
r H E BEL L SYSTEM 

echnfcal ournal 
[)EVOTED TO THE SCIENTIFIC AND ENGINEERING 

ASPECTS OF ELECTRICAL COMMUNICATION 

VOLUME XXXIX SEPTEMBER 1960 NUMBER 5 

Binocular Depth Perception of Computer-Generated Patterns 
B. JULESZ 1125 

Models for Approximating Basilar Membrane Displacement 
J. L.FLANAGAN 1163 

Design and Performance of Ultraprecise 2.5-mc Quartz Crystal 
Units A. W. WARNER 1193 

Some Further Theory of Group Codes 

Capacity of a Burst-Noise Channel 

Automata and Finite Automata 

Transition Probabilities for Telephone Traffic 

D. SLEPIAN 1219 

E. N. GILBERT 1253 

C. Y. LEE 1267 

V. E. BENES 1297 

An Alternative Approach to the Realization of Network Transfer 
I?unctions: The N-Path Filter 

L. E. FRANKS AND 1. W. SANDBERG 1321 

l\lagnetic Latching Crossbar Switches: A New Development in 
Magnetic Properties of Tool Steel F. A. ZUPA 1351 

Recent Bell System Monographs 

Contributors to This Issue 

-
1375 

1379 

z: 
COPYRI GliT 1960 AMERI-.9AN TEL~. __ ONE AN D TELEGRAPH COMPANY 



THE BELL SYSTEM TECHNICAL JOURNAL 

ADVISORY BOARD 

H. I. ROMNES, President, Western Electric Company 

J. B. FISK, President, Bell Telephone Laboratories 

E. J. McNEELY, Executive Vice President, American 
Telephone and Telegraph Company 

EDITORIAL COMMITTEE 

A. C. DICKIESON, Chairman K. E. GOULD 

S. E. BRILLHART E. 1. GREEN 

A. J. BUSCH G. GRISWOLD, JR. 
L. R. COOK J. R. PIERCE 

R. L. DIETZOLD 

J. H. FELKER 

EDITORIAL STAFF 

W. D. BULLOCH, Editor 

M. SPARKS 

W.O.TURNER 

R. M. FOSTER, JR., Assistant Editor 
c. POLOGE, Production Editor 
J. T. MY S A K , Technical Illustrations 
T. N. PO PE, Circulation Manager 

THE BELL SYSTEM TECHNICAL JOURNAL is published six times a year 
by the American Telephone and Telegraph Company, 195 Broadway, New Vorl; 
7, N. Y. F. R. Kappel, President; S. Whitney Landon, Secretary; L. Chester 
May, Treasurer. SUbscriptions are accepted at $5.00 per year. Single copies $1.25 
each. Foreign postage is $1.08 per year or 18 cents per copy. Printed in U.S.A. 



THE BELL SYSTEM 

TECHNICAL JOURNAL 
VOLUME XXXIX SEPTEMBER 1960 NUMBER 5 

Copyright 1960, American Telephone and Telegraph Company 

Binocular Depth Perception of 
Computer-Generated Patterns 

By BELA JULESZ 

(Manuscript received March 31, 1960) 

The perception of depth involves monocular and binocular depth cues. 
The latter seem simpler and more suitable for investigation. Particularly 
important is the problem of finding binocular parallax, which involves match
ing patterns of the left and right visual fields. Stereo pictures of familiar ob
jects or line drawings preclude the separation of interacting cues, and 
thus this pattern-matching process is difficult to investigate. More insight 
into the process can be gained by using unfamiliar picture material devoid 
of all cues except binocular parallax. To this end, artificial stereo picture 
pairs were generated on a digital computer. When viewed monocularly, they 
appear completely random, but if viewed binocularly, certain correlated 
point domains are seen in depth. By introducing distortions in this material 
and testing for perception of depth, it is possible to show that pattern
matching of corresponding points of the left and right visual fields can be 
achieved by first combining the two fields and then searching for patterns 
in the fused field. By this technique, some interesting properties of this 
fused binocular field are revealed, and a simple analog model is derived. 
The interaction between the monocular and binocular fields is also described. 
A number of stereo images that demonstrate these and other findings are 
presented. 

1. INTRODUCTION 

The question of how the two-dimensional projections of the visual 
world that are supplied to the left and right eyes are matched and com
bined to reveal the impression of depth is an extremely interesting one. 
Because of an incorrect analogy derived from measuring distances with 
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a range finder, it is commonly thought that this problem is rather triv
ial. Admittedly, it is fairly simple to determine binocular parallax by 
aligning selected portions of an object in the left and right fields of a 
range finder and computing depth by trigonometrical calculations. The 
intriguing part of this problem is to explain the remarkable ability of 
humans to establish correspondence between complicated patterns in the 
two monocular fields. This pattern-matching process is the one being in
vestigated here. 

It seems quite clear that patterns perceived in depth afford a promising 
means for exploring pattern-matching. However, it is well known that 
the perception of depth under familiar conditions is mediated by many 
complex cues, both binocular and monocular, which are not easily kept 
under the control of the experimenter. Thus, many previous explorations 
have used stereo pictures of familiar objects or line drawings, preclud
ing the separation of interacting cues. The investigation reported here 
utilized patterns devoid of all cues except binocular parallax, by using 
artifieially created stereo images with known topological properties. Such 
visual displays ordinarily never occur in real-life situations, and a digital 
computer (with a video transducer at its output) was programmed to 
generate them. When these unfamiliar pictures are viewed stereo
scopically, peculiar and often unexpected depth effects can be seen. In 
addition, the perception time of depth under such circumstances is some
times in the order of minutes (instead of the few milliseconds required 
for familiar stereo images). This slowing down of the visual process fa
cilitated the present investigation without having much effect on the 
stability of depth impression after depth was finally perceived. 

This paper reports a study of binocular depth perception based upon 
such presentations. In Section II the problem is posed explicitly and a 
summary of the results is given. The intent is to provide the essence of 
this investigation without going into details. The remaining sections are 
arranged along the sequence of ideas presented in Section II, with the 
intention of being more specific and of supplying more data. In the last 
section the new technique of this investigation is evaluated with some 
possible future applications. 

A pair of Fresnel lenses has been enclosed on page 1161 of this issue of 
the Bell System Technical Journal. They may be used for viewing the 
stereoscopic illustrations in this paper. Directions for their use may be 
found in the Appendix. 

II. I>ROBLEM POSING AND SUMMARY OF RESULTS 

Human beings exhibit great ability in utilizing binocular parallax to 
establish the relative depth of objects in the visual field. This process 
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involves finding horizontal shifts between corresponding point domains 
in the left and right visual fields. The observer seems able to establish 
this correspondence almost without effort or deliberation, even when the 
fields differ in brightness and shape (due to reflections and perspective) 
and in picture material (due to hidden objects seen by only one eye). 
Thus, depth perception might be likened to the solution of a complicated 
pattern-recognition problem. 

This paper attacks the problem of depth perception as a pattern-recog
nition problem and poses the following question: In determining binoc
ular parallax do we first recognize monocular patterns in the left and 
right fields and then fuse them (monocular pattern recognition), or do 
we first combine the two fields in some manner and then perform all 
further processings on the fused field [e.g., search for certain patterns 
(binocular pattern recognition)], or do we utilize a combination of both 
processes? This question is appropriate both for macropatterns (higher 
organization of points into objects) and for micropatterns (a few adjacent 
points). Figs. 1, 2 and 3 attempt merely to illustrate these three pos
sibilities and do not necessarily have relevance to physiological systems. 

Artificial stereo images were created by an IBM 704 digital computer. 
Right and left images were generated, each consisting of 10,000 bright
ness points, which were assigned one of 16 quantized brightness values 
at random. In a peripheral "surround" region, the images were identical; 
in a square-shaped central region, the right-hand image differed from the 
left by a uniform horizontal displacement. When viewed monocularly, 
the images appear completely random. But when viewed stereoscopi
cally, this image pair gives the impression of a square markedly in front 
of (or behind) the surround. By fusing the photographs in Fig. 4 (using 
two lenses as prisms with a diameter of 2 inches or more and 10 .to 18 

Fig. 1 - Depth perception by monocular pattern recognition. 
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Fig. 2 - Depth perception by binocular pattern recognition. 

inches focal length, such as those supplied with this issue) this depth 
effect can be demonstrated. 

Of course, depth perception under these conditions takes longer to 
establish because of the absence of monocular cues. Still, once depth is 
perceived, it is quite stable. This experiment shows quite clearly that 
it is possible to perceive depth without monocular macropatterns. How
ever, if binocular pattern recognition is the principal depth mechanism, 
the same statement should be true formicropatterns. 

Fig. 3 - Depth perception by monocular and binocular pattern recognition. 
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Fig. 4 - Stereo pair with center square above the background. 

To study this matter, micropatterns in the stereo pair were drastically 
altered by blacking out a regular pattern of points in the left field and 
making the corresponding points white in the right field. Fig. 5 shows 
the result of this process, where the perturbation grid consists of every 
even point of every even line. The microstructure of the left and right 
images is highly different, and yet the center square stands out clearly 
from the surround. 

In spite of the difference in microstructure of the left and right fields, 
this experiment may not be decisive. It could be argued that the regular 
perturbation grid is recognized monocularly in its random surround and 
disregarded, and that the remaining, unaltered points in the two fields 
possess the same microstructure. It was found, however, that the difficulty 
of monocularly recognizing the perturbation grid could be increased 

Fig. 5 - Stereo pair with superimposed unmixed perturbation grid. 



1130 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

Fig. 6 - Stereo pair as in Fig. 5, but quantized into two levels. 

greatly without increasing the difficulty of perceiving depth. For in
stance, when the random fields are quantized into two levels (black and 
white), the perturbation grid composed of black (or white) points seems 
more difficult to find in this surround than in one composed of 16 bright
ness levels (with many medium grays). The depth effect in Fig. 6 (two
level quantization) can be obtained with the same ease as it can in Fig. 5 
(16-level quantization). This makes the assumption of monocularly rec
ognizing the grid very improbable. Together with other evidence (to be 
discussed in Section VII), it therefore suggests strongly that the two 
fields are combined first and that the processing is done on the fused field. 

Other experiments making use of similar techniques are described. 
The results shed light on pattern recognition as it is involved in binocu
lar vision. The problem of detecting certain regions in the fused binocu
lar field in order to find depth was particularly investigated. According 
to these findings, those point domains that are seen in depth (and thus 
have to be detected in the binocular field) need not possess a Gestalt, 
but the connectivity of the points must be preserved. In the above-de
scribed regular perturbation grid, the unaltered points are still connected 
along one-dimensional arrays (along every other line and column). But 
if meshlike perturbation grids are applied (which leave the same per 
cent of points unaltered as in the experiments that will be shown in 
Figs. 20 and 21, but limit the connectivity of points to small subregions), 
the depth effect is greatly reduced (as will be seen in Figs. 26 and 27). 

As an interesting analogy to certain properties of the binocular field 
the notion of the difference field is introduced (see Section IX). Although 
this model is probably very naIve, nevertheless the influence of various 
perturbations on depth perception often can be predicted by realizing 
some trivial properties of the corresponding difference field. 
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The concluding experiments investigate the role of monocular macro
patterns in depth perception. It is shown that their presence greatly en
hances the depth effect; thus, monocular and binocular pattern recog
nition can occur simultaneously as a mixed proce8S. This statement seems 
to be the final answer to the original problem. 

III. BRIEF EVALUATION OF MONOCULAR AND BINOCULAR DEPTH CUES 

Depth perception is an interaction of extremely complicated mental 
processes. These processes utilize certain depth cues which usually are 
divided into binocular and monocular depth cues. In Table I, a list of 
these cues is given (without aspiring to completeness),1 

Most of the monocular depth cues require a tremendous memory ca
pacity; for instance, familiarity with perceived objects implies a catalog 
of no mean extent. 

Binocular depth cues seem simpler and more akin to data processing. 
Binocular convergence and accommodation are very weak depth cues 
(as tachistoscopic experiments2 have shown), and they can be ignored 
in favor of binocular parallax, which is apparently the principal binocular 
cue. The invention of the stereoscope3 strikingly demonstrated man's 
ability to utilize binocular parallax in order to perceive depth - that is, 
to determine correspondence between points in the left and right visual 
fields and measure the horizontal displacements between them. The im
portance of monocular depth cues in supplementing binocular depth cues 
is great, as can be demonstrated by the reversed depth effect. It is well 

Binocular parallax 
Convergence of eyes 

TABLE I 

Binocular Depth Cues 

Correlative accommodation (focusing) 

Monocular Depth Cues 

Linear perspective (such as converging railroad tracks) 
Apparent size of objects of known size (which decreases with distance of observer) 
Monocular parallax (change of appearance with change of observer's position) 
Shadow patterns (the light-and-shade relations yielding relief) 
Interposition (the superposing of near objects on far objects) 
Changes due to atmospheric conditions (such as haze, blurring of outlines) 
Accommodation (focusing on an object with one eye) 
Retinal gradient of texture (decreasing size of texture elements with distance) 
Retinal gradient of size of similar objects (rate of decrease of size of houses, fence 

posts, telegraph poles, etc.) 
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known that, by interchanging the left and right picture pair in a stereo
scope, unfamiliar objects reverse their depth coordinates (far points be
come near, convex surfaces become concave, etc.). For a familiar object 
(e.g., a human face) the reversal of depth relationships usually does not 
take place; that is, the monocular depth cues counteract the binocular 
ones. 

To cancel the effect of these involved monocular depth cues and concen
trate on the binocular parallax, most work with stereoscopes uses line 
drawings for visual stimulus. These drawings comprise simple dots, lines, 
circles, etc., with different parallax shifts in the right and left fields, and 
are practically free of monocular depth cues. A vivid depth effect can 
still be obtained. 

The above-mentioned tachistoscopic experiment deserves some addi
tional explanation. A stereo pair consisting of simple line drawings (with 
parallax shifts in nasal or temporal directions) was flashed for a brief 
period (in the order of a few milliseconds). Viewing it stereoscopically, 
subjects could tell almost without any error which of the drawings were 
in front of or behind a reference plane. This experiment tells nothing 
about the time required to perceive depth because of the long-persistent 
afterimages, but it gives some insight into depth processes. First of all, 
during the short exposure period no convergence or any other motion of 
the eyes can take place. This fact excludes convergence and accommoda
tion as important depth cues. Second, it demonstrates that during fusion 
the left and right fields must be labeled, because otherwise the percep
tion of near and far would be confused. 

The following investigations are based on the possibility of separating 
the monocular and binocular depth cues, and concentrate on the problem 
of how binocular parallax can give the impression of depth. 

IV. MACROPATTERN AND MICROPATTERN RECOGNITION; MONOCULAR AND 

BINOCULAR PATTERN RECOGNITION 

It seems clear that a basic aspect of depth perception is recognition of 
binocular parallax, which consists of a parallax shift between correspond
ing points in the left and right visual fields. The shift is parallel to the 
base line (of the eyes); thus, the corresponding points in the left and 
right fields must lie on the same horizontal line. Now, to determine the 
exact amount of parallax shift, it is necessary to find the corresponding 
points in the left and right visual fields. Because the base distance 
(between the two eyes) and the focal length of the eyes (looking at the 
stereo pictures at a given distance) are known, there is a simple trigo
nometric relationship between the parallax shift and the actual depth. 
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Thus, determining the parallax for every point is analogous to the re
construction of three-dimensional space. So we come to the kernel of the 
problem: How can we fuse points in the left and right fields and establish 
correspondence between them in a stereo sense, when the two fields may 
differ quite drastically from each other? 

The left and right fields of a stereo pair can differ: (a) in brightness 
(due to different reflections); (b) in perspective (expansion, rotation, 
shift, etc., of point domains); and (c) by hidden parts (seen only by one 
eye). Obviously, one is able somehow to find the points in the two fields 
that belong to considerably different patterns. How is this equivalel1(~e 
established? Do we recognize a face, a square, a few adjacent points, 
etc., in the left and right visual fields separately and then pick up the 
corresponding points, or do we first fuse the two fields and perform 
certain pattern-recognition tasks on this fused field? 

To make these questions more precise we introduce the following termi
nology: Pattern recognition can be divided into two classes. First, 
micropattern recognition concerns simple pattern organizations that take 
into account some geometrical, topological characteristics in a point's 
immediate neighborhood. Second, macropattern recognition is a higher
order organization of several points. Points grouped together and recog
nized as a face, square, number, etc., are examples of what is meant by 
this conception. 

The first half of another useful dichotomy is monocular pattern recog
nition, which is performed on the visual field seen by one eye. Binocular 
pattern recognition is performed on the fused field, which is a combina
tion of the left and right monocular fields. It belongs to a special class 
of processings that incorporate characteristics that intuitively are also 
important in ordinary (monocular) pattern recognition. Nevertheless, 
binocular pattern recognition need not necessarily be identical or even 
similar to monocular pattern recognition. 

With these distinctions in mind, we may ask: Is the basic mechanism 
of binocular fusion a monocular pattern recognition (Fig. 1), or a binoc
ular pattern recognition (Fig. 2), or a combination of both (Fig. 3)? 
These possibilities multiply when we further differentiate between micro
pattern and macropattern recognition in each case. 

v. DEPTH PERCEPTION WITHOUT MONOCULAR MACROPATTERN RECOGNITION 

In aerial reconnaissance it is known that objects camouflaged by a 
complex background are very difficult to detect monocularly but jump 
out if viewed stereoscopically. Though the macropattern (hidden object) 
is difficult to see monocularly, it can be seen. Therefore, this evidence is 



1134 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

not sufficient to prove that depth can be perceived without monocular 
macropattern recognition. 

To investigate this problem, a special visual presentation was created 
by means of the IBM 704 digital computer and a television transducer 
developed in the Visual and Acoustics Research Department of Bell 
Telephone Laboratories.4 ,5,6 A pseudo random number routine was pro
grammed to generate random numbers in sequence according to a uni
form probability distribution. These numbers were quantized in 16 levels, 
which were written on tape and then translated by means of a digital
to-analog converter and a special television scanner into 16 brightness 
levels between black and white. (The quality of present scanning tech
niques and of photographic processes limits the resolution in brightness, 
and the final pictures have actually less than 16 identifiable levels.) The 
television scanner used has the format of a two-dimensional rectangular 
matrix of 99 rows, each consisting of 105 picture elements. Thus, a pic
ture consists of 105 X 99 = 10,395 points, whose brightness assume 
randomly any of the 16 values between the maximum black and white. 

A left- and a right-hand stereo image are created by the above-men
tioned technique in the following way: 

In a peripheral "surround" region, the right- and left-hand images are 
identical (i.e., the same random brightness points are copied in the two 
pictures in the same locations); however, in a square-shaped central 
region, the right image differs from the left by a uniform horizontal 
displacement. Fig. 7 illustrates this procedure on a small matrix of 6 X 
6 elements. The background points are indicated with small letters hav
ing a range of eight letters (brightness values) taken at random. The 
shifted square in the center has 2 X 2 elements (indicated by capital 

a b a c d f a b a c d f 

9 e h d c b 9 e h d c b 

e f A G a 9 e A G c a 9 
e a D B e c e D B d e c 

f c d e f e f c d e f e 

d 9 c h b a d 9 c h b a 

Fig. 7 - Illustration of method by which stereo random pictures are generated. 
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letters), and the parallax shift in the right field is one picture element to 
the left. 

The distinction between small and capital letters is only for illustra
tion; they possess the same range and distribution, and therefore no 
macropattern can be seen on any of these random images viewed sepa
rately. Those points which are seen only by one eye (e.g., the right side 
of the square on the right image (e, d)] are generated by the same random 
number routine. 

Fig. 4 showed a stereo pair of 99 X 105 picture elements, the hidden 
central square having 40 X 40 elements, and the parallax shift (.1) being 
four picture elements. Both of these pictures, viewed separately, give an 
entirely random impression, and only an experiment can determine 
whether when fused stereoscopically the center square will be seen in 
depth in front of (or behind) the surround. 

The images presented can be fused easily by using two simple lenses 
(of more than two-inch diameter and 10- to 18-inch focal length) as 
prisms. After fusion, there is a vivid depth effect. The square is in front 
of the background plane, and the depth impression is very stable. It is 
interesting that the depth effect does not appear at once, but appears 
only after a fairly long time in comparison to that in familiar stereo 
pictures. A curious learning process can be experienced; that is, the 
time required to get the depth effect diminishes after repetitive trials. 
The problem of what is really learned here is an interesting question in 
itself and deserves further investigation. 

The fuzziness of the edges of the square is mainly due to the fact that, 
by chance, some of the brightness points along the edges of the square 
can belong to both the square and the background, and there is a tend
ency to interpret them ambiguously. The probability that two or more 
adjacent points should become ambiguous is very low, so the fuzziness 
of the edges is about ±1 picture element in width. (These rough edges 
reveal that no "Gestalt organization" takes place in binocular fusion 
though the square has a "good Gestalt.") 

Fig. 8 demonstrates another stereo pair generated in the above way by 
the computer, but now there are three planes: the background plane, a 
central rectangle 60 X 40 in size and with a parallax shift of .11 = 4, 
and a third rectangle 20 X 40 in size and with a parallax shift of .12 = 8. 
It takes some time to get the bigger rectangle in front of the background, 
but it usually takes even more time to get the smaller rectangle in front 
of the bigger one. After the three different planes of depth are perceived 
they remain very stable. The same is true for the reversed depth effect. 
If the left and right images are interchanged (thus the parallax shifts 
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Fig. 8 - Stereo pair with two different planes of depth above background. 

are not in the nasal direction but in the temporal one), the three planes 
reverse their depth relation to the observer. If highlights are eliminated 
and the surface-like appearance of the pictures is reduced, no monocular 
depth cues remain, and the reversed depth effect can be obtained with 
the same ease as in the regular case (Fig. 9). 

Apparently, the greater difficulty in seeing the smaller rectangle at its 
"proper" depth arises, not because of its greater parallax shift, but 
merely because of its smaller size. By using the same parallax shifts as 
in Fig. 8 but increasing the size of the closest rectangle and decreasing 
the intermediate one, it can be demonstrated that the closest rectangle 
emerges first from the background followed by two smaller ones behind 
on the sides (see Fig. 10). 

These experiments show that it is possible to perceive depth without 

Fig. 9 - Stereo pair with two different planes of depth behind foreground. 
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Fig. 10 - Stereo pair with two different planes of depth above background. 

monocular macropattern recognition. We must now investigate this 
same matter for micro pattern recognition, if the flow chart for depth 
perception is to be established. In Sections VI and VII this problem is 
investiga ted. 

VI. EFFECTS OF INTRODUCED PERTURBATIONS ON THE DEPTH PERCEPTION 

OF STEREO RANDOM FIELDS 

If we compare ordinary stereo photographs of real-life objects, the 
left and right pictures can differ substantially without being difficult to 
fuse. 

In the present investigation we concentrate only on local perturba
tions, such as differences in brightness, and ignore the problem of differ
ences in perspective (expansions, rotations, etc.), which belongs to the 
class of perturbations extending over the pictures according to compli
cated laws. 

The perturbations were introduced in only one of the two pictures, 
leaving the other unchanged. The perturbations naturally have an effect 
on the general appearance of the fused image and on the stability of 
depth perception, but these are not really the effects we are interested 
in. Our basic question was to find out whether or not, after a given type 
and amount of perturbation, depth could still be perceived. In other 
words, to what extent can the brain solve the problem of pattern-match
ing after distortions are introduced? 

In the following investigations some limitations are imposed on the 
input material. The random stereo images contain only point domains 
with a uniform parallax shift. The value of the parallax shift and the 
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Fig. 11 - Stereo pair with gaussian noise perturbation (14-db signal to noise). 

size of the center square is kept constant. The stereo pair before pertur
bation is like Fig. 4, i.e., two 40 X 40 squares with Ll = 4. 

'The first type of perturbation introduced was the addition of gaussian 
noise on one of the stereo images. In Fig. 11 gaussian noise is added to 
the left picture. The signal-to-noise ratio (peak-to-peak signal to aver
age noise) is 14 db. Nevertheless, the square is clearly visible in depth 
though several ambiguous points on the background and the square give 
rise to a lacy appearance. Even with a perturbation of 6 db signal to noise, 
the depth effect can be obtained, although the image is markedly dete
riorated. Some additional findings will be discussed in Section IX. 

Another type of noise is introduced by quantizing one of the stereo 
pairs in fewer levels than the other image. In Fig. 12 the left picture is 

Fig. 12 - Stereo pair with quantizing noise perturbation. 
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Fig. 13 - Stereo pair with blurred left picture. 

quantized only into two levels (black and white). A decision level in the 
middle gray was chosen, and whenever a brightness point was greater 
than this it was represented as white, otherwise as black. The right pic
ture is not altered and has 16 brightness levels (actually, on the photo
graph reproduced here, it has less, but there are more than four). This 
perturbation, in effect, yields to a special type of noise, sometimes called 
quantizing noise, and by fusing the stereo pair of Fig. 12 it becomes 
apparent that even this disturbance does not cancel the depth effect. 

The next experiment uses a random stereo pair similar to Fig. 4 (but 
both the left and right images are quantized into two levels), and the 
left image is blurred (see Fig. 13). The blur is introduced in the computer 
by taking each point of the original image and adding to it its surround
ing points with equal weights. The blurred ut brightness points of Fig. 
13 were obtained according to the following operation: 

8 

Ui* t ~ Uij, 
j=O 

using the notations in Fig. 14. 

UL2 ULO Uu 
--+---0 e__ Ot.--+--+-----I-----

Ul7 UL4 UL8 
~J---C~_+-~-_r-

Fig. 14 - Illustration of the method by which blurring was introduced. 
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Fig. 15 - Stereo pair with positive pictures quantized into two levels. 

This amount of blurring reduces the information content of the left 
image considerably, but it is still enough to carry the depth information. 
What is more, the eye is able somehow to see the whole as a sharp pic
ture. 

The following experiment is instructive in itself, and will be referred 
to in the next section. Fig. 15 shows a stereo pair (as does Fig. 4), but 
both left and right pictures are quantized into two levels. Depth can be 
easily perceived. Now in Fig. 16 the left picture is identical to the left 
picture in Fig. 15, but the right picture is the negative of the right 
picture in Fig. 15. Thus, all points are complemented. Experimenting 
with Fig. 16, we can conclude that it is not possible to fuse a positive and 
a negative picture. In addition, strong binocular rivalry can be experi
enced. 

Fig. 16 - Stereo pair with positive and negative pictures quantized into two 
levels. 



BINOCULAR DEPTH PERCEPTION 1141 

In these presentations, special care was taken to ensure uniformness 
of the black and white values. (To avoid filter ringing, we used a "sam
ple and hold" circuit without filter in the digital-to-analog converter). 
The bars on the left side illustrate the effect of fusion and rivalry of 
more extended uniform areas. This experiment shows that one of the 
greatest perturbations we can introduce is to use maximum black or 
white points in one field and their complements in the other. 

VII. DEPTH PERCEPTION WITHOUT MONOCULAR MICROPATTERN RECOGNI

TION 

The perturbations introduced in the previous section were not drastic, 
and so the corresponding micropatterns in the left and right images still 
had some resemblance to each other. Nevertheless, it is apparent that 
fusion is not the result of a simple point-to-point correspondence between 
the stereo images. At least, certain coding operations that enhance the 
resemblances between corresponding micropatterns are required before 
fusion. 

In the next experiments, the resemblance between the left and right 
micropatterns is drastically reduced; despite this fact, depth can be per
ceived in several situations. 

In all the experiments that follow, the original stereo image is identical 
to the one in Fig. 4, with either 16 or two brightness levels and ~ = 4. 
Then, a regular grid is superimposed on the left and right random fields, 
as shown in Fig. 17. 

Every second point in every second line (shaded squares) is changed 
to maximum black in the left field and to maximum white in the right 
field. As shown, 25 per cent of the points are so treated, with the result 
that these points cannot be fused. The rest is unaltered. This arrange
ment of the perturbation grid removes similarities between the micro
patterns of the stereo pairs in the following sense: There are not any corre
sponding points in the left and right images which have an identical 
neighborhood. At least one point is changed to its complement in any 
micropattern 2 X 2 or greater in size. Fig. 5 shows such a stereo pair of 
16 brightness levels having a black grid in the left field and a correspond
ing white grid in the right field. 

The grid cannot be seen monocularly, since it is embodied in the ran
:lorn field. When Fig. 5 is viewed binocularly, however, the square jumps 
out and is quite stable. 

This experiment is still not decisive. One might argue that the re
semblance between corresponding micropatterns is not completely re
moved because, along every other horizontal or vertical line (these are 
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UNALTERED RANDOM BRIGHTNESS 
POINTS (OF 16 LEVELS) 

II} BLACK AND WHITE POINTS OF D THE PERTURBATION GRID 

Fig. 17 - Illustration of the method by which the unmixed regular perturba
tion grid was generated. 

unaltered), the micropatterns in the two fields are identical. A search
ing operation might exist that finds in the left and right monocular fields 
such identical one-dimensional arrays. To investigate this objection the 
following experiment was performed: 

The same regular perturbation grid of Fig. 17 was used, but with a 
modification. Instead of uniformly blackening out all of the grid points 
in the left field, these points were made black or white at random. Then, 
the corresponding points in the right-hand field were assigned the com
plementary values (see Fig. 18). 

Fig. 19 shows a 16-level random stereo field with this kind of mixed 
regular grid. Under these conditions depth is not perceived. Because in 
both perturbations (according to Fig. 5 and Fig. 19) the same points are 
left unaltered in the left and right fields and the same points are also 
perturbed, the fact that depth can be perceived in one case and not in 
the other removes the above objection. 

Even this experiment is not a final proof that monocular micropattern 
recognition does not play some part in fusion. It might still be argued 
that this striking difference between depth perception, using for pertur
bation the unmixed grid (Fig. 5) or the mixed grid (Fig. 19), could be 
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Fig. 18 - Illustration of the method by which the mixed regular perturbation 
grid was generated. 

explained by this hypothesis of monocular pattern recognition: In the 
unmixed case the regular grid might be recognized monocularly by an 
unconscious process, then disregarded, and the remaining random points 
could now be fused monocularly without any difficulty. In the case of 
the mixed grid, this grid is not apparent monocularly, so the removal of 

Fig. 19 - Stereo pair with mixed regular perturbation grid. 
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the grid points is not possible, and no fusion can take place. This hypoth
esis seems very improbable. Even to suppose that the regular grid can 
be recognized and removed unconsciously is unlikely, but, in addition, 
the monocular recognition of certain regularities in random fields would 
require extremely complex operations (e.g., autocorrelation technique 
detects only the periodicities of the hidden regularities without deter
mining the location of the grid points). Even assuming that such a proc
ess exists, it certainly could find a regular grid composed of maximum 
black (or white) points much more easily in a surround of random bright
ness points of 16 levels (with many medium grays) than it could in a 
surround having only black and white random points. To check this 
assumption, we used the unmixed regular grid of Fig. 5 with only the 
modification of quantizing the random fields into two levels. Fig. 6 shows 
this case, with the result that depth can be perceived even sooner than 
with 16-level quantization, which disproves the assumption of monocu
lar recognition and removal of the regular perturbation grid. 

The sLereo pair in Fig. 20 originally had a random field quantized inLo 
two levels, and a checkerboard-like perturbation grid was superimposed 
as illustrated in Fig. 21. Here, 50 per cent of the total points are comple
mented, and the regular grid has a double periodicity. Even in this case 
the depth effect can be easily obtained by fusing Fig. 20. 

In these last experiments, the left and right images differ from each 
other considerably and the monocular recognition of the perturbation 
grid is made very difficult, yet we can still fuse the unaltered points with 
ease. These results disprove the hypothesis of monocular pattern recog
nition (both in the micro and macro sense), and suggest the second al
ternative: that the two fields are first combined and all further process
ings are performed on the fused binocular field. 

Fig. 20 - Stereo pair with "checkerboard" perturbation grid. 
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Fig. 21 - Illustration of the method by which the "checkerboard" perturba
tion grid was generated. 

VIII. THE CONNECTION BETWEEN BINOCULAR PATTERN RECOGNITION AND 

DEPTH PERCEPTION . 

The demonstrations in the previous sections strongly suggest that, 
under these conditions, the perception of depth utilizes certain process
ings performed entirely on the fused binocular field. We intentionally do 
not yet call these processings binocular pattern recognition, because we 
must first investigate the feasibility of some processes that in ordinary 
usage are regarded as simpler than pattern recognition. 

It has already been shown that matching corresponding point domains 
in the two fields does not require organizing these point domains into a 
higher entity of monocular macro patterns or micropatterns. One might 
think that the matching of corresponding point domains (instead of 
corresponding patterns) could be achieved by searching for a best fit 
according to some similarity criterion (e.g., maximum cross-correlation). 
A simple way to find correspondence between points in the two fields is 
to select a zone (of arbitrary shape) around any point in the left field 
and search for a zone in the right field (having the same shape) that is 
most similar to the left zone according to a given criterion. If this zone
matching were performed for every point in the visual field and each 
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point were assigned the parallax shift (or depth value) so obtained, the 
final three-dimensional representation could be achieved. But such a 
process cannot work. If the zone size is small, noise can easily destroy 
any zone-matching; if the zone size is increased, ambiguities arise at the 
boundaries of objects which are at different distances. For instance, this 
process could never detect a one-dimensional array in front of a back
ground plane, which is relatively an easy task for a human. 

A more sophisticated version of this processing would be to vary the 
shapes of the zones during the zone-matching; finding a best fit would 
determine both the corresponding zones and their shapes. Now, in the 
absence of monocular cues, to search for a best' fit and simultaneously 
vary the shapes in all possible ways seems a very inefficient and time
consuming operation. In addition, some of our previous results make such 
processes seem less than likely. For instance, in the case of the unmixed 
perturbation grid (Fig. 17) - where depth was perceived - we could 
imagine that a zone having the shape of a horizontal (or vertical) array 
might be found. But the same proceflS would also have selected the same 
zone shape and properly matched these zones in the case of the mixed 
grid (Fig. 18), although depth was not perceived in this case. 

Thus, it seems difficult to find simple operations (avoiding the use of 
pattern recognition) that give depth information consistent with that 
abstracted by the human visual mechanism. However, it is possible to 
demonstrate certain properties of point domains that are necessary in 
order for them to be seen in depth. These properties incorporate concepts 
such as connectivity, minimum size of a point domain, organization of 
close or periodic parts in higher entities, etc. We intuitively associate 
these notions with pattern-recognition operations. Therefore, our find
ings suggest that, under certain conditions, the perception of depth de
pends upon binocular pattern recognition. There is, of course, no evi
dence that this pattern recognition on the binocular field is identical to 
ordinary (monocular) pattern recognition. Nevertheless, an understand
ing of binocular pattern recognition may well be revealing when the 
broader aspects of pattern perception are considered. We will proceed, 
therefore, to investigate certain properties of patterns in the binocular 
field that yield depth effects. 

The first question usually raised is this: Must the point domains pos
sess any familiar pattern for them to be seen in depth? The answer is no. 
Any connected point domain can be seen in depth regardless of the shape 
of its boundary. The point domain should be connected at least in one 
dimension. This one-dimensional connectivity is a trivial property, which 
every object in real life possesses, and the following experiments show 
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Fig. 22 - Illustration of the method by which a transparent center square was 
generated above another square (using horizontal arrays). 

that this important property is preserved in the binocular field. Fig. 22 
demonstrates the way in which a random stereo field (Fig. 23) is gener
ated, with every even line (of 40-picture-element length) having a paral
lax shift of ~1 = 4, and every odd line having one of ~2 = 6. 

The even and the odd lines each form a square that can be seen in 
depth; the far one appears to have a regular surface; the closer square 
seems transparent. Either horizontal or vertical connectivity yields the 
same results. Fig. 24 shows such a case, where the pattern is composed of 
vertical random arrays of 40 picture elements in length. Twenty even 

Fig. 23 - Stereo pair with a transparent square (composed of horizontal ar
rays) above the center square. 
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Fig. 24 - Stereo pair with a transparent square (composed of vertical arrays) 
above background. 

vertical arrays form the "transparent" center square; the odd vertical 
arrays belong to the background. 

If we now try an experiment using isolated points of the same depth, 
it is very difficult to see these points forming a ghost-like plane, even if 
the points are regularly spaced. Fig. 25 shows such a case, where the 
regular presentation of Fig. 4 is used but every second point in every 
second line has a parallax of .62 = 2. If these isolated points at the same 
distance are not regularly spaced and not dense enough, they cannot be 
organized as forming one surface. 

To show the importance of connectivity in another example, Fig. 26 
demonstrates a stereo pair with a meshlike perturbation grid (shown in 
Fig. 27). Although 50 per cent of the points are unaltered (as in Fig. 20), 

Fig. 25 - Stereo pair with "ghost" square (composed of isolated points) above 
background. 
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Fig. 26 - Stereo pair with meshlike perturbation grid. 

the depth effect is now greatly reduced. The only explanation offhand is 
the fact that the perturbation mesh limits the connectivity to small, 
separated subdomains. It is also interesting that these subdomains must 
possess a critical size in order to be seen in depth. The investigation of 
this quantitative aspect is not attempted at the present. 

UNALTERED RANDOM BRIGHTNESS 
POINTS (OF 16 LEVELS) 

BLACK AND WHITE POINTS OF 
THE PERTURBATION GRID 

Fig. 27 - Illustration of the method by which a meshlike perturbation grid 
was generated. 
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These findings might suggest that the patterns seen in the binocular 
field are similar to contour lines, which consist of continuous one-dimen
sional arrays and connect the points of equal parallax shift. In the next 
section a simple analog model will be derived along these lines. 

IX. THE DIFFERENCE FIELD AS A SIMPLE ANALOG 'fO 'l'HE BINOCULAR FIELD 

A simple model is an aid in getting greater insight into properties of 
the binocular field. The model that follows appears to have several prop
erties in common with the binocular field as perceived, but on the whole 
it is probably a crude approximation. 

In the following we accept the assumption that binocular pattern 
recognition is performed entirely on the binocular field in order to derive 
depth information, and we remember that the image points belonging 
to the left and right fields must be labeled. The binocular field f(L, R) 
is a function of the left and right fields (L and R); thus, the set of all 
points in the binocular field is a function of the set of brightness points 
L(x, y) and R(x, y) in the monocular fields, where x and yare the coor
dinates. 

Now the value of f(L, R) at some point x, y must not be merely a 
function of L(x, y) and R(x, y), but must in fact depend on the values of 
Land R at other points. Thus, it must not be of the form 

f(x, y) = f[L(x, y), R(x, y)] 

because the crucial information, namely, to which field a certain point 
originally belonged, would be lost thereby. 

In the previous section it was shown that cross-correlation also cannot 
be the combining operation between Land R. To derive a simple model 
of the binocular field, we generalize the notion of cross-correlation, with 
Land R being combined in the following way: 

gk(X, y) = L(x, y) * R(x + le, y) , 

where k is a positive number referring to a given horizontal shift to the 
right and * refers to an operation (as yet unspecified). We call the set 
of all gk functions (as k varies in a given range) the analog binocular field 
and all further processings will be performed on this field. We call this 
processing binocular pattern recognition without further specifying it at 
the present. 

To be more specific, we now choose a particular L * R by demanding 
that it be a simple operation. Addition or multiplication seems less 
favorable than substraction or division; this assumption is based on the 
experiments with Fig. 17, where the perturbation with an unmixed grid 
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gave depth effect, and Fig. 18, where the mixed regular grid did not. 
Neither go = L(x, y) + R(x, y) nor go = L(x, y). R(x, y) would discrim
inate between Fig. 17 and Fig. 18 (being identical for both cases), 
whereas both L(x, y) - R(x, y) and L(x, y)/R(x, y) could account for 
the difference in depth impression. 

Finally, we choose Dk(x, y) = L(x, y) - R(x + k, y) as the simplest 
operation at hand, and call Dk the difference field having a parallax shift 
of k picture elements. The set of all Dk fields is an analog binocular field, 
which is designated as the difference field D. In these investigations, we 
limit k to integers in a given range; thus, the final model consists of a 
finite number of difference fields of different parallax shifts. Now, de
termining the binocular parallax is equivalent to finding patterns in 
some of the Dk fields. We called this processing binocular pattern recog
nition, and in this analogy we regard it as being identical to ordinary 
(monocular) pattern recognition. 

In the case of our regular presentation (that is, the random stereo field 
containing a square with a parallax shift of four picture elements sur
rounded by a background with zero parallax shift), the following dif
ference fields will be obtained: (a) Dk for k ~ 0 or 4 are random fields 
where each brightness point has a triangular probability distribution 
[this is the result of taking the convolution between the two uniformly 
distributed random variables Land R, which gives the triangular prob
ability distribution of (L - R)]; (b) Do will be zero for every point in 
the background and will be random for every other point, that is, for 
the square and for points seen only by one eye; (c) D4 will be zero for 
the central square and random elsewhere. (Do anc1 D4 are shown as the 
left and right pictures in Fig. 28.) Here the zero difference corresponds 

Fig. 28 - Difference fields Do and D4 for the case of Fig. 4. 
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Fig. 29 - Difference fields Do and D4 for the case of Fig. 5. 

to a medium-gray level, the maximum positive difference to maximum 
white and the maximum negative difference to maximum black. 

Only Do and D4 are presented, because all other difference fields con
sist entirely of random brightness points. In the case of familiar stereo 
pairs, the difference field Dk contains points of near-zero value forming 
contour-lines having equal parallax shifts of k picture elements. 

The next two pictures, in Fig. 29, show Do and D4 for the case of the 
unmixed perturbation grid in Fig. 5. Through the perturbation grid, the 
uniformly gray background (or square, respectively) is clearly visible. 
Now, taking the mixed perturbation grid in Fig. 19, Do and D4 should be 
very similar to the unmixed case. In the unmixed case the perturbation 
grid is always black (or always white) for Do , which for the mixed case 

Fig. 30 - Difference fields Do and D4 for the case of Fig. 19. 
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Fig. 31 - Difference fields Do and D, for the case of Fig. 13. 

yields the same regular grid, but the grid points can take black and 
white at random. The left picture in Fig. 30 shows Do in this case, and 
it is now striking how well, in contrast to Fig. 29, the random central 
square is hidden by this type of perturbation. The right picture in Fig. 
30 is D4 for the mixed perturbation grid. Here, the grid points can take 
black and white values with 25 per cent probability each, and gray values 
with 50 per cent probability. Therefore, only 12.5 per cent of D4 is effec
tively perturbed, but, because of the random appearance of this perturba
tion, it is more effective in hiding the central square than is 25 per cent 
perturbation of the unmixed grid. The uniform regions must be detected 
both in Do and D4 to get depth. 

In the next picture (Fig. 31), Do and D4 are presented for the blurred 
picture of Fig. 13. The separation between the square and background is 
clearly visible, which confirms the fact that depth is also well perceived 
in this case. 

By introducing gaussian noise perturbation in the stereo pairs (as in 
Fig. 11), Do and D4 were determined. Subjective experiments were then 
conducted to determine the amount of noise that cancels depth, and this 
amount was compared with the noise needed to hide the square in the 
difference fields. 

The results of this experiment, using ten subjects, indicated that the 
threshold of perceiving depth was 6 db signal to noise (with a very rapid 
decline in depth perception below this value), and that the same thresh
old value was obtained for the detection of the square in the difference 
fields. 

As was emphasized before, the difference fields are probably very 
crude analogies for the binocular fields; nevertheless, it is worthwhile to 
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mention the following fact: In the course of these investigations a great 
number of different perturbations were introduced in the stereo random 
fields. As a result of this process, the obtained stereo pairs could be rank
ordered according to stability and time required to perceive depth. This 
same ordering process was performed on the corresponding difference 
fields based on the separability of the central square and its surround. 
It turned out that the two established hierarchies were identical, except 
for borderline cases. Naturally, such subtleties cannot be explained by 
our simple analogy, especially if we consider the following: We per
formed monocular pattern recognition on the difference field in order 
to detect certain regions, while binocular pattern recognition was per
formed on the binocular field to get depth. There is no evidence that the 
laws of binocular pattern recognition are identical to ordinary (monocu
lar) pattern recognition. (For instance, it is known that connectivity is 
an important monocular pattern-recognition cue that seems to be even 
more emphasized in binocular pattern recognition.) 

Even the assumption of using a linear operation (subtraction) in the 
model is naturally an oversimplification. In the next experiment we 
demonstrate a nonlinear phenomenon of the binocular space. The per
turbation grid in Fig. 32 is used. Here, every even sample in every even 

UNALTERED RANDOM BRIGHTNESS 
POINTS (OF 16 LEVELS) 

BLACK AND WHITE POINTS OF 
THE PERTURBATION GRID 

Fig. 32 - Illustration of the method by which the alternately mixed perturba
tion grid was generated. 
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Fig. 33 - Stereo pair with alternately mixed perturbation grid. 

line is alternatingly black and white, and its complemented value is 
copied in the other stereo picture. Fig. 33 demonstrates this case. Under 
strong illumination depth cannot be perceived. When the lights are 
dimmed (or eyes squinted), depth is easily obtained. Fig. 34 shows the 
difference fields; here, we find that detection of the center square is some
what dependent on the illumination. However, this weak dependence is 
not consistent with the depth experiment. 

x. MONOCULAR MACROPATTERNS ENHANCE DEPTH PERCEPTION 

In posing our original problem we were interested in whether the per
ception of depth uses monocular pattern recognition, binocular pattern 
recognition or a combination of both. In the previous sections it was 
demonstrated that depth can be perceived without monocular patterns 

Fig. 34 - Difference fields Do and D4 for the case of Fig. 33. 
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Fig. 35 - Stereo pair with brighter center square. 

being present. In this section it will be demonstrated, nonetheless, that 
monocular macropattern recognition enhances depth perception. The 
same random stereo images are used, but the average value of the bright
ness points of the square is increased. Because of this, the random points 
in the square are brighter than the surround, and the square can be also 
seen monocularly. Fig. 35 demonstrates this case; it is apparent that the 
depth effect is obtained much faster than it is with missing monocular 
cues. According to this, we can suppose that depth perception is a com
bination of binocular and monocular pattern recognition, as was sug
gested in Fig. 3. 

The actual processes of depth perception are, of course, much more 
complicated than the simplified diagram in Fig. 3. The different blocks 
are probably connected in many ways. Complicated feedback loops exist 

Fig. 36 - Stereo pair with whiter left and blacker right center square. 
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Fig. 37 - Stereo pair with left picture attenuated three times. 

between the binocular field and the monocular fields, between the binocu
lar pattern recognizer and the depth perceiver, etc. Fig. 36 demonstrates 
such a feedback between the binocular and monocular fields. Here, the 
random points in the left square have a mean value 20 per cent less 
than the surround and 20 per cent more than the surround in the right 
field. By fusing Fig. 36 we can see the square in depth with apparently 
the same brightness as the surround. 

Fig. 37 shows another interesting case, where the left brightness values 
are attenuated by dividing them with a factor of three. In this experi
ment, ~ = 7 picture elements and the center square is only 30 X 30. 
Depth is still easily perceived, according to expectation.7 

Another even more complicated operation takes place in the monocu
lar fields in connection with the binocular field. In Fig. 38 the left pic-

Fig. 38 - Stereo pair with right picture expanded by 10 per cent. 
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ture is contracted 10 per cent in both height and width. Even with this 
tremendous size discrepancy, fusion is possible and depth can be per
ceived. The ;same is true for rotations. More than ±6 degrees rotation 
from the base line can be tolerated and depth perceived. 

The tho:rough investigation of these processes is the key to real under
standing of depth perception. Some of the techniques developed here 
might, be useful in such further exploration. 

XI. SOME PROPERTIES OF THE DEPTH PERCEIVER 

In Figs. 1, 2 and 3 the pattern recognizers were followed by a block 
called the "depth perceiver." This unit might have the function of co
ordinating several pattern-recognition tasks and assigning depth to vari
ous points. Even those points that have no parallax (seen by one eye 
only) will be located in depth. When there is no contextual reason to 
assign a particular depth to certain ambiguous point domains, there is a 
general tendency to see them in the farthest plane. 

