

ZR34161

VECTOR SIGNAL PROCESSOR SIMULATOR

USER'S MANUAL

July 1986

For Beta-site Simulator Release 2.35

Zoran Corporation

3450 Central Expressway

Santa Clara, California 95051

Copyright 1986 by Zoran Corporation, Santa Clara,
California. All rights reserved. Contents of this publication
contain Zoran Proprietary Information and may not be
reproduced in any form without written permission of Zoran
Corporation.

The work on which this manual is based was supported in
part by a grant from the Israel-United States Binational
Industrial Research and Development Foundation. The
views and information contained herein are those of the
authors and not necessarily those of the Foundation. The
Foundation assumes no liability for the contents of this
document by virtue of the support given.

The material in this manual is for information only. Zoran
Corporation assumes no responsibility for errors or
omissions in this manual. Zoran Corporation assumes no
liability for damages resulting from the use of in.formation
in this manual.

Specifications are subject to change without notice.

Vector Signal Processor and Vector Signal Processor
Simulator are trademarks of Zoran Corporation .

. DEC, VMS, ULTRIX, VT240 and VTJOO are trademarks of
Digital Equipment Corporation.

IBM and PCIAT are trademarks of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

/NIEL HEX is a trademark of Intel Corporation.

1,
il
I ~
i ~
Vi
! ~

"Man is a tool-using animal ...
Without tools he is nothing, with tools he is all."

Thomas Carlyle

. ·,i ... ·•·. l:.\

CONVENTIONS

For ease of reading, the Zoran Vector Signal Processor will be referred to in this
manual as the VSP. The Vector Signal Processor Simulator will be referred to as
the VSPS. Fast Fourier Transform will be abbreviated FFT.

Please keep in mind:

As with any large software project, continuous updates and enhancements are
being made. Please return the enclosed card to ensure receiving all updates and
new releases of the software manual and simulator. In addition, Zoran welcomes
(and encourages) notification of any errors, problems or omissions detected in
using this manual or the software simulator. Any additional suggestions for
improvement are always welcome.

This latest update reflects modifications made to several of the menus within the
VSP Simulator. The basic functions of the VSPS have not changed, although a
few new options have been added. Please refer to Chapter IV for these menu
modifications.

Thank you for your interest and support of Zoran, and good luck with your
designs .

(-

~·

ERRATA SHEET FORVSPS-161 SIMULATOR MANUAL
BETA-SITE VERSION 2.35

4 August 1986

There is currently an unfortunate, yet unavoidable confusion existing in the
simulator and its manual regarding the use of the FSIZ parameter in the DEMO
and MODL T instructions. The table below highlights this ambiguity. When
programming logical FSIZ values with these instructions, the current logical value
must be specified. The value used by the simulator is the actual logical value.
The simulator internally carries out this translation. If values are specified as
literals, the simulator will translate the literal value to the actual logical value. For
instance, selecting a logical FSIZ parameter of 16 in the simulator will generate
an actual logical FSIZ value of 8, with the corresponding literal value of 001. It is
not possible to select an actual logical value of 64. .

FSIZ - Specifies the number of samples beginning with RBA to be addressed
from the internal sine/cosine LUT, after which the LUT address rolls back
to the RBA value.

Current Actual
Literal Logical Logical
Value Value Value

000 -> 8 -> 4
001 -> 16 -> 8
010 -> 32 -> 16
011 -> 64 -> 32
100 -> 128 -> 128

The above table should be used in place of the tables on pages 6-38 and 6-41 in
the simulator manual for beta-site release version 2.35.

I·

il

TABLE OF CONTENTS

CHAPTER I. INTRODUCTION

1.1 Overview 1-5
1.2 Pu.rpose 1-6
1.3 Scope 1-6
1.4 The User 1-6
1.5 Manual Overview 1-7
1.6 How to Use This Manual 1-8

CHAPTER II. THE ZORAN VECTOR SIGNAL PROCESSOR

2.1 Overview . 2-1
2.1.1 What Is It? 2-1
2.1.2 What Are Its Functions? 2-1

2.2 Description 2-2
2.2.1 General 2-2
2.2.2 Architecture 2-2

2.3 lnstru.ction Set . 2-6
2.4 Block Floating-Point Operation•........ 2-8
2.5 VSP/Host Interface 2-8

/ 2.6 Addressing Modes 2-10
__ 2.7 Example System Configuration 2-11

2.8 Performance Highlights 2-13

CHAPTER fil THE VSP SIMULATOR

3.1 Overview . 3-1
3.2 Purpose and Functions 3-2
3.3 Host Computer Requirement 3-2

3.3.1 VAX Computers . 3-2
3.3.2 IBM PC/XT or PC/AT Computers 3-3

3.4 How to Use the VSPS•.............. 3-4
3.4.1 Interactive Instruction Execution 3-4
3.4.2 Programmed Instruction Execution 3-5

3.5 System Development Using the VSPS 3-6
3.6 The VSP Toolkit•...........•...... 3-7

CHAPTER IV. VSPS INI'ERACI'WE USAGE

4.1 Overview . 4-1
4.2 Aids to uaming•..... 4-1
4.3 Conventions . 4-2

4.3.1 Convention 1 - Literal and
Logical Values A-2

4.3.2 Convention 2 - Internal/External
Data Representation 4-2

4.3.3 Convention 3 - Full Scale
Integer Representation 4-3

4.3.4 Convention 4 - Internal and
External Memory Addressing 4-3
4.3.4.1 Internal Memory Addressing 4-3
4.3.4.2 External Memory Addressing 4-4

4.3.5 Convention 5 - Display of Internal
VSP Memory•.......... 4-5

4.4 Using the Menus .. ·•........... .4-6
4.4.1 The Main Menu - Menu M4-7
4.4.2 Instruction Selection Tutorial

Menu - Menu M-2•........ 4-8
4.4.2.1 Instruction Options Menu -

Menu M-2-InOp4-10
4.4.3 Data Generation and Display

Menu-MenuM-3•........ 4-13
4.4.3.1 Signal Generation

Menu M-3-8 4-16
4.4.4 Display Options Menu

MenuM-4 4-19
4.4.4.1 Additional Display

Options Menu - M-4-20 4-23
4.4.4.2 VSP Timing Control and

Display Menu - Menu M-4-21 4-25
4.4.4.3 Control of Instruction

Queueing and Breakpoints Menu
- Menu M-4-22 4-26

4.4.5 VSP Simulator Signal Processing
Library Menu - Menu M-5 4-27

4.4.6 IEEE Signal Processing Library Menu
- Menu M-6••..•......... 4-31

4.4.7 Application Library Menu
- Menu M-7 4-32

4.4.8 Break Menu•........ +33
4.5 A First Session with the VSPS • •4-34

4.5.1 Entering the VSPS Environment 4-34
4.5.2 Creating and Storing a Signal in

Simulated External Memory4-34
4.5.3 Interactive Instruction Execution 4-37
4.5.4 Plotting External Memory on the

T enninal . 4-3 8

CHAPTER V. THE VSP REGISTERS

5 .1 Overview . • 5-1
5.2 Mode Register •..••.............•.....•.. 5-2
5.3 Status Register 5-4
5.4 Instruction FIFO • 5-5
5 .5 Instruction Base/Start Register5-6
5.6 Next Fetch Address Register•............ 5-6
5. 7 Scale Register . • • • • 5-6
5.8 Maximum Scale Register•...........• 5-6

5. 9 Old Maximum Scale Register 5-6
5.10 Accumulators5-6

CHAPTER VI. VSP INSTRUCTION SET

6.1
6.2
6.3

6.4

6.5

6.6

6.7

Ove.rview . 6-1
Common Instruction Parameters6-2
Memory Instructions • 6-6
6.3.1 LD (Load) • 6-6
6.3.2 LDSM (Load Scale/Mode Registers) 6-11
6.3.3 ST (Store) 6-13
6.3.4 STI (Store Information Registers) 6-16
6.3.5 STB (Store Backward) 6-19
ALU/External Memory Instructions 6-21
6.4.1 ADDR (Vector Add Real) 6-22
6.4.2 ADDC (Vector Add Complex) 6-24
6.4.3 ML.TR (Vector Multiply Real Accumulate) 6-26
6.4.4 ML.TC (Vector Multiply Complex Accumulate) .. 6-28
Internal ALU Instructions6-30
6.5.1 ACCR (Accumulate Real) 6-31
6.5.2 ACCI (Accumulate Imaginary) 6-32
6.5.3 ABS (Absolute Value) 6-33
6.5.4 CMLT (Cross Multiply Accumulate) 6-34
6.5.5 CMCN (Complex Conjugate) 6-35
6.5.6 MGSQ (Magnitude Square Accumulate) 6-36
6.5.7 DEMO (Demodulate) 6-37
6.5.8 MODLT (Modulate) 6-39
6.5.9 SCL (Scale) 6-41
6.5.10 SCLT (Scale Literal) 6-45
Control Instructions 6-47
6.6.1 JMPI (Jump Indirect) 6-47
6.6.2 ~T (lialt) .•.•......•..•...••....• 6-48
6.6.3 NOP (No Operation) • . . • . • 6-48
~Instructions 6-49
6. 7 .1 FFT - The Fast Fourier Transform

