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Selniconductor Surface Varactor 

By R. LINDNER 
(Manuscript received October 19, 1961) 

The semiconductor varactor using surface space charge is analyzed and 
measurements made on several experimental units are described. rPhe chief 
characteristics of this device are its capacity-voltage dependence and its 
negligible dc conduction. 

The particular system used in this work is a thermally grown oxide on 
silicon. A theory developed from the surface charge relation is shown to 
agree with the experimental data over a wide range of silicon resistivity. 

The theory for optimum operation for both dc and ac biasing is derived 
and used to compare the performance of this device with that of the p-n junc
tion varactor. The result of this comparison shows that with careful design 
the semiconductor surface varactor will be able to compete favorably with the 
,1·unction varactor for many possible applications, including those of ultra 
high frequency. 

1. INTIWDUCTION 

In recent years semiconductor p-n junctions have found wide use in 
parametric amplifiers, harmonic generators, and frequency modulators. 
These applications result from the fact that the space charge layer ca
pacity of the junction is voltage dependent and thus easily variable. 

Another semiconductor varactor which in some instances shows a 
greater dependence of capacity upon voltage has been investigated re
cently.l,2 Unlike the junction varactor, the modus operandi of this new 
device is the change of the distribution of charge at a semiconductor 
surface with an applied normal field. Since the surface in a sense re
places the junction, the device has been termed a "surface varactor." 
The device has also been termed an "ON varactor" (for oxide-n-silicon) 
and an "1\I10S diode" (for metal-silicon oxide-silicon). 

803 



804 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

The structure is shown in Fig. 1. It consists of an insulator (across 
which the normal field is applied) in intimate contact with a semicon
ducting material. The silicon-silicon dioxide system was used in all our 
experiments. 

II. QUALITATIVE DESCRIPTION 

A qualitative description of the baEic principles of the surface varactor 
is helpful in understanding the more detailed theory. This discussion 
makes use of the surface varactor as shown in Fig. 1 with p-type silicon. 
In this discussion, the capacity corresponds to that which would be 
measured with a negligibly small ac signal in conjunction with the indi
cated dc bias voltage. 

1. Consider that a negative voltage is applied to the contact on the 
oxide, which we will call the "field plate." Holes from the interior of the 
silicon body are attracted toward the silicon-silicon dioxide interface, 
resulting in an enhancement or accumulation of charges. These holes, 
which are located close to the interface, form a charge layer of negligible 
thickness, equal and opposite to the charge layer on the field plate. Thus, 
as is shown at point A of Fig. 2, the capacity is that due to the oxide 
alone. 

2. If, on the other hand, the field plate voltage is slightly positive, 
holes are repelled from the interface leaving exposed ionized acceptors. 
The charge layer in the silicon composed of these ionized acceptors thus 
extends to a relatively large depth, which effectively increases the dis
tance between it and the charge layer at the field plate. The capacity is 
thereby reduced from the value of the oxide capacity as indicated by 
point B in Fig. 2. The charge distribution approaches that of a reverse
biased n + p step junction. 

3. Increasing the positive voltage still further will eventually begin 
to accumulate a substantial density of generated electrons at the inter
face, resulting in an inversion condition of charge; i.e., the surface charge 

FIG. 1 - Schematic illustration of the surface varactor showing the oxide 
layer on one side of the silicon wafer and the metal contacts. 
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FIG. 2 - Curve ABC is a typical capacity vs voltage curve for a surface varac
tor. Curve ABC' is a special case. 

is now opposite in sign to the normal bulk carriers. However, this effect 
of electrons on capacity becomes pronounced only when their density 
becomes as large as that of the acceptor density. At sufficiently high bias 
the space charge will be predominately made up of electrons, again in a 
relatively narrow region near the surface, and the capacity will approach 
the oxide capacity as a limit. This is shown by the dashed line Be' of 
Fig. 2. To obtain this increase in capacity, which is due to change in 
density and distribution of electrons (minority carrier), one must carry 
out the measurement at sufficiently low frequency to provide the neces
sary time for generation and recombination of the electrons. If, on the 
other hand, the measurement is carried out at higher frequencies, the 
above rate of the electrons and the increase in capacity with bias is not 
obtained. Instead, the change in charge within the space charge will be 
made up entirely of fixed acceptor charges. The capacity will then con-
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tinue to decrease with applied bias as shown by point C of the solid 
line of Fig. 2. This decrease (B-C) however, is appreciably smaller than 
that of a reverse-biased n+p junction. This is because, at a given dc bias, 
the generated minority carriers (electrons) are accumulated in the sur
face varactor case, while in the case of the n + p junction they are swept 
away. One obtains, therefore, a narrower space-charge region for the 
surface varactor than for the n +p junction with this method of biasing. 

The frequency ranges in which the capacity will increase or decrease 
depends on the magnitude of the ac signal, the carrier lifetime, and the 
semiconductor resistivity. However, for silicon, using reasonable values 
of these parameters (ac signal> 10 mv, lifetime> 10-9 sec., resistivity 
< 1000 ohm cm) at frequencies of about 10,000 cps and above the ca
pacity will decrease. 

III. METHOD OF APPLYING BIAS 

In the preceding discussion the bias has been described as a dc bias. 
This meant that the bias was manually applied in steps and the capacity 
was measured with an ac signal of negligible magnitude as in Fig. 3 (a). 
The case will be referred to as the "dc-bias case." All experimental re
sults were obtained in this manner. However, another important method 
of biasing will also he discussed. This is the use of ac biasing, which is 
necessary when using the device as a parameter amplifier or harmonic 
generator. For purposes of determining the capacity variation, an ad
ditional higher frequency ac signal of small magnitude is assumed as in 

(a) 

+V 

Or-----------------------~ 

-v A A 

Vc MAX 

t~ 

FIG. 3 - Methods used in biasing surface varactor. (a) DC biasing - dc vol
tage is stepped to each value and small ac signal is used to measure the capacity 
at each voltage step. (b) AC biasing - bias is made up of a dc component VB 
(+ for p-type silicon, - for n-type silicon), and an ac component, Vac; a 
small higher frequency ac signal is used to measure the capacity at any point. 
The capacity ratio is defined as Cmax/Cmin . 
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Fig. 3(b). (Note that there can be a dc component to the ac bias.) This 
case will be referred to as the "ac-bias case." 

With this background, the analysis of the problem is carried out as 
presented in the following order. 

First, the relations between the equilibrium charge and the voltage 
across the device are presented. This leads to a general expression for the 
capacity. 

Next, relations are derived for dc-bias case. These relations are then 
compared with the experimental results for several silicon resistivities. 
Also, curves are presented to show the highest capacity changes possible 
with a dc bias. 

The ac-bias ease is then analyzed and the proper biasing to obtain 
the optimum capacity changes are determined. 

A relation for minimum cutoff frequency is derived and compared with 
experimental values. Cutoff frequencies obtainable with very thin epi
taxial films are calculated. Experimental results of the effect of tem
perature are also shown. 

In the last sections a comparison is made between the performanee of 
the surface varactor and that of the junction varactor. Finally a brief 
eomment is made for the case where the silicon resistivity shows a gra
dient from the surface. 

IV. BASIC THEORY - EQUILIBRIUM CHARGE RELATIONS 

The theory of the surface varactor is an extension of the fundamental 
theory of the space-charge region at the surface of a semiconductor 
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FIG. 4 - Potential diagram that exists across the metal-oxide-silicon surface. 
Although the equation derived from it is quite general, this diagram is specifi
cally for a p-type silicon biased so the silicon surface at the oxide interface has 
inverted. The direction of the arrows refers to the positive value of the poten
tials. 
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when an external electric field is applied.3 The band picture that governs 
in this case is shown in Fig. 4. In general, a voltage across the device, 
Va , is associated with charge in both the space-charge region and the 
surface states. In equilibrium these charges are given3 by the relations 

Qsc = ±eni£[X(e-Y - 1) + X-I(e Y - 1) + (X - X-l)y]! 

( -) for Y > 0, ( +) for Y < 0, (1) 

where 

and 

e is the electron charge 
ni is the intrinsic density of electrons 
£ is twice the Deybe length 
X is the doping density normalized to the intrinsic density 
Y is the surface potential relative to the bulk in kT units 

(2) 

where the function Fss( Y) includes the density of surface states and 
their distribution within the energy gap. A third relationship can be de
termined directly from Fig. 4 by balancing potentials 

where 

and 

Va is the applied voltage 
<Pm is the work function of the metal 

X is the electron affinity of the semiconductor 
'liB is the bulk potential difference of mid gap to Fermi level 
Egis the energy gap 

Vf is the oxide film voltage 

and also 

Q 

where 

Q is the total charge and 
Cf is the capacity of the oxide film. 

(3) 

(4) 

The general relation for the capacity of the structure under any con-
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dit.ion is 

c - dQ _ (J dQ d(Y/{J) 
- dV

a 
- dY dV

a 
- . 

Then, by differentiating (3) and (4), 

where 

C = Cs£Cf 

Csi + Cf 

dQ 
Csi = (J dY . 

809 

Ui) 

(6) 

This relation corresponds to separate capacitors in series, one being the 
oxide film capacity and the other an effective silicon capacity. One must 
be careful, however, in applying this concept of series capacitors. It is 
not, for instance, completely equivalent to the case of a p-n junction 
capacitor in series with a linear capacitor. In this latter case two sets 
of positive and negative charges are encountered, one on the p-n junc
tion and the other on the series capacitor. In the surface varactor, on 
the other hand, only one set of positive and negative charges is present. 

v. DC-BIAS CASE 

vVhen true equilibrium is maintained, differentiation of (1) and (2) 
would suffice to determine the capacity explicitly. The result of this is 

where 

dQsc Esi(A(l - e-Y
) - A-I(l - eY )1 

Csc = (J dY = £[A(e-Y - 1) + A-I(eY - 1) + (A - A-I) Y]! 

£si being the dielectric constant of silicon, and 

Curve ABC' with the dashed portion C' of Fig. 2 was calculated using 
the above relation, setting Css = o. 

However, as discussed previously, equilibrium is not normally at
tained in the useful frequency range. We will now calculate the capacity
voltage characteristic of a surface varactor subjected to a dc bias and an 
ac signal sufficiently rapid that minority carriers cannot equilibrate 
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within the duration of an ac cycle. In this analysis, the surface states 
are also assumed to be unable to equilibrate, hence Css = 0 and Csi 

Csc . The analysis is presented in the Appendix. The results are: 

for p-type 

! -1 ! 
C . = € .• iA"c (Yl - 1) f Y _ 1 < Y-2 

St 1 ( Y )' or e J..I. Yl - e-2 - YI 

(7) 

where YI is defined by 

Physically, when the surface potential is YI , the charge due to minority 
carriers is about equal to the fixed charge. 
For n-type 

€siA -!( 1 - eY
) Y 2 

for - Y - 1 > e- A 
"c(eY - 1 - Y)!' 

€SiA-!"c-I(-YI -l)! Y 2 
for -Y - 1 < e- A 

- Yl - e! (Y - YI) , 

where YI is defined by 

(8) 

The complete theoretical small-signal capacity vs voltage relation 
can be calculated from (1), (2), (3), (4), (5), and (7) or (8). The pro
cedure is to list values of Y and determine the capacity and voltage 
common to each value of Y. It is seen from (3) and (4) that surface 
states, Qss, and work function difference, CPm - (x + UB + E(}/2), can 
cause an additive constant to the applied voltage Va. Nonzero values 
of Q88' however, can also cause more complex capacity variation with 
voltage. Calculations for several resistivities, assuming work function 
difference and Q8S to be zero, are plotted as dashed lines in Figs. 5 
and 6. 

VI. EXPERIMENTAL COMPARISON OF THEORY 

Units were fabricated using silicon of 15 ohm cm - p-type, ] 5 ohm 
cm - n-type, 0.2 ohm cm - n-type, and 0.029 ohm cm - n-type. 

* For Y = 0, Csi = ] Vu. 
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The technique used was to etch the silicon slice to 0.004 inch, evaporate 
a metal contact on one side, and further etch the working surface to a 
final thickness of 0.002. The slices were then etched into 0.040 inch di
ameter discs and subsequently cleaned and thermally oxidized4 at 920°C 
for 30 minutes. The oxide thickness ranged from 300 A to 400 A, and 
the active or contact area, obtained by pressing a gold point on the oxide, 
ranged from 1 to 3 X 10-5 cm2

, or about a 2 mil diameter. 
The capacity versus voltage measurements of several experimental 

units with a 100,000 cps, 30 mv signal are presented in Figs. 5 and 6, 
along with the theoretical quasi-equilibrium curves (by "quasi" it is 
meant that the minority carriers do not reach equilibrium - curve C of 
Fig. 2 instead of C'). The shape uf the capacity-voltage curves agrees 
reasonably well with the theoretical curves. Except for the 0.029 ohm 
cm case there is a uniform voltage translation to negative values of 0.2 
to 0.7 volts. Considering the surface states4 to be at the oxide-silicon 
interface, if the work function difference is zero, this voltage corresponds 
to a particular charge (residing in the surface states) on the oxide ca
pacity. Thus for a voltage translation, Vss , Qss = VssC f , which for 0.7 
volts and a 300 A film corresponds to a donor surface state density of 
5 X 1011

/ cm2
• 

VII. VARACTOR QUALITY 

Two quantities of importance for the performance of a varactor are 
the ratio between the maximum and minimum capacities and the cutoff 
frequency. Various figures of merit have been proposed that usually com
bine these factors in various ways. The cutoff frequency is of greatest 
importance in high frequency amplifiers, while the capacity ratio is im
portant throughout the frequency range. 

VIII. MAXIMUM CAPACITY HATIO 

8.1 DC~Bias Case 

The magnitude of capacity change with bias is given by the ratio 
(Cmax/Cmin). Cmax is generally limited by and identically equal to the 
oxide film capacity, Cf , and Crnin is determined by the space-charge 
capacity (which is a monotonically decreasing function with bias) but 
is limited by the maximum field, E f , allowed on the oxide. * The field 

* This field could also be limited by Zener breakdown of the silicon for very 
low resistivities (p < .01) but these resistivities normally produce negligible 
capacity change for this structure. 
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must be limited to this value since dielectric breakdown of the oxide is 
destructive. Using (5) 

(9) 

The relation between the maximum field, E/ , and the maximum band 
bending, Y M , is given by (1) with eY » A 2y and is 

E/E/A! 
Y M = 2In-

eni£ 

Then to find Gsimin this value of Y M should be substituted for Y in (7). 
It can be shown, however, that for E/ ~ 106 v/cm and A ~ 108

, we have 
Y M > YI. Thus, closely 

EsiA t (YI - I)! 

£ YI 

and substituting into (9), 

Gm3x E £ 'YI 1 + _/_, 
OEsiA2 -( Y-I---l-) ~ . Gmin 

This is plotted in Fig. 7 for a range of normalized doping density, A, 
and oxide thickness, 0, using E/ = 3 X 106 v/cm. Ratios of over a hun-
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FIG. 7 - The maximum capacity ratio obtainable as a function of X and 
oxide thickness for the dc-bias case. The maximum field on the oxide is 3 X 106 

v/cm. 
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dred are possible with the high resistivity (low A) material and de
crease approximately as the one-half power of A. 

8.2 AC-Bias Case 

An important mode of operation of the surface varactor is large ac 
bias signals superimposed on a dc bias voltage. Such conditions occur in 
low-noise variable capacitance amplifiers. Here we are interested in the 
variation of the capacity during the ac cycle rather than the variation 
of the capacity with dc bias as discussed for the dc-bias case (See Fig. 3). 
In this presentation we will assume minority carrier equilibration can
not occur during one period of the ac bias signal so that minority carrier 
charge is fixed at its magnitude at the dc component of the bias. Now 
when large ac biases are applied, the field must terminate on exposed 
fixed charges. Larger bending of the bands is obtainable than in the 
pure dc-bias case, without exceeding the oxide dielectric strength, be
cause the density of minority carriers at the oxide-silicon interface is 
limited. This is shown by the following analysis. 

The maximization of the dc and ac components of the bias to attain 
the greatest band bending is governed for either polarity of voltage by 

ACCUMULATION 
~ 

-VOLTAGE 

INVERSION 
~ 

+EfO 

-t._=-::;.-_--B1'AS I 

---~-- I 
~::::::-=--Va ---t---L--+---------"~~-------1 

o +VOLTAGE 

FIG. 8 - Representation of applied voltage in the ac-bias case. The solid 
curve is the applied voltage, Va, which is a sine wave displaced from zero by the 
value of the bias voltage, VB. The dashed curve, VI , is the fraction of the ap
plied voltage which is carried by the oxide film. The vertical dashed lines are the 
limits of voltage which can be safely carried by the oxide film. The diagram as
sumes p-type silicon. 



816 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

the dielectric strength of the oxide. To avoid dielectric breakdown of the 
oxide when bending the bands toward accumulation, as seen in Fig. 8, 

(10) 

where VB is the applied dc bias, and Vac is the zero to peak value of the 
ac bias. And when bending the band toward inversion, 

V YM 
J = Vae - 73 + V B ~ E f O, (11) 

where Y M is the band bending at the peak value of the signal. For the 
greatest Y M the equations are equalities. Solving (10) and (11) 

and 

1 Y M Vae = EJo + --
2 {3 

VB = ! Y M 

2 {3 • 

(12) 

(13) 

The charge in the space-charge region at the time of maximum bending 
is given by the sum of the minority carrier charges* plus the acceptor 
charges, the expressions for which can be obtained from the Appendix. 
Thus if Qss = 0 

-.! YB/2 .!.! 
Q = Qsc = f.fEJ = eni£'A 2e + eni£'A2Y A12 

where Y B is the band bending at the dc bias voltage. Note that the elec
tron charge is determined at the dc bias voltage. From which 

Y B = 2 In [f.JEJ'A! - 'AY M!] • (14) 
eni£ 

The charge at the dc bias point is 

(16) 

* The expression for minority carriers is true only when eY B"A-2 » Y B but when 
large Y M is desired this condition will be met. 
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In the ac-bias case the restriction on the allowable number of minority 
carriers (Y - 1 > eY A2) of (7) or (8) is not necessary, since lack of 
sufficient generation keeps the minority carrier density low regardless 
of the value of Y. Thus if 

Csimin = (aaQv) 
Y=YM 

we have 
1 

C EsiA' 
simin =£ --(-Y-.\-[ ---1-)-! . 

Substituting into (9) results ill 

C max = 1 + Ef£ ( Y M ~ 1)! 
Cmin EsiOA' 

which with (16) determines the capacity ratio. 
In Fig. 9, the Cmax/Cmin ratio is plotted versus A for E f = 3 X 106 

V / cm and a 100 A, 300 A and 1000 A oxide thickness. The capacity 
ratio decreases with the one-half power of the normalized doping density, 
A, over most of the range. Investigation of the equations show that for 
low A the limiting factor is the necessity of keeping the oxide from break
ing down when the bands are bent toward accumulation. For the high A 
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thickness for the ac-bias case. The maximum field on the oxide is 3 X 106 v /cm. 
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material the limiting factor is breakdown of the oxide when the bands 
are bent toward inversion. 

In certain cases another limiting factor is encountered that is not 
considered in the equations, which is breakdown of the silicon itself. This 
occurs when the voltage carried by the silicon, Y loll {3, is greater than the 
avalanche breakdown voltage of a step junction whose high resistivity 
side is of the same resistivity as the surface varactor. An avalanche in 
the silicon creates sufficient minority carriers to restore true equilibrium 
(minority carriers terminating nearly all the field) during the part of 
the cycle when inversion should exist. This would increase the fraction 
of the applied voltage appearing across the oxide and an irreversible 
breakdown of the oxide might occur. U ~ing known p + n step junction 
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thickness and an allowable field of 3 X 106 v /cm is used. The solid line feo shows 
the cut-off frequency for optimum conditions of silicon thickness, while the 
dashed line shows the effect of adding series resistance as described in the text. 
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breakdown voltages5 it was found that this was the limiting factor for a 
portion of the doping density range for (5 = 1000 A. This range is shown 
as a dashed line in Fig. 9. 

The maximum capacity ratio obtainable with ac biasing along with the 
values for optimum biasing are plotted against resistivity (n-type sili
con) in Fig. 10. A 300 A oxide thickness was assumed. The curve for 
cutoff frequency will be discussed in the next section. 

IX. CUTOFF FREQUENCY 

Assigning anyone value of cutoff frequency to a varactor is difficult, 
since it depends upon the bias and ac signal used. Uhlir,6 and Ueno
hara,7 and Pfann1 have offered definitions which represent the varactor 
as a capacity in series with a resistance. For small signal operation at a 
bias VB the cutoff frequency is defined as 

feo = 1/27rRAC B 

where R is the resistance, A the area, and C B the capacity per unit area 
at the bias voltage. Large ac signals cause the capacity to change ap
preciably during a cycle, which means that if some effective time con
stant is sought, it must involve a type of median capacity. The simplest 
solution is to determine a minimum feo for any mode of operation by 
choosing the highest possible capacity, namely the capacity, Cj , of the 
oxide film. The minimum cutoff frequency is then: 

feo (min) = 27rR
1
AC f' (17) 

Reducing the silicon thickness increases the cutoff frequency since it 
decreases the resistance. However, this thickness cannot be less than 
(5( €sd €j) [( Cmax/Cmin) - 1] which is the width of the space-charge layer 
at maximum voltage, in order to obtain the desired capacity change. 
This optimum thickness may be obtained by using very thin epitaxially 
grown films. Table I shows the resistivity and thickness of the epitaxial 

TABLE I 

Epitaxial Film Quality, Q at 1 kmc 

Cmax/Cmin 

Resistivity Thickness Metal Base 006 mil-00001 ohm cm 
Base +0015 ohm 

0.03 ohm em 910 A 2 5300 318 
0.044 1820 3 1800 281 
00060 2730 4 890 241 
00078 3640 5 510 200 
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film necessary for particular capacity ratios using an optimum ac bias 
and assuming a 300 A oxide. Using an operating frequency of 1000 mega
cycles (1 kmc), the calculated quality, Q, of the unit using the maximum 
value of capacity is tabulated for each capacity ratio for two different 
conditions. The first is for an epitaxial film deposited on a metal base 
which will give the highest possible Q. The second is for a film deposited 
on a 0.6 mil thick wafer of 0.001 ohm cm silicon and also assumes a 0.15 
ohm package resistance (AC! = 2 f..lf..lf). The silicon resistivity and the 
package resistance were chosen as representing present practical limi
tations. 

These results are also plotted in Fig. 10, where the solid line labeled 
feo shows the cutoff frequency for deposition on a metal base and the 
dashed line shows the high frequency deviation caused by adding the 
silicon substrate and package resistance. The optimum silicon thickness 
is assumed in both cases. 

Experimental measurements of the capacity of a 15 ohm cm, n-type 
0.002 inch thick, surface varactor were made at frequencies up to 150 
mc. The unit was biased into accumulation to give the maximum capac
ity, which is essentially that of the oxide. From impedance considera
tions, this effective capacity as measured by a capacity bridge is given by 

Cell = AC/Vl + (2nJRAC)2 

where f is the frequency of measurement and R is the series resistance of 
the device. As shown in Fig. 11 the experimental points of Cell versus f 
are well fitted by a line corresponding to AC (=ACrnax = ACt) of 3.1 
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JJ.J.d and R = 2060 ohms. From Fig. 11 or (17), this device biased in the 
high capacity range exhibited a cutoff frequency of 25 mc. When the 
same device was biased in the minimum capacity range (0.15 JJ.JJ.J) it 
exhibited no change in effective capacity up to 150 mc. 

Using a one kilomegacycle waveguide, two 0.2 ohm cm units 0.001 
inch thick gave the results for capacity and resistance shown plotted 
against applied bias voltage in Fig. 12. From the maximum capacity 
and the corresponding resistance indicated, the calculated minimum cut
off frequency is 7000 me. 

To study possible frequency effects on the dielectric constant of the 
oxide films, capacity versus frequency measurements were carried out 
on an oxide grown on a heavily doped silicon crystal (.0013 ohm cm) 
where the contribution of the silicon space-charge capacity is negligible 
and the cut-off frequency is far in excess of the measuring frequencies. 
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From the results, the dielectric constant could be represented by the re
lation E = EO( 1 - 0.0465 10glO f) where f is in megacycles and EO is the 
dielectric constant at one megacycle. This relation was obtained in the 
range of 0.5 to 100 me. These results are similar to those obtained for 
silica and other glasses.s If one extrapolates the above relation, the di
electric constant at 100,000 me would still be 77 per cent of the dielectric 
constant at one megacycle. 

X. EFFECT OF 'rEMPEHATUHE 

The effect of temperature on the characteristics of the surface varactor 
was examined using a 0.2 ohm cm, n-type, unit with a 15 mil diameter 
evaporated contact. The unit was cycled between 25°e and 90.6°e and 
between 25°e and -73.5°e. The capacity versus voltage curves at vari
ous temperatures are shown in Fig. 13. The results indicate two points 
of particular interest. (1) As the theory predicts, there is little change in 
both maximum and minimum capacities over the above temperature 
range. (2) There is a lateral shift with temperatures of the capacity 
curves along the voltage axis (about 1 volt between -73°e and 90.6°e). 
Less than one-half of this shift can be accounted for by the change in 
contact potential (due to the shift of the Fermi level in the silicon with 
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temperature). The remainder of the shift is not understood and is pos
sibly associated with surface states. 

XI. COMP AHISON WITH STEP JUNCTION V AHACTOR 

Comparison of the surface varactor with the step junction varactor 
shows that neither device can be considered superior over the entire 
range of possible applications. For parametric amplifier use, the cutoff 
frequency, capacity ratio (amplification factor), the bandwidth, and the 
impedance level will effect the comparison and must all be considered. 
Therefore, some initial ground rules will be used to obtain a comparison, 
and then specific factors will be discussed which affect the comparison 
in various portions of the frequency range. The entire comparison is done 
on the basis of theory. 

The ground rules are: i. the surface varactor is constructed of n-type 
silicon of optimum thickness, ii. the silicon dioxide layer is 300 A thick 
and has a dielectric strength of 3 X 106 v/cm; iii. the junction varactor 
is constructed as a p +n step junction whose n-type thickness is the 
minimum necessary to contain the space charge width; iv. the surface 
varactor is ac biased with optimum values; v. the junction varactor is 
biased from zero to the theoretical breakdown voltage; and vi. resis
tivity values refer to the n-type region of both structures. During the 
discussion reference will be made to Fig. 14 which shows the comparison 
of capacity ratio based on the cut-off frequency. 
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11.1 Ultimate Frequency Range up to 1012 cps 

We will consider first that part of the frequency spectrum where both 
structures are made of resistivities above 0.1 ohm cm. For the ar:::sump
tions used this includes cutoff frequencies up to 1012 cps. In this range 
the capacity ratio of the surface varactor is considerably higher than 
the junction varactor. This is because the zero-bias space-charge width 
of a junction is much wider than the oxide thickness, producing a higher 
C max for the surface varactor. To a lesser degree for the surface varac
tor, the oxide limits the voltage on the silicon to values below that 
needed to cause avalanche, which keeps the Cmin of the surface varactor 
from becoming as low as that of the junction varactor. 

If the oxide thickness is increased to the value which allows an ava
lanche breakdown voltage on the silicon, it is found that the C max is 
the same as the zero-bias capacity of the junction varactor and the ca
pacity ratios are identical. However, if cutoff frequency is important as 
well as capacity ratio, the oxide thickness should always be made as thin 
as possible. For the same capacity ratio, halving the oxide thickness al
lows the resistivity to be halved, thus doubling the cutoff frequency. 
The limit on the oxide thickness should be set by the bias voltage re
quired, but a practical lower limit of 100 A is recommended. 

Thus, in this resistivity range, the junction varactor biased from zero 
to the breakdown voltage can be thought of as a surface varactor with 
an oxide thickness of greater than 300 A, which puts it at a disadvantage. 
This is shown in Fig. 14 by comparing the surface varactor with the 
junction varactor curve B. 

11. 2 Storage Capacity in the Junction Varactor 

The use of storage capacity in the junction varactor can be of sub
stantial benefit in the lower frequency range if the device is tailored for 
its use. Storage capacity in farads is given by the relation: 

Cst = (q/2kT)I T, 

where I is the current in amperes, and T the lifetime of the n-type silicon 
in seconds. A limitation on the lifetime is that in order for the junction 
to recover within a cycle, the lifetime must be equal to or less than the 
reciprocal of the highest frequency to be used. Allowing for this, it can 
be shown that if the area of the junction is kept at a minimum (2 X 
10-5 cm2

) and the forward current is about 5 Jla, the junction varactor 
under optimum lifetime conditions will attain superior performance for 
ultimate cutoff frequencies of less than 230 mc. In Fig. 14 compare curve 
A of the junction varactor with that of the surface varactor. However, 
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for the lowest frequencies, operation in the forward-bias direction would 
result in a lossy device as the resistive impedance would become less 
than the capacitive impedance. 

11. 3 High Ultimate Frequency Range 

The comparison for resistivities lower than 0.1 ohm cm is of great 
interest because ultrahigh cutoff frequencies are possible with both struc
tures. The capacity ratios become equal (with a value of three) at a 
cutoff frequency of 2 X 1012 cps. For higher cutoff frequencies the ca
pacity ratio of the junction varactor is higher than the surface varactor. 
Allowing a forward bias of 0.5 v (below that required to produce ap
preciable storage) the cross-over point is 6 X lOll cps, with a Gmax/ 

G min = 4.6. However, in order to take advantage of the high ultimate 
feo the epitaxial layer thickness would have to be a few hundred ang
stroms. In addition, in order to maintain a reasonable circuit impedance, 
due to the high capacity per unit area, the diameter of the junction area 
would have to be less than one mil. 

11.4 Effect of Series Resistance 

If practical limitations of series resistance of the silicon substrate and 
the package connection are included, the surface varactor has the ad
vantage in cutoff frequency because of the lower values of G max for the 
surface varactor. Using a 0.6 mil thick, 0.001 ohm cm substrate and a 
0.15 ohm package resistance, the cut-off frequency of junction varactor 
devices is maximum at 2.6 X lOll cps for a Gmax/Gmin r-...J 3. Under the 
same conditions the surface varactor has a 2.8 X lOll cps feo for G max/ 

G min = 3 and a 3.2 X lOll feo for Gmax/Gmin = 2, as shown by the dashed 
lines of Fig. 14. 

XII. ADDITIONAL COMPARISONS 

There are some important differences between the structures of a 
practical nature. One is that the voltage across the oxide of the surface 
varactor must be controlled so as not to exceed its dielectric strength. 
The dielectric strength is normally between 3 X 106 and 107 volt/ cm. 
If this value is exceeded, the device is permanently ruined. Thus, the 
junction varactor is considerably more rugged in regard to over voltage:::;. 

However, the oxide is also an aid since low-resistance ohmic contacts 
to the semiconductor are not required. Indeed, even the bottom contact 
can be applied to oxide. The characteristics are not affected since the 
area of the bottom contact is large compared to the field plate area. 
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This is especially true if the bottom surface is made degenerate. Elimina
tion of the need for ohmic contacts could be quite useful for some III-V 
compounds like gallium arsenide, as well as silicon. 

Another important practical advantage of the surface varactor is that 
the diffusion or alloying of junctions, which may be particularly difficult 
for very thin epitaxial films, is eliminated. 

XIII. NONUNIFORM RESISTIVITY EFFECTS 

The relations describing the capacity-voltage dependency all assumed 
a constant resistivity in the space-charge region. However, substantial 
changes in this dependency can be advantageously obtained using a 
varying doping level in the surface region. This might be accomplished 
by diffusion or epitaxy techniques. If the surface resistivity is high and 
gradually becomes lower going into the material, the deldV I max will be 
lower. If the surface resistivity is low and becomes higher progressing 
inwards, the de I dV Imux will be higher. This is analogous to a retrograde 
junction varactor. A case approximating the latter case has been calcu
lated. This assumes a 1000 A surface skin of 0.4 ohm cm (A -1 = 106

) on 
body material of 3 ohm cm (A-1 = 105

). A comparison of this case and 
that without the skin shows that the maximum slope deldV has been 
doubled. Tailoring the resistivity could also be used to attain a linear 
dependency over a large portion of the capacity charge. 

XIV. COMPAHISON OF SILICON AND GERMANIUM 

To determine if germanium would make a better surface varactor than 
silicon it will be assumed that the thickness and dielectric of the oxide 
film is identical (as it could be for evaporated films) and the resistivity 
and optimum thiekness are such as to produce identical cutoff fre
quencies. If this is done for large Y M it can be found that the capaeity 
ratio of the germanium varactor will be (Es/EGe)i(J1.GelJ1.si)~ = 1.17 
times the capacity ratio of the silicon varactor. For smaller Y M (eorre
sponds to higher cutoff frequencies) the advantage for germanium will be 
smaller but always greater than one. The same reasoning shows that 
n-type silicon is to be preferred over p-type silicon because of the higher 
mobility of electrons. For better varactors, the semiconductor should 
have a high mobility and a low dielectric constant. 

xv. CONCLUSIONS 

Using thermally grown oxide on silicon, experimental models of a sur
face varactor structure have been fabricated and tested. The experi-
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mental results are in reasonable agreement with predictions of dc-bias 
performance, based on theoretical considerations. These calculations take 
into account nonequilibrium conditions existing when the period of the 
imposed signal is short compared to the time required for minority car
rier generation. 

For the structure used, it is shown that the usable capacitance ratio 
increases with the silicon resistivity, while at the same time the zero-bias 
cutoff frequency of the device decreases. For operation at higher fre
quencies, the device will have a cutoff frequency and a capacitance ra
tio close to that of a comparable p-n junction varactor operated on the 
reverse bias portion of its capacity-voltage characteristic. Detailed com
parison of the surface varactor and the junction varactor is difficult be
cause of the necessary assumptions regarding series resistance. These 
assumptions will be affected by the state of the technology and can even 
change the result of the comparison at high frequencies. 

However, at medium frequencies the performance of the surface varac
tor is equivalent to the junction varactor, and at still lower frequencies 
is superior. The latter result follows from the larger usable capacitance 
ratio available in the surface varactor, since an equivalent capacitance 
ratio can be obtained with the junction varactor only at the expense of a 
large voltage swing, or by operation in the forward-bias direction, where 
the junction is a lossy element. 

The most attractive feature of the surface varactor is its simplicity. 
The device can probably be fabricated without the need of a low-resist
ance ohmic contact to the semiconductor, and with a small active area 
and low capacitance. Thus, for high frequency use, in some cases where 
high contact resistance to the semiconductor or high capacitance is a 
limiting factor in the performance of a p-n junction varactor, the surface 
device may well prove to be superior. 

It is noted that new materials and techniques, e.g., the use of thin 
epitaxially grown films and semiconductors other than silicon, may pro
duce substantial increases in the cutoff frequency of the surface varactor. 
Therefore the comparative performance of the surface varactor and the 
junction varactor must be re-evaluated as these techniques, applicable 
to fabrication of both types of device, become available for use. 
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APPENDIX 

Derivation of DC Bias Capacity 

In this appendix, the capacity relations for the dc-bias case, (7) or 
(8), will be derived. The difficulty in carrying out this derivation rigor
ously is that the minority carriers (electrons in this derivation) cannot 
be allowed to change in number from the value attained with the dc 
bias alone. Therefore, simply taking the derivative of (1) to obtain 
capacity is not valid over the whole range of Y. However, differentiation 
of (1) is valid when the value of Y is such that the number of minority 
carriers is so small in comparison with the total charge that any change 
in its magnitude can be neglected. In order to make this comparison of 
charge contribution, expressions for the charges on minority carriers and 
on exposed impurities (acceptors minus holes) will be obtained. For the 
purpose of this discllssion, p-type (A » 1) will be assumed. The exposed 
acceptor charge is 

Qa = eniA i~ (1 - e- Y
) dx. 

The expression for the potential gradient dy / d.?; is3 

For values of Y from zero to a value approximately determined by 
eYA -2 = Y - 1 the second term in (18) can be neglected, and one ob
tains from the above relations, 

(19) 

The electron charge is Qe = Q - Qa where Q is obtained from (1). Thus 
for the range of Y where (19) is valid we have, 

- ! - Y ! {[ e Y - 1 - Y J! l 
Qe - eni£A (e - 1 + Y) 1 + A2(e-Y _ 1 + Y) - 1 f" 

When Y - 1 = eYA -2, we have e -Y « 1 and eY » y, so 

Qe = (y2 - l)eni£A!(e-Y - 1 + V)!. 
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Thus at the limit of Y where (19) is valid, Qe is (V2 - 1)Qa. Then ac
cording to the initial premise we may write for all values of Y up to a 
few kT of the large positive value where eY = A2( Y - 1), 

or 

fsiA! (1 - e - Y ) 

Csi = £(e-Y _ 1 + Y)t· (20) 

At higher values of Y, where eY > A\ Y - 1), the electron charge be
eomes dominant and a different approach is necessary. However, it is 
still the exposed acceptor charge (acceptors minus holes) which is vary
ing with the ac signal. Therefore, the only change of charge takes place 
at some effective distance X 0 into the semiconductor where the boundary 
between exposed and unexposed acceptors exists. The resulting differ
ential capacity is, therefore, given by 

C . = !J.Q = fsi 
St !J.V Xo· 

(21) 

For positive values of Y up to eYA -2 = Y - 1, the effective distance Xo 
is, from (20) and (21), 

X 
fsi £A -! ( e - Y - 1 + Y)! ( f d I . ) 

o = C
si 

= (1 _ e-Y ) case 0 ep etlOn . (22) 

For larger band bending, a region near the surface will be composed 
predominately of minority carriers. Let the thickness of this region be 
Xl , and at Xl , Y = YI. YI is determined by YI - 1 = eY1A -2. Now for a 
band bending Y at the surface, (18) gives 

(23) 

The width of the remainder of the space-charge region X 2 is obtained 
from (22) by setting Y = YI. The total width of the space-charge re
gion Xl + X 2 = Xo is then given by: 

X 0 r--I £A - !(YI - I)! + £A !( e-YII2 - e -Y/2) (case of inversion). (24) 

Thus a close approximation for the capacity when Y > YI is 

C . = fSiA!£-I(YI - l)! 
St YI - e-!( Y - YI) . 

Space-charge thicknesses obtained from the above approximate relation 
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was compared with those obtained by the alternative and more rigorous 
approach of numerically integrating (18). For 'A. = 10\ for instance, the 
maximum error for Csi is 1.2 per cent on the low side. 

LIST OF SYMBOLS 

A - active area of device, cm 2 

C - total capacity, farads/cm2 

Csi - capacity of silicon, farads/cm2 

Cj - capacity of film, farads/cm2 

Csc - capacity of space charge, farads/cm2 

Css - capacity of surface states, farads/cm2 

C B - total capacity at dc bias, farads/cm:! 
d - silicon thickness, cm 

E j - maximum field to be allowed on oxide film, volts/em 
Eo - energy gap, volts 

Fss( Y) - density of surface states, cm-2 

feo - cut-off frequency, cps 
f - frequency of measurement, cps 

,£ - • /
2E

si = 4.8 X 10-3 cm 11 end3 
N - density of minority carriers, cm-3 

ni - density of holes and of electrons III intrinsic silicon-
1.5 X 1010 cm-3 

nB - density of electrons in body, cm-3 

Q - total charge, coul/ cm 2 

Qse - charge in space charge of silicon, coul/cm2 

Qss - surface state charge, coul/cm2 

Q e - charge due to electrons, coul/ cm 2 

Qa - charge due to acceptors, coul/cm2 

R - series resistance of silicon, ohms 
UB - bulk potential difference of midgap to Fermi level 
Va - applied voltage, volts 
VB - dc component of ac bias, volts 
V j - oxide film voltage, volts 

Vae - ac bias voltage (zero to peak) 
x - distance into silicon from surface, cm 

Xo - distance from surface to effective acceptor boundary, cm 
Y /{3 - potential of surface compared to body, volts 

Y - potential at any distance x from the surface, kT units 
Yl - potential defined by Yl - 1 = eY1 'A.-

2 

Y.M - maximum value of surface potential, kT units 
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Y B - surface potential at bias voltage, kT units 
{3 - e/kT = 38.5 at room temperature 
o - oxide thickness, cm 

fsi - dielectric of silicon - 1.06 X 10-12 farads/cm 
ff - dielectric of oxide - 3.4 X 10-13 farads/ cm 

"A_ni = PB 
nLJ ni 

f..L - mobility, cm2/volt-sec 
p - resistivity of silicon, ohm/ cm 

<Pm - work function of metal, volts 
<ps - strength of inversion, volts 
X - electron affinity of semiconductor 

HEFERENCES 

1. W. G. Pfann, C. G. B. Garrett, Proc. LR.E., 47, No. 11, November, 1959. 
2. J. L. Moll, Wescon Meeting, August, 1959. 
3. C. G. B. Garrett, W. H. Brattain, Phys. Rev., 99, 1955, p. 376. 

831 

4. M. M. Atalla, E. Tannenbaum, E. J. Scheibner, B.S.T.J., 38, 1959, pp. 749-
784. 

5. S. L. Miller, Physical Review, 105, February, 1957, pp. 1246-49. 
6. A. Uhlir, Jr., Proc. LR.E., 46, 1958, p. 1099. 
7. M. Uenohara, Proc. LR.E., 48, No.2, February, 1960, pp. 169-179. 
8. H. E. Taylor, Jour. Glass Tech., April, 1959, p. 124. 





Reswitching of Connection Networks 

By M. c. PAULL 

(Manuscript received November 28, 1961.) 

In certain types of connection networks, it is always possible to unblock 
a blocked call by moving calls already set up in the network. The following 
results relating to these networks are derived in this article. 

1. Bounds on the number of calls which must be disturbed to unblock 
a blocked call. 

2. Bounds on the relation between the number of calls which are already 
set up in the network, and the number of calls that must be disturbed to 
unblock a blocked call. 

S. ill ethods of systematically changing connections to unblock a blocked 
call. 

I. INTIWDUCTION 

In a three-stage network of the type pictured in Fig. 1, it is possible 
that a connection between an input and an output cannot be made 
despite the fact that neither is already connected. This could happen if 
other connections already occupy at least one link in every possible 
path between the input and output in question. As first established by 
Slepian, l a blocked connection in such a network can be unblocked by 
rearranging the connections already set up in the network. Slepian 
further showed that such a rearrangement would never require disturb
ing more than 2n - 2 calls, where the size of the switches in each stage 
is n by n, and there are n switches per stage. In the first sections of this 
article I give a proof that to unblock a connection in such a network 
in no case requires disturbing more than n' - 1 calls, and furthermore 
for every n > 1 there is at least one network state in which n - 1 calls 
must be disturbed to unblock a blocked connection. 

In subsequent sections various generalizations upon which partial 
results have been obtained are discussed. These include results on differ
ent network configurations, and networks having more than three 
stages. 

As discussed in the body of this paper, the physical consequence of a 
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network change is to momentarily disturb network connections - to 
open some of these connections during the time that changes are being 
made. Depending on the application of the network, and the time dura
tion of the disturbance caused by the change, this disturbance mayor 
may not be of serious consequence. In an electromechanically operated 
network used to connect telephone calls such disturbances might result 
in disturbing conversations carried by the network. Fortunately, one 
can design switching networks and find change algorithms for such 
networks such that there will be no such disturbances. In the Appendix 
such a network and algorithm is described. 

II. MATHEMATICAL MODEL 

2.1 The Network 

We first need a mathematical model of the network of Fig. 1 (which 
will simply be called "the network" from now on) in which we may con
veniently represent the possible states of the network, and in which the 
basic properties of this particular type of network are made exact. 

n 1 INPUTS 
.PER SWITCH 

,ST STAGE 
OR INPUT 
SWITCHES 

2 

n 

2ND STAGE OR 
INTERMEDIATE 

SWITCHES 

A 

B 

n 2ND STAGE 
SWITCHES 

3 RD STAGE 
OR OUTPUT 
SWITCHES 

2 

n 

Fig. 1 - Three-stage network suitable for reswitching. 
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NO B HERE 
I 
I 'f 

0) 

BLOCKED 
CONNEC-

liON 

® 

0) 

B 

,~ _____ 2 ______ 3 __ ~i __ 4 _____ 5 _____ 6~/ 

. OUTPUT SWITCH NUMBERS· 

Cs C1 C3 C4 

..of. --NO A HERE 

TO UNBLOCK: 

1. CHANGE CIRCLED A's TO B's 

2. CHANGE CIRCLED Bs TO AS 
3. PUT AN A IN (Rl' C1) 

Rs IS UNDEFINED 

Fig. 2 - Matrix for representing the state of a three-stage network. The state 
pictured in the figure is illustrative of a typical blocked state as discussed in the 
sufficiency part of theorem 1. 

vVe will represent the connections existing in a given network state 
by a set of symbols entered in a matrix (Fig. 2). The matrix has n 
columns and n rows, and there are n possible symbols which may be 
placed in any matrix position. Each position may contain from zero to 
n symbols. The n rows correspond to the n-input (first stage) switches; 
these are numbered 1, 2 ... n. The n columns correspond to the n
output (third stage) switches, and these are numbered 1, 2 ... n. The n 
symbols correspond to the n intermediate (second stage) switches. To 
indicate a position in the matrix we use the ordered pair (a, b), where a 
is the row and b is the column. An entry, say Q in matrix position (a, b), 
corresponds to a connection from input switch a through intermediate 
switch Q to output switch b. No entry in (a, b) indicates the absence of 
any connection from a to b. Although the matrix entry does not indicate 
which input line is connected to which output line, it does uniquely 
specify the links (links are the nodes in which first and second, and 
second and third stage crosspoints meet) involved in such a connection. 
For our purposes this is the important property of a connection from an 
input to an output line. 

There are certain restrictions on the set of connections (network state) 



836 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

which can exist in a network of the type of Fig. 1. These must be re
flected in restrictions on the set of entries possible in our matrix: 

i. There can be no more than n symbols in any row or column. This 
corresponds to the fact that there only n inputs to each input switch and 
only n outputs from each output switch. 

ii. No two symbols in any row (column) may be the same. This corre
sponds to the fact that each input (output) switch has only one connec
tion to each intermediate switch. If the same symbol appears more than 
once in a row or column, the different appearances of the symbol will be 
said to conflict. 

A matrix with entries meeting the above restrictions will be called 
"legitimate," or the entries will be called "legitimate." 

2.2 Blocking-Unblocking 

Given a matrix with a set of entries, corresponding to a network 
having a corresponding set of connections, it may be impossible to make 
an entry in (a, b) and still have a legitimate matrix. This corresponds to 
the impossibiUty of setting up an additional connection between input 
switch a and output switch b. The two possible reasons for such an 
occurrence are: 

i. There are already n symbols in row a or n symbols in column b. 
ii. There are already a total of n different symbols in row a and 

column b, but there are less than n symbols in row a, and less than n 
symbols in column b. 

If i. holds, (a, b) will be said to be trivially blocked. This corresponds 
to the ease where either all input lines to input switch a or all output 
lines from switch b, or both are already connected. 

If ii. holds, (a, b) will said to be blocked, or legitimately, or non
trivially blocked. This corresponds to the case in which an input line 
on switch a cannot be connected to an output line on switch b despite 
the fact that neither is already connected. 

Note we do not have to be specific about input and output lines, 
because a connection between an input and output line is legitimately 
blocked if and only if their corresponding switches are legitimately 
blocked. This is so because all switches in the network are non-blocking. 

We will speak about changing connections of a network in a given 
state. By this we will not mean changing the input and output switch 
involved in the connection, but changing only the intermediate switch 
involved. That is, if a network has a connection between a certain input 
line and a certain output line before a change, it will still have a connec
tion from the input to output line in question after the change. In terms 
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of our matrix a change corresponds to changing the symbols at various 
positions, but a change leaves the number of symbols in any position 
unchanged. A legitimate change is one which does not result in a matrix 
(set of network connections) which violate restrictions i. or ii. of Section 
2.1. 

By unblocking a blocked connection (a, b), we mean making legitimate 
changes in matrix symbols (network connections) in such a manner as 
to provide that there are a total of at most n - 1 different symbols in 
row a and column b. In the sequel we prove a theorem on the maximum 
number of such changes which are sufficient and necessary to unblock 
any connection. 

2.3 Theorem 1 

In order to unblock a blocked connection in a network, no more than n - 1 
changes are required. For any n > 1, there are network states in which a 
connection is blocked that require n - 1 changes to unblock that connection. 

Proof. Figures 2 and 3 are provided to aid the reader (and the author) 
in following the proof. 

2.3.1 SUfficiency 

Assume (rl , Cl) is non-trivially blocked. This implies that there is a 
symbol, say A, in column Cl which does not appear in row rl . Because if 

n 

n-I 

3 

2 

Atl< QI,QZ' 
---Qn-z 

A* 
Ql,Q2' Btl< 
---Qn-z 

Ql,QZ' 
B* ---Qn-2 

1 2 3 

(t,l) IS BLOCKED 

A 

B 

n-j n 

AFTER ANY CHANGE WHICH 
UNBLOCKS (1,1), THE SYMBOLS 
IN * POSITIONS MUST BE 
THE SAME, THE SYMBOLS 
IN tl< POSITIONS MUST BE 
THE SAME, AND THE 
SYMBOLS IN * POSITIONS 
MUST BE DIFFERENT 
THAN THOSE IN tl< POSITIONS 

Fig_ 3 - Matrix representation of the blocked network state which requires a 
maximum of changes to be unblocked_ 
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there were no such symbol, then every symbol in column CI would also 
appear in row rl • And since all n symbols must appear in the union of 
column CI and row rl (condition for non-trivial blocking), it would 
follow that all n symbols appear in column CI making (CI , rl) trivially 
blocked, a contradiction of our hypothesis. Similarly there must be a 
symbol, say B, in fOW rl which does not appear in column Cl • 

Let A be in (r2, CI). 

Let B be in (rl, C2). 
Thus far we have completely defined: 

fl , the row in which the blocked connection appears, 
Cl , the column in which the blocked connection appears, 
r2, the row in which the A in column Cl appears, and 
C2 , the column in which the B in row rl appears. 

N ow we wish to define other rows and columns: 
r3 , the row in which an A appears in column C2 if there is such a row 
(otherwise f3 is undefined), 
C3 , the column in which a B appears in row r2 if there is such a column 
(otherwise Ca is undefined), 
r4 , the row in which an A appears in column Ca if C3 is defined and 
there is such a row (otherwise r 4 is undefined), 
C4 , the column in which a B appears in row r3 if r3 is defined and there 
is such a column (otherwise C4 is undefined). 

In general, for all j > 1: 
rj is defined to be the row in which A appears in column Cj-I , pro

vided Cj-l is defined, and provided that A does appear in column 
Cj-l . If not, fj is undefined. 

Cj is defined to be a column in which B appears in row r j-I , pro
vided rj-I is defined, and provided that B does appear in row r j-I • 

If not, Cj is not defined. 
The above definition has the important property that if rj and rk are 

both defined, andj ~ le, then rj ~ rk . Also, if CJ and Ck are both defined, 
and j ~ le, then Cj ~ Ck . This is justified by the following argument: 
consider the sequence 

rl , CI , r2 , C2 , . • • r i , Ci, ... r n, Cn • (1) 

Assume there is a first member equal to a previous member of the 
sequence. 

This is either a row or column. 
1. Assume row r j is the first member of the sequence which is both 

defined and the same as a previous defined member, say rk , le ~ j. First 
of all k cannot be 1 since rj ,j > 1 is defined to have an A in it, and 
row rl has no A in it. So rl ~ fj ,j > 1. Now then assume k > 1, j > 1, 
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j ~ k. Then an A appears in (rk , Ck-l), and in (rj , Cj-l), (by our defini
tion of rj). So unless Ck-l = Cj-l, j - 1 ~ k - 1, there would be two 
different A's in row rk = r j. There cannot be two different A's in a 
single row. Therefore Ck-l = Cj-l. But this contradicts the assumption 
that the first member having this property is row rj . That leaves only 
the possibility of column Cj being the first such member. 

2. Then assume column Cj is the first member of the sequence which 
is both defined and the same as a previous defined member, say column 
Ck k ~ j. Then k ~ 1, because Cl has no B, and Cj ,j > 1 does by defini
tion of Cj . If k > 1, j > 1, k ~ j and Cj = Ck , then for similar reasons 
to those of the above paragraph r j-l = rk-l. Therefore our second 
assumption, Cj = Ck , is also contradicted, completing the proof. 

Having shown that the defined members of (1) are distinct, we wish 
now to examine this sequence further. For convenience it is rewritten 
below. 

(1) 

There is a first member of this sequence which is defined but whose 
succeeding member is undefined, say C f . Since r f+l is the first member 
of the sequence which is undefined, it follows from the definition of rj 
that there is no A in column Cf . We then know that according to our 
definition of Cj and rj the following matrix positions contain A's 

(r2 , Cl); (r3 , C2); ... (rf' Cf-l) 

and the following contain B's 

(rl , C2); (r2 , C3); ... (rf-l, Cf) 

N ow in order to unblock (rl , Cl) we make the following changes. 

2.3.2 Change Algorithm 

Change the original B's to A's in columns Cj:j = 3,5 ... f if f is odd 
(or in columns j = 2, 4 ... if f is even). This involves changing B's to 
A's in rows r j: j = 2, 4 ... f - 1 if f is odd (j = 1, 3 ... f - 1 if f is 
even). 

Change the original A's to B's in rows rj, j = 2,4 ... f - 1, if f is 
odd (j = 3, 5 ... f - 1 if f is even). This involves changing A's to B's 
in columns Cj: j = 1, 3, ... f - 2, if f is odd (j = 2, 4 ... f - 2, if f 
is even). Note that the total number of changes is f - 1. 

vVe see that if f is odd then after the change (rl' C2) will still contain 
a B, but (r2, Cl) which formerly contained an A now contains a B. 
Therefore an A may now be legitimately placed in (rl , Cl). A similar 
argument holds if f is even. 
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It remains to show that the changes we have prescribed do not lead 
to any conflicts. For this demonstration assume f is odd. (A similar 
argument holds for f even.) The only conflicts possible must involve 
A's and B's, since these are the only symbols changed and resulting 
from the change. Furthermore, the only conflicts possible are in rows 
rl , r2 •.. rf or columns Cl , C2 ••• Cf, since these are the only rows and 
columns in which changes were made. Also, at most one A has been 
added to any row or any column. Similarly, at most one B has been 
added to any row or column. Before the change there were single A's in 
columns Cj , j = 1 to f - 1, and in rows rj, j = 2 to f. As a result of 
the change single A's were added to columns Ci , i = 3,5 ... f and no 
others, and to rows ri , i = 2,4 ... f - 1 and no others. So it is only 
these columns and rows which could possibly contain more than one A. 
But these columns and rows each contain only a single A, because 
although an A has been added to each, the original A in each has been 
changed to a B. For according to our prescribed changes, the original 
A's in Ci: i = 1, 3 ... f - 2 were changed to B's. This takes care of 
all columns to which an A was added except column Cf ,and column Cf did 
not originally contain an A. Also, the original A's in rows ri: i = 2, 
4 ... f - 1 were changed to B's and this takes care of all rows to which 
an A was added. 

Again as a result of the change, single B's were added to rows r i: i = 

2, 4, 6, ... f - 1, and to columns Ci: i = 1, 3, 5 ... f - 2. It is there
fore only those columns and rows which could have more than one B. 
But the original B's in columns Cj ,j = 3, 5 ... f have been changed to 
A's. This takes care of all columns to which a B was added except 
column Cl , and column Cl originally did not have a B. Also, the original 
B's in rows r i: i = 2, 4 ... f - 1 were changed A's and this takes care 
of all rows to which a B was added. 

If all members of sequence 1 are defined, then Cn is the last defined 
member, and there cannot be an A in Cn , because such an A would have 
to be in some row other than row rl • There are A's in all rows other than 
rl , but none of these A's are in Cn • This follows from the definition of 
rj. From here, then, our argument goes on as the general case in which 
rf+l was the first undefined member of sequence (1). 

Thus the maximum number of changes required to unblock a call is 
n-l. 

2.3 .3 Necessity 

The network has n intermediate switches which we represent by the 
symbols A, B, Ql ... Qn-2. Assume that (1, 1) is blocked by the follow-
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ing network state: 
(i, i); i = 1 to n - 1 each contain all the symbols Ql , ... Qn-2 • 

(i, i + 1); i = 1 to n - 1 each contain the symbol B. 
(i + 1, i); i = 1 to n - 1 each contain the symbol A. 
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There are no other symbols in the matrix. To unblock (1, 1) the 
symbols in (1,2) and (2, 1) must be made the same because: 

(a) After any change there must still be n - 2 different symbols in 
(1, 1) 

(b) There must still be one symbol in (1,2) different from all those in 
(I, 1) 

(c) There must still be one symbol in (2, 1) different from all those in 
(1, 1) 

(d) If then the symbols in (1,2) and (2, 1) were different, there would 
be a total of n symbols in row 1 and column 1, leaving no symbol avail
able to unblock (1, 1). 

Assume that the symbols in (i + 1, i) and (i, i + 1); i = k - 1 must 
be the same, say X, in order to unblock (1, 1). Now (i, i); i = k, which 
is in row k must, after the change, still contain n - 2 different symbols, 
say Y 1 , Y 2 ••• Y n - 2 • The symbol X in (i + 1, i); i = k - 1 which is 
also in row k must be different from Y 1 , Y 2 ••• Y n-2 • Therefore the 
symbol in (i, i + 1); i = k which is also in row k must be different than 
X, Y 1 , Y 2 ••• Y n- 2 • There is only one symbol that can be different from 
all n - 1 different symbols X, Y1 ••• Yn- 2 , say z. So Z must appear in 
(i, i + 1), i = k + 1. Similarly as stated previously (i, i), i = k, which 
is in column k, must still have the n - 2 different symbols Y 1 , Y 2 ••• 

Yn - 2 • Also in column k the symbol X is in position (i, i + i), i = k - 1. 
Therefore it follows that the symbol in (i + 1, i), i = k, which is also 
in column k must be different than X, Y 1 , ••• Y n - 2 , and must be Z. 

Hence the induction is complete, proving that if (i, i) i = 1 to n - 1 
each contain n - 2 different symbols (this must be true because of the 
given initial network state), and (1,1) is to be unblocked, then for each 
i = 1 to n - 1, the pair (i + 1, i) and (i, i + 1) must contain the same 
symbol. Since initially (i + 1, i) contained a different symbol from 
(i, i + 1) for i = 1 to n - 1, at least n - 1 changes are necessary to 
put the network in a state both equivalent to its initial state, and in 
which (1, 1) is unblocked. 

III. COMPARISON WITH SLEPIAN'S RESULT 

I have been able to obtain the bound of n - 1 on the number of 
changes by considering changes of both input and output connections 
involved in the blocked connection, that is changes in both rows and 
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columns of our matrix. Slepian, on the other hand, considered, in effect, 
only the changes in rows. That is, he gave a method for changing the 
blocking symbol in a row (B in our proof) without taking advantage 
of the symbol in the column (A in our proof) for reducing the number of 
changes. 

In the following sections a number of generalizations are developed. 

IV. METHODS FOR RESWITCHING A NETWORK TO UNBLOCK CALLS 

In the proof of Theorem 1 there is a method given for determining 
the changes required to unblock a blocked connection. This method 
involves two second-stage switches (A and B in the proof). If (rl' Cl) 

is blocked, we look for a symbol in r] not in Cl , and a symbol in Cl not 
in rl , and carry out the Change Algorithm of Theorem 1 (Section 2.3.2). 
We will call this "method 1." We could use a slightly more complex 
method in which we test all symbol pairs, (A, B), such that A is in rl 

but not in Cl , and B is in Cl but not in rl , to find which pair will require 
the fewest changes. The changes are then made on this pair according to 
the change Algorithm. We will call this "method 2." Methods 1 and 2 
both involve changing only two second-stage switches. We can develop 
methods which are not restricted to changes of only two second-stage 
switches. 

Assume that (rl , Cl) is blocked. Assume that A is in rl , but not in Cl 

and B is in Cl but not in rl . As in the proof of the theorem, assume Cf 

is the first member of sequence (1), which is itself defined but whose 
succeeding member is not defined. Then by making j - 1 changes of 
A's and B's, we know (rl, Cl) could be unblocked. If, however, some of 
the A's or B's which serve to define Cj , and rj ,j < j, could be changed 
without conflict to a symbol other than A or B, to C for example, then 
we could unblock (rl , Cl) in less than j - 1 changes. This is best illus
trated by an example (see Fig. 4). In summary, method 3 involves: 
first, finding a symbol in rl not in Cl , say A; a symbol in Cl , not in rl , 

say B; second, finding the last defined term of sequence (1); and third, 
examining the A's and B's which define sequence (1) to determine if 
any can be changed to a symbol other than A or B. If not, change the 
B's to A's according to the Change Algorithm. If so (say a B in column 
le, le < j, can be changed to a C without conflict) then make this change 
and make all changes given by the change algorithm in columns Cj, 

for j < le rows rj for j < k. 
In method 4 we try method 3 on all pairs of symbols (A, B); A in rl 

not in Cl ; B in Cl not in rl , and actually carry it out on the pair which 
requires the fewest changes. 

The methods discussed vary in complexity. A legitimate question to 
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ask is, what do we get for this complexity? The least upper bound on the 
number of changes required to unblock a blocked call has been estab
lished and is independent of which of the four methods is used. The 
greater complexity, however, does serve to decrease the average number 
of changes required per blocked call. We can get a quantitative idea 
of the value of the different methods by finding for any number of 
changes required to unblock a call, a lower bound on the number of calls 
which must already be set up in the network for each of the four methods. 

These bounds are illustrated by examples in which it can be seen that 
the removal of any call will lower the number of changes required. These 
can be shown to be greatest lower bounds (Fig. 5) 

x = the number of changes required 

y = the number of calls already set up. 

For methods 1 and 2 

y = 2x + n - 2 ... bound 1 (See Fig. Sa). 

For methods 3 and 4 

x· 
y = 2x + - (n - 2) 

2 

x+l 
y = 2x + -- (n - 2) 

2 

for x even 

for x odd ... bound 2 (See Fig. 5b). 

These bounds do not indicate the difference between methods 1 and 
2, or between methods 3 and 4, because as far as these bounds are con
cerned there is no difference. However, Fig. 6 indicates a case in which 
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Fig. 4 - Illustration of change method 3. 
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Fig. 5 - Illustrations of the smallest number of calls which must occupy a 
network (x) if a call is blocked and x changes are required to unblock the call. 

method 2 or 4 requires (assuming A and B were changed) one change to 
unblock (1, 1), whereas methods 1 and 3 require five. 

There arc more complex methods possible, in which more complex 
changes are allowable than any of the four methods, discussed above. 
Fig. 7 indicates how a network state which requires four changes with 
method 4 could be unblocked with three changes. It would be interest
ing to obtain the general bound, equivalent to bounds 1 and 2 in the 
case in which no restriction was made on possible changes. 

A 704 program for simulating method 2 on a simulated four-stage 
network is being written by J. N ervik. Also it should be fairly simple to 
realize circuitry for any of the four methods described. 

V. GENERALIZATION TO MORE THAN THREE STAGES 

In the proof of Theorem 1 we were able to show how the necessary 
changes to unblock a blocked connection can be made disturbing at 
most only two second-stage switches. This gives the following corollary. 
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Fig. (j - Illustration of the advantage of methods 2 and 4 over methods 1 and 
3 respectively. 

5.1 Corollary 1 

A blocked connection may be unblocked by changing connections in 
such a way as to disturb no more than two second-stage switches. 

This corollary will serve to obtain bounds on the number of calls which 
are disturbed in unblocking a blocked connection for five, seven, and 
nine-stage networks. 

The five-stage network to which we refer is obtained by starting with 
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A 

CDEF 

A 

CDEF 

BY METHOD/ 1,2,3 OR 4 
WE REQUIRE 
4 CHANGES 

TO UNBLOCK 

® 
A 

® CDEF 0 
B 

0 
THE CIRCLED SYMBOLS 
HAVE BEEN CHANGED 

(1,1) IS UNBLOCKED 

A 

A CDEF 

B 

B 

B 

A 

B 

B 

\UT IT CAN BE UNBLOCKED WITH 
ONLY 3 CHANGES 

A 

A B 

A CDEF B 

@) B 

@DEF @ 
THE CIRCLED SYMBOLS 
HAVE BEEN CHANGED 

IN FACT, FIG.5(b) CAN ALWAYS 
BE UNBLOCKED THIS WAY WITH 

ONLY 3 CHANGES 

Fig. 7 - A change method more efficient than method 4. 

a three-stage network as in Fig. l. Each second-stage switch of this 
network is then expanded into a three-stage switch having vn input 1st, 
2nd, and 3rd stage switches (Fig. 8). 

Now suppose a three-stage switch is blocked. We can find the two 
switches (say A and B) in which changes can be made by the Change 
Algorithm. We calculate the changes which must be made in A and B 
by the same algorithm. When we are done we have a list of all the connec
tions which must finally be made in second stage switches A and B. Now 



n 

NETWORK RESWITCHING 

n 3-STAGE 
INTERMEDIATE 

SWITCHES 

Fig. 8 - Five-Btage network suitable for reswitching. 
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n 

all connections which are initially set up in switches A and B may be 
taken down, and the new set of connections put up in their place. 

If A and B are the two switches which are changed by the Change 
Algorithm, there can be no more than n - 1 connections in either of 
them, since by definition there is no A in Cl , and no B in rl , assuming 
(rl' Cl) is blocked. Since we take down all connections in A and B, no 
more than 2n - 2 calls are disturbed. 

If A and B were three-stage switches themselves, our network and 
the above argument would remain the same. The only question which 
might arise is whether we could make the final connections in three
stage switches A and B. These connections could be made. One would 
calculate exactly how to set them up by repeated application of the 
Change Algorithm. First one would conceptually set up one connection 
arbitrarily, then one would try to conceptually set up the next connec
tion. If it were blocked, the Change Algorithm could be used to unblock 
it. This would continue until the final connections were decided con
ceptually. Then they could actually be made. 

This result extends easily to seven, nine· .. stage switches. 
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5.2 Generalization of Theorem 1 

For aq-stagenetwork, q odd and q > 3, of the type described above (Fig. 8), 
no more than 2n - 2 calls need be disturbed to unblock a blocked call. 

This bound can probably be lowered. If A and B are the two second
stage switches in which connections are to be changed, it has been 
shown that no more than a total of n - 1 connections in both A and B 
need be changed. However, if A and B are themselves three-stage 
switches, in order to make the initial n - 1 changes it may be necessary 
to juggle other connections in both A and B. A closer study of the ways 
in which this juggling can be done might serve to lower the 2n - 2 bound. 

5.3 Generalizations to Other Network Configurations 

So far we have discussed networks in which all stages have the same 
number of switches. The matrix representation, with the restrictions 
given in Section 2.1, is applicable to a more general class of three-stage 
networks than that of Fig. 1. In this more general class the numbers of 

n 1ST STAGE 
SWITCHES 

n 

m 2ND STAGE 
SWITCHES 

m :!n 

n 2ND STAGE 
SWITCHES 

2 

Fig. 9 - Generalization to more second-stage switches than first-stage 
switches. 
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intermediate switches may be greater than n (Fig. 9). Assume there 
are m intermediate switches, m > n. There are still n input (output) 
switches. There is one link from each input (output) switch to each of 
the intermediate switches. 

For this more general class of switches the condition for legitimate 
blocking (Section 2.1) must be generalized to read: 

(a, b) is legitimately blocked if there are a total of m different 
symbols in row a and column b. There are less than n symbols in row 
a (column b). 
We have shown that if m = n, then no more than n - 1 changes are 

required to unblock a blocked connection. Clos2 has shown that if 
m = 2n - 1, the network is nonblocking. (0 changes are required to 
unblock a blocked connection.) I can also prove that if m = 2n - 2, 
no more than one change is required to unblock a blocked connection. 
(This is justified later.) These results lead to the conjecture that if m = 
2n - j, no more than j - 1 changes are required to unblock a blocked 
connection. 

We will now prove a simple lemma which was useful in finding the 
bounds for m = 2n - 2, and which may prove helpful in attacking our 
conj ecture. 

5.3.1 Lemma 

If m = n + k and (a, b) is legitimately blocked, then there must be at 
least k + 1 symbols in row a, none of which are in column b, and there 
must be at least k + 1 symbols in column b, none of which are in row a. 

5.3.2 Proof 

By assumption, (a, b) is blocked; therefore there are a total of n + k 
different symbols in row a and column b, by the blocking condition. 
There are less than n symbols in row a, and less than n symbols in 
column b, also by the blocking condition. 

Let R = no. of symbols in row a, not in column b 
C = no. of symbols in column b, not in row a 
X = no. of symbols appearing in (a, b) 
B = no. of symbols in both row a, and column b, but not (a, b) 

Then we have 

l.B+C+B+X=n+I{ 
2. R + B + X < n 
3. C + B + X < n 
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which by substituting for X in 2, and 3 the value obtained from 1 gives: 

C < k 
R < k 

We illustrate the use of this lemma by proving the Glos non-blocking 
network is non-blocking. In the Glos network k = n - 1. Therefore if 
(a, b) is legitimately blocked, there must be n = k + 1 symbols in row 
a (C = n). This immediately contradicts the hypothesis that (a, b) is 
legitimately blocked. 

For the case in which k = n - 2, it follows from our lemma that if 
(a, b) is blocked, C = n - 1 and R = n - 1. If this were all the con
nections that were up, a single change of any of the C symbols in row a 
(called a-symbols) or any of the R symbols in column b (called b-symbols) 
would unblock (a, b). So, in order that more than one change will be 
required, all the proposed unblocking changes must produce conflicts. 
This means that in the column of each of the symbols in row a, all n - 1 
b-symbols must appear. Also in the row of each of the symbols in column 
b, all n - 1 a-symbols must appear. It follows that if there are to be no 
more than n symbols in any row or column that there must be no symbol 
in (a, b), and one symbol in every other location in row a, and column 
b. Now we look at row k. There must be one b-symbol and all n - 1 
a-symbols in this row. One of the a-symbols in row k must be in column 
p, (p ~ a). In column p however, there must already be an a symbol 
and n - 1 b-symbols, these together with the a-symbol in row k, column 
p total to n + 1 symbols in column p. This is not allowed. Therefore 
one change will always be sufficient to unblock a blocked connection of 
m = 2n - 2. 

VI. CONCLUSION 

There are other directions in which generalizations appear feasible 
with the techniques of this paper. We can deal with rectangular matrices 
in an analogous manner to that used for the square matrix here. These 
correspond to concentration networks. Triangular networks seem some
what more difficult, but still feasible to treat. Finally, results on various 
network configurations can probably be generalized to more than three 
stages. 

We have discussed here the use of the reswitching to make networks 
non-blocking. One might also consider a more modest goal in which 
provision is made for fewer than the number of reswitches or changes 
required to make the network non-blocking, in an attempt to improve 
blocking characteristics. The program being written by J. Nervik will 
be used to obtain some estimate of this improvement. 



NETWORK RESWITCHING 851 

APPENDIX 

A.1 Introduction 

In the body of the paper there are some algorithms by which networks 
not originally non-blocking can be made non-blocking by rearranging 
connections already set up in the network. These algorithms involve 
the temporary disturbance of calls already set up in the network. 

Here I propose to describe a slight modification of the network and 
of the algorithm which will allow one to make the network essentially 
non-blocking or rearrangable without requiring any disturbance of 
existing calls set up in the network. 

A.2 Network lVIodification 

The basic three-stage network, each stage requiring n, n X n switches, 
is modified to a three-stage network in which stage 1 consists of n, 
(n) X (n + 1) switches, stage 2 consists of n + 1, (n) X (n) switches, 
stage 3 consists of n, (n) X (n + 1) switches. Each first (third) stage 
switch has one link to each second-stage switch, as pictured in Fig. 10. 

As in the body, we represent the connections in this network with a 
n X n matrix. For each input switch, there is a row in the matrix. These 
are numbered 1 to n. For each output switch, there is a column in the 
matrix. These are numbered 1 to n. A connection between input switch 
j and output switch k through middle switch A is indicated by an A in 
position (j, k). lVIiddle switches are lettered A, B, etc. There are n + 1 
letters. There cannot be more than n + 1 letters * in any row or column 
or location of the matrix. 

A.3 Algorithm Jl1odification 

In order to make this network essentially non-blocking we use the 
following procedure. 

vVe choose not to use middle switch A until we get a blocked condi
tion. When we get a blocked condition, we are in the same situation as 
if the network were a three-stage network with each stage having n n X n 
switches. From the corollary of Section V, we know that this blocked 
connection could be unblocked without disturbing more than two (inter
mediate) middle switches (not including switch A, which has not as yet 
been used). Suppose the two middle switches in which connections are 
to be changed to unblock the blocked connection are C and D. According 
to the change algorithm we would change a certain set of connections 

* In the operation of this network there are times during which a single input 
lead is connected to two middle switches. Thus, although there are only n inputs 
per input switch there may be n + 1 connections in a single input switch. 
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STAGE i 
(INPUT) 

n (n+f) 

n 

n (n+l) 

STAGE 2 
(MIDDLE) 

A 

nxn 

B 

nxn 

nxn 

n +l ST LETTER 

Fig. 10 - Modified three-stage network. 

STAGE 3 
(OUTPUT) 

(n+l) n 

in middle switch C to connections in middle switch D, and a certain set 
of connections in middle switch D to connections in middle switch C. 
This would leave either switch C or D available for use for the blocked 
call. (Which particular switch was available depends on the exact choice 
of the sets of connections in C and D which are to be rearranged.) Such 
a rearrangement involves disturbing all the calls using the set of con
nections in C and D which are to be changed. In the modified network 
we have an extra middle switch A available which we can use to main
tain all calls while connections are being rearranged. The modified 
algorithm is given below. The steps of the algorithm are illustrated by 
an example in Figure 11. 

According to the algorithm, we find the set of connections in middle 
switches C and D which must be rearranged to unblock the blocked 
connections. 

l. For every connection in C which we have elected to change, we 
add a corresponding connection in A. In the matrix representation this 
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Fig. 11 - Example of rearranging without disturbing. 

853 

D 

--

E,F 

D 

E,F 

D 

E,F 

corresponds to adding an A in every position in which an elected C 
appears. 

