necessary to particularize both the 
model of the communication system and the six descriptive parameters. 

In all that follows we shall assume that a discrete message source 
presents independent equiprobable decimal digits for transmission at 
the uniform rate R decimal digits (or dits) per second. (The output of 
any other discrete source having entropy rate R can be encoded into 
this form.) A transmitter operates on these decimal digits to produce a 
continuous signal of average power S lying in the frequency band (O,W) 
cycles/second. The signal produced by the transmitter is perturbed by 
the addition of independent Gaussian noise of total power N and constant 
power spectral density N /W in the band (0, W) cycles/second. A re­
ceiver operates on the perturbed signal to produce decimal digits at an 
average rate R symbols/second. When the receiver output symbols and 
the transmitter input symbols are placed in proper correspondence, the 
average probability, P e, that an output symbol be different from the 
corresponding input symbol will be taken as the measure of fidelity 
with which the system operates. To perform their coding functions, the 
transmitter and receiver may each require the internal storage of T 
seconds of their inputs. We use the dimensionless parameter 

n = 2WT 

(that is, T measured in Nyquist intervals) as a measure of the delay or 
complexity of encoding associated with transmitter and receiver. 

Our concern henceforth is with the six quantities R, W, S, N, n, and 
P e of this model and with the determination of the boundaries of the 
region of compatible values for these parameters. The famous capacity 
formula of Shannon! published in 1948, C = W log (1 + SIN), provides 
information about this boundary when n ~ 00, i.e., when arbitrarily 
complicated receiver and transmitter coding operations are allowed. The 
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astonishing fact that P e could be made arbitrarily small for certain 
finite nonzero values of R, W, and SIN by letting n -7 00, promised the 
existence of most remarkable and previously unsuspected communica­
tion systems. This led Gilbere and others to compute the values of R, 
W, SIN, and P e obtainable with specific transmitters and receivers 
having fixed delay n and to compare these results with Shannon's 
formula. The results were disappointing. For an systems examined, even 
those permitting quite complex encodings (n = 100), it was found that 
to achieve practical values of P e , SIN had to be at least 6 db more than 
that given by the capacity formula. The question arose: was this result 
due to the comparative poorness of the specific systems chosen, or is 
the approach to the ideal systems described by the capacity formula 
inherently very slow with increasing n? For a fixed finite value of n, what 
values of R, W, SIN and P e are theoretically attainable? 

Some information on this subject for large values of n was given by 
Rice3 as early as 1950. The question was answered in considerable detail 
by Shannon in an important paper4 in which he presented a number of 
inequalities that permit rather accurate determination of the region of 
attainable parameter values for all values of n. Shannon's primary interest 
here was again in the case of large delay, and he developed asymptotic 
forms for his inequalities in this case. For small delay, the inequalities 
involve quite complicated expressions and their numerical evaluation is 
not a simple matter. 

The present paper describes in Appendix A a technique which, by 
means of an electronic computer, permits highly accurate evaluation of 
the quantities entering these inequalities. The technique has been used 
to map out bounds on the compatible region of the six quantities in 
question over a wide range of parameter values. The results of the com­
putations are presented here in a number of curves which cross plot the 
quantities in various ways which we hope will be useful to the communi­
cation engineer. * In particular, the curves show quantitatively the 
improvement in communication systems that can be achieved with a 
given degree of coding (measured by delay). Considerable improvement 
can be obtained with a small amount of encoding, but to approach within 
a few db of the capacity formula in general requires extremely compli­
cated systems. The curves also give numerical information concerning 
the trade-offs of the various parameters. They should provide useful 
references of comparison for existing communication systems. 

* An application of these curves to the problem of determining the threshold 
in modulation systems that expand bandwidth is given in Ref. 5. 
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Fig. 1 - Relationship between signal parameters with arbitrarily complex en­
coding. Solid curve gives y = 10 loglo SIN vs RIW j dashed curve gives z = 10 
loglo (SW INR) vs RIW. 

II. IDEAL SYSTEMS - UNRESTRICTED CODING 

The solid curve on Fig. 1 shows a plot of the relation 

R = W loglO (1 + SIN) 

in terms of the two dimensionless quantities 

r = RIW, y = 10loglO (SIN). 

(1) 

This curve can be interpreted* as follows. For values of R, W, Sand N 
corresponding to points above the curve, transmission with arbitrarily 
small positive values of Pecan be achieved by use of sufficiently com­
plicated coding schemes (sufficiently large finite values of n). For values 
of R, W, Sand N corresponding to points below the curve, P e is bounded 
away from zero independently of n. For systems represented by these 
points, no amount of coding can make the error probability arbitrarily 
small. 

* There are many subtle and thorny points in the argument that permits one to 
apply the capacity formula to communication systems transmitting continuous 
signals. Some of these points are discussed in Appendix B. 
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In many communication situations, the quantity 

z - SIN _ SIR 
- R/W - N/W 
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is a useful system parameter. This quantity is the signal energy per dit 
divided by the noise power per unit bandwidth. From (1), 

Z = (lOr - l)/r. (2) 

The dashed curve of Fig. 1 shows a plot of 

z = 10 10glO Z 

vs r as determined by (2). For a given value of r, values of z above the 
curve are attainable with arbitrarily small positive P e and finite delay; 
arbitrarily small positive values of P e cannot be obtained for z values 
below the curve with finite delay. 

The curves on Fig. 1 describe the relations between R, W, Sand N 
along the intersection of the planes P e = 0, n = 00 with the boundary 
of the region of mutual compatibility of the six parameters. The inter­
section of any two other planes, say P e = Cl and n = C2, with this 
boundary also determines a curve in the y-r or z-r plane. Unfortunately, 
the exact form of these curves is not known at present. 

III. FINITE n AND NONZERO P e 

To understand fully the assumptions implicit in the remaining curves 
to be presented here, it is necessary to recall the approach taken by 
Shannon in Refs. 4 and 6. 

Since the signal produced by the transmitter is limited in frequency to 
the band (O,W) cycles/second, it can (according to the sampling theo­
rem) be thought of as generated by the application of a train of impulses 
as input to an ideal low-pass filter with cutoff frequency W. The im­
pulses are spaced 1/ (2W) seconds apart and are of varying amplitude. 
During a fixed time T, n = 2WT such impulses are applied to the filter. 
During this same time T, the information source can produce one of 
kI = 10RT different messages. One method, then, of determining from 
the output of the information source the train of impulses to be applied 
to the filter is to provide a dictionary that lists for each of the possible 
M messages a corresponding sequence of n impulses. The transmitter 
examines the source output for T seconds and determines which of the 
M messages was produced. The dictionary is then consulted to obtain 
the corresponding sequence of n impulses. These impulses are applied 
at a uniform rate to the filter during the next T seconds. At the end of 
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this time, the source has produced another message from the list of M 
messages and the process is repeated. This method of encoding the 
source is known as block coding of length n. 

In a block coding scheme of length n, the average power of the signal 
produced at the output of the filter depends on the amplitudes of the 
impulses listed in the encoding dictionary. It is easy to show that each 
word of the dictionary, i.e., each sequence of n impulses, contributes an 
energy d2/2W to the transmitted signal. Here d2 is the sum of the squares 
of the amplitudes of the n impulses in question. Since one word is trans­
mitted every T seconds, one method of achieving average power S for 
the transmitted signal is to require that d2 = nS for each word of the 
dictionary . We shall refer to dictionaries of this sort as equal energy 
block codes. 

In Ref. 4, Shannon presents explicit formulae for functions Qn(r,Y) 
and Qn(r,Y) which have the following significance. 1;'or the communica­
tion model under discussion, there exist transmitters and receivers using 
equal energy block codes of length n such that 

P e ~ Qn(RIW,SIN). 

For every equal energy block code of length n, the system parameters 
satisfy the inequality 

P e ~ Qn(R/W,S/N). 

Here P e is the probability that a transmitted word of the dictionary be 
decoded incorrectly. The functions Qn and Qn and their numerical 
evaluation are discussed further in Appendix A. 

Consider now a relationship such as 

QlO1(R/W,S/N) = 10-4 (3) 

which serves to determine SIN as a function of R/W. This relation could 
be plotted on Fig. 1 with SIN measured in db to yield a curve lying above 
the solid-line capacity curve shown there. For our purposes, the vertical 
difference between these two curves is of primary interest. This difference 
is shown by the bottom solid curve of Fig. 2. Explicitly, the bottom 
curve of Fig. 2 is a plot of 

y = 1010g1o (SIN) - 10 10glO (lOR/TV - 1) 

vs R/W, where SIN is given in terms of R/W by (3). The bottom dashed 
curve of Fig. 2 is an analogous display of the relation defined by 

QlO1(R/W,S/N) = 10-4
• 
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Fig. 2 - Upper and lower bounds (dashed and solid curves, respectively) on 
SIN needed to achieve word-error probability of 10-4 for various values of n = 
2lVT. Circle, triangles, and crosses give performance of some known codes. 

The two bottom curves on Fig. 2 have the following significance. 
For a given value of RIW, there exist equal energy block codes of length 
101 that will achieve an error probability of P e = 10-4 with as small a 
value of SIN as that given by the ordinate of the dashed curve. On the 
other hand, every equal energy block code of length 101 that achieves 
an error probability of 10-4 must operate with a value of SIN at least 
as large as the ordinate of the solid curve. The curves thus serve to 
bound the minimal signal-to-noise ratio with which an error probability 
of 10-4 can be achieved when equal energy block codes of length 101 are 
employed. The bounds are plotted in db above the signal-to-noise ratio 
given by the capacity formula, and thus measure the penalty in signal­
to-noise ratio that must be paid for restricting the coding (n = 101). 

The remaining curves on Fig. 2 give analogom, results for n = 5 and 
n = 25. It is to be noted that the solid and dashed curves are much 
closer together for large n, than for small n. This effect is shown more 
clearly on Fig. 3, which was obtained from a cross plot of many curves 
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Fig. 3 - Cross-sections of Figure 2 taken for R/W = 0.2 and 0.6. 

of the sort shown on Fig. 2. For n = 101, there is little practical differ­
ence between the two bounds. For small values of n, however, the dis­
parity is great, and the question naturally arises: does the solid curve, 
or the dashed curve, more nearly represent the minimal signal-to-noise 
ratio needed to obtain P e = 10-4 with an equal energy block code of 
fixed length n? 

