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III 

In many commonly used frequency-shift modulators, a phase error occurs 
at the time of switching. If a demodulator is used which utilizes only the 
zero-crossing information, then this phase error will cause time jitter in 
the received data transitions. 

The magnitude of the peak time jitter for various modulators is derived, 
assuming an ideal zero-crossing detector. The modulators considered i'(b
elude the reactance tube and variable reactance modulators, the basic switched 
reactance modulators, and the multivibrator modulator. It is found that the 
switched reactance modulators cause the most jitter, and that the multivibra
tor modulator may be designed to cause as small a jitter as desired. The 
theory agrees well with some experimental measurements made on existing 
data sets, which show that this jitter accounts for most of the back-to-back 
data distortion in many wideband data systems. 

Finally, a set of sufficient conditions is derived for jitter-free frcqucncy
shift modulation, and an implementation of a modulator satisfying these 
conditions is described. 

I. SUMMARY 

For the reader who may be more interested in the resultH of thiH 
paper than in their derivation, the following summary is present.(·d. 

Data communication systems using frequency-shift chal1lH'IH COIll

manly suffer from a form of fortuitous distortion called jitter. This li" 

1695 
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particularly significant in systems in which the bit rate is not small 
compared to the carrier frequency. Jitter is the variation about the 
correct position of the transition between marking and spacing signals 
at the receiver output. It is desirable to keep the magnitude of the 
jitter small compared to the bit length. 

This paper studies the jitter which is inherent in various types of fre
quency-shift modulators. For purposes of this analysis, it is assumed 
that the data source is jitter free, that the transmission channel is dis
tortionless, and that the receiver is an ideal zero-crossing detector. The 
modulators to be studied shift frequency instantaneously at the time 
the data source goes through a mark-space transition. In an ideal fre
quency-shift modulator, this shift in frequency takes place with phase 
continuity. However, many commonly used modulators do not main
tain phase continuity at the switching instant. 

In an ideal frequency demodulator (i.e., one whose output is propor
tional to the instantaneous rate of change of phase at its input), such a 
phase discontinuity would not cause a time error in the output data 
transition; it would simply cause an impulse to be added at the time of 
transition to the otherwise correct transition. However, most present
day demodulators utilize only the information contained in the zero 
crossings of the received wave, since the first operation in the receiver 
is to limit, or clip, the wave. In such a receiver, phase discontinuities at 
the switching instant in the received wave may indeed cause a time error 
in the mark-space transition at the receiver output. 

Such a receiver is modeled by an ideal zero-crossing detector. (An 
ideal zero-crossing detector approaches an ideal FM detector as the 
bandwidth becomes small with respect to the carrier frequency.) The 
analysis proceeds by first relating the phase error in the received wave 
to the transition time error at the output of an ideal zero-crossing de
tector. Then the peak phase error that may occur for each type of modu
lator is determined, and this is related to the peak time error, or jitter, 
by the above model. 

The frequency-shift modulators to be studied include the switched re
actance modulator (in which a reactance is switched into and out of the 
tank of an oscillator to modify its frequency), the reactance tube modu
lator (in which the effective output reactance of an active circuit is 
ehallged by changing the gain of the active element and this reactance 
is lI!-'('d to control the frequency of a separate oscillator), the variable 
react H1we oscillator (in which the functions of variable reactance and 
oscilln t ion are combined into a single active circuit), and the multivi
bratol". 
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It is shown that of the LC oscillators, the reactance tube and variable 
reactance type of oscillators have the minimum jitter. For all cases of 
practical interest, this time error has a peak value roughly one-twelfth 
of the period of the frequency midway between the marking and spacing 
frequencies, and may take on both positive and negative values with 
respect to the true transition time. 

The switched reactance type of oscillators which are analyzed include 
all four ways of switching a single reactive element into a simple LC 
tank, i.e., an inductor or a capacitor switched in parallel with, or in 
series with, the tank. In all cases, the peak jitter is described by the 
same equation, although there are two distinctly different phenomena 
giving rise to the jitter. For a transition in one direction, the peak jitter 
is exactly that obtained with the reactance tube and variable reactance 
type of modulators. For the opposite transition, however, undesired dc 
quantities increase the jitter. This increase in jitter is sensitive to bit 
rate if there is a decay mechanism for the undesired dc quantity. In the 
worst case, the increase in jitter is almost an order of magnitude over 
that of the low jitter transition. As the bit rate becomes lower and lower, 
the peak jitter associated with the worse transition approaches that of 
the opposite transition. 

The peak time error T Em for the various LC modulators is plotted in 
Fig. 7(a) as a function of the frequency-shift ratio A = WdW2 < 1, 
where WI and W2 are the two modulator frequencies. To is the period of 
the frequency midway between the marking and spacing frequencies. 
The parameter r applies to the switched reactance modulators. It is the 
ratio of the bit length to the time constant of the undesired dc quantity. 

It is shown that the multivibrator may in principle be designed to be 
jitter-free. However, practical multivibrators do have some inherent 
jitter. The amount of jitter is dependent up,on a linearity factor which 
is determined by the multivibrator circuit. The jitter associated with a 
multivibrator is usually less than the jitter associated with any of the 
above LC modulators. 

In Fig. 13 is shown the peak jitter, T Em , for the multivibrator modula
tor as a function of the frequency-shift ratio A. To is as defined in Fig. 
7. The linearity factor, (3) is the ratio of the supply voltage to the maxi
mum control(voltage VB and Vc respectively in Fig. lOa). The maximum 
control voltage corresponds to the highest frequency. 

These theoretical results are supported by experimental jitter measure
ments made on various types of voice band data sets, as summarized 
in Table 1. The agreement with the theory is good. 

Finally, it is shown that a sufficient condition for jitter-free frequency-
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shift modulation (when using a zero-crossing detector) is to switch the 
parameters of an oscillating tank circuit in such a way that 

1. the tank current and voltage are maintained at the instant of 
switching, and 

2. the characteristic impedance of 'the tank is held constant. 
A means for implementing such an oscillator is described using a pair 

of variable reactance oscillators in a balanced arrangement. Some experi
mental waveforms for this circuit are shown in Fig. 16. 

II. INTRODUCTION 

A large part of present-day data communications systems utilize bi
nary frequency-shift channels for transmission. In such systems, partic
ularly in the wideband systems (i.e., systems in which the bit rate is 
not small compared to the carrier frequency), the problem of "jitter" is 
important. Jitter is the error in the reproduction of the exact time of 
transition between marking and spacing signals at the receiver output. 

This problem is indicated in Fig. 1, in which it is assumed that the 
indicated data-source waveform is jitter-free and is transmitted repeti
tively. The received waveforms are shown overlapping one another. 
Note that, in addition to a usually harmless transmission delay, the re
ceiver transitions do not all occur at the same relative time, but are 
instead distributed about the correct transition. The measure of jitter 
which will be used in this paper will be the maximum time error which 
may occur in the system, denoted by T Em in Fig. 1. (In all systems con-

t~ 
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_--'NTERVAL --_ 

SPACE 
I I 
I I 
I I 
I I 
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I I 
! I 

i I BIT t~ I SAMPLE MARK 

1111I1111 1111I11 ~I RECEIVED 1 SIGNAL. 
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Fig. 1 - The problem of jitter. 
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sidered but one, the jitter is symmetric about the correct transition; 
However, the maximum jitter associated with a transition in one direc
tion is not necessarily the same as that associated with the opposite 
transition. In these cases, a different T Em will be associated with each of 
the two transitions. The one exception to the above statement is the 
multivibrator modulator, in which the jitter occurs on only one side of 
the correct transition.) 

As T Em increases, the time interval during which the received wave 
may be reliably sampled during each bit interval decreases. Thus it is 
important to keep this jitter to a minimum. Jitter may be induced from 
several sources. The data source itself may have inherent jitter. Jitter 
may be further induced in the modulation process. Distortion and noise 
present in the transmission channel will modify the modulated waveform, 
thus perhaps changing the apparent transition times. Finally, the re
ceiver may contribute to the jitter. 

This paper will analyze that jitter inherent in various asynchronous* 
frequency-shift modulation techniques. It will be assumed that the 
data source is jitter free, that the channel is ideal (i.e., noiseless and 
distortionless), and that the system utilizes an ideal zero-crossing type 
of detector. This detection process will be described more fully in the 
next section. 

All the modulators to be studied shift frequency instantaneously at 
the time the data source goes through a mark-space transition. That is, 
the waveshape before the transition is given by 

VI cos (WIt + fh) 

and after the transition by 

V 2 cos (W2t + O2). 

The angular frequency before the transition is given by WI and after 
the transition by W2 • The expressions WIt + 01 and W2t + O2 are defined 
as the phase of the wave, before and after the transition, respectively. 
Ideally, the shift in frequency should take place with phase continuity; 
i.e. WIt + 01 should equal W2t + O2 at the time of transition. However, it 
will be shown that many commonly used modulators have an inherent 
phase error that re::mlts in an inherent time jitter. 

The modulators to be studied include the switched reactance modula
tor (in which a reactance is switched into and out of the tank of an oscil
lator to modify its frequency), the variable reactance oscillator/ the 

* That is, the frequency may be suddenly shifted during any portion of the 
cycle. 
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reactance tube modulator,2 and the multivibrator. 3 It will be shown that 
the switched-reactance type of modulator has the most jitter. For ex
ample, at a data rate corresponding to one cycle of carrier per bit, the 
switched reactance modulator has a minimum peak jitter equivalent to 
7.96 per cent data distortion. The variable reactance oscillator and reac
tance tube type of modulators are equivalent and have less jitter. The 
multivibrator may in principle be designed to have negligible jitter, but 
produces a square rather than a sinusoidal wave. These theoretical 
results are then supported by experimental data. 

III. THE IDEAL ZERO-CROSSING DETECTOR 

Before pursuing the jitter analysis further, it is necessary to define in 
some detail the assumed detection process. An ideal FM detector is one 
which measures the instantaneous rate of change of phase of the re
ceived wave. For the types of modulators considered in this paper, there 
would be no jitter in the received wave using such a detector. Rather, 
the phase discontinuity at switching would simply cause an impulse to 
be added at the time of transition to the otherwise correct transition. 
However, most present-day detectors utilize only the zero-crossing in
formation in the received wave. For example, consider the receiving 
portion of the 43A1 carrier telegraph system.4 The incoming signals are 
first passed through a filter to reject out-of-band noise, and then ampli
fied. The next step is to limit the wave. The purpose of this is to remove 
any amplitude modulation, but in addition it removes any information 
other than that carried by the zero-crossings. The wave is next passed 
through a discriminator to convert the frequency modulation to base
band information, followed by a dc amplifier. The output is then a 
square wave which duplicates closely the wave originally presented to 
the modulator. Although other data sets use different methods of de
modulation, a limiter to remove amplitude modulation is part of many 
of these. Thus is it of practical interest to study the performance of 
frequency-shift modulators when working with a zero-crossing type of 
detector. A zero-crossing detector approaches an ideal FlYI detector as 
the bandwidth of the transmitted signal becomes small with respect to 
the carrier frequency. This relation is described more fully by Stumpers.5 

The characteristics of the zero-crossing detector are shown graphically 
in Fig. 2. Let it be receiving a constant frequency sine wave with zero 
phase at the time origin. Each zero crossing is identified by the zero
crossing detector as an advancement of 7r radians in the received wave. 
It thus knows the rate of change of phase, and hence the frequency, 
of the incoming sinusoidal wave. This is represented by the solid line in 
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Fig. 2 - Graphical representation of the zero-crossing detector. 

Fig. 2. However, the detector knows the phase of the wave only within 
an uncertainty factor of n7r; the wave may equally well be represented 
by lines parallel to the solid line in Fig. 2, but of ordinate distance n7r 
away, where n is any integer. Two such lines are shown dashed. 

If, at t = to, the frequency of the incoming wave is sudpenly changed, 
the rate of zero crossings will be suitably changed. If the transition is 
made with phase continuity in the received wave, then the slope of the 
path in Fig. 2 simply changes suddenly, and the detector knows that 
the transition between frequencies occurred at the time of the break 
point. This case is illustrated by the dotted line in Fig. 2. 

The problem of jitter is introduced when phase continuity is not pre
served. In Fig. 2 is also shown a plot of the phase when the frequency 
is suddenly changed with an associated phase discontinuity of magnitude 
(JE • The detector has no knowledge of instantaneous phase except the 
zero-crossing information. It therefore assumes phase continuity, and 
determines the time to' at which a transition with phase continuity would 
have occurred to maintain the observed zero crossings. This time is 
determined graphically in Fig. 2 by the intersection of the two constant 
frequency lines determined by the detector. Since there is an in deter-
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minacy of n7r in the absolute phase, there will be a multiplicity of such 
intersections, two of which are shown. It is assumed that the intersec
tion yielding the minimum time error is chosen by the detector. Thus it 
is seen that a phase error of n7r radians causes no error in the detected 
transition time, as one would intuitively suspect. Furthermore, the phase 
error causing maximum time error is 7r/2 radians, or odd multiples 
thereof. 

One problem has not been resolved. The zero-crossing detector is de
signed only for the two modulator frequencies at its input; it therefore 
is presumably incapable of recognizing zero crossings occurring at 
intervals closer than one-half a period of the upper frequency, since 
such zero crossings could not occur in a phase-continuous input wave. 
But with phase discontinuities, it is possible to get zero crossings closer 
than this interval. It is assumed that the zero-crossing detector ignores 
such zero crossings. 

The relation between phase error and time error may be easily deter~ 
mined from Fig. 3 by noting that the slope of a line segment is the angular 
frequency, w, of the input wave. Let the two modulator frequencies be 
denoted WI and W2 , where WI is the frequency before switching, and W2 is 
the frequency after switching. Then from Fig. 3, 

U.·2 

Thus 

For arbitrary 8f , this may be written 

O. - n7r 
T. = minn ~--

W:! - WI 

<~ = 2' 

n an integer, 

(1) 

(2) 

where minn f(n) 'means that f( n) is calculated for that value of n which 
minimizes f (n). The form (1) will usually be used with the understand
ing that (2) holds if 

Let O.m be the maximum possible phase error for a given system, and 
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Fig. 3 - Relating phase error to time error. 

let T Em be the resulting value of time error. Then (1) may be rewritten 
in a useful form as follows: 

or 

T Em OEm 1 ~ il 
To - 47r 1 -- il ' 

(3) 

where il = Wl/W2, and To = 47r/(Wl ~ W2) is the period of the midfre
quency (that frequency midway between WI and W2). The value of (3) 
is thus a figure of merit for a system, giving the ratio of maximum jitter, 
T Em , to the period of the midfrequency as a function of the frequency 
ratio il. 

From reasoning such as that shown in Fig. 3, note that a positive 
phase error corresponds to a time advance for il < 1, but a time retarda-
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L c v(t) 

Fig. 4 - Initial tank conditions. 

tion for A > 1. From (3), then, positive T Em always corresponds to a 
time advance (an early transition) and negative T Em corresponds to a 
time retardation (a late transition). 

IV. PRELIMINARY REMARKS 

The analysis of the inherent time jitter associated with a particular 
modulator will proceed by first determining the maximum phase error 
that would occur under the worst conditions, and then relating that 
phase error to the time error by the use of (3). Before going further, it 
will be useful to point out certain miscellaneous facts. Several of these 
remarks pertain to ideal (lossless) tank circuits, since most of the os
cillators studied are LC oscillators which are representable by lossless 
tank circuits. 

First note that only one frequency may exist in an un driven lossless 
tank, namely the resonant frequency. Therefore, when the frequency of 
oscillation of a tank circuit is changed by suddenly changing the value 
of one or more of the tank reactances, the frequency also changes sud
denly to the new resonant frequency. There are no transients except for 
the instantaneous transition; i.e., the tank instantaneously reaches its 
steady-state condition of amplitude and frequency. In particular, if the 
tank voltage and current are of magnitude Vo and io at t = 0, and are in 
the directions indicated in Fig. 4, then it is well known that the tank 
oscillation voltage and current will be given by 

where* 

v(t) = V cos (wt + e) 

i(t) = I sin (wt + e) 

V = I vo
2 + ~ i o

2 

* These are easily derivable, particularly from energy relations. 

(4) 

(5) 

(6) 
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I = Ii v} + i} = v Ii (7) 

-IlL io o = tan - - . 
C Vo 

(8) 

The energy stored in this tank is 

E = ! Cv2(t) + ! Li2(t) = ! CV2 = ! Lt, (9) 

and is always constant as long as the tank is undisturbed. 
It is of interest to physically relate the phase error to the frequency

shift waveform. Fig. 5 shows two independent ways in which the phase 
error may manifest itself in the time varying waveform when the fre
quency of a wave is suddenly changed. Fig. 5(a) shows the obvious 
type of phase discontinuity which is associated with a discontinuity in 
a waveform of constant amplitude. Fig. 5(b) shows the less obvious 
case in which the instantaneous voltage and current in the tank are 
continuous, but in which the amplitude of oscillation for one frequency 
is not the same as that for the other frequency. The phase error is de
termined from the condition of waveform continuity. Referring to Fig. 
5(b) and considering switching at t = 0, one obtains 

VI cos 01 = V 2 cos O2 , 

or 

cos 01 V2 

cos O2 VI . 

(a) 

JV ~ 
(b) 

Fig. 5 - Relation of waveform to phase discontinuity: (a) phase discontinuity 
due to waveform discontinuity; (b) phase discontinuity due to amplitude change. 
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Thus the phase error will depend not only on the ratio of amplitudes, 
but also upon the phase angle at which the initial frequency is switched. 

In the modulators to be described, either or both of these types of 
phase error may occur, depending upon the particular situation. In the 
case of amplitude variations, one might worry about the fact that a 
practical oscillator will try to maintain a constant amplitude. Thus, if 
the amplitude attempts to change as in Fig. 5(b), it will quickly recover 
to the initial value, either due to the drive of the active element in the 
case of an amplitude drop, or due to the limiting element in the case of 
an amplitude increase. However, it can be shown that this recovery is 
an exponential type of recovery; that is, it may be represented by 

vl(t)t cos (wt + 8). 

Since l(t) t > 0 ({3 is finite in value), the zero crossings of the wave are 
unchanged. Thus the phase error is unaffected by oscillator recovery, 
and we will therefore not consider this problem further. 

One final point should be made. Some of the discontinuities are rather 
complicated, in that the voltage discontinuity and current discontinuity 
may be seemingly unrelated, and the voltage and current amplitude 
changes may be different. However, the phase discontinuity associated 
with either the voltage or current waveform will be identical, since the 
voltage and current must always maintain a 90° phase relationship. 
Thus, in the following analysis, the calculation of the phase discontinuity 
for only one of these quantities is derived. 

v. THE REACTANCE TUBE MODULATOR AND VARIABLE REACTANCE OSCIL

LATOR 

The jitter associated with the reactance tube modulator and variable 
reactance oscillator will be derived first. The reactance tube type of 
modulator is well known in the art.2 It comprises an oscillator which has 
one of its reactances determined in part by a virtual reactance, which 
in turn is determined by the gain of another active stage with appro
priate reactance feedback. By varying the gain of the active element (or 
by varying its feedback parameters), the magnitude of the virtual re
actance may be changed, thus changing the resonant frequency of the 
oscillator. The variable reactance oscillatorl is essentially the combina
tion of the functions of oscillation and variable reactance into a single 
active element. 

If the frequency of oscillation is shifted by suddenly changing the 
gain of the reactance-determining active element, then it can be shown 
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that thcre is no discontinuity in the voltage and eurl'ent waveforms at 
the time of switching. These modulators may therefore be modeled by a 
simple LC tank, as in Fig. 4, in which one or both of the reactances are 
suddenly changed to produce a frequency shift, but in such a way that 
the current and voltage are maintaincd at the switching in:::ltallt. In this 
case, phase error is caused solely by an amplitude change. 

Let the subscript 1 refer to the waveform before switching, and the 
subscript 2 refer to the waveform after switching. Then, using (4), (5), 
and (7), and assuming switching at t = 0, the conditions of voltage and 
current continuity require that 

(10) 

V • / Ll . V / L2 • 
1 V C 1 sm (Jl = 2 1/ C 2 sm (J2. (11) 

Dividing (11) by (10) and rearranging yields 

I Ll C2 tan (J2 = -.- tan (Jl. 
Cl L2 

(12) 

In most cases, only one of the reactances is changed. Let us assume 
that the value of the inductance is the shifted parameter, and further 
that L2 < L1 (that is, W2 > WI). All other cases (i.e., when L2 > Ll , or 
when the capacitance is varied) are completely analogous and result in 
the same magnitude of jitter. Equation (12) may then be written as 

-11 
(J2 = tan A tan (J1, 

where A = wr/ W2 < 1 as previously defined in the discussion on zero
crossing detection. 

The phase error as a function of the phase at shifting, (Jl , is then 

0, ~ 0, - 0, ~ (tan-1 ~ tan 01) - 0, . (13) 

In order to determine (Jfm, the maximum value of (Jf' (13) is differ
entiated with respect to (Jl and equated to zero (the value of (J1 satisfying 
this condition will be denoted (JIm) : 

1 1 2 
1 A sec (JIm - 1 = O. 

1 + A2 tan2 
(JIm 

Solving this for (JIm yields 
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Thus 

cos-1 __ ±~I __ 
VI + A 

I _ /± tan- v A. 

( 
-1 1 -1 _ /-) 

O.m = ± tan vA - tan v A . (14) 

This is a monotonically decreasing function of A, and reaches a maxi
mum for A = 0 (infinite frequency shift) of 7r /2 radians. For no fre
quency shift (A = 1), the phase error is zero as one would expect. This 
relation is shown plotted as the" 00" line in Fig. 6. 

1.6 r-----,...-----..-----..----_-----. 

t.4 I----H----lf--H---+--H---+----l----I 

1.2 H----t-+---\-l--\--+--H---+---l----I 

1.0 1---\-----If---\-----\f----\--\---l--1f__-l-~------1 

0.8 1----*-1f---__\_-I-\---\----'l----\--4--4------1 

0.6 1------I--~---l~--\-----\-1f__\-_\_--lf__---I 

REACTANCE TUBE 
AND VARtABLE ;' 

REACTANCE -
MODULATORS 

0.2 I------I-----I------If----''''-c-~~~r_\___\_-I 

O~ ______ ~ ______ ~ ____ ~~ ____ ~ ______ ~ 

o 0.2 0.4 0.6 0.8 t.O 

A = fAJ1/fAJ2 

Fig. 6 - Peak phase error for the LC modulators; r = (bit length)/ (de time 
constant), 



ASYNCHRONOUS FREQUENCY-SHIFT MODULATORS 1709 

Noting that the phase error never exceeds 7r/2 radians, the associated 
time error, or jitter, is determined from (:3): 

T till 1 1 + A ( _\ 1 -1 _ /-) 
To = ± 47r 1 - A tan VA - tan v A . (15) 

For infinite frequency shift, this gives a jitter of one-eighth of a cycle of 
the midfrequency (1/To). For zero frequency shift, the time jitter is, 
interestingly enough, not zero. Rather, (15) converges to a value of 
jitter equal to 1/47r of a cycle of the midfrequency. An insight into the 
reason for this may be obtained by referring to Fig. 2. Note that, as the 
two frequencies approach each other, the slopes of the phase loci also 
approach each other. Thus, for a fixed OE , TE increases as A approaches 
one. In the case just studied, OE approaches zero as A approaches one, 
but evidently at about the same rate as TE increases under the same 
condition. 

Equation (15) is plotted as the lowest curve in Fig. 7(a). Note that 
the jitter measured in terms of the period of the midfrequency does not 
change appreciably with the magnitude of the frequency shift for these 
types of oscillators. 

One final point is to be noted. From (15), it is seen that the time 
error has equal positive and negative excursions. Furthermore, (15) is 
symmetric in A; that is, replacing A by 1/ A does not change the expres
sion. Thus the opposite transition in which W2 < WI has a time jitter 
function identical to (15). 

VI. THE SWITCHED REACTANCE MODULATORS 

A switched reactance modulator is one in which the resonant frequency 
of the tank is changed by physically switching an additional reactance 
in and out. Only those modulators consisting of a simple LC tank with 
a single additional switched reactance will be considered. There are four 
possible ways of doing this, leading to the four modulator models shown 
in Fig. 8. The modulators of Figs. 8 (a) and 8 (b) are clearly duals, and 
will be referred to as Type I modulators. The modulators of Figs. 8 (c) 
and 8 (d) are also duals, and will be referred to as Type II modulators. 
Because of the duality property, only one modulator of each type need 
be analyzed. It will be seen that all four types give rise to identical jitter 
expressions. 

Let us first analyze the Type I modulator by considering the modula
tor of Fig. 8 (a). The case of switch closure is treated simply by noting 
that, since no current flows in the switched inductance prior to closure, 
the inductance value is changed (reduced) by the switch closure without 
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vi c 
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L 

(a) 

(c) 

TYPE I 
(b) 

TYPE II 
(d) 

Fig. 8 - Switched reactance modulators. 

disturbing the instantaneous voltage or current in the tank (the inductor 
looks like an open circuit at the time of switch closure). This is exactly 
the case considered in the previous section. Thus, (14) and (15) and the 
resulting curves of Figs. 6 and 7 describe the maximum phase and time 
errors, respectively, for this case. 

In Fig. 8(b), the opening of the switch is the dual to the above case, 
since the switched capacitor initially looks like a short circuit. Thus the 
capacitance is changed without affecting the instantaneous values of the 
voltage and current. 

In the case of switch opening in Fig. 8(a), current continuity in the 
capacitor is not preserved, since the current is suddenly reduced from 
the sum of the currents flowing in both inductors, ia + ib , to just that 
current flowing in the permanent tank-inductor, ia . The case of switch 
opening is furthermore complicated by the fact that a dc current may 
be flowing around the inductor loop just prior to switch opening. This 
may be seen more clearly from Fig. 9, in which is plotted the current, 
ib , through the switched inductor, Lb. Consider the case shown of 
switch closure at the instant that the tank voltage is going through 
zero. The inductor current ib is the integral of the applied voltage, and 
is as shown. Note that this current contains a dc component. The case 
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Fig.\) - The dc component in a switched reactance modulator. 

of Fig. 9 is the worst case; if the switch had been thrmvn at a voltage 
maximum, then the dc current component would have been zero. 

This dc component will die exponentially with a time constant de
termined by the inductive loop. It does not affect the operation of the 
tank circuit as long as the switch is closed. However, whatever dc cur
rent remains is added to the current i [see Fig. 8(a)] at the time of 
switch opening. Thus the tank current i just before switch opening is 
given by ia + ib , and just after switch opening by ia + ide. The dc 
current may be such as to actually reverse the tank current at the in
stant of switching. Thus large phase errors and hence large time errors 
may be expected. 

Since the phase error will depend upon the magnitude of the dc com
ponent, which in turn involves the phase at which the switch was closed, 
then the phase error at switch opening depends on the phase at the 
time the switch is opened as well as the phase at the time the switch 
was previously closed. For purposes of the following analysis, let the 
following subscripts apply: 

1 -- just before switch closure. 
2 -- just after switch closure. 
3 -- just before switch opening. 
4 -- just after switch opening. 
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Then 

(In) 

L L La Lb 
2 = 3 = La + Lb· (17) 

A2 = (~W12)2 _ L2 _ Lb 
- Ll - La + Lb < 1 . (18) 

At the time of switch closure, voltage and current are maintained. 
Thus 

(19) 

. V, Ie . . 
~l = 1 11 Ll sm (h = ~2. (20) 

The dc current which is initiated upon switch closure may be deter
mined by a transient analysis or more simply from the energy conditions: 

El = ! L1i/ + ! CV12. 

E2 = ! L2i/ + ! Cv/· 

The difference in energy must be due to the circulating dc current, 
since the initial current in the switched inductor is zero. Denote this 
energy difference by E de • Then 

Ede = ! (La + Lb)id / = El - E2 = ! (LI - L2 )i/. 

Making use of (16), (17), and (18), the resulting dc current may be 
written 

The tank voltage is continuous during both switch closure and switch 
opening. Since the current is also continuous during switch closure 
(assuming zero initial current in L b ), the amplitude of oscillation after 
switch closure is, from (6), (19), and (20), 

(22) 

The tank voltage at switch opening may then be expressed as 
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Then, from (22), 

(23) 

From (5), (7), and (22), the tank current immediately before switch 
opening is 

i3 = V3/~2 sin 83 • 

At this instant the share of the tank current through the permanent 
tank inductor is 

. Lb. v. /e A2 (A 2 • 2 8 + 2 8)! . 8 (24) 
~3a = La + Lb ~3 = 1 V L2 sm 1 COS 1 sm 3 , 

where (22) was used. 
If the sum of the resistances of the two inductors is R, and the mini

mum time between switch closing and switch opening is Tb (normally 
the bit length), then the dc current just before switch opening is at 
most 

where D = exp [ - (RTb)/(La + Lb)] will be called the dissipation 
parameter. 

The actual current through the permanent inductor is the sum of its 
share of the tank current and the dc current. Immediately after switch 
opening, this current must be maintained, so that 

From (21) and (24), 

(25) 

The current and voltage immediately after switch opening have now 
been determined in terms of the phase angles at which the switch was 
initially closed (81) and the phase angle at which it was then reopened 
( 83). These expressions are given by (23) and (25). Using (8), the 
phase angle immediately after switch opening may now be determined 
by the relation 
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84 = tan-1 j /L 1 i4 
11 C V4 

-1 A(A2 sin2 81 + cos2 81)! sin 83 + D(1 - A2) sin 81 = tan 
(A 2 sin2 81 + cos 81)! cos 83 

The phase error at switch opening is then 

-1 [ DO - A2) sin 81 = 83 - tan A tan 83 + (A 2 • 2 2)' • sm 81 + cos 81 2 cos 83 

(26) 

We desire to find those values of 81 and 83 which maximize this func
tion. These values will yield the peak phase error and thus the peak 
time jitter. Denote these values by 81m and 83m , respectively. It is shown 
in Appendix A that for Ap ~. A ~ 1, 

and 

83m = ± sin-
1 2~ [D(2A - 1) 

_ (40 - D2)A2 + D2(A + 5))!] 
A + 1 . 

(27) 

where Ap is the value of A for which 83m = ± 7r/2. It is further shown 
in Appendix A that, for D = 0, Ap = 1/V2; for D = 1, Ap = O. For 
o ~ A ~ A p , the phase error may take on continuous values in excess 
of 7r /2 radians. Thus it can always take on the worst possible value, 
7r/2. Hence 

8,m ~ ± 83m + tan-! CO:8,m [Sin 83m - D e ~2A')], Ap ~ A ~ 1 

8Em = ±7r/2, 0 ~ A ~ A p , 

where 83m is given by (27). Again, the peak phase error, and thus the 
peak jitter, is symmetric about the true value; that is, these functions 
may assume equal positive or negative value. 

These phase error functions are plotted in Fig. 6, and the associated 
peak jitter functions as determined from (3) in Fig. 7(a), for various 
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values of the dissipation factor D. These curves were calculated with 
the aid of the IBM 7090 digital computer. The curve parameters in 
Figs. 6 and 7 (a) are actually 

RTb 

r = - In D = La + Lb' 

which is the ratio of the bit length, Tb , to the time constant of the in
ductor loop. Note that the peak jitter is considerably greater for the 
case of small r (large dc currents), than for the case when the time con
stant is sufficiently short so that the dc current may die in one bit 
interval. For the case of zero dc current at switch opening (D = 0, or 
r = 00) the quantity 83m becomes 

. -1 1 
83m =±sm VA+1 

Then the peak phase error is 

-1 1 
±tan VA. 

( 

-1 1 -1_ 1-) OEm = ± tan V A - tan v A . 

But this is exactly the form of the peak phase error for the case of the 
variable reactance oscillator and reactance tube modulator. It may seem 
strange that the two classes of modulators should have the same peak 
jitter, since in one case a tank reactance is changed without affecting 
the instantaneous values of the currents and voltages, whereas in the 
other case a tank reactance is also changed, but a current discontinuity 
occurs (from i3 to i3a in the previous notation). However, a detailed 
examination of the equations will show that the phase error due to the 
current discontinuity is in such a direction as to partially compensate 
for the amplitude change, the result being a peak phase error equal to 
that resulting from the amplitude discontinuity alone. 

As stated before, the modulator of Fig. 8(b) is the dual of the modu
lator just analyzed, and the same peak phase error and jitter equations 
therefore result. A switch opening in Fig. 8(b) is equivalent to a switch 
closure in Fig. 8(a). Analogous to the dc current in Fig. 8(a), a dc 
voltage may appear across the switched capacitor, and is balanced out 
by an equal and opposite voltage on the permanent tank capacitor. 
Then, upon reclosing the switch in Fig. 8(b), the tank voltage suddenly 
changes to the difference between the ac and dc voltages across the 
permanent tank capacitor, in complete analogy to the first modulator. 
Again, this troublesome dc voltage may be bled off by a resistor in 
parallel with each capacitor, leading again to the dissipation parameter. 