2. All elected C connections are taken down; the calls originally 
carried by these connections are now carried by switch A. 

3. For every connection in D which we originally elected to change, 
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we add a corresponding connection in C. This means in the matrix 
representation an addition of a C in every position in which there is an 
elected D. This will always be possible because we have already taken 
down all the elected C connections which, according to the body of the 
paper, are the only connections which would prevent this addition. 

4. All elected D connections are taken down; the calls carried by these 
D connections are now carried by C connections. 

5. To every connection carried by A we add a corresponding connec
tion carried by D. This will always be possible according to the results 
in the body of the paper. 

6. Finally, we take down all connections in A. 
We thus have carried out the change algorithm, and therefore, have 

unblocked the blocked connection. Switch A has no connection set up 
in it so it is available for use in unblocking the next blocked call. 

A.4 11laking Use of Dead Time (Time during which there is no activity 
in the network) 

Actually, the blocked call is unblocked after step 2, at which time 
the desired connection can be put up using switch C (assuming that the 
C in the row or column of the blocked call was changed in step 1 and 
step 2). Since either a C or D in the row or column of the blocked call 
is changed in this algorithm the original choice of where to add connec
tions in A could be made so that the call would be unblocked after step 2. 

Steps 1 and 2 could have been combined in such a way as to add a 
connection in A, take down the corresponding connection in C, then 
add another connection in A, take down the corresponding connection 
in C, and so forth. In this case the blocked connection could be unblocked 
after the first addition of a connection in A and the removal of its 
corresponding connection in C. 

If the single switch A is to serve to allow for unblocking calls without 
disturbing other calls, by our algorithm, A must be completely available 
when a blocked connection is to be unblocked. So although the blocked 
call may be unblocked early in the algorithm, the remainder of the 
algorithm must have been completed before the next blocked call is to 
be unblocked. The extra switch A acts as a kind of connection memory 
so that normal dead time in the network may be profitably used for 
improving blocking characteristics. 

By adding additional middle switches analogously to the way A was 
added, we would effectively add more connection memory and increase 
the efficient use of dead time in the network. Thus,· if there were two 
additional switches A and B, A would not have to be cleared 'before 
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another blocked call could be handled because B would be available. A 
would have to be cleared before the second blocked call after the one 
that engaged A were encountered. 

There are some indications that the simple scheme proposed here 
can be improved upon. 

In this scheme we are calling on A to handle no more than n/2 con
nections at anyone time, and A is in use at all only during the unblock
ing operation. In the network A appears like any other middle-stage 
switch, but its function is much different from the other middle-stage 
switches. Perhaps the organization could be changed to share the load 
more symmetrically. 
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The Realizability of Multiport Structures 
Obtained by Imbedding a Tunnel Diode 

in a Lossless Reciprocal Network 

By I. w. SANDBERG 

(Manuscript received November 9, 1961) 

Necessary and sUfficient conditions are presented for the realization of the 
short-circuit admittance matrix or open-circuit impedance matrix of the 
most general n-port structures characterized by such matrices obtained by 
imbedding a tunnel diode, represented by a parallel combination of a capaci
tor and a negative resistor, in a finite loss less reciprocal network. Techniques 
for realizing prescribed immittance matrices are included. 

I. INTRODUCTION 

It is generally well known that the tunnel diode possesses a small
signal equivalent circuit that can often be approximated by a parallel 
combination of a capacitor and a negative resistor. This model has been 
used extensively in the study of gain-bandwidth relations and optimum 
synthesis procedures for specific amplifier configurations.1- 5 It has also 
been used to derive bounds on the natural frequencies obtained by im
bedding the tunnel diode in a passive network. 6 •7 

The purpose of this paper is to present necessary and sufficient con
ditions for the realization of the short-circuit admittance matrix or open
circuit impedance matrix of the most general n-port structures char
acterized by such matrices obtained by imbedding a tunnel diode, 
represented by the above mentioned model, in a lossless reciprocal net
work. 

The properties of the short-circuit admittance matrix are considered 
also by another writer.s With the exception of certain remarks of a 
tutorial nature, the arguments, results, synthesis techniques, and basic 
approach to the problem presented here are quite different from that in 
Ref. 8. In partiCUlar, it is not assumed here that the short-circuit ad
mittance matrix of the (n + I)-port lossless network invariably exists. 

857 
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Also, the necessary and sufficient conditions are stated directly in terms 
of the n X n short-circuit admittance matrix and its even part. They 
do not involve a knowledge of the short-circuit admittance matrix ob
tained when the tunnel diode is short-circuited. 

II. DESCRIPTION OF THE STRUCTURE TO BE CONSIDERED 

The basic structure under consideration is shown in Fig. 1, in which the 
(n + I)-port network is assumed to be a lossless reciprocal configuration 
containing inductors, capacitors, and ideal transformers. Port (n + 1) 
is terminated with a unit capacitor and unit resistor in parallel. This 
involves no loss of generality since a similar termination with other values 
of positive capacitance and/or resistance (positive or negative) can be 
treated with the aid of simple transformations which are explicitly stated 
in Section VII. The overall network is restricted initially in that the 
symmetric positive-real short-circuit admittance matrix Y (s), relating 
the port currents and voltages at ports (1,2, ... ,n), is assumed to exist. 
The realizability conditions for the open-circuit impedance matrix Z (s) 
cali be obtained in a manner similar to that to be described for Y (s) 
and are stated in Section VII. 

The (n + I)-port lossless network is characterized by the regular 
para-unitary scattering matrix 8(s) or by the short-circuit admittance 
matrix Yes), when it exists. We initially assume that yes) does exist 
and consider in a subsequent section the case in which Y (s) does not 
exist. 

~ 
+ 

VI 
-

Lz 
/\ /\ 
SIs) Y(S) 

Y(S) 

- ~ + INDUCTORS, 
Vz - CAPACITORS, + 

In~ oro I AND TRANSFORMERS Vn+1 
1 

1 -
IF 

1 

I· 

Ln 
1 

1 -+ 
Vn 

-

Fig. 1 - Most general structure defining Y(s). 
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Ill. NECESSARY CONDITIONS FOR THE REALIZATION OF YeS) WHEN Yes) 
EXISTS AND THE EVEN PART OF yes) IS NOT A MATRIX OF CONS'l'AN'rs 

The necessary and sufficient conditions for the realization of yes) are, 
of course, well known. 

It is also well known that t 

(1) 

where the matrices in (1) are defined by the following partition of Y (s) : 

n 1 

(2) 

The arguments to be presented center about a study of Y e , the even 
part of the matrix Y. This matrix is given by 

Y e = t[Y(s) + Y( -s)1 

(3) 

It is convenient to introduce the notation: Y22 = d-1n22 , Y12 = d-1N12 

where d is an even polynomial, n22 is an odd polynomial and N12 is a 
matrix of odd polynomials, with the understanding that d, n22 and every 
element in N12 may have a common simple zero at the origin. In this 
way it is unnecessary to treat separately the cases in which d is even or 
d is odd. Accordingly, 

Note that the polynomial [n22 + (s + 1) d] can be assumed to be strictly 
Hurwitz except possibly for a simple zero at the origin, since n22 and d 
can be assumed to be relatively prime except possibly for a simple com
mon zero at the origin. 

It is convenient to treat separately the cases in which Y e is or is not a 
matrix of constants. 

t The superscript t denotes matrix transposition. 
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Consider the following 

Definicion: 

The matrix Y e is said to be in standard form if and only if 

Y = -UUt 1 
e v(s)v( -s) 

where v(s) is a positive coefficient polynomial which is strictly Hurwitz ex
cept possibly for a simple zero at the origin and U t = [Ul, U2, ••• , Un] 

is a matrix of odd real polynomials with the property that there is no facior 
7](s)7]( -s) common to all the Ui such that 7]2(s)7]2( -s) divides v(s)v( -s) 
where 7]( s) is a strict Hurwitz polynomial. The polynomials Ve and Va are 
respectively the even and odd parts of v (s). 

In Section IV the following result is proved. 

Theorem 1: 

A rational positive-real symmetric matrix yes) with nonconstant even 
part is realizable as shown in Fig. 1 when Y (s) exists only if Y e is ex
pressible in standard form with v(s) such thatt 

k = [2] ~ 1, 
SVe co 

~. and 

ii. If k = 1, 

iii. If Ie > 1, [1] Ie S Y co - Ie - 1 [Ye]co • 

is nonnegative definite. 
The case in which Y e is a matrix of constants is treated in Section VI. 

IV. PROOF OF THEOREM I 

We begin by observing from (4) that Y e can be expressed in standard 
form if Y is realizable. The problem of factoring a given matrix Y e 

into the required form is discussed in detail in Appendix A. 
Assume now that Y e is given in standard form and consider the prob

lem of identifying N12 , n22, and d in (4). A common factor may have 
been canceled in the expression for Y e , and hence an unknown factor 
must be reinserted before N12 , n22 , and d can be determined. However, 

t Throughout we use the notation lim [.J = [. j,,,, • 
8-+ co 
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the common factor must be of the form a2 (s) = b(s)b( -s) where b(s) 
is a strict Hurwitz polynomial. Therefore, ignoring a possible minus 
sign, a(s) = rJ(s)rJ( -8) where rJ(8) is a strict Hurwitz polynomial. 

Thus, for some unknown strict Hurwitz rJ( 8) , 

1 1· 
N12 [n22 + (8 + 1) d] = UrJ(s)rJ( -s) V(S)r]2(8) (5) 

and 

N 12 = U rJ ( s) rJ ( - 8 ) 

n22 + (s + 1) d = v ( 8) rJ2 ( S ) • 

(6) 

(7) 

In the following we shall denote by rJe and rJo the even and odd parts re
spectively of rJ. Equations (6) and (7) read 

N12 = U[rJe
2 

- rJ/] (8) 

n22 + (s + 1) d = Ve(rJe
2 + rJo2

) + Vo(rJe
2 + rJo2

) + 2vorJerJo + 2vcrJerJo. (H) 

Equating even and odd parts of (9) gives 

d = Vee 1]/ + rJo
2

) + 2vorJerJo 
(10) 

and therefore 

Y 22 = n22 = vo(rJ/ + rJo
2

) + 2verJerJo _ s. 
d Ve (rJe 2 + rJ}) + 2vorJerJo 

(II) 

From (11) it is clear that Y22 is realizable provided 

n y"l ~ O. (12) 

However, 

8 (13) 

and since 1](8) is a Hurwitz polynomialt 

[~ Y22] = [~~] _1 - 1 
s <Xl S Ve <Xl 1 + a 

(14) 

t We have assumed that the degree of Vo exceeds the degree of v • . It is easy to 
show that it is impossible to satisfy (12) unless this is so. 
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where 

o ~ a = ~ 2v
o [ 2'f/

e
'f/

o 2J} < 00 
~ Ve 'f/e + 'f/o <Xl 

(15) 

Clearly, it is necessary that 

k = [! ~J ~ 1. 
S Ve <Xl 

(16) 

4.1 Derivation of the Inequality Involving K<Xl and [YeJ<Xl 

Consider now the derivation of a key inequality that must be satis
fied by the coefficient matrix K<Xl = [(l/s)Y]<Xl' 

Let the constant matrices Aij be defined by 

(17) 

Then, from (1), 

(18) 

But from (8) and (10) 

and thus 

A12 = [~uJ ~ 
SVe <Xl 1 + a 

(19) 

where a is defined in (15) and the plus or minus sign applies according 
as the degree of 'f/e exceeds the degree of 'f/o or not. Recall from (14) and 
(16) that 

k 
A22 = -- - 1. 

l+a 

Using (18), (19), and (20) 

[ 1 ] [1 tJ 1 K = An - - U - U 
<Xl SVe <Xl SVe <Xl k (1 + a) 

(20) 

(21) 
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where All is unknown. However, if the (n + I)-port lossless network is 
to be realizable, it is necessary that the matrix 

(22) 

is nonnegative definite. Assume initially that A22 ~ O. We require the 
following result. 

Lemma 1: 

A necessary and sufficient condition that A is nonnegative definite with 
A22 ~ 0 is that A' is nonnegative definite where 

(23) 

To prove the lemma, note that A' = BABt with 

[
In 

B= 
o 

where In is the identity matrix of order n. 
Thus, 

or equivalently 

[ 1 ] [1 tJ 1 All - - U - U 
SVe CfJ SVe CfJ (1 + a)(k - 1 - a) 

(24) 

is required to be nonnegative definite. By combining this result with (21) 
we find that 

K - 1 [~uJ [~utJ 
CfJ k(k - 1 - a) SVe CfJ SVe CfJ 

(25) 

is nonnegative definite. Recalling that (k - 1 - a) is initially assumed 
to exceed zero, it is clear that (25) is nonnegative definite with a = o. 
Furthermore, with a = 0, (25) can be expressed as 

(26) 
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by using the identities 

[ 1 UJ - [Vo J [1 UJ 
SVe 00 SVe 00 Vo 00 

(27) 

(28) 

When A22 = 0, as is the case whenever lc = 1, it is clear from (22) 
that every element in A12 must vanish if A is to be nonnegative definite. 
But from (19) 

[
1 J ±1 A12 = lc - U -- . 
Vo 00 1 + a 

Thus, from (28) it is evident that [Ye]oo = 0 when lc = 1. 
This proves Theorem 1. In the next section we prove that if a positive

real matrix satisfies the conditions of Theorem 1, it is realizable as 
shown in Fig. 1. 

V. PROOF OF SUFFICIENCY OF THEOREM I FOR Yes) WITH NON-CONSTANT Y e 

Assume that Yes) and 

1 uut 
v(s)v( -s) , 

(29) 

in standard form, are prescribed and satisfy Theorem 1. 
Let 

(30) 
1 1 

Y12 = - N12 = - U. 
d Ve 

Then from (30) and (1) 

1 t 
Yn = Y + ( + ) uu . 

Ve Vo Ve 
(31) 

Hence Yn , Y12 , and Y22 satisfy (1). We wish to prove that these sub
matrices defined above lead to a realizable Y (s) given by 

~ul 
Ve 

Vo J --s 
Ve 

(32) 
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First of all, Y22 is a realizable driving-point admittance function since 
lc ~ 1. 

The submatrix Yll can be expressed as follows by using (29): 

Yll = Yo - 1 UU t + 1 UU t 

v(s)v( -s) ve[vo + Vel 
(33) 

= Yo - ~ 1 UU t 

vev(s)v(-s) . 

where Yo is the odd part of Y. From (33) it is apparent that Yll is a 
matrix of odd functions, as it should be. Further, since from (31) Yll 

is regular in the right-half plane, it follows that Yll can have poles only 
on the jw axis. In fact, the finite poles of Yll are the boundary poles of Y 
and the zeros of Ve • 

Consider now the residue matrix Ki at a pole of Y (s) which arises 
from a zero of Ve , say at S = jWi , and let the residue matrix of Y at that 
pole be Ki . Thent 

(34) 

where a dot over Ve denotes the derivative of Ve with respect to s. To 
show that Ki is nonnegative definite, we appeal to Lemma 1. Thus it is 
sufficient to point out that (volve ) I iWi is positive and that 

Ki + ~ UU
t I -!.- UU

t ~ I = K· (35) 
V(PO iWi Ve2 Vo jWi t 

is nonnegative definite. 
Finally, we must show that Koo [(1/s)YL", is nonnegative definite. 
When lc = 1, the proof is trivial for then 

[~ uJ = [~uJ = 0 
SVe 00 Vo 00 

and 

~J (36) 

t When v = 8U = S (u e + u o ), where 'U is a strict HUrwitz polynomial, it is neces
sary to replace Ve , Vo , and U respectively with 110 , 11. and the n-vector of even 
polynomials S-lU before this argument is applied to verify the nonnegative 
definiteness of the matrix of residues associated with the pole at the origin. 
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When k exceeds unity, 

r Koo + k [V~2 uu'l 
l k [~u'l 

Koo = (37) 

According to Lemma 1, Koo is nonnegative definite if and only if 

(38) 

is nonnegative definite. However, from Theorem 1 [condition(iii)] and 
the fact that 

(39) 

it follows that (38) is indeed nonnegative definite. 
Therefore, the conditions of Theorem 1 arc sufficient for the realiza

tion of Y (s). It is of interest to note that in the preceding constructive 
proof it was sufficient to assume that 1](s) [defined in Section IV] is unity. 
All other possible matrices Yes) corresponding to a realization of Yes) 
can be generated by exploiting the permissible choices of 1](s). 

To complete the theory we consider in the next section the cases in 
which yes) does not exist or Y e is a matrix of constants when yes) docs 
exist. 

VI. NECESSARY AND SUFFICIENT CONDITIONS FOR THE HEALIZATION OF 

Yes) WHEN yes) DOES NOT EXIST OR WHEN Ye IS A MATRIX OF CON

STANTS 

The results of this section for the case in which yes) does not exist 
are based on the following result which is proved in Appendix B. 

Lemma 2: 

If Y (s) in Fig. 1 exists but Y (s) does not exist, then Vn+l, the voltage 
across the RC combination terminating port (n + 1), is related to the other 
port voltages by 

n 

Vn +l = L {3iVi 
i=l 

where the {3i are real constants. 

(40) 
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We wish to prove the following: 

'Theorem 2: 

If the rational positive-real symmetric matrix Y ( s ), defined by the 
structure in Fig. 1, exists but Y (s) does not exist, or if Y (s) is such that 
Y c is a matrix of constants, Y ( s) can be expressed as sKoo + Ko + Y' ( s) 
wlwre Y' ( s) is an odd rational matrix in s such that Y' ( s) -1- 0 as s -1- 00, 

and Ko is a real constant matrix with rank not exceeding unity such that 
Koo - Ko is nonnegative definite. Further, if Y (s) satisfies the above con
dition, it can be realized as a reactance n-port in parallel with a network of 
ideal transformers that is terminated with a parallel combination of a 
unit resiLtor and a unit capacitor. 

To prove the theorem for the case in which Yes) does not exist, first 
consider the expression for P, the average power entering the n-ports 
defining Y (s), in terms of Y e I 8=jW and V t 

= [VI, V2, ••• , Vn] : 

(41) 

where the asterisk denotes the complex conjugate. Since P is also equal 
to Vn+lVn+l*, we have from (41) and Lemma 2 

n 

VtYe I 8=jW V* = L (3i{3JViV/, 
i,i=1 

Because (42) is valid for arbitrary Vi, we find 

Y e I 8=JW = BBt = Ko 

where B t = [{31, {32 , "', (3n]. Thus Y (s) can be expressed as 

Yes) = sKoo + Ko + Y'(s) 

(42) 

(43) 

(44) 

where Y' (s) is a matrix of odd rational functions which vanish at in
finity. It is evident from (43) that Ko satisfies the rank conditions of 
Theorem 2. 

Note that yes) has the form (44) if Yes) exists but Y e is a matrix 
of constants; for, in this case also, the rank of Y e cannot exceed unity.t 

Next consider Y( s - 1), which must have a nonpositive definite real 
part on s = JW: 

yes - 1) = sKoo + [Ko - Koo] + Y'(s - 1) (45) 

It is clear that if the real part of Y (s - 1) on s = jw is to be nonpositive 

t This is obvious from the form of (4). 
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definite for arbitrarily large values of 1 w I, [Koo - Ko] must be a non
negative definite matrix.t 

Finally, assume that Yes) satisfies the conditions of Theorem 2 and 
consider 

Yes) = C[sDoo + Do]C t + Y'(s) 

in which the real nonsingular n X n matrix C is chosen so that 

C-1KooC-lt = Doo 

C-1KoC-lt = Do 

(46) 

(47) 

where Doo and Do are diagonal matrices.t Note that there can be at 
most one nonzero term in Do and that this term cannot exceed the 
corresponding entry in Doo for otherwise [Koo - Ko] would not be non
negative definite. Hence yes) can be rewritten as 

Yes) = (s + l)CFC t + Y"(s) 

where Y" (s) is realizable as a reactance network and F is a constant 
diagonal matrix with at most one nonzero clement. This nonzero element 
is, of course, positive. The interpretation of the congruence transfor
mation CFC t in terms of an ideal transformer network is well known. 
This proves Theorem 2. 

VII. SUMMAHY AND HELA'l'ED HEMAHKS 

The principal results can be summari",cd a~ follows. 

'Theorem 3: 

'The rational positive-real n X n symmetric short-circuit admittance 
matrix Y ( s) is ~ealizable as a lossless network containing inductors, ca
pacitors, and ideal transformers and a two-terminal element comprising a 
parallel combination of a unit resistor and a unit capacitor if and only if 

1,. When Y e = Ko, a matrix of constants, the rank of Ko does not exceed 
unity and [(Ijs)Y]oo - Ko is nonnegative definite. 

n. When Y e is not a matrix of constants, (a) Y e can be expressed in 

t This conclusion, with Ko defined as [YeL" , is valid when any number of unit 
resistor-capacitor parallel combinations are imbedded in a general lossless net
work. 

t This is always possible since K"" and Ko are nonnegative definite. 
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standard form (defined in Section I I I) with v ( s) such that 
k = [volsveLI:) ~ 1; (b) if k = 1, [YeLl:) = 0; 

( c) if k > 1, [~ Y 1 - To ~ 1 [Y ,l~ 
is nonnegative definite. 

Further, if Ye ~·s a matrix of constants and satisfies condition (i), Y can be 
realized as a reactance n-port in parallel with a network oj ideal trans
formers that is terminated with a parallel combination oj a unit resistor 
and a unit capacitor. If Ye is not a matrix oj constants and satisfies con
dition (ii), Y can be realized as an (n + I)-port lossless network, char
acterized by the short-circuit admittance matrix Y, terminated at port 
(n + 1) with a parallel combination of a unit resistor and a unit capaci
tor. The matrix Y is given by 

+ 1 UU t 

Vee Vo + v e ) 

~ut 
Ve 

l. 
sJ 

For completeness, we state the following extension of Theorem 3. 

Theorem 4-: 

The short-circuit admittance matrix Y (s) is realizable as a lossless 
network containing inductors, capacitors, and ideal transformers and a 
two-terminal element comprising a parallel combination of a resistor of 
value R ohms (R > 0) and a capacitor of value TR-1 farads ('T > 0) 
if and only if Yes) = Y(sIT) is a symmetric positive-real matrix that 
satisfies the conditions of Theorem 3. If instead the resistor is equal to - R 
ohms, the matrix is realizable if and only if Yes) = - Y( -siT) is a 
symmetric positive-real matrix that satisfies the conditions of Theorem 3. 

The proof of Theorem 4 follows from two elementary transformations 
and is omitted.t In each case the parameter T is, of course, the time 
constant of the RC combination. It is convenient for some purposes to 
have the realizability conditions stated explicitly in terms of T. This 
can easily be done with the aid of the above theorem and is discussed in 
Appendix C. 

t The fact that an n X n short-circuit admittance matrix Y(s) of real rational 
functions is realizable as a network containing only lossless elements and nega
tive resistors if and only if - Y( -s) is a positive-real matrix was first established 
by Carlin and Y oula. 9 
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The following theorem states an interesting inequality involving 
[(1/s)Y]oo and [(1/s)Ysc]oo where Y sc , if it exists, is the value of Yes) 
when the RC combination, with unit capacitance, is shorted. 

Theorem 5: 

[~Y 1- ~ G y"l is nonnegative definite. 

The proof follows at once from (21) and the fact that (24) is nonnega
tive definite. 

The following theorem is of assistance in simplifying the tests indi
cated in Theorem 3 for the important case in which Koo = [(I/s)Y]oo is 
positive definite. 

Theorem 6: 

If A and Bare n X n real symmetric nonnegative definite matrices 
with det A ~ 0 and B of unit rank, A - B is nonnegative definite if and 
only if det [A - B] ~ O. 

To prove this result note that A - B can be written as Q[Da - Db]Qt, 
where Q is a real nonsingular matrix such that A = QDaQt, B = QDbQt, 
and Da and Db are diagonal matrices. Thus 

det[A - B] = deeQ· det[Da - Db]. 

The realizability conditions can be expressed also in terms of the 
open-circuit impedance matrix Z(s) by exploiting an approach similar 
to that used in treating the short-circuit admittance matrix Y (s). 
Since the ideas involved are so similar to those discussed earlier we 
shall omit the details and simply state the result: 

Theorem 7: 

The rational positive-real n X n symmetric open-circuit impedance 
matrix Z(s) is realizable as a lossless network containing inductors, capaci
tors, and ideal transformers and a two-terminal element comprising a paral
lel combination of a unit resistor and a unit capacitor if and only if the 
even part of the matrix Z, Ze , is expressible in standard form (defined in 
Section I I I) with 

[ ! VeJ ~ 1 . 
s Vo 00 

Further, if Ve ~ SVo and Z satisfies the above conditions, Z can be realized 
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as an (n + 1) -port lossless network, characterized by the open-circuit 
impedance matrix Z, terminated at por-t (n + 1) with a parallel combina
tion of a unit resistor and a unit capacitor. The matrix Z is given by 

If Ve == SVo , and Z satisfies the above conditions, Z can be expressed as 
Z = [1/ (s + 1)] F + Z' where F is a real symmetric nonnegative definite 
matrix of constants of rank not exceeding unity and Z' is the open-circuit 
impedance matrix of an n-port reciprocal lossless network. 

The simple form that the conditions assume is attributable to the 
fact that the impedance of the parallel RC combination is regular at 
infinity and that the matrix Ze is not a matrix of conEtants unless every 
element vanishes identically in s. 

APPENDIX A 

Factorization of Y e( 8) 

Recall that Y e is the even part of a rational symmetric n X n posi
tive-real short-circuit admittance matrix. It is convenient to partition 
this matrix as follows: 

(48) 

where Ell, E12 , and E22 are respectively 1 X 1, 1 X (n - 1), and 
(n - 1) X (n - 1) submatrices of ratios of even polynomials in s. 
We may assume, without loss of generality, that Ell does not vanish 
identically in s. 

Consider the following identity which is readily verified: 

[Ell E12] 

El/ E22 

~ [El,'~11-1 o ][Ell 
In-l 0 

It is evident that the normal rank of Y e cannot exceed unity if it is to 
be expressible in standard form. Accordingly we may assume that 
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E22 - El~/E12En-l = 0, and hence 

[
En E12] 

EI2t E22 
= En[1 E12En-l]t[1 E I2E n- I]. (50) 

The right-hand side of (50) can be rewritten as fppt where 

pt = [PI, P2, ... , Pn] 

is a row matrix of even real polynomials and f is an even real rational 
fraction in 8, analytic on 8 = jw [- OC) ~ w ~ OC)], and such that 

f(jw) ~ o. 
As is well known, f( 8) can be expressed as either 

2 
g 

or 
h(8)h( -8) m(8)m( -8) 

where g and l are respectively even and odd real polynomials and h ( s) 
and m (8) are real strict Hurwitz polynomials. In either case, since 

2 
g 

h(8)h( -8) [8h(8)][ -8h( -8)] , 

Y c can be written as 

-1 WW t 

W(8)W( -8) , 

in which W t = [WI, W2 , ... , wn ] is a row matrix of real odd polynomials 
and w( 8) is a real strict Hurwitz polynomial except possibly for a 
simple zero at the origin. 

Note that Y is realizable as shown in Fig. 1 when Y exists only if the 
degree of w( 8) is odd. 

APPENDIX B 

Proof of Lemma 2 

First note that if the (n + 1)-port lossless network does not possess 
a short-circuit admittance matrix, the short-circuit admittance matrix 
of N, the lossless (n + I)-port with a unit capacitor added in parallel 
at port (n + 1), also does not exist. 

Let 8(8) be the scattering matrixlO of N and consider the circuit 
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et VI 

5(5) 

L2 L05SLESS - NETWORK N 
+ Lntt 

eZ Vz r- + + t 

IF:::*::: Vntt ent1 =0 
t 
L_ 

Ln 

en Vn 

Fig. 2 - Network defining the relationship between E, V, I, and the scatter
ing matrix S (s). 

shown in Fig. 2. By definition 

S[V + I] = V - I, (51) 

and 

(52) 

where S is the matrix of elements in the first n rows and columns of S. 
Substituting E = V + I hl (51) gives 

V = ![S + In+l]E. (53) 

Because the short-circuit admittance matrix of N exists if and only 
if det[S + In+I] ¢ 0, and since S is the matrix of elements in the first 
n rows and columns of S, it follows that [S + In+l] has normal rankt 
equal to n. Further, since the rank of [8 + In+l] is invariant in the strict 
right-half plane, there exists, to within an arbitrary scalar multiplica
tive factor, one and only one real constant (n + 1)-vector X such that 

(54) 

where So is a fixed but arbitrarily chosen real positive constant. Let X 
be normalized so that XiX = 1. Equation (54) then yields 

xt§( so)X = -1 (55) 

t Since Y(s) exists, det [in + S] does not vanish identically in s. 
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Note that XtS(s)X is a one-port passive scattering coefficient and that 
therefore (51) implies 

(56) 

identically in s. Furthermore, since [8(s) + In+l] is positive semidefinite 
for all real positive s, it follows that 

Xt[8(s) + In+l] = 0 (57) 

identically in 8. Thus from (53) and (57) 

or 

xtv = !Xt[8 + In+l]E 0 

n+l 
L XiVi = 0 
i=l 

where the Xi are real constants, not all zero. However since Yes) exists 
Xn+l cannot vanish. Dividing through by Xn+l gives an expression of 
the form 

n 

Vn+I = L {3iVi 
i=l 

in which the (3i are real constants. 
It is of incidental interest to note that the proof does not require 

that N be lossless. It is sufficient that it be passive. t 

APPENDIX C 

The Realizability Conditions Stated Explicitly in Terms of the Parame
ter T 

According to Theorem 4, Yes) is realizable with a lossless reciprocal 
network and a two-terminal element comprising a parallel combination 
of a resistor of value R ohms (R > 0) and a capacitor of value TR-1 

farads (T > 0) if and only if yes) = Y(s/T) is a symmetric po~itive-

real matrix that satisfies the conditions of Theorem 3. Let fe( 8) be ex

pressed in standard form: 

-1 --t 

v(s)v( -s) UD . (58) 

t The original version of this proof, based also on the formulation (53) and the 
fact that (8" + In+d is of normal rank n, assumed that the network N' is lossless 
and hence that 5(8) is a regular para-unitary matrix. The final version of the 
proof was suggested by D. C. Youla. 
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1 -
-k 
T 

Theorem 3 and the above equations yield 

Theorem 8: 

875 

(59) 

The rational positive-real n X n symmetric short-circuit admittance 
matrix Y( s) is realizable as a lossless network containing inductors, ca
pacitors, and ideal transformers and a two-terminal element comprising a 
parallel combination of a resistor of value R ohms (R > 0) and a capaci
tor of value TR-1 Farads (T > 0) if and only if 
i. lV hen Ye ( s ) = Ko, a mall ix of constants, the rank of Ko does not 

exceed unity and [(1/S)Y(SHlC - TKo is nonnegative definite. 
ii. vVhen Y c ( s) is not a matrix of constants (a) Ye( s) can be expressed in 

standard form with k ~ T; (b) if k = T, [Ye(s)]", =0; (c) if k > T, 

[
1 -( )] kT-- Y s - ~'11 (Yc(s))CJ:l 
s 00 k-

is nonnegative definite. 
Similarly, Theorem 5 can be transformed to read: 

[1 - ] T [1 - ] s yes) 00 - k s Ysc(s) CJ:l 

is nonnegative definite. 
The modifications necessary to treat the case in which the resistance 

is equal to - R ohms are obvious in view of Theorem 4. 
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On Non-Computable Functions 

By T. RADO 

(Manuscript received N ovembel' ]2, HH)1) 

The construction of non-computable functions used in this paper is based 
on the principle that a .finite, non-empty set of non-negative integers has a 
largest element. Also, this principle is used only for sets which are excep
tionally well-defined by current standards. No enumeration of computable 
functions is used, and in this sense the diagonal process is not employed. 
Thus, it appears that an apparently self-evident principle, of constant use 
in every area of mathematics, yields non-constructive entities. 

1. INTRODUCTION 

The purpose of this note is to present some very simple instances of 
non-computable functions. Beyond their simplicity, these examples 
throw light upon the following basic point. If a function f(x) is to serve 
as an example of a non-computable function, then f(x) must be well
defined in some generally accepted sense; hence the efforts to construct 
examples of non-computable functions reveal the general conviction 
that over and beyond the class of computable (general recursive) func
tions there is a much wider class, the class of well-defined functions. The 
scope of this latter class is vague; in some quarters, there exists a belief 
that this class will be defined some day in precise terms acceptable to 
all. The examples of non-computable functions to be discussed below 
will be well defined in an extremely primitive sense; we shall use only 
the principle that a non-empty finite set of non-negative integers has a 
largest element. Furthermore, we shall use this principle only for excep
tionally well-defined sets; and thus our construction will rest upon con
siderations which occur constantly in every area of mathematics. It may 
be of interest to note that we shall not use an enumeration of computable 
functions to show that our examples are non-computable functions. 
Thus, in this 8ense, we do not use the diagonal process. 

II. TERMINOLOGY 

We shall use binary Turing machines (that is, Turing machines with 
the binary alphabet 0, 1), in the sense of the excellent presentation of 

877 
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Kleene's ill etamathematics (see Ref.) , with the following exceptions. 
First, we do not permit a center shift; thus the machine must shift after 
the execution of an "overprint" instruction (the purpose is to simplify 
the following presentation). Second, we shall use the term "card" instead 
of "state." The reason is that the examples below were obtained as by
products of a logical game (the Busy Beaver game described below) 
which the writer made up to familiarize beginners with the idea of a 
Turing machine; and it appeared that terms such as state, internal con
figuration, and the like had a mysterious connotation for beginners. 
To illustrate some notational conventions to be used, let us consider 
the following example of a binary, a-card Turing machine. 

o 102 o 111 o 112 

1 113 1 102 1 100 

Here C1 , C2 , C3 stand for Card 1, Card 2, and Card a. On each card, 
the left-most column contains the alphabet 0, 1. The next column is the 
"overprint by" column; the next one is the "shift" column (where 0 is 
the code for a left shift and 1 is the code for a right shift). The last col
umn is the "call card" column; it contains the index of the next card 
to be used, or 0 (zero), where 0 is the code for "Stop." This notation was 
found very convenient in situations where one wanted to enumerate 
(serialize) Turing machines with a given number of cards. 

The reader is assumed to be familiar with the meaning (in the sense 
of Kleene; see Ref.) of the statement that a binary Turing machine 
"computes" a function f(x). It is understood that we consider only func
tions of non-negative integers with values which are again non-negative 
integers. 

III. THE BUSY BEAVER GAME 

Consider a potentially both-ways infinite tape (see Ref.), where each 
square contains a 0 (all-zero tape). Start the 3-card machine described 
in Section II (with its Card 1) under any square. The reader will find 
that the machine stops after a few shifts, and when it stops, there are 
six ones on the tape. Actually, this particular machine is one of the four 
highest scorers (as of today) in the international BB-3 game (the a-card 
deck classification of the Busy Beaver game). The rules in this game are 
as follows. 
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i. The contestant selects a positive integer n; and then makes up his 
own n-card, binary, Turing machine (using the notational conventions 
explained in Section II). 

ii. He starts his machine (with its Card 1)' on an all-zero tape, and 
satisfies himself that his machine stops after a certain number s of shifts. 

iii. He then submits his entry, as well as the shift-number s. to any 
member (in good standing) of th,e International Busy Beaver Club. 

iv. The umpire first verifies that the entry actually stops exactly 
after s shifts. Note that this is a decidable issue; the umpire merely 
operates the entry, persisting through not more than the specified num
ber s of shifts. If the entry fails to stop after s shifts, it is rejected; if 
it stops after fewer than s shifts, it is returned to the contestant for 
correction. After the entry has been verified, its score is the number 
of ones on the tape when it stops. 

Naturally, the BB-n champion is the contestant who achieved the 
highest score (so far) in the BB-n classification. For example, in the 
BB-3 classification, the score of 6 was first achieved by R. Hegelman 
(U.S. Naval Weapons Laboratory, Dahlgren, Virginia). This score has 
been reached since by several others; but nobody knows as yet whether 
6 is the highest possible score in the BB-3 classification. The reader who 
tries to settle this question will soon realize the difficulties involved in 
this sort of problem. Beyond the enormous number of cases to survey, 
he will find that it is very hard to see whether certain entries do stop 
at all. This is the reason for the requirement that each contestant must 
submit the shift number s with his entry. 

IV. HIGHEST SCORE 

There arises now the problem of determining the highest possible 
score in the BB-n classification. In line with the point of view explained 
in the introduction, we formulate this problem with due care and cau
tion. 

Returning to rule iv. of the game, we see that a valid entry in the 
BB-n classification is a pair (lvI,s), such that the following holds. 

(a) .Lll is an n-card binary Turing machine. 
(b) s is a positive integer. 
(c) .Lll stops after exactly s shifts if started (with its Card C1) on an 

all-zero tape. 
In discussing rule iv. above, we noted that we can actually decide 

whether or not an entry (lvI,s) is valid. Also, if (lvI1,SI) , (.L112,s2) are 
valid entries such that 1111 = lvI2 , then evidently SI = S2; hence the 
number of valid BB-n entries cannot exceed the number N (n) of all 
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possible n-card, binary Turing machines. It is easy to see that 

N(n) = [4(n + 1)]2n (1) 

Also, there exist valid BB-n entries; for example, on choosing the O-line 
of Card 1 as 110, one obtains an entry which stops after one shift. 

Accordingly, if we denote by En the set of all valid BB-n entries (M,s), 
we obtain a non-empty, finite set En which has the following features. 

(a) We actually exhibit elements of En ; so En is non-empty as a 
matter of concrete observation. 

(b) We not only know that En is finite, but for the number N e ( n) 
of elements of this set of valid entries we have [see (1)] the in
equalities. 

1 < Ne(n) < N(n) = [4(n + 1)fn (2) 

( c) For every pair (M,s) we can actually decide whether or not 
(M,s) e En. 

Evidently, En is (by current standards) an exceptionally well-defined 
non-empty, finite set. Yet, we shall show below that Nc(n), the number 
of clements of En , is not a computable function of n. Next, each valid 
entry (kl,s) e En has a definite score (J(M,s) assigned to it (see Section 
III). Thus, for the same reasons, the set of these scores is an exceptionally 
well-defined non-empty finite set of non-negative integers. We denote 
by 2; (n) the largest clement of this set. 
Thus 

2;(n) = max [a(M,s)] for (M,s) e En . (3) 

We shall see presently that 2;(n) is not a computable function of n. 
Let us note, however, that it is entirely possible that 2;(n) can be effec
tively determined for particular values of n. For example, evidently 
2;(1) = 1. Also, it has been proved that 2;(2) = 4. We noted above 
that we know several BB-3 entries with a score of 6; hence 2;(3) ~ 6, 
and it seems plausible that 2;(3) = 6. Now while for low values of n 
it is quite hard to achieve a respectable score, Dr. C. Y. Lee observed 
(in a letter to the writer) that for higher values of n one can achieve 
very large scores. The following proof for the non-computability of 2; (n) 
was obtained by developing this comment of Dr. Lee. 

V. THE GROWTH OF 2;(n) 

Let f(x), g(x) be two functions (as specified in Section II). We shall 
write 

f(x) > - g(x) 
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to state that f(x) > g(x) for x greater than a certain xo. Using this 
notation, we shall now prove the following theorem. 

Theorem. ~ (n) > - f( n) for every computable (that is, general re
cursive) functionf(n). Hence ~(n) is not computable. 

Proof. Assign a computable function f(x). Introduce the auxiliary 
function 

x 

F(x) = L [f(i) + i 2
]. 

i=O 

Then (see Ref.) F(x) is also computable. Evidently 

F(x) ~ f(x). 

F(x) ~ x2
• 

F(x + 1) > F(x). 

(4) 

(5) 

(6) 

(7) 

Now since F(x) is computable, we have a binary Turing machine lYIF , 

with a certain number C of cards (states) which computes F(x) (in 
the sense described in Kleene; see Ref.). Now assign any integer x ~ o. 
We have then a binary Turing machine lY1(x), with x + 1 cards (states) 
which prints on an all-zero tape x + 1 consecutive ones and stops under 
the right-most one of these ones. For x = 2, for example, 11{(2) has the 
3 cards: 

o 112 o 113 o 101 

1 110 1 1 

N ow consider the binary Turing machine jv1 F (x) given by the symbolic 
diagram: 

M F(x) :lY1(x) ----? III F ----? lY1 F • 

If the cards of III F (x) are written out with consecutive indices, then it is 
seen to have 1 + x + 2C cards. If started on an all-zero tape, lY1 F (x) will 
first print (going to the right) a string of x + 1 consecutive ones; then, 
beyond a 0 to the right, it will print a string of F (x) + 1 consecutive 
ones; finally, beyond a 0 to the right, it will print a string of F[F(x)] + 1 
consecutive ones, and then will stop (under the right-most 1 it printed). 
Thus evidently N F(x) is a valid entry in the BB-(1 + x + 2C) classifi-
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cation with a score equal to 

3 + x + F(x) + F[F(x)]. 

Hence, the maximum score ~(1 + x + 2C) in this classification satisfies 
the inequality 

~(1 + x + 2C) ~ 3 + x + F(x) + F[F(x)]. (8) 

Now since evidently x2 > - (1 + x + 2C) and F(x) ~ x2 [see (6)], 
it follows that 

F(x) > - (1 + x + 2C). 

Also, F(x) is monotone increasing by (7); hence (9) yields 

F[F(x)] > - F(1 + x + 2C). 

From (8) and (10) we see that 

~(I + x + 2C) > - F(I + x + 2C); 

hence (since F(x) ~ f(x)) 

~(I + x + 2C) > - f(1 + x + 2C). 

On setting n = 1 + x + 2C, we obtain finally 

~(n) > - fen) 

and the theorem is proved. 

(9) 

(10) 

The rate at which ~(x) grows is illustrated by the following intuitive 
observation. A Turing machine ~fll for computing H(x) = xl can be 
constructed with not more than 26 states. Let us consider the chain of 
Turing machines: 

M(x) ~ MH ~ MH ~ MH ~ M H. 

It follows from (8) that the number of ones which is produced by this 
chain is more than « (x I) I) I) I . Using the construction of the machine 
.LVI H mentioned above, we may show that by combining these machines 
properly, the number of states required for this chain of machines for 
x = 7, for instance, is not more than 100. Therefore, ~(IOO) is at least 
« (71) I) I) 1. Since ~(100) is probably far bigger than this lower bound, 
it would be interesting to know how large a lower bound one can get 
for ~(100). 

VI. THE FUNCTION Sen) 

It is evident from our definitions that the set En of valid BB-n entries 
coincides with the set of the n-card stoppers, where by a stopper we 
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mean a (binary) Turing machine which, if started on an all-zero tape 
with its card C1 , will stop after a while. Now the second coordinates s 
of the valid BB-n entries (ill,s) constitute a finite, non-empty set of 
positive integers; we denote by Sen) the largest element of this set. 
Thus Sen) is the maximum of the shift-numbers of the n-card stoppers. 
Clearly 

Sen) ~ 2;(n). (11) 

Indeed, since we do not permit center-shifts, a BB-n entry must shift 
after it prints a 1; thus (11) is obvious. From the theorem in Section V 
and from (11) we see that 

Sen) > - .f(n) (12) 

for every computable function.f( n). Thus S (n) is non-computable (the 
reader will readily see that this result is equivalent to the undecidability 
of the so-called halting problem). 

VII. THE FUNCTION Ne(n) 

This function, defined above as the number of elements of the set En 
(that is, the number of n-card stoppers) does not grow unreasonably 
fast [see (2)]. However, we can discuss it as follows. Let us denote by 
N (s,n) the number of those BB-n entries which stop after exactly s 
shifts. Evidently, the computation of N(s,n) can be readily programmed; 
informally, one finds the value of N(s,n) by running each one of the 
n-card binary Turing machines [whose number is given by (1)], per
sisting through not more than the given number s of shifts, and noting 
the number of those that stop after exactly s shifts. Let us put 

8 

G(s,n) = L N(i,n), (13) 
i=1 

<I>(s,n) = Ne(n) - G(s,n). (14) 

Clearly, G(s,n) is the number of those BB-n entries that stop after not 
more than s shifts; thus G(s,n) ~ Ne(n), and hence <I>(s,n) ~ O. Since 
evidently G(s,n) = Ne(n) for s = Sen), we see that Sen) is the smallest 
value of s for which <I>(s,n) = 0; in symbols: 

Sen) = (jls)[<I>(s,n) = 0], (15) 

where (jls) means "the smallest s such that." From (13)-(15) it follows 
(see Ref.) that if Ne(n) were computable then Sen) would be comput
able too; since we know that Sen) is not computable, it follows that 
Ne(n) is non-computable. 
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7.1 Remark 

Suppose that, for a certain integer no, we somehow succeeded in 
determining the exact value of Ne(no). From (13)-(15) it follows that 
we can then determine S(no) also, and hence finally ~(no). Various 
other comments will readily OCCllr to the reader. For example, the easily 
pwved inequality 

S(n) ~ (n + 1) ~(.5n) 2~(5n) 

gives rise to some cnriolls observations. 

VIII. SUMMARY 

Inspection of the preceding presentation shows that we used in our 
constructions only the following "principle of the largest element": 
If E is a non-empty, finite set of non-negative integers, then E has a 
largest element. This principle is used constantly, as a matter of course, 
in every field of mathematics. Our examples above show that this prin
ciple, even if applied only to exceptionally well-defined sets E, may take 
us beyond the realm of constructive mathematics. Of course, common 
everyday experiences may be used to illustrate this sort of phenomenon. 
For example, when the writer wanted to find a certain highway on an 
automobile trip, he received the following directions from the foreman 
of a constrnction crew: "Drive straight ahead on this road; yon will 
cross some steel bridges; and after you cross the last steel bridge, make 
a left turn at the next intersection." Luckily, the unsolvable problem 
implied by this advi(~c was resolved by a member of the constrnction 
crew who volunteered the information that "after you cross the last 
steel bridge, there isn't another steel bridge until you reach Richmond, 
130 miles away.'.' The reader may find it amusing to verify, by detailed 
study of the excellent book of Kleene (Ref.), that this little story illus
trates, in a concrete manner, some truly basic points in the theory of 
computable functions. 

IX. ACKNOWLEDGMENT 

The writer takes pleasure in thanking Dr. C. Y. Lee (of Bell Telephone 
Laboratories) for a number of stimulating comments. 

REFERENCE 

1. Kleene, S. C., Introduction to Metamathematics, D. Van Nostrand Co., Prince
ton, N. J., 1952. 



On the Theory of Shrink Fits with 
Application to Waveguide 

Pressure Seals 

By A. J. SCHEPIS 

(Manuscript received November 15, 1961) 

Waveguide antennas for missiles and space vehicles usually require a 
window or radome to provide a pressure seal. The technique of shrink fitting 
is a simple method to seal rectangular waveguides. A theoretical and experi
mental investigation has been undertaken to study the stresses and displace
ments that result from shrink fits between rectangular cross sections. 

An appropriate differential equation is derived by applying simplifying 
assumptions to the theory of thermal stresses. The solution of this equation 
indicates that for certain combinations of materials and sizes of rectangles, 
there is a critical wall thickness below which a pressure-tight shrink fit 
cannot be made regardless of the temperature at which the shrink fit process 
is initiated. A comparison is presented of the analytical solution with ex
perimental results of "Tefion"* shrunk fit into precision fabricated X-band 
waveguide. Finally, tabulated results are presented to indicate the mag
nitude of the stresses and displacements to be expected from typical materials 
and rectangles of various sizes. 

I. INTRODUCTION 

The derivations and conclusions reported in this paper have been 
stimulated by the current interest in light-weight microwave antennas 
for missiles and space vehicles. These antennas must be capable of main
taining a pressure seal in temperature environments from -80°F to 
+400°F or higher. A typical seal is intended to maintain a pressure of 
one atmosphere. Such pressures are required to prevent electrical break
down of the waveguide at nominal operating power. 

A common method of achieving such a seal is to provide a radome 
over the antenna. This scheme is usually effective but requires gaskets 

* "Teflon" is a registered trademark of the E. 1. du Pont DeNemours and Co. 
The type referred to in this paper is a polytetrafluorethylene resin. 
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and screws and, moreover, is an additional structure to be carried during 
flight. 

A design is proposed in which a suitable dielectric plug, or core, neces
sary to give the required antenna pattern, is inserted into the waveguide 
opening of the antenna. A pressure seal between the plug and the wave
guide is accomplished by first chilling the plug to a temperature well 
below that of the waveguide piece. The plug is then inserted into the 
waveguide. As the plug warms up, it expands and exerts sufficient pres
sure on the walls of the waveguide to cause an effective seal. 

The purpose of this study is to determine theoretically as well as 
experimentally the feasibility of such a shrink fit. The study includes 
the behavior of thin wall rectangular tubes into which a core is shrunk 
fit, where the core mayor may not be of the same material as the tube. 
The particular solutions that are sought are the resulting stresses and 
deformations at the interface of the tube and the core; the stresses to 
indicate the effectiveness of the seal, and the deformations to indicate 
the degree of distortion of the tube. While it is by no means obvious 
that a limit on wall thickness exists, for given materials and shape of 
rectangles, below which no seal can be obtained, it will be shown that 
such a limit does indeed exist. 

II. FOHMULA'I'ION OF THE PROBLEM 

2.1 General Formulation 

The analysis is performed for the general case, i.e., the size of the 
rectangular enclosure, type of materials, and the temperature environ
ment are all arbitrary, as shown in Fig. 1. The core material, El , is 
subjected to a temperature change, D.T, until it can be inserted into the 
tube, E2 . Therefore, D.T = T2 - Tl , where T2 is the initial temperature 
of the tube and the core and TI is the temperature to which the core is 
reduced. 

For a core with no variation of temperature or stress through the 
thickness we may assume a condition of plane stress. Consider, there
fore, a thin wall rectangular tube of material, E2 , in which a material, 
El , is shrunk fit, as shown in Fig. 1. A set of coordinate axes, x-y and 
u-v, is located at the centers of the broad and narrow walls respectively. 
The deformation of the tube from its original shape is y and v. The 
strains perpendicular to the interface of length bo and ao are Ey and Ev 

respectively. 
We assume that the corners of the tube do not move, that the stresses 

induced in the enclosure are due to bending only, and that the right 
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Fig. 1 - Deformation of thin wall rectangular tubing by a shrunk-fit core, 
general case. 

angles formed by both sides remain right angles. The first two assump
tions admit a contradiction since the first will result in a tension in the 
beam. This tension will be neglected because of the following reasons: 
i. the corners actually move and the stress due to tension introduced by 
the assumption of fixed corners is assumed negligible. To analyze the 
problem with the admission of the moveable corners would introduce 
undefined boundary conditions, and ii. the enclosure wall thicknesses 
are such as to consider the enclosure a beam frame where the stresses 
due to bending are predominant. These simple assumptions are satis
factory approximations in many practical cases where we are concerned 
only in the elastic range. For instance, in the case of "Teflon" inserted 
into aluminum or brass the solution obtained on these assumptions is 
in good agreement with actual measurements. 1 In other cases, the de
formations of the sides of the enclosure are so great as to render the dis
placements of the corners negligible. Also because of symmetry the 
centers of the interfaces do not move parallel to the interface. We there
fore make the further assumption that all strains parallel to the inter
faces are zero. We note at this time we are only concerned about the 
interfaces. 

From the theory of elasticitl as applied to restricted thermal ex
pansion we have for the stress in the y direction: 

(1) 
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where: Ey and Ex are strains anywhere in the region, El . 
al is the coefficient of linear expansion of El . 

!1T is the temperature change experienced by El and IS not a 
function of position or time. 

111 is Poisson's ratio for El . 
El is the modulus of elasticity of material designated El . 

Since this stress exists throughout the core, it exists at its boundary and 
becomes the loading 011 the enclosure. In our problem for the interface 
of length 7>0 : 

We make the further simplified assumption that the strain Ey at the 
interface is simply the ratio of the change in length to the original length. 
The original length is the initial (cold) state length: ao/2, therefore 
Ey = !1L/Lo = - (2y/ao)' 

. _ 2El + a1E 1tlT 
•• (Ty - y ---. 

ao(l - 1112) 1 - 111 
(2) 

Now this normal stress (2), being continuous across the boundary 
between El and E2 , provides an outward load on the tube. Consider
ing E2 of length bo as a uniform simple beam of unit depth this stress is 
merely the load per unit length. Using the differential equation for the 
deflection of beams:3 

d4
y 

E 2J2 - = -q 
dx4 

(3) 

where q is the intensity of the load per unit length and is considered 
positive acting in the negative ?J direction. Substituting (2) into (3): 

d
4

y + ( El ) 2 ( El) a1tlT 
dx4 Ed? ao(l - 1112) Y = - E212 1 - 111 

and 12 is the moment of inertia of the beam. Let 

4 
S 

2P M = P altlT. 
1 - 111 ' 

4 
a 

. d
4
y 4 

.. dx4 + 4a y 

4 
S 

4 

-M . 

(4) 

Similar reasoning for the interface of length ao leads to an analogous 
equation: 
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where t4 = 2P /bo(1 - v/), {34 = t4/4 and all other terms arc as pre
viously defined. 

Equations (4) and (5) are the governing differential equations which 
describe the general behavior of the rectangular shrink fit. 

Note that both (4) and (5) have the same form as equations for beams 
on clastic foundations. This is understandable if we consider that the 
same condition exists whether the beam is embedded in a foundation 
that helps support the load as the beam deflects or that the intensity 
of the load decreases as the deflection increases, as is the case in this 
analysis. 

2.2 A Special Case - the square shrink fit 

The solutions and results of this case are carried out in Section A.2. 
It is determined that there is a definite wall thickness limit, determined 
by the choice of materials and size, below which no square enclosure can 
effectively be sealed by a shrink fit process. 

III. RESULTS OF ANALYSIS 

3.1 General 

The final equations were programmed on the IBM 704 computer to 
include as wide a variety of combinations of materials and different size 
enclosures, as is practicable with materials that obey, at least in part, 
Hooke's Law of stress and strain. 

The parameter chosen as a convenient variable to describe the merit 
of the shrink fit is called, here, the "shrink fit resistance," i.e., the higher 
the value of this parameter or "resistance" the lower the resulting com
pressive stresses. This parameter contains such constants of the con
figuration as Modulus of Elasticity of both the core and the enclosure, 
Poisson's ratio of the core, dimension of the enclosure, and thickness of 
the enclosure wall. This resistance is described by: 

The initial run through the computer was for values of abo/2 from 0 
to 300. This range covered all possible combinations of interest. This 
run indicated that for values of resistance greater than 30 the expansion 
of the core was practically free-expansion, and the stresses between the 
core and the enclosure were zero at least to four decimal places. As an 
example, one can visualize trying to obtaiil a shrink fit of a block of 
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steel or titanium in a thin shell of cork or plastic. The block would ex
pand as if the shell were nonexistent. 

In a second run of the computer for values expanded between 0 and 
30, it was determined that a seal could exist for a value of resistance 
lower than 2.10 for all sizes of rectangles. Above this value, separations 
would occur in a definite pattern for particular sizes. A "definite pattern" 
implies that at low values we obtain few but large separations and at 
progressively higher values we obtain many more but smaller separa
tions until we approach (around 30) a "just-touching" situation of zero 
pressure. The results are approximately as shown in Fig. 2. 

Relatively few rectangles can be sealed that possess values of resistance 
greater than 2.10, and less than 2.40. As was mentioned previously, 
these become fewer and fewer as the resistance becomes greater. Rec
tangles with resistance greater than 2.40 cannot be sealed. 

An interesting phenomenon is that if the value of the resistance is 
great enough to prevent a seal, then this situation exists no matter at 
what temperature the shrink fit takes place. This is because the con
dition for a seal is independent of the temperature, while the intensity 
or "tightness" of the fit is directly proportional to the temperature. 

. abo. 
2< -2- < 5 

(a) 

• a:bo • 
12< 2'" < 14 

Cd) 

If 
I 
I 
I 
\ . abo . 
\ 5<2<9 
\ 
\ (b) 
\ 
\ 
\ 

\ 
\ 
\ 
\ 
\ 

~_ \ I 

---- TYPICAL POI~TS 
OF SEPARATION 

(c) 

( e) 

Fig. 2 - Typical separation patterns for values of abo/2 between 2 and 30. 
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3.2 Detailed Results 

An examination of Fig. 2 indicates typical modes of separation or 
leakage points as the resistance increases. It can be seen that separations 
occur in sequence. If m = 0, 1, 2, 3 ... , modes of separation in anyone 
narrow wall then there are n = 1, 2, 3,4 .. " corresponding separations 
in anyone broad wall. i.e., m = n - 1 and the total number of separa
tions in any mode is 4n - 2. 

A comparison of Fig. 3, which is a plot of stresses and displacements 
at the wall centers, with Fig. 2 clearly demonstrates how the wall centers 
have alternately positive and negative stresses. Fig. 3 also indicates the 
extreme reduction in the magnitude of the stresses beyond a resistance 
value of approximately 2.10. Therefore, although there are a few rec
tangles that can be sealed beyond abo/2 = 2.10, the intensity of the fit 
is very low. A good rule of thumb is to design a shrink fit to have a re
sistance less than 1.0. In this manner the lowest compressive stress is 
more than 75 per cent of the stress in an infinitely restricted expanded 
core. 

For example, the resistance of teflon into small X-band waveguide 
is approximately 2.166. Results from the computer indicate a minimum 
compressive stress of approximately 10 pounds per square inch while 
the maximum compressive stress is over 1200 pounds per square inch. 
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Fig. 3 - Stresses and displacements at wall centers for a square enclosure 
(1' = 1) and a rectangular enclosure (1' = 0.5). 
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TABLE I - STRESSES AND DISPLACEMENTS FOR i-SECTION OF 

RECTANGLE 

abo ao Point 
4a4 4a4 P P 

2 r =- MY M V ElM Uy ElM Uv bo 

------

2.40 0.60 0 -1.00626 -0.549488 -0.00625819 0.670307 
1 -0.945438 -0.507973 0.0545624 0.695216 
2 -0.764464 -0.392764 0.235536 0.764342 
3 -0.480664 -0.232534 0.519336 0.860479 
4 -0.165034 -0.0771141 0.834966 0.953732 
5 0.000000 0.000000 1.000000 1.000000 

2.40 0.70 0 -0.999453 -0.804216 0.000547044 0.437049 
1 -0.936954 -0.746459 0.0630464 0.477479 
2 -0.751725 -0.584672 0.248275 0.590730 
3 -0.463771 -0.355304 0.536229 0.751288 
4 -0.149463 -0.125321 0.850537 0.912275 
5 0.000000 0.000000 1.000000 1.000000 

2.40 0.80 0 -1.00026 -0.957217 -0.000261307 0.234226 
1 -0.937961 -0.891096 0.0620387 0.287123 
2 -0.753238 -0.703685 0.246762 0.437052 
3 -0.465777 -0.432318 0.534223 0.654145 
4 -0.151312 -0.153320 0.848688 0.877344 
5 0.000000 0.000000 1.000000 1.000000 

NOTE: Any negative sign appearing in the last two columns indicates a separa
tion. All other values of r with abo/2 = 2.40 cannot be sealed. 

This is not considered an effective seal for the intended environment of 
one atmosphere. 

Table I is an abstract from the computer runs. It indicates that there 
are a few rectangles with a resistance value greater than 2.10 that can 
be sealed - although not too effectively. 

Therefore, although the resistance value is 2.40 and most of the sizes 
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of rectangles with this resistance value cannot be sealed, a rectangle 
with dimensions ao/bo = 0.70 can be sealed. If this intended seal is to 
withstand low pressures this combination may well be an effective seal. 
On the other hand, when ao/bo = 0.6 or 0.8 a seal cannot be made regard
less of the temperature of the shrunk fit, since the quantity (P / EdJI)uy 
is negative. In fact the larger D.T (and therefore lVJ) becomes, the greater 
the separation that results. 

IV. RESULTS OF EXPERIMENT 

In order to verify the preceding analytical interpretation it was neces
sary to experimentally perform the shrink fitting operation, and measure 
the subsequent deformation of the waveguide. Precision brass waveguide 
was selected with internal dimensions of 0.4000" x 0.9000", a wall thick
ness of 0.0500", a lVIodulus of Elasticity of approximately 17 X 106 

p.s.i. Type 1 "Teflon" was selected for the inserts, with a Modulus of 
Elasticity of approximately 60,000 p.s.i. and a value of Poisson's Ratio 
of 0.46. 

A total of 5 waveguide sections were used in the analysis. The guide 
was machined to 3" lengths while the "Teflon" inserts were cut in 2" 
lengths. The five "Teflon" inserts were machined oversize for the shrink 
fitting operation on the basis of the coefficients of expansion at three 
different temperatures. The temperatures selected were - 60°F, - 90°F 
and -120°F. This range was chosen since the proposed application of 
this analysis is for equipment which must operate satisfactorily over a 
temperature environment of -60°F to +225°F. Since "Teflon" has a 
larger coefficient of expansion than brass the high temperature environ-

Block 

1 
2 
3 
4 
5 

TABLE II 

Coefficient Temp. OF Expansion-% Calculated Size-inches Actual Size-inches 

-60 -1.00 o .4040 X 0.9090 0.4040 X 0.9080 
-90 -1.18 0.4047 X 0.9106 0.4045 X 0.9098 
-90 -1.18 0.4047 X 0.9106 o .4049 X 0.9098 
-120 -1.28 0.4051 X 0.9115 0.4049 X 0.9107 
-120 -1.28 0.4051 X 0.9115 0.4049 X 0.9103 

Average Coefficients of Thermal Expansion4 for Type I "Teflon" 

Temperature Range cC 

+25 to -50 
+25 to -100 
+25 to -150 

Coefficient of Expansion per degree C 

135 X 10- 6 

112 X 10- 6 

96 X 10- 6 
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ment does not offer a problem. To effectively maintain a seal at the low 
end however, the "Teflon" blocks must be machined oversize for a 
temperature lower than -60°F. Each block is listed in Table II along 
with its associated temperature, coefficient of expansion and actual 
block dimensions. 

To accurately measure deflections of the waveguide due to the ex
panding "Teflon" a recording system5 was devised which could provide 
a maximum magnification factor of 31,000 to 1. Basically it consists of 
a strain-gage activated transducer whose output is fed to an amplifying 
and recording system. The transducer itself (see Fig. 4) is essentially a 
cantilever beam which is deflected as the waveguide section is translated 
on a reference platform beneath the point probe. These deflections are 
picked off in strain gage outputs and fed to an amplifying system which 
controls a recorder chart. A deflectometer was used to insure synchroniza
tion of the chart drive and the trace of the transducer probe across the 
waveguide wall. The result is a magnified profile of the waveguide walls. 

WAVEGUIDE 

PROBE 

REFERENCE PLATFORM 

Fig. 4 - Apparatus used to measure deformation. 
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Prior to a discussion of the results a brief description of the shrink fit 
operation follows. Although the "Teflon" inserts as noted in Table I 
were machined oversize for three different temperatures, they were all 
inserted at a temperature of approximately -300°F. The coolant used 
in this operation was liquid nitrogen. The blocks were submerged in the 
liquid nitrogen for several minutes and then inserted into the waveguide 
allowing ~" opening on either end. The entire operation was performed 
in a controlled atmosphere of dry nitrogen to prevent the formation of 
frost on the "Teflon" blocks. By utilizing this extreme temperature 
coolant a tolerance was achieved so that upon removal of the blocks 
from the bath and prior to their immediate insertion into the guide, the 
resultant expansion was not sufficient to interfere with the placement 
of the cores. The specimens were allowed to stabilize for 30 minutes at 
the end of which time their profiles and resultant deflections were re
corded. A 3-point suspension was used in mounting the waveguide sec
tions to the reference platform so that accurate measurement of opposite 
sides of waveguide could be recorded after deflection had taken place. 
The profiles were monitored before and after insertion of the plug at 
various stations (! inch) along the length of the waveguide, including 

~ 3.00l 
~ 2.00 

C'l 

~ 1.00 
:J) 
I 

* <f) 
w 
I 
U 
Z 

<'l 
o 
X 

~ 

*EXAGGERATED SCALE 

-- THEORETICAL 

---ACTUAL 

Fig. 5 - Predicted vs actual displacements at -60°F. Expanded portion 
(circled) illustrates preservation of right angle at corner. 
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the middle of the 2" "Teflon." The profiles at each station followed the 
same general pattern with the maximum expansion occurring at the 
center of the 2" "Teflon." 

The curves (Figs. 5, 6, 7) were plotted for a quarter section of wave
guide to illustrate the resultant expansion produced by the shrink fit 
operation. The predicted analytical expansion was plotted on the same 
scale, so a comparison could be made between the two. The analytical 
analysis assumed that the waveguide corners remained at right angles 
to each other during the expansion process. This initial assumption was 
borne out in the experimental data as a valid one. In order to insure the 
validity of this phenomenon additional profile measurements were per
formed on an expanded scale directly in the corner region. These meas
urements definitely indicated a negative or inward expansion of the 
narrow wall, preserving the right angle corner of the waveguide. 

Although predicted and experimental expansions are not in exact 
agreement, the profiles of each follow the same pattern. The differences 
in the magnitudes of the total expansions can be attributed to several 
factors. Machining tolerances in both the brass waveguide and "Teflon" 
inserts could not be held much closer than 0.0005 inch. In addition, cold 
flow of the "Teflon" inserts occurring immediately after their insertion 

.~ 3.00t 
;; 2.00 
o x 1.00 
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Fig. 6 - Predicted vs actual displacements at -gO°F. Expanded portion 
(circled) illustrates preservation of right angle at corner. 
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*EXAGGERATED SCALE 

---------

-- THEORETICAL 

--- ACTUAL 

Fig. 7 - Predicted VB actual displacements at -120°F. Expanded portion 
(circled) illustrates preservation of right angle at corner. 

and prior to remeasurement of the waveguide sections introduced an 
additional discrepancy. 

It is apparent from the curves that because of this cold flow the load
ing intensity of the shrink-fit was decreased, resulting in smaller deflec
tions in both the broad and narrow walls. Nevertheless, the predicted 
and experimental profiles are in relative agreement with respect to the 
basic assumptions. 

V. GENEHAL INFORMA'l'ION 

Table III indicates the magnitudes of the stresses and displacements 
one might expect from typical materials and various sizes of rectangles. 

VI. SUMMARY AND CONCLUSIONS 

The stresses and deformations resulting from rectangular shrink fits 
can be described by general differential equations of the form: 

d4y - + Ay = B; 
(i:t;4 

O"y = Cy + D 
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TABLE III - STRESSES AND DISPLACEMENTS AT WALL CENTERS 

abo ao 4a4 4a4 P P 
2 r = b;, MY U V X 102 

Ed.! Uy EIU
uv 

0.5 0.1 -0.0140475 0.0369430 0.985952 1.00004 
0.2 -0.0168590 0.129932 0.983141 1.00026 
0.3 -0.0188721 0.250018 0.981128 1.00075 
0.4 -0.0200661 0.366116 0.979934 1.00146 
0.5 -0.0204413 0.444737 0.979559 1.00222 
0.6 -0.0200013 0.450008 0.979999 1.00270 
0.7 -0.0187518 0.343972 0.981248 1.00241 
0.8 -0.0167051 0.0873193 0.983295 1.00070 
0.9 -0.0138850 -0.359327 0.986115 0.996766 
1.0 -0.0103330 -1.03330 0.989667 0.989667 

1.0 0.1 -0.192576 0.514591 0.807424 1.00051 
0.2 -0.224629 1.74104 0.775371 1.00348 
0.3 -0.245227 3.22422 0.754773 1.00967 
0.4 -0.255226 4.50577 0.744774 1.01802 
0.5 -0.255174 5.10577 0.744826 1.02553 
0.6 -0.245660 4.53701 0.754340 1.02722 
0.7 -0.227738 2.36752 0.772262 1.01657 
0.8 -0.203330 -1.66401 0.796670 0.986688 
0.9 -0.175387 -7.51309 0.824613 0.932382 
1.0 -0.147551 -14.7551 0.852449 0.852449 

1.5 0.1 -0.603086 1.68992 0.396914 1.00169 
0.2 -0.657292 5.20538 0.342708 1.01041 
0.3 -0.682426 8.66591 0.317574 1.02600 
0.4 -0.683702 10.3389 0.316298 1.04136 
0.5 -0.664697 8.53652 0.335303 1.04268 
0.6 -0.630410 2.01635 0.369590 1.01210 
0.7 -0.588972 -9.25054 0.411028 0.935246 
0.8 -0.550402 -23.6036 0.449598 0.811171 
0.9 -0.522637 -38.2895 0.477363 0.655394 
1.0 -0.508389 -50.8389 0.491611 0.491611 

2.0 0.1 -0.928988 2.91315 0.0710119 1.00291 
0.2 -0.960541 7.98587 0.0394589 1.01597 
0.3 -0.965532 11.0070 0.0344678 1.03302 
0.4 -0.950164 8.13079 0.0498358 1.03252 
0.5 -0.920893 -3.46879 0.0791066 0.982656 
0.6 -0.888056 -23.2032 0.111944 0.860781 
0.7 -0.862943 -46.0441 0.137057 0.677691 
0.8 -0.851041 -65.7452 0.148959 0.474039 
0.9 -0.850384 -78.9297 0.149616 0.289633 
1.0 -0.855904 -85.5904 0.144096 0.144096 

2.5 0.1 -1.06440 4.01305 -0.0644005 1.00401 
0.2 -1.07415 9.56188 -0.0741458 1.01912 
0.3 -1.06987 8.90597 -0.0698685 1.02672 
0.4 -1.05587 -4.50505 -0.0558715 0.981980 
0.5 -1.03877 -31.5782 -0.0387744 0.842109 
0.6 -1.02657 -63.3918 -0.0265694 0.619649 
0.7 -1.02256 -88.2925 -0.0225558 0.381953 
0.8 -1.02433 -101.705 -0.0243283 0.186362 
0.9 -1.02825 -105.513 -0.0282519 0.0503840 
1.0 -1.03214 -103.214 -0.0321412 -0.0321412 
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TABLE III (Cont'd) 

abo an 4a4 

~~4 'V X 102 
P P 

r = - M Y Ed! <Ty ElM <Tv 2 bo 

3.0 0.1 -1.08931 5.15386 -0.0893139 1.05154 
0.2 -1.09015 10.1753 -0.0901539 1.10175 
0.3 -1.08848 2.16564 -0.0884799 1.02166 
0.4 -1.08547 -26.9990 -0.0854682 0.730010 
0.5 -1.08295 -68.9590 -0.0829545 0.310410 
0.6 -1.08209 -103.274 -0.0820925 -0.0327402 
0.7 -1.08246 -120.106 -0.0824568 -0.201057 
0.8 -1.08320 -122.784 -0.0831998 -0.227840 
0.9 -1.08387 -117.430 -0.0838700 -0.174300 
1.0 -1.08436 -108.436 -0.0843641 -0.0843641 

4.0 0.1 -1.04066 7.49643 -0.0406582 1.07496 
0.2 -1.04197 7.03350 -0.0419736 1.07033 
0.3 -1.04981 -28.3538 -0.0498060 0.716462 
0.4 -1.05711 -92.8190 -0.0571056 0.0718099 
0.5 -1.05871 -141.325 -0.0587114 -0.413247 
0.6 -1.05692 -156.244 -0.0569194 -0.562436 
0.7 -1.05484 -150.169 -0.0548359 -0.501691 
0.8 -1.05336 -135.702 -0.0533627 -0.357021 
0.9 -1.05238 -119.646 -0.0523759 -0.196463 
1.0 -1.05163 -105.163 -0.0516336 -0.0516336 

5 0.5 -1.01252 -187.848 -0.0125207 -0.878477 
1.0 -1.00910 -100.910 - 0 .00910099 - 0 . 00910099 

7 0.5 -0.997154 -217.039 0.00284579 -1.17039 
1.0 -0.997427 -99.7427 0.00257313 0.00257313 

10 0.5 -1.00014 -207.423 -0.000136673 -1.07423 
1.0 -1.00013 -100.013 -0.000125572 -0.000125572 

15 0.5 -1.000000 -199.256 0.223517 -0.992557 
X 10-7 

1.0 -1.000000 -100.000 -0.596046 -0.596046 
X 10-7 X 10-7 

20 0.5 -1.000000 -199.981 -0. -0.999813 
1.0 -1.000000 -100.000 -0. -0. 

30 0.5 -1.000000 -199.999 -0. -0.999986 

where y is the deflection at any point .(; along the interface, U y is the 
stress at that point, and A, B, C and D are constants. 

For any rectangular enclosure and core there exists a practical limit 
above which no effective seal can be obtained. This limit is defined as 
the shrink fit resistance and is a function of dimensions and materials. 
The limiting value of resistance is 2.40. All rectangles with resistance 
values less than 2.10 can be sealed. Rectangles with resistances between 
2.10 and 2.40 mayor may not be capable of being sealed, depending on 
the details of configuration and materials. 
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Pressure sealing of waveguide is a typical application of shrink fits 
between rectangular connections. Usually the designer may choose the 
material and thickness of the waveguide. 'The choice should be made to 
limit the resistance to a value of 2.0 or less, regardless of the size of the 
endosure or the temperature at which the shrink fit takes place. There
fore, for given materials and size of rectangle a preSf:ure seal will exist 
if the wall thickness is 

t 2:: ~ [(El) bo
4 J! 

- 3.5 E2 aoCI - V12) 

where EI , E2 are the modulus of elasticity of the core and enclosure, 
respectively 

VI is Poisson's ratio for the core 
ao , bo are the narrow and broad wall dimension, respectively. 
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APPENDIX 

A.I The General Solution 

The general solution to (4) is: 

y = A sin aX sinh aX + B sin ax cosh ax + C cos 0'.1: sinh ax + D 

cos aX cosh 0'.1: - (AI/4a4
) 

where 

(6) 

Taking the origin of the coordinates in the middle of bcam bo as in Fig. 1, 
we conclude from symmetry that B=C=O. 