We believe that the bound obtained from Q is quite close to the mini­
mal attainable SIN even for small n. Indeed, for n = 5, we hiwe been 
able to construct explicit equal energy block codes with a variety of 
rates whose parameters plot close to the top-most solid line of Fig. 2 
when SIN was adjusted to guarantee an error probability not greater 
than 10-4

• The five right-most triangles in the figure locate the per­
formance of certain block codes known as simplex codes [the (D,D + 1) 
codes of Ref. 2]. The crosses locate the performance of certain new codes 
to be described in a later paper. The circle gives the performance of 5-bit 
PCM. The four left-most triangles locate the performance of some sim­
plex codes of block length 25. Apart from these explicit examples that 
plot near the bounds obtained from Q, there are theoretical considera-
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tions which show that Q is a very weak bound for small values of n. 
Henceforth, in this paper we shall deal only with bounds obtained from 
Q and shall treat the relationship 

Qn(RjW,SjN) = P e (4) 

as the defining equation of the boundary of the region of compatible 
values of R, W, S, N, P e and n for equal energy block codes. 

IV. DISCUSSION OF HESULTS 

Figs. 4, 5 and 6 give plots of SjN vs RjW as determined from (4) for 
various values of P e and n. The ordinates here, as in Fig. 2, are given 
in db above capacity, i.e., in db above the solid curve of Fig. 1. One 
advantage of this representation is that the ordinates of Figs. 4, 5 and 6 
may also be interpreted as values of Z, the latter now being measured 
in db above the capacity value given by the dashed line of Fig. 1. 

From Figs. 4, 5 and 6, it is apparent that for a fixed rate and fixed 
error probability modest amounts of coding (small values of n) can 
produce a significant reduction in signal power, but that the return for 
increased encoding diminishes rapidly. This is seen more clearly from 
the cross plot given on Fig. 7. 

The improvement in performance that can be obtained by encoding 
can also be expressed in terms of decreased error probability for a fixed 
rate and signal-to-noise ratio as is shown in Fig. 8. 

An interesting feature of Figs. 4, 5 and 6 is the minimum value clearly 
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Fig. 4 - Minimum possible SIN to attain word-error probability of 10-2 for 
various values of RIW and n. 
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FIG. 7 - Cross-plot of Figs. 4, 5 and 6 showing (for RIW = 0.2) decrease in 
SIN needed to achieve a given word-error probability as n is increased. 

evident on the n = 5 curves. It is not hard to show (see Appendix C) 
that for all values of n, the curves obtained from (4) as plotted on these 
figures must rise indefinitely with increasing R/W. For equal energy 
block codes, there is, for any fixed P e and n, a best value of R/W in the 
sense of minimizing the additional signal-to-noise ratio needed above 
that given by the channel capacity formula. When the curves of Figs. 4, 
5 and 6 are plotted on a graph such as Fig. 1 with absolute SIN as 
ordinate, the curves are monotone increasing but eventually for large 
R/W depart further and further above the capacity formula curve. This 
phenomenon is due to the restriction imposed here that all code words 
of the dictionary have the same energy, a restriction likely to be realized 
in practice. This point is discussed further in Appendix D. 

Another way of presenting (4) that shows the departure from the 
ideal system of the capacity formula that results with equal energy block 
codes of restricted length is shown in Fig. 9. Fix P e and n. Then from 
(4), a given value of r = R/W determines a corresponding signal-to­
noise ratio, SIN. From the capacity formula, using this value of SIN 
it is possible to achieve any desired P e with a rate per bandwidth f = 
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loglO (1 + S/N) by sufficiently complex encoding. The ratio r/P then 
measures the price paid in lost rate due to restricting the amount of 
encoding. The solid curves on Fig. 9 were obtained from Q and give 
upper bounds on r/r for equal energy block codes; the dashed curves 
derived from Q give lower bounds for this ratio. It can be shown (see 
Appendix C) that the solid curves approach (n - 1)/n asymptotically 
with increasing R/W. 
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Fig. 9 - Upper and lower bounds (solid and dashed curves, respectively) on 
fractional loss in rate, rjr, due to finite encoding. Loss plotted vs R/W for fixed 
nand P e • 

Yet another way of viewing the bounds is given on Fig. 10. Here, for a 
fixed signal-to-noise ratio and a fixed error probability, the improvement 
in signaling rate that can be obtained by increasing the length of equal 
energy codes is shown. It is seen, for example, that even with signal to 
noise ratios as high as 20 db, one cannot achieve 75 per cent of the ideal 
rate with equal energy codes of length less than 15 when the prescribed 
error probability is 10-6

• The SIN = 00 curve is given by rlr = 

(n - 1) In. That this limiting curve is different from unity is again due 
to the fact that the bounds used here are those for equal energy codes. 
If restricted energy codes were used, (see Section V) the limiting curve 
corresponding to SIN = 00 would be r I r = 1. 

V. CONCLUDING REMARKS 

The exact computation of Qn that was carried out here allows one to 
test the range of validity of Shannon's asymptotic expressions for this 
quantity. On plots such as Figs. 4, 5 and 6, his formula* (4) of Ref. 4 
gives curves in very close agreement with those shown for n = 101. 
At n = 25 the error is about 0.1 db at large rates and 0.3 db at small 
rates. This formula was used to compute the curves for n = 500 and 
1000 shown on Fig. 5. Although it involves only elementary functions, 

* This formula contains a misprint. The printed version must be multiplied by 
- G to be corrected. 
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the formula is quite complicated, and for extensive computations ma­
chine methods are desirable. For moderate or small values of n, exact 
values of Q can be obtained by the method of Appendix A with com­
parable ease. Shannon's elementary asymptotic formula (73) of Ref. 4 
has also been evaluated. For n = 500 and 1000, it gives values that 
agree with the curves of Fig. 5 to about 0.1 db for R/W > 0 .. 5. For small 
rates it gives values 0.5 db too large. The accuracy of the formula 
diminishes rapidly as n is decreased below 100. 

The bounds presented here were obtained for communication systems 
using equal energy block codes of fixed length. It is, of course, possible 
to signal using block codes that have words of differing energy. One code 
of this sort of particular interest that is treated by Shannon in Ref. 4, 
Section XIII is the restricted energy block code. In these codes, each word 
of the dictionary contributes energy ST or less to the tran'3mitted signal, 
i.e., for each code word d2 ~ nS. Note that for these codes S is no longer 
the average signal power, but rather the maximum contribution to the 
signal power by any code word. 

For any communication system with parameters R, W, S, N using a 
restricted energy block code of length n, Shannon showed that the aver­
age error probability, P e', for a decoded word is bounded below by 

'> Q (_n R S) 
Pe = n+l n + 1 W' N . (5) 
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For any fixed value of RjW, as n becomes large this lower bound ap­
proaches the one already given for equal energy block codes, and so 
asymptotically (in n) one can do no better with restricted energy codes 
than with equal energy codes. However, for any fixed value of n, as 
RjW becomes large the lower bounds for the two classes of codes be­
have very differently, and indeed it is easy to argue that in this limit 
restricted energy codes are superior to equal energy codes. This point is 
discussed further in Appendix D. 

The solid curves of Fig. 11 are those already shown in Fig. 6. The 
dashed curves were obtained from the lower bound (5) for restricted 
energy block codes. These dashed curves approach the horizontal 
asymptotes indicated at the right. From the figure it is seen that for 
RjW < 0.6 and n ~ 25 the bounds for restricted energy codes differ 
from those for equal energy codes by less than 0.2 db. For small values 
of n, the dashed curves lie below the solid ones even for small rates. 

It should be pointed out in closing that the error probability P e used 
throughout these calculations is the probability that a word of the block 
code be improperly identified when a maximum likelihood receiver is 
used. This is not in general the probability that an individual decoded 
decimal digit be in error but rather an upper bound to this quantity. 
For large n, a single code word is decoded into many decimal digits 

Pe = 10-6 
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Fig. 11 - Comparison of bounds for equal-energy codes and restricted-energy 
codes. 
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The received code word may be incorrectly identified and yet decoded 
into a block of decimal digits many of which are correct. When large 
block codes are used and P e is small, errors in the decoded stream of 
decimal digits are not distributed uniformly. Many successive groups 
of decimal digits, each containing RT digits, will be error free. Then a 
single block of RT digits will be produced that contains from one to 
RT erroneous digits. This bunching of errors may, in certain applica­
tions, be a serious drawback to the use of block coding. 
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APPENDIX A 

Computation of Q and Q 

Our notation is similar to Shannon's4 and we here adopt his geometrical 
point of view: 

S = signal power (each signal vector is of length y nS) ; 
N = noise power (variance N in each dimension) ; 
A = ySjN = signal-to-noise "amplitude" ratio; 
n = number of dimensions; 

M = number of signal vectors; 
O( 0) = solid angle in n-space of a cone of half-angle 0, or area of unit 

n-sphere cut out by the cone; 
Q( 0) = probability of a point X in n-space, at distance Ayn from 

the origin, being moved outside a circular cone of half-angle 0 with 
vertex at the origin 0 and axis OX (the perturbation is assumed spherical 
Gaussian with unit variance in all dimensions) ; 

01 = angle such that MO( 01 ) = O( 7r). 
Shannon shows [his equation (20)] that 

where P e is the error probability of the best equal energy M-vector code 
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in n-space used with signal-to-noise ratio A. We proceed to discuss the 
evaluation of these quantities. 

As shown by Shannon [his equation (21)] 

( 1) (n-l)/21 8 

n(o) = n -( 7r) sinn-2~ d~. 
n + 1 0 r --

2 

(6) 

The surface n( 7r) of the unit n-sphere has area 

A change of variable sin2 ~ = t shows that 

1 r (~) lsin28 

= 2 r G) r (~) 0 t1/2'.-1)-1(1 - t)Hdt 

~ [,;n2, (n ~ 1 , D ' 
where I a(p,q) is Pearson's incomplete beta function. 7 Thus 01 is given 
by 

2 (n - 1 1) 
M = Isin281 -2-' 2 . 