ASYNCHRONOUS FREQUENCY-SHIFT MODULATORS 1717 

It now remains to show that the modulators of Figs. 8(c) and 8(d) 
lead to the same phase error relationships as derived for the first two 
modulators. Consider the modulator of Fig. 8(c). The case of the switch 
closure is identical to the conditions for the variable reactance oscillator 
and reactance tube modulator; i.e., the value of the inductance is 
changed, but the instantaneous values of the tank current and voltage 
are unchanged. Hence the lowest curves for peak phase error and peak 
jitter in Figs. 6 and 7(a) hold for this case. However, the switched in
ductor, Lb , will have a current flowing through it just prior to switch 
closure, and will retain this current after the switch has closed. Lb may 
begin to discharge due to series resistance, but in general will have a 
nonzero current flowing through it at the time of switch opening. At 
switch opening, the flux in La and Lb will redistribute so that the cur
rents through the two inductors are equalized, thus causing a current 
transient. 

Using the same subscripts as before, define 

L1 = L4 = La + Lb . 

Immediately after switch closure, the dc current flowing through Lb is 

. . . v. Ie . () 
t2b = 12dc = 11 = 1 11 Lt SIn 1. 

Just before switch opening, the dc current flowing through Lb is 

i3dc = Di2dc = V 1D Ii, sin (h , 

where the dissipation factor, D, is now given by 

D ~ exp ( - tb) , 
where R is the loop resistance containing Lb and the closed switch. The 
value of the current through La just before switch opening is 

. v. /C . v. Ie (A2 • 2 () + 2 ())! . () 
13a = 3 11 r; sm (}3 = 1 11 L2 sm 1 cos 1 sm 3, 

where V3 is determined exactly as in the previous case. 
At the instant of switch opening, one is faced with the problem of two 
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inductors with different initial currents being connected in series. The 
series current must instantly adjust to some common value. To de
termine this common value, note that the tank voltage v must be con
tinuous. This is true because there is no process by which an impulse 
in the tank current may be caused; thus the voltage across the capacitor 
and hence the tank voltage cannot change instantaneously. 

Since the voltage across the two inductors is the same immediately 
before as after the switch opening, then the total flux stored in the two 
inductors must be preserved. The instantaneous redistribution of flux 
between the two inductors will cause a voltage impulse to appear across 
each inductor, but these impulses will be of equal magnitude and oppo
site sign, thus canceling. The total stored flux immediately before the 
switch opening is 

Immediately after the switch opening, the stored flux is 

S04 = (La + Lb)i4 . 

Equating S03 and S04 , one obtains 

i4 = A2i3a + (1 - A2)i3dc 

VI t/'Zl [A(A2sin201 + COS
2 01)!sin03 + D(1- A2) sin 01]. 

The voltage immediately after switch opening is again 

(28) 

V4 = V3 cos 03 = V 1(A
2 sin2 01 + cos2 01) cos 03• (29) 

Equations (28) and (29) are identical to (25) and (23) respectively 
for the case of the Type I modulator. Thus the peak phase and jitter 
functions for the Type II modulator are identical to those for the Type 
I modulator [Figs. 6 and 7(a)], even though the waveform disconti
nuities are caused by an entirely different phenomenon. 

The circuit of Fig. 8(d) is of course the dual to that of Fig. 8(c). 
Switch closure in one corresponds to switch opening in the other, and 
vice versa. In the circuit of Fig. 8 ( d), when the switch is opened, a 
voltage is left on the switched capacitor. It may decay through a leakage 
resistance, but upon switch closure the two different voltages on the 
two capacitors must instantly adjust to some common voltage accord
ing to the condition of charge conservation, in complete analogy to the 
circuits of Fig. 8 ( c). 

Note that the jitter characteristic for all of the-switched reactance mod-
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ulators approaches that of the variable reactance-type modulators for low 
bit rates. This latter curve is almost a constant (TEm/To = 1/47r) over 
the range of A which might be commonly used. This then is a useful 
rule of thumb: In a modulator whose frequency is shifted by changing 
one reactance in the tank of an oscillator, the minimum inherent peak 
jitter is roughly 1/47r of the period of the midfrequency. This rule is 
shown plotted in Fig. 7 (b) in a somewhat different form. The abscissa is 
the number of cycles of the midfrequency per bit: 

cycles/bit = ;1:' 
The ordinate is the per cent data distortion, defined by 

Thus 

distortion 
T Em 1 To 
Tb - 47r -:;;: . 

1 
(distortion)( cycles/bit) - 47r' 

VII. THE MULTIVIBRATOR MODULATOR 

A multivibrator type of modulator, using transistors as an example, 
is shown in Fig. 10(a). It consists of a standard symmetric multivibra
tor whose frequency may be controlled by varying the control voltage 
Vc . Often a low-pass filter follows the multivibrator. The function of 
this filter is to eliminate the harmonics of the multivibrator output, thus 
converting the square-wave output to a sine wave. This filter may add 
additional zero-crossing distortion, but this distortion will not be con
sidered here. Only the zero-crossing distortion inherent in the multi
vibrator itself will be analyzed. 

The analysis will proceed in the following manner. It will be assumed 
that the multivibrator is oscillating with some half-period 171 • At some 
time to , measured with respect to the last multivibrator transition [see 
Fig. 11(a)], the control voltage Vc is suddenly changed from its initial 
value Vel to a new value V c2 • The multivibrator then oscillates with 
some new half-period 172 • The time between the two transitions on either 
side of to will be denoted 170 where 170 has a value between 171 and 172 • 

The resulting zero crossings will be compared to those of an ideal F~I 
wave shown in Fig. 11 (b) whose zero crossings correspond to those of 
the multivibrator before the switching instant, but are separated from 
those of the multivibrator by a time error of TE for times after the switch-
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Fig. 10 - The multivibrator modulator: (a) multivibrator circuit; (b) base 
voltage waveform. 

ing instant. This corresponds to a phase error of 

T( 
OE = 27r 2-' 

1]2 
(30) 

The worst value for the transition time will be determined, leading to a 
maximum value for OE , denoted OEm. From (3), the peak time error 
T Em in the data transition with respect to the period of the midfrequeney 
To is 

T Em 11 + A T Em 

21 - A 21]2 • 
(31) 



A.SYNCHRONOUS FREQUENCY-SHIFT l\lODULATOHS 1721 
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Fig. 11 - Comparing zero crossings of multivibrator modulator to those of 
ideal FM: (a) multivibrator outputs; (b) ideal FM. 

Let us first derive the time between zero crossings on either side of 
the switching instant for an ideal FlYI wave. This time will be called 71l • 
From Fig. 11 (b), 

71i = to + to'. 

Because the amplitudes of the two sinusoids are the same, and the vol
tage is continuous at the transition, one may write 

sin Wito = sin W2 (712 - to'). 

Thus 

and 

(32) 

We now derive the analogous time, 710, for the multivibrator. In Fig. 
10(b) is shown the operation of the multivibrator in terms of the voltage 
at a base. Immediately after a transition, the transistor is reverse biased 
by a voltage equal to the supply voltage, VB . The voltage at this point 
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will start rising exponentially to the control voltage Ve , with a time 
constant r, and is given by 

v = Ve - (VB + Ve)e- t
/

T
, 

where r is defined in Fig. 10 as r = Re. For a constant control voltage, 
the half-period of oscillation, 71, is determined by that time required 
for the voltage waveform to reach zero voltage (ignoring the transistor 
threshold voltage). Thus 

~ = 7 In (1 + ~:) . 
Let us define the following parameters: 

Then 

A - WI _ T2 _ 712 
- W2 - T I - :;n . 

VB 
a=

Vel' 

(3 = Vs 
V e2 . 

711 = r In( 1 + a), 

712 = r In (1 + (3). 

At a time to after the last transition, there will be a base voltage Vo of 

Vo = Vel - (Vs + Vel) exp( -tolr). 

If at this time the multivibrator control voltage is suddenly switched 
from Vel to V e2 , the time from to to the next transition will be 

t," = 7 In (1 - ;:) = 7 In [1 - ~:: + ~:: (1 + ;:.) cxp ( - t,M ] . 

Then 

~, = t, + t," = t, + 7 In [1 - ~ + ~ (1 + a exp ( - 1./7 ) J. 
The difference between this and the like time, 71i for ideal FM is 

T, = ~, - ~i = Tin [1 - ~ + ~ (1 + a) exp (-t,/7) ] 
(33) 

+ Ato - 1}2. 
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From (30), OE is maximized if TE is maximized. The value of to, 
denoted tom, for which TE is a maximum is found by letting 

which results in 

exp ( - tom/ T) = {3 ( 1 ) 
- (1 + a) - - 1 
a A 

or 

tom ~ TIn (1 + (~(1 -) A) . 
A {3 - 1 

Substituting (34) into (33), one obtains 

(3 
1 -~ (1 +a)(1- A) 

T Em = T In -=--A + AT In ( ) 
1 A ~ - 1 

(3 

which can be rewritten as 

But, since 

and 

then 

712 = T In (1 + (3) 

A = In (1 + (3) 
In (1 + a) , 

a = (1 + (3)l/A - 1, 

712 
T = A In (1 + a) , 

+ A = 0, 

(34) 

- 712, 

(36) 

(37) 
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and 

[ 
1 - ~ ] 

T Em = A In (~2 + a) (1 - A) In 1 _ ~ + A In :a ' 

or 

{3 

(
1 - A) In 1 - ~ + In L 

() = 2 T Em = 2 A 1 - A Aa 
Em 7r 27]2 7r 2 In (1 + a) . 

(38) 

The peak time jitter is then determined from (3): 

1 - ~ 
T,m 1 (1 + A) (Y) Ind + In fa (39) 

To - =1 (1 - A) In (1 + a) 

Equations (37) and (38) give the peak phase error for a transition 
in either direction (i.e., from the lower to the higher frequency, or vice 
versa) as a function of the two variables A and {3. It is shown in Ap
pendix B that the peak phase error for the transition in one direction is 
equal in magnitude but opposite in sign to the peak phase error for 
the opposite transition. 

From the relation (3), it is then seen that the peak time error for 
the multivibrator is equal in magnitude and is always negative for 
either transition. Thus the multivibrator differs in its jitter charac
teristics from the LC modulators in that the jitter is one-sided, rather 
than symmetric, about the true transition time. The jitter is such that 
the actual transitions are delayed in time from the true transition 
( - T Em corresponds to a time retardation). 

The parameter {3 is essentially a "linearity" parameter; i.e., as {3 ---+ 0, 
less and less of the exponential of Fig. 10 is used. For a and {3 sufficiently 
small, the base voltage is essentially linear. In this case, from (37), 

{3 ~ aA. 

Under this condition, (39) goes to zero. Thus the multivibrator type 
of modulator may be designed to have as little jitter as desired by mak
ing the control voltage, Vc , very much greater than the supply voltage, 
Vs. 

It is also of interest to study the other limiting condition, i.e., {3 ---+ 00. 

From (37), for {3 » 1, 
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SUbstituting this into (38) for the peak phase error, and taking the 
limit as {3 ---t 00, one finds 

lim OEm = - (1 - A)7I", 
fJ ..... C1:J 

for ! ~ A ~ 1, I ()Em I ~ 71"/2; therefore, from (39), 

1· TEm = _ 1 + A ~ < A < 1 
1m T ,- -. 

fJ ..... C1:J 0 4 2 - -
(40) 

However, for 0 ~ A ~ !, ()E may take on values in excess of 71"/2. Thus 

2 

o ~ A ~~. - - 2 

Plots of ()Em and TErn/To for the multivibrator are given in Figs. 12 and 
13 respectively. Fig. l3(b) shows peak jitter on an expanded scale for 
small values. For comparison, the corresponding curve for the peak 
jitter inherent in the reactance tube type of modulator is shown dotted 
in Figs. l3(a) and l3(b). 

Note that a given time error for the multivibrator corresponds to 
only half the distortion caused by the same time error associated with 
one of the LC modulators because of the one-sided property of the 
multivibrator jitter. 

VIII. EXPERIMENTAL VERIFICATION 

The results of the theory just presented were checked by measuring 
the peak jitter in some existing systems. In Table I are shown some 
experimental and theoretical results for the modulators of the Bell 
System DATA-PHONE Data Sets lOlA, 103A, and 202A.3 In all cases, 
a dotting (alternate marking and spacing) signal was used to avoid the 
effects of intersymbol interference. The receiver used for the 100 series 
data sets was the lOlA receiver. It contains a limiter followed by a 
standard discriminator and slicing amplifier. Because of the limiter, 
the zero-crossing information is all that is retained. The 202A receiver 
was used with its modulator. This receiver is indeed a zero-crossing 
detector. It generates a pulse for each zero crossing, integrates the 
resulting pulse train, and delivers this resulting signal to a slicing circuit. 

The 100 series data sets are capable of operating in either of two bands. 
These bands are denoted the 11 band and the 12 band. In the case of the 
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Modulator 
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J'ig. 12 - Peak phase error for the multivibrator modulator. 

TABLE I - EXPERIMENTAL VERIFICATION 

Experi-
mental 

Type WI W2 Bit Rate Transition Peak 
Jitter 
(I'sec) 

Switched 1070 1270 100 WI- W2 165 
Reactance 

W2 - WI 280 
2025 2225 100 WI- W2 100 

W2 - WI 130 
Reactance 1070 1270 100 Either lG5 
Transistor 200 Either Hi5 
MuItivibrator 1200 2200 1200 Either 50 

Theoreti-
cal 

Peak 
Jitter 
(I'sec) 

----
136 

280 
72 

112 
13G 
13G 
44.5 
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Fig. 13 - (a) Peak jitter for the multivibrator modulator; (b) peak jitter for 
the multivibrator modulator - expanded scale. 
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lOlA modulator, both the 11 band and the 12 band were used for the 
test. The marking and spacing frequencies in the 11 band are 1070 and 
1270 cycles, resulting in an A of 0.843. In the 12 band, the corresponding 
frequencies are 2025 and 2225 cps, giving an A of 0.910. The modulator 
is a switched reactance modulator of the type shown in Fig. 8(a). For 
the 11 band, the sum of the two inductances is 0.324 henry and the total 
series resistance is 44.5 ohms. For the 12 band these parameters are 0.151 
henry and 28.7 ohms. This modulator was tested at 100 bits per second, 
the corresponding values of r being 1.37 and 1.90 for the h band and h 
band respectively. 

The 103A modulator was tested at 100 and 200 bits per second using 
the 11 band and again the lOlA demodulator. The 103A modulator is 
of the reactance transistor type (analogous to the reactance tube modu
lator). The results agree well with theory. 

The 202A modulator was tested at 1200 bits per second, using 1200 
cps and 2200 cps as the two frequencies. This corresponds to an A of 
0.54. In this modulator,'the value of f3 is 1.405 (Vc2 = 12.8 v, Vs = 18 v). 
Again, the agreement with theory is quite good. 

Because all of the above experiments yielded jitter comparable to 
that expected from the modulator alone, one is led to the conclusion 
that most of the back-to-back jitter in these data sets originates in the 
modulator, and that the demodulators approach fairly closely the ideal 
zero-crossing detector. 

IX. DISTORTIONLESS, ASYNCHRONOUS, SINUSOIDAL FREQUENCY MODULA

TION 

From (8), it is possible to obtain the conditions for distortionless 
modulation when the modulation is accomplished by changing the 
parameters of an LC tank. Let the subscript 1 refer to the instant before 
the transition, and the subscript 2 to the instant after. There will be 
no jitter if there is no phase error, that is, if 

(h = O2 • 

From (8), this requires that 

One way of insuring that this condition holds is to maintain voltage 
and current continuity at the transition (il = i2 , VI = V2), and then to 
change both the inductance and capacitance by such an amount that 
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their ratio remains constant. That is, if the resonant frequency of a 
tank circuit is changed in such a way that the instantaneous tank voltage 
and current are continuous, and so that the characteristic tank imped
ance, vlLIC, is maintained, then there will be no phase error. 

Such a modulator may be implemented by using a balanced VR01 

(Variable Reactance Oscillator) configuration as shown in Fig. 14, in 
which one active element displays a variable capacitance and negative 
resistance, and the other a variable inductance and negative resistance. 
The gm's of each active element are switched in such a way that the 
quantity LIC remains constant. The modulator of Fig. 15 was con
structed and tested. To give an idea of its performance, typical frequency 
transitions between 1950 cps and 2250 cps are shown in the oscillogram 
of Fig. 16. 

x. CONCLUSION 

It has been shown that phase error at a transition in a frequency shift 
signal will cause a time error in the output of a zero-crossing detector. 
The maximum value of this time error may be calculated, leading to the 
determination of the peak jitter. 
It has been further shown that the switched reactance modulators have 

the largest inherent peak jitter, and that this jitter is bit-rate dependent. 

(a) 

(b) 

Fig. 14 - The balanced VRO configuration for distortionless frequency modu
lation: (a) basic balanced VRO; (b) equivalent circuit of basic balanced VRO. 
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Fig. 15 - Balanced VRO modulator schematic diagram. 
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Fig. 16 - Examples of switching performance of balanced VRO: upper trace is 
data input; lower trace is modulator output; frequencies are 1950 and 2250 cps. 
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The reactance tube type of modulator and variable reactance oscillator 
have less peak jitter. The multivibrator can be designed to have as low 
a value of peak jitter as desired. By using an LC type of modulator in 
which the tank impedance is held constant at switching, it is possible in 
principle to design a frequency shift modulator having zero peak jitter. 

All of the main points of the theory have been experimentally verified. 
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APPENDIX A 

LvI aximum Phase Error for the Switched Reactance 1I1odulator 

The phase error associated with the more severe transition in the 
switched reactance modulator (e.g., switch opening in the parallel 
inductor case) is given by (26): 

-I [ D (1 - A 
2

) sin (h ] ) 
Of = 03 - tan A tan 03 + (A . 2 0 + 2 r . (41 sm I cos 01 .. cos 03 

I t is desired to find those values of 01 and 03 which maximize this expres
sion. These values will be denoted Olm and 03m respectively. 

Consider 01 first. Differentiating (41) with respect to 01 yields 

where 

and 

{3 = A tan 03 + 'Y sin/I, 
cos 3 

'Y = (A 2 sin2 01 + cos2 Ol)! . 

(42) 

We are interested in those values of 0 for which aoE/ aOI = O. Since 
A ~ 1, all quantities enclosed within the brackets in (42) are always 
nonnegative; therefore, this term will never become zero. Furthermore, 
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(it can never cause (3 to become infinite, nor'Y to become zero. Therefore 

7r 
Olm = ± 2 

is the only value of 01 which causes (42) to go to zero. It can be shown 
that this value of 01 corresponds to a maximum point for Of • Olm repre
sents switching at the instant corresponding to the creation of the 
maximum value for the undesired dc quantity. 

Investigation of (42) will reveal that 03 = ±7r/2 will also cause 
dOE/dOl to be zero; however, it can be shown that this corresponds to a 
minimum point for OE • No other combinations of 01 and 03 will cause 
(42) to go to zero. 

Equation (42) may now be simplified by allowing 01 to be ±7r/2: 

Then 

where (3 and 'Yare now given by the simplified expressions 

(3 = A tan 03 ± _'Y_ 
cos 03 

(43) 

(44) 

(45) 

(46) 

We are interested now in determining those values of 03 which cause 
aoE/ a03 to be zero. Setting (44) to zero, one obtains 

A ± 'Y sin 03m = (1 + (32) COS203m . 

Using the expression (45) for (3, and making the substitution COS203m = 
1 - sin203m , a quadratic in sin203m is obtained: 

(A2 - 1) sin203m ± 'Y(2A - 1) sin 03m + (1'2 + 1 - A) = O. 

Replacing'Y with (46) and rearranging, this quadratic becomes 

• 2 D(2A - 1) . (D2(1 - A2)(1 + A) + A2) 
sm 03m =F A sm 03m - A 2 (1 + A) = O. 

Thus 
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[

4A2 (1 - D2) + (A + 5)]! 
D D2 (47) 

sin 83m = ± 2A (2A - 1) ± A + 1 . 

The range of interest for both A and D is from zero to one. Consider 
the contents of the square brackets in (47). This is minimum for D = 1, 
for which 

"in 8"m 1"~1 = ±2~ [(2A - 1) ± (~ ! ~YJ· 
If the plus sign in front of the term [(A + 5)/A + 1]1 were to be used, 
then 

sin ()3m I D=l > 1, 

for all A. Since sin ()3m must be less than one, this is not possible. For 
D < 1, the magnitude of sin ()3m is even greater, since the term in the 
square brackets of (47) is now larger. Thus the minus sign must be 
used, and 

[

4A2 (1 - D2) + (A + 5)]! 
. D D2 

sm 83m = ± 2A (2A - 1) - A + 1 
(48) 

Now, for any D, and A = 1, the magnitude of (sin ()3m) is less than 
one. However, as A decreases, I sin 83m I increases, and finally reaches 
unity for some A = Ap . For instance, for D = 1 (infinite dc time con
stant), sin ()3m = ±I for A = Ap = I/V2; for D = 0 (zero dc time 
constant), Ap = O. For other values of 0 < D < 1, 0 < Ap < 1/0. 

Thus for a given D and for Ap < A ~ 1, the magnitude of ()3m is less 
than 7r /2 and thus may be used to calculate the peak phase error by 
substitution into (43). For A = Ap , ()3m = ±7r /2, and it can be shown 
that at this point ()Em = ±7r/2. Furthermore, for A < A p , a more 
detailed study of the expression for phase error (43) will reveal that 
the phase error may take on any value. Since it is assumed that ± 7r/2 
is the worst possible phase error, then we set ()Em = ±7r/2 for A < Ap 

Summarizing these results, the peak phase error is given by 

8,m = ± 83m + tan~l CO:83m [Sin 83m + D e ~2A2) J, Ap ~ A ~ 1, 

where 
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and 

7r 
OEm = ±2 for 0 ~ A ~ Ap. 

Ap is the value of A for which I sin 03m I = 1. 

APPENDIX B 

Jitter Symmetry in the 111 ultivibrator 111odulator 

The expression for peak phase error in the multivibrator is given by 
(38) : 

1 - ~ 
(

1 - A) a (3 -- In--+ln-
A 1- A Aa 

OEm = 27r 2 In (1 + a) . 

(49) 

Unlike the LC modulators, this phase error is of only one sign for any 
one transition. In fact, from Fig. 12, it is seen that this phase error is 
always negative for A < 1 (i.e., WI < W2 , or switching from the lower 
to the higher frequency). 

It is to be shown here that the phase error for the opposite transition 
is of the same magnitude but of opposite sign (thus OEm > 0 for A > 1). 
This is accomplished by replacing in (49) A by 1jA, a by (3, and (3 by 
a. This replacement yields an expression which describes the peak phase 
error, OEm', for the opposite transition: 

(3 is related to a by (37) : 

In (1 + (3) = A In (1 + a). (50) 

Equation (49). may then be rewritten as 
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A(~ - 1) 
(A - 1) In {3 + -.! In Aa 

A 1 - A A {3 

2 In (1 + a) 

_ (1 - A) 1 (
1 

- ~) . A (~ - 1) + ~ 1 Aa 
A 11 1 - A (1 _ ~) A 11 {3 

2 In (1 + a) 

(
1 -~) -e -:/) In 1 - ~ . 

{3 (1 - A) Aa (1 ) . . Aa + In - + --. In - - - - 1 In-
Aa A {3 A {3 

2 In (1 + a) 

1 - -

( 
(3) 

1 - A a {3 (-A-) In r-=fl + In Aa 
2 In (1 + a) 

Thus 

(51) 

N ow consider the relation (3) between peak phase error and peak 
time error: 

T(m OEm 1 + A 
To - 471" 1 - A . (52) 

Let us again study the reverse transition by replacing OEm with OEm', 

A by 1/ A, and T Em by T Em': 

Using (51), 

( 1) , 1 + - , 
,OEm A OEm A + 1 

T Em = 471" ( 1) = 471" A-I . 
I-

A 

, 
T Em 

OEm 1 + A 
= 471" 1 - A = T Em , 
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and the peak time jitter is of the same sign and magnitude for each 
transition. Reference to Fig. 13 shows that the sign of the peak jitter 
is always negative. Physically, this means that the apparent transition 
occurs at a time later than the true transition would occur. 
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Scheduling of Pole Line Inspections 

By S. W. ROBERTS 

(Manuscript received June 21, 1!)G2) 

This paper is concerned with the scheduling of pole line inspections. 
The schedules are based on the physical lifetime distribution of pressure
treated southern pine poles, which constitute some eighty per cent of the 
current telephone pole plant. Results of studies described herein indicate 
that for scheduling purposes the physicalllfetime distribution of such poles 
is adequately described by the lognormal density function. Supporting 
evidence includes.the observation that sound older poles seem no more prone 
to failure than younger poles. As a consequence, there appears to be no 
need to decrease the intervals between inspections as poles age. Quality of 
treatment - particularly the amount of preservative retained - appears 
to be of primary importance in determining the physical lifetime of poles. 
The relative influences of environmental factors such as temperature, hu
midity, rainfall, soil conditions, length of growing season, etc., have not 
been adequately evaluated; however, for a given quality of treatment, poles 
tend to last longer in the North than in the South. Consequently, for pole 
lines in the South, inspections are scheduled earlier in the life of a pole 
and at shorter intervals thereafter than for similar pole lines in the North. 

r. INTRODUCTION 

In 1920 only ten per cent of the 14 million poles in line owned wholly 
or in part by the Bell System were treated full-length with preservatives. 
Of this ten per cent, most were creosoted southern pine poles. In 1960 
about eighty per cent of the 23 million Bell System poles were pressure
treated southern pine poles; the majority of the others were Douglas fir 
and other western or Rocky Mountain species. Early pressure treat
ments used creosote; later, pentachlorophenol-petroleum solutions were 
also in common uee. Today a creosote-penta mixture is specified for 
southern pine. 

Early untreated poles, notably cedar and chestnut, had a much greater 
natural resistance to decay than untreated southern pine poles. They 
had relatively thin layers of sapwood surrounding the highly decay-

1737 
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resistant heartwood, whereas today's southern pine poles consist largely 
of sapwood. Untreated southern pine poles might be expected to give 
less than five years service in the deep South, and but little more in the 
North. Treatment with preservatives toxic to decay fungi and insects 
prolongs the lifetime of poles with thick sapwood for many decades. 
The effectiveness of such treatment is reflected in the average physical 
lifetime, which is taken to mean the average time from placement until 
failure due to decay (or insect attack). Physical life is to be contrasted 
with service life. Service life, which averages about 25 years, is defined 
as the time from placement until replacement, regardless of whether 
replacement is for reasons of decay or for obsolescence, line relocation, 
fire, lightning, collisions, tornados, wind accompanying sleet, etc. 

Periodic inspections serve to classify poles with respect to decay as: 
(1) sound, (2) decayed but serviceable to the next inspection, or (3) 
failed. With this classification there is for each pole a time interval td from 
placement to the first appearance of decay, and a time interval tf from 
placement to failure. The difference, tf - td, represents the time from 
the first appearance of decay until the decay has progressed to such an 
extent that the pole should be classed as failed. The time tf represents 
the physical lifetime of the pole. 

For purposes of scheduling pole line inspections the distribution 
functions of td, tf , and tf - td would provide useful information. For 
the type of schedule discussed in the present paper, information con
cerning the general nature of distribution function of tf is sufficient. 

Based on experience and on experimental data presented in this 
paper, the lognormal density function provides a useful model for the 
distribution of td and of tf . Experience indicates that adequately treated 
poles remain relatively immune to decay even at advanced ages. Log
normal density functions are shown to provide reasonably accurate 
descriptions of the experimental data concerning the time to decay td. 
Since some of the inspected poles were decayed but not failed, there is 
relatively less information concerning tf than td. One reason for not 
presenting available data concerning tf is that the definition of a failed 
pole varies in accordance with the application - in particular, in the 
test plot experiments a pole is classed as failed only when the decay 
has advanced to such an extent that the pole is of no further value 
in the experiment. However, based on available information it appears 
that lognormal density functions are useful in describing the distribu
tion of tf as well as td . 

Relatively little data are available concerning tf - td, but consider
able variability is evident. In some cases decay spreads rapidly, while 
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in others it makes very little progress between consecutive inspections. 
Such variations are not inconsistent with the concept that both td and 
tf have lognormal distributions. As will become apparent, lack of spe
cific information concerning the distribution of tf - td is of little con
sequence for the type of inspection plan considered here, nor is the 
fact that only very rough approximations to the distributions of td 
and tf can be provided. 

From 1945 through 1961 the American Telephone and Telegraph 
Company recommended that full-length treated southern pine poles be 
inspected at eighteen years from placement and at six-year intervals 
thereafter. These recommendations were revised in November, 1961, 
based partly on results reported in the present paper, which (1) sup
ports the concept of constant intervals between inspections following 
an initial period of no inspections (due to indications of relatively con
stant failure rates), and (2) provides some information concerning the 
differences between the average physical lifetimes of poles in the North 
and the South. 

The main shortcoming of the previous schedule was that it did not 
take into consideration the fact of earlier decay in the South than in 
the North. The revision has separate schedules for the North and the 
South. 

As in the past, adherence to recommended schedules is expected to 
vary from Company to Company in response to their particular ap
praisals of the need for inspections, based on previous inspection results 
in their areas. The recommended inspection intervals are meant to 
serve as guides. If in particular applications consistently too many or 
too few failures, relative to a chosen economic level, are found, it might 
be well to adjust the frequency of inspection. 

The primary purpose of this paper is to present background informa
tion concerning the physical lifetime of treated southern pine poles. 
This information may prove useful in adjusting the recommended 
schedules, should that be desirable. A model schedule, employing three
way classifications for geographical locations and for economic classes of 
poles, is presented in Table I of Section II. The use of three classes, 
rather than two, provides a buffer between extremes. 

Section III discusses briefly the nature and causes of decay and of 
treatment to prevent decay. Section IV presents results of some of the 
pertinent field tests conducted as a part of a continuing program of the 
Outside Plant Laboratory of the Bell Telephone Laboratories for evaluat
ing the effectiveness of various preservative treatments. An analysis 
of these results is contained in Section V. One conclusion is that the 
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lognormal density function describes the physical lifetime distribution 
of pressure-treated southern pine poles more realistically than the normal 
density function. 'rhe normal density function, which is used to ad
vantage in mallY applications m; a lin.;t approximation to lifetime dis
tributions, fails to account for the many long-lived individual poles. 
For example, if, as has been assumed in some applications, the physical 
lifetime of a pole has a normal distribution with an average of 35 years 
and a standard deviation of 6-10 years, then a 60-year old pole would 
have a high probability of failing within the next six years, say. How
ever, experience indicates that failure of such a pole in this 6-year 
interval is very unlikely - i.e., the 6-year failure rate at age 60 years 
is small. It is in this connection that the lognormal density function 
proves useful, for it is characterized by a failure rate function that 
increases to a maximum and then gradually decreases with age. This 
is to be contrasted with the ever-increasing failure rate function char
acterizing the normal density function. 

One consequence of the assumption that the physical lifetime of 
pressure-treated southern pine poles has a lognormal, rather than 
normal, distribution function is that there is no need to increase the 
frequency of inspection of such poles as they age. Another consequence 
concerns estimates of the average physical lifetime. If early failures 
would indicate an average lifetime of 35 years, assuming a normal 
distribution function, these same failures might indicate an average 
lifetime of 100 years, assuming a lognormal distribution function. 
This sharp increase in estimated average lifetime reflects the fact that 
some of the individuals may be expected to have extremely long physi
cal lifetimes. As noted in Section VI, estimates of average physical 
lifetime based on the assumption that a particular distribution func
tion applies should be viewed with restraint appropriate to the applica
tion. It would be well to temper such estimates with supplementary 
information. For example, under certain conditions (i.e., when failed 
poles are soon replaced, and when there are an insignificant number 
of replacements for reasons other than decay) the inverse of the pro
portion of poles that fail annually provides a rough estimate of the 
average physical lifetime - e.g., an average physical lifetime of fifty 
years is indicated if over the period of several years an average of two 
per cent per year of poles in line fail due to decay. 

Comparisons of average physical lifetimes can be misleading, for 
in most applications the distribution of early failures is of primary 
importance. Potential long-lived poles may be replaced early for reasons 
other than decay, since the average service life is about 25 years. The 
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proportion of poles expected to fail within 25 years, or some other 
selected value, might serve better than average physical lifetime as a 
measure of the effectiveness of treatment. Alternatively, the expected 
time until a selected proportion of poles can be expected to have failed 
might prove useful for comparisons. For example, the median might be 
used. 