:. y = A sin ax sinh ax + D cos aX cosh ax - (M /40'4). (7) 

From the boundary conditions at the ends of the beam: y = 0 at x = 
bo/2 

00 A 

lYE D bo h bo 4t.0 - cos a 2 cos a 2 

. abo . h abo 
sm 2 sm 2 

(8) 
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Similar reasoning leads to the deflection equation for beam ao with 
coordinate axes u and v in the middle of beam ao : 

where 
4 

{34 = ~ 
4 

v = E sin {Ju sinh {3u + H cos {3u cosh {3u - (IVI / 4,84) . (9 ) 

.. E 

.ill LT {3ao h (3ao (10) 
- - n cos - cos -
4{34 2 2 

. {3ao . h (3ao 
sm 2 sm ""2 

We assume that the corners of the tube, E2 , are much stiffer than the 
"beams," and that the right angles formed by both sides remain right 
angles. We also assume that any deformations to cause the corners to 
open would exceed the elastic limit of the tube and would result m 
permanent deformation. We are not concerned with this situation. 

In view of the above, the slopes at the corners are equal: 

y' x=-(bo/2) = Vu=ao/2 as indicated in Fig. 8 ( 11)* 

The last boundary condition necessary is that the moments at the 
ends of the beams are equal: 

" 11 X= -(bo /2) (12) 

Now 

y' = aA [sin ax cosh ax + sinh ax cos ax] 

+ aD [cos ax sinh ax - sin aX cosh ax] 

:. substituting (8) and evaluating y' at x = - (bo/2) 

, _ [Sin abo + sinh abo] _ AI (abo abo) 
y X= -(bo/2) - aD b b 4-----S cot -2 + coth -2 

2 · aO·hao a 
sm""2 sm ""2 

Likewise for beam ao : v at u = ao/2 

Vu=u o/2 = - {3H . {3ao . {3ao + 4{33 cot ""2 + coth 2 . [Sin {3ao + sinh {3ao] IVI ({3ao (3a o) 

2sm 2 smh 2 

* Note: Primes indicate derivatives with respect to x and dots indicate deriva
tives with respect to u. 
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v 

u 

Fig. 8 - Conditions at corner of tube. 

From boundary condition (11) we can solve for D: 

where 

Now y" 

1 [AI (K F) ] D = -- - - + - - H{3G 
aE 4 {33 a 3 

sin abo + sinh abo E = ----~~----~ 
2 

. abo . abo 
sm 2 sm 2 

sin {3ao + sinh {3ao G = --~------~-
2 . {3ao . h {3ao 

sm 2 sm 2 

F abo h abo 
I = cot 2 + cot 2 

K {3ao h {3ao 
= cot 2 + cot 2· 

2a2 [A cos aX cosh ax - D sin aX sinh ax] 

(13) 

.. y" x=-bo/2 

2 2D ( 2 abo + . h2 abo) + J11 ( abo h abo) 
- a cos 2 sm 2 2c0i cos 2 cos 2 

Likewise for beam ao : 

. abo . h abo 
sm 2 sm 2 

2 ( 2 {3ao . h2 (3ao) M ( {3ao h (3ao) - 2{3 H cos -- + sm -- + -- cos -- cos --
2 2 2{32 2 2 

Vu=ao/2 = --------------------------------------------
. {3ao . h {3ao 

sm -2 sm 2 
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.. from boundary condition (12) we again solve for D: 

riH ( 2 fJao + . h2 fJao) 111 ( fJao h ,sao) - cos - S111 - - -- cos - cos -
a2 2 2 4fJ2a2 2 2 

. fJao + . h fJao 
S111 2 S111 2 

D = ------------~----------------------------
cos - S111 -

2 2 

( 

2 abo + . h2 abo) 

. abo . h abo 
S111 2 sm 2 (14) 

111 ( t abo th abo) - co-co -+ 4a4 2 2 

(

COS
2 ~ + Sinh2~) 
. abo . h abo 

S111""2 S111 2 

.. to evaluate H, we equate Equations (13) and (14); and let 

r, 

where, 

B' = ') cot 2 + cot 2 + r 4 cot ""2 r4 + cot 2 r
4 

[( 
abo h abo) -0 ( abo.' h abo 0)] 

... sin abo + sinh abo 

[ 

( abo 0 h abo.) ( abo h abo)] + ~ cot ""2 r4 cot 2 r4 - cot ""2 cot 2 

vi r 2 abo + . h2 abo cos - S111 -
2 2 

I 2 abo 5 + . h2 abo !i 1 _ I . cos ""2 r4 S111 2 r4 

+ vir l (. abo 1 . h abo 1) ( 2 abo + . h2 abo) . . S111 - r S111 - r cos - S111 -
2 2 2 2 
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vVith this value of H, D can be determined from either (13) or (14). 
Finally: 

4a
4 

4a
4
D [ (abo abo) lVI Y = M cos ax cosh ax - cot 2 coth 2 

where 

] 
( 

sin aX sinh ax) 
. sin ax sinh ax - 1 - b b 

. a 0 • a 0 

sm 2 sm 2 

-~::;x<~ 
2 - = 2 

(16) 

(
abo" h abo ,). '- . h 1 ] cot 2 r' cot 2 r' sm ar' U sm ar' U (17) 

where 

or 

_ ~ (1 _ sin ar
1 

u sinh ar
1 

u) 
. abo " . h abo " 

sm 2 r' sm 2 r' 

and the stresses for interfaces bo and ao are respectively: 
4 

4a r + 1 M v . 
P 4a

4 

ElM (Ty = M Y + 1 and 
P 

A.2 A Special Case: The Square Shrink Fit 

As a point of interest: if ao = bo (square enclosure) ; r = 1 

(

abo h abo) 
J',1 cot 2 + cot 2"" . abo. abo 

If = D = - . b . h b sm -2 smh-2 2a4 sm a 0 + sm a 0 

(18) 
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and 

[( 

bo h abo) 
111 cot a 2- + cot -') (b b 

~ .a o • a o 
y = V = 94 . b + . h b sm - s111h - cos ax .... a sm a 0 sm a 0 2 2 

h abo h abo . . h ) . cos ax - cos 2 cos 2 sm ax sm ax (19) 

- ~ (1 - _s~n-a_a~-o S_~I_lhh_:_~~)] 
sm-sm -

2 2 

The maximum deflection is at x = 0: 

711 [( abo h abo) ( . h bo . bo)] . = I - ~ cos-2 - cos -2 sm a- - sma-2 .. Y V max - 2 4 2 
a sin abo + sinh abo 

(20) 

It can also be shown that the slopes are zero at the end of the interfaces 
and at the four midpoints, when r = l. 

The condition for zero stress at x = u = 0 is obtained from (2) as 

(21) 

The solution breaks down wherever a tension at the interface is indi
cated, since the load becomes zero over the separated portion of the 
beam. The calculated tension is that which would be required to prevent 
separation of El from the computed deflection curve. Substituting (21) 
into (16) wqel~.x = 0 gives D = 0; then from (18) we have the neces
sary condition that 

cot abo = coth abo 
2 - 2 

therefore from Fig. 3 the eigenvalues of this equation are determined. 
(Although these values are for a square and indicate resistance values 
which result in zero stress at the wall centers, they are approximately 
the boundaries for the ranges of the modes of separation for any rec
tangle.) (Compare Fig. 9 with Fig. 3.) 

.. eigenvalues of a~o = 2.365; 5.498; 8.G39; 11.781 
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0~----~--.-~------~-,---r----~--~--~-----4--~----~ 

I 

I I I I 
I I I I 

- SEAL- -r----LEAK----4-----LEAK ----+----LEAK----+-LEAK-

rl\ It--ll 1\1 1 rt, I 
2.36 5.50 8.64 11.78 

Fig. 9 - Square shrink fit: boundaries for modes of separation. The values 
shown are also approximately valid for any rectangle. 

These eigenvalues after the first (2.36S) are for all praetical purposes 
separated by 7r. 

To extend this to the more general case of rectangular enclosures we 
can determine from (IG), (17), (2) and the equivalent of (2) the 
following at x = 0 and u = 0 respectively (midpoints of the enclosure 
walls) ; 

El 4 
U y = P 4aD and 

El 4 
U v = p 4arH. 

:. U y and U v have the same sign (±) as the constants D and H re
spectively. When these constants are negative the stress on the insert 
is a pseudo-tension or in reality a separation of the insert and the en
closure at the midpoint of the enclosure walls. Care must be exercised 
in determining whether a seal exists or not. If the sign of either constant 
D or H is negative or if either constant is zero then a seal is not possible. 
A seal will exist only if both constants are positive. 
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Monte Carlo Solution of Bond 
Percolation Processes in 

Various Crystal Lattices 

By H. L. FRISCH,' S. B. GORDON, V. A. VYSSOTSKY, and 
J. M. HAMMERSLEYt 

(Manuscript received November 29, 1961) 

We present the outline of an IB111 7090 machine program for the .L110nte 
Carlo estimation of the percolation probability for a variety of space lattices. 
The underlying theory is briefly summarized. 

I. STATEMENT OF THE PROBLEM 

Percolation processes deal with the transmission of a "fluid" (dis
turbance, signal, etc.) through a "medium" (material, region, etc.) 
against impediment by random irregularities situated in the medium. l 

This paper considers the case where the medium is a regular crystal 
lattice in two or three dimensions, consisting of "atoms" (the vertices 
or sites of the lattice) and "bonds" joining specified pairs of atoms. The 
next section will specify the structure of the lattice more completely. 
The fluid originates at one or more atoms of the lattice, called the source 
atoms, and flows from atom to atom along the connecting bonds. How
ever, each bond (independently of all other bonds) has a fixed proba
bility p of being able to transmit fluid and a probability q = 1 - p of 
being blocked: these randomly situated blocked bonds constitute the 
random impediments to the spread of the fluid. We write PN(P) for the 
probability that the fluid will reach (or "wet", as we shall say) more 
than N other atoms besides the source atoms; and the problem is to 
estimate pep) = limN~oo PN(P). We do this by estimating PN(P) for a 
suitably large value of N: it turns out that N "-' 2000 is sufficient in 
many cases. The present paper describes the general organization of an 
IBlVI 7090 program for obtaining a lVlonte Carlo estimate of PN(P). 
The numerical results appearelsewhere. 2 

t Oxford University, Oxford, England. 

909 
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II. STRUCTURE OF THE LATTICE 

We consider below the three-dimensional problem in such a way that 
it contains as a special case the two-dimensional problem. A regular 
three-dimensional lattice consists of a number of fundamental cells, all 
identical apart from their position in space. Each cell is specified by 
integer coordinates (x, y, z) representing its position in space (x, y, z = 0, 
± 1, ±2, ... ). Each cell contains a finite number of atoms, limited in 
our IBlVI 7090 program to a maximum of eight atoms per cell, and 
denoted by A, B, ... ,H. 

In the problem, as originally posed in the previous section, some of 
the bonds may be one-way (i.e., only able to transmit fluid in a specified 
direction) while others may be two-way (i.e., able to transmit fluid in 
either direction). It can, however, be proved theoretically that PN(P) 
is unaltered if a two-way bond is replaced by two one-way bonds of 
opposite directions. It is therefore enough to consider the case where all 
bonds are one-way bonds, and we confine ourselves to this case hereafter. 

Let us write T(x, y, z) for the atom of type T(T = A, B, ... , H) 
in cell (x, y, z). The lattice is regular in the sense that, if there is a 
bond from T(x, y, z) to T*(x*, y*, z*), then there is a bond from T(x + 
l, y + m, z + n) to T*(x* + l, y* + m, z* + nj for any l, m, n = 0, 
±1, ±2, .... Therefore we need only specify the terminal atoms reached 
by each bond from each atom of the cell (0, 0, 0). The program limits 
the number of bonds from a given atom to a maximum of 12. There is 
no restriction that distinct bonds from a given atom shall lead to distinct 
terminal atoms; and thus we may, if we wish, have two or more bonds 
in the same direction between a given pair of atoms. 

The machine receives information about the lattice structure from a 
series of input cards, having the format described below. To each atom 
of the cell (0,0,0) there is a "structure" card, followed perhaps by one 
or two "continuation" cards. The format of a structure card is: 

Columns II 5-13 \ 15-23 /24-26\ 27-35 136 \ 37-45 1461 47-55 \ 56/ 57-65 /70-72 
Contents STRUCTURE T(+O+O+O) T0- T(xyz) , T(xyz) , T(xyz) , T(xyz) CT1 

In such a card, T (in columns 15, 27, 37, 47, 57) stands for one of the 
letters A, B, . . . , H (not necessarily the same in each case) ; and each 
of the symbols x, y, z is a signed integer. The entries in columns 5-13, 
24-26, 36, 46, 56, 70-72 are in BCD (binary coded decimal). Instead 
of the whole word STRUCTURE in columns 5-13, the single letter Sin 
column 5 will suffice. Columns 15-23 specify the atom of cell (0, 0, 0) 
from which bonds lead to the atoms appearing in columns 27-35, 37-45, 
47-55, and 57-65 respectively. Thus the structure and card provide for 
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up to four bonds from the given atom of cell (0,0,0). If there are fewer 
than four bonds, some of the T(xyz) will be left blank. The next four 
(or fewer) bonds are similarly specified on a first continuation card 
with format: 

Columns II f5-7 1 27-65 170- 72 
Contents I CT1 Same format as structure card CT2' 

The last four (or fewer) bonds appear on a second continuation card 
with format: 

Columns 115-71 27-6.5 170 
Contents CT2 Same format as structure card S' 

In both continuation cards, columns 5-7 and 70-72 are in BCD. If the 
atom specified in columns 15-23 of the structure card has four or fewer 
bonds from it, both continuation cards are omitted and we replace CT1 
in columns 70-72 by S in column 70 (in BCD) ; if it has between 5 and 8 
(both inclusive) bonds from it, the second continuation card is omitted 
and we replace CT2 in columns 70-72 by S in column 70. The final 
structure on continuation card is followed by an "end" card with END 
(in BCD) in columns 5-7. 

For example, the simple cubic lattice with a pair of one-way bonds 
(one in each direction) between each pair of nearest-neighbor atoms is 
specified by: 
STRUCTURE A(+O+O+O) T0- AC+1+0+0), AC+0+1+0), AC+O+o+l), AC-1+0+0) CT! 
CT! A(+O+O+O) T0- A(+O-1+0), AC+O+O-l) S 
END 

Similarly, the tetrahedral lattice (diamond crystal) with a pair of one
way bonds in each direction between nearest neighbors is given by: 

STRUCTURE A(+O+O+O) T0- B(+O+O+O), BC+1+0+0), BC+O+1+0), BC+O+O+l) S 
S BC+O+O+O) T0- AC+o+O+O). AC-1+0+0), AC+O-HO), AC+O+O-l) S 
END 

The two-dimensional cases arise when z = 0 identically on all cards. 

III. INPUT TO THE MACHINE 

The complete input to the machine consists of the program deck, 
followed by (i) an identification card, followed by (ii) a parameter 
data card, followed by (iii) a set of structure and continuation cards 
(as described above), followed by (iv) an end card (as described above). 

The format of the identification card is: 

Columns 11 5-15 1 18-25 1 26-66 1 68-72 
Contents PERCOLATION CRYSTAL Name of crystal PUNCH 
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These entries are all in BCD. If PUNCH appears in columns G8-72, the 
output from the machine will appear on the printout and will also be 
punched onto cards; if PUNCH is omitted from columns G8-72, the 
output will appear on the printout but cards will not be punched. 

The format of the parameter data card is: 

Columns 1/ 5-8 1 10- 12 113114-16 I 19-23 / 25-28 I 31-37 / 39-47 / 48 1 49-57 
Contents RUNS .*. - .** LINES .**. S0URCES T(xyz) , T(xyz) 

Columns 5-8, 13, 19-23, :31-37, 48 are in BCD. Columns 10-12 contain 
a first run number; columns 14-1G contain a last run number: the 
purpose of these two run numbers will be described presently. All run 
numbers must be positive integers. Columns 25-28 contain the number 
N, appearing as a suffix in the desired function P N (p ). The maximum 
value of N permitted by the program is 7000. 

IV. GENERAL CONDUCT OF THE CALCULATION 

The calculation carried out by the machine is at first sight rather 
different from the problem posed in the first section of this paper. The 
change of formulation simplifies the ealculation without affecting the 
ultimate llumericaJ answer. 

The calculation consists of a number of separate rUllS. In each individ
ual rUll, independent random numbers 'YJ are assigned to each bond of 
the lattice. Each 'YJ is uniformly distributed between 0 and 1. This process 
of assigning 'YJ-values to the bonds replaces the original process of block
ing bonds, so that the question of a bond being blocked or not does not 
arise in the reformulated process. Consider a connected path of bonds 
{31 , {32 , ... , {3k on the lattice, where the (necessarily one-way) bond 
/3i leads from the atom to which the preceding bond {3i-l led (i > 1). 
Let 'YJl , 'YJ2 , ••• , 'YJk be the 'YJ-values of the respective bonds {31 , {32 , .. , , 

(3k • Define the 'YJ-value of this path to be the minimum of 'YJl , 'YJ2 , ••• , 'YJk • 

Next consider any atom other 'than a source atom. Define the 'Y-value of 
this atom to be the supremum of all path 'YJ-values, taken over all paths 
which lead from some source atom to the given atom. Finally define en 
to be the largest number such that there are more than n atoms, other 
than source atoms, whose 'Y-values are equal to or greater than en . 

Now en for any fixed n is clearly a random variable, depending upon 
the several 'YJ-values assigned to bonds of the lattice. Pn(p), regarded as 
a function of p, is the cumulative distribution function of the random 
variable 1 - en .3 

The machine is programmed to calculate en for each run. Thus the 
set of all runs provides a sample of values of 1 - en , and the empiric 
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distribution of this sample can be taken as an estimate of the required 
function P n(p). 

So far we have regarded n as a fixed integer. Actually, the output of 
the machine on anyone run is a table of Cn as a function of n for all 
n ~ N, where N is the number set on the parameter data card. Thus the 
complete calculation provides estimates for P n (p) for all n = 1, 2, ... , 
N and all 0 ~ P ~ 1. 

Succesive runs are numbered serially Rl , Rl + 1, ... , R2 , where RJ 
is the first run number specified on the parameter data card, and R2 is 
the final run number specified on the parameter data card. Hence 
R2 - Rl + 1 is the sample size for each empiric distribution. The run 
number Rl + i of the (i + 1) th r1111 is used to trigger off the genera
tion of random numbers 7] assigned to bonds in this run. Hence a run 
may be repeated for checking purposes by repeating the run number; 
but, if a fresh and independent sample of "In is desired, the parameter 
data card must specify a set of run numbers which does not overlap the 
set previously used. Since three decimal digits are available for run 
numbers, the maximum sample size is 999. A sample of size about 100 
is usually adequate. 

v. OUTPUT FROM THE MACHINE 

The printont from the machine, also punched onto cards if ordered 
on the identification card during input, is as follows. 

The printout begins with a copy of all input data (excluding the 
program deck). Thereafter follows a table, whose columns are headed: 

RUN Nf/J. STATE C VALUE 

Each row of the table has an entry in each of these four columns. An 
entry under RUN is the current run number R being computed (Rl ~ 
R ~ R 2 ). The entries under Nf/J. and C VALUE are respectively nand 
Cn , tabulated for 0 ~ n ~ N omitting any values of n such that Cn = 
Cn-l (0 ~ n ~ N). Thus the only values of Cn printed are new values 
less than all preceding values in the run. (Clearly Cn is a non-increasing 
function n by virtue of its definition.) Such new values are indicated 
by the prefix NEW. The value of CN is, OIl the other hand, prefixed by 
FINAL and also suffixed by an asterisk to help in reading the output 
quickly. The entry under STATE is either FINISHED or T(j) BE 
C(j)NT., according to whether the run is complete or not. The only other 
possible entry under STAT],} is INHIBITED: this is a safety device, 
to be explained later. It means that certain technical circumstances 
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TABLE I - EXTRACT OF PRINTOUT 

RUN N(O. STATE c VALUE 

23 518 1'(0 BE C(ONT. NEW c = .748 
23 1000 FINISHED FINAL c = .748* 
24 0 1'(0 BE C(ONT. NEW c = .906 
24 1 1'(0 BE C()NT. NEW c = .803 
24 5 T(O BE C(ONT. NEW c = .791 
24 11 T(O BE C(ONT. NEW c = .783 
24 17 7'(0 BE Cr;JNT. NEW c = .770 
24 19 1'(0 BE C0NT. NEW c = .762 
24 20 1'(0 BE C(ONT. NEW c = .715 
24 21 '1'(0 BE Cr;JN'1'. NEW c = .711 
24 1000 FINISHED FINAL c = .711 * 

(whose occurrence is extremely unlikely) have arisen to prevent com
pletion of the run. In an inhibited run all values of Cn in the printout 
are valid: all that has happened is that n has been prevented from rising 
beyond a certain value, at which instant the run is automatically dis
continued. 

The extract of the printout shown as Table I will help clarify matters. 
I t gives the end of the twenty-third and the whole of the twenty-fourth 
run for a computation on the simple cubic crystal with N = 1000. To 
find the value of en for a value of n not printed in the Table, take the 
value of C for the largest n less than the required n. In the above example, 
Cs = 0.791 in run 24. 

The machine stores values of C as 9-bit binary decimals. Hence the 
rounding error in c is about 0.001 and not 0.0005. 

VI. OUTLINE OF THE PROGRAM 

What has been said so far contains everything that a user of this 
program needs to know. What follows in the remainder of this paper 
is an explanation of how the machine carries out the program, and is 
intended for those who are interested in programming techniques. 

The two main entities in any given run are (i) a number denoted by 
c, and (ii) a so-called "wet list" of atoms. An atom is qualified for 
membership on the wet list if it is a source atom or if its ,),-value is not 
less than c. Normally the value of c is held constant and the machine 
recruits new members of the wet list. However, if a stage is ever reached 
during a run where no further recruits can be found with the existing 
value of c, then the machine reduces c by an amount just sufficient to 
ensure the existence of at least one fresh recruit. The run begins with 
c = 1 and a wet list containing just the source atoms. Since a given 
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atom in a given run has a given 'Y-value (depending upon the 1]-values 
assigned to bonds in that run), reduction of e can never disqualify 
existing membership of the wet list. Successively recruited members of 
the wet list (other than source atoms) are numbered 0, 1, .... A little 
reflection will show that at the moment, when the member numbered n 
is added to the wet list, the current value of e must be en. The run is 
terminated as soon as the wet list contains N + 1 members. Thus the 
machine output is simply the result of printing any freshly reduced 
value of e against the number of the next member to be added to the 
wet list. 

This procedure would be unworkable if the machine had to examine 
all atoms of the lattice for this qualification to belong to the wet list. 
What makes the procedure workable is the observation that there can 
exist no qualified fresh recruits if the existing value of e exceeds the 
1]-values of all bonds, which lead from some atom of the wet list to some 
atom not in the wet list. Let us call such bonds the outgoing bonds of 
the wet list. If the wet list has an outgoing bond whose 1]-value is at 
least c, then this bond leads to an atom which is qualified for membership 
of the wet list. If the value of e has to be reduced, the new value of e 
is the highest 1]-value of all existing outgoing bonds. Hence, at any 
stage of the calculation the machine need only examine the 1]-values 
of the outgoing bonds of the currently existing wet list. 

Information about the current status of the wet list resides in a block 
of registers in the core storage of the machine, with three registers 
(denoted by E, E + 1, E + 2) allocated to each atom of the list. We 
write 

E = (x, y, Z, T) = [11, 11, 11, 3]; 

E + 1 = (X) = [36]; (1) 

E + 2 = (1/;, cp, 11") = [9,12,15]; 

to indicate that E contains four different quantities (denoted by x, y, Z, 

and T respectively) occupying 11, 11, 11, and 3 bits of the 36 bits 
available in a single register. The contents of E + 1 and E + 2 are 
exhibited in a similar manner. Jf we wish to emphasize that we are 
talking about the nth atom An (n = 0, 1, ... , N) in the wet list (ex
cluding the source a toms of the wet list), we place n as a suffix to any 
of the above quantities: thus 

(2) 
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The symbols have the following meanings: (Xn, Yn , Zn) are the three 
integer coordinates of the cell containing the a tom An, and Tn is the 
type of the atom An (Tn = A, B, ... , H in the notation for crystal 
structure). X n is a :3G-bit pseudo-random number, generated according 
to the multiplicative congrnential recursive relation (low multiplication) 

(3) 

where (3 is a permanently fixed odd integer, and the recursion is triggered 
from the initial state 

X-I = feR) (4) 

where feR) is a fixed function of R, the run Humber of the run under 
consideration. (R = RI + j in the (j + l)th run). The meanillgs of 
1/;, cP, and 7r will be stated in a moment. 

The lattice structure allows us to have up to 12 bonds leading from 
each atom; and for the sake of exposition it is convenient to suppose 
in the first place that each atom has a full complement of 12 bonds 
from it. The atom An thus requires 12 7J-values for its 12 bonds: we 
denote these by (7Jn (1) ,7Jn (2), ••• , 7Jn (12»). The quantity cp consists of 12 
independent bits CPn = (CPn (1) ,CPn (2), ••• , CPn (12») also corresponding to the 
12 bonds. If an atom has fewer than 12 bonds from it, we put the cor
responding cp(iJ = 0 to signalize the absence of a bond. For a bond 
actually present, we also put cP (i) = 0 if it is known that this bond leads 
to some atom already in the wet list. In all other cases, cp(i) = 1. Thus 
all outgoing bonds from An have CPn (i) = 1: the converse is not neces
sarily true, since we may have a bond, which exists and which leads to 
an atom already in the wet list (and is therefore not an outgoing bond), 
although at the current stage of the calculation we have not yet dis
covered that this bond leads to an atom in the wet list. Thus the quantity 
cP represents a state of current knowledge. We define 

1/;n = max (7Jn (1) CPn (1), ••• , 7Jn (12) CPn (12») • (5) 

To validate this definition we require that each 7Jn (i) be a 9-bit number. 
We achieve this by means of 

(Xn) ( 7Jn 
(1) (2) (3) , ?) [9,9,9,9,] - , 7Jn , 7Jn 

({3Xn) ( 7Jn 
(4) (5) (6) , ?) [9,9,9,9,] - , 7Jn , 7Jn 

(mod236
) , (G) 

({32Xn) 
(7) (8) (9) 

- ( 7Jn , 7Jn , 7Jn , ?) [9,9,9,9,] 

({33 X n) == (7J n 
(10) (11) (12) , ?) [9,9,9,9,] , 7Jn , 7Jn 

where? denotes a 9-bit number which is not used (because the terminal 
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digits of pseudo-random numbers are too regularly distributed), and 
where the congruential notation in (6) indicates low multiplication as 
in (3). 

VII. PIWGHEf:3f:3IVE CONSTHUCTION OF THE WET LIST 

We are now able to describe recursively how the wet list is compiled. 
In what follows, it is important to remember that the wet list con:5i:5ts 
of both source atoms as well as recruited atoms in this list. 

Suppose that the wet list is already partly compiled and that we have 
reached a stage at which the current c value has just been reduced to 
a new value. Starting at the beginning of the wet list, we successively 
scan each atom in the order of the list. For each atom scanned we ask 
first if its ~-value is less than c. If ~ < c, we pass to the next atom on 
the list. If ~ ~ c, we determine all values of i such that '1] (i)q/i) ~ c: 
these represent the only bonds which can lead to an atom at present 
qualified for membership of the wet list. Call such an atom a target 
atom of the scanned atom. Noting the cell coordinates and the type 
number of the scanned atom, we compute the cell coordinates and the 
type number of each target atom of the scanned atom. We then look 
through the wet list to see which of the target atoms do not belong to 
the wet list, and we add to the end of the wet list all target atoms not 
already on the wet list. With these new additions to the wet list, every 
bond from the scanned atom to a target atom leads to an atom of the 
wet list, and therefore we now set cjJ (i) = 0 for all values of i for which 
we had '1](i)cjJ(i) ~ c. Next we recompute 'if; from (5). Of course the new 
value of ~ is less than c. Therefore in the scanning procedure we go to 
the next atom in the wet list. Ultimately the scanning procedure will 
reach the end of the wet list. At this stage, all ~ in the wet list are less 
than c. We therefore reduce c to the largest ~ in the wet list, and restart 
the scanning from the beginning of the wet list. We continue this proce
dure until we have recruited N + 1 atoms to the wet list. 

To assist in computing the new value of c required at any reduction 
of c, we make a small modification of the foregoing procedure. We define 
a number c*, called the c-candidate. At the beginning of any scan, we 
set c* = O. Before leaving any scanned atom and proceeding to the 
next one, we take max (~, c*) to be the new value of c*. Thus when we 
reach the end of the scan, c* equals the required new value of c. 

VIII. WET LIST SEAIWH 

As described above, we have to search through the wet list to decide 
if a target a tom is already in the list. To expedite this search we define 
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the modular type of an atom An in the wet list to be the least non
negative residue 

tn = Xn + Yn + Zn (mod 256), (7) 

and we dissect the wet list into 256 equivalence classes according to 
their modular type. A target atom can only be in the wet list if it is its 
own equivalence class, and hence it is sufficient to search just one 
equivalence class in the wet list. 

Suppose that An(l) , A n (2) , •• , , An(k) are the atoms in the wet list 
currently belonging to the equivalence class to be searched. We define 
71'n , appearing in (1), by 

71'n(j) = n(j - O. (8) 

Thus we can search the equivalence class backwards; for at any stage 
of the search, the 71'-value for the atom currently examined gives us the 
address of the next atom to be examined. To start off this iteration, 
the core storage holds a table, called the H-table, with 256 entries pro
viding the values of n(k) for each equivalence class. When a new atom 
has to be added to the wet list, we must write up its 71'-value: its 71'-value 
is simply the entry (for the appropriate equivalence class) that is in 
the H-table immediately before adding the new atom to the wet list; 
and, immediately after adding this new atom to the wet list into address 
n(k + 1), say, we enter n(k + 1) into the appropriate position of the 
H-table in place of n(k). 

IX. INHIBITION OF RUNS 

Each of the coordinates x, y, Z of a lattice cell is represented by an 
II-bit integer, treated by the machine modulo 2048. Thus, effectively, 
the lattice lies on a four-dimensional torus instead of the required three
dimensional flat of four-dimensional Euclidean space. To remedy this 
defect, we cut the torus on each of the three two-dimensional flats defined 
by x = 0, Y = 0, and Z = 0 respectively. We place the source atoms in, 
or in the immediate neighborhood of, the cell (1024, 1024, 1024); and 
we set an inhibition flag if any cell coordinate becomes zero modulo 2048. 

The run is allowed to proceed as before, after the inhibitor flag has 
been set, up to such time as the machine calls for a new value of c. At 
this instant, however, the inhibitor flag prevents the new value of c 
being set, and instead terminates the run with the printout comment c 
INHIBITED together with a point of the old value of c. 

The net effect of this procedure is to allow the fluid to pass across the 
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two-dimensional cuts in the torus, and even to complete circuits which 
are not homotopic to zero. However, if such a circuit occurs, it may 
imply an unnecessary reduction in c, or an unnecessarily large reduction; 
and in that event the run must be terminated as a safety measure. 
Nevertheless it is very unlikely, with the values of N used, that inhibi
tion will be invoked; and in fact it has not been invoked on any run 
calculated to date. 

X. GENERATION OF PSEUDO-RANDOM ~UMBERS 

There is no point in calculating pseudo-random numbers which are 
not going to be used. At the start of a run, all entries X, defined in (1), 
are set with a negative sign. When the machine comes to scan any atom 
in the wet list to look for possible outgoing bonds, it first asks if X is 
negative. If X is negative, it replaces X by a positive pseudo-random 
number Xn , generated there and then by means of (3). If X is positive, 
the machine knows that a pseudo-random number has already been 
calculated for this atom, and it does not change Xn . Thus, as the prob
lem requires, each individual pseudo-random number remains fixed 
throughout a run. 

XI. DELTA AND PHI TABLES 

Consider the stage of the calculation when the machine is scanning the 
wet list and looking for the possible outgoing bonds from a particular 
atom A to the corresponding target atoms. Let (x, y, z, T) denote the 
cell coordinates and type number of A; and suppose that we are con
sidering the ith bond from A (i = 1,2, ... , 12) as a possible outgoing 
bond to a target atom, whose cell coordinates and type number we 
denote by (x', y', z', T'). Then 

E' - E = (x', y', z', T') - (x. y, z, T) = /}.(T, i) (9) 

is a function of T and i only. We store /}.( T, i) in relative location 16T + 
i of a block of 128 locations called the delta table. We can thus calculate 
the coordinates of the target atom by entering the delta table and using 
the addition 

E' = E + /}.(T, i). (10) 

Similarly, the value of cj> a target atom is a function cj>( T, i), stored in 
relative location 16T + i of a block of 128 locations called the phi table; 
and this enables us to write cp' into E' + 2 by a straight look-up proce
dure. 
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The contents of the delta and phi tables are permanent settings com
puted from the lattice strncture data cards before starting the first run. 
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Interference between Satellite COlnmuni
cation Systenls and COlnmon Carrier 

Surface Systems 
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Various published papers have discussed in quite general terms the 
problem of interference between satellite systems and ground systems. These 
studies have been largely qualitative, rather than quantitative, in nature. 
The magnitude of the interference between a satellite system and ground 
system, however, depends greatly en the frequency plans involved, the char
acter and degree of modulation used, and the parameters of the equipment. 
Bell Telephone Laboratories has under construction experimental satellite 
equipment designed to operate in the heavily used 4- and 6-kmc com
mon carrier bands, and the present paper is directed to the potential in
terference between this satellite equipment and ground point-to-point sys
tems. 

Interference involving a satellite station and the 'PD-2 and TH sy~tems 
is analyzed specifically, and it is shown that the separation between systems 
must be of the order of 100 to 120 miles or more when the antenna of the 
common carrier transmitter or receiver is pointed directly at the satellite 
ground station. If the antenna is beamed 90 degrees or more from the satellite 
site, the minimum distance may be of the order of 10 miles even when line
of-sight propagation exists between locations. This assumes the use of the 
Bell System's horn-reflector antenna on the terrestrial system. }Vith a para
bolic dish antenna the lalter distance must be increased to about 40 miles 
and adequate blocking must exist in the interference path. These distances 
provide adequate freedom from mutual interference for both telephone and 
television modulating signals. 

1. INTRODUCTION 

Satellite systems will of necessity use ground transmitter powers of 
several thousand watts. Present microwave systems in the United States 
operating in the common carrier band utilize transmitters of the general 

921 



022 THE BELL SYSTEM TECHNICAL JOUHNAL, MAY 1962 

order of one watt output power and in this sense are consequently only 
about one-thousandth as interfering as a satellite ground transmitter. 
Furthermore, the inherent noise per cycle of bandwidth at the input of 
the satellite ground receiver will be about 20 db less than that of the 
present-day commerical common carrier receiver, thus making it corre
spondingly more sensitive to interference from other systems. 

Several general studies of interference1 •2 have used criteria of inter
ference intended to encompass all varieties of ground radio relay systems, 
but inevitably the decision as to whether interference between particular 
sites is tolerable or intolerable must be made on the basis of the specific 
radio systems involved and the frequency bands in which they operate. 

The F.C.C., as a result of its studies, has recommended for considera
tion a number of bands between 3700 and 8400 mc, including the two 
common carrier bands 3700 to 4200 mc for the spacecrafts and 5025-
G425 mc for the earth stations.3 

The experimental satellite equipment presently under construction by 
Bell Telephone Laboratories will operate in the top 100 megacycles of 
the 4- and G-kmc common carrier frequency bands mentioned above and 
thus, potentially, interference may occur between the satellite system 
and the many ground commerical systems operating in these bands. 

The 'Vestern Union Company has a radio relay system operating in 
the 4-kmc band, and a transcontinental system in the G-kmc band is 
under construction. There are also a relatively large number of short 
haul common carrier systems in the G-kmc band. However, the most 
extensive user of each of these two bands in the United States is un
doubtedly the Bell System which had in operation at the beginning of 
10GI approximately 300,000 one-way broadband channel miles of micro
wave systems. A large fraction of this service utilizes the TD-2 system4 

operating in the 3700- to 4200-mc band, and, at present, a small fraction 
utilizes the recently developed TH system 5 operating in the G-kmc band. 
For this reason the interference study described herein is directed quite 
specifically to the TD-2 and TH systems, but the basic philosophy is 
readily applicable to other microwave systems. 

Such a complicated network of microwave routes as presently exists 
in the United States and Canada with its numerous sources of inter
and intra-system radio interferences has necessitated most careful atten
tion to this problem in order that the interference at baseband at the 
end of a long circuit would be in reasonable balance with other sources 
of system impairment, such as intermodulation between elements of the 
system load and the noise aI·ising in the converters. This problem has 
been discussed at some length in an earlier paper,6 and the philosophy 
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developed therein will be applied in the present paper to interference 
involving satellite systems. 

The experimental equipment under construction by Bell Laboratories 
will transmit from ground to spacecraft in the 6-kmc frequency band, 
and in the reverse direction in the 4-kmc band, so that the only appre
ciable interferences between ground stations are those from satellite 
ground transmitters into TH receivers and from TD-2 transmitters into 
satellite ground receivers. For completeness, consideration is also given 
to the two complementary interferences that would exist if the fre
quencies were interchanged. Possible interference from the spacecraft 
into ground receivers is discussed briefly. 

Contours of permissible minimum separation between satellite ground 
station and TH and TD-2 microwave stations are presented in this paper. 
It should be emphasized at this point that the results are based on values 
of parameters for the three systems that are pertinent at the present 
time. Changes that may be made in the future such as increases in trans
mitter power, improvements in receiver noise figure or change in fre
quency plan would, of course, alter the conclusions reached herein. 

While the contours are based on propagation under "average" terrain 
conditions, it is believed that they should be of considerable value in the 
early phases of site selection. However, in any particular case, if the 
profile of the path so indicates, the power of the interference should be 
calculated and compared with the objectives given later in Table III. 

II. OBJECTIVES 

lVIicrowave systems with which we are concerned may handle tele
vision or multichannel data and telephone signals, and in the latter case 
the signal load may range from busy-hour full load to light early-morn
ing load. Interference objectives must be sufficiently stringent to pro
tect the systems under all normal conditions; moreover, interference 
powers should be sufficiently less than the total receiver input noise so 
as not to impair significantly the fading margin of the interfered-with 
system. 

Basically the amount of RF interference that can be tolerated de
pends on the interference that it produces at baseband frequencies. The 
spectrum of the interference at baseband frequencies resulting from RF 
interference between two FM or PlVI waves is made up of beats be
tween each frequency component of the spectrum of one RF wave and 
each frequency component of the other. The frequency of any baseband 
component is that of the frequency difference between the two RF com-
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ponents that produced it; and finally the power of the baseband com
ponent depends on the powers of the RF components. 

Therefore the baseband interference spectrum can, for convenience, be 
thought of as the result of (a) a tone resulting from the beat between 
the two carrier frequencies, (b) the sidebands of one wave beating 
against the carrier of the second and vice-versa, and (c) the sidebands 
of one beating against the sidebands of the other. The beat tone ideally 
may appear as sinusoidal interference in a video signal, or as a tone in 
some particular telephone channel. Actually, because of the very low 
frequency noise normally present on Fl\1 transmitters using klystron 
deviators, the tone is more like a "burble" spread over a number of 
channels, the particular channels affected at any time depending on the 
difference frequency between the carriers at that instant. The second 
and third classes of interference appear normally as unintelligible cross
talk. 

The relative magnitudes of carrier and sidebands at any time depend 
on the degree and type of modulation applied Lo the radio transmitter. 
Consequently the RF interference objectives must be sufficiently re
strictive that the baseband interference is adequately low for all condi
tions of modulation. The procedure here will be to develop objectives 
on the basis of full load telephone considerations and then to make 
certain that they are adequate for all other loads and signals, whether 
telephone or television. In general, the interference objective set by 
telephone considerations is sufficiently controlling so that it is satisfac
tory for other types of signals. 

All long-haul microwave systems are subject to a number of sources 
of transmission impairments. For example, a 4000-mile TD-2 system may 
have approximately 140 sources of thermal-type noise due to the con
verters, an equal number of sources of cross modulation due to repeater 
phase and amplitude nonlinearity, 280 sources of waveguide echoes, 280 
sources of intersystem co-channel interference, together with a number 
of somewhat less important contributions. 

Good engineering practice indicates that for telephone service, the 
rms sum of these impairments should, during busy hours, be not over 
38 dbaO, i.e., 38 dba * at a point of zero-db transmission level. This is 
equivalent to -43 dbm in a 4-kc band, and the signal-to-noise ratio is 
27 db where the signal in each telephone channel is random noise equal 
in power to an rms talker, one quarter active, or -15.8 dbm in a 4-kc 
band, using values obtained from the Holbrook and Dixon paper.7 

* The unit dba identifies a particular weighting characteristic for which 82 dba 
is equivalent to one milliwatt of thermal noise in a 3-kc band. 
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The division of this total permissible impairment into all the various 
individual sources cannot be done by any set rule. The total number of 
significant sources of noise impairment in a 4000-mile system, as enumer
ated above, totals very roughly one thousand. Therefore if each were 
given an equal share of the total, the individual allotment would be 8 
dbaO. Since interference and cross modulation are generally more annoy
ing than thermal-type noise, it is normally a desirable goal that the 
baseband noise due to the converters in a repeater should be slightly 
greater than inter-modulation, which in turn should exceed the base
band interference from RF crosstalk. Then during a fade of the desired 
carrier, the converter noise and interference in any telephone channel 
will rise together and the interference will not predominate over the noise. 

The distance between any satellite system site and a potentially in
volved interfering or interfered-with TD-2 and TH station may vary 
from a few miles to more than 100 miles. Thus, propagation between 
them may range from line-of-sight, in which free-space propagation 
normally exists for a very large fraction of the time over a full year, to 
tropospheric scatter propagation, in which the long-term distribution of 
path loss is normal in db and in which the chance of the received signal 
being, let us say, 32 db or more above the median value is about 0.01 
per cent. 

For this reason two interference objectives are proposed. The first 
applies to line-of-sight interference paths in which the propagation is 
very close to that of free-space nearly 100 per cent of the time. Up-fades 
greater than about 5 db occur less than about 0.3 per cent of a year's 
time, and down-fades of the interfering carrier simply decrease the 
baseband interference. This is referred to herein as the "100 per cent" 
objective, and it is intended that it be met for line-of-sight paths during 
free-space transmission. 

For interference signals which are constantly fading both up and down, 
such as on tropospheric scatter paths, a second objective is proposed, 
which should be exceeded only 0.01 per cent of the time. This objective 
in terms of baseband noise may obviously be higher than the "100 per 
cent" objective, and it appears reasonable to let the 0.01 per cent ob
jective be 15 db more lenient than the "100 per ce'nt" 'objective. The 
"100 per cent" objective is so chosen that the unintelligible crosstalk 
type of interference in the worst telephone channel in the full-load 
telephone case may be expected to be 9 dbaO during nonfading periods. 
It may be 24 dbaO or greater 0.01 per cent of the time when the interfer
ing signal path is well beyond line-of-sight. This may be compared with 
the contribution of about 10 dbaO per repeater due to noise arising in 
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the converters of a 4000-mile system during nonfading conditions. Inter
ference may also manifest itself as tones in certain telephone channels 
or in television transmission. The magnitudes of these effects will be dis
cussed in a subsequent section. 

III. FREQUENCY PLAN 

Interference between two FlVI or PM systems depends upon such pa
rameters as frequency deviation, top baseband frequency, and upon the 
frequency separation between the carrier frequencies of the systems in
volved. 

The CCIR recommends for the 6-kmc common carrier band a plan 
based on a spacing of 29.65 me starting at 5945.20 mc, and this is iden
tical with the plan used in the United States by the Bell System for the 
TH system and also by Western Union for its 6-kmc system. Thus 
eight satellite assignments, each about 50-mc wide, can be obtained in 
the same band with a minimum of mutual interference by placing the 
satellite carriers midway between the common carrier assignments as 
shown on Fig. 1. 

Coordination in the 4-kmc common carrier range is less satisfactory. 
The TD-2 system, when a route is fully developed, will have a channel 
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Fig. 1 - Frequency plan. 
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every 20 mc from 3710 to 4170 mc, while in Europe a spacing of exactly 
29 mc is used. 

A frequency shift from the 6-kmc to the 4-kmc band must obviously 
be made on the spacecraft, the optimum value of the shift for each of 
the channels depending to a considerable extent on problems outside the 
scope of this paper. 

However, one possibility might be to use a shift of 2220 me for the 
upper four channels, and 2210 me for the lower four channels. The 
satellite assignments in the 4-kmc band would then be as shown on Fig. 
1, and this plan is assumed in the present study. It will be noted that 
the satellite carrier frequencies would, in all cases, be very close to 
certain of those used in the TD-2 system. The effect on interference of 
moderate departures in frequency from the plan shown on Fig. 1 is 
discussed below. 

IV. INTERFERE~CE BETWEEN T\VO FM OR PM WAVES 

Signal and interference are customarily specified in units of watts per 
cycle of bandwidth. Since there is a linear relationship between signal 
power per cycle and carrier deviation in mean square radians per cycle 
of bandwidth, it is convenient in this paper to express both signal and 
interference in the latter units. 

The method used herein to compute quantitatively the baseband in
terference due to the presence of a weak interfering FM or PlVI wave can 
be demonstrated by the limiting case when neither interfered-with nor 
interfering carrier is modulated. Let the peak amplitudes of the two 
carriers be E and kE, respectively, where k is small relative to unity, 
and let the frequency difference between them be f. The interfering 
carrier phase modulates the stronger carrier by k cos 27Tft radians, and 
the baseband interference power is proportional to k2/2 mean square 
radians. 

However, the present problem is most closely approximated by two 
carriers separated an appropriate amount in frequency and modulated 
with random noise so as to simulate a number of telephone channels 
arranged in frequency division multiplex. This problem has been treated 
for the case of pure frequency modulation by several writers.8 •9 

The Appendix gives an expression for the interference in integral form 
that is valid when the interfering carrier is substantially weaker than 
the interfered-with carrier. This integral is difficult to deal with numeri
cally. However, following the argument used in the Appendix a practi
cal, but basically exact, method of evaluating the interference has been 
developed, subject to the same premise of weak interference. This method 
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consists simply of normalizing the level of the unmodulated power or 
voltage of the stronger carrier to a reference value of 0 db, and express
ing the spectrum of each of the two waves indb below this reference value. 
The two spectra thus described are convoluted (adding the db values). 
The interference thus computed in a very narrow band, such as one 
cycle, is varying with time, and in this case to obtain the mean square 
value, or power, the result must be decreased by 3 db. 

This procedure, then, gives the distributed interference spectrum in 
mean square radians per cycle of bandwidth, together with a sine wave 
component at the difference frequency, whose power is expressed in 
mean square radians. The noise signal simulating a typical talker can 
be expressed in the same units as the distributed baseband interference, 
and thus the baseband signal-to-interference ratio can be obtained. 
Since the noise signal, for the loading constants assumed herein, is 65 
dbaO, the interference can be expressed in dbaO by subtracting the sig
nal-to-interference ratio in db from 65. Baseband signals are usually 
pre-emphasized so that the higher frequencies phase modulate the carrier 
and the lower ones frequency modulate it. In this study, pure phase 
modulation is assumed for simplicity of analysis for all baseband fre
quencies. 

Nominal values of the parameters determining the spectra for the 
three systems considered here are given in Table I. 

For both the TD-2 and the TH carriers the frequency deviation is 
sufficiently low that, for purposes of this study, sidebands of order 
greater than unity are sufficiently small that they may be neglected. 

The spectral power per cycle of bandwidth for first order sidebands 

TABLE I 

System 

Item Symbol 
TD-2 TH TSX-l* 

Top baseband frequency .............. h 2 mc** 10 mc 2 mc** 
RMS frequency deviation due to noise 

load ................................ fd 0.71 mc 0.71 mc 5 mc 

* This is the designation for the Telstar experimental satellite equipment 
being constructed at Bell Telephone Laboratories. The ground station will be 
located in Andover, Maine. The spacecraft will have active repeater equipment 
for one broadband channel. Transmission to the spacecraft will be at a frequency 
of about 6390 mc. Transmission from spacecraft to ground will be at about 4170 mc. 
The parameters given in Table I above for the TSX-1 equipment represent 
values that appear to be reasonable at the time of preparation of the paper. 

** The top frequency of 2 mc is appropriate to 480 telephone channels arranged 
in frequency division multiplex. 
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only, relative to the unmodu1ated carrier, for a low index of modulation 
1S10 

exp [-3/d2 Ifb2
] 3/d2 

2f" fb2 for 
(1) 

and zero for 

where f is any frequency relative to that of the unmodulated carrier. 
In the case of the TSX-l system, the deviation with noise load is 

sufficiently great that the wide deviation approximation may be used. 
Assume the power of the carrier when unmodulated is unity. vVhen the 
phase deviation, as defined in (4) below, is substantially greater than 
unity, the power per cycle of the PJ\tf wave at a frequency ±f from that 
of the carrier frequency is very closely 

1 2 2 

P = V2nfa exp (-f 12fd ). (2) 

There is also a carrier spike present whose power relative to that of 
the unmodulated carrier of unity power is 

P(spike) = exp (-3f}lh2). (3) 

Fig. 2 shows the spectra for the three systems with noise loading as 
computed using the parameters and formulae given above. 

The mean square phase deviation, D, of the carrier is related to the 
above defined constants in the following way: 

D = 3fd2/f b2 mean square radians. (4) 

The applied signal power, S, per cycle of bandwidth is 

S = Dlh = 3filh3 mean square radians per cycle of bandwidth. (5) 

The signal power in db is given by 10 log S and is tabulated in Table 
II for the three systems of interest, using the constants from Table 1. 
The symbol dbR/cbw will be used to denote mean square radians per 
cycle of bandwidth expressed in decibels. 

The application of the method of determining the interference in a 
specific case will illustrate the procedure. Let us consider, as an example, 

TABLE II 

Signal Power 
I 

TD-2 TH TSX-l Units 

10 log S I -07.3 -88.2 -50.3 dbR/cbw 
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interference into the satellite system from the TD-2 system and com
pute, specifically, the dba value of interference corresponding to a 
particular ratio of unmodulated TD-2 carrier power to unmodulated 
satellite carrier power at the input to the TSX-1 receiver, such as -35 
db. The unmodulated carrier frequencies in this case will be nearly co
channel. 

Fig. 2 shows that in the case of the satellite system modulated with 
random noise, the sideband power per cycle near the carrier will be 71 db 
below the unmodulated satellite carrier power. The power of the TD-2 
carrier in turn was assumed to be 35 db below the carrier power of the 
interfered-with TSX-1 carrier. 

The TD-2 carrier spike then beats with each component of the TSX-1 
spectrum to produce baseband interference as described above. Con
sider specifically the beat between the unmodulated TD-2 carrier and 
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the TSX-1 spectral power one kilocycle removed therefrom. The result
ing interference that will fall in a bandwidth of one cycle at a baseband 
frequency of one kilocycle can be obtained, as described above, by add
ing the db values of the appropriate points on the two spectra and sub
tracting 3 db from the result. This gives an interference value of -71 + 
(-35) -3, or -109 dbR/cbw. 

From Table II we find that the TSX-1 signal power is -50.3 dbR/ 
cbw. The signal-to-noise ratio in a narrow band then is 55.7 db, which 
is equivalent to approximately +9 dbaO. This establishes the position of 
the linear relationship shown on Fig. 3, for interference from the TD-2 
system into the TSX-l system. 

If the speech load on the satellite system is very low, then the con
tinuous portion of baseband interference of the satellite system due to 
the TD-2 system can be obtained by convoluting the TSX-1 carrier 
spike and the TD-2 spectrum. By following the above procedure it can 
be shown that the baseband interference is 0.9 db less than when the 
TSX-l system was fully modulated. 

Interference from the satellite system into the TH system behaves 
quite differently. With the frequency plan shown on Fig. 1, the un
modulated carriers are approximately 15 mc apart, and only when the 
satellite system is substantially fully loaded will there be appreciable 
interference into the TH system. 

Assume a ratio of TH carrier to satellite carrier power of 68 db. The 
maximum interference into TH falls at 10 mc and is the result of a beat 
between the TH carrier and satellite sidebands 10 mc removed, i.e., 5 
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mc from the satellite carrier itself. Fig. 2 shows the spectral power is 73 
db below the TSX-l unmodulated carrier or 141 db below the TH carrier. 
Therefore the interference on the TH carrier corresponds to phase 
modulation of -144 dbR/cbw. The TH signal power (see Table II) is 
-88.2 dbR/cbw. The signal-to-interference ratio is 56 db and the inter
ference is +9 dbaO. 

Interference into the TSX-l system from the TH system increases 
rapidly with baseband frequency. In order not to jeopardize the potential 
use of the satellite system above 2 mc, interference is computed at 5 mc 
but is referred to the signal as specified in Table I, thus giving a con
servative value for the minimum allowable separation. 

Finally, interference from the TSX-l system into the TD-2 system is 
a maximum at the bottom baseband frequencies since the two systems 
are nearly co-channel. Computations are made in a manner similar to 
that for interference in the reverse direction. Fig. 3 shows the relation
ships between baseband interference to the ratio of desired carrier to 
interfering carrier for these four cases. These relationships are linear, 
and are valid for carrier ratios greater than about 10 db. 

In the frequency plan shown on Fig. 1, the satellite channels are 
uniformly spaced between TH assignments. If a plan were used with a 
spacing different from 15 me, the magnitude of the interference would, 
of course, be affected. Fig. 4 shows the computed baseband interference 
spectrum as a function of carrier spacing, and it will be noted that the 
increase due to reducing the separation to 10 mc is only about 2 db at 
the top baseband frequency. 
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TABLE III 

System Interfering Carrier Objectives at 

Normal Required 
receiver-converter 

Received Interference 
Carrier Ratio 

I 
Interfered-Interfering with 100% 0.01% 

TH TSX-1 -98 dbm 27 db -125 dbm -110 dbm 
TSX-1 TH -27 68 -95 -80 
TD-2 TSX-1 -98 35 -133 -118 
TSX-1 TD-2 -38 52 -90 -75 

V. PERMISSIBLE INTERFERENCE 

On the basis of the normal received carrier power for the TD-2 and 
TH systems and the minimum received satellite carrier, permissible in
terference carrier powers at the input to the receiver-converter of the in
terfered-with system can be obtained (Table III). The values tabulated 
in the "required interference ratio" column in Table III are from Fig. 3, 
and correspond to a baseband interference value of 9 dbaO. 

The above objectives have been based on busy-hour telephone inter
ference. During such periods the power in the carrier of the satellite 
system is negligible, but under light loads it may be strong enough to 
make the beat note between it and the carrier of the ground common 
carrier system a serious source of interference. Ideally this interference 
would be a pure tone, but actually it will be spread over a group of 
telephone channels, its location depending on the frequency difference 
between the two carriers at any moment 

An order of magnitude estimate of this interference can readily be 
made as follows for the case of interference from the TD-2 system into 
the satellite system when the latter is very lightly loaded: 

a. Permissible carrier to interference ratio from 
Table III 

b. Resulting tone interference 
c. Signal (noise load) from Table II 
d. Signal in a 3-kc band 
e. Signal-to-interference ratio 
f. If the interference is assumed to have the char

acter of noise and spread over one channel 
only, it will read 

+35 db 
-38 dbR 
- 50.3 dbRj cbw 
-15.5 dbR 
+22.5 db 

= +42.5 dbaO. 

This, it will be noted, is 4.5 db above the total 4000-mile objective. 
Actually it will probably be spread over a number of telephone channels, 
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depending upon the steadiness of the carriers, but still it is a potentially 
important interference source. The interference from the satellite system 
into the TD-2 system computed in the same manner will have the same 
value. 

This source of interference can be decreased substantially by applying 
a very low frequency baseband signal to the transmitter to keep the 
carrier in motion even when the total speech load is low. ll 

The above objectives have been based on telephone channel inter
ference considerations. It appears possible to produce interference into 
the satellite system when the interfering carrier is weakly modulated, 
thus having a strong carrier spike, and when at the same time the in
terfered-with carrier is handling a television picture with a large gray 
area, thus also having a large component of energy in a fairly narrow 
band. 

For example, assume the television signal content in the TSX-1 
channel is such that there is a concentration of energy one mc removed 
from an assumed interfering TD-2 carrier. A sinusoidal baseband tone 
will result whose peak-to-peak amplitude relative to the peak-to-peak 
amplitude of the desired baseband signal for full deviation is given by 
the ratio of the carrier powers involved in db, plus the FlYl improvement. 
The assumed carrier ratio from Table III is 35 db; the Fl\1 improvement 
for a TSX-1 deviation of 20 mc is 26 db. Therefore, the signal-to-tone 
ratio is 61 db as shown later in Table IV. Bearing in mind that line-of
sight signals during fading conditions may "up-fade" as much as 5 db, 
this TV signal-to-tone ratio would then be reduced to about 56 db. This 
is of the same order of magnitude as the tolerable tone interference ratio 
in a television picture. 

The various impairments that may be expected using the interference 
ratios given in Table III are summarized in Table IV. Since the ground 
satellite station in the TSX-1 experiment transmits in the 6-kme band 

TABLE IV 

System Telephone Interference 
TV Loss of Fade 

Interfered-
Sp-p/Tp-p Margin 

Interfering with Full Load No Load 

TH TSX-1 +9 dbaO nil 53 db 0.3 db 
TSX-1 TH 9 dbaO nil 80 1.6 
TD-2 TSX-1 9 dbaO 42.5 dbaO* 61 0.1 
TSX-1 TD-2 9 dbaO 42.5 dbaO* 64 2.2 

* This interference will appear in a few telephone channels only, and there is 
also considerable uncertainty in the values given. 
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and receives in the 4-kmc band, it is evident that TD-2 interference into 
TSX-1 is controlling from the standpoint of interference to television. 

The loss of fading margin is computed on the basis of the increase in 
peak noise voltage at the converter when· the interfering carrier is 
present. A noise peak factor of 12 db is assumed for the noise at the 
converter. The interference values used in computing loss of fading mar
gin are the "100 per cent" values, so-called, on Table III since the use 
of the "0.01 per cent" values seemed unduly conservative. 

An examination of Table IV appears to indicate that relaxing any of 
the RF interference objectives will result in undesirable impairment in
creases in one or more of the categories listed. 

VI. REQUIRED PHYSICAL SEPARATION 

The separation between satellite station and common carrier station 
should be such that the received signal does not exceed the values stated 
on Table III. This separation depends, of course, upon the transmitter 
power, path loss and antenna discrimination involved. 

In this study the satellite transmitter power is assumed to be 2 kw. 
The transmitter power in the TH system is 5 watts. Because of atmos
pheric effects it is expected that the minimum useful elevation of the 
satellite antenna above the horizontal will be limited to about 7.5°. If so, 
the effective gain of the satellite antenna in the horizontal direction may 
be expected to be 0 db above isotropic or less. The gain of the conven-
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tional horn-reflector antenna used with the TD-2 and TH microwave 
systems at a given angle off-beam is conveniently expressed as the on
beam gain (about 40 db above isotropic at 4 kmc) reduced by the relative 
directivity pattern of the antenna, a typical example of which is shown 
later as Fig. 6. Thus, the net response of the horn-reflector in the back
ward direction is +40 -70, or 30 db below isotropic. 

Typical path-loss curves between isotropic antennas as a function of 
distance are shown on Fig. 5. For distances up to about 30 miles, free
space loss values are plotted; from about 40 miles to 140 miles, scatter 
propagation over average terrain is assumed. The scatter loss curve is 
that which will be exceeded 99.99 per cent of a year's time as estimated 
by K. Bullington of Bell Telephone Laboratories.12 

The interfering carrier power in dbm is given by 

(6) 

where P T = effective transmitter power 

AT = transmitter antenna gain III the direction of the inter
fered-with receiver 

L = path loss (from Fig. 5) 
AR = receiving antenna gain III direction of the interfering 

transmitter. 

As an example, interference from the TD-2 system into the TSX-1 
system will be considered. Transmitter power and on-beam antenna gain 
for the TD-2 system are approximately +27 dbm and 40 db, respec
tively. The required separation when the antenna of the interfering 
transmitter is pointed at the satellite site will be such that propagation 
will presumably be by scatter and hence the 0.01 per cent objective of 
-118 dbm given in Table III will apply. The total required path loss 
will be then 185 db, corresponding to 123 miles. 

If the satellite receiving station is off the beam of the TD-2 trans
mitting antenna, the energy radiated thereto is decreased by the antenna 
discrimination, and the required separation is therefore decreased. Fig. 
6 shows the measured directivity pattern of an individual horn-reflector 
antenna relative to its forward gain, and it will be noted that the back
ward gain is 70 db below the on-beam gain. Tentatively applying the 
line-of-sight objective of -133 dbm from Table III, and substituting 
the appropriate values into (6), we have 

-133 = +27 + (40-70) - L + 0 

from which L 130 db. Reference to Fig. 5 shows that this loss corre-
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Fig. 6 - Measured pattern in db of horn-reflector antenna at 3740 mc. 

sponds to a separation of about 11 miles. Thus, this distance is adequate 
when the horn-reflector antenna is beamed directly away from the 
satellite site, even with line-of-sight propagation. 

The measured antenna pattern shows a large number of nulls, the 
position and depth of which will vary from antenna to antenna. There
fore, in developing contours of minimum permissible separation, it has 
seemed a reasonable and conservative approach to use not the measured 
patterns but instead an envelope drawn through the maximum values 
of the pattern as in Fig. 8 of Ref. 6. An additional element of conserva
tism lies in the fact that the TSX-l antennas will use circularly polar-
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Fig. 7 - Contours of minimum permissible separation between TD-2 trans
mitter and satellite ground receiver. 

ized waves, whereas plane polarized waves are used by the ground 
systems. 

Fig. 7 shows a contour of minimum permissible separation between a 
TD-2 transmitter and a satellite receiver as a function of the angle be
tween the bearing of the TD-2 antenna and the bearing of the satellite 
site, based on a smoothed envelope of the antenna discrimination pattern 
of Fig. 6. For angles greater than 90°, the separation can be as low as 
about 5 miles. For angles less than about 5° it must be GO miles or greater. 
Distances in the order of about 40 miles are cross-hatched because of the 
uncertainties in propagation. Specific cases that fall in this range should 
be examined individually to ascertain whether line-of-sight or beyond
horizon objectives should be applied. 

Figs. 8, 9 and 10 show similar contours of minimum permissible 
separation for the three other interference combinations. 

It should be emphasized that these values of separation may vary 
substantially, depending on the local terrain. If the path is obviously 
line-of-sight, the "100 per cent" objective shown on Table III should be 
used and met on a free-space propagation basis. In the case of stations 
only somewhat beyond line-of-sight, it must be kept in mind that duct
ing may occur occasionally and the signal may become strong enough to 
give interference much stronger than expected under true scatter con
ditions. In this situation the chance of exceeding the 0.01 per cent ob
jective given on Table III must be estimated for the specific case in-
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volved, due allowance being made, of course, for the directivity of the 
antennas; if the estimated probability is 0.01 per cent or less, the loca
tions may be considered safe. 

The close permissible spacing indicated when the horn-reflector an
tenna is oriented 90° or more from the direction of the satellite station 
is, of course, due to its very low backward response. An 8-foot parabolic 

Fig. 8 - Contours of minimum permissible separation between satellite ground 
transmitter and TD-2 receiver. 

Fig. 9 - Contours of minimum permissible separation between TH transmitter 
and satellite ground receiver. 
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Fig. 10 - Contours of minimum permissible separation between satellite 
ground transmitter and TH receiver. 

antenna may be expected to provide some 20 db to 30 db less discrimi
nation in this general direction. The application of the line-of-sight 
objective would then result in a minimum distance so great that it would 
be highly improbable that line-of-sight transmission could take place. 
The application of the "0.01 per cent" objective indicates, however, a 
minimum separation of 30 to 40 miles. 

In this case, it would be necessary to make certain that propagation 
is by scatter. The process of estimating propagation over relatively 
short non-line-of-sight paths involves a detailed study of the exact pro
file and knowledge of climatic conditions. This subject is outside the 
scope of the present paper. 

While these contours indicate that separations of the order of 5 to 10 
miles are possible under the conditions assumed, it should be emphasized 
that these conclusions are valid only in the absence of significant re
flection paths between the interfering and interfered-with sites. Thus, 
reflecting objects such as houses or trees in the foreground of the horn
reflector antenna may degrade its directivity pattern in the backward 
direction so that the values shown on Fig. 6 are not attained. Normally 
it may, however, be expected that such reflections can be made ade
quately low by careful examination of the terrain illuminated by the 
ground system antenna. 

Transient reflections may be produced by objects in the sky such as 
airplanes and birds. Also, reflections from rain clouds and precipitation 
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represent a possible way in which interference might reach the satellite 
ground receiver. However, calculations of the probable magnitude of the 
effects of such reflections indicate that with station separations of the 
order of 10 miles or more, interference of this kind from TD-2 into TSX-1 
will not exceed the objective of -118 dbm for any appreciable per
centage of time. 

VII. INTERFERENCE FIWM SPACECRAFT TO GROUND RECEIVERS 

Another possibility is, of course, interference from the spacecraft 
transmitter into ground microwave systems. For example, assume a 
power of one watt and an isotropic antenna on the spacecraft, and on
beam gain of 40 db for the ground antenna. The interference at the 
receiver converter would have a value of -90 dbm with the spacecraft 
at a distance of about 370 statute miles, therefore just meeting the 
"100 per cent" objective for interference from the satellite system into 
the TD-2 systcm under these assumed conditions. On this same basis, 
the maximum power on the spacecraft could be increased to 100 watts 
if the distance from the spacecraft to the earth were increased ten-fold. 

In the case of the horn-reflector antenna, the beamwidth is sufficiently 
narrow that any particular spacecraft would be in the beam of a given 
antenna for only brief and infrequent intervals. 

APPENDIX 

Using an approach similar to that developed in Ref. 13, Messrs. S. O. 
Rice and L. H. Enloe of Bell Telephone Laboratories have shown in
dependently that the distributed portion, VV (f), of the interference 
spectrum is given by 

W(!) = k2 10
00 

exp[-Rw(O)](exp[Rw(r)]-1) 

. [cos (27rj - wo)r + cos (27rj + wo)r] dT 

where the amplitude of the stronger carrier is unity and 

(7) 

k = ratio of the weaker to the stronger carrier; this must be 
small compared to unity 

j = any baseband frequency 
wo/27r = frequency difference between the two carriers 
Rw(r) = sum of the autocorrelation functions of the two applied 

noise signals. 
If the noise signals applied to the carriers have powers Wl and W2 

mean square radians per cycle of bandwidth for the weaker and stronger 
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carriers, respectively, and Jl and h are the top baseband frequencies of 
the noise signals applied to the same two carriers, then 

Also, let 

and 

then 

WI sin 27rJlr + W2 sin 27rJ2T. 
27rr 27rT 

Wd2 D2 = mean square phase deviation of 
the stronger carrier 

Wdl = Dl = mean square phase deviation of 
the weaker carrier; 

(8) 

(9) 

(10) 

In addition to the distributed interference, there is a sinusoidal com
ponent of magnitude 

k e-!Rw(O) sin wot radians. (11) 

The expression W(f) as given by (7) is not readily evaluated except 
over a somewhat limited range of parameters. However, the quantity 
exp[Rw(r)] in (7) is the product of the two autocorrelation functions 
exp [RWl(r)] and exp[R W2 (r)]. It therefore follows from the convolution 
theorem for Fourier integrals that the power spectrum of the interference 
can be obtained by convoluting· the power spectra of the two phase
modulated waves. Thus, baseband interference spectrum in mean square 
radians is given by twice the value obtained by convoluting the spectral 
power of the two waves, both in a resistance of one ohm. This provides 
the method * used in this paper for computing interference. 

* While the paper was in page proof it was brought to the writer's attention 
that the convolution method of computing interference between two PM waves 
had previously been described in a paper (in Japanese) entitled "On the Interfer
ence Characteristics of the Phase Modulation Receiver for the Multiplex Trans
mission," Shinji Hayashi, The Journal of the Institute of Electrical Communica
tion Engineers of Japan, 35, pp. 522-528, November 1952. 
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Long-Term Frequency Stability for a 
Reflex I(lystron without the Use 

of Exterllal Cavities 

By GEORGE B. GUCKER 
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The reflex klystron is widely 'Used as a tunable low-power oscillator in 
frequency-modulated microwave radio relay systems, both as the transmitter 
and as the local oscillator in the receiver. Automatic frequency control is 
generally used to limit frequency error due to drift of the transmitter klystron 
when the environmental temperature changes. In the TL Radio System 
developed at Bell Telephone Laboratories, the transmitting klystron fre
quency is stabilized by minimizing the effects of environmental temperature 
changes with completely passive methods. The 4·57 A klystron frequency 
stability is better than 50 parts per million over an ambient temperature 
range of 100°C when 'Used at mid-band. In the TL Radio System, the de
sign objectire for frequency stability of 500 parts per million is attained at 
extreme conditions of ambient temperature, atmospheric pressure, and 
voltage regulation; therefore the need for automatic frequency control has 
been eliminated. 

The operating temperature of the 457 A klystron in the TL Radio System 
is controlled by a liquid-vapor heat exchanger, which is described. The 
design of the klystron mechanical tuner includes compensation to minimize 
the thermal coefficient of frequency. The compensation feature is described, 
and typical results of the program to stabilize the klystron frequency are 
presented. 

I. INTRODUCTION 

The reflex klystron is widely used as a tunable low-power oscillator in 
frequency-modulated microwave radio relay systems, both as the trans
mitter and as the receiver local oscillator. Automatic frequency control 
is generally applied to the transmitting klystron to maintain the output 
frequency within acceptable limits. The frequency control is necessary 
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because the klystron frequency is dependent on the operating voltages 
and the ambient temperature. The use of a high-Q stabilizing cavity in 
the output is not generally feasible since modulation is applied to the 
repeller of the transmitter klystron to obtain frequency modulation of 
the output. With well regulated power supplies, most of the frequency 
error is due to changes in the ambient temperature. This means that 
automatic frequency control mainly corrects for frequency errors due to 
ambient temperature changes. 

Automatic frequency control requires a discriminator, coupled to the 
output of the system, which will develop an error signal when the fre
quency drifts away from the desired value. The discriminator usually 
consists of a high-Q stable reference cavity with associated networks to 
develop the proper error signal. For electronic automatic frequency 
control, the error signal is usually used to change the repeller voltage of 
the transmitting klystron in the direction and magnitude necessary to 
correct the frequency error. Changing the level of the repeller voltage 
affects the operating characteristics of the klystron, particularly the 
modulation linearity. Much less effect on modulation linearity is ob
tained when mechanical tuning of the klystron is used to correct for 
frequency errors due to changes in ambient temperature. In an electro
mechanical automatic frequency control, the discriminator error signal 
is used to actuate the tuning mechanism of the transmitting klystron 
to correct the frequency error. This method imposes requirements on the 
klystron tuning mechanism and the equipment needed for transforming 
the electric error signal to mechanical motion. 

The TL Radio System uses the 457 A klystron in conjunction with a 
liquid-vapor heat exchanger to eliminate completely the need for auto
matic frequency control of the transmitter. Stability of the output fre
quency over a wide range of ambient temperatures is obtained by com
pletely passive methods. Two 457 A klystrons, one as the transmitter 
and one as the receiver local oscillator, are used in each TL Radio unit. 
Essentially constant operating temperature for both klystrons is main
tained by the constant boiling point of the liquid in the liquid-vapor 
heat exchanger. The effect of the residual temperature changes has been 
minimized by designing a temperature-compensating feature into the 
klystrons. Elimination of automatic frequency control results in lower 
system costs and maintenance. Further savings are realized since a 
blower to cool the klystrons is not required, and electronic automatic 
frequency control in the receiver is simplified because the receiver klys
tron frequency is also stabilized. 
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II. OBJECTIVES 

The TL Radio System operates in the 10,700 to 11,700 megacycles 
common carrier frequency band. The design objective for frequency 
stability is a tolerance of ±0.05 per cent under all operating conditions 
for an ambient temperature range from -40° to + 140°F. This objective 
was interpreted as an allowable error of ±5 megacycles. The allowable 
error was allocated to various parts of the TL Radio System; an error 
of ±2 megacycles was allotted for the 457 A klystron and ±3 megacycles 
for variation in electrode voltages. In the klystron design this was con
sidered to be an objective of less than ± 1 megacycle error for thermal 
drift and less than ± 1 megacycle error for mechanical variations due to 
shock or vibration. The objectives for the klystron were met, well within 
the maximum allowable error, by the following methods: 

1. The mechanical tuner of the 457 A k:ystron was designed to with
stand the anticipated shock and vibration levels in the TL Radio System 
with a frequency error of less than 0.2 megacycle. 

2. The klystron design was made compatible with the TL Radio liq
uid-vapor heat exchanger, which is an essentially constant temperature 
heat sink for the tube. The klystrons and heat exchanger are enclosed in 
a thermally insulated chamber to minimize the effects of changes in am
bient temperature. The insulated chamber and liquid-vapor heat ex
changer maintain the operating temperature of the klystron within 3°F 
for an ambient temperature range of -40° to + 140°F at constant at
mospheric pressure. 

3. The mechanical tuner of the 457 A klystron was designed to provide 
compensation for the thermal effects on frequency. The 457 A specifica
tions include a requirement that the thermal coefficient of frequency shall 
not exceed ±0.15 megacycle per degree Fahrenheit (klystron body tem
perature) when measured at the mid-band frequency of 11,200 megacy
cles. An adjustment of the compensation is provided so that the distribu
tion during production may be maintained within these limits with an 
average value for the coefficient near zero. The specified thermal coeffi
cient limits are equivalent to a frequency stability better than 50 parts 
per million over an ambient temperature range of 1000 e for the operat
ing conditions of the TL Radio System. The maximum thermal coefficient 
may be as high as 0.24 megacycle per degree Fahrenheit at an operating 
frequency of 10,700 megacycles. With extreme temperature conditions 
and maximum coefficient applied simultaneously, the frequency error 
due to thermal effects does not exceed 0.72 megacycle. 