Instru.ction . 6-49
6.7.2 The FFT Algorithm•.............. 6-52
6.7.3 The Decimation-in-Time Algorithm 6-53
6.7.4 Radix-2, Butterflies and Passes•....... 6-56
6. 7.5 Order of Input. 6-56
6.7.6 Overflows and Block Floating Operation 6-57
6.7.7 The FFT Coefficients .•...........•.... 6-58

CHAPTER VII. MACRO COMMAND LANGUAGE

7.1
7.2

7.3

Overview 7-1
Command Syntax. 7-1
7.2.1 Built-in Commands•..........•.. 7-2
7.2.2 System Macros• 7-4
7.2.3 Backus-Naur Description of the Macro

Command-Language 7-4
Macro Examples . 7-7

7.4 Saving and Reusing Macros 7-9
7.5 An Example Session Using the Macro

Command-Language 7-10

CHAPTER VIII. VSP APPLICATIONS

8.1 Overview . 8-1
8.2 The Fast Fourier Transform • . . • 8-1

8.2.1 Direct Application of up to 128 Complex Points 8-1
8.2.2 Overlapped Instruction Execution 8-2
8.2.3 Groups of Small Transforms8-4
8.2.4 FFTs Larger Than 128 Complex Points 8-4

8.3 Additional Discussions about the VSP Signal Processing
Library .8-7
8.3.1 Real FFTs 8-7
8.3.2 Fast Convolution and Correlation 8-8

8.4 Additional Discussions about the VSP Applications
Library .8-10
8.4.1 A 16K-Point FFT Application8-10
8.4.2 Doppler Shift Application 8-12

CHAPTER IX. PROGRAMMING THE VSPS

9.1 Overview 9-1
9.2 Simple Example 9-3
9.3 Mixed 'C' NSP Language Programming

Constru.cts . 9-5
9 .3.1 #include . 9-5
9.3.2 #define 9-5
9.3.3 Delimiters 9-6
9.3.4 The vspop() Function 9-6
9.3.5 Specifying Instruction Parameters 9-7

9.4 The VSPS Parser 9-8
9.5 Compiling, Linking and Running a Parsed

Program . 9-9
9.5.1 Compiling and Linking Under

ULTRIX · ~ 9-5
9.5.2 Compiling Under VMS 9-9
9.5.3 Compiling and Linking Under DOS 9-10
9.5.4 Running the Compiled Program 9-10

9.6 Linking Multiple Applications Programs
to One VSP Simulator 9-11

9.7 Using Fortran for Simulating the External
Environment 9-12

9.7.1 Calling Fortran Subroutines From
'C' I 9-12

9. 7 .2 Compiling and Linking Fortran
Subroutines under UL TRIX 9-16

9.7.3 Compiling and Linking Fortran
Subroutines under VMS 9-16

9.7.4 Compiling and Linking Fortran
Subroutines under DOS 9-16

,;
\(

9.8 Additional VSP Simulator Programming
Concepts . 9-18

9.8.1 VSP Statements 9-18
9.8.2 VSP Instructions•. 9-18
9.8.3 Pseudo-Operations•. 9-18
9.8.4 Defer and Immediate Programming

Constru.cts . 9-20
9.8.5 Creation of JEDEC-Formatted

PR.OM Illes 9-22
9.8.6 Instruction Blocks•............ 9-22
9.8.7 Programming Hints 9-25

CHAPTER X. SIMULATING THE ENTIRE VSPIHOSI' SYSTEM

10.1 Overview 10-1
10.2 Hardware Configuration 10-1
10.3 Instruction Queueing in General•............ 10-3

10.3.1 Hardware Queueing Using the VSP
Instruction FIFO • •10-4

10.3.2 Hardware and Software Queueing 10-4
10.3.3 Instruction Fetch Queueing 10-4

10.4 Interrupt Support for Queueing 10-6
10.5 Queueing Algorithms •...........•..•.....•. 10-6
10.6 VSPS Instruction Queueing .•....•..........•. 10-7

10.6.1 Enab~g VSPS Hardware Queueing 10-7
10.6.2 Enabling VSPS Hardware and Software

Queueing 10-8
10.6.3 Enabling VSPS Hardware and

Instruction Fetch Queueing • 10-8
10.6.4 Enabling VSPS Fetch, Software and

Hardware Queues•.•.... 10-8
10. 7 Modeling Host/VSP Coordination10-9

10.7.1 Complete Instructions as Issued10-9
10.7.2 Immediate Return to Host. 10-9
10. 7 .3 Random Return to Host. 10-10
10.7.4 User Defined Host•.......... 10-10

10.8 System Setup Subroutine 10-11
10.8.l General Features ofZRSETSYS ...••..•... 10-11
10. 8.2 Setup for Various Queueing Options . . • . . • • . .10-13

10.9 The ZRCKMSG Subroutine•.•.••..... 10-13
10.10 A Summary of the VSP and Host

Coordination .10-14
10.10.1 Deferred Instructions•........ 10-14
10.10.2 Instruction Labels ..•.••.....•..•...•. 10-15
10.10.3 WAIT Statements 10-15

2-1.
2-2.
2-3.
2-4.

3-1.
3-2.

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.

. 4-16.
4-17.
4-18.
4-19.
4-20.

6-1.
6-2.
6-3.
6-4.

8-1.
8-2.

9-1.

UST OF FIGURES

Pinout of the ZR34161 Vector Signal Processor 2-2
Internal VSP Architecture•..•.•••.....•...•.. 2-4
Block Diagram of the VSP/Host System • • 2-9 ·
VSP system under simple state-machine control ..•.......... 2-12

The system development cycle using the VSP simulator • • . . • . • . 3-6
Software "tools" contained within the VSP environment • . . . 3-8

Main. Menu - Menu M . 4-8
Instruction Tutorial Menu - Menu M-2 4-9
Instruction Options Menu - Menu M-2-InOp4-11
Data Setup and Display Menu - Menu M-34-14
Signal Generator Menu-Menu M-3-2 A-16
Display Options Menu - Menu M-4 ••...••••••.••.•.... 4-18
Other c;>utput Control Options Menu - Menu M-4-12 .••....... 4-21
Clock Menu -Menu M-4-13 ••••••••••••••••••..••.. 4-22
Queuing Options Menu - Menu M-4-14 ••••••••••••.••.•• 4-23
Simulator Signal Processing Options Menu - Menu M-5 ••....•• 4-24
IEEE Signal Processing Options Menu - Menu M-6 • . • • . . • . . • .4-27
Applications Library Menu - Menu M-7 • . • • • . . . • • • • 4-28
VSPS Break Menu 4-29
VSPS Main Menu ••••..••.••••••.•.•••••.•.•... 4-35
Prompts from signal generator • • • • • • • • • . • • • • . . . • • 4-36
Instructioti tutorial menu (Menu M-2) .•................. 4-37
Instruction execution menu (Menu M-2-InOp) •............ .4-38
LD instruction and parameters prior to execution•....... 4-39
Terminal dump of internal VSP RAM•............ .4-39
FFr of signal generated in example terminal session . • • • . . 4-40

B i.t Reversal . 6-S
FFr with normally ordered input ••••••••••.••••..•..•. 6-54
FFr with bit-reversed input data • • • • •••••••••••.•••••• 6-55
The FFr Butterlly ... ~ . 6-59

Data Array For A l 6K-Point FFr • . 8-11
Doppler-shift application block diagram ~ •.• ~ ••••••.•••.• 8·13

The VSP simulator program development cycle • • • . . • . . • . . • . 9-2

10-1. Hardware architecture assume by the VSPS •••••••••••.... 10-1
10-2. Relationship of Queues •.••••••••.•.••.•..•....... 10-3
10-3. Host/VSP Coordination Modeling Schemes ••.•••.••...... 10-9

(_-

c

APPENDICES

A. VSPS INSTALLATION PROCEDURE A-1
A.1 Under VMS A-1
A.2 UnderULTR.IX A-8
A.3 Under DOS A-11

B. SIMULATOR DIFFERENCES BEIWEEN the
VAXandPC B-1

C. ENOUGH 'C' to ALLOW PROGRAMMING in

D.