II. INSPECTION SCHEDUIJES FOR SOUTHERN PINE POLES 

A model for inspection schedules for southern pine poles is shown in 
Table 1. The zones referred to are delineated on the map that forms 
Fig. 1. The zones serve to separate the inspection results into three 
classes: Zone 3 represents areas where environmental conditions are 
relatively favorable to decay; Zone 1 represents areas of relatively 
little decay; and Zone 2 serves as a buffer between the two extremes. 
The zone boundaries are rather arbitrary. The area west of the eastern 
boundary of the lVlountain States Telephone and Telegraph Company 
has not been included because southern pine poles, with which this 
paper is primarily concerned, are not generally used in the West, and 
therefore no inspection results were obtained. For a given quality of 
treatment, poles definitely have longer life expectancies in Zone 1 than 
in Zone 3. However, there is no sharp demarcation between adjacent 
zones. Quality of treatment, particularly the amount of preservative 
retained after treatment, appears to be of first importance in deter
mining the lifetime of a pole. Poorly treated poles placed in the North 
may be expected to fail sooner than well treated poles placed in the 
South. 

The classification of pole lines according to economic value is in 
recognition of the fact that the inspection of poles is largely an economic 
matter, though safety is also an important factor. The classification in 
Table I is primarily for illustrative purposes. It may prove helpful to 

TABLE I 

Zone 1 Zone 2 Zone 3 
Economic Class 

of Line 
x y x y x y 

1. (Toll) 8 18 7 15 6 12 
2. (Exchange) 10 21 8 18 7 15 
3. (Rural) 12 24 10 21 8 18 

Inspect pole line every x years. On new line, first inspection should be made 
at age y years. For replacement poles, omit first regular inspection only. 
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Fig. 1 - Zones used for study of decay in poles. 

imagine that the inspection intervals of Table I were selected so that 
the per cent of failures expected in the three economic classes would be 
in the ratio of 6: 7 : 8, as might be the case in Zone 3. It has been noted 
that as the interval between inspections is increased, so is the tendency 
of inspectors to classify serviceable decayed poles as failures. 

Another feature of Table I is that it presumes that complete lines of 
poles are inspected, omitting young replacements. To illustrate the 
procedure that might be used, consider the typical pole record, an 
E-297 form, shown as Fig. 2. Poles on this particular line, which is a 
toll line in Zone 3, would first be inspected at age 12, in 1953. The re
placement poles set in 1950 and 1951 would first be inspected in the 
inspection of 1959. 

Presumably, 100 per cent of the eligible poles in a line will be in
spected. Questions may arise as to the feasibility of employing a sampling 
plan so that inspections may be halted on a line when few failures are 
encountered in a random sample of poles. Under certain conditions, 
such as when a line is to be inspected for the first time, a sampling plan 
might prove useful. However, the appropriate conditions are not often 
encountered when routine inspections are made. Furthermore, the re
sults of previous inspections in the same area may prove as useful in 
evaluating the conditions to be expected on a typical line as inspection 
results from a sample of poles from that line. If the proportion of failures 
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TOLL I POLE RECORD 
~~-----------~-------------------------,----------,---------~ 
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found on routine inspections in a general area over a long period of time 
is not consistent with a predetermined economic level, it may be well 
to adjust the interval between inspections in that general area. 

Thoroughness of inspections may vary with the application. The 
procedures followed on routine inspections are somewhat different from 
those followed in this study on the experimental poles. In the latter 
case the instructions were: 

(a) Record information found at the brand ten feet from the butt 
(species, preservative, supplier, class and length, and year treated) 
and pertinent comments. 

(b) Visually examine above the ground line for mechanical damage, 
woodpecker holes, split tops, etc. Record findings. 

(c) Remove earth from around the pole to a depth of about one foot 
(deeper in the drier areas of the country) to allow a visual examination 
and prodding in the critical sector just below the ground line. 

(d) Sound the pole with a hand axe from below the ground line to 
eight feet above the ground line or as high as can be reached conven
iently. 

(e) In cases of suspicion of internal decay, as determined by sounding, 
take an increment boring and examine the wood thus removed. Make 
the boring at right angles to the vertical axis of the pole. Be sure to 
plug the hole with a locust heartwood or treated plug. Record findings. 

(f) Rate the pole as (1) sound, (2) decayed but serviceable, or (3) 
failed. 

At the test plot inspections, the sections are jacked from the ground 
for a thorough examination. In this way, too, disturbance of the soil 
is kept at a practicable minimum. 

III. DECAY AND ITS PREVENTION 

Decay of telephone poles is caused primarily by wood-destroying 
fungi. The survival and effectiveness of these plants are influenced by 
certain environmental conditions such as moisture content of the wood, 
an adequate oxygen supply, and a moderate (60-90°F) temperature. 
The wood of different species as well as the sapwood and heartwood of a 
given species varies in susceptibility to decay. 

Southern pine is particularly susceptible. To deter or prevent decay, 
poles of this species are treated with preservatives, of which creosote 
and pentachlorophenol or mixtures of the two are most common. 
Generally the preservatives are toxic not only to fungi but also to 
insects, whose activity constitutes a secondary cause of pole failure. 

Economic considerations playa prominent role in the specification 
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of the preservative treatment. The poles with which this paper is con
cerned were treated with creosote using the empty cell m(~thod of treat
ment. The specifications ealled for an average of eight pounds of ereo
sote per cubic foot of wood (as measured by gauge). This is sufficient to 
penetrate most of the sapwood under the empty cell method, which 
replaced the full cell method in the early 1930's in Bell System specifica
tions. The full cell method used more creosote - twelve pounds per 
cubic foot, on the average - but the penetration was not as deep or 
as uniform, in general. Poles treated under the 12-pound full cell method 
had more of a tendency to decay internally, and, in addition, were more 
subject to "bleeding" than poles treated under the 8-pound empty 
cell method. In fact, the problem of bleeding played an important role 
in specifying the amount of creosote to be used. lVIore creosote would 
have resulted in longer-lasting poles, but bleeding would have been 
more prevalent. 

Fig. 3 indicates how the actual amount of creosote absorbed varies 
from pole to pole within one treating lot. l Theoretically, decay is least 
likely and bleeding is most likely in those poles with the most creosote, 
though relative volume of sapwood, presence of defects, quality of 
treatment, and other factors enter the picture. Quality of treatment 
depends on such things as quality of creosote, conditioning of poles 
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prior to creosoting, the treating cycle, the moisture content of the 
poles, and the uniformity and thoroughness of absorption. 

IV. RESULTS OF FIELD TESTS 

The description of lifetime distributions of items such as poles is often 
based on observations of lifetimes of a sample of similar items. The best 
description obtainable from the sample must await the failure of the 
longest-lived items in the sample. For example, the average cannot be 
estimated very well from only the early failures unless the nature of the 
distribution function is known. By the time the last failures occur, the 
then-current items may have properties that differ from the original 
items due to changes in design, production methods, or materials. 
Therefore a compromise between timeliness and accuracy is often neces
sary for practical reasons. 

Commercial treatment for the Bell System of southern pine poles 
with preservatives using the empty cell method began in the early 
1930's and continues today under essentially the same conditions, 
except that the preservative is now a fortified one containing both 
creosote and pentachlorophenol. In describing the lifetime distribution 
of these poles, we have the advantage of almost thirty years of ex
perience. Foremost in usefulness are results of Laboratories field teE:ts 
on sets of poles and ten-foot pole sections treated under controlled 
conditions in the 1930's and periodically inspected since that time. 

4.1 Test Plot Results 

Fig. 4 shows the results of inspections of groups of 10-foot pole sec
tions that were treated in 1935 and 1936 and placed in 1936 and 1937 
in test sites at Gulfport, Mississippi, and Chester, New Jersey. The 
sections were placed shortly after treatment. The sections represent 
either top, center, or bottom thirds of 30-foot poles. 

There were 60 sections at each site in the 1935 series, and 55 in the 
1936 series. Fig. 4 shows on lognormal probability paper the per cent 
of these poles classed as decayed (including those classed as failed) on 
the inspections, which were usually made biannually. Since there is no 
place on this lognormal paper to show zero per cent decayed, the early 
inspections at Chester are not represented. Because of the nature of the 
supporting data, the line through the Chester data was drawn parallel 
to the Gulfport line. 

The advantage of using lognormal probability paper for Fig. 4 is 
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that if the lognormal distribution describes the time to decay, td, 
then the points will, with allowances for sampling variability, fall 
roughly along a straight line. Also, the fact that the points representing 
the Gulfport data do fall roughly along a straight line provides some 
evidence of the applicability of the lognormal distribution in this case, 
and, by inference, in similar cases. The line drawn through the Gulfport 
data may be used for estimates such as the time when 80 per cent of 
the sections can be expected to have decayed. This estimate would be 
90 years. A different estimate would be obtained if a different line were 
selected to represent the Gulfport data. Such estimates are of limited 
accuracy. 

As illustrated by Fig. 3, the creosote content varies widely among 
poles of a given charge. An important result of the test plot study was 
the high correlation between time to decay and creosote content - that 
is, in general decay appeared earliest in those pole sections with the 
least initial creosote content. This fact was emphasized in earlier 
papers.2 ,3 
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4.2 Some Field Test Results 

Fig. 5 shows on lognormal probability paper the percentage of poles 
found decayed in several lines which were inspected three times. Most 
of these lines consist of poles treated under observation of Laboratories 
personnel in the early 1930's. In cases where the initial creosote content 
of the individual poles was measured, most of the early failures were 
poles that retained a relatively low amount of creosote. 

4.3 Other Results 

Because of (1) the limited sample sizes and environmental conditions, 
and (2) the possibility of bias due to close surveillance of the treatment 
in the tests whose results have been described thus far, it was decided 
to inspect representative lines throughout the country. Representative 
results of these inspections are shown in Figs. 6 through 8 for Zones 1 
through 3 respectively. Most of the data for Figs. 6 and 8 were obtained 
in 1960; Fig. 7 is based on data collected in the early 1950's. The line 
drawn on Figs. 6-8 is for purposes of illustration. It is line 4 of 
Fig. 10, and it represents a lognormal distribution with a median of 80 
years and a failure rate of roughly one per cent per year (more specifi-
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cally, after fifteen years of age about one per cent of the poles that are 
sound at the beginning of a year will exhibit decay by the end of that 
year). Based on the data of Figs. 6-8, it appears that most of the pole 
lines in Zone 1 have failure rates of less than one per cent per year, 
and most of the pole lines in Zones 2 and 3 have failure rates greater 
than one per cent per year. Some of the discussion in Section V should 
prove helpful in interpreting the data. 

4.4 Sources of Variability of Results 

There are a number of sources of variability in the results presented. 
First of all, there are sampling errors. To illustrate the meaning of this 
term, consider a large number of poles treated under fixed conditions 
and subjected to the same environmental conditions. Let Pt be the 
probability that a pole selected at random will be decayed at time t. 
If N poles are inspected at time t, and x of these are classified as de
cayed, then x/N is an estimate of Pt , and (x/N - Pt) is the sampling 
error. The absolute value of the sampling error may be expected to be 
reduced by increasing N. The abscissas of the points plotted on Figs. 
4 through 8 are subject to sampling errors; the ordinates are also subject 
to error, because the age of the poles is given only to the nearest year. 
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Incidentally, the age shown is measured from time of placement until 
inspection; the time from treatment until placement is also of im
portance, but is seldom known. 

There are also inspection errors. No two inspectors will consistently 
agree in their classification of the poles they inspect. As noted in Section 
II, our inspectors classified poles as (1) sound, (2) decayed but servicea
ble, or (3) failed. Cases of internal decay and incipient external decay 
may be noted by one inspector but not by another. It is also difficult 
to differentiate sharply between a badly decayed pole and a failed pole. 
How advanced should decay be before the pole is classed as failed? 
One can specify a proportion of the cross section that must be decayed 
before a pole is classed as failed, but measurements, particularly of 
internal decay, are crude. Errors due to differences between inspectors 
were minimized because most of inspections were by two Laboratories 
employees following the same general procedure. 

In obtaining an estimate of the per cent Pt of poles decayed at age t, 
it is not adequate to select for inspection a set of N poles of age t at 
random from the field. The difficulty is that those poles of age t that 
had been previously removed because of decay would be missing from 
the sample. For example, suppose 50 per cent of poles of age 40 years 
have been removed for failure due to decay, and suppose we select at 
random 100 of the remaining poles for inspection and find ten of them 
decayed - the proper estimate of per cent decayed at age 40 years 
is not -10

0
0 = 10 per cent, but rather t-b-% = 55 per cent. Of course, 

in practice the per cent of poles of the selected age that have already 
been removed for decay is generally unknown. To minimize this diffi
culty, the poles inspected in 1960 in representative parts of the country 
were in lines of 100 or more poles that were treated and placed in a 
selected year. Every remaining original pole was inspected, and the 
estimated per cent of nonsound poles is taken as (N d + Rd) / (N i + Rd ) 

where Rd is the number of replacements due to decay in the section of 
line inspected, N i is the total number of poles inspected, and N d is the 
number of inspected poles classed as either decayed or failed. Because 
the number Rd had to be obtained (estimated in some cases) from pole 
records, the choice of lines was restricted to those where reasonably 
complete histories were available. 

In some of the nonexperimental lines inspected prior to 1960 it was 
impossible to ascertain the number of poles in the inspection lot that 
had previously been removed for decay. For this reason, some of the 
estimates of per cent decayed shown in Fig. 7 may be too low. 
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V. DISTRIBUTION OF PHYSICAL LIFETIME OF CREOSOTED SOUTHERN PINE 

POLES 

5.1 Selection of Lognormal Distribution Function 

Section IV described results of inspections of selected groups of 
creosoted southern pine poles. From these results and other experience 
we would like to establish the nature of an appropriate lifetime distri
bution function. Then we can estimate parameters - generally average 
and standard deviation - that determine the particular equation to be 
used for a specific application. The parameters must reflect the influences 
of the factors, such as climate, that affect the physical lifetime distri
bution of the poles under consideration. 

Three common types of distribution functions that may prove of 
practical value in describing the physical lifetime distribution of creo
soted southern pine poles within the broad ranges of accuracy needed 
for setting up inspection schedules are: (1) normal, (2) lognormal, 
and (3) gamma (the exponential distribution is a special case of the 
gamma distribution). Fig. 9 illustrates the nature of these types of 
distribution functions, assuming an average lifetime of 40 years in each 
case. The top row of figures shows the density functions, which arc 

f(x) ~ {cxp - (x ;"21l)2} / V2 .. ", 

~ {exp (log ~,,- Il)'} / V2 .. X", and 

= {exp - AX} Ak+l xk/k!, 

respectively, for normal, lognormal, and gamma; fJ., u, A and k are 
parameters that are to be chosen to suit the application. The normal 
curve is symmetrical about its average value, fJ.. The probability that a 
pole will fail within X years is represented by the fraction of the total 
area under the curve that falls to the 'left of abscissa x. The second row 
of curves shows the fraction surviving, 

Sex) = 1~ f(x) dx. 
x 

That is, it shows at abscissa x the probability that a pole will survive 
beyond x years. The third row of curves shows the instantaneous failure 
rate, f(x)/S(x). This is the limit, as .6x approaches zero, of the prob
ability that a pole that has survived to x years will fail within the 
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interval between x and x + .1x. Later we shall be concerned with the 
six-year failure rate, which involves LlX of six years. The three types 
of distribution functions have different types of failure rate functions. 
The failure rate for the normal distribution increases monotonically and 
that for the gamma distribution approaches a constant, while the failure 
rate for the lognormal distribution increases to a maximum and then 
gradually decreases. Experience indicates that the failure rate functions 
of the gamma and lognormal distributions are considerably more realistic 
than that of the normal distribution. The normal distribution fails to 
account for the many long-lived poles observed in the field. If the 
failure rate of poles increased with age as indicated by the normal 
distribution, special attention should be given to poles as their ages 
passed beyond their expected values. 

While for purposes of choosing inspection intervals, either the log
normal or gamma distribution would prove suitable, there are reasons 
to believe the lognormal distribution provides a more realistic descrip-
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tion of failure rates of older poles. To explain why failure rates may 
decrease with age, we shall describe briefly some of the present thinking 
on the effectiveness of preservatives. 

When poles are treated, there is variation in effectiveness of treat
ment even among poles in a single treatment charge. As illustrated by 
Fig. 3, some poles absorb and retain more than others; also, the uni
formity of absorption may vary significantly around the circumference 
and along the length of a given pole. Let us assume for purposes of 
illustration that the amount of preservative retained in a selected 
cubic section near the surface of a pole is a good measure of the effective
ness of the treatment in deterring decay. Previous studies of the effec
tiveness of preservatives indicate that the expected life of a pole under 
fixed environmental conditions increases with increasing preservative 
content. Of course, there is an upper limit to the amount of preservative 
that wood can absorb. Further, depending on type of (1) wood, (2) 
preservative, (3) fungus, and (4) environment, there is a critical value 
of preservative content above which the wood is protected from that 
fungus. If, after the evaporation and migration that occurs with aging, 
the preservative content remains above the highest critical value (often 
referred to as the "threshold retention") for any fungus likely to be 
encountered, presumably the wood will never decay. Thus there is the 
possibility of a pole lasting indefinitely unless some new decay organism 
appears. It is primarily due to the existence of such poles that the log
normal distribution function appears to present a better description of 
pole lifetimes than either the normal or the gamma functions. Future 
results may indicate improvements over the lognormal distribution 
function in accounting for such poles. A recent book4 discusses the 
lognormal distribution and the nature of many of its applications. 

5.2 Fam1:ly of Lognormal Distribution Functions 

Once the lognormal distribution has been chosen to represent physical 
lifetime distributions, there remains the problem of selecting the ap
propriate parameters to use for a particular pole line. Two parameters 
are to be selected, and these may be thought of as determining the 
slope and an intercept of a straight line on lognormal probability paper. 
When two or more points are plotted on such paper to represent the 
per cent of failed poles found on two separate inspections of a given 
lot of poles, a straight line can be drawn through or near such points 
to represent the physical lifetime distribution. A single point will not 
suffice, and little confidence can be placed on a line drawn through a 
pair of points. Considerably more confidence could be placed in the 
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straight line if we knew its approximate slope, for example, or if ex
perience indicated that it was likely to belong to a particular family 
of straight lines. In these cases a single point would be of use. 

Fig. 10 shows on lognormal probability paper a family of parallel 
straight lines having slopes roughly the same as that of the line of Fig. 4 
through the Gulfport test plot data. These lines, which will be called 
Curves 1 through 6, are for purposes of illustration. If they represented 
physical lifetime distributions of poles in six different poles lines, they 
would indicate that these poles had median lifetimes of 10, 20, 40, 80, 
160, and 320 years, respectively. The averages are 1.87 times the median 
in each case. 

Fig. 11 shows the 6-year failure rate functions for the Curves 1 through 
6 of Fig. 10. Notice that the failures rates are slow to change. 

To illustrate the application of Figs. 10 and 11, consider the pole 
line from Asheville, N.C., represented on Fig. 5. Assume that the dis
tribution of tJ rather than td is represented in Fig. 5. This pole line would 
have characteristics somewhere between those represented by Curves 
4 and 5. Looking at Fig. 11, we would be led to expect about 4 or 5 
per cent of the poles surviving at 30 years to fail within the next six 
years. The median lifetime of these poles might be expected to be 
roughly 100 years, and, correspondingly, an average lifetime of 187 
years is indicated, based on the assumptions used. 

Considering the existence of sampling errors, the results shown on 
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Fig. 5 are remarkably consistent among themselves, and they provide 
some support for the use of a family of distributions such as represented 
in Figs. 10 and 11. Of course, allowances must be made for the differences 
between time td to the first appearance of decay and the time tf of 
failure. As a first approximation we might estimate that tf - td averages 
6 years in the South and 10 years in the North. A comparison of the 
results shown in Figs. 5 through 8 with Figs. 10 and 11 leads to the 
conclusion that median pole lines (half of the pole lines will be better, 
half worse) in Zones 1, 2, and 3, respectively, will have failure rates in 
the order of 0.5, 1.3, and 1.5, per cent per year, respectively. This 
conclusion played a prominent role in the design of the inspection 
schedule of Table 1. 

VI. SUMMARY 

An analysis of results of inspections of creosoted southern pine poles 
in test plots and in selected lines in the field indicates that their phYl:ical 
lifetime distribution appears to be adequately described by the lognormal 
distribution function. There is no evidence that the failure rate of 
these poles increases as they survive beyond their life expectancy; 
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indeed, there is reason to suspect that the failure rate may decrease, 
thereby supporting the contention that the lognormal distribution is 
suitable. 

If the lognormal distribution is appropriate, the average physical 
lifetime of these poles is considerably greater than commonly believed. 
One explanation of this is that some of the poles may "never fail." 
Because of lack of evidence concerning these poles as they reach an 
advanced age, extrapolation of results from the first thirty years of 
pole life must necessarily be made with restraint. For this reason, esti
mates of average physical life should allow considerable latitude for 
accuracy. Under this circumstance, a rule-of-thumb for such estimates 
that may prove useful is as follows: (1) Estimate the average annual 
failure rate of poles in the 30-50 year age bracket. (2) The reciprocal 
is an estimate of the life expectancy of these poles. lror example, suppose 
in a given area 10,000 poles in this age bracket were inspected and 
declared serviceable in 1950, and of these, 600 were declared to have 
failed by 1956. Then the failure rate is roughly one per cent per year, 
and an estimate of the life expectancy of these poles is (0.01)-1 = 100 
years. This rule-of-thumb will indicate in general that the life expec
tancy is well over 35 years. 

The results also support the observation that poles last longer in the 
North than in the South. Evidently this is due to a better environment 
for growth (length of growing season, annual rainfall, and average 
temperature and humidity are considered to be of primary importance) 
of wood-destroying fungi in the South. This fact leads to the require
ment of more frequent inspections in the South to maintain a given 
level of pole line quality. 
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Minimum-State Sequential Circuits for 
a Restricted Class of Incompletely 

Specified Flow Tables* 

By E. J. McCLUSKEY, JR.t 

(Manuscript received June 22, 1962) 

This paper is concerned with the problem of obtaining minimum-state 
sequential circuits for incompletely specified flow tables. Attention is di
rected to relay-type flow tables in which the only unspecified entries are 
those which occur because of restrictions on the allowed input-variable 
changes. For this type of flow table it is shown that a simplified version of 
the Unger-Paull procedure is sufficient. In particular, only maximum 
compatibles need be considered in forming the minimum-state sequential 
circuit. 

1. INTRODUCTION 

One of the classical problems of sequential circuit theory is that of 
obtaining a minimum-state sequential circuit satisfying the require
ments of a given flow table. When the flow table is incompletely speci
fied, the procedures for obtaining the minimum-state sequential circuit 
are lengthy and require such extensive enumeration that they are im
practical for computer implementation. This paper discusses a restricted 
type of incompletely specified flow table for which more efficient pro
cedures ean be devised. In particular, relay-type flow tables in which 
the unspecified entries all are present because of a restriction of the 
manner in which the inputs can change are considered. It is shown that 
for this type of flow table only the maximal compatibles or compatibility 
classes need be considered in forming a minimum-state circuit. 

II. BACKGROUND 

The problem of finding a minimum-state sequential circuit for an 
incompletely specified flow table has been discussed extensively in 

* This paper was presented at the International Symposium on Theory of 
Switching Systems and Finite Automata, Moscow, U.S.S.R., Sept. 24-0ct. 2,1962. 

t Department of Electrical Engineering, Digital Systems Laboratory, Prince
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previous papers. The results presented in these papers, particularly 
that of Paull and Unger,t are necessary for the results to be presented 
here. A brief summary of previous results assumed in this paper will be 
presented first. 

The usual approach to the study of minimum-state sequential cir
cuits involves consideration of which flow tables specify the same 
external behavior as a given flow table Q. Any flow table which does 
specify the same external behavior as Q is said to cover Q. The usual 
objective is to formulate a procedure for finding, for any flow table Q, 
a minimum-state flow table which covers Q. A formal definition of the 
covering relation among flow tables is: 

Definition. A flow table P is said to cover a flow table Q (written 
P :::J Q) if and only if, for each internal state qi of Q there is an internal 
state p j of P such that for any input sequence applied to both tables 
initially in states qi and pj respectively, the output sequences are iden
tical whenever the output of Q is specified. 

The definition is suitable for flow tables in which each next-state 
entry is specified but some of the output entries may be unspecified. 
There is no loss of generality in considering this class of circuits since it 
has been shown by Narasimhan2 that all flow tables can be placed in 
this form. This definition of a flow table covering another flow table 
induces a corresponding relation between the internal states of the two 
tables. 

Definition. An internal state Pi of a flow table P is said to cover an 
internal state qj of a flow table Q (written Pi :::J qj) if and only if, for 
any input sequence applied to P and Q initially in states Pi and qj, 
respectively, the outputs are identical whenever the output of Q is 
specified. 

If flow table P covers flow table Q and P has fewer states than Q, 
then one state of P must cover more than one state of Q. Whenever 
two states of a flow table can be covered by a single state of another 
flow table, the two states must have the following relation: 

Definition. 'Two internal states, qi and qj of Q, are compatible if and 
only if, for all input sequences, the output sequence which results when 
Q is initially in (ji is the same as the output sequence which results 
when Q is initially in (jj whenever both outputs are specified. 

Theorem 1. If internal state Pi of P covers both internal states qj and 
qk of Q, then slates qj and qk must be compatible. 

Lemma. If internal state Pi of P covers internal states qh , qh , '" qh 
of Q then slates qh , qh , ... qh must form a compatibility class; that is, 
each pair of the qh must be compatible. 
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It follows from this that if P ~ Q, then each state Pi of P must cover 
a compatibility class of the states of Q. In addition, the compatibility 
classes covered by states of P must have the closure property, to be 
described next. 

Definition. The input states of a sequential circuit will be represented 
by the symbols xo, x\ ... xv. The internal states of a sequential circuit 
will be represented by the symbols S1 , S2, '" Sr . 

Definition. The next-state entry specified by a flow table for input 
state x a and internal state Si will be represented by the symbol S(Xa,Sl). 

Definition. A collection of compatibility classes is said to be closed 
if and only if for each compatibility class {S1 , S2, ... Sm}, all of the 
states S(Xa,S1), S(Xa,S2) ... S(Xa,Sm) are included in a single compati
bility class in the collection. This must be true for all choices of a. 

Theorem 2. A flow table P covers a flow table Q if and only if: 
(A) each internal state of Q is included in at least one compatibility 

class of Q that is covered by an internal state of P, and 
(B) the compatibility classes of Q which are covered by internal states of 

P Jorm a closed collection. 
There is a procedure whereby for each closed collection of compati

bility classes of a flow table Q (with every internal state of Q included 
in at least one compatibility class) it is possible to obtain a flow table 
P which covers Q and which contains the same number of internal 
states as there are compatibility classes in the collection. Thus, a mini
mum-state flow table which covers a given flow table Q can be formed 
from a closed collection of compatibility classes of Q containing a mini
mum number of such classes. 

Satisfactory techniques for determining the compatibility classes for 
a given flow table are known. I Actually the maximal compatibility 
classes can be determined, and all other compatibility classes must be 
subclasses of these. Presently known techniques for obtaining minimum
state flow tables are inadequate because of the necessity for considering 
the inclusion of nonmaximal compatibility classes in the closed collec
tion used in forming the covering flow table P.I Each subclass of the 
maximal compatibility classes must be considered, and this number of 
subclasses can be prohibitively large. The necessity for considering non
maximal compatibility classes results directly from the closure require
ment. The object of this paper is to show that for a certain type of 
incompletely specified flow table it is always possible to use the maximal 
compatibility classes in forming a minimum-state flow table. For this 
type of flow table, the procedure for obtaining a minimum-state flow 
is very much simpler than in the general case. Moreover, the type of 
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flow table for which this result holds is the type most often encountered 
in actual design problems. 

III. TYPE A FLOW TABLES 

The following discussion applies specifically to flow tables for funda
mental mode operation.3 For the purposes of this paper, a circuit will 
be said to be operating in fundamental mode if no input is changed until 
after the circuit has "settled down," that is, until after all internal signal 
changes have stopped. This type of circuit operation is often referred 
to as "relay type" or "asynchronous."4 

It is customary to begin the design of a fundamental mode sequential 
circuit by writing down a primitive flow table - a flow table in which 
there is exactly one stable state in each row. For such a table it is pos
sible to associate one of the input states (columns of the flow table) 
with each internal state, since each internal state is stable for exactly 
one input state. 

Definition. Let P be a primitive, fundamental-mode flow table. Let 
SI

a
, S2

a
, ••• s,/ be the internal states of P which are stable for the input 

state xa
; s/, s/, '" s/ be the internal states of P which are stable for 

input state xf3, etc. 
It will be assumed that in a flow table each unstable next-state entry 

is followed directly by a stable next-state entry - no multiple changes 
of internal state are allowed. Whether a flow table is of the type con
sidered here, to be called Type A, depends on the mechanism whereby 
unspecified entries occur in the table. Specifically, a flow table is of Type 
A if the only unspecified entries are those which arise because of a re
striction on which input states can directly follow each given input 
state. 

Definition. A flow table is of Type A if and only if: (a) it is a flow table 
for fundamental mode operation; (b) it is a primitive flow table; (c) 
each unstable next-state entry refers to an internal state which is 
stable for the corresponding input state; and (d) the only unspecified 
entries are those which occur because of a restriction on the input states 
which can directly follow each possible input state. 

For fundamental-mode flow tables it is common practice to assume 
that only single changes of input variables are possible. Thus, the input 
state for which Xl = 0, X2 = 0, cannot be followed by the input state 
with Xl = 1, X2 = 1. If this restriction is the only source of unspecified 
entries in the table, then the table is of Type A. 

Part (d) of the above definition of Type A flow tables can be re
stated directly in terms of the pattern of unspecified entries in the table 
(rather than the mechanism by which they arise). In order to describe 
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this, it is convenient to assume that the rows in the table are partitioned 
so that all of the rows which are in the same partition are stable for the 
same input state and there is one partition for each input state. Ac
tually, if the outputs associated with the stable states are all specified, 
each partition need only include rows which are all stable for the same 
input state and have the same outputs associated with the stable next
state entry. Part (d) of the definition of Type A flow tables can be con
sidered satisfied if, whenever allY row has an unspecified entry for an 
input state xcx

, all other rows in the same partition also have unspecified 
entries for input state xu. This condition is actually somewhat more 
general than the condition (d) given originally, but the theorems are 
all valid for this more general condition. 

For Type A flow tables, the compatibility relation has certain prop
erties which are not generally satisfied for arbitrary flow tables. It is 
these special properties which form the basis for the simplified procedure 
to be derived here. 

Theorem 3. Let s/, s/, Sku, be three internal states of a Type A flow 
table P which are all stable for input state xu. If s/ and s/ are compatible, 
and s/ and Sku are compatible, then s/ and Sku are compatible. 

Proof. By the definition of compatibility, when any input sequence is 
applied to P the output sequence with P initially in s/ will be the same 
as the output sequence with P initially in Si

u whenever both outputs are 
specified. However, because P is a Type A flow table, whenever the 
output is specified for P initially in Si u, the output for P initially in 
s/ will be specified and vice versa. Similar remarks apply to states Si

u 

and Sku. Thus the output for P initially in s/ must always agree with 
the output for P initially in s/, and the output for P initially in Sku 

must always agree with the output for P initially in Si
u

• Whenever any 
one of these outputs is specified, all three must be specified; therefore 
the outputs for P initially in s/ and P initially in Sku must always agree. 
This shows that states .'{ / and Sku must be compatible. See also Ref. 4, 
pp. 183-185. 

Let the fact that two states p and q are compatible be written sym
bolically as p 0 q. Then for states satisfying the conditions of Theorem 3, 
the following properties must hold: 

(PI) s/ 0 s/ (reflexive) 
(P2) If Si

u 0 s/ then s/ 0 s/ (symmetric) 
(P3) If s/ 0 s/ and s/ 0 SkU, then s/ 0 SkU (transitive). 
A binary relation which satisfies these three properties is an equiva

lence relation.5 The important characteristic of an equivalence relation 
is that it divides the set of objects on which it is defined into disjoint 
(nonoverlapping) equivalence classes. 
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Theorem 4. Let P be a Type A flow table. Let Si a and s} a be two internal 
states of P which are both stable for input state xu, and let s/ be an in
ternal state of P which is stable for input state xf3. If s/ and s/ are com
patible, and Si

u 
and s/ are compatible then s/ and s/ are compatible. 

Proof. For any input sequence, the outputs for P initially in s/ and 
for P initially in s/ must be identical whenever both are specified. 
However, the output for P initially in s/ is specified whenever the 
output for P initially in s/ is specified, and these outputs must always 
be the same. Thus, all specified outputs for P initially in s j U are the 
same as the corresponding outputs for P initially in s/, and the s/ 
outputs are the same as the outputs for P initially in s/ whenever both 
outputs are specified. It follows from this that the outputs for P initially 
in s/ and for P initially in s/ must be the same when both are specified 
and hence that s/ and s/ are compatible. 