The rate is related to 01 by 

R 
W 

2 
-loglo JJl. 
n 

(7) 

(8) 

To evaluate Q( 0), it is convenient to use n-dimensional cylindrical 
coordinates with origin located on the axis of the cone at a distance 

l = VnA 

from the vertex and within the cone. The z- or rotational axis of the 
coordinate system coincides with the axis of the cone and is oriented so 
that the vertex of the cone has z-coordinate - l. Denote distance from 
the z-axis by r. Then an element of "area" distant r from the axis and 
having radial dimension dr and axial dimension dz sweeps out volume 

(n - 1)7r(n-l)/2rn-2 dr dz 

r (n t 1) 
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when rotated about the z-axis. One has therefore 

Qn = Q(e) = foo l ra-z 
dz exp [_!(r

2 ,+ i)] (n - 1)7r(n-1)/2rn-2, (9) 

o -~ (2.-)n" r (n t 1) 
where we have set 

a = cot e. 
Now set 

. /2 1 
en = 11 ;; 2'n-l)/2 r (n ; 1) . 

One then has 

Q foo { l ra-z 

~ = dr r exp (_!r2) rn- 3 dz exp (-!i) 
en 0 -00 

-exp (-!r') {rn-> r-' dz exp (-!Z')} I~ 

foo lra-z 
+ (n - 3) 0 dr exp (_!r2)rn- 4 -00 dz exp (-!i) 

+ a J,~ dr exp ( _}r'j2)rn
-
3 exp [ - (ar ; l)2] 

n > 3, (10) 

on integrating by parts. Here 

J - foo d n-l [(1 + (2
)r2 - 2alr + e] 

n - 0 r r exp - 2 

1 (00 d n-2[(1 + 2) l] [(1 + (2
)r2 - 2alr + l2] 

= 1 + a2 J 0 r r a r - a exp 2 

+ 
al foo d n-2 [(1 + (2

)r2 - 2alr + l2] 
1 + a 2 0 r r exp - 2 

_ al J 1 n-2 [ (l+a
2
)r

2
-2alr+l

2
]100 

- 1 + a2 n-l - 1 + a2 r exp - 2 0 

+ 
n - 2 .(00 d n-3 [(1 + (2

)r2 - 2alr + l2] 
1 + a2 .lor r exp - 2 
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al n - 2 
= 1 + a 2 J n-l + 1 + a 2 J ,.-2 , n > 2. (11) 

Now set 

l 
~ = V2' 

One has from (10) and (11) 

n-2 
bn = --1 bn- 2 • n- . 

n > 3) 
n > 2 (12) 

n > 2.) 

Qn = Qn-2 + cos f) Gn- 2, 

G . bG n-2' 2G n = ~ cos 0 sm 0 n n-l + -- SIn 0 n-2 , 
n - 1 

The initial values 

2 
bl = V;, b2 = y;" 

Gl = ! exp (-e sin2 0) erfc (-~ cos 0) 

G 1. -~2 2~. G 
2 = - sm 0 e + _ /- sm 0 cos 0 l, 

7r ·V 7r 

Q3 = ! erfc(~) + cos 0 Gl , 

with 

2 (00 -t 2 
erf c (x) == _ /- e dt 

v 7r' x 

permit one to compute Qn( 0) for odd n from the recurrence (12). Since 
o ~ 0 ~ 7r /2, all quantities involved are positive. 

The curves of Figs. 4, 5, and 6 were obtained as follows. With 01 fixed 
in value Q5 , Ql5 , Q25 , Q51 and QlO1 were determined as functions of ~ by 
repeated application of the recurrence. A given Qn(Ol) was then expressed 
as a function of the signal-to-noise ratio, A 2, by the relation ~ = AV n/2. 
Values of A2 for which Qn(Ol) took the values 10-2

, 10-4
, 10-6 were de­

termined graphically. The corresponding rate was found from (7) and 
(8). Repetition of the process for different values of 01 permits plotting 
the curves. 

An integration by parts and (6) allow Shannon's upper bound to be 
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written in the form 

- M fill . n-2 
Q = _ / b Qn (0) sm 0 dO. 

V 7r n-1 0 
(13) 

Curves based on Q, such as shown on Fig. 2, were obtained by using the 
recurrence (12) to obtain values of Qn(O) for a fixed ~. The integral in 
(13) was evaluated numerically using a trapezoidal formula with 150 
points of evaluation for the integrand. Values of ~ and 01 were expressed 
in terms of R/W and SIN as already explained. 

APPENDIX B 

The theorems and formulae of Shannon's Information Theory are 
statements about certain mathematical constructs. In order to make 
useful inferences from these formulae about physical communication 
systems, it is necessary to examine the sense in which the mathematical 
model approximates the behavior of the key elements of the physical 
system. At best, the correspondence between mathematical and physical 
entities is only a close approximation: the "true" theorems of the 
mathematical model, when stated in physical terms, are only "partial 
truths." 

The formula 

C = (aI2) loglo (1 + SIN) dits/second (14) 

gives the capacity of the following mathematical channel. Real numbers 
are chosen at a transmitting point at the rate a numbers per second. 
Each number chosen is transmitted to the receiving pojnt, but is per­
turbed by an additive Gaussian variate, so that the ith transmitted real 
number, Si, is received as Si + Xi. The Xi are assumed independent 
Gaussian random variables with the same variance N. The transmitted 
sequence satisfies the constraint 

1· 1 ~ 2 s 
~!! 2K !:t S ~ = . 

(The reader should consult Ref. 8, Chapter 9, for a more careful, rigorous 
definition of this channel and a precise mathematical interpretation of 
the capacity formula.) 

The foregoing description of the channel is essentially that given by 
Shannon in Ref. 4. The channel is discrete in time; there is no mention 
of bandlimited continuous functions of a time variable defined on the 
real line. Within the mathematical theory, there is no question of the 
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validity of (14) for the capacity of the discrete time channel described 
nor of the validity of Shannon's bounds for the error probability attain­
able with block codes of finite length. The problem is to justify the 
application of these formulae derived for a discrete time mathematical 
channel to physical communication systems employing "continuous" 
signals of "bandwidth" fV. 

I have placed quotation marks around the words continuous and 
bandwidth to call attention to the fact that these two concepts have no 
well-accepted operational definitions in terms of experiments in the real 
world. They are again part of another strictly mathematical model that 
is used to describe signals of the physical world. The elements of this 
mathematical model are the real number continuum, functions and 
Fourier analysis. The correspondence between these elements and 
observables of the laboratory (meter readings, etc.) is again an approxi­
mation - a very good one in many circumstances, but a poor one in 
many others. It is meaningless to ask if the reading of a meter in the 
laboratory is a rational number or an irrational one, or if the trace seen 
on an oscilloscope is a continuous function in the sense used in the 
mathematical model. Within the mathematical model, there are many 
notions introduced for which one cannot easily find meaningful counter­
parts in the real world of the laboratory. The asymptotic behavior of 
spectra at infinity is such an example. One must be very suspicious of 
the utility of applying in the real world formulae derived from the 
mathematical models which are sensitive to assumptions about those 
concepts of the model that have no operationally defined counterparts in 
the laboratory. 

It is evident that a good case for applying (14) to real communication 
systems can be made if one can justify the statement 

"In the laboratory, using signals of duration T and bandwidth W, 
we can communicate about 2WT numbers and no more." (15) 

Perhaps it would be simplest to take this statement as a basic axiom 
for practical communication engineering and justify it by experiment 
(with "bandwidth," "number," etc. suitably defined in operational 
terms). It is intellectually more satisfying, however, to be able to derive 
it from the mathematical models that have served so well to describe 
signals in other circumstances. 

The approach taken by Shannon in Ref. 6 and paraphrased here at 
the beginning of Section III is one method of deriving statements in the 
spirit of (15) from the usual mathematical model of signals and spectra. 
This approach is reasonably satisfactory in justifying the fact that for 
very large T one can transmit 2WT numbers using signals of (mathe-
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matical) bandwidth ,Wand nominal duration T. From it one can argue 
rather convincingly that rates arbitrarily close to those given by the 
capacity formula can be achieved with arbitrarily small error probability 
using (mathematically) bandlimited functions for signaling. Using this 
approach, however, it is difficult to make a convincing argument that 
one cannot exceed capacity or that Shannon's bounds Qn and On have 
any significance for channels employing (mathematical) band limited 
functions. 

The difficulty here lies in the fact that mathematical band limited 
functions are entire functions and hence perfectly predictable for all 
time from knowledge over any finite interval. If one allows all the usual 
mathematical operations, the receiver, on the basis of observing the 
band limited signal plus noise in an arbitrarily short time interval, could 
extrapolate this function for all time and obtain sample values at an 
arbitrarily great rate. 

The heart of the dilemma presented here lies in the fact that the 
mathematical specification that a signal be bandlimited is a statement 
about concepts of the model that have no well defined physical counter­
part - namely, the behavior of spectra at infinity. The sampling 
theorem, unfortunately, requires an assumption about this nonphysically 
interpretable part of the mathematical model. 

Yet, one feels that in the real world something like (15) holds with 
laboratory meanings for bandwidth. If so, this should be derivable from 
the mathematical model of functions and Fourier analysis without 
making assumptions in the model about such nonphysical entities as the 
behavior of spectra at infinity. A result of this sort is indeed the content 
of an important theorem recently published by Pollak and Landau. 9 

Their results are too complex to discuss in detail here. The main point 
is that within the classical model of functions and Fourier analysis they 
define a suitable class of functions that are "limited" in both time and 
frequency. The definition of this class docs not entail specification of 
spectral behavior at infinity. The specification, when translated to 
physical terms, involves only an assumption about one's ability to 
measure energy, and the correspondence between their class and labora­
tory bandlimited signals defined in an operational way is easy to make. 
They prove that in an appropriate sense this class of functions is 2WT­
dimensional. From this, a form of statement (15) results which is, I 
believe, the best justification on theoretical grounds to date of this 
important postulate. 