E.

FORTRAN C-1
C. l OvC"rView .C-1
C.2 Declaring Variables in'C' C-1
C.3 Declaring Arrays in 'C' C-1
C.4 DO Loops and Assignment

Statements in 'C' . C-2

FORMAL VSP PROGRAMMING LANGUAGE
SPECIFICATION •.•....•...••.•..•.••.... D-1
D. l Overview . D-1
D.2 VSP Language Syntax D-1
D.3 VSP Program . D-1
D.4 VSP Program Markers•........ D-2
D.5 VSP Statements•....... D-2
D.6 VSP Expressions and Names D-5
D.7 Running the VSPS in Batch Verification Mode .. D-6
D.8 The ZRCKMSG Subroutine•...... D-10

REFERENCES .•.••.•••••..••.•..•..•.••. E-1

F. GWSS.ARY .F-1

Zoran VSPS Manual Introduction

1.1 Overview

CHAPTER I

INI'RODUCTION

The ZR.34161 Vector Signal Processor is a very powerful single-device processor
designed for solving computation-intensive digital signal processing applications.
Because it is a general-purpose programmable peripheral, it requires a control
program which provides instructions for execution, and because it is primarily a
high-performance digital signal processor, it is necessary to provide an
environment which allows for algorithm development and simulation prior to final
implementation in hardware. In order to speed system and algorithm development
time, the Vector Signal Processor Simulator (VSPS) was created.

The VSPS is a software tool which provides arithmetic, I/O and timing modeling
of the VSP device. However, the VSPS is not simply limited to modeling the VSP
hardware functions. Also included is the ability to model the world external to the
VSP as well as the VSP itself. This means that the VSPS provides the ability to
simulate the signal processing algorithms as they will be executed within the VSP,
as well as modeling instruction fetch, bus access and bandwidth utilization, host
control operations, and ultimate system timing. Multiple VSPs in a single
application can also be simulated using the VSP simulator. The goal of the
simulator is to allow the majority of system development to be performed in
software instead of in hardware.

A number of development tools are provided within the simulator environment,
including:

an instruction tutorial including single-step instruction execution,
a signal generator,
terminal plotting capabilities,
a macro command-language,
IEEE signal processing options.

1-5

(

Zoran VSPS Manual Introduction

1.2 Purpose

The purpose of this manual is:

1.3 Scope

to familiarize users with the Zoran Vector Signal Processor (VSP),
a monolithic array processor;
to teach users how to use the Zoran Vector Signal Processor
Simulator (VSPS), a software program simulating the functions of
the hardware;
to teach users how to program the Zoran Vector Signal Processor
and its host using the VSP language;
to serve as a reference guide after learning to use the VSPS,

The scope of this manual is to provide a complete description of the VSPS and its
usage. This includes the on-screen tutorials, interactive use of the VSPS utilizing
both menus and the macro command-language, all of the facilities and tools
provided within the simulator environment, programming the VSPS using the VSP
language, and use of the VSPS compiler.

1.4 The User

This manual is written for the user with some technical background. General
knowledge and familiarity is assumed in the following areas:

computer basics and terminology;
fundamentals of computer programming;
at least one field of application in digital signal processing;
the general use of the Fast Fourier Transform to convert digitized
data into different domains;
at least one advanced programming language, such as C, Pascal or
Fortran.

1-6

Zoran VSPS Manual Introduction

1.5 Manual Overview

Chapter II, The Zoran Vector Signal Processor, briefly covers the VSP with
enough information about the device to provide the background needed for
understanding and using the simulator. This coverage does not require an
engineering background. More thorough and detailed technical information about
the hardware exists in the VSP engineering data sheet.

Chapter III, The Vector Signal Processor Simulator, presents an overall look at the
VSP simulator so that maximum benefit can be gained from the "how to" chapters
that follow.

Chapter IV, VSPS Interactive Usage, covers the aids to learning, modes of
operation, and the menus as a way to use the simulator.

Chapter V, VSP Registers, explains the operation and use of the hardware registers
in performing computations with the VSP.

Chapter VI, VSP Instruction Set, discusses the VSP instruction set and associated
parameters in detail. Examples of all instructions are provided in this chapter.

Chapter VII, Macro Command-Language, is a description of the simulator
execution environment which allows users to bypass the menu structure of the
VSPS and enter commands directly.

Chapter VID, VSP Applications, describes some of the applications in which the
VSP excels, and explains the way in which the VSP may be programmed for
certain applications.

Chapter IX, Programming the VSPS, explains in detail how to write, parse,
compile, link and execute VSP programs using the simulator.

Chapter X, Simulating the Entire VSP/Host System, describes the hardware
configuration of the VSP and host as modeled by the VSPS, as well as the
software operating system the VSPS assumes in the host.

The appendices contain supplementary technical information, simulator
installation procedures and reference material for use after familiarity with the
VSPS has been gained.

1-7

Zoran VSPS Manual Introduction

1.6 How to Use this Manual

To understand the material in this manual, it is suggested that the chapters be
scanned in the order presented. Then, depending on the user's skill level or
particular areas of interest, specific chapters can be concentrated on.

After familiarity has been gained with the VSPS and the contents of this manual,
the Table of Contents and appendices will be found to be quite useful for quick
reference.

1-8

CHAPTER II

THE ZORAN VECTOR SIGNAL PROCESSOR

2.1 Overview

This section is intended as an introduction to the ZR.34161 Vector Signal
Processor. Included are general discussions of the features, hardware and software
interfacing and certain performance benchmarks. It is not intended as a
comprehensive description of the device, its pinout or architecture. For detailed
information in these areas, please refer to the VSP engineering data sheet.

2.1.1 What Is the Vector Signal Processor?

The Zoran Vector Signal Processor (VSP) is a special-purpose programmable
digital signal processor optimized for performing vector types of signal processing
operations. A unique proprietary architecture allows the VSP to achieve
extremely high data throughput rates previously achieved only by board-level
designs. The VSP contains a powerful instruction set, simplifying the
programming effort required to implement the user's target application. The result
is a system that is extremely powerful for implementing high-performance digital
signal processing applications while maintaining simplicity in hardware
interfacing and software development. The VSP is built in CMOS technology and
is housed in a 48-pin DIP package.

2.1.2 What Are Its Functions ?

The Zoran Vector Signal Processor:

performs Fast Fourier Transforms and other vector operations
specifically tailored for signal and image processing.

executes a high-functionality set of 23 instructions.

can perform FFrs of size up to 128 complex points in one
instruction without external RAM; of size up to 1024 complex
points without external sine/cosine tables; and of size up to 64K
complex points maximum size.

moves blocks of data to and from external memory in a single
instruction, using a 16-bit address bus and a 16-bit data bus.

can be used in parallel with multiple VSPs in single applications for
even higher throughput.

2-1

Zoran VSP S Manual

2.2 Description

2.2.1 General

The Zoran Vector Signal Processor

Figure 2-1 shows the pin assignment diagram and pin names for the ZR34161
VSP. It is housed in a 48-pin ceramic dual in-line package (DIP). The device has
a 16-bit address and 16-bit data bus. The bus interface, including control signals,
is designed to interface easily with any host microprocessor or system controller.
Detailed descriptions of the pins are provided in the VSP engineering data sheet.

ZR34181 --a10

---PO'ID SUPPl.T
au UOtnm JNPL'T

a11

•14 _,,-rr
•1t / -liiiiiT mTD!W. •
a.a:--CZ/2
llT-armoPT

iiiQ---9'J1 llQtrES'I'

--~~~~~·- ~
~

Figure 2-1. Pinout of the ZR.34161 Vector Signal Processor.

2.2.2 Architecture

Figure 2-2 shows a block diagram of the architecture of the VSP. It is comprised
globally of three main blocks: the bus interlace unit (BIU), the execution unit
(EU), and the memory and registers. The bus interlace unit is effectively
everything on the left hand side of the figure. Included in the BIU are:

data bus buffers,
an address generator,
an instruction fetch unit,
a bus control interlace.

2-2

Zoran VSPS Manual The Zoran Vector Signal Processor

The BIU is responsible for executing all bus-related operations including data and
instruction I/O, bus timing, instruction fetch and decoding, and communication
among the internal and external memory devices. DMA activities involving data
and instruction fetch are also controlled within the BIU. An instruction FIFO
(first-in, first-out buffer) is present in the instruction fetch block which is able to
store up to four VSP instructions.