4. The klystron frequency stability is evaluated for the ambient tem-
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perature range of -40° to + 140°F at constant atmospheric pressure. 
Variations in atmospheric pressure will change the liquid boiling point 
and the klystron operating temperature. The extreme variation in at
mospheric pressure for the worst areas of the country is not expected to 
exceed 0.75 pound per square inch or 40 mm Hg. This range of pressure 
will change the liquid boiling point slightly less than 3°F. 

The effect of atmospheric pressure fluctuations is not included in 
evaluation of the klystron frequency stability for the following reasons: 

1. Short-term variations in atmospheric pressure are generally small 
and are not correlated with changes in ambient temperature. The pres
sure effects may add to or subtract from the ambient temperature effects 
on the klystron. The combined effect will result in small random fluctua
tions. 

2. Both ambient temperature and atmospheric pressure affect the 
klystron operating temperature in the same direction. That is, a decrease 
in ambient temperature or atmospheric pressure will lower the klystron 
operating temperature. Over extended periods of time, very low tempera
tures are frequently associated with high pressure conditions. The high 
pressure will oppose the effect of low temperature. 

3. The entire ambient temperature range is used to evaluate the klys
tron frequency stability. This is equivalent to using the frequency at 
one temperature extreme as the reference. It is unlikely that any particu
lar TL Radio location will be subjected to these extreme conditions. The 
additional margin obtained by adding the effect of adverse pressure con
ditions is not considered to be necessary. 

III. LIQUID-VAPOR HEAT EXCHANGER 

The liquid-vapor heat exchanger was selected as the simplest and most 
economical method for obtaining thermostatic control of the klystron 
frequency. The attributes of this method are: 

1. No auxiliary power is required. 
2. By attaching the liquid chamber directly to the heat source (the 

klystron body), an essentially constant temperature of the source can be 
maintained independent of ambient temperature. 

3. The equipment is compact and the quantity of liquid required is 
small. 

4. A wide range of klystron power input can be handled with negligible 
variation in operation temperature. 

5. This method is completely passive. 
The equipment used for making feasibility studies on the klystron is 

shown in Fig. 1. The klystron is bolted to the liquid chamber, or evapora-
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tor, and local boiling occurs at the evaporator wall attached to the klys
tron, which is the heat source. The contact surface is maintained at an 
essentially constant temperature slightly in excess of the liquid boiling 
point. In this common type of boiling, the heat energy is transmitted by 
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conduction and convection to the liquid in contact with the heat source 
surface and then by convection from the liquid to the bubbles that form 
on the surface. The bubbles grow in size as more liquid is vaporized until 
they break away from the surface due to their own buoyancy and rise in 
the liquid. As a bubble rises, more energy is transferred to the bubble by 
vaporization and the size of the bubble increases until finally it bursts at 
the liquid-vapor interface. In the vapor region, condensation takes place 
on the condenser walls and the condensate flows down the walls to the 
liquid region. The energy released in condensation of the vapor is con
ducted through the condenser walls and finally dissipated to the environ
ment by free convection and radiation. 

Preliminary calculations, which were later substantiated by experi
mental data, indicated that an open system at atmospheric pressure was 
required to obtain a satisfactory temperature regulation for the klystron. 
A 0.013-inch diameter vent at the top maintains atmospheric pressure in 
the condenser and also limits the rate of liquid loss by evaporation to a 
satisfactory low level. Initial data were collected with 20 cubic centime
ters of water in the evaporator. The low ambient temperatures antici
pated for the TL Radio System involve a risk of equipment damage from 
freezing if water is used. A fluorocarbon liquid, FC-75, developed by the 
IVIinnesota Mining and Manufacturing Company, was also evaluated 
since this liquid does not freeze at temperatures as low as -80°F. The 
FC-75 liquid has a boiling point approximately the same as water, and 
both liquids were found to be equally satisfactory for controlling the 
klystron temperature. A slight advantage in the liquid loss due to evap
oration was found with the use of the FC-7f) liquid. 

The feasibility study was made for an ambient temperature range of 
+35°F to +140°F. Typical results of this study indicated that the klys
tron body temperature varied by 20°F with a frequency change of 4.8 
megacycles. Liquid loss measurements were also made for a 2000-hour 
(approximately 3 months) operating period. Typical results showed a 
total liquid loss of 3 cc. for FC-75 liquid and 5.5 cc. for water in the 2000-
hour test period. In each case the test was started with 20 cc. of liquid 
in the evaporator, and temperature regulation of the klystron was not 
affected by the change in liquid volume. This study indicated that a con
siderable reduction in the effect of ambient temperature changes was 
possible with the liquid-vapor heat exchanger. The data collected during 
the study also indicated that the condenser could be much smaller and 
that reduction of the heat losses from the exposed surfaces of the klystron 
and evaporator would improve the temperature regulation of the klys
tron. Addition of thermal insulation around the unit yielded test results 
which substantiated these early conclusions. 
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Fig. 2 - TL Radio System transmitter. 

The experimental equipment shown in Fig. 1 was modified by molding 
an enclosure around the tube and evaporator of a very low density plastic 
(Eccofoam FP) having a wall thickness of approximately one inch. The 
insulation effectively isolated the klystron and evaporator from the am
bient environment. Typical results of tests with the insulated unit indi
cated that the klystron body temperature varied 3°F for an ambient 
temperature range of -40° to + 140°F. 

The experience gained during the feasibility studies led to considerable 
simplification of the final heat exchanger used in the TL Radio System. 
The appearance of the unit during operation is shown in Fig. 2. The 
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Fig. 3 - Cutaway view showing heat exchanger and condenser. 

heavily insulated cover for the klystrons and the evaporator may be seen 
in the foreground. A cutaway view to show details is given in Fig. 3. 
Both the receiver and transmitter klystrons are cooled by a single evap
orator. The condenser consists of a length of copper tubing clamped to an 
aluminum plate on which the receiver and transmitter components are 
mounted. The copper tubing is connected to the evaporator by stainless 
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steel tubing to reduce conduction losses from the evaporator. The end 
of the condenser tubing is closed off by a rubber expansion chamber that 
is soft enough to permit expansion without any significant increase in 
pressure. The chamber, which may be seen at the top of Fig. 3, effectively 
limits loss of FC-75 liquid due to evaporation. Test results on this com
plete unit have shown that the temperature of the two klystrons is held 
to within 3°F for an ambient temperature range of -40°F to + 140°F. 
These results, coupled with the thermal coefficient limits for the klys
trons, mean that the thermal frequency drift of the transmitting klys
tron will not exceed 0.72 megacycle in the TL Radio System. 

IV. 457 A KLYSTRON THERMAL COEFFICIENT 

The thermal coefficient of frequency for the 457 A klystron is defined 
to be the change in frequency as a function of body temperature. The 
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Fig. 4 - 457A tuner schematic. 
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limits for this coefficient are specified as ±0.15 megacycle per degree 
Fahrenheit when measured at the mid-band frequency of 11,200 mega
cycles. The klystron design includes a method for adjusting the coefficient 
so that the average value for continuous production of tubes can be 
maintained near zero. The tuning mechanism is shown in schematic form 
in Fig. 4. The frequency of oscillation depends on the spacing between 
the two grids. An increase in spacing increases the frequency; approxi
mately six microinches change in spacing results in a one megacycle 
change in frequency. The first grid is part of the anode assembly, which 
is a rigid member brazed to the tube body. The second grid is mounted 
on the flexible tuning diaphragm, which in turn is connected to the vac
uum diaphragm and tuning screw by the deflection tube. The drive nut 
seats on the cover plate, which is rigidly supported from the body by the 
tuner supports. The threaded section of the drive nut engages the tuning 
screw threads, and rotation of the drive nut moves the screw to change 
the grid spacing. A wormgear and tuning shaft, not shown in Fig. 4, are 
coupled to the drive nut to provide a means for manual tuning to any 
frequency from 10,700 to 11,700 megacycles. The tuner spring loads the 
screw to maintain intimate contacts between the threads and between 
the drive nut and cover plate. When the tube has been mechanically 
tuned to a desired operating point, the frequency is affected by thermal 
expansions of the various parts due to temperature changes. The fre
quency depends on the dimensions of the piece parts and their relation
ship to each other. The thermal properties of seven piece parts largely 
determine the thermal coefficient. These parts are: the anode, body, 
tuner supports, cover plate, drive nut, screw, and the deflection tube. 
Rigid control of the thermal properties of each part would be an expen
sive and complicated process. The degree of control required may be 
estimated from the thermal coefficient requirements in terms of grid 
spacing. The thermal coefficient is dictated by the TL Radio System re
quirements to within ±0.15 megacycle per degree Fahrenheit. To meet 
this requirement, the grid spacing change with temperature must be less 
than one microinch per degree Fahrenheit. A prohibitive accuracy of 
individual piece parts would be necessary to meet such requirements, 
and other factors, such as assembly variations, would further complicate 
the effect contributed by each part. Compensation for the gross effect of 
all thermal changes has been incorporated in the tube design, and ad
justment of the compensation is included as a simple dimensional change 
on one piece part - the drive nut. 

The basic principle of compensation is that at least two parts have 
opposite thermal effects. Adjustment of the compensation is readily made 
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by changing the thermal expansion of one of these parts. The application 
of this principle to the 457 A klystron may be explained with reference 
to Fig. 4. Expansion of the tuner supports increases the grid spacing with 
a resulting increase in frequency, while expansion of the drive nut and 
screw decreases the grid spacing and frequency. Expansions of all other 
parts may simply be considered to modify the relative effects of the sup
ports, drive nut, and screw. The net change in grid spacing due to ex
pansions of all parts determines the thermal coefficient of frequency for 
the klystron. The adjustable expansion characteristic is obtained by 
changing the effective lengths of the drive nut and screw, which are made 
from materials with widely different expansion coefficients. 

The thermal coefficient of the klystron is defined as the frequency 
change in megacycles per degree Fahrenheit when the tube body tem
perature is changed within the range of 23.5°F to 25f)oF. The temperature 
range was selected to exceed the actual operating temperature changes 
in the TL Radio System but is small enough to assume that all thermal 
expansion coefficients of the parts are constants. The klystron thermal 
coefficient may be considered to be the result of two compensating ex
pansions. Let - E represent the expansion of the drive nut and screw 
combination expressed in terms of megacycles per degree Fahrenheit, 
with the negative sign indicating that frequency is decreased by an in
crease in temperature. Also let A equal the sum of all other expansions 
expressed in terms of megacycles per degree Fahrenheit, with the positive 
sign indicating that frequency is increased by an increase in temperature. 
The thermal coefficient (C) for the klystron may be simply expressed as 

C = A - E megacycles per degree Fahrenheit. 

For the ideal coefficient of zero, A must equal E, and perfect compensa
tion is realized. When the compensation is upset by unavoidable causes, 
for example by a new supply of raw material in some piece part, an ad
justment in E can be made to again equalize the effects of A and E. 
This adjustment has been confined to the term E, since this is related to 
the drive nut. The materials used for the drive nut and screw were 
chosen to have widely different expansion coefficients. The bronze drive 
nut has a coefficient which is more than three times the coefficient for 
the iron-nickel alloy screw. The expansion of each part depends on its 
coefficient and effective length. By referring to Fig. 4, it is readily seen 
that the effective lengths of the drive nut and screw are determined by 
the mating of the threads on these two parts. Changing the position of 
the threaded portion of the drive nut changes the effective lengths of 
both parts. A considerable change in the klystron thermal coefficient can 
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be attained by this method; the present piece parts can be modified to 
change the klystron thermal coefficient by as much as ±O.2 megacycle 
per degree Fahrenheit. Numerical values have been derived relating the 
dimensional change to the thermal coefficient change for application of 
thermal coefficient correction as required. The dimensional change in 
the drive nut is obtained by a simple machine set-up. 

By application of reasonable tolerances on piece parts, adjustment of 
the thermal coefficient for individual klystrons is not necessary for pro
duction purposes. This is important since individual adjustment would 
require two thermal coefficient measurements, one before and one after 
adjustment. This would be a time-consuming and expensive procedure. 
A large assortment of drive nuts would also be required for selective use. 
For the first year of the 457 A klystron production, the thermal coefficient 
for all tubes will be measured to obtain data on the distribution for the 
coefficient. Individual limits of ±O.l.5 megacycle per degree Fahrenheit 
will be applied to satisfy the TL Radio System requirements. On subse-
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quent production, the coefficient will be measured by a sampling plan 
to be determined by the experience of the first year of production. A di
mensional change in the drive nut will be applied when necessary to 
maintain the average coefficient near zero. 

The results of coefficient measurements for the initial 40 klystrons 
made under production conditions are shown on Fig. 5. These data show 
a distribution for the coefficient having an average of -0.029 me per of 
with a 3-sigma value of 0.165 mc per of. This distribution represents 
early production experience with considerable variations in the supply 
of piece parts. For stable production with a continuity of supply, a tighter 
distribution is anticipated. Two individual points outside the 0.15 limit 
are shown in the distribution. In both cases a manufacturing deviation 
accounted for the dispersion. The data shown on Fig. 5 are for the ther
mal coefficient measured at the mid-band frequency of 11,200 mega
cycles. Correlation data for the coefficient at the extremes of the TL 
Radio frequency band are shown on Figs. 6 and 7. These data were col
lected on 28 tubes and indicate that limits of ±0.15 mc per of at mid
band correspond to limits of ±0.20 mc per of at 11,700 mc and +0.20 
to -0.24 mc per of at 10,700 mc. The extreme limits from these data 
will result in a frequency drift of 0.72 mc for the 457 A klystron in the 
TL Radio System when subjected to an ambient temperature range of 
-40° to + 140° Fahrenheit. For these extreme conditions, the 457 A fre
quency error due to thermal effects is within the one-megacycle objective 
for the TL Radio System. 

v. CONCLUSIONS 

The frequency stability of the 457 A klystron is within the TL Radio 
System objectives, and the need for automatic frequency control of the 
transmitter has been eliminated by passive methods. Elimination of the 
need for automatic frequency control reduces system costs and main
tenance. 
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Models for Approximating Basilar Mem
brane Displacement-Part II. Effects of 

Middle-Ear Transmission and Some 
Relations between Subjective 
and Physiological Behavior 

By JAMESL FLANAGAN 
(Manuscript received December 26, 1961) 

This report presents the second half of results of a study on the peripheral 
ear. There are two obfectives: (1) to derive computational models for ap
proximating the mechanical displacement of the basilar membrane when 
the sound pressure at the eardrum is known, and (2) to demonstrate certain 
relations between subfective behavior measured experimentally and physio
logical behavior calculated from the models. The repwt describes a rational 
function approximation of middle-ear transmission. This result, in combi
nation with previously derived models for the inner ear, permits an analytical 
approximation of basilar membrane displacements in both apical and basal 
regions. Because the models are rational functions, they can, if desired, be 
simulated by lumped-constant electrical networks. Their computational 
tractability also permits straightforward approximations to temporal and 
spatial derivatives of displacement. Relations between computed membrane 
displacement and subfective behavior are illustrated for several psycho
acoustic phenomena, namely pitch perception, binaural lateralization, bi
naural time-intensity trade, threshold discrimination, and pure-tone mask
ing. The extent to which some of these phenomena can be correlated with, 
identified in, and predicted by the mechanical operation of the peripheral 
ear appears to be substantial. 

Part I of this report! described three analytical models for approxi
mating the displacement of the basilar membrane when the human ear 
is stimulated by sound. These models were valid for points lying roughly 
in the apical half of the membrane, that is, for frequencies less than about 

959 
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P (t) ~-----I 

G(S) 

Ylo (S) X (S) Yl.(S) 
P(S) = peS) • xeS) = G (s)· Flo (5) 

Fig. 1 - Schematic diagram of peripheral ear and functional relations between 
acousto-mechanical quantities. 

1000 cps. Over this frequency range the elastic effects of the middle ear 
predominate, and the displacement of the stapes footplate is essentially 
proportional to, and in phase with, the sound pressure at the eardrum. 
At higher frequencies the mass and viscous properties of the middle ear 
become important, and the displacement transmission to the stapes is 
no longer constant with frequency. Applicability of the previously de
rived models to this range of frequencies depends upon being able to 
account for middle-ear transmission. This report describes an effort to 
derive a computational model for middle-ear transmission and to ex
amine its relationship with the models for membrane displacement. 
Subsequent to this, an attempt is made to relate the mechanical opera
tion of the ear, as described by the models, to several facets of subjective 
auditory behavior. 

1. EFFECTS OF MIDDLE-EAR TRANSMISSION UPON MEMBRANE DISPLACE

MENT* 

The physiological functions to be considered are illustrated schemati
cally in Fig. 1. pet) represents the sound pressure at the eardrum as a 

* The material in this section was presented orally before the 60th meeting 
of the Acoustical Society of America, San Francisco, California, October, 1960. 
The abstract appears in J. Acoust. Soc. Am. 32, 1960, p. 1494. 
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function of time; x(t) is the equivalent linear displacement of the stapes 
footplate;* and Yl(t) is the displacement of the basilar membrane 
(cochlea shown uncoiled) at a distance l from the stapes. In terms of 
frequency-domain (Laplace) transforms, the middle-ear transmission is 
represented by G(s) and the stapes-to-membrane transmission by Fl(S). 

In deducing approximations to these functions, the peripheral car is 
assumed both to be mechanically linear over the range of interest and to 
constitute a passive system. A passive system is stable by definition. It 
has no normal modes whose amplitudes increase indefinitely with time. 
The functions G(s) and Fl(S) can therefore be approximated by rational 
functions of frequency whose coefficients are real and whose poles and 
zeros are either real or occur in complex conjugates. The functions can 
have no poles with positive real parts and only simple poles with zero 
real parts. 

The earlier paperl essentially treated functional approximations to 
F l ( s) (that is, middle-ear transmission was assumed constant with fre
quency, or, in the present notation, G(s) = 1). Two of the previously 
derived models will be useful in the present discussion. They are the first 
and third which, according to the notation used earlier, were called 
Fl(S) and F3(S). For convenience they are reproduced here and are: 

4+r S € -8:w-
( + ) [ 

1 J
2 371" 

F 1 ( S) = Cl(3Z s + 'Y (S + ex l) 2 + (3Z2 e I, 
(1) 

and 

where 

s = (0" + jW) 
(3l 

371" 

(2) 

is the complex frequency, 
is the radian frequency to which the point l distance 

from the stapes responds maximally, 
is a factor which matches the physiologically meas

ured variations in peak amplitude of displacement 
with resonant frequency (3zt, 

e-
s 

4i31 is a delay factor of 37r/4(3l seconds which brings the 

* In man, the stirrup does not move longitudinally as a planar piston but usu
ally exhibits some rotational motion. x(t) is taken here as the volume displace
ment of the footplate divided by its area. 

t The present form of this factor is applicable only to the frequency range 
below 1000 cps. Here, as previously discussed,! the value of r = 0.8. A minor 
modification will be made in this factor presently to make it appropriate for higher 
frequencies. 
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Fig. 2 - Pole zero diagrams for two functional approximations of pes). 

phase delay of the model into line with the phase 
measured on the human ear. This factor is princi
pally transit delay from stapes to point l on the 
membrane*. 

The membrane characteristics are therefore approximated in terms of 
the poles and zeros of these two functions. Because the resonant proper
ties of the membrane are nearly constant Q in character, the real and 
imaginary parts of the pole frequencies are related by a constant factor, 
i.e., (3z = kaz. For the present models, the best fits to the experimental 
data are obtained for the following choice of parameters: 

For FI(s): ~ = 0.1 to O.ot, 
{3z 

2 = 1.0 
{3l 

{3z 
2.0. 

ForF3(s):f!..!.= 1.7 
al 

(3) 

Therefore, to within a multiplicative constant, the imaginary part of 
the pole frequency {3z completely describes the model. The pole-zero 
diagrams for the two models are shown in Fig. 2. 

The real frequency responses of the models are evidenced by letting 
s = jw. If frequency is normalized in terms of r = w/{3z, then the rela-

* At low frequencies the phase of the model departs somewhat from the experi
mental data. See the discussion of this point in Ref. 1 and also in J. L. Flanagan 
and C. M. Bird, Minimum Phase Responses for the Basilar Membrane, J. Acoust. 
Soc. Am. 34, 1962, p. 114. 

t See earlier comments about fitting phase response. 
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tive phase and amplitude responses of FIUn and F3Ur) are shown in 
Fig. 3 for the parameters stated in (3). 

The inverse Laplace transforms of (1) and (2) are the displacement 
responses of the membrane to an impulse of displacement by the stapes. 
These representations will also be useful in the present discussion. If 
the mathematics is carried out the inverse transforms are found to be: 

tJl(t-T) 

fl(t) = clf3/+r {[0.033 + 0.3G0f3I(t - T)]e--2- sinf3l(t - T) 
tJl(t-T) 

+ [0.575 - 0.320f3I(t - T)]e--2 - COSf3I( t - T) - 0 .. 575e- tJZ (t-T)} (4) 

for t ~ T; e/f31 = 0.1 

O' , for t < T, 

and 

Q l+r 
~ [f3I(t - T)]2e- tJz (t-T)/1.7 sin f31(t - T) for t ~ ']1 

G (5) 

o for t < T, 

where the delay T = 3'n/4f31, as previously stated. In the earlier paper, 
the simplicity of h(t) was the main reason that F3(S) was considered 
as an approximation to the experimental frequency domain data. A plot 

---r---
I 

o 
f=O 7T 

0.8~------+---~--4--+~~~~~~----~---r--~-i-~ 
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-47T 

O~ ______ ~ __ -L __ J-~~~-L~~ ______ ~ __ ~ __ ~~ 

0.1 0.2 0.3 0.4 0.50.6 0.8 1.0 2 3 4 5 

NORMALIZED FREQUENCY, {= % 

Fig. 3 - Amplitude and phase responses for two F(s) models. 



964 THE DELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

w 
Cl 

2.0r----------------------------------------------------. 

1.5 

1.0 

f? 0.5 
::J 
c.. 
~ 
< O~~~--------~w-----------~~--------~~~------~ 
w 
> ;:: 
:5 -0.5 
w 
0::: 

-1.0 

-1.5 

Fig. 4 - Impulse responses for the membrane models. These responses are the 
inverse transforms of the frequency data in Fig. 3 and represent membrane dis
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of the responses (4) and (5), on a relative amplitude scale and with de
lay equalized, is shown in Fig. 4. The absolute time origins for the two 
traces are to the left of the relative origin by 1.9 and 1.5 radians respec
tively. 

As indicated above, the factor {3zHr in (1) and (2) has a form appro
priate to the frequency range below 1000 cps. If the membrane models 
are to be used at higher frequencies, this factor should be modified ac
cording to data given by Bekesl on the peak membrane displacement 
as a function of frequency (see Fig. 4 in Ref. 1). For constant sinusoidal 
displacement of the stapes, Bekesy's data indicate that the peak mem
brane displacement increases at about 5 db/octave up to around 1000 
cps, and then tends to flatten off and become roughly constant (at least 
up to about 2000 cps). 

This amplitude variation can be accounted for by altering the multi
plicative amplitude factor to {3zHr(27r·1000/{3z + 27r·1000f. The modifi
cation causes the peak response (of the curve shown in Fig. 3) to rise 
at about 5 db/octave below 1000 cps, and to flatten off above this fre
quency. At low (3z frequencies the amplitude factor is the same as before 
if the constant Cl is readjusted by multiplying it by 2r. With this minor 
modification, then, the functional approximations to Fz(s) are appropri
ate for use at frequencies higher than 1000 cps. 
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1.1 A 11£ odel for J}[ iddle-Ear Transmission 

To account for middle-ear transmission one would like an analytical 
specification of the stapes displacement produced by a given sound pres
sure at the eardrum for all frequencies of interest. Quantitative physio
acoustical data on the operation of the middle ear are very sparse. The 
data which are available are due largely to Bekesy3 and to Zwislocki.4 

By considering the topology of the mechanical circuit and the values of 
elastic, mass, and viscous constants measured in physiological prepara
tions, it is possible to deduce information about the middle-ear trans
mission. Zwislocki used this approach to develop an analog electrical 
circuit for the middle ear in which voltage is analogous to pressure, and 
current to volume velocity. The circuit includes ten components rep
resenting the acousto-mechanical elements of the middle ear. Seven of 
the elements are energy storage elements. 

Using the constants suggested by Zwislocki, we measured the transfer 
characteristics of the middle-ear circuit when terminated in an imped
ance analogous to the input mechanical impedance of the cochlea. For 
a constant pressure at the eardrum, the amplitude and phase responses 
of the stapes displacement are shown by the curves in Fig. 5. * 

Although the characteristic equation corresponding to Zwislocki's 
analog circuit is of seventh degree, the stapes displacement can be 
analytically approximated reasonably well by a function of third degree. 
(As discussed in the earlier paper, the criterion of fit is again taken as an 
intuitive one.) Such an approximating function is of the form: 

G(s) = (s + a)[(/~ a)2 + b2]' (6) 

where Co is a positive real constant. [When combined with F l (s), the 
multiplying constants are chosen to yield proper absolute membrane 
displacement. For convenience, therefor e, consider Co = a( a

2 + b2
) so 

* After the present work was carried out, an excellent paper by A. Mpller (Net
work Model of the Middle Ear, J. Acoust. Soc. Am. 33, 1961, p. 168) appeared in 
which analogous electrical circuits for the middle ear are deduced on the basis of 
input impedance measurements at the drum and the middle-ear topology. For a 
comparison with Zwislocki's data (which we had already used), we constructed 
several of Mpller's circuits and measured their transfer characteristics. Although 
their frequency responses differ in fine detail, the results of Zwislocki and Ms)ller 
agree in the gross aspects of the transmission characteristics. As do Bekesy's 
earlier results, both sets of the latter data suggest some uncertainty and varia
bility in the middle-ear transmission, particularly in regard to the frequency at 
which the transmission begins to diminish appreciably. Apparently the function 
differs among individuals. One of the main objectives of the present paper, how
ever, is to demonstrate a computational technique which has been found useful in 
explaining certain auditory phenomena. Whenever physiological data are in
proved and extended, the results can easily be incorporated into the analytical 
technique presented here. 
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Fig. 5 - Functional approximation of middle ear transmission. The solid 
curves are from Zwislocki4 and the plotted points are amplitude and phase values 
of G(s). 

that the low-frequency transmission of G(8) is unity.] When the pole 
frequencies of G( 8) are related according to 

b = 2a = 271'(1500) rad/sec, (7) 

the fit to Zwislocki's data is shown by the plotted points in Fig. 5. 
The inverse transform of (6) is the displacement response of the stapes 

to an impulse of pressure at the eardrum. It is obtained easily and will 
be useful in the subsequent discussion. Let 

where 

1 
(8) 

(8 + a)2 + b2' 

The inverses of the parts are: 

-at 
e . b Tsm t. (9) 

The in verse of G ( 8) is then 

get) = jt Yl( T )ait - T) dT~ 
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or 

e -at C e-bt / 2 

get) = Co b (1 - cos bt) = _o-b- (1 - cos bt). (10) 

Also for use at a future point in the discussion we note that the time de
rivative of the stapes displacement is: 

-bt/2 

get) = ~ (2 sin bt + cos bt - 1). (11) 
2 

Plots of g( t) and fi( t) are shown in Fig. 6. 

1.2 Combined Response of .Llfiddle Ear and Basilar .Llfembrane 

The combined response of the models for the middle ear and basilar 
membrane is simply: 
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Hl(s) = G(S)Fl(S) 

hl(t) = g(t)*!z(t). 
(12) 

To simplify the computations and to illustrate both results, the response 
for model FI(S) will be computed in the frequency domain and that for 
F3 (s) will be computed in the time domain. 

1.2.1 Inverse Transform of HI(s) 

Disregarding for the moment the constant delay and amplitude terms, 
which can be resupplied at the end if needed, the problem of transform
ing HI(s) = G(S)FI(S) amounts to computing the inverse of: 

Hr'(s) = _1_. 1 .s + € • .,-:-_--= __ _ 
S + a (s + a) 2 + b2 S + 'Y [( s + 0:) 2 + {J2)2' 

(13) 

Expand If I' ( s) as' partial fractions: 

, A Bs + c + ~ + E(s) 
HI (s) = s + a + (s + a) 2 + b2 S + 'Y [ (s + 0:) 2 + {J2)2 

(14) 

where 

1 € - a 1 
A=-·--· 'Y~a 

b2 'Y - a [( 0: - a) 2 + {J2)2' 

B = 2 Re B' 

B' = ~. € - a + jb. 1 
2b2 'Y - a + jb [(0: - a)2 + (J2 - b2 + j2b(0: - a)]2 

C = [a(2 Re B') - b(2 1m B')] 

1 1 €-'Y 
D = a - 'Y' (a - 'Y) 2 + b2 ' [( 0: - 'Y) 2 + (J2)2 

E(s) = (ao + aIS + a2s2 + a3s3). 

On the basis of the previous findings the problem is particularized to the 
conditions: 

{J = 20: 

b = 2a 

'Y={J 

€ = 0 

Also let: 'YJ = {JIb 

'Y~a 

{J ~ b. 
(15) 

If the arithmetic is followed through, the constants are found to be: 
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A 
1 

b6 (27] - 1) (1.257]2 - 0.507] + 0.25)2 

B' = (0.50 - j1.00) 
2b6 (7] - 0.50 + jl.OO)[(1.257]2 - 0.507] - 0.75) + j(7] - 1.00))2 

B = 2 Re B' 

C = b(Re B' - 21m B') 

D =! 1 
b6 (7] - 0.50)(7]2 -7] + 1.25)(1.25)27]3' 

and the coefficients of E (s) are found to be: 

ao = -7]3b\3.127]bA + 1.251]C + l.tiGbD) 

at = _b2 [A(3.507]2 - 7] + 0.25) + B(3.507]2 - 2.007] - 0.25) 

+ D(2.5~2) + C e~ ;; 1)] (16) 

a2 = - [Ab(27] - 0.50) + Bb(27] - 1) + Db7] + Cl 

a3 = - (A + B + D). 

Although somewhat involved numerically, the inverm transform of 
lfl'(S) can now proceed termwise as indicated in (14). The basic pro
cedure from this point has already been indicated in the appendix of 
the earlier paper. When the details of this instance are carried through, 
the result is: 

h/ (t) = A e-bt /2 + B e -bt/2 (cos bt - 0.50 sin bt) 

+ C (-bt/2 . bt) + D -TJbt + (-TJbt/2. bt) b e sm e e sm 7] 

. {2:3b3 [ao - a, ~ + a,( 1.25~'b2) - a3( 1.63~3b3) ]} 

+ (7]bt e-TJbt /2 sin 7]bt) ~') ~b2 [al - a21]b - a3(0.257]2b2)]~ (17) 
\ ... 7] ) 

-TJbt/2 (- TJbt/2 ) { 1 [ 7]b + a3 e cos 7]bt + 7]bt e cos 7]bt 27]3b3 - ao + al 2 

+ a2(O.75~'b') - a3(1.38~3b3)]}; for t;;,: O. 

hl(t) is obtained from hl'(t) by resupplying the constant delay T 
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Fig. 7 - Displacement responses of apical, middle and basal points on the 
membrane to an impulse of pressure at the eardrum. These are computed from the 
inverse transform of [G(S)Fl(S)]. 

37l"/4{3 and the multiplicative amplitude constants; that is, by letting 
t = (t - T) and by multiplying h' (t - T) by 

[COcl{3lHr(27l"·1000/{3l + 27l"·1000f]' where r = O.S. 

The form of the impulse response is thus seen to depend upon the 
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parameter 1] = (3lb. Values of 1] < 1.0 refer to (apical) membrane points 
whose frequency of maximal response is less than the critical frequency 
of the middle ear. For these points the middle-ear transmission is es
sentially constant with frequency, and the membrane displacement is 
very nearly indicated by fl(t) in (4). On the other hand, values of 
1] > 1.0 refer to (basal) points which respond maximally at frequencies 
greater than the critical frequency of the middle cal'. For these points 
the middle-car transmission is highly dependent upon frequency and 
would be expected to influence strongly the membrane displacement. To 
illustrate this point, (17) has been evaluated for 1] = 0.1,0.8, and 3.0. 
The result, with the delay resupplied, is shown in Fig. 7. 

For an impulse of pressure delivered to the eardrum, the three solid 
curves represent the membrane displacements at points which respond 
maximally to frequencies of 150, 1200, and 4500 cps. Each of the plots 
also includes a dashed curve. In Figs. 7 (a) and 7 (b ), the dashed curve 
is the membrane displacement computed by assuming the middle-ear 
transmission to be flat with zero phase. [This is simply the response 
£-lF1(s).] In Fig. 7(c) the dashed curve is the time derivative of the 
stapes displacement, (J(t), taken from Fig. 6. The suggestion is that in 
the basal region, the form of the membrane displacement is very similar 
to the derivative of the stapes displacement. This apparently is the case, 
and this point will be considered again presently. 

1.2.2 Inverse Transformfor H3(S) 

If, as in the previous section, delay and scale constants are temporarily 
disregarded, the inverse transform for [G( s )F3( s)] is given by the time
domain convolution: 

h,'(t) ~ [(llt)2 e--:~7 sin Ilt]. [0; (1 - cos bt)]; 

or 

h/(t) j t {3T { b(t-T) } 

o [({3r)2 e -1.7 sin (3r] e- b 2 [1 - cos bet - r)], dr, 
(18) 

for t ~ o. 

When this integration is carried through, the result is: 

h,'(t) ~ (bY [Im(P) - } Im(Q) - ! Im(R)l; t ~ 0 (19) 
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where 

(P) = [G - i) + j~ ] [[ e ;'; {cos ~bt + j sin ~bt I 

{

(bt)2 _ 2bt + 2 } 

- [G - 1~7) + j~J [G - 1~7) + j~J 

_[G~~)2+j~J]] 
(Q) = [( 1 ~ ) 1 _ ] [[ e _~t {cos 1]bt + j sin 1]bt} 

- - - + J(1] - 1) 
2 1.7 

{

(bt)2 _ 2bt + 2 } 

- [ G - 1~7) + j( ~ -- 1)] [ G - 1~7) + j( ~ - 1) J 
-[(i~2~): ;(: ~11b)J2]] 

(R) = [(1 ~) 1 _ ] [[e -1]ot/1.7 { cos 1]bt + j sin 1]bt} 
- - - + J(1] + 1) 
2 1.7 

-{ (bt)2 - [ G _ f:t) 2: j (~ + 1) ] + [ G - f:t) : j (~ + 1) J} 
-[(r:2~): ~(~: :;J2J]-

As before, h3(t) is obtained by resupplying the amplitude factors and 
the delay T. By way of examining the form of h3(t), (19) has been evalu
ated for 1] = 0.1 and 3.0. The resulting h3(t) is plotted in Fig. 8. Com
parison with the previous response for h1(t) shows the results to be 
similar. 

1.2.3 Combined Frequency-Domain Responses 

The individual frequency-domain responses for G(s) and Fz(s) have 
been shown in Figs. 3 and 5 respectively. The combined response in the 
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Fig. 8 - Impulse responses for apical and basal points computed from [gCt) 
* faCt)]. 

frequency domain is simply the sum of individual amplitude (in db) 
and phase (in radians) responses. The combined amplitude and phase 
responses for the model G(s)Fl(s) are shown in Figs. 9 and 10, respec
tively. 

As already indicated by the impulse responses, one sees that the re
sponse of apical (low-frequency) points on the membrane is given es
sentially by F (s), while for basal (high-frequency) points the response 
is considerably influenced by the middle-ear transmission G( s). In 
particular, notice two things about the frequency response of the mem
brane model [i.e., F(w)]. One, the low-frequency skirt of the amplitude 
curve rises at about 6 db/octave. And two, the phase of the membrane 
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model [i.e., F(w)] approaches + 7r/2 radians at frequencies below the 
peak amplitude response. In other words, at frequencies appreciably less 
than its peak response frequency, the membrane function F(w) behaves 
approximately as a differentiator. 

Because the middle-ear transmission begins to diminish in amplitude 
at frequencies above about 1500 cps, the membrane displacement in the 
basal region is roughly the time derivative of the stapes displacement. The 
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waveform of the impulse response along the basal part of the membrane 
is therefore approximately constant in shape. Along the apical part, 
however, the impulse response oscillates more slowly as the apex is ap
proached. This has already been illustrated in Fig. 7. [If the apical re
sponse is considered on a time scale normalized in terms of ({3t), then 
the displacement waveform is constant in shape.] This relation can, and 
has been, supported by psychoacoustic measurements. These results will 
be discussed in the second part of the paper. 

Notice one other thing from Fig. 9. Because the amplitude response of 
the middle ear declines appreciably at high frequencies, the amplitude 
response of a basal point is highly asymmetrical (for example, the com
bined response for TJ = 3.0.) The result is that a given basal point, while 
responding with greater amplitude than any other membrane point at 
its characteristic frequency (i.e., at (3z), responds with greatest amplitude 
(but not greater than some other point) at some lower frequency. 

1.3 Some Temporal and Spatial Relations For 111 embrane Displacement 

Certain results from physiological research 5 suggest that shear stresses 
along the basilar membrane may be as important in the mechanical-to
neural transduction as absolute displacements of the membrane. Ac
cordingly, the spatial derivative of the displacement may be the mechani
cal factor of consequence. The computational tractability of the model 
permits a straightforward consideration of some temporal and spatial 
relations for the displacement. * 

As a beginning, because they are easiest to talk about, consider only 
apical membrane points where the middle-ear transmission is essentially 
constant. In this case the displacement is nearly J(t) [see (4) and (5)], 
and is only a function of t and the point parameter {3. The variable {3 is a 
function of the distance along the membrane and can be so specified. 
(This functional relationship will be developed presently.) The impulse 
response is essentially a function of the product (3(t - T) and has a 
multiplicative factor involving {31+r (i.e., (31+r g[{3( t - T)]). This fact 
points up a simple aspect of the dispersive nature of the basilar mem
brane. 

If a disturbance is propagating in a nondispersive medium, the wave 
moves with a velocity which is the same for all frequency components, 
and the waveform is maintained undistorted. Let the wave for a one
dimensional situation be p (t,x) = P (ct - x), where c is the velocity. 

* See the further discussion of spatial derivatives (displacement gradients) in 
Section II. 
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Then, 

ap = ap and ap 
at C a(ct - x)' ax 

ap 
(20) 

a(ct - x) , 

and the time and space derivatives have the same waveform. The cor
responding relations for the displacement responses of the membrane, 
however, must differ somewhat in time waveform. The model h( t), 
Eq. (1.5), because of its simplicity, is particularly useful for illustrating 
this. 

Again neglecting the amplitude constants which do not involve (3 or t, 
and which can be resupplied in the result, faCt) reduces to: 

j/' (t) = (3I+Tg[{3(t - T)]; ~ T 

where 

g[{3(t - T)] [(3( t - T) ]2e -{3(t-T)/l. 7 sin (3( t - T), (21) 

and 

rp = 3'11/4{3. 

Then, 

aj/' = {3T [{3 ag + (1 + r)g]. 
aj3 aj3 

(22) 
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Fig. 11 - Location of peak displacement of basilar membrane as a function of 
frequency (after Bekesy3). 
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When the differentiation is carried out the result is: 

iJ:~ = fJ'[B(t - 1')]2e-~(t-T)lI.7 [fJt cos fJ(t - 1') 

+ (1 + r + fJ(t 2~t T) - i.~) sin fJ(t - T) l t;;; T. 

(23) 

As indicated earlier, the functional relation between the frequency (3 
and the distance along the membrane is needed to put (23) into the form 
of a space derivative. Bekesl gives data on the place of maximal dis
placement along the membrane as a function of frequency. These data 
are replotted in Fig. 11. For purposes of the present discussion, the data 
for frequencies less than about 1000 cps are of main interest. If the 
basilar membrane is assumed to be 35 mm long, and if distance is now 
reckoned from the apical end, the low-frequency data are reasonably well 
approximated by: 

(3 
x = 7.5 10glO 407r' (24) 

where x is the distance from the apex in mm. This line is drawn in Fig. 11. 
lt is now easy to compute 

aft = af/' a(3 
ax iij3' ax' 

where 

a(3 (3 
ax 7.5 10glOe ' (25) 

= 0.31(3. 

Applying this result to (23) yields: 

af/' 
ax 

O.3fJi+'[fJ (t - T)]' e -PC t-T)lI. 
7 [fJt cos fJ (t - T) 

+ (1 + r + fJ(t 2~t 1') - i.~) sin fJ(t - 7') J. 
(26) 

Except for the constant amplitude factor, this is the spatial derivative 
of the impulse response for apical membrane points. It is plotted in Fig. 
12. One notices its form is not radically different from the displacement. 

The time derivative follows directly from (21), and is: 

,-t" ~ = (31+r ag = (32+7 ~ 
at at a(3t' 
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or, 

f32+T[f3(t - T) ]e-{3(t-T)/1.7 [f3( t - T) cos f3( t - T) 

+ (2 - (3(t 1~7 1')) sin (3(t - 1')]; t;;; 1'. 

(27) 

This function, except for amplitude factor, is the time derivative of the 
apical impulse response. It is plotted in Fig. 13. One notices that for a 
given (apical) point on the membrane, the time derivative of displace
ment is not greatly different in form from the spatial derivative. As men-

Fig. 12 - First spatial derivative of membrane displacement. 
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Fig. 13 - First time derivative of membrane displacement. 
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tioned earlier, the derivatives would have the same form if all frequency 
components propagated at the same velocity. 

It also is of interest to consider the frequency-domain correlate of the 
spatial derivative. In this case it is equally easy to begin in a general 
way and not initially restrict the discussion to the apical region. For the 
model HI(s) the impulse response can be written in terms of its Laplace 
transform: 

1 l iw 
h(t) = ?" H I (s) est ds, 

..,7rJ -j w 

where 

(28) 

and where G(s) and FI(S), the latter a function of the point parameter {3, 
have been specified previously. The spatial derivative, in terms of the 
frequency parameter {3, is therefore: 

(29) 

The quantity of interest is aFt!a{3. From the previous discussion: 

_ Hr 7r S E - 4jj 
( 

2000 
)

T ( + ) [ 1 ]2 311" •• 

F I(s,{3) - CI{3 (3 + 20007r S + 'Y (s + a)2 + {32 e . (30) 

Taking, as earlier indicated, {3 = 2a, 'Y = (3, and E = 0, and carrying 
through the differentiation gives: 

[
4 + r r 

F I (s,(3) -{3- - ((3 + 20007r) 
(31) 

37rs 2(s + 2.5(3) 1] 
+ 4(32 - (s + 0.5(3)2 + {32 - S + (3 . 

If we consider the result for real frequencies (i.e., s = jw) and norma
lize frequency by letting?; = wi (3, then (31) becomes: 

aFl = F (?; (3) ~ [[4(3 + 20007r( 4 + r )] 
a(3 1, {3 ({3 + 20007r) 

. 37r 2(2.5 + j?;) 1] 
+ J?; 4 - (1.25 - ?;2 + j?;) - 1 + j?; . 

(32) 

This can be put in terms of the spatial derivative (at least for apical 
points) by applying (25). If this is done, then the spatial derivative be-, 
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Fig. 14 - Frequency domain correlate, V(r), of the first spatial derivative. 

comes: 

(33) 

For points lying in the apical half of the membrane, therefore, (i.e., 
(3 < 20007r) the frequency-domain representation of the spatial deriva
tive is simply FI(S) (see Fig. 3) multiplied by the bracketed factor 
V (s) in (33). The phase and amplitude of this factor for (3 « 20007r 
are plotted in Fig. 14. 

One notices that for S < 1 the bracketed term, to a crude approxima
tion, is similar to a time differentiation. That is, the amplitude variation 
is +6 db/octave and the phase is + 7r/2. This indication is consonant 
with the previous time-domain results shown in Figs. 12 and 13. 

1.4 An Electrical Circuit for Simulating Basilar Membrane Displacement* 

On the basis of the relations developed in the previous sections [Eqs. 
(6) and (30), for example], it is possible to construct electrical circuits 

* The material in this section was presented orally before the Sixty-Second 
Meeting of the Acoustical Society of America, Cincinnati, Ohio, November, 1961. 
The abstract appears in J. Acoust. Soc. Am., 33, 1961, p. 1670. 



BASILAU MEMBUANE DISPLACEMENT - P AUT II 981 

DELAY 
LINE 

J J 1 
RoCo = 1500 TT 

L C - ___ I ---= 
o 0 - 1.25 (2TT'1500)2 

Ro= (2TT'1500)L o 

Ri. C1 = Ll/R-t = 1/J3l 

LlCl = 1/1.25/31.2 

71. = 3TT/4J3l 

I 
I 

:C'I 
I -=
I 
I 
I 
I 
I 
I 
I 
I 
I 

Ln 

Fig. 15 - Electrical network representation of the model [G(S)Fl(S)]. 

whose transmission properties are identical to those of the functions 
G( s) and F l ( s). This is most easily done by representing the critical 
frequencies in terms of simple cascaded resonant circuits. The additional 
phase delay can be supplied by means of an electrical delay line. A simu
lation of G(s) as given in (6) and Fl(s) as given in (30) (for EO = 0) is 
shown in Fig. 15. The voltage at an individual output tap represents 
the membrane displacement at a specified distance from the stapes. The 
electrical voltages analogous to the sound pressure at the eardrum and 
to the stapes displacement are also indicated. The buffer amplifiers 
labelled A have fixed gains which take account of the proper multiplica
tive amplitude constants. 

The circuit elements are selected according to the relations stated for 
G(s) and Fl(s). [See Eqs. (3) and (7).] For example, the procedure can 
be as follows. For the middle-ear simulation, choose a convenient Ro', 
say 10K. Then, because b = 2a = 27T'·1500, and because a = l/Ro'Co', 

Co' = 0.02 }.Lf. 



982 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

Select a convenient Lo, say 2h. Then, because 1.25b2 = II LoCo and 
a = Ro/2Lo, 

Co = 0.005 14, 
and 

Ro = 19K. 

The components for the basilar membrane networks arc chosen in the 
same way. In this case: 

1 
{3l = R/Cl" 

1 2 r:{3 2 _ 1 
. v l - LlC

l
' 

and 

Rz 
al = 2L

l
' 

Consider, for example, the membrane point which responds maximally 
to 4500 cps (i.e., (3l = 27r·4500). For cOllvenience take Rz' and Ll as 10K 
and Ih, respectively. Then: 

C/ = 0.0035 III 

C1 = 0.001 III 

Rl = 28[(. 

For each membrane point the relative gains of the amplifiers are set to 
satisfy the amplitude relations implied in Fig. 9. This takes account of 
the constant multiplying factors in the model specification. 

Some representative impulse responses of the analog circuit of Fig. If) 
are shown in Fig. 16(a). One notices the degradation in time resolution 
as, the response is viewed at points more apicalward. 

As indicated earlier, the spatial derivative may figure in the conversion 
of mechanical to neural activity. In previous psychoacoustic work6 it 
was found useful to approximate the first spatial derivative by a finite 
difference. The present circuit can be used to provide such an approxi
mation by taking the differences between the deflections of adjacent, 
uniformly spaced points. Fig. 16(b) shows first-difference approximations 
to the spatial derivative obtained from the analog circuit by taking: 

ay ~ y(t,x + L\x) - y(t,x) 
ax- L\x 
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Fig. 16 - (a) Impulse responses measured on the network of Fig. 15; (b) first 
difference approximations to the spatial derivative measured from the network 
of Fig. 15. .. 

with .1.x = 0.3 mm. These responses can be compared (for apical points) 
with the calculated derivative in Fig. 12. Because of amplification, the 
polarity of the derivative traces in Fig. 16(b) is inverted from that shown 
in Fig. 12. 

II. SOME RELATIONS BETWEEN SUBJECTIVE AND PHYSIOLOGICAL BEHAVIOR 

The preceding discussion derived computationally tractable models 
for the operation of the middle ear and basilar membrane. Can these 
models be used to further our understanding of auditory subjective 
behavior? In particular can they help us to relate psychoacoustic phe
nomena to the physical operation of the peripheral ear? 

The models describe only the mechanical functioning of the ear. Any 
comprehensive hypothesis about auditory perception must make pro-: 
visions for the transduction of mechanical displacement into neural 
activity. The details of this process are not well understood and the as-: 
sumptions that presently can be made must be of an approximate and 
simplified nature. Three such assumptions will be useful to us. Although 
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gross simplifications, they do not seem to violate known physiological 
facts. 

The first assumption (actually a fact) is that sufficient local deforma
tion of the basilar membrane elicits neural activity in the terminations 
of the auditory nerve at the organ of Corti. Such neural activity may 
be in the form of volleys triggered synchronously with the stimulus, or 
in the form of a signaling of place localization of displacement. Implicit 
in this is the notion that the displacement, or perhaps spatial derivatives 
of displacement,5 must exceed a certain threshold before nerve firings 
take place. * The number of neurons activated depends upon amplitude 
of membrane displacement in a monotonic fashion. Psychological and 
physiological evidence suggests that the intensity of the neural activity 
is a power-law function of the mechanical displacement. A single neuron 
is presumably a binary (fired or unfired) device. It is refractory for a 
given period after firing; hence a limit exists upon the rate at which it 
can fire. Large populations of neurons, all of which arc not refractory at 
the same time, can give rise to neural volleys at rates greater than the 
maximum rate of a single clement. 

Second, neural firings occur on only one "polarity" of the displacement, 
or of the spatial derivative. 7 In other words, some process like half
wave rectification operates on the displacement function, or on its spatial 

* Earlier, in Section 1.3, it was suggested that the spatial derivative of dis
placement, as well as the displacement, may be important in the mechanical-to
neural conversion process. Further explication of this allusion and the present 
one is necessary. 

Electrophysiological experiments on guinea pig [G. von Bekesy, J. Acoust. 
Soc. Am., 25 (1953) p. 786; H. Davis, Ann. Oto. Rhin. Laryn. 67 (1958) p. 789.] 
suggest that the outer and inner hair cells of the organ of Corti differ in their 
sensitivities to mechanical stimulation. The outer hair cells are sensitive to bend
ing only in a direction transverse to the long dimension of the membrane. Further 
than this, only outward bending of the hairs (away from arch of Corti) produces 
an electrical potential in the scala media favorable for exciting the auditory nerve 
endings. This outward bending is produced on upward motions of the basilar 
membrane - that is, motions which drive it toward the tectorial membrane and 
produce a relative shear. 

On the other hand, the inner hair cells, which reside between the arch of Corti 
and the axis of the cochlear spiral, are sensitive to bending in a direction parallel 
to the long dimension of the membrane. In this case only bending toward the apex 
of the cochlea produces a scala media potential favorable for stimulating the 
nerve. So far as a given point on the membrane is concerned, the inner hair cells 
are essentially sensitive to the longitudinal gradient of displacement - that is, 
to the spatial derivative in the long dimension. Furthermore, the inner cells fire 
only on that polarity of the gradient which corresponds to bending toward the 
apex. Threshold for firing of the inner cells apparently is about 20 db higher than 
that for the outer cells. 

If this behavior is common to the human ear, displacement gradient, as well as 
displacement may be significant. As the results of Section 1.3 show, the displace
ment and the spatial derivative have gross features which are similar. For this 
reason the hypotheses and arguments to be put forward in this section generally 
can apply equally to displacement and gradient. 
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derivatives. Third, the membrane point displacing with the greatest 
amplitude originates the predominant neural activity. (More strictly, 
perhaps, this is the point experiencing the greatest transverse and longi
tudinal bending.) The latter may also operate to suppress or inhibit 
activity arising from neighboring points. 

These assumptions, along with the results from the models, have in a 
number of instances been helpful in interpreting subjective auditory 
behavior. Without going into any case in great depth, let us consider 
several of these instances. 

2.1 Pitch Perception 

Pitch is that subjective attribute which admits of a rank ordering on a 
scale ranging from low to high. As such, it correlates strongly with ob
jective measures of frequency. One important facet of auditory percep
tion is the ability to assign pitch to sounds which exhibit time periodic
ity. 

Consider first the pitch of pure (sinusoidal) tones. For such stimuli the 
basilar membrane displacement at any point is sinusoidal. The frequency 
responses given previously in Fig. 9 indicate the relative amplitudes of 
displacement versus frequency for different membrane points. At any 
given frequency, one point on the membrane responds with greater am
plitude than all others. In accordance with the previous assumptions, 
the most numerous neural volleys are elicited at this maximum point. 
For frequencies sufficiently low (less than about 1000 cps) they are 
triggered once per cycle and at some fixed epoch on the displacement 
waveform. Subsequent processing by higher centers presumably ap
preciates the periodicity of the stimulus-locked volleys. For frequencies 
greater than about 1000 to 2000 cps, electro-physiological evidence sug
gests that synchrony of neural firings is not maintained.9 Pitch is appar
ently perceived through a signaling of the place of greatest membrane 
displacement or displacement gradient. The poorer frequency resolution 
of points lying in the basal part of the basilar membrane probably also 
contributes to the psychoacoustic fact that pitch discrimination becomes 
less acute at higher frequencies. lO 

Suppose the periodic sound stimulus is not a simple sinusoidal tone 
but is more complex, say repeated sharp pulses. What pitch is heard? 
For purpose of illustration, imagine the stimulus to be alternately posi
tive and negative periodic impulses. Such a pulse train has a spectrum 
which is odd-harmonic. Pulse rate and fundamental frequency are in the 
ratio of two-to-one. If the pulses occur slowly enough, the membrane 
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. Fig. 17 - Displacement responses for alternate positive and negative pulses 
simulated by the network of Fig. 15. 

displacements at all points along its length will resolve each pulse in 
time. That is, the membrane will have time to execute a complete, 
damped impulse response at all points for eaeh pulse, positive or nega
tive. If, however, the fundamental frequency of the train is sufficiently 
high, the fundamental component will be resolved (in frequency) at the 
most apically responding point. This situation is illustrated by the traces 
in the first and second columns of Fig. 17. These waveforms were meas
ured on analog networks· as illustrated in Fig. If). The oscilloscope gain 
was adjusted for constant peak-to-peak amplitude to display the wave
forms more effectively. The proper relative amplitudes are therefore not 
indicated in the traces. 

For the low pulse-rate condition (25 cps fundamental) in the first 
column, one might imagine that neural firing synchronous with each 
pulse, regardless of polarity, would be triggered at all points along the 
membrane. The perceived pitch might be expected to be that of the pulse 
rate, and it is. 6 For such stimulation, the models indicate that the great
est membrane displacements occur near the middle portion, in the region 
maximally responsive to 1000 to 2000 cps. 

In the second column, the fundamental frequency is 200 cps. This is 
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high enough for the apical end of the membrane to resolve the funda
mental component. The displacement of the 200 cps point on the mem
brane is the fundamental sinusoid, while the more basal points continue 
to resolve each pulse in time. At the apical end, neural volleys might be 
expected to be triggered synchronously at the fundamental frequency, 
while toward the basal end the displacements favor firings at the pulse 
rate. For this condition, the apical fundamental-correlated displacements 
are generally of greater amplitude and subjectively more significant than 
the basal, pulse-rate displacements. The fundamental-rate volleys gen
erally predominate, and a pitch is heard corresponding to 200 sec-i. 

If this same stimulus is high-pass filtered at a sufficiently high fre
quency, only the basal displacements remain effective in producing the 
pitch percept. If the present arguments continue to hold, this filtering 
should again give rise to a pulse-rate pitch because the time resolution 
in the basal end separates each pulse, whether positive or negative. 
Psychoacoustic measurements show this in fact to be the case. ll Repre
sentative membrane displacements for this condition, as given by the 
models, are shown in the third column of Fig. 17. 

A slightly more subtle effect is obtained if the high-pass filtering is 
made at a low harmonic number, for example, at the second harmonic 
so as to remove only the fundamental component. Under certain of these 
conditions the significant membrane displacement can be seen to exhibit 
displacements that favor fundamental-rate neural activity. The pitch 
percept would then be expected to be the fundamental, even though the 
fundamental is not present in the stimulus. Again psychoacoustic meas
urements give this result.12 The effect is the so-called residue pitch. 

Another of the many variations of pulse stimuli, but one which is 
diagnostically useful in exploring pitch perception, is the periodic, uni
polar impulse train in which the equispaced pulses have amplitudes 
(areas) alternately a and b. Such a stimulus exhibits an infinite number 
of complex spectral zeros, the imaginary parts of which occur at every 
other spectral line. The spectral envelope is cycloidal and is described 
by: 

K(s) = (a + be-ST
/
2
), 

where T is the fundamental period. The spectral zeros lie at 

= _ ~ I ! /b! ± . 2 (2n + 1) 7r 
S T na J T ' 

and the ratio of odd-line amplitude to even-line amplitude is: 

R = ! K(s) !s=i2Jr/T = 
I K ( s) Is=i4Jr/T [~J a + b . 

(34) 

(35) 
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Fig. 1S-Subjective pitch assigned to a periodic pulse train composed of sharp 
pulses with alternate amplitudes a and b. !::J.L = 20 log a/b. The pitch equation is 
determined by matching the uniform pattern B to the test pattern A. 

One psychophysical question that could be posed is "For a given sen
sation level, fundamental frequency and alb ratio, what is the pitch?" 
When this question is answered by means of a pitch-matching experi
ment, the result for several values of the variables is shown in Fig. 18. 
These results are for a sensation level of approximately 45 db. When the 
alb ratio is less than about 4 db, one never hears any pitch except the 
pulse rate. On the other hand, when the alb ratio is greater than about 16 
db, one never hears any pitch but one-half the pulse rate, i.e., the funda
mental. Between these level differences, a transition from one pitch mode 
to the other takes place. The transition depends upon fundamental fre
quency as shown in the figure. As in the previous case, calculations and 
observations with the analog networks show the correlation between 
these modes and the displacement patterns of the basilar membrane. 
Unlike the situation depicted previously in Fig. 17(b), however, a pitch 
percept equivalent to half the pulse rate does not necessarily mean that 
the fundamental frequency is resolved by the membrane. 

A somewhat different example of pitch stimulus is periodically inter
rupted random noise. Under certain conditions of interruption rate, duty 
f~ctor and frequency content, chopped noise possesses a pitch.13 It is 
relevant to consider how such a signal is represented in the mechanical 
displacements of the basilar membrane. 

Because of the ear's frequency characteristics, a broad-spectrum noise 
would be expected to produce the greatest displacements somewhere 
near the middle of the membrane, around the 1000 to 2000 cps point. 
Let us look at these displacements for a fiat-spectrum noise which is 
chopped with constant duty factor of 0.2. The response waveforms for 
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Fig. 19 - Displacement responses simulated by the network of Fig. 15 for 
periodically interrupted noise. Constant duty factor = 0.2. 

several interruption rates are given in Fig. 19. For the slow rate, 500 
sec -t, the noise bursts are well resolved in time. Nerve volleys synchro
nous with the onset of the noise bursts might be expected for this stimu
lation. As the interruption rate is increased to upwards of 2000 sec-r, 
however, neither the stapes nor membrane displacements resolve each 
burst separately in time. Stimulus-locked synchrony of the neural ac
tivity might be expected to be impaired or lost, even if the neural volleys 
could be elicited at this rate. Psychoacoustic observations bear this out. 
They show that it is difficult to ascribe a pitch to interrupted noise for 
rates greater than about 1000 sec-1 even under favorable conditions of 
low duty factor. It is not clear how much of this limit is determined by 
neural resolution, and how much by mechanical. Very likely both fac
tors contribute to the resultant behavior. 

2.2 Binaural Laleralizat-Z:on 

Another aspect of perception is binaurallateralization. This is the sub
jective ability to locate a sound image at a particular point inside the 
head. The phenomenon is conventionally observed in earphone listening. 
If identical clicks (impulses of sound pressure) are produced simultane
ously at the two ears, the average listener hears the sound image to be 
located in the center of his head. If one click is produced a littler earlier 
(or with slightly greater intensity) than the other, the sound image shifts 



990 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

toward the earlier (or more intense) ear. This shift continues with in
creasing time difference until the image moves entirely to one side and 
eventually breaks apart. One then hears individual clicks located at the 
ears. 

Naively we suppose the subjective position of the image to be deter
mined by some sort of computation of coincidence between neural 
volleys. The volleys originate at the periphery and travel to higher 
centers via synaptic connections. The volley initiated earliest progresses 
to a point in the neural net where a coincidence occurs with the later 
volley to produce a subjective image appropriately off center. To the 
extent that intensity differences can shift the image position, intensity 
probably is coded, at least partially, in terms of the volley timing. As 
was the case in pitch perception, there are several areas in binaural 
phenomena where the ear models have been helpful in suggesting ex
planations of, and correlations with, subjective behavior. One of these 
areas is the effects of phase upon the binaurallateralization of clicks. 

Suppose one produces impulses of pressure at the two ears, of equal 
intensity but of opposite polarity (i.e., one a rarefaction and the other 
a condensation). How would a listener adjust the times of occurrence 
of such pulses so that he hears the sound image exactly ih the center of 
head? Let us consider what the displacement waveforms and the me
chanical-to-neural conversion hypotheses would predict. 

An impulse of pressure rarefaction draws the eardrum and stapes 
initially outward and causes the membrane displacement to be initially 
upward. A condensation pulse, on the other hand, causes an initially in
ward displacement of drum and stapes and consequently an initially 
downward movement of the membrane. At any given point on the mem
brane the waveforms of displacement produced by these two stimuli 
differ only in sign; that is, one is the negative of the other. Typical dis
placements of apical and basal points caused by rarefaction and conden
sation pulses are shown in Fig. 20. (These traces are essentially the im
pulse responses calculated previously in Fig. 7.) 

The top diagram in Fig. 20 is illustrative of the displacement response 
of points lying in the apical (low-frequency) half of the membrane. The 
solid curve is the displacement for a rarefaction pulse, the dashed for a 
condensation. The abscissa at the top is in terms of the product {3t, where 
(3 is the radian frequency of maximal response for the particular apical 
point. The lower abscissa on the top graph shows time scales appropriate 
to the specific points maximally responsive to 1200 and 600 cps, respec
tively. The lower graph shows the displacement appropriate to points 
lying in the basal (high-frequency) half of the membrane. As discussed 
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Fig. 20 - Apical and basal displacements of the basilar membrane for rarefac
tion and condensation pressure impulses at the eardrum. These responses from 
those computed in Fig. 7 for [G(S)FICS)]. 

earlier, this waveform has essentially the same shape and time scale for 
all basal points. 

Following our earlier assumptions, we suppose that neural firings (at 
least of the more sensitive outer hair cells) take place at some amplitude 
level on the upward deflections of the membrane. The curves suggest, 
therefore, that a time difference should exist between the firings for a 
rarefaction pulse and those for a simultaneous condensation pulse. The 
difference should be about one-half cycle on the displacement waveforms. 
The earlier results indicate that for broad-spectrum excitation the great
est deflections occur near the middle of the membrane, in the vicinity 
of the region maximally responsive to 1000 to 2000 cps. For such a place, 
the half-cycle intervals are of the order of 250 to 500 iJ.sec. The time 
scale for the 1200 cps point in the top graph is indicative of this magni
tude. 
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Assuming that simultaneity of neural firings at the two ears produces 
a central sound image, a rarefaction pulse and a condensation pulse 
should produce a centered image if the condensation is advanced in time 
to bring its positive displacement peak approximately into coincidence 
with that of the rarefaction. This means advancing the condensation, or 
letting it lead, by about 250 to 500 fJ,sec. Furthermore, the periodic nature 
of the displacements suggests that multiple fusions of the sound image 
might occur by virtue of neural firings triggered at secondary positive 
excursions. These should occur for interaural times which are full-cycle 
increments of the principal fusion, including lead and lag shifts. A half
cycle lead of the condensation would represent a principal fusion; a half
cycle lag would be a secondary fusion. 

If cophasic pulses are delivered to the two ears, that is, rarefaction
rarefaction or condensation-condensation, the same argument says that 
the principal fusion should obtain for zero interaural time difference, and 
secondary fusions for full-cycle shifts, either lead or lag. 

The preceding remarks relate to broadband, unmasked pulses, where 
the neural response is likely to originate near the central portion of the 
basilar membrane. Suppose the dominant response were elicited from 
some other place on the membrane. The interaural time difference for 
lateralization ought to change in accordance with what the curves in 
Fig. 20 imply. Band-filtering of the pulse stimuli is an obvious means for 
confining membrane activity to specific regions. This has the disadvan
tage, however, that the stimulus signal is contaminated with the impulse 
response of the filter, so that it is inconvenient, if not difficult, to analyze 
the membrane displacement. The objective can be achieved more con
veniently by selectively masking the membrane response with filtered 
random noise. The significant neural information can then be originated 
in a normally less responsive region by obscuring the maximally re
sponding place with noise. 

The top graph in Fig. 20 suggests that if the disparity between the 
interaural times for lateralizing cophasic and antiphasic pulses is to be 
increased, the significant response must originate from places more api
calward, that is, at points which respond maximally at lower frequencies. 
In such a case high-pass (HP) noise should be used to obscure activity 
in the basal part of the membrane. Low-pass (LP) noise, on the other 
hand, causes the coherent information to arise from the basal section. 
Here, because of the nature of the pulse response, the disparity between 
cophasic and antiphasic fusions is predicted to be roughly constant with 
place along the membrane, and should be of the order of 250 fJ,sec. This, 
too, ought to be the minimum interaural disparity that can be produced 
for the anti phasic situation. 
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Fig. 21 - Equipment arrangement for binaurallateralization of cophasic and 
antiphasic clicks. 

An experiment was performed to determine whether the predicted 
phenomena are in fact manifest.14 The arrangement to measure the effects 
is shown in Fig. 21. Twin pulse generators produced identical O.l-msec 
rectangular pulses in separate channels at a sensation level of 40 db. 
The repetition rate of the pulses was 10 sec-I. Random noise from two 
uncorrelated generators was filtered by identical filters and added to the 
signal channels. This noise level completely masked the selected portions 
of the pulse spectra. HP and LP noise cutoff frequencies of 600,1200, and 
2400 cps were used in addition to no masking. Condenser microphones 
fitted with ear-insert plugs were used as earphones to provide good trans
duction of the pulse signals. The subject .was provided a delay control 
which permitted continuous adjustment of the time of occurrence of one 
pulse relative to the other over the range ±5 msec. A switch could re
verse the polarity of the pulse delivered to one earphone. 

The results of this experiment for three listeners are summarized in 
terms of median responses in Fig. 22. For HP masking, Fig. 22 (a), the 
interaural time for the principal antiphasic lateralizations is seen to 
increase as the cutoff frequency of the HP noise is lowered. For these 
conditions the maximally responding unmasked place on the membrane 



DU4 THE BELL SYSTEM 'l'ECHNICAL JOUHNAL, MAY HJG2 

2000 x--------------------------------------------, 
o 
~1500 
-I 

z 
(/)0 

~~ 1000 
O(/) 

hl~ 
2~ 
~8 500 
::! 

~ 

~ 
-I 
W 
00 

o 

;i:5 500 

a:Z 
::JO 

ffi~ 1000 
t-(/) 
~~ 

o 
Z 

81500 

---- COPHASIC 
--- ANTI PHASIC 

x 

iIP-----:'-.~'ll::.o------- )(;0-------)(;0 

X 

__ .JJ-__ 

SUBJECT: 
x- GH 
0- BW 

fj.- JF 

(a) 
2000~ ____ ~ ________ ~ ________ ~ __________ ~--------~~ 

600 1200 2400 00 (UNMASKED) 
HP FREQUENCY OF MASKING NOISE IN CYCLES PER SECOND 

750r--------------------------------------------------, 

500 

250 

o 

---- COPHASIC SUBJECT: 
-- ANTIPHASIC x-GH 

o-BW 
x fj.-JF 

x 0 6. ~ x 0 
"!5it 

fj. 6. 

~ 8< 6. :»: 
o--------u--------E------~ 

(b) 

o (UNMASKED) 

IN CYCLES PER SECOND 
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pulses. 

should be that just below the cutoff frequency, fe , of the filter. The inter
aural time for the antiphasic fusion ought then to be about ±1/2fe. 
The data follow this value reasonably well. 

The secondary antiphasic fusions (condensation lag) are roughly a 
reflection of the principal ones in the x-axis. The time separation between 
the principal and secondary points is approximately the predicted full-
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cycle shift, or about life. The principal cophasic fusions fall along the 
axis for zero interaural times, and the secondary cophasic fusions (high
est and lowest curves) fall at about the right value for the full-cycle 
shift. 

The results for the LP masking, Fig. 22(b), indicate that the hypothe
ses about fusions of basal-end information are essentially sustained. The 
eophasic-antiphasic disparity is roughly constant at about 300 }lsec. 
Secondary images, however, are not easily heard because the LP noise is 
a more potent out-of-band masker. Both masking conditions make it 
clear that the significant neural timing information can be made to origi
nate from different points along the membrane. Further, the neural 
timing is intimately related to the individual mechanical excursions of 
the membrane at the significant point. 

Some electrophysiological evidence also exists to support these psycho
acoustic results and the assumptions made earlier. Peakel5 measured the 
latency of the gross neural component, Nl , in cat's ear for stimulation 
by rarefaction and condensation pulses. For moderately high signal 
levels, the difference in latencies is found to be of the order of 200 to 300 
}lsec with condensation pulses giving the greater latencies. In addition, 
very recent data by Kiang 7 on the activity of single, peripheral nerve 
units suggest that the firings are synchronized with the individual uni
polar displacements of the membrane, as conjectured here. 

2.3 Time-Intensity Trade 

In other binaural experimentation it has been observed that the position 
of a sound image can be maintained stationary by trading relative in
tensity against relative time of occurrence of pulses at the two ears. That 
is, the movement of the sound image towards the ear receiving a leading 
click can be offset by an increase in intensity of the pulse at the lagging 
ear. To a certain extent such a trading relation is implied in the calcu
lated membrane responses and in the simple hypotheses about conver
sion of mechanical to neural activity. It is worth considering the degree 
to which the experimentally observed trade can be explained by the 
membrane relations. 

Consider again binaural excitation of the ears by short, unipolar pulses. 
The earlier assumptions about neural firings on upward displacements 
of the membrane, in excess of a fixed threshold, imply a time-intensity 
trade. For ease in illustration, consider that the form of the impulse re
sponse of the membrane for middle to apical points is essentially speci
fied by the model la( t) given in (5). For simplicity this can be writtell 
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without constants as 

(36) 

where 0 = (3t. The waveform of this function has already been plotted 
in Fig. 4. 

Imagine that the amplitude of a rarefaction stimulus has been set to 
threshold value so that neural firings are produced exactly at the first 
positive crest of the displacement. Now if the intensity of the stimulating 
pulse is steadily increased, the threshold level will be crossed at succes
sively earlier times on the initial quarter cycle of the wave. In terms of 
the model, the advance in time of the threshold crossing is a simple 
function of the stimulus amplitude, and we can compare it with experi
mentally measured figures. 

For reasons that will be obvious presently, we take 

In h(O) = 2 In 0 - 1~7 + In sin O. (37) 

Differentiating with respect to 0, 

d[ln f3(0)] = 3 _ ~ + cot 0 
dO 0 1.7 

(38) 

and taking the partial with respect to time, 

a[ln f3(0)] = {3 (~ - ~ + to) at 0 1.7 co . (39) 

Equation (39) gives, in effect, the time-intensity trade for the wave in 
terms of nepers per second, as a function of the epoch 0 at which thresh
old is crossed. In psychoacoustic tests the trade has customarily been 
specified in terms of msec/ db-that is, the number of milliseconds by 
which the stimulus in one ear must be advanced to offset a relative 
intensity increase of one db in the other ear. Equation (39) can be put 
in terms of msec/db by taking its reciprocal, and multiplying by 10-3/8.7. 
One often sees this trade plotted as a function of intensity or sensation 
level of the stimulus. Let us arbitrarily take the positive maximum, 
f3( O+max), as the threshold level of displacement. An increase in intensity 
of X db will then cause the threshold to be crossed at an epoch, 0 ~ 

o ~ O+mux that ~atisfies: -8.7 In f r3
( 0) ) = X db. We can therefore 

3 O+max 
plot (39) [converted to msec/db] versus (37) [converted to db re 
fa(O+max)] for common values of the threshold crossing O. This function, 
for three different apical points on the membrane, is shown in Fig. 23 (a). 
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Fig. 23 - Time-intensity trade predicted for (a) apical points by membrane 
modelh(t); (b) for basal points by stapes derivative get). 

The curves suggest that the trade of msec/db is greatest for low signal 
levels and diminishes for higher levels. It also indicates that the trade 
in msec/db is greater for points closer to the apex, that is, for lower f3. 
Broadband pulse excitation of the model, as previously stated, produces 
greatest displacements near the middle of the membrane. The 1000-cps 
point is representative of this region. Low-level values of the trade for 
this point are on the order of 0.03 msec/ db. 
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The earlier arguments also indicated that the impulse responses of 
basal points were similar to the time derivative of stapes displacement. 
A time-intensity trade computed from these responses ought to be 
suggestive of the minimum msec/ db value that could be expected if the 
trade were based upon basal activity. We can use (11) and approxi
mate the basal displacements by the stirrup derivative, g( t). Letting 
(bt) = CP, 

In g( <I» 

And, 

at 
a In g( <I» 

-~ + In (2 sin <I> + cos cP - 1). 

2(2 sin cP + cos cP - 1) 
b(cos <I> - 3 sin <I> + 1) . 

(40) 

(41) 

Again, expressing (40) in db relative to g(CP+rnax) and (41) in msec/db, 
the two can be plotted for common values of CP. When this is done the 
trading relation obtained is shown in Fig. 23 (b). Because of the sub
stantial asymmetry in g( <I», the function is computed for the initial 
quarter of the positive deflection and initial quarter of the negative 
deflection (that is, the initial positive deflection if the displacement 
phase were reversed). The former would be appropriate for rarefaction 
pulse excitation; the latter for condensation. These figures are, of 
course, susceptible of the uncertainty connected with the value band 
the approximation of the basal displacements by g( <I> ). Nevertheless, 
the trading values thus obtained fall reasonably close to those for the 
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Fig. 24 - Measured time-intensity trade for several stimuli (after David et 
aIl6 and Harris I7). 
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1000-cps point shown in Fig. 23(a). To the extent that get) is a reasona
ble approximation of the basal displacements, the results indicate that 
the trade for condensation pulses should be slightly greater than those 
for rarefactions. 