Definition. A set of internal states of a flow table P is a maximum com
patibility class if and only if (i) every pair of states which are both in 
the set are compatible, and (ii) there is no other state of P not in the 
set which is compatible with all of the states in the set. 

Theorem 5. Let P be a Type A flow table. Let s/ and s/ be two internal 
states of P which are both stable for input state XU and which are compatible. 
Then any maximum compatibility set which includes Si U must also include 
s / and vice versa. 

Proof. Suppose that C is a maximum compatibility class which in
cludes s/. If there is any other state in C which is stable for input state 
xu, say SkU, then st and SkU are compatible and st and s/ are compati
ble. By Theorem 3, states Sku and s/ must then be compatible. Thus 
s/ is compatible with all states in C which are stable for input xu. 
Suppose that there is some state s/ in C which is stable for some input 
state {3 different from a. Then states st and s/ are compatible and 
states Si

u and s/ are compatible. By Theorem 4, states s/ and s/ must 
then be compatible. Thus state s/ is compatible with all states in C 
and therefore must be included in C. 

Theorem 6. Let P be a Type A flow table. Then any collection of maximum 
compatibility classes of P for which each internal state of P is included in 
at least one of the maximum compatibility classes is closed. 

Proof. Let {SI, 82, .•• Sm} be one of the maximum compatibility 
classes. Then if the collection of maximum compatibility classes is 
closed, all of the states S(xU,sd, S(XU,S2) ... S(XU,Sm) must be included 
in one of the maximum compatibility classes of the collection. Since 
P is a Type A flow table, all of the states S(XU,SI), S(XU,S2), ... S(XU,Sm) 
must be stable for input state xu. It has been shown that all pairs of 
these states must be compatible since {S1 , S2, ... Sm} is a compatibility 



SEQUENTIAL CIRCUITS 1765 

class. l By Theorem 5 any maximum compatibility class which includes 
the internal state S(Xa,Sl) must also include S(Xa,S2) ... S(xa,Sm)' 
The conditions of Theorem 6 assume that there is at least one maximum 
compatibility class in the collection which includes state S(Xa,Sl). There
fore there must be at least one class in the collection which includes 
all of the states S(Xa,Sl), S(Xa,S2), ... S(Xa,Sm)' From this it follows 
that the collection is closed. 

Theorem 7. Let P be a type A flow table. Then there is at least one 
minimum-state flow table Q which (a) covers P, (b) contains the minimum 
number of internal states for any flow table covering P j and (c) for which 
each internal state of Q covers a maximum compatibility class of P. 

Proof. There is at least one flow table - P itself - which covers P, 
and there must be at least one such table containing a minimum number 
of states. Suppose that R is a flow table containing a minimum number 
of states and covering P. If each state of R covers a maximum com
patibility class of P, the theorem is satisfied. Therefore suppose that 
each state ri of R covers a compatibility class Ci of P and that at least 
one of these compatibility classes is not maximal. Now form a new 
collection of compatibility classes by replacing each Ci by one of the 
maximal compatibility classes in which it is included. The maximal 
compatibility class which replaces Ci will be denoted as Mi . The col
lection of the Mi will (a) contain the same number of classes as the 
collection of the Ci , (b) include each state of P in at least one M i , 

and (c) be closed because of Theorem 6. It is thus possible to form 
from the Mi a new flow table Q which satisfies all of the conditions of the 
theorem. 

IV. EXAMPLE 

In order to illustrate the significance of the theorems, an example of 
a Type A flow table will be discussed. Table I shows a Type A flow table 
and the corresponding maximal compatibility classes. States 5 and 10 
are the only pair of compatible states which are both stable for the 
same input state. By Theorem 5, any maximal compatibility class 
which includes either of these two states (5 or 10) must include both of 
them. Inspection of Table I(c) shows this to be true. It follows from 
Theorem 6 that any closure requirements must involve only these two 
states, and Table I(b) shows this to be true. The formation of a mini
mum-row flow table which covers Table I(b) requires only that a 
sufficient number of maximum compatibility classes be chosen so that 
each internal state of Table ICa) is included in at least one maximal 
compatibility class. This problem is formally identical to the problem of 
choosing which prime implicants should be included in a minimal sum 
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TABLE I - A TYPE A FLOW TABLE 
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(c) Maximal Compatibility Classes 

A: 4,8,9 
B: 4,7, 8 
C: 4,5,10 
D: 1,3,6 

E: 2,3 
F: 2,5,10 
G: 1,5, 10 

~-xl 
8 9 

for a Boolean function. 6 Therefore, the same techniques can be used. 
Table II shows a "prime implicant table" for the maximal compatibility 
classes of Table 1. Each row of Table II corresponds to one of the 
maximal compatibility classes. Each column of Table II represents 
one of the internal states of Table 1. An X is placed in a cell of Table II 
if the maximal compatibility class corresponding to the row includes 
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TABLE II-PRIME IMPLICANT TABLE FOR THE MAXIMAL 
COMPATIBILITY CLASSES OF TABLE I 

Maximal Compati
bility Classes 

Internal States 
3 4 5 6 9 10 

*A x x ® 
*B ------X----- ®-X---
C x X x 

*D -X---X-- -- ® ------

E X X 

F X X X 

G X X X 

the internal state corresponding to the column. A sufficient number of 
rows must be chosen so that each column has an X in at least one of the 
chosen rows. It follows from this that rows A, B, and D must be chosen, 
since columns 9, 7, and 6 each contain only a single X. After A, B, and 
D have been chosen, only columns 2 and 5 do not contain an X in 
any of the chosen rows. This may be remedied by also choosing row F. 
Thus the collection of maximal compatibility classes A, B, D and F 
corresponds to a minimum-row flow table which covers Table lea). 
Such a table is shown in Table III. 

Inspection of Table II shows that columns 5 and 10 are identical. 
Any states which are compatible and are stable for the same input 
state will always have identical columns in the' prime implicant table" 
for maximal compatibility classes. It is therefore unnecessary to carry 
these states along explicitly. Each set of such states can immediately 
be replaced by a single state (this corresponds to Huffman's merging).4 
The sets of states which are "merged" in this step are exactly the sets of 
states which must be covered by single states of the new table in order 

TABLE III - A MINIMUM Row FLOW TABLE WHICH 
COVERS TABLE I(a) 

s 

(4,8, 9) A 

(4, 7, 8) B 

(1, 3, 6) D 

(2, 5, 10) F 

@,1 
-----

@, 1 

@,o 
------

B ,1 

@,1 
-----

@,1 
F , 0 

®,o 

@'O F ,0 D ,0 

A , 0 F ,0 @,1 

@'O F ,0 @'O 
D ,0 ®,o B , 1 
s,z 
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to insure that closure is satisfied. Thus, closure will always be satisfied 
as long as these sets of states are identified; i.e., either all members of 
the set are included in a compatibility class or all members are excluded. 

After the collection of maximal compatibility classes which correspond 
to a minimum-row flow table has been determined, states can some
times be removed from some of the classes. The advantage of removing 
states and thereby obtaining nonmaximal compatibility classes is the 
corresponding introduction of unspecified entries in the minimum-row 
flow table. Closure will still be satisfied as long as (i) only sets of states 
which were identified previously, or single states which cannot be 
identified with any other state, are removed; and (ii) each state is 
still contained in one of the remaining compatibility classes. This pro
cedure can be carried out until each state is included in only one of the 
compatibility classes. In Table III, this could mean the removal of 
states 4 and 8 from class B. 

CONCLUSIONS 

It has been shown that for incompletely specified flow tables which 
satisfy certain very common conditions, greatly simplified procedures 
for obtaining minimum-state flow tables exist. For this class of tables 
it should now be possible to develop computer programs which are 
guaranteed to work for tables with sufficiently large numbers of internal 
states so that hand techniques are not feasible. 
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Timing Errors in a Chain of Regenerative 
Repeaters, I 

By B. K. KINARIW ALA 

(Manuscript received July 16, 1962) 

The pulse displacenwnts produced by timing errors in a chain of regen
erative repeaters (using tuned-circuit timing filters) are represented by a 
linear transformation of the pulse displacements at the output of the first 
repeater. To facilitate the discussion of the general problem, the simpler 
case of periodic pulse trains is considered first. For this case it is shown 
that while the mean value tends to infinity, the central moments of the pulse 
displacel1lents remain bounded as the number of repeaters approaches 
infinity. Further results are obtained which show that all the moments of 
the spacing jitter remain bounded for an indefinitely long string of re
peaters. Finally, the misalignment in the jitter at any given repeater is 
represented by a simple expression which shows that the essential com
ponent in the misalignment is flat delay. 

The general problem of random pulse trains, infinite in length, is dis
cussed in Part II in this issue. The results obtained for the general case 
are quite different from those obtained fur the periodic case. The variance 
is unbounded in this case except for pulse trains with certain special re
strictions. The computational aspects for the evaluation of jitter accU1nula
tion will be discussed in a subsequent paper. 

1. INTRODUCTION 

In regenerative digital transmission systems, one of the important 
problems is that of maintaining the proper distance between the signal 
pulses. The problem becomes much more serious when the system con
tains a rather long chain of regenerative repeaters. Several aspects of a 
theoretical nature in connection with this problem have been discussed 
by Sunde,! Bennett,2 Rowe3 and Rice.4 

vVe study here the pulse displacements produced by tuning errors in a 
chain of repeaters using tuned-circuit timing filters. For simplicity, we 
shall consider the system free of noise, distortion, etc. 

1769 
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An idealized version of the physical system is a chain of repeaters 
with the input supposed to be a train of unit impulses. Each repeater 
is a device containing a resonant circuit which is excited by the incoming 
train of pulses. The response of the resonant circuit to the incoming 
signal will ideally consist of a sum of sinusoids and will pass upwards 
through zero at an instant determined by the resonant frequency of the 
circuit. This instant will coincide with the instant of occurrence of the 
pulse, if it occurs at all, when the resonant frequency is identical with 
the pulse repetition frequency. The repeater does its "repeating" by 
sending out a unit impulse, at the instant the response of the tuned
circuit passes upwards through zero, provided the input signal has a 
pulse at or near the same instant. If there is no pulse in the input, no 
pulse is sent out. 

Due to tuning error, the tuned circuit in a practical repeater would 
resonate at a frequency somewhat different from the pulse repetition 
frequency. Further, the impulse response of the circuit is more truly a 
damped sinnsoid. These considerations show that the positions of the 
pulses sent out by a practical repeater are somewhat displaced from the 
true positions of the pulses in the original pulse train. 

Actually the system consists of a chain of repeaters. We are thus led 
to a consideration of the statistical properties of the pulse displacements 
produced in a random pulse train by the combined effect of mistuning 
in each successive repeater. Of particular concern is the behavior of 
the pulse displacements as the number of repeaters gets larger and larger. 
It is to this question that we attend. 

We begin our discussion by a mathematical statement of the problem. 
We show that the pulse displacements at the output of a chain of 
repeaters may be represented by a linear transformation, in a Banach 
space, of the pulse displacements at the output of the first repeater. 

The linear operator (or, the linear transformation) becomes un
bounded, in the limit, as the number of repeaters gets indefinitely large. 
From this follows the result that the average value* of the pulse dis
placements increases indefinitely as the number of repeaters approaches 
infinity. 

The behavior of the variance, as well as the other central moments, 
of the pulse displacements is investigated by considering a suitable 
projection, when it exists, in the Banach space. When the domain of 
the above linear transformation is a linear manifold obtained by the 
desired projection, we find that the linear operator is bounded. Conse-

* All averages are taken over the values of the pulse displacements. No averages 
over the mistunings should be compared with the results obtained here. 
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quently, all the central moments of the pulse displacements are shown 
to remain bounded as the number of repeaters approaches infinity. 
When the above-mentioned projection does not exist, the central mo
ments are shown to be unbounded. 

Practical situations call for a determination of the bounds on the 
central moments when the number of repeaters is finite. In such cases, 
the input pulse trains may be assumed to be periodic pulse trains with 
the period much larger than the time constants of the timing filters. 
The problem reduces to a linear transformation in a finite dimensional 
vector space. The central moments are bounded and they can be pre
cisely evaluated. A simple procedure to determine these bounds is 
developed. 

The same analysis can be directly applied to an investigation of the 
so-called "spacing jitter," or variations in the spacings between virtual 
pulse positions. Similar results are obtained for both a finite and an 
infinite number of repeaters in the chain. 

We shall also have occasion to remark upon the "misalignment noise" 
which is the jitter introduced, by the nth repeater, in an already jittered 
pulse train coming into the same repeater. 

Finally, in a subsequent paper we shall discuss the computational as
pects for the evaluation of jitter accumulation in a long string of re
peaters. 

Organization of the paper is as follows. We start with the statement 
of the problem in completely general terms and express it as a linear 
transformation. Next, to facilitate the discussion of the general prob
lem, we consider the simpler case of a periodic pulse train. In Part II of 
the paper, * we consider the general case of a completely random pulse 
train. 

II. STATEMENT OF PROBLEM 

The input to the chain of repeaters is supposed to be a train of unit 
impulses which occur, if they occur at all, at the instants 

{ ... , -2r, -r, 0, r, 2r, ... }. 

The occurrence or nonoccurrence of a pulse at time t = -nr is deter
mined by the value of the random variable an . If an = 1, which happens 
with a given probability, a pulse is present. If an = 0, no pulse is pres
ent. 

The resonant circuit in the repeater is excited by the incoming train 

* Part II of the paper appears in this issue, p. 1781. 
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of pulses. The response of the circuit to a unit impulse at time t = 0 is 
assumed to be 

e -ut sin wot, 
t > ° (1) 

where WOT is almost 27r but, due to tuning error, misses its desired value 
by 

(2) 

Here iT = l/T is the pulse repetition frequency. The decrement (I is 
related to the Q of the circuit by (IT = 7r/Q. 

The response of the resonant circuit to the incoming pulse train will 
consist of a sum of terms of the form (1) and will pass upwards through 
zero at an instant near t = (-nT), say at t = (-nT + tn). The re
peater sends out a unit impulse at the instant ( -nT + tn) if the input 
signal has a pulse near ( - nT ). If there is no pulse in the input, no pulse 
is sent out. The response of the resonant circuit still goes through zero, 
and we can say that there is a "virtual" pulse displacement of amount 
tn seconds (or of 27rtn/ T radians). 

For a chain of repeaters, we assume that all of the resonant circuits 
have the same Q but that their mistunings E01 , E02 , ••• are distributed 
independently and at random. Let ~k I be the displacement of the kth 
pulse (originally entering the first repeater at t = - kT) as it comes out 
of the lth repeater where l = 1,2, .... The displacement ~kl is measured 
in radians, where 27r radians corresponds to the pulse interval T. The 
superscript l signifies the output of the lth repeater. The mistuning in 
the resonant circuit in the lth repeater is represented by EOl • When we 
assume that Q is very large and the mistunings EOZ are much smaller than 
(IT = 7r/Q radians, we are led to a set of equations which relate the pulse 
displacements out of the lth repeater to those out of the (l - 1 )th re
peater. These equations are 

00 

L an+kf3n(~n+kl-l + 1Uz) 
n=O 

(3) 

(l = 1,2,3, ... ; k = 0,1,2, ... ), 

where f3 = exp (-(IT) ~ 1 - (7r/Q) is a number slightly less than unity. 
The initial conditions are that the pulses entering the first repeater 
have zero displacement, i.e., 

~kO = 0, k = 0,1,2, .... (4) 
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These equations are given by Rowe3 and also by Rice.4 Here we have 
followed their terminology very closely. 

The physical problem dealing with a chain of repeaters is now re
placed by the mathematical problem of studying the behavior of the 
variables ~k I defined by the above equations. The an'S and ds are either 
given explicitly or are random variables whose distributions are known. 

III. LINEAR TRANSFORMATIONS 

We note that the set of equations in (3) is a linear set, and we can 
express it as a linear transformation of the set of variables {hi-I} into 
the set {hi}. We are, however, primarily interested in the behavior of 
{~k I} when I is large and when no knowledge of {~k I-I} is available. A 
more useful expression is obtained by rewriting (3) as 

(5) 

where 

(6) 

In our formulation, zero mistuning does not introduce any jitter in a 
jitter-free pulse train. We will therefore understand the chain to start 
with a repeater having non-zero mistuning. 

Equation (5) can be used to express {hi} as a linear transformation 
of {~/}. To do this, define a matrix (infinite) 

r~ ad3 a2{J2 

80 80 80 

I 0 
al (i2{3 a3{32 

T= 
I 

81 81 81 (7) 

a2 (i3{J 

l~ 
0 

"""J 
82 82 

'where 
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00 

Si = L (in+i{3n; 

and define a vector 

Then (5) becomes 

El 
Xl = TX l - I + -Xl; 

EI 

From (10) it follows that 

n=O 

(XO = 0), (l 1,2,3," .). 

(TO = I). 

(8) 

(9) 

(10) 

( 11) 

One can, if need be, discuss the behavior of (11) in the above form. 
However, the E'S are usually of the same order of magnitude, and the 
equation is considerably simplified by assuming that the E'S are iden
tical. * Then 

X'+l = [t, T'] Xl. (12) 

We are interested in the problem when l becomes indefinitely large~ or, 
dropping superfluous subscripts, 

Y = lim [t TV] X. 
l-+oo v=o 

(I3) 

Here X and Y represent the pulse deviations out of the first repeater 
and out of the (l + l)th repeater, respectively. 

The original problem is now represented as a linear transformation of 
X into Y. The linear transformation, when it exists, is a function of 
another linear transformation T. The domain, as well as the range, 
of the transformation T is a Banach space, as will be shown in Part II. 
Here, we pursue the simpler case of a periodic pattern. 

Whether the variance is bounded or not is not a particularly impor
tant question for the periodic case. Such a question can be answered 
by a very simple argument. However, we give here instead a complete 
analysis of the periodic case. Our purpose in doing so is twofold. First, 
the analysis shows how certain basic properties of the operator T in
fluence the questions of boundedness of the jitter; it also gives a simple 

* We shall discuss elsewhere the difference, if any, in the results when we do 
not make this assumption. 
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computational procedure for evaluating the accumulated jitter. Second, 
the analysis serves as a simple introduction to the more complex argu
ment pursued in Part II. 

IV. PERIODIC PULSE TRAINS 

We assume here that the an's form a pattern which repeats itself 
with a period m. The pattern is otherwise arbitrary. In such cases, the 
pulse displacements are also periodic with the same period m. Then, 

an +m = an 
h+ml = hl 

for all values of indices nand k. 

(14) 

The domain of the operator T is thus an m-dimensional space. Since 
an +m = an , the range of T is also of dimension m. The problem reduces 
to the study of a linear transformation in a finite dimensional space. 
The operator T is now represented by a finite matrix A. 

A= 

r ao ad3 (im_lllm-l 1 
So' So' So' 

ao/3m-l a1 a
m

_
1
/3m-2 

~I 
S( Sl' Sl' 

J l8~' (1m-l 

Sm-l 
, 

(15) 

where 

(16) 

For the periodic case, (13) becomes 

(17) 
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where we continue to' use the same symbols X and Y to represent the 
finite dimensional vectors. 

In order to investigate the limit of (17), one must determine the 
behavior of the infinite series and its convergence properties. Moreover, 
if the limit does not exist, the question to be answered is whether or not 
the variance of Y has any limit. Other central moments may also be of 
interest. 

In what follows, we show that the limit of (17) does not exist. This 
implies that the mean of Y is infinite. However, we shall show that the 
central moments always exist for any arbitrary m. We assume through
out this paper that averages over the sample values* are statistically 
identical to the averages over the ensembles. 

A discussion of the properties of the linear transformation defined by 
(17) involves the study of a function of the matrix A. In order to discuss 
such a function, one must have a knowledge of the spectrum of the 
matrix. We study the spectrum of A in the next section. 

V. SPECTRUM OF A 

In this section, we prove the following theorem. 
Theorem: The spectrum of A consists of two parts: 
1. The maximum eigenvalue is located at A = 1, and it is simple; 
2. All other eigenvalues are such that their modulus is less than unity, 

i.e., I Ai I < 1. 
Proof: Observe that A is a stochastic matrix since the sum of each 

row is equal to one and all the elements of the matrix are nonnegative. 
Thus, A = 1 is indeed an eigenvalue with eigenvector {I, I, ... , I}. It 
also follows that the entire spectrum of A is contained in the unit disk 
I A I ~ 1. This can be observed in a simple manner by considering powers 
of matrix A and noting that the trace of A n does not exceed m, the 
order of the matrix A. If there were any eigenvalue for I A I > I, one 
could find a large enough n such that the trace of A n would exceed m. 
(We do not worry about cancellation because we can always choose 
the proper n to prevent this.) Hence, there are no eigenvalues outside 
the unit disk. 

Next, we wish to show that there are no other eigenvalues (A ~ 1) 
with modulus equal to one. We obtain a matrix equivalent to A by 
means of elementary transformations of interchanging rows as well as 
the corresponding columns. The eigenvalues of the matrix are invariant 

* The values of the pulse displacements are referred to as the sample values, 
and the ensemble is the set of admissible sequences of pulse displacements. For 
justification of the above assumption in the general case, see Bennett, op. cit. 



TIMING ERRORS, I 1777 

under such operations. We obtain a matrix of the form 

[

AI 
B= 

C 
(18) 

where A' is a square matrix all of whose elements are positive and D 
is a square null matrix. Only the eigenvalues of A' need be considered. 
To A' we apply Perron's theorem which, for a stochastic matrix with 
all elements positive, states that: the extremum eigenvalue is located 
at A = 1; it is simple; and its modulus exceeds the moduli of all other 
eigenvalues. Q.E.D. 

VI. MEAN, VARIANCE, ETC. 

The solution to (17) can now be expressed in terms of the basis vectors 
of A in the form 

1 m 

Y = lim L: L: Ap." ap.X(p.) , (19) 
z-+oo ,,=0 p.=1 

where, X(p.) is the eigenvector of A corresponding to the eigenvalue 
AI' of A. The coefficients ap' are the expansion coefficients in 

X = L: (Xp.X(p.). (20) 
p. 

We have assumed, for the present, that A is of simple structure. There 
are no significant changes in the development when such an assumption 
is not made. We shall discuss this matter a little later. 

In the previous section it has been proved that the extremum eigen
value, say Al , is simple and is located at Al = 1. The rest of the eigen
values are strictly inside the unit circle. The mean value of Y is seen to 
approach infinity by considering only those terms that involve Al = 1, 

(21) 

where, X(l) = {I, 1, ... , I}. 
The first term in (21) is a divergent series and Y approaches infinity 

as the number of repeaters increases indefinitely.* The behavior of the 
central moments is investigated by considering 

[Y - Y] = t (~) [X(p.) X(p.)]. (22) 
p.=2 1 - Ap. 

* The statement is valid, in general, provided £Xl ~ O. We need only show that 
there exists at least one X such that £Xl ~ O. Consider a pulse train with all pulses 
present; then X = a l X(1) with £Xl ~ O. 
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The value of [Y - Y] is finite since I Ap. I < 1. All ~owers of [Y J'] 
are finite and [Y - Yt will also be finite. We thus see that all the cen
tral moments, including the variance, are finite. 

Now we consider the case when the structure of A is not simple. The 
only difference in this case concerns the vectors corresponding to eigen
values other than Al . Let us, for simplicity, consider the basis vectors 
that correspond to an eigenvalue Ap. of multiplicity two. Similar develop
ments can be carried out when the multiplicity is greater than two. 
The normal form of A would have a Jordan block 

[
AP. 1J 
o Ap. 

(23) 

It is well known that there exist two linearly independent vectors 
XI(p.) and X 2(p.) such that 

AXt'P.) = Ap.X1(P.) 

AX
2

(P.) = Ap.X
2

(P.) + XI(p.). 
(24) 

The vector Xl (p.) is an eigenvector of A and is transformed in the same 
manner as the vectors X(p.) are, and it yields for Ya term of the form 

(~)X(p.) 1 - A ]. p. 

On the other hand, when A V operates on X 2 (p.) it yields 

AVX/P.) = A/X
2

(P.) + JJAp.v-1XI(P.). 

Thus X2 (p.) contributes to Y a term of the form 

ct..' ~ A'X2'" = ct..' [t, "),;X2'"' + t. V"),:-IXI"'J, 

= ,[·(_1 ) X (p.) + (_1 )2 X (P.)J 
(Xp. 1 _ A 2 1 _ A I , p. p. 

since I AJ.I I < 1. 

(25) 

(26) 

(27) 

The terms due to the basis vectors of A corresponding to Ap. are shown 
to be bounded, and our results on the boundedness of the central mo
ments remain valid regardless of the structure of A. 

VII. SPACING AND MISALIGNMENT 

Sometimes a more useful measure of jitter is the spacing jitter, which 
is defined as the deviations in the spacing between adjacent pulses or 
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pulse positions. This is obtained by taking the difference of the ad
jacent pulse position deviations. To do this operationally, let us define 
an operator S which shifts the elements in the vector Y such that the 
kth element appears as the (k - l)th element and the first element 
appears as the mth element. 

0 1 0 0 

~l 0 0 1 0 

S= (28) 

O. 0 0 0 0 

~J 1 0 0 0 0 

The spacing jitter Y s can then be represented in terms of the timing 
jitter Y by 

Y.~ = [1 - SlY. 

By using (19) and (29), we have 
I m 

Y s = lim L L A/a}l[1 - S]X(}l). 
l~oo v=O }l=l 

The operator [1 - S] annihilates X(I) and we obtain 

Y s = f: (~) [1 - S]X(}l). 
}l=2 1 - A}l 

(29) 

(30) 

(31) 

The spacing jitter is finite for all sample values, and so the mean and 
all other moments of this jitter are finite. * 

N ext, we briefly consider the misalignment which is defined as the 
difference between the timing errors at the output and at the input of 
a given repeater. The representation of the misalignment in the (l + 1 )th 
repeater is given, in the periodic case, by modifying (12) to a finite 
dimensional one and obtaining 

[XI+1 - Xl] = A lXI, (32) 

where, X k represents the jitter at the output of the kth repeater. 
Equation (32) implies that the misalignment essentially amounts to a 

flat delay as l gets larger. Indeed, there is virtually no difference in the 
misalignment for different repeaters when the values of l are reasonably 
large. 

* For periodic pulse patterns, this is intuitively obvious. 
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VIII. CONCLUSION 

The general problem of timing errors in a string oLrepeaters has been 
expressed in terms of certain linear operators and functions of these 
operators. The simpler case of periodic pulse patterns is then studied in 
detail. We have shown, for the periodic case, that the mean value of 
jitter accumulation in a string of repeaters increases indefinitely but 
that the central moments of the jitter remain bounded. In fact, the 
divergence of the mean value for the infinitely long string stems from 
the accumulation of the fiat delay occurring in each repeater. Once this 
fiat delay is eliminated, the remaining part of the jitter is bounded. 
Consequently, all the central moments are bounded. All the moments 
of the spacing jitter are bounded for identical reasons. The misalign
ment behavior is also explained by the dominance and the invariance 
of the fiat delay. 

The question of evaluating the jitter accumulation will be discussed 
in a subsequent paper. We will show there that the spectrum of the 
operator A can be determined fairly simply even for very large periodic
ity. No polynomials of high degrees need be solved to determine the 
eigenvalues. We shall also discuss the computation errors involved in 
periodic approximation versus those involved in truncation of the 
infinite pulse train. 

The general case of random pulse trains with no periodic structure 
will be examined in Part II. We shall have occasion to thoroughly 
examine the operator T. Since we shall be concerned with infinite 
dimensional space, the spectral properties of T are not so easy to de
termine. We shall compare the spectral properties of T with those of A 
in order to delineate the difference between the two cases. 
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Timing Errors in a Chain of Regenerative 
Repeaters, II 

By B. K. KINARIW ALA 

(Manuscript received July 23, 1962) 

The behavior of the tinting jitter in a long chain of repeaters is shown to 
depend on the spectral properties of a linear operator which maps the space 
of bounded sequences into itself. As the number of repeaters increases indefi
nitely, so does the mean value of the jitter. The variation about this l1wan 
value remains bounded only for certain highly constrained pulse trains 
(e.g., periodic, finite, etc.), but it is otherwise unbounded. 

1. INTIWDUC'l'ION 

We showed in a previous discussion that the pulse displacements 
at the output of a chain of repeaters may be represented by a linear 
transformation of the pulse displacements at the output of the first 
repeater. * The linear transformation turns out to be a simple function 
of a basic operator T which, in essence, represents the action of the 
repeater on the incoming jitter. Though the operator T depends di
rectly on the manner in which the repeater extracts its timing informa
tion from the incoming pulse train, it is believed that there would be no 
basic difference in the major results obtained or in the method of analy
sis for different timing extractors. We have assumed that the timing 
information extractor is a tuned circuit with a finite but fairly high Q 
and the source of jitter is the mistuning in the tuned circuit. Other 
sources of jitter often lend themselves to a similar mode of investigation. 

The rest of the discussion in Part I concerned the class of periodic 
pulse trains. The problem reduces, in such cases, to a consideration of 
linear transformations in a finite dimensional space. For a periodic 
pulse train with period m, it was shown that the variance of the jitter 
remains bounded for an indefinitely long string of repeaters. 

* We shall assume that the reader is familiar with the contents of Part I of 
this paper: B. K. Kinariwala, Timing Errors in a Chain of Regenerative Repeaters, 
I, this issue, pp. 1769-1780. 

1781 
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Unfortunately, the above results do not let us draw any conclusions 
for the behavior of the variance when the pulse train is not periodic, 
but infinite, in length. For example, if there existed a bound 1.1, on the 
variance, which was not a function of m, then we can let the period 
become infinite and conclude that the variance was bounded for the 
indefinitely long random pulse train. However, it is not apparent whether 
1.1 is dependent on m or not. The value of the variance is determined 
by the number of eigenvalues of the pertinent operator, their location, 
and the algebraic signs of the corresponding eigenvectors. It seems 
reasonable, therefore, that the bound on the variance is a function of the 
period m. The behavior of this function as m approaches infinity will 
determine whether the variance is bounded in the nonperiodic case. 
We do not pursue the matter in this direction because it is not easy to 
express the above function in a simple manner. 

Instead, we investigate the general problem directly in the infinite 
dimensional space. We establish that the basic operator T maps the 
llormed linear space Ip into Ip for 1 ~ p ~ 00. Next, we show that the 
domain of T for our problem is the space 100 '* We determine the condi
tions under which the variance is bounded, and we conclude that there 
is no bound on the variance of the jitter for the random (infinite) pulse 
train. The conclusion remains valid for any specification of dependence 
or independence of the random variables an which take on the value 
one if a pulse is present at time t = (-nr), but they are zero otherwise. 
Even a bound on the maximum number of successive zeros in the pulse 
trains does not seem to alter our result. Only when the operator T is 
restricted to a finite dimensional space does the variance remain finite. 
Such a restriction occurs for finite pulse trains, periodic pulse trains, 
llonperiodic pulse trains which eventually take on a periodic behavior, 
and so on. 

The organization of the paper is in the nature of a proof with digres
sions. Though these digressions are extraneous to the discussion of the 
boundedness of the variance, they do serve to bring out some interest
ing points. We begin with the mathematical statement of the problem, 
which includes certain modifications of the previous statement. Next, 
we examine the elementary operator T and its properties such as bound
edness, domain, and spectrum. We then proceed to the discussion of 
whether the variance of the jitter is bounded or unbounded. We close 
with a brief discussion of the results. 

* The space I", is a normed linear space which is complete. Hence, it is a Banach 
space. 
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II. STATEMENT OF PROBLEM 

The purpose of a restatement of the problem here is to make certain 
desirable modifications. We also refer to a possible alternate formulation 
which, except for an occasional observation, we shall not pursue. 