2-3

DATA

INT

YR
.ID

DSTB
es
D/C
BRQ

Zoran VSPS Manual The Zoran Vector Signal Processor

VSP ARCHITECTURE

Section 0

Section 1

coeff. LUT

MODE

STATUS

Figure 2-2. Internal VSP Architecture.

2-4

:
EXECUTION

UNIT ,-,
I MULTIPLY I
l I

r i

I~ _AD_n_I

Zoran VSPS Manual The Zoran Vector Signal Processor

The execution unit is responsible for all ALU-intensive operations. It is made up
of:

a 17 x 17-bit multiplier,
an adder,
two 24-bit accumulators.

Coupled very tightly to the execution unit and the bus interface unit are memory
and registers, consisting of:

a 128 x 38-bit data RAM,
a 64 x 4-bit scale RAM for implementing block floating-point
operations,
a 256 word by 17-bit sine/cosine look-up table,
operating mode and status registers.

The RAM contains 256 19-bit words configured as 128 complex words. All
arithmetic operations performed by the execution unit on external data first pass
through the bus interface unit. The FIFO, scale RAM, registers and look-up
tables, as well as the control unit, are all shared by both the Bus Interface Unit and
the Execution Unit.

The RAM can be configured into two independent sections, each consisting of 64
complex words or less. Each complex word is made up of one 19-bit real part and
one 19-bit imaginary part. One of the independent RAM sections can be accessed
by the BIU and the second section by the EU. This powerful feature allows 110 to
be performed nearly concurrently with ALU operations. For example, assume that
an application requires continuous real-time FFr calculations. While the butterfly
calculations of one FFT are in progress in the execution unit, the BIU may be
storing the previous FFT calculation to external memory and reading in the data to
be transformed next

NOTE: Technical details of concun-ent 110 with ALU execution are provided in
the VSP engineering da.ta sheet.

The VSP also contains a number of registers, shown in the logical architecture
diagram in Figure 2-2(b), with names and bit lengths as follows:

Ruister Name #Bits
Mode 16
Sta.tus . 16
Instruction FIFO •..•.••.•••••• 192(4 three-word instructions)
Instruction Base/Start .16
Next Fetch Address 16
Scale • . • • . . • . . • . . • . . • . . . • . • . . • . . •16
Maximum Scale .4
Old Maximum Scale . 4
Real Accumulator . • 24
Imaginary Accumulator . • • • • • • • . • • . • • . . • • . • • • • • • • 24

2-S

Zoran VSPS Manual The Zoran Vector Signal Processor

2.3 Instruction Set

The instruction set of the VSP is designed to be highly functional; each instruction
can be thought of as analagous to a subroutine kernel in a signal processing
library. The VSP is programmed at the functional level, not the traditional
assembly level required of other signal processing components. Because of the
high level of functionality provided by each instruction, the VSP uses a low
percentage of the bus bandwidth for instruction fetch. This also simplifies the
programming and debugging time required to implement signal processing
algorithms. For instance, the command to perform a Fast Fourier Transform,
"FFT', is a single instruction within the VSP.

The 23 instructions within the VSP are categorized into four functional types as
follows:

1) move blocks of data in either direction between the VSP internal
memory or registers and external memory:

LD (Load)
ST (Store)
LDSM (Load Scale/Mode Reg)
STB (Store Backward)
STI (Store Information Reg)

2) issue ALU/memory instructions with two vectors as operands, one
residing in the internal VSP RAM and the other residing in external
memory:

ADDR (Vector Add Real)
ADDC (Vector Add Complex)
ML TR (Vector Multiply Real Accumulate)
ML TC (V ectorMultiply Complex Accumulate)

3) issue ALU instructions which operate on a single vector stored
internally in the VSP

ACCR (Accumulate Real)
ACCI (Accumulate Imagin
ABS (Absolute Value)
CMCN (Complex Conjugate)
DEMO (Demodulate)
MODL T (Modulate)
SCL (Scale)
SCL T (Scale Literal)
FFf (Fast Fourier Transform)
CML T (Cross Multiply Accumula
MGSQ (Magnitude Square Accu

2-6

Zoran VSPS Manual The Zoran Vector Signal Processor

4) control instruction fetch and execution of the VSP:

JMPI (Jump Indirect)
HLT (Halt)
NOP (No Operation)

Most of the instructions have several parameters, the values of which control the
way the instruction is executed. Full treatment is given to the instruction set in
Chapter VI.

All the instructions in the first two groups above consist of three 16-bit words.
Those in the third group vary in length from one to three words. The No
Operation (NOP) instruction is one word, and the Halt instruction is two words in
length.

2-7

(

(

(--

Zoran VSPS Manual The Zoran Vector Signal Processor

2.4 Block Floating-Point Operation

The ZR34161 Vector Signal Processor is a 16-bit integer machine. However, it
also possesses the ability to perform block floating-point operations. Block
floating-point capability allows the association of an exponent with a block of
data. A block of data in this discussion is a real, imaginary or complex vector
(array) of data stored inside the VSP. The entire block (or portions of the block)
can then be scaled by this exponent This differs from full floating-point precision
in that full floating-point associates an exponent with each data value which is
represented. The block floating-point capability is extremely powerful, especially
when performing FFI's or related operations; it can increase the dynamic range of
the FFf by up to 48 dB relative to a 16-bit integer FFf calculation.

2.S VSP/Host Interface

The VSP communicates with a host computer or controller over a familiar and
simple interface bus. An example of this interface is shown in block diagram form
in Figure 2-3. The system bus contains separate address, data and control signals.
This interface provides the necessary communication between the host and VSP
for instructions, data, addressing and control signals. Oftentimes the VSP system
controller will be a microprocessor, with the VSP operating as a slave peripheral.

Moreover, the VSP has the ability to operate with more independence than simply
a slave peripheral. If the VSP is operated in the master fetch mode, it has the
capability of fetching its own instructions and data after it has been given a starting
address by either a controller or a host microprocessor. It is not required in this
application that a sophisticated host microprocessor be present for system control.
Any controller or state machine may be used to write a starting address to the
VSP.

The system usually contains program memory which may be ROM, PROM,
EPROM, etc .. This memory may exist on the main system bus within the system
memory address space as shown in Figure 2-3, or it may be on a private bus
belonging solely to the VSP. The VSP will maintain pointers to this memory for
fetching instructions, as illustrated by the Instruction Base Address and Next Fetch
Address pointers.

The same discussion is true for the VSP data RAM. It may exist within the
address space of the host system as shown in Figure 2-3, or it may exist on its own
private bus. The RAM can be partitioned into different memory block sizes as
illustrated. The Memory Base Address is a pointer specified by VSP instructions
which use _external data memory.

A bus arbitration block nonnally exists in a single-bus system such as that shown
in Figure 2-3 in order to resolve conflicts which may occur over bus access
requests. The VSP has a simple two-pin interface to the bus arbiter for requesting
and receiving control of the bus. A simple yet powerful DMA controller exists on
the VSP for easy interfacing to external ROM and RAM once bus access is
granted to the VSP by the host. Instructions, status and data are all passed over the
16-bit data bus using this DMA structure. Data and instruction addressing is
generated on the 16-bit address bus.

2-8

Zoran VSPS Manual The Zoran Vector Signal Processor

DATA INSTR
Instruction

Base
Memo rs; Address
Block ize RAM Bus Arbiter, Memo!'1 Next

HOST Interrupt Step Siz
Fetch

Handler Address

"

.;.:
Read/Write
Control

External

VSP Scale
RAM

Figure 2-3. Block Diagram of the VSP/Host System.

2-9

Zoran VSPS Manual The Zoran Vector Signal Processor

2.6 Addressing Modes

The VSP receives instructions for execution in one of two ways:

Master Mode: The VSP fetches its own instructions. The host writes the
starting address of the instructions to the VSP, which then fetches
its own instructions, fills its instruction queue and begins execution.
It will continue instruction fetch and execution until a HALT
instruction is encountered.

Slave Mode: The host loads the VSP with instructions as execution is
required. The host may load the VSP with instructions either
without execution (which loads the on-board FIFO) or with a
command to execute the instruction immediately.

When the VSP is fetching its own instructions and data, it requests and receives
control of the bus, then generates memory addresses for reading and writing data
to and from external memory.

The two instruction addressing modes allow a great deal of flexibility for different
system configurations. In the master mode, the VSP simply needs to be told
where to fetch the first instruction in memory. It will then fetch all of its own
instructions and data beginning with that location. In this configuration, the VSP
can be controlled by a device as simple as a single-chip microprocessor or state
machine.