Quite apart from this difficulty of justifying (15), there are, of course, 
many other ways in which the mathematical model only approximates 
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the behavior of equipment in the laboratory: measurement errors pre­
vent one from specifying real numbers meaningfully by more than a 
finite number of significant figures; disturbances are not truly Gaussian; 
etc., etc. The attainment of arbitrarily small error by sufficient encoding 
in the mathematical theory entails a delicate balance between many 
quantities which only approximate their physical counterparts. One 
should not believe that real communication systems can be built which 
will signal at fixed rates with arbitrarily small error. Somewhere, for 
large enough n, the mathematical model fails to describe adequately 
the physical realities. How large is this n? This is a very difficult ques­
tion. lVly engineering judgment is that the results given on the curves of 
this paper for n up to 100 might conceivably be achieved with real com­
munication systems. Until we have learned to describe and instrument 
optimal codes of this size, I am safe from experimental contradiction. 
Today, this time seems remote. 

APPENDIX C 

We show here that if 

and 

f = log (1 + S / N) 

then, with nand P e fixed (0 < P e < 1), 

lim R/W = n - 1 . 
RllV~OO f n 

(16) 

(17) 

Referring to (7) and (8) we see that if R/W -J> 00, then 01 -1- O. In­
deed, for small values of 01 , one can easily develop the incomplete beta 
function to obtain 

~ = Hln (n - 1)1l (n ; 1 ,D 
- (n - 1) In sin 01 + 0 (0/) ] 10glO e. 

(18) 

Here (3(x,y) = r(x)r(y)/r(x + y) as usual. 
It is now convenient to write equation (9) as 

n 01 d d n-2 [( 2 + 2)/2] Q () 100 f r cot 01 - vnA 
-- = r z r exp - r z 

d 0 -00 
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where 

(n - 1) 7r(n-l)/2 
d - ~----~------

- (2 .. )",2 r (n ~ 1) 

and as before we adopt the abbreviation A 
integration is shaded in Fig. 12. 