This tendency can be demonstrated by fusing Fig. 39. Here, the am
biguous random points lie in the place of the uniform black square seen 
behind the surround. Some investigations of ambiguous stereo effects 
(without parallax shift) were recently carried on with a similar result.8 

The depth perceiver is particularly sensitive to any vertical shift 
(perpendicular to the base line). Parallax shifts with slight vertical com
ponents will not give rise to depth effects, probably because such shifts 
cannot occur in life. It seems reasonable to assume that the depth per
ceiver utilizes monocular depth cues too. 

Naturally, all such divisions into different blocks are mere specula-

Fig. 39 - Stereo pair with uniformly black center square behind the random 
foreground. 
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tions until other psychological and physiological findings give adequate 
support. 

XII. CONCLUSION 

The peculiar depth effects that have been demonstrated strongly sug
gest that, under these conditions, depth perception is closely related to 
pattern recognition processes on the binocular field. Someone could raise 
the question: What is the merit of showing that binocular and not mo
nocular pattern recognition is required in depth perception if the processes 
of pattern recognition are still unknown? 

To answer this, we must realize that pattern-recognition processes are 
complex and highly nonlinear in nature. Because of this, it is very impor
tant which operations are performed on the input patterns before recog
nition. (For instance, upon performing the pattern-recognition task on 
the difference fields of Fig. 29 and Fig. 30, the qualitative difference of 
perceiving depth in the two cases is instantly apparent, which could not 
be simply explained if the recognition had been performed on the mo
nocular patterns of Fig. 5 and Fig. 19.) 

Thus, the discovery of certain transformations of the input patterns 
that facilitate the recognition task provides better understanding of the 
laws of pattern recognition. 

These experiments indicated also that, without monocular cues or 
Gestalt, depth can be still perceived. In order to be seen in depth, the pat
terns need to possess much simpler properties (e.g., one-dimensional 
connectivity, adequate number of connected points, etc.) than we origi
nallyexpected. These properties might be simple enough to be simulated 
by present computer technology. Thus, the findings of this study might 
give a new impetus to the development of devices that will determine 
depth automatically. 

The technique of stereo random fields also has several advantages in 
a great variety of possible applications. In binocular fusion studies, the 
problem of binocular rivalry sometimes makes investigation cumbersome. 
These stimuli have a self-checking feature against binocular rivalry; 
namely, as long as depth is seen, no rivalry can be present. 

The long time constants needed to perceive depth in certain presenta
tions indicate that depth perception depends very much on the input 
material. From the order of a few milliseconds (required for simple stereo 
pictures), we can easily increase the perception time to the order of 
minutes. This slowing down of a process can be very advantageous in 
investigations of learning, pattern recognition, etc. 

The stability of the random stereo fields is also very useful. Because 
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Fig. 40 - Illustration showing how presented stereo pictures should be viewed. 

nearly all points carry depth information, the stereo image is very stable 
and points with greater parallax shifts than in the ordinary case can be 
fused. 

Such stimuli could also possibly be used in apparent motion studies. 
This technique was found to be a useful tool in color studies to examine 

the role of color in depth perception. 
But perhaps the most useful property of this method is the elimina

tion of context and higher organization from the input stimulus, which 
makes it possible to isolate and study less formidable problems. 

2ND PLANE 

DEPTH DEPTH 

Fig. 41 - The subjective illusion seen when Fig. 8 is viewed stereoscopically. 
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APPENDIX 

The presented stereo pictures can be fused if they are viewed through 
a pair of lenses used as prisms, as shown in Fig. 40. The focal length of 
the lenses should be 10 to 18 inches and their diameter around I! inches 
or more, as is the case with the ones accompanying this paper. Some
times it takes several minutes to get the depth effect. 

If fusion of the left and right images cannot be obtained easily, a stiff 
paper or cardboard septum (10 to 14 inches long) placed between the 
two stereo pictures and perpendicular to the page will probably elim
inate the difficulty (see Fig. 40). Viewers who ordinarily wear glasses 
should not remove them when using the lenses. 

For example, the subjective illusion that is seen when Fig. 8 is viewed 
stereoscopically is illustrated in Fig. 41. 
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Models for Approximating Basilar 
Membrane Displacement 

By J. L. FLANAGAN 

(Manuscript received April 1, 1960) 

Three analytical models are developed for estimating the displacement 
of the basilar membrane in the human ear when the sound pressure at the 
eardrum is known. Frequency-domain data, derived experimentally by 
Bekesy, are Fourier-transformed to examine the impulse response of the 
membrane. Time-domain and frequency-domain responses of the models 
are compared with the experimental data. Excitation of the models by peri
odic impulses is considered. Calculations of membrane displacement are 
made for excitation by positive pulses, and by alternately positive and nega
tive pulses. Applicability of the results to the perception of pitch is indicated. 

1. INTRODUCTION 

In the course of developing an hypothesis to account for results ob
tained in two experiments on pitch perception,1.2 it became desirable to 
have a tractable model from which the displacement of the basilar mem
brane at a given point could be estimated from a knowledge of the sound 
pressure at the eardrum. This report describes the results of an effort to 
deduce such a model. 

II. MECHANICAL PROPERTIES OF THE MIDDLE EAR AND COCHLEA 

To recall facts and establish a frame of reference, a simplified sketch 
of the peripheral mechanism of hearing is shown in Fig. 1. The cochlea, 
actually wound in a snail-sheIl-like spiral in man, is sketched here un
rolled and stretched out. It contains the perilymph fluid and is parti
tioned longitudinally by a duct formed by Reissner's membrane and the 
basilar membrane. The duct, roughly triangular in cross section, is filled 
with another fluid, endolymph. Resting upon the basilar membrane 
within the cochlea duct is the organ of Corti. This organ, immersed in 
the endolymph, serves as the termination of the auditory nerve. Bekesy3 

has established that the basilar membrane and Reissner's membrane 

1163 
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Fig. 1 - Schematic drawing of the human ear. 

vibrate cophasically when the ear is stimulated by sound in the lower 
range of audible frequencies. Because Reissner's membrane does not 
enter into the present development, only the basilar membrane is 
sketched in the schematic diagram. 

A sound wave impinging on the ear is led down the external canal 
and sets the drum into vibration. The vibration is transmitted by the 
ossicular chain to the cochlea, where the piston-action of the stapes 
foot-plate produces a compressional wave in the fluid. Because of its 
distributed mass and elastic and viscous constants, and because of the 
pressure release at the round window, the basilar membrane vibrates 
selectively according to the frequency content of the stimulus. Displace
ment of the basilar membrane causes pressure to be exerted (by another 
membrane in the cochlea duct, the tectorial) upon the hairs emanating 
from hair cells in the organ of Corti. When the hairs are sufficiently de
formed, electrical discharges are produced in the nerve fibers. 

The mechanical properties of the cochlea have been studied in detail 
by Bekesy.4 He found that, when the stapes is driven sinusoidally with 
constant amplitude of displacement, the amplitude of displacement of 
points along the low-frequency (or apical) end of the basilar membrane 
varies with frequency as shown in Fig. 2. The peak displacement of 
each point is normalized to unity. His measurements3 of the difference 
in phase between the displacement of the stapes and the displacement of 
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Fig. 2 - Relative amplitude of displacement as a function of frequency for 
different points along the basilar membrane. The stapes is driven with constant 
amplitude of displacement (after Bekesy4). 

points along the membrane are sketched in Fig. 3. In addition to these 
data, Bekesy found 5 that, when the sound pressure is constant at the 
eardrum, the magnitude of volume displacement of the round window 
is nearly constant up to around 2000 cps. To the extent that the peri
lymph is incompressible and the walls of the cochlea rigid, the volume 
displacement of the round window is equal that of the stapes footplate. 

Data reported by Zwislocki6 and by Bekesy5 indicate that, for fre
quencies below 1000 cps, the over-all impedance of the middle ear and 
cochlea is predominantly elastic, owing principally to the compliance of 
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Fig. 3 ~ Relative amplitude and phase of basilar membrane displacement as 
a function of distance along the membrane (after Bekesy3). 
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Fig. 4 - Ratio of volume displacement of stapes to peak displacement of basi
lar membrane (after Bekesy4). 

the middle ear air cavity, the round window membrane and the liga
ments retaining the ossicles and drum. For these frequencies, therefore, 
the displacement of the stapes is essentially proportional to, and in 
phase with, the sound pressure at the eardrum. At frequencies above 1000 
cps, the inertial and viscous elements of the middle ear and cochlea 
become more important, and the velocity of the stapes apparently may 
lag in phase the pressure at the drum by as much as 7r/2 radians or more 
(hence, the stapes displacement may lag the pressure by as much as 7r 
radians or more). For frequencies above about 1000 or 2000 cps, the 
indications are that amplitude of stapes displacement begins to decrease 
appreciably for constant pressure at the eardrum. * 

Because the physical dimensions and mechanical properties of the 
basilar membrane change along its length (for example, the membrane 
increases in width, thickness and compliance going toward the apical 
end), the volume displacement of the membrane per unit length, per 
unit pressure across it, changes with distance from the stapes. For a 
constant amplitude of stapes displacement, therefore, the amplitude of 
the maximally displaced point is not constant with frequency. Bekesy4 

gives the ratio of amplitude of volume displacement of the stapes to 
amplitude of the maximally displaced point, as shown in Fig. 4. These 
data show that, for frequencies below 1000 cps, the amplitude of the 

* Zwislocki's data suggest a decrease of the order of 12 to 18 db/octave; Be
kesy's average data seem to agree roughly with this. In one preparation, however, 
Bekesy obtained a fall of about 30 db/octave. 
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maximum increases approximately 4 or 5 db/octave. At around 1000 cps 
the curve flattens off. 

In measurements of the absolute value of membrane displacement, 
Bekesy finds the maximal displacement at 200 cps to be 10-4 cm at the 
threshold of feeling (about 140 db referred to 0.0002 dyne /cm2) and, 
through extrapolation, 10-11 cm at the threshold of hearing. * For a given 
frequency and a given point on the membrane, Bekesy's data indicate 
that the mechanical vibrations of the stapes and basilar membrane are 
essentially linearly related until sound pressures above the threshold of 
feeling are reached. There is evidence, however, that the ear is capable 
of producing perceptible subjective components at sound levels less than 
this value. 

As stated at the outset, we desire an analytical relationJor estimating 
the basilar membrane displacement at a given point from a knowledge 
of the sound pressure at the eardrum, valid at least in the frequency 
range below 1000 cps. It is in this range that the stapes displacement is 
in phase with, and proportional to, the pressure at the drum. The experi
mental data that the model must describe are the frequency-domain 
data just discussed. The approximation problem may, of course, be ap
proached in either the time or frequency domains; usually it is helpful 
to maintain some insight in both domains. Consequently, we would 
first like to inquire as to the form of the displacement response of a point 
toward the low-frequency end of the membrane to an impulse of pres
sure applied at the eardrum. 

III. INVERSE FOURIER TRANSFORMATION OF BEKESY'S DATA 

The phase data of Fig. 3 are at best meager, but they are most defini
tive for the 200-cps point. Let us, therefore, take the 200-cps point for 
a sample calculation. Deducing the phase response from Fig. 3, t and 
taking the amplitude response from Fig. 2, we may plot the data as 
shown in Fig. 5.t Let us make two assumptions about the system with 
which we are dealing: first, the impulse response, h(t), of the point 
under consideration is Fourier transformable (i.e., f~~ h\ t) dt < 00); 
and second, the system is a stable one having no complex poles with real 

* The diameter of a hydrogen atom is about 10-8 cm. 
t Because peak displacement increases at around 5 db/octave, the possibility 

exists that the displacement of the point that responds maximally to a given fre
quency might not be the greatest displacement of the membrane for that fre
quency. However, the frequency response of a given point generally rises at a rate 
greater than 5 db/octave in the vicinity of its resonance; consequently, the great
est displacement occurs essentially at the maximally responding point. 

t As closely as I can determine from the Akustische Zeitschrift data, the maxi
mum displacement of the "200-cps point" falls at about 210-220 cps. 
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Fig. 5 - Displacement amplitude and phase for a point near the apical end of 
the basilar membrane. Maximum response occurs for a frequency of about 200 
cps. These curves are obtained from data in Figs. 2 and 3. . 

parts equal to, or greater than, zero (i.e., the system exhibits no output 
until an input is applied, and the final value of the impulse response is 
zero ). 

Taking the data of Fig. 5 as the magnitude, I H (w) I, and phase, cI>( w), 
respectively, of the Fourier transform, H (w), of the impulse response, 
h(t), we wish to calculate the inverse transform: 

h(t) = 2~ i: H(w)e
iwt 

dw. (1) 

In Cartesian form, H (w) is 

where 

H(w) = Re H(w) + jIm H(w), 

Re H(w) 

1m H(w) 

I H ( w) I cos <I> ( w ) , 

I H ( w) I sin cI> ( w ) . 
(2) 

Because Re H (w) is an even function of wand 1m H (w) an odd func
tion, (1) reduces to: 

1100 1 100 

h(t) = - Re H(w) cos wt dw - - 1m H(w) sin wt dw 
7r 0 7r 0 (3) 

= hI (t) + h2(t), 
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where h1(t) is an even function of time and h2(t) an odd function. Be
cause of the assumptions regarding stability [i.e., h(t) = 0, for t < 0]: 

hI ( t) = - h2 ( t ) for t < 0, 

and 

hI ( t ) = h2 ( t) for t > O. (4) 

Hence (3) can be written: 

2 r~ h(t) = - Re H(w) cos wt dw 
7r . 0 

for t > O. (5) 

To calculate h(t), then, only Re H(w) is needed. For the data of Fig. 5, 
Re H (w) is plotted in Fig. 6. * 

In the absence of an analytical specification of Re H(w), we have 
graphically evaluated the integral (5) by using the approximation: 

where: 

2 40 . 

h(ti ) = - L: Re H(wn) cos wntiAw, 
7r n=O 

wn = nwo, 

Wo = (27r) (10) radians per second 

Aw = (27r) (10) radians per second, 

ti = (0.4 X 10-3)i, i = 0, 1,2, ... , 27. 

(6) 

* Re H(w) was obtained from a large linear plot of I H(w) I and <fl(w) , not from 
a semilog plot such as Fig. 5. Estimates, where needed (such as end points of 
curves), were made on the linear plot. 



1170 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

The impulse response computed by the approximation (6) is shown in 
Fig. 7. 

One notices that the graphical transform yields a nonzero value at 
t = 0, and suggests a nonzero response for t '< o. The reason for this 
might be one of several: (a) the phase and amplitude data of Fig. 5 may 
not be compatible to satisfy the assumptions made about the system; 
(b) the data of Fig. 5 suggest that the amplitude response may be band
limited, and it was so treated in the computation; (c) the quantization 
used in (6) may introduce an error in the calculation of h( t). 

Of these three possibilities, the first two seem the more likely sources 
of discrepancy. The phase data in Fig. 3 suggest that at very low fre
quencies the phase difference between the displacements of the membrane 
and stapes is essentially zero. We know, however, that the scalas vestibuli 
and tympani communicate at the helicotrema. Consequently, a constant 
displacement of the stapes cannot sustain a constant displacement of 
the membrane. This argues, therefore, that the amplitude of membrane 
displacement must go to zero as zero frequency is approached, and the 
frequency-domain transform of displacement must have at least one 
zero at the origin of the complex frequency plane. If this is the case, and 
if the transform is minimum phase, the phase response near zero fre
quency must be at least 7r/2. Intuitively, too, it appears that constant 
displacement near the helicotrema requires constant velocity of the 
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stapes, arguing again for a derivative relationship between displacements 
at low frequencies. It seems likely then, that, as low frequencies are ap
proached, the phase of the membrane displacement begins to lead that 
of the stapes and at zero frequency goes to 7r /2. ':Measurement of the 
phase relations at low frequencies undoubtedly is difficult, owing to 
minuscule displacement of the membrane. 

In connection with possibility (b), the amplitude data in Fig. 2 sug
gest that the membrane displacement is essentially band-limited and di
minishes to zero for frequencies below about 0.05 and above about 2.0 
times the resonant frequency. This should be interpreted, however, with 
an appreciation of the magnitudes of displacement being observed (on 
the order of 10-4 cm) and the precision attaining thereto. In the graphical 
transformation, an effort was made to follow the experimental indications 
as exactly as possible. The amplitude function was treated as mathemati
cally band-limited and was considered to have zero value for frequencies 
above 400 cps and below 5 cps. This probably is not realistic for the 
physical system. 

Nevertheless, the inverse transform of the experimental data will pro
vide a helpful guide for appraising the responses of the models to be de
veloped in the next section. 

IV. MODELS FOR BASILAR MEMBRANE DISPLACEMENT 

A model for calculating the displacement of the basilar membrane at 
a given point must fit the frequency-domain data shown in Figs. 2 and 3. 
The response curves for various points along the membrane are not un
like those of bandpass filters having relatively sizable in-band delays. 
The peak values of the curves of Fig. 2 have been normalized to unity, 
but, as we recall from the previous discussion and from Fig. 4, the peak 
response rises at about 5 db/octave in the frequency range up to 1000 
cps. Above about 2000 cps, the peak response probably falls at something 
around 12 db/octave, and the stapes displacement is no longer in-phase 
with the pressure at the drum. 

If the data of Figs. 2 and 3 are normalized with respect to the fre
quency of the maximum response, the curves of Figs. 8 and 9 are ob
tained, respectively.* Except for the 150-cps case, the phase curves are 
estimated by reading points vertically from Fig. 3. The 150-cps curve 
is a single complete phase response published by Bekesy.3 

* I have replotted these data as carefully as possible from the published curves 
of Bekesy. In reviewing the literature a small discrepancy appears between the 
amplitude curves published in Akustische Zeitschrift and those which appear later 
in the Handbook of Experimental Psychology. I judged this to be due to rounding 
and smoothing in redrafting the latter, and hence gave more weight to the earlier 
data. 
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One notices that, except for the 100-cps case, the amplitude curves fall 
close together and represent resonances whose bandwidths are essentially 
constant percentages of the resonant frequencies (i.e., constant "Q"). 
The 100-cps curve is slightly broader than the others. The lower skirt 
of the amplitude curves rises at about 6 db/octave, while the upper skirt 
falls at approximately 20 to 30 db/octave. The total phase change in 
passing through a resonance is of the order of 371'. The phase curves for 
the lower frequency points have the greater slopes (i.e., dip/ dw) inside 
the passbands, and the delay for the lower frequency points is therefore 
greater. (This is, of course, as it should be, since the time required to 
propagate energy from the eardrum to points J?ear the apical end of the 
membrane is greater than it is for points lying at the basal end.) 

As a minor digression, it is interesting to notice that the slopes of the 
phase curves in the vicinity of resonance indicate delay values about 
twice as large as the transit times measured by Bekesy.4 Measuring the 
slopes of the phase curves in this region (again, from the linear plot) 
yields: 

Resonant Frequency, f 
100 CpS 
150 
200 
300 

Phase Delay, dcf>/dw 

11.8 msec 
7.2 
6.4 
4.5 

2trf(dcf>/dw) 

7.4 radians 
6.8 
8.0 
8.5 

These times represent the delays of the frequency components containing 
the greatest portion of the stimulus energy, and do not represent the 
times at which a response first appears (i.e., transit times). Looking 
back at the graphically determined impulse response for the 200-cps 
point (Fig. 7), one sees that the greatest displacement occurs at approxi
mately 6.3 milliseconds. The time at which the response essentially be
gins is of the order of 2.5 milliseconds, which is in close agreement with 
Bekesy's measurements. It is also interesting to note in passing that 
the product of resonant frequency and delay near resonance (i.e., the 
third column) is roughly constant. This fact will be utilized in adjusting 
the phase response of the models. 

To return to the question of fitting a function to the frequency-domain 
data, at least for the frequency range below 1000 cps, let us consider a 
model whose Laplace transform is the ratio of rational polynomials. 
There will be, of course, an infinite number of possibilities for fitting the 
data, depending upon the criterion and precision of fit. We would, how
ever, like to have an approximation that is both computationally simple 
and hopefully adequate to explain certain subjective results in pitch
matching. Any criterion of fit must ultimately have its roots in psycho
acoustic phenomena. Since such cannot be specified at this time, it would 
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seem that conventional curve-fitting techniques and least-squares cri
teria might be discarded in favor of a basically intuitive approach. 

The skirt slopes of the amplitude curves suggest a frequency function 
that has a simple zero in the vicinity of the origin of the complex fre
quency plane, and a denominator whose degree is about four or five 
greater than that of the numerator. The relationship between the real 
and imaginary parts of its complex conjugate poles ought to be such as 
to maintain the constant-percentage bandwidth character of the re
sponses. The amplitude at resonance ought to vary in the manner pre
scribed earlier, and the phase and delay characteristics presumably 
should be representative of the experimental data. (The question of 
phase at low frequencies \vill necessarily receive some further considera
tion.) 

As one of the simpler possibilities for approximating the amplitude 
and phase data, consider a function having two pairs of synchronously 
tuned complex-conjugate poles, one negative-real axis pole, and one 
negative-real axis zero near the origin. Adorned with necessary con
stants, such a function has a Laplace transform: 

F ( ) 4+r (8 + E) [ 1 J2 -8T 
1 8 = Cl{j 8 + I' (s + a) 2 + {j2 e , (7) 

where: 
Cl is a positive real scale factor which yields the appropriate absolute 

value of displacement; 
{jHr is a factor that produces the proper variation in amplitude of reso

nance with resonant frequency (if, as previously suggested, a figure of 
5 db/octave rise in the resonant peak is accepted, then r = 0.83); 

e -87' is a delay factor (T seconds) to bring the phase response into 
line with the experimental phase data. 

The function has second-order poles at s = -a ± j{j, a simple pole 
at 8 = -I' and a simple zero at s = - E. By virtue of the constant-per
centage bandwidth properties of the membrane resonances, we let {j and 
a be related by a constant: {j = ka. The value of the function for real 
frequencies (i.e., 8 = jw) is: 

(8) 
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As with the experimental data, it is convenient to work with frequency 
normalized. Let r = (w/{3).* Then (8) becomes: 

(~ + jr) [ 1 - 2 
F1(jr) = Cl{3T ~ ( 1 2) .2 J e-m~T. (9) 

~ + Jr 1 + k2 - r + J Ie r 

One notices that fitting the phase and amplitude data of Bekesy near 
to zero frequency presents somewhat of a dilemma (as it does with all 
other minimum-phase functions that we have considered). To diminish 
the amplitude response at low frequencies, one needs the zero of the 
function close to the origin. Although the phase at zero frequency ob
viously remains zero so long as the function zero is in the left-half plane, 
the phase "bulges" appreciably positive at low frequencies if the zero is 
placed too close to the origin. By empirical adjustment of the parame
ters, a compromise position was obtained for the zero, and corresponding 
values for k, T and 'Y were deduced. The values arrived at are: 

€ 
~ = 0.1, 

'Y 
~ = 1.0, 

k = 2.0, 

37r 
T = 4{3 seconds. 

(10) 

In order to match phase responses, one notices that the delay, T, is 
taken to vary inversely with the resonant frequency, (3. For the constant 
chosen, the added delay at 100 cps, for example, is approximately 4 milli
seconds. This delay, in conjunction with the w-dependent delay, is in 
reasonable agreement with Bekesy's measurements of transit time down 
the membrane. 

A plot of 

I F1(jn I 
I F1(jrmax) I' 

where rmax is the frequency of peak displacement, is given in Fig. 10. t 
The hatched region represents, for comparison, the variability among the 

* This normalizes real frequency with respect to the imaginary part of the pole 
frequency. The latter is not necessarily the same as the frequency of maximum 
response. 

t Note that for the present parameters the resonant peak does not fall exactly 
at r = 1.0, but more nearly at r = 0.95. 
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Fig. 10 - Frequency responses of the models compared with experimental data. 

200, 400 and 800 cps curves of Fig. 8. A plot of LF1(jr) = cfJ1(jr) is 
given in Fig. 11. 

If the experimental phase data at low frequencies are not taken too 
seriously, and the phase of (9) allowed to approach 7r/2, then the zero 
might be placed at the origin (i.e., € = 0). The amplitude response for 
this situation is shown by the dashed portion of the I F1(jr) I curve in 
Fig. 10. 

At high frequencies, function (9) attenuates as r-\ or at about 24 
db/octave. Some of Bekesy's data indicate attenuations slightly greater 
than this. As another possibility, therefore, a function having a simple 
zero at the origin and third-order, complex-conjugate poles was con
sidered. Its Laplace transform is: 

F ( ) 5+r S -sT 

2 S = c2,B [ (S + a) 2 + (32)3 e (11) 

w here the constants are defined in a manner similar to (7). The real fre
quency response in terms of normalized frequency is: 

F2(j!:) = c,ft' r ( 1 i!:2) .2 J e-;t~T. (12) 
.... 1 + k2 - r + J Ie r 

A reasonable fit to the resonant bandwidth is obtained for k = 2.0 with 



1/'1 
Z 

17 
2 

o 

17 
2 

-71 

oCt 377 
0-2 
oCt 
c: 
~ -277 

~ _571 
oCt 2 
:I: 
Q. 

-377 

777 
2 

-417 

977 
2 0.1 

BASILAR MEMBRANE DISPLACEMENT MODELS 1177 

--~ 
~ ~ ~M. ¢l(j{)---, 

~ ~~ 
~~ ~(h}j~) 

~ 
\~ 

200 CPS-..y\'~,,\ 
EXPERIMENTAL \ 

¢2(j{)~ ~ 
"\.'\ 

'\ 
0.2 0.3 0.4 0.6 0.8 1.0 2 3 

NORMALIZED FREQUENCY, { 

Fig. 11 - Phase responses of the models. 

(3T = 31l'/4, as before. For these values, a plot of I F 2(jr) III F2(jt max) I 
is given in Fig. 10 and L F2(jr) is given in Fig. 11. 

With a thought toward inverse transformations for the approximating 
functions, one function that provides a respectable fit and has a particu
larly simple inverse transform is the following: 

8
2 + 2a8 + (a 2 

- f!.-3

2

) 

F ( ) Q4+r -sT 

3 8 = C3~ [ (8 + a) 2 + (32)3 e . 
(13) 

Or, in terms of the normalized real frequency, 

(~-~ _t2)+j~t 
F3( jt) = c3/3r k

2 
3 k 3 e-H{3T. 

[G,+ 1 - r)+j~IJ 
(14) 

This function has simple zeros at 8 = a( -1 ± k/ V3) and third
order poles at 8 = a( -1 ± jk). The function obviously becomes non
minimum phase for k > V3. Because the separation between zeros is 
2k/V3, the zero at 8 = a( -1 + kjV3) has the greatest influence on 
amplitude response for the minimum phase conditions (i.e., k <: V3). 
For values of k = 1.7 and {3T = 31l'/4, the amplitude and phase responses 
of (14) are shown in Figs. 10 and 11, respectively. 
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v. INVERSE TRANSFORMS OF THE MODELS 

It is pertinent to examine the inverse transforms of the models (7), 
(11) and (18) (i.e., their responses to unit impulses applied at t = 0) 
and to compare these responses with the impulse response obtained for 
the experimental data (Fig. 7). 

Inverse transforming (7) is a particularly cumbersome procedure. In 
the interest of conciseness, the details of the inverse transformations for 
all the functions are relegated to the Appendix. Only the results will be 
used here. For function FI(s), the impulse response turns out to be: 

fl(t) = CII3
Hr{[0.088 + 0.36013(t - T)]e-!3(t-T)/2 sin l3(t - T) 

+ [0.575 - 0.32013(t - T)]e-!3(t-T)/2 cos l3(t - T) 

- 0.575 e -!3(t-T)} for t ~ T 

for t < T, 

where T is the previously specified delay. 
In a similar manner, the inverse transform of F2(S) is: 

h(t) = 

C,,8;+' [{fp(t ; T)]' + (:J(t _ T) -l} e-~"-T)/' sin (:J(t - T) 

+ (-[fJ(t - 7')]' + {(:J(t - 7')le-~"-T)/' cos fJ(t - 7')] 
for t ~ 7\ 

for t < T. 

(15) 

(16) 

As indicated earlier, the inverse transform of F 3 ( s) is particularly 
simple, this being the principal reason for presenting its fit. Its inverse is: 

al +r 

f3(t) = ~ W(t - T)]2e-!3(t-T)/1.7 sin (3(t - T) 
6 

for t ~ T 
(17) 

f3(t) = 0 for t < T. 

For comparison purposes, the impulse responses fl (t), f2 (t) and f3 (t) 
are plotted in Fig. 12, together with the graphically determined re
sponse of Fig. 7. In this plot relative delays have been equalized to com
pare waveforms. Because the scale constants CI , C2 and C3 have not been 
taken into account, the amplitude scales for the different curves are rela
tive. The curves have been plotted, however, for approximately equal 
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Fig. 12 - Impulse responses of the m()dels. These displacement functions are 
the inverse transforms of the frequency-domain data in Figs. 10 and 11. Time delay 
has been equalized to compare waveforms. Locations of absolute origins are given 
in the text. 

peak-to-peak values. The fits to the experimental data do not seem un
realistic, in view of the questions raised earlier. One notices that, in most 
instances, the positive impulses produce the greatest deflection in the 
negative direction. Equalization of the delays to bring the curves into 
coincidence were such as to make the absolute origins ((3t = 0) for each 
response the following number of radians to the left: 

Function 

200 cps, experimental 
h(t) 
h(t) 
h(t) 

Radians to Absolute Origins 

2.3 
1.9 
2.4 
1.5 

Of the functions displayed,!2(t) and!3(t) appear to fit the graphically 
derived impulse response better than!l(t) does. In the frequency domain, 
however, F1(s) appears to afford the slightly better fit. 

VI. RESPONSE OF MODELS TO PERIODIC IMPULSE EXCITATION 

If an excitation of periodic unit impulses is delivered to a linear sys
tem, the periodic response is a doubly infinite, linear superposition of 
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responses to single impulses, or: 

00 

get) = L: J(t - nr), (18) 
n=-oo 

where J(t) is the response to a single impulse, applied at t = 0, r is the 
period of excitation and get) is the periodic response. If F(w) is the 
Fourier transform of J( t), it can be shown that: 

get) = f ~ F(nwo)einwot, (19) 
n=-oo r 

where Wo = 27r / r is the fundamental frequency of excitation. Because 
g( t) is a real function of time for a physically realizable system, the am
plitude spectrum is even; i.e., I F(w) I = I F( -w) I ; and the phase spec
trum is odd; i.e., <1>(w) = -<1>( -w). Relation (19) can therefore be 
written: 

g(/) = ;; {I F(O) 1+ 2 &. I F(nu:o) I cos [nwol + <p(nwo)l}. (20) 

By way of example, let us look at the response of function Fl(W) [see 
(8)] to an excitation of periodic impulses. Suppose we first take the case 
where FI (w) specifies a point on the membrane tuned to the fundamental 
frequency of excitation. Let the resonant frequency of the point be 
/3x = Wo· Then t = w/wo = nwo/u:o = nand Fl(nwo) = Fl(t = n), and 
the periodic response is: 

(21) 

:; {F.U· = 0) + 2 "f. I F.(, = n) I cos [n8.1 + <p.(, = n) l}. 
As determined in previous calculations, values of Fl(t) are: 

n I Fl(t) I 
Cl(3x T .pm, degrees 

0 0 0.06 0 
1 1 0.67 -248 
2 2 0.08 -534 
3 3 0.01 -706 

Obviously, in this case the displacement response of the membrane is 
principally fundamental, the second harmonic being slightly more than 
one-tenth the amplitude of the fundamental. A plot, on a relative ampli
tude scale, of these first four terms is shown in Fig. 13(a). 
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Fig. 13 - Displacement responses of model Fl(S) to excitation by periodic im
pulses. The three conditions represent: (a) the displacement of a point on the 
membrane resonant to the fundamental frequency, Wo ; (b) the displacement of a 
point resonant to the second harmonic; (c) the same as (b) except with the funda
mental frequency component eliminated from the stimulus. 

Consider next a point on the membrane tuned to the second harmonic 
of the stimulus (i.e., (3y = 2wo = 2{3x). Then r = w/2wo = nwo/2wo = n/2 
and FI(nwo) = FI(r = n/2). In this case: 

gy(t) = 

:; {F.(l ~ 0) + 2 t.l F'(l ~ ~)l cos[n~t + P'(l ~ ~)]}. 
(22) 
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placements of membrane points respectively resonant to: (a) fundamental fre
quency; (b) second harmonic; (c) third harmonic; (d) fourth harmonic and (e) 
fifth harmonic. The dashed curves are the displacements when the fundamental 
component is eliminated from the stimulus. 
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Functional values for this case from previous computations are: 

It I FlC?:) I 
Cl{Jyr 

",cn, degrees 

0 0 0.06 0 
1 0.5 0.37 -60 
2 1.0 0.67 -248 
3 1.5 0.27 -422 
4 2.0 0.08 -534 
5 2.5 0.03 -626 

Because of the form of (9), note that the amplitude scale factors for 
gy(t) and gx(t) are in the ratio ({3y/{3xf = 2T.* The response gy(t) of the 
point resonant at the second harmonic of the excitation is plotted in 
Fig. 13(b). 

If the stimulus is ideally high-pass filtered to remove the dc and funda
mental terms, then the periodic response at point (3y is that shown in Fig. 
13( c). 

The shape of a single period at {3y , with the fundamental present, is 
already similar to the impulse response. If one examines points tuned 
higher in frequency, the time resolution increases because the bandwidth 
increases, and the response becomes more and more identifiable as re
peated impulse responses (i.e., nonoverlapping impulse responses). 

An even more instructive insight is obtained if one considers periodic 
excitation by alternately positive and negative impulses. Such a train is 
odd-harmonic in equal amplitudet and, like the repeated positive pulses, 
has a phase spectrum that is zero. To vary the example, let us consider 
the response of F2 ( 8) [see (11)] to this excitation. Following an approach 
identical to that just described, but dealing only with odd spectral com
ponents, the responses of Fig. 14 are obtained. Once again we recall that 
the amplitude scales, shown here as relative, are in the ratio (3T. 

The response of a point tuned to the fundamental is essentially a 
sinusoid at the fundamental frequency and is shown in Fig. 14(a). The 
displacement of the membrane point tuned to the second harmonic 
(where there is no stimulus energy) is shown in Fig. 14(b). It exhibits a 
displacement in which the fundamental periodicity can be discerned 
when the fundamental component is present. Without the fundamental 
the response is relatively low-amplitude third harmonic. The point tuned 
to the third harmonic, Fig. 14(c), displaces essentially at the third har-

* The implication here, of course, is that we are still dealing with frequency 
ranges below 1000 cps, where the membrane resonances are assumed to vary in 
peak displacement, as previously discussed. 

t The equal-amplitude spectral lines have twice the amplitude of those for 
repeated positive impulses. 
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monic frequency whether the fundamental is present or absent. The 
point tuned to the fourth harmonic, Fig. 14(d), begins to exhibit funda
mental periodicity again, regardless of whether fundamental is present 
or not. The point tuned to the fifth harmonic, Fig. 14(e), yields a re
sponse which is very nearly nonoverlapping, superposed impulse re
sponses. 

Quantification of the membrane displacement in this manner offers a 
basis for a number of useful speculations on the perception of periodic 
pulses. 

VII. CONCERNING RELATIVE AMPLITUDES OF DISPLACEMENT 

Since relative amplitude of displacement may be of importance in the 
conversion of membrane displacement into nervous activity, it is worth
while to examine amplitude relations further. We have seen that, if the 
membrane is excited with periodic impulses at a fundamental frequency 
to which a point near the apical (low-frequency) end is resonant, this 
point executes a displacement which is nearly the fundamental sinusoid. 
A point toward the basal (high-frequency) end, whose resonance curve 
embraces a substantial number of harmonics, yields a periodic response, 
which is essentially a succession of negligibly-overlapping impulse re
sponses. Because such points respond simultaneously (except for transit 
delay), and because their peak amplitudes have implications in hy
potheses about pitch perception, let us compare the peak amplitudes of 
a "fundamental-responding" point with that of an "impulse-responding" 
point. For the sake of varying the examples further, let us work with 
model Fa(s), in (13), and its impUlse response faCt), in (17). We are in
terested in the absolute extremum of (17). The times of the extrema can 
be found by differentiating (17), setting to zero and solving, which gives: 

1 -1[ 1.7{3(t -T) ] ( ) 
tmax = ~ tan (3(t _ T) _ 3.4' t > T. 23 

The envelope maximum occurs at: 

tm" ,"vol = e~4 + 1). (24) 

It is not necessary to solve the trancendental relation (23), since we al
ready have (17) plotted to a reasonable precision in Fig. 12. Using the 
latter data, we get for the absolute maximum of faCt), 

(3 Hr 
lfa(t) Imax = Ca ~ (1.4) = (0.23)C3{3pHr, (25) 
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where the subscript p denotes a point toward the high-frequency end of 
the membrane. In a parallel manner, the amplitude of a point, q, tuned 
to the fundamental frequency can be obtained from relation (20). In 
this case, (3q = Wo and 

1) I 

(26) 

I'.J C3(3q Hr (0.26). 

The ratio of these two peak displacements is, therefore 

R3 = I f3(t) Imax = (0.88) ((3p)l+r. 
I g3(t) Ifund (3q 

(27) 

If the same computations are made for the other two models, Fl(S) 
and F2 ( s), the ratios are: 

RJ = (0.80) (::f', 
R, = (0.82) (::f. (28) 

Since {3p > {3q and since the experimentally determined exponent 
r ~ 0.8, the peak amplitudes of the impulse-responding points exceed 
those of the fundamental-responding points, at least in the frequency 
range below 1000 cps (i.e., roughly over the apical half of the mem
brane). 

VIII. EVALUATION OF SCALE CONSTANTS Cl, C2 AND C3 

Bekesy's data show that the maximum deflection of the basilar mem
brane at a frequency of 1000 cps and a sound pressure level of 134 db 
referred to 0.0002 dyne/cm2 (i.e., 103 dynes/cm2

) is approximately 10-4 

cm. His measurements also indicate that the mechanical functioning of 
the middle and inner ear is essentially linear to the threshold of feeling. 
In the models, therefore, the constants Cl , C2 and C3 should be chosen to 
provide peak displacements at resonance equal to 

(10-
7 

cm'jdyne) L"Ciooo)J. 
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The amplitude responses of the models at resonance are: 

I PI(r = 1.0) I = cl/f(0.66), 

I F 2(r = 1.0) I = c2/r(0.92), 

I F3(r = 1.0) I = C3fJ
T (0.83). 

The values of the constants, therefore, should be: 

10-7 

CI = (0.66) [271" (1000)]r, 

10-7 

C2 = -;-( 0=--.9""'-:2:-:-) -=-=-[ 2-7I"--;--(1-::-0~00 ) ] T , 

10-7 

C3 = -:-( 0-.8-3"-::) [2-71"---:'(-10-0--:0 )-] T • 

IX. APPLICA'rrON TO PITCH PERCEPTION 

(29) 

(30) 

As suggested at the outset, the present computations were precipi
tated by a particular need. In drafting a paper to report two earlier ex
periments on pitch perception,l,2 it became painfully obvious, as soon 
as the discussion section was reached, that little quantitative basis 
existed for interpreting the subjective data. The models described here 
were developed in an attempt to alleviate this situation. 

In the pitch experiments it became necessary to explain how three 
different modes of pitch perception arise when periodic pulse trains 
stimulate the ear. One mode ascribes a pitch to the stimulus equal to 
the pulse rate, regardless of the polarity pattern of the train; in other 
words, positive pulses (condensations) are not discriminated from nega
tive pulses (rarefactions). A second mode ascribes a pitch equal to the 
mathematical fundamental whether energy is present at this frequency; 
this mode includes the situation which has been labeled "residue" phe
nomenon. The third mode assigns a pitch equal to the frequency of the 
lowest spectral component present in the stimulus. 

The first mode characteristically operates at low values of pulse rate 
(usually below 100 pps in unmasked situations). The second usually 
obtains for fundamental frequencies in the approximate range 200 to 
500 cps. The third seems to hold for fundamental frequencies around 1000 
cps and higher when the lowest-frequency component is rejected by 
HP filtering. 

Without launching into the details of the psychophysical experiments, 
the applicability of the models to the perception of pulses can at least 
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be indicated. It is of consequence, for example, to ascertain to what 
extent the subjective pitch modes are manifested in the mechanical 
operation of the cochlea. Looking again at Fig. 14, one can observe dis
placement patterns that might be considered favorable for giving rise 
to the pitch modes just outlined. This presumes, of course, certain hy
potheses about the mechanism of converting displacement information 
into electrical discharges in the nerve fiber. A discussion of these im
portant details, however, is more appropriate in another place. Even so, 
Fig. 14 suggests several things. 

When the membrane is excited over most of its length by a periodic 
pulse stimulus, the higher-frequency portion probably is effective in 
supplying only pulse-rate information, no matter what the polarity 
pattern of the train. In this region of the membrane the pulses are well 
resolved in time (i.e., the displacement is essentially nonoverlapping 
impulse responses), and the "overshoot" of the response to each pulse 
is substantial. Under certain assumptions about the transduction of dis
placement into nervous activity, the latter fact can be construed as 
favorable for eliciting nerve volleys in synchrony with each pulse. * 

Information on fundamental frequency might be manifested in two 
ways: (a) If the fundamental component is present in the stimulus, then 
the point on the membrane tuned to the fundamental responds strongly 
with near sinusoidal displacement. (b) If, on the other hand, the funda
mental is absent, the lowest-frequency part of the membrane receiving 
excitation will embrace a small number of spectral lines within its fre
quency response. Its displacement generally will exhibit the fundamental 
periodicity in a form favorable for triggering one nerve volley per funda
mental period. 

So far these comments have not considered the importance of relative 
amplitudes of displacement. This question appears to be of particular 
consequence in evoking the second, or fundamental, pitch mode. Although 
the indications are that most significant neural information originates 
from the point of greatest displacement, there is evidence that subjects 
may give preference to the fundamental mode over the pulse-rate mode 
even though the former may be correlated with smaller membrane dis
placements than is the latter. Relative amplitudes of displacement very 
likely undergo nonsimple transformations in the neural conversion proc
ess. 

Still open, too, is the question of the third pitch mode. Although our 
models are limited to the frequency range below 1000 cps (because they 

* There also is evidence that the transduction may be sensitive to spatial deriv
atives of displacement as well as to displacement. This, too, could facilitate per
ception of the pulse-rate mode. 
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do not adequately account for middle-ear transmission above this fre
quency), an explanation, fabricated of flimsy substance, can be suggested 
for the third mode. Bekesy's data suggest that the amplitude of maximal 
displacement of the membrane falls appreciably (about 12 db/octave 
or more) for frequencies above 1000 cps. In this region, then, that part 
of the membrane responding to the lowest-frequency component would 
exceed in amplitude those parts responding to higher-frequency com
ponents. If amplitude of displacement is at all important in the conver
sion process (and it most probably is), then the third mode is favored 
provided the lowest-frequency component is not too high in harmonic 
number. As indicated earlier, the third mode has been observed when 
either the fundamental, or the fundamental and second harmonic, is 
rejected from the stimulus. This mode has obtained in our pitch-match
ing experiments for fundamentals in the frequency range around 1000 
cps and slightly higher. 

One final comment is of interest along these same lines. It has been 
reported in the literature that if a periodic train of positive pulses is 
high-pass filtered at around 3000 and 4000 cps, one hears a "residue" 
pitch equal to the fundamental frequency. Our models suggest, how
ever, a response more nearly correlated with pulse rate. If one uses a 
stimulus in which pulse rate and fundamental frequency are confounded 
(as with positive pulses), then the former result might obtain. If, on 
the other hand, a stimulus such as alternate positive and negative pulses 
were used, the subjective impression may well be that of pulse rate. If 
the latter is in fact the case, then a fundamental "residue" pitch does 
not exist for this condition. * 
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APPENDIX 

Inverse Transforms for FI(S), F2(S) and Fa(s) 

When the function FI(S) of (7) is disencumbered of its constants, the 
problem of inverse transformation amounts to calculating the inverse 

* Since drafting this paper, I have set up the latter experiment and listened to 
alternate positive and negative pulses HP-filtered at 3000 and 4000 cps. I made 
pitch matches fairly consistently at the pulse rate. A second listener, on the other 
hand, made matches that were generally higher than the pulse rate, suggesting 
that my preconceived notions may have influenced my data. It is unequivocal, 
however, that one would not match to the fundamental frequency. 
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transform of: 

(
s + E) [ 1 J2 

K 1 (S) = S + "I (S + a) 2 + {32 

_ [ 1 J2 + (E - "I) [ 1 J2 ( 31 ) 
- (s + a) 2 + {32 S + "I (s + a) 2 + (32 

= Ka(s) + Kb(S). 

The inverses of I{a(s) and K/;(s) can be obtained in the usual manner 
by making partial fraction expansions in terms of the singularities, ac
count being taken of the order of the poles, and evaluating the residues 
in each pole. Or, having got the inverse for IC(s), the inverse for Kb(S) 
can be computed from: 

(32) 

where * indicates convolution. 
For the present case these standard procedures prove rather cumber

some and messy. Because of the favorable initial values of the function 
and its first two derivatives [namely, k1(0+) = k~(O+) = k~ (0+) = 0], 
derivative relationships can be used to obviate evaluating residues and 
performing the convolution. * The derivative relations of use here are 
the following: If the function jet) has the Laplace transform F(s), then 

(-If dnF(s) = tj(t) 
dsn 

' 

and 

dnj(t) = snF(s) _ sn-lj(O+) _ sn-2j'(0+) 
dtn 

We start with two well-known transform pairs: 

II-at . {3 J ( ) 
(s + a) 2 + {32 --7 ~ e sm t = tl t , 

and 

(s + a) -at h ( ) 
[ (s + a) 2 + {32] --7 e COS {3t = 2 t . 

Applying (33) through (36) gives 

[ (s + a) 2 - {32] -a t ( ) 
( (s + a) 2 + {32)2 --7 t e COS {3t = th2 t . 

(33) 

(35) 

(36) 

(37) 

* I am indebted to B. F. Logan of the Acoustics Research Department of Bell 
Telephone Laboratories, who pointed out to me the utility of the derivative rela
tionships in obtaining transforms for these functions. 
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One notices that ](a(S) can be expressed as a simple combination of (35) 
and (37), namely, 

1 1 {I (s + a)2 - (32 } 
[(s + a)2 + (32)2 = 2(32 (s + a)2 + (32 - [(s + a)2 + (32)2 (38) 

and 

1 1 
[(8 + a)2 + (32)2 --+ 2(32 (hI - th2). (39) 

Application of (34) through (39) gives 

(40) 

and 

S2 (a 2 + (32 ) ((32 - a 2 
) 

[ (s + a) 2 + (32)2 --+ hI 2(32 - at + hz 2/32 t. (41) 

The inverse of ](a(S) is, therefore, (39). The inverse of ](b(S) can be 
obtained from a partial fraction expansion followed by application of 
(39), (40) and (41). Expand Kb(8) as: 

(
e - 'Y) 1 = A. + G(s) (42) 
s + 'Y [ (8 + a)2 + (32)2 (s + 'Y) [ (8 + a) 2 + (32)2 , . 

where A is a constant and 

G(S) = (ao + alS + a2l + a3s3). 

If A and G( s) are evaluated, one gets 

A - (e - 'Y) I - (e - 'Y) 
- [(s + a)2 + (32]2 8=-7 - [')'2 - 2a'Y + a2 + 132)2' 

ao = ! [e - 'Y - A (a 2 + (32) 2], 
'Y (43) 

al = A['Y( 4a - 'Y) - 2(3a2 + (32)], 

a2 = - A (4a - 'Y), 

a3 = -A. 

The inverse transform of K b ( s), therefore, is a summation of term:;; (39) 
through (41), with the appropriate multiplicative constants. 