We are interested in studying the behavior of the equation 

Y = lim [± TV] X, 
1-+00 v=o 

(1) 

where X and Y represent the input and output jitter vectors, respec
tively, for a long chain of repeaters. By input jitter we mean input to 
the second repeater in the chain, and it is understood that the input to 
the first repeater is a jitter-free pulse train. The linear operator T 
represents the action of the repeater on the incoming jitter, and we shall 
describe it presently. The simple form of (1) is obtained by assuming 
that the mistunings, which appear as coefficients in the power series in 
T, are identical. This assumption does not alter the convergence prop
erties of the relevant limit since the mistunings are of the same order 
of magnitude. * 

The operator T in our previous discussion was obtained under the 
assumption that the jitter is observed in the neighborhood of time t = 0 
with the pulse train extending back in time towards t = - 00 • We 
included in our description of T, X and Y the pulse position deviations 
regardless of whether a pulse was present or not. The operator Twas 
defined by the matrix 

ao C'td3 C't2{32 

oool 
So So So 

a1 C't2{3 
T= 0 "'1, (2) 

Sl Sl 

0 
00 oj 
... 

where C'tn = 1 if a pulse is present at t = -nr and equal to zero other
wise; {3 is a positive number slightly less than unity ({3 ~ 1 - (7r/Q)); 
and 

Si = L C'tn +i{3n. (3) 
n=O 

* The question of convergence should not be confused with the question of 
boundedness of the resulting operator or of the operator T. 
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When an = 0, all the elements in the nth column of T are zero. As 
we observed in the periodic case, we can eliminate these columns and 
the corresponding rows without in any way affecting the results. Phys
ically, this amounts to a consideration of jitter only at those positions 
where pulses were present in the original pulse train. With these minor 
changes, we represent T in the following manner. 

r}' f3i 1 f3i1 +i2 

So ----s;-
T= 1 f3i 2 

0 
SI SI 

l·· . 
(4) 

where 
co n 

So = 1+ L II f3 i., (5) 
n=1 v=1 

and 

Sn-l = 1 + f3in S n . (6) 

Vectors X and Yare also assumed to be suitably modified. 
Though we are not concerned with it, we take note of the fact that an 

alternate formulation of the problem is possible by assuming that the 
pulse train starts at time t = 0 and extends towards t = + 00. There 
are many disadvantages in such a formulation and we mention it here 
only for completeness. The operator of interest in this case takes the 
following form. 

I s~+ 0 0 . "l 
= I ~:~ 

1 
0 

T2 SI+ 

l~~~i' 
f3 t2 1 

S2+ S2+ 

(7) 

where 

So+ = 1, (8) 

and 

Sn+ = 1 + f3 in S(n_l)+ . (9) 
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Referring back to (1), we are interested in determining whether the 
mean and the variation about the mean of Yare bounded or not. The 
averages are to be taken over the components of Y. For our purposes, 
we shall not be concerned with evaluating any averages. As shown in 
Part I, the dominant part of Y, the mean of Y, is the element repre
senting flat delay in the jitter Y. All we need to know is whether the 
dispersion (or, the spread) a bou t this flat delay remains bounded or 
not. Though this dispersion has some relation to the variance, it is not 
the variance. However, we shall continue to use the term variance for 
the dispersion about the flat delay. The relation between these quantities 
is shown in Part 1. lVloreover, the behavior of the dispersion also gives 
information about the spacing jitter. It also answers the question about 
the worst pattern. 

III. BOUNDEDNESS OF T 

We proceed now to examine the operator T to determine some of its 
important properties. It will be shown here that T is a bounded linear 
operator which maps the normed linear space Ip(1 ~ p ~ C/J) into 
itself. * 

Theorem: The norm of T (i.e., I T I ) on Ip is bounded for each p. t 
Proof: Define a diagonal matrix 

D = diag· {80-\ 8 1-\ 8 2-\ ••• }, 

and a matrix To such that 

T = DTo. 

Then, 

! T I I D'ro I ~ I D II 'ro I 
~ I To I, (I D I ~ 1), 

I I + diag· {f3it, 13\ f3i\ ... } 8 + diag· {f3i1 +iz, f3i 2 +t\ ... } 8 2 

+ "'1; 
* The space Ip is the linear space of all sequences x = {an} of scalars for which 

the norm I x I = I 1:"-1 I an I p}Ilp is finite. The norm for 100 is 

1 x I = Supn 1 an I· 
For precise terminology and definitions as well as a basis for many of the state

ments made and concepts used in this paper, the reader should consult: N. Dun
ford and J. T. Schwartz, Linear Operators - Part I: General Theory, Interscience 
Publishers, Inc., New York, N. Y.; 1958. 

t The bound or norm of T defined on a linear space x is the sup 1 Tx I, de
Ixl ::; 1 

noted by 1 T I. The operator T is bounded if 1 T 1 < 00. -
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here 

0 1 0 0 "'l S= 0 0 1 0 ... 

0 0 0 1 

"'J ... 

is defined on 1p with I S I = 1 for each value of p. Note that 0 < {3 < 1 
andiv ~ 1 for 11 = 1,2,3, ···.So 

I T I ~ I To I 
00 

~ L I ({3Sr I 
v=o 

1 
1 - I {3S I 

since I {3S I < 1. The norm of T is shown to be bounded for each p. 
As we shall see in the next section, the space 100 is of particular interest 

to us. The norm of Ton 100 is given by the supremum of the sum of the 
absolute values of elements in a row. Since T is a stochastic matrix, 
I T I = 1 when it is defined on 100 • 

IV. DOMAIN OF T 

It has been stated before that for our problem the domain of the 
operator T is the space 100 • This is not a separable space and, hence, it 
is not the most convenient one to work with. It must clearly be under
stood, therefore, that the problem is defined on this space not due to 
preference but out of necessity. In our discussion of this matter, we 
begin with some observations in physical terms about the domain in 
question. 

The operator T operates on the sequence representing the jitter at 
the output of the first repeater (or, the jitter input at the second re
peater). The domain of T must include the set of all jitter sequences 
at the output of the first repeater.* The nature of these sequences is 

* Here, we are concerned not with a specific operator but with the totality of 
the operators. 
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determined by two essential properties of the original pulse trains, viz., 
infinite length and random character. Since the pulse trains can be in
definitely long and completely random, the jitter sequences need not 
all converge to zero or to any other value. This conclusion is valid re
gardless of whether we consider jitter at all the possible pulse positions 
or only where the pulses are present. As a consequence of the above 
conclusion, and since the set of all the jitter sequences is certainly not 
a finite set, the domain cannot be any of the spaces 1p with p finite. It 
also follows that the domain cannot be either Co (the space of sequences 
converging to zero), or c (the space of convergent sequences). These 
are separable spaces and they are to be preferred over 100 if we are able 
to represent the problem in terms of anyone of them. However, the 
above discussion shows that this is not possible. 

On the other hand, if the jitter sequences are all bounded sequences, 
then the domain of T can be 100 . Obviously, the jitter sequences must be 
bounded in any realistic situation. In fact, the formulation of the prob
lem assumes that the jitter introduced by a single repeater is quite small 
compared to 27r radians. Thus, the jitter sequences are all bounded and 
the domain of T is lao . 

A more precise bound on the jitter sequences can be obtained quanti
tatively. The jitter sequences are defined by 

(10) 

where Sn are defined in (6) and Sn = (djd(3)Sn. The bound on any 
sequence of the above type exists, and it can be obtained by determin
ing the worst case as discussed by Aaron and Gray.* It is also clearly 
seen from (10) that the sequences need not all necessarily converge to 
zero (or, to any other value). We see now, in a precise manner, that the 
domain of T must indeed be lao . 

V. SPECTRUM OF T 

So far we have established that all the jitter sequences at the input 
of the second repeater are elements of the space 100 , and the operator T 
is a bounded operator defined on 100 with I T I = 1. We recall that the 
jitter accumulation in a string of repeaters is given in terms of a func
tion of the operator T. In order to determine the properties of a function 

* M. R. Aaron and J. R. Gray, Probability Distribution for the Phase Jitter 
in Self-Timed Reconstructive Repeaters for PCM, B.S.T.J., 41, March, 1962; 
pp. 503-558. 
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of an operator it is necessary to start with some knowledge of the spec
trum of the operator.* 

The operator 'P is represented by a triangular matrix. We wish to 
emphasize that, for an infinite triangular matrix, the diagonal elements 
are not necessarily the eigenvalues of the matrix. Equally important is 
the observation that the set of eigenvalues may indeed include elements 
which are not to be found on the main diagonal. t lVloreover, the spec
trum of 'P may also contain points other than those in the point spec
trum (i.e., the set of eigenvalues). Therefore, even though 'P is repre
sented by a triangular matrix it is not a trivial matter to determine its 
spectrum. 

Of course, 'P is a stochastic matrix and so A = 1 is an eigenvalue of 'P 
with the corresponding eigenvector Xo = {1, 1, 1, ... }. Some other re
sults also follow from the stochastic nature of T. '-IVe shall denote the 
spectrum of T by u( T). 

Theorem: The spectnlm of T is a subset of the unit disk (i.e., I u( T) I ~ 
1), and any pole A of T with I A I = 1 has order one. t 

Proof: The first statement follows immediately from the fact that 
I T I = 1. It is well known that for any A such that I A I > I T I the re
solvent operator (AI - T)-l exists. Thus, the spectral radius of T, viz., 
sup I u( T) I cannot exceed one. The spectrum is a subset of the unit disk, 
etc. 

In order to prove the second statement, it suffices to treat the case 
that A = 1 is a pole of T. Or else we treat a modified operator (T IA) 
with norm one for I A I = 1. Suppose that the order of the pole is at least 
two. Then there must exist an Xo E E(l; T)x, such that (I - T)xo ~ 0, 
but (I - T)2xo = o.§ Consider a function of T corresponding to f(A) = 
A n In in the neighborhood of A = 1. We obtain a relation of the form 

~ Tnxo = ~ Xo + (I - T)xo. 
n n 

Letting n -+ 00, we conclude that (I - T)xo = 0, which is a contradic
tion. Hence the poles of T which lie on the unit circle are simple poles. 

* The spectrum u(1') of T is the complement of pC']'). The resolvent set p(1') 
of T is the set of scalars A, for which (AI - T)-1 exists as a bounded operator with 
domain x, where x is the domain of T. The function R(A; T) = (AI - 1')-1, de
fined on p(T), is the resolvent of T. 

t We hope to discuss elsewhere these statements and their implications in 
greater detail and with reference to linear operators in general. 

t An isolated point Ao of u(T) is called a pole of ']' if R(A; T) has a pole at Ao. 
By the order P (Ao) of a pole Ao is meant the order of Ao as a pole of R (A; T). 

§ E(Ao ; 1') is a function of T which is identically one on a pole Ao of l' but 
which vanishes on the rest of u(T). Observe that E is a projection operator, i.e., 
E2 = E. The definition of E given here is a highly restricted one but it suits our 
purposes. 
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The next two theorems give us some more information about the 
spectrum. The first one shows that there cannot be a pole on the unit 
circle for A ~ 1. The second one concerns the dimension of the eigen
manifold corresponding to the eigenvalue A = 1. * 

Theorem: All points on the unit circle except A = 1 are in p( T). 
Proof: We already know that A = 1 is in u(T). We also know that 

any A such that I A I > 1 is in p( rp). To show that any A ~ 1 on the unit 
circle is in p( T), consider 

{Ao ~ 1, I Ao I = I}. 

If we can show that R(Ao ; rp) exists for all x in X with a bounded norm, 
we have proved the theorem. It is easy to verify that R(Ao ; T) may be 
expressed as shown in (11). 

R(Ao; T) = 

o 
• (11) 

o o 1 

Since Ao is a complex number, it follows that (Ao - Si-l) ~ 0 for any 
i. Next, we show that R(Ao ; T) is a bounded operator. Observe that 
the norm is given by 

I R(Ao ; T) I = sup L I aij I, (12) 
i j 

where, aij represents the element in the ith row and jth column of the 
matrix in (11), i.e., R(Ao ; T) = II aij II. 

Consider the resolvent R(AI ; T) for Al = (1 + €) with € > O. Ob
viously Al is in p( T) and I R(AI ; T) I < 00. We assert that, given any 
Ao , there exists an € > 0 such that 

I R(Ao ; T) I ~ I R(AI ; T) I < 00. (13) 

The validity of our assertion is proven by first noting that R(AI ; T) is 
represented by the matrix in (11) with Ao replaced by AI. Let R(AI ; T) = 
II bik II· Next we show that I aik I ~ I bik I, for all i and k, from which 
follows relation (13). Let Ao = cos () + j sin (), (j = v=I). Then 

* If A = 1 is a pole of T, this is the dimension of the range of proj ection E (1; T). 
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'i'a'mn'l = ,I ~ I,Cn-m-l) IT 'I Al - SV=: I, 
bmn Al v=m Ao - Sv 

n ~ (m + 1), 

n = m, 

for m = 0, 1, 2, .. '. In any case, for n ~ m, 

amn :::; II Al - v i i n is-II 
bmn - v=m AO - Sv- l 

since 

Consider a term of the form 

I ~i, AO - a 

where a = (1 - (1) is the lower bound on Sv- l
• Then 

I 
Al - a I I 1 + e - a I 
Ao - a = cos (j - a + j sin (j 

[ 
(1 + e - a)2 J! 

= 1 + a2 - 2a cos (j 

~ 1 

provided that 

i + 2e(1 - a) - 2a(1 - cos f)) ~ O. 

Since 0 < a < 1, the polynomial on the left side has one zero for e > 0 
and one zero for e < O. There exists, therefore, an e > 0 such that the 
above inequality is satisfied as long as (j ~ O. Since 

I 
S -11 I I Al - v < Al - a 

Ao - Sv- l = Ao - a ' 

~ 1, 

it follows that 

amn ~ II Al - v_I' 

I I
n I S-11 

bmn v=m AO - Sv 

~ I Al - a I n-m+l 

AO - a 

~1. 

I al1lll I = I bmn I = 0, for n < m. 
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The theorem is thus proved, and all the points on the unit circle except 
A = 1 are in the resolvent set p( T). 

It follows from the above theorem that there are no poles on the 
unit circle except possibly at A = 1. We know that such a pole, if it 
exists, must be of order one. The next theorem concerns the dimension 
of the eigenmanifold corresponding to A = 1. 

Theorem: There exists one and only one nontrivial element x E X such 
that Tx = x. 

Proof: It is apparent that Xo = {I, 1, 1, ... } is one such element. 
If there exists another element x ~ Xo (but, I x I = I Xo I ), then some 
of its components must be unequal. Let x = {~o, ~1 , ~2 , ••• }. Then 
there is some ~n ~ ~n+l • We will show that this is impossible. 

If Tx = x, it follows that [cf. (4)] 

and 

Substituting the second equation into the first we obtain 

Or, since from (6) 

we have a contradiction 

~n = ~n+l. 

This proves the theorem, and the eigenmanifold corresponding to A 
1 is of dimension one. 

The results obtained in this section about the spectrum of T are quite 
general and remain valid under any restriction of the domain 100 assum
ing, of course, that Xo is in such a restriction. The all-important question 
not answered in this section is whether or not T has a pole at A = 1. 
This is a crucial question indeed and, on the basis of the results already 
obtained, the answer determines the behavior of the variance of the 
jitter. We delay the discussion of the existence of a pole at A = 1 in 
order to first show its pivotal character. Next, we show that the existence 
of the pole depends upon a certain suitable restriction of the domain of 
T. These two points lead us to our final conclusions. 
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VI. BOUNDEDNESS OF VARIANCE 

Let us consider now what happens to the output jitter as the number 
of repeaters approaches infinity. We obtain the results, at first, under 
the assumption that T has a pole at A = 1. We discuss later the case 
where A = 1 is not a pole of 'P. 

Theorem: If A = 1 is a pole of T, then there exists a bound on the vari
ance of 

00 

y = [2: Tm]x. (14 ) 
m=O 

Proof: Let A = 1 be a pole of T. Then (J( T) may be decomposed into 
the union of a closed set (J, which lies inside a circle I Z I < ao < 1, and 
the simple pole at A = 1. Let us put El = E(l; T), ED = (I - E l) 
and D = TED'* The range of El is one-dimensional, and the iterates 
of T are given by 

T m = El + D m
, 

since for a simple pole at A = 1 

f( T)El = f( 1 )El , 

and 

(15) 

It also follows that (J(D) = (J + {O}, and so (J(D) is contained in the 
disk I Z I < ao for some ao < 1. From the definition of spectral radius, 
this implies that lim supm-+oo I D m 

1
11m < ao, from which it follows that 

for m ~ 1, 

(16) 

for some positive number M. 
Next, observe that the space X is a direct sum of subspaces Xl = Elx 

and XD = EDx, which are invariant under T since T commutes with 
El and ED. It follows from (15) and (16) that 

(a) Tx = x, for x in Xl ; 

(b) Tnx -7 0 exponentially fast, for x in XD • 

Every x in (14), then, is given by 

x = Xl + XD, 

where Xl = Elx and XD = EDx. The element Xl except for a constant 

* Observe that ED is also a projection operator since ED2 = ED . 
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multiplier is the eigenvector {1, 1, 1, ... }. Then 
n 

y = lim [2: Tm](Xl + XD). 
n~OO m=O 

Obviously, the mean of y increases indefinitely* since 
n 

fj = lim [2: Tm]X1 + fjD , (17) 
n~OO m=O 

where 

n 

YD = lim [2: Tm]XD. (18) 
n~OO m=O 

The first term on the right-hand side of (17) increases indefinitely, and 
so fj -> C(). The limit in (18) exists [cf. (16) and statement (b) above] 
and so 

[y - fj] = y D - Y D (19) 

is bounded. Hence, the variance is bounded, if X 1 is a pole of T, as 
was to be proved. The physical interpretations of this case are discussed 
in the concluding section. 

It must be observed that the bound on the variance is shown to exist 
for all elements x in x. Hence, the result is valid for the admissible ele
ments, viz., the jitter sequences. 

The boundedness of the variance is a consequence of the inequality 
(16). As a function of 0'0 , the bound varies as (1 - 0'0)-1 and increases in
definitely as 0'0 approaches one. Therefore, we ask whether infinity is, in
deed, the least upper bound on the variance when X = 1 is not a pole 
of T. We anticipate the results of the next section to state that there is 
no bound (finite) on the variance when 1 is not a pole of T. We first show 
that given any number .1.11, there exists an element x in x, such that the 
variance of y exceeds J.1II. Next, we show that there exist admissible ele
ments for which the same conclusion holds. 

VII. UNBOUNDED VARIANCE 

We show, at first, that X = 1 is not a pole of T in the general case. 
By the general case, we mean that the domain is not restricted in any 
way. 

Theorem: The point X = 1 is the limit point of the point spectrum of T. 

* As discussed in Part I, there exists at least one X such that Xl ~ o. 



1794 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1962 

Proof: We first determine the conditions that x must satisfy for Tx = 
AX. Let x = {~o, ~1, ••• }. Then, if Tx = AX, 

A~n = Sn-l~n + Sn -1{3in+l~n+1 + Sn-1{3(in+1 +in+2) ~n+2 + .. , 
and 

A~n+1 = Sn+1-1~n+1 + Sn+1{3in+2~n+2 + .... 
Substituting the second equation into the first, we obtain 

(A - Sn-l)~n = ASn-1Sn+1{3in+l~n+l • 

Or, since 

we have 

l: _ Sn - (l/A) l: 
.,n+1 - Sn _ 1 .,n , (n = 0,1,2, ... ) . (20) 

From (20) we note that when A = Sn-
1 we obtain an eigenvector X with 

(n + 1) nonzero elements ~k(k = 0,1, "', n). Hence, if the diagonal 
elements Sn-1 approach one as n --+ 00, then A = 1 is a limit point of the 
set of eigenvalues. However, of greater physical importance is the case 
when the number of successive zeros in the admissible pulse trains has 
a finite upper bound. In such cases, the diagonal elements have an upper 
bound less than unity, i.e., 

(21) 

Even in these cases, there exists an eigenvector X for every A such that 
a < A ~ 1. We obtain the vector X from (20), starting with ~o = 1. 
Since Sn-

1 < A ~ 1, we find that the sequence {~n} is a strictly decreas
ing sequence, i.e., 

o ~ ~n+1 < ~n ~ O. 

The sequence x = {~n} converges to zero, and hence it is a member of 
the space Co and has norm one. A simple substitution of x, obtained 
from (20), into the equation Tx = AX shows that X is indeed an eigen
vector. Since an eigenvector x exists for every A such that a < A ~ 1, 
the point A = 1 is the limit point of the point spectrum of T. The proof 
is complete and A = 1 is not a pole of T. 

It immediately follows that when all x in X are admissible elements, 
there exists no bound on the variation of y about the flat delay. If it 
does, let "AI be such a bound. Then we can always find an eigenvector x, 
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corresponding to a /..1 > lX, such that (1 - /..1)-1 > ill. Since Xl is a mem
ber of Co , the fiat delay in the jitter is zero. The dispersion is given by 

VI ~ C ~ x) Xl; 

and 

1 Yl 1 > 1v[ 1 XII, 

which is a contradiction. Hence, there is no bound, etc. 
To show that the same conclusion holds when the admissible elements 

X are the jitter sequences, we need merely show that there exists an 
admissible jitter element X in Co such that (x - Xl) is nonnegative, i.e., 
nonnegative elements in the sequence (x - Xl)' Then, since all elements 
of T are nonnegative, 1 Tx 1 ~ 1 TXl 1 > J.111 Xl I. Such an element X can 
be constructed easily by letting all pulses be present for a long enough 
time and then letting one of the pulses be absent, after which there is 
a string of alternating pulse and space, and then two pulses are absent, 
and so on. The sequence X for this case is a member of Co since the jitter 
will ultimately approach zero. The elements of X are assuredly greater 
than those of Xl provided we make the string of pulses long enough 
between spaces. * 

Similar conclusions are valid when the number of successive zeros in 
the original pulse train does not exceed a specified finite number. In 
this case, we use a member of the space c, X = Xo + Xl , where Xl is de
fined above and Xo is the eigenvector corresponding to /.. = 1. The dis
persion is, as before, 

YI = (_1 ) Xl. 
1 - /..1 

The admissible jitter sequence is one that converges to Xo but otherwise 
has properties similar to the previous case. Physically, the pulse train 
converges to a periodic pulse train with one pulse and at most the maxi
mum number of successive zeros in each period. 

We have thus shown that the bound on the variation of the jitter 
about the mean exists if T has a pole at A = 1 and that there exists 
no such bound otherwise. At this point, we recall that a somewhat 
different formulation of the problem is obtained in (7). Let us note 
here that in the alternate formulation somewhat different but similar 

* In fact, numerous admissible sequences with the same properties can be 
easily constructed. Their linear combination would also be such a sequence, and 
so on. 
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development takes place. In the alternate formulation, the point A. = 1 
is not a limit point of the point Hpectrum. But, in general, neither is 
it a pole of T. It ean be Hhown t.hat every neighborhood of A = 1 eOll

tains points in the spectrum of T. From this fact, the rest of the eon
elusions follow. 

VIII. DISCUSSION OF RESULTS 

The results may be stated simply in terms of the existence of a pole 
of T at A = 1. If A = 1 is in the point spectrum of T and it is an iso
lated point of the spectrum of T (i.e., it is a pole), then the variance of 
the jitter is bounded. Otherwise, the jitter dispersion has no bound. We 
show that, in the random case, A = 1 is not a pole of T. The same result 
is obtained when a constraint is put on the number of successive zeros 
in the pulse train. Thus, there exists no bound on the variation of the 
jitter about its mean value for the truly infinite and random pulse 
trains. 

On the other hand, of some physical importance are the cases which 
may be approximated by periodic pulse trains or nonperiodic pulse 
trains which either are finite or become periodic after a finite interval. * 
For such cases, the operator T is restricted to a finite dimensional 
space and A = 1 is necessarily a pole of T. The variance is, therefore, 
bounded. Of course, the bound is a function of the dimension of the 
space as well as of the other eigenvalues in the spectrum. Each case 
must be investigated separately to determine the corresponding bound. 
Such a bound may be all that is important in the usual situation where 
a finite chain of repeaters is present in the system. Some practical 
means of determining the bounds will be discussed in a subsequent 
paper. We shall also discuss there many other practical matters, such as 
errors involved in our model, transients, etc. 

To sum up, as the number of repeaters gets larger, the dimension of 
the space gets larger (since the effective pulse train gets longer), and 
the maximum dispersion of the jitter increases. Thus, there is such a 
thing as a worst pattern when there are a finite number of repeaters. 
However, the worst value of the jitter keeps on increasing. 

The rate at which the variance increases as a function of the number 
of repeaters is not investigated in this paper. It is, of course, not pos
sible for the dispersion to grow faster than n, the number of repeaters. 
This conclusion follows from the fact that the norm of T is equal to one. 

* Many other physical constraints may be used to restrict T to a finite dimen
sional space. The variance is bounded in all such cases. 
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lVlore preeise determination of the rate of growth would depend upon a 
partieular distribution of the random variables involved. We do not 
pursue this aspeet of the problem. * 

The eonelusions ahout the spaeing jitter (d. Part I) follow along the 
same lines as above for the finite and infinite dimensional spaees. The 
misalignment, rpnx, in the nth repeater is also influeneed by the di
mensionality of the domain of T. When the dimension is finite, the 
misalignment is merely a flat delay (sinee A = 1 is an isolated eigen
value) for reasonably large n. However, when there is no pole at A = 1, 
the misalignment is not so simply stated, but it is different from re
peater to repeater. 

We conclude with the observation that the approach proposed here 
should be potentially useful for many problems of signal proeessing 
eneountered in data systems. 

* For some partial results, for a somewhat different model, refer to C. J. Byrne, 
B. J. Karafin and D. B. Robinson, Jr., Pattern Induced Timing Jitter in T-l 
PCM Repeaters, to be published. This paper uses a model proposed, in an un
published report, by R. C. Chapman, Jr. 





The Use of Solar Radio Emission for the 
Measurement of Radar Angle Errors 

By J. T. KENNEDY and J. W. ROSSON 

(Manuscript received July 20, 1962) 

Space guidance and instrumentation have placed stringent demands on 
the pointing accuracy oj tracking syste1ns. One oj the basic problems en
countered is the calibration oj the angle indicators of the tracking antenna 
to the true direction oj the radio line oj sight. A 1nethod of calibration is 
discussed which uses the sun as a prinwry directional reference. 

1. INTRODUCTION 

Historically, celestial bodies have been used as primary directional 
references for optical instruments such as navigational sextants, sur
veying theodolites, etc. Since celestial bodies are also sources of radio 
emission, they may be used directly as primary radio directional ref
erences. "Radio sextants" use the sun and moon as microwave direc
tional references for all-weather marine navigation. l Conventional 
microwave tracking systems can also track these sources. For example, 
an X-band monopulse radar having an 8-foot antenna and crystal 
mixer receiver tracks the sun with an accuracy limited only by at
mospheric effects. Moon tracking is of poorer quality because of the 
lower signal-to-noise ratio, but improvements in noise figure and a 
larger time-bandwidth product could make moon tracking competitive 
with present sun tracking. 

The major limitation in using the sun as a precise reference has been 
the uncertainty of the position of its "radio center." This uncertainty 
is caused by regions of enhanced radio emission associated with sunspots. 
A method and experimental results will be described which overcome 
this limitation by taking advantage of the apparent rotation of the solar 
disk. This makes possible highly accurate alignment and zero setting 
without the usual optical aids. 

1799 
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II. SUN TRACKING PHOCEDUHE 

Fig. 1 shows the comparison of the spectrum of solar radio emission 
with those of the moon and the brightest "radio stars." The plot is 
flux density vs wavelength. At ~j cm, for example, the power from the 
quiet sun is -164 dbm per square meter of effective antenna area in 
each cycle per second of bandwidth. This is the level of thermal noise 
which would be received at the earth if the sun were a black body at 
18,0000K. We may say therefore that the sun has an equivalent radio 
temperature of 18,0000K at 3 cm. The average radio temperature of the 
moon at this wavelength is 1800K, so that the received power is 20 db 
less than the power from the sun. Even the brightest "radio stars" 
at 3-cm wavelength are extremely weak, the received power being about 
20 db less than that from the moon. 

In order to use celestial sources as directional references, the tracking 
system must be capable of determining the angle of arrival of the noise 
signal. Manasse2 has shown that the optimum procedure is to perform 
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a simple correlation of the odd and even components of the antenna 
output. Since this is the technique of angle determination used in mono
pulse radar, * a monopulse system is well ~mited to the tracking of 
celestial noise sources. This was demonstrated in tracking experiments 
using an X-band monopulse radar. The theoretical sun and moon 
tracking performance are given in Appendix A. The calculated per
formance indicates that this system is theoretically capable of tracking 
the sun with a precision of better than 5 microradians. 

To understand how an extended source such as the sun can be used 
as a precise reference, consider the simple case of more than one point 
source present in the antenna beam. These sources are not resolved 
and therefore appear as a single source located at the intensity centroid. 
Two point sources of equal intensity will appear as a single source 
midway between the two. Consider the typical difference pattern re
sponse of a monopulse antenna as in Fig. 2. A signal source to the left 
of the antenna null axis produces a positive error signal, a source to the 
right a negative signal. Zero error signal is obtained in autotracking 
multiple sources when the positive and negative signal contributions 
cancel each other. An extended source such as the sun can be considered 
as a collection of point sources. In this case, regions to the left will 
contribute a positive signal, regions to the right a negative signal. 
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Fig. 2 - Typical monopulse difference patterns. 

* In a monopulse system, the sum (even) and difference (odd) signals are cor
related in the angle error detector. 
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Thus, when the radar is used passively to track the sun, the radio line 
of sight follows the point which corresponds to the centroid of radio 
emission, or "radio center." Although extended sources tend to broaden 
the difference pattern, the efTeet is surprisingly small for sources less 
than a beamwidth in extent. The effect i::; shown exaggerated in the 
dashed curve in Fig. 2. Actually, the effect of the ~-degree sun within 
a one-degree beamwidth is barely discernible. 

Over the surface of the sun, the radio emission is not uniform, and 
for this reason the "radio center" is displaced from the geometric center. 
Fig. 3 is a "radio picture"3 of the sun which shows regions of enhanced 
radio emission superimposed on a background level. The background 
level is constant with time, whereas the enhancements evidence growth, 
decay and movement much like the sunspots with which they are asso
ciated. In the presence of regions of enhanced emission, the radio 
center is displaced from the visible center. Each region has the effect 
of pulling the radio center in its direction by an amount proportional 
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to the amplitude and area of the enhancement, and its distance from 
the center. Because of the rotation of the sun about its axis in a period 
of 28 days, these regions move from left to right in about 14 days. The 
intensity of the enhancements is wavelength dependent, being most 
prominent at about 10 cm. For this reason, the resulting displacement 
of the radio center depends on wavelength. lVleasurements have been 
reportcd4 which give in one case a maximum displacement of 1.2 mils 
at 3.2 cm and 0.9 mil at 2.0 cm during the peak of sunspot activity 
in 1957-58, and in another case 1.05 mils at 3.2 cm and 0.57 mil at 1.6 
cm. 

Some radio center observations made during the early part of this 
study are shown in Fig. 4. This is a plot of radio center displacement 
caused by sunspot activity during a two-week period in November 1960. 
In order to make these measurements, the antenna was first accurately 
aligned. Movement of the radio center was associated with a large 
sunspot which appeared on the eastern limb of the sun on November 5. 
Then, because of the rotation of the sun on its axis, the sunspot moved 
across the central meridian of the sun on November 12 and subsequently 
passed from view off the western limb on November 18. It can be seen 
that the radio center position changes slowly because of the long life-
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time of the enhanced regions and their slow movement with the solar 
rotation. Actually, the variation over a period of several hours is small 
enough to be neglected. 

Unless corrected, this pulling effect imposes a major limitation on 
the accuracy of radio direction finding using the sun. However, a method 
has been found which makes it possible to determine the radio center 
displacement and also antenna alignment errors from data obtained in 
tracking the sun over a period of a few hours. That is, without previous 
antenna alignment, it is possible to determine not only the radio center 
displacement, but also the antenna alignment errors. The method makes 
use of the apparent motion of celestial bodies caused by the rotation 
of the earth. The effect is perhaps most easily visualized in the case of 
the stars. For an observer in northern mid-latitudes, stars which rise 
in the east reach a maximum elevation angle when they cross the ob
server's meridian to the south and then set in the west (Fig .. 5). Con
sider two stars which rise one after the other at the same point on the 
horizon. As they rise, the later one will be below and left of the earlier 
one. At meridian crossing, the two stars are side by side. When they 
are setting, the later star is above and to the left of the earlier one. 
To the observer, the later star has moved clockwise relative to the ear
lier one. A quantitative description of this rotation is given in Appendix 
B. 

This same rotational effect is also observed in the case of the sun. 
That is, any point displaced from the center of the sun will appear to 
rotate around the center. This suggests that if angle measurements 
on the radio sun are compared to the azimuth and elevation of the geo-
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Fig. 5 - Apparent rotation of celestial bodies. 
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metric center of the sun, * the differences between the measured and 
calculated values will show the motion of the displaced radio center. 
An elevation versus azimuth plot of these differences is made to look 
for this rotational effect. Typical data obtained in sun tracking on 
August 8, 1961, are shown in Fig. 6. The abscissa is actually the azimuth 
differences times the cosine of the elevation to refer the azimuth up to 
the viewing plane. Each point is the mean difference in a 24-second sam
ple. Since the antenna had not been previously aligned, an initial align
ment is made on the first observation, which results in zero differences 
for the first data point. The rotation with time apparent in the curved 
pattern of the data points is attributable to the apparent rotation of the 
radio center. Data points for 11 ANI, noon, and 1 PlYI are indicated. 