In a host microprocessor controlled environment where the VSP is operating in the
"master" mode, the host could send starting addresses of "subroutines" to the VSP.
The VSP would then begin reading and executing instructions beginning at the
"subroutine" address and continuing until a "Halt" instruction is encountered. This
application essentially uses the VSP as a loosely-coupled co-processor. The VSP
would perform all of the signal processing required in the application under direct
control of the host processor.

2-10

Zoran VSPS Manua,I The Zoran Vector Signal Processor

2. 7 Example System Configuration

Figure 2-4 shows a potential example system incorporating the VSP. The system
manager in this application is a simple state-machine controller, not a full
microprocessor. The controller has the ability to interpret simple status appearing
at its input pins, arbitrate access to the data bus, write the beginning program
address to the VSP, and manage other peripherals (not shown in the figure) which
may be connected to the bus. The non-volatile memory contains the executable
VSP instructions. The RAM acts as data storage as well as additional scratch-pad
memory for the VSP. It is assumed that there may be other peripherals connected
to the data bus which provide data to the VSP for processing and also receive
processed data from the VSP. The state-machine controller also manages these
devices.

All data is exchanged between the components in the system using the 16-bit
address and 16-bit data buses. Familiar control signals such as RD\, WR\, CS\,
SUS\, and DSTB\ are present to coordinate this data flow. The VSP requests
control of the data bus with the BRQ\ pin. Bus control is '1'anted to the VSP on
the BACK\ pin from the host controller. The D/O pin is provided to infonn
external memory of whether the data being fetched is operand data or instructions.

2-11

.(--

Zoran VSPS Manual

INSTRUCTION
MEMORY

A(0:15)

FAST NVM
(ZPROM)

el

VSP
ZR34161

.l1S

The Zoran Vector Signal Processor

DATA MEMORY

Figure 2-4. VSP System Under Simple State-Machine Control.

2-12

Zoran VSPS Manual The Zoran Vector Signal Processor

2.8 Performance Highlights

The VSP uses an external crystal or clock up to 20 MHz. This clock is divided by
two internally to lO:MHz, which represents the lOOns execution cycle of the VSP.
The military version of the VSP operates with a 16MHz external clock which
corresponds to a 125ns execution cycle. Table 2-1 shows some benchmark
calculation times for certain signal processing operations within the VSP. These
tabulated calculation times assume that the VSP is being driven with a 20MHz
external clock.

"BF" in the FFT calculation refers to block floating-point calculations. Integer
FFf calculations require even less time to complete. The 1024-point FFf requires
reads and writes to external memory in order to accomplish the complete FFT
because the VSP has an internal memory size of 128 complex words. The 3300us
includes all external reads and writes to memory. It is assumed that the external
memory has an access time of less than lOOns. For slower memory, with an
access time between lOOns and 200ns, it will take the VSP 3700us to complete the
1024-point complex transform.

Table 2-1

Si&nal Processin~ Operation

1024-point complex BF FFT
128-point complex BF FFT
8x8 2-D complex FFT
64x64 complex vector multiply
64-point complex demodulation
128-point magnitude square/accumulate
4x4 matrix multiplication

2-13

.m
3300
237
164
27
26
26
33

(-

(

CHAPrERID

THE VECTOR SIGNAL PROCESSOR SIMULATOR

3.1 Overview

The Vector Signal Processor Simulator (VSPS) is a menu-driven software system
designed to model both the hardware and software operation of the Zoran Vector
Signal Processor. The purpose of the simulator is to allow full algorithm and
target system simulation within the environment of the VSP simulator.

Instruction execution from within the simulator environment occurs in either of
two ways. The first of these, interactive execution, provides on-screen menus to
allow interactive execution of individual VSP instructions. The second,
programmed execution, allows execution and testing of a complete program
written with the VSP instruction set embedded within a high-level 'C' program.

The VSP simulator contains a powerful alternative to its menu-driven structure for
more advanced simulator users, called the macro command language. The macro
command-language is an environment where the menus are bypassed and the user
can execute macro-level commands directly without traversing the menus. A
library of macro commands is provided by the simulator; users are also
encouraged to create their own macros and include them within this library. Full
treatment of the macro command-language is given in Chapter VII.

The VSPS accurately simulates the execution of instructions by the VSP. Once an
algorithm has been defmed, it may be programmed into the simulator and its
execution verified. Facilities are available within the VSPS environment for the
purpose of simplifying algorithm debugging. For example, floating-point IEEE
signal processing algorithms are provided to help compare signal processing
results obtained with the VSP to floating-point results. Test and noise signals may
be generated from within the VSPS for input to the simulation. The simulator also
supports graphical output modes for display of waveforms at user-selected
memory locations within the system. HELP utilities are provided containing
descriptive material and explanations of menu options, instructions and processes.

3-1

(

Zoran VSPS Manual The Vector Signal Processor Simulator

3.2 Purpose And Functions

The VSPS has three major purposes:

to provide a detailed interactive demonstration tutorial for each
VSP instruction.

to accurately simulate the hardware performance of the VSP for
algorithm verification, speed and arithmetic accuracy.

to simplify the task of developing VSP programs.

The/unctions of the VSPS are as follows:

generation of sophisticated test waveforms;

simulation of VSP programs;

simulation of host programs running with VSP programs;

simulation of single or multiple VSPs on a single bus;

plotting of waveforms;

interactive debugging;

timing of VSP programs and measurement of effects of bus usage;

modeling VSP arithmetic;

provision of a macro command-language interface;

provision of user-friendly, interactive interface.

3.3 Host Computer Requirements

Version 2.3-5 of the VSP simulator is written to operate under either the VMS or
UL TRIX operating systems on the Digital Equipment Corporation VAX family of
computers, or on an IBM PC/XT or PC/ AT (or compatible) under DOS version 2.1
or higher. Both VMS and UL TRIX operating systems are supplied and supported
by DEC. UL TRIX is the DEC version of UNIX 4.2bsd. A 'C' compiler and
linker are required under either operating system. DOS is the operating system
developed by Microsoft Corporation for the IBM PC family of computers.

3.3.1 VAX Computers

VAX computer requirements include about· one megabyte of user memory in the
host computer as well as a disk file system with at least one megabyte of user disk
space. The terminal should be a DEC VT240 or VTlOO (or compatible). The

3-2

Zoran VSPS Manual The Vector Signal Processor Simulator

simulator can make use of the expanded capabilities of the VT240 terminal. Use
of this or another compatible terminal allows high-resolution plots of waveforms
within the simulator environment, as well as "paged" menu operation. VTlOO or
compatible terminals can be used, but some of the expanded features supported on
the VT240 will not be available. For example, the menus will scroll up from one
to the next instead of paging, lines requiring user entry will not be highlighted on
the VDT, and plots will not be high-resolution.

3.3.2 IBM PC/XT or PC/AT Computers

The VSPS is also supported by Zoran under MS-DOS versions 2.1and3.1 for use
on an IBM PC/XT or PC/ AT personal computer with 640K bytes of memory. The
installation procedure and directory structure recommended for the PC are
presented in Appendix A.3.

Certain differences exist between the PC version of the VSP simulator and the
version running on the VAX. These differences are described below:

Specification MS-DOS version VAX versions

VSP program and data l 6K words total 64K words each

Maximum IEEE FFT size lKpoints SK points

Number of simulated VSPs 2 8

Application Library Not in this Included
release

3-3

(

Zoran VSPS Manual The Vector Signal Processor Simulator

3.4 How to Use the VSPS

Use of the VSP simulator and its included utilities is entirely menu driven.
Entering the simulator brings up the Main Menu from which all other menus can
be reached either directly or indirectly. Instruction execution, waveform
generation, plotting utilities, IEEE signal processing options, and the applications
library are all examples of functions which may be invoked using this menu
structure.

Instruction execution within the VSPS can be performed in one of two ways. The
first of these is interactively using menus Individual instructions or sequences of
instructions can be executed one-at-a-time. Because of the interactive nature of
the menu structure, it is possible to execute an instruction, plot its output, generate
a new waveform, have another instruction operate on this waveform, etc. This is a
very powerful way of learning the VSP instruction set and associated para.meters.

The second (and more powerful) way of executing VSP instructions is to write a
program, or sequence of VSP instructions. The VSP simulator reads these
instructions and models their hardware execution. This execution environment
most accurately simulates the operation of the VSP system processor. Instruction
files are created by using the host computer text editor. However, instruction
display, waveform generation and terminal plotting utilities are all available
interactively during program execution.