BASILAR MEMBRANE DISPLACEMENT MODELS 1191 

Two differentiations (with respect to s) of (35) give the transform 
pair: 

[(s + a)2 - /32/3] 1 2 
( (s + a) 2 + (32)3 ~ (5 t hI , 

(44) 

which is the function used us the model F 3 ( s) of (13). 
In an essentially parallel manner, one obtains the pair: 

s 1 [ ( 22 2 ) ( 22)] ( ( ) 2 2)3 ~ 84 hI a/3 t + /3 t - 3a + h2 3at - /3 t . 
s+a +8 /3 

(45) 

This is the function used as the model F 2 (s) of (11). 
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Erratum 

On page 747 of "The Theory and Design of Chirp Radars" in the 
July 1960 Bell System Technical Journal, the analytical work attribu
ted to A. W. Schelling should correctly be credited to .J. C. Schelleng. 



Design and Performance of Ultraprecise 
2.5-mc Quartz Crystal Units 

By A. W. WARNER 

(Manuscript received March 29, 1960) 

A 2.5-mc crystal unit has been developed for use in a new, extremely 
stable frequency standard oscillator. A well-balanced design was achieved 
by using a 30-mm-diameter, plano-convex, polished quartz plate, coated 
with gold and operated on its fifth overtone. The quartz plate is mounted 
on its quiescent edge in an evacuated bulb, and achieves a Q of five to six 
million, representative of the Q of the quartz itself. The temperature coeffi
cient, current coefficient, frequency adjustment tolerance and frequency ag
ing of the crystal unit are all consistent with a frequency stability in the 
order of one part in 1010• It was necessary to develop polishing methods that 
would not disturb the crystal structure of the quartz plate and new methods 
of orienting the crystallographic axes to achieve better temperature coefficient 
control. New methods of mounting the quartz plate were found that avoid 
strain and reduce the effects of shock and vibration. The new crystal unit 
makes possible oscillators characterized by excellent frequency stability, 
small and uniform aging and straightforward design. For periods up to 
one month, the frequency stability of such standards compares favorably with 
that of atomic frequency standards. 

1. INTIWDUCTION 

The quality of a quartz crystal frequency standard is determined by 
the crystal-controlled oscillator, and particularly by the mechanically 
vibrating, piezoelectrically excited quartz plate. Special quartz crystal 
resonators, characterized by high Q, excellent frequency stability under 
shock and vibration, and small change with time, have been developed 
for use in a new general-purpose, extremely stable frequency standard. 

The development of improved oven and oscillator circuits has con
tributed substantially to this improved stdndard, and will be reported in 
a separate article. Over-all performance of an experimental oscillator has 
been reported briefly,1 and similar oscillators are in operation at the Na-
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tional Bureau of Standards (see Section 4.5 of this paper), the Naval Re
search Laboratory and Bell Telephone Laboratories. 

In this article particular emphasis will be given to the quartz resonator, 
considering (a) the design principles, (b) the development of the present 
design and the related processing techniques and (c) the properties of the 
quartz resonator as a circuit element, including its thermal, mechanical 
and temporal characteristics. In order to limit the scope, a cursory 
knowledge2 •3 of crystal unit fabrication will be assumed, and only a brief 
recapitulation of fcwts already published will be given. 

The development of highly stable crystal resonators is a continuing 
work, because each new achievement in frequency accuracy and stability 
generates the need for still greatcr accuracy and stability; to meet these 
needs, the underlying causes of frequency aging and many other special 
aspects of the behavior of crystal-controlled oscillators must be more 
fully understood. A solution of these problems will require further funda
mental investigation into the nature of the materials involved. 

Such development work for improving quartz oscillators is not likely 
to be made superfluous in the immediate future by atomic and molecular 
frequency standards. Atomic standards, whose frequency stability is bet
ter than a part per billion for very long periods of time, employ quartz 
oscillators as part of their circuitry. Thus, their short-time stability is 
that of the crystal-controlled oscillator. As atomic standards are im
proved, the need for higher-Q crystal resonators will be increased. Fur
thermore, as the long-time frequency stability of quartz oscillators is im
proved, they can be operated for longer periods of time independent of an 
atomic frequency reference. Use of the oscillator alone would, of coursc, 
reduce the size, weight and complexity of the frequency standard. 

II. DESIGN PRINCIPLES 

In this section the significant parameters in the design of a crystal 
unit of the highest practical precision are considered, including (a) use 
of edge-mounted crystal plates operating in high-frequency thickness 
shear, (b) desirable crystal unit characteristics and their correlation to 
a well balanced design, (c) the role of quartz plate size and (d) the inde
pendence of Q and inductance, and the best choice for the value of the 
inductance. 

There are two basic design concepts in use today for the construction of 
high-precision quartz crystal units. One makes use of low-frequency, 
large-size quartz plates supported at nodal points by arrangements of 
cords and springs or rods, or by soldered wires. Its advantage lies in a 
high potential Q and a large frequency-determining dimension. Its dis-
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advantage lies in the fact that the mounting structure is part of the 
frequency-determining, mechanically vibrating portion of the crystal 
unit, making it unstable with respect to shock and vibration and con
tributing to frequency aging. The other design concept, and the one to be 
described here, is the use of edge-mounted crystal units in high-frequency 
thickness shear operation in order to decouple the mechanically vibrat
ing portion of the quartz plate from the mounting. By use of convex 
shaping, the mechanical vibration can be confined to the center of the 
crystal plate, leaving the edge quiescent. Such units can be more closely 
adjusted to frequency and have improved frequency stabilitycharacteris
tics and other operating advantages as shown in Section IV. Theconstruc
tion details are quite different, relying on carefully designed machines 
rather than on individual craftmanship. 

The crystal unit or resonator for a primary frequency standard must 
be characterized by high Q, low temperature coefficient of frequency at 
the operating temperature, low frequency drift with time, low current 
coefficient, relatively high impedance and small frequency-adjustment 

'tolerance. There is no particular order of importance among these fac
tors, since neglect of anyone of them will largely nullify the precision 
that would be attainable through the use of extreme care with the others. 

These requirements, along with performance factors for the oven and 
circuit, fall naturally into several groupings, with each factor in a group 
being interrelated with other factors in that group. One combination is 
the Q of the crystal unit, its frequency accuracy (since frequency adjust
ment by circuit means is limited by the probable stability of the control
ling circuit element) and the phase stability of the oscillator circuit. Other 
combinations are (a) the crystal unit frequency-temperature characteris
tics such as temperature coefficient and susceptibility to thermal shock, 
the oven temperature, and the degree of oven temperature control; (b) the 
crystal unit frequency-current characteristic, the oscillator current level 
and the oscillator current control. Care must be taken to see that no 
combination contributes more than about five parts in 1011 frequency 
change if the over-all design is to be stable to one part in 1010. 

In the design of AT-cut high-frequency shear mode crystal units the 
following two facts must be considered: (a) the Q of the quart.z itself, 
at normal temperatures, increases as the frequency of operation is de
creased4 and (b) the lowest frequency at which the crystal unit can be op
erated without significant external losses is severely restricted by the 
availability of sufficiently large quartz plates. Since circuit phase stabil
ity is likely to be better at lower frequencies where the Q of quartz is 
higher, there is a definite advantage in the use of large quartz plates. 
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To achieve a Q limited only by the quartz itself, other causes of energy 
dissipation must be reduced to a negligible point. The following have 
been found effective: 

(a) evacuate the enclosure, thus removing air damping; 
(b) choose the size and shape of the quartz plate so that the edge is 

quiescent, thus eliminating energy loss through the edge and the mount
ing structure; 

(c) polish the crystal plate major surfaces, thus removing minor im
perfections that can dissipate energy in the active portion of the quartz 
plate (an improvement in Q of about 10 per cent can be achieved). 

Once condition (b) has been met, the Q cannot be increased at a given 
frequency by changing the inductance of the unit, by using other modes 
of vibration or overtones, or by using electrodes of a different size. Under 
these conditions, the ratio of Ll to Rl, and thus the Q, in the equivalent 
electrical circuit, Fig. 1, has been found to remain essentially constant, 
subject only to the three operations enumerated above. This is, of course, 
reasonable, since there is no change in the source of energy dissipation. 

The inductance can be selected, therefore, to operate at an optimum' 
impedance for a better match of crystal unit to circuit. An optimum im
pedance may be achieved by using an overtone mode of vibration (re
versal of phase in the thickness direction). For a given frequency, an 
overtone mode unit requires a thicker quartz plate (desirable for fre
quency stability) and has values of Ll and Rl of Fig. 1 that are larger by 
the cube of the overtone employed. The impedance can also be raised 
by using other modes of vibration that are permitted by reversals in 
phase along the length or width of the quartz plate, or by parallel field 
excitation. 5 These methods, however, are less desirable than the use of the 
harmonically related overtone mode, since they do not permit the de
sirable increase in the thickness or frequency determining dimension. 

Employing these principles, the crystal unit design proceeded about as 
follows: 

i. The largest practical quartz plate, in view of the quartz supply and 
probable demand, was selected (30 mm diameter). 

Fig. 1 - Equivalent circuit of crystal unit in vicinity of its operating frequency. 
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ii. The lowest frequency that could be used without energy loss at the 
edge of the quartz plate was determined (2.5 mc). 

iii. The highest overtone (which is also the greatest thickness and 
highest L1 C1 ratio) that would allow a practical adjustment tolerance 
was chosen (fifth overtone and one part per 107 frequency adjustment 
tolerance) . 

The resulting crystal plate is believed to have the highest Q, the lowest 
frequency and the best impedance level that can be obtained from a 
30-mm quartz plate in which the edge and mounting structure are not 
part of the mechanically vibrating (frequency-determining) part of the 
crystal unit. 

III. DEVELOPMENT OF DESIGN AND PROCESSING TECHNIQUES 

3.1 Experimental Determination of Quartz Plate Size and Contour 

In a study4 to determine the optimum contour and overtone for AT
cut, plated, 12.5-mm-diameter quartz plates, a series of measurements 
were made on several quartz blanks of different thicknesses, resonant at 
approximately 0.7, 1, 3 and 5 mc. Progressive contours from flat to the 
maximum permitted by the individual blank thickness were used. When 
these data were correlated, it became evident (a) that the maximum Q 
obtainable was an inverse function of frequency and (b) that there was 
a lower limit of frequency below which the Q fell off and became er
ratic regardless of contour. In other experiments a variation in electrode 
thickness from 700 to 2100 angstroms at 5 mc failed to show any effect 
on Q. Likewise, carefully polished quartz surfaces did not show more than 
a, 10 per cent improvement in Q over that of carefully lapped and etched 
plates. Data taken at 10 mc on crystal units having quartz plates vibrat
ing in the third, fifth and ninth overtone indicated the same maximum Q. 
This represents a 3-to-1 difference in quartz plate thickness and a 27-
to-1 difference in the equivalent electrical inductance and resistance. 
Data were also taken on larger plates and on higher-frequency plates. 
The Q data from these tests are summarized on Fig. 2, which shows the 
most probable room temperature value for the internal friction of quartz, 
ranging from 15 X 106 at 1 mc to 0.15 X 106 at 100 mc, and the fre
quency limitation for 15-, 30- and 90-mm diameter plates. Therefore, 
with 30 mm having been chosen as the largest practical size for the quartz 
blank, the operating frequency of 2.5 mc is determined. 

A chart relating optimum contour to overtone and frequency for AT
cut half-inch plano-convex plates can be found in an earlier paper by the 
author.6 By linear enlargement or reduction of the dimensions, the ap-
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proximate contour for larger or smaller blanks can be determined, indi
cating a plano-convex contour 4 inches in radius for the 30-mm diameter, 
fifth overtone, 2.5-mc quartz plate. 

It is well known2 that a nodal plane exists that is centrally located 
between the faces of a quartz plate vibrating in thickness shear. For this 
reason, many AT-cut crystal units are designed with a double convex 
contour, with the mounting points on or near the nodal plane. It has been 
found, however, that, when the frequency, size and contour are chosen 
to produce the maximum Q, a plano-convex shape may be used with no 
loss in Q, and with great benefit in temperature-coefficient control and 
general handling during fabircation. 

The final dimension to be determined, the thickness, was chosen to 
provide the correct impedance level for minimizing the effects of lead 
wire capacitance and circujt variations. A thickness of 3.4 mm was cho
sen, permitting operation on the fifth harmonically related overtone with 
a series-resonant resistance of 55 ohms and an inductance of 19.5 henries. 
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3.2 Experimental Development of Quartz Polishing 111ethods 

The benefits derived from the use of polished quartz plates are im
proved electrical performance, particularly frequency stability at low 
current levels, and reduced frequency aging. The surface is not only more 
easily cleaned, since there are no scratches and fissures to trap con
taminants, but the surface area is greatly reduced, requiring less gold for 
a conducting electrode and reducing the effects of residual contaminants. 

The polishing techniques that have been developed differ in many re
spects from those used in the surface finishing of glass lenses. It is cus
tomary in polishing glass lenses to use a carefully prepared pitch lap and 
rouge, or its equivalent. Since pitch is a brittle material, close control 
over the curvature can be maintained. Furthermore, small scratches re
sulting from unavoidable foreign particles are reduced by the use of suf
ficient pressure to cause local melting and flow of the glass. 

Such methods have not been found suitable for contoured quartz 
plates, nor are they necessary. The curvature is not critical, so there is 
no need for a brittle lap. Quartz is harder and has a higher melting point 
than glass and is crystalline in form, and any melting or scratch removal 
is both undesirable and difficult. A soft material such as an asphalt or 
cork mixture has proved better for the lap, since it can yield under pres
sure to give a uniform polish and can absorb foreign particles that would 
otherwise scratch the surface. Fig. 3 shows a polishing machine using 
two Trojan automatic bowl-feed sphere polishers. The polishing bowl has 
been covered with a /6 inch sheet of cork and rubber (Corprene, Arm
strong Cork Co.). Barnsite, a form of cerium oxide, is used as the polish
ing agent. 

If polishing time is to be kept within practical limits, care must be 
given to surface preparation prior to polishing. There are two require
ments: first, that surface penetration be small and second, that good 
thickness control be maintained, since final polish must occur at a thick
ness determined by the resonant frequency of the quartz blank. Both of 
these requirements have been met by the use of a resinoid-bonded di
amond wheel to generate the convex surface. The apparatus is similar to 
diamond curve generators used in the lens inudstry, with the following 
exceptions: (a) a vacuum chuck is used to precisely hold the quartz blank; 
(b) a 3-inch-diameter, l80-mesh, resinoid-bonded diamond wheel js used 
and (c) a positive mechanical feed at 0.012-inch per minute is used. 
Thickness can be controlled within 0.01 mm, and the time of grinding is 
less than 3 minutes. The penetration is less than 20 microns, and may be 
removed by lapping for a few minutes with a cast-iron lap and emery 
mixture, followed by 5 to 10 minutes of polishing. 
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Fig. 3 - Equipment used to polish quartz crystal plates. 

Three experimental procedures were developed in connection with the 
study of polishing techniques and the resultant quartz crystal surfaces: 

First, a 200-power microsocpe was equipped with a dark field con
denser, which clearly delineated scratches and cracks in the quartz sur
face. Fig. 4 is an enlargement of a picture taken through this microscope 
of what appeared to the unaided eye to be a well-polished blank. Since 
the blank is curved, all portions are not in focus in the picture. By refin
ing the polishing technique, i.e., choosing best pressure, stroke and time, 
as well as the best preparation, surfaces that appeared· clear by this in
spection were consistently produced with 5 to 10 minutes of polishing. 

Second, the spread of values for the Bragg angle of the 011 face was 
measured, using a double-crystal goniometer.7 This apparatus, shown in 
Fig. 5, is used principally for orientation measurements connected with 
the temperature coefficient. However, by using the same refined polish
ing techniques for the reference crystal, extremely sharp curves were 
obtained when the amplitude of the reflected X-ray beam was plotted 
against orientation. Fig. 6 shows typical results for quartz plates at 
various stages of polish. In particular, the use of etching to remove 
strained, slightly misoriented material is shown to be unnecessary sub-



Fig. 4 - Dark-field photomicrograph of polished quartz plate; magnified lOOOX. 

REFERENCE CRYSTAL 
HOUSING 

Fig. 5 - Double-crystal goniometer used for orientation measurements. 
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Fig. 6 - Typical response of the double-crystal goniometer for quartz plates 
at various stages of polish. 

sequent to polishing, and therefore this is better performed as the last 
step before polishing. 

Third, samples of polished quartz plates were studied by electron dif
fraction, following methods outlined by Arnold.8 The advantage of this 
method lies in the fact that a beam of fast electrons (50 kv) will pene
trate only a few hundred angstrom units before diffraction takes place, 
thus involving only the first few surface layers of the quartz plate. Should 
the formation of a misoriented or amorphous surface layer result from 
the polishing processes, it would be evident in the resulting diffraction 
pattern. ,Fig. 7 shows one such pattern obtained from a quartz plate 
polished using asphalt and barnsite. The lines observed are known as 
Kikuchi lines, and it is sufficient for the purpose of this discussion to 
quote from Arnold:8 "Kikuchi line patterns are indicative of the highest 
type of crystalline perfection, since the slightest distortion of the crystal 
would cause the Kikuchi lines to spread out and become lost in the gen
eral background radiation." 
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Fig. 7 - Electron diffraction pattern, showing Kikuchi lines. 

3.3 Studies of Correlation Between X-Ray Orientation and Temperature 
C oe fficient 

The relationship between the resonant frequency of the quartz reso
nator, j, and temperature, t, can be expressed by 

where 
j i = frequency at inflection temperature, 27°C, 
ti = temperature of inflection point, 
to = temperature at which the temperature coefficient is zero. 

The value of to - ti, which establishes the temperature at which the 
temperature coefficient of frequency is zero, is a function of the orienta-
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zero vs. the crystal plate orientation about the x axis. 

tion of the quartz plate with respect to its crystallographic axes, in par
ticular the rotation about the x axis, CPo Fig. 8 shows the best determina
tion to date of this relationship. By plotting f versus t for various values 
of to in (1), a family of curves is produced, as shown in Fig. 9. A close 
control over the angle of cut not only permits specification of an operat
ing temperature, to , near room temperature, but also provides a much 
better temperature coefficient in the vicinity of to . This makes it less 
necessary to be concerned about an exact determination of to or about a 
small shift in the oven control temperature. Determination of the angle 
to a few tenths of a minute of arc is very desirable, along with a close 
correlation between the measured angle and the observed temperature 
coefficient. The problems are related to the following requirements: 

(a) an X-ray beam capable of resolving 0.1' of arc; 
(b) a crystalline surface sufficiently free from misoriented quartz; 
(c) a method of defining the plane that controls the temperature co-

efficient; 
(d) sufficiently accurate jigs and fixtures. 

The double-crystal X-ray goniometer was shown in Fig. 5; it is a modi
fied General Electric XRDl. Requirement (a) above is fulfilled by the 
use of a polished reference crystal from which a well-defined beam is 
refiected.7 A quartz surface prepared as described above (Section 3.2) is 
more than adequate to meet requirement (b). 

The nodal plane of Section 3.1, which controls the temperature coeffi
cient, is, of course, physically inaccessible. However, an adequate surface 
[requirement (c)], from which to determine the temperature coefficient 
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Fig. 9 - Frequency vs. temperature for different values of to , the temperature 
of zero temperature coefficient. 

in contoured quartz plates, may be obtained by plano-convex shaping. 
The orientation of the convex side has almost no effect on the tempera
ture coefficient, since a slight tilt of this surface with respect to the flat 
side only shifts the point of greatest thickness a little off center. The 
16-mm diameter electrodes more than cover the actively vibrating por
tion of the crystal unit, and there is no measurbale effect on perform
ance. 

The principal problem in measuring the effective orientation of the 
flat side - that of physically defining the surface - resolves itself into 
a choice between two methods of securing the crystal to the goniometer 
table: (a) the use of three reference points and (b) the use of a reference 
plane. If irregularities exist in the quartz surface, there is a possibility 
that one or more points will not be representative of the controlling 
surface at the center of the plate. Likewise, when a reference plane is 
used, the presence of dust or contamination or a slight departure from 
flatness can shift the orientation. The work described in this article was 
done using a vacuum chuck with a polished reference surface. Assurance 
of cleanliness and reasonable flatness was obtained by observing inter-
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ference rings between the polished quartz surface and the surface of the 
vacuum chuck. 

Sufficient measuring accuracy in the X-ray fixture itself [requirement 
(d)] was obtained by the use of a micrometer screw operating on a ball 
precisely imbedded in the arm of the goniometer (Fig. 5). This use of a 
linear measuring device to measure arc is permissible because of the 
limited range involved. In operating the goniometer, use is made of the 
011 atomic plane at an angle determined to be 38°12.7' from the optic 
axis. The desired orientation for zero temperature coefficient of fre
quency in the vicinity of 35°20' is about 3° from this reference plane. 
Therefore, the value for the radius of the goniometer arm was chosen so 
that the micrometer would be direct reading (one revolution per degree) 
and exactly correct at 38°12.7' and at two points 3° on either side, with 
the error at intermediate points not exceeding five seconds of arc. A 
two-pound weight and cable are used to hold the arm against the mi
crometer to insure against backlash and uneven tension. 

3.4 New Method of 11lounting and Measurements to Determine Its 
Effectiveness 

A new mounting structure, Fig. 10, was devised for the 2.5-mc crystal 
unit in order to provide a support that was rigid yet free from the effects 
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Fig. 10 - New mounting structure combining ruggedness with freedom from 
strain. 
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of thermally induced strains. The mounting assembly consists of a 
pressed-glass disc platform with three fused Kovar terminals. These 
terminals are welded on one side to the stem press of the glass bulb. 
The crystal plate is fastened to the terminals on the other side by rib
bon-shaped elements of nickel. 

The use of the three-ribbon mount permits relatively free radial ex
pansion of the crystal plate, while adequately restraining the plate from 
translation or rotation during mechanical shock. 

Experiments using crystal plates mounted with 0.050-inch rods in 
place of ribbons have shown that the time for the frequency to recover 
to within a few parts in 108 after a large temperature change (such as 
an oven shutdown) is reduced from 12 hours for the 0.050-inch rod 
mount to 2 hours for the ribbon mount. The time for frequency stabiliza
tion to about one part per billion per day likewise appears to be affected 
by residual strains, since it is two weeks for the rod support and two 
hours for the ribbon support. Experiments using a crystal plate sus
pended on soft copper wires showed no difference in frequency change 
with temperature from that of the ribbon-mounted unit, indicating that 
the ribbon support is essentially strainfree. 

3.5 Procedures Used in Forming Electrodes 

Electrodes are required in order to couple piezoelectrically to the 
quartz plate. From the standpoint of stability of the mechanical reso
nance, such electrodes would be best placed outside of the crystal plate 
enclosure. However, electrical considerations, such as the value and 
stability of the static capacitance, require that the electrode be an inte
gral part of the vibrating quartz plate. 

Gold is used as the electrode material because of proven characteristics 
such as ease of deposition, good electrical conductivity, softness, resist
ance to corrosion and good stability with time. Every effort is made to 
insure that the gold film, which is formed by evaporation under vacuum, 
is pure, soft and dense. To be sure, the handling properties of plated 
crystal units during fabrication are enhanced when certain impurities 
are present. Zinc and aluminum are effective in making the gold elec
trode relatively hard, adherent and scratch-resistant. Such electrodes 
are not, however, best for applications where the highest precision is 
desired. Experiments have shown that small amounts of impurities 
( < 1 per cent) contribute to frequency-aging, probably through migra
tion of one metal through the other, and that the superior adherence 
contributes to frequency instability through strains set up at the gold 
quartz interface. 
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In order to eliminate surface contamination, the vacuum system em
ployed was specially designed, using oil-free bakable solenoid-operated 
valves and liquid-nitrogen traps. All vacuum baking to outgas the surface 
and to provide a hot substrate is done with large-area, relatively low
temperature conducting-glass plates rather than with open filaments. 
Up to five quartz plates are mounted vertically in the plating chamber, 
and electrodes are formed simulanteously on both sides by evapOlating 
gold from eight small tungsten heaters, which are placed to assure even 
distribution. The apparatus is shown on Fig. 11. A gold electrode 16 mm 
in diameter and about 700 angstroms thick has proved adequate for this 
application. 

3.6 Frequency-Adjustment Technique 

The exact frequency desired from a crystal-controlled oscillator is 
obtained partly by controlling the natural resonant frequency of the 
crystal resonator during fabrication and partly by selecting or adjusting 
circuit elements in the oscillating loop. The adjustment of the natural 
resonance during fabrication of the quartz plate is simplified when the 

Fig. 11 - Apparatus used to form gold electrodes in vacuum on quartz plates. 
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control range is large. However, an upper limit to the control range is 
set by the probable stability of the controlling circuit element, usually 
a series capacitor. The slope of the crystal unit reactance with frequency 
is about 0.7 ohms fOl one part in 109 frequency change, as seen in Fig. 
13. For example, an assumed instability of a series capacitor of only 
0.01 per cent would require a value of 100,u,uf or larger to limit the fre
quency change to one part per 1010• Under these conditions, practical 
limitations on size of the capacitor would limit the adjustable range to 
a few parts in 107• 

Adjustment of the resonant frequency of the quartz plate to this degree 
is accomplished by adding gold to the electrode surface while the crystal 
plate is in oscillation, making use of the vacuum evaporation apparatus 
described above. The sequence of operations is as follows: (a) The exact 
frequency change desired is measured under final use conditions - that 
is, at operating temperature and proper circuit adjustment. (b) The 
crystal unit is placed in the vacuum chamber and gold deposition ini
tiated. (c) The frequency change is monitored and controlled by continu
ous frequency measurement during deposition. 

This method will usually result in finished crystal units not more than 
five parts per 107 from nominal frequency. The small error in frequency 
results principally from subsequent glass sealing operations and the 
cleaning effect of a final vacuum bake. When sufficient numbers of 
crystal units are processed in series, closer tolerances can be obtained 
by a method of compensation that uses measurements of finished units 
to provide information for the frequency adjustment of subsequent units 

3. 7 Hermetic Seal Techniques 

lVleasurements of frequency aging of crystal units in both metal and 
glass enclosures9 have shown the superiority of glass enclosures, probably 
because glass can be more effectively outgassed and cleaned at the tem
peratures involved. 

The crystal plate should not be exposed to high temperatures, both to 
prevent a shift in resonant frequency and to avoid damage to the mount
ing attachment at the quartz plate. For this reason, a flared stem assem
bly and a close-tolerance bafHe plate (also used as a support) are em
ployed to keep the high temperatures involved in glass s·ealing away 
from the quartz plate. For the same reason, the seal is accomplished 
quickly with a minimum of glass annealing. 

Following the stem-to-bulb seal, the unit is evacuated and baked for 
six hours at 140°C. The optimum length of time has been established 
experimentally, and is a function of the vacuum system design. With 
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the new vacuum system described above, using oil-free valves and 
specially designed liquid nitrogen traps, it has been found that a six-hour 
bake can be used to good effect. 

Following the baking, and with the vacuum at about 10-6 mm of 
mercury, the glass tabulation is sealed by means of a small flame. 

IV. PROPERTIES OF THE QUARTZ RESONATOR 

4.1 The Crystal Unit as a Circuit Element 

Table I lists the electrical properties of the new 2.5-mc crystal unit, 
and the equivalent circuit of the crystal unit in the vicinity of its operat
ing frequency was shown in Fig. 1. The capacity in the upper branch 
represents the static capacitance of the crystal and its holder. The lower 
branch represents the electrical equivalence of the mechanical resonance 
of the crystal, which has an impedance approximately given by 

Zl = Rl + j2wL l ~:, (2) 

where i1f is the difference between the operating frequency and the crys
tal series resonant frequency, I, . The total impedance of the crystal, 
then, is 

(3) 

This simplifies to 

(4) 

when one uses the fact that the magnitude of the impedance Zl is much 
smaller (at the operating frequency) than the magnitude of the imped
ance Zo. 

Series resonant resistance, Rl 
Inductance, Ll 
Dynamic capacitance, C1 
Q 
Static capacitance, Co 
r = colcl 

TABLE I 

Nominal capacitance for operation at standard frequency 
Manufacturing tolerance on frequency 

65 ± 10 ohms 
19.5 henries 
0.00021 J.lJd 
4 X 10 6 

4.0 J.lJ.If 
19,000 

50 J.lJ.If 
±6 pp 107 
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Fig. 12 - Effective resistance and reactance vs. frequency for the 2.5-mc 
crystal unit. 

The first term of (4) is the effective resistance, Re , and the second term 
the effective reactance, Xc , of the crystal. These are plotted versus the 
fractional frequency deviation from crystal resonance, Af Ifr , in Fig. 12. 
The range of operating frequencies shown in the figure is based on the 
crystal manufacturing tolerances and the expected total aging. 

The sensitivity of the oscillating frequency to changes in the reactance 
of the circuitry associated with the crystal depends on the "stiffness" 
or reactance slope of the crystal at the operating frequency. This is 
obtained by differentiating Xc with respect to fractional frequency 
deviations: 

(
1 _ 2 Co Af)2 . 

C1 fr 

(5) 

Equation (5) is plotted as a function of f Ifr in Fig. 13. 
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Fig. 13 - Reactance slope vs. frequency for the 2.5-mc crystal unit. 

From Figs. 12 and 13 we may obtain the requirements imposed on the 
oscillating circuit by the crystal. These are: 

i. The range of negative resistance required of the circuit is -51 to 
-75 ohms. 

ii. The negative reactance of the circuit should be adjustable from 
400 to 1700 ohms. 

iii. The total negative reactance of the circuit should be stable to 
better than 0.1 ohm for a frequency stability of one part in 1010• 

Other requirements imposed by the crystal on the circuit are: 
iv. The crystal current should be stabilized at about 70 microamperes 

to a constancy of 1 db. 
v. The circuit should contain elements to prevent oscillation at un

wanted crystal modes of resonance, in particular the third overtone fre
quency near 1.5 mc. 

4.2 Temperature Coefficient of Frequency 

The relationship between orientation of the quartz plate with respect 
to its crystallographic axes and the temperature of the zero temperature 
coefficient is shown on Fig. 8. By maintaining the angle to 35°20' ± l' 
the temperature coefficient will go through zero at a temperature, to, 
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which lies between 42°0 and 57°0. In the vicinity of to, the relative 
deviation of frequency at temperature t from the frequency at to is given 
by (1). 

In order to prevent possible temperature-control aging of 0.1 °0 from 
causing a frequency change of more than one part per 1010, the tempera
ture of the thermostat must agree with to within 0.1 °0. 

lt can be seen that the actual temperature coefficient, which is better 
than one part per 109 per degree, is not a limiting factor in any reason
able oven construction. On the other hand, strains due to temperatme 
changes in the quartz itself are a limiting factor and a temporary shift 
of one part per 1010 will occur if a temperature change of 5 millidegrees 
per hour is maintained for 10 minutes or more. 

4.3 Current Coefficient of Frequency 

The frequency of a crystal unit depends to a small extent on the crystal 
current. If uncoupled to other modes of vibration, the relationship at 
low currents is approximately 1111f = Di2• Fig. 14 shows a typical curve 
of frequency versus current for the 2.5-mc crystal unit. In order to keep 
the current coefficient below one part per 109 per db, currents of less 
than 100 microamperes are necessary. 

The current coefficient of frequency in this application is not believed 
due to dissipation, since the total power is less than 10-7 calorie per 
second, and also because the effect is nearly instantaneous. The most 
likely explanation is that the elastic constant varies with strain; that is, 
Hooke's Law is really not obeyed. Further studies indicate that the 
frequency change is a function of the amplitude of the strains due to 
oscillation, and that it is independent of Q and frequency. 
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Fig. 14 - Frequency vs. crystal current for the 2.5-mc crystal unit. 
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4.4 Mechanical Stability 

The crystal plate will withstand a static load of 2 Ibs (200 g's) in any 
direction without any apparent movement with respect to its mounting 
platform. The mounting plate is in turn anchored to the glass bulb by 
three peripheral springs and the three nickel wires in the glass stem 
press. Severe shock, such as a four-inch drop, will dislodge the platform, 
and should be avoided. Normal shipping, however, should have no effect 
on the crystal unit properties. Similarly mounted 5-mc crystal units 
have withstood 109 vibration to 2000 cycles with no permanent fre
quency change greater than one part per 109• 

There is an orientation effect on frequency caused by gravity-induced 
strains, as shown on Fig. 15. The preferred orientation is with the unit 
installed with the odd mounting ribbon vertical, which will allow a ±20° 
tilt without affecting the frequency more than one part per 1010. 

4.5 Frequency Stabilization and Aging 

It is customary to differentiate between the rapid frequency drift 
associated with initial operation of a frequency standard, here called 
stabilization, and the slower frequency dlift known as aging. Whereas 
the former will have become negligible after a few weeks or months, the 
latter can extend over several years. 

Naturally, the drift should be as small as possible. If it cannot be 
avoided, it should be a simple function of time, to permit extrapolation. 

No uniform result has been obtained in the initial stabilization of the 
quartz resonators. Evidence suggests9 that the frequency change is due 
principally to a transfer of mass to and from the quartz plate, initiated 
by a shift in temperature. The rate of transfer and the degree of per
manence of the transfer will be a function of the vapor pressure of the 
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particular contaminant and the degree of adherence (which may be 
molecular, chemical or mechanical) between the contaminant and its 
substrate. Since the equilibrium reached at any given operating condi
tion is not likely to repeat itself, the initial frequency drift cannot be 
accurately predicted. The magnitude of this drift is not more than a few 
parts in 108, and may be reduced as improved cleaning techniques in 
manufacture are developed. Use of a carefully controlled temperature 
cycle each time the oven is re-started can also reduce this initial uncer
tainty by as much as a factor of ten. In any case, the drift rate can be 
expected to decrease to about one part in 109 per month by the third 
month of operation. 

The aging of new quartz resonators has not proved uniform, either. 
Operation at 50°C has, however, consistently shown less aging than 
operation at 75°C. Of five oscillators at 50° for which records have been 
kept, the rate varies from one to ten parts in 1010 per month. One such 
oscillator is used in connection with the National Bureau of Standards 
broadcast from Station WWV, and its frequency versus that of an 
atomicron at the station has been published.1o Its aging rate after about 
12 months of operation appears to be about two parts per 1010 per month. 
One oscillatOl operated at Bell Telephone LabOlatories, Whippany, New 
Jersey, which has been monitored by use of a 60-kc broadcast by the 
National Bureau of Standards from Station KK2XEI in Boulder, Colo
rado and from MSF in Rugby, England, is shown on Fig. 16. This oscil
lator was considerably better than one part per 109 per month, even in 
the second month, but the indicated long time rate will be in the order 
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Fig. 17 - Frequency aging data shown to be a simple exponential curve. 

of one part per 109 per year for some time to come. Fig. 17 shows that 
the frequency change is a simple exponential curve, and can be easily 
extrapolated. 

4.6 Short-Time Frequency Stability 

Short-time frequency stability cannot be determined without a care
ful analysis of the properties of the frequency measuring system. Even 
assuming' a correct phase relation between oscillator circuit and crystal 
unit, the stability will be unavoidably lost due to the necessary amplifier 
and lines, and, ultimately, the measuring equipment itself. These phase 
distortions cannot be readily distinguished from true frequency varia
tions. 

Measurements have been made at various multiplier frequencies up 
to 1000 me in an attempt to find the best conditions for measurement, 
and the following figures represent the results to date: 

O.l-second averaging: two parts in 109 ; 

I-second averaging: two parts in 1010; 
10-second averaging: two parts in 1011. 

Since both oscillators contribute to the instability, we may assume that 
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one oscillator is at least twice as good. That is, the mean relative devia
tion is one part in 1011 or better when the frequency is averaged for 10 
seconds or longer. 

v. CONCLUSION 

The new 2.5-mc crystal units will make possible general-use oscillators 
characterized by high frequency stability, comparatively little aging, 
good linearity and uncomplicated design. Such standards compare 
favorably with atomic standards for periods up to one month or more, 
and have an advantage over atomic standards in that they may be set 
to an exact frequency and are more portable and rugged. 

The crystal units are uniform in Q and frequency, and need not be 
specially selected. Although the use of a relatively high frequency and 
electrodes integral with the quartz plate might be questioned, experi
ments have demonstrated that the associated difficulties can be as easily 
dealt with as can those associated with a resonant mounting or isolated 
electrodes characteristic of low-frequency units. Various advantages 
accrue from the fact that only the center portion of the quartz plate 
and its pure gold electrodes determine the resonant frequency. Among 
these are exceptional stability under conditions of shock and vibration, 
and uniform and highly predictable electrical characteristics. 

The development work leading to the design and fabrication of 2.5-
mc crystal units and associated oscillators and ovens has been supported 
in pal t by development contracts with the Rome Air Development 
Center and the U. S. Army Signal Research and Development Labora
tory. 
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Some Further Theory of Group Codes 

By DAVID SLEPIAN 

(Manuscript received April 5, 1960) 

The notion of equivalence for group codes is explored in some detail. A 
dual for a code, and the sum and product of two or more codes, are defined. 
Properties of these constructs are investigated. Indecomposable codes are 
defined and are shown to be optimal in two different senses. 17 arious classes 
of codes are enumerated. 

INTRODUCTION 

This paper is a collection of results on the theory of group error-cor
recting codes for use on binary channels. It investigates further certain 
topics introduced in an earlier paper! by the author. The reader will 
be assumed to be familiar with the contents of this earlier paper as well 
as with the general nature of the coding problem in information theory. 

The evident trend to digital transmission systems has given rise in 
recent years to an increased interest in coding as a possible practical 
means of error control. Lacking an "explicit solution" to the coding 
problem in any real sense, many investigators have chosen in an ad hoc 
manner promising special classes of parity-check codes and have ex
amined their properties. A large and useful literature of special codes 
has resulted. 

The approach taken here is different. No special codes are examined; 
rather, we attempt to shed some additional light on the structure of the 
class of all group codes. Our original aim was to parametrize in some 
manner the various equivalence classes of group codes. If such a parame
trization could be effected, one could then hope to express the error 
probability of a code in terms of the parameters, and possibly to see how 
to choose the parameters to obtain codes of small error probability. We 
have fallen far short of this goal. 

The main results to be found in this paper are as follows. A natural 
dual for a group cod ~ is defined. For any two group codes, a product 
code and a sum code are defined and certain properties of these opera
tions are investigated These operations have the important property of 

1219 
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maintaining equivalence in the sense that if a and a' are equivalent 
group codes and (B and (B' are equivalent group codes, then a + (B is 
equivalent to (l' + (B' and (l(B is equivalent to (l/(B/. This result in turn 
leads to an arithmetic of equivalence classes of codes. The notion of an 
(additively) indecomposable equivalence class is introduced, and it is 
shown that an arbitrary equivalence class can be written in a unique 
manner as a sum of indecomposable equivalence classes. It is then 
shown that one can limit the search for best codes (with two commonly 
used meanings for "best") to the indecomposable equivalence classes. 
Enumeration formulae for the types of equivalence classes are given, 
and these formulae are evaluated for small values of the pertinent param
eters. 

In the interest of simplicity of exposition, we have restricted our at
tention to binary codes, although many of the results obtained hold for 
codes consisting of sequences of elements drawn from any finite field. 
Also, in an effort to make the paper available to as wide a class of readers 
as possible, we have carefully eschewed the specialized vocabulary of 
modern algebra, * although many of our results could be stated more 
succinctly in these terms. In addition, as an aid to the casual reader 
we adopt once more the format of Ref. 1: Part I contains definitions, 
examples and results; Part II contains additional theory and proofs 
of the less obvious assertions of Part 1. The terminology of Ref. 1 is 
maintained with one exception: the word "code" is here used as a syno
nym for "alphabet," as has become accepted practice in the literature. 

There is some overlap of material with that found in the paper of 
Fontaine and Peterson2 which appeared after much of this work was 
done. In the interest of making this paper self-contained, we repeat some 
material that might have been quoted from that paper. 

Part I - DEFINITIONS, EXAMPLES AND RESULTS 

1.1 Recall of Previous Paperl and Some New Definitions 

An (n,k) -alphabet, or (n,k) -code, is an unordered collection of 2" dis
tinct n-place binary sequences that forms an Abelian group under the 
operation of mod 2 addition of the sequences term by term. The ele
ments of the group, that is, the n-place binary sequences, are also called 
"letters." We assume always in this paper that n ~ k > o. 

We denote specific group codes by large script letters, a, (B, etc. We 
denote the letters of a by Al ,A 2 ,etc., and the digits of a letter by lower
case Latin letters. Thus, for example, a particular letter of the (n,le)-

* In modern terminology, we are studying properties of subspaces of a finite 
dimensional linear vector space over a finite field. 
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code ex is the binary sequence Al = (aI, a2 , ... ,an), It is frequently 
convenient to regard the letters AI, A2 , etc. as n-dimensional vectors. 

A particular (n,k) -code can be specified by listing its 2k letters. It 
can also be specified by listing k of its generators, i.e., any k linearly in
dependent letters of the code. These k generators can be displayed as a 
binary matrix of rank k, with k rows and n columns. The rows of the 
matrix are the generators of the code. Such a matrix will be called a 
generator matrix and will be denoted typically by the symbol Q. When 
referring to different generator matrices of a specific code ex, we shall 
write Q1( ex), Q2( ex), etc. 

Many generator matrices correspond to the same code. The first 
generator can be chosen in 2k - 1 ways, since the all-zero sequence or 
identity, I, of the group code cannot serve as a generator. The second 
generator can be chosen in 2k - 21 ways. The third can be chosen in 
2k - 22 ways, since the first two generators determine a group of order 
22. Proceeding in this way, we find 

Mk = (2k - 2°)(2k _ 21) (2k _ 22) ... (2k _ 2k- 1) 

= 2kCk-I)/2(2k _ 1)(2k- 1 
- 1)(2k- 2 - 1) ... (3)(1) 

(1) 

different generator matrices for a given (n,k)-code. Indeed, if Q1 and Q2 

are generator matrices for the same code, then fh = gQ2 , where g is a 
nonsingular k X k binary matrix and all operations implied in the matrix 
product gn2 are carried out mod 2. The collection of k X k nonsingular 
binary matrices forms a group under matrix multiplication (arthimetic 
mod 2) which we shall denote by Gk . Gk is of order M k. [Gk is the 
general linear group of dimension k over a field of two elements, fre
quently denoted by GL(k, 2).] If Q is any generator matrix for an (n,k)
code, then, as g runs through Gk , gn gives the M k distinct generator 
matrices associated with the code. 

In all that follows we shall frequently omit the phrase "all arithmetic 
mod 2." It will generally be clear from the context whether the field in 
question is the reals, the complex numbers, or the two element field. 

It was shown in Ref. 1 that every group code is a parity-check code and 
that every parity-check code is a group code. Let A be a binary matrix 
of n - k = l rows and n columns and of rank l. Let Aij be the entry in 
the ith row andjth column of A, i = 1, 2, ... , land j = 1, 2, ... , n. 
The equations 

or 
AA = 0 

n 

L Aijaj = 0, 
i=l 

(2) 

't = 1,2, ... ,l, 
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where A is the binary row vector A = (aI, a2, ... , an) and the tilde 
denotes transpose, have k linearly independent solutions, say Al , A2 , 
... , Ak . These k vectors can be taken as the generators of an (n,k)
code. Since every linear combination of the vectors AI, ... , Ak also 
satisfies (2), every generator matrix [2 of this (n,k)-code satisfies 

An = o. 
The matrix A is called a parity-check matrix for the (n,k)-code. 

A given (n,k)-code has many parity-check matrices. Indeed, if A is 
one such, so is gA for every g contained in Gn- k • There are therefore 
M n-k distinct parity-check matrices associated with a given (n,k) -code. 
We shall denote the different parity-check matrices of a specific (n,k)
code ex by AI(ex), A2(ex), etc. 

1.2 Equivalence 

As in Ref. 1, we define two (n,k)-codes to be equivalent if one can be 
obtained from the other by a fixed permutation of the places of every 
letter. The concept has been illustrated in Section 1.7 of Ref. 1. Equiva
lent (n,k) -codes have the same transmission properties over the binary 
symmetric channel. 

We denote the fact that codes ex and <B are equivalent by the sym
bolism ex r-../ <B. It is immediately established that this is a true equiva
lence relation; i.e., that ex r-../ ex; that ct r-../ <B implies <B r-../ ex; and that 
if ex r-../ <B and <B r-../ e, then ex r-../ e. The totality of (n,k) -codes can 
therefore be broken down into disjoint equivalence classes. We denote 
by <1 the equivalence class containing ct. 

This equivalence of codes induces an equivalence relation among the 
totality of possible generator matrices. Two such matrices, say [21 and 
[22 , will be called equivalent (written [21 r-../ [22) if there exists a g in Gk 

and an n X n permutation matrix (J' such that g[21(J' = [22. That is, two 
k X n [2-matrices are equivalent if one can be obtained from the other 
by permuting columns and/or forming nonsingular linear combinations 
of the rows mod 2. Clearly, two equivalent [2-matrices, when considered 
as generator matrices, give rise to equivalent codes. Equivalent codes 
have equivalent generator matrices. 

The task of analyzing group codes would be greatly simplified if a 
canonical form could be found for each equivalence class of [2-matrices. 
That is, for a given nand k, we should like to be able to write down one 
generator matrix from each equivalence class. This would provide a 
simple means of describing each of the essentially different (n,k)-codes. 
The number of equivalence classes of (n,k)-codes is very much smaller 
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than the number of distinct (n,k) -codes. They are enumerated in Sec
tion 1.9. Here we present further only two results pertaining to equiva
lence. 

Every k X n n-matrix is equivalent to an n-matrix whose first k rows and 
columns are the k X k unit matrix. That is, n is equivalent to the parti
tioned matrix n "-' (I k ~ M), where I k is the k X k unit matrix and M is 
a matrix of k rows and l = n - k columns. 

An n-matrix with the above structure will be said to be in M-form. 
Unfortunately, two k X n n-matrices in M-form having different lVI
matrices (even apart from permutations of rows and columns) can be 
equivalent. 

A second result is 
Theorem 1: A necessary and sufficient condition for two k X n n-matri

ces to be equivalent is that their columns can be placed into a one-to-one 
correspondence that preserves mod 2 addition of the columns. 

Examples: Let 

10011 

nl = 0 1 0 1 1 

o 0 1 0 1 

1 1 1 1 

1 0 0 1 

1 0 1 0 

Then n l "-' n2 , for if we denote the columns of nl by UI , U2, "', U5 and 
those of n2 by VI , V2, "', V5 and establish the correspondence UI ~ V3 , 

U2 ~ V5 , U3·~ V2 , U4 ~ VI , U5 ~ V4 , one sees that UI , U2 , U3 are independent 
as are V3 , V5 , V2 and that the equations U4 = UI + U2 and U5 = UI + 
U2 + U3 have the analogs VI = V3 + V5 and V4 = V3 + V5 + V2 • Both nl 

and n2 are equivalent to 

[

1 0 0 1 0 

o 1 0 1 1 

lo 0 1 0 1 

The matrices n l and n3 are both in M-form and are equivalent, although 
they have different M-matrices. 

The preceding considerations of equivalence for n-matrices have their 
obvious analogs for parity-check matrices. 

1.3 Duality 

There is a natural duality between (n,k) -codes and (n,l) -codes, where 
l = n - k. In Ref. 1 it was noted that the two sets of codes are equi
numerous. We elaborate further on this notion here. 
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In Section 1.1 it was remarked that every generator matrix Q( a) for 
a given (n,k)-code a and every parity check matrix A( a) for this code 
satisfies 

A( a)Q( a) = o. (3) 

The transpose of this relation is 

Q( a)A( a) = o. 
Thus, every parity check matrix A( a) of an (n,k)-code a can be regarded 
as a generator matrix for a particular (n,l) -code hereafter called the dual 
of a and denoted at. Every generator matrix Q( a) is a parity check matrix 
for at. 

The above can be regarded as defining at by the relation 

Q(at ) = A(a). 

One immediately finds that 

(4) 

and that 

(5) 

The equivalence classes of (n,k) -codes can therefore be put in a natural 
way into one-to-one correspondence with the equivalence classes of 
(n,l) -codes: 

/ .......... 

a corresponds to at. 