A simple graphical method was used to examine these data. An over
lay template was constructed for this particular day and latitude and 
fitted to the data as shown in the shaded area. Four independent de-
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* The position of the sun can be calculated accurately from the ephemeris, as 
described in Appendix C. 
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terminations were averaged to obtain the "best" estimate of the radio 
center displacement and error in the initial zero setting. If the initial 
zero set had been correct, the center of curvature would have been at 
the origin. Therefore the final zero settings can be determined from the 
offset in Fig. G. Fig. 7 shows the same data after making the final zero 
set adjustment. 

The radio center displacement may be described in a coordinate sys
tem which is independent of time by resolving the displacement vector 
at noon into horizontal and vertical components. The horizontal com
ponent becomes the displacement in hour angle and the vertical com
ponent the displacement in declination. A summary of the values of 
radio center displacements obtained is given in Table 1. The last column 
in Table I shows the probable error in the radio center determination 
and therefore indicates the accuracy attainable in using the sun as an 
X-band directional reference. 

Radio center displacement is most easily determined around local 
noon when the solar disk rotation rate is maximum, making the effect 
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TABLE I - RADIO CENTER DISPLACEMENT AT LOCAL NOON 

D isplacemen t 
Date Standard Deviation 

Hour Angle Declination 

(Microradiam) (Microradians) (Microradians) 

April 24, 1961 -125 +50 14 
May 25,1961 +85 +40 8 
June 1, 1961 +95 +20 12 
June 15, 1961 -95 +15 9 
June 21, 1961 +135 +40 16 
July 25, 1961 +95 +50 30 
August 8, 1961 -235 +20 26 

more easily recognized than at any other time of day. Also, since the 
sun is at its maximum elevation angle at this time, atmospheric effects 
are minimized. Another important advantage of noontime observations 
is that the elevation angle is changing very slowly, which means that 
elevation-dependent systematic errors can be considered essentially 
constant. 

Azimuth zero set errors are compressed at high elevation angles by 
the cosine of the elevation angle. For this reason, azimuth zero set 
accuracy is better at lower elevation angles. 

The most important advantage in using celestial microwave direc
tional references is the direct measurement of the radio axis to angle 
indicator relationship without going through the involved intermediate 
steps of determining systematic errors between the radio axis and the 
optical line-of-sight and the systematic errors between the optical 
line-of-sight and the angle indicators. These experiments have demon
strated that the limitations of using the sun can be overcome to make 
direct measurements possible. 

III. APPLICATIONS AND LIMITATIONS 

The sun serves as a useful tracking source in investigating atmospheric 
refraction and other low-angle effects on angle tracking. 

Directional measurements of celestial bodies is the classical method 
of position determination in celestial navigation. The accuracy obtained 
in high-angle sun tracking enables the geodetic position of the tracking 
antenna to be determined to an accuracy of about 600 feet. 

Some of the limitations in using the sun as a precise reference are 
given below. 

(a) Solar flares: Although the level of solar radio emission can generally 
be considered substantially constant over a period of several hours, 
intense outbursts are sometimes observed at the time of large solar 
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flares. These outbursts can exert a strong pulling effect on the radio 
center, but fortunately they are generally of short duration (several 
minutes) and are easily recognizable in tracking data. Of the approxi
mately 200 data points in seven days tracking, only one was affected 
by a suspected outburst. This occurred on June 15, 1961, at 1641 Uni
versal Time at the same time as an "Outstanding occurrence" reported 
by Ottawa5 on 10-cm wavelength. The effect was a brief displacement 
of the radio center amounting to about 150 microradians. 

(b) Solar disk rotation: Because of the geometry of the solar disk 
rotation, the determination of radio center displacement is more easily 
accomplished at the higher elevation angles of the sun. For this reason, 
radio center displacement is more easily determined in the fmmmer 
at low latitudes. Longer observing times are required at higher lati
tudes in the winter. 

(c) Antenna beamwidth: Sun or moon tracking with antenna beam 
widths of less than! degree will suffer from decreased angle sensitivity 
caused by the large source distribution. In the extreme case of beam
widths of the order of lo degree, less extended sources such as the 
"radio stars" would be more attractive. 

IV. SUMMARY 

Celestial radio sources are attractive as microwave directional refer
ences; however, two major aspects must be investigated in considering 
them. The first aspect is the ability to track the source. The second 
aspect deals with the precise knowledge of the position of the celestial 
radio source. For a conventional X-band radar receiver utilizing a 
crystal mixer, the sun is most suitable from the standpoint of "noise 
signal"-to-noise ratio. The moon presents a marginal condition. By 
tracking the sun in a time-continuous mode (i.e., range gate disabled), 
the tracking quality becomes limited only by the atmospheric noise. 

In examining the second aspect, the radio center of the sun is not 
coincident with the actual center, but is displaced by local regions of 
enhanced radio emission associated with sunspot activity. Although 
the sunspot activity is random on a day-to-day basis, the effect upon 
the radio center displacement is small enough to be considered constant 
over a period of several hours. A technique was developed to utilize the 
diurnal motion of the earth to enable the radio displacement to be 
determined independently of other sources of error. 
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APPENDIX A 

System Description and Tracking Performance 

A conventional monopulse tracking system was used for the experi
ments which have been described. Normally, the radar receiver samples 
the input only during the very short interval of time when the returning 
pulse is expected. This is, of course, not the optimum procedure io 
use in the case of a continuous, low-level signal. However, by means of a 
simple modification, the receiver can be kept open to optimize system 
performance with signals which are present continuously. 

Sincc the microwave signals from celestial radio sources are quite 
constant in level and cover a broad spectrum, neither automatic gain 
nor frequency control are required. 

With these modifications, the performance of the tracking system 
can be expressed as a function of the system parameters as follows: 

08 = 8
b 
VI + SIN 
2S/NV2Br 

where 08 = rms angle fluctuations 
8 b = antenna beamwidth 

SIN = input signal-to-noise powcr ratio 
B = receiver bandwidth 
r = post detection integration time. 

This result is based on the assumption of a point source of noise in 
the presence of external background and internal receiver noise, but 
does not include the effects of transmission through the atmosphere. 

The noise power, N, received from the sun is the product of the solar 
flux density, S, and the effective antenna area, A, thus: 

N = S X A X ~ = 4.37 X 10-20 watts/cps 

where the factor ~ accounts for the fact that the antenna accepts only 
the vertically polarized component of the randomly polarized solar 
radio emission. It is useful to consider the temperature, Teq I of an 
equivalent network, replacing the antenna, which would have an 
available noise power equal to that from the sun. In this case, 

kTcq = N 

where k is Boltzmann's constant, 1.38 X 10-23 watts/oK cps. The re
sulting effective antenna temperature from the sun is thus 3150°1(, 

The receiver noise temperature, assuming a nominal ll-db noise 
figure, is: 
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where F is the system noise figure expressed as a power ratio and To 
is the reference temperature, 2900 IC Thus, the signal-to-noise ratio is 
about unity. Assuming a typical 1° beamwidth, 10-mc bandwidth, 
and !-second time constant, the resulting tracking performance is about 
5 microradians. In actual tracking however, this performance cannot 
be realized because of atmospheric limitations which are believed to be 
in the order of 20 to 50 microradians. 

When this system is used with a three-second time constant to track 
the moon, the short-term angle uncertainties are about 400 microra
dians. This agrees essentially with the theoretical value, indicating 
that the system performance when tracking the moon is limited by 
receiver noise rather than by atmospheric effects. 

APPENDIX B 

Apparent Solar Disk Rotation 

The apparent rotation of the solar disk can be derived from the 
spherical triangle shown in Fig. 8. The orientation of the sun remains 
fixed with respect to the great circle passing through the sun and the 
celestial pole, whereas the orientation to an observer in azimuth-eleva
tion coordinates is always referred to the great circle passing through 
the sun and the zenith. The apparent rotation of the solar disk is de
scribed by the variable angle, p. From the Law of Sines: 

. cos ¢ . A 
sm p = cos 0 sm . 

For a given set of observations, the observer's latitude, ¢, and the 
declination angle of the sun, 0, remain constant; therefore the apparent 
rotation of the sun is a simple function of the azimuth angle, A. Fig. 8 
and the above equation show that the displaced radio center of the 
sun will trace through the arc of a circle whose radius is the magnitude 
of the radio center displacement. 

The apparent solar disk rotation can also be expressed in terms of 
the local hour angle, H, which changes with earth's rotation uniformly 
at about 15° per hour. The expression is: 

sin H 
tan p = . H . sm 0 cos - cos 0 tan ¢ 

A plot of this equation is given for 28.5 degrees North latitude in 
Fig. 9 for several values of declination. From these curves, the maximum 
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Fig. 8 - Spherical geometry used to derive apparent rotation of solar disk. 

rate of rotation occurs at local noon; hence the optimum time to observe 
the radio center displacement is around local noon. 

The latter equation is used to make the overlay template which is 
fitted to the plotted data to locate the center of rotation of the observed 
data points. 
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APPENDIX C 

Determination oj the True Angular Position oj the Sun 

In the experiment, the tracking system measures the azimuth and 
elevation angles and records these data along with the time of measure
ment on magnetic tape. This tape becomes the input to a digital com
puter which performs the computations described below and compares 
the measured values with the calculated true position of the sun. 

Primary position data for the sun are taken from the Am,erican 
Ephem,eris and Nautical Almanac. These data are referred to the true 
equinox and equator of date and contain a correction for aberration. 
Corrections must be computed for solar parallax, the difference between 
Ephemeris Time and Universal Time, and the local deflection of the 
vertical. These corrections are applied in the spherical coordinates of 
hour angle and declination. The estimated accuracies in these coordi
nates are 0.02 second of time in hour angle and 0.2 second of arc in 
declination. During the experiments, time is recorded for each of the 
angle observations to an accuracy of about 0.05 second. This brings 
the total accuracy of the computed position of the sun to about 4 micro
radians. 

The hour angle and declination, together with the latitude, are used 
to calculate the azimuth and elevation angles. 

In order to compare the observed values with the computed angular 
positions of the sun, it is necessary to correct the observed values of 
elevation for atmospheric refraction. The correction used is 

f1E = -No cot E 

where No is the index of refraction determined from observations at 
the tracking site and E is the observed elevation angle. This equation 
is adequate for elevation angles above 10 degrees. 
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Integral Representation of Zero-Memory 
Nonlinear Functions 

By J. C. HSU 

(Manuscript received July 30, 1962) 

Integral representation of zero-memory nonlinear functions offers prom
ise as an analytical method for nonlinear control systems study. A review of 
work perfonned at Bell Laboratories and elsewhere on the use of these 
representations is presented, with particular emphasis on nonlinearities 
often encountered in feedback control systen/,s. In general, the integral 
representations are useful only insofar as the resulting expression can be 
readily evaluated. The use of Bennett functions systematized the fonnulation 
of these integrals. The numerical results of a large class of the integrals 
can then be given by the tabulated Bennett functions. A comprehensive 
bibliography is appended. 

1. INTRODUCTION 

Integral representation of zero-memory nonlinear functions has been 
extensively used by Bennett, Rice and others (see References) in the 
solving of problems such as the finding of modulation products when 
one or more sinusoids appear at the input, and the finding of the output 
auto covariance function when sine wave and random noise are applied. 
In relation to the necessary calculations which occur in the use of these 
integral representations, a class of functions known as Bennett functions, 
after W. R. Bennett, has been defined. A selected representation of these 
functions has been tabulated and plotted. 

While the original studies were carried out in relation to problems 
encountered in communications, the methods and the results can cer
tainly be applied to advantage in control problems. Some work in this 
regard has been done by J. C. Lozier in unpublished notes on the analysis 
of the oscillating control servomechanism. On the whole, however, it 
appears that these approaches are not known to investigators in the 
controls field. The present paper represents an attempt to summarize 
in a unified manner the work that has been done and to indicate the 

1813 
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scope of applications and limitations of the integral representations, 
particularly with respect to controls usage. 

II. INTEGRAL REPRESENTATION ARISING FROM FOURIER TRANSFORMS 

It is known that the function 

fI(u) = ~ + '!!: [00 sin UA dA 
2 7r Jo A 

(1) 

is discontinuous in its first derivative with respect to u, its value as a 
function of U being: 

U>o 
(2) 

= 0 U < o. 
The plot of fI(u) vs U is in the form of an ideal half-wave rectifier. 

Using fI(u) as a basic unit, other discontinuous functions can be 
generated. For example 

f2Cu) = ! +] 100 
sin UA dA = 1 

2 7r 0 A 
U>o 

= 0 U < 0 

and is in the form of an off-on relay as a function of u. 
From (3) the bang-bang type of relay is readily created as: 

h(u) = 2A foo sin UA = A 
7r 0 A 

=-A u<O. 

A relay with dead zone is 

f4(u) =:'! [00 sin (u - C)A + sin (u + C)A dA 
7r Jo A 

= 2A foo sin UA cos CA dA : 
7r 0 A = 

A II > 
o -c < U < 
-A U < 

A limiter (linear characteristic with saturation) is 

(3) 

(4) 

C 

C (5) 
-c. 

J.(u) ~ ~ r sin p."A sin A"A d"A : ;:-A -A < : ~::;-A (6a) 
7r 0 A2 = Au> A 

= 2u 100 
cos UA sin AA riA + ~A [00 sin UA cos AA riA. (Gb) 

7r 0;-'" 7r Jo A 
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Equation (Gb) is readily obtained by manipulating two functions of 
the form of (1). That (6a) is equivalent to (Gb) is seen by integrating 
(6a) once by parts. Other discontinuous functions can be generated 
from the above five functions by appropriate shifting (bias) of each 
individual characteristic, or by combining several characteristics. In 
fact, simply multiplying by an appropriate g( u) can create quite general 
discontinuous characteristics. 

It is noted that u may be viewed as the input to the nonlinear element, 
and f( u) then gives the response to this input. If u( t) is a function of 
time; for each u(h) the function f[u(td] yields the instantaneous value 
of the output (i.e., f( u) is a functional of u). While f( u) is no more 
convenient for use in the evaluation of the output as a function of time 
than equations of the form (2), giving the discontinuous function as a 
set of equations, it is very useful for the purpose of spectral analysis 
since f[u(t)] is in a compact form suitable for Fourier series expansion. 

As an example; we seek to find the output spectral component for the 
relay with dead zone, when input is in the form u = P cos x. 

Using (5), the output Fourier coefficients are found by: 

an = ~ 17r {2A lrJ'J sin (AP cos x) cos CA dA} cos nx dx 
7r -7r 7r 0 A 

2A lrJ'J dA 17r = -2 """' cos CA sin (AP cos x) cos nx dx 
7r 0 1\ -7r 

n even 

n odd 

where J n (z) is Bessel function of the first kind of order n. 
Since it is known thae 

J
l {. -1 (b)} n cos n sm a 

l
rJ'J In(at) cos bt dt = n n7r 

o t 1 a cos 2 
n{b + Vb2 - a2 }n 

b <a 

(7) 

b > a, 

then, for n odd: 

_ A ( 1) (n-1l/2 {I [. -] (c)]} an - - - - cos n SIn -
47r n P 

C < P 

=0 P < c. 
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Certain of the nonlinear characteristics expressed in the integral form 
are also amenable to a double frequency type of analysis in which the 
input is of the form 

u(t) = P cos (WIt + (h) + Q cos (W2t + ()2). 

Bennett2 in particular has contributed extensively to double frequency 
studies. 

In control systems analysis, a double frequency study becomes neces
sary in (a) the oscillating servomechanisms3 and (b) the dual input 
describing function approach to closed loop servos.4

,5,6 In what follows, 
the fundamental components (i.e., components in WI and W2 of the out
put) from a bang-bang type of relay are found. The approach follows 
closely that of Lozier. 

The input u is a function of two frequencies WI and W2 ; this is brought 
to light by setting x = WIt + (h , y = W2t + ()2, and letting Q/ P = k. 

Thus 

u(x, y) = P(cos x + k cos v). (8) 

In passing through a bang-bang type relay, it is recognized that the 
amplitude P in (8) does not influence the output; thus without loss of 
generality it may be set to unity. 

The outputf(u), written asf(x,y) is: 

f(x,y) 

f(x,y) 

+A 
-A 

cos x + k cos y > 0 

cos x + k cos y < 0 

which may be expressed as a double Fourier series2
,7 as: 

00 00 

f(x,y) L L [A±mn cos (mx ± ny) + B±mn sin (mx ± ny)] (9) 
n=O m=O 

where 

1 ro (7r 
A±rnn = 211"2 L7r L7r f(x,y) cos (mx ± ny) dy dx (9a) 

1 (7r (7r 
B±rnn = 211"2 L7r L

7r

f(x,y) sin (mx ± ny) dy dx (9b) 

1 (7r (7r 
Aoo = 11"2 L7r L7r f(x,y) dy dx, Boo = O. (9c) 

From symmetry of the bang-bang relay, B±mn == 0 for all m and n; 
moreover the integral representation of (4) can here be used, thus: 
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A±mn = ~ 170 170 
[1

00 

dA sin (cos x + lc cos y) A] 
7r -70 -70 0 A 

·cos (mx ± ny) dy dx. 

The interchange of integration can be carried out here in view of the 
finite limits of the outer integral and the bounded nature of the inner 
integral, whence: 

A 1
00 

dA 170 170 
A±mn = -3 - dx dy {sin [( cos x + lc cos y) AJ cos (mx ± ny) } . 

7r 0 A -70 -70 

Upon expanding, collecting nonzero terms, and integrating, the result 
is (as A+mn = A-mn for all m, n, the ± signs are henceforth dropped.): 

A = 4A (_1)<m+n-1)/21
OO 

In(lcA)Jm(A) dA 
mn 7r 0 A ' m + n odd 

=0 otherwise 

where use has been made of the following definite integrals :8,1 

21
70

/

2 

- cos (z sin cp) cos 2ncpdcp 
7r 0 

21
70/2 

= (-1) n - . cos (z cos cp) cos (2ncp) dcp = J 2n (z ) 
7r 0 

? 170/2 
~ sin (z sin cp) sin (2n + 1)cpdcp 
7r 0 

2170/2 
= (-on - sin (z cos cp) cos (2n + 1)cpdcp = J 2n+1(Z). 

7r 0 

(10) 

(lla) 

(lIb) 

The integral in (10) may be evaluated by means of formulas attributed 
to Sonine and Schafheitlin9 (also known as the Weber-Schafheitlin in
tegrals8

), the result being expressed in the form of hypergeometric func
tions F( a,{3,c,x) : 

nr (n + m - r + 1) 100 

In(aA)Jm(bA) dA = a 2 

o A
r 

2r bn - r+1 r (-n + m
2
+ r + 1) r(n + 1) (12a) 

. F (n + m - r + 1 n - m - r + 1 + 1 (~)2) 
2 ' 2 ,n, b 

if n + m - r + 1 > 0, r > -1, and 0 < a < b, 
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100 In(aX)Jm(aX) dX 
o xr 

WH 

r(r) r (n + m ;- r + 1) 
2r( -n+~+r+ l)r (n+mtr+ 1) r (n - m t r+ 1) 

if n + m + 1 > 0, r > 0, and a real; and 

bmr (n + m - r + 1) 100 

In(aX)Jm(bX) dX = 2 

o Xr 2ram- r+1r (n - m t r + 1) rem + 1) 

.F (n + m - r + 1 -n + m - r + 1 + 1 ~) 
2 ' 2 ' m , a2 

if (n + m - r + 1) > 0, r > -1, and ° < b < a. 
Accordingly, 

l,nr (n + m) 
Amn = 2A (_1)(n+m-ll/2 C -2-

7r r (2 - ~ + m) r(n + 1) 

.F(n+m n-m +112) 
2 ' 2 • n ,/C 

= 2A ( -1) (n+m-l)f2 
7r 

for k < 1 

for k = 1 

r(n+2m) 
= 2A (_1)(n+n-ll/2 _--,.-__ ~..........,..,,........:-__ _ 

7r kmr (n - m2 + 2) rem + 1) 

.F (n ~ m , m ; n , m + 1, (0') for k > 1. 

(12b) 

(12c) 

(13a) 

(13b) 

(13c) 
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The three cases of (13) are essentially equivalent if one recognizes that 

F( b 1) = r(c)r(c - a - b) 
a, ,c, r (c - a) r (c - b) 

and that, for k > 1, the situation is identical to that of inverting the 
role of nand m, and defining a new quantity k' = 11k. 

The output fundamental components are AlO and AOl ; from (13) one 
has: 

_ 2A r m (1 1 2) 
AlO - - (3) F 2' -2,1, k 

7r r 2 rei) (I4a) 

= 4A (1 _ ! k2 _ ~ k4 _ ~ k6 ••• ) 

7r 4 64 256 

2A kr m F (! , ! , 2, k2) 
7r r (~) r(2) 2 2 (14b) 

= 2~k (1 + ~ Ie' + 6~ k 
4 

••• ) • t 

Considered together with the input (8), this yields Lozier's oft-quoted 
result,3.10 that the equivalent "gain" of the relay, for small values of 
k, is 6 db higher for the "carrier" than for the "signal." 

It is not difficult to see that the Weber-Schafheitlin integrals also 
occur for two frequency inputs applied to the characteristics (1) and 
( 3 ), but that integrals of the form 

100 In(a'A)Jm(b'A) {Sin A'A} d'A 
o 'Ar cos A'A 

(15) 

occur for characteristics of (5) and (6). Moreover, inputs with more 
than two frequency components will result in generalized Weber-Schaf
heitlin integrals of the form 

(16) 

t Equations (14a) and (14b) can also be expressed in terms of the complete 
elliptic integrals for which tables are available. See Refs. 3, 21, and 22. 
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f or characteristics (1), ( 3 ), and (4), and generalized integrals of the 
form 

t tJ J,(UiX)x-' {:~~~~} dX (17) 

result for characteristics (5) and (6). 
Unfortunately no general solutions have been found to represent 

(15), (16) or (17) in known functions. In such cases, numerical solutions 
can be used. Numerical solutions in terms of Bennett functions and their 
tahulation are described in Section IV of this paper. 

III. INTEGRAL REPRESENTATION ARISING FROM LAPLACE TRANSFORMll .12 

The integral representation of Section II is closely related to the 
Fourier transform. An alternate approach using the Laplace transform 
is more convenient in some cases and has been extensively used by 
Bennett and Rice, among others. We mention some results of this ap
proach for the sake of completeness. 

Expressing the output of a nonlinear device in response to an input 
u as f(u) , it is possible to find the (possibly two-sided) Laplace trans
form of f(u) , denoted F(s), or, 

F(s) = i: e-su 
feu) duo (18) 

The inverse transform is then 

feu) = 2~ f e
US 

F(s) ds 
7r J c 

(19) 

where C is some suitably chosen contour of integration. If F(s) exists, 
then (19) is an explicit expression for f( u) which may be used to ad
vantage. In the case of solving for modulation products, f( u), written 
explicitly in x and y, may thus be used directly to compute the double 
series coefficients. 

To compute A mn , for example, using double Fourier Series expansion 
in response to an input u = P cos x + Q cos y, one has 

A €m€n 171" 171" d d [1 f s(P cos x+Q cos Y) F( ) dsJt 
mn = -2 cos mx cos ny x y 2~ e s 

47r -71" -71" 7r J C 

€mfn f () 171" sP cos X 171" sQ cos Y = 8~ F s ds e cos mx dx e cos ny dy. 
7r J C -71" -71" 

---
t Em is the N eumann factor, defined as: 

Em = 1m = 0 

Em = 2 m = 1, 2, ... . 
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rn 111' eiz 
COB a COS no: do: = In(z) 

7r 0 

and letting s = jw, one obtains, 

and the required coefficients are evaluated by contour integration. 

1821 

(20) 

The above result can readily be generalized. For example, where 
there is a dc bias of b units superimposed on the P cos x + Q cos y in 
the input, (i.e., u = b + P cos x + Q cos y), the net result is to insert 
a factor eibw under the integral of (21). 

Inputs of the form u = b + L~=l Pi cos Xi will result in coefficients 
of the form 

(22) 

whenever f( u) is Laplace transformable. The contour C is a function 
only of the nonlinear device, as may be expected. The Laplace transform 
of several ordinarily encountered ideal nonlinear devices, as well as their 
associated contour of integration C has been given in Ricell in his ap
pendix 4A. 

The nonlinear devices expressed as in (19) may be used fruitfully in 
certain investigation in noise problems. These are briefly described here. 
Reference may be made to Rice's classic papers of 1944 and 1945. 11 

For inputs that include narrowband noise, the input waveform will be 
of form 

u = R cos (wmt + () R~O 

where Rand () are functions of time whose variation is slow as compared 
to cos wmt. (wm/27r is approximately the midband frequency.) 

The output f( u) then is 

feu) = 2~ ~ F(jw) exp [jwR cos (wmt + e) dw]. 

By means of the relation 

00 

eiz 
cos 'P = L Enjn cos ncpJ n (z) 

n=O 
(23) 
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the equation above may be written: 
00 

feu) =, I: An(R) cos (nwmt + nO) (24) 
n=O 

where 

(25) 

In this representation, important conclusions may be reached concern
ing the properties of the output without undertaking laborious compu
tations. For An(R) whose variation is of the order of that of R, the 
output spectrum has bands which are centered at f m , 2f m ••• '. A narrow
band filter centered about nf m will then yield a slowly varying cosine 
wave with envelope An(R). A narrow-band low-pass filter will yield the 
level Ao(R). 

In some cases the probability density function peR) of R is known. 
(For narrow-band Gaussian noise, for example, peR) is the Rayleigh 
distribution.) The probability density of the output envelope An(R) 
is simply: 

(26) 

Another application in which the representation of (19) is useful is 
the calculation of the autocovariance function of the output of a zero
memory nonlinear device. From this the output power spectrum is found 
by taking the Fourier cosine transform. 

The autocovariance function of the output is: 

1 jT 
w( T) = ~~ T 0 f[u(t)]j[u(t + T)] dt. (27) 

By (20): 

WeT) = lim 4 ~T jT ( F(jwl) exp [jWIU(t)] dU.'l f F(jW2) 
T-+OO 7r o· C C 

·exp [jw2U(t + T)] dW2 dt. 

If an exchange of limits is justifiable, the above becomes 

w( T) = 4~2 i F(jwl) dU.'l i F(jW2) dW2 

{~.'! ~ f exp [jW1U(t) + jW2U (t + T)] atl 
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The quantity in the bracket is the (time) average value of 

exp j[WIU(t) + W2U(t + r)] 

which, in the event that u(t) satisfies the ergodic hypothesis, is equal to 
the characteristic function of the two variables u(t) and u(t + r). De
noting this quantity by g(Wl ,W2, 7), one has: 

'1"( r) = 4~2l F(jw]) d0.'l l F(jW2)g(Wl, 0.'2, r) dW2. (28) 

This gives an interesting approach to the computation of the output 
auto covariance function. 

It is interesting to note, incidentally, that the characteristic function 
of u(t) = P cos pt is 

Jo(pV W1
2 + W22 + 2WIW2 cos pr) , 

and for 

u (t) = P cos pt + Q cos qt 

where p and q are incommensurable, the characteristic function is 

Jo(PV W1
2 + W22 + 2WIW2 cos pr) X J o( Qv W1

2 + W22 + 2WIW2 cos qr). 

Here, as elsewhere, one is limited by his ability to integrate. The auto
covariance function, however, has been solved for particular nonlinear 
characteristics, for example, the square-law device. 

IV. NUMERICAL SOLUTIONS AND BENNETT FUNCTIONS 

Since it has not yet been found possible to express the modulation 
coefficients in a more general case in terms of known functions, it is 
often necessary to resort to numerical computations. The numerical 
approaches have been tackled by Sternberg, Kaufman, Feuerstein, 
Shipman, among othersp-19 Some of their results have been tabulated 
and a class of generalized functions encountered in these investigations 
are christened Bennett functions. 14 

The original approach of Sternberg and Kaufman is along the lines of 
direct integration, summarized below. 

If the outputj(u) can be expressed in the form of a continuous N + 1-
sided polygonal function over a closed interval - a ~ u ~ a, i.e., 

N 

feu) = f( -a) + L giU-2 (U - Ui) i. i = 1, ... N (29) 
i=l 

where Ui and gi are constants, Ui being the "break-points" of the polygo-
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nal function 

(30) 

and U -2( U - Ui) are unit ramp functions: 

U-2(U - Ui) = ° 
U -2 (u - Ui) = U - Ui (i = 1,2 ... N). 

(31) 

If the input is of form U = P cos x + Q cos y, one can confine his at
tention piecewise to N functions of the type 

fi(X,y) = f(P cos x + Q cos Yi Ui) 

The over-all function is then 

i = 1, 2 ... N. (32) 

N 

f(x,y) = f( -a) + L gli(X,y). (33) 
i=l 

Factoring out P in each term, and introducing parameters hi = ui/ P, 
k = Q/P, we express fi(X,y) as the double Fourier series: 

fi(X,y) = !PAoo(hi,k) + P f>t< A±mn(hi,k) cos (mx ± ny)t (34) 
m,n=O 

where 

m,n = 0, 1, 2 ... i i = 1, 2 ... N 

and for f(x,y) we carry out another expansion: 

f(x 1y) = !Coo + t>t< C±mn cos (mx ± ny). (35) 
m,n=O 

The C's and the A's are then related by 
N 

!Coo = f( -a) + !P L giAOO(hi,k) (36) 
i=l 

N 

C±mn = P L giA±mn(hi , k). 
i=l 

As A+mn(hi,k) = A-mn(hi,k) for all m and n, the ± sign can be 
dropped. 

00* 

t l: denotes a summation without the Aoo term; in addition, terms whose in-
m,n=O 

dex is such that m·n = 0 are to be weighed by a factor of f. 
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By considering the function 

= {Po (cos x + k cos y - h'i); !i(X,y) 
cos x + k cos y ~ hi 
cos X + k cos y < hi 
i = 1,2 ... N 

the zones over which integration for the evaluation of Amn must be 
carried out is seen to be bounded by the curve 

cos x + k cos y = h; 

over the closed square 

R . {-7r ;£ X ;£ 7r 
o· -7r;£ y ;£ 7r. 

Five cases need to be considered; two are degenerate: 

(d1) 1 + k ;£ h 

( d2 ) - (k + 1) ~ h 

In the first instance the integrand vanishes everywhere except possibly 
over a set of zero measure, and hence the coefficients are identically 
zero. In the second instance the integration is to be carried out through
out the zone (excepting possibly a set of zero measure), which means 
the output is the same as the input except for a constant multiplying 
factor. 

The three nondegenerate cases are: 

(i) h < 1 + k, or 

h > 1 - k. 

The integral here is to be carried out over a zone R of the X,y plane 
bounded by a closed curve lying wholly within Ro . 

( ii) h ~ k - 1, or 

h;£l-k 

The integral here is to be carried out over a zone R bounded by two 
open curves (i.e., two opposite segments of the boundary of R also 
constitute the boundary of Ro). 

( iii) h < k - 1, or 

h > - (k + 1) 

The area of integration is bounded by four open curves. The integra-
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tion can thus be carried out for these nondegenerate cases by formulas 
of the type: 

Amn(h,k) ~ :' f., [J (cos x + k cos y - h) cos mx dx ] cos ny dll 

+ ~ f.,[J (cos x + k cos y - h) cos mx dx ] cos ny dy 

m,n = 0,1,2 ... 

Amn(h,k) ~ :' f., [J (cos x + k cos y - h) cos ny dY] cos mx dx 

+ 2 f [I (cos x + lc cos y - h) cos ny dY] cos mx dx 
17"2 R4 

m,n = 0,1,2 ... 

where Rl , R2 , R3 , R4 are zones appropriate for each of the cases. 
It is seen that the inner integrals can be performed, after which suit

able manipulation will yield a set of recurrence relationship first derived 
by Rice.20 Except for misprints, they are: 

(m - n + 3)Am+1,n-l == - (m + n - 3)Am- 1,n-l + 2mhAm,n_l 

- 2mlcAmn m,n ~ 1 

(m + n + l)Amn == - (m - n - 3)Am- 2,n - 2(m - l)lcAm- 1 ,n-l 

+ 2(m - 1)hAm- 1,n 

(n + m + l)Amn == - (n - m - 3)Am,n-2 

m ~ 2,n ~ 1 

1 h 
- 2(n - 1) 1" Am- I n-l + 2(n - 1) -lc Am n-l 

I~ , , 

m ~ 1,n ~ 2 

(n - m + 3)Am- 1 ,n+l == - (n + m - 3)Am- 1,n-l 

h 1 + 2n k Am-I,n - 2n k Amn m,n ~ 1. 

(37) 

With the aid of these relationships, the higher-order coefficients can 
be expressed in terms of the first four coefficients Aoo(h,k), A lO (h,lc), 
A01(h,lc) and An(h,lc). 