Some psychoacoustic data are available for comparison with these 
calculations. David, Guttman and van Bergeijk16 used 2-kc high-pass 
clicks to measure the trading function and obtained a median result 
shown in Fig. 24. Harris17 used both HP and LP filtered pulses and pure 
tones in a related investigation. Several of his results are also shown in 
Fig. 24. The subjective data for the HP pulses are clearly greater than 
the predictions from the model. The results for 1400 LP, however, are 
more nearly of the magnitude suggested by the computations. The 
previous computations also suggest that the msec/db trade should 
increase in magnitude as the significant neural information is elicited 
from more apical (low-frequency) points. Harris found, however, that 
for LP clicks with cutoffs between 200 to about 1000 cps, the trade 
was nearly constant at about 0.03 msec/ db. One difficulty in comparing 
the computed and measured data is that we do not know how to equate 
values on the abscissae of Figs. 23 and 24. That is, we do not know 
what sensation level corresponds to the zero-db reference amplitude of 
the displacement wave. Only general directions and trends can there
fore be legitimately compared. 

Another difficulty in comparing the data is that the computed time
intensity trades assumed ideal impulse excitation of the ear. The ex
perimental measurements, on the other hand, used pulses which were 
HP or LP filtered. The effect of the filter response upon that of the 
membrane is somewhat uncertain. The experimental determinations 
and the computations may not therefore be strictly comparable. To 
attempt to obviate this difficulty, we made some cursory measurements 
of the trade using the masking technique described earlier in Section 2.2. 
For a sensation level of 40 db, and with unmasked rarefaction clicks, 
one trained subject from the previous lateralization experiment made 
the I1t - 111 swap plotted as the lower curve in Fig. 25. A binaural 
masking by 600-cps HP noise presumably constrains the coherent 
neural activity to come from a more apical point (somewhere near the 
600-cps point). For such a masking the same subject made the trade 
indicated by the upper curve, giving values about twice as great as the 
unmasked trade. The slope of the unmasked function at the origin is 
approximately 0.03 msec/db. That for the 600 HP masking is about 
0.05 msec/ db. 

Clearly these data for one subject are tentative and must be confirmed 
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Fig. 25 - Effects of masking upon time-intensity trade for hroadband, co
phasic pulses. 

or refuted by additional experimentation. To the extent that they are 
correct, however, they support the general predictions of the model as 
to the frequency (or membrane place) dependence of the time-intensity 
trade. They do not agree well with absolute magnitudes of the computed 
trade, and there is still the question of how to equate abscissae. It is 
highly probable, too, that the time-intensity trade involves neural 
mechanisms not here included. Even so, the mechanical operations ap
pear to go a long way in contributing to an explanation of the phenom
enon. A time-intensity trade has also been observed at the neural level. 
In the eat's ear, Peake15 finds that an intensity change of about 40 db 
in a stimulating pressure click causes a reduction in the latency of the 
N 1 neural component by roughly 0.6 msec. A simple division of these 
figures gives 0.01.5 msec/db for the trade. This figure falls within the 
range predicted by the model for human hearing. 

As a final point in this theme, the same arguments can be made for 
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pure tones. For such stimuli the membrane displacements are also sinus
oidal (at least over a large intensity range) and have the form 

(42) 

where KfJ( w) is an amplitude versus frequency factor appropriate to 
the membrane point maximally responsive to radian frequency (3; 

KfJ( w) is largest, of course, for w = (3. The prcviouf:) argument gives 

(43) 

and, 

d 
(it On ifJ) = w(cot wt). (44) 

A plot of this last result in terms of msec/db versus amplitude in db 
(relative to the amplitude for threshold crossing at wt = 7r/2) is shown 
in Fig. 26. In order of magnitude and frequency dependence, these 
values seem to compare reasonably well with results of Harris for 200-
and 500-cps pure tones, previously shown in Fig. 24. 
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2.4 Threshold Sensitivity 

The combined response curves in Fig. 9 indicate that the ear is more 
sensitive to certain frequencies than to others. This is well known to be 
subjectively true. To what extent, then, are the variations in the thresh
old of audibility accounted for by the mechanical sensitivity of the ear? 
We can use the model responses to examine the question. 

The envelope of the peak responses in Fig. 9 can be compared with 
the subjectively determined minimum audible pressure for pure (sine) 
tones. Fig. 27 shows this comparison. The agreement is quite poor, al
though the gross trends are similar. The model responses here are on the 
basis of a 1500-cps critical frequency for the middle ear. The earlier dis
cussion has pointed up the uncertainty of this value. The middle-ear 
critical frequency chosen to illustrate the computational technique was 
that derived from Zwislocki's data. The latter, in turn, were based upon 
one of Bekesy's investigations. In other investigations, Bekesy also 
found middle ear cutoffs higher than 1500 cps, so some uncertainty 
exists as to where this number should be fixed. Obviously the choice of 
this constant does not alter the computational method or analytical 
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technique. If we choose instead a critical frequency of 3000 cps for the 
middle ear, the fit to the threshold curve at high frequencies is more 
respectable. The match at low frequencies, however, is not improved, 
but we are less concerned about this for a different reason. 

For the low frequencies, the disparity between mechanical and sub
jective sensitivity probably is a neural effect. According to our earlier 
assumptions, the number of neurons activated bears some monotonic 
relation to amplitude of membrane displacement. Perception of loudness 
is thought to involve possibly temporal and spatial integrations of 
neural activity. If a constant integrated activity were equivalent to 
constant loudness, the difference between mechanical and subjective 
sensitivities might be owing to a sparser neuron density in the apical 
(low-frequency) end of the cochlea. There is physiological evidence to 
this effect. 

In histological studies Guild et aFS counted the number of ganglion 
cells per mm length of the organ of Corti. Their results for normal ears 
are summarized in Fig. 28. These data show a slight decrease in the 
number of cells at the basal end and a substantial decrease in the density 
as the apex is approached. The innervation over the middle of the mem
brane is roughly constant. 

One can pose the same questions about threshold sensitivity for short 
pulses or clicks of sound. For brief pulses of sufficiently low repetition 
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rate, the maximal displacements of the membrane, as stated before, are 
near the middle. According to the model, this continues to be the case 
for pulse rates well in excess of several hundred per second. The resonance 
properties of the membrane in this region are such as to resolve in time 
each individual exciting pulse. If, then, the predominant displacement 
takes place at one point for a large range of pulse rates, polarity pat
terns, and pulse durations, how might the subjective threshold vary 
and how might it be correlated with the membrane motion. One investi
gation of this question has led to a model for pulse threshold loudness. 19 

These results can be partially summarized. 
Thresholds of audibility for a variety of periodic pulse trains with 

various polarity patterns, pulse rates and durations are shown in Fig. 
29. One notices that the thresholds are relatively independent of polarity 
pattern. For pulse rates less than 100 pps, the thresholds are relatively 
independent of rate, and dependent only upon pulse duration. Above 
100 pps, the thresholds diminish with increasing pulse rate. Amplitude 
of membrane displacement would be expected to be a function of pulse 
duration and to produce a lower threshold for the longer pulses, which 
is the case. For rates greater than 100 sec-\ however, some other non
mechanical effect apparently is of importance. The way in which audible 
pulse amplitude diminishes suggests a temporal integration with a time 
constant of the order of 10 msec. 

Using the earlier assumptions about conversion of mechanical to 
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Fig. 30 - Model of the threshold for pulse data shown in Fig. 29. 

neural activity, one might ask "What processing of the membrane dis
placement at the point of greatest amplitude would reflect the constant 
loudness percept at threshold?" A possible answer is suggested by the 
operations illustrated in Fig. 30.19 The first two blocks represent middle
ear transmission [as specified in (6)] and basilar membrane displacement 
[vicinity of the 1000-cps point, as specified in (31)]. The diode represents 
the half-wave rectification associated with neural firings on unipolar 
motions of the membrane. The RC integrator has a 10-msec time con
stant, as suggested by the threshold data. The power-law element (ex
ponent = 0.6) represents the power-law relation found in loudness 
estimation. * A meter indicates the peak value of the output of the power
law device. When all stimulus conditions represented by points on the 
threshold curves in Fig. 29 are applied to the circuit, the output meter 
reads the same value: that is, threshold. 

One can also notice how this model might be expected to perform for 
sine wave inputs. Because the integration time is 10 msec, frequencies 
greater than about 100 cps produce meter readings proportional to the 
average value of the half-wave rectified sinusoid. In other words, the 
meter reading is proportional to the amplitude of the sine wave into the 
rectifier. Two alterations in the network circuitry are then necessary. 
First, the basilar membrane network appropriate to the point maximally 
responsive to the sine frequency must be used. This may be selected 
from an ensemble of networks. And second, to take account of the sparser 
apical innervation, the signal from the rectifier must be attenuated for 
the low-frequency networks in accordance with the difference between 
the mechanical and subjective sensitivity curves in Fig. 27. The power
law device still operates to simulate the appropriate growth of loudness 
with sound level. 

* The power-law device is not necessary for threshold indications of "audible
inaudible." It is necessary, however, to represent the growth Of loudness with 
sound level, and to provide indications of subjective loudness above threshold. 
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2.5 Pure- Tone Masking 

Masking is defined as the increase in the threshold of audibility of one 
sound caused by the presence of another. The models with which we 
have been dealing describe the mechanical frequency sensitivity of the 
ear and hence ought also to imply something about the masking of one 
pure tone by another. 

The significant neural information for a pure-tone stimulus is assumed 
to come from the membrane point which responds maximally (mechan
ically) to that frequency. The ability to detect activity correlated with 
such a tone ought likewise to be related to the amplitude of displacement 
produced at this same point by any interfering (masking) sound. In 
other words, the relative amplitudes of displacement caused at the point 
by the tone and masker might be expected to be related to the shift in 
threshold of the tone. From the model i,ve can determine the relative 
amplitudes produced by tone and masker at the membrane point which 
responds maximally to the tone. For low frequencies, where middle-ear 
attenuation is not appreciable, this can be done simply from the mem
brane response curves such as shown in Fig. 3. 

Let us take, for example, a masker of 400 cps (because there are 
corresponding subjective data for this condition). The relative levels 
of maskee and masker are shown by the dashed curve in Fig. 31. (These 
levels are read on the righthand ordinate.) Subjective threshold meas
urements for the same conditions produce the solid curve. 20 One sees 
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that the agreement is not particularly close, although the curves have 
similar gross shapes. The psychoacoustic measurement indicates less 
masking at frequencies removed from the masker than the mechanical 
response implies. This might suggest at least two possibilities: one, 
that the upper and lower skirts of the membrane resonances are a 
little steeper than we think; or two, that when the maskee has a relative 
level as much as about 10 db or so greater than the masker (at the 
maskee point) some neural inhibitory mechanism functions to suppress 
the masker even more. 

One notices irregularities in the subjective masking curve at frequen
cies where the tone is an integral multiple of the masker. These are 
produced by beats and subjectively generated harmonics. One notices, 
too, that when tone and masker are the same frequency, the measure
ment is essentially a determination of the intensity limen. For example, 
the masking at 400 cps is 40 db, which means that a 400-cps tone must 
be raised 40 db above its unmasked threshold to be just audible in 
the presence of another 400-cps tone at a sound-pressure level of 80 db 
(re 0.0002 dyne/cm2

). The unmasked threshold (minimum audible 
pressure) for a 400-cps tone is approximately 10 db spl (see Fig. 27). 
The maskee is just detectable, therefore, when its level is about 50 
db spl, or 30 db less than the masker. For an in-phase (or out of phase) 
condition, the maskee could maximally increase (decrease) the inten
sity of the masker by about 0.3 db. This is roughly the size of the in
tensity limen measured at this sensation leve1. 21 

When this same masking comparison is made for higher frequencies, 
the middle-ear transmission must be considered. If the middle-ear cutoff 
used in the model calculations is used, the agreement between SUbjective 
and mechanical results is poor at high frequencies. This again argues 
that the normal critical frequency for the middle ear is somewhat higher 
than that used to illustrate the model calculations. 

The mechanical response also shows why a lower-frequency tone is a 
more effective masker than a higher-frequency tone. The reason is simply 
that the frequency response of a given point on the basilar membrane 
has a low-frequency skirt less steep than its high-frequency skirt. This 
same fact also suggests why low-frequency hearing is so difficult to 
impair by local injury or disease in the ear. The shallow low-frequency 
skirts of the response of all points along the membrane show that even 
basal points can respond appreciably to low-frequency stimuli. Even 
if the apical end of the basilar membrane were destroyed, basal locations 
could provide some low-frequency response. 

Essentially in the same vein, these relations suggest why high-fre-
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quency hearing is so susceptible of impairment. The high-frequency 
skirt of the frequency responses is quite sharp. Damage to any basal 
location leaves no other point capable of responding substantially to 
that frequency. 

2.6 Conclusion 

It seems clear that the extent to which subjective behavior can be 
correlated with, identified in, and predicted by the mechanical operation 
of the peripheral ear is rather substantial. The models developed here 
have been found to be useful computational tools in the analyses of a 
number of different psychoacoustic problems. They have, in fact, pre
cipitated several experiments by predicting hearing phenomena which 
were later confirmed by the experiments. Further, electrophysiological 
data obtained recently link neural activity intimately with the individual 
mechanical excursions of the membrane. These findings also lend support 
to the simple assumptions about the conyersion of mechanical to neural 
information. 

The models do not, of course, account for higher-order neural functions 
and hence describe only a peripheral part of the hearing process. Even 
so, they seem in many cases to contribute substantially to physiological 
explanations of subjective behavior. As more knowledge is gained about 
mechano-neural conversion and about "neural processing, analytical 
specification of the mechanical operation, such as developed here, may 
prove increasingly useful. . 
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Approximate Solutions for the Coupled 
Line Equations 

By H. E. ROWE 

(Manuscript received May 19, 1961) 

The coupled line equations for only two modes, representing the TEol 
signal mode and a single spurious mode in circular waveguide, are solved 
in series form by the method of successive approximations. Bounds are 
found on the magnitudes of the terms in the series solution. These bounds 
decrease rapidly only for "short" waveguides; for long guides many terms 
of the series must be included in the solution. 

The coupled line equations are transformed to a new form, in which one 
of the unknowns A is given by A = -In Go , where Go is the (complex) 
TEOl transfer function of the original coupled line equations. Thus Re A = 

-In I Go I , the TEOl loss in nepers, 1m A = - L Go, the TEol phase in 
radians. These transformed equations are again solved by successive ap
proximations; the first term is the commonly used solution that has been 
obtained by physical arguments. Bounds are determined for the magnitudes 
of the terms in these series solutions; for a suitable restriction on the coupling 
coefficient that includes many cases of practical interest, these bounds 
decrease rapidly for long guides. 

In present calculations of the TEol loss statistics in random guides, only 
the first term of the series expansion for A is considered. Unfortunately 
this approximation has not so far been justified. 

1. INTRODUCTION 

Consider the coupled line equations: 

-roIo(z) + jc(z)II(z), 

+jc(z)Io(z) - rlIl(Z). 
(1) 

These equations are of interest in many applications. Our particular 
interest in them in a companion paper l is that they describe the effects 

1011 
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of coupling between the TEoi signal mode, represented by the complex 
wave amplitude 10 , and a single spurious mode, represented by the 
complex wave amplitude 11, caused by geometric imperfections in 
circular waveguide. We have, of course, assumed that only a single 
spurious mode has significant magnitude, so that all other spurious 
modes may be neglected. For example, we may consider copper wave
guide with a rather general straightness deviation; the most important 
spurious mode under many conditions will be the forward TEI2I (both 
polarizations must, of course, be considered unless the straightness 
deviation is confined to a single plane). However, these equations apply 
to a variety of other problems which may be described by only two modes 
with varying degrees of accuracy.I 

In copper waveguide if the wall losses may be neglected the propaga
tion constants ro and r 1 are pure imaginary and the coupling coefficient 
c(z) is pure real. In helix guide, where loss is added to the spurious mode, 
the propagation constant r i has a significant negative real part; further, 
as shown by H. G. Unger,2 the coupling coefficient c(z) also becomes 
complex. 

The case where the geometric imperfection (e.g., straightness devia
tion) and hence the coupling coefficient is a stationary random process, 
perhaps Gaussian, is of great interest; here it is desired to compute the 
statistics of the TEoi transmission 10 in terms of the statistics of the 
coupling coefficient c(z). Since exact solutions to (1) are easily found 
in only a few special cases, this has been done by using an approximate 
solution to these equations that is essentially a second-order perturba
tion solution, and by studying the statistics of this approximate solu
tion.I The present paper will discuss this approximate solution, will give 
some bounds on the convergence of the approximation, and will indicate 
a basic gap in our knowledge concerning this problem. 

Equation (1) represents a drastic idealization of the real TEoi trans
mission problem, in that it contains only one spurious mode and neglects 
all other spurious modes. The approximate solution includes all second
order terms; a physical interpretation of this solution states that con
version of TEO! to each spurious mode and subsequent reconversion to 
TEoi is considered at all pairs of elementary mode converters, but that 
higher-order terms involving more than one pair of elementary mode 
converters are neglected. 1 The exact solution of (1) includes all higher
order terms involving the single spurious mode, but neglects many more 
higher-order terms involving the many other spurious modes that have 
been neglected in (1). In view of this it may appear questionable to try 
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to deal with (1) in more exact terms for the TEol mode conversion 
problem. However, a start has to be made somewhere, and it seems 
unlikely that the general case involving an infinite number of modes will 
be understood before the two-mode case of (1) is understood. Even 
this simple idealized case does not yet have a really satisfactory treat
ment. Also, (1) does apply more or less rigorously to many other situa
tions than the TEO! mode conversion problem.l 

In dealing with these equations it is convenient to introduce the 
following change of variables: 

Then (1) becomes: 

Io(z) = e-roz·Go(z). 

Il(z) = e-rlz·Gl(z). 

Go'(z) = Jc(z) ellrz G1(z), 

Gt'(z) = Jc(z) e-Ilrz Go(z). 

~!3 = !3o - !3l . 

(2) 

(3a) 

(3b) 

Note that we assume ~a < 0, because in circular waveguide the TEol 
signal mode will have lower heat loss than any of the spurious modes. 
We will always take as initial conditions at z = 0 a TEol wave of unit 
magnitude and zero phase, and a spurious mode of zero magnitude: 

GO(O) = 1, (4) 

II. SOLUTION OF THE COUPLED LINE EQUATIONS BY SUCCESSIVE APPROXI

MATIONS (PICARD'S METHOD) 

We summarize the solution of (3) by successive approximations. Let 
Go(n) (z) and Gl(n) (z) be the nth approximation to the solution of (3). 
Let the initial approximation be given simply by the initial conditions 
of (4): 

GO(O) (z) = 1, (5) 

Then following Picard's method3
,4 we obtain the successive approxima

tions as follows: 
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GO(O)(z) = 1, 

GO(l)(Z) = 1 + j iZ 

c(s)e.lrSGl(O)(S) ds 

= 1 

. -.lrs f
z 

= J 0 c(s)e ds 

GO(2) (Z) = 1 + j iZ 

c( s )e.lrSGI(I) (s) ds 

= 1 - JZ c(s)e.lrs ds 1s 

c(t)e-.lrt dt (6) 
o 0 

. -.lrs 1
z 

= J 0 c(s)e ds 

GO(n)(Z) = 1 + j iZ 

c(s)e.lrsGl(n_l)(S) ds 

Gl(n)(z) = j i Z 

c(s)e-.lrsGO(n_l)(S) ds. 

The nth approximation is obtained by substituting the (n - 1) th ap
proximation in the right-hand side of (3) and integrating. Writing 

we have 

GO(n)(Z) - GO(n-l)(Z) = gO(n)(Z), 

GO(n) (z) 
n 

1 + LgO(k)(Z) , 
k=l 

n 

J gl(k)(Z), 
k=l 

(7) 

(Sa) 

(Sb) 
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where the g's are given as follows: 

gO(n)(z) = j i Z 

c(s)e lll'Sgl(n_l)(S) ds, n ~ 1. (9a) 

gl(n)(Z) = j l z 

c(s)e- llrSgO(lI_l)(S) ds, n ~ 1. (9b) 

gO(O) (z) = 1, 

It is readily seen that 

gO(n) (z) = 0, 

gl(n)(Z) = 0, 

gl(O)(Z) = O. 

n odd 

n even 

(9c) 

(10) 

so that only even terms appear in the summation of (8a) and only odd 
terms in the summation of (8b). 

In the standard proof of Picard's method the series of (8) are shown 
to converge to the unique solution of the coupled line equations, (3), 
and bounds are given on the magnitudes of the terms in (8). Thus we 
may write 

00 

Go(z) L gO(n)(Z), (11a) 
n=O 

00 

G1(z) = L gl(n)(Z), (lib) 
n=O 

where the g's are given in (9) and (10). However, better bounds than 
those given by Picard's general method may be found for the present 
special case. We show that 

[J~Z I c(s) I dSJn 

~ n! 
n even. 

o nodd. 
(12a) 

o n even. 

I gI(n,(z) I [{ I c(s) I dsJ 
~ 0 e-Ilaz

, n odd. 
n! 

( 12b) 

Suppose that (12a) is true for some even value of n. Then from (9b) 
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· [1' I C(8) I d8J 
1 Y!(n+l)(Z) 1 ~ 11 e(l) 1 e-t!at 0 , dt 

o n. 

~ e~~" {[J,' I C(8) I d8]" d [J,' I C(8) I d8] (13) 

[{ I C(8) I dsT' _ •• , 

(n+1)! e 

where we recall from (3b) that .10: < O. Substituting (13) into (9a), 

• [{ I C(8) I dsT' 
1 YO(n+2)(Z) 1 ~ i 1 e(t) 1 et!ate-t!at 0 (n + I)! dt 

= (n ~ I)! f [J,' I C(8) I d8T' d [fl C(8) I d8] (14) 

_ [f I C(8) I d8T' 

- (n+2)! 

Noting (9c), the results of (12) hold for all n by induction. 

We may ask whether the bounds of (12) are the best that can be 
obtained in general, or if by being sufficiently clever we can do better. 
It is easy to find examples whose terms are actually as large as those 
given in (12), so that no improvement in these results is to be expected 
unless suitable restrictions are placed on the problem. Thus, consider 
the following special case: 

.1r = O. (15) 

The coupling coefficient is non-negative but otherwise arbitrary. The 
general solution to (3a), subject of course to the initial conditions of 
(4), is! 

Go(z) = cos [f C(8) d8 J. (16) 

Expanding the cosine in power series, 

[f C(8) d8]' [f C(8) d8]' 
Go( z) = 1 - 2! + 4! 

(17) 

The successive terms of (17) are simply the YO(n) given in (9) and (10). 



APPROXIMA TE SOLUTIONS 1017 

It is readily seen that the magnitudes of these terms are equal to the 
bounds given in (12a) if we require 0 ~ c(z) so that I c(z) I = c(z). 

As another similar example, let ~r ~ 0 and c(z) be a single a-function 
located at zo , 

c ( z) = C· a (z - zo). (18) 

In our present case, i.e., straightness deviation, a discrete coupling of 
the type given in (18) corresponds to a discrete tilt located at z = zo. 
The solution to (3a), subject again to the initial conditions of (4), isl 

Go(z) cos C, z > zo. (19) 

Expanding the cosine, 

C2 C4 

Go (z) = 1 - - + - - (20) 
2! 4! 

Again the terms of (20) are the gO(n) of (9) and (10), and their magni
tudes are equal to the bounds given in (12a). Of course, this above solu
tion, which mathematically is valid for an arbitrarily large tilt in the 
present idealized two-mode case, must fail for large tilts in the physical 
case, the error being caused by neglecting the higher-order spurious 
modes excited by the tilt. While this serves as a further warning against 
uncritical application of the results of the two-mode theory to the 
physical problem, it is still of interest to inquire into the mathematical 
properties of the solutions to (3). 

It is often desirable to express the TEOl loss in db rather than as the 
magnitude of the TEol normalized gain, I Go I . Define the complex TEo I 
loss A as 

Then 

A = -In Go = A - j8. 

A = -In I Go I, 
8 = L Go. 

(21) 

(22) 

A is the TEol loss in nepers; the TEol loss in db is simply 8.686 A. If 
we have a number of sections of waveguide separated by ideal mode 
filters, the over-all TEol gain, GOT, and loss AT , are given by 

GOT = GO,1 GO,2 ••• , 

AT Al + A2 + '" , 
AT = Al + A2 + .. , , 
8 T = 8 1 + 8 2 + .... 

(23) 
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The statistics of A and e for the composite guide may thus be expressed 
simply in terms of the statistics of A and e for the individual guide 
sections. 

Suppose that the series solution for Go(z) given in (I1a) converges 
very rapidly, so that only the first two terms need be retained. Then 
we have from (8-11) 

(24) 

so that approximately 

Go(z) = 1 - foz e(s)eLlrs ds fos e(t)e-Llrt dt. (2f» 

Then, assuming that the second term is small compared to 1, we have 
approximately: 

I Go(z) I = Re Go = 1 - Re II 
A = -In Go = If 
A = -In I Go I = Re If 
e = L Go = -1m ff 

where II is shorthand for 

If = i
Z 

e(s)eLlrs ds is e(t) e-
Llrt 

dt 

= i
Z 

eLlru du i
Z

-

u 
e(s)e(s + u) ds 

= ! l Z r e( s )e( t)eLlrl t-sl ds dt. 
2 0 Jo 

(26a) 

(26b) 

(26c) 

(26d) 

(27a) 

(27b) 

(27c) 

If the coupling coefficient e(z) is pure real but the differential propaga
tion constant is complex (possibly not a physical case), (26c) becomes, 
using (27c), 

A = -In I Go I = i
Z 

eLlau cos t1{3u du i
L
-

U 

e(s)e(s + u) ds. (28) 

If e(z) is complex, it turns out that for uniform waveguides its phase 
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angle remains constant and only its magnitude varies, so that we may 
write2 

c(z) = (Cr + J Ci ) c(z), 

where c (z) is real. Then (28) becomes 

11 = -In I Go I = (C/ - Ci
2

) i Z 

eAau cosil(3u du 

l
L-u (Z 

• 0 c(s)c(s + u) ds - 2CrCi J
o 

eAau sin il(3u du 

. iL

-

U 

c(s)c(s + u) ds. 

(29) 

(30) 

These approximate expressions of (26-30) may be regarded as the 
first terms of series expansions for the various quantities. The above 

approximations will he valid when I II I « I and when the higher

order terms may be neglected. From the above analysis it would appear 

that when I II I »1, all of the ahove approximations would fail, since, 

in particular, (26a) obviously fails. In spite of this fact, (2Gb-d), (28) 
and (30) may remain valid for a wide class of long guides of practical 
interest; roughly speaking, the required conditions are that the differ
ential loss I ila I be large enough and that the coupling coefficient c( z) 
be sufficiently small and uniformly distributed in an appropriate sense. 
This result has been suggested by simple physical arguments;1 a formal 
mathematical derivation starting with the appropriate restriction on 
c(z) and ila is given in the following section. These results are of im-

portance because in a random guide the expected value of the J J term 

increases linearly with distance Z;l while the approximations of (25) 
and (26a) fail, the results of (26b-d), (28) and (30) may remain valid, 
and so provide us with a theory for long guides. 

It is apparent that further restrictions are required to obtain these 
additional results, by considering the example of (18-20). Thus, let 
the magnitude of the o-function coupling coefficient be 7T/2, so that we 
have in (18) 

7T' 

C = 2' c ( z) = ~. 0 (z - zo). (31) 

Then from (19) 

Go(z) = 0, z > Zo (32) 
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so that 

A = -In Go = 00. (33) 

However, the approximate result of (26b) yields 

C2 
7r

2 

A = -In Go ~ 2" - 8- . (34) 

The approximation of (34) is obviously invalid; since these relations 
are independent of .1a, this approximation remains invalid no matter 
how high I .1a I becomes. Cases such as this are ruled out by the addi
tional restrictions that require the coupling coefficient to be more or 
less uniformly distributed with z in a certain sense, described in the 
following section. 

III. TRANSFORMATION OF THE COUPLED LINE EQUATIONS TO LOGARITHMIC 

FORM, AND SOLUTION BY SUCCESSIVE APPROXIMATIONS 

We repeat for convenience the coupled line equations, given in (:~), 
together with the desired initial conditions, (4). 

Go'(z) = j c(z) cLlI'Z G1(z), 

G/(z) = j c(z) c-Lll'z Go(z). 

Go(O) = 1, 

Next, the following transformation of variables is made: 

Go(z) = e -A(z). 

G1(z) = e -A(z) • H(z). 

(35) 

(:36 ) 

(37a) 

(37b) 

The transformation of (37a) is dictated by the desire to obtain a series 
solution for A, defined in (21). That of (37b) was obtained partly by 
trial and error and partly by intuitive means. Substituting (37) into 
(35), we obtain: 

A'(z) = -j c(z) cLlrz H(z) 

H'(z) = j c(z) e6rz + A'(z) H(z). 

(3Sa) 

(3Sb) 

By substituting (3Sa) into the second term on the right-hand side of 
(3Sb), we have: 

A'(z) = -j c(z) e6rz H(z) 

H'(z) = j c(z) e-Llrz -j c(z) c6rz H 2(z). 

The initial conditions of (36) transform via (37) to 

A(O) = 0, H(O) = O. 

(39a) 

(39b) 

(40) 
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The method of successive approximations may now be applied to (39) 
(or 38), subject to the initial conditions of (40). We note that A(z) is 
absent from (39b), so that this equation contains only a single dependent 
variable, H(z). Thus the successive approximations to H(z) may be 
found without reference to (39a) or to A(z); the corresponding approxi
mations for A(z) are then found by a simple integration of (39a). vVe 
note further that (39b) for H(z) is a Riccati equation.3 

Thus, let An(z) and Hn(z) be the nth approximation to the solution 
of (39), subject to the initial conditions of (40). Then: 

Ho(z) = 0 

(41a) 

= j foz c(s)e-~rS ds 

+ j i
Z 

c(s)e~rS ds fos is c(t)c(n)e-~r(t+u) dt dn 

Ao(z) = 0 

At(z) = -j foz c(s)e~rSHl(S) ds 

= foz c(s)e~rS ds foS c(t)e-~rt dt 

A2(z) = - j l Z 

c(s)e~rSH2(S) ds 
o 

(41b) 

= iZ 

c(s)e~rS ds foS c(t)e-~rt dt 

+ foz c(s)e~rS ds is c(t)e~rt dt it fot c(n)c(v)e-~r(u+V) dn dv 
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Note that Al is identical to the approximation of (2Gb). Writing as 
before 

we have 

An(Z) - An-I(z) = A71 (Z), 

Hn(z) - Hn-I(Z) = hn(z), 

n 

An(Z) L Ak(Z), 
k=I 

n 

Hn(Z) = L hk(z). 
k=I 

The quantities An(Z) and hn(z) are given as follows: 

(42) 

(43) 

An(Z) = - J i Z 

c(s)etlrshn(s) ds, n ~ 1. (44a) 

hn(z) - J i Z 

c(s)ctlrS[Hn_/(s) - H n- 2\s)] ds 

- J 1z 

c(s)etlr,Qhn_I(S)[Ifn_I(S) + Jln- 2(s)] ds, n ~ 2. 

'h(Z) = III(z) = J i Z 

c(s)e-tlrs ds. 

Then under certain conditions described below, 

A(z) 

00 

H(z) = L hn(z). 
n=I 

(44b) 

(44c) 

(45a) 

(45b) 

We next obtain bounds on I An(Z) I and I hn(z) I . As stated in the 
last section, it is first necessary to impose additional restrictions on the 
problem. We assume that the coupling coefficient c(z) and the differ
entialloss ..1a are such that a number K exists satisfying the following 
relation: 

1Z 

I c(s) I etla(z-s) ds ~ K for every Z ~ o. (46) 

We recall from (3) that ..1a < o. It will subsequently appear that 
convergence of the approximate solution can be guaranteed in general 
only for I( ~ 0.455; further, the smaller K the more rapid the bounds 
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on I An (z) I and I hn (z) I decrease as n increases. The restriction of (46) 
was again obtained partly by physical reasoning and partly by trial and 
error. Roughly speaking, for a given]( it guarantees that the coupling 
coefficient c (z) is more or less uniformly distributed alollg z; we thus 
rule out eases where the coupling coefficient is zero over most of the 
guide and large over a very short section (e.g., the example of on )-(:34), 
where c(z) is a single o-fuuetion). PIlY~ically, snch a condition says that 
for small]( the spurious mode is dissipated much faster than it is coupled 
from the signal mode; the larger c(z) the larger must be I ~a I in order 
to satisfy (46) for a given value of ](. This will normally be the only 
case of practical interest in long random guides. 

Bounds on the first few hn (z) are readily obtained. From (44c) and 
( 46), 

I hl(Z) I ~ iZ 

I c(s) I e-D.aS ds = e-D.az iZ 

I c(s) I eD.a(z-s) ds 

Next, from (44b), (43) and (41a), 

. l z 
D.ra [n-2 hn-1(s)J 

hn(z) = - J2 0 c(s)e hn-1(s) k~ hk(s) + ~ ds. 

Thus, 

I h.(z) I '" 2 f I c(s) I /,a, I h.-1(s) I [%' I hk(s) I 

Equation (49) yields for the first few hn (z) : 

+ 1 hn-1(s) IJ d· 
2 8. 

1 h2(Z) 1 ~ 2jZ 1 c(s) 1 eD.ase-2D.aS ](2 ds = e-D.az](2 
o 2 

. i Z 

1 c(s) 1 eD.a(z-s) ds ~ e-D.az. J{a 

I h3(Z) I '" 2 f I c(s) I e·a, e-'a'I(3 e-'a, [ I( + ~3J ds 

e -'a'2K' [1 + I;;J f I c( s) I c··('-') ds 

'" e-'a, .2[(' [1 + ~'] . 

(47) 

(48) 

(49) 

(SO) 

(51) 
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By an exactly similar process: 

I h,(z) I ;:;; e -an, . 2' K' [1 + In [1 + [(' + K' + ~] (52) 

(53) 

-[1 + [(' + 2K' + 3](' + 3](' + 3K1
' + 2](1' + ~1']. 

It is difficult to continue the above process and write out explicitly 
the nth term. However, by accepting a slightly poorer bound the analysis 
may be greatly simplified. We show that 

I hn(z) I ~ e-Aaz M n- 2 ](n+l; n ~ 2. (54) 

M is a constant to be determined, as a function of ](. Assume that (54) 
is true for some value of n. Then, from (49) 

I hn+l(Z) I ;:;; 2 f I C(8) I M n-'I("+1e- o., [[{ + %i M k-'[{k+
1 

Mn-2](n+l] 
+ 2 ds 

= e-Aaz.2Mn-2](n+2 [1 + ](2 ~3 Mk](k + Mn-2](n] (55) 
k=O 2 

·iz 
I c(s) I eAa(z-s) ds 

;:;; e-o".2Mn-'IC+' [1 + [{' %: Mk[{k + Mn~'](n]. 

If (54) is to remain true for n ---t n + 1, we have from (55) 

2Mn-2](nH [1 + ](2 ~3 Mk](k + Mn-2](n] ~ Mn-l](n+2, 
k=O 2 

]{ [1 + ](2 ~3 Mk](k + Mn-2](n] ~ M . 
k=O 2 2 

(56) 

But since the left-hand side of (56) is increased by allowing n ---t 00 and 
dropping the final term inside the brackets, the inequality of (56) will 
be satisfied if 

[ ]{2] M 
]( 1 + 1 - M]( ~ 2" . (57) 
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Fig. 1 -111 vs l( 

A plot of Jl1 vs J( taking (57) as an equality is shown in Fig. 1; the 
inequality of (57) is satisfied to the left of this curve. If for a given J( 

we have chosen Jl1 to satisfy the inequality of (57), then since (54) holds 
true for n = 2, (50), it is valid for all n by induction. For a given K we 
should choose the smallest value of lVI satisfying (57) in order to obtain 
the best bound. This smallest value of 1vI is given by the solid curve of 
Fig. 1 (i.e., lVI < 1.554); the other branch, indicated by the dashed 
curve (i.e., ,LvI > 1.554), thus has no significance for our problem. We 
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note that convergence of the series solution of (45), and hence of the 
successive approximations of (41), is guaranteed only for 0 ~ /{ ~ 0.455; 
for greater values of /( the present analysis cannot guarantee con
vergence. 

Summarizing the above results: 

I h1(z) I ~ e-D.az./{ 

I hn(z) I ~ e-D.az·lIf n- 2 /{n+l; n ~ 2. (58) 

o ~ /{ ~ 0.455. 

111 is given as a function of /{ by the solid curve of Fig. 1. If /{ is further 
restricted and if we are willing to degrade the bounds slightly, their 
form becomes simpler still. For example, if 0 ~ I( ~ 0.3 we may replace 
the bound of the solid curve on Fig. 1 by the slightly poorer dotted 
chord drawn from the origin. For this chord 111 = 2.225 /( and the 
results of (58) become: 

I h1(z) I ~ e-D.az./{ 

I hn(z) I ~ e-D.az./{3 (2.225/{2)n-2; n ~ 2. (59) 

o ~ /( ~ 0.3. 

Finally, by (45), (,57) and (58) 

I If(z) I ~ e-·n'[K + ,%;;, Mn-'IC+1] ~ e-'
n, [K + 1 !';fK]' 

(GO) 

I H (z) I ~ e -D.az • ~1 , 

where 111 is again given as a function of /( by the solid curve of Fig. 1. 
Having found bounds on hr,(z), we may now find bounds on A,,(Z), 

our original objective. From (44a), 

I An(Z) I ~ iZ 

I c(s) I eD.as I hn(s) Ids; 

From (58): 

I Al(Z) I ~ /( foZ I c(s) Ids. 

I An(Z) I ~ M n- 2/{n+l i Z 

I c(s) Ids; 

Mt I A(z) I ~ 2 J
o 

I c(s) Ids. 

o ~ /{ ~ 0.455. 

n~1. (G1) 

n ~ 2. (G2) 
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ill is again given by Fig. 1. Again, if K is further restricted, simpler but 
slightly poorer results are obtained. For example: 

I Al(Z) I ~ K i Z 

I c(s) Ids. 

I An(Z) I ~ K 3(2.225K2)n-2 1a
z 
I c(s) Ids; 

o ~ K ~ 0.3. 

n ~ 2. (63) 

Finally, the slightly better bounds of (51-53) may be used for the 
smaller values of n. 

We may again ask whether these bounds are the best that can be 
obtained. The answer is that we might be able to do a little better, but 
not much. Thus, consider the following special case: 

D.(3 = 0, 

c(z) = Co = pure real. 
(64) 

From (46) we have 

K=~. 
-D.a 

(65) 

The solution Lo the coupled line equations, (~35), subject to the initial 
conditions of (36), for this case may be written in the following form. 1 

Go(z) = _1 - V1 - (2K)2 ex D.a [1 + V1 _ (2K)2] Z 
2 V1 - (2K)2 P 2 

(66) 

+ 1 + VI - (2K)2 ex D.a [1 - V1 _ (2K)2]Z 
2 V1 - (2K)2 P 2 

For K < 0.5, all of the radicals in (66) are pure real. Under these con
ditions the first term of (66) has a smaller coefficient and a more rapidly 
decaying exponential factor than the second term. Therefore, for a large 
enough value of Z the second term dominates, and we may write 

Go(z) ~ 1 + VI - (2K)2 exp D.a [1 - VI _ (2K)2]Z; (67a) 
2 VI - (2K)2 2 

•
A __ I G ( ),-....) I 1 + VI - (2K)2 
1\ - n 0 z ,-....) - n --=--7===:::::::::::::-'-

2 V1 - (2K)2 

K < 0.5, 

- D.a [1 - VI - (2K)2]Z; 
2 

1 
-D.az » V1 - (2K)~· 

(67b) 

(67c) 
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The first term of (67b) is constant and the second increases linearly 
with z, so that we may write for large z 

A ~ - .1a [1 _ A II _ (2K)2] z = 1 - VI - (2K)2 
2 v 2K 'coz, (68) 

large z. 

The bound of (62) becomes simply 

M I A I ~ "2 CoZ. (69) 

Therefore, a comparison between the bound of the present analysis and 
the exact results for the special case of (64) for large z is obtained by 
plotting 

1 - VI - (2K)2 
]( 

on Fig. 1 and comparing this quantity with 111. 
We see that for]( < 0.36, the exact solution is indistinguishable from 

the bound of (69) on the plot of Fig. 1; consequently, little improve
ment may be obtained in these bounds without further restricting the 
problem. We also note that for ]( > 0.5, the above approximations made 
in the exact solution of (66) no longer apply. For K > 0.5 the character 
of the solution changes froni monotonic to oscillatory; Go(z) now has 
periodic zeros, at which In Go(z) must approach infinity. Consequently, 
the series expansion for A in this case will diverge for K > 0.5. The 
present analysis guarantees convergence only for ]( < 0.455; while 
this might be a little smaller than necessary, the series solution may 
diverge for values of K not much larger. 

IV. DISCUSSION 

If K of (46) is very small compared to 1, K« 1, the bounds of (62-
63) on I An(Z) I converge very rapidly. Under these conditions it is 
tempting to assume that A(z) is satisfactorily approximated by the 
first term of the summation of (45); i.e., from (41b), 

A ~ A1(z) = J~z c(s)e ArS ds i 8 

c(t)e-Art dt, (70) 

or one of the alternative forms given in (27). [Alternately we might 
wish to make a similar statement for Go(z), as in Equation (24), when 

1z 

I c(s) Ids « 1.] This assumption has been made in all calculations of 

transmission statistics that have so far been made.1 
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Unfortunately there is, at present, no satisfactory justification for 
this assumption. If I Al (Z) I turns out to be equal to its bound, as given 
in (62), and if K « 1, then, of course, we are guaranteed that the higher 
terms will have much smaller magnitudes than the principal term AI(Z), 
However, this situation is quite improbable, and occurs only in very 
specially selected cases. Thus if I Al (z) I is much smaller than its bound, 
as will be the usual case, we have no assurance that the magnitude of 
the next term I A2(z) I or higher terms may not be much greater than 
I Al (z) I . However, no instance is known in which I A2 (z) I is not small 
compared to I AI(Z) I , for K « 1. 

We do not know whether or not the perturbation solution of (70) 
provides a useful approximation for all cases of interest (i.e., for all 
cases where c(z) satisfies (46) for some small value of K, e.g., K = 0.1). 
Even if this approximation fails in some cases, we may still hope that it 
holds true in most cases, so that (70) will yield the correct statistical 
properties of the loss and phase when the coupling coefficient is a sta
tionary random process, perhaps Gaussian, with a sufficiently small rms 
value, at least for the simpler statistics of interest. Although this is be
lieved to be true by a number of people, there is nothing in the present 
paper that bears on this question (and no other information known to 
the author). It would be most desirable to obtain further information 
on the way in which AI(Z) of (70) approximates the true solution A(z); 
e.g., does AI(Z) approximate the fine structure of A(z) as well as its 
average value as .6.{3 (which varies with the frequency of the applied 
wa ve) varies. 
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Transmission in NIultimode Waveguide 
with Random IlTIperfections 

By H. E. ROWE and W. D. W ARTERS 

(Manuscript received November 27, 1961) 

The effects of random geometric imperfections on the transmission of the 
TEO! wave in circular waveguide are studied; the neces~ary theory of guides 
with known arbitrary imperfections is first developed. The TEol transmis
sion statistics are determined in terms of the statistics of the various types 
of geometric imperfections. Both discrete mode converters - i.e., localized 
imperfections such as tilts, offsets, or diameter changes at joints between 
pipes that are perfect right-circular cylinders - and continuous geometric 
imperfections - such as straightness deviation, diameter variation, ellip
ticity, etc., that vary smoothly with distance along the guide - are con
sidered. The average, variance, power spectrum, and probability distribu
tion of the TEol loss-frequency curve are discussed. 

Continuous straightness deviation (of the individual pipes of the guide) 
appears to be the most serious tolerance in present copper waveguide, and 
a significant factor in helix guide as well. The power spectrum of the straight
ness deviation is all-important in determining the TEol loss due to mode 
conversion. Fourier components of straightness deviation having wave
lengths between roughly 1.4 and 4.4 feet are the significant ones for the 
present 2-inch I.D. guide operated in a frequency band from 35 to 90 kmc. 
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1. INTRODUCTION 

Long distance waveguide transmission via the TEO! mode in circular 
waveguide is an attractive goal because the theoretical TEol heat loss 
decreases monotonically as the operating frequency increases. As is 
well known, operating frequencies far above the TEO! cutoff frequency 
are required to realize sufficiently low heat loss and delay distortion, 
so that the guide must operate far into the multimode region. Thus, 
considering a typical case, a 2-inch I.D. perfect copper circular guide 
operating at 55 kmc will have a theoretical TEO! heat loss of 1.54 db/ 
mile; but this guide will propagate 223 additional modes, which we 
call spurious modes, at this frequency. I 

The TEO! transmission loss will approach the theoretical TEol heat 
loss in a copper waveguide only if the waveguide is a geometrically 
perfect right-circular cylinder over its entire length. Any departure 
from this ideal geometry will couple the TEol mode to some of the 
spurious modes 2 to 7 the net effect of this coupling will be to increase 
the TEol transmission loss above the theoretical heat loss, and to cause 
the TEol transmission loss to vary with frequency.l,s 

Two types of geometric imperfections are of interest: 
(a) Intentional deformations introduced in the guide for various 

reasons, e.g., to go around corners,3,6,7,9 to taper from a small guide to 
a larger one/o etc. Mode conversion effects control the design of such 
devices, but we will not discuss them further. 

(b) Random geometric imperfections arising during the manufac
turing or the laying of the guide; these imperfections will increase the 
TEO! loss and cause it to vary randomly with frequency.s The study of 
such effects is the purpose of the present paper. 

The transmission characteristics of multimode waveguide with such 
random imperfections may be improved by adding heat loss to the 
spurious modes while keeping the TEol heat loss low, i.e., close to its 
value for ideal copper guide. Examples are helix waveguidell and copper 
waveguide with a thin lossy dielectric lining. l2 ,l3 This additional spuri
ous mode loss will reduce the TEO! loss fluctuations with frequency, 
but will not reduce the average TED I loss. (In contrast, for large in
tentional bends, it is desirable to alter the phase constant of one par
ticular copper guide mode without increasing the heat loss to either 
TEol or any of the spurious modes.3,14) 
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The present paper is concerned primarily with determining the 
statistics of the TEo I transmission in terms of the statistics of the vari
ous geometric imperfections. The results of this analysis will indicate 
the required tolerances on the various types of geometric imperfections 
in different types of guide as a function of the allowable transmission 
degradation. Finally, the computed transmission statistics will be use
ful in determining the over-all degradation in various possible communi
cation systems using imperfect waveguide as a transmission medium. 

II. THEORY OF GUIDES WITH KNOWN IMPEHFECTIONS 

In this section we summarize the theory of circular waveguide with 
known geometric imperfections. These results yield, at least in princi
ple, the TEol transfer function for a circular waveguide with an arbi
trary, known departure from perfect geometry. If the various geometric 
imperfections are assumed to be random processes, then the TEol trans
fer function will also be a random process. In Sections III and IV these 
results for known imperfections are used to determine the TEol trans
mission statistics in terms of the statistics of the various geometric 
imperfections. 

We first require a solution to IVlaxwell's equations, in terms of the 
normal modes of the guide in question, for boundary conditions given 
by different types of geometric imperfections in various types of guide. 
Several people have studied these problems over the past ten years; 
we will give below a brief description of some of this work. 

Transmission of TEol through bends was first studied by M. Jou
guet,6 and by S. O. Rice in unpublished work. S. E. Miller made use 
of these results to devise several methods for transmitting TEol around 
intentional bends. 7 

S. P. Morgan first computed via perturbation theory the first-order 
spurious modes scattered from a unit incident TEol wave by small, 
abrupt tilts, offsets, and diameter changes in ideal lossless metallic 
guide. l5 These results were derived independently and published by S. 
Iiguchi.l6 Such discontinuities will often be called discrete mode con
verters, because the guide possesses perfect cylindrical geometry except 
at isolated, discrete points along its axis. 

Next, Morgan determined the first-order spurious modes scattered 
by an arbitrary small continuous deformation of the surface of an 
ideal lossless metallic guide, again via perturbation theory.5 These 
results may be used to determine the first-order spurious modes excited 
by small continuous diameter variation, straightness deviation, ellip-
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ticity, and higher-order cross-sectional deformations of metallic guide. 
In addition, lVlorgan used these results to evaluate the expected value 
of the additional TEol loss due to mode conversion caused by random 
distortion of the guide for a rather special mathematical model of the 
guide distortion. 

Finally, lVlorgan applied the generalized telegraphist's equations of 
SehelkunofP to the problem of losslcss metallic waveguide with an 
arbitrary curvature of its axis;2 if desired, the dielectric constant of the 
material filling the guide may be an arbitrary function of position. 
By this analysis, lVlaxwell's equations are reduced to an infinite set of 
coupled differential equations, the coupled line equations,l7 in which the 
dependent variables are the complex mode amplitudes of the normal 
modes of the unperturbed metallic guide. In principle, the coupled line 
equations provide an exact description of a lossless metallic waveguide 
with an arbitrary straightness deviation, and are not subject to the 
severe restrictions of the perturbation theory which was described in 
the preceding paragraph. Thus, if this infinite set of differential equations 
could be solved for an arbitrary straightness deviation, we would have 
an exact solution for lViaxwell's equations for the particular deformed 
guide. As will appear below, solutions to these equations in the general 
case are not available, and useful results are obtained only by applying 
perturbation theory of one form or another to the coupled line equa
tions;l8 however, the equations themselves are an exact description of 
the field problem. 

Since the loss in real copper guide is low, we expect that the above 
coupling coefficients, which strictly speaking apply only to lossless 
metallic guide, will provide a good approximation for copper guide, and 
that the coupled line equations for lossless metallic guide need be modi
fied only by changing the propagation constants for the various modes 
to take account of the small losses actually present in copper guide. 

Equivalent results have been derived by H. G. Unger for various 
geometric imperfections in helix waveguide via the generalized tele
graphist's equations;4 these analyses have been carried out both in 
terms of metallic guide modes and helix guide modes.!l Unger has stud
ied straightness deviations3 and cross-sectional deformationsl9 ,2o in 
helix, as well as winding imperfections2l in helix, and has given propaga
tion constants and coupling coefficients for the various cases.22 He has 
similarly studied continuous diameter variations (tapers),l0 which have 
identical behavior in both helix and metallic guide. 

Thus, the study of random geometric imperfections in copper or helix 
waveguide has been reduced to the study of solutions to an infinite set 
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of differential equations with random coupling coefficients. However, 
this latter problem is a formidable one for which there is no really 
satisfactory treatment except in rather special cases. In the present 
paper, we use perturbation theory to approximate the solution to the 
coupled line equations; however, there is so far no rigorous justification 
for this approach. The convergence of this approximate solution is 
discussed elsewhere in this issue for the idealized case in which there 
are only two modes (rather than an infinite number of modes).ls Even 
in this simple case, we do not know how good an approximation the 
perturbation solution provides. 

It is obvious that the various results of S. P. Morgan for metallic 
guide must be related to each other, even though they may appear 
somewhat dissimilar. In this section, after first developing the necessary 
theory for a long guide with many discrete mode converters, we show 
how the coupled line equations and lVlorgan's results for discrete mode 
converters may be derived from each other, and how perturbation 
theory derived from either the discrete case or from the coupled line 
equations yields equivalent results to perturbation theory applied 
directly to the field equations. 5 This discussion is intended to provide 
a better physical understanding of the coupled line equations themselves, 
as well as of the approximate solution that we use, than would be ob
tained by merely a formal treatment based entirely on the coupled 
line equations. We will often simplify the problem by including only a 
few of the spurious modes (sometimes only a single spurious mode), 
in addition to the TEol signal mode. While this procedure is useful in 
studying some of the basic problems, it of course does not provide a 
rigorous treatment for the real problem, which involves an infinite 
number of modes. However, experimental results for copper guides 
show that often only one or two spurious modes are present with sig
nificant magnitude,S and thus provide some additional justification 
for the study of the idealized problem. 

2.1 Scattering Matrices of Discrete JJ10de Converters 

While S. P. Morgan has performed a field analysis for discrete mode 
converters in lossless metallic guide, many of the general properties of 
the scattering matrices for discrete mode converters may be derived 
from conservation of energy, reciprocity, and the symmetry properties 
of the different mode converters. We give such a discussion in the present 
section, making use of Morgan's results15

,16 where necessary. Most of 
the discussion will be confined to cylindrical guides of infinite conduc-
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Fig. 1 - Generalized mode converter. 

tivity. We choose the particular case of the discrete tilt to illustrate the 
general approach; briefer discussions are given for offsets and diameter 
changes. 

2.1.1 General Properties of Scattering JvI atrices 

Consider the general mode converter illustrated in Fig. 1. On the 
left of the obstacle we have the modes Ol,ll,2l, ... , and on the right 
the corresponding modes Or,lr,2r,3r, ... , where the letters land r 
stand for "left" and "right" respectively. The subscript zero will de
note the TEol mode and the other subscripts will denote the spurious 
modes. This convention will be used throughout this paper. We assume 
that there are the same number of propagating modes on each side of 
the obstacle, thus ruling out cases in which one of the spurious modes 
is below cutoff on one side of the obstacle, above cutoff on the other 
side. Cutoff modes are neglected throughout this analysis. 

Denoting the normalized complex amplitudes of the modes incident 
on the obstacle from the right and left as Inr and Inl respectively, and 
of those leaving the obstacle as Rnr and Rnl respectively, the matrix 
equations23 of the obstacle may be written: 

<R = SfJ 

ill ~ [~:J 

[
ROl] 

Rz = Rll 
R2l 

[

IOl] 
Il = III 

121 

(1) 
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Morgan's results show that except very close to the cutoff of a spuri
ous mode, the power scattered from TEol to the forward modes greatly 
exceeds the power scattered to the backward modes for "small" mode 
converters. Consequently, in the following treatment we shall neglect 
all reflected waves. Using this assumption, and the faet that S must be 
symmetric (reciprocity), 

and from (1), 

where S denotes the transpose of the submatrix S. Thus, 

Rl = SIr, 
Rr = SI l • 

If the obstacle is assumed lossless 

SS* = [1], 

(2) 

(3) 

(4a) 

(4b) 

(5) 

where the * denotes the complex conjugate and [1] denotes the unit 
matrix. From (2) we thus have 

SS* = [1] or equivalently SS* = [1]. (G) 

2.1.2 Scattering Jl1 atrix for a Tilt 

Consider the tilt of Fig. 2(a). Neglecting reflected waves, this mode 
COllverter may be characterized by the matrices of (3) or (4). Since the 
tilt is symmetric about the plane A-A' of Fig. 2(a), its input and output 
terminals may be interchanged without altering its behavior. From this 
fact and (4), we have 

S = S; (7) 

the matrix S is symmetric for a tilt. If we consider a tilt in perfectly 
conducting guide, so that energy is conserved, we have from (6) and (7) 

SS* = S*S = [1]. (8) 
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C~ 
------------\~~~------

d~o 

( b) 

Fig. 2 - Waveguide with tilt. 

Next, consider a cascade connection of the tilt of Fig. 2(a) and an 
identical tilt rotated 180°, as shown in Fig. 2(b); we may consider that 
the first tilt has an angle +a, the second an angle -a. Let the scatter
ing matrix for the first tilt be S, for the second (rotated) tilt be S'. Then 
as the distance d between the two tilts approaches zero, the over-all 
scattering matrix of the two tilts becomes S' S (neglecting reflected 
waves). But it is clear from physical considerations that this cascade 
connection of two opposite tilts of equal magnitude must be equivalent 
to a straight piece of guide (of zero length); thus we must have 

S'S = SS' = [1]. 

From (8) and (9) we have in the lossless case 

S* = S'. 

(9) 

(10) 

By utilizing the symmetry properties of t he various modes involved, 
further restrictions on the elements of S are easily found. For the sake 
of definiteness, consider the case where the only modes considered are 
the signal mode, TEOl , and the first-order forward spurious modes scat
tered by a discrete tilt from TEOl , i.e., one polarization of the forward 
TMll and TE1m modes, denoted by TlVIll + and TE1m +, as shown by 
lVlorgan.15

,16 It is obvious by symmetry that only the (linear) polariza
tion having an asymmetric transverse field distribution with respect 
to the plane of the tilt will be excited by an incident TEO! wave.23 vVhile 
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the backward TElm modes, denoted by TElm -, are excited to first order 
by a tilt, their magnitudes are much smaller than the magnitudes of 
the corresponding forward spurious modes, as stated earlier, and conse
quently we neglect the backward modes for the present. We recall the 
convention of (1), i.e. the top elements in the R and I column vectors 
of (4), having the subscript 0, denote the TEO! signal mode; the other 
clements denote the various spurious modes. Let the elements of the S 
and S' matrices be Sij and sd respectively. Thus, for example, if a unit 
TEO! wave is incident on the tilt of Fig. 2(a) from the left, a TEal wave 
of (complex) amplitude sao will emerge on the right. We now observe 
that rotation of the tilt by 1800 leaves the TEal mode unaffected, but 
reverses the sign of the field components of all of the spurious modes, 
since their field components vary as cos cp or sin cpo Consequently, the 
matrix components sJ for the rotated tilt arc related to the matrix 
components Sij as follows: 

i = 0, j ~ o. 
-Sij; 

i ~ 0, J = o. 
s·.'-I} -

i = 0, J = o. 
+sij; i ~ 0, j ~ o. 

(11) 

From (10) we have 

(12) 

Equations (11) and (12) thus yield 

pure imaginary; 
1, = 0, j ~ o. 
i ~ 0, j = o. 

Sij = 
0, .i pure real; 

1, = = o. 
i ~ 0, j ~ o. 

(13) 

The coupling coefficients between TEal and the spurious modes are pure 
imaginary, while all other matrix components are pure real. 

Summarizing the above results, the scattering matrix S of a discrete 
tilt in lossless metallic guide must satisfy the following relations, if we 
include only TEO! and the propagating first-order forward spurious 
modes: 

S = S, 

SS* = [1]. 

Sij = Sji. (14) 

(15) 
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. . i = 0, 
pure Imagmary; i ~ 0, 

pure real; 
i = 0, 
i ~ 0, 

j ~ 0. 
j = 0. 

j = 0. 
j ~ 0. 
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(16) 

As an example, let us determine the form of 8 for the case where only 
a single spurious mode is considered, in addition to the TEol signal mode. 
(For a guide with a large intentional bend, the most significant spurious 
mode might be one polarization of forward TlVIl1 . For a guide with a 
small random straightness deviation confined to a single plane, the most 
significant spurious mode might be one polarization of forward TE12 , as 
discussed in Section 2.3 below.) Then (14) to (16) yield for the 8-matrix 

s=[~ ~J. 
JC VI - c2 

(17) 

For small tilts in lossless metallic guide, lVIorgan15
,16 has given the 

cou pIing coefficients SOj [or jc of (17)] in terms of the tilt angle a of 
Fig. 2(a) to first order in a, as follows; 

SOj = jCt(j)+·a + ... , j ~ 0, (18) 

where the first j on the right-hand side of (18) represents v=1, the 
subscripts j indicate the spurious mode. Ct(j) + is a constant depending 
on the (forward) spurious mode; formulas and numerical values at a 
frequency of 55 kmc in 2-inch diameter guide for the C t +'s are given in 
Appendix A. In addition, the coupling coefficients Ct- to the correspond
ing backward spurious modes are also given in Appendix A; as indicated 
above, these are much smaller than the forward mode coupling coeffi
cients. 

Consider a tilt of angle al followed by a tilt of angle 0'2; as the distance 
between the two tilts approaches zero, it is obvious that the structure 
approaches simply a single tilt of angle al + a2. If 8(a) is the matrix 
for a tilt of angle 0', then the 8-matrix must satisfy the further require
ment that 

(19) 

for every value of al and a2 , where we again neglect reflected modes. 
Consider again the idealized case where only a single spurious mode is 
allowed, in addition to the TEol signal mode. We show in Section 2.3.3 
that the "exact" matrix for a large tilt for this idealized two-mode case 
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is given by 

[

COS Cta j sin Cta] 
Sea) = , 

j sin Cta cos Cta 
(20) 

where Ct is Morgan's coupling coefficient for the spurious mode in ques
tion. The matrix of (20) can readily be seen to satisfy the consistency 
condition of (19), and to approach the results of (17) and (18) for 
Cta « 1. However, the reader should be warned again that (20) will 
not be valid for large tilts in the physical case, because such large tilts 
will excite many spurious modes with significant magnitude, and hence 
can not be described in terms of only two modes. 

The above results for tilts in metallic waveguide include only one 
polarization of each of the forward spurious modes, i.e., TE1m + and 
TIVIn +. We wish to extend these results to include both polarizations of 
each of these spurious modes so that we will be able to treat a long line 
containing arbitrary tilts with arbitrary angular orientation, i.e., not 
confined to a single plane. 

'Ve first write the general results of (4b) as follows, dropping as Ull

necessary the subscripts land r since we will always assume that all 
modes travel in the forward direction, from left to right. 

R] = [SJ· fJ. (21) 

In these and following matrix relations, we adopt the convenient nota
tion that column vectors (n X 1 matrices) are denoted by the symbol]~ 
row vectors (1 X n matrices) by symbol L-J' and square matrices by 
the symbol [ ] where it is not obvious from the context that something 
else is intended (e.g., the column vectors on the right-hand sides of (22a) 
and (22b)). The top elements in (22a), Ro and 10 , represent the trans
mitted and incident TEO! wave. Rx], Ix] and Ry], fy] are column vectors 
whose elements represent the two orthogonal (linear) polarizations of 
each of the spurious modes. 



~J!~ a cos (J 

tX.~ ~ ex. SIN f) 
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Fig. 3 - Geometry of a tilt in waveguide. 
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Consider the tilt of Fig. 3, in which the two polarizations of each of the 
TElm + and Tl\!Iu + spurious modes are defined along the x and y axes. 
To use the previous treatment including only a single polarization of each 
spurious mode, we must set () = 0 in Fig. 3, so that the plane of the tilt 
lies in one of the planes defining the spurious mode polarization. Then, 
using the notation of (22), we may write the results for the x-polarization 
as follows: 

[Z~J ~ [igl-l{~JUJ (23) 

C] ~ [~J ,iCj ~ SOj. (24) 

The components of the column vector of (24) are given to first order by 
(18). In (23), we have partitioned the S-matrix to conform to the par
titioning of the R and I column vectors. The restrictions of (14) to 
(16) become respectively, in terms of the submatrices of (23): 

[D] = [15]. 

S002 + L c/ = 1, 
i 

(Sao - [D]) ·C] = 0], 

C]. Q + [D]2 = [1]. 

(25) 

(26) 
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800 , c], [D] pure real. (27) 

In (26), [1] denotes the unit matrix. 
Now by symmetry an incident TEal wave in this particular tilt (e = 0) 

will not excite the y-polarization of any of the spurious modes as stated 
earlier, and by reciprocity the y-polarization of any of the spurious 
modes will not excite TEal' Further, the x- and y-polarizations of all of 
the spurious modes are uncoupled from each other by symmetry. There
fore, we may expand the matrix relation of (23) to include the y-polariza
tion of the spurious modes as follows: 

[ 

Ro 1 [8
00

! j C : 0 1 [10 l 
~ = ~fl!~i{rf . ~~J 

where (18) and (24) to (27) still apply. 

(28) 

Now let us rotate the axes by an angle - e with respect to the plane 
of the tilt, as shown in Fig. 3, and write the field in the guide in terms 
of modes referred to these new axes. The geometry of the rotated tilt 
may be specified precisely in the following way. Imagine that before 
the guide is tilted, lines ({) = constant are drawn on the surface of the 
guide parallel to the guide axis. Then the tilt, of orientation e, is con
structed at a specified point on the axis by tilting the guide in the plane 
defined by the axis and the (() = e line, by an angle a. If 

p = distance from the (tilted) guide axis in a plane perpen-
dicular to the guide axis, (29 ) 

8 = distance measured along the (tilted) guide axis, 

the three coordinates p, ({), 8 constitute "bent cylindrical coordinates," 
as used by Morgan for continuous bends confined to a single plane.2 

In subsequent analysis for a guide with many tilts of arbitrary orienta
tion, we will adopt the convention that a > 0 while e is unrestricted; 
in contrast, for a guide with tilts confined to a single plane, we will set 
e = 0 and allow a to be unrestricted. 

Now let Ro] and 10] denote the fields with respect to the old axes and 
Re] and Ie] the fields with respect to the rotated axes. First, we note 
that TEal is the same in both sets of coordinates. Next, we note that 
the field components of all of the spurious modes under consideration, 
i.e., TElm + and TMll +, vary as cos ({) or sin ({). If we call ({)o the "old" and 
({)IJ the "rotated" angular coordinates, the transformation is simply 

({)e = ({)o + e. (30) 
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For each spurious mode this yields in terms of wave amplitudes 

[RxoJ = [ c~s 0 sin OJ [RxOJ ' 
Ryo -sm 0 cos 0 RyO 

(31) 

with a similar result for the 1's. Note that (31) applies to a single spuri
ous mode only (two polarizations); the index denoting the particular 
mode has been omitted for convenience. Thus, the R's (or I's) in (31) 
are single (complex) numbers, and not column vectors. We may write 
the corresponding general rotation matrix including TEo I and all spurious 
modes in the following convenient form: 

Ro] = [1l11· Rol, 101 = [1l11·I01. (32a) 

(32b) 

(32c) 

R and I in (32a) are as given in (22); the [l]'s in (32b) represent the 
unit matrix. We note from (32c) that 111 is an orthogonal matrix. 

Now rewriting (28) as 

Ro] = [So], Ie], 

we substitute the relations of (32a) into (33) to obtain 

Therefore, 

[ivI]· Rol = [So], [1l1]· 10] 

Ro] = [lvlr 1
• [So], [1l1]· 1/1] 

= [M]· [So], [2VI]· 10]. 

Ro] = [So], Ie], 

[Se] = [M]· [So]· [M]. 

Substituting [So] from (28) and [ill] from (32b), we have 

[So] = 

(33) 

(34) 

(35a) 

(35b) 

[ 

soo: j cos O' C : j sin (). C 1 
~~¥-I~!~~2~]~f~~t~;~~~~~=!~f~2~~~!~:~~~~~ (36) 
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as the scattering matrix for a tilt in lossless metallic guide, having an 
orientation of e radians with respect to the axes defining the polariza
tion of the spurious modes. C] remains as defined in (24), with com
ponents given to first order by (18), and the restrictions of (25) to (27) 
still apply. 

The al)ove transformation may readily be seen to yield the correct 
results in a lew simple cases: 

1. e =' 7r. (S1I"] is readily seen to be identical to the matrix (S'] de
scribed in connection with (11). 

2. e = 7r/2. Here we see that Rx]o~o = RY]O~1l"/2' Ry]o~o = - RX]O~"'/2 , 
and similarly for the /'s, as is obvious from geometric considerations. 

The coupling coefficients between TEO! and the x- and v-polarizations 
of the jth spurious mode are from (36), (24) and (18) 

SOj,x = jCtU) +. (a cos e), 

SOj,y = jC tU) + . (a sin e). 

(37a) 

(37b) 

These general results simplify so that they may be simply expressed in 
terms of fixed x, y, z coordinates in the following special case: 

1. The angular deviation of the guide axis from the z-axis is small. 
2. The unit vector perpendicular to the guide axis and lying in the 

plane defined by the guide axis and the cp = 0 lille is almost parallel to 
the x-axis. These conditions insure that the cp = 0 line drawn on the 
guide will remain almost parallel to the x-z plane. Subject to these 
conditions, we have approximately 

a cos e ~ ax, 

a sin e ~ a y , 

(38a) 

(:38b) 

where ax and a y are the angles made by the projections of the guide 
axes, adjacent to the tilt, in the :r-z and y-z planet' respectively. 
These results are readily verified for the case shown in Fig. 3. They are 
derived in Appendix B. Substitution of (38) into (37) (and thence into 
the matrix of (36)] will greatly simplify certain later calculations. 

2.1.3 Scattering 11;[ atrix for an Offset and a Diameter Change 

The scattering matrix for an offset may be found by similar methods 
as used in Section 2.1.2 above for a tilt. Consider the offset of Fig. 4(a), 
with scattering matrix S; as above we assume the offset is small, so that 
backward modes may be neglected and only the propagating first-order 
forward spurious modes (i.e., TE1m +/5,16 need be considered. In Fig. 
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Fig. 4 - Waveguide with offset. 

4(b), this offset is cascaded with an identical offset, which may be 
derived from the original offset in two ways: 

1. Reverse input and output terminals. 
2. Rotate the first offset 180°. 

From 1, the matrix for the second offset is S, the transpose of S. From 
2, the matrix for the second offset is S', as defined in (11) above, by an 
argument similar to that used for the tilt. From these facts, as the dis
tance d separating the offsets approaches zero, 

Bs = SS = [1], 

s's = SS' = [1]. 

Assuming losslcss metallic guide, from (G) 

SS* = sB* = [1]. 

(39a) 

(39b) 

(40) 

From (39) and (40) we have for an offset in lossless metallic guide: 

SS = [1]. 

Sij = pure real = 

i = 0, 
-Sji;i ~ 0, 

j ~ 0. 
j = O. 

j = O. 
j ~ O. 

(41) 

(42) 
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For a single spurious mode the matrix S for an offset becomes 

[v~ S= 
-c 

(43) 

corresponding to (17) for a tilt. For small offsets in lossless metallic 
guide, Morgan15

,16 has given the coupling coefficients 80j [or c of (43)] 
in terms of the offset b of Fig. 4(a) to first order in b, as follows: 

(44) 

Cow + is a constant depending on the spurious mode; formulas and nu
merical values for the Co±'s at a frequency of 55 kmc in 2-inch diameter 
guide are given in Appendix A. 

Analogous results to those of (19) to (38) for tilts are readily found for 
offsets, but will not be discussed in detail here. In particular, the scatter
ing matrix for an offset with an arbitrary angular orientation is found in 
the same way as given in (21) to (37), making use of the rotation operator 
of (32). The geometry for offsets of arbitrary orientation is much simpler 
than for tilts. As before, imagine that lines <p = constant are drawn on 
the surface of the initially perfect guide, parallel to the guide axis. Then 
the offset of Fig. 5 is constructed at a specified point on the guide axis 
by translating the guide a distance b in the <p = (J plane without rotating 
the guide, EO that corresponding cp-lines on the two sides of the offset 
are separated by a distance b. For a guide with many offsets of arbitrary 
orientation we take b > 0 with (J unrestricted, while for a guide with 
offsets confined to a single plane we set (J = 0 and allow b to be unre
stricted, as in the case of tilts. Then using the notation of Section 2.1.2, 
the scattering matrix So for an offset of orientation (J is given as follows: 

So= 

r 
800: cos (J. c i sin (J. C l 

L-. 1 L-.I 
---------1-------------------1------------------- (45) 

l
-cos(J'C]: cos2 (J·(D] + sin2 (J.(1] : sin (J cos (J((D] - (1]) J 

---------1--------------------:------------------
-sin(J·C] I sin (J cos (J([D] - [1]) ! sin2 (J·(D] + cos2 (J·(I] 

where 

Cj == SOj • (46) 
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bJ! = b cos (} 
by = b SIN (} 

Fig. 5 - Geometry of an offset in waveguide. 
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The components of C] are given to first order by (44). Equation (45) 
(for offsets) has been written in such a way that the restrictions of 
(41) and (42) become identical to those of (25) to (27) (for tilts). 

The coupling coefficients between TEo! and the x- and y-polarizations 
of the jth spurious mode are from (44) to (46) 

80j,x = CO(j) +. (b cos e), 

80j,v = CO(j) +. (b sin e). 

(47a) 

(47b) 

From Fig. 5 it is readily seen that bx = b cos e and by = b sin e are ex
actly the x- and y-components of the offset, in analogy to the approxi
mate results of (38) for tilts. 

A similar treatment may be applied to a discrete diameter change. 
Here the spurious modes are the higher order TEom /5 again for small 
offsets only the forward modes necd be considered. This case differs in 
one fundamental respect from that of the offset. For an offset the TEO! 
signal mode and the TE!m spurious modes have a different angular de
pendence; for a diameter change the TEo! signal mode and the higher 
order TEom spurious modes have the same (i.e., no) angular dependence. 
Thus, for a diameter change the signal and all spurious modes are coupled 
to each other to first order. 

First by conservation of energy (true in helix as well as copper guide, 
because the TEom modes are the same in both) (6) yields 

SS* = SS* = [1]. (48) 
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Next, consider the cascade connection of two identical diameter changes 
connected back-to-back. As in the case of an offset, this yields 

ss = SS = [1]. (49) 

From (48) and (49) we find that 

S = S* = pure real. (50) 

However, there is no operation corresponding to the 1800 rotation, used 
for tilts and offsets, because the signal and spurious modes have the 
same symmetry in the present case. While we have obtained no further 
information from general considerations than contained in (49) and 
(50), for the case of a single spurious mode the scattering matrix for a 
diameter change is identical to that of (43) for an offset. 

For small diameter changes, Morganl5,l6 gives the coupling coefficients 
SOj in terms of the change in radius Ar as follows: 

SOj = Cd(j/'Ar + "', j > O. (51) 

Cd(j)± is given in Appendix A. 
There is of course only a single polarization of each spurious mode in 

this case, and consequently, there is no analysis in the present case cor
responding to those for tilts and offsets with two polarizations. 

2.1.4 Discrete Mode Converters in Helix Guide 

While the above results for diameter changes apply equally well to 
both helix and copper guide, those for tilts and offsets apply to only 
copper guide (strictly speaking, ideallossless metallic guide). This is so 
because (G) no longer holds true in helix; energy is not conserved in 
helix, and in addition the various normal modes of helix are not even 
orthogonal with respect to power.22 The coupling coefficients for discrete 
mode converters in helix have been obtained by Unger.l9 However, one 
useful result is readily obtained from general considerations without 
performing a detailed field analysis. 

We show that at a discrete tilt or offset, the TEO! transfer coefficient 
SOO (the upper left-hand element in the scattering matrices for a tilt or 
offset given in Sections 2.1.2 and 2.1.3 above) is identical in both copper 
and helix guides, if we neglect backward modes and include all forward 
modes. This fact will permit the average TEol loss in helix guide with 
discrete random tilts and offsets to be readily calculated in terms of 
similar results for copper guide. 