y r 

VS/N. The region of 

~~~~----~------~--------------~z 

Fig. 12 - Integration region and coordinate transformation. 

To investigate the behavior of Qn as 01 ~ 0, it is convenient to trans­
form the integral by the rotation 

z = x cos 01 - Y sin 01 

r = x sin 01 + Y cos 01 

and to write the result as the integral over the region y ~ vnA sm 01 

minus the integral over the region G indicated in the figure. 

Qdn = 100

_. dy Joo dx(x sin 01 + Y cos 01r-2 exp [_ x
2 
~ y2] 

VnA sin 81 -00 

With A ~ 0, the integral over G vanishes as 01 ~ 0, so 

Qdn ~ (cos 01)n-2 1OO

_. dy JOO dx(y + x tan 01r-2 exp [_ x
2 
~ y2] 

ynAsln81 -00 

~ 100

_ dy yn-2 exp (_y2/2 ) Joo dx exp (-x2/2) 
y nA sin 81 _on 

One thus finds that if A01 ~ 00, Qn/d ~ ° whereas if A01 ~ 0, Qn ~ 1. 
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To maintain (16), therefore, we must have Alh 
o < ex < 00, or 

A ,-....; (aj(h). 

Equations (17) and (18) now give 
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a + O((h) where 

(19) 

. RjW . Hln (n - 1){3 (n ; 1 ,D - (n 1) In sin 0.] 
hm -- = hm ----'::..---------:--~;_:__--------::::;; 

RI W-+oo f 81-+0 ( (
2

) 
In 1 + 0

1
2 

n - 1 
n 

as was to be shown. 
The preceding considerations also allow one to show directly that the 

curves of Figs. 4, 5 and 6 rise indefinitely as RjW -+ 00. For a given 
RjW, denote by A/ the corresponding signal-to-noise ratio obtained 
from the capacity formula, so that RjW = log (1 + Ai2

). Then Ai2
,-....; 

10R1W as 01 -+ O. From (18) one finds, 

.2 t'J [en - 1){3]2In 
At . 1 • slnn- 01 

Using (19), one then has 

A2jA/,-....; Cj01
21n 

with c a positive constant. As RjW -+ 00, 01 -+ 0 and A 2j Al-+ 00. The 
logarithm of this latter ratio is plotted on Figs. 4, 5, and 6. 

APPENDIX D 

Each word of a block code dictionary is a sequence of n real numbers 
which may be regarded as a point in an n-dimensional Euclidean space. 
The points of an equal energy block code all lie on the surface of a 
hypersphere of radius .y nS with center at the origin. The words of a 
restricted energy block code all lie on the surface or within such a sphere. 
In this geometric picture, the effect of the noise in the channel can be 
visualized by surrounding each word of the code by a sphere of radius 
V nN centered at the word. Due to the noise on the channel, a received 
word lies on the average at a distance V nN from the corresponding 
transmitted word. If the code is to have a small average error probability, 
the noise spheres surrounding the words of the code must not overlap 
too much. On the other hand, to achieve a large rate, it is necessary to 
have many words in the dictionary. 
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, The volume of a sphere of radius r in n-space is proportional to rn. 
The fraction of the volume of such a sphere that lies external to the 
concentric sphere of radius ar, 0 < a < 1 is therefore 

rn _ (ar)n 
---- = 1 - an . 

For large enough n, then, almost all the volume of the sphere lies near 
its surface. For example, if n ~ 460, then at least 99 per cent of the 
volume of the sphere lies within a thin skin of the surface whose thick­
ness is 1 per cent of the radius of the sphere. 

Suppose now that Nand S are fixed, and consider the problem of 
placing code words on or within the sphere of radius V nS so that the 
spheres of radius V nN surrounding each code word do not overlap 
appreciably. The radius of these noise spheres is a fixed fraction, VN/S, 
of the radius of the large sphere of radius V nS. As n becomes large, 
almost all of the volume of the large sphere lies within a skin of the sur­
face of fractional thickness much less than v'N IS. It is not surprising, 
then, that little is to be gained by placing code words interior to the large 
sphere. Indeed, Shannon's bounds prove that in the limit n ---7 00 

restricted energy block codes give no better performance than equal 
energy block codes. 

In contrast now consider the situation when nand S are fixed and 
RIW becomes large. As we seek to place more and more code words on 
or within the sphere of radius V nS, the noise power N must be con­
tinuously decreased to prevent the noise spheres surrounding the code 
words from overlapping. Ultimately, for large enough rates, N must be 
made so small that the radii of these noise spheres is very small compared 
to the thickness of the skin of the sphere of radius V nS containing most 
of its volume. It then becomes possible to pack appreciable numbers of 
code words interior to this sphere and restricted energy codes then give 
better performance than equal energy codes. 

The asymptotic behavior of the dashed curves of Fig. 11 can readily 
be deduced from the bound (5) and the material of Appendix C. The 
curves are given by 

p, ~ Qn+l (n : 1 !, !). 
To maintain 0 < P e < 1, we find as in the derivation of (19) that 

A "-' (al 01) 

where a is given by 
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= _1_ foo dt t(n/2)-1 e -t . 

r(~) a
2 
(;+1) 

In the right member of (18), replace n by n + 1; in the left member, 
replace R/W by [n/(n + 1)](R/W). There results 

~ ~ log [ n~ (~ , Dr 
W . 2 e sm 1 

It follows then that 

so that 

10 log ~:2 ~ 20 {log a - ~ log [n~ (~, D]}. 
This latter value is the horizontal [!.symptote for the dashed curves of 
Fig. 11. 
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Analysis of Delay in Mathematical 
Switching Models for Data 

Systems 

By D. G. HAENSCHKE 

(Manuscript received August 17, 1962) 

Traffic delay, caused by temporary all-lines-busy conditions, is analyzed 
for three mathematical switching models. They are classified as "address 
camp-on," "retrial," and "message storage" models. The models are de­
signed to permit a study of basic traffic theoretical problems encountered in 
the rapidly growing field of data communications, but they are not identical 
with any of the existing data switching systems. Each model assumes that 
a message is switched only through one switching center which must es­
tablish connections via line groups to one or more addressed receiving sta­
tions, i.e., each model contains only a single switching center. Numerical 
results for the average delay on all messages are obtained on the IBM 7090 
computer. 

I. INTRODUCTION 

Switching centers can be used to link together communication lines 
for the transmission of data between a variety of business machines and 
computers. Due to randomness in the required interconnections a switch­
ing center may occasionally not find an idle line to a particular receiving 
station, so that a delay can occur. More than one method can be followed 
when a switching center finds all lines to a receiving station busy. Some 
switching models appear to obtain lines to the addressed receiving sta­
tions in a shorter time than other switching models. This means that 
with one switching model a given delay requirement can be met with 
fewer lines than with another switching model. This is not to say that 
the model which would render a given grade of service with the least 
number of lines also is the most desirable from an economic point of 
view, because delay is only one factor which enters into the choice be­
tween data switching systems. Components of a switching system, such 

709 
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as lines, memory, etc. do not bear the same price tag, and minimizing the 
number of components of one kind does not ensure economical efficiency. 

Interest in the particular traffic engineering problems of data switch­
ing has been present for at least 15 years. Yet, traffic engineering work 
was mainly concentrated on classical telephone trunking problems, and 
a variety of such fundamental problems have been worked out. Some 
of the data switching systems which are being studied or are now in use 
cannot be analyzed by standard mathematical approaches of traffic 
theory because the operating conditions differ from those of the mathe­
matical models used in the analysis of classical telephone problems. The 
understanding of the fundamental traffic theoretical problems encoun­
tered in data switching is a prerequisite for an exact mathematical analy­
sis of message delay in data systems. The fundamental problems need 
to be studied on simplified models which lend themselves best to mathe­
matical treatment and, therefore, will not be identical with any of the 
present data systems in use. We have constructed for study three hypo­
thetical models which we call "address camp-on," "retrial," and "mes­
sage storage" models, and have analyzed message delay for each of them. 

Message delay is defined as the delay between initial request by the 
switching center for a line, and the moment the message is released 
from the switching center for transmission. The switching center handles 
messages in a manner described by one of the three switching models. 
The delay is caused by temporary all-lines-busy conditions in the line 
groups which connect the switching center with the addressed receiving 
stations. This type of traffic delay must not be confused with the total 
delay from the time a message is ready at the data source and the time 
the message is actually received at a destination. No account is taken 
of messages which are switched through more than one switching center 
in tandem. 

This study, then, shall not be looked upon as an attempt to make a 
choice between switching systems, since such a choice cannot be based 
solely on the delay performance of mathematical models. A true com­
parison between switching systems must include other factors, as for 
instance the cost of memory and logic, loading of transmitters, and load­
ing of incoming lines, all of which are neglected here. 

II. DESCRIPTION OF MATHEMATICAL SWITCHING MODELS 

The following describes each of the three switching models. The de­
scription is preceded by an outline of features which are common to 
each model. The mathematical derivations given in the appendices and 
the delay curves are based on these models. 
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2.1 Common Features 

Think of a data source feeding messages into a switching center that 
has a large number of line groups radiating from it (see Fig. 1). 

Each line group connects one, and only one, receiving station with the 
switching center. A receiving station is capable of receiving from all 
lines in its group simultaneously. There might be one or more lines per 
group, but each group contains the same number of lines c. Full access 
is given to each line in a group. A message is said to have A addresses 
when a copy of the message must be transmitted over A different line 
groups to A different receiving stations. The number of addresses per 
message remains constant for all messages. The switching center is 
responsible for transmitting a copy of the message to each of the ad­
dressed receiving stations. The addresses of a message are chosen at 
random from a large number of possible receiving stations. This perrrits 
us to assume that all line groups are independent of each other. Mes­
sages are originated and addressed in such a way that a[ , the information 
load offered to a group, is the same for every group. The information 
load is defined as the number of first, i.e., unrepeated, message attempts 
which are expected to be generated during an interval equal to one aver­
age message length. First attempts are made Poisson distributed in 
time, meaning that the probability that exactly k first attempts are 
generated during an interval of length t is given by 

DATA SOURCE 

DATA PROCESSOR OR 
INCOMING LINES FROM 

SWITCHING CENTERS 

ORIGINATING 
OR 

INTERMEDIATE 
SWITCHING CENTER 

RECEIVING 
STATIONS 

Fig. 1 - Switching model. 
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Pr (k,t) 

in which t is in units of the average message length. The length of all 
messages is exponentially distributed with mean 1. In the mathematical 
derivations the average message length is taken as the unit of time. An 
exponential message length distribution is chosen, since it is believed 
that it will serve as a good approximation in a larger number of practical 
cases than a constant length. The instant a new or repeated message is 
originated, the switching mechanism begins to hunt for an idle line to 
each of the addressed receiving stations. No delay is imposed by the 
switching mechanism itself. Each new message is eventually delivered to 
the respective receiving stations, i.e., no messages are lost. The system is 
in statistical equilibrium, which is to say that the system is in the steady 
state such that the average number of messages in the system during 
any long interval of time remains constant. 

When all lines in a group to one or more of the receiving stations are 
busy we must find a way of delaying delivery. The camp-on and storage 
models assume that blocked requests form queues at the switching cen­
ter. The retrial model assumes that blocked requests are withdrawn from 
the switching center and reoffered at a later time. 

The reader has doubtlessly observed the very simplified and idealized 
set of common features on which the switching models are based to per­
mit mathematical analysis. The same applies to the features which are 
unique to each of the three models. 

2.2 Address Camp-On Model 

When a line group to an addressed receiving station is blocked, the 
request for service in this group will camp-on and wait in the order of 
arrival until a line is assigned by the mechanism which scans continu­
ously for idle lines. The assignment of available lines to waiting requests 
is done on a "first come, first served" basis. When a line is assigned it is 