Chapter V contains a description of the macro command-language feature
provided by the simulator. The macro command-language allows multiple
keystroke simulator commands to be executed without using the simulator menus.
This is a powerful and time-saving feature to use once experience has been gained
with the VSPS menu structure. The macro command-language environment is
called directly from the VSPS Main Menu and many of the subordinate menus. It
is easy to get back to the menu environment from the command language
environment.

3.4.1 Interactive Instruction Execution

Interactive instruction execution is designed as a menu-driven tutorial
environment providing on-line interaction with the signal generator, individual
VSP instructions and the waveform plotting utilities. Instructions are selected
from a menu which displays the VSP instruction set. Para.meter values
corresponding to the selected instruction are also chosen interactively. The
instruction can then be executed from within the same menu.

After each instruction is executed, VSP internal and external memory contents
may be displayed and/or plotted on the terminal showing the results of the
execution. This mode is especially useful for learning how the VSP instruction set
and the associated para.meters operate. It is also useful for experimenting with
various instruction possibilities during algorithm development. The VSPS also
has the ability to display the appropriate internal and/or external memory locations
accessed on each VSP clock cycle during instruction execution.

3-4

Zoran VSPS Manual The Vector Signal Processor Simulator

The VSPS contains a signal generator for interactively creating either simple or
sophisticated test signals. Signals which may be generated include sinusoids,
square waves, step functions, impulse functions, and sums or products of· the
above. These waveforms can be stored in simulated external VSP memory or
written to a disk file for later use or archival purposes in a waveform library. They
can be plotted on the terminal both prior to and after instruction execution.
Waveforms created from within other environments or programs by a user may

-;. also be displayed and used by the simulator in the same manner as waveforms
created using the signal generator.

3.4.2 Programmed Instruction Execution

The VSP simulator has an operating environment which allows execution of full.
length VSP source programs. An instruction file containing the VSP instructions
and parameters is created with the system text editor and used as the source for
execution. Breakpoints may be set within the source program at a selected clock
count to allow examination of various memory or register contents during
execution. The source may be single-stepped if it is desired to interrogate the
RAM or registers during (or after) instruction execution. The simulator will keep
track of the number of clock cycles taken to execute the program. This is
especially important for calculations involving real-time operations.

One of the most powerful features provided by the simulator while running full
length VSP programs is the ability to model and simulate the host system as well
as the VSP. Within a high-level 'C' language environment, the user can model the
operation of the host system, or the environment external to the VSP, as well as
the VSP itself. The host simulation will usually be written in 'C', while the VSP
instructions are embedded within the 'C' program. The simulated external
environment may include a user-created model of the system architecture, data and
control buses, or any other desired component within the target system.

While the VSP code must be embedded within a 'C' program, it is not necessary
to simulate the complete external environment in 'C'. For users more familiar or
more comfortable with other high-level languages such as Fortran, it is possible to
call Fortran subroutines from the 'C' program. In this case the 'C' program will
contain only the VSP instructions and calls to Fortran subroutines. The Fortran
subroutines will simulate the remainder of the target system. Full treatment on
including Fortran subroutine calls in the 'C' simulation is included in chapter IX.

3-S

;

Zoran VSPS Manual The Vector Signal Processor Simulator

3.5 System Development Using the VSPS

This section discusses iterative algorithm development using the VSP simulator.
In addition, it introduces the tools provided by the simulator for algorithm
development and system simulation.

A block diagram of the normal algorithm development cycle using the VSPS is
shown in Figure 3-1. It is expected that the user will first become familiar with the
VSPS environment using the interactive signal generator, instruction tutorial and
plotting capabilities.

The second phase of system development should be conceptualization of t.'1.e
algorithms to be executed by the VSP, followed by implementation of these
algorithms using the VSP language. The process of algorithm definition and
implementation using the VSP language is usually an iterative process. Once the
algorithms are fully defined and implemented in VSP language, it is possible to
simulate, verify and debug them completely within the simulator environment.

As the algorithms become more refined, it is possible to also include a high-level
language simulation of the target architecture within the VSPS environment. At
this point, the entire target system including the VSP, signal processing
algorithms, and system architecture is modeled within the VSP simulator. Bus
utilization, timing, arithmetic accuracy and throughput are all modeled for the
complete system without the need to build the first prototype in hardware.

Computer Aided
Learning of VSP

Conceptual Algorithm
Design/Verification
(Sip! Processing Language)

•

Algorithm Creation

VSP Language

Target Architecture
Set-Up

System Simulation

and Verification

Figure 3-1. The System Development Cycle Using the VSP Simulator.

3-6

Zoran VSPS Manual The Vector Signal Processor Simulator

3.6 The VSP Toolkit

The VSPS environment is a sophisticated environment for modeling both the VSP
and complete target systems. Included within this environment is a powerful set of
tools designed to simplify the task of system development Figure 3-2 shows a
block diagram depicting the order in which these tools are normally used in
creating full-length VSP programs, along with target system simulation. Figure 3-
2 does not apply to interactive instruction execution, which is a self-contained
menu-driven instruction execution environment

Once the algorithms are defined, a source program is created with a text editor
resident on the computer system. If the program is simulating only the VSP, the
'C' source file contains only VSP instructions plus some VSP language constructs.
If the source file is simulating a target system as well as the VSP, additional 'C'
code is present which simulates the remainder of the target system (or calls other
high-level language subroutines). In this case, the native VSP code is embedded
within the high-level language simulating the host architecture.

After the source program is generated, it is run through the VSPS parser. The
parser looks for VSP constructs that identify the VSP instructions which follow
throughout the source file. At locations where VSP code exists, the parser
translates the VSP instructions to external 'C' function calls to the VSP instruction
library. If a target architecture is also being simulated in 'C ', the standard 'C'
code simulating the target system (or external subroutine calls) is not changed.
Once the parsing is complete, the resultant 'C' program is compiled using the host
computer 'C' compiler.

It should be noted that the parser always generates a 'C' program for compilation
at its output. In cases where other simulation languages such as Fortran are
desired, it is still necessary to generate a source program of VSP instructions
within a 'C' subroutine for input to the parser. This is because the parser always
requires a 'C' input file. However, the source program may be filled with calls to
Fortran or other high-level language subroutines for simulating the remainder of
the target system. It is not necessary to model the target system completely in 'C'.
The parser will simply interpret the Fortran (or other high-level language)
subroutine calls as an external function call. This eases the task for system
developers who either are not well-versed in 'C' or who already have large bodies
of existing software in another language. More detailed treatment is given to this
subject in Chapter IX.

Once the program has been compiled, it must be linked with the main body of the
simulator, VSP instruction library, applications library and the floating-point
simulation utilities. At this point it may be executed, debugged and analyzed.

The VSPS includes a number of instruction queueing and timing models for
instruction fetch, software fetch queues, and external bus access and timing. In the
simplest case, the VSPS assumes no host controller operating system or on-device
instruction FIFO. The VSPS will execute instructions sequentially in the source
program until a "Halt" instruction is reached.

3-7

(

Zoran VSP SM anual The Vector Signal Processor Simulator

For applications requiring more accurate simulations of the target system bus
priorities, usage, and accessing, as well as instruction fetch modeling, the VSPS
includes extended instruction queueing and bus timing models. These extended
models and the hostJVSP timing coordination are covered in Chapter X.

AlgoriUun

Parser

VSP Instruction Simulation

Applications Library

Floating Point Simulation
Utilities

/

Signal
Generator

Performance
Analysis

Debugged
Program

VSP
Object Code

Figure 3-2. Software "Tools" Contained within the VSP Environment.

3-8

(

CHAPTER IV

VSPS INTERACTIVE USAGE

4.1 Overview

The VSP simulator operates in an interactive fashion. "Interactive" in this context
means that the user is always guided to the next course of action by on-screen
menus. The next action is always selected by typing a number which simply
corresponds to the menu choices that appear on the screen. Included within the
menu structure are HELP sections, tutorials on all of the VSP instructions, test
data generation and display, selected IEEE signal processing options, and a library
of pre-written application programs, as well as additional features for both
sophisticated and novice simulator users.

This section will discuss all of the menus which appear throughout the simulator.
Major section headings throughout the chapter correspond to the menu selections
which appear on the terminal within the main simulator menu. Sub-menus will be
discussed as sub-sections under these primary menus.