The above statement is proven as follows. First consider an offset 
or tilt as a joint between a helix and a copper guide, with a unit TEO! 
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wave incident from the helix. If backward waves are neglected, the for
ward waves in the copper guide will be identical to those in a copper
copper joint because the incident TEol is the same in helix as it would 
be in copper. Therefore, the TEol transfer coefficient sOO is the same for 
this helix-copper joint as for a copper-copper joint. Now reverse input 
and output terminals, so that the TEol is incident from the copper guide, 
and TEol and spurious modes travel away from the joint in helix. The 
spurious modes are now quite different than before, since they must be 
normal modes of helix guide; however, by reciprocity soo must remain 
the same. Finally, we may replace the copper guide containing the inci
dent TEol with helix without further altering the fields in any way. 
Thus if backward modes are neglected, Soo is identical in helix and copper 
guides with identical tilts or offsets. 

This conclusion has been verified experimentally by the authors in 
2-inch diameter helix guide at a frequency of 55 kmc. It has also been 
verified by a field analysis by H. G. Unger.20 

2.2 The Discrete Case - Single Spurious ~[ode 

We next apply the results of Section 2.1 to the study of long guides 
with many discrete mode converters separated by guide sections that 
are ideal, i.e., geometrically perfect right-circular cylinders. We restrict 
our attention to the case of a single spurious mode, in addition to the 
TEol signal mode. (If the spurious mode is polarized, such as TElm +, 

we consider only one of its linear polarizations.) 
The over-all transmission matrix for such a guide with N discrete 

mode converters consists of a product of 2N matrices, one matrix for 
each mode converter (as given in the preceding section) and one diagonal 
matrix for each section of ideal guide. These matrix results are then used 
to derive a perturbation theory, valid when the mode converters are 
sufficiently small, that greatly simplifies further calculations. 

2.2.1 Matrix Analysis 

Consider the guide illustrated schematically in Fig. 6. This guide con
sists of N discrete mode converters separated by N sections of ideal 
copper guide, of length lk . Since we consider only a single spurious mode, 
if the discrete mode converters are tilts or offsets they must lie in a single 
plane (taken to be the <p = 0 plane in the notation of Section 2.1). We 
seek the response of such a guide to a unit input TEO! wave. 

The scattering matrix Sic for the kth mode converter is given in Section 
2.1 for the case of a single spurious mode, i.e., (17) and (18) for tilts, 
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Sk = SCATTERING MATRIX FOR kTH MODE CONVERTER 

Mk = SCATTERING MATRIX FOR kTH MODE CONVERTER 
PLUS FOLLOWING SECTION OF GUIDE 

10 SIGNAL MODE (TEo,) NORMALIZED AMPLITUDE 

I f SPURIOUS MODE NORMALIZED AMPLITUDE 

Fig. 6 - Waveguide line with discrete mode converters separated by ideal 
guide sections. 

(43) and (44) for offsets, (43) and (51) for diameter changes. In the 
ideal guide sections connecting the discrete mode converters, the signal 
and spurious modes propagate independently with their respective 
propagation constants; the scattering matrix W k corresponding to the 
kth section of ideal guide, of length lk as shown in Fig. 6, is given by 

(52) 

where ro is the propagation constant for the TEol signal mode, r l the 
propagation constant for the spurious mode. Thus, the scattering matrix 
Mk for the k th mode converter plus the (following) k th section of guide, 
as shown in Fig. 6, is 

(53) 

(54) 

with Ck given by (18). For offsets and diameter changes 

(55) 
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with Ck given by (44) and (51) respectively. 
The over-all transmission matrix T for the entire guide, N sections 

long, will be 

T= [
Too 
Tlo 

(56) 

and the output mode amplitudes will be given in terms of the input mode 
amplitudes by 

[
IO(N)J = T [lo(O)J. 
II(N) 11(0) 

(57) 

We assume the guide is excited by a pure TEol wave of unit amplitude 
and zero phase; the initial conditions on (57) become 

Then, 

10(N) 

II(N) 

Toolo(O) 

TlOlo(O) 

10(0) = 1, 11(0) = o. 

Too, TEol gain. 

T lo , TEor-spurious mode transfer 
coefficient. 

(58) 

(59) 

(GO) 

It will subsequently be convenient to normalize these quantities as 
follows: 

Too = e-
roLN

• Go; Go = TEol normalized gain. 

TlO = e-
r1LN ·GI ; GI = TEor-spurious mode normalized transfer 

coefficient. 

(61) 

(62) 

In each case, the propagation factor of the corresponding mode has been 
removed; as shown in Fig. 6, LN is the total length of the N sections of 
guide being considered. Since TEO! has a lower heat loss (i.e., ao = Re ro) 
than any other mode, in a physical guide Go ~ 1. 

The exact solution above is of limited value both because of its com
plexity and also because, as discussed in Section 2.1, the available ex
pressions for the coupling coefficients of discrete mode converters are 
valid only to first order. Consequently, we seek approximate expressions 
for Too and T lo , or equivalently Go and GI , valid when the coupling 
coefficients are sufficiently small that the guide departs only slightly 
from ideal. Under these conditions, it will be shown that G1 is of first 
order and Go departs from unity only to second order. 
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It iR convenient to write 

Go = 1 - p, (63) 

where p, the (complex) departure of Go from unity, will be of second 
order. We further define the TEo1 normalized magnitude 0, complex 
loss A, loss (in nepers) A, and phase e as follows: 

Go = gejE) = e-
A = e-AejE) = 1 - p; 

A = A - jE>. 
(64) 

Then if the coupling coefficients are sufficiently small so that I p I « 1, 
we have to second order: 

g ~ 1 - Re p. 

A~p. 

A ~ Re p. 

e ~ - 1m p. 

2.2.2 Perturbation Theory 

(65a) 

(65b) 

(6Sc) 

(Gf)d) 

Consider the transmission matrix T of (5G), with the Jll k given by 
( 54) or (55). Let us expand the square root in the diagonal clements of 
(54) or (55) in a power series as follows; 

(66) 

It is apparent from the rules of matrix multiplication that the com
ponents of T may be expressed as power series in the Ck'S. Since each Ck 

may be expressed as a power series in the appropriate geometric parame
ter, with the first term given by (18), (44) or (51), we can thus obtain 
expressions for G1 and Go as power series in the geometric parameters. 
The first-order results of (18), (44) and (51) are sufficient to give G1 

to first order, Go to second order; if the mode converters are sufficiently 
small we may hope that these results will give a valid approximation 
for the TEO! gain and the TEorspurious mode transfer coefficient. 

We first determine the first few terms of expansions for TlO and Too. 
For convenience, we write for JJlk in (56) 

JJI k = [A k EkJ ' 
Ok Bk 

(67) 

where A k , Ek, Ok and Bk are determined by comparison with (54) or 
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(55). For small coupling, Ak and Bk will have magnitudes a little less 
than 1, while Ek and Ok will have magnitudes much smaller than 1. In 
writing out T10 and Too, we group terms according to the number of 
"small" quantities (i.e., E'S and o's) they contain. Thus, we have: 

N 

7\0 = L Al ... Ai-IOiBi+1 ..• BN 
i=l 

N-2 N-I N 

+ L 2: L AI··· Ai-IOiBi+1 ... 
i=l j=i+l k=i+l 

N-I N 

(68) 

Too = Al ... AN + L L AI··· A i - l oi B i+1 ..• B i - 1Ej A;+1 .•. AN 
i=l j=i+l 

N-3 

+2: 
i=l 

N-2 N-l N 

2: L L Al •.. A i - l oiB i+1 ••. B i- I EiA i+1 ••. 
i=i+l k=i+l l=k+l 

... A k- l (hBk+1 ••. Bl-IElA/+1 ••• AN + .... 
(69) 

Consider first (68) for T lO • Referring to (67), (66), (54) and (55), 
the successive terms of (68) (of which we have written down the first 
two) contain components of the following orders in the Ck : 

term order of components 

1 3 5 
C, C , C , ••• 

2 3 5 7 
C , C , C , ••• 

Equa tion (18), (44) or (51) gives the Ck to first order in terms of the 
tilts CXk , offsets bk , or diameter changes I1rk . Therefore, we may obtain 
TlO to first order in the geometric parameters by retaining only the com
ponents of order c, which occur in only the first term of (68) (the single 
summation), and using lVlorgan's first-order coupling coefficients. In
deed, since we do not have the coupling coefficients to more than first 
order, it would be totally unjustified to retain any additional components 
in (68), and in particular, to seek an exact result for the matrix multipli
cation of (56) via numerical techniques or otherwise, without first ob
taining the coupling coefficients Ck to higher order. 

Similarly, the successive terms of (69) for Too contain components of 
the following orders in the Ck : 

term 

1 

2 

order of components 
o 2 -1 

C , C , C , 

2 -1 6 
C, C , C , 
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We obtain Too to second order in the geometric parameters by retaining 
only the components of order CO and c2 in the first term and the com
ponents of order c2 in the second term, and using Morgan's first-order 
coupling coefficients. As above, any additional terms would be unjusti
fied. We note that there are no first-order terms present in Too. 

We thus obtain the following approximate results for Go and G1 , the 
normalized transmission parameters defined in (61) to (64), from (66) 
to (69), (54), (55) and (18), (44) and (51). In these results we use the 
differential propagation constant AI" defined as 

Ar = Aa + JA{3 = r 0 - r 1 • 

Aa = ao - a1, A{3 = {3o - {31 . 

(70a) 

(70b) 

The real and imaginary parts of Ar, Aa and A{3 respectively, are called 
the differential attenuation constant and the differential phase constant 
respectively. Since the TEo1 signal mode has lower heat loss than any 
other mode, Aa < 0 throughout the present paper. The geometry of the 
guide is shown in Fig. 6; Lk - 1 is the length of guide up to the kth mode 
converter, lk the distance between the kth and the (k + 1)th mode con
verters. Xi denotes Morgan's first-order approximation for the coupling 
coefficient of the ith mode converter. 

For tilts and offsets the diameter of the different guide sections is of 
course identical, so that Ar is strictly constant. This is not true for di
ameter changes, so that strictly speaking we should include in the analy
sis the fact that Ar changes from section to section. However, we assume 
that the total range of the guide diameter is very small, centered about 
its nominal value, and neglect the small changes in Ar in all following 
analysis, both for the discrete case and forthe continuous case. This ap
proximation is not necessary; it would be possible to include the varia
tion of Ar in the present analysis without great difficulty. However, we 
choose to ignore this effect without careful study in the interests of 
simplicity. 

i. Go - Tilts, Offsets and Diameter Changes 

Go = 1 - p. (71a) 

(71b) 
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Special case - equally spaced mode converters 

(71c) 
N 

P ~ tI: X/ + 
i=1 

(71d) 

N N-l N-k 
_ 1 ~ 2 + ~ tor1o·k ~ 
- 2" L-J Xi L-J e L-J XiXi+k • 

i=1 k=1 i=1 

Ct· (Xi, tilts. 

Xi = Co· bi , offsets. (71e) 

Cd· D.ri, diameter changes. 

ii. G1 - Tilts 

(72a) 

Special case - equally spaced mode converters 

(72b) 

(72c) 

(72d) 

iii. G1 - Offsets and Diameter Changes 

(73a) 

Special case - equally spaced mode converters 

(73b) 

(73c) 

Co· bi , offsets. 

Cd· D.ri, diameter changes. 
(73d) 
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2.2.3 Discussion 

The above results for tilts and offsets apply strictly to only lossless 
metallic guide, for which ~a = 0. However, we expect on intuitive 
grounds that they provide a satisfactory approximation for real copper 
guide. The results for diameter changes apply equally well to both cop
per and helix; for tilts and offsets in helix we must use the helix guide 
coupling coefficients, but otherwise the analysis is the same. 

The results of (71) to (73) yield the TEOl signal mode to second order 
(there are no first-order terms), the spurious mode to first order, in the 
appropriate geometric parameters. In each case we have determined the 
first correction term to the solution for a geometrically perfect guide 
with all Ck = 0, i.e., Go(z) = 1, GI(z) = 0 where z is distance measured 
along the guide axis. 

A rough physical interpretation may be given for the approximate 
results of (71) to (73). The spurious mode at any point in the guide is 
regarded as a sum of waves arising at each mode converter. Each of 
these waves is computed by assuming an incident TEol wave at each 
mode converter identical to the TEol wave that would be present in a 
perfect guide, with all Ck = 0, and further assuming that the converted 
spurious mode wave is unaffected by subsequent mode converters, i.e., 
propagates as it would in perfect guide. The TEOl signal mode is re
garded as the sum of three components: 

1. The TEol wave that would be present in a perfect guide. 
2. The signal lost from TEol at each mode converter, assuming an in

cident TEol wave identical to that in perfect guide and no incident 
spurious mode wave. 

3. A sum of waves reconverted to TEOl from the spurious mode at 
each mode converter. Each of these waves is computed by taking the 
approximate spurious mode as computed above, and assuming that the 
reconverted TEol wave is unaffected by subsequent mode converters. 
It is easy to see that this component may be expressed as a sum over 
all pairs of mode converters. 

The approximate solutions of (71) to (73) may be regarded as the initial 
terms of power series expansions in the x/s (or equivalently the a/s, 
b/s, or ~r/s). It is reasonable to assume that if the x/s are sufficiently 
small these power series will converge sufficiently rapidly so that their 
first terms will provide valid approximations; under these conditions we 
would expect that I p I « 1, I GI I « 1. However, to use these results with 
confidence we must have bounds on the errors introduced by these ap
proximations that will give quantitative information on the way in 
which the solutions of (71) to (73) approximate the true solution. We 
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postpone consideration of these questions to Section 2.3 below, where 
we study the continuous case, since we will show there that the discrete 
and continuous cases are closely related to each other. It turns out that 
although we can give bounds on the higher terms of the series expansions 
that are in a sense the best possible, we still lack sufficiently precise in
formation to make any useful statement on the way in which the pertur
bation solutions approximate the true solutions. Consequently, confi
dence in the accuracy of practical calculations using the results of (71) to 
(73) can at present be justified only on intuitive grounds. 

In the region where we hope the perturbation solution is valid, 
I p I « 1. Under these conditions, the TEal normalized magnitude g, 
loss A, and phase e are given approximately by (65), where p is given 
by (71). If I p I is not much smaller than 1, it would seem that the ap
proximation of (65) must be invalid. However, it will be shown in Sec
tion 2.3 on the continuous case that (65b), (65c), and (65d) together 
with (71) remain plausible for a wide class of interesting cases where 
the magnitude of the right-hand side of (71b) or (71d) becomes much 
greater than 1 and (G5a) fails, although here again the justification is 
no more rigorous than that for (71) to (73) when I p I « 1, I GI I « l. 
This extension is important, for otherwise we should be limited to con
sidering only cases where the total loss I A I, and hence, A and I e I, 
are small. 

2.3 The Continuous Case - Single Spurious 1110de 

In this section, we study mode conversion caused by distributed geo
metric imperfections, such as continuous curvature of the guide axis or 
continuous variation of the guide diameter. We discuss briefly the gen
eral telegraphist's equations or coupled line equations for the general 
case, but again restrict the detailed treatment to the case of a single 
spurious mode. (If the spurious mode is not TEam, we consider only one 
of its linear polarizations.) 

It is obvious that a close relationship must exist between corresponding 
discrete and continuous cases. A guide with an arbitrary curved axis 
may be regarded as the limit of a guide with many small discrete tilts; 
similarly, a guide with a continuous diameter variation may be regarded 
as the limit of a guide with many small discrete diameter changes. We 
will show how the matrix equations for the discrete case and the differ
ential equations (coupled line equations) for the continuous case may 
be obtained from each other by suitable limiting processes. 

vVe next discuss the perturbation theory for the coupled line equations, 
and show its relationship to the discrete perturbation theory of Section 
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2.2. An improved perturbation theory for the TEol complex loss 
A = A - j8 [see (64)] is given that permits the treatment of many 
cases of practical interest. 

For moderate lengths of copper guide the differential loss is small com
pared to 1, I Aa I L « 1, where L is the guide length. We obtain an ap
proximate treatment for this case by setting Aa = 0, as in lossless me
tallic guide. The TEOI loss A for this case may be expressed in terms of 
the Fourier coefficients of the coupling coefficient c(z); this treatment 
makes evident the relationship between the power spectrum of the 
coupling coefficient and the corresponding transmission statistics of the 
TEOI loss. 

Finally, we discuss Morgan's coupling coefficients for general continu
ous cross-sectional deformations of copper guide, and the relationship 
between the various copper guide coupling coefficients. 

2.3.1 Generalized Telegraphist's Equations 

By means of the generalized telegraphist's equations,4 Maxwell's 
equations for the fields in a deformed guide may be expressed in terms 
of the normal modes of the undeformed guide; 

(74) 

I m represents the normalized complex amplitude of the mth mode and 
the summation is extended over all modes. Kmm represents the propaga
tion constant of the mth mode; Kmn , with m ~ n, represents the coupling 
coefficient between the nth and mth modes. The /(mn are functions of the 
geometry of the guide imperfection. Of course, (74) is in rather general 
symbolic form; in particular problems a more specific notation is often 
used to denote the various modes. For example, each subscript in (74) 
often becomes a double subscript, to conform to the usual ways of in
dexing waveguide modes. Square brackets enclosing a subscript pair 
are often used to indicate a TE mode, round brackets a TM mode; some 
sort of notation, such as ± superscripts or different symbols, is used to 
differentiate between forward and backward modes.2 

The Kmn have been evaluated for a variety of different types of imper
fections in a variety of guides, as discussed in the introduction to Sec
tion II. Morgan has given the Kmn for curved metallic waveguide filled 
with an inhomogeneous dielectric.2 For a homogeneous lossless dielectric, 
the propagation constants Kmm are simply equal to the corresponding 
propagation constants in undeformed metallic guide;2 

(75) 
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Morgan finds that curvature couples the TEol + to only TMll + and 
TElm±. (This should not be taken to mean that no other spurious modes 
will be excited in a curved guide with a homogeneous dielectric; such 
other modes will indeed arise, e.g., because of the coupling between TElm 
and TE2m . However, in good guides these other modes will normally be 
negligible compared to the first-order spurious modes.) Using his results 
the K'S of (74) involving the TEol + mode may be expressed in terms of 
the C t's of (18) and Appendix A as follows, for a curved circular guide 
with a homogeneous dielectric: 

·C ± _ J t[m] 
K[Ol]+[lm]± = K[Im]±[Ol]+ - R(z) , 

·c + _ J tell) 
K[Ol]+(11)+ = K(11)+[Ol]+ - R(z) . 

(76a) 

(76b) 

R(z) in (76a) and (76b) is the radius of curvature of the axis of the 
curved guide, with z measured along the curved axis; the curvature of 
the axis is confined to a single plane. Similarly, UngerlO has evaluated 
the Kmn for a tapered metallic waveguide as follows:t 

1 komkon {JOn ± (JOm dr(z) 
K[Om]+[On]± = - 2 2 • -dz ' 

r leOn - leOm V (JOm{JOn (77) 

m ~ n for the upper signs. 

In (77), r (z) is the radius of the guide, the k's are the Bessel roots of 
the modes in question (see Appendix A). When the incident mode is the 
TEol , (77) becomes 

± dr(z) 
K[Ol]+[Om]± = Cd[m] • ---a;z-' m ~ 1, (78) 

in terms of Cd of (51) and Appendix A. Finally, we note from (77) that 
if both modes are forward modes, 

K[Om1+[On]+ = - K[On]+[Om]+ , (79) 

which, as we shall subsequently see, must be true by (43). 
Various geometric imperfections in helix guide have been similarly 

treated by Unger.3 ,l9,20,21 
The generalized telegraphist's equations of (74) contain an infinite 

number of modes. To simplify the problem, we wish to approximate 
the true situation with a finite number of modes; indeed, in much of the 
present study we include only two modes, the TEOl signal mode and the 

t The sign of the second term inside the summation in (40) of Reference 10 
appears to be in error. 
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most important spurious mode. It is obvious that this approximation 
must distort the results in some respects; however, we hope that if the 
significant spurious modes are included, any errors will be small. Thus, 
in (74) we will set all J's equal to zero except those corresponding to the 
TEol + signal mode and one or a few of the forward spurious modes. 
Other ways of approximating the true situation with a finite number of 
modes might of course be possible, but we choose this one as the simplest. 

In (76) and (78) above we observe that the coupling coefficients for 
continuous bends and diameter changes may be expressed in terms of 
the coupling coefficients for discrete tilts and diameter changes. This, 
plus the obvious fact that a continuous deformation may be regarded 
as the limit of many small, closely spaced discrete imperfections, sug
gests a closer study of the relation between the discrete and continuous 
cases. In Sections 2.3.2 and 2.3.3 below we study the correspondence be
tween the coupled line equations for the continuous case and the matrix 
equations of Section 2.2.1 above for the discrete case. 

2.3.2 Transformation from the Discrete to the Continuous Case 

Consider a lossless metallic guide containing many small discrete mode 
converters spaced an equal distance .1z apart. Fig. 7 illustrates three 
cases of interest - tilts, offsets, and diameter changes - with of course 
a greatly exaggerated vertical scale. Ck is in each case the conversion 
coefficient in the corresponding matrix, (17) or (43) for tilts or offsets 
and diameter changes respectively; Ck is given by (18), (44), and (51) 
for tilts, offsets, and diameter changes respectively. Then it is clear that 
by the proper limiting process, in which Az ~ 0 and the discontinuities 
become smaller and more closely spaced, we may approach the continu
ous deformations illustrated in Fig. 7 by the dotted lines. 

The limiting continuous deformation of Fig. 7 (a) corresponds to a 
guide with a continuously varying curvature of its axis. The continuous 
deformation of Fig. 7(b) corresponds to a waveguide made of very thin 
circular punchings which may slide with respect to each other like a 
stack of cards. Finally, the continuous deformation of Fig. 7(c) corre
sponds to a continuous taper. The case of Fig. 7(a) will be important in 
determining the effect of random straightness deviation on the TEol 
transmission. For the continuous bend and offset of Figs. 7(a) and 7 (b ) 
the guide axis must lie in a single plane if the analysis is to be restricted 
to a single polarization of the most important spurious mode (TEl2 +). 

For purposes of illustration we consider the transition to the continu
ous bend, illustrated in Fig. 7(a). A larger-scale drawing for this ease 
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cr· ................. ck, Ck+l .. · .... ·;·, .. ··· .. · CONVERSION 

A COEFFICIENTS 

Z MEASURED 
ALONG AXIS OF 
GUIDE 

~----z 

(a) TILTS 

~--------~---r--~~~~--~----4----------Z 

A 

(b) OFFSETS 

A 

----------r----r----r-~~--~----~---------z 

--
A 

(c) DIAMETER CHANGES 

SECTION A-A CIRCULAR IN ALL CASES 
---- INDICATES LIMITING CONTINUOUS 

DEFORMATION 

Fig. 7 - Waveguides with tilts, offsets, and diameter changes. 

is shown in Fig. 8; only the center line of the continuously bent guide 
and of the tilt approximation to it are shown, for the two adjacent sec
tions lying on either side of the lc th tilt. 

Referring to Fig. G, we set the distance between discrete tilts lk equal 
to ~z. Let Io(z) and I 1(z) denote the TEO! and spurious mode complex 
amplitudes just to the left of the lcth tilt; then Io(z + ~z) and I 1(z + ~z) 
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'/ 

" v 

Fig. 8 - Fig.7(a) in larger scale. 
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/ 

/ 

I' 
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denote the corresponding complex mode amplitudes just to the left of 
the (k + 1) th tilt. Then taking (17) for the scattering matrix of the tilt, 
and setting lk = AZ in (52), (53), and (54), we have 

[
Io(Z + AZ)] 

I 1(z + AZ) 

where Ck is the conversion coefficient for the kth tilt. From (18) 

(80) 

(81 ) 

where C t is Morgan's coupling coefficient for tilts for the spurious mode 
in question, given in Appendix A. From Fig. 8 

(82) 

Thus, 

(83) 
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where the dots in (82) and (83) represent terms of higher than first order 
in Az. 

Expanding the exponentials and the square roots in the matrix of (80) 
in power series [see (66)], making use of (83), and writing the right
hand sides of the resulting equations as power series in Az, we have 

Io(z + Az) Io(z) + [ -roTo(z) + j ~: Il(Z)] Az + 
(84) 

1,(z + t.z) ~ 1,(z) + [ -r,J,(z) + j ~: 1o(z)] t.z + 
We transfer the terms Io(z) and I1(z) to the left-hand sides of these 
equations and divide by Az. Then as Az -7 0, Rk -7 R(z), where R(z) 
is the radius of curvature of the guide axis, and (84) becomes 

Io'(z) = -roIo(z) + jC(Z)Il(Z) , 

It' (z) = jc(z )Io(z) - rlIl(Z) , 

c(z) = R~;)' coupling coefficient, 

(85) 

(86) 

where the primes denote differentiation with respect to z, and R(z) is 
the radius of curvature of the guide axis. 

We now com pare (85) and (86) with (74) to (76); in the case of lossless 
metallic guide, where ro = j{3o, r 1 = j{31 , the two sets of equations are 
identical if we retain only two modes in the results of (74) to (76). Thus 
by taking the proper limiting form of Morgan's results for discrete tilts 
we arrive at Morgan's results for continuous bends obtained via the 
generalized telegraphist's equations, in the two-mode case. It is easy 
to see that this method extends readily to additional first-order spurious 
modes. It should in principle be possible to include as many modes as 
desired in this type of discussion, but such calculations have not been 
actually carried out. We will be content in the present paper to take 
the two-mode model as suggestive of these more general results. 

As in the discrete case, we assume the guide is excited by a pure TEo! 
wave of unit amplitude. Thus, the initial conditions on the differential 
equations (85) become 

10(0) = 1, (87) 

corresponding to (58) for the discrete case. Then Io(z) will be the TEo! 
gain, II (z) the TEo!-spurious mode transfer coefficient, corresponding to 
(59) and (60). 
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It proves convenient to follow the normalization used in the discrete 
case [see (61) and (62)], removing the propagation factor of each mode 
in ideal guide; 

Io(z) = e-roz·Go(z) 

I 1(z) = e-r1Z ·G1(z). 

(88) 

(89) 

Go(z) and G1(z) are again the TEO! normalized gain and the TEOl-

spurious mode normalized transfer coefficient. Substituting the trans
formation of (88) and (89) into (85), we have: 

Go' (z) = jc(z )e,HzG1 (z) 

G1' (z) = jc(z)e -tlrzGo(z) (90) 

Ar = ro - r l , differential propagation constant. 

c(z) = R~~)' coupling coefficient. (9I) 

The initial conditions of (87) become 

Go(O) = 1, (92) 

A similar treatment may be given for the limiting case of many dis
crete offsets or diameter changes, illustrated in Figs. 7 (b) and 7 (c) re
spectively. For continuous offsets we find: 

- rolo(z) + c(z)I1(z), 

-c(z)Io(z) - rdl(Z). 
(93) 

c(z) = Co ·x' (z), coupling coefficient. (94) 

Co is Morgan's offset coupling coefficient for the spurious mode in ques
tion, given in Appendix A. x(z) is the transverse displacement of the 
guide axis, as illustrated in Fig. 7 (b) ; primes of course denote differen
tiation \vith respect to z. Equations (93) and (94) must agree with the 
generalized telegraphist's equations for a guide with a continuous offset, 
when restricted to two modes. Using the transformation of (88) and· 
(89), (93) and (94) become: 

Go'(z) = c(z)etlrzG1(z), 

G1' (z) = -c(z )e-tlrzGo(z) , 

Ar = ro - r l ; differential propagation constant. 

c(z) = Co' x' (z), coupling coefficient. 

(95) 

(96) 



KNOWN IMPERFECTIONS 1067 

The continuous diameter change may be similarly treated by replacing 
x' (z) by r' (z), Co by Cd in (93) to (96), where r(z) is the guide radius. 

2.3.3 Transformation from the Continuous to the Discrete Case 

We next determine the scattering matrix for a discrete mode converter 
by considering the limiting form of the generalized telegraphist's equa
tions as the continuous coupling coefficient approaches a a-function. For 
purposes of illustration we consider the case of a discrete tilt, regarded 
as the limiting form of a continuous bend. We again restrict our treat
ment to only two modes, the TEO! signal mode and a single spurious 
mode, for simplicity. 

Fig. 9 shows a tilt of angle a obtained as the limit of a continuous bend. 
From (86) or (91) the continuous coupling coefficient is given by 

c(z) 

0, z < 0; 

Cta 

IS: ' 
O<Z<A; 

0, A < z. 

lim c (z) = C t a . 0 (z ) . 
A~O 

(97a) 

(97b) 

Thus the coupling coefficient is zero for z < 0 and z > A, constant in the 
region 0 < z < A, z being measured along the guide axis as usual. Now 
exact solutions for (85) or (90) are known for only a few special c(z); 
indeed this is why we are forced to use approximate solutions of various 
types in the present paper. One important case in which exact solutions 
are available is the present case c(z) = constant ;17 this is obvious from 
the fact that the equations (85) then become simply two simultaneous 
differential equations with constant coefficients, whose solutions are well 
known. 

The solution for (85) with c(z) = Co is given as follows: 

(98a) 

(98b) 

[

_K_e(Ar/2)ZY + K+ e t- Ar / 2)zy 

• e(Ar/2)zy _ e(-Ar/2)zy 
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--- CONTINUOUS BEND 
--- LIMITING DISCRETE TILT 

Fig. 9 - Tilt of angle a as limit of continuous bend. 

K±-- .1±V -J ; 
2 Co_ 
~r 

1 . co/~r 
-J-

K+ - !(- - V 

(98c) 

(98d) 

(98e) 

These results are applied to the situation of Fig. 9 and (97) by setting 

Z -7~, 

(99) 

Thus 

(100) 

Now in (97) and Fig. 9 let us keep a fixed and let A -7 0, R -7 0; then 
the curved guide of Fig. 9 will approach a discrete tilt of angle a, and 
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the matrix T should approach the scattering matrix of this discrete tilt. 
From (98) and (99) we have: 

lim A
2
r • /1 _ (2Ct a)2 ·A = jCta 

A~O 11 Ar'A 

lim K± = ±1 
A~O 

r 1 1 
l~K+ - K_ - 2 

~~ exp ( - ro ~ r , ~) = 1 

Then from (98) to (101) we have 

for 

[

COS Cta j sin Cta] 
lim T(A) == T(O) = 
A_O j sin Cta cos Cta 

lim c (z) = C t a . a (z ) 
A-O 

(101) 

(102a) 

(102b) 

as the scattering matrix of a discrete tilt of angle a. This is the result 
given in (20) as the "exact" two-mode scattering matrix for a finite tilt. 

We have thus found the scattering matrix for a two-mode, finite tilt 
starting from the scattering matrix for an infinitesimal tilt by first pass
ing to the limit of continuous mode conversion and then transforming 
back to the discrete case by allowing the continuous coupling coefficient 
to approach a a-function. Alternately, we have found the scattering 
matrix that satisfies the following requirements (for a single forward 
spurious mode) : 

1. Conservation of energy and symmetry. 
2. Agrees with Morgan's small tilt theory [see (17) and (18)]. 
3. Satisfies an additional requirement for finite tilts, so that ·the 

matrix for the sum of two tilts equals the product of the matrices of the 
individual tilts [see (19)]. In practice the above matrix for a finite tilt 
will of course not provide an exact description for large tilts because 
of the presence of additional spurious modes. 

An offset and a diameter change may be similarly treated. For a finite 
offset of magnitude b we have corresponding to (102) as the "exact" 
two-mode scattering matrix 
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, , [ COS Cob sin Cob] 
lim T(~) == T(O) = . 
~~O - sin Cob cos Cob 

(103) 

Diameter changes may be similarly treated if they are small enough so 
that the variation of ~r may be neglected. 

The present analysis readily extends to include additional first-order 
spurious modes. It should in principle be possible to generalize it further 
to include as many modes as desired, but such calculations have not ac
tually been carried out. 

The astute reader may have noted a potential difficulty with the 
analysis above. This potential paradox may be stated as follows. The 
above discussion shows that the continuous bend and the discrete tilt 
of Fig. 9 are approximately equivalent to each other so long as the fol
lowing conditions are satisfied: 

2Ct a »1. 
I ~r I·~ (104a) 

1 ~ I.~« 1. (l04b) 

But if (104a) is not satisfied it is no longer obvious that the discrete 
tilt and continuous bend remain approximately equivalent. Stated phys
ically, consider a short continuous bend, with length .6. fixed and small 

~nough so that 1 ~2r ,I. ~ « 1. Then we should expect on physical grounds 

that this continuous bend is approximately equivalent to its correspond
ing discrete tilt for ,all angles a. However the above analysis seems to 
guarantee this equivalence only for large a, and not in an obvious way 
for small a. 

While it is not obvious, it is true that this equivalence remains valid 
for small a, or more precisely when (104a) is violated but (104b) re
mains true. To study this matter let us consider the case of a guide with 
;zero differential attenuation constant, ~a = 0, so that 

(l05) 

For brevity we restrict our attention to the TEoI-spurious mode con
version coefficient, which for convenience we call T io (e.g., see the label
ing of matrix components in (56». For the discrete tilt 

T . . C (ro + rl A) 
10 discrete = J SIn t a . exp - 2 ,/.l. (106) 
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For the continuolls bend the results of (98) may be written [using (105)] 
as follows: 

. [ (2Ct a ) C ] .smf~·ta (rO+rl). 
TIDcontinuous = J (2Ct

a
) . exp - 2 A, (107) 

f A{3'A 

f(x) = vf+X2. 
x 

2Ct a 
Now when x» 1, f(x) ~ 1; thus when \ A{3\'A » 1 [see (104a)] 

then from (106) and (107) we have TID discrete ~ TID continuous, as stated 
above. 

2C t a 
N ext consider the case where \ A{3 \. A is not large compared to 1. 

From (10G) and (107) we see that TlO discrete ~ T io continuous if 

f (2Ct
a

) ·Cta« 1. 
A{3·A 

(108) 

'2Ct a 1 
If I A{3 \. A « 1, then noting that f(x) ~ x for l~ « 1, (108) becomes 

\ A{3I' A « 1 
2 ' 

which is simply the condition of (104b). If \ ~~t\~A 
f(1) = V2, (108) becomes 

(109) 

1, noting that 

(110) 

i.e., the conversion coefficient must be moderately small. However a 
more detailed calculation for this case shows that 

0.95T lO discrete ~ T IO continuous ~ TlO discrete ( lIla) 

for 

eta ~ 0.55 radian, sin C t a ~ 0.523. (111b) 

The condition of (111 b) is far less restrictive than that of (110); (111) 
2Ct a . . . 

states that for \ A{3 \. A = 1, the contmuous bend and Its correspondmg 

discrete tilt will have conversion coefficients that differ by less than 5 
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per cent provided that the coupling coefficient to the spurious mode is 
less than 0.523, which is quite large. 

These considerations render it plausible that the corresponding dis
crete and continuous cases approximate each other well if (l04b) is 
satisfied, for both large and small tilts. 

2.3.4 Perturbation Theory for the Coupled Line Equations 

Exact solutions to the coupled line equations, (85) and (86) or (90) 
and (91) [or (93) and (94), (95) and (96)], are known in only a very 
few special cases, i.e., for a few special c(z). In subsequent work we will 
require a solution for an arbitrary c(z) so that we may eventually treat 
the case of random c(z). Therefore it is necessary to consider approximate 
solutions to the coupled line equations, as we have done in the discrete 
case. 

These or similar equations arise in the design of a variety of devices 
in which the coupling between two modes is of interest, such as direc
tional couplers, tapers or impedance transformers, and bends. In domi
nant mode transmission systems the signal mode is the forward TEM 
wave, the spurious mode the reflected TEM wave.24 ,25,26,27 Directional 
couplers in a variety of waveguide systems have been similarly stud
ied. l7 ,28 Tapers and bends in a variety of waveguides have been studied; 
several recent papers deal with this type of problem when the principal 
wave is the TEol mode in circular guide3,9,lo as noted earlier. In much 
of this work an approximate solution is used which is similar or identical 
to the one employed here. This approximate solution has also been used 
to study randomly distributed nonuniformities in ordinary (dominant 
mode) transmission lines.29 ,30 

The approximate solution that we use is most readily found via Pi
card's method of successive approximations.3l ,32 This is discussed in de
tail ina companionpaper/8 where it is shown that the solution to (90) and 
(91) may be written as follows: 

GO(z) 

00 

G1(z) = L gl(n) (z). 
n=O 

gO(n)(Z) = j i Z 

c(s) eilrSgl(n_n(S) ds, n ~ 1. 

gl(n)(z) = j i Z 

c(s) e-ilrSgo(n_l)(S) ds, n ~ 1. 

(112a) 

(112b) 

( 113a) 

(113b) 



gO(O) (z) 

I t is readily seen that 
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1, gI(O) (z) = o. 

gO(n) (z) = 0, n odd 

gl(n) (z) = 0, n even. 

1073 

(113c) 

(114a) 

(114b) 

Bounds on the terms of the series solution of (112) are given as follows: I8 

< [1,' I C(8) I dsJ 
= n! neven. 

(115a) 

= 0 , n odd. 

=0 , n even. 

(115b) 

n odd. 

These bounds are in a sense the best possible, since cases are known 
where the equalities in (115a) and (115b) are satisfied. I8 

Now suppose that the series solutions for Go(z) and GI(z) given in 
( 112) and (113) converge so ra pidly that only the first nonzero terms 
that depend on the cou pIing coefficient c (z) need be retained. From (114) 
we see that the n = 1 term of (112a) for Go(z) is identically zero; there
fore we retain in this equation only the n = 2 term in addition to the 
n = 0 term, which is simply 1. The first nonzero term in (112b) for 
GI(z) is the n = 1 term. We again use the notation of (63) and (64): 

G 1 jf?) -A -A j8 
o = - p = ge = e = e e ; 

A = A - j8. 
(116) 

Then we have: 

p(z) ~ ~z c( s) et1rs ds ~8 c(t) e-t1rt dt. ( 117) 

G1(z) ~ j iZ 

c(s) e-t1rs ds. (118) 
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Since we have assumed that e(z) is sufficiently small so that I P I « 1, 
we have to second order from (65) and (117): 

g ~ 1 - Re II 
A ~ -In Go = II 
A ~ -In I Go I = Re I I 
e ~ L Go = - 1m I I 

where I I is shorthand for 

I I = ~z c(s) el1
I's ds ~s e(t) e- l1rt dt 

= jZ el1 l'u dulz-u e(s)e(s + u) ds 
o 0 

= ! l
z 

jZ e(s)e(t) el1 I'/t-s/ ds dt. 
2 0 0 

(119a) 

(119b) 

(119c) 

(119d) 

(120a) 

(120b) 

(120c) 

These results for the continuous bend are analogous to those of (63) to 
(65) and (71) and (72) for the case of discrete tilts. The continuous off
set and diameter change are of course readily handled in the same way, 
and the above relations hold with only minor modifications. In particu
lar, for the corresponding solutions to (95) and (96) for the continuous 
offset and diameter change the} in (113a) is dropped, the} in (113b) re
placed by -1, and the} in (118) replaced by -1 (compare (73) for the 
discrete case) ; the remainder of the equations in the present section are 
unaltered. (For the continuous diameter change we have neglected the 
variation of Ar.) 

These perturbation results for the continuous case may be regarded, 
as in the discrete case, as the first terms of power series expansions in the 
geometric parameter characterizing the deformed guide. Again, it is 
reasonable to assume that if the deformation is sufficiently small, these 
power series will converge so rapidly that their first terms will provide 
valid approximations. Equation (115) gives bounds on the magnitudes 

of the higher terms; for guides short enough so that ~z I e(s) Ids « 1, 

these bounds converge rapidly. But the fact that the bounds converge 
rapidly does not guarantee that the terms themselves converge rapidly. 
For example, it might be possible for the second term of (112a) to be 
much smaller than its bound, while at the same time the fourth term 
was close to its bound, so that the fourth term would be eomparable to 
the second term, even though the bound on the fourth term was much 
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smaller than the bound 011 the second term. (On the other hand this 
might not be possible; we just do not know.) Consequently we have no 
precise information on the way in which these perturbation solutions 
approximate the true solutions; the accuracy of these approximate solu
tions, which are used throughout the following statistical analysis of 
random guides, must be accepted largely on faith at present. 

In Section 2.3.5 we show how the discrete and continuous perturbation 
theories may be obtained as limiting cases of each other. Section 2.3.G 
discusses a modified perturbation theory, which makes it appear plausible 
that the results of (119b), (U9c), and (119d) for the TEol complex loss 
A, loss A, and phase e hold true in a wide range of important cases where 
I J J I » 1, so that the other approximations of (117), (118), and (1l9a) 
fail. This extension is important in permitting the analysis of long guides. 

2.3.5 Transformation between Discrete and Continuous Perturbation 
Theory 

In this section we consider the relationship between the discrete and 
continuous perturbation theories; we select the case of discrete tilts 
and continuous bends for purposes of illustration. 

Let us first consider the transformation from the discrete to the con
tinuous case, as illustrated in Fig. 7(a); but instead of considering a 
single differential section of line with a single discrete mode converter, 
as in Section 2.3.2, we consider the entire line. Let the tilts be equally 
spaced, with spacing AZ, and further let the position of the kth tilt be 
Zk ; thus 

Zk = kAz. (121) 

Let the angle of the kth tilt be CXk. From Fig. 8 we have, as in (82), 

Az 
CXk = Rk + "', (122) 

where the dots indicate terms of higher order in Az. Rk is defined in Fig. 
8; in the limit as Az ~ 0, Rk approaches the radius of curvature of the 
guide axis at Zk • 

Consider first the spurious mode normalized transfer coefficient, Gl • 

From (72) we have, setting lo = Az and neglecting terms of higher order 
than Az, and substituting (122) for CXk , 

Setting 

G r-...J . ~ Ct A -Ar(i-I)Az 
1 r-...JJL...J-t..l.z·e • 

i=l Ri 
(123) 
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Zi = iAz = Si, Az = AS, (124) 

(123) becomes 

G r-...J • ~ Ct -ArSi Ar·As A 

1 r-.J J ~ R( .) e e uS. 
~=I S~ 

(125) 

We now let As --? 0 and N --? 00 in such a way that N As remains con
stant, 

NAs = L, (126) 

where L is the length of line under consideration. Then R ( Si) --? R ( s ) , 
the radius of curvature of the guide axis, eAr

.
As 

--? 1, and the summation 
of (125) becomes the following integral. 

G . f L C t -Ars d 
1 t;::::3 J 0 R(s) e s. (127) 

Finally, noting (86) or (91), (127) becomes 

G1 t;::::3 j ~L c(s) e-Ars ds, (128) 

which is identical to the Picard approximate solution for the coupled 
ine equations for the continuous case, given in (118). 

Similarly the approximate solution for p given in (71) for the discrete 
case can be shown to approach the Picard approximation for the con
tinuous case, given in (117). Setting lo = Az in (71) and substituting 
(122), we have on neglecting higher-order terms in Az 

r-...J 1 ~ (Ct A )2 + ~1 ~ Ct
2
AzJ:lZj ArU-i\Az 

p r-.J - L...J ~ uZj L...J L...J e . 
2 i=1 Ri i=1 j=i+l RiRj 

Setting 

Zj = j!J.z = tj , 

(129) becomes 

Ri = R(Si), 

R j = R(tj), 

(129) 

(130) 

r-...J 1 ~ ( C /) N~ C t -ArSi ~ C t Arti ( ) 
p r-.J 2- ~ R2( .) As As + ~ R( .) e AS.~ R( .) eAt. 131 

,=1 S, ,=1 S, 1=~+1 tJ 

We now let As --? 0 and At --? 0 in such a way that N As and NAt remain 
constant, 

NAs = L, NAt = L, (132) 

where L is again the total length of line. Then R(Si) --? R(s), RCtd ~ 
R(t), where R(s) and R(t) are the radius of curvature of the guide axis. 
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The first term of (131) (the single summation) approaches zero; the 
second, however, approaches a double integral to yield 

f"'V t -Ars tArt 4'. C fL C 
p f"'V Jo R(s) e ds s R(t) edt. (133) 

Using (86) or (91), and further interchanging the order of integration 
and the integration variables, 

p ~ ~L c(s) eArs ds ~s e(t) e-Art dt, (134) 

which is identical to the Picard approximation for the solution to the 
coupled line equations, given in (117). From (120) we see that the two 
other forms of (71d) also have their equivalents in the continuous case. 

Next let us reverse the above process, and go from the continuous 
approximate solutions back to the discrete ones. Consider a line of 
length Nlo with N equally spaced tilts a distance lo apart. The leth tilt 
is located at Zk , where 

Zk = (Ie - l)lo, (135) 

and has an angle ak . (The form of (135) was chosen to be consistent 
with the notation of Fig. 6 and Section 2.2.) From (97b) or (102b) we 
may write the continuous coupling coefficient for this case as 

N 

c(z) = CtL ak'o[z - (Tc - l)lo]. (136) 
k=l 

We now substitute (136) into the approximate solution for the con
tinuous case, and derive the approximate solution for the discrete case. 
Substituting (136) into (118), we find 

N 

G (Nl ) f"'V • "'" C . -Ar(i-l) 10 
1 0 f"'V J L-J tale , (137) 

i=l 

in agreement with (72c) and (72d). Substituting (136) into (117), we 
have 

f
NlO N 

p(NZo) ~ 0 Ct ~ ai ·o(s - (i - 1)lol eArs ds 

f
8 N 

• 0 Ct t; aro[t - (j - Olol e-Art dt 

N 

. L CtCtj'u[s - (j - l)lo] e-ArU-1)lo, 

i=l 

(138) 



1078 THE HELL SYSTEM TECHNICAL JOUHNAL, MAY 1962 

where u(x) is the unit step function, 

1, x > 0 
u(x) 

0, x < o. 
(139) 

Continuing, 
N i-I N 

(Nl) 1"'...1 ""'C Ar(i-l)lO,,",C -Ar(j-l) 10 + I,,", (C )2 P 0 1"'...1 L....t t (Xie L....t t (XjC 2 L....t t (Xi • (140) 
i=2 i=l i=l 

The second term of (140) (the single summation) was obtained via the 
relation 

fb f(x)u(x)a(x) dx = !f(O), a < 0 < b. 
a 

(141) 

Alternately, the result of (140) may be obtained by regarding the 
a-functions as the limit of some continuous functions [e.g., (97a)], 
taking the limit after the integrations have been performed. Finally, 
interchanging the order of summation and the summation indices, (140) 
becomes 

N N-I N 

peNZa) 1 ""' (C )2 + ""' ""' (C ) (C ) AI'lo(j-i) 2 L....t t (Xi L....t L....t t (Xi t (X j C , (142) 
i=1 i=1 i=i+1 

which agrees with (71d) for the discrete case. We sec that the single 
summation, which "disappeared" in going from the discrete to the 
continuous case, has satisfactorily "reappeared." The alternate forms 
for p given in (120) may similarly be transformed to their discrete 
equivalents in (71d) via the substitution of (136) and appropriate 
manipulation of a-functions. 

The corresponding analysis for offsets and diameter changes is readily 
performed. 

One consequence of the results of the present section is that bounds 
derived for the approximate solution in the continuous case may be 
directly applied to the approximate solutions given in Section II for 
the discrete case. 

2.3.6 Logarithm'ic Form of the Coupled Line Equations, and Improved 
A pproximate Solution 

The perturbation results of Section 2.3.4, given in (116) to (120), were 
expected on intuitive grounds to be valid for short lines, whose additional 
loss due to mode conversion is small. In particular, the results of (117) 
and (119) depend on having I p I « 1, Iff I « 1. These relations may 
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again be regarded as the first terms in power series expansions for the 
various quantities. 

As the length of guide increases we expect the mode conversion loss 
to increase; for example in Sections III and IV below it is shown that 
for all random guides that we deal with, < He f f > is proportional to the 
total length of the guide. It is clear that as the length of guide increases, 
eventually Iff I » 1. Under these conditions we no longer obtain a 
valid approximation from the first two terms of (112a); many terms 
become significant, and (117) and (118) are no longer valid. It would 
seem that the results of (119) are also invalid for long guides. However 
while (119a) is certainly invalid, we will see that it is plausible that 
(119b), (119c), and (119d) will remain good approximations for long 
guides with large mode conversion loss if the differential attenuation 
constant is large enough in a certain sense compared to the coupling 
coefficient. The detailed mathematical analysis for this problem is given 
in a companion paper;I8 however, it is not difficult to see on physical 
grounds that something of this sort is to be expected. 

Consider a long guide of length L with a large enough differential 
loss so that the total differential loss I .6.a I z in a short section of length 
z is large; 

I .6.a I z» 1, z« L. (143) 

Now let this guide be divided up into ill equal sections of length z by 
ideal mode filters, so that 

l11z = L. (144) 

An ideal mode filter by definition transmits TEol without loss or phase 
shift, and suppresses all other modes completely. (Practical mode filters 
may consist of a section of helix guide that has low loss to TEOl , high 
loss to all other spurious modes other than the higher order TEom .) In 
addition to the requirement of (143), further assume that each section 
z is short enough so that the perturbation results of (116) to (120) do 
apply to the individual sections; for example, we might require from 
(115) that 

jkZ I c(s) I ds « 1. 
(k-l)z 

(145) 

It is more or less obvious on physical grounds that under these condi
tions the insertion of ideal mode filters will not alter the over-all TEoI 
loss significantly, because the spurious mode level is not likely to build 
up to a significant magnitude. 
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Denote quantities applying to the lc th section by the symbol k in the 
following equation; quantities applying to the over-all guide will be 
written without subscripts. Then the over-all TEol transmission param
eters for the guide with ideal mode filters are given in terms of the TEol 
parameters for individual sections as follows: 

111 

Go = II kGO, 
k=l 

M 

g II kg, 
k=l 

M 

A LkA , (146) 
k=l 

M 

A LkA, 
k=l 

M 

8 = L k8. 
k=l 

Then, for example, A may be written from (1 HJ) , (120) and (146) 
as follows: 

111 f kZ fS A ~ L ds dt.c(s)c(t) cLlI'(s-t). 

k=l (k-l)z (k-l)z 
(147) 

In (147) the double integral has been taken from (120a); the other two 
versions of this integral could of course be used equally well. Now it is 
more or less obvious by inspection of the integrand and the limits and 
from physical considerations that (147) is approximately equivalent to 

A ~ fL=MZ ds fS dt.c(s)c(t) cLlr(s-t). (148) 
o 0 

In other words, the results of (11 9b ), (119c), and (11 9d) should remain 
valid for the whole line, as stated above. Since the requirement in the 
above crude argument is that the mode conversion loss must be small in 
a section for which the total differential loss is high, we would intuitively 
expect that for (119b), (119c), and (119d) to hold for a long line, the 
ratio of the coupling coefficient 'C (z) , to the differential attenuation 
constant , ~a' must be small in some sense whieh we have not yet 
attempted to define. 

While the above argnment may be physically appealing, it is ob
vionsly desirable to put these statements on firmer ground; this is done 
elsewhere in this issue. Is We summarize here briefly some of the results 
of this investigation. 
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U ndel' certain conditions we may write A (z) as a series expansion; 

(149) 

In (149) we have written out only the first term explicitly; we see that 
this is identical to the previous approximation of (UBb) and (120a). 
Bounds on the higher terms are given in detail in Ref. 18; we give here 
some slightly poorer but simpler bounds. 

I Al(Z) I = If c(s) car, ds { c(t) c-, .. , dt I ;;; J( { I c(s) Ids; 

I An(Z) I ~ J(3(2.22f)J(2)n-2 ~z I c(s) Ids; n ~ 2, 

o ~ J( ~ 0.3; 

where J( is defined by 

~z I c( s) I e~a(Z-8) ds ~ J( for every z ~ o. 

(150) 

(151) 

Finally, convergence is guaranteed only for J( < 0.455; a case is known 
where the series of (149) diverges for J( > 0.5. Equation (151) requires 
that I c(z) I be uniformly small in a certain sense, with respect to I ~a I. 

Once again we take as an approximate solution the first term of (149). 
The bounds in Ref. 18 are again almost the best possible in the same 
sense as in the case of Section 2.3.4; i.e., cases are known where the 
higher-order terms are almost as large as their bounds. In cases of inter
est J( « 1, and the bounds converge rapidly. However, as in the case 
of Section 2.:3.4, this is not sufficient to guarantee that the terms them
selves converge rapidly; and here again we lack precise information on 
the way in which the first term (perturbation solution) approximates 
the true solution. 

Because of the relationship between discrete and continuous cases, 
similar statements can be made regarding the results of (6.5) and (71) 
for the discrete case. 

2.3.7 TEol Loss in Terms of Fourier Coefficients of c(z) when ~a = 0 

If the differential attenuation constant is equal to zero, 

~a = 0, (152) 

the above perturbation results for the loss A [see (1l9c) and (120)] 
may be further simplified. This case is of interest as an approximation 
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to the situation present in real copper guides. In practical copper guides 
mode filters, consisting of a length of helix guide, must be inserted at 
regular intervals, perhaps a few hundred feet apart, for reasons that 
will be further discussed in Sections III and IV below. If the mode 
filters may be assumed ideal, we consider each section separately and 
simply add their individual TEol loss and phase, i.e., A, A, and 8, as in 
(146). If for each copper guide section of length L the total differential 
loss I ~a I L is small, 

I ~a I L« 1, (153) 

on intuitive grounds we approximate the true solution by setting ~a = 0 
in the various approximate solutions of (116) to (120). 

Thus, let us set ~a = 0 in (119c) and (l20c) to obtain 

A ~!. Re fL fL e(s)e(t) eiAfjlt-sl ds dt 
200 

( 1.54) 

for a guide of length L. Recalling that e(s) and e(t) are real in ideal 
metallic guide, (154) yields 

Summarizing, 

A ~ ~ Re 1L 1L c( s)e(t) eiAfj(t-s) ds dt 
200 

= ! fI- 1L c(s)e(t) iAfj(t-s) ds dt 
2 0 0 

= ~ fL e(s) e-iAfj8 ds 1L e(t) e+iAfjt dt 
2 0 0 

= ~ If c(s) C-;A~' d •• I' 
1 IlL -' 12 A~2 0 c(s)e )Afjsds , ~a=O. 

We note further from (119a) and (116) that 

1 Go 1 = g "'" 1 - ~ I J,L c(s) e-;A~' ds I' 
From (157) we have to second order 

1 Go I' "'" 1 -I J,L c(s) e-;A~' ds I' 

(I!>!» 

(1!>6 ) 

(157) 

(158) 
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But from (118), for .':la = 0 

1 G, I' "'" 1 !,L c(s) c-j·~' ds I' 

Therefore from (158) and (159) we have to second order 

1 Go 12 + 1 Gl 12 ~ 1, .':la = O. 

1083 

(159) 

(160) 

In Appendix C it is shown that (160) must hold exactly for .':la = 0 
[see (C-13)]. This is something like conservation of energy; in fact if 
ao = al = 0, (C-13) is precisely conservation of energy. 

vVe note in passing that a similar result to that of (156) is readily 
found for the discrete ease of Section II. Proceeding in an analogous 
way from (65c) and the second form of (71d), we find for the discrete 
case 

I
N 12 ,1 r...J ~ '" '. -jt./31oi 

. iL r...J ') LJ X t e , 
.., i=l 

.':la = 0 . (161 ) 

Similarly the result of (160) is readily seen to hold true to second order, 
and by Appendix C must also be true exactly. 

Equation (156) states that the loss in nepers A is one half the square 
of the magnitude of the Fourier transform of the coupling coefficient, 
with transform variable .':l(3, the differential propagation constant. Since 
we deal with the case .':la = 0, the logarithmic perturbation theory of 
Section 2.3.6 does not indicate that (156) is valid for long lines; conse
quently, this approximate result will remain valid only for short line 

sections, perhaps subject to a condition such as Ia
L 

1 c( s) I ds « 1. 

I t will prove convenient to rewrite (156) in a slightly modified form. 
Define 

I j-rr(t./3L/27r) 1L ( ) -jt./38 d = e c s e s. 
o 

(162) 

\Ve have 

I I I ~ 1 f C(8) c-;·~' dsJ. (163) 

I is elosely related to the approximate expression for the spurious mode 
transfer coefficient, given in (118). From (162) and (163), (156) may 
be written as 

(164) 
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It turns out to be useful to expand the coupling coefficient c(z) in a 
Fourier series as follows:t 

00 

c(z) = 2: Cn ei27rnz/L; C-n = Cn *. (165) 
n=-oo 

Substituting (I 65) into (I 62), wc have after some algebraic simplifica
tion: 

. (!J.(3L ) 
L ± C

n 
( _ 1) n sm 7r 2;- - n . 

n=-oo 7r (!J.g~ _ n) I (166) 

Now, (166) has a rather striking form. Assume for a moment that 
the only variation of I (and hence A) with the frequency f of the radia
tion in the guide occurs through !J.(3. If we take the independent variable 
in (166) to be proportional to !J.(3, then (I66) is simply the sampling 
theorem representation of a eomplex band-limited function,33.34 i.e., 
a eomplex function whose real and imaginary parts are each band-

1· . d T k' h d' . 1 . !J.(3L h' d d ImIte. a mg t e ImcnSlOn ess quantIty -- as t e III cpell eut 
27r 

variable, I (~7rL) will contain no frequencies I v I greater than !.t By 

(164) the loss A is proportional to the square of the magnitude of I, 
or alternately to the sum of the squares of the magnitudes of the real 
and imaginary parts of I; therefore the TEO! loss A, regarded as a func-

tion of the normalized independent variable !J.(3L, will contain no fre-
27r 

quencies greater than 1. If for the time being we neglect any variation 

of the en's with !J.fi in (166), then I ( !J.t:) is determined by its values 

at the sample points. At the nth sample point 

tHere Cn is the nth complex Fourier coefficient of the continuous coupling 
coefficient c(z). In contrast, in Section 2.2 above we have used Ck to represent the 
coupling coefficient of the kth discrete mode converter. In the following work the 
meaning will always be clear from the context. 

tHere, and often in the sequel, we use the word frequency to denote the inde
pendent variable Il of the Fourier transform of some quantity of interest. In the 

presen t case we consider the Fourier transform of I (!::.:~) with respect to the 

. d d . bl !::.{3L. !::.{3L. d' . 1 th d' F . III epen ent varIa e 2;-; SIllce 2;- IS 1m ens lOll ess, e correspoll Illg j OUrIer 

transform variable Il is also dimensionless. Thus, if 9 (Il) is the Fourier transform 

of I (!::.:~), 9 (Il) = L: I (~) e-i27rp~d~. 
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D.{3L 
-- = n 
271" ' 

B 
L 

(167) 
n 

The nth sample point occurs at the free-space wavelength or frequency 
(of the radiation in the guide) where the beat wavelength B is equal to 

the mechanical wavelength ~ associated with the nth Fourier coefficient 
n 

of the coupling coefficient. The value of I at the nth :::;ample point is 

(168) 

By (162) and (118) the spurious mode transfer coefficient at the nth 

sample point for the continuous bend becomes 

(169) 

with an analogous result for the continuous offset and diameter change. 
I (n) and Gl (n) are determined only by the nth Fourier coefficient. At 

intermediate values of D.{3L, I (D.{3L) is determined by interpolating 
271" 271" 

1 h 1 · h sm x f· h· ( ) )etween t e sample va ues WIt -- unctIOns, as sown m 166. 
x 

Now the object of the present calculations is to determine the loss A 
as a function of the frequency j, and later to determine the statistics of 
the loss-frequency curves for guides with random imperfections. How
ever, D.{3 is approximately proportional to the free-space wavelength A 
of the radiation in the guide, and thus inversely proportional to the 
frequency j, if the two modes involved (the TEol signal mode and the 
spurious mode) are both far from cutoff. Therefore for analytical pur
poses it is more convenient to choose an independent variable propor
tional to the free-space wavelength A rather than to the frequency j, 
and this is what is done in the present paper. If a single spurious mode 
is under consideration, it is most convenient to choose the dimensionless 

parameter D.:~, which is approximately proportional to A, as the inde

pendent variable. If more than one spurious mode is being considered, 
we see in Section 2.4 below that the loss A is given by a sum of terms 
of the form given in (156), with of course different c's and D.{3's for each 
spurious mode. While the different D.{3's are all approximately propor
tional to A, they have different constants of proportionality, and hence 
it is perhaps most convenient to take A itself as the independent variable. 

In practice we will consider only fairly narrow percen tage bandwidths 
(although the absolute bandwidths will be enormous compared with 
conventional communication channels) at anyone time. Therefore the 
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fact that we take X as the independent variable instead of f should 
cause no serious inconvenience. 

The sampling theorem interpretation of (166) requires that the Cn , 

defined by (165), be independent of X (or frequency) and hence /j.(3; 

this mayor may not be true. Since c(z) is given by the product of one of 
lVlorgan's coupling coefficients and a geometric parameter [see (86) or 
(94)], the X-dependence of the cn's is identical to the X-dependence of 
Ct , Co, or Cd . From the equations for these three coefficients given in 
Appendix A we see that far from cutoff, Co and Cd are approximately 
independent of X, as desired, but that Ct varies approximately inversely 
with X. In Section 2.3.8 below we shall introduce additional coupling 
coefficients of l\lorgan, Z[nm] , which permit a similar treatment for 
general continuous cross-sectional deformations of copper guide; the 
Z[nm] vary approximately directly with X. The geometric parameters 
associated with Co and Cd are the derivatives with respect to distance z 
of offset x and radius a respectively; hence these geometric parameters 
arc dimensionless. The geometric parameter associated with C t is curva
ture, which has the dimension of length-I. The geometric parameters 
associated with the Z[nm] all have the dimensions of length. As a con
venient device for recalling these facts, the exponent of A in stating the 
X-dependence of the coupling coefficient is the same as the exponent of 
lellgth ill stating the dimensions of its associated geometric parameter. 

We wish to retain the sam pIing theorem in terpreta tion of (166) even 
in those cases where the cn's are not independent of X and hence of /j.(3. 

Now in those cases where the coupling coefficients arc not approximately 
constant (i.e., Ct , Z[nml) the variation with X is quite slow. Since as 
mentioned above we need consider only narrow percentage bandwidths, 
the principal variation with A in (166) occurs through /j.{3, and not 
through the coupling coefficient. Consequently, over the moderate band
widths of interest we may evaluate Morgan's coefficients at the middle 
of the narrow band under consideration. 

There are several more elegant methods for deriving this approxima
tion that state in effect that Cn is to be evaluated at the wavelength Xn 
(or frequency) corresponding to the nth sample point, given in (167), 
rather than at the operating wavelength, as implied in (166). This is 
certainly true at the sample points, by (168), and appears plausible in 
general. In Section 2.3.9 below we show, for example, that under certain 
reasonable conditions a guide with a given straightness deviation may 
be described equally well as either a continuous bend, for which the cn's 
vary approximately inversely with X, or as a continuous offset, for which 
the cn's are approximately independent of X. By a suitable transforma-
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tion it is always possible to change the geometric parameter to dimen
sionless form (in general, to the derivative with respect to z of a param
eter with the dimensions of length, such as radius, offset, ellipticity, etc.) 
so that the corresponding coupling coefficient is approximately inde
pendent of "A (and hence A(3) far from cutoff. 

Alternately, this result may be derived by fairly simple manipulation 
of the sampling theorem. 

The final result, however, is that over the fairly narrow percentage 
bands of interest we are justified in neglecting the "A-( or frequency) 
variation of the coupling coefficient (i.e., Ct or E[nm])' 

The TEol loss A in terms of the Fourier coefficients Cn is, from (164) 
and (166), 

L2 00 00 

A ;=::::: - 2:::: 2:::: CmCn * ( - 1) (rn-n) 

2 m=-oo n=-oo 

. (A(3L ). (A(3L ) 8m 7r 2;- - m sm 7r 2;- - n 

7r (A(3L _ m) 7r (A(3L - n) 
27r . 27r 

(170) 

At the sample points of I, given in (167), the TEol loss becomes simply 

L2 2 

A ( n) ;=::::: 2 I Cn I . ( 171) 

As mentioned earlier the bandwidth of A is twice the bandwidth of I; 
thus the Fourier transform of A with respect to the independent variable 

A(3L will contain no frequencies greater than 1. 
27r 

Therefore while A is also a band-limited fUllction, it has twice as 
many sample points as I. Consequently A is not completely determined 
by its values given in (171) at the sample points of I. Simple examples 
are readily found of two different guides in which the TEol loss is the 
same at the sample points of I, given in (167), but differs greatly be
tween these sample points. Thus consider the following two cases, in 
which all but two adjacent Fourier components of the coupling coeffi
cient are identically zero: 

(a) 
z . z 

c(z) = 2 cos 27rk L + 2 cos 27r(k + 1) L' 
(172) 

(b) 
z z 

c(z) = 2 cos 27rk L - 2 cos 27r(lc + 1) L' 
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2.4r----------------------------------r----.-----.---~ 

-- C (Z) = 2COS277kr + 2 COS 277(1<. + 1)[-

---- C(Z) = 2 COS 2771<.-C -2COS277(1<.+1)-C 
2.0 --+------+----+-----1 
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K+2 1<.+3 K+4 K+5 

Fig. 10 - TEO! loss for coupling coefficient with two sinusoidal components. 

The TEOl loss A is shown for these two cases in Fig. 10. While the losses 
arc the same at the sample points of I, they differ markedly in between. 

While A is not completely determined by its values at the sample 
points of I, it is clear from (I 70) that the principal contribution to A in 
the region ncar the kth sample point arises from values of m and n close 
to k. This relation between the TEol loss and the coupling coefficient is 
of great importance, as it means that the additional TEO! loss due to 
some particular spurious mode in a given frequency range is caused 
primarily by the components of the coupling coefficient which lie in a 
corresponding (mechanical) spectral region. Thus, for example, loss due 
to TEUl - TEl2 coupling in 2-inch guide between 50 and GO kmc is 
caused primarily by straightness deviations with periods between 2 and 
2.4 feet, the range of beat wavelength B corresponding to this frequency 
band. 

Equation (170) is also useful in considering situations where <;>nly 
isolated Fourier coefficients of the coupling coefficient are nonzero; the 
TEol loss A then becomes a series of isolated narrow peaks of shape 

(Si~ x)' . There are at least two such cases of practical interest: 

i. A periodically ~upported copper guide that deforms elastically under 
its own weight (the "serpentine bend") ,35 with support period short C07n-
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pared to the total length of guide between mode filters. The Fourier com
ponents occur only at the fundamental and harmonics of the support 
period; the amplitude of the Fourier coefficients decreases rapidly as 
the order of the harmonic increases. Thus the TEOl loss vs wavelength 
curve will have a series of equally spaced narrow loss peaks of rapidly 
decreasing magnitude. 

ii. Slwttle pulse measurements in a copper waveguide without mode 
filters. Here, because of the absence of mode filters, the pulse traverses 
an iterated structure. Since the Fourier series expansion of the coupling 
coefficient for any number of round trips must be identical to the ex
pansion for a single round trip, for N round trips only every Nth Fourier 
coefficient will be nonzero. Again the TEOl transmission will consist of 
equally spaced narrow loss peaks separated by wide pass bands of low 
loss.8 

These two cases will not be discussed further in the present paper. 
The spacing between sample points of I is an important parameter in 

the analysis and in the interpretation of experimental transmission data. 
Since .6.{3 is proportional to the free-space wavelength ~, 

.6.{3 = D~, (173) 

where the constant D depends on the spurious mode. From (167) the 
wavelength corresponding to the nth sample point, ~n , is given by 

(174) 

Therefore the sample point spacing in wavelength is 

(175) 

Thus from (173) and (175), noting the definition of beat wavelength B 
in (167), 

B 
L' 

(176) 

where we have dropped the subscript n since the result of (175) is in
dependent of n. Since 

(177) 

we have finally 
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I1f I1X B 
-~-= -
f X £ 

(178) 

for the sample point spacing, in either frequency or wavelength. We see 
from (175) that the sample points are equally spaced in wavelength, and 
consequently unequally spaced in frequency. However over a sufficiently 
narrow band the variation in sample point spacing in frequency will be 
small. The beat wavelength B between TEol and all other TE modes is 
tabulated in Appendix D for the frequencies .sO, .sri, and GO kme in 
2-ineh diameter guide. 

2.3.8 1J1organ's Coupling Coefficients for Small Cross-Sectional Deforma
tions in Lossless 1J1 etallic Guide 

Morgan has determined to first order the spurious modes excited by an 
incident TEol wave at a small arbitrary deformation of the cross section 
of a cylindrical metallic guide.5 This analysis must include the continu
ous offset and diameter change studied above when those deformations 
are small; it includes in addition higher-order deformations of the cross 
section, such as ellipticity, tri-foil, etc. 

Let the surface of the slightly deformed guide be given in cylindrical 
co-ordinates by 

r = a + p(cp,z), 
00 

p(cp,Z) L [an(z) cos ncp + bn(z) sin ncp], 
n=O 

p(cp,z) = 0, 

bo(z) 

z ~ 0 

z ~ L 

(179) 

0, (180) 

(181) 

where a is the radius of the perfect guide. p(cp,z) must be suitably small 
(we have omitted Morgan's small dimensionless parameter e). Then 
the n = 0 term corresponds to a continuous diameter variation, the 
n = 1 term to a continuous offset, the n = 2 term to ellipticity, the 
n = 3 term to what has been called tri-foil, etc. By (181) it is assumed 
that the guide is distorted only in the interval 0 < z < L. 

Morgan has shown that to first order a TEol wave incident on the 
deformation of (179) to (181) excites the forward and baekward TEnm 
modes. We denote the various modes as follows: 

J[Om] + - forward TEom 

J [Om]- - backward TEom 

J[nm]"+, J[nm]..L+ - two polarizations of forward TEnm 

J[nm]"-, J[nm]..L- - two polarizations of backward TEnm • 

(182) 
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We denote the two orthogonal polarizations of each mode (except the 
TEom) by the symbols II and 1-, rather than the subscripts x and y used 
in Section 2.1 above. The geometric imperfections of Section 2.1- offsets 
and tilts - could naturally be resolved into components along the x
and y-axes; with the more general deformations of (179) to (181) this is of 
course not possible, and the II and 1- notation appears more natural. 
In the special case n = 1, using the geometry of Fig. 5, we may if we 
wish identify al(z) with x(z), b1(z) with y(z), and the 1\ and 1- polari
zations of the resulting TElm spurious modes with the subscripts x and 
y respectively of Section 2.l. 

vVe normalize the complex mode amplitudes in the usual way [see 
(88) and (89)]: 

I[Om]±(Z) = e=fr[om]Z G[Om]±(Z) 

I[nm]I1±(Z) = e=fr[n",]Z G[nm]I1±(Z) 

I .L±() _ =fr [OmjZ G .L±() 
[nml Z - e [nml Z. 

In lossless metallic guide the propagation constants r[nm] are of course 
pure imaginary, 

Assuming a unit incident TEol wave, 

G[Ol]+(O) = 1, 

(184) 

(185) 

the G[nm] become the normalized spurious mode complex transfer co
efficients. They are found to first order from Morgan's analysis, and 
given in a slightly modified notation as follows: 

[
G[nm]I1±(L)] . fL [an(Z)] _ '(Il :::ell )z 

1"-1 -J';::;' e J I"Ol.l"nm dz .L± 1"-1 ...... [nm] 
G[nm] (L) 0 bn(z) 

(186) 

where the coupling coefficient Z [nm] is given by 

(187) 

1, n. = 0 
In'(km,,) = O. (188) En = 

2, n ~ 1 

I t is worth noting that the angular index n of the spurious mode is 
identical to the subscript of the pertinent component of mechanical de
formation, an or bn ; therefore, to first order the modes excited by TEOl 
at a given deformation have the same angular symmetry as the defor-
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mation. E[nm] is the same for forward and backward modes, and for 
both polarizations; in contrast Co, Ct , and Cd of Appendix A are different 
for forward and backward modes. This contrast in behavior will be dis
cussed in Section 2.3.9. The Z[nm] are given in Appendix D for the fre
quencies 50, 55, and 60 kmc, in 2-inch diameter guide. We note again 
that these results hold true only when there is no distortion of the guide 
at the ends, z = 0 and z = L, by (181). 

Special comment is necessary for the G[Om] terms in (186), and in 
particular for the G[Ol] + term. The n = 0 terms correspond to the TEom 
modes, which have only a single polarization. Since bo(z) = 0 in (181), 
the" terms of (186) are the significant ones; and since we have only one 
polarization, the symbol" may be conveniently dropped. The G[Ol] + term, 
corresponding to the forward TEOl , requires special interpretation. It is 
to be considered a first-order correction to be added to the unperturbed 
solution, i.e., G[Oll + = 1. It is readily seen that G[Oll + in (186) represents 
a phase shift of the unperturbed TEOl wave, caused by a change in the 
average diameter of the guide. 

By analogy with the previous analysis, we may use the results of 
(186) to (188) in any of the results of Section 2.3 above for the con
tinuous case-e.g., (116) to (120)-by substituting - Z[nm]an(z) or 
- E[nm]bn(z) for the continuous coupling coefficient c(z). While these 
coupling coefficients were derived by Morgan for lossless metallic guide, 
we expect as before that these results provide a satisfactory approxima
tion for real copper guide by modifying the various propagation constants 
to take account of the small losses present in copper guide. The relation
ship of these results to previous ones for the continuous case is discussed 
in Section 2.3.9. 

2.3.!J Relationships between Various kletallic Guide Coupling Coefficients 

A sufficiently small straightness deviation of the guide axis may ob
viously be described equally well as a continuous bend, a continuous 
offset, or simply as a continuous displacement. For these three cases we 
have given above three different coupling coefficients - Ct[m] , Corm] , 
and E[lm] - that yield, among other things, the first-order spurious 
mode transfer coefficient of a deformed guide. While the results of Sec
tion 2.3.4 - in particular (118) for continuous bends and its analog for 
continuous offsets and diameter changes - were derived for only a 
single forward spurious mode, the result for the first-order spurious 
mode transfer coefficient holds true in general, with of course the proper 
coupling coefficient for each of the spurious modes, as discussed in Sec
tion 2.4 below. Since a given deformation that is suitably small may be 
described in these three different ways, and since we must get the same 
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answer for the spurious mode output in each calculation, the three cou
pling coefficients must be related to each other. Similar statements ob
viously apply to the two coupling coefficients Cd[m] and E[Om] for diameter 
varia tions. 