It is convenient to define 

There is a simple way of passing from a k X n generator matrix Q in 
M -form for a code in a to a generator matrix Q' in M -form for a code 
in at. If Q = (h ~ ]1) defines a code in it, then Q' = (ll ~ M) defines 
a code in at. Here if is the transpose of ]1. 

1.4 The Sum of Two Codes 

Let a be an (n,k) -code and (B be an (n' ,k') -code. We define a new 
code e by the partitioned generator matrix 

nee) ~ (~.~~!. ~(:J (6) 
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The code e is an (n + n', k + k/)-code called the sum of a and ill and we 
write e = a + ill. It is easy to show that this is a valid definition and 
does not depend on the particular generator matrices chosen for a and ill. 

lf A( a) and A( ill) are parity-check matrices for a and ill respectively, 
then 

A(e) = (~.:~? ~ ... ~ .. ) 
o :A(ill) 

(7) 

is a parity-check matrix for e = a + ill. 
Transmission of a letter from e amounts to transmitting a letter from 

a followed by a letter from ill. Because of the independence of the noise 
on the channel from one transmitted digit to the next, * it follows at once 
that if Ql ( a), Ql ( ill) and Ql ( e) (see Section 1.6, Ref. 1) are the proba
bility of no error for codes a, ill and e = a + ill respectively, then Ql ( e) = 
Ql ( a) Ql ( ill). 

lf e = a + ill, a generator matrix for e need not appear in the block 
form (6). A parity-check matrix for e need not appear in the block form 
(7). The columns of a generator or parity-check matrix for e, however, 
separate into two sets. All columns of the first set are linearly inde
pendent of all columns of the second set, and vice versa. Furthermore, 
if a linear combination of the columns sums to zero, the terms of this 
sum belonging to the first set separately sum to zero. The two sets of 
columns are said to be independent. (See Section 2.2 of this paper for 
further detail.) Since column dependences of a matrix are unaffected by 
premultiplication by a nonsingular matrix, we have that a code is equiva
lent to a sum of two codes if and only if the columns of its n-matrices or 
A -matrices separate into independent sets. 

if 

Some readily established properties of the sum just defined follow: 

a rv a' and ill rv ill' implies a + ill rv a' + ill'; (8) 

a + ill rv ill + a; 

a + (ill + e) = (a + CB) + 8; 

e = a + ill, 

(9) 

(10) 

(11) 

1.5 The Product of Two Codes. 

We first remind the reader of the definition and elementary properties 
of the direct or Kronecker product of two matrices. Let R = (rij) be a 

* Whenever probabilities are discussed in this paper, the usual binary sym
metric channel is assumed. 
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matrix with a rows and b columns. Let S = (Sij) be a matrix with c 
rows and d columns. The Kronecker product T = R X S of R times S 
(the order of factors is important) is the matrix of ac rows and bd col
umns with partitioned structure 

T=RXS 

( ruS ~ r I2S ~... rIbS 
... .... ... .... . ..... . 

...... : ...... : : .. : ... , 
raIS ~ r a2S :'" ~ rabS J 

The rows and columns of T can be labelled by pairs of integers so that 
a typical element of T is tij:kl = rikSjl. These indexing pairs are listed 
in dictionary order, so that ij precedes i'j' if either i < i', or, when 
i = i', if j < j'. For example 14 precedes 23, and 63 precedes 64. 

One readily establishes the following properties for the Kronecker 
product: 

Q X (R X S) = (Q X R) X S, 

~ - -
R X S = R X S, 

(P X Q)(R X S) = (PR) X (QS), 

R X S = u(S X R)p,. 

(12) 

(13) 

(14) 

(15) 

In (13), the tilde indicates transpose. In (14), it is assumed that the 
columns of P are equinumerous with the rows of R and that the columns 
of Q are equinumerous with the rows of S. The product PR indicates 
the usual matrix product. In (15), if R has a rows and b columns and 
S has c rows and d columns, then u and p, are permutation matrices of 
dimension ac and bd respectively and these matrices depend only on the 
numbers a, b, c and d and not the entries of R or S. 

Let a be an (n,k)-code and let CB be an (n',k')-code. We define a new 
code e by 

Q(e) = Q(a) X Q(CB). (16) 

The code e so defined is an (nn',kk')-code called the product of a and 
CB and we write e = aCB. It is an easy consequence of the properties of 
the Kronecker product that e so defined is an (nn',kk')-code and does 
not depend on the particular generator matrices used for a and CB in 
(16) . 
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From (12) through (15) the following properties of code multiplica
tion are readily established: 

a '" a' and CB '" CB' implies etCB '" a' CB', (17) 

CtcB '" CB a , 

a( CBe) '" (aCB) e, 

et( CB + e) '" aCB + ae. 

We note that (etCB)t is not equivalent to atCBt in general. 

(18) 

(19) 

(20) 

Let et, CB and e = etCB be respectively an (n,le) -, an (n' ,le') - and an 
(nn',lele')-code with generator matrices n, n' and n" and parity-check 
matrices A, A' and A". There does not seem to be a simple expression 
for a parity-check matrix for e in terms of A and A'. However, if we 
confine our examination of codes to equivalences only, the structure of 
the parity checks for the product of two codes can be described simply. 

We may suppose, then, that nand n' are in M -form. The structure of 
n" is then given, up to equivalences, by 

n" = (h ~ M) X (h, ~ M') 
(21) 

'" (h X h, ~ 1k X M' ~ 111 X h, ~ :NI X M'). 

Denote the last nn' - lek' columns of this last matrix by N. Then 
(I nn'-kk' ~ N) is the parity-check matrix for a code equivalent to e. 

It is readily seen from (21) that a code e' equivalent to e can be 
described as follows. The k' information places of CB are replaced by 
letters (n-place binary sequences) of the code a. This accounts for the 
lek' information places of e' and for the k' (n - le) check places of e' 
described by the block M X h, in (21). The n' - k' parity checks of 
CB are then applied to these le' "information hyperplaces." The block 
h X M' in (21) describes repeated application of checks of CB over the 
first le positions 6f the information hyperplaces of e' and accounts for 
(n' - le')k checks. The block M X M' gives (n - k)(n' - k') addi
tional checks over the information places of e'. 

Up to equivalence, the product of two codes can be described in an
other, perhaps more simple, manner. Let e = aCB, where a is an (n,k)
code and CB is an (n',k')-code. Then e is equivalent to the (nn',kk')-code 
e' obtained as follows. et is equivalent to a code a' with k information 
places and n - k check places; CB is equivalent to a code CB' with k' 
information places and n' - k' check places. In both a' and CB', the 
check digits are mod 2 sums only over the information places. Write the 
lek' information places of e' in a rectangular array of k' rows and k 
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columns. Treat each row of the array as the Ie information places of a 
letter of a' and affix the corresponding check digits to obtain Ie' rows 
each of n hinary digits. Regard each column of the array as the Ie' in
formation places of a letter of CB' and affix to each column the n' - Ie' 
corresponding m' check digits. The nn' binary digits so obtained, read 
off in some fixed order, give the corresponding letter of e'. It is to be 
noted that, in this description of e', (n - Ie) (n' - Ie') of the check digits 
involve sums over other check digits, whereas in the description given 
by the last block of (21) these check digits are given as linear sums over 
the information places only. 

loG Arithmetic of Equivalence Classes 

The sum and product of group codes introduced in the preceding two 
sections provide an arithmetic of equivalence classes of codes. As before, 
let & denote the equivalence class of codes to which the (n,le) -code a 
belongs. We define the sum of two equivalence classes hy 

~ 
&+03==(a+m). 

The self-consistency of this definition follows from (8). Similarly we 
define a product 

/ .......... 

&O3 == am 

which is seen to be consistent from (17). Equations (8) through (II) 
and (17) through (20) give at once 

& + cB = & + &, 
& + (O3 + e) = (& + (3) + e, 

&O3 = &&, 
&(&e) = (&&)e, 

&( & + e) = && + de. 
The simple two-letter code, 1, consisting of the letters 0 and 1 with 

parameters n = 1, Ie = 1 and generator matrix n = (1) has the property 

1& = &1 = &, 

for all equivalence classes &. 

1. 7 Indecomposable Codes 

To avoid repeated cumbersome statements about trivial cases, in this 
section and the next we exclude from consideration codes whose generator 
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matrices contain columns of zeros. Such columns correspond to wasted 
digits in the code. A new code with smaller n value and the same Ie 
value can be obtained by deleting such all-zero columns. This property 
of possessing no columns of zeros is maintained under equivalence. If 
a possesses the property, it is not necessarily true, however, that at has 
no columns of zeros. 

It may happen that an (n,k)-code a is equivalent to the sum of two 
or more codes. In this case, we call a decomposable. If a is not equiva
lent to the sum of two or more codes, we calla indecomposable. 

If a is decomposable, all codes equivalent to a are also decomposable; 
if a is indecomposable, all codes equivalent to a are also indecomposable. 
We can therefore speak of an equivalence class a of codes as being either 
decomposable or indecomposable according as its members are or are 
not decomposable. 

Theorem 2: Every (n,Ie)-code a is equivalent to a sum of indecomposable 
codes: a ~ a l + a2 + ... + am, where a l , a2, ... , am are indecom
posable. Furthermore, this decomposition is unique in the following sense. 
If also a ~ aI' + a2' + ... + am,', where a/ , a/, ... , am,' are 
indecomposable, then m = m') al ~ ai/, a2 ~ ai/, ... , am ~ aim', 
where il , i2 , ... , im are the integers 1, 2, ... , m in some order. 

Theorem 2 can be stated in terms of equivalence classes as follows: 
Every equivalence class a of codes can be expressed as a sum of indecom
posable equivalence classes a = al + &2 + ... + am. The indecompos
able summands al , a2 , ••• , am are uniquely determined apart from order 
by a. 

A further consequence of Theorem 2 is 
Theorem 3 (cancellation law of addition): Let a, ill and e be any three 

equivalence classes of group codes. Then, if a + ill = a + e, it follows 
that cB = e. (This theorem holds also when codes with columns of zeros 
are allowed.) 

1.8 Optimal Properties of Indecomposable Codes 

A useful property of indecomposable codes is stated in the following 
theorem. 

Theorem 4: Let a be a decomposable (n,k) -code, k < n, with probability 
of no err.J Ql( a). There exists an indecomposable (n,k)-code, CP, whose 
probability of no error Ql ( cp) satisfies Ql ( cp) ~ Ql ( a) . 

In this theorem, Ql( a) is the probability that a letter of a be decoded 
correctly when a maximum likelihood detector is used as the decoder 
(see Section 1.6, Ref. 1). A similar meaning holds for Ql(<Y). The 



TABLE 1-VALU: 

k 

n 1 2 3 4 5 

--
X= S R S R S R S R S R 

--------------------
I X 1 1 

X 1 1 
----------------I 2 x 1 1 1 

X 1 
1 _____ 

------
3 X 1 1 2 1 1 

X 1 1 1 
---------- ---------

4 X 1 1 3 1 3 1 1 
X 2 1 1 

--------
5 X 1 1 4 2 6 2 4 1 1 

X 1 1 3 1 1 
--------

6 X 1 1 6 3 12 5 11 3 5 
X 1 1 4 2 4 

--------
7 X 1 1 7 4 21 10 27 10 17 

X 1 1 5 4 8 
--------------- --

8 X 1 1 9 5 34 18 63 28 54 1 
X 6 5 15 

----------
9 X 1 1 11 7 54 31 134 71 163 7 

X 5 5 29 2 
---------- ---------

10 X 1 1 13 8 82 51 276 164 465 25 
X 4 4 46 4 

----------
11 X 1 1 15 10 120 79 544 361 1283 80 

X 3 3 64 6 
----------

12 X 1 1 18 12 174 121 1048 751 3480 248 
X 2 2 89 8 

----------
13 X 1 1 20 14 244 177 1956 1503 9256 724 

X 1 1 112 11 
----------

14 X 1 1 23 16 337 254 3577 2887 24282 2034 
X 1 1 128 12 

----------
15 X 1 1 26 19 453 356 6395 5393 62812 5532 

X 1 1 144 14 
-------- ---------

16 X 1 1 29 21 613 490 11217 9763 160106 14623 
X 145 14 

---------- ---------
17 X 1 1 32 24 808 661 19307 17273 401824 37672 

X 129 12 
--------------------------------

18 X 1 1 36 27 1056 882 32685 29839 992033 94755 
X 113 11 

---- -------------------------------
19 X 1 1 39 30 1361 1157 54413 50557 2.40633 2.3290 

X 91 9 
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k 

6 7 8 9 

S R S R S R S R 

-------------------

-----

---

-------

---
I 
1 

----
6 1 1 
5 1 1 

-
25 5 7 1 1 
14 4 6 1 1 

---- ----
99 31 35 7 8 1 1 
38 19 22 6 7 1 1 

385 164 170 51 47 8 9 1 
105 70 80 35 32 7 8 1 

1472 809 847 361 277 79 61 10 
273 220 312 190 151 59 44 9 

---
5676 3749 4408 2484 1775 751 436 121 
700 629 1285 977 821 465 266 96 

22101 16749 24297 16749 12616 7240 3557 1503 
1794 1700 5632 4875 5098 3689 1948 1041 

-----
87404 72783 143270 113662 102445 72783 34942 20341 
4579 4463 26792 24920 37191 31227 17934 12476 

350097 311233 901491 784390 957357 784390 428260 311233 
11635 11505 137493 132811 320663 293070 213773 175114 

1.41325 1. 31126 5.98528 5.51748 10.1746 9.09877 6.59254 5.51748 
29091 28946 745413 733654 3.18608 3.04662 3.27631 2.94948 

---
5.70816 5.44572 41.1752 39.2920 119.235 112.170 123.425 112.170 

70600 70454 4.14506 4.11584 34.7994 34.0492 61.2716 58.0573 
---
22.9032 22.2371 287.813 280.215 1482.30 1434.04 2647.03 2516.51 
164705 164575 22.9827 22.9120 397.232 393.075 1296.46 1261. 52 

----
90.6994 89.0390 2009.86 1979.34 18884.5 18548.3 76284.2 59541.8 
366089 365976 124.432 124.268 4558.66 4535.64 29032.1 28634.1 

1231 
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theorem thus states that the search for best codes can be restricted to 
indecomposable codes when "best" means large values of Q. 

Another criterion frequently used to evaluate codes is the nearest 
neighbor distance, d. This quantity is the smallest nonzero weight of 
the letters of the code. If d = 2e + 1, then the code can correct all com
binations of e or fewer digit errors in any transmitted letter. For a given 
nand k, it is not necessarily true that the code with largest d value has 
the largest Ql value. 

The search for codes of largest nearest neighbor distance can also be 
limited to indecomposable codes as a result of 

Theorem 5: Let a be an (n,k) -code, k < n, with nearest neighbor dis
tance d ( a). There exists an indecomposable (n,k) -code, (P, with nearest 
neighbor distance d ( (p) ~ d ( a). 

A convenient test exists for determining whether a given Q-matrix in 
M-form is the generator matrix of an indecomposable code. Two ele
ments, m r8 and mtu , of jM are said to be connected if they both have 
value 1 and lie either in the same column or the same row of M. A 
path in M is a sequence of elements of M each of which is connected to 
its successor except for the last element of the sequence. In terms of 
these definitions, we have the following 

Test: Let a be an (n,k)-code with k < n. Then a is decomposable if 
and only if 111 contains a path containing elements from every row of M. 

The above test is meaningless for (n,n)-codes. The (l,l)-code is 
indecomposable. For n ~ 1, the (n,n) -code is decomposable. 

It is easy to show from this test for decomposability that a is an 
indecomposable (n,k)-code with no column of zeros if and only if at 
is indecomposable and has no column of zeros. 

The test for decomposability can also be used to establish that e 
CUB is indecomposable if and only if a and CB are indecomposable. 

1.9 Enumeration of Equivalence Classes 

Although we have not succeeded in parametrizing the equivalence 
classes of (n,k) -codes, we can systematically enumerate these classes by 
a modified Polya scheme.3 The details of the method are given in Section 
2.8. Here we present the results of a computation. 

We shall denote by Snk the number of equivalence classes of (n,k)
codes with no columns of zero. 

A generator matrix for an (n,k)-code mayor may not have repeated 
columns. The multiplicities of columns in an Q-matrix are preserved 
under equivalence. Of interest are the (n,k) -codes whose Q-matrices 
have no repeated columns. We denote by Snk the number of equivalence 
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classes of (n,k)-codes having no repeated columns and no columns of 
zeros. 

We adopt an analogous notation for the number of indecomposable 
equivalence classes. The number of equivalence classes of indecompos
able (n,k)-codes with no columns of zeros is denoted by Rnk . The num
ber of equivalence classes of indecomposable (n,k) -codes with no re
peated columns and no columns of zeros is denoted by Rnk . 

Table I lists values of Snk, Snk, Rnk and Rnk . The box in row nand 
column k contains Snk in the upper left corner, Snk in the lower left 
corner, Rnk in the upper right corner and Rnk in the lower right corner. 
All entries are given to six significant figures. Numbers containing a 
decimal point are to be multiplied by 106

• 

From a table of values of Snk, one can easily construct a table of 
values of W nk , the number of equivalence classes of (n,k) -codes (zero 
columns and repetition allowed). Table II is a short table of values of 

TABLE II - VALUES OF N nk AND W nk 

k 
n 

0 1 2 3 4 5 

-----
1 N 1 1 

TV 1 1 

2 N 1 3 1 
TV 1 2 1 

---------- ---------
3 N 1 7 7 1 

TV 1 3 3 1 

4 N 1 15 35 15 1 
TV 1 4 6 4 1 

-----
5 N 1 31 155 155 31 1 

TV 1 5 10 10 5 1 

6 N 1 63 651 1395 651 63 
TV 1 6 16 22 16 6 

-----
7 N 1 127 2667 11811 11811 2667 

TV 1 7 23 43 43 23 

8 N 1 255 10795 97155 200787 97155 
TV 1 8 32 77 106 77 

9 N 1 511 43435 788035 3309747 3309747 
TV 1 9 43 131 240 240 

----- -----
10 N 1 1023 174251 6347715 53743987 109221651 

TV 1 10 56 213 516 705 
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Wnk along with values of Nnk , the total number of distinct (n,k)-codes. 
One has Nnk = Nnl, W nk = W nl , l = n - k. The familiar appearance 
of the first five rows of the W nk table provides a good example of the 
perils of too hasty extrapolation in mathematics. 

Part II - ADDITIONAL THEORY AND PROOFS OF THEOREMS OF PART I 

2.1 Proof of Theorem 1 

Theorem 1 asserts that a necessary and sufficient condition for two 
Ie X n n-matrices, say Q and Q', to be equivalent is that their columns 
can be placed into a one-to-one correspondence that preserves mod 2 
addition of the columns. 

The necessity of the condition follows trivially from the fact that 
equivalence means gQ(Y = Q' for some nonsingular g and some permuta
tion matrix (Y. For the one-to-one correspondence of the theorem, asso
ciate the ith column of Q(Y, say Ci , with the ith column of n', say c/, 
i = 1,2, ... , n. Then gCi = c/, i = 1, 2, ... , n. Thus, if Ci + Cj = 
Ck , then gCi + gCj = gCk, or c/ + c/ = Ck'. Since g is nonsingular, it 
also follows that c/ + c/ = Ck' implies Ci + Cj = Ck • 

To prove the sufficiency of the condition, suppose that the columns 
of Q and Q' can be placed into a one-to-one correspondence that preserves 
mod 2 addition of columns. Let (Y permute the columns of Q so that the 
ith column of Q(Y corresponds to the ith column of Q', i = 1, 2, ... , n. 
Let g E Gk and J..L, an n X n permutation matrix, reduce Q(Y to M -form. 
Then mod 2 addition of columns is preserved between gQ(YJ..L and gQ' J..L 

when the ith column of the former is associated with the ith column of 
the latter, i = 1, 2, ... , n. The first Ie columns of gQ(YJ..L are independent 
since the first k columns of gQ(Y' J..L are. Therefore the matrix gl formed by 
the first k rows and k columns of gQ(YJ1 is nonsingular. The matrix 
gl-lgQ(Y}J. is in M -form and, when its ith column is associated with the 
ith column of gQ' J..L, mod 2 addition of columns is still preserved. But 
then columns k + 1, k + 2, ... , n of these two matrices are identical 
linear combinations of their identical first k columns, so that gl-lgQ(YJ..L = 
gQ' J..L. It follows then that Q' = g-lgl-lgQ(Y, so that Q' and Q are equivalent. 

2.2 Decomposition of Sets of Vectors 

In this section we present five lemmas and a theorem concerning 
linear dependence of vectors. This material is preparatory for the proof 
of Theorem 2. While it is true that Theorem 2 can be proved much more 
directly (and abstractly) than is done here, it is felt that the procedure 
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to be followed gives more insight into the nature of the problem at hand 
than do the shorter more abstract proofs. 

Here we shall consider collections of vectors drawn with possible 
repetitions from a finite dimensional vector space over a finite field of 
scalars. In the application to be made later, the vectors will be columns 
taken from the generator matrix of a code, and the scalars will as usual 
be zero or one. The reader may, if he wishes, restrict his considerations 
to vectors and scalars of this sort. Throughout this section, we agree to 
exclude the null- or zero-vector from consideration as a member of any 
of the collections of vectors we may discuss. 

Let 8 1 , 82 , "', 8 m be nonempty finite sets of vectors. Denote the 
vectors of 8 i by Vij, j = 1, 2, "', ri , for i = 1, 2, "', m. The sets 
8 1 , 8 2 , •• " 8 m are then called independent if every relation of the form 

implies 

f f: CK.ijVij = 0 
i=l j=l 

Ti 

L CK.ijVij = 0, 
j=l 

1, = 1,2, "', m. 

Clearly, no vector in anyone such set can be written as a linear combina
tion of vectors taken only from the other sets. Directly from the defini
tion of independence we also have 

Lemma 1: Let the sets 8 i be independent and let Ri be a subset of 8 i , 

i = 1, 2, "', m. Then the nonempty sets among R1 , R2 , "', Rm are in
dependent. 

A set, 8, of vectors is called indecomposable if 8 cannot be written as 
a union of two or more independent subsets of 8. Every vector in an 
indecomposable set containing more than one vector can be written as 
a linear combination of other vectors in the set. Clearly, a set 8 that is 
not indecomposable is the union of independent indecomposable sub
sets, 8 1 , 8 2 , "', 8 m • In this case we say that 8 can be decomposed 
into independent indecomposable components 8 1 , 8 2 , •• " 8 m • 

A linear form l = CK.IV1 + CK.2V2 + ... + CK.jVj is called irreducible if no 
collection of j - 1 or fewer of the terms CK.1Vl , CK.2V2, "', CK.jV j sums to 
zero; otherwise, the linear form is called reducible. Two linear forms are 
called disjoint if the respective sets of vectors with nonzero coefficients 
in the two forms are disjoint. We have then 

Lemma 2: Every reducible linear form that is equal to zero is the sum of 
disjoint irreducible linear forms each of which is zero. 

Proof: Suppose l = CK.1V1 + CK.2V2 + ... + CK.jV j to be reducible where 
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all the a'S are different from zero. Then there are subsets of terms of l 
that add to zero. Choose such a subset containing a minimal number of 
terms and call the sum of these terms the linear form II • The form II 
must be irreducible or it would not contain a minimal number of terms. 
Repeat this procedure for l - II == 12 = O. After a finite number of 
steps we obtain an irreducible form Ii and I = II + 12 + ... + li. The 
forms so obtained are disjoint by construction. 

Let 8 contain r vectors. One can form pr - 1 linear forms 

of these vectors where not all the a'S are zero. Here p is the number of 
elements in the field of scalars (p = 2 in the applications to follow). 
From this list of linear forms, delete those that do not sum to zero. 
From the remaining forms, delete those that are reducible. One arrives 
then at a uniquely determined set £ of irreducible sums, each one of 
which is zero. Two vectors of 8, say VI and V2 , are said to be directly 
connected to each other if they appear together as terms in anyone of 
the irreducible sums of £. A vector of 8 not appearing in any of the 
linear forms of £ is said to be directly connected to itself. Two vectors of 
8, VI and V2 , are said to be connected if there exist vectors 

of 8 such that VI is directly connected to ViI' ViQ. is directly connected 
to V2 and Via is directly connected to. Via+l , a = 1, 2, "', q - 1. 
If VI is connected to V2 , we write VI "-' V2 • Evidently, for all vectors 
VI , V2 , V3 of 8 we have: (a) VI "-' VI ; (b) VI "-' V2 implies V2 "-' VI ; 

(c) if VI "-' V2 and V2 "-' V3 , then VI "-' V3 • The vectors of 8 are therefore 
uniquely separated into disjoint equivalence classes by the connectedness 
relation "-'. 

Lemma 3: The totality of vectors of 8 belonging to an equivalence class 
E of connected vectors forms an indecomposable set. 

For, suppose E could be written as the union of two independent sub
sets 8 1 and 82 of E. Since all elements of E are connected, there must 
be a VI in 8 1 and a V2 in 8 2 such that VI is directly connected to V2 • There 
is therefore a linear form in £ of the form 

t 

aiVI + a2V2 + L aiVi = 0 
3 

with al ~ 0, a2 ~ O. By the definition of independence, the terms in 
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this sum belonging to 8 1 add to zero, as do the terms belonging to 8 2 • 

But this contradicts the irreducibility of sums in £. 
Lemma 4: Distinct equivalence classes 81 , 82 , "', 8m of connected 

vectors of 8 are independent sets of vectors. 
Proof: Consider any linear form 

of vectors of 8 that is zero. Suppose l contains vectors from different 
equivalence classes with nonzero coefficients. Then, since l = 0, l can
not be irreducible, for in this case the vectors in different equivalence 
classes would be directly connected. Since it is reducible, l can be written 
by Lemma 2 as the sum of disjoint irreducible forms each of which is 
zero. But none of these forms can contain vectors from different equiva
lence classes. Adding together all the irreducible forms containing 
vectors from anyone equivalence class, we get 

i = 1,2, "', m. 

Lemma 5: All vectors of an indecomposable subset P of 8 belong to the 
same equivalence class of connected vectors. 

For, let Ri be the set of vectors of P that belongs to the equivalence 
class 8 i , i = 1, 2, "', m. By Lemmas 1 and 4, the sets Ri are 
independent and the assumed indecomposable set P is then exhibited 
as the union of independent subsets. This is a contradiction unless all 
the Ri but one are empty. 

The preceding lemmas and definitions allow us to state finally the 
following 

Theorem 6: A set S of vectors can be decomposed into independent in
decomposable components in only one way. 

Proof: We have seen that 8 can be separated into equivalence classes 
of connected vectors in a unique manner. Lemmas 3 and 4 show these 
equivalence classes to be a decomposition of 8 into independent inde
composable sets. Suppose now that 8 could be decomposed in another 
manner into independent indecomposable sets. Lemma 5 shows that each 
such indecomposable set is completely contained in an equivalence class. 
There cannot be more than one such indecomposable set in any equiva
lence class, for then the equivalence class would be the union of two or 
more independent subsets which contradicts Lemma 3. 

We point out once again in closing this section that the vectors of the 
set S here considered need not be distinct. 8 may contain several copies 
of a single vector of the linear vector space under consideration. 
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2.3 Proof of Theorem 2 

Let us regard the columns of a generator matrix n( a) as a collection 
of vectors. The linear relations satisfied by a set of vectors determine 
whether or not the set is indecomposable. The linear relations satisfied 
by the column vectors of generator matrices of equivalent codes are 
identical (except for possible renumbering of the columns). It follows 
immediately that a code a is indecomposable if and only if the columns 
of any (and hence every) generator matrix n( a) form an indecompos
able set of vectors. With this remark, we proceed to the proof of Theorem 
2. 

That every (n,k)-code a is equivalent to a sum of indecomposable 
codes follows readily from the definitions of indecomposable codes and 
equivalence. Here we show only that if a f"'o...I a1 + a2 + ... + am and 
a f"'o...I aI' + a2' + ... + am,' where the ai and a/ are indecomposable, 
then m = m' and aj f"'o...I ai/,j = 1,2, "', m, where iI, i2, "', im are 
the integers 1, 2, "', m in some order. 

If R, 8, "', are matrices of respective size r X r', s X s', "', we 
denote by diag (R, 8, ... ) the (r + s + ... ) X (r' + s' + ... ) par
titioned matrix having R in its first r row and r' columns, 8 in rows 
r + 1 to r + s and columns r' + 1 to r' + s', etc., and zeros elsewhere. 
Set 

n = diag [n(a1), n(a2), "', n(am)], 

n' = diag [n( a/), n( a2'), "', n( am,')]. 
(22) 

Then, by hypothesis, n = gn' (J", where ai is an indecomposable (ni, ki)
code, i = 1, 2, .. " m; a/ is an indecomposable (n/,k/)-code, j = 1, 2, 
"', m';and 

m m' 

L ki = L k/ = k, 
i=l j=l 

m m' 

Lni = L n/ = n. 
i=l j=l 

The columns of n decompose into independent indecomposable sets 
8 1 , 8 2 , "', 8 m • Here 8 1 consists of the first n1 columns of n, 8 2 con
sists of the next n2 column of n, etc. The columns of n' (J" satisfy linear 
relations identical with those satisfied by the columns of n since n = 
gn' (J", and hence, from Theorem 6, the first n1 columns of n' (J" are an in
decomposable set 8r', the next n2 columns of n' (J" are an indecomposable 
set 8/, etc., and these sets are independent. But the columns of n'(J" 
are a reordering of the columns of n' and the latter are exhibited as m' 
indenendent indecomposable sets in (22). Therefore, m = m' and nit' = 
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nj, j = 1,2, ... , m, where iI, i 2 , ••• , im are the integers 1, 2, ... , 
m listed in some order. It follows then that S / consists entirely of those 
columns of nf that contain n(ai/),j = 1,2, ... , m. We can then write 
nf G" = J.Ln", where J.L is a le X k permutation matrix, 

n" = diag [n( ai/)G"l , n( aiz')G"2 , ... , n( etimf)G"m], 

and G"j is an nj X nj permutation matrix, j = 1, 2, ... , m. On setting 
g" = gJ.L, we have g"n" = n. 

Let TI be the matrix of the first nl columns of n, T2 be the matrix of 
the next n2 columns of n, etc. Let T 1" be the matrix of the first nl col
umns of n", T2" be the matrix of the next n2 columns of n", etc. Then 
g"T/' = T j ,j = 1,2, ... , m. But T j is of rank k j and g" is non
singular, so that k i / ~ k j • From L k/ = L k j = k, we find ki / = 
k j ,j = 1,2, ... , m. 

Now partition g" in rows according to kl , k2 , ... , k m and in columns 
according to nl , n2, ... , nm . Denote the ith diagonal submatrix of g" 
by gi. Then g"n" = n yields gjn(ai/)G"j = n(aj), j = 1,2, ... , m. 
A comparison of ranks in these equations shows that the gj are nonsingu
lar. Therefore aj I".J ai/, j = 1, 2, ... , m, and the theorem is 
proved. 

2.4 The Test for Indecomposability 

We have seen that an (n,k)-code a is indecomposable if and only if 
the columns of any generator matrix n( a) are an indecomposable col
lection of vectors. If n( a) is in M -form its first k columns are inde
pendent and each contains a single one. The other columns of n( a) can 
each be expressed as an irreducible sum of these first k columns. From 
Section 2.2 it follows that the columns of n( et) will form an indecompos
able set of vectors if and only if the first k columns of n( a) are connected 
to each other. The reader can readily translate this statement into the 
test described in Section I.S. 

2.5 Proof of Theorem 3 

The hypothesis 6, + cB = 6, + e means that, for codes a, CB and e 
respectively in 6" cB and e, 

a + CB I".J a + e. 

Then 

+ aa + CB1 + CB2 + ... + CB~ 
I".J a1 + a2 + ... + eta + el + e2 + ... + e-y, 
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where the aj, CBj and ej are the (unique) indecomposable code com~ 
ponents respectively of a, CB and e. By Theorem 2 we have (3 = ,)" 

and there is a one-to-one correspondence set up by the equivalence re
lation ,......,. between elements of the set HI = {aI, .. " aa , CB1 , •• " CBtl} 
and the set H2 = {aI, "', aa, e I , "', etl}. If all the CB's map into 
e's in this correspondence, then L CBi ,......,. L ei, 63 = e, and the 
theorem is proved. Suppose then that CB] maps into ail of H2 . If ail of 
HI maps into a e, say e l , then CBI ,......,. ail ,......,. el , and we go on to ex
amine another CB of HI . If, however, ail of HI maps into ai2 of H2 , 
we then consider ai2 in HI . Proceeding in this manner, we must ul
timately reach an a in HI that is mapped onto a e, since the a's in 
HI and H2 are equinumerous and CB] of HI is mapped onto an a of H2 . 
This yields a chain of equivalences starting with CB1 and ending with a 
e. Each CB then is equivalent to a e and, by reversing the argument, we 
find a one-to-one equivalence correspondence among the CB's and e's. 
It follows then that 63 = e. 

2.6 Proof of Theorem 4-

Theorem 4 states that if a is an indecomposable (n,k)-code, k < n, 
with probability of no error Ql ( a), then there exists an indecomposable 
(n,k)-code, CP, with probability of no error Ql(CP) ~ QlCa). 

Proof: The given code a is equivalent, by Theorem 2, to a code a' 
that is the sum of indecomposable codes: 

a' = CBI + CB2 + ... + CB m , 

where CBi is an indecomposable (ni' lCi)-code and Lki = k, L ni = n. 
Let CBi have probability of no error QI( CBi) when used with a maximum 
likelihood detector. Then a' has probability of no error QI( a') = 
Ql( CBI)QI( CB2 ) ••• QI( CB m ). [See remark following (7).] 

We shall show below that the theorem is true for m = 2. The proof 
for general m then follows readily by induction. For, suppose the theo
rem to be true form = 2,3, "', r. If then a' = CBI + CB2 + ... + CBr + 
CBr+l, by the induction hypothesis there is an indecomposable 
(n - nr+l, k - kr+l)-code CB' with Ql( CB') ~ Ql( CB1)Ql( CB2 ) ••• Ql( CBr). 
The decomposable code a" = CB' + CBr+1 has probability of no error 
Ql( a") = Ql( CB)QI( CBr+1). Again by the induction hypothesis, there 
exists an indecomposable (n,k)-code, CP, with Ql( cp) ~ QI( a") = 

Ql(CB')QI(CBr+l ) ~ Ql(CB1)QI(CB2 ) ••• Ql(CBr )Ql(CBr+1) = QI(a'). The 
theorem is then true also for m = 2, 3, .. " r + 1. 

To prove the theorem for m = 2, we distinguish two cases. First sup-
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pose n2 ~ 1. We can suppose the generator matrices for illl and ill2 

written in 1\11 -form so that a generator matrix for a' has the form 

n(a') = (.~~l .. ~ .. ~~. ~ .. ~ ... ~ ... 0 ... ). 

o : 0 : Ik2 : M2 

Consider now the (n,le) -code CP with generator matrix 

o 

. . . 

11"'1 
00"'0 

00"'0 
... .... ... .... ... .... ... ... ... . . . 
o : 0 : I k2 : M2 

(23) 

(24) 

where the upper right section of n( (p) has one row of l's and leI - 1 rows 
of zeros. We observe first that (P is indecomposable, since (P is equivalent 
to a code with generator matrix in M -form with 

M 

11"'1 
00 .. ·0 

00"'0 

o i112 J 
Since illl and ill2 are indecomposable, both MI and M2 have paths that 
contain all their rows, by the test of Section 1.8. A single path contain
ing all rows of 1\11 is then easily obtained by joining together the paths 
for MI and M2 by some of the ones of the upper right block of M. The 
code associated with ill is thus indecomposable, and so is (P. 

The last kl - 1 rows of n( illl ) generate an (nl , kl - 1 )-code. Let the 
letters of this code be Bll', B l2', .. " Blu' , where () = 2k1

-
1

• Let the first 
row of n( illl ) be denoted by Bll . Then the J..I..I = 2kl letters of illl are 
Bll', B 12', "', B1u' and Bll + Bll', Bll + B 12', "', Bll + Birr'. Let the 
letters of ill2 be B21 , B22 , "', B2J1.

2 
where J..I..2 = 2k2. Then the letters of 

a' can be denoted by the J..I..lf.12 symbols (Bl/, B2j ) and (Bll + Bli', B2j ), 
where i = 1, 2, "', () and j = 1, 2, "', J..I..2 • The notation here is that 
(B1/, B2j ) stands for the sequence Bli' followed by the sequence B 2j , 
for example. 

In the notation just introduced, the J..I..lJ..l..2 letters of (P are (Bli , B2j ) and 
(Bn + BI/ , B2j ), wherei = 1,2, "', () and j = 1,2, "', J..I..2 and B2j 
denotes the sequence B2j with its last n2 - k2 = l2 places complemented. 
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That is, B2j is obtained from B2j by changing to zero everyone in the 
last l2 places of B2j and by changing to one every zero in the last l2 
places of B2j . 

Consider now transmitting with <J> over a binary symmetric channel 
using the following decoding rules. Apply the maximum likelihood de
tector for 031 to the first nl digits of a received sequence R. One thus 
obtains a letter of 031 , say Bli . If Bli is one of the letters Bu', B I2', .. " 
Blu', apply the maximum likelihood detector for 032 to the last n2 places 
of R to obtain a letter of 032 , say B2j . The pair (Bli ,B2j ) is taken as the 
decoded version of R. If,however, Bli is one of the letters Bll + Bu', 
Bll + B 12' , "', Bn + Birr', complement the last l2 places of R, and 
then apply the maximum likelihood detector of 032 to the last n2 digits 
of this new sequence derived from R. A letter B2j , say, of 032 will be 
obtained. The decoded version of R is taken to (Bli, B2j ). 

It is readily seen that on using the indecomposable code <J> with this 
decoding scheme, the probability of no error is Ql ( (31) Ql ( (32 ). Since the 
maximum likelihood detector for <J> must do as well, Ql( <J» ~ Ql( (31) • 

Ql ( (32) = Ql ( a') = QI ( a), and the theorem is proved for this case. 
If n2 = 1, but n1 ~ 1, reverse the roles of 031 and 032 in the preceding 

argument. The case n1 = n2 = 1 has been excluded by the condition 
k < n, for nl = n2 = 1 implies kl = k2 = 1, or n = k = 2. 

This completes the proof. 

2.7 Proof of Theorem 5 

The nearest neighbor distance, d( a), of a group code a is the 
smallest of the nonzero weights of the letters of a. If a and a' are 
equivalent, d( a) = d( a'), and indeed the list of weights of letters of (t 

is the same set of numbers as the list of weights of the letters of a'. It 
is easy to see that if a = 03 + e then d(a) = min [d(03), dee)]. 
Thus, if a rv 031 + 032 + ... + O3m , d(a) = min [d(03l ), d(032 ), "', 

d( O3 m )]. 

The proof of Theorem 5 follows the outline of the proof of Theorem 4. 
The inductive part of the proof only requires substituting d's for Q's. 
The pertinent equations are: 

d(03') ~ min [d(031 ), d(032 ), "', d(03r )], 

d(al!) = min [d(03'), d(03r+l )], 

d(CP) ~ d(al!) = min [d(03'), d(03r+1)] 

~ min{min [d(031),"', d(03r )], d(03r+l )} 

= min [d(03l ), "', d(03r+1 )] = d(a') = d(a). 
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To prove the theorem for m = 2, we again consider a generator matrix 
for a' in the form given by (23). Without loss of generality, we suppose 
d(a') = d((I31) , so that d((I31) ~ d((I32)' Now suppose l2 = n2 - k2 ~ 1. 
We compare a' with the indecomposable code (5) given by (24). The 
nonzero letters of (5) are the 2kl +kz - 1 nontrivial linear combinations 
of the rows of Q( (5)). Every such linear combination that contains one 
or more of the first kl rows of Q( (5)) has weight ~ d( (131), since the first 
n1 places will be a nonzero letter of (131 and the last n2 places have weight 
~ O. Every linear combination of rows of Q( (5)) that does not contain 
any of the first kl rows is just a letter of (132 preceded by nl zeros, and 
hence has weight ~ d( (132) ~ d( (131)' We thus have d( (5)) ~ d( (131) = 
d( a'). 

If l2 = 0, then k2 = n2 1, since (132 is assumed indecomposable. 
Then d( (132) = 1 and, since d( (131) ~ d( (132), d( a') = d( (131) = 1. How
ever, for every indecomposable (n,k)-code (5), we have d( (5)) ~ 1 = 
d( a'), and so the theorem is proved for m = 2. 

2.8 Enumeration Formulae 

Let G be a finite group with elements gl , g2, "', gr, where r is the 
order of G. Define gi "" g j if there exists an element g E G such that 
gi = gg jg -1. The equivalence relation"" partitions G into equivalence 
classes C1 , C2, "', Cp called classes oj conjugate elements. Now suppose 
that corresponding to each element gi of G there is a permutation, 
U(gi), of m objects 8 1 , 8 2 , "', Sm of a set 8 such that if gig j = gk, 
then U(gi)U(gj) = U(gk)' We define two of the objects of the collection 
S, say Si and S j , to be equivalent if there is a u(g l), g lEG, that re
places Si by S j. The collection of objects S is then partitioned into 
equivalence classes. A well-known theorem (p. 231, Ref. 3) gives, for 
the number of equivalence classes N of 8, 

(25) 

Here n(C i ) is the number of elements of G in the equivalence class Ci 

and x( Ci) is the number of elements of S left invariant by any U(gi), 
gi E Ci . [It is easy to show that if gi "" gj , then U(gi) and u(gj) leave 
the same number of elements of S invariant.] 

We apply this theorem to the enumeration of (n,k)-codes as follows. 
For the group G we choose the collection .Gk of nonsingular k X k mat
rices (mod 2) of order 

I Gk I = (2k - 2°)(2k - 21) ... (2k - 2k- 1). (26) 

. I 
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Let VI ,V2 , ... ,V2Ll be the nonzero k-place binary column vectors. 
For the sets SI , S2 , ... , Sm we choose the m = (2k - 1) n possible 
collections of the V's taken n at a time (repetitions of v's within any S 
allowed). The elements of Gk permute the 2k - 1 vectors V among them
selves by ordinary matrix multiplication. That is, if giVj = Vl, we say 
that gi induces a permutation f..L(gi) that replaces Vj by Vl . The permu
tation f..L(gi) of the v's in turn induces a permutation U(gi) of the sets 
Sl , S2, ... , Sm. We note that if n ~ 2k - 1, then 

of the m S's have the property of containing only distinct vectors (no 
repetitions), and these iii special S's are permuted among themselves 
under U(gi). We denote by a-(gi) the permutation of these iii special 
S's induced by gi. 

We now define two k X n binary matrices nand n', regardless of their 
rank, to be equivalent if there exists agE Gk and an n X n permutation 
matrix v such that n' = gnv. The number of equivalence classes of 
k X n-matrices none of which has columns of zeros is then clearly the 
same as the number of equivalence classes of the sets Sl , . . . , Sm . Ap
plying (25), we write 

1 
Tnk = I G

k 
I ~ n(Ci)x(Ci ), (27) 

Tnk = I ~k I ~ n(Ci)x(Ci ), (28) 

where I Gk I is given by (26), n(C i ) is the number of elements of Gk in 
class Ci , and x(C i ) and x(Ci ) are the number of objects left invariant 
respectively by U(gi) and a-(gi), gi E Ci . The quantities Tnk and Tnk 
are, respectively, the number of equivalence classes of ,,, X n matrices 
with no columns of zeros and the number of equivalence classes of 
le X n matrices with no columns of zeros and no repeated columns. 

The matrices n in the above enumeration may have rank less than 
le. It is easy to show, however, that 

Snk = Tn,k - Tn,k-l, 

Snk = Tn,k - Tn,k-l, 

(30) 

(31) 

le = 2, ... , n, n = 1, 2, ... , where, as in Section 1.9, Snk and 
Snk are, respectively, the number of equivalence classes of (n,le )-codes 
with no column of zeros and the number with neither repeated columns 
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nor columns of zeros. We also have Snl = 1 for n = 1, 2, ... and 
811 = 1, 8nl = 0 for n > 1. 

The group Gk has been well studied, and the detail needed to evaluate 
(27) and (28) can be taken from the literature. Here we omit all deriva
tions and only present such definitions and formulae as needed for our 
purpose. The structure of Gk is given in detail by Dickson;4 a recipe for 
getting the cycle structure of the permutations of the v's induced by ele
ments of Gk is given by Elspas.5 

A polynomial of degree d > 0, 

P(x) = xd + alxd- l + a2xd-2 + ... + ad, 

where the a's are zero or one, is said to be irreducible if it cannot be 
written as the product of two or more polynomials with coefficients zero 
or one, where each factor is of degree greater than zero. (All addition of 
coefficients is to be done mod 2.) For each d there are a finite number of 
irreducible polynomials. In what follows, we shall exclude from con
sideration the irreducible polynomial P(x) = x. The first few irreducible 
polynomials are x + 1, x

2 + X + 1, x3 + X + 1, x3 + x2 + 1. A more 
comprehensive table of irreducible polynomials is given by Church,6 
where, for each irreducible polynomial, P, there is also listed the small
est integer e such that P divides xe - 1. We suppose the irreducible 
polynomials to be numbered, and denote them by PI ,P2 ,P3 , •••• We 
let di denote the degree of Pi and ei denote the smallest integer e such 
that Pi divides xe 

- 1. We further let td be the number of irreducible 
polynomials of degree d or less. 

A partition of an integer a into positive integral parts Al , A2 , •.• , 
say a = Al + A2 + ... + Ap , can also be written in the form 

a 

a = 1al + 2a2 + ... + aaa = L iai . 
I 

Here ai designates how many parts have the value i. We shall use bold
face Greek letters to denote partitions. The absolute value sign will de
note the value of the integer being partitioned. For example, (X will de
note a particular partition, 

of the integer a = \ (X \. When dealing with many partitions (Xl , (X2 , (X3 , 

etc., we shall denote the numbers of parts of various size of (Xi by ail, 

ai2 , etc., so that 
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We admit the single partition of zero, 0, into one part. For this partition, 
all a'S are zero. 

The classes of conjugate elements of Gk can be specified conveniently 
by tk-place symbols. The ith place in such a class symbol corresponds to 
the ith of the irreducible polynomials of degree ~ k. Each place in such 
a class symbol is occupied by a partition. If the symbol for a class of Gk 

IS 

(32) 

we reqUIre 

(33) 

The various classes of Gk are given by all the distinct symbols (32) that 
can be formed subject to (33). The sums in (27) and (28) are over such 
class symbols. 

We now give a recipe for the integers n(C) of (27) and (28). (See 
p. 235, Ref. 4.) We first write 

Then, if C is specified by (32), 

Here 

where 

Q(r,j) 

and 

To compute the quantities x(C i ) and x(C i ) of (27) and (28), we 
need to know the cycle structure of the permutation of the v's induced by 
an element of class Ci of Gk • Let an element of Ci , as given by (32), 
permute the v's into Vi cycles of length i, where i = 1, 2, ... , 2k - 1. 
An algorithm for finding the V's is given by Elspas.5 Introduce indeter-
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minates Zl , Z2 , ••• ,and define the product of two z's by the rule 

where c is the greatest common divisor of a and band d is the least 
common multiple of a and b. Then the v's may be obtained from 

2k_l tk 100i I 
Zl + L VZ(C)Zl = II II H(i,j)aij, 

l=l i=l j=l 

where the linear forms H (i,j) in the z's are obtained recursively by 

2di {j-O (2di - 1) 
HCi,j) = HCi,j - 1) + ZqiJ" 

i = 1,2, "', 

qij = ei
2bj

, 

qij 

where bj is the smallest integer such that 2b
j ~ j, and H(i,O) = Zl ,i = 1, 

2, .... 
An element of Gk permutes the v's in cycles. A collection S i of n v's 

will remain invariant under this permutation only if S j is composed of 
complete sets of the v's that are permuted in cycles. It is not hard to 
determine the number of Sj that remain fixed when the cycle structure of 
the permutation of the v's is given. We write only the final result: 

00 2k_l 

L Tnkt = _1_ L n(Ci ) II (1 - ti)-Vj(Ci\ 
o I Gk I i i=l 

00 2k_l 

L Tnkt = _1_ L n(Ci ) II (1 + tiYj(Ci). 
o I Gk I i j=l 

The utterly formidable series of formulae and algorithms from (32) on 
were used, along with (30) and (31), to compute the Snk and 8nk given 
on Table 1. The Rnk were found from the Snk by a generating function 
scheme which will not be described in detail here. When the Rnk are 
known for k = 1, 2, ... , ko and n = 1, 2, ... , no, these numbers can 
be used to find the number of equivalence classes of decomposable 
(no + 1, ko)-codes, (no, ko + I)-codes and (no + 1, ko + I)-codes. By 
subtracting the number of decomposable equivalence classes from the 
appropriate Snk , new values of Rnk are found. 