4.2 Aids to Leaming

The VSPS incorporates "aids to learning" throughout the interactive menu
structure, defined as HELP and TUTORIAL sections. These aids may be used
when there is a question about the function of a menu or the options that the menu
presents. It is a useful exercise when first learning the simulator and its menu
organization to jump from one menu to the next and read the HELP and
TUTORIAL sections. Using these selections will help the user master the
simulator more quickly. Additionally, the simulator supports a non-destructive
program interrupt at any point during program execution by typing a 'ctl-C'. This
help facility is discussed in detail in section 4.4.8.

4-1

Zoran VSPS Manual VSPS Interactive Usage

4.3 Conventions

There are five conventions to be understood which apply to the VSPS simulation
of VSP instructions. They apply not only in this chapter, but also in the chapters to
follow which explain the instruction set and the macro command-language.

4.3.1 Convention 1- Literal and Logical Values

The first convention to be understood is the selection of values for instruction
parameters as either logical or literal. The logical value is the intuitive decimal
value assigned to the parameter. "Intuitive" means values which make the most
sense to the user, not necessarily to the VSP. The logical value is translated by the
simulator into a literal value to fill the field of the parameter in the instruction
format. The literal value is the binary executable value used by the VSP. The
logical value is sometimes, but not always, equal to the literal value.

The simulator user may describe instruction parameters to the simulator as either
logical or literal values. Logical values are provided as parameter descriptors
because they are oftentimes easier to understand and remember than are literal
values. However, the literal values are the actual values which are stored in binary
format in executable VSP code. When values are assigned to parameters, the"="
(equal sign) should be used for describing literal values, and the ":" (colon) for
logical values. Literal and logical values are assigned interactively in Menu M-2-
InOp. Translation formulas are also provided in this menu for instruction
parameters which have logical values that differ from literal values. As a rule of
thumb, it is usually easier to work with logical values than literal values.

For example, if the LD (LOAD) instruction is to be executed, one of the
parameters is MBS (memory block size). Ignoring the definition of the MBS
parameter, the logical value of the parameter may be 64 in one application. The
literal value of the parameter is the log2 of the logical value (=6). However, the
logical value is more descriptive of the parameter than the literal value. Other
parameter values within instructions may also have different mathematical
translations from their associated logical values. Menu M-2 allows the display of
parameters in either logical or literal formats, as well as allowing switching
between the logical and literal parameter representations.

4.3.2 Convention 2 - Internal/External Data Representation

The second convention for the VSPS is that when data in external RAM is used by
the VSP, or moved to internal VSP RAM, the simulator shows the data as
multiplied by a factor of two. This occurs because the 16-bit word in external
memory is mapped into 17 bits internally by appending an extra LSB. This is
equivalent to shifting the external word left by one bit when it is read into the
VSP. When data is moved from the VSP internal memory out to external RAM,
the data is divided by two; an effective shift right is performed to get the data back
to 16 bits. When the contents of internal memory are displayed, the full 17 bits are
represented. When external memory is displayed, the integer numbers represent
16-bit data words.

4-2

<f
<l

Zoran VSPS Manual VSPS Interactive Usage

Note that internal RAM is actually 19 bits in length. The upper two bits are sign
extended for the purpose of overflow on intermediate results. They are not
accessible externally, but are displayable from the simulator when an overflow
occurs above the lower 17 bits in internal memory. It is assumed that the user
scales the final results to fit in the lower 17 bits of internal memory.

4.3.3 Convention 3 • Full-Scale Integer Representation

The VSPS simulates the 16-bit word length contained in the VSP chip. These
numbers are represented as 16-bit twos-complement integers in the simulator. The
maximum positive number which can be represented is 215-1 (32767). The
smallest negative number represented is -215 (-32768). The floating-point number
+1.0 is represented by 32767/32768, and -1.0 is represented by -32768/32768.
Note that + 1.0 cannot be represented exactly in the twos-complement number
system.

The sine/cosine look-up tables provide an extra bit of precision, providing a
minimum integer of -65536 and a maximum integer value of 65536. Special logic
is provided to allow both +LO and -1.0 integer representations out of the look-up
table.

4.3.4 Convention 4 • Internal and External Memory Addressing

The fourth convention has to do with the way data is stored in external RAM and
in internal VSP RAM. For purposes of this discussion, external RAM refers to
simulated RAM external to the VSP chip, but as seen and addressed by the VSP
simulator. The VSPS uses references to the index value of data points in external
RAM in some cases, and to the physical address of these data points in external
memory in others. This will be elaborated upon in the following paragraphs.

4.3.4.1 Internal Memory Addressing

The VSPS refers to the "jth" point in internal VSP RAM as follows:

jth real point (Rj):
~th imaginary J>?int (Ij):
Jth complex point (Rj,Ij):

where:
j is in the range 0 to 127,
Rj =.real part,

and Ij = unagmary part.

VSPRAM [j]
VSPRAM [j.1]
VSPRAM [j]

The above description of internal VSP RAM also implies that while the VSP
contains 256 words of internal RAM, it is partitioned into 128 complex words
addressable from 0 to 127. Real data always exists in the real RAM section, while
imaginary data always exists in the imaginary section. It is not possible to re
partition this RAM into one consecutive section of 256 real samples or 256

4-3

Zoran VSPS Manual VSPS Interactive Usage

imaginary samples. Real-only and imaginary-only data is allowed within the VSP,
but these vectors are limited in length to 128 points. Later discussions will show
that it is possible to perform either real or imaginary operations (in addition to
complex operations), but the partitioning of internal RAM is always as 128
complex words.

Internal VSP RAM can store 128 real, imaginary or complex data samples. It is
useful to think of this RAM as an array of 128 words of 38 bits; the first 19 bits
being the real component and the next 19 bits being the imaginary component.
This is useful because of the way the VSP indexes into this array. The jth index
always addresses the jth complex word.

4.3.4.2 External Memory Addressing

Simulated data memory external to the VSP is treated differently than is internal
VSP RAM. The VSP has a 16-bit external address bus which limits the direct
physical address space of the VSP to 64K words. 64K real samples, 64K
imaginary samples or 32K complex samples can be stored in the available 64K x
16-bit external address space. Real-only data samples or imaginary-only data
samples may be defined within the simulator to occupy successive 16-bit physical
address locations in memory (64K 16-bit words). Complex data samples are
defined as alternating successive physical addresses for the real and imaginary
parts of one complex word. The real component of the complex word is stored in
the even address, while the imaginary component is stored in the odd address.
Hence, 32K complex (32-bit) words will fit into the 64K (16-bit) word simulated
address space of the VSP.

In terms of VSP simulator interpretation of this nomenclature, the VSPS will
ordinarily display simulated external data memory as an a"ay of 32K complex
samples. It is important to think of the complex indices of the samples being
referenced in external memory and not the physical addresses of these samples.
When the simulator prompts for an address, it is referring to a simulated physical
16-bit address in external memory. When the simulator prompts for a sample
index, it is referring to either a complex (32-bit) or real (16-bit) sample index
depending on the context

Using this description of simulated external RAM, the VSP views external
memory in a similar manner to the way it has physically partitioned internal
memory; as 32K words of complex samples. Hence, the indexing address space of
the 32K complex samples is half the 64K physical address.

There is, however, one difference between an external memory reference and an
internal VSP RAM reference. This is the fact that the VSP internal memory is
physically partitioned into a real part and an imaginary part. The VSP has no
direct control over the type of data which exists in external RAM. It may be real,
imaginary, or complex, and occupy successive or alternate memory locations.
Because of the variety of the data which may be stored in simulated external
memory, the VSPS has adopted the nomenclature for referencing this external
memory as a 32K x 32-bit complex array, independently of the type of data
actually stored there.

4-4

Zoran VSPS Manual VSPS Interactive Usage

The following index definition will illustrate how the VSPS addresses external
memory. Assume that the full 64K external memory address space of the VSP is
filled with data. If the data stored in external RAM is:

either real data OR imaginary data:

Dj = ExtRAM [j/2]
Dj+l = ExtRAM [(j/2).1]

complex data:

where:

{Rj,lj)
CRj+ 1.Ij+ 1)

=ExtRAM [j]
= ExtRAM [j.1]

j is always even: 0, 2, 4, ... 65534
D is either a real OR imaginary data array,
R is the real portion of a complex data array ,and
I is the imaginary portion of a complex data array.

When specifying a Memory Base Address (MBA) to the VSPS for external
memory, a physical address is always used, not an index. This is the only
exception to the above discussion of indexing into the complex external memory.
Hence, there is occasionally a mental conversion required between indices and
physical memory addresses when the memory base address is specified. The
reason for this inconsistency is that the VSP system processor requires a physical
address upo~ which to begin addressing external memory.