For cases such as the ideal limiter, the antisymmetric condition 
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f( -11,) = -feu) is observed; Ui are now symmetric and the "gains" 
gi are alltisymmetric. Here: 

Aou( -h,k) == Aoo(h,k) + 2h 

.l11O( -h,k) - 1 - AlO(h,k) 

A Ol ( -h,k) == 11, - AOl(h,k) 

Amn( -h,k) == ( -1) m+nAmn(h,k) 

(38) 

(m + n > 1). 

The function Amn(h,k) are called by Sternberg the Bennett functions 
of multiplicity two and order m,n. In part II of Sternberg's paper, 14 

the functions Aoo(h,k), A lO(h,k), AOl(h,k) and A l1 (h,k), have been tabu
lated for h between -2 and +2 in 0.2 steps and k with values of 0.001. 
0.01, 0.1 and 1.0. The values A 20(h,k), A 02 (h,k), Aao(h,k), A21(h,k)~ 

A 12(h,k), Aoa(h,k) are tabulated for k of 0.1 and 1.0. All values are tabu
lated to six decimal places. The accuracy of the first set of tables is held 
to be to one unit in the last place, while for the second set the accuracy 
is about three units in the last place. 

The above approach is extendable to devices with continuous and 
smooth characteristics if it can be approximated in a piece-wise linear 
form. As long as the characteristic may be approximated to within a 
pre-chosen f > 0 uniformly on the interval -a ~ U ~ a by 

N(E) 

S(U,f) = f( -a) + L giU-2(U - Ui), (39) 
i=1 

Sternberg and Kaufman show that the approximate modulation product 
amplitudes computed as per (33), (34) and (35) will not differ from 
the true values by more than 4fj7r in all cases, and the output will be 
within f of the true value for all time if it is obtained by summing over 
the approximate expansions. 

For a symmetrical ideal limiter 

{

( -guo U ~ -Uo 
f ( u) = gu - Uo < U ~ Uo 

guo u ~ Uo 
o < Uo < 2P, g > o. 

The approaches described above can be applied to the range 

-a ~ x ~ a 

a ~ 2P. 

Sternberg, in part II of his paper/4 gives the results relating the co
efficients C mn and A mn as: 
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C±mn = 0 m + n = 0,2,4 

ClO = Pg(l - 2AlO(h,k)] 

COl = Pg(k - 2A01(h,k)] 

C±mn = -2PgA mn (h,k) m + n = 3,5,7, 

Here H = uo/P, k = Q/P and input are in the form 

u ( t) = P cos (pt + ()p) + Q cos (qt + ()q) 

1!}G2 

(40a) 

(40b) 

(40c) 

(40d) 

o < P < P + Q ~ 2P. 

In Ref. 17, Bennett functions of the vth kind, denoted Amn(v)(k), 
are defined. These are the coefficients for the output of a vth law recti
fying function in response to a two-frequency input. v is usually taken 
to be an integer. Amn(v\k) for v = 1,2 have been tabulated.17 Bennett 
functions of a given kind can be obtained from those of the lower kinds 
by means of recursion formulas. 

By extending the above, Bennett functions with multiplicities of 
three or higher (i.e., modulation coefficients when the input has three 
or more distinct frequency components) can readily be defined. For 
input of the form 

u(t) = P(cos x + ki cos Y + k2 cos z) (41) 

for example, the output from a piece-wise linear nonlinear element can 
be expressed in terms of the Bennett functions of the first kind, 

h = uo 
p 

where, as before, Uo is the breakpoint for an individual segment. Simi
larly, for a vth law rectifier subjected to inputs of the form (41), Ben
nett functions of the vth kind 

Amn/v) (h, ki , k2 ) 

can be defined. 
A number of interesting relations have been derived for the three 

frequency Bennett functions of the vth kind. I9 These include recurrence 
relations and integrals linking three-frequency Bennett functions with 
two-frequency ones. No tabulation of the three or more frequency 
Bennett functions is known to have been attempted. 

Relationships between the "Fourier" representation and the "La
place" representations for nonlinear characteristics have also been 
revealed by Feuerstein. I8 He has shown that, in many cases, the contour 
integration in the "Laplace" formulation can be reduced to integrals 
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over the infinite real line. The results are generalized Weber-Schafheit
lin integrals of the form (16) and (17). This is perhaps not a surprising 
result from intuitive grounds. 

It is interesting to note, however, that for a v-law rectifier, the Ben
nett function of the vth kind of arbitrary multiplicity is given by 

A (p) (h 1 1) I ·JI[-p-1 2100 

,-(p+1) 'h 
mo .. •• mN , IC1,"', ICN = v.) - 1\ cos 1\ 

7r 0 

N 

. II .J m/kiA) dA 

and 

for v integer, 

M ~ v + 1, and 

M + v odd, 

A (p) (h k "', kN) = V IjM-P-2 3100 

A -(v+1) mo , .. • mN ,1 , 7r 0 

i=O 

N 

(42a) 

·sin Ah il Jm.(lCiA) dA (42b) 

for v integer, 

1.11 ~ v, and 

]I.! + v even, 
N 

where M = L mi and ko = 1 ~ k i • 
i=O 

By these formulas, the generalized integrals of (17) are related 
directly to Bennett functions. 

Feuerstein in fact did not stop with the considerations of integer v. 
The formulas of the Bennett functions of the vth kind, with noninteger 
v and with M taking in values other than those shown above, are re
lated to the generalized integrals of (17), though in a more compli
cated form. 
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The Solid-State Receiver in the TL Radio 
System 

By W. E. BALLENTINE, V. R. SAARI, and F. J. WITT 

(Manuscript received August 7, 1962) 

The availability of reliable high-frequency solid-state devices and the 
application of new circuit concepts have made possible the development of 
completely solid-state IF and baseband circuits for the T L microwave 
radio system. These include (1) a 70-mc IF mnplifier with 20-mc 3-db' 
bandwidth, 105 db of gain, and 60 db of automatic gain control, (2) a 
remodulation-type lim,iter, (3) discriminator, automatic frequency control, 
and squelch circuits, and (4) two 6-mc baseband feedback amplifiers. All 
circuits have been designed to operate over a temperature range of at least 
-20°C to +60°C. It has been demonstrated that electrical performance 
comparable to or better than that obtained with electron tube circuits may be 
achieved while gaining considerably in power drain and reliability. The 
new circuit techniques and the design considerations which led to their 
development are presented. 

1. INTRODUCTION 

When the junction transistor was first announced, it was appare.nt 
to many that it would eventually replace the electron tube as an active 
element in many communications systems. Its small size, low power 
drain, ruggedness, reliability, and potentially low cost all contribute to 
its widespread usefulness in the development of new electronic circuits 
and in the redesign of existing apparatus. The growth in diversity of 
applications is directly related to the properties of the devices which 
become available or can be made available in production quantities. 
This article reports on another step in this expansion - solid-state 
circuits for a wideband microwave communications system. The de
velopment of this new system became both technically feasible and 
economically practical when diffused-base transistors with excellent 
high-frequency performance and reliability became available in large 
quantities at low cost. 

1831 
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Although improvements in device capabilities were very important, 
the success of the development described herein is due also to the ap
plication of new circuit design coneepts which differ considerably from 
conventional electron tube circuit design praetiec. These innovations 
and their supporting philosophy will be discussed. 

The TL radio relay system as a whole will be described in another 
article.1 That article should be consulted for an over-all system de
scription and for the results of early field applications. The present article 
is restricted to a description of the IF and baseband circuits. 

II. TL IF AND BASEBAND CIRCUITS 

2.1 General Description 

A simplified block diagram of the TL receiver is shown in Fig. 1. 
Let it be mentioned that, in the entire radio system, the only non solid
state components are the beating oscillator and transmitting klystrons. 
Attention in this article is directed to the solid-state circuits which are 
enclosed by a dashed line in Fig. 1. The IF signal is amplified by the IF 

t 
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'" 11KMC 

SOLID-STATE CIRCUITS 
1---- MAGNETIC------~F~--------I 

I AMPLIFIER AMPLIFIER I 
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Fig. 1 - Simplified block diagram of wideband FM receiver. 
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preamplifier and IF main amplifier. A passive filter located between 
these amplifiers limits the bandwidth. AlVI noise and an AlVI component 
arising from FlVI-to-AlVI conversion in the IF amplifiers are suppressed 
by the limiter. Baseband intelligence is detected in the discriminator. 
The resulting signal is amplified in the receiver baseband amplifier and 
is then applied to the transmitter at a repeater or delivered to appro
priate terminal equipment. In the transmitter, baseband signals are 
amplified by the transmitter baseband amplifier (a transistor circuit 
not shown in Fig. 1). This amplifier drives the repeller electrode of the 
transmitting klystron. 

Three other circuits are included in the receiver: (1) an automatic 
gain control (AGC) circuit which adjusts the gain of the IF preamplifier 
to compensate for variations in received signal level; (2) an automatic 
frequency control (AFC) circuit which controls the voltage on the 
repeller electrode of the beating oscillator klystron, adjusting its oscil
lating frequency in such a way as to keep the IF carrier frequency 
centered in the IF passband; and (3) a squelch circuit which prevents 
noise from feeding through the receiver during abnormal fades or 
periods of absence of the incoming carrier. 

Fig. 2 is a photograph of the IF and baseband circuits, except for the 
transmitter baseband amplifier. The four compartments, from bottom 
to top, contain (1) the IF preamplifier; (2) the passive filter; (3) the 
IF main and AGC amplifiers; and (4) the squelch circuit, tra"nsistor 
AFC amplifier, limiter, discriminator, and receiver baseband amplifier. 

Fig. 2 - IF and baseband circuits. 
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The transmitter baseband amplifier is packaged separately and is shown 
in Fig. 3. 

~.2 Some Departures from Conventional Design Philosophy 

2.2.1 IF A mplificrs and Automatic Gain Control 

In order to utilize the microwave medium efficiently, it is necessary 
to have a wide IF band which is precisely positioned and defined. In 
the usual wideband electron tube IF amplifier, the passive interstage 
coupling networks define the IF band. Variable de bias can be applied 
to the tubes to change the gain electronically for AGe without changing 
the normalized frequency response. This convenient property is due to 
the fact that the principal band-limiting mechanisms in electron tube IF 
amplifier circuits - namely, the input and output capacitances - are 
not strongly bias-dependent. Lossless interstage networks are designed 
to include these capacitances as elements, and gain-bandwidth product 
is preserved. 

Fig. 3 - Transmitter baseband amplifier. 
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2.2.1.1 Inherent Transistor Characteristics. Certain inherent charac
teristics of transistors dictate a departure from the conventional electron 
tube approach. * These characteristics are listed below: 

A. The principal mechanism which causes the gain of a transistor 
amplifier to fall off at high frequencies is transit time - i.e., the finite 
time it takes minority carriers in the base region to complete their 
journey from emitter to collector. (This effect occurs in electron tubes, 
but it has only secondary importance up to 100 mc for electron tubes 
used in IF service.) 

B. Not only are the input and output impedances quite frequency
dependent, but they also depend on the dc bias and on the gain of the 
transistor. Hence, it is generally not possible to design interstage band
limiting coupling networks which would be satisfactory for a wide range 
of transistors and dc operating points. 

C. A transistor stage exhibits both forward and reverse transmission; 
hence, the input impedance depends on the load impedance, and the 
output impedance depends on the generator impedance. 

D. A transistor IF amplifier using presently available diffused-base 
transistors has a wider inherent bandwidth capability than a conven
tional electron tube IF amplifier. 

2.2.1.2 Design Considerations. Some design considerations for transistor 
wideband IF amplifiers are stated below. These follow rather naturally 
from the characteristics listed above. 

A. For wideband applications, the transistor amplifier configuration 
should be a low-pass rather than a bandpass structure. t Useful low
pass configurations are discussed in the Appendix. The cutoff frequency 
of the low-pass amplifier is above the upper edge of the IF band, and 
the over-all IF characteristic is determined by imbedding a passive 
bandpass filter in the cascade of IF stages. The transistor amplifier 
stage has a sufficiently large inherent bandwidth to make this technique 
practical. Because transit-time effect is the primary cause of gain 
rolloff at high frequencies, extending the bandwidth on the low side 
does not reduce the gain obtained in the ultimate band. 

By using a low-pass configuration, envelope delay distortion, a pri
mary limitation in FM systems, is minimized; and the small amount 
present is of such a nature that it is easily equalized. A low-pass tran-

* It is assumed in the following discussion that the IF band falls between the 
beta and alpha cutoff frequencies of the transistor. This condition is satisfied for 
the TL radio IF amplifiers. 

t This does not mean low-pass in the strictest sense; i.e., the amplifier chain 
need not pass dc. By low-pass is meant that the frequency rolloff above the IF 
band is determined by a low-pass structure. 
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sistor wide band IF amplifier has proven to be far superior to an elec
tron tube IF amplifier from the standpoint of envelope delay distortion. 

A further advantage of the use of the low-pass configuration is that 
adjustment is greatly simplified, because the IF band is a small part 
of the passband of the active circuits. Also, a wide range of transistor 
parameters can be tolerated. 

The passive bandpass filter, which may include a simple envelope 
delay equalizer, can be adjusted prior to installation in the IF system 
if the IF amplifier is designed to present controlled terminating impe
dances for the filter. The position of the passive bandpass filter should 
be near enough to the output of the amplifier to prevent out-of-band 
noise, originating in the IF stages following the filter, from contributing 
appreciable noise power at the IF output. On the other hand, it must 
be near enough to the IF amplifier input to prevent intermodulation 
of out-of-band noise from occurring during weak signal conditions. 

B. To obtain a low receiver noise figure, the IF amplifier input tran
sistor stages should be designed to utilize as much available power gain 
as possible while, of course, taking into account such factors as stability 
and input impedance. This technique will minimize the effect of the 
noise figures of the second and third stages on the over-all noise figure. 
The undesirable departure from the ideal "flat" transmission charac
teristic, which is inherent in obtaining high gain, can be compensated 
with an equalizer network following the second or third stage. See the 
Appendix for a discussion of the "doublet circuit," which uses this 
principle. 

C. The gain variation of the IF amplifier for AGC purposes should 
be achieved by using separate wideband variolossers. As in the TL 
system, these may employ semiconductor diodes. This is a departure 
from the standard technique of varying the gain by changing the dc 
bias on the amplifier stages. Generally, an intolerable amount of change 
in the normalized IF transmission characteristic will result if the latter 
method of gain control is used. The wideband variolossers are passive 
attenuator networks whose IF transconductances are controlled by the 
direct current flowing through them. Variolossers can be designed so 
that the normalized IF transmission characteristic changes only slightly 
over a wide range of loss settings. The required loss range (60 db for 
the TL system) must generally be split up between two or more vario
lossers. The number of variolossers used and their position in the IF 
chain must be chosen carefully in accordance with the system require
ments and the limitations of the variolossers. The maximum IF input 
level to the variolossers must be restricted so that the diodes remain 
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reasonably linear; otherwise, undesirable IF transmission characteristic 
changes and excessive AM-to-PM conversion will result. However, the 
loss must not be allowed to accumulate too close to the input end of the 
amplifier; otherwise, the system noise figure under strong signal condi
tions will be unnecessarily high. 

As illustration, consider what happens as the input carrier level 
increases: The automatic gain control system will increase the loss in the 
variolossers in order to hold the IF amplifier output level constant. Be
cause of this increased variolosser loss, and because of the noise gen
erated in the IF amplifier stages which follow the variolossers, the 
receiver noise figure will increase. Of course, the IF output signal-to
noise ratio is also increased and a better output signal is obtained. 
However, the receivers spend most of the time operating under strong 
signal conditions, so the strong signal SIN ratio (which varies inversely 
with noise figure) must be kept considerably better than that allowed 
during localized deep signal fades. * It is important, therefore, to use 
enough variolossers and to locate them properly in the IF amplifier 
chain. 

It is good design practice to have the passive bandpass filter located 
between the last variolosser and the output of the IF amplifier to pre
vent any spurious out-of-band distortion products that might be gen
erated in the variolossers during strong signal conditions from bein'g 
remodulated into the desired band in a later part of the amplifier. 

2.2.2 Limiter 

The conventional technique for suppressing the AM component of 
modulation on the IF amplifier output signal is to pass the signal through 
one or more amplitude limiters. In recent years, these limiters have 
taken the form of clippers containing semiconductor diodes. When 
more than one limiter is used, it is necessary to provide buffering ampli
fiers between them in order to achieve adequate limiting action. Ruth
roff2 has pointed out that this process is inefficient, and he has proposed 
an improved circuit which has been called the remodulation limiter. 
This circuit derives its efficiency from the fact that it senses the AM 
present on the incoming IF waveform and then amplitude modulates 
this IF signal in such a way that the original AM is canceled. A version 
of a particular form of the remodulation limiter is described in more 

* The requirement on strong signal noise figure is based on the cumulative 
effects of noise in a multihop system, and it is therefore related to the number of 
hops. On the other hand, the weak signal noise figure requirement is relatively 
independent of the number of hops because of the localized nature of deep fades. 
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detail later in this paper. Whereas the clipper-type of circuit typically 
requires four diodes and two transistor-amplifying stages for 25 db of 
AM index suppression, a remodulation limiter with equivalent per
formance contains just two diodes. 

2.2.3 Automatic Frequency Control 

The receiver AFC circuit* in the TL radio system is conventional 
insofar as it provides a negative feedback loop which centers the IF 
·~ignal in the IF passband. The klystron-beating oscillator frequency is 
~6ntrolledby an error signal \vhich is sensed at the discriminator, ampli
"fied, and impressed on the 'klystron repeller. The part of the feedback 
lC;op' between the discti~inator and the klystron repeller must neces-
sarily be direct-coupled; other considerations dictate that the repeller 
voltage be a high negative voltage, about - 500 volts. The problem of 
direct-coupling the transistor circuits, which operate near zero volts, 
to the klystron repeller has been overcome by the use of a magnetic 
amplifier (magamp). The mag amp serves to completely isolate the low
and high-voltage circuits while effectively maintaining direct coupling 
a~d adding to the AFC feedback loop gain. 

2.3 Circuit Description 

2.3.1 IF Amplifiers 

2.3.1.1 IF Preamplifier. The input circuit of the IF preamplifier (Fig. 4) 
consists of a pair of direct-coupled common-emitter stages followed by 
'a high-pass filter. The principal advantage of this combination, which 
'isealleda "doublet," is that it yields the best noise figure of the various 
'circuits investigated t as well as an acceptable input return loss. The 
remaining stages of IF amplification consist of wideband common-base, 
transformer-coupled circuits. To obtain good transistor interchangeabil
ity and insensitivity to temperature change, the stages are padded and 
mismatched, resulting in a power gain for each common-base stage of 
about 6 db. Two diode attenuator networks, the variolossers, are in
cluded in the preamplifier, dividing it into three approximately equal 
gain segments. Their placement is such that they have a negligible «OJ 

* Transmitter AFC is not required in the TL radio system because of the 
specially designed klystron and klystron cooling system. 3 

t Circuits investigated included the common-base stage with a wideband trans
former interstage network, the doublet circuit, and the common-emitter stage 
with frequency-dependent shunt feedback. These configurations are compared in 
the Appendix. 
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db) effect on the noise figure under weak-signal conditions and remain 
sufficiently linear under strong-signal conditions. The preamplifier 
maximum gain is adjusted at room temperature to 57 db, flat between 64 
and 76 me within about ±0.2 db. 

Input return loss adjustments are applied in the form of potentiome
ter R1 (which varies the bias current in transistor Q1), taps on trans
former T 1 , and variable capacitor 0 1 (Fig. 4). 

The two common-emitter stages of the doublet exhibit a downward 
transmission slope approaching 12 db per octave in the IF band; the 
high-pass filter, which has a cutoff at approximately 100 mc, equalizes 
this rolloff. This combination yields a very good noise figure because 
the available power gain provided between the preamplifier input jack 
and the input of transistor Q2 is relatively large, thus minimizing the 
influence of the second transistor on the over-all noise figure. The constant 
resistive load for transistor Q2 consists of a high-pass network and a 
low-pass network, which have complementary input impedances. Re
sistor R2 is the termination for the low-pass network, and the third 
transistor stage terminates the high-pass network. 
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A diagram of a typical common-base stage is shown in Fig. 5. In 
this configuration, the transistor has a current gain slightly less than 
unity in the IF band. The interstage transformer, which is a ferrite-core 
distributed autotransformer,4,5,6 provides a current step-up ratio of 
app~o'ximately 1: 2, making the over-all power gain slightly less than 6 
db per stage. Since a transistor of the type used is capable of providing 
a maximum unilateral gain of about 15 db at 80 me, there is evidently 
a considerable sacrifice of gain in order to obtain a high degree of sta
bility and transistor interchangeability. The slope of the gain-frequency 
characteristic in the IF band can be adjusted by changing the damping 
resistor R 2 , which is introduced to control gain peaking at higher 
frequencies. (Also, a variable inductor is added in the base lead of some 
of the stages to provide a small, continuous, additional slope adjustment.) 

Fig. 6 indicates the make-up of the complete preamplifier. Potentiome
ter R4 is a gain control having 16 db range. Used to adjust the over-all 
IF amplifier gain to 105 db, it does not unduly affect the good output 
return loss of the preamplifier. (A good termination is needed for proper 
filter operation.) 

2.3.1.2 Variolossers. Two variable-loss pi networks of germanium 
point-contact diodes are included in the preamplifier (Fig. 6) to maintain 
a constant level out of the main amplifier. The input levels from the 
converter may vary from about -33 dbm to less than -83 dbm. Each 
variolosser is able to insert from 1 to 30 db of flat loss over the IF band. 
This loss range, greater than that required to correct for IF input level 
variations, allows for temperature and aging effects on the gain of the 
amplifier. 

The impedance of each variolosser diode to signal frequencies is 

R, TYPICAL VALUES: 

R, = 825, R2 = 464, R3 = 2150 

R4= 1780, R5 =10, L,=7 

C, = 0.0005, C2 = 0.005, C3 = 0.001, C4 = 1 

RESISTANCE IN OHMS 

INDUCTANCE IN /.I. H 

-20V CAPACITANCE IN /.I. F 

Fig. 5 - Typical common-base stage. 
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controlled by the direct current passing through it. Direct current is 
caused to flow in such a manner that as the current increases in the 
shunt diodes, it decreases in the series diodes (and vice versa). Since the 
diodes appear in pi networks at IF, variable loss is obtained without 
producing much variation of the input and output impedances of the 
variolossers. The currents are controlled by the output of the AGC 
amplifier (see Fig. 8 below), which responds to amplitude-modulation 
frequencies ranging from dc up to about 50 cps. Diodes D7 , D8 and D9 
are used as a -2.0-volt dc supply and are forward-biased through 
resistor R3 . (These diodes become starved of current under fade condi
tions, and the reduced voltage ensures a low minimum IF loss in the 
variolossers.) The series and shunt diode sets arc connected in parallel 
for incremental currents supplied from the K lead; but the -2.0-volt 
source is placed within a loop pa.ssing through all six attenuator diodes, 
thus providing a condition wherein their dynamic resistances can si
multaneously equal about 130 ohms. This condition occurs when the 
input dc lead from the AGC amplifier carries no current, and it cor
responds to a medium loss condition in the variolossers. The two vario
lossers are so interconnected that they conduct the same dc currents, 
thereby forcing their loss values to track together. Inductors Ll and L2 
carry control current and also counteract the effect of the series-diode 
capacitance, which is important when the diode resistances reach their 
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highest level. Resistors Rl and R2 provide an upper limit for the series 
path impedance, thereby forcing the shunt diodes to carry more of the 
loss burden at higher IF input signal levels. 

A network containing a thermistor applies a temperature-dependent 
bias voltage in series with the shunt diodes of the variolossers. The effect 
is to equalize the drift which tends to occur in the AGO amplifier out
put current, and thus to prevent drift in the squelch firing level. The 
thermistor network, not shown in Fig. 6, is inserted between diode D4 
and ground. 

2.3.1.3 IF Filter (Fig. 1). The main functions of the IF filter are to 
delimit the IF bandwidth precisely with a minimum of ripple or slope 
within the band and to equalize the delay of the over-all IF amplifier. 
Besides limiting thermal noise, it also prevents out-of-band interfering 
signals and harmonics generated in the variolossers from entering the 
main amplifier. Systems considerationsl dictate that the 3-db frequencies 
be 60 and 80 mc, and that the loss be flat to within ±0.1 db from 64 
to 76 me. It is designed to work between precise 75-ohm terminations. 

2.3.1.4 IF Main Amplifier (Fig. 7). The IF main amplifier is a cascade 
of nine common-base stages, each developing slightly less than 6 db 
of gain, and a parallel common-base output stage capable of delivering 
a maximum power of + 13 dbm into the limiter. The nominal power 
gain of this amplifier is 48 db, flat to within ±0.2 db over the 64- to 
76-mc IF band. 

The driver stage Q9 is similar to the earlier stages, except that it is 
followed by an additional transformer to give an over-all 4: 1 current 
step-up at the last interstage (for driver linearity). Resistors R2 and 
R3 ensure equal driving currents for the parallel transistors. Resistor 
R4 helps to provide a good output return loss for a 200-ohm load (the 
limiter). 

2.3.2 Automatic Gain Control Circuit (Fig. 8) 

For proper operation of the limiter, it is necessary that the output 
level of the IF main amplifier be held nearly constant regardless of 
-changes in RF signal level and temperature. Furthermore, the IF 
amplifier stages preceding the output stage must not be overdriven; 
otherwise, too much spurious phase modulation will result. These de
sired conditions are achieved through the use of an automatic gain 
control circuit consisting of an IF detector, a direct-coupled amplifier 
called the AGO amplifier, and the variolossers described in Section 
2.3.1.2. The AGO amplifier, excited by the detector, feeds back a cur
rent (K lead) to control the loss due to the variolossers and thereby 
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compensates any tendency for the IF output level to change. The dc 
amplifier has sufficient gain to multiply the small current increment 
drawn from the detector to the relatively large current needed to drive 
the variolossers. This circuit holds the limiter input level to + 11.5 
dbm ±1 db for IF input levels ranging from -83 dbm to -33 dbm 
over the temperature range from -20°C to +60°C. 

A masking resistor Rl is inserted to partially isolate the output of the 
IF main amplifier from the nonlinear input impedance of the AGC 
detector. This reduces the AM-to-PM conversion of the receiver. The 
detector-diode voltage varies almost linearly with the IF output voltage 
and is therefore used as a limiter input level monitor. 

The dc amplifier consists of a differential stage followed by a common
emitter stage. The differential stage is used to minimize the drift in 
IF output level due to changes in temperature. The amplifier has one 
net phase reversal, providing negative feedback around the AGC loop. 
The closed-loop bandwidth of the AGC system is limited to about 50 
cps by capacitors C1 and C 2 , which produce the only significant cutoffs 
occurring in the feedback-vs-frequency characteristic of the AGC system. 

A switch is incorporated in the differential stage to permit the AGC 
loop to be opened for test purposes. The potentiometer R2 serves a dual 
purpose. With the AGC loop closed (switch on), it sets the dc reference 
to which the detector output level is compared; and since the vario
lossers are automatically adjusted to make the difference between 
these levels zero, this potentiometer sets the IF output level. When 
the loop is open, the potentiometer is used to manually adjust the loss 
of the variolossers. 

The collector voltage of transistor Q3 is a monotonic function of the 
received carrier level. This voltage is used to trigger a squelch circuit 
(lead S), to excite a diversity switching circuit (lead L) and to drive a 
signal strength meter (also lead L). Potentiometer R3 serves as a cali
bration control for this voltage, and potentiometer R4 provides an 
additional adjustment for the voltage on lead L. 

2.3.3 Limiter (Fig. 9) 

The output signal of the IF main amplifier will contain both AM and 
FM components of noise and baseband signals. * Since the discriminator 
will respond to AM signals as well as to FM signals, a limiter is used 
to greatly reduce the AM component of the signal entering the discrimi
nator. 

* The AM baseband signal component is due to the action of a non-flat system 
transmission characteristic on the FM signal. 



TO AGC 
DETECTOR 

IF 
OUTPUT 
STAGE 

I 
I 
t 

t 

-20V 

TL SOLID-STATE RECEIVER 

HARMONIC 
SUPPRESSION 

LOW-PASS 
LIMITER CIRCUIT FILTER 

1845 

I--R,--~----Il--II ISOL:~ING 

I I I AMPLIFIER 
o 0 I C, \ 

, 2 ~ 

, / 

SERVES AL~O AS I 
1ST DISCRIMINATOR I 

TUNED CIRCUIT (70MC) 

I 
I 

I THERMISTOR I 
I -20V I L __________ -----.J 

Fig. !) - Remodulation-type limiter circuit. 

The operation of the limiter can be understood from a consideration 
of Fig. 9.2 The limiter resembles a simple series diode clipper in whioh 
the diodes are used to open up the transmission path after a certain 
level threshold is reached. One can think of the first and second diodes 
as an amplitude detector and an amplitude modulator, respectively. 
This process of detection and modulation is so performed that the net 
AM on the limiter output signal is minimized. Some of the incoming 
AM sideband energy is coupled from the IF mesh 1 to IF mesh 2 through 
the shunt path consisting of resistor R3 and bandpass network N 4 • 

The envelope of the IF signal is detected by diode Dl in baseband mesh 
1 and this baseband signal is coupled through the shunt path consisting 
of resistor R3 and low-pass network N 3 to baseband mesh 2. There the 
baseband signal is impressed on the IF carrier by diode D2 and appears 
across the load at sideband frequencies in phase opposition to the energy 
coupled from IF mesh 1. Note that networks N 1 and N 5 are required 
to cause the baseband and sideband signals to flow in the proper meshes 
and to attenuate undesirable modulation products. (Also, Nl is a 70-mc 
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antiresonant tank circuit which serves as a corrective circuit for linear
izing the discriminator characteristic.) Potentiometer R4 is adjusted to 
achieve cancellation of the AM. The dc source in the baseband shunt 
path is used to bias the diodes Dl and D2 and hence set the limiter 
output level. The thermistor compensate~ for temperature drift in the 
gain (or loss) of the limiter, discriminator and baseband amplifiers. 
The FM signal behaves in the same manner as the carrier, suffering 
only loss in passing through the limiter. Insertion loss of the limiter is 
about 10 db, and the circuit has been designed for acceptable limiting 
for input levels ranging from + 10 to + 13 dbm. 

Resistors Rl and R2 shunt the diodes, thereby permitting the use of 
diodes with a wide range of reverse impedances. These resistors, being 
in parallel with the low forward impedances, do not affect diode per
formance in the forward bias state~ The load driven by the limiter is 
the input network of the discriminator. Capacitor C1 tunes out the 
reactive part of the input impedance of the limiter-discriminator iso
lating transistor at the IF center frequency. 

2.3.4 Triple-Tuned Balanced Discriminator (Fig. 10) 

The discriminator extracts the baseband information from the input 
FM signal. After passing through the first common-base isolating ampli
fier, the FM signal traverses a wide-band transformer and then drives 
two separate branches. Each of these paths contains a common-base 
isolating amplifier, a parallel resonant circuit, an amplitude detector, 
a low-pass filter, and two terminating resistors. The discriminator 
output baseband I~signal is the sum of the output currents of the two 
paths. Two outputs are provided: an ac-coupled output to the receiver 
baseband amplifier and a direct-coupled output to the AFC amplifier. 

Circuit 'N 1 (Fig. 9) is tuned approximately to the 70-mc carrier 
frequency, circuit N 2 (Fig. 10) to 85·mc, and circuit N3 to 55 mc. The 
use of circuits N 2 and N3 alone yields the familiar "S" curve; however, 
the 10w~Q tuned circuit N 1 significantly improves the linearity of the 
discriminator.7 Since the attainment of adequate linearity requires 
precise adjustment of both the Q and resonant frequency of the tuned 
circuits,both the inductor and capacitor of each tank are adjustable. 
Proper phasing of the outputs of the two paths is accomplished by 
connecting the discriminator diodes as indicated. (This connection 
avoids the use of a costly and large-size broadband transformer.) 

Negative-coefficient capacitors are used to maintain the proper reso
nant frequencies of the two tuned circuits of Fig. 10 as the temperature 
changes. Equal forward-bias voltages of approximately 0.3 volt are 
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maintained across each of the diodes to improve the linearity of the 
detectors. 

2.3.5 Aut01natic Frequency Control Amplifier (Fig. 11) 

The AFC loop contains two cascaded amplifier circuits, a two-tran
sistor amplifier followed by a magnetic amplifier. The primary purpose 
of the transistor AFC amplifier is to isolate the discriminator and base
band amplifier from the magnetic amplifier, since the latter amplifier 
produces a substantial 1800-cycle signal rich in harmonics which must be 
attenuated to avoid spurious baseband amplifier output tones. 