The programming of these formulae for the IBM 704 presented a 
number of interesting problems. All quantities involved are integers. In 
the program, they were maintained as integers. The division indicated in 
(27) then provides a check as to the accuracy of the sum. Unfortunately, 
the integers involved are frequently enormous. Modest answers in Ta-
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ble I of magnitude 101 to 102 were obtained as the result of computations 
involving integers of magnitude 1030. The total machine time needed to 
compute the results presented was ahout 45 minutes. 

2.9 An Alternate Approach to Enumeration 

In Ref.· 1 we regarded any subgroup of order 2k of the group Bn of 
n-place binary sequences under mod 2 addition as an (n,1f,) -code. Thus 
codes with columns of zeros were admitted. It was also pointed out that 
Gn is the group of automorphisms of Bn . If we regard the elements of 
Bn as column vectors, then multiplication of each element of Bn by an 
n X n matrix g E Gn sends the element into a new element of Bn and 
this defines the automorphism associated with g. 

In an automorphism of Bn , subgroups of Bn are sent into subgroups. 
We denote by get the subgroup into which the (n,lc)-code et is sent under 
the automorphism g. As g runs through Gn , get runs through all Nnk (n,lc)
codes. 

Now let H be the subgroup of Gn that leaves et invariant, i.e., H con
sists of all those elements g E Gn for which get = et. Let Sn be the sub
group of Gn consisting of all n! n X n permutation matrices. Then the 
elements SnH (the collection of distinct elements of Gn obtained by 
multiplying every element of Sn on the right by every element of H) send 
et into an equivalent code, and it is easy to show that SnH contains all 
elements of Gn that send et into an equivalent code. Let g2 E Gn send et 
into a nonequivalent code et2 • Then g2 EE SnH. Every element of the 
collection Sng2H (i.e., all elements sg2h with s E Sn, h E H) then sends 
et into a code equivalent to et2 , and again it is easily shown that every 
element of Gn that sends et into a code equivalent to et2 is contained in 
Sng2H . 

A collection of the form SngH is called a double coset of Gn with respect 
to Sn and H. Two double cosets of Gn with respect to Sn and H, say 
Sng1H and Sng2H, are either disjoint or identical. The group Gn can thus 
be decomposed into disjoint double co sets Sng1H, Sng2H, ... , SngpH. 
The argument of the preceding paragraph can be continued to show that 
p, the number of double cosets of Gn with respect to Sn and H, is the 
number, W nk , of equivalence classes of (n,k)-codes (zero columns per
mitted) . 

The following formula7 for the number, p, of double cosets of a finite 
group G of order I G I with respect to the subgroups HI and H2 respec
tively of order I HI I and I H2 I, 

I G I "" ni ( C i) n2 ( C i) p - ~:--;-~---;- ~ - I HI II H21 i n(C i ) , 
(34) 
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could then be applied to the case at hand to compute Wnk . In (34) the 
sum is over the classes Ci of conjugate elements of G, n(C i ) is the num
ber of elements of G in class Ci , and nj(C i ) is the number of elements 
of Ci that lie in H j ,j = 1,2. An appropriate choice for ct in the enumer
ation in question would be the (n,k) -code whose last n - k columns are 
zero. The set of all matrices of Gn whose last n - k rows contain only 
zero in their first k columns then makes up the subgroup H. We do not 
carry out the details of the enumeration by this method further here. 

2.10 Equivalence for M-forms 

We have commented in Section 1.2 that two equivalent il-matrices 
both in M-form may have different .Ll1-matrices. It is natural to inquire 
into the different M -forms possible for il-matrices within an equivalence 
class.* 

The M-forms of all matrices equivalent to il can be obtained as fol
lows. Make any permutation of the columns of n that causes the resultant 
matrix, il', to have its first k columns linearly independent. Premultiply 
n' by the inverse of the matrix formed by its first k columns. 

Now let 

100··· a mllmI2··· mil 

010··· a m2Im22··· m2l 

000···1 mklmk2···mkl 

where l = n - k. The permutations of the columns of n that replace its 
first k columns by independent columns can be generated by repeated 
applications of three types of elementary permutations: (a) interchange 
of position of two among the last l columns of n; (b) interchange of posi
tion of two among the first k columns of n; (c) interchanging one of the 
first k columns with one of the last l columns. A type (a) transposition 
is a column transposition of kl and n is still in Jlf-form. A type (b) 
transposition involving columns i and j yields a matrix that can be 
brought into ill-form by premultiplication by the permutation matrix 
that interchanges rmvs i and j. The new .LvI differs from the old only by 
interchange of rows i and j. A type (c) transposition, which interchanges 
column j of M with column i of I k , is valid only if mij = 1 (otherwise 
the first k columns of the new n would not be independent). Let such a 
transposition send n into n'. Let column j of lYI have ones in rows i, PI , 
P2 , ... , pr and zeros elsewhere. Then il' can be brought into .Ll1-form 

* The equivalence described here has been investigated independently and in 
a more general setting by Tucker.8 
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by premultiplication by a matrix that adds row i of n' to rows PI , P2 , 
... ,pr' The new M -matrix is then obtained from the original M -matrix 
by these operations: leave column j unchanged; except in column j, add 
row i to rows PI , P2 , . . . ,pr . We call this a pivotal operation on M about 
the position mij , provided mij = 1. 

Define two M-matrices to be equivalent if one can be obtained from 
the other by repeated applications in any order of permutations of rows 
or columns or by pivotal operations. Then two n-matrices are equivalent 
if and only if when reduced to M-form their M-matrices are equivalent .. 
Equivalent M-matrices, when prefixed by a unit matrix, yield equivalent 
n-matrices. We have not been able to find a systematic method of reduc
ing a given k X l binary matrix to a canonical form by means of pivotal 
operations and permutations of rows and columns. 

2.11 Miscellaneous Comments and Problems 

The Q for the sum of two codes is the product of the Q's for the sum
mands. What is the relationship for the Q of a product in terms of the 
Q's of the factors? What is the relationship between the Q of a code and 
the Q of its dual? Answers to both of these questions probably require 
some detailed knowledge of the structure of the codes involved beyond 
a mere statement of their Q's. What detail must be known? 

Decomposition of codes with respect to addition has been explored. 
Certain optimal properties of indecomposable codes and a unique de
composition theorem have been proved. Decomposition with respect to 
mUltiplication can be defined in a similar manner. Do analogous the
orems hold in this case? 

When n < 2k - 1, an n-matrix need not have repeated columns. If an 
indecomposable n-matrix does have repeated columns, the correspond
ing code can be viewed as having several check digits that are identical 
linear combinations of the information places. Intuitively, this seems 
like a wasteful use of the check digits. Is it. possible to prove a theorem 
to the effect that if n < 2k - 1, there is an (n,k)-code with no repeated 
columns with a Q as great as that for any (n,k)-code with repeated col
umns? All cases of known best group codes with n < 2k - 1 have no 
repeated columns. 

A strong statement about group codes with no repeated columns that 
might be conjectured is the following: "Let a be an (n,k) -code with 
n < 2k - 2. Let ffi be any (n + 1, k)-code formed from a by adjoining 
to n( a) anyone of the columns already present in n( a). Let e be an 
(n + 1, k)-code formed by adjoining to n(a) a column c not already 
present in n(a). Then c can be chosen so that Q(e) ~ Q(ffi) for all ffi." 
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This conjecture has been shown not to be true for all a. E. F. Moore of 
Bell Telephone Laboratories has constructed a code a such that the new 
code formed by repeating a parity check of a is strictly better than any 
code formed from a by adding a new type parity check. The falsity of 
this conjecture does not preclude the possibility of a thoerem of the sort 
mentioned in the previous paragraph. One should not expect to pass 
from a good (n,k) -code to a good (n + 1, k) -code in any simple manner: 
the structure of a best (n + 1, k) -code may be quite different from the 
structure of a best (n,le )-code. 

In this connection, we point out that there are many (n,k)-codes that 
cannot be improved by the addition of a single parity check. This situa
tion obtains whenever the coset leaders of the given code are unique (or, 
in geometrical terms, when there are no vertices of the n-cube on the 
boundaries of the maximum-likelihood regions). Adding a single parity 
check to such a code to form an (n + 1, k)-code leaves the value of Q 
unaltered. 

The notions of addition and multiplication for group codes can be 
easily generalized to hold for block codes. How much of the theory de
veloped remains in this case? 

The foregoing are but a few of the many questions that arise naturally 
from this work. Most of them have not yet been investigated in any de
tail. We have, it is clear, raised more questions than we have answered. 
Perhaps this is inherent in the nature of research. 
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Capacity of a Burst-Noise Channel 

By E. N. GILBERT 

(Manuscript received March 15, 1960) 

A model of a burst-noise binary channel uses a Markov chain with two 
states G and B. Instate G, transmission is error-free. Instate B, the chan
nel has only probability h of transmitting a digit correctly. For suitably 
small values of the probabilities, p, P of the B ~ G and G ~ B transitions, 
the model simulates burst-noise channels. Probability formulas relate the 
parameters p, P, h to easily measured statistics and provide run distribu
tions for comparison with experimental measurements. The capacity C of 
the model channel exceeds the capacity C (sym. bin.) of a memory less sym
metric binary channel with the same error probability. However, the differ
ence is slight for some values of h,p,P,. then, time-division encoding schemes 
may be fairly efficient. 

I. INTRODUCTION 

In information theory the symmetric binary channel is the classical 
model of a noisy binary channel. This channel generates a sequence of 
binary noise digits Zn, which it adds (modulo 2) to input digits Xn 

to produce output digits Yn = Xn + Zn • The symmetric binary channel 
is memoryless; a sequence of independent trials produces the noise digits 
Zn • Each trial has the same probability P( l) of producing an error and 
probability 1 - pel) = P(O) of no error. The capacity C(sym. bin.) 
of this channel is well known (see Shannon 1 ) : 

C(sym. bin.) = 1 + P(O) log2 P(O) + P(l) log2 P(1). 

Channels with memory occur in practice. If radio static or switching 
transients produce the noise, the errors group into isolated bursts (sev
eral errors close together). Independent trials fail to simulate such a 
burst-noise. Section II of this paper presents a model of a burst-noise 
channel that is simple enough to permit calculation of the channel ca
pacity C (see Sections III and VI). Sections IV and V give run distribu
tions, the covariance function and other probability formulas as aids to 
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testing the model's applicability and to picking model parameters which 
match measured statistical data. 

Of all binary channels with a given error probability P(l), the sym
metric binary channel has least capacity. Indeed, if an encoding for 
signaling over the symmetric binary channel at a rate R is known, then 
N sources can use this encoding in time-division multiplex at rates RIN, 
each over a burst-noise channel. Here, N must be large enough so that 
noise digits N apart are nearly independent. Time division protects 
against other noise patterns besides bursts; still less redundant schemes 
are possible. The possible increase in signaling rate C - C(sym. bin.) 
will be seen to be often surprisingly small (see Fig. 4). 

II. THE MODEL 

A Markov chain with two states can be used to generate bursts. The 
two states will be called G (for good) and B (for bad or for burst). In 
state G the noise digit is always Zn = O. In state B a coin is tossed to 
decide whether Zn will be 0 or 1. 

The coin-tossing feature is included because actual bursts contain 
good digits interspersed with the errors. In the formulas that follow a 
biased coin is allowed (probability h of making no error in state B). 
All computations given here take h = 0.50, which seems a reasonable 
value. 

After producing the noise digit Zn , the Markov chain makes a transi
tion to prepare for Zn+l • To simulate burst noise, the states Band G 
must tend to persist; i.e., the transition probabilities P = Prob(G ~ B) 
and p = Prob(B ~ G) will be small and the probabilities Q = 1 - P, 
q = 1 - p of remaining in G and B will be large. Fig. 1 is a transition 
diagram for the Markov chain. 

Runs of G will alternate with runs of B. The run lengths have geo
metric distributions with mean liP for the G-runs and mean lip for 

p 

p 

Fig. 1 - Transition diagram for the Markov chain. 
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the B-runs. The geometric distribution of G-runs seems reasonable. If 
the various clicks, pops and crashes, which might cause errors on a real 
channel, are not related to one another, then the times between such 
events will have the geometric distribution (see Feller,2 Section XIII. 9 ). 
Only mathematical simplicity justifies the geometric distribution of 
B-runs; one might construct more accurate models. Section III men
tions one way of elaborating this one; however, complicated models may 
be useless without adequate statistical data to determine all the model 
parameters. Section V will illustrate some of the difficulties in determin
ing just the three parameters P, p and h. 

The following 500 digits form a typical sample of burst-noise with 
parameters P = 0.03, p = 0.25, h = 0.5, produced by using random 
numbers: 

0621101710461101011101111015104210281109°1037 

110°100103°101101023110410181015110111011011105. 

The exponents are run lengths; i.e., 062 denotes a run of 62 consecutive 
zeros. As expected, long runs of good digits separate the bursts. 

The 500-digit sample illustrates the impossibility of reconstructing 
the sequence of states from the sequence of digits. In portions of some 
of the long runs of zeros, the Markov chain was in state B; this went 
unnoticed because the coin tosses produced only zeros. The sample 
also contains one burst 11041 in which a short sojourn into state G pro
duced three of the four zeros. 

The fraction of time spent in state B is P(B) = P/(p + P). Since 
errors occur only in state B, and then just with probability 1 - h, the 
error probability is 

P(1) = (1 - h)P (B) 

III. THE CAPACITY 

P 
(1-h)p+p' (1) 

Let H denote the entropy of the sequence of noise digits· .. ,ZI ,Z2 " ••• 

For all inputs x to the burst-noise channel, the conditional entropy, 
Hx(Y), of the output y knowing the input x is the same: 

Hx(Y) = H. 

A simple argument then shows that the capacity C of the burst-noise 
channel is C = 1 - H (a monogram source with probabilities 0.5 for 
o and 0.5 for 1 attains the rate C). 



1256 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

Shannonl (Section 7) gives a simple way of computing an entropy 
H from state probabilities [P(G), P(B) here] and transition probabil
ities. McMillan3 (Section 2.0) notes that this result tacitly assumes that 
the state sequence is reconstructible from the digit sequence. Since a 
reconstruction is impossible here, H has a more complicated formula. 

A definition of H is 

H = lim L P(Zl,.· ·,zN)h(zl , .. ·,ZN), (2) 
N~"" Zi=O,l 

with 
1 

L P(ZN+11 Zl ,. •. ,ZN) 10g2 P(ZN+l I Zl"·· ,ZN). (3) 
ZN+l=O 

If Zi = 1, the corresponding state is certainly Band 

P(Zi+l ,. .. ,Zi+i I Zl ,. •. ,Zi-l ,1) = P(Zi+1 ,. .. ,Zi+i 11) (4) 

follows for all j ~ 1. Then, 

follows and also 

Thus, just the number of consecutive zeros at the end of the block 
(Zl ,. .. ,ZN) determine h(zl , ... ,ZN) completely. Each of the 2Nh's in the 
sum (2) is one of the N + 1 numbers 

h( 1) ,h(10),. .. ,he 10k
),. •• ,h(10N-l) ,h(ON) 

(again exponents denote run lengths). After using this simplification in 
(2), summing and letting N --7 00, the result is 

"" 
H = L P(10K)h(10K). (5) 

K=O 

The terms of (5) involve probabilities of runs of zeros. Section IV 
will give a formula for the conditional probability, u(K), of a run of 
]( or more zeros following a one, that is, u(K) = p(OK 11). The con
vention u(O) = 1 will be adopted. Then, in (5), 

P(lOK) = P(I)u(K) 

[(1) gives P(I)]. Also, (3), together with P(O I 10
K

) = u(K + 1)/u(K), 
provides an expression for h(10K): 
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u(K + 1) 1 u(K + 1) 
u(K) Og2 u(K) 

- [1 - u(K + l)J 1 [1 - u(K + l)J 
u(K) Og2 u(K)' 

(6) 

Using (6), the terms of (5) rearrange into 
00 

C = 1 + P(1) L v(K) 10g2 v(K), (7) 
K=O 

where v(K) = u(K) - u(K + 1). Section IV contains formulas for 
v(K). Although (7) seems simpler than (5) and (6), it converges slowly. 
In Section V the computation method uses a modification of (5) and 
(6) . 

Note that v(K) = P(OK1 11). Another derivation of (7) proceeds 
by showing that the noise sequence consists of successive blocks of 
digits of the form 1,01,001" .. ,OK1,' .. , chosen independently, and with 
probability v(K) for the block OKl, Then - L v(K) 10g2 v(K) is the 
information per block and P(l) is the average number of blocks per 
digit. 

Equations (5), (6) and (7) apply to certain other channels. These 
formulas followed just from (4), which holds whenever the lengths of 
successive runs of zero are independent. Whenever such independence 
can be assumed, a more elaborate model might use v(0),v(1),v(2),···, 
directly as parameters. Then P ( 1) in (7) is 

00 

P(1) = [L (K + l)v(K)r1
• 

K=O 

As a check, the symmetric binary channel has v(K) 
and (7) sums to C(sym. bin.). 

IV. PROBABILITIES 

P(1)[P (O)]K 

Recurrent events theory (Feller,2 Section XIII) provides some prob
abilities needed in Sections V and VI. 

4.1 Recurrence Times lor State B 

Let IK denote the conditional probability, in state B, that the first 
return to B will happen at step K: 

IK = p(GK
-

1B I B). 

Then 11 = q,12 = pP and IK = pQK-2p for K ~ 2. It is convenient to 
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make these probabilities the coefficients of a generating function F( t) 
of recurrence time probabilities: 

( ) "" K pPt
2 

F t = L..J f Kt = qt + 1 _ Qt' (8) 

For example, the probability fK(m) that the mth return to B happens 
at step K has the generating function 

00 

L fK(m)tK = [F(t)t. (9) 
K=I 

The probability of no return to B in k steps is pQk-I. Then the prob
ability s(K,m) of exactly m returns to B in K steps (but not necessarily 
a return on step K) is 

K-m 
s(K,m) = fK(m) + L fK_k(m)pQk-I. 

K=I 

The corresponding generating function is 

t. s(K,m)t
K = (1 + 1 ~t Qt) [F(tlr. (10) 

4.2. Recurrence Times for Ones 

Starting from a one (and hence from B), the next one must occur at 
a return to B, but not necessarily the first return. The probability that 
the next one occurs at the mth return to B and at step K is 

hm-I(I - h)fK(m). 

Then, recurrence time probabilities for ones are 

00 

v(K - 1) = p(OK-II 11) = L hm-I(I - h)fK(m). 
m=I 

Equation (9) now provides the generating function Vet) 

tV (t) = (1 - h) F ( t) . 
1 - hF(t) 

(II) 

Likewise, the probability u(K) that no one appears in the next I( 
steps is 

u(K) = L s(K,m)hm, 
m 
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which has generating function 

U(t) 

By (8), 

U(t) 

1 + (p - Q)t 
(1 - Qt)[1 - hF(t)]" 

1 + (p - Q)t 
D(t) 

where D(t) = 1 - (Q + hq)t - h(p - Q)t2
• 

Factor the quadratic D(t): 

D ( t) = (1 - J t) (1 - Lt), 

1259 

(12) 

(13) 

where 2J = Q + hq + V(Q + hq)2 + 4h(p - Q) and L is the same 
expression with negative square root. Now, (13) becomes 

U(t) = 1 + (p - Q)t (_J ___ L_). 
J - L 1 - J t 1 - Lt 

The coefficient of tK in the power series for U(t) is 

(K) = (J + p - Q)JK - (L + p - Q)LK 

u J-L • (14) 

To find a recurrence formula for u(K), write (13) as D(t) U(t) = 1 + 
(p - Q) t and equate coefficients of tK

: 

u(K) = (Q + hq)u(K - 1) + h(p - Q)u(K - 2) (15) 

for K = 2,3,· ... Initial values are 

u(O) = 1, u(l) = p + hq. 

For calculating, (15) is more convenient than (14). 
Similar steps lead from (11) to 

v(K) = ~ =- 1 [(qJ + p - Q)JK - (qL + p - Q)LK]. (16) 

For K = 2,3,···, v(K) also satisfies (15), but with initial values 

v(O) = (1 - h)q, v(l) = (1 - h)(pP + hq2). 

4.3. Covariance 

The covariance function of this binary noise is just a joint probability 
r(K) = Prob(zo = 1, ZK = 1). A formula for the generating function 
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R(t) = L r(K)tK is 

R(t) = p(1) {1 + tV(t) + [tV(t)]2 + ... } 
P(l) 

1 - tV(t) 

P(1)D(t) 

(1 - t)[l + (p - Q)t]" 

The term P(l)[tV(t)]m in the sum generates the probabilities of finding 
Zo = ZK = 1, with exactly m - 1 of the digits Zl ,. •• ,ZK-l equal to 1. 

An explicit formula for r(K) follows by expanding R(t) in a power 
senes: 

reO) = P(l) , 

r(K) = P(l)' [1 + p(q -;, P)K], K = 1,2,···. 
(17) 

V. PARAMETER MATCHING 

The three parameters p, P, h are not directly observable, so methods 
of deducing them from statistical measurements must now be considered. 
We will express p, P, h as functions of three other easily estimated noise 
parameters. One suitable set of three parameters (involving only trigram 
statistics) is 

a = P(l), b = P(111), 
P(111) 

c = P(101) + P(1II) . 

Here, c is the conditional probability of finding the place between two 
ones filled by a one, and it has the expression 

(1 - h)q2 
q2 + pP 

Solving for p, P, h in terms of a, b, c, 

ac - b2 

1 - p = q = 2ac - b (a + c) , 

b 
h = 1 - q' (18) 

P = ap . 
1 - h - a 

If h = 0.5 is assumed, then q = 2b and no c measurement is needed. 
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For illustration, the 500-digit sample in Section II contains thirty
eight l's, fifteen II's, seven 101's, and three Ill's. Estimates of a, b, c 
are a = 38/500, b = 15/38, c = 3/10. With these estimates, (18) gives 
ridiculous parameters (p is negative). The trouble is that 500 digits 
provide too small a sample. In particular, the estimate c = 3/10, based 
on only 10 observations, is far from the correct value c = 0.49. If h = 

0.50 is assumed, the estimates become p = 0.21, P = 0.036 (compare 
with true values p = 0.25, P = 0.03). 

After finding p, P, and h, the results of Section IV suggest compari
sons between run measurements and the probabilities u(K) or r(K). 
Fig. 2 shows curves of some run probabilities P(10K) = P(l)u(K) (on 
a log scale) versus I{. As shown by (14), these curves straighten out for 
large I( with slopes determined by J. 
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Data on runs of zero can provide another estimate of p, P, h. The 
fraction of runs of length K or more is an estimate of u (K). By (14), 
one expects to find constants J, L, A such that 

(19) 

These constants are easily found by fitting a curve of the form (19) to 
the measured run distribution. First, A and J are chosen to give the 
correct behavior AJK for large K. Afterward, L is chosen to improve 
the fit for small K. Expressions for p, P, h in terms of A, J, L are 

LJ 
h = J - A(J - L) , 

P = (1 - L) (1 - J) 
1 - h ' 

p = A(J - L) + (1 - J) (~) 1 - h . 

Fig. 3 shows run distributions for two different telephone circuits 
transmitting binary data. These were two of the thousands of circuits 
in a recent large-scale program of telephone circuit measurements (see 
Alexander, Gryb and Nast.4 * Channel 1146 carried an exchange call; it 
used loaded cable and only local exchange switching facilities. Channel 
1296 was a toll channel longer than 500 miles; it used K-carrier, a radio 
patl:l, and loaded cables at the ends. These channels were chosen as 
examples because they were two of the noisiest cases measured, and 
thus provided plenty of data. The step functions in Fig. 3 show the 
fractions of zero runs of lengths K or more from a sample of about 130 
consecutive zero runs for each channel. The smooth curves show the 
curves (19) that fit these distributions. In the case of channel 1146, 
u(K) = 0.9946K provided a good fit; then channel 1146 was well ap
proximated by a symmetric binary channel with p = 0.9946. The results 
for channel 1296 look more like Fig. 2. The straight line asymptote is 
the function AJK with parameters A = 0.184 and J = 0.99743 chosen 
to approximate the data for large K. The parameter value L = 0.81 
makes the curve (19) fit the data for small K. These values of A, J, L 
provide the estimates 

h = 0.84, P = 0.003, p = 0.034. 

* The curves appearing in Ref. 4 show only combined data from hundreds of 
channels. Since these channels differ greatly among themselves, the curves in 
Ref. 4 do not have the form (19). 
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Fig. 4 - Capacities C and C(sym. bin.) as functions of p,P, with h = t. 

The 500-digit sample of Section II provides a run distribution with 
more statistical fluctuations than in Fig. 3 because of the smaller sample 
size. The curve fitting yields A = 0.385, J = 0.901, L = 0.32 and h = 

0.432, P = 0.047, p = 0.232. 

VI. CAPACITY COMPUTATIONS 

By (14) and (16), u(K) and v(K) behave like multiples of JK for 
large K. In the most interesting cases P is small and J is nearly 1.0 
(J ~ Q always); then (7) converges slowly. However, 

u(K + 1) ~ J 
u(K) 

for large K and, by (6), 

h(10K) ~ -J 10g2 J - (1 - J) log2 (1 - J) = ho. 

Here, h(10K) approaches its limiting value ho rapidly; indeed, L = 
Q + hq - J ~ hq. When h = 0.5, typical values of L are about 0.5 or 
less, and the LK term in (14) becomes negligible when K reaches 10 or 
15. Thus, the approximation h(IOK) = ho is good for all K ~ Ko where 
Ko is only moderately large. The corresponding terms of the infinite 
series (5) sum to 

~ ~ 

L PClOK)ho = hopeI) L u(K) 
K=Ko K=Ko 
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The last step used the identity 

P(I)[u(O) + u(1) + u(2) + ... ] = 1, 

which follows from (13) with t = 1. Then, the first Ko - 1 terms of 
(5), together with the correction just derived, suffice to compute C 
accurately. 

Fig. 4 shows contours of constant C and C(sym. bin.) versus p,P for 
h = 0.5. [C(sym. bin.) was computed with P(I) given by (1)]. If the 
average burst length is not large (p not too small), the difference between 
the two capacities is slight. 

The author is indebted to Miss M. A. Lounsberry for the computa
tions shown in Figs. 2 and 4. 
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Automata and Finite Automata 

By C. Y. LEE 

(Manuscript received March 17, 19GO) 

Since it is not clear, in general, how an automaton should best be charac
terized, one of the purposes of this paper is to find ways to go from one 
characterization to another. In doing so, we have not been completely impar
tial-the programming approach has been emphasized more than the others. 
There are perhaps two reasons for this emphasis: First and the more ob
vious one is the closeness between theoretical programming discussed here 
and programming of digital computers. Secondly, the programming approach 
has provided a way of looking at automata that seems to make certain ideas 
less obscure-the construction of a universal program in Section I I I of this 
paper is one such example. In the theory of finite automata, Theorem 3 is 
an attempt to unify the ideas of complete and partial automata, which have 
generally been treated separately in the past. 

1. INTRODUCTION 

The invention of modern computers seems to have been anticipated 
by many years by Turing.1 Yet it is remarkable howlittle the progress of 
computers has been influenced by Turing's work. There is, perhaps, a 
basic difference in viewpoint that may account for this lack of conver
gence. Turing looked at machines from the point of view of their internal 
behavior. Although Turing originated the concept of universal machines, 
his idea seems to correspond much closer to that of our special-purpose 
machines. Every machine, by virtue of its state description, performs a 
specific task; a machine is altered only if its internal structure is altered. 
Computers, on the other hand, are generally specified in terms of their 
external capabilities. Their internal structure remains more or less fixed 
once they come into being. A computer is then a universal machine in 
disguise, and every Turing machine corresponds to a particular com
puter program. One may therefore study the behavior and structure of 
programs rather than work with states. 

The first step in this direction was perhaps taken by Wang, 2 who based 
his ideas of machines on a computer (which he called a B-machine) that 
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had four kinds of instructions: move to the right or left; mark; transfer 
conditionally. A B-machine is close to the ultimate in simplicity, but is 
still capable of computing everything that a Turing machine is capable 
of and, with a suitable program, is capable of being universal. 

As a model, B-machines are attractive because of their intrinsic sim
plicity. On the other hand, because a B-machine does not have the 
ability to erase, it is very difficult to write even fairly simple programs 
without having to work out intricate details. In this paper we have, 
therefore, introduced a modified B-machine-one which is em
powered with the ability to erase. We have called a machine of this 
kind a W -machine. 

The similarities and differences between W -machines and two-symbol 
Turing machines are shown in Sections II and III. In Section IV we 
describe the construction of a universal W -machine to show the kinds of 
techniques involved in W-machine programming. It may be interesting 
to note here that, once a few useful subprograms are written, the main 
linkage program takes but a few instructions. Because of its simplicity, 
one may suspect that it is harder to construct sophisticated combina
torial or symbol-operation kinds of programs on a W-machine than it is 
on a more complex computer. But we would not be surprised if such a 
suspicion turns out to be groundless; what makes a W-machine a poor 
computer may well be only its disregard for time. 

The subfamily of W -machines in which each machine has a bounded 
memory constitutes the family of finite automata. Because finite auto
mata are abstract models of sequential switching circuits, there has been 
much current interest in their behavior. As a result, there have been a 
number of approaches to problems in connection with finite automata. 
In Section V it is shown that finite automata may be characterized by 
the deletion of one of the five kinds of W-machine instructions. There is 
thus a program analog of finite automata. 

In Section VI the relation between finite automata and sets of input 
sequences is discussed. Among other things we present within our frame
work a result of Kleene3 that makes it possible to represent finite auto
mata by algebraic-like expressions. This characterization seems very 
natural in many ways, except that the expressions can easily get very 
lengthy. The problem of how best to handle these expressions appears 
very intriguing and, as far as we know, is quite open. 

II. TURING MACHINES 

A machine will be called an A-machine if it consists, aside from its 
control mechanism, of the following: 
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i. A one-way potentially infinite tape (say infinite to the right) di· 
vided into squares. Each square can either be marked (having in it the 
symbol 1) or erased (having in it the symbol 0), and 

ii. A reading and writing head that scans some square of the tape at 
any discrete moment of time. Since the tape is finite to the left, the 
machine is assumed to stop if the read-write head is ordered to go to 
the left of the leftmost square of the tape. 

The content Co of the tape of the A-machine previous to the initial 
moment of time, consisting of a finite sequence of zeros and ones, is 
called the (tape) input to the A-machine. As time advances, the tape 
content would change unless some stable condition is reached, so that 
we would get a sequence C of tape contents (co, Cl, ••• ), where Cj is a 
later tape content than Ci if i < j, and where Ci ~ Ci+l • The sequence C 

is called the external behavior of the A-machine relative to the tape 
input co. Two A-machines are said to be completely equivalent if they 
have identical external behaviors relative to all tape inputs. That is, 
two A-machines are completely equivalent if they cannot be distin
guished by anyone observing just the sequence of tape contents. 

The idea of complete equivalence is too stringent at times. If an A
machine is used to compute values of a function, what the machine does 
while it is processing its data is, in a sense, irrelevant as long as the final 
answer turns out to be the desired answer. We will, later on, also con
sider a less stringent type of equivalence. 

The fact that an A-machine has a potentially infinite tape implies 
that it has an indefinitely large memory. It might be helpful to keep the 
notion that the tape is finite at any moment, but that at any moment a 
finite amount of blank tape may be added to the right whenever such a 
demand arises. In the same way, it is helpful to note that every input 
is a finite sequence of zeros and ones. We will, however, speak of the 
null input, meaning a string of zeros indefinitely long. The null input 
corresponds to an indefinitely long blank tape. 

We will consider the following model of a Turing machine, hereafter 
called aT-machine, as one of the A-machines. In addition to being an 
A-machine, it has k active internal states ql , q2, "', qk and an inactive 
state qo in which the machine is assumed to stop. The machine can have 
one of the following combination of actions: erase or mark the square 
under scan; move the read-write head one square to the left or one 
square to the right; go into some state qj. A T-machine is completely 
specified if its combination of actions is specified for every state of the 
machine and each of the two symbols under scan, and if the initial 
state and the initial square under scan are given. 
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For instance, the following one-state (i.e. one active state) T -machine, 
if started initially scanning a square in the interior of its tape, will have 
its read-write head swinging back and forth, changing ones to zeros while 
going in one direction and changing zeros to ones while going in the 
other direction. The read-write head will either proceed indefinitely to 
the right or will eventually stop at the leftmost square. In this and later 
description of A-machines, we will use the letter m to denote the action 
of marking the square under scan; e for the action of erasing the square 
under scan; + for the action of moving the read-write head one square 
to the right of the square under scan; and - for the action of moving 
the read-write head one square to the left: 

Symbol 
State 

*q m, +, q e, -, q 

Here q designates the single active state of the T-machine, and * denotes 
the fact that q is also the initial state of this machine. If the square 
under scan is not marked, a mark is put in it, the read-write head moves 
one square to the right, and the machine returns to state q. If the square 
under scan is marked, it is then erased, the read-write head moves one 
square to the left, and the machine again returns to state q. 

From now on, we will at times use the notation qi ; m or e, + or -, 
qj ; m or e, + or -, qk for each combination of actions of any T -machine. 
Thus, the combination of actions of the one-state T-machine in question 
can be written: q; m, +, q; e, -, q. 

III. W-MACHINES 

A W-machine is an A-machine together with a program made up of 
an ordered list of the following five types of base instructions: (a) e: 
erase the square under scan; (b) m: mark the square under scan; (c) +: 
move the read-write head one square to the right; (d) -: move the read
write head one square to the left; and (e) t(A): transfer to program 
address A if the square under scan is marked, otherwise transfer to the 
next program address on the ordered list. These base instructions are 
executed in order by a control mechanism. The initial program address 
and the initial square under scan are given. 

A program of a W -machine consisting of all base instructions with 
each instruction having a separate address is called a base program. Let 
us consider a W-machine completely equivalent to the one-state T-
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machine illustrated earlier. The base program for this machine is 

1. t7 7. e 
2. m 8. 
3. + 9. t7 
4. t7 10. m 
5. m 11. t2. 
6. t2 

We note that the instructions in the program refer to only two ad
dresses, address 2 and address 7. The program may therefore be equally 
well written 

1. t3 

2. m, +, t3, m, t2 

3. e, -, t3, m, t2, 

where the instructions contained in one line are understood to be exe
cuted consecutively. This notation simplifies the writing of W-machine 
programs and will be used in this paper wherever it is convenient to do 
so. 

A base program of a W -machine is said to be minimal if there is no 
W -machine completely equivalent to it with fewer base instructions in 
its program. In order not to have to consider special cases later, let us 
agree at this stage to rule out certain trivial redundancies in W-machine 
programs. Consider two W -machines, WI and W 2 , as follows: 

}'1 achine WI 
1.m 
2. + 
3. t1 

}'1 achine W 2 

1.m 
2. e 
3. m 
4. + 
5. t1. 

Machines WI and W 2 are not completely equivalent, since they have 
nonidentical external behavior. The difference is, however, of a minor 
nature. We will therefore agree that, whenever a W-machine program 
contains consecutive instructions 

A. e or m 

A + 1. e or m 

A + i. e or m, 
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only the last instruction (in address A + i) will be retained, and the 
others will be deleted. Furthermore, if it should become necessary to 
mark and erase a square in succession, the final symbol in that square 
will be accepted as the output symbol for that moment. 

The fact that a base program is minimal itself implies that the base 
program cannot contain certain subprograms. 

Lemma 1: 

Let P be a minimal base program of a W -machine. Then P cannot 
have two consecutive addresses A and A + 1 having in them the fol
lowing base instructions: 

(i) A. teE) (iii) A. e 

A+1. t(G) ; A+1. c· , 
(ii) A. e (iv) A. m 

A+1. t (G); A+1. m. 

Proof: In (i) and (ii), if address A + 1 is never referred to, P cannot 
be minimal since the (A + l)th instruction can be deleted. On the 
other hand, if there is some instruction teA + 1) in P, such an instruc
tion can be changed to t(G), again making the (A + l)th instruction 
superfluous. This proves (i) and (ii); (iii) and (iv) are obvious, and the 
lemma follows. 

Theorem 1: 

1. Given a W-machine having b base instructions, there is a completely 
equivalent T-machine with not more than b states. 

II. Given aT-machine with 8 states, there is a completely equivalent 
W-machine with not more than 108 + 1 base instructions. 

Proof: Let a W -machine with b base instructions be given. That there 
is a completely equivalent T-machine is clear. It remains for us to show 
for part I of the theorem that b states would suffice. 

Let P be a minimal base program for the W -machine and A be the 
initial address of P. Then, by Lemma 1, the base instructions in ad
dresses A and A + 1 are one of the following: 

(i) A. t(B) (iv) A. m or e 

A + 1. e; A + 1. + or -; 

(ii) A. t(B) (v) A. + or -

A + 1. m; A + 1. m or e; 

(iii) A. t(B) (vi) A. + or -

A + 1. + or -; A + 1. + or -. 
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In (i), (ii) and (iii), we assert that the base instruction in address B 
can be made one of the following: 

(a) B. c or (b) B. + or -. 

This is true because, if the instruction in B should be t(G) and the in
struction in G should be teD) and so on, then at some point in the chain, 
say address E, the instruction must be a nontransfer instruction, for 
otherwise the program would not have been minimal. We may then 
replace the instruction t(B) in A by teE). On the other hand, if the 
instruction in B should be m, then the instruction in A could have been 
replaced by: 

A. t(B + 1); 

and the assertion follows. 
In (i) and case (a), by Lemma 1, the base instructions in addresses 

A + 2 and B + 1 must be + or -. Thus, address A can be associated 
with a T-machine state 

q(A); c, + or -, q(A + 3); c, + or -, q(B + 2). 

Similarly, in case (b) address A can be associated with aT-machine 
state 

q(A); c, + or -, q(A + 3); m, + or -, q(B + 1). 

It should be noted that a T-machine state may replace more than 
just address A. For example, in (i) case (a) the T -machine state replaces 
the five addresses A, A + 1, A + 2, Band B + 1 if none of these ad
dresses is referred to elsewhere in the program. Therefore, in going from 
a vV-machine to a T-machine as described by the procedure outlined 
here, the T-machine will in general have fewer than b states. 

In (ii), the (A + 2)th instruction can be either 

A + 2. + or - or A + 2. t(G). 

The former is no different from (i). In the latter, the instruction in 
address G can be made one of the following: 

G. c or G. + or -. 

The T-machine states to be associated with address A in case (a) cor
responding to these two sub cases are respectively 

q(A); c, + or -, q(G + 2); c, + or -, q(B + 2), 

and 

q(A); m, + or -, q(G + 1); c, + or -, q(B + 2); 
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and in case (b) are respectively 

q(A); e, + or -, q(C + 2); m, + or -, q(B + 1), 

and 

q(A); m, + or -, q(C + 1); m, + or -, q(B + 1). 

Case (iii) is similar to (i). In (iv) and (v), the two addresses, A and 
A + 1, can obviously be associated with a single T-machine state. In 
(vi), each address A or A + 1 may be associated with a single T-ma
chine state. Therefore, there is a completely equivalent T -machine with 
not more than b states and part I of the theorem follows. 

To prove part II, let aT-machine with s states be given with states 
qi, i = 1, 2, ... , s: 

where ai is either m or e and bi is either + or -. Associate with each 
state qi two addresses Ai and A~ of a W-machine: 

Ai. ai(O), bi(O), t[A~(O)], m, t[Ai(O)]; 

A~. ai(l), bi(1), t[A~(1)], m, t[Ai(1)]. 

N ext, if qj is the initial state of the T -machine, we will add an initial 
address A j - 1 where we have 

The W -machine so defined is completely equivalent to the T -machine, 
having exactly lOs + 1 base instructions. This proves part II of the 
theorem. 

The bound lOs + 1 on the number of base instructions cannot be 
lowered if the first address is to be always the initial address of a W
machine program. If we are allowed to begin a program at some inter
mediate address, the bound lOs + 1 can be lowered to perhaps 8s + l. 

From this result, it follows that whatever is true about T -machines 
is functionally true about W-machines, and conversely. The choice of 
whether to use the T -machine or the W -machine model is therefore 
somewhat arbitrary. We have found that the T-machine model is con
venient for state description of finite automata (Section V) and the 
W-machine model more satisfactory for problems involving operations 
with symbols. The latter contention is illustrated by a univers91 W-ma
chine described below. 



AUTOMATA AND FINITE AUTOMATA 1275 

IV. A UNIVERSAL W-MACHINE. 

A very interesting result of Turingl was his construction of a machine 
which is capable of imitating any target machine when given a descrip
tion of the target machine. Such a machine is known as a universal 
Turing machine. To our knowledge there have been two independent 
and very ingenious constructions of universal machines which greatly 
simplified Turing's work. The earlier one is due to Moore4 and the other 
to Ikeno.5 Moore's machine has two symbols and three tapes, and can 
be reduced to nine states. Ikeno's machine requires six symbols and 
ten states, giving a state-symbol product of 60. 

A word should perhaps be said in regard to the two extra tapes in the 
case of Moore's machine and the four extra symbols used in Ikeno's 
machine. In either case, the universal machine is just slightly different 
from the target machines it imitates. It would be more "authentic" for 
a universal machine to be immediately within the class of all target 
machines it imitates. It also seems that it is as direct to construct such 
an "authentic" machine as otherwise. For these reasons, we include here 
the construction of a universal W -machine as an example. 

Let U denote the universal W -machine to be constructed. Let the 
squares on the tape of U be divided into two classes: a-squares and b
squares. If the squares are numbered beginning with one for the left
most square and proceeding to the right, then the a-squares are the 
odd-numbered squares and the b-squares the even-numbered squares. 
The b-squares are there to serve as markers. The description of the 
target machine together with the data occupies only the a-squares. In 
order to clarify coding, the contents of a-squares are underlined. Thus 
! .Q would mean a mark and a blank in adjacent a-squares, the content 
of the inbetween b-square has been left unspecified. 

The W -machine instructions are coded as follows: 

Instruction 

* (Stop) 

+ 

m 

e 

ten) 

1 

1 1 

111 

1 111 - - - -

Code 

11111 - - - --

1111111···1. 
-----C-~ 

nones 
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The program and data of the target W-machine that the universal 
W-machine U is to imitate occupy only the a-squares on the tape of U. 
The instructions are coded in sequence, with a single blank a-square 
separating adjacent instructions. The data go directly into a-squares 
without modification. There is a single blank a-square between the last 
instruction and the data. 

The first two a-squares are blank and all a-squares to the right of the 
data are blank. The b-squares are all marked except for (a) the first 
b-square, (b) the b-square immediately to the right of the data square 
under scan and (c) all b-squares to the right of square x, where x is the 
a-square to the right of the last data a-square. 

The coding scheme will be made clear by an example. Suppose the 
program of the target W -machine is 

1. t3 

2. + 
3. m 
4. t2, 

where the initial address is address 1 and the data are 

! 
1 0 1 1 

where the third symbol is the initial symbol under scan. In the coded 
form, the tape of U would have contents 

Begin 
! 

000 1 1 1 1 1 1 1 1 1 1 111 1 1 1 101 1 111 - - -=----- - - - - ----.::;; - ~ 
t3 + 

o 1 1 1 1 1 1 1 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
~-,-----~ 

m 

Symbol under scan 
! 

o 1 1 101 101 100 0 
- ~ --

Data 

t2 

The program for the universal W-machine U is divided into a main 
program P and a number of subprograms. The various subprograms are 
designated by symbolic addresses as follows: 



AUTOMATA AND FINITE AUTOMATA 1277 

RT One square to the right. 
LT One square to the left. 
lVIK lVlark square under scan. 
ER Erase square under scan. 
TR Transfer if data square under scan is marked. If transfer is 

effective, go to the beginning of tape and hunt to the right 
until the correct instruction has been found. Otherwise, go 
to the next instruction. 

R TZ Right to zero. 
LTZ Left to zero. 
RDZ Right to double zero. 
LDZ Left to double zero. 

The program for U begins with the main program P. It first examines 
the instruction to be carried out. If the instruction should be +, -, 
m or e, the program enters subprograms RT, LT, MK or ER respectively. 
If the instruction should be ten), the program enters subprogram TR. 

Let us begin with the basic subroutines RTZ, LTZ, RDZ and LDZ: 

RTZ 1. +2, t1. 
LTZ 1. -2, t1. 
RDZ 1. +2, tI, +2, t1. 
LDZ 1. -2, tI, -2, t1. 

Next the subprograms TR, RT, LT, lVIK and ER: 

TR 1. +, e, RTZ, -, t2, -, t(LT3), 

LT 

RT 
MK 
ER 

2. LDZ, +4, 
3. e, +, RTZ, m, +, t4, +, LTZ, -, RDZ, m, t(P), 
4. +, e, LTZ, -, RDZ, m, RTZ, +2, e, LDZ, m, t3. 
1. +, e, RTZ, m, -2, 
2. e, 
3. LTZ, m, +, t(P). 
1. +, e, RTZ, m, +2, m, t(LT2). 
1. +, e, RTZ, -, m, t(ER2). 
1. +, e, RTZ, -, e, 
2. -, t(LT3). 

Finally, the main program P: 

P 1. +2, t2, *, 
2. +2, t3, RT, 
3. +2, t4, LT, 
4. +2, t5, MK, 
5. +2, t(TR), ER. 
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After the following sequence of instructions of the target machine has 
been executed: 

the tape contents read: 

Begin 
1 

t3, m, t2, +, 

000 1 1 1 1 1 1 1 1 1 1 111 111 101 1 1 1 1 - - , - - - - - - , - ~ 

t3 + 
Begin 

instruction m 
l 

o 1 1 1 1 1 1 1 1 101 1 1 1 1 1 111 1 1 1 1 1 1 
-~-,------" 

m 

Symbol 
under scan 

1 
o 1 1 101 1 1 100 0 0 -~ --

Data 

t2 

We will call a target W-machine admissible if its read-write head never 
goes to the left of the leftmost square on tape. Machine U then imitates 
all admissible target machines and is itself admissible. 

It may be interesting to note that the coding for machine U does not 
make an intrinsic distinction between program and data. The burden 
of distinguishing which is program and which is data is therefore on the 
coder. 

Using the conversion procedure discussed in the proof of Theorem 1, 
there is aT-machine completely equivalent to the W -machine U with 
about 74 internal states. t The program for U itself requires some 125 
base instructions. As things go, it is not impossible for someone to im
prove our result to a 50 base instruction universal W -machine or a 25-
state universal T -machine or perhaps even better. The answer to the 
problem of finding a universal machine with the smallest state-symbol 
product posed by Shannon6 seems to be quite remote, even for two
symbol machines. 

i Some of the ideas that resulted in this construction were due to D . Younger, 
who indicated a possible reduction to a machine of about 56 states. 
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v. FINITE AUTOMATA 

There is a subfamily of T -machines that are abstract models of a 
class of switching circuits called sequential circuits. The dominant trait 
of these machines is a strictly limited memory, so that they are called 
finite automata. (These machines are also known as sequential machines.) 
Because of their limited memory, rather simple tasks lie beyond the 
reach of finite automata. For instance, there is no finite automaton that, 
having the null input and ejecting symbols one at a time, will give us 
the successive digits of 7r or, for that matter, any number that is not 
rational. On the other hand, many decision problems become finite 
problems for finite automata; in fact, in some cases efficient algorithms 
have been found. 