immediately made busy. The message, however, is not released from the 
data source until lines to all addressed receiving stations are secured. 
When the last line is obtained, the message content is released and trans­
mitted simultaneously to each of the addressed receiving stations, after 
which the lines are released. The holding time of a line in the camp-on 
model is made up of the sum of two random variables: namely, the ex­
ponentially distributed message length and the time spent waiting until 
lines are secured to all addressed receiving stations. 
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2.3 Retrial Model 

In the retrial model, a message is released from the data source only 
when lines are found at the switching center to all addressed receiving 
stations. If even one line group is blocked, the message is not transmitted 
to any of the addressed receiving stations and is temporarily cleared from 
the switching mechanism without making any lines busy. A blocked 
message is reoffered any number of times from the data source after a 
constant time interval T, until an idle line is found simultaneously to 
each addressed receiving station. At a retrial of a blocked message, an 
attempt to seize an idle line is made in the same groups as at the previous 
attempt. The message delay is determined by the number of attempts 
made and by the length of the constant retrial interval T. The holding 
time of a line in the retrial model is equal to the exponentially distributed 
message length. 

Another way of making retrials is to let the delay in the delivery of 
the message content to anyone addressed station be independent of the 
delay to the other addresses of a multiaddress message. In this case, a 
message having A addresses would be considered to consist of A one­
address messages and the delay would be that given for the one-address 
case of the retrial model. 

2.4 Message Storage Model 

Message storage is analysed on a model in which requests for lines in 
a busy group form queues in the order of arrival. In the multiaddress 
case, some addresses of the message may find their line groups busy 
while other addresses may obtain lines to the addressed stations with 
no delay. The model assumes that the message is released with no delay 
to stations which are not blocked, and that the delivery to a blocked 
station is delayed only until the instant a line is found by the switching 
mechanism which scans continuously for idle lines. As in the retrial 
model, the line holding time is equal to the exponentially distributed 
message length. 

III. METHOD OF ANALYSIS 

The delay performance is analysed as messages are switched through 
one switching center which employs one of the three described switching 
models. It should be pointed out that the results obtained here apply 
only to the mathematical models used. All approximations mentioned 
in the analysis are approximations of the model to which they refer. 
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The mathematical analysis of the delay performance of the address 
camp-on model is given in Appendix A. The problem is to find the total 
occupancy of the outgoing line groups. In the multiaddress case, out­
going lines can be held busy in excess of the message length. This excess 
holding time increases the load carried from the useful information load 
a[ to a total load aT. The excess holding time is the average length of 
time between line seizure and the time lines are found for all addresses 
of the message. Erlang delay probability is used by the introduction of 
an approximation which assumes that the total holding time of an out­
going line is exponentially distributed. No explicit expression is derived 
for the total load aT. Solutions for aT are found by solving (7) and (10) 
of Appendix A in an iterative computer program. The average delay 
follows from (11). 

In Appendix B the mathematical analysis is given for the retrial 
model. The retrial method has been under consideration for application 
in both military and commercial data systems, and this method is also 
used in voice telephone communications. The mathematical analysis of 
delay in systems in which blocked attempts are reoffered is one of the 
fundamental traffic problems for which an exact solution is not available. 
The prospect of using the retrial method in data systems emphasizes the 
need to treat such systems analytically. The analysis given here is 
not exact because a number of approximations had to be introduced 
to obtain numerical results. Since the retrial method is a basically 
unsolved problem it must first be studied in its simplest form, which 
exists for the case of one address per message. Considerable effort, there­
fore, is spent in Appendix B on the discussion of the one-address case. 
Our approach to the :retrial problem is to find approximations for the 
unconditional state probability of finding i lines in a group of clines 
busy, 0 ~ i ~ c. Then, approximations are found for the conditional 
probabilities of finding i lines busy at to + 7", when the state of the group 
is known at to , to - 7", to - 27", etc. The delay for the one-address case 
follows from (23) of Appendix B. For the three-address case the delay 
is computed from (31) in a Markov process which is in itself an approxi­
mation of the retrial problem since it accounts only for a first-order 
dependency. 

The basic problem in the retrial model is to find approximations of the 
conditional probabilities mentioned above. These are obtained by in­
tegrating a set of differential equations (16), using a line request rate 
w(t) which by itself is conditioned on previous states of the line group 
and, therefore, is dependent on time. The line request rate w(t) appears 
as a coefficient in (16). Since w(t) can be expressed only as a function of 



DELAY ANALYSIS 715 

solutions to (16), we cannot find wet) explicitly, but must compute it in a 
long process of progressive iterations. It will become apparent from Ap­
pendix B that not all approximations made can be clearly justified, but 
the results obtained are sufficiently accurate for comparison with other 
switching models. Some of the approximations appear critical for short 
retrial intervals 7, particularly when c is small. The amount of effort 
and computer time spent on solving the retrial problem analytically is 
not necessarily less than the amount of effort and time spent by simula­
tion. The problem is by no means solved, but it is hoped that by this 
analytical approach the way is paved toward a more complete analysis 
of retrial systems. 

For message storage, the average delay can be determined by the well­
established methods of traffic theory developed by A. K. Erlang. These 
are outlined in Appendix C. The average delay for the storage model is 
computed from (32) of Appendix C, and no approximations need to be 
made. 

IV. RESULTS AND CONCLUSIONS 

For a fixed amount of information load, each switching model pro­
duces different delays. This means that some switching models must be 
operated at lower occupancy than others to ensure that delays encoun­
tered will not exceed the desired maximum. The delays shown below 
for each switching model do not necessarily keep their relationships in 
respect to each other when messages are switched through several switch­
ing centers in tandem. 

The results of computations for one address per message are shown in 
Figs. 2 and 3 for one and ten lines per group, respectively. Figs. 4 and 5 
show similar results for three addresses per message and one and ten 
lines per group, respectively. The "information occupancy" in these 
figures is numerically equal to the information load offered to the line 
group divided by the number of lines per group, i.e., ad c. The term 
"occupancy" refers to the percentage of time a line is occupied on the 
average. The fraction of time a line is actually utilized for the transmis­
sion of information, then, is equal to adc, so that we may also call "in­
formation occupancy" the "line utilization." 

First let us discuss the address camp-on model. This method offers 
the advantage that error correction can be performed on multilink con­
nections on an end-to-end basis because the message content remains in 
storage at the data source until a connection is set up to all addressed 
receiving stations. The camp-on model also is of interest because storage 
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Fig. 2 - Average delay on all messages vs information occupancy; 1 line per 
group, 1 address per message. 

at an intermediate switching center need be provided only for the ad­
dress portion of a blocked message and this might have some economic 
advantages over other switching models. For one address per message 
there is, in theory, no difference in the traffic delay performance of the 
address camp-on and message storage models when the message is 
switched only once. It should be remembered that in the camp-on model 
an intermediate switching center keeps the incoming lines busy in excess 
of the message length for the duration of a delay which, for a given 
information load aI, increases the actual load carried. Because we con­
sider only single-switched messages, no account is taken here of this 
type of line loading. 

As was mentioned before, the total holding time of an outgoing line 
in the address camp-on model is made up by the excess holding time, 
\vhich is the time spent waiting for other addresses to find lines, and by 
the actual message length. In Fig. 6 we show the total occupancy ar/e 
versus the actual information occupancy or line utilization or/e for three 



DELAY ANALYSIS 717 

addresses per message. We see that the total occupancy approaches 100 
per cent at a surprisingly low information load. This is due to the fact 
that the excess holding time increases the load on the outgoing line 
groups, which in turn increases delays and thus brings about longer 
excess holding times. This makes the camp-on model unusable beyond 
certain intolerably low levels of line utilization. For instance, in the 
three-address case, line utilization must be limited to about 14 per cent 
or 60 per cent for line group sizes of c = 1 or c = 10, respectively. It 
can be seen in Fig. 6 that beyond this point the total occupancy blows 
up and with it the delay imposed on a message. A similar result was 
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obtained by Weber! in a different approach. A simulation made by 
Weber! for c = 1 shows close agreement with the results derived here. 
For example, the simulation shows a maximum utilization of about 14 
per cent for c = 1 and three addresses per message, which is the same 
as derived here analytically. This indicates that considerable confidence 
may be placed in the approach presented in Appendix A. 

From the delay performance of the address camp-on model it is con­
cluded that any switching method in which delays become a substantial 
part of the line holding time will require a relatively large number of 
lines to provide adequate service. By the same token we may conclude 
that even more lines will be required when the message is switched more 
than once, i.e., through more than one switching center. 

N ext we turn our attention to the retrial model. The performance of 
the retrial model as a function of the retrial interval, T, is of interest. 
We observe in Figs. 2-5 that when one doubles T the delay is less than 
doubled. On the one hand, we expect longer retrial intervals to cause 
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longer delays. On the other hand, it can be shown that the probability 
that the message succeeds on a retrial increases with increasing length 
of T. Shorter retrial intervals result in smaller chance for success than 
longer retrial intervals, but the fact that in any given time there are 
more attempts made with short retrials than with long retrials makes 
the average delay a monotone increasing function of T. For large values 
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per group, 3 addresses per message. 
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Fig. 6 - Total occupancy vs information occupancy for address camp-on 
model; 3 addresses per message. 

of T, say at least twice the message length, the rate of increase of the 
delay will be almost proportional to the rate of increase in T. This is 
so because the rate of change of the probability of being blocked again 
becomes smaller with increasing values of T. With T approaching 0, the 
average delay with the retrial model should approach the delay for the 
message storage model in the case of one address per message. 

The delay in the retrial model increases with the number of addresses 
per message. A comparison between Figs. 2 and 4 shows that this in­
crease is quite significant when the number of lines per group is small. 
This increase can, of course, be avoided when a multiaddress message is 
broken up into several one-address messages, as suggested earlier in Sec­
tion 2.3. Stations not blocked would then receive the message content 
independent of the availability of lines to the other stations. If this mode 
of operation is used for retrials, the retrial curves given in Figs. 4 and 5 
are to be replaced by those for the one-address case shown in Figs. 2 and 
3, respectively. Such a change of the retrial model would bring the av-
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erage delay for very short retrial intervals close to that of the message 
storage model, independent of the number of addresses. 

The retrial model has the advantage that no storage has to be pro­