The transistor AFC amplifier consists of a common-emitter stage 
direct-coupled to a common-collector stage. Shunt negative feedback 
provides bias and gain stabilization and low input and output imped
ances. (The low input impedance helps isolate the two paths of the 
balanced discriminator, and it simultaneously stabilizes the bias applied 
to the discriminator diodes.) Attenuation of undesirable tones from the 
magnetic amplifier is provided by the low output impedance of the 
transistor AFC amplifier and by an RC filter between the discriminator 
and the transistor AFC amplifier. The input current from the discrimi-
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nator is very nearly zero when the IF carrier frequency is 70 mc be
cause the discriminator diodes are oppositely poled. 

Since the transistor AFC amplifier output voltage must be bipolar 
and since the dc power supply has only one polarity (-20 volts) with 
respect to dc ground, a -6.7 volt dc voltage source is used as the transis
tor AFC amplifier "dc ground." The dc output of the AFC amplifier 
is relatively insensitive to variations in both the -20-volt power sup
ply and the -6.7-volt source. The transistor AFC amplifier output 
is approximately 40 mv jmc of carrier deviation. 

Temperature stability of the transistor AFC amplifier is achieved by 
canceling Ql base-emitter voltage-drop changes with diode Dl and by 
achieving beta drift compensation by making the collector current of 
Ql and the base current of Q2 approximately equal in magnitude. Ca
pacitor C1 is used to shape the feedback versus frequency characteristic 
of the transistor AFC amplifier and assures stability. Capacitor C 2 

reduces 1800-cycle energy originating in the magnetic amplifier. 
The main gain-producing element of the AFC loop is the magamp, 

which provides a voltage gain of about 950. Its cutoff frequency, which 
controls the response time of the AFC loop, is about one cycle per 
second. The 1800-cycle square wave required for operation of the 
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magamp is obtained from a winding on the dc-to-dc converter which 
supplies high voltage for the klystrons. 

2.3.6 Receiver Baseband Amplifier (Fig. 12) 

The receiver baseband amplifier follows the discriminator. It is a 
direct-coupled cascade of three common-emitter transistor stages with 
shunt feedback through a "T" network. Two virtually identical input 
currents are applied to the amplifier from the two branches of the dis
criminator. The external current gain of the amplifier is given, to a good 
approximation, by the ratio of the feedback network short-circuit trans
fer impedance (13 to 25 kilohms) to the output-lead resistance (14.5 
ohms). The gain may be varied over a 5-db range by adjusting potenti
ometer Rs. 

The output stage is a parallel combination of a pnp germanium unit 
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having a common-emitter current-gain cutoff at about 15 mc and an 
npn silicon unit with a cutoff at about 3 mc. Both transistors contribute 
substantially to the ac load current out to 6 me (the highest baseband 
frequency), with the result that more current can be driven into the load 
under given distortion limits than can be provided by one transistor 
alone. The dc current passed by transistor Q3 into the collector node is 
drawn out of that node by transistor Q4, allowing a reduction of the 
output admittance shunting the load. The available output power is 
thus increased. Resistor Rl sets the amount by which the bias current 
in the silicon transistor Q4 exceeds that in the germanium transistor 
Q3. The small emitter resistors R6 and R7 ensure that the two tran
sistors share the load equally by making their input impedances pro
portional to their respective incremental current gains. 

The local shunt feedback in the second stage allows the circuit to 
accommodate high-gain units in the output stage without becoming 
unstable; and it also compensates, to some degree, for the drop in 
incremental gain of the output stage during part of the signal cycle, 
maintaining the over-all feedback and thereby reducing distortion. 

Because of the large amount of over-all shunt feedback, the output 
impedance of the amplifier is roughly 5 ohms augmented by the 70-ohm 
padding resistance, which yields a good output return loss. Potentiome
ter R2 adj usts the dc collector voltage of transistors Q3 and Q4 . The 
network formed by resistor R3 , inductor Ll and capacitor Cl improves 
the stability margins when potentiometer R5 is set for maximum re
sistance. 

The amplifier is switched off during deep carrier fades by an input 
from a squelch circuit sufficient to drive it into saturation. This input 
current is passed through resistor R 4, which is large enough to mask 
out the output capacitance of the squelch circuit. 

2.3.7 Transmitter Baseband A 1nplifier (Fig. 13) 

A baseband amplifier immediately precedes the transmitter klystron 
in the TL system. This amplifier provides an adjustable voltage gain 
of 27 ± 4 db between a 75-ohm source and the klystron repeller load 
(which, including wiring capacitance, behaves like a 35-tLtLf capacitor). 

The amplifier uses three transistors. The first stage uses the common
base configuration; the second stage is common-collector; and the third 
stage is common-emitter, providing the net phase reversal needed for 
negative shunt feedback. Because of the very low input impedance 
provided by the common-base stage and the over-all negative feedback, 
a 75-ohm resistor is added to give excellent input return loss. 
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Capacitor C1 provides the initial feedback cutoff (at about 5 me). 
This cutoff slides to compensate for changes in the current gains of 
Q2 and Q3 since it depends on the input impedance of the common
collector stage. Resistor Rl improves the phase margin of the feedback 
(A(3) by halting the falling asymptote due to the 35-,u,uf load capacitance 
at about 47 mc. 

2.3.8 Squelch Circuit (Fig. 14) 

The receiver contains a bistable trigger circuit which renders the 
baseband amplifier inoperative during deep radio path fades. This 
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circuit is a Schmitt trigger operating from the variolosser-control voltage 
produced by the AGC amplifier. This voltage, which appears at the 
collector of transistor Q3 in Fig. 8, becomes less negative as the IF input 
carrier fades, and the circuit is designed to trigger in the vicinity of 
- 2.8 volts. This voltage level is caused to correspond to a carrier level 
of from - 80 to - 95 dbm by means of potentiometer R3 in Fig. 8. 
When the Schmitt trigger circuit fires, it injects about 1.5 rna of current 
into the summing node of the receiver baseband amplifier, driving this 
amplifier into saturation since as little as 0.8 rna will saturate it. 

2.4 Circuit Performance 

2.4.1 IF Amplifier 

The most important electrical performance features of the IF ampli
fier in the TL radio receiver may be described by graphs showing the 
over-all gain-frequency characteristic at different incoming signal 
levels and at extremes of temperature. 

All of the curves in Fig. 15 are normalized with respect to the gain 
at 70 mc and 25°C with the passive filter in. The data show that both 
the in-band and wideband spectral distortion is small as the ambient 
temperature is changed from -20°C to +60°C. Furthermore, the gain 
level at 70 mc without AGC varies a maximum of 2 db over the same 
temperature range. Between 50 and 90 mc the "bowed" shape of the 
curves is primarily due to the output circuit of the IF amplifier (Fig. 7); 
the in-band effect is negligible. 
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The IF amplifier output level vs frequency at different input levels 
and temperature extremes is shown in Fig. 16. These curves demonstrate 
the tightness of the AGC. * The output power is set to + 11.!) dbm at 
70 mc, 25°C with an input level of -58 dbm. The maximum level shift 
encountered at 70 mc as temperature and input level vary is ±0.6 db, 
and the maximum tilt is 0.13 db/mc across the band. The IF main 
amplifier provides + 11.5 dbm of power with less than 0.5 db compres
sion working into the 200-ohm limiter input impedance. 

In addition to transmission-shape and output-level stability, another 
important requirement is that the envelope delay distortion be small. 
Fig. 17 shows the envelope delay in nanoseconds at two input levels and 
at temperature extremes. The maximum change in envelope delay 
over the 64- to 76-mc band is observed to be 12 nanoseconds. lVlost of 
the change with frequency occurs during deep fades where noise, rather 
than delay distortion, is controlling. The envelope delay characteristic 
of the IF filter is presented in Fig. 18 along with the insertion and 
return loss characteristics. The 70-mc loss is about one db, and the 
envelope delay shift across the 64- to 76-mc band is 6 nanoseconds. 

The noise figure of the IF amplifier during fades, measured from a 
7t>-ohm source impedance, is typically about 6 db. Fig. 19 is a plot Jof 
noise figure as a function of input carrier level in dbm at 25°C. The 
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* The frequency response of the AGO system, for the purpose of this measure
ment, is made much lower than the sweep frequency of the signal source. 
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input circuit is adjusted so that a compromise is reached between low 
noise figure and return loss, typically 26 db from 64 to 76 mc. 

2.4.2 AGC Circuit 

The stability of the closed AGe feedback loop may be measured by 
applying a step function from a current source at the K lead of the 
AGe amplifier (Fig. 8) and observing the output voltage on the col
lector of Q3 as a function of time. Fig. 20 shows a sketch of this wave
form for three input level conditions representing different amounts of 
AGe loop gain. An input level of -58 dbm yields the worst transient 
response. The amount of overshoot is a measure of the stability margins, 
and the rise time and ripple frequency relate to the response time. 
The AGe system cuts off at approximately 50 cps, and the maximum 
overshoot of 6 db suggests a minimum phase margin of about 20 degrees. 

2.4.3 Limiter 

Measurements of AM suppression of the limiter for three temperatures 
and three drive levels into the IF preamplifier are given as functions of 
baseband frequency in Fig. 21. The limiter has been optimized for 
maximum AM suppression at 100 kc, room temperature, and a + 11.5-
dbm drive level and still provides at least 18-db suppression over the 
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6-mc baseband under the worst conditions of temperature and of drive 
level permitted by the AGC. 

2.4.4 Discriminator and Transistor AFC A nLplifier 

A discriminator is judged primarily by its linearity, stability of its 
zero crossover frequency and sensitivity.7 The over-all receiver nonlinear
ity is typically measured to be better than 4, 7 and 4 per cent at tem
peratures of +25, -20 and +60°C, respectively, for a peak deviation of 6 
megacycles; and this is approximately the nonlinearity of the discrimi
nator. 

lVleasurements on the composite discriminator-transistor AFC am
plifier indicate that the shift in zero crossover frequency is ±200 kc, 
and the nominal sensitivity of 40 mv per megacycle changes ±2 mv 
per megacycle over this temperature range. The rejection of the 1S00-
cycle signal and harmonics of this frequency generated by the magnetic 
amplifier is sufficient to keep the level of this signal at the reCelver
baseband output down to the order of -50 dbm. 

2.4.5 AFC Loop 

The AFC loop performance, aside from drift which was discussed in 
the previous section, is relatively independent of temperature. A typical 
circuit has a loop gain of 30 db, 10-db gain margin and 60 degrees 
phase margin. 

2.4.6 Receiver Baseband Antplifier 

The open-loop gain and phase vs frequency characteristics of a typical 
receiver baseband amplifier are shown in Fig. 22 for a m~4ium gain 
setting and room temperature. The closed-loop gain curves for -20°C, 
+25°C and +60°C are also shown. It is clear that the external gai~ 
from 200 cps to 2 me stays constant within ±O.OS db over the tempera~ 
ture range, and between 2 me and 6 me it is constant within ±0.23 db. 
The open-loop characteristic exhibits a 6-db per octave rolloff, which 
is desirable when flatness of external gain near the unity feedback 
crossover frequency is important. The feedback amounts to 31 db at 
midband and 13 db at 6 mc. The phase and gain margins are 47° and 
6 db, respectively. (A small gain margin such as this can be tolerated 
when a large part of the phase shift tracks well with the iT'S of the tran
sistors* and, hence, with the crossover frequency.) Since feedback is 
maintained down to dc, there is no question of low-frequency oscillatiQ1). 

* f T is defined as the frequency at which the common-emitter short-circuit 
current gain is unity. It is a convenient figure of merit for the bandwidth of the 
transistor. 
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Fig. 22 - Gain-frequency curves - typical receiver baseband amplifier. 

The second- and third-harmonic distortion products are down at 
least 37 db and 46 db, respectively, for maximum external gain (mini
mum feedback condition) and full output level of + 10 dbm at 6 mc. 
These figures become better rapidly as frequency decreases, reaching 
-60 dbm and -70 dbm, respectively, at 500 kc. The output noise 
power of the amplifier in a 500-cyc1e band for frequencies above 100 kc 
is approximately - 92 dbm. 

2.4.7 Trans1rtitter Baseband Arnplifier 

Measurements similar to those made on the receiver baseband ampli
fier were made on the transmitter amplifier. Fig. 23 displays the gain
frequency characteristics of a typical transmitter baseband amplifier 
at a medium gain setting and room temperature. This particular model 
contains transistors with average f T'S; thus, it represents a typical 
case. The phase and gain margins are 53° and 8 db, respectively. 

Distortion measurements taken on the transmitter baseband ampli
fier indicate that the second and third harmonics are, respectively, at 
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Fig. 23 - Gain-frequency curves - typical transmitter baseband amplifier. 

least 54 db and 70 db below the fundamental at 6 mc and full output 
voltage (4 volts peak). 

2.4.8 Squelch Circuit 

The squelch threshold level for a typical receiver was measured as a 
function of temperature. The firing-level setting of - 87 dbm drifted 
to -84 dbm and -85 dbm at -20°C and +60°C, respectively. The 
hysteresis between turn-on and turn-off was less than 1 db. 

2.4.9 A.Lll-to-P.Lvl Conversion 

The over-all AlVI-to-PlVI conversion of a receiver was measured for 
temperatures ranging from -20°C to +60°C and for IF input levels 
ranging from -33 to -83 dbm. The worst AM-to-PlVI conversion was 
0.017 radian for a 10 per cent AM index. 

III. CONCLUSION AND REMARKS 

Certain apparent limitations in the use of solid-state components in 
a wide band microwave radio relay system have been overcome. The 
fresh approaches which have been applied have, in some cases, re
sulted in performance which is superior to that achieved with compara-
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ble electron tube designs. This improved performance is over and above 
that achieved through inherent advantages of solid-state devices over 
conventional electron tubes, which include reduced power drain, small 
size, reliability, and potentially low cost. 

It has recently come to our attention that others working in the 
field of microwave radio systems have arrived through parallel efforts 
at some of the same design techniques described herein.8 It is hoped that 
the publication of this paper will help expand the field of application of 
solid-state devices and will encourage others to design around apparent 
shortcomings of solid-state devices by refusing to have their thinking 
completely channeled by what already exists. 
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APPENDIX 

A.l Transistor "Low-Pass" IF Amplifiers 

At least three basic configurations are useful in transistor wideband 
IF amplifiers. These are the common-base stage with a wideband trans
former interstage network, the doublet circuit, and the common-emitter 
stage with frequency-dependent shunt feedback. 

A.I.l The Common-Base Stage with a Wide-Band Transjonner Inter
stage Network 

Becaus~ the current gain of a common-base stage is less than unity, 
this coritiguration requires the use of a current step-up interstage net
work to achieve power gain when a cascade of similar stages is used as a 
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wideband amplifier. Transformers are available which provide a con
stant current step-up over a wide band of frequencies4,5,6 between 
terminating impedances typical of solid-state circuits. The basic: com
mon-base configuration is shown in Fig. 5. It can be shown that to 
achieve "flat" amplitude response extending to within an order of 
magnitud~". qf f T , damping resistor R2 is required. Use of a transformer 
having a 1: 2 current step-up results in a power gain slightly less than 
G db per stage. 

In the TL IF amplifier stages, the transformer turns ratio is Uluch 
lower than that which would result in maximum gain. This ,makel;' the 
amplifiers quite insensitive to changes in transistor parameters. This im
plies a very stable transmission characteristic over a wide temperature 
range and large variations in power supply voltage. Another result if> that 
the circuits accept an extremely wide range of transistor param~ters, 
either due to statistical distribution or to aging; and adjustment of ~he 
transmission characteristic is relatively simple. 

The input and output impedances are relatively stable with tempera
ture and dc bias and can be represented by simple passive networks. 
Hence, the common-base stage can be compensated to yield a stable 
resistive input or output termination over a wide frequency range. This 
feature makes it particularly useful for connection to passive bandpass 
filters or other equalizer networks. Since the common-base static charac
teristics are much more linear than those of other configurations, this 
configuration also gives superior performance in high-level stages. How
ever, one must look to other configurations, such as the doublet, for the 
best noise figures in input stages. 

A.l.2 The Doublet Circuit 

This circuit, shown in Fig. 4, takes advantage of the fact that certain 
transistor pairs, or doublets, without interstage transforming networks, 
can provide an over-all gain stage which is more immune to temperature 
and power supply variations than each transistor considered separately. 
The reason for this improvement is the fortunate circumstance that 
undesirable variations on the individual stages tend to cancel for certain 
configurations. Two combinations which have been shown to exhibit 
this desirable property are the common-emitter - common-emitter 
doublet and the common-emitter - common-collector doublet. The 
gain characteristic, though stable, rolls off smoothly at high frequencies; 
hence, it is necessary to follow the transistors with an equalizer network, 
which usually takes the form of a constant-resistance, high-pass filter. 
The high-pass filter is designed to have a cutoff frequency above the 
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IF band, and the rolloff of the filter compensates for the rolloff of the 
transistors. 

The gain level of a doublet is a fairly strong function of the f T of the 
transistors used; however, the over-all normalized gain-frequency char
acteristic is stable with temperature and bias variations. Exclusive use 
of the doublet in a high-gain amplifier would probably dictate either a 
tight control of the average f T of the transistors used or a larger dynamic 
range of automatic gain control. The power gain of the doublet used in 
the TL radio receiver ranges from 1.5 to 20 db. 

The common-emitter - common-emitter doublet configuration has 
been found to be the one best suited for use as the input circuit for wide
band IF amplifiers. It provides the lowest noise figure of all of the con
figurations evaluated and, through the use of a simple impedance
matching network, can yield a good input return loss over a wide IF 
band. The low noise figure is due to the facts that the input of the 
amplifier is separated by a block of relatively high gain from the re
mainder of the amplifier and that the natural input impedance of the 
doublet amplifier needs only minor correction to achieve good input 
return loss at the desired impedance levels (usually 50 to 12.5 ohms). 

A.1.3 The C01nmon-Emitter Configuration with Frequency-Dependent 
Shunt Feedback 

Of all forms of wide band amplifiers studied, the configuration which 
most easily yields the broadest bandwidths is the common-emitter 
stage with frequency-dependent shunt local feedback. 9 •1o This circuit, 
shown in Fig. 24, has a two-terminal RL network connected between 
base and collector. The effect of the RL network is to reduce the gain of 
the stage by application of negative feedback. Resistor Rl determines 
the low-frequency gain, and inductor L effectively removes the feedback 

Fig. 24 - Common-emitter stage with shunt local feedback. 
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at high frequencies and hence is a broad banding clement. Resistor R2 
damps the resonance which occurs between the inductor L and the 
capacitive reactance presented by the transistor. It has been demonstrated 
that this configuration is very flexible in that gain and bandwidth can 
easily be exchanged, and the gain-bandwidth product is approximately 
given by iT .9 

A cascade of common-emitter stages with shunt feedback exhibits 
only very slight changes in the normalized amplitude response for wide 
variations in temperature and power supply voltage. However, because 
the gain level of each stage is highly dependent on iT and rb' and on the 
input impedance of the following stage, the over-all gain level varies 
considerably. By specifying tight limits on the average values of the 
parameters for a given set of transistors (usually only the average iT 
need be specified), the over-all absolute gain can be kept within close 
limits. Of course, a moderate amount of gain adjustment may be had by 
changing the value of Rl in the feedback network. This configuration 
cannot compete with the doublet circuit as a low-noise input stage or 
with the common-base configuration as a low-distortion, high-level 
stage; however, it appears to be the best configuration to use when 
extremely large gain-bandwidth products are required. 
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Evaluation of the Net Radiant Heat 
Transfer between Specularly 

Reflecting Plates 

By V. E. HOLT, R. J. GROSH,t and R. GEYNET 

(Manuscript received July W, 1962) 

The radiant heat transfer between two parallel infinite plates was deler-
111,ined. The plates were assumed to be specular, anisotropic reflectors and 
emitters as characterized by the electrmnagnetic theory for highly polished 
electrical conductors. 

N U1nerical results are given for specific lnetals front 4.2 to 1500° ]{. Also, 
the results are expressed in generalized fonn for obtaining the net radiant 
heat transfer between any two parallel, infinite lnetal plates given only the 
temperatures and electrical resistivities. 

Total hemispherical and nonnal emissivities were detennined using the 
smne 17wthods. The results were in very good agreC1nent with elnpirical 
equations given in the literature. For a contrasting comparison, Christian
sen's equation for the net radiant heat transfer between two parallel, diffuse, 
gray surfaces of infinite extent was evaluated using these e17tissivities. The 
values obtained were less than those computed for the net radiant heat 
transfer between specular plates. 

I. INTRODUCTION 

Radiative exchange often becomes the controlling mode of heat trans
fer when systems are found to exist at either low or high temperature 
levels. In the former case, for instance, it often becomes one of the major 
heat leaks to cryogenic fluids stored in dewars. 

In the following, the net radiant heat transfer between two parallel 
infinite surfaces is calculated for behavior in all respects as predicted 
by the electromagnetic theory of radiation for polished electrical con
ductors. 

t Head, School of Mechanical Engineering, Purdue University, Lafayette, 
Indiana. 
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II. FORMULATION AND SOLUTION 

The monochromatic emissivity, absorptivity, and reflectivity are 
known to be azimuthally symmetric about the normal to a conducting 
surface. Electromagnetic theory1,2 indicates that the monochromatic 
directional emissivity of low-emissivity metals is given by: 

[

60h V30h 2 --2, -cos(J+cos(J 
1 _! re re 

2 60h 30h 2 
-+21/-cos(J+cos (J 
re re 

60h cos
2 

(J _ 2 • / 30h cos (J + 1] 
+ re ~ re 

60h cos
2 

(J + 2 • /30X cos (J + 1 . 
re ~ re 

(1) 

Simplified expressions based on electromagnetic theory have been 
shown to be in agreement with experiment for temperatures as high as 
18000 K.2 However, deviation from experiment is presumed for higher 
temperatures. 

2.1 Radiant Heat Transfer 

For the arrangement shown in Figs. 1 and 2, the monochromatic 
radiation emitted from a unit area of surface 1 into a solid angle dw 
inclined at an angle (J from the normal is 

€I( (J,X)I(bb,X,TI) cos (J dw. (2) 

A fraction CX2( (J,X) of this is absorbed at surface 2 for the first reflection. 
For specular reflection, a fraction cx2((J,X)[1 - €1(O,X)][l - CX2(O,X)] is 
absorbed at surface 2 for the second reflection. Ultimately, the mono
chromatic radiation emitted from surface 1 in a direction (J that is 
absorbed by surface 2 is 

€1(O,X)CX2(O,X){1 + [1 - €1(O,h)][l - CX2(O,X)] 

+ [1 - €1(O,X)]2[1 - CX2(O,X)]2 

+ ... l I(bb,X,TI) cos ° dw 

_ €1(O,X)CX2(O,X)I(bb,X,TI) cos ° dw 
- 1 - [1 - €1(O,X)][l - cx2(O,X)1 . 

(3) 

Thus, the total radiation emitted from a unit area of surface 1 and 
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absorbed by surface 2 is 

100 17r /2 _------=-_E_l (_O,-::-,'A_) a-.,-2-::-::( O--,-,'A_)_~~ 
o 0 1 [1 - El(0,'A)][1 - a2(0,'A)] 

·E(bb,'A,T1 ) sin 20 dO dA. 

The net radiation from surface 1 to surface 2 is 

where q2~1 is evaluated from (4) with the subscripts reversed. 

(4) 

Using the IBM 7090 computer, this equation was evaluated for specific 
metals and also for various resistances and temperatures. Only a fraction 
of a minute computation time was required per case. The required re
sistivity values were obtained from Refs. 3-10. 

Specific examples of solutions are given in Table 1. In Fig. 3, the radia
tion ql~2 is graphically expressed in general form in terms of only Tl , 

TABLE I - NET RADIATION BETWEEN PARALLEL PLATES -

SPECIFIC EXAMPLES 

Computed Values - Figure 3 Christiansen's 
Equation (2) 

Tlo K T2° K 

ql->2 

I 
qZ~1 

, 
qnet 

U[T14 - T24] 

qnet = 1/Eh
l 
+ 1/Eh2 - 1 

BOTH SURFACES GOLD 

77 4.2 1.65XlO-7 3.42XlO-1 3 l.G5XlO-7 0.442XlO-7 
watts/sq em watts/sq em 

290 77 2.58XlO-4 G.G5XlO-7 2. 58XlO-4 1.52XlO-4 
1000 290 0.129 4.97XlO-4 0.129 0.0812 

BOTH SURFACES IRON 

500 290 1.4XI0-2
! lXlO-3. 13XlO-3 18.82XlO-3 

1000 290 0.4 0.0013 0.4 0.195 
1000 500 0.44 O.OIG 0.424 0.322 

290 
1000 

290 
1000 

SURFACE 1 IRON - SURFACE 2 GOLD 

77 ! 3.147 X I0-4!1.2XlO- 6 !3.14XI0-1 

290 0.1733 6.74XlO-4 0.172 !

1.G8XlO-4 

0.1 

SURFACE 1 GOLD - SURFACE 2 STAINLESS 18-8 

77 ! G.35XlO-4
1 

290 0.258 
10- 6 

10-3 
G.34XlO-4 

0.257 
5.5XlO-4 

0.22 



RADIAN'!' HEAT TRANSFER BETWEEN REFLECTING PLATES 1869 

10-2~_--------~----------~----------r----------'-------. 

_IN 

'z 
~ 10-3f-----------+-----------r--~~~~P_~------~~~ 
UJ 
~ 

If) 
UJ 
UJ 
a:: 
I.!l 
UJ 
o ________ -------- --5---
~ 

NI~ 1~4~~~~~~~~---~~~~~~~~~~~~~~~~-2~ 

o-=. t=- Re2 = 10-8 

u " OHM-CM 

10-5~~~-LLU~~-L-L~~~~~~~~~~~~~~~~~~ 
10- 8 10- 7 10-6 10-5 10-4 

ELECTRICAL RESISTIVITY OF PLATE 1, Re1 IN OHM-CM 

Fig. 3 -- Radiation emitted by plate 1 that is absorbed by plate 2. 

reI, and re2 . As is indicated by the examples in Table I, Fig. 3 can be 
used to determine the net radiation, ql-+2 - q2-+1 , between any two similar 
or dissimilar parallel infinite metal plates. The choice of the ordinate in 
Fig. 3 was arbitrary. The choice of (J"T4.5 in the denominator removed 
part of the dependence of emissivity on temperature and resulted in an 
ordered family of curves. 

2.2 Emissivities 

An expression similar to (4) can be developed for the total hemispherical 
emissivity of a perfectly smooth, clean metal surface: 

1 100 17r/2 . 
Ell = E(bb,T) 0 0 E(O,'A)E(bb,'A,T) sm 20 dO d'A. (5) 

This equation was also evaluated for seven metals at various tempera
tures; the results, depicted in Fig. 4, agree very well with empirical equa
tions (based on electromagnetic theory predictions ) that have been 
applied over specific ranges of reT. I

,2 

Available experimental emittance values for polished metal surfaces 
are generally from one to three times the computed values. Slight imper
fections and oxides on the actual surfaces could account for the variances. 
lVlost of the available copious data were taken at pressures above 10-6 
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Fig. 4 - Computed total hemispherical emissivities. 

Torr, and the samples were not prepared in high vacuum. The results of 
a recent intensive experimental investigationll are in good agreement 
with the computed values for platinum as shown in Fig. 4. Apparently 
these investigators chose platinum for their tests because of good surface 
stability compared with other metals. 

The "emittance" of a surface is taken to be equal to the "emissivity" 
when the surface is opaque, optically flat, and identical to the interior of 
the material. ll 

Below about 20 degrees K, the resistivity of the materials considered 
approaches a residual value. This is more noticeable with pure metals 
than in alloys, and is reflected in the emissivity values in Fig. 4. 

The values in Fig. 4 should be applied with qualification to surfaces 
at very low temperatures, because of the increased importance of the 
anomalous skin effect which was not considered here. The anomalous 
skin effect theory indicates that the skin resistance, instead of the bulk 
resistivity, becomes important in absorption and reflection for the 



RADIANT HEAT TRANSFER BETWEEN REFLECTING PLATES 1871 

longer wavelengths (approaching those of diffusely behaving microwaves) 
that are effective in thermal radiation at extremely low temperatures. 
At the present time, there is considerable uncertainty concerning the 
nature of thermal radiation between surfaces below 1000K. This is 
primarily due to difficulties in taking measurements and to conflicting 
results. Also, recent evidence suggests that the diffuse or specular nature 
of a metallic surface at low temperatures may be strongly dependent 
upon both the temperature of the surface and the wavelength of the 
incident radiation. 12. 13 

The resistivity of nichrome is nearly constant over the range of tem
perature considered; thus the slope of the curve for nichrome in Fig. 4 
is due only to the temperature dependence of the emissivity in the 
evaluation that was made. A converse example would be the large change 
in resistance at a certain temperature during the quantum transition of 
a superconductor to the superconducting state. The classical expressions 
solved here predict perfect reflection for the superconducting state, but 
they would not necessarily be expected to be applicable. In the visible 
region, no change in reflection has been reported during the supercon
ducting transition; however, an increase in reflection has been reported 
for frequencies less than the superconducting energy gap frequency (on 
the order of 3 X 1011 cycles per second). 

Equations 4 and 5 can also be readily solved for a particular wave
length or for a particular radiant energy distribution other than the 
Planckian spectral distribution used here. 

Directional and normal emissivity values were also obtained by 
evaluating (5) for specific values of O. An exemplary case is given in Fig. 

DIRECTIONAL t 
EMISSIVITY, e(B) 

(J) 

°0 

COMPUTED DATA 
NOT PLOTTED 

B e(8) 

80 0 0.0081 

850 0.0157 

87 0 0.0256 

88 0 0.0380 

88.50 0.0500 

89° 0.0725 

89.50 0.1340 

89.90 0.3640 

89.9999° 0.0005 

900 0 

Fig. 5 - An example of the directional emissivities computed. 
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5. The ratio Eh/ En was found to approach the theoretical limiting value 
of! (Ref. 2) using the values computed for the low resistivity metals at 
very low temperatures, as shown in Fig. 6. 

All of the computed values for all of the metals considered are nor
malized to one curve in Fig. 7. An approximation to the theoretical ex
pression evaluated here and some recent experimental results are in
cluded in Fig. 7 for comparison. The departure of a real surface from the 
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Fig. 7 - Ratio of total hemispherical to total normal emissivity. 
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ideal optical flat surface and the change in actual surface resistivity from 
the bulk value would be expected to make the experimentally measured 
emissivity ratio Eh/ En lower than would be theoretically predicted. l1 

The computed values of hemispherical emissivity were used in evalu
ating Christiansen's equation for the net radiant heat transfer between 
parallel, diffuse, gray surfaces of infinite extent. Christiansen's equation 
may be written as:2 

The results for several cases are tabulated in Table I for comparison 
with the computed examples for net specular radiation. The correspond
ing values computed for the net specular radiant heat transfer are larger. 
This may be attributed to the angular and spectral effects. Goodman14 

compared Christiansen's equation with values computed from experi
mental spectral emissivities for aluminum and Inconel at temperatures 
of 400°C to 1000°C. The spectral results were 2 per cent to 29 per cent 
greater than the values predicted by Christiansen's equation. 

III. CONCLUSIONS 

The radiant heat transfer between any two parallel, specular, infinite, 
uniform, metal plates was determined and is expressed in terms of only 
the temperatures and electrical resistivities in Fig. 3. The results exceed 
the predictions of Christiansen's equation for diffuse radiation between 
parallel gray plates of infinite extent. Christiansen's equation was 
evaluated using the computed emissivity values. 

Both the radiant heat transfer and the emissivity values presented 
represent limiting values that can be expected for perfectly clean, smooth 
metallic surfaces. The results should be very useful in interpreting data 
and in estimating values where adequate data are lacking. 

The solutions presented can be readily evaluated with the aid of a 
computer to obtain any additional radiant heat transfer and emissivity 
values that might be of particular interest. 

APPENDIX 

Nomenclature 

(XC O,}..) 

EC (j,}..) 

monochromatic directional absorptivity 
monochromatic directional emissivity 
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€h total hemispherical emissivity 
€n total normal emissivity 
o direction angle with respect to a normal to the surface 
A wavelength in centimeters 
dw element of solid angle: sin 0 dO dcp where cp is the azimuth 

angle 
E(bb,A,T) monochromatic emissive power of a black body at tempera

ture T: 

3.7404 X 10-12 
2 

A5 [exp (1.4387/AT) - 1] watts/em 

E(bb,T) emissive power of a black body: (jT4 where (j = 5.6699 X 10-12 

watts/cm2 
01(4 

I(bb,A,T) monochromatic areal radiant intensity of a black body at 
temperature T: 

E(bb,X,T) 

re electrical resistivity ohm-cm. 
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