A two-symbol finite automaton consists of 
1. Afinitenumberofinternalstatesqo,ql,···, qn. 

11. An alphabet of two symbols: So = 0, SI = 1. 
111. A map .LV! whose domain and range are both subsets of the set of 

state-symbol pairs. If M is defined for a state-symbol pair (qi , Sj), 

then M(qi ,Sj) is another pair (qk, Sr). The symbol Sj is called an 
input symbol. The symbol Sr is called an output symbol, and is 
completely determined by qi ; that is, Sr is independent of the 
input symbol Sj • 

IV. An initial state qo , which can reach every state qi , 0 < i ~ n, 
via some suitable input sequence of symbols. 

In the definition of a finite automaton given above, we included those 
automata in which the map M may be undefined for some state-symbol 
pairs (qi, Sj). We will call such automata partial automata. Partial 
automata in the past have been treated somewhat differently from 
complete automata. By considering certain input sequences called 
acceptable sequences, we will be able to treat partial and complete 
automata on a uniform basis. 

5.1 Finite Automata and W*-111 achines. 

In the beginning of this section we mentioned that finite automata can 
be regarded as a subfamily of T -machines, and hence as a subfamily of 
W-machines. Let us call a W-machine a W*-machine if the base program 
of the W -machine does not contain the instruction" - "; that is, if the 
read-write head of the W-machine never moves to the left. We will see 
that, by suitable interpretation of inputs and outputs, every finite 
automaton is completely equivalent to some W*-machine and, further
more, that every W*-machine differs from some finite automaton by at 
most a unit of delay in the output. 
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Let S be a finite automaton; S may then be considered as aT-machine 
in the following sense: An input sequence of symbols to S corresponds to 
having this sequence of symbols on the tape of the T -machine, beginning 
with the initial input symbol on the leftmost square of the tape. In 
operation, the T -machine begins by scanning the initial square, writes 
the output symbol on the square being scanned, moves one square to the 
right and goes into its next state. At any moment, therefore, the previous 
output is contained in the square just to the left of the read-write head, 
and the present input is contained in the square directly under the read
write head. In this way the read-write head of the T -machine never 
moves to the left. It follows from Theorem 1, therefore, that there is a 
W -machine whose program consists of no base instruction of the form 
" -" and is such that this W -machine and the T -machine are completely 
equivalent. 

Conversely, suppose a W*-machine is given. By Theorem 1, there is a 
T-machine completely equivalent to this W*-machine such that its 
read-write head never travels to the left. Such aT-machine may not be 
in the form of a finite automaton since its output symbol may be a func
tion of both the input symbol and the current state of the machine. We 
wish to show therefore that such aT-machine differs from a finite 
automaton by at most a unit of delay in the output. 

Consider a T-machine whose read-write head never travels to the 
left. It then consists of states of the following kind: 

where ai and bi are either e or m. In the particular case ai = bi for some 
i, the output becomes in no way dependent upon the input. We will 
therefore consider only those states qi for which ai ~ bi • 

Let us now form a new T -machine by splitting each such state qi of 
the original T -machine into two states, qiO and qil , such that we have 
for the new machine, 

and 

and, if qo should be the initial state of the original T -machine, add a new 
state qo* as the initial state of the new machine: 

qo*; e, +, qoo; e, +, gOl • 

In operation, the new machine imitates the original machine faithfully, 
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except that the output of the new machine is delayed by a unit of time; 
that is, the present output of the new machine is the previous output 
of the original machine. We have therefore 

Theorem 2: Every finite automaton with s states is completely equiva
lent to a vV*-machine with not more than lOs + 1 base instructions. 
Every W*-machine with b base instructions differs from a finite automa
ton of not more than 2b + 1 states by at most one unit of delay in the 
output. 

An Example. Consider the following W*-machine: 

1. i6 6. + 
2. + 7. i2 
3. m 8. + 
4. i8 9. + 
5. e 10. i5. 

This W*-machine is completely equivalent to a five-state T-machine 
with initial state ql: 

State 

e, +, q3 
m, +, q9 
e, +, q9 
e, +, qlO 

e, +, stop 

Symbol 

m, +, q7 
m, +, q9 
m, +, q3 
m, +, qlO 

e, +, q7 

The T -machine is not in the form of a finite automaton, since its output 
symbols depend on both the state and the input symbol. Let us there
fore split each state whose output symbol is different for different input 
symbols into two states and, in addition, define a new initial state qo*. 
The machine then becomes: 

State 

*qO* 
ql.O 
ql.l 

q3 
q7.0 
q7.l 
q9.0 
q9.l 
qlO 

o 

e, +, ql.O 

e, +, q3 
m, +, q7.0 
m, +, q9.0 
e, +, q9.0 
m, +, q3 
e, +, qlO 
m, +, qlO 

e, +, stop 

Symbol 

e, +, ql.l 
e, +, q3 
m, +, q7.l 
m, +, q9.l 
e, +, q9.l 
m, +, q3 
e, +, qlO 

m, +, qlO 

e, +, q7.l 
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This machine is identical with the original W*-machine except that 
its output symbols are delayed by a unit of time and its initial output 
symbol is always a zero. For the same input, the sequence of the tape 
contents of the two machines are therefore not exactly the same; the 
tape content of the new machine to the left of the read-write head is 
the tape content of the original machine to the left of the read-write 
head translated one square to the right. The tape contents of the two 
machines to the right of the read-write head are, of course, the same. 

Since the output of a finite automaton depends only on its state, and 
since the symbol + is redundant, the state-symbol table of a finite 
automaton can be simplified. For instance, the nine-state machine given 
in the example can be given by: 

Symbol 
State Output 

0 1 

*qo* qI.O qI.I 0 
qI.O q3 q3 0 
qI.l q7.0 q7.l 1 
q3 q9.0 q9.l 1 
q7.0 q9.0 q9.l 0 
q7.1 q3 q3 1 
q9.0 giO qIO 0 
q9.l qIO qIO 1 
qIO stop q7.l 0 

For complete automata, except for including the initial state in our 
model, this description is the same as that given by Moore.7 In the same 
way, the description of the five-state T-machine in the example which 
is completely equivalent to the original W*-machine can also be simpli
fied. We may write 

Symbol 
State Outputs 

0 1 

*qI q3 g7 0 1 
q3 q9 g9 1 1 
q7 g9 q3 0 1 
g9 giO giO 0 1 
giO stop g7 0 0 

where to each state may be associated two output symbols, one for each 
input symbol. This description is essentially the model of sequential 
machines used by Huffman8 and Mealy.9 It is quite clear from the fore
going that there is a close relationship between these two models, and 
that one may go freely from one to the other. t 

t Another way of relating models of finite automata is discussed by Cadden.Io 
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5.2 Finite Automata with a Minimum Number of States 

A problem of interest to switching circuit designers is finding finite 
automata having a smallest number of states. In relay circuit design, 
for example, the number of relays needed is usually a monotone function 
of the number of states the circuit has. For such circuits, therefore, the 
number of states becomes in a way a measure of cost. 

Let A be a partial finite automaton. A finite sequence is said to be an 
acceptable sequence for A if there is an output sequence and a terminating 
state when this sequence is presented as the input sequence to A, with 
A beginning in its initial state. We will call the set of all acceptable 
sequences for A the acceptable set for A and denote this set by RCA). 
Now let A and B be two partial finite automata and let the intersection 
RAB = RCA) A RCB) be called the common acceptable set for A and B. 
Then A and B are said to be completely equivalent with respect to RAB if, 
for all input sequences belonging to RAB , A and B give identical output 
sequences. If R is a subset of RAB , then equivalence of A and B with 
respect to R is defined similarly. It is clear that this definition of com
plete equivalence is the same as that given before for T- and W-machines, 
except the input sequences are now restricted to just the acceptable 
sequences. 

As an example consider A and B defined as 

A: B: 

Symbol Symbol 
State Output State Output 

0 1 0 1 

*ao at 1 *b o bt 1 
at at 0 bt b2 0 

b2 bt 0 

The acceptable set RCA) for A is the set of all finite sequences to, 01, 
011, 0111, ... } and the acceptable set RCB) for B is the set of finite 
sequences {l, 11, 110, 1101, 11010, 110101, ... }. There is no sequence 
that is acceptable to both A and B. The common acceptable set RAB is 
therefore empty. 

Theorem 3: Let A and B be two partial finite automata with a and b 
states respectively, where a, b > 1. Let RAB be the common acceptable 
set for A and B and let RABCl) be the subset of RAB such that every 
sequence in RAB(l) is of length ~ l. Then A and B are completely equiva
lent with respect to RAB if and only if they are completely equivalent 
with respect to RABCl) for l = ab - 2. 

Before going through the proof, it would be helpful to discuss some 
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notations that will be used later. If A is a finite automaton, its initial 
state will be denoted by ao . If q is any state of A, we will denote the 
output symbol associated with the state q by w(q). Moreover, let S = 

(80, 81 , •.• ,8m-I) be an acceptable input sequence for A. Then we will 
at times let ai stand for the state reached by A after receiving the ith 
symbol of 8. It will be convenient here to speak of the motion diagram 
for A: 

Input symbols: So Sl Sm-l 
/~ /~ 

Transition of states of A: ao al az 

Proof: The theorem is clear in one direction. In the other direction, let 
A and B be completely equivalent with respect to the set RAB(ab - 2); 
that is, A and B will give identical output sequences to every commonly 
acceptable sequence of length not greater than ab - 2. 

Let us now suppose that there is a common acceptable sequence S = 

(so, 81, ... ,8m-I) of minimum lcngth m where m > ab - 2 such that 
in the motion diagram for A and B we have 

80 Sl Sm-l 
/~ /~ /~ 

aO al az am-lam 

/~ /~ /~ 
bo bl b2 bm- l bm 

where 

w(ai) = w(bi ) for i = 0,1, ... ,m - 1 but w(am) ~ w(bm). 

There are now two cases to consider. The case m > ab - 1 is simpler and 
will be left to the reader. 

Let us therefore assume m = ab - 1. In the motion diagram above, 
we have then exactly ab pairs of states: (ao , bo), (ai, bl ), ••• , (am, bm). 
First, suppose that these ab pairs are not distinct; that is, suppose 
(ai, bi ) = (a j , b j) for some 0 ~ i < j ~ m. The motion diagram then 
becomes 

80 Si Sj Sm-l 
/~ /~ /~ /~ 

ao al· .. ai ai+l··· aj aj+1· . . am-l am 

/~ /~ /~ /~ 
bo bl · .• bi bi+1· .. bj bi+l· . . bm - l bm • 

Consider the common acceptable sequence 8* = (80, •• 8i-l, 8j, 
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. , Sm-I), which is of length l, where l < m = ab - 1. Since w(am) -:;e 
w(bm ), A and B would give different output sequences to the input 
sequence s*, contradicting our hypothesis that A and B are completely 
equivalent with respect to RAB (ab - 2). We must therefore assume that 
the ab pairs of states (ao, bo), ... , (am, bm) are distinct, and thus in
clude every possible pair of states of A and B. 

Now let a~ and b~ be states of A and B respectively such that a~ -:;e 
am and b~ -:;e bm • Then we assert w(am ) -:;e w(a~) and w(bm ) -:;e w(b~). For, 
if w(am ) = w(a~), then w(a~) -:;e w(bm ). This is impossible, however, since 
the pair (a~ , bm) is one of the ab distinct pairs of states. The same argu
ment shows w(bm) -:;e w(b~). We have now then the inequality w(a~) -:;e 
w(b~). But again this is impossible. This concludes the proof. 

Although we cannot say that the bound ab - 2 is the best for all 
pairs (a, b), we will show that ab - 2 is very close to the best we can 
hope for. To do this we will now exhibit a pair of families of finite auto
mata. 

Consider first a family of finite antomata {Am}, m ~ 1, as follows: 

Symbol 
State Output 

*ao al 0 
al a2 0 

am_l am 0 
am ao 0 

Next, define a family of finite automata {Bn}, n ~ 1, as follows: 

Symbol 
State Output 

0 1 

*b o bo b1 0 
b1 b1 b2 0 

bn_
1 

b
n

_
1 bn 0 

b" bn 1 

For any pair of automata (Am, Bn), one from each family, the set 
RAmBn of all commonly acceptable sequences consists of all sequences 
each of which must be of the form 

00···0100···01 o 0 ... 0 1, 
'----v-------' 

mO's 



1286 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

since these are the only sequences acceptable to Am . For these two finite 
automata (Am, B n ), the minimum length of any input sequence in 
RAmBn that would cause Am and Bn to give different output sequences 
would be ab - min (a, b), where in this case a = m + 1 and b = n + 1. 
For instance, the motion diagram for the pair (A 2 , B3) would be 

o 0 100 100 1 

/"" /"" /"" /"" /"" /"" /"" /"" /"" 
ao al a2 ao al a2 ao al a2 ao 

/""/""/""/""/""/""/""/""/"" 
bo bo bo b1 b1 b1 b2 b2 b2 ba . 

Since b3 is the only state of B3 that gives an output symbol of 1, we see 
that the input sequence (0 0 1 0 0 1 0 0 1) is the first such sequence 
that causes A2 and B3 to give different output symbols. 

In general, by the same construction, we find that given two finite 
automata, one from each of these families, no input sequence of length 
less than ab - min (a, b) would enable us to tell them apart. We there
fore have 

Theorem 4: Theorem 3 would not hold if l were made less than 
ab - min (a, b). 

In particular, we note that Theorem 3 implies Theorem 4 for the case 
min (a, b) = 2. For the cases min (a, b) > 2, there may be some slight 
improvementt possible for Theorem 3. 

Actually, Theorem 3 is interesting for another reason. It is essentially 
a theorem showing the existence of a decision procedure for finding 
finite automata with a minimum number of states. Historically, the 
problem of finding finite automata with a minimum number of states 
was studied and solved in a rather special way. Thus, both Moore7 and 
Huffman8 gave ingenious procedures for state minimization of complete 
finite automata. It was not uncommon for people to assume that these 
procedures also worked for partial automata before the introduction of 
several interesting counter-examples by Ginsburg,12 As we see from 
Theorem 3, much of the earlier confusion was probably due to a disre
gard of the idea of acceptable sequences. 

VI. FINITE AUTOMATA DEFINED BY INPUT SEQUENCES 

Up to now we have shown that finite automata can be described in two 
different ways. In the definition given in the previous section, a finite 

t In the paper by Rabin and Scott,ll a theorem similar to Theorem 3 was ob
tained for the family of complete automata. In view of the fact that they were 
dealing exclusively with complete automata, their theorem could be considerably 
improved. 
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automaton is characterized essentially by its state-symbol table. On the 
other hand, one may characterize a finite automaton by giving its W*
machine program. The latter characterization illustrates the close paral
lel between computer programming and logical design. In this section, 
following the earlier work of Kleene,3 we will consider a third characteri
zation of partial finite automata. This characterization leads to a very 
interesting algebraic-like structure for finite automata. Our purpose here 
is to connect this characterization with the others. Much of the work 
along the approach of Kleene had been pursued and simplified by J\lIyhill13 

and Rabin and Scott.H The interested reader may refer to these papers 
and other unpublished work by J\lIyhill. 

Let A be a finite automaton. A finite input sequence to A is said to 
be a signal sequence for A if this input sequence causes A to terminate 
in a state whose output is the symbol 1. The set of all signal sequences 
for a finite automaton A is called the signal set for A, and is denoted by 
r(A). 

Given a finite automaton A, the signal set r(A) is uniquely defined. 
On the other hand, if signal sets are to represent finite automata, it 
would be most desirable that two "different" automata have different 
signal sets. Let us consider automata A and B given by 

A: B: 

Symbol Symbol 

State Output State Output 

0 1 0 1 

*ao I al 1 
al 

I 
al 0 

*b o b2 1 
bi b2 0 
bz bi 0 

If nothing is said about input sequences, one may say that A and Bare 
different, since every input sequence acceptable to A is unacceptable to 
B and vice versa, although A and B both have the empty set as their 
signal set. In order to have a clear-cut correspondence between signal 
sets and finite automata, we must therefore restrict ourselves to accept
able sequences. 

Theorem 5: Let A and B be two finite automata and RAB the common 
acceptable set for A and B. Then A and B are completely equivalent 
with respect to RAB if and only if A and B have the same signal set. 

Proof: From the definition of signal set, it is clear that, if A and B 
are completely equivalent with respect to R AB , then r(A) = r(B). 
Now suppose A and B have the same signal set but are not completely 
equivalent with respect to R AB • Then there is some input sequence 
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80 , SI, . . . , Sn-l in RAB giving the motion diagram 

So SI Sn-l 
/~ /~ /~ 

ao al a2 an-l an 

/~/~ /~ 
bo b1 b2 bn- l bn 

such that wean) ~ w(bn); that is, the output symbols associated with 
states an and bn are different. Since we are considering only two-symbol 
automata, it is clear that the input sequence So , SI, • . . , Sn-l cannot 
be a signal sequence for both A and B. The proof now follows from this 
con tradiction. 

We see from this that signal sets indeed represent finite automata. In 
many ways this is a rather natural characterization. For example, con
sider a sequential lock on a vault. The vault can be opened only if a 
given sequence S of symbols is applied to the lock. Any other sequence 
of input symbols may cause the lock to go into an alarm state. In this 
case, we may consider the lock as a finite automaton defined by the one
element signal set {s}. 

There are other situations, however, where it seems simpler to describe 
a finite automaton by its W*-machine program or its state-symbol table. 
It is therefore not clear in general how a finite automaton is best charac
terized; as far as we can tell, a great deal depends on personal taste. 
The next best thing one can do, therefore, is to find ways to go from one 
form of characterization to another. 

We will begin by redefining several operations on sets of finite se
quences due to Kleene. Let X and Y be two sets of finite sequences; 
X v Y is then the set union of X with Y. By XY, called the string 
product of X with Y, we mean the set of all concatenated finite sequences 
of the form xy with x E X y E Y. Finally, by the closure of the set X, 
denoted by X*, is meant the set 

X* = 0 v X v XX v XXX v ... , 

where 0 is the empty set. 
To illustrate the use of these operations, let us consider the following 

automaton A: 

Symbol 
State Output 

0 1 

*ao al ao 0 
al ao 1 
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The signal set of A is then given by 
rCA) = 1*0 (11*0)*, 

where we have used the notations 0 and 1 to stand for the one-element 
sets {O} and {I}. 

In general, to find the signal set for some finite automaton A is not 
as straightforward as this example indicates. We will describe below 
one such procedure. t 

Let A be a finite automaton with k states ao , a1 , ... , ak-1 . Then 
by P(ai , aj) we mean the set of all finite sequences such that beginning 
with state ai , each of these sequences causes A to terminate in state aj . 
Furthermore, let us denote by P(ai , aj ; a~) the set of all finite sequences 
such that, beginning with state ai, each of these sequences not only causes 
A to terminate in state aj , but also never causes A to pass through state 
aj. In other words, it is permissible for ai = aj, but in the chain of 
states ai, ... , aj, the state aj must not appear other than at either 
end. Then it is clear that 

Lemma 2: P(ai , aj) = P(ai, aj ; a~) [P(aj, aj ; a~)]*. 
More generally, let 80 , 81 , •.• , 8n-1 be a sequence in P(ai , aj) with 

the motion diagram 

8n-1 

I I I 

We denote by P(ai, aj ; ail' ai2 , ... , aim) a subset of P(ai, aj) such 
h . . P( I I I ) 'f t at a sequence 80 , 81, ••• , 8n-1 IS In ai, aj; ail' ai2 , ... ,aim 1 

and only if the two sets of states (ail' ai2 , ... ,aim) and (air, ah , ... , 
ajn_l) are disjoint. In other words, P(ai, aj ; a~l , a~2 , ... , a~m) is the 
set of finite sequences such that, beginning with state ai, each of these 
sequences not only causes A to terminate in state aj but also causes A 
never to go through states ail' ai2 , . . . , aim' It is permissible, how
ever, for ai or aj to be one of the states ail' ai2 , ... , aim' 

Lemma 3: Let A be a finite automaton with k states ao , a1 , ... , 

ak-1 . Then, for all pairs of states ai , aj , and for all m, 1 ~ m ~ k - 1, 
I I I 

P(ai, aj; ail' ai2 , ... , aim) = 
I I I I 

P(ai, aj; ail' ... ,aim+l) v P(ai, aim+l ; ail' •.. , aim+l) 

[P(ai m+l , aim+l ; a~l , ... , a~m+l)] * P(aim+l , aj ; a~l , ••. , a:m+l ). 

Proof: Suppose that an input sequence belongs to the set on the left
hand side. Then this sequence causes A to either go through state aim +l 

t In an unpublished report shown to me by H. Wang, I found a similar result 
worked out independently by R. MeN aughton and H. Yamada. 



1290 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

or it does not. If it does not, then it clearly belongs to P(ai , aj ; a~l , 
... , a~m+J. If it does, then it belongs to the second set on the right 
hand side. Conversely, suppose a sequence belongs to the set on the right 
hand side. Then it clearly belongs to P(ai , aj ; a~l' ... , a~m)' and the 
proof follows .. 

Combining the two lemmas, we get 
Theorem 6: Let A be a finite automaton with k states ao , al , , 

ak-l . Let ao be the initial state of A and arl , arz , . . . , arn be all those 
states of A whose output symbol is one. Then the signal set for A is the 
union 

n 

r(A) = V P(ao, ari ; a~J [P(ari , ari ; a~J]*, 
i=l 

which can be obtained by repeated application of Lemma 3. 
As an illustration, let us consider the automaton A below: 

Symbol 
State Output 

0 1 

ao ao al I 1 
al al az 

I 
1 

a2 a2 al 0 

By Lemma 2, we have 

r(A) = P(ao, ao ; a~) [P(ao, ao ; a~)] * 

v P(ao, al ; a~) [P(al , al ; a~)]*. 

Now 

Therefore, 

P(ao , ao ; a~) 

P(ao , al ; a~) 

P(al , al ; a~) 

0, 

0* 1, 

o v 1 0* 1. 

r(A) = 0 0* v 0* 1 (0 v 1 0* 1)*. 

The expressions for signal sets can get very lengthy. The problem of 
reducing the length of these expressions without recourse to an exhaus-
ti\Te search appears ~lery difficult and intriguing. 
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The next 'problem we will consider is how to give a state-symbol 
characterization of signal sets. The procedure we will describe here is a 
modification of the abstract ideas of Rabin and Scottll and lVlyhill. l3 

Let us begin this discussion of several examples. Let A and B be the 
following finite automata: 

A: B: 

Symbol Symbol 
State Output State Output 

0 1 0 1 

*ao al ao 0 *b o bl bl 0 
al ao 1 bl bo bo 1 

with signal sets rCA) = 1 * 0 (1 1 * 0) * and reB) = (0 v 1) [(0 v 1) 
(0 v 1)1*. 

Example 1. Suppose we wish to construct an automaton C such that 
r(C) = rCA) v reB). We begin by defining a set of new states (ao , bo), 
(ao , bl ), (al , bo), (al , bl ), some of which may turn out to be superfluous. 
The state (ao, bo) is defined to be the initial state of C. Beginning with 
the state (ao , bo), we can construct a part of C: 

Symbol 
State Output 

1 0 

(ao , bo) (al , bl ) (ao , bl ) w(ao) V w(b o) =0 

where, if we let 111 c denote the function taking state-symbol pairs to 
states for the automaton C and w be the function taking states to output 
symbols, then 

J.11 c[(ao , bo), 01 

1\1 d(ao , bo), 1] 

and 

w[(ao, bo)1 = w(ao) v w(bo). 

In this process, we reached two new states (al , bl ) and (ao , bl ). Con
tinuing the process, we eventually get for C the state-symbol table 
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Symbol 
State Output 

0 1 

*(ao, bo) (ai, bl ) (ao , bl ) 0 
(ao , bl ) (ai, bo) (ao, bo) 1 
(ai, bl ) bo (ao , bo) 1 
(ai, bo) bl (ao , bl ) 1 

bo bl bl 0 
bl bo bo 1 

Let us suppose that an input sequence so, SI, ••• , Sn-l belongs to 
rCA) and gives the motion diagram 

Then the same sequence would give rise to a chain of states of C such 
that the terminal state of this chain must be (ain , bJ for some state bj 
of B. Since 

w(ain , bj) = W(ain) v w(bj) = 1, 

it follows that this input sequence belongs to r(C) and rCA) c r(C). 
In the same way, we may show that reB) c r(C). 

Conversely, if a sequence in r(C) gives a chain of states of C: (ao , bo), 
(ail' bit), ... , (ain , bin), then either W(ain) = 1 or w(bin) = 1. There
fore, this input sequence is either in rCA) or reB), and thus rCA) v 
reB) = r(C). 

Example 2. We wish to construct a finite automaton C such that 
r(C) = r(A)r(B). We begin with the initial state of A as the initial 
state for C. Now, whenever a state of A is reached whose output symbol 
is a 1, we must then allow C the opportunity to imitate the behavior of 
B. In such cases, therefore, new states may be created. Thus, a part of 
the state-symbol table for C would be 

Symbol 
State Output 

0 1 

*ao al ao 0 
al bl (ao , bl ) 1 

The state (ao , b1) is defined by (M A(al , 1), M B(bo, 1)). In this way, the 
new state allows C to imitate immediately the behavior of state bo of 
B. Also, if either wean) = 1 or w(b 1) = 1 j t.hen wean j b1) = 1. We may 
therefore continue this process to get for C the state-symbol table: 
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Symbol 
State Output 

0 I 

*ao al ao 0 
al bl (ao , bl ) 1 
bl bo bo 0 
bo bl bl 1 

(ao , bl ) (ai, bo) (ao , bo) 1 
(ai, bo) bl (ao , bl ) 1 
(ao , bo) (ai, bl ) (ao , bl ) 0 
(ai, bl ) (b l , bo) (ao , bo , bl ) 1 
(b l , bo) (b o , bl ) (b o , bl ) 1 

(ao , bo , bl ) (ai, bo , bl ) (ao , bo , bl ) 1 
(ai, bo , bl ) (b l , bo) (ao , bo , bi) 1 

where we see that (al' bo , bl ) = (ai, b1). 

The process can be formulated as follows: If (ai, ... , aj , bk , •• 

bm ) is a new state, then 

M C[(ai, ... , aj , bk , ••• , bm ), x] 

= (lJ!I C(ai' x), ... , j11 c(aj, x), MB(bk , x), ... , MB(bm , x)) 

where x is either 0 or 1, and w[(ai' ... , aj, bk , ••• , bm )] = w(ai) v 
... v w(bk ) v ... v w(bm ). Also, if ai is any state such that w(ai) = 1, 
then lVI C(ai' x) (MA(ai, x), lVIB(b o, x)). For all other aj and for all 
bk we have 

]VI c(aj , x) = M A(aj , x), 

]1 c(bk ,x) = MB(bk , x), 

where x is again either 0 or 1. 
Example 3. We wish to construct an automaton C such that r(C) 

[r(A)]*. The idea here is that whenever a state of A is reached whose 
output symbol is a 1, we must allow C the opportunity to begin again 
at state ao of A. Furthermore, since the empty sequence is a member of 
r(C), it is necessary to define for C a new initial state Co whose output 
symbol is 1. Following this line of thought, we see that the state-symbol 
table for C is 

Symbol 
State Output 

0 1 

*Co ao ao 1 
ao al ao 0 
al al ao 1 
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In general, the process is formulated as follows. If (ai, ... , aj) is a new 
state, then 

M C[(ai, ... , aj), x] = (M C(ai , x), ... , ~1 c(aj , x)), 

where x is either 0 or 1 and 

w[(ai' ... , aj)] = w(ai) v ... v w(aj). 

If ai is any state of A whose output symbol is 1, 

M C(ai , x) = (M A(ai, x), ~1 A(aO, x)), 

For all other states aj of A, 

M c(aj , x) = M A(aj , x), 

x = 0 or 1. 

x = 0 or 1. 

The ideas of conversion from signal sets to state-symbol table for 
n, finite automaton are all contained in these examples. Since to state a 
theorem means a repetition of what we outlined in the examples, we will 
content ourselves with the following form of Kleene's result.3 

Remark. Let rCA) be a set of finite sequences built up from the opera
tions union, string product and closure operating on a finite set of finite 
sequences. That is, rCA) is given by a finite expression involving the 
operations union, string product and closure. Then, following the proce
dures outlined in Examples 1, 2 and 3, a finite automaton can be con
structed having rCA) as its signal set. 

This remark, together with Theorem 6, thus provides the two-way 
linkage between finite automata and signal sets. 

VII. CONCLUDING REMARKS 

We have discussed three approaches to a theory of automata and finite 
automata: the state-symbol table model, the W-machine program model 
and the signal-set model. Of these, we are most intrigued by the pro
gramming model. This approach not only resembles strongly computer 
programming, but it also offers possibilities of symbol operation and 
other combinatorial programs, all based on a very simple and elegant 
program structure. (One other model not studied here is a system pro
posed by Post.) It is quite possible a combination of these systems may 
offer deeper insight into the global structure of programming and auto
mata which is lacking at present. 
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Transition Probabilities for 
Telephone Traffic* 

By v. E. BENES 

(Manuscript received April 21, 1960) 

A stochastic model for the occupancy N(t) of a telephone trunk group is 
specified by the conditions that arriving calls form a renewal process, that 
holding times have a negative exponential distribution, and that lost calls are 
cleared. The transition probabilities of N(t) are determined, and their limits 
are studied. These transition probabilities have practical value in making 
theoretical estimates of sampling error in traffic measurements, and in the 
study of overflow traffic. 

1. INTRODUCTION 

We shall study a stochastic process {N(t), t ~ O}, which is a mathe
matical model for the occupancy of N service facilities, with no provisions 
for delays. For example, N(t) can be interpreted as the number of (fully 
accessible) telephone channels (trunks) out of a group of N such in use 
at time t, with lost calls cleared. Also, we can think of N(t) as the num
ber of items on order at time t in an idealized inventory situation in 
which at most N items can be on order at one time (see Arrow, Karlin 
and Scarfl

). Throughout the paper we use terminology appropriate to an 
application to telephone trunking. The process N(t) is determined by 
the following assumptions: 

i. Holding times of trunks are independent, each with the same nega
tive exponential distribution function, of mean 'Y -t, 'Y being the "hang-up 
rate." 

ii. Times between successive attempts to place a call (interarrival 
times) are independent; each has the distribution function A ( . ), where 
A ( .) is arbitrary except for the condition A (0) = o. This assumption 
covers Poisson arrivals as a special case. The mean of A ( . ), when it 
exists, is denoted by J.Ll • 

* This work was completed while the author was visiting lecturer at Dartmouth 
College, 1959-60. 
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Ill. There are N trunks, N being finite. 
iv. Calls that find all N trunks busy are lost, and are cleared from the 

system without effect on the flow of arrivals (no retrials). These or 
similar assumptions appear in Palm,2 and in Pollaczek;3,4,5,6 certain prop
erties of N(t) itself have been studied by Takacs,7,8,9 Cohenlo and Benes.ll 

II. SUMMARY 

The random process of interest is N(t), which is interpreted as the 
number of trunks in use, or the number of calls in progress, at time t; 
N(t) is a random step function fluctuating in unit steps from 0 to N. 
For the most part, we restrict attention to that version of N(t), written 
N(t - 0), that is continuous from the left. 

The present paper is chiefly theoretical in character. It provides (a) 
formulas for the Laplace transforms of the transition probabilities of the 
stochastic process N(t - 0), and (b) a statistical description of the calls 
that overflow a trunk group of the kind described in Section 1. The for
mulas will be exemplified and used in a second paper,12 where specific 
applications to switch counting and traffic averaging are described. 

We begin Section III with a general account telling what transition 
p .. 'obabilities are and why they are useful and interesting in traffic 
theory. The primary result, Theorem 1, can then be stated; it completely 
characterizes the transition probabilities 

Pr{N(t - 0) = nIN(O+) = m} 

as functions of t by determining their Laplace transforms, under the 
restriction that A ( .) has a probability density. Section III ends with 
a computation of some important transition probabilities for Poisson 
arrivals; practical consequences of these results will be developed in the 
second paper. I2 

We prove Theorem 1 in the Appendix A. If yet) is the time elapsed 
since the last call arrival prior to t, the process {N(t - O),y(t)} is Mar
kov, and we calculate its distributions from the usual Kolmogorov equa
tions. The stationary distribution of this Markov process is determined 
in Appendix B. 

In Appendix C the process N (t - 0) is studied directly in terms of 
renewal theory and regenerative processes, using results of Smith.I3 No 
assumptions of absolute continuity are made. This procedure leads to an 
extension of Theorem 1, and other results outlined in tre next para
graphs. (Details are omitted.) 

Let Un be this event: a cali arrives and finds n trunks in use. Each 
occurrence of Rn , where 0 ~ n ~ N, is a regeneration point of N (t - 0), 
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in the sense that the history of N (t - 0) prior to the given occurrence 
of Rn is statisticJ.lly irrelevant to the development of N (t - 0) after 
the occurrence. Let X",.n be the time elapsing from un occurrence of R", 
to the next occurrence of Rn . We prove X",.n < 00 with probability one, 
and, if 

Ml = irYJ x dA(x) < 00, 

then E{x",.n} < 00. 

The underlying probability functions that we calculate in Appendix 
C are, for 0 ~ n ~ N: 

rYJ 

Qn(t) = L Pr {kth call arrives before t and finds n trunks busy} 
k=l (1) 

= E{ number of occurrences of Rn in [O,t)}. 

From this interpretation it is apparent that the Qn( .) are unbounded 
monotone functions; one may expect them to be ultimately linear. The 
transition probabilities of N(t - 0) can be represented in terms of the 
functions Qn(') and the transition probabilities of the simple death 
process with death rate 'Y per head of population, if the Qn( . ) are eval
uated for appropriate initial conditions. This is done in Appendix C. 
With this representation we investigate the existence of 

lim Pr {N (t - 0) = n}. 
t-+rYJ 

From Theorem 4 and the solutions for the Laplace-Stieltjes transforms 
of the Qn( . ), this limit, when it exists, can be evaluated explicitly, using 
the relation 

E {xn.nl = Ml , 
pn 

where pn is the equilibrium probability that an arriving cell will find n 
trunks in use. (For pn see Refs. 7 and 11.) 

III. TRANSITION PROBABILITIES OF N(t) 

The transition probabilities of a stochastic process Xt tell how likely it 
is that the random function X(.) take on a value z at a time t, if it is 
known that it took on the value y at time s. Such a transition probability 
is written 

Pr tXt = z I Xs = y}, (2) 

the vertical bar being read and interpreted as "given that" or "if." 
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In other words, (2) expresses the relevance of the information that the 
event {Xs = y} has occurred to the likelihood that the event {Xt = z} 
will occur. In still other words, (2) expresses the dependence of the 
event {Xt = z} on {Xs = y}. 

The chief practical use of transition probabilities for models of tele
phone traffic is in computation of covariance functions; these, in turn, are 
used to compute theoretical estimates of sampling error in actual traffic 
measurements, such as time averages and switch counts. To see how 
this happens in a particular case, we consider the use of the continuous 
time average 

1 iT M(T) = T 0 N(t) dt 

as an estimate of the carried load. The variance of M is 

E{M2} - E2{Ml = 

r' ( ( [E{N(t)N(s») - E{N(I) IE{N(s) )lds dt. (3) 

The integrand is just the covariance R(t,s) between N(t) and N(s); 
if N (t) is stationary in the wide sense, so that R (t,s) = R (t - s), then 
(3) reduces (by partial integrations) to 

Var {Ml = 2T-2 iT (T - t)R(t) dt. (4) 

The covariance R(t) can be written in terms of the transition proba
bilities of N ( . ) as 

R(t) = to fomnpm Pr {NU) = n I N(O) = m) - (to mpm)', (5) 

where {Pm} is the stationary distribution of N(·). Formulas (4) and (5) 
then indicate how the transition probabilities can be used to find the 
variance of M. 

Our basic result concerning transition probabilities is most easily ex
plained and understood after some of the notions used in stating it are 
discussed. The first few are merely abbreviations; we let 

A*(s) = ir:IJ e-stdA(t) = ao(s) , 

an(s) = A*(s + n,),), 

Xo = 1, 
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These Laplace transforms enter because we shall be characterizing the 
Laplace transforms of the transition probabilities in terms of the hang-up 
rate'Y and the transform A *(s) of the interarrival probability density. 

In the summary we have denoted by Rn the event: a call arrives and 
finds n trunks in use. We let qn(t,O) be the "density" of Rn at time t, 
that is, the rate at which Rn is occurring at t, and we let 

bn(t) ~ t (~) q;(t,O) (6) 

be the associated binomial moment. From (1), it can be seen that 
dQn/ dt = qn (t,O), when the former exists. The bn ( . ) and the qn ( . ,0) are 
also related by the inversion formula 

qn(t,O) ~ '% (_1)1 (n ~ i) b;(t). 

More generally, we use qn(t,U) as a density function in the variable u 
with the heuristic meaning 

qn(t,u)du = Pr {N(t - 0) = nand u < yet) ~ u + du}. 

We can now state 
Theorem 1: The transition probabilities of N(t - 0) may be deter

mined from the generating function formula 

E{xN(t-O)} = r' 2: qn(t - y,O)[py(x)r+l-0Nn[l - A(Y)1 dy 
Jo n 

100 ~ n 1 - A(y) + t 7' qn(O,y - t)[Pt(x)] 1 _ A(y _ t) dy, 

where 

Pu(x) = 1 + (x - l)e-'Yu
, 

(7) 

and the Laplace transforms of the binomial moments bn ( .) are given 
by 

bo*(s) 
l-A*(s)' 

ko* + t X j _ 1k/(s) 
1 - ao(s) j=1 aj(s) 

to (~)Xn 
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where 

1 * L I f' f {'" ~ (}) ( ) -n-yt aCt + u) du ICn = ap ace trans orm 0 .10 f='n n qj O,u e 1 _ A(u) , 

The len * introduce dependence on the boundary conditions at t = 0 
expressed by the functions qn(O,U). The Kronecker symbol ONn in (7) 
indicates that a call is lost if it finds all trunks busy, 

To show how Theorem 1 can be used we shall compute the Laplace 
transforms of 

Pr {N(t) = N I N(O) = m}, m = 0,1, ... ,N~ 

in the important special case of Poisson arrivals at rate a, for which a 
great simplification of the formulas occurs. In this case, 

t ~ 0, 
t < O. 

Also, we set 'Y = hang-up rate = 1, which amounts to measuring time 
in units of mean holding time; then 

a 
an (8) = + + . a 8 n 

(8) 

Our choice of the transition probability to the "all trunks busy" con
dition {N(t) = Nl as an example is not arbitrary; it turns out that, in 
many cases, including Poisson arrivals, the mean of N(t) and the co
variance depend only on the transition probability to the "boundary" 
condition {N(t) = Nl. A similar situation occurs in the theory of queues 
with one server: the mean delay can be written as an integral of the 
probability of being on the "boundary," i.e., the chance that the server 
is idle.14 

Since arrivals are Poisson, the y( . ) process is in fact superfluous, and 
we may assume N(O) = m,y(O) = 0, so that 

ICn *(8) = ('" e-st-nt-ata (m) dt = (m) a , 

~O n n a + 8 + n 
n ~ m, 

(9) 

= 0, n> m. 

In formula (7) (Theorem 1) set x = 1 + W, and take Laplace transforms 
with respect to t; the coefficient of wN is 

i'" e-st Pr {N(t) = N I N(O) = m} dt 

= l'" e-st-Nt-at dt[qN* + qN-l* + ONm], 
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where qn *( s) is the transform of qn(t,O). Now, from (6), (9) and (24) 
we find 

hence 

e -s t Pr {N (t) = N I N (0) = m} dt = ~. 1
~ * 

o a 

This result can also be obtained heuristically as follows: 

a = total density of arrivals at t 

= qN(t,O) + a[1 - Pr {N(t - 0) = N}]; 

taking Laplace transforms, we get (10). 
From Theorem 1 and (10), we find 

qN* = 
a 

(10) 

(
m) + (m) 1 - ao(s) + ... + (m) [1 - ao(s)] ... [1 - am_1(s)] 

-1 0 1 ao(s) m ao(s) ... am-l(s) 

a 1 - ao (s) t (N) X n 

ao(s) n=O n 

But, for our example, (8) implies 

s+n 
a 

hence, defining (after J. Riordan in the Appendix to Wilkinson15
) the 

"sigma" functions (J'k( m) by 
m 

a 
(J'o(m) = ---" 

m. 

with m (but not k) an integer, we can show that a -lqN* reduces to 

r~ e-st Pr {N(t) = N I N(O) = m} dt = aN-mn!(J's(m) . (11) 
·0 N!s(J's+l(N) 

This and similar results for Poisson arrivals have been found by S. O. 
Rice in unpublished work. 

t The "sigma" functions are related to the Poisson-Charlier polynomials Pn(X) = 

a n /2 (n!)! t (-l)n-i (71:) j!a-i (:z:) by uk(m) = (-a~)m(m!)-fPm(-k). See Szego.16 

}=o J J 
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Since the event {N(t) = N} (the "all trunks busy" condition) is of 
primary interest, the transition probability 

PNN(t) = Pr {N(t) = N I N(O) = N} 

has been used (e.g. by Kostenl7) as a "recovery" or "relaxation" function 
that is characteristic of the dynamic behavior of the system, especially 
of its approach to equilibrium from the "all trunks busy" condition. 
Such a function has been computed from (11) and plotted as Fig. 1, 
for a (heavy) load of 10 erlangs offered to 5 trunks, giving a loss proba
bility of 0.563. 

IV. OVERFLOW TRAFFIC 

In the design and engineering of trunking plans in telephony, it is 
common practice to offer the calls lost by one trunk group to a second 
or overflow group. It has been discovered that the right choices of group 
size and the pooling of overflow traffic can lead to efficient trunking 
arrangements, called graded multiples. For this reason, some theoretical 
work, as well as much empirical study, has been devoted to the statisti
cal behavior of overflowing calls. The principal references are to Brock
meyer,18 Cohen/o Kosten/9 Palm,2 Takacs,7,8,9 and Wilkinson.15 

In accordance with current usage in mathematical literature, let us 
refer to a sequence of mutually independent, identically distributed, 
positive random variables as a renewal process. The interarrival times 
that we have assumed in the model describing the trunk group then form 
a renewal process. It has been shown by Palm2 that, if calls arriving in 

0.5~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ -L ____ ~ 

o 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

t 

Fig. 1- "Recovery function" Pr {N(t) = N I NCO) = N} for N = 5 trunks and 
a = 10 erlangs (heavy traffic). 
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a renewal process are served by a finite group of trunks, with exponential 
holding times and lost calls cleared, then the overflowing calls can also 
be described by a renewal process. That is, the time intervals between 
successive overflowing calls are mutually independent and identically 
distributed. Palm also showed how the distribution function of these 
interoverflow times can be calculated from the interarrival distribution, 
the hang-up rate and the group size. 

We can deduce Palm's results in a simple way from our basic theorem 
and give a general formula for the Laplace-Stieltjes transform of the 
interoverflow distribution. Let ON(t) be the average number of overflows 
occurring in the closed interval (O,t], assuming that an overflow occurred 
at time 0. Thus ON(t) is the particular form of QN(t) that arises when 
UI = ° and N(O-) = N. We use G(u) to denote the distribution func
tion of the interoverflow times. Since these times are independent, it 
can be seen that 

t ~ 0, (12) 

where U(t) is 1 for t ~ 0, and ° otherwise. If ON*(S) and G*(S) are the 
respective Laplace-Stieltjes transforms of ON and G, then (12) implies 

G*( ) = ON*(S) - 1 
S ON*(S) ' 

which determines G( u) uniquely if ON* is known. 
Since, as noted, ON* is the particular case of QN* arising when UI = ° 

and N(O -) = N, a formula for it can be found from (32). In the particu
lar case being considered 

and so ON* is given by 

1 
1 - A *(s) 

1 + (N) 1 - ao(s) + ... + (N) [1 - ao(s)] ... [1 - aN-I(s)] (13) 
1 aleS) N aleS) ... aN(S) . ± (N) [1 - aleS)] ... [1 - an(s») 

n=O n aleS) ... an(s) 

If J.1.1 = loa:> x dA(x) < 00, the mean time between overflows is 

J.1.1 -, 
PN 
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where PN is the equilibrium probability of loss (studied in Refs. 7 and 
11). 

For N = 1, (13) gives 

0* _ 1 - A*(s) + A*('Y + s) 
1 - 1 - A *(s) , 

G~ = A*('Y + s) 
1 - A*(s) + A*('Y + s)' 

Since A *( l' + s) is the Laplace-Stieltjes transform of 

Ll (t) = ( e --yu dA ( u) , 
·0 

(15) can be inverted to give 
00 

G(t) = L~n(t) = {~(A)}(t), 
n=1 

where 

~1 = L1 , 

and "*" denotes Stieltjes convolution. 

(14) 

(15) 

(16) 

Formula (13) agrees with the recurrence relation given by Palm2 for 
the overflow distribution from N trunks. The "one-trunk" case of (14) 
through (16) is important theoretically because all other cases can be 
obtained from it by iteration. Formula (16) defines a mapping G = l1(A) 
and the interoverflow distribution for N trunks can be written as l1N (A), 
the Nth iterate. 

For one trunk, the first two moments of the interoverflow time u are 

E{u} J..Ll 

where J.1.i = J u i dA. In particular, the ratio of second to first moment 

is 

~!u~} =!!:! + 2J.1.1 r1 _ ~ r~ te--1t dA(t)l, 
1!J t u J J..Ll al _ J..Ll .'0 J' 
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so that the mapping ~ always increases this ratio, by an amount pro
portional to E{ u} . 

APPENDIX A 

Approach Using a 1}[ arlcov Process 

Let N (t) be the number of trunks in use at time t. To study the dis
tribution of N(t) we introduce the two-dimensional process {N(t),y(t)}, 
where y( t) is the length of the time interval from t back to the last 
arrival epoch prior to t. We assume that A ( . ) is absolutely continuous, 
with a continuous density a( . ). 

The reason for using the two-dimensional variate is that, unless arriv
als are Poisson, the N(t) process by itself is not Markov. To avail our
selves of the functional equations satisfied by the distributions of Markov 
processes, we include yet) in the "state of the system." This inclusion 
does result in a Markov process. The device of "Markovization" by the 
inclusion of variables has been suggested and developed by COX,20 and 
also has been used by Takacs. 7 ,8,9 

It is natural physically to think of the random functions N(t) and 
yet) as being continuous from the right. However, we shall assume only 
that yet) is always defined to be equal to yet + 0), and shall study the 
two processes {N(t + O),y(t + O)} and {N(t - O),y(t + O)} jointly. 

That lV(l - 0) and N(t + 0) are not the same process is clear: 
N(t- 0) =Nandy(t) =OimplyN(t+O) =Nibut,jfN(t+O) = N, 
yet) = 0, then N(t - 0) = N or N - 1 according as the C3-11 that just 
arrived is lost or accommodated. The analysis of N(t - 0) and NCt + 0) 
shall be carried out in terms of two sets of probability density functions, 
Pn (t,y) and qn (t,y), where 

Pn(t,y)dy = Pr {N(t + 0) = nand y < yet) ~ y + dy}, 

qn(t,y)dy = Pr {N(t - 0) = nand y < yet) ~ y + dy}. 

Lemma: Pn (t,y) = qn (t,y) for almost all y. 
Proof: Let P be a basic probability measure determined by our as

sumptions (i) through (iv) of Section I; P is defined for sets of elements 
w in a space Q. We assume further that N (t,w) is separable, so that 

SE = n {w:N(t - u) = N(t + 0) = N(t + u)} 
o<u <E 

is a measurable set. 
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Now if yet) > 0 > €, then yet - €) = yet) - €, almost surely, and 

Pr {SE I N(t + 0), yet) > o} ~ e-2rNE 1 ~ ~~(t e) 

independently of N(t + 0), almost everywhere, so that 

P {S I (t) > o} ~ -2rNE 1 - A(o + e) 
r E y - e 1 _ A(o) . 