For a guide with a continuous bend, confined to the x-z plane, the 
TElm ± transfer coefficient is, from (118) and (91), to first order 

iT. C ± 
G x± r-..; J. ~ e-j(~Ot"'f~lm)Z dz 

[1m] r-..; 0 Rx(z) -, (189) 

where Rx(z) is the radius of curvature of the guide axis, and the super
script x indicates that the x-polarization is under consideration. If the 
slope of the guide axis is small compared to unity, the distance along 
the perturbed guide axis is approximately equal to the distance along 
the unperturbed guide axis, so that we may regard z in (189) as meas
ured along a fixed rectangular co-ordinate axis. Further we may approxi
mate the curvature as 

1 "( ) 
Rx(z) ~ x z. (190) 

Then (189) may be written 

G x± r-..;·C ± 1L ."(M) -j(~OlT~lm\Z d 
[1m] r-..; J t[m] X w e Z. 

o 
( 191) 

Similarly for a guide with a continuous offset in the x-z plane the spuri
ous mode output is, from (96) and (118) with thej replaced by -1, 

G x± r-..; -C ± 1£ x'(?')e-j(~OlT~lm)Z dz 
[1m] r-..; o[m] w • 

o 

If the ends of the guide are parallel, so that 

x'(O) = x'(£) = 0, 

(192) 

(193) 

and if the perturbation is small, the spurious mode output must be 
identical in the two cases and the right-hand sides of (191) and (192) 
must be equal. Integrating (191) by parts, we find subject to (193) 

For (192) and (1B4) to be identical, we must have 

Co[m]± (3 
-C ± = 01 =r= (31m. 

t[m] 

(194) 

(19.5 ) 

Using (A-I) and (A-2) of Appendix A, (19.5) is easily shown to be an 
identity. 
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Similarly a line with a continuous offset, but with no net offset be
tween its two ends, is described in terms of displacement of the guide 
axis by the results of (186). Thus setting 

(1£)6) 

we have for the spurious mode output 

G x± f"o./ -J'';( fL x(z)e-j(~Ol'f~lm)Z dz 
[1m) "-' -[1m) • , 

o 
(197) 

where we have replaced the superscript /I in (186) by x. This result is 
valid only when the distortion vanishes at the ends of the guide; in this 
case this means that there must be no offset between the two ends of the 
guide, 

x(O) = x(L) = O. (198) 

Subject to (1£)8), (197) must agree with the previous two results. Inte
grating (192) by parts, and using the condition of (198), 

G x± f"o./ '({3 (3) C ± fI' .( ) -j(~OlT~lm)Z d 
T[lm) f"o./ -J 01 =r= 1m o[m) 0 X z e z. (199) 

For (197) and (If)!}) to he identical, we must have 

-::"[lm) {3 (3 -C ± = 01 =r= 1m • 
o[m) 

(200) 

By (A-1) of Appendix A and (187), (200) is easily seen to be an iden
tity. 

An analogous study can be made for a continuous diameter change. 
From Sections 2.3.2 and 2.3.4 

(201) 

From (186) we have 

G[om)± = - jE[Om) ~L ao(z)e-j(~OlT~Om)Z dz, (202) 

valid when 

ao(O) = ao(L) = O. (203) 

Subject to (203), (201) and (202) must be identical. From (179) we 
have r' (z) = ao' (z); substituting this into (201), integrating by parts, 
and using (203), 
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G[om]± = -j({30l =F {30m)Cd [m]± i L 

ao(z)e- jC
!301=Fi3oml

z dz. 

For (202) and (204) to be identical, we must have 
...... 
'::'[Om] 
-C ± = {3ol =F {301n' 

d[m] 

1095 

(204) 

(20.5 ) 

Equation (A-4) of Appendix A and (187) show that (205) is an identity. 
It is interesting that coupling coefficients found in such diverse ways 

are so simply related, and pleasing that these different calculations are 
all consistent with each other. 

A simple physical interpretation may be given for the fact that the 
mode conversion caused by a given type of deformation of the guide 
may be described by different coupling coefficients (with of course 
corresponding different geometric parameters). These different descrip
tions correspond to using different sets of normal modes to describe the 
fields within the deformed guide. 

For purposes of illustration we take the case of deviation from straight
ness of the guide axis. The coupling coefficient E[lm] and (197) corre
spond to the normal modes of the original undeformed guide. The cou
pling coefficient Corm] and (192) correspond to the normal modes of the 
deformed guide with cross section perpendicular to the axis of the un
deformed guide. Finally, the coupling coefficient C/[m] and (191) corre
spond to the normal modes of the deformed guide with cross section 
perpendicular to the axis of the deformed guide. This process may he 
carried one step further, using the normal modes of a curved circular 
guide.9 

A similar discussion can of course be given for the two representations 
of mode conversion caused by changes in diameter [Cd[m] in (201) and 
E[Om] in (202)]. 

2.4 Extension to 1v[ any Spurious AIodes and Two Polarizations 

J\lIost of the above results are readily extended to include additional 
spurious modes, coupled to the TEo, signal mode to first order, and two 
polarizations of all such spurious modes (except TEom). First, we may 
proceed via the scattering matrices for discrete mode converters includ
ing many spurious modes, and thence to the continuous case via limit
ing processes, as above. Alternately, we may take the generalized teleg
raphist's equations, including all modes, and find perturbation solutions 
as above, and thence treat the dis~rete case by limiting processes. The 
conclusions of such a study may be summarized as follows: 
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1. 1'he first-order spurious mode transfer coefficients for each of the 
spurious modes are given as above [e.g., (72), (73), (118) or (I8G)], 
with of course the appropriate coupling coefficient and differential propa
gation constant for each of the modes. 

2. For the second-order TEal transmission parameters (Go, g, A , A , 
e) we must replace each term involving the coupling coefficient by a 
summation of similar terms, each corresponding to a particular spurious 
mode, with of course the appropriate coupling coefficient and differential 
propagation constant for each mode. For this purpose we regard the 
two orthogonal polarizations of a spurious mode as two distinct (but 
degenerate) spurious modes. Thus for example we write 

(20G) 

The quantities for the mth mode are given for example by (G5) and (71) 
or (lG1) for the discrete case, and (l1G) and (117), (119) and (120), or 
(15G), (170) for the continuous case, with in each of these equations 
the subscript 117, attached to the coupling coefficients and differential 
propagation constants. 

Much of this analysis is a straightforward extension of the two-mode 
analysis above, and will not be discussed here. The study of convergence 
of the approximate solutions, analogous to that discnssed in Sections 
2.3.4 and 2.3.G and treated in Ref. 18, appears more difficult in the 
general multimode case, and little work has been done. Of course even 
in the simpler two-mode case we lack precise information on the validity 
of the approximate solutions, as discussed above; the same is certainly 
true here. 

From the results of Section 2.3.7 and (20G), the contribution to the 
TEO! loss A of each of the spurious modes arises from a different portion 
of the (mechanical) spectrum of the geometric imperfection. For ex
ample, consider a guide whose only imperfection is straightness devia
tion; the most important spurious modes are the forward TElm . Con
sider the frequency band from 50-GO kmc in 2-inch LD. waveguide. The 
beat wavelength range, which is equal to the range of mechanical wave
lengths of straightness deviation that contribute significantly to the 
TEO! loss component, is shown in Table I for each of these modes (see 
Appendix D). 

The coupling coefficients for each polarization of each spurious mode 
for discrete tilts and offsets are obtained from (37), (38) and (47) 
respectively; for discrete diameter changes the coupling coefficients are 
obtained from (51). Thns in (71e) each of the C's should have a sub
script denoting the spurious mode, and (Xi and bi should have subscripts 
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TABLE I 

Mechanical Wavelength Range for 50-60 kmc Band in Feet 

1 
2 
3 
4 
5 
6 
7 
8 

2.45264-2.94898 
1. 99720-2 .40812 
0.46389-0.56232 
0.21503-0.26289 
0.12293-0.15228 
0.07762-0.09815 
0.05134-0.06723 
0.03377-0.04763 

denoting the x or y components of tilt or offset, depending on the polari
zation of the spurious mode. 

For the cross-sectional deformations of Section 2.3.8, the continuous 
coupling coefficients for the two polarizations of the TEnm mode are 

(207a) 

(207b) 

in terms of the geometric parameters of (180). The corresponding differ
ential propagation constants are for both cases 

(208) 

For the coefficients Corm] for continuous offsets, we find from (47), by 
taking the limiting form of the discrete case, that the coupling coefficients 
for the two polarizations of the TE1m mode are 

C[lmt±(Z) = Co[m]±·X'(z), 

C[lm]Y±(Z) = Co[m]±·Y'(z), 

(209a) 

(209b) 

where as usual x(z) and y(z) denote the two rectangular components of 
the displacement of the guide axis from the z-axis (Fig. 7b) and the 
prime denotes differentiation with respect to z. The differential propaga
tion constants are again given by (208). 

Similarly for a continuous diameter variation 

(210) 

where r' (z) is the derivative of the guide radius, and we have again 
(208) for the differential propagation constants. 

The geometry for general continuous bends (not confined to a single 
plane) is considerably more complex, as might be anticipated from the 
latter part of Section 2.1.2, and requires special discussion. In general 
the guide axis may be a quite arbitrary 3-dimensional space curve; e.g., 



1098 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1902 

it may be pretzel-shaped. In such extreme cases we require the notation 
of differential geometry to describe the guide axis. We will not attempt 
to discuss the subject of differential geometry itself,36 but merely use 
some of its simpler results. 

Let us treat the general continuous case as the limiting form of the 
discrete case, as in Section 2.3.2 where the curved axis of the guide was 
confined to a single plane. In the present more general case we use the 
bent cylindrical co-ordinates p,cp,s described in conjunction with (29). 
Note that distance along the (bent) guide axis will be called s in the 
present section (it has previously been called z), so that z can refer to 
distance along a fixed rectangular co-ordinate axis. The other co-ordi
nates p and cp are as defined in Section 2.1.2. We particularly require 
the definition of the cp co-ordinate. Briefly, lines cp = constant are drawn 
on the surface of the guide before it is bent, parallel to the (straight) 
axis of the guide. After bending (perhaps into a pretzel shape) these 
now deformed cp-lines furnish the cp-co-ordinates. 

N ow consider briefly the differential geometry of twisted space 
curves.36 Let r be the vector from a fixed origin to the curve. Three unit 
vectors characterize the geometric properties of a general space curve: 

t - tangent vector. 

p - principal normal vector. 

b - binormal vector. 

Then the following relations hold true: 

dr 
ds - t. 

dt 
ds 

1 
- p. 
p 

b = t X p. 

db 1 
ds - -~ p. 

dp _ 1 1 
- - b - - t. 
ds - T P 

(211a) 

(211b) 

(211c) 

(211d) 

(211e) 

1 
In (211) p is the radius of curvature, - the curvature; similarly T IS 

P 

called the radius of torsion, ~ the torsion. The principal normal plies 
T 
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in the plane of the circle that best approximates the twisted curve in 
the neighborhood of a given point; the radius of this circle is of course 
the radius of curvature p. 

N ow let us consider the limiting process in which a guide with a con
tinuous three-dimensional bend is considered as the limit of a guide with 
closely spaced discrete tilts. In the following let O(s) represent the Ol'ieu
tation of the elementary discrete tilt located at distance s along the 
(bent) guide axis, measured in the bent cylindrical co-ordinate system 
described above in the present section and in Section 2.1.2. T'hen in the 
limit as the discrete tilts become a continuous three-dimensional space 
curve, 0 (s) is given by 

dOes) 1 (212) 
ds T 

From (37) the continuous coupling coefficients to the two polarizations 
of the TElm ± spurious mode are: 

C ± cos O(s) 
t[m] • pes) (213a) 

Y±() C ± sin O(s) 
C[lm] S = t[m]· pes) . (213b) 

Similarly for the Tl\IIu + spurious mode: 

x+() C + cos O(s) 
C(ll) S tell) • p( s) (214a) 

C(11)Y+(s) C 
+ sin O(s) 

tell) • pes) . (214b) 

p( s) is the radius of curvature, determined from (211 b). O( s) is found 

from (212) as the negative of the integral of the torsion! , determined 
T 

from (211d). 
The results of (213) and (214) are sufficiently general to include such 

things as pretzel-shaped waveguides and other unusual deformations. 
However since we seldom expect such things in practice, we seek to 
simplify these results. We are guided by the simplification in the discrete 
case that is discussed following (37). We assume that the angular devia
tion of the guide axis from the z-axis of an x, y, z rectangular co-ordinate 
system remains small; 

I x'(z) I « 1, 

I y' (z) I « 1. 
(215) 
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Further we assume that the cp = 0 co-ordinate on the surface of the 
guide initially lies in the x-z plane, and that it remains close to this 
plane. Then from (38), by the usual transformation from the discrete to 
the continuous case, we have 

s ~ z, (216a) 

cosO(s) "() 
pes) ~ x z, (216b) 

sin O(s) "( ) 
pes) ~ y z, (216c) 

to be substituted into (213) and (214). The superscripts x and y of 
(213) and (214) in this special case correspond to linear polarizations 
defined with respect to the x and y axes of the fixed rectangular co
ordinate system; in general the superscripts of (213) and (214) corre
spond to the cp = 0 and cp = 7r /2 planes in the bent cylindrical co-ordi
nate system. The approximations of (216) are found directly for the 
continuous case in Appendix E. 

III. THEORY OF GUIDES WITH RANDOM DISCRETE IMPERFECTIONS 

We now apply the results of Section II to the study of guides with 
random discrete mode converters. The following cases of practical 
in terest will be discussed: 

i. Guides made of individual pipes that are perfect right circular cylinders 
of identical diameter and length lo but that have randomly imperfect joints, 
with either tilts or offsets. The first-order spurious modes in this case will 
be the TE1m family, with the most significant being the forward TEll 
and TE12 , and for tilts the forward TMll . Both polarizations of each 
spurious mode must of course be considered. 

ii. Guides made of individual pipes that are perfect right circular cylin
ders of identical length lo with perfect joints (no tilts or offsets) but of 
slightly different random diameters. The spurious modes will be the TEom 
family, with forward TE02 the most important. Each mode now has 
only a single polarization. 

The statistics of the TEol loss will be determined in terms of the statis
tics of the guide imperfections. Only the case of individual pipes of 
identical length will be considered. 

The necessary results from Section II are summarized below in Sec
tion 3.1. Section 3.2 states the statistical models adopted for guides 
with random tilts, offsets, and diameter changes. In Section 3.3 the ex
pected value of the average TEol loss, and the power spectrum and total 
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power (expected value of the mean square value) of the TEol loss varia
tion about its average value, are determined in terms of the statistics of 
the random offsets, tilts, or diameter variations of the guide. In Section 
3.4 these results are extended to cover long guides with mode filters. 
Representative numerical examples are given in Seetion 3.,s for a 20-
mile total guide length. Section 3.G considers the application of certain 
of these results for tilts and offsets to helix guide. 

lVlost of the work of Section III will be confined to copper guide. As 
before, we assume that the coupling coefficients for ideal metallic guide 
provide a good approximation to those for copper guide, but modify 
the (pure imaginary) propagation constants for ideal metallic guide 
to account for the loss present in copper guide. Of course the analysis 
for diameter changes applies equally well to copper or helix guide. 

3.1 T EOl Loss - Summary of Previous Results 

We give below the TEol normalized loss (in nepers) A, written in a 
form suitable for the purposes of the present section. These relations are 
readily obtained from the results of Section II, and in particular from 
Section 2.4 and (37), (38), (47), (51), (61) to (65), (71d), (71e), 
(161), and (206). First, from (206) the total TEOl loss A is given as 
the sum of terms due to the individual first-order spurious modes; 

(217) 

The term Am due to the mth spurious mode is given below in (218) and 
(219). In these and similar relations involving only a single spurious 
mode we omit the subscripts denoting the spurious mode on the coupling 
coefficients and differential propagation constants, in order to avoid 
unnecessarily cluttering up the equation. Therefore for each spurious 
mode 

(218a) 

where 
N-k 

A ktlalo '" ( • II II + . .L .L) k = e L..J Xi Xi+" Xi Xi+k , O~lc~N-1. (218b) 
i=l 

Tilts: 

(218c) 
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Offsets: 

Diameter change: 

Xi" = Gobi cos Oi = Gobi" 

X/ = Gobi sin Oi = Gob/". 

Xi" = G,zl1ri 

Xi.!. = O. 

(21Sd) 

(21Se) 

The distinction between Ak of (21Sa) and (21Sb), the lc th Fourier co
efficient of the TEO! loss due to a single spurious mode, and Am of (217), 
denoting the TEol loss due to the mth spurious mode, will always be 
clear from the context. In particular cases the subscripts indicating the 
spurious mode will always be enclosed in [ ] or ( ) to denote TE or 
TM spurious modes respectively. 

For the case of zero differential attenuation constant, an alternate 
form is sometimes useful. From (161) for each spurious mode we have 
(with mode subscripts again omitted) 

I
N 12 1 N 12 A "-I! '"" ." -j/l{31oi +! '"" · . .Le- j /l{31oi • "-I 2 L..J X~ e 2 L..J X t , 

i=l i=l 
110: = O. (219) 

The :I:/s are again given by (21Sc) to (21Se). 
In the above results we have chosen to group the two polarizations of 

each spurious mode ('TElm and TMn +) for tilts and offsets in each term 
of (217) . We use the symbols " and ...L to distinguish the two polariza
tions, rather than X and y as in Section II. The length of the individual 
pipes is lo , the total length of guide is LN = Nlo . 

In these results the significant frequency dependence, at least over 
moderate bandwidths, occurs through the 11{3, the differential phase con
stants between TRol and the spurious modes. Far from cutoff (the case 
of greatest practical interest) the 11{3 are a pproxima tely proportional to 
the free-space wavelength A. A great simplification in the subsequent 
analysis is obtained by neglecting the frequency dependence of 110: and 
the x/s, setting these quantities equal to their values at the middle of 
the band of interest. Then Am , the contribution to the TEo 1 loss of con
version to the mth spurious mode, becomes a Fourier series, periodic in 
A, with random coefficients Ak , as given in (21S). A, the total TEol loss 
due to mode conversion, is given by a sum of periodic components of 
incommensurable periods, according to (217). 

Over moderate bandwidths, the effect of the frequency dependence of 
110: is small far from cutoff. For offsets and diameter changes, the fre-
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quency dependence of the coupling coefficients and hence the Xi is also 
small far from cutoff; however, for tilts the Xi vary approximately in
versely with X. Thus, the above approximation may appear questionable 
for tilts, but is used even here because of the resulting simplification in 
the analysis. [Compare the discussion in Section 2.3.7 following (109).] 

We thus regard the loss 11 as a function of the free-space wavelength 
X, and write 

A = 1 + oA (220) 

where 1 is the average value over free-space wavelength X of the loss 
over some suitable band, and oA is the deviation of the loss from its 
average value. The expected value of the average loss <1>, and the 
power spectrum of aA and its total power or the expected value of its 
average mean square value «OA)2>, are easily found in terms of the 
statistics of the random Fourier coefficients Ak ; the bar again indicates 
an average over the free-space wavelength X. 

A more exact treatment of the loss statistics, one that avoids the 
above approximations and includes the frequency dependence of all 
quantities, is straightforward but lengthy. A brief discussion, given in 
Appendix F, of the statistics of each of the two terms of (218a) as 
functions of X, verifies the approximate analysis. 

3.2 Statistical kfodel of Guide 

3.2.1 Tilts and Offsets 

We assume that the parallel and perpendicular components of tilt or 
offset (all, a.l. or bll , b.l.) are independent Gaussian random variables 
with zero mean and equal variance; tilts or offsets at different joints are 
assumed to be independent, and to have the same distribution. Then the 
magnitude of tilt or offset (a or b) will have a Rayleigh distribution and 
the orientation (0) will be uniformly distributed between 0 and 27r, and 
these two quantities will also be independent. 

From (37), (38), (47), and (218c) and (218d) we have 

Cta ll 

xII = 
. Cob II ' 

x= (221) 

Thus identical statements to those above may be made about xII, x.l., x 
and o. 

For convenience we state the following results in terms of x's; any of 
these equations obviously holds true if x is replaced by a or b throughout. 
The rms value of x is denoted by X; thus 
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£2 == <X2> = C/«i> , 
Co2<b2> 

(222) 

where the symbols < > denote the expected value of a random variable. 
Then the various probability distributions at any joint may be written 
as follows: 

p(X,e) p(X)p(e). 

We have: 

<XII> 
",2 

J.2 X 
<X > = "2' 

v; '" <X> = 2 x, 

p(xJ.) = _1 __ exp _ (x",J.) 
2 

V;x x (223) 

1 
pee) - 271"' 

o < e < 271" 
(224) 

(22.5) 

(226) 

Subscripts indicating the joint or mode converter have been omitted in 
the above relations. Since different joints are independent, for two differ
ent joints i and j we have 

(227) 

Subscripts denoting the spurious mode have been omitted in the above 
equations. 

3.2.2 Diameter Changes 

The radius of the ith pipe ri is given by 

(228) 

where a is the average radius and €i a small random variation about the 
average. The €i are assumed to be independent Gaussian random vari
ables with zero mean and variance E2. 

(229) 
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(230) 

Then D.ri , the change in radius at the ith joint, is given by 

D.ri = fi - fi-l , (231) 

and has a Gaussian distribution with zero mean and variance (Kr")2 

D.r = V2t (232) 

However adjacent joints are no longer independent; from (231) D.ri and 
6.r j are independent only if [j - i [ > 1. Therefore: 

<D.ri> = O. 

(D.r)2 = 2e2
• 

(ir )2 .2 

2 
-E. 

<D.riD.rj> = 0, [j - i [ > 1. 

(233) 

Equations (232) and (2:3:3) apply also to the corresponding Xi, given 
by (218e) for a diameter change, for any spurious mode, by making the 
substitution 6.ri ---t Xi and Sr ---t X, where ;r is given by 

(234) 

Subscripts denoting the spurious mode have again been omitted in the 
above equations. 

3.3 Statistics of the T EOl Loss for a Single Section of vVaveguide between 
J.110de Filters 

3.3.1 Offsets 

For a copper waveguide section whose only defects are independent 
random offsets at the joints between pipes, the most important spurious 
modes will be the forward TEl2 and TEn, with the other forward TElm 
modes contributing only a small amount to the total TEol loss. N eglect
ing the frequency dependence of all quantities except the D.(3, we have 
from (218a) and (220) for each spurious mode: 

A A + oA, 

N-l 

oA = L Ak cos lc6.{3lo , 
k=l 

(235) 
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where the random Fourier coefficients Ak are given in (218b), together 
with (218d). The subscript indicating the spurious mode has again been 
omitted. 

The following moments of Ak are easily determined from the results of 
Section 3.2.1 : 

<AD> = x2N, 
(236a) 

",4 

<Ak2> = ~ (N - k)l2Aalo; 1 ~ k ~ N - 1. (236b) 

(236c) 

From (235) and (236a) the expected value of the average TEO! nor
malized loss due to each spurious mode is 

",2 
- x 

<A> = 2 N. 

From (2:3Gb) the (discrete) power spectrum of oA is 

l~k~N-1. (238) 

From (2:3Gc) the different Fourier components of oA are uncorrclated. 
The total power, or the expected value of the mean square value, of oA 
is found by summing over the discrete power spectrum P k • From (238): 

N-l ",4 N-l 

«oA)2> = L P k = ::.- L (N - k) i2Aalo 
k=l 4 k=l 

(239) 

Strictly speaking, the average over free-space wavelength A indicated by 
the bar in (237) and (239) must be taken either over a single funda
mental period of oA (such tha t ~(3lo changes by 27r) or over a band large 
compared to a single period. Let ~A and ~f be the interval in wavelength 
and frequency, respectively, corresponding to a fundamental period. From 
(167) and (173) we find 

~f t'o..J ~A _ B 
Tt'o..J~ - To (240) 

where B is the beat wavelength, tabulated in Appendix D, and lo is the 
distance between joints in the guide. (This result is similar to that of 
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(178) for the sample point spacing; in (178), however, the length L is 
the total length of guide.) 

Equation (239) simplifies in two special cases of interest: 
1. Small differential loss over total length LN = Nlo . 

,,4 
-- X 

«oA)2) = 8" N(N - 1) ; - N2b.alo « 1 . (241) 

2. Large differential loss over total length LN , small differential loss 
over pipe length 10 • 

£;4 N - N2b.alo » 1 
«OA)2) - . 

- 8 -b..alo' -2b.alo« 1. 
(242) 

We recall again that b..a is negative throughout the present treatment, 
in which the TEol signal mode has lower heat loss than any of the 
spurious modes. 

Referring to Section 3.2.1, <A> and V «OA)2) are both proportional 
to the square of the rms offset at the joints between pipes. <.A) is pro-

portional to L N , the length of the waveguide section. V < (oA) 2) is 
initially proportional to LN , when LN is small enough so that the differ
entialloss may be neglected; for large LN it becomes proportional to 
VLN • 

The power spectrum P k of (238) has its maximum value for k = 1, 
and decreases monotonically as k increases to N - 1. For small differ
ential loss P k is triangular; for large differential loss it is exponential. 
The "3-db bandwidth" of the power spectrum P k , the value of k for 
which P k is equal to half its maximum value, is related to the rate of 
variation of the TEO! loss component due to a particular spurious mode. 
We have: 

k3db = 
N 

- N2b.alo « 1 
2' 

(243a) 

k3db = 
0.G92 

- N2b.a1o » 1. 
-2b..alo' 

(243b) 

lVlaking use of (1G7) and (173), we find 

b..hdb SA3db B 
--~--=--

f A k3db lo 
(244) 

for the interval in free-space wavelength or frequency (of the radiation 
in the guide) corresponding to the 3-db bandwidth of the TEol loss 
variation. 
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The statistics of the total TEal loss due to mode conversion arc given 
simply by summing over the contributions of the individual spurIOUS 
modes. From (217) we have 

(245) 

«OA)2) L: «OA[m])2), t (246) 
[m] 

where [m] indexes the TE1m+ spurious modes. The individual terms in 
(245) and (246) for each spurious mode arc given by (237) and (239) 
(or (241) and (242) in special cases), in which the subscript [m] has 
been omitted for convenience. The power spectra of the oA [m] arc given 
by (238). From (222) and (237), 

- <b
2
)N " 2 

<A) = -2- L..J Co[m] • 
[m] 

(247) 

A practical waveguide system will contain mode filters for the TElm 
modes at a close enough spacing so that the differential losses for the 
important spurious modes are small in each section. For this special 
case we have from (241) 

«OA)2) = <b
2
)2N (: - 1) L Co [m]4; -N2i1a[m]lo« 1. (248) 

[m] 

In (247) and (248) <b2
) is the mean square magnitude of offset, Co[m] 

is l\!forgan's coupling coefficient between TE(JI and TElm for offsets, 
given in Appendix A, and i1a[m] = atOll - a[lm] , the difference in at
tenuation constants of the TEal and TElm + modes. 

Formulas and numerical values for the various coupling coefficients 
and beat wavelengths are given in Appendix A and D. For a frequency 
of 55 kmc and a I-inch guide radius, (247) and (248) become, summing 
over the nine propagating TElm + modes: 

_ <b2)N 
<A) = -2- (1.107 + 4 .. 581 + 0.641 + 0.271 + ... ) 

«OA)2) 

<b2
) N(3.519); <b2

) in inch2
• 

<b
2
)2N(N - 1) (1.226 + 20.984 

8 

+ 0.411 + 0.074 + ... ) 

(249) 

t No cross terms appear in the summation of (246) because, subject to the 
approximations of the present section that neglect the frequency variation of the 
coupling coefficients (C t , Co ,and Cd) and thella's, the Fourier components of the 
different BA [ml have incommensurable periods, and hence their total powers or 
mean square values may be simply added. The cross terms are treated exactly in 
Appendix F. 
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<b2>2N(N - 1)(2.842) 

V«OA)2> = <b2> VN(N - 1)(1.686); <b2> in inch2
, 

(250) 
- N2Aa[mJlo « 1 . 

The most important terms are those due to TE11+ and TE12+' 

3.3.2 T'z'lts 

We next consider a copper guide whose only defeets are random tilts 
at the joints between pipes. The spurious modes are the forward TElm 
with TEl2 + and TEn + the most important, as in the offset case above, 
and in addition the forward TlVIll . The effects of the TElm + modes on 
the TEO! transmission are given by the results of Section 3.3.1 above 
[see (235) to (246)], using of course the appropriate coupling coefficients 
for tilts [see (218c)]. However, TlVIll+ requires special consideration. 

Equations (235) and (236) apply to TM11+ as \vell as to the TElm 
modes. For TlVIn +, A(3 = Aa in copper guide. Thus the beat wavelength 
for TlVIn + is very 10ng-319S feet in 2-inch LD. pipe at 55 kmc-com
pared to the beat wavelengths of the TElm modes, and long even com
pared to the length of guide sections between mode filters in a practical 
waveguide system. t Thus, the bandwidths we will consider (e.g., 50-60 
kmc) are only a small portion of the fundamental period of A (11) +, the 
TlVI11+ component of the TEO! loss, as given in (240), and so the sum
mation of powers of Fourier components given in (239) is no longer 
valid in determining the mean square loss variation. In fact A(1I) + will 
be almost independent of frequency (except for the slow variation of 
coupling coefficient, which is inversely proportional to free-space wave
length 'A, neglected over moderate bandwidths in the present analysis). 

Thus, consider a section of copper guide short compared with the 
TlVI11 + beat wavelength (:3195 feet). Then both Aa and A(3 may be set 
equal to zero. From (219) the TlVI11+ component of the TEol loss is 

1 [ N J2 1 [ N J2 A(11)+ = 0 ?: xiII + -2 ?: x/ 
,c, t=l t=l 

(251) 

This is simply equal to the TEO! loss due to TlVI11 + at a single tilt equal 
to the net tilt between the input and output ends of the guide. This 
result is obvious from the fact that we have neglected both attenuation 
and phase shift in the relatively short sections of guide under considera
tion. The loss is therefore independent of the lengths of guide between 

t This is true only for unmodified copper guide. A thin dielectric coating will 
reduce the TEo1 -TMll+ beat wavelength to much smaller values;12 ,13 ,14 the present 
treatment of TM ll+ will obviously not apply in such a case. 
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discrete mode converters, and these lengths may thus be set equal to 
zero, yielding only a single tilt whose magnitude and orientation are 
equal to the net tilt between the ends of the guide. This result holds 
true for T.lVIn + for any arbitrary continuous bend of the guide axis, 
which may be considered as the limit of a series of discrete tilts (Section 
2.3). 

To this approximation A (II) + is thus independent of frequency (ex
cept for the slow variation of coupling coefficient with A). Tl\1u + thus 
contributes to the average loss A but not to (OA)2. Thus (245) contains 
an extra term, while (246) remains unaltered. 

<A> = C1>TE + <A (11) +) 

<A>TE = L <A [m]> 
[m] 

«OA)2) = L «OA[m])2> 
[m] 

(252) 

(253) 

(254) 

The index [m] again indexes the TElm + modes. <A[m]) and «OA[m])2) 
are again given by (237) and (239) (or (241) and (242) in special 
cases) and <AclI) +)is also given by (237), with the appropriate conpling 
coefficients for tilts. Equations (238), (243), and (244) remain true 
for the TElm + components of the TEol loss. The results analogous to 
(247) to (250) for tilts arc summarized below. 

- <cl>N ~ .) 
<A>TE = -2- L.J Ct[rn]~ 

[m] 

<ci>N 2 
<A (11/) = -2- C tCU) 

For small differential loss (because of mode filters), 

« S:A)2> = «i)2N (8N - 1) ~ Ct [m]4., N2A l././ 1 
U L.J - Ua[m] 0 "" • 

[m] 

(25G) 

(256) 

(257) 

« 2
) is the mean square magnitude of tilt. Substituting numerical values 

for the C t +'s from Appendix A, for a frequency of 55 kmc and a I-inch 
guide radius, (255)-(257) become, summing over the nine propagating 
TElm + modes: 

<A>TE = <a~N (29.465 + 81.085 + 0.616 + 0.057 + ... ) 

<a2>N(55.619); 

<A (11) +> = « 2
) N (14.598) ; 

<a2> in radian2
• 

<a2> in radian2
• 

(2,158) 

(259) 
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«/)2N~N -1) (868.18 + 6574.74 + 0.38 + ... ) 

<a2)'2N(N - 1)(930.41) 

<a2
) VN(N - 1) (30.503); 

(260) 

Again the most important terms are those due to TEl1+ and TE12+, and 
for the average loss, to TlVIl1 + in addition. 

For a given (copper) guide A (U) +, the TlVIu + contribution to the 
(average) TEol loss is determined simply by the net tilt between the 
input and output of the guide, as discussed above. The present model, 
which assumes that the only imperfections are tilts at the joints between 
perfect pipes, seems grossly unrealistic as far as the effects of TlVIu + are 
concerned for any practical guide, for at least two reasons. First, practical 
pipes will have long bows or gradual curvature of the guide axis; this 
factor will probably be much more important in determining the net 
tilt between the guide input and output than tilts of the very small 
angles of interest here. Second, practical guides may be subject to 
mechanical constraints of variolls types which will also introduce slow 
variations in curvature of the guide axis. 

In contrast, gradual curvature of the guide axis will have little effect 
on the TElm components of the TEOl loss for reasons indicated in Section 
2.:3.7 and to be discussed in detail in Section IV; this is so because only 
straightness deviations whose wavelengths are approximately equal to 
the beat wavelengths of the important spurious modes contribute to 
the TEol loss in copper guide. 

Consequently the effect of TlVlu + on the average loss has been stated 
separately for the particular model discussed here; it is given in (256) 
and (259) for whatever tutorial value it may have. As stated above, 
TlVIll + will have no significant effect on the variation of TEol loss about 
its average value for the relatively short mode filter spacings which 
must be used in a practical waveguide system. 

3.3.3 Diameter Changes 

Finally, consider a copper or helix guide whose only defects are 
random diameters of the individual pipes, which are perfect right circular 
cylinders and have no tilts or offsets at their joints. Again from (218a) 
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and (220) for each spurious (TEom) mode we have, as in (235) for 
offsets or tilts: 

A=A+oA 

A = !Ao (261) 
N-l 

oA = L Akcos letJ.{3lo . 
k=l 

The random Fourier coefficients are again given by (218b), together 
with (218e). 

(262) 

The subscript indicating the spurious mode is again omitted. 
The moments of the Ak must be slightly modified from those given 

in (236) for independent offsets and tilts, because of the correlation 
between adjacent diameter changes imposed by the present mathemati
cal model and because each spurious mode now has only one polarization 
rather than two. From (228) to (234): 

<Ao> = x2N, <A02> = 1;4(N2 + 3N - 1). (263a) 

<A,,> = 0, 
",4 

<A/> = ~ [3(N - Ie) - 11l2~alo; 
2 

2~Ie~N-1. 

(263b) 

(263c) 

f - (N - l) l [l - k = II 
<A"Al>=le(k+l)~alO'1 + l(N -l) ; l- Ie = 2

J
,0 < Ie < l,(263d) 

l 0 l-le~3 

f - J, (N - 1) (N + 4) l [l = 1] 
<AoAI> = x4el~alO'1 + !(N - 2) ; l = 2 . 

l 0 l ~ 3 

(263e) 



RANDOM DISCRETE IMPERFECTIONS 1113 

From (236a) and (261) the expected value of the average loss due 
to each spurious mode is again 

,,2 
- x 

<A> = - N 
2 ' 

(264) 

as in (2:)7) for offsets or tilts. However, thc statistics of the Ak's, as 
given in (26:), differ from those of (2:)6) for tilts and offsets. Because 
<AI> is no longer equal to zero, the expected value of the TEO! loss will 
have a fundamental periodic component, in addition to a dc componcnt. 
Consequently it is convenient to rewrite the first relation of (261) as 
follows: 

A = A + <AI> cos ~{3lo + (jA'. (265) 

Thus, 
N-I 

(jA' = (AI - <AI» cos ~{3lo + L Akcos k~{3lo . (266) 
k=2 

<AI> is given in (263b). A is the average loss as before, <AI> cos ~{3lo 
is a slowly varying sinusoidal component of loss whose period equals 
the fundamental period of the TEO! loss (see (240», and (jA' includes 
the remaining random loss variations. The (discrete) power spectrum 
Pk' of (jA' is given by 

, t ( <A /> - <A 1 >2); k = 1. 
Pk = 

t<Ak2> ; 2 ~ k ~ N - 1. 
(267) 

From (263d) the different Fourier components of (jA' are now uncorre
lated only if their indices differ by three or more. This does not affect 
the calculation of the total power of (jA', which remains simply the 
sum of P k '. 

-- N-l ,,4 J 2Aa1o [ 1 N2AalO] '2 , X e -e 
< ((jA ) > = L P k = -4'\ 3 1 2A 1 N - 1 2A 1 k=1 \ - e a 0 - e a 0 

_ e2Aalo [1 _ e(N-1)2AalO] + (N - 1) e2AalO}. 

1 - e2Aalo 2 

Again for small or large differential loss, (268) simplifies: 
1. Small differential loss over total length LN = Nlo . 

,,4 

(268) 

«(jA')2> = ~ (3N - l)(N - 1); -N2~alo «1. (269) 
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2. Large differential loss over total length L N , small differential 
loss over pipe length lo . 

«8A')2) = ~ 3N . 
8j -/lalo' 

-N2/lalo » 1 

- 2/lalo « 1 
(270) 

<..4> and «8A')2) have the same general functional form as for tilts 
and offsets. The "3-db bandwidth" of P/ is approximately the same 
as given in (243 )-(244) for tilts and offsets. 

The statistics of the total TEol loss due to mode conversion are now 
given by summing over the TEom + spurious modes. 

<..4> = L <A[m]> 
[m] 

«8A')2> = L «8A[m]')2). 
[m] 

(271) 

(272) 

The individual terms in (271) and (272) are given by (264) and (268) 
(or (269) and (270) in special cases). In addition, each spurious mode 
will contribute a single sinusoidal component to the TEol loss, of magni
tude given by the middle term of (265). From Section 3.2.2 and (264), 

- 2 ~ 2 <A> = <€ >N L...J Cd[m] 
[m] 

where <l> is the mean square variation of pipe radius. 

(273) 

In discussing the effects of the TElm + modes in the first two parts of 
this section, it was assumed that the line contained ideal mode filters 
at a close enough spacing so that the differential loss in each section 
could be neglected. However, a practical mode filter in 2-inch guide 
presently consists of a section of helix guide, which has a low loss for 
the TEom spurious modes (although it effectively suppresses all other 
spurious modes). In the present case it is therefore assumed that there 
will be no mode filters in the entire length of line between repeaters. 
Thus, the total differential loss will be large, and the approximate result 
of (270) yields 

2 2N C 4 
«8A')2> = 3 <€ > I: dIm] ; 

2lo [m] - /la[m] 

- N2/la[m]lO » 1, 

- 2/lalo « 1. 
(274) 

Substituting numerical values for the coupling coefficients and the 
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.1a's, for a frequency of 55 kmc and a I-inch guide radius, (273) and 
(274) become: 

<i1> = <i> N (2.424 + 0.771 + 0.394 + 0.244 + ... ) 
= <i> N( 4.414); <e2> in inch2

• 

2 2N 
«oA')2> = 3 <;Z: X 104(7.197 + 0.274 + 0.037 + 0.008 + ... ) 

2 2N 
<e ~ (11.28 X 104

) 

V «OA')2> = <i> If, (335.9) ; 
10 in feet. 

- N2.1a[m]Zu » 1, 

(275) 

(276) 

In these results the summation has been extended over all of the propa
gating TEum + spurious modes, TEo2+-TEo9+' The most important modes 
are the first few TEom+; for «OA')2> only TEo/ and TEo3+ are significant. 

Finally, the sinusoidal component of the TEol loss contributed by the 
TEom + spurious mode is, from (265) and (263b), 

<AI[m]>cOS .1/3[m]lO = -<i>(N - l)Cd[m]2COS .1/3[m]lO ; 
(277) 

3.4 TEol Loss Statistics of a Long Guide with Ideal 111 ode Filters 

Consider a long guide made up of lVI sections of imperfect guide of 
equal length and the same statistical parameters, separated by ideal 
mode filters. We must evaluate the over-all transmission statistics of 
the guide in terms of the transmission statistics of each section, given 
in Section 3.3. The transmission parameters of such a guide with ideal 
mode filters are given in (146). Since for the present we are concerned 
with only the over-all TEol loss A, we have 

M 

A = L: k A . (278) 
k=l 

kA is the total TEo I loss, due to all spurious modes, of the kth section of 
guide. From (220) we write 

kA = kA + okA. (279) 

Further, for the loss of the entire guide (with mode filters) 
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A = A + oA (280) 

where 

(281) 

We assume that each section of guide between mode filters is statisti
cally independent of all other sections. Then from (281) 

M 

<A> = L <kA> = 1I1<kA>, (282) 
k=l 

M 

L «OkA )2> 111 < ( 0 kA ) 2> , (283) 
k=l 

where 111 is the number of sections of guide separated by ideal mode 
filters. 

Finally, from (278) and the central limit theorcm,37 if 111 is large the 
over-all loss A, regarded as a function of free-space wavelength X, will 
be a Gaussian random process; this random process in general will not 
be stationary, although over the relatively narrow bands of interest it 
may often be assumed stationary. 

3.5 Numerical Examples 

In the present section several numerical examples arc presented to 
provide concrete illustrations of the above results. A 20-mile total guide 
length, made of 2-inch I.D. pipes 10 feet long, with equally spaced ideal 
mode filters, is considered in all cases; the operating frequency is taken 
to be 55 kmc. It is assumed that the mode filters have infinite loss for 
the TElm + and TMll + spurious modes, zero loss for the TEO! signal 
mod~ and the TEom + spurious modes. The results for tilts and offsets 
apply to copper guide; the results for diameter variations apply equally 
well to either copper or helix. 

3.5.1 Offsets 

Assume an rms offset such that the additional average loss due to 
mode conversion to the forward TElm modes is 1 db/mile (compared 
to the theoretical TEol heat loss at 55 kmc of 1.54 db/mile). Two case~ 
are considered (see Table II): (1) mode filter spacing such that the 
rms loss variation for the 20-mile line is 1 db, and (2) a 200-foot mode 
filter spacing. The formulas for zero differential loss are used for sim
plicity, since the differential loss for TE12 +, the most important spurious 
mode, will remain small. 
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TABLE II 

Case 1 Case 2 

A verage loss 
RMS total loss fluctuation for 20-mile line 
RMS offset 
Mode filter spacing 
,6.!3J.b for TE12+ 

1 db/mile 
1 db 

7.87 mils 
1160 feet 
209 mc 

1 db/mile 
0.407 db 
7.87 mils 
200 feet 
1211 mc 

3.5.2 'Pilts 

Assume an rms tilt such that the additional average loss due to mode 
conversion to the forward TElm modes is again 1 db/mile. The addi
tional average loss due to conversion to TlVIll+ is stated separately 
because the present model is unrealistic as far as TlVlu + is concerned, 
for reasons stated in Section 3.3.2. Two cases are again considered (see 
Table III): (1) mode filter spacing such that the rms loss variation for 
the 20-mile line is 1 db, and (2) a 200-foot mode filter spacing. The 
formulas for zero differential loss are again used for simplicity. 

TABLE III 

Average loss TE 1m + modes 
Average loss TM ll+ 
RMS total loss fluctuation for 20-mile line 
IlMS tilt 
Equivalent crack on one side of joint 
Mode filter spacing 
,6.fs db for TE12+ 

Case 1 

1 db/mile 
0.262 db/mile 
1 db 
0.114° 
3.96 mils 
890 feet 
272 mc 

Case 2 

1 db/mile 
0.262 db/mile 
0.465 db 
0.114° 
3.96 mils 
200 feet 
1211 mc 

The TEO! average loss due to TMll + conversion will depend only on 
the net angle between the input and output of a waveguide section 
between mode filters for a mode filter spacing short compared to 3195 
feet, the TMll + beat wavelength in copper guide. As discussed in Sec
tion 3.3.2, this angle (Table IV) will depend principally on long bows 
in the pipes and on the way in which the guide is laid. 

TABLE IV 

Mode filter spacing ................... 200 feet 1000 feet 

I 

1 db/ 1 db/ 0.1 db/ 0.1 db/ 
Average loss, TMu+ ................... mile mile mile mile 

RMS net angle between input and out-
put of waveguide sections .......... 1.00° 0.316° 2.23° 0.706° 
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3.5.3 Diameter Changes 

For diameter variations there are no mode filters for the spurious 
TEom + modes. Therefore, the mechanical tolerance required to yield an 
rms loss fluctuation < (oA' )2) of 1 db for the 20-mile line is determined 
(see Table V); the additional average loss will now be very small. 

TABLE V 

A verage loss 
< (oA ')2> : RMS total loss fluctuation for 20-mile line 
RMS diameter variation 
t1j3db for TE o2+ 

0.214 db/mile 
1 db 

6.50 mils 
11.3 me 

Sinusoidal Components of TEol Loss for 20-Mile Line 

Mode 

TE o2+ 
TEo3+ 
TEo4+ 
TEo5+ 

3.6 II elix Guide 

Peak-to-Peak Amplitude 

4.690 db 
1.492 db 
0.762 db 
0.472 db 

Period 

4791 me 
1832 me 
974 me 
600 me 

While the above results for diameter changes apply to both copper 
and helix guide, the results for tilts and offsets apply only to copper 
guide. Equivalent results for helix would require the coupling coeffi
cients for the normal modes of the helix at tilts and offsets. However, a 
very simple argument shows that A, the average loss, will be identical 
in a helix and a copper guide which have identical tilts or offsets; A(ll) , 

the TM ll+ component of the TEal loss, must now be included in the 
copper pipe average loss in the case of tilts, as shown below. In addition, 
the spurious modes have such a high loss in helix that the TEO! loss 
fluctuations will be very small. 

From (235), (218) and Section 2.2 we see that A is simply the sum 
of the TEO! signal losses at each individual discrete mode converter 
(tilt or offset), where by signal loss we mean -In sao, where sao is the 
TEal transfer coefficient of the discrete tilt or offset. From Section 2.1.4 
Soo is identical in copper and helix guide with equal tilts or offsets. 

Therefore the above results for the expected value of the average 
TEO! loss for tilts and offsets hold equally well for helix waveguide. The 
TEol loss fluctuations in helix will be very small for these cases. 
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3.7 Conclusions 

Experimental copper waveguides have been built whose tolerances 
are far better than those of the numerical examples in Section 3.5. 
Since the average loss and the rms loss variation are proportional to the 
square of the rms tolerance, it is clear that tilts and offsets at joints 
and uniform diameter variations of the individual pipes will not con
tribute significantly to the observed TEol loss in these waveguides. 
Consequently the additional TEol loss observed in present experimental 
waveguides must be due principally to continuous mode conversion, 
and in particular to continuous random deviations from straightness 
of the individual copper pipes themselves.8 The continuous case will be 
trea ted in Section IV. 

The added TEol average loss due to TlVIll + conversion in copper wave
guide (unmodified by a dielectric lining or anything else) is a function 
only of the net angle between the input and output of each waveguide 
section between mode filters, for a reasonable mode filter spacing. The 
tolerance on this angle must be held to a few tenths of a degree to keep 
this loss component down to 0.1 db/mile. 

The present analysis has been restricted to equally spaced mode 
converters, i.e., individual pipes of the same length. If the pipe lengths 
are allowed to become random, instead of starting from (71d) we must 
start with (71a) and (71b). The TEolloss due to a single spurious mode 
will still have a discrete power spectrum, but the discrete components 
will no longer be equally spaced, and consequently the TEol loss will 
no longer be periodic. The frequencies as well as the amplitudes of the 
discrete components must now be treated as random variables. Aside 
from these minor differences, the analysis should be similar and lead 
to similar results. 

We refer again to the treatment of Appendix F, where more exact 
expressions for the TEol loss statistics in the discrete case are derived 
without neglecting the frequency (or ~) dependence of the coupling 
coefficients and the differential attenuation constants, as in the above 
treatment. It is found that these approximations are valid for our 
present purposes. 

Finally we note that by means of the Kronecker product, it is possible 
to compute certain of the TEol transmission statistics exactly-i.e., 
without using perturbation theory-for the case of statistically inde
pendent discrete mode converters. 38 This treatment requires that the 
individual conversion coefficients be known exactly; unfortunately only 
in the idealized two-mode case is the exact form of the coupling coeffi-
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cients known. Such calculations may be used to check certain of the 
above approximate results in the two-mode case. 

IV. THEORY OF GUIDES WITH RANDOM CONTINUOUS IMPERFECTIONS 

This section applies the results of Section II to the study of multimode 
waveguides with random continuous mode conversion. Continuous 
mode conversion arises from gradual eontinuous changes in the geometric 
properties of the· guide, such as curvature of the guide axis, variation 
of the guide diameter, or changes in the cross section of the guide such 
as ellipticity, etc., as opposed to the discrete case, studied in Section III. 
The statistics of the TEal loss-frequency curve are determined in terms 
of the statistics of the different guide imperfections. In particular, the 
average TEO! loss and the rms value and the power spectrum of the 
TEal loss variations are calculated. 

The most important practical application of these results to date has 
been to study the effects of random straightness deviations of the guide 
axis. Here we consider only small unintentional straightness deviations, 
either arising in the manufacturing process of the individual pipes 
themselves or resulting from the way in which the guide is laid. We 
exclude from consideration the case of large intentional bends (to go 
around corners), which couple TEO! to the degenerate forward TMll 
mode. The spurious modes of interest here are thus the TElm family, 
with the forward TEll and TEl2 the most important. The present analysis 
indicates that very small random straightness deviations in a certain 
spectral region (i.e., having mechanical wavelengths lying in a certain 
range), having an rms value of a fraction of a mil, arc primarily responsi
ble for the observed departure of the TEal transmission from its theoreti
cal value in present copper guide,S,39 causing an increased average loss 
and random fluctuations about this average. In addition, the analysis 
indicates that random straightness deviations will be equally important 
in helix or dielectric coated waveguide in increasing the average TEal 
loss; however, the high spurious mode loss in helix will effectively re
move the TEal loss fluctuations.s,39 

While random straightness deviations are the most important manu
facturing tolerance at present, the same methods are easily applied to 
study the effects of other tolerances of the guide. The present section 
will also eonsider random diameter changes, which produce the TEam 
modes, random ellipticity, which gives rise to the TE2m modes, and 
higher-order deformations of the cross section, which produce TEnm 
modes of higher angular index. 

In order to specify the statistics of the guide, we assume that each 
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type of imperfection (e.g., deviation of the guide axis from straightness, 
diameter variation, ellipticity, etc.), regarded as a function of distance 
z along the guide axis, is a stationary Gaussian random process of known 
spectrum. The various continuous coupling coefficients are of course 
proportional to the geometric imperfections, and thus are also Gaussian 
random processes. 

The analysis of the continnous case is greatly simplified if the differ
entialloss between the TEol signal mode and the various spurious modes 
may be neglected over the lengths of interest. This approximation will 
be made throughout the present section. As discussed above, a practical 
system using copper guide will contain regularly spaced mode filters 
that have a high loss for all spurious modes except the TEom family. 
The mode filter spacing will be sufficiently small so that the differential 
losses may be neglected for all important spurious modes except the 
TEom family. 

For the TEom spurious modes the effective line length will be the total 
distance between repeaters; obviously the total differential loss is no 
longer negligible. However, the results for zero differential loss will be 
stated for this case to get at least a rough upper bound on the importance 
of diameter variations, for both copper and helix guide. 

4.1 TEO! Loss-Summary of Previous Results 

We give in the present section the normalized TEol loss (in nepers) 
A, for the case in which the total differential loss (for each section of 
guide between mode filters) may be neglected, so that we may set Aa = o. 
From (206) the total normalized TEol loss A is given by a sum of terms 
due to the individual first-order spurious modes; 

(284) 

The Am are given by (285) to (288) below. These results are obtained 
from Section 2.3.7. We again omit subscripts denoting the spurious 
mode where no confusion will arise. 

A ~! 1 11 2
, (285a) 

. (A{3L ) 
00 SIn 7r -- - n 

I = L L: Cn ( -1 t 27r . 
n-~ ,,(~:"L _ n) (285b) 

The Cn are the Fourier coefficients of the continuous coupling coefficient 
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c(z), defined by 
<Xl 

c(z) = L: 
n=-<Xl 

j27rnz/L 
Cn e 

At the nth sample point, defined by 

we have 

jj.(3L 
-=n 
27r 

or 

len) = Lcn ( -lr, 
L2 

A (n) ~ "2 1 Cn 12 . 

(286) 

(287) 

(288a) 

(288b) 

The coupling coefficient c(z) is given in terms of the various geometric 
parameters in Section 2.3. 

As in the discrete case (Section 3.1), the principal frequency de
pendence in these results occurs through the ~f3's, which far from cutoff 
are approximately proportional to the free-space wavelength A. Over 
the moderate fractional bandwidths of interest, any frequency depend
ence of the coupling coefficients will be slow and may be neglected. 
From the discussion of Section 2.3.7, any frequency dependence of the 
coupling coefficient may be taken into account in (285) by calculating 
Cn at the frequency corresponding to the nth sample point, rather than 
at the operating frequency. 

We regard the loss A as a function of the free-space wavelength A, 
and write A as follows; 

A = <A> + oA. (289) 

We determine the expected value of the loss <A>, and the power spec
trum of oA and its total power or mean square value «OA)2>, in terms 
of the power spectrum of the random coupling coefficient c(z) (and 
consequently of the random geometric imperfection of the guide). 

4.2 Statistics of Fourier Coefficients of C(Z)37,40 

We assume that the geometric imperfection of the guide (e.g., devia
tion of the guide axis from straightness) is a stationary Gaussian random 
process with a known power spectrum. The continuous coupling coeffi
cient c(z) to the particular polarization of one of the spurious modes 
will be a similar random process, since the coupling coefficients are 



RANDOM CONTINUOUS IMPERFECTIONS 1123 

simply proportional to the corresponding geometric imperfection. There
fore c(z) is a stationary Gaussian random process with a power spectrum 
S(r). Thus, if R( T) is the covariance of c(z), 

R(T) = <c(z)c(z+ T», (290) 

then 

(291) 

Consider the Fourier series expansion of c(z) over the interval 
o < z < L, given in (165) and (286). 

00 

c(z) = L 
n=-OO 

j27rnz/L 
Cn e 

- +"b - I I jrpn Cn - an J n - Cn e 
(292) 

The cn's will be complex Gaussian random variables; i.e., an and bn , the 
real and imaginary parts of Cn , will be Gaussian random variables with 
zero mean. If L is sufficiently long, the an's and bn's become almost in
dependent, and hence the cn's become almost independent complex 
Gaussian random variables. Thus, the magnitude and phase of each Cn 

are independent and have a Rayleigh and a uniform distribution re
spectively. The mean square value of the nth Fourier coefficient <I Cn 12> 
is then simply related to th e power spectrum S ( r) of C ( z ) . We have 
approximately for large L: 

1 1
2 A 2 1 (n) < Cn > == Cn = L . S L . (293) 

(294) 

The quantity en defined in (293) is the rms magnitude of the nth Fourier 
coefficient. The various probability distributions for the real and imagi
nary parts or for the magnitude and phase of the Fourier coefficients may 
be written approximately as follows: 

1 
p( a,,) = . r A exp 

v 7rCn 

_(~n)2 ; 
Cn 

1 (b )2 p(bn ) = ---;;- exp - ;. V -rrCn Cn 

(295a) 

(295b) 
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p (I Cn !) = 2 I. C2n 1 exp _ (I ~n 1)2 . 
Cn Cn 

11 
P(C{)n) 27r' 0 < C{) < 27r. 

(296a) 

p (I Cn 1 ,C{)n) = p (I Cn I) p ( C{)n) • (296b) 

Since the different Fourier coefficients arc approximately independent, 

(297) 

Finally, the first few moments of the 1 Cn 1 are of interest. 

1 1 
yI;. 

< Cn > = 2 Cn; I 1
2 • 2 < Cn > = Cn ; 

The results of this section provide a good approximation for the prac
tical cases of interest in which L, the line length, is of the order of a few 
hundred feet and the power spectrum Sen varies slowly in the range of 
interest, which includes mechanical wavelengths from a few feet to a 
few inches, depending on the spurious mode. These results become exact 
if the coupling eoefficient c(z) has a white power spectrum (S(n = 

constant, or equivalently R( T) ex: o( T), the unit impulse). 

4.3 TEal Loss Statistics for a Single Section of lVaveguide between Mode 
Filters 

4.3.1 Single Spurious Mode, Single Polarization 

l'rom the relations of Section 4.2, I( ~~) , given in (285b), will be a 

complex band-limited Gaussian random process; the real and imaginary 
parts of I are independent Gaussian random processes with fiat power 
spectra over the range I v I < !.t33

,34 Since by (285a) A is proportional 
to the square of the magnitude of I and is thus proportional to the sum 
of the squares of the real and imaginary parts of I, the power spectrum 
of A may be determined from the well-known analysis for the response 
of a square law device to Gaussian noise.37

,4o The square of a Gaussian 
random process has, in addition to a dc component, a random component 
whose power spectrum is twice the convolution of the input power spec
trum with itself. Since the real and imaginary parts of I have fiat 
band-limited power spectra over the range' v, < !, the random com-

t v again indicates the independent variable of the Fourier transform of I, or 
some other quantity of interest, with respect to the normalized independent vari

!J.sL 
able 2; . See the footnote on p. 1084. 
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ponent of A ( "'t:) will thorof ore 1m ve " triangular power spectrum over 

the range ! v ! < l. 
We first separate the TEO! loss A as before [see (289)]. 

A = <A> + 8A, (299) 

where as usual we omit subscripts denoting the spurious mode. Then 
from the results of Section 4.1 and 4.2, the expected value of the TEol 
loss is given by 

= ~.S(~) 
2 L' 

(300) 

where from (174) 

A = 271" ~ 
n D L (301) 

is the free-space wavelength corresponding to the nth sample point and 
D is the constant relating the differential propagation constant ~f3 to 
the free-space wavelength A [see (173)). Substituting (287) and (301) 
into (::300), and using the result to interpolate between the sample points, 

<A(A» = ~.S(D A) = ~.S(~), 
2 271" 2 B 

(302) 

relating the expected value of the TEolloss due to a single spurious mode 
(single polarization) to the power spectrum of the coupling coefficient 
between TEol and the spurious mode. B is the beat wavelength between 
TEO! and the spurious mode. 

The (continuous) power spectrum of 8A in the region close to A is 
given by 

L2 (D ) P (v) = _. S2 - A (1 - ! v j) 
4 271" 

(303) 

! v I < 1. 

In deriving (303) we have tacitly assumed that S ( r), the power spec
trum of the coupling coefficient c(z), varies only slowly in the region of 
interest, so that I and A are approximately stationary over moderate 
bandwidths; however, this is not a serious restriction. Equation (303) 
may be obtained either from the known results on the square of a 
Gaussian noise37

•
4o or directly from Sections 4.1 and 4.2. The total power, 

or the expected value of the mean square value, of 811 may be found by 
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integrating the power spectrum P(v). From (303) 

< oA > = -·S - A = -·S -( ) 2 L2 2(D) L2 2(1) 
4 271" 4 B' 

(304a) 

vi «OA)2> = ~.S(D A) = ~ .s(~) = <A> 
2 271" 2 B ' 

(304b) 

for a single polarization of a single spurious mode. Alternately, the re
sults of (304) may be obtained directly (at the sample points) from 
(288b), (293) and (298); it is apparent that (302) and (304) hold for 
quite general power spectra S (r) . 

The power spectrum P(v) of oA is triangular; from (303) the 3-db 
bandwidth is 

V3db = !. (305) 

The interval in free-space wavelength or frequency corresponding to 
the 3-db bandwidth of oA is thus 

D.f3db ,-....; D.Aa db _ 2B 
-f-'-"";-A- - L' (306) 

and is thus simply twice the sample point spacing (for J), given in 
(178). [Compare (306) with (244) and (243a).J 

Finally, we consider the probability distribution for A, considering 
for the present only a single polarization of a single spurious mode. As 
discussed at the beginning of the present section, A is the sum of the 
squares of two independent Gaussian random variables. Alternately, A 
may be regarded as the square of a Rayleigh-distributed random vari
able. Consequently, for a single polarization of a single spurious mode, 
A has an exponential probability density. 

1 A 
peA) = <A> exp - <A>' (307) 

where the average loss <A> is given in (302). We recall that this result 
(and all others of the present section) is based on the assumption of zero 
differential loss, D.a = o. Equation (307) holds equally well for the cor
responding discrete case of Section III. 

4.3.2 Single Spurious lJ£ ode, Two Polarizations 

The above results are easily extended to two polarizations of the 
spurious mode. We assume that the two orthogonal components of the 
geometric imperfection giving rise to mode conversion are independent 
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Gaussian random processes with the same statistics. For example, con
sider random straightness deviations, which couple TEol to the TElm 
family but principally to the forward TEl2 and TEll. The position of 
the guide axis is specified by x(z) and y(z), the coordinates of the guide 
axis in the transverse plane as functions of distance along the axis z. 
We will assume that x (z) and y (z) are independell t Ga ussiall random 
processes with identical power spectra. 

The coupling coefficients C[m]i1 (z) and C[m].!.(z) between TEol and the 
two polarizations of the mth spurious mode will also be independent 
Gaussian random processes, since the coupling coefficients are propor
tional to the corresponding geometric imperfections. Thus, for straight
ness deviations we have from Section 2.4 for small deviations 

C[m]i1(Z) = Ct[m]'Xl/(Z), C[m].!.(Z) = Ct[m]'yl/(Z), (308) 

where the symbols II and ..1 distinguish the two polarizations of the 
spurious mode, rather than x and y as in Section II. Since x(z) and y(z) 
are independent Gaussian random processes, x" (z ) and y" (z ) and 
consequently C[m]i1 (z) and C[m].!.(z) will also be independent Gaussian 
random processes. 

The TEol loss A[m] for both polarizations of the mth spurious mode is 
given by 

(309) 

where A [m]i1 and A [m].!. are independent random processes with statistics 
given by the results of Section 4.3.1. Writing 

A[m] = <A[m]> + BA[m] , 

we have for the expected value of the TEOl loss 

<A[m]> = <A[m]l1> + <A [m].!.>' 

(310) 

(311) 

Since BA [m]1I and BA [m] \ the two ac loss components, are independent, 
their power spectra and total powers add. Denoting the (continuous) 
power spectra of BA[m] , BA[m]1I and BA[m].!. by p[m](V), P[m]II(V), and 
P[m].!.( v) respectively, we have 

p[m](V) = P[m]i1(V) + P[m].!.(V), 

« BA [m] )2> = < (BA [m]i1 )2> + « BA [m].!.)2>. 

(312) 

(313) 

Since both polarizations are assumed to have identical statistics, we 
have from Section 4.3.1: 

<A[mJ(A» = L.S[mJ(~~l A) = L.S['"{B~J. (314) 
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(315) 

I p I < 1. 

(316a) 

In these and all subsequent results S[m] (n is the power spectrum of 
each of the orthogonal components of the coupling coefficient. 

The power spectrum p[m] (p) of course remains triangular, and the 
3-db bandwidth and the corresponding interval in free-space wave
length or frequency remains as given in (305) and (306) for a single 
polarization of the spurious mode. These latter quantities are the same 
as those for the corresponding discrete case, given in (243a) and (244). 

Finally, since A[m]1I and A [m]..!. are independent random variables with 
the same probability distribution [see (307)], the probability distribu
tion for A [m] is simply the convolution of (307) with itself. 

( ) 4A[m] 2A[m] 
p A[m] = -A 2 exp --A--· 

< [m]> < [m]> 
(317) 

This result holds true for discrete tilts and offsets for zero differential 
loss. 

4.3.3 AI any Spurious AIodes 

For many spurious modes, the total TEOlloss A is given as a sum over 
loss components A [m] due to the different spurious modes. From (284) 

A = LA[m]. 
[m] 

(318) 

Writing the total TEol loss as before, 

A = <A> + BA. (319) 

Then we have 

<A> = L <A[m]>, (320a) 
[m] 

BA = L BA[m] . (320b) 
[m] 

The average TEol loss is simply the sum of the contributions of each of 
the spurious modes. 
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From (320b) we have for the variance of the total TEol loss 

«OA)2) = LL <oAlm]oA ln ]>. 
[m] [n] 

1129 

(321) 

The terms «OA[m])2) are given by (316a) or (304a). It would be most 
convenient if the different ac components oA 1m] were independent, so 
that the cross terms <oA [m]oA In]) could be ~eglected. 

For the spurious modes produced by a geometric imperfection of a 
given angular symmetry (e.g., the TElm , produced by straightness 
deviations) the different oA 1m] are not independent. The TEol loss com
ponent due to the mth spurious mode at one frequency is proportional to 
the TEol loss component due to the nth spurious mode at a widely sep
arated frequency, as in the discrete case (Appendix F). Thus, knowledge 
of one of the oA Ir~] over a sufficiently wide frequency band is sufficient to 
determine all of the others. However, at the same frequency oA [m] and 
oA In] are almost uncorrelated, so that the cross terms in (321) may be 
neglected. 

oA 1m] and oA In] are easily seen" to be almost independent in a simple 
way. Consider a frequency which corresponds to a sample point of the 
mth spurious mode. Under special conditions this frequency may also 
correspond to a different sample point of the nth spurious mode (in gen
eral, this will not be so). From (288b), A I m] will depend on only a single 
Fourier coefficient (say the kth) of the geometric imperfection. Similarly, 
A In] will depend on only a single Fourier coefficient, but on a different 
one (say the lth), since different spurious modes have different beat 
wavelengths. Since the different Fourier coefficients of the geometric 
imperfection are almost independent, oA [m] and oA In] will thus also be 
almost independent at this frequency. Since in general the sample points 
corresponding to different spurious modes do not precisely coincide, the 
correlation coefficient between oA lm] and oA[n] at a single frequency will 
not be identically zero, but should be small. 

The correlation coefficient between the ac components of the TEol loss 
due to two different spurious modes generated by the same type of 
geometric imperfection is derived in Appendix G for the special case in 
which the geometric imperfection and hence the coupling coefficients 
have white power spectra. Numerical results are given for the important 
practical case of TEl2 + and TEn + generated by random straightness 
deviations, in which the second derivatives of the rectangular co-ordi
nates of the guide axis are independent Gaussian random processes with 
white spectra. The normalized correlation coefficient for reasonable guide 
lengths is very small indeed. 

The cross terms in (321) will consequently make only a negligible 
con tribu tion to the variance of the total TEol loss. Therefore, < ( oA ) 2) is 
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given simply by the sum of the contributions of the individual spurious 
modes; 

«OA)2) = L "«OA[m])2), 
[mJ 

(322) 

where the «OA[m])2) are given by (316a) (or by (304a) for a spurious 
mode with a single polarization, e.g., TEam). 

4.3.4 Discussion 

The TEOI loss in a given frequency band, resulting from a given spur
ious mode, depends only on the Fourier components of the corresponding 
geometric imperfection for a narrow range of mechanical wavelengths. 
This band of mechanical wavelengths corresponds to the range of beat 
wavelengths between TEal and the spurious mode over the frequency 
band of interest. The statistics of the TEO! loss are strongly dependent 
on the power spectrum of the geometric imperfection. 

The present results are strictly valid only for zero differential loss, 
.6a = 0, although they will remain approximately true so long as the 
differential loss over the length of guide remains small, I .6a I L « 1. 
However, further study shows that moderate values of differential loss 
.6a will change the average TEal loss very little, but will smooth out the 
fluctuations of the TEal loss, for the present case in which the coupling 
coefficient power spectrum is essentially flat in the range of interest.4l 

The following sections will present specific numerical examples for 
the various types of geometric imperfections. 

4.4 TEOI Loss Statistics for Random Straightness Deviations 

4.4.1 Introduction 

In the present section we apply the results of Section 4.3 to the case 
of random deviations from straightness of the guide axis. In Section 4.5 
other types of continuous geometric imperfections are similarly treated. 
There are two reasons for treating straightness deviations separately: 

1. Straightness deviations introduced by the manufacturing process 
are almost entirely responsible for the additional TEO! loss of present 
2-inch I.D. copper guide. 

2. Experimental TEal transmission measurements have provided a 
fair idea of the shape of the power spectrum of straightness deviations 
for different types of guide, at least over a limited range. This power 
spectrum differs in some respects from the power spectra that might be 
assumed for other types of geometric imperfections, in that under certain 



HANDOM CONTINUOUS IMPERFECTIONS 1131 

conditions it contains an infinite low-frequency (i.e., long mechanical 
wavelength) content; some additional discussion of this particular case 
seems appropriate. 

We must first specify the statistical properties of the coupling coeffi
cient; since the coupling coefficient c(z) is assumed to be a stationary 
Gaussian random process, its statistics are completely determined by 
its power spectrum sen. The continuous case is inherently more com
plicated to discuss than the discrete case of Section III. For the discrete 
case only the rms offset, tilt, or diameter change must be specified. In 
the continuous case, however, the TEol loss statistics are no longer de
termined only by the mean square value of straightness deviation or 
other geometric imperfection; the shape of the power spectrum of the 
mechanical imperfection strongly influences the resulting TEol loss. We 
must therefore know the power spectrum of the imperfection before we 
can predict the TEol loss statistics of a guide. Conversely, knowledge of 
the TEO! loss statistics enables us to estimate the power spectrum of the 
imperfections. Up to now there have been no existing mechanical meth
ods for measuring the straightness deviation to the required accuracy so 
that its covariance and power spectrum can be determined;t TEol trans
mission measurements have provided the only means of determining 
the significant Fourier components of the straightness deviation. 

Present experimental measurements of the TEol loss over a band ex
tending from 33 kmc to 90 kmc, made by A. P. King and G. D. :NIande
ville, indicate that for one type of 2-inch LD. copper guide, the radius 
of curvature of the straightness deviation has an approximately flat 
power spectrum over the range of interest.39 Thus, if x(z) and y(z) are 
the rectangular components of straightness deviation with power spectra 
X(r) and Y(r), we havet 

X(r) = Y(r) ex f4 (323) 

for mechanical wavelengths lying in the beat wavelength range for TEn 
and TEl2 (the most important spurious modes), 1.4 to 4.4 feet for the 
35-90 kmc band. 

The power spectrum of (323) for x(z) and y(z), which corresponds to 
a white power spectrum for the radius of curvature of the guide axis or 

t Methods of making these mechanical measurements are currently under de
velopment by K. J. Dahms, W. G. Nutt, and R. B. Ramsey and their associates 
at Bell Telephone Laboratories. 

t r is the "mechanical frequency," having the dimension len~th; the corre-

sponding mechanical wavelength is ~. [See for example (291).] 
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equivalently for the second derivatives x" (z) and y" (z), appears plaus
ible under certain conditions, considering one way in which the guide 
has been made. If we imagine a guide made by drawing a copper pipe 
with more or less random hardness or wall thickness variations through 
a die, it is not hard to see that the radius of curvature of the guide axis 
might be a random process with a very short correlation distance, or 
equivalently with a very wide power spectrum. The power spectrum for 
x"(z) and y"(z) must, of course, fall off for sufficiently high mechanical 
frequencies (or sufficiently short mechanical wavelengths). 

The coupling coefficients and hence x" (z) and y" (z), the second de
rivatives of the displacement of the guide axis, have been assumed to be 
stationary random processes. The displacements themselves, x(z) and 
y (z ), will not in general be stationary random processes, unless the power 
spectrum of x"(z) and y"(z) (and the corresponding coupling coeffi
cients) has special properties. However, this situation seems to be in 
accord with the physical facts. As a simple example we may consider a 
guide made of pipes with random uniform bows, screwed together at 
random; we might further assume that the first pipe of the guide starts 
out with zero displacement and zero slope, x(O) = yeO) = x'(O) = 

y'(O) = O. Then it is obvious that while the second derivatives x"(z) 
and y"(z) and hence the coupling coefficients are stationary random 
processes, the displacements x(z) and y(z) are not. The variances of the 
displacements, <x2(z» and <y2(Z», grow with distance z; the guide tends 
to wander more and more from the axis as z increases, unless additional 
mechanical constraints are imposed in laying the guide. 

Since our knowledge of the power spectrum XU;) is limited, any ex
ample chosen to illustrate the order of magnitude of ~traightness toler
ance that will have a significant effect on the TEO! transmission must be 
arbitrary to a considerable extent. For the present numerical example 
we assume that X(n and yet) are as given by (323). For this power 
spectrum the displacement of the guide axis x(z) or y(z) is not a sta
tionary random process, and the integral of (323) or the "total power" 
is infinite. However, the principal spurious modes are TE12 + and TEll +, 

with beat wavelengths of about 2.2 and 2.7 feet at a frequency of 55 
kmc. In order to get a rough measure of the short-wavelength straight
ness deviations that are responsible for the additional TEO! loss, we shall 
quite arbitrarily calculate a "total" mean square straightness deviation 
<X2(Z» + <y\z» by including only those components having mechanical 
wavelengths less than 5 feet, t > t;. While this is a rather arbitrary choice, 
it makes some physical sense. The significant components for TEn + and 
TE12 + lie between 1.4 and 4.4 feet for a band from 35-90 kmc. The 
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long-wavelength components (greater than 5 feet) do not affect the 
TEo! transmission in this band; in any case, these long-wavelength com
ponents will depend strongly on the random errors made in laying the 
guide, and perhaps very little on the straightness deviations introduced 
by the manufacturing process. The mean square value of the components 
of wavelength less than [) feet will give us a rough idea of the order of 
magnitude of the tolerance on the short-wavelength "manufacturing" 
straightness deviations. 