vided in a switching center except at the data source. However, provision 
must be made to instruct the data source to reoffer the message when an 
all-lines-busy condition is encountered at a switching center. The retrial 
method is particularly well suited for error correction by retransmission 
from the data source on request from a terminating station which de­
tected an error. 

Since the analysis of the retrial model is based on approximations, we 
do not expect absolute accuracy of the curves derived. The retrial model 
has been simulated by others for some special cases and it is interesting 
to compare the results. This is done in Table I, in which time is expressed 
in units of the average message length. We observe some disagreement 
between analysis and simulation for large retrial intervals. 

Finally, let us look at the message storage model. This method pro­
vides an efficient use of lines, even if the line groups are small, and delay 
is independent of the number of addresses per message. It requires, how­
ever, that considerable storage be provided because each switching 
center must be arranged to permit full message storage to allow for de­
lays exceeding a message length. Provision must also be made for trans­
mission of a copy of the message to each addressed station independent 
of the transmission to any other station. 

According to the model of the message storage method, a message is 
delayed only until the very instant a line is found. From a practical 
point of view this means that the line-hunting mechanism should be 
activated as soon as the address is decoded. On the other hand, message 
storage may be operated so that the message is stored completely at the 

TABLE I-COMPARISON: ANALYSIS VERSUS SIMULATION, 

ONE ADDRESS PER MESSAGE 

Average Delay on All Messages 
Retrial Interval No. of Lines Occupancy ar/c 

Analysis Simulation 1 Simulation 2 

0.5 1 0.7 3.25 * 3.65 
0.5 10 0.7 0.11 * 0.14 
1.0 1 0.5 1.94 1.84 1. 76 
1.0 10 0.9 3.12 2.61 1.92 
2.0 1 0.7 12.65 * 8.45 
2.0 10 0.7 0.36 * 0.26 

* Not available. 
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switching center before the line hunting starts. In this case, the amount 
of time needed for full message storage must be added to the delay. The 
latter mode of operation adversely affects the delay performance of the 
storage model, particularly when the message is long in comparison with 
the delay that can be tolerated. 

The delay performance for the storage model will become consider­
ably worse than shown when the line back to the originating station 
cannot be released as soon as the message has been transmitted over it. 
For multiswitched messages the release of lines between switching cen­
ters would ensure that the line holding time is not increased by the de­
lay. 

The curves given for the storage model can be considered accurate 
because the validity of Erlang delay formulas has long been observed. 
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APPENDIX A 

Mathematical Analysis of Address Camp-On Model 

Let the excess holding time EA be the average time between seizure 
of a line and the time lines are found for A addresses of a given message. 
Further, let ZK,A. be defined as the average time between initial request 
for lines and the time K out of A addresses have seized lines. At the time 
A addresses have seized lines, the message is ready to be transmitted. 
The average delay on all messages, dA , is defined as the average time 
between initial request and the time lines have been seized by all A 
addresses, as illustrated in Fig. 7. 

The average is a linear operator, and one obtains for the expected 
excess holding time 

And since 
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it follows that 

(1) 

1 A 

The term A kl ZK,A is recognized as the average time between re-

quest for and seizure of a line for any given single address. 
We define Q(t) as the probability that the delay is less than or equal 

to t between the time of a request for a line by a given single address 
and the time of line seizure, and obtain 

1 A foo 
A ~l ZK,A = t=O t dQ(t). 

The average excess holding time for the A-address case follows from 
(1) as 

(2) 

The only approximation in the analysis of the address camp-on model 
is the assumption that the holding time of a line is exponentially dis­
tributed, so that 

(3) 

The holding time is made up of two random variables, namely the mes­
sage length and the excess holding time. The approximation made in 
(3) implies that the sum of these two random variables is exponentially 
distributed. That this, indeed, is a reasonable assumption is confirmed 

9 

----- ---- W1,A----------

--------W2,A--------

I 
I 

I I 

l--nn---- ZA,A= dAnn----nJ 
Fig. 7 - Line seizure sequence. 
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by the close agreement of the delay derived here with the delay derived 
by simula tion.1 

Substitution of (3) in (2) gives 

EA = AoS? foo e-cpt t(1 - S?e-CPt) A-I dt - s?o (00 te-cpt dt. 
, t=O • t=O 

The above reduces with the binomial expansion for (1 

EA = --2:: --. A A-I (A - 1) (_O)K+1 0 
S? K=O K (K + 1)2 S? 

(4) 

For the case of exponential line holding time with mean t and service 
of requests for lines in the order of arrival as is the case here. we must 
substitute in (4) according to Erlang2 

o = 1 - Q(O) (5) 

c - aT c - aT 
S? = --l- = Orr/al ' (6) 

in which c is the number of lines per group, aT the average number of 
requests per line holding time or the total load offered per line group, 
and a[ the average number of requests per message length or the informa­
tion load. Q(O), the probability of no delay, is given by Erlang2 as 

Q(O) 1 c! c - aT (7) 00 i-aT c -aT 

1-~~+~ C 
~"' , t=C 'L C • C - aT 

The unit of time being the average message length renders for t, the 
a verage line holding time, 

(8) 

so that 

(9) 

Substitution of (5), (6) and (9) into (4) brings 

aT 1 + aT 1 - Q (0) aT A 
a[ a[ c - aT a[ c - aT 

• A-I (A _ 1) [Q(O) _ l]K+I 
~o K (K + 1)2 . 

(10) 

With c, a[ and A given, we can now compute aT , the total load, itera-
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tively from (7) and (10) above. Then, with aT known, we find the 
average delay on all messages from (1) and (g) as 

d
A 

= aT _ 1 + 1 - Q(O) aT, (11) 
a[ c - aT a[ 

which we recognize as the left-hand member of (10). 
It is interesting to take note of the fact that there are generally two 

values of aT which fulfill (10). Thus, one could conclude that the system 
can operate in two modes, one implying a shorter delay than the other. 
More than one steady state of operation has been observed by others1 •5 

in similar traffic studies. However, it appears questionable that the 
heavy delay mode is stable since the larger of the two aT which fulfill 
(10) decreases with increasing a[ , which is physically unreasonable. 

APPENDIX B 

Ai athematical Analysis oj Retrial Model 

When a newly offered message makes its first trial to seize one of c 
lines in a group, let Si ,0 ~ i ~ c, be the unconditional probability that 
the group is in state i. A line group is said to be in state i when i out of 
all c lines in the group are busy. The message is reoffered until a line is 
available to each of A addressed receiving stations; therefore, no mes­
sages are lost. The load carried on each group equals a[ , the information 
load offered. For the special case of c = 1, we obtain 

So = 1 - a[ (12) 

and 

(13) 

For c > 1, i.e., for more than one line per group, Si depends not only 
on a[, but also on the procedure by which lines are made busy. By 
procedure is meant the type of distribution of the length of the intervals 
between line requests, and whether unsuccessful attempts form queues 
or are withdrawn. For Poisson input at the rate of ao and withdrawal of 
blocked attempts, Erlang loss probabilitl gives 

aoi/i! 
S, = -c---'--- (14) 

L aox/x! 
x=Q 

in which 

(15) 
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In the switching model considered here, the total input to each line 
group, i.e., the total load offered, is not Poisson distributed and its mag­
nitude differs from ao . This is so because repeated attempts are blocked 
with a probability which is larger than Se and because for A > 1 blocking 
to anyone of the A addressed receiving stations will cause a retrial. In 
order to compute Si, it is assumed that for a sufficiently large retrial 
interval T, the total input will at least resemble ao in distribution and 
magnitude. This approximation may be justified for light line occu­
pancies but it becomes increasingly unrealistic with increasing line oc­
cupancies. The approximation for ao , therefore, is used here only to com­
pute values for Si when c ~ 2. For c = 1 the values for Si are exactly 
determined by (12) and (13) above. For c > 1 we solve (14) and (15) 
iteratively with i = c to obtain ao and then solve (] 4) to obtain approxi­
mations for Si when c ~ 2. The approximations for Si so obtained are 
used for the unconditional state probability both in the one and three­
address cases. 

Next, we will consider conditional probabilities which take into ac­
count past known states of a line group. Let it be known that at a given 
time to there are j lines busy in a group, 0 ~ j ~ C; what then is the 
probability that at to + t there are i lines busy? This conditional prob­
ability is called Xi,j(t). For Poisson input and exponential line holding 
time, Xi,j(t) is given by a well-known set of first-order differential equa­
tions.4 Here, now, we must take into account that the superposition of 
first and repeated attempts results in an input which is not Poisson. 
We let wet), to ~ t ~ to + T, be the instantaneous line request rate or 
the density of requests. As was said above, X i,j(t) is conditioned on 
state j of the group at to. Consequently wet) depends also on the state 
of the group at to , and this important point should be kept in mind, 
particularly since the notation does not always remind the reader of 
this condition. 

Assume for the time being wet) is known for every value of t in the 
interval (to, to + T). The differential equations defining Xi,j(t), to ~ 

t ~ to + 7, are 

Xo./(t) = -wet) ,XO,j(t) + XI,j(t) 

Xi./(t) = wet) ·Xi-I,i(t) - [i + w(t)]'Xi,j(t) + 
(i+ 1),Xi+1,j(t) 

(16) 

for 0 < i < c 
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The condition that j lines are busy at time to is taken into account by 

(1 for i = j 
Xi,j(to) = ~ 

lOfori~j, 
(17) 

and, as said before, by wet). For the special case t to + T, the argu­
ment is dropped and Xi.i(t o + T) is abbreviated to Xi,j. The system 
(16) can be solved with Laplace transforms for c ~ 2, and by numerical 
integration for c ~ 3. 

Two cases are considered in the following: one in which each message 
has one address, i.e., the case A = 1; the other in which each message 
has three addresses, i.e., the case A = 3. 

B.1 One Address per 111 essage 

In order to compute delay for the case A = 1, we must know the 
probability of finding the line group in state c at to + T, given a state c 
at to , to - T, to - 2T, etc. In other words, we must know the probability 
that a message is blocked twice, three times, four times, etc. To simplify 
the notations for the case A = 1, we write C i for the conditional prob­
ability that all c lines of a group are busy at to + T, given a state c at to , 
to - T, ... , to - iT. Ci , therefore, denotes the probability that a one­
address message is blocked i + 2 times in a row. Co is identical with 
X c •c and can be computed by (16) provided wet) is known. It will help 
to keep matters clear if, for the case A = 1, wet) is subscripted so that 
Wi(t) refers to the condition that at to , to - T, ... , to - iT all c lines of 
the group are known to be busy. For instance, the line request rate used 
in (16) to compute Co is called wo(t). Values for Ci , i ~ 1, are computed 
from (16) in the same manner as X c •c , except that Wi(t) is conditioned 
as indicated later. Hence, the numerical values for X c •c obtained from 
(16) with Wi(t), i ~ 0, are equal to C i • 

Let us now discuss the procedure by which Wi(t) is obtained for the 
case A = 1. We will find functions Li which are conditioned on a state 
c at to , to - T, ... , to - iT, such that 

(18) 

This means that we cannot obtain an explicit expression for Wi(t) 
since Wi(t) is needed to compute C i from (16). But with (18) we come 
into a position which allows us to assume values for Ci , compute Wi(t) 
from (18) and then use the so-computed Wi(t) to obtain Ci from (16). 
Through successive iterations stable solutions are obtained for C i such 
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that (19) is satisfied 

Se < Co < C1 < C'} < ... < 1. (19) 

The above approach, of course, is extremely tedious when C i must be 
computed for large numbers of i. The problem is simplified when one 
assumes for large enough i that Ci = Ci+l. Computations have shown 
that for retrial intervals T ~ 0.5 we may reasonably approximate C i = 
CHI when i ~ 4. This approximation, consequently, is used in the 
one-address case. It is mainly for this approximation that the analysis 
for the case A = 1 is limited to retrial intervals T ~ 0.5. 

Before we define the function Li in (18), we will give the method by 
which the successive iterations are performed by a computer program to 
compute Ci • We start by iterating for a stable value of Co with Ci = Co 
for i ~ 1. Next, we iterate for a stable value of C1 with Co fixed and 
Ci = Cl for i ~ 2. Now we go back and iterate for a new value of Co 
with C1 fixed and Ci = Cl for i ~ 2. This process is continued until no 