The sets SE are monotone nondecreasing, so So = lim SE as € ---7 0 is 
measurable, and 

Pr {So I yet) > o} = 1, almost everywhere [P], (17) 

and So is the w-set on which N(t) is constant in some interval (t - u, 
t+u). The lemma follows from (17). 

It remains to establish the relationship between Pn(t,y) and qn(t,y) 
wheny = O. From our previous remarks about N(t - 0) and N(t + 0) 
it can be seen that 

PnCt,O) = qn-lCt,O) , 

Po(t,O) = O. 

1 ~ n ~ N - 1, 

To formulate the Kolmogorov equations for pn(t,.) and qn(t,.), we 
need the function X( .) defined by 

a(y) 
X(y) = 1- A(y)' A(y) < 1. 

This is the probability density that an interarrival time will end in the 
next dy, given that it has lasted a time y to date. The functions qn(t, .), 
where 0 ~ n ~ N, (with qN+l == 0), satisfy the difference-differential 
system 

[:1 + :y + 'Yn + }.(y) ] q. = 'Y(n + l)qn+" (18) 

and the behavior of the densities qn(t, .) for y = 0 is determined by the 
additional condition 

(19) 



TRANSITION PROBABlUTIES FOR TELEPHONE TRAFFIC 1309 

We introduce the generating function 
N 

1f;(X,t,y) = L xnqn(t,y) , 
n=O 

and from (18) obtain 

[ a a a ] at + ay + 'Y(X - 1) ax + A(Y) 1f; = 0, (20) 

whose general solution is 

1f;(x,t,y) = K{t - y, e-'YY(x - 1)}[1 - A(y)]. 

Before continuing, we note that the functions pn (t,y) also satisfy the 
system (18), but that the analog of (19) is 

Pn+l-0N,n(t,0) = 10<0 Pn(t,y)A(y) dy, (21) 

where the Kronecker 0 symbol is used to indicate that an arriving call 
is lost if it finds all N trunks busy. The generating function cp (x,t,y) of 
the Pn(t,y) is also a solution of (20). 

The function 1f;(x,t, .) is v-continuous for y > 0, so, from the lemma 
proved previously, we conclude that 1f;(x,t,y) = cp(x,t,y) almost every
where in y, and that 

lim 1f;(x,t,y) = cp(x,t,O). 
y-+O 

Because of the "lost calls cleared" assumption, we must have 

1f;(x,t,O+) = x1f;(x,t,O) - xN(x - l)qN(t,O) 

= cp(x,t,O), 

so that 1f; is discontinuous in y at y = 0. 
Let Py = Py(x) abbreviate 1 + (x - l)e-'YY. It can be verified that 

the function K( .,. ) in the solution of (20) is given by 

K(u, z) = (1 + z)1f;(1 + z,u,O) - z(1 + Z)NqN(U,O), t ~ y, 

1f;(1 + ze'Yu,O,-u) 
1 - A( -u) 

for the solution 1f;(x,t,y). From this we find that, for t ~ y, 

1f;(x,t,y) = ' 

t < y, 

Py1f;(Py ,t - y,O)[l - A(y)] - (Py - l)PyNqN(t - y,O)[l - A(y)], 
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while, for t < y, 

1 - A(y) 
1f;(x,t,y) = 1f;(P t ,O,y - t) 1 A ( ) . 

- y - t 

The solution for cp( x,t,y) is analogous; in view of this and of the close 
relationship between cp and 1f;, only 1f; shall be treated from 1l0W OIl. 

The function o/(x,O,y) represents initial conditions, and is considered 
as given. To find 1f;(x,t,O), we use the integral condition (19), and con
clude that 

1f;(x,t,O) = C 1f;(Py ,t - y,O)Pya(y) dy 
• 0 

fOO a(y) dy 
+ o/(P t ,O,y - t) 1 A ( ) . 

t - Y - t 

To solve the functional-integral equation (22), we set x 
and equate coefficients of like powers of w. This yields 

1 + w, 

bn (t) = 10 t [bn (t - y) + bn- 1 (t - y) 

- (n ~ 1) bN(t - y) ] e-"Wa(y) dy + kn(t), 

(23) 

n ~ 0, 

where 

bn(t) = t. (D q;(t,O), 

7 (t) = 100 

b ( ) -wyt aCt + u) du 
tC n 0 n U e 1 _ A ( u ) . 

Note that 
N 

bo(t) = L qn(t,O) = 1f;(1,t,O). 
n=O 

Let the Laplace transforms of bn( . ), len( .) be bn *( s), len *( s), respec
tively. We obtain a simple recurrence for the bn * by applying the Laplace 
transformation to (23). The recurrence is 

bn* = an(s) fbn* + bn_1* - ( N ~) bN*\ + len*. l \n - 1/) . 
n ;:::: 0, (24) 
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where 

A *(s) = 100 

e-W dA(u), 

an(s) = A *(s + n'Y).t 

To find bo*, let x approach 1 in (22); then Py(x) goes to 1, and we reach 
the following renewal equation for bo(t): 

bo(t) ~ i' bo(t - y)a(y) dy + r /~1'~~2) a(t + u) duo (25) 

It can be verified that the last term on the right of (25) is just ko( t) ; 
upon solving (25) by transforms, we find that bo* = ko* /[1 - A *]. 

It can be seen that bo(t) is the density of arrivals at the time t; thus 
bo(t) is a familiar function of renewal theory, for which the reader is 
referred to Smith21 and the bibliography therein. 

The solution of the recurrence (24) is 

b. * ~ (X.)-l {boO - t, [C ~ 1) bN * - ::(:)] X;-l} , (26) 

where 

Xo = 1, 

X n = 1 - an (s) X 
an(s) n-l' 

In particular, the Laplace transform of the density (at t) of arrivals 
finding all trunks busy is given by 

00 ko* + t X i- 1k/(s) 

bN* ~ qN* ~ 1. e-"'qN(t,O) dt ~ 1 - ao(±: (~) x.a;(S) 

n=O n 

The generating function of distr {N(t - o)} is 

E {x NU
-

O
)} = 10

00 

1/;(x, t, y) dy 

(27) 

= it ~ qn(t - y,0)[py(x)r+1
-

ONn [1 - A(y)] dy (28) 

(

00 '" n 1 - A(y) + L.J qn(O,y - t)[Pt(x)] 1 A( ) dy. 
-t n - y-t 

t The functions a,,(s) are to be distinguished from the constants an of Ref. 11, 
which lise the same model and notation. The two quantities are related by an = 
A * (nl') = an(O). 
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APPENDIX B 

The Stationary Distribution oj {N ( t) ,y ( t) } 

We now consider which initial distributions qn(O,U) for {N(O+), 
y(O+)} are stationary, i.e., are invariant under the transition probabili
ties of the Markov process {N(t - O),y(t)}, studied in Appendix A. 
Intuitively, since we show in Theorem 3 of Appendix C that a limiting 
distribution exists as t ---7 00, we expect this limit to give the stationary 
distribution. This is the content of 

Theorem 2: If A(u) has a continuous derivative and jJ.l < 00, the 
x, u function 

"'" P n+l-ONn( ) 1 - A(u) L...J pn u X , u ~ 0, (29) 
n jJ.l 

generates the unique stationary distribution of {N(O+),y(O)}; (29) is 
a generating function in x and a probability density in u. The number 
pn is the equilibrium probability that an arriving customer find n trunks 
busy. 

To show that (29) generates a stationary distribution, it is sufficient 
to prove that the choice of (29) for the initial condition makes each 
qn(t,O) = Pn/jJ.l for all t. This is equivalent to 

or to 

bn*(s) 

with 

In order to use the recurrence (24) and the formula (27) for qN*, we 
must first calculate the quantities kn* imposed by (29). Now kn(t) IS 

the nth binomial moment associated with the generating function 

fOO dA(y) 
t tf;(Pt,O,y - t) 1- A(y - t) 

for tf;(x,O,u) given by (29). Thus, kn(t) is associated with 

jJ.l-l L: J'<!:l PnPy_tHn-ONn[pt(x)] dA(y). 
n t 
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This is equal to 

and so, for n > 0, 

kn(t) = 1'1-1 {bn + bn- 1 - (n ~ 1) PN} r e-n,u dA(n). 

The Laplace transform of this is 

For n = 0, 

l * - {b + b (N) 1 an - an (s ) 
en - n n-l - n _ 1 PN f SJ.Ll ' 

leo(t) 
1 - A(t) 

leo* = 1 - A *(s) 
SJ.Ll 

1 - ao(s) 
SJ.Ll 

n> 0. 

We now note that, for these len *, the condition bN* = PN/SJ.Ll implies 
bn * = bn / SJ.Ll for all lower n. This can be proved by induction from (24). 
We now substitute these len * in (27) for qN* (= bN*). If we divide out 
a factor [1 - ao( s)] in the numerator, the first term is 1/ SJ.Ll ; the general 
term is 

[ ( 
N ) ] [1 al(s)]· .. [1 - an-l(s)][an - an(s)] 

bn + bn - l - n _ 1 PN - (SJ.Ll)al(s) ... an(s) 

Using the recurrence of Ref. 11, 

n> 0, 

we find after much algebra that qN* = PN/ SJ.Ll , which proves the theorem. 
The stationary value PN/J.Ll for the density qN(t,O) has the following 
physical interpretation: 1/ J.Ll is the equilibrium density of arrivals, and 
PN is the chance that such an arrival find all trunks busy. 

The uniqueness of the stationary distribution follows from that of 
the limiting distribution as t ~ 00. For two distinct stationary distribu
tions of necessity give rise to distinct limits, contradicting Theorem 4 
of Appendix C. 

The analog of Theorem 2 for the more general formulation of Appendix 
C is proved by the same form of argument that established Theorem 2, 
with the difference that Laplace-Stieltjes transforms are involved, and 
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that special mention must be made of the "periodic" case, in which 
A ( . ) is concentrated on a lattice. 

APPENDIX C 

A pproach Via Renewal Theory and Regenerative Processes 

This last appendix is a quick sketch of results for general distributions 
A ( . ) ; no proofs are given. 

Smith13 has defined a regenerative stochastic process x( t) as one for 
which there is an event R such that, if R occurs at t, then knowledge of 
xes) for s < t loses all prognostic value, and the future development of 
x( T) for T > t depends only on the fact that R occurred at t. The points 
at which R occurs are called regeneration points of the process. 

Let Rn denote the event: an arriving customer finds n trunks busy. 
Since the interarrival times form a renewal process, each point in time 
at which Rn occurs is a regeneration point of N(t - 0), for all 0 ~ n ~ 
N. In fact, we have alreadyll made use of this property of the arrival 
process in constructing the imbedded Markov chain. 

We are therefore in a position to use Smith's results13 directly. The 
regenerative property of Rn implies that the time intervals between suc
cessive occurrences of Rn form a renewal process, i.e., a sequence of 
independent, identically distributed variates. To apply the results of 
Ref. 13 we must investigate whether these variates are proper, i.e., 
finite almost surely, and whether they have finite expectations. We 
content ourselves with the following result: 

Theorem 3: Let Xm,n be the time elapsing from an occurrence of Rm 
until the next occurrence of Rn. Then 

Xm,n < 00 with probability 1, 

and, if the mean interarrival time J.l.l = J x dA < 00, then 

E{Xm,n} < 00. 

We use the following notations: 

the ith interarrival time, i = 1, 2, 3, ... , 

the time interval between the (i - l)th and the 
ith occurrences of Rm , 

the epoch of the kth arrival, 
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k 

L r i ( m) = the epoch of the kth occurrence of the event Rm , 
1 

T t = the epoch of the last arrival prior to t and 
after O. 

The Ui all have the common distribution A ( u), except for Ul , which 
has G. Also, the ri(m) have a common distribution, except for rl(m). 

During the interval (T t ,t), the process N(x - 0) forms a pure death 
process whose transition probabilities P m,n (.) are known. Let U(x) be 
the unit step function at 0 and OmN the Kronecker delta. The probabil
ity that N(t - 0) = n can be represented as 

Pr {N(t - 0) = n} = E{PN(O+).n(t) U(UI - t)} 

+ L r Pm+l-OmN,n(t - u) du Pr {T t ~ U and N(T t - 0) = m}, 
n-l;£m;£N o 

where the measure implicit in the E operation is the joint distribution of 
N(O+) and Ul . With the notations just introduced in mind, it can be 
verified that 

00 

Pr {T t < U and N (T t - 0) = m} = L Pr {T t = X k (m) ~ u} 
k=l 

= (U [1 _ A (t - v)] dv L Pr {Uk ~ v and N ( Uk - 0) = m} 
Jo k 

= (U [1 _ A(t - v)] dv L Pr {Xk(m) ~ v}, 
Jo k 

the series being absolutely convergent. By introducing 

Qn(t) L Pr {Uk ~ t and N(Uk - 0) = n}, 
k 

we can write 

Pr {N(t - 0) = n} = E{PN(O+),n(t) U(UI - t)} 

+ L r Pm+l-OmN,n(t - v)[l - A(t - u)] dQm(v). 
n-l;£m;£N '0 

This representation has been used by Takacs 7 to study lim Pr {N(t -
0) = m} as t ~ 00 by methods similar to those used in the proof of 
Theorem 4. 

We can now describe directly some conditions under which Pr {N (t -
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0) = n} goes to a limiting distribution as t ~ 0, independent of initial 
conditions. The result is due essentially to Takacs. 7 

Theorem 4: If A(u) is not periodic, if Ul < 00 almost surely, if J..tl = 
E{Ui} < 00, i > 1, then 

. "" In"" [1 - A(u)] 11m Pr {N(t - 0) = n} = L..J Pn+l-omN,n(U) E{ } duo 
t ... "" n-l~m~N 0 f Ym,m 

This result follows at once from the previous results of this section and 
Theorem 2 of Smith/3 upon noting that Pn,k( u) is a linear combination 
of monotone decreasing functions. From Theorem 3 of Smith21 there also 
follows 

Theorem 5: If A(u) has period p, if Ul < 00 almost surely, if J..tl = 
E{Ui} < 00, i > 1, and 0 ~ Y < p, then 

lim Pr {N (kp + Y - 0) = n} = 
k ... "" 

We now derive and solve equations for the quantities 

Qm(U) = 2: Pr {Uk ~ U and N(Uk - 0) = m}, 
k 

which occur in the representation for the probability Pr {N(t - 0) = n}. 
Using the generating variable x and the abbreviation 

Py(x) = 1 + (x - l)e-'YY, 

we find that 
N 

2: xn Pr {Uk+! ~ t and N (Uk+! - 0) = n} = 
n=O 

2: rt I t

-

u 

pym+l-0mN(x) dA(y) du Pr {Uk ~ U and N(Uk - 0) = mI. 
m Jo 0 

The series formed by adding all these equations up on the index k are 
absolutely convergent; hence no additional generating functions are 
needed, and we reach the equation: 

N "" 
2: xn L: Pr {Uk ~ t and N(Uk - 0) = n} = 
n=O k=l 

N 

2: xn Pr {Ul ~ t and N (Ul - 0) = n} 
71=0 

+ ~ lt It-u 

pym+l-OmN(x) dA(y) du ~ Pr {Uk ~ U and 

N(Uk - 0) = m}. 

(30) 
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This is an integral-functional equation for the function 

'lr(x,t) = L Xn L Pr {Uk ~ t and N(Uk - 0) = n}, 
n k 

which is closely related to the function if;(x,t,O) treated in Appendix A. 
In fact, when 'lr is absolutely continuous in t, then if; is its derivative, 
and (22) is similar to (30) in the special case where the density if; exists. 

Equation (30) may be solved by the same method as (22), except 
that Laplace-Stieltjes transforms replace the ordinary Laplace integrals 
used for (22). We introduce the following notations: 

Qn(t) for L Pr {Uk ~ t and N(Uk - 0) = n}, 
k 

Bn(t) for t.. (~) Q;(t), 

Kn(t) for t (i) Pr {u, ~ t and N(UI - 0) = j}. 
3=n n 

When each of Qn , Bn and Kn is absolutely continuous, the corresponding 
(lower case) quantities qn(t,O), bn(t) and kn(t) are the respective deriva
tives. Let the respective Laplace-Stieltjes transforms of Qn , Bn and Kn 
be Qn *, Bn * and Kn *. Then (30) leads to the recurrence 

Bn* ~ an(s) {Bn* + B._,* - (n ~ 1) BN*} + K.*. (31) 

The rest of the solution is in complete analogy with the solution for the 
bn *, qn* in Appendix A. We find 

N 

Bo(t) = L Qn(t) = 'lr(I,t). 
o 

The function 'lr( l,t) satisfies the renewal equation 

'lr ( l,t) = 10 t 'lr (1,t - y) dA (y) + G (t) , 

where G = distr {ud. The Laplace-Stieltjes transform of 'lr( l,t) is 

00 i oo 

e-st dG(t) 

Bo* =.( e-
st 

d'lr(I,t) = ~ _ A*(s) 
Ko* 

1 - A *(s) . 
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The solution of the recurrence (31) is 

B *-n -

IT an(s) {Bo* - t [( N ) BN* - K/ ] fi 1 - ai(S)} 
o 1 - an(s) j=l j - 1 aj(s) 0 ai(s) , 

where the first term of the products is taken to be one. The Qn * are given 
in terms of the Bn * by the equation 

In particular, the analog of (27) is 

B N * = QN * = (¥:l e -st dt L Pr { Uk ~ t and N ( Uk - 0) = N} Jo k 

= [1 - A *(s)r1 (32) 

From the representation of Pr {N(t - 0) = n} it can be seen that 
the generating function of N (t - 0) is 

E{xN(t-O)} = E{pt(o+)(x) U(UI - t)} 

+ L ( Pt_uHn-~nN(x)[1 - A(t - u)] dQn(u), 
n Jo 

with Pt(x) = 1 + (x - l)e-l't, and U the unit step at zero. It follows 
that the Laplace transform (with respect to t) of the generating function 
of N(t - 0) is 

fo<¥:l e-stE{xN<t-O)} dt = fo<¥:l e-stE{pt(O+)(X)U(Ul - t)} dt 

+ L Qn*(S) [<¥:l e-8ypyn+l-~nN(x)[1 - A(y)] dy. 
n Jo 

-VVhen lim E{ xN(t-O)} exists as t ~ (7), we can USe Abel's Lheurem 
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for the Laplace transform to evaluate the limits lim Pr {N(t - 0) = n} 
explicitly. As s ~ 0, 

lim sQn *(s) 
sGn *(s) 

lim 1 - Fn.n*(s) 

But from (32) we find 

lim sQn(s) = pn 
PI 

1 

pn 

l~ x dA(x) , 

where pn is the equilibrium probability that an arriving customer finds 
n trunks busy. (These probabilities have been studied in Takacs7 and 
Benes,l1 inter alia.) Hence 

E {Xn.n} = mean recurrence time of Rn 

l~ x dA(x) 

pn 

and, from Theorem 3, 

lim Pr {N(t - 0) = n} 
t-+~ 

lim E{xNCt-
O
)} 

t-+~ 

with 
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An Alternative Approach to the 
Realization of Networl( Transfer 

Functions: The N-Path Filter 

By L. E. FRANKS and I. W. SANDBERG 

(Manuscript received April 14, 1960) 

A particular time-varying network consisting of several parallel trans
mission paths, each containing input and output modulators, is described 
and analyzed. It is shown that, under certain conditions, the network may 
be characterized by a transfer function. A particular form of this transfer 
function yields periodic filtering characteristics over a limited frequency 
band without employing distributed elements. Techniques are also presented 
for realizing highly selective band-pass filters without the use of magnetic 
elements. Some practical applications are discussed in detail and experi
mental verification is presented. 

I. INTHODUCTION 

The application of conventional design techniques to network prob
lems in systems operating at relatively low frequencies often leads to 
impractical circuits. In addition, designs based on active RC techniques 
are frequently very sensitive to small changes in element values. Alter
natively, a time-varying network approach to the solution of a wide 
class of such problems appears to be particularly promising. 

The time-varying network described and analyzed in this paper con
sists of a parallel combination of N identical linear time-invariant net
works, each operating between input and output modulators. Attention 
is focused upon several properties of this configuration that are of the
oretical as well as practical importance. In particular, these properties 
include: 

i. Periodic filtering characteristics can be obtained over a limited 
frequency band without employing distributed elements. The practical 
uses for this property include the realization of low-frequency comb 
filters. 

1321 
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ii. Narrow-band band-pass and band-elimination filters can be re
alized at very low frequencies by networks free from magnetic elements. 
The center frequency of these filters is electronically controllable. 

iii. An exact low-pass to band-pass translated version of the con
stituent network transfer function can be realized. The low-pass to band
pass transformation technique can also be applied to driving-point 
immittances. 

The network under consideration is shown in block diagram form in 
Fig. 1. The time functions u(t), vet), Xn(t) and Yn(t) may be interpreted 
to be either voltages or currents. The input modulators (multipliers) 
operate on the input u(t) to produce the inputs 

Xn(t) = u(t)p[t - (n - l)T] 

to the N identical linear time-invariant networks with impulse response 
h(t). The outputs Yn(t) are passed through output modulators to form 
path outputs vn(t). The final output vet) is the sum of the path outputs. 
The time functions p[t - (n - 1) T] and q[t - (n - 1) T] are periodic 
with period T, where T = NT. 

In the next section the general input-output relationship for the N
path configuration is developed and discussed. The following sections 
are concerned with features associated with particular types of modu
lating functions. Some practical applications are discussed in detail and 
experimental verification is presented. 

INPUT OUTPUT 

U (t), u(s) v(t) , yes) 

q[t-(n-l) rJ 

Fig. l.-The N-path configuration. 
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II. GENERAL PROPERTIES OF THE N-PATH CONFIGURATION 

2.1 General Input-Output Relationship 

In this section we derive the relationship between yes) and U(s), 
the network's frequency domain output and input. t 

The periodic functions pet) and q(t) can be expressed by their com
plex Fourier series: 

m=+oo 

pet) = 2: P meiwomt, 
m=-oo 

1=+00 

q(t) = 2: Q,eiwolt, 
l=-oo 

where Wo = 27f/T = 27f'jN r. It is convenient to define 

Pn(t) = p[t - (n - 1)r], 

qn(t) = q[t - (n - 1)r]. 

(1) 

(2) 

Since multiplication in the time domain corresponds to convolution 
in the frequency domain, it follows that 

N N 

Yes) = 2: Vn(s) = 2: Yn(S) 0 Qn(S). (3) 
n=l n=l 

Using the relation 

1 
J(s) 0 -- = J(s - a) (4) 

s-a 

and (1), (2) and (3), we obtain 
N 1=+00 

Yes) = 2: 2: Q,e-iwoCn-l)lrXn(S - jlwo)H(s - jlwo), (5) 
n=l 1=-00 

where 

Xn(s)H(s) (6) 

Similarly, 

(7) 

and 
m=+oo 

X ( 'l) - "p -iwoCn-l)mru[ .( + l) ] n S - J Wo - L...J me S - J m Wo • 
m=-oo 

t The time function and its Laplace transform are denoted, in accordance with 
the usual notation, by lower and upper case letters respectively. 
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Substituting (7) into (5) gives 

Yes) = L QIPme-iwo(n-l)(l+m)TH(s - jlwo)U[s - j(m + l)wo]. (8) 
n,l,m 

The summation over n is the following geometric series: 

N N, l+m=kN, L e-iwo(n-l)(l+m)T (9) 
n=l 0, otherwise, 

where k is an integer. Using (9), we obtain 

Yes) = N L Q1PkN-d-I(s - jlwo) U(s - jkNwo). (10) 
k,l 

It is convenient to write (10) in the form 
k=+oo 

Yes) = L F(k,s) U(s - jkNwo), (11) 
k=-oo 

1=+00 
F(k,s) = N L Q1PkN-1H(s - jlwo). (12) 

1=-00 

Expressions (11) and (12) constitute the general input-output rela
tionship for the N-path structure. 

2.2 Transfer Function for N-Path Configuration 

The quantity F(k,s) in (11) and (12) completely characterizes the 
time-varying network of Fig. 1. It describes operationally the relation 
between the input signal and output signal, as is shown symbolically in 
Fig. 2 (a). In this sense, F (k,s) may be considered analogous to the 
characterization of a constant-parameter network in terms of a transfer 
function. A feature of the N -path configuration of particular interest 
from the network theory viewpoint is that, with certain band-limiting 
restrictions on the input and output signals, a transfer function relation 
between input and output can be derived. It is this property that will 
be investigated in the remainder of the paper. 

If U(s) evaluated on the jw-axis essentially vanishes outside the in
terval I w I < N wo/2, it follows that 

V(jw) = F(O,jw) U(jw) (13) 

Furthermore, if V(jw) vanishes outside the interval I w I < Nwo/2, then 
Yes) and U(s) can be related by a transfer function T(s): 

yes) 
T(s) = TTfc>"'" 

'-/ \ U/ 
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T(jw) = F(O,jw) 

=0 

. I I Nwo 
III w <2' 

. I I Nwo 
III w >2' 
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(14) 

These band-limiting constraints can be accomplished by preceding and 
following the time-varying network with ideal low-pass filters having 
cutoff at We = N wo/2. With the addition of these low-pass filters, the 
time-varying network is equivalent to a constant-parameter network 
having a transfer function, F(O,s), preceded and followed by ideal low
pass filters, as shown in Fig. 2(b). 

An alternate expression for the transfer function will be developed in 
the following equations. This expression leads to a closed form for 
F(O,s). 

From (12), 

co 

F(O,s) = N L P_zQzH(s - jlwo). (15) 
z=-co 

This can be written as the Laplace transform of the product of the im-

• 00 I F (k, s) u(t) . vet) 

V(S)=L F(k,s) U(s-jkNwo) 
k=-oo 

(a) 

r---------------------------------l 
I T(s) : 
I 
I IDEAL IDEAL I 

I LOW-PASS LOW-PASS I FILTER ~ F(o,S) - FILTER 
u (t) I Nwo Nwo I vet) 

I 
WC=-2- wc= -2-

I 
I I L ________________________________ J 

V (s) =T (s) U (s) (b) 

Fig. 2 - (a) Symbolic representation of F(k,s); (b) equivalent constant-param
eter network. 
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pulse response of the component networks, h(t), and a periodic function 
with period T: 

where 

F(D,s) ~ .£ [h(t)N ,t. p _,Q,e+ ilWO
'] 

~ .£ [h(t) .'f. ret - kT) ] , 

~ ~ 

L: ret - kT) = N L: p _zQze+i /wot
• 

k=-~ l=-~ 

(16) 

(17) 

The pulse ret) depends only on the modulating functions and not on the 
response characteristics of the component networks. The identification 
of ret) with pet) and q(t) is not unique. However, a particularly useful 
relation is obtained by considering pet) and q(t) to be represented by 
infinite pulse trains wherein each pulse assumes the shape of one period 
of the modulating functions; that is, 

where 

~ 

pet) = L: aCt - kT), 
k=-~ 

~ 

q(t) = L: bet - kT), 
k=-~ 

aCt) = pet) 

=0 

bet) = q(t) 

in 0 ~ t ~ T, 

otherwise; 

in 0 ~ t ~ T, 

= 0 otherwise. 

Then it can be shown that 

N rT 

ret) = T J
o 

a(y)b(y + t) dy 

(18) 

(19) 

(20) 

satisfies (17). Notice that ret), like aCt) and b(t), is a duration-limited 
function, in that 

ret) = 0 for I t I ~ T. (21) 

Since the Laplace transform of a product of time functions is given by 
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the convolution of their transforms, (16) becomes 

P(O,s) = H(s) 0 £ [kt. ret - kT) ] 

and 

1327 

(22) 

£ Lt. ret - kT) ] = R(s) + ~t; A( -s)B(s)e-,k7', (23) 

where 

R(s) = iT r(t)e-st dt, 

A (s) = iT a(t)e-st dt, 

B(s) = iT b(t)e-st dt. 

(24) 

The terms in k form a geometric series that is readily summed, so that 

[ 
~ A (-S)B(S)e-sTj 

F(O,s) = R(s) 0 R(s) + 1 _ e-ST . (25) 

2.3 Transfer Function for Rational R (s) 

If we now assume that R(s) is rational in s and regular at infinity, 
then, assuming only simple poles, 

M 

'" Ci R(s) = Co + L.J --. (26) 
i=1 S - Si 

From (25), 

F(O,s) = 

[ 

N A( )B( ) -CS-S.)Tj M T Si - S S - Si e ' 
cor(O) + ?: Ci R(s - S·i) + -(s-s.)T . (27) 

t=1 1 - e ' 

The functions R(s) and A( -s)B(s) have no singularities in the finite 
part of the s-plane. Thus, the singularities of F(O,s) are given by the 
zeros of 1 - e-(S-Si)T, which lie equally spaced at intervals of 27r/T on 
lines parallel to the j = w axis. 
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III. SPECIFIC TYPES OF MODULATING FUNCTIONS 

In this section the properties of the N-path configuration are examined 
for specific types of modulation that reveal particularly interesting 
properties of the structure. 

3.1 Sinusoidal Modulation 

Suppose that the modulating functions possess only a finite number 
of sinusoidal components: 

M 

p(t) L Pmeiwomt, 
m=-M 

M 

q(t) = L: Qmeiwomt, 
m=-M 

where 

and 

The case for N > 2M deserves special attention, for then 

QlPkN- l = 0 

and, from (11) and (12), 

for k ~ 0, 

V(s) 
U(s) = F(O,s). 

(28) 

(29) 

Therefore, the network exhibits a transfer function T(s) for N > 2M, 
without band-limiting restrictions, which is given by 

T(s) = F(O,s). 

Note that the transfer function is a finite sum of frequency-translated 
versions of H(s). In particular, when Pm ,Qm = 0 for I m I ~ 1, we have 

T(s) = N[alH(s - jwo) + aiH(s + jwo)], (30) 

where 

a "low-pass to band-pass transformation" of the transfer function H (s) t. 
t This result can also be obtained with only two parallel paths.1 Single sinusoid 

modulating functions are employed, the two functions in one path being in phase 
with each other and in quadrature with the functions in the other path. A similar 
configuration has been considered by Hines and De:'iUer ill unpublished work. 
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A particularly difficult practical network problem is the low-frequency 
realization of highly selective band-pass filters. Procedures that avoid 
the use of magnetic elements are inviting, but active RC techniques often 
lead to a high degree of transfer function sensitivity to both the active 
and passive parameters. An alternate approach based on (30) appears 
to be attractive, and should provide a considerable increase in the degree 
of immunity from network parameter variations. Implementation of a 
similar approach is discussed in more detail in Section 5.2. 

The transfer function poles of a passive RC network are distinct and 
on the negative-real axis of the complex-frequency plane. Consequently, 
if H (s) is the transfer function of an RC network, the over-all transfer 
function T (s) of (30) can have only distinct pairs of complex-conjugate 
poles with identical imaginary parts. It is desirable to circumvent this 
restriction without employing magnetic or active elements. It is suffi
cient to consider the synthesis of the transfer function 

N(s) 
T(s) = D(s)' (31) 

where T (s) has only simple complex-conjugate poles, since transfer func
tions with multiple-order poles can be realized as the product of transfer 
functions having only simple poles. We assume that T(s) is stable and 
regular at infinity. Equation (31) can be expressed as 

M bi bi 
T(s) = [{oo + L . + ., (32) 

i=l s + (Ii - JWi S + (Ii + JWi 

From (30), each of the series terms can be separately realized with the 
passive transfer function Hi(s) = l/(s + (Ii). Evidently we require 

(33) 

Hence, a realization of (32) consists of M similar sections in parallel, 
with an additional section that realizes the constant term. The main ob
jection to this realization technique is that a large number of modulators 
may be required, but it demonstrates that any transfer function that is 
regular at infinity and stable can be realized with sinusoidal modulators, 
a source of modulating frequencies and simple passive RC structures. 

While this paper is primarily concerned with the synthesis of transfer 
functions, it is worthwhile to sacrifice some degree of continuity here to 
point out the relevance and extension of the preceding discussion to the 
synthesis of driving-point impedances. The results of this section apply 
also to the case where U(s) and V(s) are interpreted to correspond to 
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the transforms of voltage and current at the same port. The forms taken 
by the network for this special application are shown in Fig. 3. Suppose, 
for example, that the nth two-port network in Fig. 3(a) is character
ized by 

in'(t) = p[t - (n - l)r]en(t), 

in(t) = q[t - (n - l)r]en'(t), 
(34) 

where pet) and q(t) are given by (28). The driving-point admittance 

~----------------~ E(s)o-----------------~ 
- + res) 

(b) 

Fig. 3 - Forms taken by network when U(8) and V(8) are int.erpreted as cor-
responding to transforms of voltage and current at same port. -
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Yin = J(s)IE(s) is given by F(O,s), withH(s) replaced by Z(s). That is, 

Yin(s) = 
M (35) 

NPoQoZ(s) + NL [amZ(s - jmwo) + a!Z(s + jmwo)], 
m=l 

where 

and N > 2111. 

For the special case where Pm, Qm = ° for I m I ~ 1 and al is real, 

Yin(s) = Nal[Z(S - jwo) + Z(s + ju.:o)]. (36) 

For example, if Z(s) = 1/sC, 

2Nal s 
Yin(s) = -C 2 + 2' 

S Wo 
(37) 

the admittance of an inductor and capacitor in series. 
As in the transfer function case, (36) (and the analogous relations for 

the following three other networks discussed here) can be realized with 
only two parallel paths. Single sinusoid modulating functions are em
ployed, the two functions in each two-port network being in quadrature 
with the corresponding functions in the other two-port network. 

If the two-port networks in Fig. 3 (a) are characterized by 

we obtain 

en'(t) = p[t - (n - I) r]en(t) , 

in(t) = q[t - (n - I)r]in'(t), 

M 

NPoQoY(S) + NL [amY(s - jmwO) + a!Y(s + jmwo)], 
m=l 

where 

1 
Y(s) = Z(s)' 

The two dual networks take the form shown in Fig. 3(b). 

3.2 Jump Modulation 

(38) 

(39) 

The physical implementation of the transfer function of (15) can be 
accomplished without the difficulties normally encountered in the realiza-
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(a) 
P2 

t 
Pr 

P (t) Ol----f-----L....---+-----I---f----+---l---+---l 

Cb) 

t 
I -

wet) 
0 

I 
I 
I 
I 

0 T/R T 
TIME, t ~ 

Fig. 4 - (a) Modulating function pet) with R jumps in fundamental interval 
Tj (b) periodic switching function wet). 

tion of accurate multiplier circuitry by means of a scheme called jump 
modulation. This scheme uses modulating functions having a finite num
ber of equally spaced discontinuities or jumps in each fundamental in
terval. The functions assume a constant value between jumps. Modula
tors of this type can be realized by conventional switching techniques. 
Suppose that the modulating function pet) has R jumps in the funda
mental interval T, as shown in Fig. 4(a): 

p(t) = ~ p,w [t - (r - 1) ~J 
co L P mei (m27r/ T) t 

m=-co 
(40) 

where w (t) is the periodic switching function shown in Fig. 4 (b). 
The Fourier coefficients of pet) are given by 

1 iT 1 R fr(T'R) 
Pm = - pet) e-i (m27r/T)t dt = - L pr e-i (m27r/T) dt. 
ToT r=1 (r-l)(T/R) 

(41) 

Thus, the sequence of values Pm is given by a linear transformation of the 
sequence of values, pr : 

(42) 
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For design purposes, the inverse of this transformation is desired in 
order that an appropriate set, pr , can be determined from an arbitrarily 
prescribed set, Pm. Obviously, only R values can be independently pre
scribed for the complex numbers Pm and, since pet) is real, it is always 
required that P -m = p! and Po be real. Hence, for example, a set' of 
values pr can be found such that all the Fourier coefficients Pm can 
be arbitrarily specified for I m I ~ R/2. In this case, the inverse trans
formation corresponding to (42) is relatively simple:t 

pr (R odd) 

CR-l) /2 e -iCm'lr/ R) m_7r 

~ R iC2'1r/R)rmp 
.L.J -----em. (43) 

m=-(R-l) /2 • m7r 
SIn I[ 

When R is even,t 

pr (R even) 

-iCm'lr/R) m7r 
R/2-I e -

~ R iC2'1r/R)rmp • 7r ( l)rp ----- e m - J - - R/2 • 
m=-R 2+1 • m7r 2 

SIn I[ 
(44) 

A case of particular interest in the N-path configuration is for R = N, 
when the jumps occur simultaneously in all paths and a common timing 
source can be used for operating the switches. If the bandwidth of the 
component networks is sufficiently small compared to Wo, the transfer 
function can be expressed approximately in terms of the first N /2 Fourier 
coefficients: 

N/2 

T(jw) rv N L: QmP _mH(jw - jmwo) , 
m=-NI2 

(45) 

where all the values of either Pm or Qm or both can be arbitrarily chosen. 

3.3 Pulse Modulation 

A special case of jump modulation of considerable practical importance 
is for the set {PI = 1, P2 = Pa = ... = PRI = O} and {qi = 1, q2 = 
qa = ... = qR2 = A}, so that 

t See Appendix A for derivation of the inverse transformation. 
~ From (42), it is seen that the real part of PRI2 must vanish, since 



1334 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

p ( t) = WI ( t) , 

q ( t) = W2 ( t) , 
(46) 

If the input generator, u(t), is a current source, each modulator in Fig. 
1 can be replaced by a simple switch. In fact, when RI and R2 > N, the 
entire set of input and output modulators would then be equivalent to a 
pair of N-contact rotary switches on a common shaft rotating at a rate of 
l/T cps. The dwell time at each contact of the input and output switches 
is given by d1 = T /Rl and d2 = T /R2 , respectively. In this case, the 
switches are essentially signal-sampling devices, hence the general con
figuration using this type of modulation will hereafter be referred to as 
the N -path sampled-data network. 

Besides being relatively simple to implement, the N-path sampled
data network has some very interesting transfer function characteristics. 
If the component networks have a low-pass characteristic with band
width small compared to Wo , the transfer function for large N will ap
pear as a sequence of narrow, equally spaced passbands of identical 
shape and nearly equal height, centered at integral multiples of Wo • 

This corresponds to the so-called "comb filter" characteristic, which is 
frequently employed in the detection of periodic signals immersed in wide 
band noise. Furthermore, it will be shown that the function F(O,s) be
comes periodic on the jw-axis as the dwell times d1 and d2 approach zero. 
When H (s) is rational in s, this periodic function is of the form generally 
associated with the network functions of circuits containing resistors 
and ideal delay lines. 

IV. TRANSFER FUNCTION FOR N-PATH SAMPLED-DATA NETWORK 

The expression for F(O,s) in terms of r(t) as given in (22) is especially 
convenient for finding the transfer function of the N-path sampled-data 
network. Also, if H(s) is rational in s and regular at infinity, then (27) 
gives an exact closed-form expression for F(O,s). 

Suppose, for example, that dl = d2 = d < T. Then r(t) is simply the 
triangular pulse, 

so 

r(t) = N (d - I t I) 
T 

=0 

in I t I ~ d, 
(47) 

otherwise, 

(48) 
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and 

A ( -s)B(s) 
(1 - eSd

) (1 _ e-Sd
) 

-s s 

ld _ 2 + e-sd 
(49) 

S2 

Then, assuming H(s) to be in the form of (26), the transfer function 
is obtained directly from (27): 

F(O,s) = 
(50) 

where 

When I Aid I « 1, the transfer function can be approximated by a func
tion that is periodic for values of s on any line parallel to the jw-axis. If 
the first three terms in the power series expansion for lid and e-Xid are 
retained, then 

I'.J coNd Nd2 M 1 + e-(S-Si)T 

F(O,s) = -T + 2T ?: Ci 1 -(S-Si)T 
~=l - e 

(51) 

for 

I s - Si I d « 1. 

The relation (51) can be obtained in a different manner by application 
of conventional sampled-data techniques.2 These techniques provide an 
alternate approach worthy of investigation, since they lead to a simple 
single-path sampled-data network, which is equivalent to the N-path 
sampled-data network. The approximation involved in this method of 
analysis consists of replacing sampling switches by impulse modulators 
(1M), as shown in Fig. 5(a). The train of narrow rectangular modulating 
pulses, wet), has been replaced by an impulse train, where the magnitude 
of each impulse is equal to the area of the corresponding rectangular 
pulse. Hence, 

00 

pet) I'.J dl L oCt - ';,;T), (52) 
k=-oo 

00 

q(t) ~d2 L oCt - kT). (53) 
k=-oo 
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Then, 

for all m 

and 

for all m. 

In this case, F(k,s) in (12) is independent of k and 

F(k,s) = G(s) = N d~~2 zt", H(s - jlwo). (54) 

Then, 

V(s) ~ G(s) L~. U(s - jkNwo) ] . (55) 

This input-output relation is identical to that of a single-path sampled
data network having an input impulse modulator with sampling interval, 
T = TIN, followed by a network with a transfer function, TG(S), which, 
when s = jw, is periodic with period Wo • The periodic property of the 

u(t) 

(a) 

u It) illll----1 rG (s )1 ~ __ v .. ~ t_)_ 

(b) 

u(t) LSIM1 vet) 
t TG (5) ~I-----'.-

(c) 

vet) 

rig. 5 - (a) Approximate representation of N-path sampled-data net.work; 
(b) and (c) equivalent single-path networks. 
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network following the impulse modulator in Fig. 5(b) allows the deriva
tion of another equivalent network with the impulse modulator at the 
output, as shown in Fig. 5( c). These simple equivalent networks are 
very convenient for analysis purposes when one or more N-path con
figurations are component parts of a larger system. 

The Fourier coefficients for the expression of G( s) when s = jw are 
obtained directly from the sample values, h(rT), of the impulse response 
of one of the component networks. If 

co 

G(jw) = 2: gr eir (211'w/wo) , 
i~oo 

then 

1 i
wo/2 

G( . ) -j(r211'w/wo) d 
~ = - JW e W 

Wo -wo/2 

_ (Nd1 d2) 1 l WO
/

2 
~ H( . 'Z) -j(r211'w/wo) d 

- --2 - - L..J JW - J Wo e W 
T Wo -wo/2 l=-co 

= (N~2d2) (T) [2~ L: H(jw) e-;'TW dW] , (56) 

- Nd1 d2 h( T) gr - --T- -r . (57) 

The integral in (56) is the Fourier inversion integral for h( t). At dis
continuities in h(t) the inversion integral gives the mean value of the 
right- and left-hand limits at the discontinuity. Hence, for physically 
realizable component networks. 

G(s) = Nd1d2 [h(O+) + t h(rT) e-rBTJ . (58) 
T 2 r=l 

This expansion is particularly useful when H (s) is a rational function of 
s. In this case, the series can be summed and G( s) is given in closed form. 
Assuming H ( s) has simple poles, then t 

l\I 

h(t) = 2: Ci eBit for t ~ 0 (59) 
i=l 

and, from (58), 

(60) 

t In this analysis we require that H(s) ~ 0 as s ~ 00 (co = 0) since the Laplace 
transform for a product of impulse functions is not defined. 
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r(J:) , • E(jw) 
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I (jw) 
~ 

E~-.W-)--R-O-,--}-] R' 

(b) 

Fig. 6 - The N -capacitor element. 

The sum over r in (60) is a geometric series and can be written in 
closed form, so that 

(61) 

Note the equivalence between (61) obtained by conventional sampled
data techniques and the direct approximation of (51) to the transfer 
function of the N-path sampled-data network. 

A simple example that illustrates the application of the preceding 
techniques is the case where each component network is a single capaci
tor, as shown in Fig. 6(a). t Capacitor loss is accounted for by the inclu
sion of a resistance, Rc , across each capacitor. The relation between in
put current and output voltage is represented by G(s) in (61), where 

H(s) 

1 
C 

1 
s + ReG 

t This case has been described in the literature.3 •4 

(62) 



so that 

and 

where 

and 
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G(s) 

lYl = 1, 

1 
Cl = C' 

R [1 + pe-STJ 
o 1 _ pe-sT , 

1339 

(63) 

(64) 

The expression of (64) is equal to the driving-point impedance of a length 
of lossless transmission line of characteristic impedance, Ro , terminated 
at a distance corresponding to an electrical delay of T /2 seconds. The 
termination is characterized by a reflection coefficient p e -T/ ReC, or 
equivalently, by a resistance, R', where 

R' = Ro (1 + p) . 
1 - p 

If the capacitors are lossless, then 

Nd
2 (1 + e-

ST
) sT 

G(s) = 2TC 1 _ e-sT = Ro coth 2 ' 

(65) 

(66) 

which is equal to the driving-point impedance of the same length of 
lossless transmission line with open-circuit termination. 

V. SOME PRACTICAL APPLICATIONS FOR THE N- PATH SAMPLED - DATA 

NETWORK 

5.1 Delay Network 

The transcendental nature of G(s) of (66) for the N-capacitor element 
suggests the possibility of realizing an all-pass constant-delay characteris-
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tic over a limited bandwidth without the use of inductors. One of several 
possible configurations for accomplishing this is the simple feedback 
network shown in Fig. 7, where the N-capacitor element is contained in 
the feedback path. 

For the analysis of this circuit, it is assumed that the forward gain, 
}J., is sufficiently large that the error voltage, VI + Va , is essentially zero. 
Note that 

(67) 

and, hence, because of the low-pass filter at the output, only the com
ponents of Va(jw) and /(jw) in the frequency range I w I ~ Nwo/2 are 
of interest. If VI(jw) [and hence Va(jw)] is limited to this same band
width, then 

/(s) = Y(s)Va(s) 

and 

(68) 

over the frequency band of interest, and Yes) is a function of the N-path 
type. 

The constant-delay characteristic is obtained by making the RIC time 
constant very small compared to the contact dwell time, d. Roughly 
speaking, this means that the capacitors charge up to the applied voltage 
in the time interval d, during which their respective switches are closed, 
and the resulting current flow is a sequence of narrow exponentially de
caying pulses occurring T seconds apart. An approximate representation 

LOW-PASS 
FILTER 

AU"') 

Fig. 7 - Constant-delay network. 
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<([t- (n-l) rJ 

Fig. 8 - N-path network used for describing the behavior of the constant-de
lay network. 

of this behavior in terms of the general N-path configuration is shown in 
Fig. 8. The applied voltage, Va, is sampled with an impulse modulator 
at the time of the nth switch closure and held at this value for T seconds 
by means of the hold circuit, HI (s). The current flowing in the series 
combination of RI and C in response to the applied voltage steps is ob
tained by means of the transfer function 

where 

The transfer function Yes) is obtained from (25), where 

A(s) = 1, 

N N (1 - e-
Sd

) 
R(s) = "if B(s) = T s . 

Then, 

yes) 
N 1 - e-

ST [1 - e-
sd (1 - e-

Sd
) e-STJ = - 0 + --,-----

TRI S + a s s(1 - e-ST ) 

= e 1 _ e-(s+a)d + eel.. N(l - -ST) { [1 _ -(s+a)d] -(s+a)T') 

TRI(s + a) 1 - e-(s+a)T f . 

(69) 

(70) 

(71) 

Since ad » 1, terms involving the factor e-ad are neglected, and (71) 
is approximated by 

(72) 
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Fig. 9 - Measured step response of delay network. 

in the frequency range I s I « a. Hence, in this limited frequency range 
the transfer function of the delay network becomes 

(73) 

which is a constant-delay, all-pass characteristic for 

(74) 

An exact analysis of the circuit of Fig. 7 indicates that (73) is valid 
at low frequencies and that, by making the gain of the upper path, 1(, 
a frequency-dependent function, the constant-delay characteristic can 
be obtained over essentially the entire interval I w I < N wo/2. The meas
ured step response of the delay network is illustrated in Fig. 9. The N
capacitor element was constructed using a 54-contact rotary switch 
(dlr t'J 0.61) motor driven at a speed of (30 rps. Capacitors having a 
value of 0.1 microfarad were connected to each of the contacts. 