For the numerical example presented below we assume a 20-mile total 
guide length of 2-inch I.D. copper guide with equally spaced mode filters, 
spaced either 200 or 1000 feet apart. These mode filters are assumed to 
have zero loss to the TEo! signal mode, infinite loss to the spurious TE!m + 
modes. TMn + is neglected, since it has been adequately treated in Sec
tion III. The differential loss is neglected even though it is not small in 
the distance between mode filters for all spurious modes, particularly for 
the 1000-foot mode filter spacing. The differential loss will not greatly 
affect the average TEo! loss, but will reduce the TEo! loss fluctuations 
below the values computed for zero differential loss. The treatment of a 
long line with ideal mode filters is given in Section 3.4. 

The x and y components of the straightness deviation of the guide 
axis are assumed to have power spectra given in (323), discussed above. 
The magnitude of these power spectra is chosen to yield an additional 
average TEo! loss (due to all the propagating TE!m + spurious modes) of 
1 db per mile, at a frequency of 55 kme. The total rms straightness devia
tion for components having wavelengths less than 5 feet is stated, for 
reasons discussed above. In addition, the rms straightness deviation for 
components having wavelengths between 2 and 3 feet, corresponding to 
the TE!2 + and TEn + beat wavelengths for the 50-60 kmc band, is also 
given. The contributions of each of the spurious modes to the average 
TEo! loss and to the TEo! loss fluctuations are stated separately. 

4.4.2 Analysis 

Let Xes) and yes) be the power spectra of the rectangular com
ponents of the straightness deviation of the guide axis, x(z) and y(z). 
Then 

X(s) L: <x(z )x(z + r) > e-j2Jrrr dr 

L: <y(z)y(z + r» e-j2Jrrr dr. 

(324) 

yes) 



1134 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

We will always assume identical spectra for x(z) and y(z), i.e., 

X(t") = Y(t"). (325) 

Then the power spectra of x" (z) and y" (z), the second derivatives of 
the x and y components of the displacement of the guide axis, are given 
by 

(27rt" )4X (5-) = i: <x" (z)x" (z + T) > c-j2rrrr dT 

(27rt")4 Y (t") = i: <y" (z)y" (z + T» e-j2rrrr dT. 

(326) 

Noting (308), the power spectra S[m](t") of the coupling coefficients 
C[m](Z) [see (290) and (291)] are given by 

S[m] Ii U) = Ct[mr (27rn 4XU), 
(327) 

S[m].l.(t") = Ct[m]2. (27rn 4Y(t") , 

for the parallel and perpendicular polarizations of the TE1m spurious 
mode respectively. 

Irar from cutoff Cl[m] is approximately inversely proportional to the 
free-space wavelength A. It is thus sometimes convenient to write Ct[m] 
as 

(328) 

where et[m] is now approximately independent of A. 
From (314) the average TEOl loss due to the TE1m spurious mode 

(with two polarizations) is 

<A[m[(X» ~ Let[,,/ D[m[4X2.X(~~1 X). (329) 

The constant D[m] , defined in (173), is related to the beat wavelength 
B[m] by 

D[m] A = _1_ = {3o - {3[m] (330) 
27r B[m] 27r· 

In (329), X(n is the power spectrum of each of the rectangular com
ponents of straightness deviation [see (325)]; the only frequency- (or 
wavelength-) dependent terms are the factors A2 and the mechanical 

power spectrum x( ~~1 X) . The rms fluctuation of the TEol loss com

ponent due to TE1m about its average is given by (316b); 

(331) 
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As discussed above, for the present example we assume that over the 
range of interest ( mechanical wavelengths less th an 5 feet) X (n, the 
power spectrum for each component of the straightness deviation, has 
the shape given by (323). Therefore we take 

(332) 

where Xo is a scaling parameter determining the magnitude of the 
straightness deviation. Then the average loss of (329) becomes 

() L8t[m]2 Xo _ LC 2X <A[m] A > = A2 - t[m] O. (333) 

The loss fluctuation of course remains as given by (331). 
The total TEol average loss <A> and mean square loss fluctuations 

«OA)2> are given by (320a) and (322) respectively, summing over the 
contributions of all the propagating TElm + spurious modes. We have 

<A> = LXo L Ct[mt 
[m] 

«OA)2> = tL2X02 LCt[mt 
[rn] 

(334) 

(335) 

Substituting numerical values from Appendix A and summing over the 
9 propagating TElm+ modes, for a frequency of 55 kmc and a I-inch 
guide radius (334) and (335) become 

<A> = 111.24 LXo 

«OA)2> = 3721.64 L2X02. 

(336) 

(337) 

From (333) and (334) the average TEol loss <A> is inversely propor
tional to A2

, or directly proportional to l. This is approximately in agree
ment with the experimental results of A. P. King and G. D. l\1andeville 
for one type of copper guide39 and provides the reason for the particular 
choice of power spectrum for the straightness deviation that has been 
made here. 

Finally, the rms straightness deviation in a given range is obtained by 
integrating the straightness deviation power spectrum over the appropri
ate range. For the x-component alone, we have for the mean square 
straightness deviation for mechanical frequencies lying between Sa and 

Sb , or equivalently mechanical wavelengths ~ lying between ~ and ~ 
S Sa Sb 

(338) 
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where we recall that the straightness deviation power spectrum XeS) has 
been defined for both positive and negative mechanical frequencies. 
Substituting the particular power spectrum given in (332), 

<x2) = 2Xo (~_~) (339) 
3(271")4 ta3 tb3 ' 

From (325) and the fact that x and yare independent, we have for the 
total mean square straightness deviation in this range 

2 2 Xo (1 1) <x ) + <y ) = -- - - - . 
1271"4 t} tb3 (340) 

4.4.3 Numerical Example 

We assume an added average TEol loss in 2-inch I.D. guide due to 
mode conversion of 1 db per mile at 55 kmc. From Section 3.4 and (336), 
we determine Xo . 

Xo = 111.24 X 8.~859 X 5280 = 1.960 X 10-
7 
ft-I. (341) 

We will specify the rms straightness deviation (including both the x and 
y components of the displacement of the guide axis) for components 
having wavelengths less than five feet, as discussed above. From (340), 

vi <x2) + <y2) = 1.737 mils ; ~ < 5 feet. 
t 

(342) 

For purposes of illustration we shall emphasize the 50-60 kmc band. 
In this band the beat wavelength range for TE12 + and TEll +, the most 
important spurious modes, is 2-3 feet. Since these components of 
straightness deviation are the principal contributors to the TEol loss in 
the 50-60 kmc band, it is of interest to give the rms straightness devia
tion lying in the 2-3 foot region. Again from (340), 

vi <X2) + <y2) = 0.677 mils; 2 feet < f < 3 feet. (343) 

Table VI presents the transmission behavior of a 20-mile, 2-inch I.D. 
guide for two mode filter spacings, 200 feet and about 1000 feet, calcu
lated from the present results and those of Section 3.4. In addition to the 
total average loss and rms loss fluctuation, the contributions of the 
individual spurious modes are given. The average loss is of course the 
same for both cases; the rms total loss fluctuation is reduced for the 
shorter mode filter spacing. 



Case 
1 

Case 
2 

Spurious 
Mode 

TE ll+ 
TE 12+ 
TE 13+ 
TE 14+ 
TE15+ 
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TABLE VI - TEol Loss STATISTICS FOR STRAIGHTNESS 

DEVIATION WITH A FLAT CURVATURE POWER SPECTRUM 

Ltotal = 20 miles, total guide length. 

8.6859 <ALtotal> = 1 db/mile, additional average loss at 55 kmc. 
total 

f = 55 kmc, midband frequency. 
a = 1 inch, guide radius. 

L = 200 feet, mode filter spacing. 
M = 528, number of mode filters. 

8.6859V«oA tota l)2) = 0.4773 db, rms total loss fluctuation for 20-mile 
line. 

L = 996.23 feet, mode filter spacing. 
M = 106, number of mode filters. 

8.685DV«oA tota l)2) = l.0652 db, rms total loss fluctuation for 20-mile 
line. 

Case 1 Case 2 

RMS t.jadb: 3-db t.jadb: 3-db 
Beat Wave- Straightness Added RMS Total Bandwidth of RMS Total Bandwidth of 

length Range Loss Fluctua- Power Loss Fluctu- Power 
for 50-60 Kmc Deviation in Average tion for 20 Spectrum of ation for 20 Spectrum of 

Band Beat Wave- Loss Mile Line Loss Fluctu- Mile Line Loss Fluctu-length Range ation ation 
-

feet mils db/ db mc db me mile 

2.453-2.D4D 0.513 0.264D 0.1630 1486 0.3638 2D8 
l. 997-2 .408 0.381 0.7290 0.4486 1212 1.0012 243 
0.464-0.562 0.043 0.0055 0.0034 282 0.0076 57 
0.215-0.263 0.014 0.0005 0.0003 131 0.0007 26 
0.123-0.152 0.006 0.0001 0.0001 76 0.0001 15 

4.4.4 Discussion 

The above results show that for the assumed mechanical power spec
trum, the principal contributors to both the additional average loss and 
to the loss fluctuations arise from the TE12 + and the TEn + spurious 
modes, as has been observed experimentally. As discussed above, the 
average loss measured over a very wide frequency band by A. P. King 
and G. D. Mandeville39 provides the primary experimental data on the 
power spectrum of the straightness deviations. 

For some guides both the experimental transmission data and con
sideration of the manufacturing process indicate that the power spectrum 
of the second derivative of the straightness deviation should be more or 
less flat up to some high mechanical frequency (short wavelength). As 
discussed above, this leads to a power spectrum for the straightness 
deviation itself with infinite power, so that the displacement of the guide 



1138 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1902 

axis from a perfect straight line will not be a stationary random process 
However, in practice additional forces are imposed in laying the guide, 
so that the straightness deviation must become stationary. In order for 
this to be so, the power spectrum for x"(z) and y"(z) and for the cor
responding coupling coefficients must now fall to zero as r approaches 0, 
at least as fast as t4. However, it seems reasonable to assume that the 
modification in the coupling coefficient power spectrum will take place 
only for very small values of r (long wavelengths). In the important 
spectral region corresponding to the TEll + and TE12 + beat wavelengths, 

1 
for f less than a few feet, the power spectrum should be modified very 

little; therefore, very little change will take place in the TEOl transmis
sion statistics. 

Since only components of the straightness deviation having wave
lengths between about 1.4 and 4.4 feet will significantly affect the TEol 
loss (in a band from about 35-90 kmc), it is clear that random straight
ness deviations arising in the laying of the guide, or manufacturing im
perfections such as long bows, will have very little effect on the TEol 
transmission, because such straightness deviations will have their prin
cipal components at much longer wavelengths (e.g., perhaps greater 
than ten feet). One model that is readily analyzed is the "random bow 
line," made of pipes of identical length with uniform bows, screwed to
gether at random. The x and y components of the coupling coefficient 
are simply random square waves, whose power spectrum is well known. 
The allowable tolerance is several orders of magnitude more lenient than 
the tolerance on short wavelength straightness deviations. 

Finally, it is possible that quite different types of power spectra than 
those discussed here could arise for different manufacturing processes. 
For example, a process that resulted in a periodic straightness deviation 
in the beat wavelength range would result in a rather broadly peaked 
band-pass power spectrum for the coupling coefficient. Such things are 
of course to be avoided. In practice, different manufacturing processes 
have produced quite different straightness deviation power spectra. 

4.5 TEol Loss Statistics for Random Diameter Variations, Ellipticity, and 
Higher-Order Deformations 

4.5.1 I ntroduclion 

In the present section we apply the results of Section 4.:3 to random 
diameter variations, ellipticity, and higher-order deformations of the 
cross-section of the guide, using Morgan's coupling coefficients Z[nm] • 
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Random straightness deviations may of course also be treated in this 
way, but are omitted since they have been discussed in Section 4.4. 

vVe take the same model for the guide as in Section 4.4, i.e., a 20-mile 
total guide length of 2-inch I.D. copper with equally spaced mode filters, 
spaced either 200 feet or about 1000 feet apart. The mode filters are as
sumed to have zero loss for the TEol signal mode, zero loss for the TEom 
spuriolls modes, and infinite loss for all other TEnm spurious modes. 
The differential loss is assumed small in the distance between mode filters 
for all spurious modes; in addition, for the TEom spurious modes the 
present analysis forces us to assume that the differential loss is negligible 
for the total guide length, 20 miles in the present example. 

The present analysis should provide a reasonable approximation for 
ellipticity and for higher-order deformations. The differential loss in these 
cases will not affect significantly the average TEol loss, but will reduce 
the TEol loss fluctuations somewhat below the values computed for zero 
differential loss in those cases where the differential loss is not completely 
negligible in the distance between mode filters. 

However, for diameter variations the TEom differential loss is certainly 
not negligible in 20 miles, as required by the analysis. vVhile this ap
proximation will not lead to an appreciable error for the average TEol 
loss, it will certainly lead to serious error for the mean square TEOl loss 
fluctuation, which is the really significant quantity, and for b.f 3db. The 
actual TEol loss fluctuations will be much smaller than those computed 
here. 

The power spectrum for straightness deviations is known, at least ap
proximately, over a moderately wide range from TEol transmission 
measurements, as discussed in Section 4.4. A very elementary considera
tion of the manufacturing process suggests the same shape for this 
power spectrum as is actually observed in certain cases. Unfortunately, 
for other types of deformation neither of these approaches has suggested 
the proper form for the power spectrum. Spurious modes, other than 
TEl!! + and TEn +, have not been observed at high enough levels to permit 
an estimate of the power spectrum of the corresponding mechanical im
perfection to be made. As yet, no simple picture of the manufacturing 
processes has yielded a guess as to the shape of the power spectra. About 
all that can be said is that the power spectra must eventually fall off 
in some manner for high enough mechanical frequencies r (short enough 
mechanical wavelengths), since the mean square values of the various 
cross-sectional tolerances are certainly bounded. 

Since the power spectra of the various deformations are not known, 
the numerical examples presented below are less specific than the example 
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for straightness deviation in Section 4.4. For example, ellipticity gener
ates the TE2m + spurious modes. For each of these spurious modes the 
rms ellipticity in the mechanical wavelength range corresponding to the 
beat wavelength for the 50-60 kmc band is chosen to yield an additional 
average TEol loss of 1 db per mile, assuming a flat power spectrum in 
this range. The same is done for trifoil and higher-order deformations. 

Diameter variations are treated separately, partly because these rc
FiUltS cannot be taken too seriously, as discussed above, and partly be
cause the equations are somewhat different for this case. Here for each 
of the spurious TEom + modes we choose the rms diameter variation in 
the mechanical wavelength range corresponding to the beat wavelength 
for the 50-60 kmc band to yield a I-db rms loss fluctuation for the TEol 
loss component due to the spurious mode, for the entire 20-mile line. 

4.5.2 Random Diameter Variations 

From (179) to (181) the radius of the guide is given by 

r = a + ao(z). 

From (207) the coupling coefficient is given by 

C[Om] (z) = - Z[Om]aO(z). 

Let [(oCr) be the power spectrum of ao(z), i.e., 

/(oCr) = L: <ao(z)ao(z + T» e-j27rrr dT. 

(344) 

(345) 

(346) 

Then the power spectrum S [am] (r) of the coupling coefficient c[Om] C z) is 

(347) 

Remembering that the spurious mode now has only a single polariza
tion, we have from (302) and (304b) 

A - / ) L,...., 2 T7" (D[om] '\) < [am]> = V «BA[Om] 2> = '2 A[Om] ·.ao --z;;:- /\ , (348) 

where the constant D[Om] is related to the beat wavelength B[Om] by 

D[Om] A = _1_ = {JOl - {Jam (349) 
27r B [am] 27r' 

The coupling coefficient Z[Om] is approximately proportional to the free
space wavelength A. 

Finally, the mean square radius variation in the range of mechanical 

frequencies ra to rb (or the range of mechanical wavelengths! from J.. r ra 
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1). . b to - IS given y 
tb 

(350) 

again integrating over positive and negative frequencies. Assuming that 
the power spectrum is flat over the range of integration, 

](0 (t) = ](0, r a < I t I < t b , (351) 

(350) becomes 

(352) 

These formulas are used to calculate the results in Table VII. 

The present analysis could alternately have been carried out in terms 
of the coupling coefficients Cd[m] , as discussed in Section 2.3.9. 

TABLE VII - RADIUS VARIATION YIELDING 1 DB RJVIS TEal Loss 
FLUCTUATIO~ AND 1 DB AVEHAGE TEal Loss FOR THE Loss COM

PONENT A [am] DUE '1'0 EACH OF THE TEam + SPURIOUS JVIODES, AT 

55 KM.C 

Ltotal = 20 miles, total guide length. 
8.6859Y--:-<7(o---=A-[o-m---C1):-:-2:--> = 1 db, rms loss Huctuation for each component, for 20-mile 

line. 
8.6850 <11 [Om 1> = 1 db, additional average loss for each component, for 

20-mile line. 
f = 55 kmc, midband frequency. 
a = 1 inch, guide radius. 

Differential loss assumed small over total guide length of 20 miles. 

Spurious Beat Wavelength RMS Radius Varia- Ko : Spectral Density of ,lhdb: 3-db Bandwidth of 
Mode Range for 50-60 tion in Beat Wave- Radius Variation Power Spectrum of Loss 

Kmc Band length Range Fluctuation 

feet mils mils2/foot-1 mc 

TE o2+ 0.7886-0.9532 0.087 1.7291 X 10-2 0.907 
TEo3+ 0.3003-0.3654 0.097 0.7942 X 10-2 0.347 
TEo4+ 0.1588-0.1953 0.102 o .4397 X 10-2 0.185 
TEo5+ 0.0964-0.1206 0.105 o .2671 X 10-2 0.113 
TEo6+ 0.0627-0.0805 0.109 0.1691 X 10-2 0.075 
TEo7+ 0.0418-0.0563 0.115 0.1064 X 10-2 0.051 
TEos+ 0.0259-0.0402 0.129 o .0609 X 10-2 0.035 

4.5.3 Randorn n-foils 

vVe now consider random cross-sectional deformations of higher order. 
For an "n-foil" the radius of the guide is given by (179) to (181) as 

(353) 
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The n = 0 case corresponds to diameter variations, studied in Section 
4.5.2. The n = 1 case corresponds to straightness deviations, studied in 
Section 4.4; the quantities al(z) and b1(z) are eqnal to x(z) and y(z), 
the rectangular components of straightness deviation. The n = 2 case 
corresponds to ellipticity, the n = 3 case has been designated as "tri
foil," etc. All formulas in the present section hold only for n ~ 1; the 
n = 0 case has been treated in the preceding section. 

The magnitude of the n-foil distortion at a given position z along the 
axis is specified by the maximum departure from a perfect guide, r = a. 
From (353) we have for an n-foil 

(354) 

For diameter variations this definition yields the change in guide radius; 
for straightness deviations it yields the total displacement (in the x-y 
plane) of the guide axis. For ellipticity and higher-order deformations, 
(354) yields the maximum deviation from a perfect circle r = a. Note 
that for n = 2 this is only one-quarter as large as a commonly accepted 
definition of ellipticity, the maximum diameter minus the minimum 
diameter. 

The coupling coefficients for the two polarizations of each of the 
spurious modes are given from (207) by 

C[nm]" (z) 

c[nm].J.(z) 

(355) 

(35()) 

Let Kn(r) be the power spectrum of each of the two components an(z) 
and bn(z)~ i.e., 

(357) 

Then S(nm] (r), the power spectrum of each of the two eomponents of 
the coupling coefficient, is given by 

(358) 

Using the results of (314) and (316b) for two polarizations, we have 

<A[nm) = V2«0A[nm)') = L.S[nm{D~:m) )..), (359) 

where 

D(nm] A = _1_ = {301 - {3nm. 

27r B (nm] 27r 
(360) 
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The coupling coefficients E[nm] are approximately proportional to the 
free-space wavelength A. 

Finally, the mean square n-foil magnitude (defined as the maximum 
departure from perfect circularity at a given cross section) in the range 

of mechanical frequencies la to lb (or the range of mechanical wave-

lengths ~ from ~ to ~) is given from (354) by 
t ta tb 

<I r - a I!'ax> = <an
2 (z» + <bn

2(z» 

= 2 [fa + tJ Kn(l) dl. 
(361) 

Assuming that the power spectrum is flat in the range of integration, 
Kn(t) = K n , 

(362) 

These formulas are used to calculate the results in Tables Vln through 
XII for values of n ranging from 2 to 6. The case of straightness devia
tions, n = 1, is omitted; the same results as those of Section 4.4 would 
of course be obtained. 

4.5.4 Discussion 

Neither TEOl transmission measurements nor mechanical measure
ments have thus far yielded information on the shape of the power 
spectra for diameter variations, ellipticity, and higher-order cross-sec
tional deformations. This is true principally because these effects are 
very small in present guides. We are thus unable to predict what the 
relative contributions of the various spurious modes to the average 
TEo! loss and to the TEo! loss fluctuation might be. 

In the numerical examples presented in this section, the spectral 
density of the geometric imperfection has been chosen in such a way 
that for each type of imperfection the contributions of each of the spuri
ous modes are equal. Plots of the logarithm of the spectral density Kn 
vs the logarithm of the mechanical frequency t show that in each case 

Kn(t) falls off approximately as ~. Thus, if the spectral density of the 
t 

imperfection is flat, the higher modes will become progressively more 
important as the second mode index increases. This is quite different 
from the observed behavior for straightness deviations, discussed in 
Section 4.4, where only TE12 + and TEll + have an appreciable effect on 
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TABLE VIII (n = 2) - ELLIPTICITY YIELDING 1 DB/MILE ADDI

TIONAL AVERAGE TEol Loss FOR THE Loss COMPONENT A[2m] DUE 

TO EACH OF THE TE2m + SPUlUOUS MODES, AT 5,1) KMC 

Case 
1 

---

Case 
2 

Spurious 
Mode 

---

TE 21+ 
TE 22+ 
TE 23+ 
TE 24+ 
TE 25+ 
TE 26+ 
TE 27+ 
TE 28+ 

Ltotal = 20 miles, total guide length. 

8. 6859<A fmltotal) = 1 db/mile, additional average loss for each 
total component. 

f = 55 kmc, midband frequency. 
a = 1 inch, guide radius. 

L = 200 feet, mode filter spacing. 
Ai = 528, number of mode filters. 

8.6859V«oA [2m]total)2) = 0.6155 db, rms total loss fluctuation for each 
component, for 20-mile line. 

L = 996.23 feet, mode filter spacing. 
Ai = 106, number of mode filters. 

8.6859V«oA [2mltotal)2) = 1.3736 db, rms total loss fluctuation for each 
component, for 20-mile line. 

Case 1 Case 2 

Beat Wavelength RMS Ellipticity K2 
Spectral Range for 50-60 in Beat Wave- Density of Il!adb: 3-db Band- Il!adb: 3-db Bandwidth Kmc Band length Range Ellipticity width of Power of Power Spectrum of Spectrum of Loss 

Fluctuation Loss Fluctuation 

feet mils mils2/foot-1 mc me 

5.1623-6.2110 0.3737 1.0676 3128 628 
0.9006-1 .0880 0.5142 0.3457 547 110 
0.3154-0.3836 0.5992 0.1592 192 39 
0.1631-0.2005 0.6349 0.0882 100 20 
0.0982-0.1226 0.6603 0.0536 61 12 
0.0636-0.0815 0.6861 0.0340 40 8 
0.0423-0.0569 0.7216 0.0214 27 5.5 
0.0263-0.0405 0.8103 0.0123 19 3.8 

the TEolloss; there, however, the straightness deviation power spectrum 

falls off very rapidly, as ~. 
In any practical case the power spectrum ](n(r) of the geometric 

deformation must eventually fall off as r increases (for n ~ 1). If the 
derivative of the imperfection exists (which seems a reasonable require-

1 
ment), ](n(r) must eventually fall off faster than f2 as r becomes large; 

of course the real question is how large r must be for this behavior to 
dominate. The higher spurious modes have very short beat wavelengths 
- in the range of an inch or less; if the power spectrum ]( n (r) has begun 
to fall off appreciably at such wavelengths, the contribution of the higher
order spurious modes will be small. 
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TABLE IX (n = 3) - TRI-FOIL YIELDING 1 DB/MILE ADDITIONAL 

AVERAGE TEol Loss FOR THE Loss COMPONENT A [3m] DUE TO 

EACH OF THE TE3m + Spumous lVloDES, AT 55 KMC 

Case 
1 

Case 
2 

Spurious 
Mode 

---

TE31+ 
TE32+ 
TE33+ 
TE34+ 
TE35+ 
TE36+ 
T E 37+ 

Ltotal = 20 miles, total guide length. 

8.6859<.t1rmltotal) <= 1 db/mile, additional average loss for each 
total component. 

f = 55 kmc, midband frequency. 
a = 1 inch, guide radius. 

L = 200 feet, mode filter spacing. 
M = 528, number of mode filters. 

8. 6859V«oA [3mltotal)2) = 0.6155 db, rms total loss fluctuation for each 
component, for 20-mile line. 

L = 996.23 feet, mode filter spacing. 
M = 106, number of mode filters. 

8.6859V«oA [3mltotal)2) = 1.3736 db, rms total loss fluctuation for each 
component, for 20-mile line. 

Case 1 Case 2 

Beat Wavelength RMS Tri-Foil K3 
Spectral Range for 50-60 in Beat Wave- Density of A/adb: 3-db Band- A/adb: 3-db Band-

Kmc Band length Range Tri-Foil width of Power width of Power 
Spectrum of Loss Spectrum of Loss 

Fluctuation Fluctuation 

feet mils mils2/foot-1 me me 

9.2836-11.1800 0.1876 0.4817 5628 1130 
0.5464-0.6617 0.5364 0.2257 332 67 
0.2315-0.2827 0.6045 0.1168 141 28 
0.1285-0.1590 0.6389 0.0684 79 16 
0.0801-0.1011 0.6661 0.0428 50 10 
0.0526-0.0687 0.6964 0.0272 34 6.7 
0.0346-0.0485 0.7449 0.0167 23 4.6 

For ellipticity and higher-order deformations, the additional average 
loss in db per mile and the total loss fluctuation for a 20-mile guide are 
roughly comparable, for reasonable mode filter spacings. Thus if the 
additional average loss is small, as it is in present guides, the loss fluctua
tion will also be small. 

For diameter variations, the total additional average loss for a 20-mile 
guide is roughly comparable with the total loss fluctuation. Here the 
total loss fluctuation can remain serious even though the additional av
erage loss in db per mile remains small, as it does in present guides. 

The results for diameter variations given here are pessimistic, since 
the differential loss to the TEom + spurious modes is neglected over the 
total guide length of 20 miles in the present analysis. The loss fluctua
tions in practice will be much smaller than those given here. The results 
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TABLE X (n = 4) - 4-FOIL YIELDING 1 DB/MILE ADDITIONAL 
AVERAGE TEol Loss FOR THE Loss COMPONENT A[4m] DUE TO 

EACH OF THE TE4m+ SPURIOUS MODES, AT 55 KMC 

Ltotal = 20 miles, total guide length. 

8.6859 <A£mltotaI) = 1 db/mile, additional average loss for each 
total component. 

Case 

f = 55 kmc, midband frequency. 
a = 1 inch, guide radius. 

L = 200 feet, mode filter spacing. 
M = 528, number of mode filters. 

1 8.6859V«oA [4mltotal)2) = 0.6155 db, rms total loss fluctuation for each 
component, for 20-mile line. 

L = 996.23 feet, mode filter spacing. 
Case M = 106, number of mode filters. 

2 8. 6859V< (oA [4mltotal)2) = 1.3736 db, rms total loss fluctuation for each 

Beat Wavelength purious 
Mode Range for 50-60 

I 
kmc Band 

s 

1 
T 
T 
T 
T 
T 
T 

I r,,, 
'E41+ 2.0190-2.4344 
E 42+ I 0.3757-0.4562 
E43 + 0.1782-0.2186 
E44+ 0.1039-0.1295 
E45+ 0.0663-0.0847 
E 46+ 0.0438-0.0586 
E47+ 0.0275-0.0416 

RMS 4-Foil in 
Beat Wave-

length Range 

mils 

0.2991 
0.5433 
0.6059 
0.6414 
0.6719 
0.7091 
0.7890 

component, for 20-mile line. 

Case 1 Case 2 
K4 

Spectral 
Density of Illadb: 3-db Band- 1l!3db: 3-db Band-

4-Foil width of Power Spec- width of Power Spec-
trum of Loss Fluctu- trum of loss Fluctua-

ation tion 

mils2/foot-I mc mc 

0.2647 1225 246 
0.1571 229 46 
0.0885 109 22 
0.0540 64 13 
0.0344 42 8.4 
0.0218 28 5.7 
0.0127 19 3.9 

for other cross-sectional deformations are of course valid, since the differ
entialloss will be small in the short distance between mode filters. 

4.6 Conclusions 

The TEol loss of a long waveguide has been treated as a random proc
ess, and its statistics determined in terms of the statistics of the geo
metric imperfections. A statistical analysis is necessary because it would 
be impractical to make mechanical measurements of the complete geom
etry of any great length of guide, even if this were possible. 

The numerical results show that rms tolerances of the order of 1 mil 
are required, for any of the various types of imperfections, to yield an 
additional average TEol loss of the order of 1 db per mile. The rms di-
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TABLE XI (n = 5) - 5-FOIL YIELDING 1 DB/MILE ADDITIONAL 
AVERAGE TEol Loss FOR THE Loss COMPONENT A [5ml DUE TO 

EACH OF THE TE5m + SPURIOUS lVIoDES, AT 55 KMC 

Cn,se 
1 

Cn,se 
2 

Spurious 
Mode 

---

TEol+ 
TE 52+ 

TE53+ 

TE54+ 
TE55+ 
TE56+ 

Ltotal = 20 miles, totn,l guide length. 

68 <A [om ]total) 1 db/'l dd" 1 8. 5f) L = ml e, n, ItlOnn, n,vemge loss for en,eh 
total componen t. 

f = 55 kmc, midbn,nd frequency. 
a = 1 inch, guide rn,dius. 

L = 200 feet, mode filter spn,cing. 
M = 528, number of mode filters. 

8.685f)Y«oA [om]total)2) = 0.6155 db, rms totn,lloss fiuctun,tion for en,ch 
component, for 20-mile line. 

L = 996.23 feet, mode filter spn,cing. 
M = 106, number of mode filters. 

8. 685f)y< (oA [om]total)2) = 1.3736 db, rms totn,lloss fiuctun,tionforen,ch 
component, for 20-mile line. 

Case 1 Case 2 

Beat Wavelength RMS 5-Foil in K5 
Spectral Range for 50-60 Beat Wave- Density of ~!adb: 3-db Band- ~fadb: 3-db Band-

kmc Band length Range 5-Foil width of Power Spec- width of Power Spec-
trum of Loss trum of Loss 
Fluctuation Fluctuation 

feet mils mils2/foot-1 mc me 

1.0317-1.2458 0.3297 0.1632 626 126 
0.2771-0.3375 0.543f) 0.1144 16f) 34 
0.1417-0.1748 0.6057 0.0687 87 17 
0.0855-0.1076 0.6436 0.0432 53 11 
0.0554-0.0719 0.6787 0.0277 35 7.1 
0.0363-0.0503 0.7269 0.0172 24 4.8 

ameter variation of present copper waveguide is of the order of 0.1 mil. 
Consequently the diameter, ellipticity, tri-foil, and higher-order defor
mations must have comparable or smaller tolerances, so that they should 
have a negligible effect on present TEol transmission measurements. 
Experimental observations support this conclusion. The only spurious 
modes ever observed in measurements on relatively short (i.e., a few 
hundred feet in length) waveguides are TE12 + and TEll +, arising from 
straightness deviations. TEam +, TE2m +, TE3m+, and higher TEnm + modes 
have never been observed with significant magnitudes.8 

Straightness deviation is the one tolerance about which in the past 
we have had no information at all, via mechanical measurements; it is 
the only significant tolerance in present measurements. Random straight
ness deviations are believed to account for substantially all of the addi-
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TABLE XII (n = 6) - 6-FOIL YIELDING 1 DB/MILE ADDITIONAL 
AVERAGE TED! Loss FOR THE Loss COMPONENT A[6m] DUE TO 

EACH OF THE TE 6m+ SPURIOUS MODES, AT 55 KMC 

Ltotal = 20 miles, total guide length. 

8.6859 <A £mltotal) = 1 db/mile, additional average loss for each 
total component. 

f = 55 kmc, midband frequency. 
a = 1 inch, guide radius. 

I 
L = 200 feet, mode filter spacing. 

Case M = 528, number of mode filters. 
1 8 6859V«oA [6 It t 1)2) = 0 6155 db rms total loss fluctuation for each m o a 

compo~ent, for 20-mile line. 

Case 
2 

Spurious 
Mode 

L = 996.23 feet, mode filter spacing. 
M = 106, number of mode filters. 

8.6859V«oA [6mltotnl)2) = 1.3736 db, rms total loss fluctuation for each 
component, for 20-mile line. 

Case 1 Case 2 

Beat Wavelength RMS 6-FoiI Ks 
Spectral Range for 50-60 in Beat Wave- Density of .1h,II,: 3-db Band- .1hdb: 3-db Band-

kmc Band length Range 6-Foil width of Power Spec- width of Power Spec-
trum of Loss trum of Loss 
Fluctuation Fluctuation 

feet mils mils2/foot-1 mc mc 

0.6532-0.7902 0.3394 0.1085 397 80 
0.2138-0.2614 0.5418 0.0861 131 26 
0.1154-0.1433 0.6047 0.0543 71 14 
0.0714-0.0907 0.6461 0.0349 45 9 
0.0465-0.0617 0.6873 0.0223 30 6 
0.0295-0.0434 0.7582 0.0133 20 4.1 

tionalloss observed in present copper waveguides, and to account for a 
substantial part of the additional loss in helix as well. 

Diameter variations in both copper and helix guide give rise to the 
TEom spurious modes, which cannot be satisfactorily attenuated by ex
isting structures. It may not be sufficient to have a good enough diam
eter tolerance to yield a small additional average TED! loss, since the 
TED! loss fluctuations may still remain objectionable. The diameter 
tolerance must thus be substantially better than the tolerance for ellip
ticity, tri-foil, etc., in copper guide. However, the present results for 
diameter variations are too pessimistic, since the differential loss over 
the entire length of guide was neglected. 

Tolerances on diameter, ellipticity, tri-foil, etc. for drawn copper 
guide are tolerances at a single cross section, and are controlled pri
marily by the accuracy of the die through which the guide is drawn. A 
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good straightness tolerance requires accurate alignment between differ
ent cross sections separated by substantial distances (equal to the beat 
wavelength of TE12 +, TE1/). This depends on many factors other than 
the dimensional accuracy of the dies; for example, random variations in 
hardness or wall thickness may cause the axis of the guide to curve as 
it is being drawn. Consequently, a good straightness tolerance is more 
difficult to attain than any of the other cross-sectional tolerances, in 
drawing copper guide. Numerous other manufacturing processes for 
copper guide are currently under study.42 

The variation of the TEol loss statistics with mode filter spacing is 
illustrated in the examples given above. The average loss is unaffected 
by the mode filter spacing, but the rms loss fluctuation is inversely pro
portional to the square root of the number of mode filters. As discussed 
in Section 3.4, the total TEO! loss will be approximately a Gaussian 
random process. 

While the present analysis applies only to copper waveguide with the 
differential loss neglected, further study41 shows that adding loss to the 
spurious mode has an effect similar to that of increasing the number of 
mode fIlters; for moderate values, as Aa increases the average loss changes 
very little, while the loss fluctuation will be progressively reduced. Thus, 
accurate tolerances will be important in helix (or in copper guide with 
a lossy dielectric lining) as well as copper guide, although in helix the 
principal effect of poor tolerances will be an increased average loss, the 
loss fluctuations remaining small (diameter variations excluded). 

Finally, the shape of the power spectra of the different mechanical 
imperfections is all-important in determining the resulting TEol loss due 
to mode conversion. Only components of the mechanical imperfection 
in the beat wavelength range of the important spurious modes have any 
effect on the TEO! transmission. The short-wavelength straightness devi
ations "built in" to the guide in the manufacturing process will be prin
cipally responsible for additional loss due to mode conversion to modes 
such as TE12 + and TEn + in copper guide; long bows or random straight
ness deviations due to imperfect laying of the guide will have only a 
very small effect. 
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APPENDIX A 

Coupling Coefficients for Tilts, Offsets, and Diameter Changes15 , 16 

General formulas for the coupling coefficients from TEol to the first
order spurious modes at offsets, tilts, and diameter changes, as deter
mined by S. P. lVlorgan, are given in Table XIII. Num,erical values are 
tabulated at 55 kmc for 2-inch diameter guide in Tables XIV, XV and 
XVI; the computations here and in Appendix D were performed by Mrs~ 
C. L. Beattie. 

N olation 

Co[m]± - coupling coefficient between TEOl and forward (+) or back
ward ( - ) TElm for an offset in copper guide. 

C t[m]± - coupling coefficient between TEol and forward (+) or back
ward ( - ) TElm for a tilt in copper guide. 

Ct (l1)+ - coupling coefficient between TEol and forward TMn for a tilt 
in copper guide. 

Cd[m]± - coupling coefficient between TEol and forward (+) or back-
ward ( - ) TEom for a diameter change in copper or helix guide. 

a - guide radius. 
A - free-space wavelength. 
,knm - Bessel root given by In'(knm ) = o. 
Vnm = k

2
nmA, cutoff factor for the TEnm mode. 
'Ira 

2'1r _ / 
{3nm = ~ v 1 - Vnm2 , propagation constant for the TEnm mode, 
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TABLE XIII 

Coupling Coefficient Spurious 
Mode 

C ± __ 1_ kOlklm2 ~Ol ± ~lm 
o[m] - Y2 a (klm

2 - kOl2) Yklm2-1 Y{1ol8lm 
TElm 

C ± _ a kOlklm2 (~Ol ± elm)2 
TElm t[m] - Y- ~~ol{1lm 2 (k012 - k lm

2)2 yklm2"";'1 

y27ra 
Ct(ll)+ = --

kOlA 
TMll 

C ± 1 kOlkom ~Om ± ~Ol 
m~1. TEom d[m] = a k Om

2 - kOl2 Y8ol~om 

TABLE XIV - COUPLING COEFFICIENTS FOR OFFSET 

(f = 55 kmc; a = 1 inch): 

Spurious Mode Co[m]+ Co[m]-

inch-1 inch-1 

TEll -1.052295 0.0035023 
TE12 2.140300 0.0087996 
TE13 0.800615 0.0143221 
TE14 0.520766 0.0204174 
TE15 0.392376 0.0274958 
TE16 0.317601 0.0362493 
TE17 0.269338 0.0480943 
TE18 0.238323 0.0668142 
TE19 0.230068 0.1105813 

TABLE XV - COUPLING COEFFICIENTS FOR TILT 

(f = 55 kmc; a = 1 inch) 

Spurious Mode Ct[m]+ Ct[m] 
-

radian-1 radian-1 

TEll 5.428116 0.000060129 
TE12 9.004674 0.000152211 
TE13 0.784756 0.000251132 
TE14 0.237781 0.000365504 
TE15 0.103215 0.000506837 
TE16 0.0534059 0.000695704 
TE17 0.0306226 0.000976413 
TE18 0.0187490 0.00147362 
TE19 0.0121822 0.00282165 

Ct(ll)+ Ct(ll) 
-

radian-1 radian-1 

TMll 5.403 O. 

Equation 

(A-I) 

(A-2) 

(A-3) 

(A-4) 
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TABLE XVI - COUPLING COEFFICENTS FOR DIAMETER CHANGE 

(J = 55 kmc; a = 1 inch) 

Spurious Mode 

TEo2 
TEo3 
TEo4 
TEo5 
TEo6 
TEo7 
TEo8 
TEo9 

APPENDIX B 

Geometry of Discrete Tilts 

1.556796 
0.878135 
0.627935 
0.493929 
0.410428 
0.355528 
0.324255 
0.425098 

-0.0162900 
-0.0244495 
-0.0336831 
-0.0447267 
-0.0589493 
-0.0795021 
-0.1168700 
-0.329569 

Let unit vectors directed along the guide axes in the two guide sec
tions adjacent to a discrete tilt be tl and t2 • Then 

tl = iXI + jYI + kZl ; 

t2 = iX2 + jYt t- kz2 ; 

1. 

1. 

(B-1) 

(B-2) 

i, j, and k are unit vectors along the x, y, and Z axes respectively. Since 
tl and t2 are unit vectors, 

X1
2 + Yl

2 + Zl2 = 1, 

x/ + Y2
2 + Z22 = 1. 

(B-3) 

(B-4) 

Let the tilt have angle a, orientation e as defined in Section 2.1.2; fur
ther let the corresponding angles of the projections of the guide axes 
on the x-z and y-z planes be ax and au, as in (38). Then by taking ap
propriate dot products we have: 

cos a = XIX2 + YIY2 + ZlZ2, 

XIX2 + ZlZ2 
cos ax = _ / 2 + 2 _ / 2 + 2' 

V Xl Zl V X2 Z2 

cos ay = _ / 2 + 2 _ / 2 + 2' 
V Yl Zl V Y2 Zz 

(B-5) 

(B-6) 

(B-7) 

where (B-3) and (B-4) of course hold true. If the angular deviation 
of the guide axis from the z-axis is small, we have 

Xl « 1, YI « 1, Y2 « 1. (B-8) 
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Under these conditions (B-5) to (B-7) yield to first order 

a ~ V (x:> - Xl)2 + (Y2 - Yl)2, 

where we have made use of (B-3) and (B-4). 

N ow define the unit vector p as follows: 

t2 - tl tz - tl 
P = I t2 - tl I = 2 sin (a/2) 

(B-9) 

(B-IO) 

(B-ll ) 

(B-12) 

p lies in the plane of the tilt, i.e., in the cp = e plane, and bisects the 
angle made by the guide axes on the two sides of the tilt. The vectors 
t = (tl + t2) /2 and p are the analogs for the discrete case of the tangent 
and principal normal vectors of differential geometry, introduced in 
Section 2.4, in the treatment of the continuous case. Denote the trans
verse component of p by Px,v ; then by (B-12), (B-l) and (B-2) 

1 
(B-13 ) 

N ow if the angular deviation of the guide axis from the z-axis is small 
(on both sides of the tilt), as assumed in (B-8), and if a unit vector 
perpendicular to the guide axis and lying in the cp = 0 plane is almost 
parallel to the x-axis, then the angle of Px,v with respect to the x-axis 
will be approximately equal to the orientation e of the tilt; under these 
conditions we have from (B-13) 

• Y2 - YI 
sm e ~ _ / . 

V (X2 - Xl)2 + (Y2 - yd 2 

From (B-9) to (B-l1), (B-14) and (B-15) we then have 

a cos e ~ ax, 

a sin () ~ a y , 

as stated in (38). 

(B-14) 

(B-15 ) 

(B-16 ) 

(B-17) 



APPENDICES 

APPENDIX C 

Energy Relations for Guides with Real Coupling Coefficients 

Consider the coupled line equations given in (85) 

10' ( z) = - r 010 (z) + jc ( z ) 11 (Z ) 

11'(z) = J·c(z)Io(z) l'tI1(z) 

ro = 0'0 + j{3o ; 

We assume in this appendix that c(z) is pure real; 

1m c(z) = o. 

1155 

(C-l) 

(C-2) 

(C-3) 

Consider first the case of ideal metallic guide, for which 0'0 = 0'1 = o· 
The total power P(z) flowing in the guide at the point z is simply 

P(z) = [ Io(z) 12 + [ 11(z) [2 = Io(z)Io*(z) + It(z)It*(z). (C-4) 

N ow in general, for guide whose walls are not perfect conductors, the 
a's will not be identically zero, and neither (C-3) nor (C-4) hold true. 
Helix waveguide furnishes an interesting example. Here the coupling 
coefficients are complex, so that (C-3) is not valid; further the powers 
in the various modes are not orthogonal, so that (C-4) is untrue. In this 
appendix we consider cases where a ~ 0 but where (C-3) holds true, 
so that c (z) is pure real. We define a quantity P (z) by (C-4); however 
only for ideal metallic guide, where the a'S are equal to zero, are we 
assured that P(z) really represents the total power. If the a's are not 
zero we have no reason to think that P (z) should be the total power; 
however the results given below render this plausible when c(z) is real. 

From (C-4) we write 

P'(z) = d~~Z) = Io(z)Io*'(z) + Io'(z)Io*(z) 
(C-5) 

+ I 1(z)I1*'(z) + I/(z)I1*(z). 

Substituting (C-l) into (C-5), making use of (C-2) and (C-3), we find 

P'(z) = -20'0 I Io(z) [2 - 20'1 [ I 1(z) 12. (C-6) 

If P(z) is the total power flowing along the guide, (C-6) has a simple 
physical interpretation. It says that each mode contributes to the de-
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crease in power along the guide in proportion to the product of its at
tenuation constant and the power it carries. Equation (C-6) may be 
extended to any number of modes via straightforward matrix techniques. 

Finally, consider the case where 

..1a == ao - al = o. 

From the transformation of (88)-(89), (C-4) becomes 

Similarly from (C-6), (C-7), and (C-4), we find 

P'(z) = -2aP(z), 

which has the solution 

(C-7) 

(C-8) 

(C-9) 

( C-10) 

Assuming as usual that the guide is excited by a unit TEOl wave so that 
the initial conditions of (87) apply, i.e., 

10(0) = 1, 

(C-I0) becomes 

P(z) -2az = e 

From (C-8) and (C-12) we have finally 

subject of course to the following conditions; 

Go(O) = 1, GI(O) = O. 

ao = aI, ..1a = ao - al = O. 

(C-11 ) 

(C-12) 

(C-13) 

(C-14) 

(C-15 ) 

A similar treatment may of course be given for the coupled line equa
tions of (93). 

APPENDIX D (See Section 2.3.8) 

Coupling Coefficients Z[nm] jor General Continuous Deformations, and Beat 
Wavelengths B[nm]+,jor Metallic Guide (Guide Diameter = 2 Inches) 
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Frequency = 50 Kmc Frequency = 55 Kmc Frequency = 60 Kme 

1t 11£ 
B[nmJ+ 

I 
B[nmJ+ 

I 
Z[nmJ B[nmJ+ 

I 
Z[nmJ Z[nmJ 

feet inch-2 feet inch-2 feet ineh-2 

0 
0·935818 0.855165 2 0.78861 1.033665 0.87104 0.95318 

3 0.30028 1.531489 0.33298 1.380849 0.36543 1.258058 
4 0.15879 2.072235 0.17717 1.855771 0.19531 1.682663 
5 0.09641 2.689180 0.10863 2.380811 0.12055 2.142344 
6 0.06272 3.452634 0.07182 2·992239 0.08053 2.658456 
7 0.04176 4.574033 0.04936 3.771644 0.05630 3.271486 
8 0.02590 7.815578 0.03405 4·986672 0.04021 4.077331 
9 CUT OFF 0.02066 10.765911 0.02842 5.422487 

1 1 -2.45264 0.224648 -2.70093 0.203996 -2.94898 0.186837 
2 1.99720 0·561114 2.20291 0.508716 2.40812 0.465363 
3 0.46389 0·903729 0·51323 0.816787 0.56232 0.745451 
4 0.21503 1.268585 0.23908 1.140518 0.26289 1.036959 
5 0.12293 1.673662 0.13773 1.491619 0.15228 1. 348056 
6 0.07762 2.151892, 0.08805 1.888713 0.09815 1.690415 
7 0.05134 2.784072 0.05953 2.368870 0.06723 2.084309 
8 0.03377 3.901930 0.04119 3.029237 0.04763 2.572121 
9 CUT OFF 0.02776 4.333118 0.03402 3.272356 

10 CUT OFF CUT OFF 0.02321 4.869801 

2 1 -5.16225 0.414888 -5.68694 0.376608 -6.21100 0.344833 
2 0·90059 0.730808 0.99444 0.661825 1.08797 0.604918 
3 0·31537 1.081401 0.34959 0.975358 0.38358 0.888839 
4 0.16314 1.462636 0.18196 1. 310395 0.20053 1.188501 
5 0.09816 1.897242 0.11054 1.680662 0.12263 1.512888 
6 0.06357 2.433890 0.07274 2.111386 0.08153 1. 876880 
7 0.04225 3.217515 0.04987 2.659138 0.05685 2.308706 
8 0.02631 5.387660 0.03437 3.507377 0.04054 2.874896 
9 CUT OFF 0.02108 7·134864 0.02865 3.812804 

3 1 9.28358 0.617958 10.23270 0.560645 11.18001 0;513138 
2 0.54642 0·905720 0.60417 0.819106 0.66165 0.747918 
3 0.23147 1.265707 0.25719 1.138773 0.28266 1.035917 
4 0.12849 1.667518 0.14385 1.487579 0.15895 1.345276 
5 0.08006 2.141126 0.09072 1.881991 0.10105 1.685882 
6 0.05262 2.763190 0.06091 2.357577 0.06872 2.077242 
7 0.03459 3.837927 0.04200 3.006912 0.04848 2.560340 
8 CUT OFF 0.02835 4.252809 0.03457 3.248210 
9 CUT OFF CUT OFF 0.02366 4.759583 

4 1 2.01904 0.834246 2.22697 0.756350 2.43441 0.691899 
2 0.37568 1.087248 0.41603 0.981657 0.45615 0.895260 
3 0.17821 1.458404 0.19854 1.30821}7 0.21863 1.187591 
4 0.10386 1.886313 0.11679 1.673870 0.12945 1. 508455 
5 0.06627 2.412943 0.07568 2.099151 0.08471 1.868999 
6 0.04377 3.169891 0.05147 2.636799 0.05856 2.295676 
7 0.02754 5.053602 0.03538 3.454117 0.04157 2.851181 
8 CUT OFF 0.02221 6.258648 0.02936 3.751777 
9 CUT OFF CUT OFF 0.01672 24.592342 
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I 
Frequency = 50 Kmc Frequency = 55 Kmc Frequency = 60 Kmc 

n m 

I 
B[nmJ+ 

I 

R[nmJ+ 

I 

Z[nm] R[nmJ+ I Z[nmJ Z[nmJ 

feet inch-2 feet inch-2 feet inch-2 

5 
1 1.03171 1.063496 1.13893 0.963362 1.211-582 0.880700 
2 0.27706 1.276544 0.30740 1.150302 0.33750 1.047565 
3 0.14174 1.661453 0.15842 1.485036 0.1711-84 1.3411-734 
4 0.08552 2.123151 0.09669 1.8714711- 0.10755 1.679382 
5 0.05538 2.725027 0.06388 2.337156 0.07193 2.0611-780 
6 0.03629 3.724150 0.04371 2.965282 0.05029 2.538314 
7 CUT OFF 0.02954 4.111601 0.03571 J.202782 
8 CUT OFF CUT Ol"F 0.02456 4.570756 

6 
1 0.6531B 1.305633 0.72180 1.181454 0.79015 1.079233 
2 0.21378 1.474795 0.23771 1.325829 0.26139 1.205391 
3 0.11540 1.877243 0.12947 1.670557 0.14326 1. 508273 
4 0.07137 2·383934 0.08123 2.083255 0.090'(4 1.859682 
5 0.04651 3·099496 0.05437 2.603525 0.06168 2.276663 
6 0.02954 4.663254 0.03715 3.3711-330 0.04340 2.814772 
7 CUT OFF 0.02386 5.4923811- 0.03060 3·660164 
8 CUT OFF CUT OFF 0.01927 7.278403 

7 
1 0.45817 1.560845 0.50693 1.410610 0.55543 1.287362 
2 0.17024 1.683378 0.18977 1·509104 0.20906 1.369320 
3 0.09560 2.108882 0.10773 1.866529 0.11957 1.679271 
4 0.06011 2.677695 0.06899 2·313116 0.07746 2.051409 
5 0.03903 3.582532 0.04652 2.910415 0.05327 2.509531 
6 0.02148 10.369537 0.03140 3.937248 0.03755 3.141452 
7 CUT OFF CUT OFF 0.02593 4.344516 

8 
1 0.34163 1.829591 0.37853 1.651012 0.41518 1.505110 
2 0.13874 1.903988 0.15512 1.701141 0.17125 1.540005 
3 0.08022 2.360640 0.09090 2.075128 0.10125 1.858998 
4 0.05092 3.019453 0.05908 2.566671 0.06674 2.257265 
5 0.03243 4.298900 0.03988 3.279521 0.04625 2.770706 
6 CUT OFF 0.02603 4.903585 0.03244 3.549922 
7 CUT OFF CUT OFF 0.02122 5.845324 

9 
1 0.26536 2.112618 0.29451 1.903044 0.32342 1. 732653 
2 0.11507 2.138800 0.12910 1.903182 0.14287 1.718219 
3 0.06797 2.638691 0.07752 2.299234 0.08671 2.049035 
4 0.04320 3.437147 0.05087 2.852480 0.05792 2-.480954 
5 0.02597 5.866004 0.03410 3.755552 0.04026 3.071952 
6 CUT OFF 0.01929 11.251662 0.02784 4.113642 

10 
;r. 0.21225 2.410992 0.23602 2.167296 0.25955 1.970313 
2- 0.09673 2.390696 0.10898 2.116784 0.12093 1.904895 
3 0.05796 2.952529 0.06666 2.542807 0.07494 2.251409 
4 0.03650 3.992360 0.04393 3.184628 0.05052 2.727785 
5 CUT OFF 0.02886 4.456392 0.03506 3.434148 
b CUT OFF CUT OFF 0.02344 5.078573 
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Frequency = 50 Kmc Frequency = 55 Kmc Frequency = 60 Kmc 

11 1/1 
R[nm)+ 

I 
Z[nm) R[nm)+ I S[nm] R[r.m)+ 

I 
Z[nm) 

feet inch-2 feet I inch-2 feet inch-2 

11 
1 0.17355 2.726150 0.19341 2.444582 0.21303 2.218565 
2 0.08217 2.663620 0.09302 2.343950 0.10356 2.101187 
3 0.04961 3·317918 0.05768 2.811536 0.06524 2.468802 
4 0.03040 4.869555 0.03794 3.588797 0.04422 3.005794 
5 CUT OFF 0.02364 5.918920 0.03042 3.899372 
6 CUT OFF CUT OFF 0.01796 10.206978 

12 
1 0.14434 3.059998 0.16128 2.735980 0.17796 2.478048 
2 0.07035 2.963187 0.08012 2.587323 0.08953 2.308543 
3 0.04248 3.763972 0.05011 3.114056 0.05711 2.704883 
4 0.02390 7.400976 0.03262 4.119666 0.03877 3.328012 
5 CUT OFF CUT OFF 0.02614 4.574673 

13 
1 0.12168 3.415043 0.13636 3.042884 0.15078 2.749591 
2 0.06057 3·297766 0.06949 2.850485 0.07800 2.528816 
3 0.03621 4.353961 0.04363 3.464397 0.05020 2.964872 
4 CUT OFF 0.02769 4.929759 0.03396 3· 717676 
5 CUT OFF CUT OFF 0.02185 5·901255 

14 
1 0.10368 3.794611 0.11660 3.367083 0.12924 3.034244 
2 0.05233 3.680631 0.06060 3.138458 0.06838 2.764429 
3 0.03043 5.271752 0.03797 3.887661 0.04425 3.256582 
4 CUT OFF 0.02257 6.850328 0.02962 4.222458 

15 
1 0.08911 4.203178 0.10063 3.710887 0.11183 3·333332 
2 0.01+526 4.13465[1- 0.05305 3.458593 0.06025 3.018632 
3 0.02433 7.682039 0.03290 4.435549 0.03905 3.592421 
4 CUT OFF CUT OFF 0.02555 4.966220 

16 
1 0.07711 4.646904 0.08750 4.077300 0.09755 3.648526 
2 0.03905 4.704352 0.04654 3.822244 0.05330 3·295920 
3 CUT OFF 0.02820 5.243552 0.03443 3.993906 
4 CUT OFF CUT OFF 0.02139 6.491317 

17 
1 0.06707 5.134532 0.07655 4.470288 0.08566 3.981936 
2 0.03343 5.495075 0.04085 4.248284 0.04727 3.602748 
3 CUT OFF 0.02341 6.919841 0.03025 4.503227 

18 
1 0.05856 5.679004 0.06731 4.895211 0.07564 4.336278 
2 0.02801 6.872935 0.03579 4.771480 0.04199 3.948853 
3 CUT OFF CUT OF.'F 0.02634 5.221466 

19 
1 0.05122 6.300569 0.05941 5.359516 0.06710 4.715079 
2 0.02050 22.459224 0.03116 5.466895 0.03730 4.349893 
3 CUT OFF CUT OFF 0.02244 6.509164 
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Frequency = 50 Kmc Frequency = 55 Kmc Frequency = 60 Kmc 

11 1n 
B[nm]+ 

I 
B[nm]+ 

I 
Z[nm] B[nm]+ 

I 
Z[nm] Z[nm] 

feet inch-2 feet inch-2 feet inch-2 

20 
1 .0.04481 7.033398 0.05257 5.873928 0.05974 5.123026 
2 CUT OFF 0.02675 6.549116 0.03308 4.833374 

21 
1 0.03910 7.941831 0.04659 6.454660 0.05335 5.566509 
2 CUT OFF 0.02197 9.289222 0.02920 5.454350 

22 
1 0.03388 9.169691 0.04130 7.127805 0.04774 6.054504 
2 CUT OFF CUT OFF 0.02552 6.349417 

23 
1 0.02886 11.158150 0.03654 7.939276 0.04277 6.600202 
2 CUT OFF:. CUT OFF 0.02175 8.047971 

24 
1 0.02315 17.444425 0.03217, 8.981077 0.03832 7.224001 

25 
1 CUT OFF 0.02804 10.482049 0.03428 7.959870 

26 
1 CUT OFF 0.02382 13.335010 0.03057 8.870500 

27 
.1 CUT OFF CUT OFF 0.02707 10.091403 

28 
1 CUT OFF CUT OFF 0.02364 12.010406 

29 
1 CUT OFF CUT OFF 0.Ol~79 16.923252 

APPENDIX E 

Geometry of Continuous Bends 

Let x(z) and y(z) be the transverse displacements of the guide axis 
from the z-axis, in a rectangular co-ordinate system. Then we write 

r(z) = ix(z) + jy(z) + kz, (E-1 ) 

where i, j, and k are unit vectors along the x, y, and z axes respectively. 
Assuming that (215) holds true, from (216a) we have 

s ~ z. (E-2) 
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Thus, arc length along the bent guide axis is approximately equal to 
distance measured along the z-axis. From (211a) and (E-2), 

t = ~: ~ ~: = ix'(z) + jy'(z) + k, (E-3) 

where primes indicate differentiation with respect to z. From (211b) 

~ p = dt ~ dt ~ ix"(z) + jy"(z). 
p ds dz 

Therefore the curvature is approximately 

so that 

1 
_~VX"2(Z) +y"2(Z) 
p 

(E-4) 

(E-5) 

ix"(z) + jy"(z) 
p ~ VX"2(Z) + y"2(Z) . (E-6) 

Then from (211c) 

jx"(z) - iy" (z) 
b = t X P ~ k X P ~ 1/ p • (E-7) 

Since p and b are approximately transverse, i.e., their z-componcnts are 
small, from (211) and (212) 

7r 
() ~ Lb - 2 ~ Lp, 

since by (211c) b ..1 p. From (E-4) 

Thus, 

,-.v y"(z) 
tan () ,-.v x" (z) . 

x" (z) 
() ,-.v ,-.v "() 

cos ,-.v V X"2 (z) + y"2 (z) ,-.v p' x Z, 

1}" (z) 
sin () ~ VX"2(~) + y"2(Z) ~ p·y"(z). 

(E-8) 

(E-9) 

(E-10) 

(E-11) 

From (E-10) and (E-11) we finally obtain the approximation of (216); 

cos (),-.v " ( ) --,-.vX z, (E-12) 
p 
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sin () r-...J "() --r-...Jy Z 0 

P 
(E-13) 

The above analysis has been a little crude; it is helpful to get a pre
cise estimate on the error in the approximate result of (E-4) for the 

vector ~ .p, which in the above approximation is assumed to be purely 
p 

transverse. vVe write 

r(z) = ix(z) + jy(z) + kz 

as before. Next, 

ds _ / dz = v 1 + X'2 (z) + y'2 (z) , 

(E-I4) 

(E-I5 ) 

(E-I6 ) 

where as before we reserve the prime to denote differentiation with 
respect to z. Then 

dr dr dz 
t = - =--

ds dz ds 

1 
= VI + X'2(Z) + y'2(Z) [ix'(z) + jy'(z) + k]. 

Further 

1 dt dt dz 1 {o "( ) + 0 "( ) p.p = ds = dz ds = 1 + X'2(Z) + y'2(Z)· IX z lY z 

_ x'(z)x"(z) + y'(z)y"(z) [0 '( ) + 0 '( ) + k]} 
1 + X'2(Z) + y'2(Z) IX Z lY z ° 

Now we may write (E-18) as follows: 

~.p = ix"(z) + jy"(z) - A - Bo 
p 

A X'2(Z) + y'2(Z) [o,,() + 0 "( )] 

= 1 + X'2(Z) + y'2(Z) IX z lY z . 

B =x'(z)xl/(z) + y'(z)yl/(z) [0 '( ) + ° '( ) + k] 
[1 + X'2(Z) + y'2(Z))2 IX Z JY z . 

(E-I7 ) 

(E-I8 ) 

(E-I9 ) 

(E-20) 

(E-21 ) 

The first two terms of (E-19) are identical to the approximation of 
(E-4); the vectors A and B represent correction terms that we shall 
show to be small compared to the first two terms. 
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From (E-20) 

IAI 

From (E-21) 

I B! = I x'(z)x"(z) + y'(z)y"(z) 1(1 + X'2(Z) + y'2(z)1! 
(1 + X'2(Z) + y'2(Z»)2 

~ I x'(z)x"(z) + y'(z)y"(z) I 

llG3 

(E-23) 

~ VX'2(Z) + y'2(Z) VX"2(Z) + y"2(Z), 

where the last step follows from the Schwarz inequality. Then 

I B I < _ I .12 ( ) + '2 ( ) (E 24) 
VX"2(Z) + y"2(Z) = VX Z Y z. L 

If (21.15) is satisfied, (E-22) and (E-24) show that the correction terms 
A and B of (E-19) are small compared to the first two terms, so that 
the approximation of (E-4) will be valid. 

APPENDIX F 

Rigorous 'Preatment of 'PEol Loss Statistics for the Discrete Case 

In treating the TEO! loss as a Fourier series with random coefficients, 
the frequency dependence of the Lla's and the C's in (218) was neglected, 
since the principal frequency dependence occurs through the Ll{3's. While 
this provides a simple and accurate analysis, a rigorous treatment of 
the TEol loss statistics as a function of frequency is of interest. 

We consider only the case of independent offsets or tilts, treated in 
Sections 3.3.1 and 3.3.2 respectively. From (218), (235), and (23G) 

A = A + 8A 

A = ~Ao 
N-l 

8A = L A k cos kLl{3lo 
k=l 

,,4 

A 2 x (N _ ~~) ek2ilalo,. < k>=- I" 
2 

l~k~N-1. 

(F-1 ) 

(F-2) 

(F-3) 

(F-4) 

(F-5a) 

(F-5b) 
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(F-5c) 

The new quantity A is defined by (F-2); oA remains the same as before. 
We have for the expected values of the various losses: 

<A> = !<Ao>, <oA> = o. (F-G) 

Therefore 
,,2 
x 

<A> = <A> = !<Ao> = "2 N. (F-7) 

Equation (F-7) gives the expected value of the TEol loss as a func
tion of frequency, since the rms conversion coefficient 1; will in general 
vary with frequency (this variation will be small for offsets and diam
eter changes, approximately inversely with the free-space wavelength 
A for tilts). We may now average over wavelength (indicated by a bar) 
and obtain instead of the result given in (237): 

- - 1;2 
<A> = <A> = 2 N. (F-8) 

Thus, the average of 1;2 over the band should be used instead of the value 
of 1;2 at the middle of the band. Over reasonable bandwidths the error 
will be small. 

Next from (F-5c), A and oA are easily shown to be uncorrelated. 

<A(oA» = o. (F-9) 

We next find the mean square value of oA. From (F-3), (F-5b), and 
(F-5c) : 

N-l N-l 

« oA )2> = L L <AkA I> cos kA{3lo cos lA{3lo 
k=l 1=1 

N-l 

= L <A/> cos2 kA{3lo 
k=l 

A N-l 

« oA )2> = ~ L (N - k) l2!:.al o cos2 kA{3lo . 
2 k=l 

(F-IO) 

The summation of (F-IO) is easily written in closed form, but its gen
eral behavior is much more easily seen by examining the usual two 
special cases, small and large differential loss. 

1. Small differential loss over total length LN = Nlo . 

«M)'> = ~ [N(N - 2) + (S~~n~~:o),J; -N2f,alo « 1. (F-ll) 
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2. Large differential loss over total length L N , small differential loss 
over pipe length 10 . 

,,4 1 + ~ (Sin l1(3l0)2 
x N 2 -l1alo . 

- :[ - l1alo 1 + (Sin l1(3lo)2 , 
-b.alo 

- N211alo » 1, 
(F-12) 

-2l1alo « 1. 

Sketches of the general behavior of < (oA) 2) vs 11(310 (proportional to 
the free-space wavelength A) are given in Fig. 11 for a single period, 
these functions being periodic of period 1f". In both cases < (oA) 2) is al
most constant except in narrow bands centered at b.(3lo = m1T', where 
it becomes twice as large; these peaks occur because we have assumed 
equally spaced mode converters. The half-width of these peaks initially 
decreases as 1.39/N as long as the differential loss remains small, ap
proaching a limiting value of ( - b.cxlo) when the differential loss becomes 
large. Since these peaks are narrow, they may be neglected in averaging 
over A (or b.(3lo) , yielding for small and large differential loss respectively: 

__ £4 
«oA)2) = «OA)2) = "8 N(N - 2); - N211alo « 1 (F-13) 

«oA)2) = «OA)2) = -- -; - ( £4 )N 
-l1a 810 

- N211alo » 1, 
(F-14) 

- 211aIo « 1. 

Comparing with (241) and (242), we see that the average of £4 or of 
,,4 

_X
Aa 

over the band should be used rather than their values at the middle 

of the band. Again, over reasonable bandwidths the error will be small. 
The minor difference between (F-13) and (241) for £4 independent of 

frequency - i.e., the factor (N - 2) instead of (N - 1) - arises be
cause of our approximate integration of the function of Fig. 11(a), in 
which the narrow peaks and small ripples were ignored and the function 
set equal to N(N - 2). It is clear that this yields a result that is too 
small. An exact integration of (F-11) yields a result identical to (241). 

The above calculations have considered only a single mode, the mode 
subscript being omitted as usual. For the total (JA, including all first 
order spurious modes, we have 

oA = L oA[m] , (F-15 ) 
[m] 

(F-16 ) 
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(a) 

I -NAalo«' 

I 
I 
I 

--1 
I 
I 

o~~--------------------------~-o 1.39 7T 
f\J 

(b) 

1- NtH.to» I 

0.50 +~------------J!-l-.Aalo«' 

0.75 

I I 
J I 
°O~I-----------------------------"~ 
-Aalo 

Fig. 11 - General behavior of «OA)2) vs /1f3lo . 

In violation of our usual convention that [ ] indicate only TE spurious 
modes, in the present appendix this notation includes in addition the 
T1\I111 + spurious mode in the case of tilts. 

The < (oA [171] )2) have been discussed above; we need in addition the 
cross terms (oA [1n]oA [n]). These cross terms did not appear in the ap
proximate analysis, so we expect to find them negligible here. The differ
ent OA[m] are of course not independent. From (218), (221) and (173) 
we see that OA[m](l\d cc OA[n](1\2) where 1\1 cc 1\2; i.e., the TEoi loss 
component due to the mth spurious mode at one frequency is propor
tional to the TEO! loss component due to the nth spurious mode at a 
widely separated frequency. However, at the same frequency oA [m] and 
oA[n] are almost uncorrelated, so that the cross terms in (F-16) may 
be neglected. 
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We have 
N-l N-l 

<oA[m]OA[n]> = L L <Ak[m]Al[n]> cos kb.{3[m]lO cos lb.{3[n]lO (F-17) 

where 

Setting 

k=l l=l 

" 2" 2 

<A A > = X[m] X[n] (N _ 7/') ek(t.a [11I1+t.a in)) lo. 
kim] kin] 2 h, , 

cos kb.{3[m]lO cos kb.{3[n]lO = ~ cos k( b.{3[m] - b.{3[n] )lo 

(F-18) 

+ ~ cos k( b.{3[m] + b.{3[n] )lo 

(F-17) now becomes 

(F-19) 

. (cos k(b.{3[m] - b.{3[n] )10 + cos k(b.{3[m] + b.{3[n] )101 
This summation is of the same general type as (F-IO). In the special 

cases of small and large differential loss: 

<oA oA > = X[m]2X[n]2 [-2N + (sin ~N (b.{3[m] - b.{3[n])lo)2 
[m] [n] 8 sin~(b.{3[m] - b.{3[n])lo 

(F-20) 
+ (sin !N (b.{3[m] + b.{3[n] )10)2J . _ N(b.a[m] + b.a[n] )1

0
« 1. 

sin! (b.{3[m] + b.{3[n]) 10 ' 

<oA [m]OA [n] > 
X[m]2X[n]2 N 

4 - (b.a[m] + b.a[n]) 10 

(F-21) 
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Equations (F-20) and (F-21) again exhibit narrow peaks of the same 
general type as illustrated in Fig. 11; away from these peaks the func
tions will be quite small. Thus if (.Clf3[m] =r= .Clf3[n] )lo ~ m7r, from (F -20) 
and (F -21) for either small or large differential loss: 

.... 2.... 2 

< ~A ~A > - - X[m] X[n] N. 
U [m]U [n] - 4 ' 

(F-22) 

(.Clf3rm] =r= .Clf3[n] )lo ~ m7r. 

lrrom (F-22) the correlation coefficient of BA[m] and BArn] will be small 
for moderately large values of N. Therefore, for those modes that make 
a significant contribution to the total « BA )2>, the cross terms in (F-16) 
will be negligible. 

APPENDIX G 

Correlation Coefficient of TEol Loss Components due to D(fferent Spurious 
AIodes for the Continuous Case 

Consider the ac components BA [m] and BA [n] of the total TEO! loss, 
due to two different spurious modes, each with two polarizations, gen
erated by the same type of geometric imperfection. The geometric im
perfection and thus the coupling coefficients are assumed to have white 
power spectra. 

As a specific example, consider random deviations of the guide axis 
from perfect straightness, which generate principally the forward TE12 
and TEll spurious modes. The coupling coefficients to the two polari:m
tions of the TElm mode are given in (308) in terms of the second deriva
tives of the rectangular co-ordinates of the guide axis, x" (z) and y" (z). 
We assume that x"(z) and y"(z) have white power spectra. 

We expand the geometric imperfection to which the coupling coeffi
cients are proportional III a Fourier series. For random straightness 
devia tions : 

00 

x"(z) = 2: 'Ynll ej27rnz/L; 

n=-oo 

00 

"( ) ""' .L j27rnz/ L y Z = LJ 'Yn e ; 
(G-l) 

n~oo 

The complex Fourier coefficients Cn in Section 4.1 are simply proportional 
to the corresponding 'Yn . For straightness deviations, for the TElm mode 
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we have: 

Cn[m] II = Ct[m]'Yn ll , TElmll; 

Cn[m].L = C trm] 'Yn .L, TElm.L. 
(G-2) 

Consequently, the 'Yn'S have the same statistical properties as the cn'S, 

given in Section 4.2. Since x"(z) and y"(z) have white power spectra, 

< 1 'Yn II 12) = < I 'Yn.L 12) = -92
• 

Further, the different 'Y's are strictly independent. 
We next define for convenience the following quantities: 

(G-3) 

These quantities are proportional to the real or imaginary parts of I in 
(285b). These four quantities are approximately independent station
ary band-limited Gaussian random processes in the practical case where 
the length L is large compared to the beat wavelength B, so that I t I » 1. 
The autocorrelation function of each of these quantities, found directly 
from (G-4), is therefore 

(G-5) 

Next we define for convenience the quantity l(t) as 

l (t ) = g a 112 ( t) + g (3112 (t) + g a .L2 (t) + g {3 .L2 ( t ) . (G-6) 

The autocorrelation function of g2(t) is easily found in terms of the 
autocorrelation function of the individual g's, given in C G-5). If x is a 
stationary Gaussian random process with autocorrelation Rx( T) and 
y = x2, then the au tocorrela tion of y, Ry C T), is given by 37. 40 

(G-7) 

where the first term corresponds to the dc component, the second to 
the ac component of y. Since the individual quantities whose squares 
appear on the right-hand side of (G-6) are independent random vari
ables, we have from (G-7) and (G-5) for the autocorrelation function 
RC T) of lct) 



1170 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962 

R( T) '" <g'( 1)0'( 1 + T) > = 41' + 21' (Si:;T) 2, (G-8) 

where again the first term corresponds to the dc component, the second 
to the ac component of l (t). 

From the results of Section 4.1 we may now write the TEo! loss due 
to the two polarizations of the mth spurious mode (TE!m for straightness 
deviations) in terms of the function let) defined in (G-6): 

t - I ~/3[m] I L 
[m] - 271" • (G-9) 

Equation (G-9) is appropriate for our present purposes because it places 
in evidence the relation between the different TEo! loss components 
A[m] • From (G-9), (G-8), and the results of Section 4.1, the normalized 
correlation coefficient Pmn of oA [m] and oA [n] , the ac components of 
TEo! loss due to the mth and nth spurious modes, may be written in the 
following form: 

<oA [m]OA [n]) 
(

sin 7I"Trnn) 
2 
, 

7I"Tnm 
(G-10) 

Pmn == V«OA[m])2) V«OA[n])2) 

(I ~/3[m] I - I ~/3[n] I )L 
271" 

Tmn = 

Thus, 

Pmn < (_1 )2 
7I"Tmn 

(G-ll) 

Since the different spurious modes have substantially different beat 
wavelengths (Appendix D), Pmn « 1 for moderate values of length L. 
As a numerical example consider TE!2 + and TEll +, for a total length 
between mode filters L = 200 feet. From (C-11), P < 0.00036. In prac
tical cases the TEo! loss contributions of the different spurious modes 
will be almost uncorrelated, so that «OA)2) will be given by (322). 
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