further changes in Co and Cl are detected. Continuing one step further, 
we iterate for a stable value of C2 with Co and Cl fixed and Ci = C2 for 
i ~ 3. Again, we back up and search for a new value of Co with Cl and 
C2 fixed, then search for a new value of Cl with Co and C2 fixed and finally 
search for a new value of C2 with Co and Cl fixed, all with Ci = C2 for 
i ~ 3. We proceed in steps in the manner described above until finally 
no changes are detected in Co, Cl , C2 , C3 , C4 with Ci = C4 for i ~ 5. 

With the approximation Ci = C4 for i ~ 5, we can write for (18) 

(20) 

Line requests are made by first and repeated attempts. First attempts 
arrive independent of time with a density v. Repeated attempts arrive 
with a density Ui(t), in which i refers to the condition that all lines are 
busy at time to, to - T, ... , to - iT and t is some time such that 

to ~ t ~ to + To With these definitions we substitute for Li(CO , C1 , C2 , 

C3 , C4 , t) in (20) 

(21) 

The density of first attempts, according to definition, is numerically 
equal to the information load offered or 

v = ar. 

The density of repeated attempts in the interval (to, to + T) is derived 
from first attempts which are made before to and are blocked. For in-
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stance a kth attempt, k ~ 2, occurs at t, to ~ t ~ to + 7, if the attempt 
occurs first at t - (k - 1)7 and all lines are busy at t - (k - 1)7, 
t- (k-2)7, ... , t-7. As an abbreviation we write Pr (tx 1 t1 , t2 , t3 , ••• ) 

for the probability that all lines are busy at tx , conditioned on all lines 
busy at tl and t2 and t3 .... As before, let t be an instant in time such 
that tfJ ~ t ~ to + 7. With the condition that all lines are busy at to , 
to - 7, ••• , to - iT, we obtain for the density of repeated attempts at t 

Ui(t) = ar[Pr(t- 7Ito,to- 7, ..• ,to-ir) 

+ Pr (t - 2r 1 to , to - r, ... , to - i7) 

· Pr (t - 7 1 to , to - 7, ... , to - i7, t - 27) 
(22) + Pr (t - 37 1 to , to - r, ... , to - ir) 

· Pr (t - 2r 1 to , to - 7, ... , to - ir, t - 3T) 

· Pr (t - 7 I to , to - 7, ... , to - i7, t - 37, t - 27) + ... ]. 
Weare left with the problem of expressing Pr (tx 1 tl , t2 , t3 ) ••• ) in 

the above as functions of Co, C1 , C2 , C3 and C4 • Assume that symmetry 
exists such that for any positive length of time l 

Pr (tx + l 1 tx , tx - 7, • • • , tx - k r ) 

= Pr (tx - l 1 tx , tx + 7, ... , tx + k7). 

In the above it is assumed that traffic congestion builds up to an all­
lines-busy condition at tx ; tx + 7, •.. , tx + k7 in the same manner as it 
subsides after tx + kr. This assumption may not be exact for the retrial 
system but this concept is used here since it is expected to give a good 
enough approximation for the following reason. 

If a group is busy, say, at to , then it must be expected that part of the 
traffic which contributes to the congestion at to is reoffered traffic. The 
fact that congestion occurs at to implies that all lines were busy at 
to - 7, to - 2r, etc., with a larger probability than indicated by the un­
conditional state probability Se . As an approximation to the function 
by which traffic is expected to build up we construct linear functions 
in time. For example, we assume that the probability of blocking at 
some time tx < to builds up to an all-lines-busy condition at to - rand 
to as shown in Fig. 8. Also, we assume independence of events that are 
not really independent. For instance, we assume that blocking between 
to - r and to occurs with a probability Wl,l(t) as defined below. Similarly, 
independence is assumed between events occurring with probability 
Ni(t), Mi(t) or Wi,j(t) and the event which causes a repeated attempt 
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t 

Sc c, 

TIME~ 

Fig. 8 - Sample of build-up function. 

at some time prior to to . The approximations made in the expressions 
below may account for some of the differences which are observed be­
tween theory and simulation. 

A first attempt, made at some time t - jr, to ~ t ~ to + r, j ~ 1, is 
blocked in the nomenclature of (22) with a probability 

Pr (t - jr I to , to - r, ... , to - ir) 

for which we approximate 

1 
Ni(t) = - [t + CJr - t)] for j = i + 1, i ~ 0 

r 

for j = i + 2, i ~ 0 

for j ~ i + :3, i ~ 0 

and with Ni*(t) = (1/1 )[t(Ci - 1) + r] 

Wi,j(t) = 1 - [1 - N j- 1(t)][1 - Ni-/(t)] 

for 1 ~ j ~ i, i ~ 1. 

A kth repeated attempt made at some time t - jr, to ~ t ~ to + r, 
j ~ 1, is blocked in the nomenclature of (22) with a probability 

Pr [t - jr I to, to - r, ... , to - ir, 

t - (j + 1)1, t - (j + 2)r, •.. ,t - (j + k)11 
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for which we approximate 

1 - (1 - Ck - l ) [1 - Ni(t)] 

1 - (1 - Ck - l ) [1 - Mi(t)] 

and finally 

for j = i + 1, i ~ 0 

for j = i + 2, i ~ 0 

for j ~ i + 3, i ~ 0 

for 1 ~ j ~ i, i ~ 1. 

731 

We make use of the above expressions as shown in (22) to obtain 
Ui(t). The subscript i of Ui(t) corresponds with the value of i in the 
above approximations and refers to the condition that all lines are busy 
at to , to - T, ... , to - iT. For every such i, i = 1, 2, 3 and 4, we have, 
according to (21), a Li(Co , C1 , C2 , C3 , C4, t) and an Wi(t), and can per­
form the iterations outlined before to compute Co, C1 , C2 , C3 , and C4 • 

Continuing in the analysis of the one-address case, we will now 
evaluate the delay. The probability that a one-address message is de­
layed exactly iT is given by DI (i) which is 

i-2 

DI(i) = Se(1 - Ci-l) II C j , i ~ 2. 
j=O 

HI (i), the probability that the delay is greater than iT for the one­
address case, is 

i 

HI(i) 1 - L D1(k), i ~ 0 
k=O 

which reduces to 

HI(O) Se 
i-I 

HI(i) Se II C j , i ~ 1. 
j=O 

The average delay is obtained as the summation of all possible delay 
values multiplied by their respective probability of occurrence and is 
given by 

00 

dl = T L i Dl(i) 
i=l 
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which reduces to 
00 

dl = TSe[1 + L II Gil. (23) 
i=O i=O 

The above formula is used to compute the average delay on all messages 
for the case A = 1. The unconditional probability of finding all lines 
busy, represented by Se , and the conditional blocking probabilities G i 
are approximated by the methods outlined before. 

B.2 Three Addresses per Message 

The delay for the case A = 3 is computed in a Markov process. This 
means that we are considering only a first-order dependency, since we 
make the assumption that the conditional probability Xi,i of finding i 
lines of a group busy at to + T depends only on state j of that group at 
to . This and the following approximations appear justifiable in the multi­
address case when considering the multitude of factors which determine 
the line request rate between to and to + T. The principal assumption 
for the case A = 3 is that w, the sum of the densities of line requests 
of first and repeated attempts during to and to + T, is nearly Poisson dis­
tributed and therefore independent of any states at or before to . Recall 
that for A = 1 we have been concerned only with the conditional prob­
ability of state c at to + T given also a state c at to or at to and to - T, 

etc. For the case A = 3, however, we are concerned with an Xi,i for all 
values of i and j, 0 ~ i ~ c, 0 ~ j ~ c, as will become apparent later. 
For a known w, we obtain Xu from (16). The condition that j trunks 
are busy, now, is accounted for only by the initial condition as given in 
(17). The density of line requests w is obtained similarly to (21) as the 
sum of the densities of first attempts ar, and of repeated attempts u 
which, according to our assumptions for A = 3, are time independent. 
It is obvious that in the case of A addresses per message, A > 1, a line 
request in a given group is made only when the condition is fulfilled 
that the remaining A - 1 groups are not busy. Since independence is 
assumed we can set (1 - Sc)2 for this condition in the three-address 
case and obtain 

(24) 

for the density of line requests in the interval (to, to + T) in any given 
line group. The expression given in (24) above, of course, is an approxi­
mation since in reality u is dependent on the state of the group at to 
and since independence is assumed between the event causing a repeated 



DELA Y ANALYSIS 733 

attempt during (to, to + r) and the event causing all lines to be busy 
in the other two addressed line groups. But, as said before, these de­
pendencies are believed to be noncritical for the multi address case, so 
that w is considered to be independent of time. 

As in the one-address case, we are left with the problem of defining u, 
the density of repeated attempts, which is expressed below as a function 
of Xc,c . We obtain u by the following approach. Let G be the probability 
that a first attempt is blocked at some time prior to to . This probability 
is approximated by 

(25) 

The above is an approximation because it assumes independence be­
tween the event which causes a group to be in state j, 0 ~ j ~ c, at to 
and the event causing all lines of a group to be busy at some time prior 
to to . For the probability that a kth attempt, k ~ 2, is blocked prior to 
to we approximate 

R = X c,c(1 - Sc)2 + 2Sc(1 - X c,c)(1 - Sc) 

+ 2Xc,cSc(1 - Sc) + Sc2(1 - Xc,c) + Xc,cS/ 
(26) 

for which it is assumed that at the k - 1st attempt one line group was 
in state c, i.e., busy, but without having made any assumptions about 
the state of the remaining two groups. The expression given for R in 
(26) is an approximation since, as before, the known state of a group at 
to is ignored and since only a first-order dependency is considered, as 
mentioned earlier. The density of repeated attempts is obtained simi­
larly to the one-address case by considering all attempts which were 
blocked prior to to so that 

u = alG + alGR + alGR2 + ... 
or 

1 
u = alG 1 _ R· (27) 

Substitution of (27) in (24) gives 

'" = UI(l + 1 : R)(1 - Sy. (28) 

R in (28) above is a function of Xc,c . This means that we cannot find w 
explicitly since w is needed to compute Xc,c as outlined in (16). To find 
w we again must iterate by assuming a value for Xc,c in (26), recompute 
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Xc,c from (16) and then use the recomputed Xc,c in (26). After having 
found a stable value for w we can, from (16), readily compute Xi,]" for all 
o ~ i ~ c, 0 ~ j ~ c. 

In order to compute the delay for the three-address case we con­
sider Pi,j,h(k) , which is defined as the probability of finding the 
three groups in state i, j and h respectively at the k + 1st attempt, 
l{; ~ o. Pi,j,h(k) is obtained recursively by finding all possible ways in 
which the states of the three groups have changed to states i, J and h at 
the k + 1st attempt when at least one group was busy at the kth attempt. 
U sing the approximation of a first-order dependency, as mentioned 
before, we get for k ~ 1 

c c 

Pi,j,h(k) = L: L: Pc,T,s(k - 1) ·Xi,C·Xj,T·Xh,S 
T=O 8=0 

c-I c 

+ L: L: P q,c,8(k - 1) ·Xi,q·Xj,c·Xh,s (29) 
q=o 8=0 
c-I c-l 

+ L: L: Pq,T,c(k - 1) ·Xi,q·Xj,r·Xh,c. 
q=o T=O 

At the first attempt, 

A three-address message succeeds at the kth attempt, k ~ 0, when at 
the kth attempt all three groups are in states other than c. The prob­
ability of a delay of exactly kr, then, is given for the three-address case 
by 

c-I c-I c-I 

D3(k) = L: L: L: Pi,j,h(k). (30) 
i=O j=O h=O 

H 3(k), the probability that the delay is greater than kr for the three­
address case, is 

k 

H3(k) = 1 - L: D3(i), k ~ o. 
i=O 

As in the one-address case, we find the average delay on all messages for 
the three-address case by summing over all possible delay values multi­
plied by their respective probability of occurrence 

00 

da = T L: k·Da(k) 
k=I 
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or with (30) 
00 c-l c-l c-l 

d3 = T L L L L k·Pi,i,h(k). (31) 
k=l i=O ;=0 h=O 

Recall that Pi,i,h(k) is obtained recursively as shown in (29). The un­
conditional state probability Si and the conditional probability X i,j 
which are both needed in (29) are approximated as described earlier. 

APPENDIX C 

Mathematical Analysis oj Message Storage Model 

The delay for the message storage model is computed by well-known 
methods of traffic theory and is given here only for reasons of com­
pleteness. The delay in the delivery of a copy of the message to a given 
station is - according to the switching model- independent of the 
delay in the delivery to any other station. Delayed messages form queues 
in the order of arrival. An analysis for queued service and exponential 
line holding time was made by A. K. Erlang. 

According to Erlang2 we find for the average delay on all messages to 
any given receiving station 

1 
d = F(O)·-- (32) 

c - a[ 

with 

F(O) c! c - a[ 
00 i -a[ c -a[ 

1-L~+~ __ c_ 
i=c i! c! c - a[ 

The delay distribution, expressed as the probability that the delay is 
greater than t, is computed from 

F(t) = F(O) ·e-(c-a[)t. 

The curves for the message storage model are calculated from (32). One 
should, however, bear in mind that in certain specialized applications of 
data communication a copy of the message must sometimes have been 
delivered to all addressed receiving stations before the message is of use 
to anyone station. One would then be interested in the average delay 
until a line is found to the receiving station with the longest delay of all 
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stations addressed by the message. For A addresses per message this 
delay is given by 

which for A 3 reduces to 

d
3 

= FeO) {3 _ ~ FeO) + [FCO)]2}. 
C - a[ 2 2 
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