A useful figure of merit for any delay network is its delay-bandwidth 
product. In this case, the delay is T seconds. The bandwidth is limited 
by that of the low-pass filter used to recover the output signal from the 
sampled data. This bandwidth cannot be greater than 1/27 cps, and 
NT = T, so that 

(delav) (bandwith) t'J 1'! . 
, ~., . ~ 

(75) 
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5.2 Narrow-Band Band-Pass Filter 

If the component networks in the N-path sampled-data networks have 
a low-pass characteristic with bandwidth small compared to Wo, the 
transfer function, F(O,jw), appears as a sequence of narrow passbands 
centered at multiples of Wo, as previously noted. Consequently, this 
scheme is useful for the realization of highly selective band-pass filters. 
When only a single passband is required, the realization can be accom
plished with a minimum value of N = 3, since the transfer function rela
tion is valid for I w I ~ (N /2)wo . The band-limiting filter required at 
the output can also provide a low-frequency cutoff, so that the passband 
centered at zero frequency can be eliminated; the resulting transfer func
tion is 

where 

(
. 7rdl) (. 7rd

2
) Slll- Slll-

= j(7!"/T)(d1-d2) __ T_ _ __ T_ 
al e d d' 7r1 7r2 

T T 

This result is similar to the low-pass to band-pass transformation dis
cussed in Section 3.1. 

Since the band-pass characteristic is simply a frequency translation of 
a low-pass characteristic, it has arithmetic symmetry about the center 
frequency. Another advantage of this realization technique is that the 
filter can be easily tuned without altering the shape of the characteristic. 
The tuning is accomplished simply by changing the frequency of the 
timing source that controls the switching rate. 

Implementation of the transfer function of (76) with series-sampling 
switches would require a current source at the input and negligible load
ing at the output. Analysis of the more practical circuit of Fig. 10, in
cluding source resistance, RI , and load resistance, R2 , requires a some
what different approach. Details of this analysis are carried out in 
Appendix B. The resulting transfer function is again a frequency-trans
lated version of a low-pass characteristic: 

(77) 
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~Z~Lj 2 
/ \ 

./ "-
n n 

Fig. 10 - Practical circuit for realization of narrow-band filter characteristics. 

The low-pass characteristic, G(jw), is given by the voltage transfer ratio 
of one of the component networks operating between a source resistance, 
RIT /dl , and a load resistance, R2T /d2 , as shown in Fig. 11. 

A highly selective narrow-band filter using this scheme with N = 4 
was constructed, using silicon diode input and output sampling switches 
controlled by two transistor multivibrator circuits. The center frequency 
of the filter was set at 25 kc. The low-pass component networks were 
three-section RC ladder networks with a bandwidth of approximately 
3 cps. The Q-factor of a resonant circuit with the same bandwidth and 
center frequency would be greater than 4000. The selectivity of the 
sampled-data filter is even greater than the resonant circuit having this 
Q-factor, since the roll-off rate is greater. The measured frequency
response data and equivalent low-pass network are shown graphically 
in Fig. 12. 

Fig. 11 - Equiv""alent IG~v-pass nct,Yorlc. 
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Fig. 12 - Frequency response and one of the constituent equivalent low-pass 
networks for sampled-data filter. 

VI. CONCLUSION 

The time-varying network configuration described in this paper ex
hibits several properties of both theoretical and practical significance. 

A general input-output relation for the N-path structure has been 
derived. With the introduction of band-limiting restrictions, this rela
tion can be expressed by a transfer function that is valid over a fre
quency band directly proportional to N, the number of parallel paths. 
In some special cases, however, band-limiting restrictions are unneces
sary. 

Several useful properties of the transfer function are maintained when 
the modulation is restricted to a type readily implemented by conven
tional switching techniques. The case where the modulators are replaced 
by series-sampling switches is examined in detail. 

An important practical feature of the realization techniques discussed 
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lies in the fact that network characteristics can be controlled by chang
ing the modulation functions rather than by changing circuit element 
values. Hence, the techniques are readily adaptable to electronic or 
other automatic methods of control. 

APPENDIX A 

Determination of the Jump Modulation Function from a Prescribed Set of 
Fourier Coefficients. 

The inversion of (40) could be accomplished by straightforward appli
cation of matrix methods, however the particular form of pet) affords a 
simple explicit expression for the elements of the inverse matrix. Note 
that the R functions comprising pet) in (40) form an orthogonal set, so 
that 

iT p(t)w [t - (r - 1)~] dt = ~Pr. (78) 

Hence, 

pr = ~ iT t Pm ei (m27r/T)tw [t - (r - 1) !] dt. (79) 
T 0 m=-oo R 

After interchanging summation and integration (79) becomes 

R OO jrCT/R) 
pr = - L Pm i(m27rt/T) dt 

T m=-oo (r-l)(TIR) 

00 

=R L 
m=-oo 

• m7r 
S111-

P -iCm7r/ R) R i(27r/ R)mr me ---e . 
m7r 

The values of Pm are not independent. From (42), it is seen that 

m 
Pm+kR = m + kR Pm. 

Now (80) can be written as a finite sum over m: 

-i(m7r/R) • m7r 

(80) 

(81) 

R/2 e sm - 00 

= R "" P R +iC27r/ R)rm '" m (82) 
pr L.J m e L.J ( + kR)2' m=-R/2 7r k=-oo m 

where the prime on the summation over m is taken to mean that when 
R is even, the end terms of the series (in = ±R/2) are added 'with half 
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weight to avoid duplication in the sum over k. The series in Ie is summable 
and can be shown to be equal to 

m m7r 2 1n7r ~ 2 () k~~ (m + kR)2 = R2 csc R . (83) 

Substitution of (83) into (82) gives 

m7r 
R/2 R 
~I -j(m7r/R) j(27r/R)rmp pr = L.J e --em. 

m=-R/2 . m7r 
(84) 

SlllJ[ 

This expression is written in the two forms of (43) and (44) for the cases 
of R odd and even respectively. 

APPENDIX B 

Equivalent Low-Pass Characteristic for Sampled-Data Realization of Band
Pass Filter 

Referring to Fig. 10, we see that the following constraints are imposed: 

. (t) - el(t) - Vnl(t) (t) 
~nl - RI pn, 

. (t) = - Vn2(t) (t) . 
~n2 R2 qn , 

(85) 

I ( . ) - 1 ~ P -j(m27r/T) (n-l)T 
nl JW - R L.J me 

I m=-~ 

I ( .) 1 ~ Q -j(m27r/T)(n-I)TV (. . ) 
n2 JW = R2 m~~ m e n2 JW - Jmwo . 

Representing the component networks in terms of open-circuit Im
pedance parameters, 

VnlUW) = zllUw)InIUW) + z12Uw)In2Uw), 

V n2 (jw) = z21Uw)InIUW) + z22Uw)In2Uw). 
(87) 

Substitution of (86) into (87) results in infinite-order difference equa
tions in VnlUW) and Vn2UW) of the type normally encountered with peri
odically time-varying networks. However, the fact that the component 
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networks are designed to have very narrow-band characteristics affords 
a considerable simplification of the equations. 

If 

I Zij(jW) I '" 0 for I I > ~ w = 2' (88) 

then 

I V nl(jW) I ~O 
for I I> Wo (89) 

I V n2(jW) I ~O 
w = 2. 

The relations (88) and (89) permit the elimination of all terms except 
m = 0 in the sums involving Vn1(jw) and V n2 (jw). Hence, for I w I ~ 
wo/2, 

( 
Zll) Z12 1 + Rl Po V n1 + R,-2 QOVn2 = 

(90) 
Z11 '"" P -j(m27r/T)(n-l)TE ( . . ) 
R 

L....t mel JW - Jmwo , 
1 m 

Z21 (Z22 ) V Rl P o V nl + 1 + R2 Qo n2 = 

(91) 
Z21 '"" P -j(m27r/T)(n-l)TE ( . . ) 
R
- L....t mel Jw - Jmwo , 

1 m 

where 

Eliminating Vn1 from (90), 

V ( . ) - T G(· ) '"" P -j(m27r/T)(n-l)TE ( . . ) n2 JW - d- Jw L....t mel JW - Jmwo , 
1 m 

(92) 

where 

G(jw) (93) 
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rhe output voltage of the N-path configuration is given by 
N 

vct) = L vnCt)qn(t), 
n=l 

N 00 

V ( 0 ) - ~ ~ Q -ie127rIT)en-l)TV (0 OZ) 
2 JW - ~ ~ Ie n2 JW - J Wo . 

n=l/=-oo 

Substituting (92) into (94), 

V
2
(jw) = '£ f L: Q

I
P

m
e-i [(l+m)27r(n-l)fT]T 

d1 n=l Z,m 

. G(jw - jZwo)E1 [jw - j(Z + m)wo] 

and, summing over n as was done in (9), 

Now, if El(jW) is band-limited such that 

for I w I ~ Nwo 
- 2 
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(94) 

(95) 

(97) 

and V2(jw) is followed by a low-pass filter with cutoff at w = N wo/2, 

E2(jW) NT ~ G( . °Z) 
E-( ° ) = -d L...J QzP -z Jw - J Wo . 

1 JW 1 I 
(98) 

Now, suppose that the low-pass filter is replaced by a band-pass filter 
that selects only the passband corresponding to Z = ± 1. Then, 

~ (jw) = N:2 [a1G(jw - jwo) + aiG(jw + jwo)] , (99) 

where 

The transfer function of (99) is equivalent to that of (76), where the 
low-pass function, G(jw) in this case, is simply related to the low-pass 
characteristic of one of the component networks. Examination of the 
relation (93) shows that G(jw) is simply the voltage transfer ratio of 
one of the component networks operating between a source resistance of 
R1(T/dd and a load resistance R2(T/d2), as shown in Fig. 11. This 
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equivalent low-pass network provides the basis for synthesis of the pre
scribed band-pass characteristic. 

REFERENCES 

1. Paris, H., Utilization of the Quadrature Functions as a Unique Approach to 
Electronic Filter Design, I.R.E. Cony. Rec., 1960. 

2. Linvill, W. K., The Use of Sampled Functions for Time-Domain Synthesis, 
Proc. Nat. Electronics Conf., Chicago, September 29-30,1953, Vol. 9, p. 533. 

3. LePage, W. R., Cahn, C. R. and Brown, J. S., Analysis of a Comb Filter Using 
Synchronously Commutated Capacitors, A.I.E.E. Trans., Part I, 72, 1953, 
p.63. 

4. Smith, B. D., Analysis of Commutated Networks, I.R.E. Trans., PGAE.l0, 
p.21. 



Magnetic Latching Crossbar Switches: 

A New Development in Magnetic Properties of 
Tool Steel 

By F. A. ZUPA 

(Manuscript received April 12, 1960) 

A magnetic latching function in crossbar switch hold magnets is obtained 
by means of a specially designed magnet core made of high-carbon tool steel. 
The fabricated core detail is given a hardening heat-treating cycle, regulated 
to produce a particular degree of physical hardness that was found to impart 
the optimum combination of magnetic properties needed to obtain pulse 
operation and magnetic latching of the electromagnet under a wide range of 
contact spring loads. The nominal latching force developed with this new 
electromagnet design is 4- lbs, with a cylindrical core of only 0.11 square inch 
cross-sectional area. The electrical operating power need be only 2.5 watts 
applied for 0.100 second or about 18.0 watts for 0.015 second, and the re
verse release pulse strength is about 50 per cent of the operate value. The 
coexisting values of coercive force, residual induction and magnetic perme
abilities obtained in this design are new and useful to the art of designing 
electromagnetic switching devices with a magnetic latching function. 

r. INTRODUCTION 

Since the introduction of the dial-type telephone switching systems, 
switching devices such as relays and electromagnets have become the 
most essential and widely used of all the components in the telephone 
central office. Many notable improvements on these switching devices 
have made it possible for the telephone systems to grow and serve the 
increasing population of customers. The advancements on these devices 
have dealt largely with their sensitivity and speed of operation, contact 
switching capacity, service life and reliability. In contrast to these im
provements, however, it appears that very Httle has been done to save 
operating power by utilizing residual magnetic energy to effectively hold 
the electromagnets in the operated position without continuous current 
drain. Recently, however, a new electromagnet core design that provides 

1351 
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this function was developed for crossbar switch hold magnets. This 
utilizes a new combination of magnetic properties that have been found 
to exist in high carbon steel after it has undergone a suitable hardening 
heat-treating cycle. 

There are no mechanical locking features associated with this new 
magnetic latching hold-magnet design. The magnetic latching force de
veloped at the termination of the short electrical operating pulse is ob
tained solely by the efficient use of the residual magnetic induction and 
coercive force properties of the new magnet core. To restore the electro
magnet to its nonoperated position, it is only necessary to re-energize 
the magnet coil with another short pulse of lower current strength and 
opposite polarity. 

The total amount of electrical power necessary to energize the mag
netic latching hold magnet is about 2.5 watts applied for only 0.100 
second. Since many hold magnets must hold during each telephone 
conversation, this represents a very large power saving compared to the 
power used by the present nonlatching hold magnets. This design of 
magnetic latching hold magnets makes it possible to use 100- and 200-
crosspoint crossbar switches in remote locations where the power supply 
is very small compared to that in a central office. A notable application 
of this new magnet core development is the conversion of existing cross
bar switch hold magnets to magnetic latching operation, as might be 
used in telephone line concentrators. 

II. NEED FOR A NEW MAGNET CORE MATERIAL 

The state of the art in the design of electromagnets and the processing 
of associated magnetic materials for useful magnetic properties has ad
vanced with many notable improvements during the past thirty years. 
It is of interest to observe the direction that some of the improvements in 
magnetic materials have taken in relation to what is required for mag
netic latching functions. 

In the class of soft magnetic materials, such as the magnetic irons and 
low carbon steels normally used for relays and electromagnets, the effort 
has been directed mainly toward greater permeability and associated 
reduction of coercive force. Since this is in the direction of reducing the 
quantity of the stored electromagnetic energy, usually represented by 
the product of the coercive force and remanence, this class of materials 
is definitely not suitable for a magnetic latching function. The property 
of low coercive force and associated greater permeability, of course, is 
very useful for obtaining greater operating sensitivity and greater release-
+~ ~~~-~+~ -~+:~~ 
liV-Vpt:aU,lit:: lU,lilV~. 
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In the class of hard magnetic materials normally used for permanent 
magnets, the effort has been directed to increase the coercive force, even 
at the expense of a reduction in remanence, as long as the result was an 
increase in the numerical value of the product of coercive force in oersteds 
and remanence in gausses. In spite of the high values of magnetic energy 
that can be stored in them, permanent magnet materials would not be 
satisfactory in the core of a magnetic latching electromagnet, primarily 
because the required operating power would be several times as high as 
is practical in switching circuits. In general, this is due to the inherent 
high magnetic reluctance or low magnetic permeability of hard magnetic 
materials that are processed to be permanent magnets. Magnet cores 
that are made from materials commonly used for permanent magnets 
are therefore not conducive to efficient magnetic latching designs, es
pecially when the contact spring loads on the same electromagnet range 
from small to large values from one operation to another, as they do in 
crossbar switch hold magnets. The required range of contact spring 
loads will be described later. 

It appears, therefore, that past developments in magnetic materials 
have not been in the direction of producing a high order of quality in 
both operating and magnetic latching properties. The development of an 
economical and workable magnetic latching hold magnet design re
quired the development of new coexisting combination of values of per
meability, coercive force and remanence in a suitable magnet core ma
terial. A description of this development and the resulting operating 
capabilities of the magnetic latching crossbar switches that have been 
designed for new telephone equipment will be given, with special em
phasis on the essential electromagnet design principles that guided this 
development. 

III. BASIC FACTORS GOVERNING DESIGN OF THE LATCHING MAGNET 

The combination of magnetic properties that must be obtained in the 
magnetic circuit of the electromagnet to satisfactorily meet the operating 
and latching functions is dependent upon the following primary fac
tors: 

i. the permissible mechanical form and size of the electromagnet and 
its switching functions; 

ii. the range of contact spring loads to be applied to one magnet 
assembly; 

iii. the range of the electrical pulses, in time and power values, avail
able to operate and release the magnet. 
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It is therefore desirable to first describe these conditions, in order to 
follow the steps taken in the magnet core development. 

3.1 The Structure and Switching Functions of the Crossbar Switch Hold 
Magnet 

The magnetic latching hold-magnet design will be used for the same 
type of contact switching functions as those of the nonlatching hold 
magnets presently used in the crossbar switches of crossbar switching 
telephone systems, except that the loads will cover a wider range of 
values. As illustrated by Fig. 1, the hold magnet is the motor element 
of the vertical unit assembly. The latter, as its name implies, provides 
a vertical row of ten levels of crosspoint contacts, each level consisting 
of two to six pairs of make contact springs that are used for transmission 
and control circuit connections, and a separate assembly of hold-off nor
mal contact springs (HON), consisting of two or three pairs of make or 
break contacts that are used for common control circuit connections. 

The select magnets and vertical units are mechanically linked by hori
zontal select bars carrying flexible wire fingers that can be rotated 
through a small angle in either of two directions. The crossbar switch 
therefore represents a rectangular coordinate arrangement of 100 or 
200 crosspoints, anyone of which may be selected by the operation of 

SET OF 
CROSSPOINT 
CO 

VERTICAL UNIT 
SSEMBLY 

Fig. 1 - Crossbar switch, showing iocation of hoid magnet as motor eiement 
of vertical unit assembly. 
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a particular select magnet and hold magnet. The total number of con
tacts that may be actuated by one hold magnet depends upon the 
circuit operating sequence of the select magnets in the crossbar switch, 
as described below. 

The operation of a select magnet rotates the select bar associated 
with it, thereby interposing a wire finger between each hold magnet 
armature and the end of each card supporting the moving springs of 
each set of crosspoint contacts that lies in the horizontal level corre
sponding to the operated select magnet. Then the operation of a par
ticular hold magnet determines which set of crosspoint contacts is 
selected in that horizontal level. Sometimes two select magnets are 
energized simultaneously in order to select one set of crosspoint contacts 
in each of two horizontal levels by the operation of one hold magnet. 
Sometimes the hold magnet is operated to switch the HaN contacts 
without any crosspoint contacts. The quantitative values of the differ
ent contact spring loads that may be applied to one hold magnet are 
shown graphically in Fig. 2. 

3.2 Mechanical Load Forces Affecting the Design of the Magnet 

Each curve of Fig. 2 shows the rate at which the spring load builds 
up on the hold magnet armature, as the armature moves from the non
operated position to the operated position against the core poleface. 
As indicated, the maximum crosspoint and HaN contact spring load 
may build up to a value of 1150 grams and the minimum HaN spring 
load may be only 140 grams. These individual load values are very 
important, because the new hold magnet design, to be successful, must 
be capable of operating, latching and releasing with anyone of the load 
values, under anyone of the extremes of the circuit operating power 
conditions. 

There are two important magnetic requirements on the new magnet 
design that are affected by the maximum load build-up rate shown in 
Fig. 2. The first is that the magnetic force of attraction acting on the 
armature during its operating travel shall always exceed the force re
quired to move the corresponding instantaneous load by a substantial 
amount. It is this differential, together with the electrical time constant 
of the magnet coil (the time rate of coil current development), that 
governs the operating or switching time of the electromagnet. The 
second requirement on the core is that the magnetic latching force 
shall always exceed by a substantial amount the force required to hold 
the maximum load of 1150 grams. It is this differential that governs 
the ability of the latched magnet to withstand disturbing forces that 
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Fig. 2 - Range of contact spring loads on magnetic latching hold magnets. 

may be developed by shock and vibration when the equipment is 
mounted on a telephone pole. If the disturbing vibrations should cause 
the armature to bounce or lift off the core poleface by only a 
fraction of one mill-inch, the spring load might then cause the premature 
release of the armature. More will be said later about the latching force 
margin, the disturbing forces and the effect of very small separations 
between the mating poleface surfaces. 

The minimum load value of 140 grams is also an important considera
tion in the new magnet design, because it affects the permissible limits 
of the strength of the reverse release pulse that may be applied to the 
latched electromagnet without false reoperation. This means that the 
minimum electrical strength of the release pulse must be strong enough 
to always release the lightly loaded armature, but that the maximum 
pulse strength must not reoperate it. Failure to release or false reopera
tion are trouble conditions that must be guarded against in the mag
netic latching design. 
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3.3 Operate and Release Pulses Prescribed by the Circuit Conditions 

Since the electrical power available in some of the circuits that will 
use the new switches is limited, it was necessary to place a limit on the 
maximum current strength in the individual operating pulse for the 
magnetic latching magnet design. Circuit and equipment design con
siderations also determined the limiting values of the voltage and the 
time duration of the operating and releasing pulses. The limiting pulse 
values, insofar as they affect the magnet design, were set up, tentatively, 
to be as follows: 

Energizing pulse: maximum 0.2 ampere at 22 to 28 volts for a mini
mum of 0.100 second; 

Operating time (to switch all contacts): maXImum 0.050 second; 
Releasing time (to restore all contacts): maximum 0.050 second. 

IV. DEVELOPMENT OF THE MAGNET CORE DESIGN 

From the foregoing analysis of the work loads and the power available 
to perform the electrical operate, magnetic latching and unlatching 
functions, the level of the magnetic properties that should be available 
in the magnetic circuit of the new electromagnet design can be esti
mated. It should be noted also that, while the magnetic circuit consists 
of a core, an armature and a yoke or return polepiece, in order to main
tain the present construction and mode of operation of the crossbar 
switch, the first efforts were directed to realize the design objectives 
with only a simple change in the material and design of the core. 

The next step taken in the development of the design, therefore, was 
to make an analysis of the commercially available magnetic materials 
that might be suitable for the new magnet core design. Since the maxi
mum contact spring loads represented by Fig. 2 are comparable to 
those of the present nonlatching hold magnets, the new magnet core 
material had to be capable of developing a level of magnetic induction 
strength that was not much below that of the presently used core, which 
is made of annealed low-carbon steel, in order to operate the electro
magnet on reasonable values of magnetomotive force. The residual 
magnetic induction of the material, however, should be supported by 
a much stronger coercive force value, in order to produce and maintain 
the desired high level of magnetic latching force. It appeared that one 
type of magnetic material that should be considered was the magnet 
steels, which can be processed to develop (a) high flux strength at reason
ably low magnetizing forces and (b) high remanence with a suitable 
value of coercive force. A brief analysis of the essential magnetic proper-



1358 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1960 

ties of known steels that have at least some of the desired magnetic char
acteristics is given below. 

Table I shows a comparison of the pertinent magnetic properties of 
(a) annealed 0.10 per cent carbon steel, which is widely used for the 
magnetic circuit of many types of electromagnetic switching devices 
with simple operating requirements; (b) hardened 0.9 per cent carbon 
steel and (c) hardened 5 per cent tungsten steel, both of which were 
used for making permanent magnets about 50 years ago, before the 
development of more efficient permanent magnet alloys containing less 
iron and more of other alloying elements. 

The 0.10 carbon steel has adequate values of magnetic permeability 
and saturation induction to develop the required open-polcgap tractive 
forces. Its coercive force, however, is too low to retain the residual flux 
density required to produce the needed latching force. The hardened 
high-carbon and tungsten steels have the necessary coercive force, but 
their permeability is too low to develop the required values of flux 
densities with the available operating power. The combination of values 
of magnetic properties needed to develop the required tractive and 
latching forces, with the operating magnetizing force available in the 
electromagnet, will be described later. 

4.1 Selection of Magnet Core Material for Study 

It appeared, therefore, that the magnetic properties required to meet 
the desired operating and latching functions were in between those of 
the annealed low carbon steel and the hard permanent magnet type of 
steel. Since the magnetic properties of high carbon steels are known to 
vary with the hardness of the physical structure of the steel, it was 
conceived that a critical study of this relation, instead of the usual 

TABLE I-TYPICAL DATA FOR ANNEALED LOW-CARBON MAGNET STEEL 

AND HARDENED HIGH-CARBON PERMANENT MAGNET STEEL 

Annealed Quench-Hardened Quench-Hardened 
Magnetic Characteristic 0.7 Carbon 0.10 Carbon Steel 0.9 Carbon Steel 5.0 Tungsten Steel 

Saturation induction, B • • in 21,000 12,000 13,000 
gausses 

Residual induction, B r , in 10,000 to 14,000 8,500 to 10,000 8,500 to 10,300 
gausses 

Coercive force, He , in oer- 1.8 50 70 
steds 

Permeability, f.'max 2,000 111 123 

Note: These data are representative uf the magnetic properties obtained 'with 
test ring samples of the material and the magnetizing force (Hmax) value is gen
erally 300 or more oersteds. 
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study relating magnetic properties to heat-treating temperature cycles, 
should disclose the best combination of operating and latching mag
netic properties possible with the high carbon steel. This new approach 
to evaluate the magnetic properties of harden able steel was better than 
relying only on the measured temperatures and time of the heat-treating 
cycles, because the iron-carbon alloys resulting from the latter cycles 
usually vary considerably with the size and shape of the specimens. 
A laboratory study was therefore undertaken to determine the quanti
tative relation between the measured physical hardness produced by 
controlled heat treatments and the magnetic operating and latching 
properties, using a commercially available high-carbon steel for the 
magnet core test specimens. 

In order to carry out the above study so that the results would be 
directly applicable to the magnet core design, the type of high-carbon 
steel selected for the study was determined on its merits from the stand
point of uniformity in composition and commercial availability in the 
round stock size best suited to the hold magnet design, 0.375 inch 
diameter. With these factors in mind, a tool steel having the nominal 
composition of iron plus 1.2 per cent carbon, 0.3 manganese, 0.22 silicon, 
0.10 vanadium, 0.025 sulfur and phosphorous was selected. This grade 
of steel has been used for many years by the machine industries, pri
marily for making hardened tools and machine parts. Machine shop 
practices on the quenching and tempering of parts made from this grade 
of tool steel show that the parts can be hardened over a wide range of 
hardness values by first heating them to about 1475°F, immediately 
quenching in a liquid cooling medium (water or oil), then reheating at 
a lower temperature and slowly cooling in air at room temperature, 
the value of the reheating temperature being the principal determinant 
of the physical hardness of the parts. It should be noted, however, that 
the time cycles of heating and cooling, and the ambient atmospheric 
conditions during heating from the standpoint of minimizing decarburi
zation, have important effects on the resulting chemical and physical 
changes that take place in the structure of the steel parts. The labora
tory study therefore was planned with well-controlled experiments in 
heat treatment and the evaluation of the associated magnetic properties 
that control the operate, latching and unlatching functions in the electro
magnet. 

4.2 Development of the Magnet Core Paleface Design 

In order to have the results of the experiments on the magnetic 
properties of the steel specimens directly applicable to the hold-magnet 
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design, the size and shape of the test specimens were designed to repre
sent an efficient magnet-core design. It is of interest, therefore, to ex
amine the effect of the size and shape of the core poleface surface on 
the operating and latching characteristics of the electromagnet. The 
importance of the poleface design cannot be overemphasized, because 
the working margins obtained in the operating and latching capabilities 
of the magnet are largely affected by the poleface design. Some of the 
functional aspects of the poleface design are discussed below. In this 
discussion the core specimen is assumed to be a f-inch-diameter rod, 
approximately 3.5 inches in over-all length, because this is the maximum 
size that can be conveniently used in the present crossbar switch struc
ture. 

The following general relation between poleface area and magnetic 
force of attraction may be used to estimate the optimum value of the 
area for (a) the open polegap force and (b) the closed polegap or latch
ing force: 

<1>2 ( 1 ) 
F = 87rA 980 k 

where F = the force in grams, 
<I> = the magnetic flux in maxwells, between the poleface area 

A and the mating surface area on the armature, 
A = the poleface area in square centimeters, 
k = a constant, the value of which corrects for the nonperpen

dicularity in the direction of <I> between the mating polefaces. 
Based on experience with flux measurements on this type of magnetic 

circuit design, the value of k is slightly less than one for the closed 
polegap condition. For the open polegap conditions, the greater the gap 
the smaller is that value. 

Since the value of the polegap flux <I> is determined by the applied coil 
ampere-turns and the corresponding values of magnetic reluctances pre
v!1iling in the complete magnetic circuit of the electromagnet, one im
portant portion of which is that of polegap, the general effect of poleface 
area A on the force F can be described by referring to the ampere-turn 
and reluctance form of the force equation 

27r(NI)2 
F = A(Ro + Ro)2 

where NI = ampere-turns, 
Ro = sum of all reluctances in the magnetic circuit except that 

of the polegap, 
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Ro = l/ pA = polegap reluctance, 
l = length of the polegap, 

J..L = permeability of air and metal finishes in the polegap. 

1361 

It can be shown, therefore, that when l is very small, as it is in the 
latched condition of the polegap, since Ro is then also relatively small, 
the value of F is made greater by using a smaller value of A up to the 
limit when its value results in a significant increase in the value of 
Ro + Ro. 

Conversely, when the values of l are relatively large, as they are dur
ing the operating travel of the magnet armature, the corresponding 
values of Ro are large enough to be controlling in their effect on the 
values of F. Then the value of F is made greater by increasing the area 
A up to the limit when its effect on the value of (Ro + Ro)2 is no longer 
significant. 

Another important consideration in the design of the core paleface 
was its shape or geometry. This factor deals with the uniformity of 
the closed-polegap reluctance, as affected by the relative alignment of 
the armature paleface surface against that of the core. It is well known 
that two mating nat paleface surfaces usually make only a line contact 
and therefore result in an angular airgap. In this magnet design, a for
ward displacement of about 0.005 inch in the position of the core with a 
plane paleface would result in a separation of about 0.003 inch at the 
center of the core paleface. To avoid the detrimental effect of unavoidable 
misalignments, the paleface surface on the core was shaped like the 
surface of a 16-inch-diameter sphere, while the mating paleface surface 
on the armature was flat (commercial quality). As can be seen from 
the sketches in Fig. 3, the common contact area between a flat and a 
spherical surface is affected comparatively little when the core is dis
placed about 0.005 inch. Under common manufacturing conditions, 
therefore, the use of a large-radius spherical paleface mating with a 
flat paleface results in considerably less variation in the closed polegap 
reluctance, particularly with the type of hold magnet structure shown 
in Fig. 4. 

This is by no means intended to represent a complete discussion of 
the effects of paleface area and shape on the magnetic force of attrac
tion. It is sufficient to show, however, that the latching force is greater 
with a smaller paleface area at the expense of some loss in the force of 
attraction at the large open polegaps, and that the strength and uni
formity of the latching force are better with the spherical surface. 

Referring to Fig. 4, observe that the magnet core of the nonlatching 
design (present crossbar switches) has a paleface area much larger than 
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the cross-sectional area of the core, the enlarged poleface being produced 
by an automatic cold heading operation on the soft steel rod. This 
poleface design was made to obtain greater efficiency in producing the 
open polegap tractive forces. The magnet core of the magnetic latching 
design (new crossbar switches for the line concentrator), however, re
quires a much smaller poleface area. The value of its area was deter
mined on the basis of providing a latching force of at least 1450 grams, 
in order to have about 25 per cent margin above the latching force 
required to hold the maximum load of 1150 grams. This margin was 
determined by estimating the effect of vibrations and shocks on the 
hold magnet when the crossbar switches and associated equipment are 
mounted on a telephone pole. Available data on the amplitudes and 
frequencies of vibration that may occur on a telephone pole indicated 
that the resulting acceleration may be as high as 1 g at the mounting 
position of the crossbar switch. In view of the wide range of compliances 
and masses in the structural parts of the crossbar switches, the estimated 
margin of minimum 300 grams between the maximum load and the 
minimum latching force was considered a suitable temporary value, 
until confirmed by laboratory vibration tests. 

In order to develop a minimum latching force of 1450 grams with a 
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f-inch-diameter magnet core, the most efficient poleface area was es
timated by assuming expected values of residual magnetic induction 
and coercive force in the body of the prospective magnet core, under 
the influence of the self -demagnetizing action of the magnetic circuit. 
As shown by the Br values given in Table I, it appeared reasonable to 
assume that the residual induction of a high quality steel core should 
be at least 9,000 gausses. With these assumed values of latching force 
and residual flux density the estimated poleface area A was obtained as 
follows: 

In the relation 

cp2 ( 1 ) 
F = 87rA 980 k 

let F = 1650 grams (average value) and k = 0.85 (estimated value). 
Since the cross-sectional area of the core is 0.71 sq cm, a flux density 

of 9000 gausses represents 6300 maxwells in the core. Assuming a loss 
of 10 per cent due to core surface leakage, the value of cp reaching the 
poleface is 5670 maxwells. 
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Therefore, A = 0.651 sq cm, or very nearly the same as the cross
sectional area of the core. 

With regard to the importance attached to poleface design, it may 
be of interest to note that the mating of a spherical with a plane surface 
is not new with this magnetic latching design. It was first used to obtain 
uniformly closed polegap reluctances in the design of the Bell System's 
Y type (slow release) relay, in 1935, and again in the more recent design 
of the AG type (slow release) relay. 

4.3 llf agnetomotive Force Available To Energize the Electromagnet 

After the structural size and shape of the magnetic circuit was well 
defined, it was necessary to determine the minimum level of operating 
ampere-turns that would be available in the magnet coil to develop the 
required magnetic properties. The need for this is apparent when it is 
considered that the residual magnetic properties obtained from the 
saturating level of magnetization are different than those obtained from 
apprecially lower levels. 

Knowing the available winding space in the magnet coil and the 
electrical pulse strength in the circuit, and assuming worst circuit op
erating conditions under outdoor extreme temperatures of -400 to 
+ 140°F, the steady-state value of coil ampere-turns available to ener
gize the electromagnet was found to be a minimum of 565 and a maxi
mum of 1065. This wide range of magnetomotive force was partly due 
to a circuit condition that placed two of the magnet coils in parallel 
and both in series with a protective lamp. These extremes of circuit 
operating values account for the importance attached to the minimum 
and maximum total load values described earlier. 

V. INVESTIGATION OF MAGNETIC PROPERTIES WITH THE NEW MAGNET 

CORE DESIGN 

The purpose of this investigation was to determine whether the se
lected high-carbon tool steel core could be made to yield a combination 
of pertinent magnetic property values when the magnet was energized 
with the available magnetomotive force values. The processing of the 
steel core, of course, was to be a reproducible hardening heat treatment. 
The essential experiments and test results in this investigation can now 
be described in relation to the desired design capabilities. Since the pur
pose of this study was to find the relation between the physical hardness 
of the steel core, as produced by hardening heat treatments, and the 
resulting pulse operating and latching characteristics, a practical test 
method was used to determine the relation, in addition to the direct 
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measurements for magnetic characteristics of the individual steel core 
specimens. 

5.1 Procedure for Evaluation of Test Results 

The criterion used for the appraisal of the test results is a special form 
of demagnetization curve plotted in terms of the instantaneous values 
of magnetic latching force in grams and demagnetizing magnetomotive 
force in ampere-turns, as the applied saturation magnetizing force is 
abruptly reversed to the demagnetizing value. Each demagnetization 
curve represents the typical data obtained on several test cores having 
the same particular level of physical hardness, and each core was tested 
with the same hold magnet structure and coil. It should be noted that 
the preparation of the test-core specimens involved the establishment 
of uniform machining of the core poleface and uniform heat treatment 
processes, in order to minimize extraneous variables. 

With regard to the determination of physical hardness, in order to 
obtain data directly applicable to subsequent manufacturing test re
quirements, each test core was measured on the 30-N scale of a Rockwell 
superficial hardness tester, before the corrosion protective finish was 
applied to its surface. This nondestructive and simple method of meas
uring hardness is one of the accepted inspection testing methods. How
ever, since it measures hardness to a depth that is only a small fraction 
of the cross section, its accuracy depends upon the uniformity of the 
hardness throughout the volume of the test specimen. This presented 
no serious problem, because the small radial depth and uniform section 
of the core specimens assures a reasonably uniform hardness. 
With regard to the Rockwell hardness numbers used to designate the 

physical hardness of each test specimen, it should be noted that they 
represent the actual 30-N scale readings as taken on the cylindrical 
surface of the 0.375-inch-diameter cores before the application of the 
protective finish. In order to reproduce the same physical hardness 
represented by these Rockwell hardness numbers on parts having dif
ferent radii of curvature or having flat surfaces, the numerical values 
should be corrected according to the empirical tables furnished with the 
Rockwell tester. For example, in our data, the hardness readings from 
54 to 64 would become 55.5 to 65 when converted to represent readings 
on flat surfaces. 

5.2 Magnetic Latching Forces Versus Hardness 

The characteristics of two cores of widely different degrees of hard
ness are shown in Fig. 5, one representing the maximum and the other 
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the minimum hardness. Each curve is designated by the Rockwell 30-N 
hardness number, as measured on the cylindrical surface of the test 
core. The number 81 represents the maximum hardness value, as ob
tained after quenching and then reheating to a stress-relieving tempera
ture of 350°F; the number 35 represents the minimum hardness value 
on the core, as obtained with a high-temperature (about 1600°F) nor
malizing heat treatment. Observe that the number 81 (hard) core de
veloped an open circuit latching force of 800 grams, which is only 57 
per cent of the required minimum value. Its demagnetizing pulse strength, 
however, was 250 NI, a value that is greater than desired for controlling 
the release of the electromagnet with the minimum load of 140 grams. 
In contrast to this permanent-magnet type of core, observe that the 
number 35 (soft) core developed a latching force of 900 grams, while its 
demagnetizing value was only 73 NI. It was evident, therefore, that 
neither of these cores representing extreme levels of physical hardness 
had the necessary magnetic residual induction strength. More details 
on their magnetic characteristics will be given later, by showing some 
of the actual magnetization hysteresis loops of the test-core specimens. 

Fig. 6 shows the magnetic latching characteristic curves of the two 
cores having Rockwell hardness numbers of 72 and 41, together with 
the former set of curves for comparison. Observe that the number 72 
hardness core developed a latching force of 1200 grams, while the num
ber 41 core developed a latching force of 1350 grams. Compared to the 
slightly harder and softer cores with hardness numbers of 81 and 35, 
respectively, a gain of 50 per cent in latching force is realized for each 
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Fig. 6 - Effect of small changes in hardness of core on resulting latching force. 

of the two intermediate hardness cores. Observe also that the correspond
ing demagnetizing ampere-turn values have changed considerably, the 
more important change being on the number 41 hardness core. 

From the designer's viewpoint, the above results are very encouraging, 
in spite of the fact that the open-circuit latching force is still appreciably 
below the required minimum of 1450 grams. It is significant that a 50 
per cent increase in latching force results from a relatively small change 
in physical hardness. The rate at which this improvement is made by 
the remainder of the intermediate hardness values is therefore of even 
greater interest. 

Fig. 7 shows an additional set of four characteristics curves, each 
representing a different level of core hardness, and this completes the 
range of core hardness levels that was investigated. Examination of the 
added curves shows that the open-circuit latching force continues to 
increase from both ends of the hardness range, and that the optimum 
latching force value of 1800 grams occurs with the number 60 hardness 
core. The demagnetizing ampere.,.turn value, however, continually de
creases as the hardness number decreases. 

The eight magnetic latching characteristic curves in Fig. 7 show that 
there is an outstanding improvement in the magnetic properties of the 
tool steel cores when their physical hardness, as produced by hardening 
heat treatments, is in the Rockwell hardness range (30-N) of 54 to 64. 
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Fig. 7 - Magnetic latching characteristics of additional hold magnets with 
cores of different physical hardness. 

The latching force values of 1500 to 1800 grams that were obtained in 
this hardness range provide the working margins that are necessary for 
the crossbar switch hold magnets. It is of interest, therefore, to examine 
these results from the standpoint of their reproducibility and associated 
variables. Also, it is desirable to examine the basic magnetic properties 
of the core material with these hardening heat treatments, in terms of 
values that can be used for other possible design applications. 

The electrical operate-soak value, which determined the level of 
magnetic flux density established in each test core prior to the measure
ments for its latching force and reverse release characteristic, was kept 
constant at the minimum worst circuit pulse value of 565 ampere-turns. 
It should be noted that, with operate-soak values of greater magnetizing 
force, the latching characteristics are slightly different, because the re
sulting residual induction (Rr) values tend to be greater, while the 
coercive force (lIe) values are not appreciably different. The magnitude 
of these effects is indicated by the following test results obtained with 
the same test cores. 

With an operate value of 960 ampere-turns, the reverse-release ampere
turn value required to reduce the latching force to zero was found to be 
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practically the same as that obtained with the minimum operate value, 
thereby indicating practically no difference in He values. The open
circuit latching force, however, was found to be greater, up to about 10 
per cent for each of the test cores with different hardness values, thereby 
indicating an increase of about 5 per cent in the Br value. Since a 10 
per cent difference in latching force is not a very large increase, these 
data show that the operate pulse value of 565 ampere-turns is sufficient 
to develop a substantial magnetic saturation in the test cores when the 
electromagnet is in the operated (closed polegap) position. The degree 
of saturation in the individual core, as determined by flux measurements, 
will be presented later. 

Another important factor considered in the appraisal of the magnitude 
of open-circuit latching forces obtainable with this type of electromagnet 
design was the effect of small irregularities or foreign matter on or be
tween the mating poleface surfaces. The magnitude of this effect is 
illustrated by observing the following test results. 

With a given core of optimum magnetic properties (core with number 
60 hardness value) assembled in a normal electromagnet, and the arma
ture and core poleface surfaces being of good commercial smoothness 
and coated with a commercial nickel protective finish, the introduction 
of a 0.0005-inch-thick nonmagnetic separator between the mating pole
faces was found to reduce the open circuit latching force by as much as 
15 per cent. The reason for this effect, it can be shown, is that the added 
O.0005-inch airgap increases both the flux leakage and the magnetic 
reluctance at the closed polegap. Since the latching force varies directly 
as the square of the flux value, a loss of about 7 per cent in the effective 
residual flux would account for a loss of about 15 per cent in force. It is 
obvious, therefore, that a protective finish of nickel (due to its magnetic 
permeability) is more desirable than a nonmagnetic zinc or cadmium 
finish. 

5.3 Reproducibility of Optimum Magnetic Properties 

An important factor in determining the reproducibility of magnetic 
latching characteristics is the sensitivity of the hardened steel core to 
variations from the optimum physical hardness value, during manufac
ture. This effect is indicated by the latching curves of Fig. 8(a). These 
curves are representative of the data obtained with cores in the numbers 
58 to 62 Rockwell (30-N) hardness range, and with magnet assemblies 
having the expected range of quality in parts and alignment. The latch
ing curves show that the physical structures in the high-carbon steel 
cores, as obtained by heat treatments producing Rockwell hardness 
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Fig. 8 - (a) Normal range of magnetic latching characteristics with 565 NI 
operating pulse and hardness of cores ranging from 58 to 62 (Rockwell 30-N); 
(b) extreme load and minimum operating pull characteristics. 

readings of 58 to 62 on the 30-N scale, yield a combination of magnetic 
properties that provides satisfactory margins for the required magnetic 
la tching function. 

Tests were made also to determine the stability of the operating and 
latching properties from the standpoint of magnetic aging on the magnet 
cores. After about 200 hours of heating at a temperature of 100°C, no 
significant change due to aging could be detected. 

Fig. 8(b) shows the operate pull curves for the same test parts and 
assemblies. The magnetic pull curve obtained with the minimum operat
ing pulse strength of 565 NI shows that the open-gap tractive force is 
always considerably greater than the contact spring load, as the armature 
moves from the maximum-open polegap to the closed polegap position. 
The force differential between the load and the 565 NI pull, at each in
stantaneous value of polegap, determines the armature travel time. This 
time value, plus the time required for the current to build up to the just
operate value that starts the travel, is the maximum total operating 
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time of the electromagnet. Since operating or switching times are of great 
importance, it is of interest to observe the following time data. 

5.4 Switching Times with Magnetic Latching H old Magnet 

Fig. 9 represents a typical oscillogram of the operating-time char
acteristic of the magnetic latching hold magnet as it functions in a 
crossbar switch when load and operating power conditions are as fol
lows: The contact spring load is the heaviest that may be encountered 
in the remote unit of a line concentrator; the circuit voltage is at the 
minimum value of 22 volts; and the circuit resistance is at the maximum 
value that provides the steady state value of 565 NI. 

At zero time, two select magnets are energized simultaneously. At 
0.030 second, the dip in the curve shows that the two associated select 
bars have rotated and interposed two wire fingers between the test hold 
magnet armature and crosspoint contacts on two separate horizontal 
levels. At 0.044 second, the test hold magnet is energized by the worst 
circuit current pUlse. At 0.077 second, the test hold magnet armature 
has completed the switching of all contacts in the two crosspoints and 
in the HON spring assembly and has just reached the core poleface. 
At 0.122 second, the current has just reached about 95 per cent of its 
ultimate steady-state value. 

These test values therefore show that the hold magnet operate time is 
a maximum of 0.033 second, and that the time required by the minimum 
circuit energizing pulse to build up the magnetic induction in the core 
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Fig. 9-Hold magnet operating-time characteristics with minimum pulse strength. 
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to about 95 per cent of its steady-state value is 0.078 second. The latter 
time value represents a satisfactory margin, since 0.100 second was set 
up as the minimum time for the duration of the 22-volt energizing pUlse. 
In this connection, it should be noted that the energizing pulse time can 
be reduced to much lower values by simply using higher operating 
voltage values to speed up the build up time of the energizing current 
to the same saturating value. For example, the pulse time required to 
obtain the same latching force capability was found to be only 0.015 
second when the circuit voltage was increased to 90 volts and the ohmic 
resistance of the magnet circuit was increased to limit the steady-state 
current value to 0.200 ampere. 

VI. FLUX MEASUREMENTS ON NEW MAGNET CORE 

In order to observe the magnetic properties of the new magnet core 
material by itself, each of the core specimens representing the eight dif
ferent levels of physical hardness was measured for its B-H magnetiza
tion characteristics. The measurements were made on a Bell Telephone 
Laboratories Cioffi recording flux meter system, which employs a Chat
tock magnetic potentiometer and an H integrator to measure and record 
the applied magnetizing force on the 3.5-inch-Iong test core specimen 
while it is being magnetized by the field between the poles of an electro
magnet. The flux density B in the test specimen is measured and recorded 
directly from the test search coil on the specimen and the B integrator 
part of the system. Fig. 10 shows three of the B-H hysteresis loops so 
obtained. Each loop is designated by the hardness number of the steel 
core test specimen. The portion of each loop that lies in quadrants I 
and II represents the useful magnetic properties that determine the 
operate, latching and unlatching capabilities of any electromagnet using 
the corresponding core material, with a magnetizing force value of 
H max equal to 143 oersteds. 

The pertinent magnetic properties represented by the hysteresis loop 
for the (Rockwell 30-N) 60 steel in Fig. 10 are as follows: 

Bs = 16,300 gausses at Hmax = 143 oersteds, 
Br = 13,300 gausses when H max is reduced to zero, 
He = 24 oersteds, 

J-Lmax = 320. 
Referring to the typical data on magnetic properties given in Table I, 

it is seen that the values of the magnetic properties given above, al
though obtained with a much lower H max value, are between those of 
the typical annealed low-carbon magnet steel and the hard permanent
magnet-type steels, insofar as the Bs and He values are concerned. The 
Br value, however, is superior or at least comparable to that of the 
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Fig. 10 - Magnetic properties of tool steel core specimens representing mini
mum, maximum and optimum levels of physical hardness. 

annealed low-carbon steel. The fact that the Br value is supported by 
an He value of 24 oersteds accounts for the outstanding strength and 
endurance of the magnetic latching force in the new design. The fact 
that the associated value of permeability J..I.max is 320 accounts for the 
satisfactory operating magnetic pull obtained on the minimum pulse 
strength. 

VII. CONCLUSION 

It can be concluded, therefore, that a new combination of coexisting 
values of magnetic properties has been found in high-carbon steel that 
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makes it possible to use this steel as core material in the magnetic latch
ing crossbar switch hold magnet. Four codes of such crossbar switches 
have been designed, and the first tool-made samples thereof have satis
factorily met all acceptance tests and laboratory life tests simulating the 
extreme field service conditions that may be encountered in a line con
centrator. 
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