4.3.S Convention S - Display of Internal VSP Memory

When the simulator displays the contents of the internal VSP RAM, it is
referenced as:

where:

.
VSPRAM:n[j](rj,ij).

n refers to the logical number of the VSP whose memory is being
displayed (default 0),

j is the index of the complex array,
rj is the real part of the jth complex word, and
ij is the imaginary part of the jth complex word.

The convention as described above allows display of the contents of the internal
RAM when multiple VSPs are being simulated in a single application by the
VSPS.

4-5

Zoran VSPS Manual VSPS Interactive Usage

4.4 Using the Menus

The VSP simulator is called from the operating system by typing 'vsps' on the
VAX or 'vsps' on the PC followed by a carriage return <Cr>. In the PC version,
the first thing to appear on the screen will be a copyright notice. The first menu to
appear on the screen is the Main Menu, the starting point for all interactive use.

A structure exists within the VSPS on-screen menus, as can be seen by the menu
tree structure shown in the reference card accompanying this manual. At the top
of the structure is the Main Menu, leading to all subordinate menus and options
existing below the Main Menu. Regardless of which menu path is traversed by the
user, it is always possible to get back to either the previous menu or the Main
Menu directly. Each lower-level menu has either an optional or an automatic
return to the next highest menu level.

Most of the prompts at the end of a menu present two numbers in parentheses.
The first number returns operation to the previous menu level to correct an entry.
The second is the default selection, which is executed if a <Cr> is entered without
a value.

The menus and selections are identified in this manual by codes which simplify
understanding the menu structure and to get directly to a subordinate level of
choice. The Main Menu is defined as "M' (for main). Each subordinate menu or
choice is named with "M-" followed by the number of the menu. The second level
of menus will have another hyphen and another number identifying the choice.
Observing the menu naming structure shown in the menu reference card should
make this naming convention clear.

Each prompt line will be followed by one or two options. The first option gives
the user the opportunity to return to the previous line. It is very useful for
correcting errors made in entries. The second option is the default value, which
will be automatically selected if the user does not specify his own value. In some
cases only one option - the default value - will appear. If there is only one option
presented, it indicates that the user may not return to the previous line.

4-6

Zoran VSPS Manual VSPS Interactive Usage

4.4.1 The Main Menu - Menu M

Figure 4-1 shows what the Main Menu looks like on the user screen. This is the
menu arrived at upon calling the VSP simulator. The first choice available in the
Main Menu is to select the HELP screen (M-1). The HELP screen discusses the
philosophy of the VSPS and suggests how to get started. It is worthwhile to
execute the HELP command from the Main Menu before proceeding further.

Menu selections M-2 through M-7 are subordinate menus, and are described in the
following sections.

Menu selections M-8, M-9 and M-10 provide slighty more sophisticated (and
powerful) features of the simulator. Menus M-8 and M-9 are used to execute and
debug user programs. Menu M-10 enters the macro command-language
environment of the simulator. Selection M-11 halts execution of the VSPS
program and returns control to the operating system.

MAIN MENU

1 HELP
2 VSP instruction tutorial and execution
3 Data generation and display
4 Display options, timing control and queueing
5 Signal processing library for VSP
6 IEEE signal processing library
7 Application library
8 Execute user program in vspop0
9 Execute batch commands and VSPS validation
10 Command mode
11 Exit

Specify value of your selection (0)(1):

Figure 4-1. Main Menu - Menu M.

Default selection 1 will call the HELP section. The default option may be selected
by either typing a <Cr> with no parameters or a 'l' followed by a <Cr> at the
prompt

4-7

Zoran VSPS Manual VSPS Interactive Usage

4.4.2 Instruction Selection Tutorial Menu • Menu M-2 ;

This menu is the main reference and tutorial on .the instructions in the VSP
language. It also allows interactive parameter specification as well as execution of
VSP instructions. Figure 4-2 shows what Menu M-2 looks like on the user screen.
Two classes of selections are provided by this menu.

The first selection contains a series of initialization operations along with a very
useful HELP option. These are shown in the upper half of Figure 4-2, and. are
identified as menu options '1' through '12'. Selections 2, 3, 4, 6, 7 and 8 each
initialize features in the VSPS which control later execution. Selection 5 dumps
the descriptions of all instruction parameters to a disk file.

The second selection class in this menu is the complete list of VSP instructions,
shown in the lower half of Figure 4-2. When the desired instruction name is
entered at the prompt, a menu appears with information for that instruction:
format, parameters, range of parameter values, constraints and other useful
information. The following section, 4.4.2.2, discusses the usage of the menu in
more detail. Chapter VI describes VSP instruction usage artd parameter
descriptions in great detail.

INSTRUCI10N SELECI10N TUTORIAL MENU (M-2)
Enter an instruction name or a numeric option.

1 HELP
2 Set CYCMEM in mode register
3 Set number of RAM sections in mode register
4 Initialize scale nibbles
S Dump instruction parameter descriptions to file
6 Set the VSP number
Set bit numbering: 7 right to left 8 left to right
VSP interrupts: 9 enable 10 disable
11 Modify internal RAM
12 Return to previous menu

Instruction names are:
NOP JMPI
ST STI
ADDR FFf
SCL ABS
ACCI ACCR

lDSM
MLTC
DEMO
CMCN
~T

LD
MLTR
MODLT
MGSQ

STB
ADDC
SCLT
CMLT

Specify instruction or numeric option for demonstration (12):

Figure 4-2. Instruction Selection Tutorial Menu -Menu M-2.

4-8

Zoran VSPS Manual VSPS Interactive Usage

Description of options for Menu M-2

This section describes the options which are available under the Instruction
Selection Tutorial Menu (M-2):

1 HELP
Describes the Instruction Selection Tutorial Menu

2 Set CYCMEM in mode register
Allows interactive setting of the CYCMEM parameter contained in the
VSP mode register. Chapter V discusses the function of CYCMEM in
greater detail.

3 Set number of RAM sections in mode register
Allows interactive setting of the NMS bit contained in the VSP mode
register. Chapter V discusses the function of NMS in greater detail.

4 Initialize scale nibbles
Allows interactive setting of each of the scale nibbles contained in the
internal VSP scale RAM. Each nibble should be entered as a decimal
number, not a hex number, from 0 - 15.

5 Dump instruction parameter descriptions to file
This option dumps a description of all of the parameter fields for all of the
instructions to a disk file. Included are parameter defaults, widths, logical
and literal values. The file may be printed for quick reference on the VSP
instruction parameters.

6 Set the VSP number
Allows defining the logical number of the current VSP to a number other
than the default of 0. This is necessary for multiple VSP applications.

7 Bit numbering right-to-left
Allows redefining the bit numbers in the instruction fields to bit number 0
on the right end of the instruction word and to bit number 15 on the left end
of the word. This is the default format of instruction words, and is
compatible with standard nomenclature.

8 Bit numbering left-to-right
Allows redefining the bit numbers in the instruction fields to bit number 15
on the right end of the instruction word and to bit number 0 on the left end
of the word.

9 Enable VSP interrupts
Sets the four LSBs of the mode register to 1. Each bit enables a particular
interrupt condition for the VSP.

10 Disable VSP interrupts
Clears the four LSBs of the mode register to 0. The VSP will not generate
an interrupt as a function of the four LSBs in the mode register.

4-9

Zoran VSPS Manual VSPS Interactive Usage

11 Modify external RAM
Shows memory locations one by one, displaying the current value and
allowing the user to change those values as necessary.

12 Return to previous MENU
Exits the Instruction Selection Tutorial Menu and returns control back to
the Main Menu.

Instruction Name
Typing any instruction name (shown in the lower half of figure 4-2) at the
prompt in Menu M-2 calls Menu M-2-InOp. This menu allows instruction
parameter definition as well as instruction execution. Section 4.4.2.1
discusses this in more detail.

4.4.2.1 Instruction Options Menu • Menu M-2-InOp

The Instruction Options Menu (M-2-InOp) is entered by selecting an instruction
from the lower half of Menu M-2. An example of Menu M-2-InOp is shown in
Figure 4-3. The upper half of the menu displays the default parameters defined by
the system for the particular instruction chosen. Additionally, a menu of choices
for additional information about the instruction is displayed in the bottom half of
Menu M-2-InOp. The lower half of the menu is the same for all instructions,
although the displayed parameters in the upper half are particular to the instruction
chosen.

Instruction parameters (with LOGICAL values) for LD are:

NMPf :64
ZP :0
RV :0

RS
EI
ZR

:0
:0
:0

MDF :3
MBS :128
AD :0

INTRP
MSS
MBA

:0
:2
:0

0 executes instruction 'LD'. (If the message level is 1 or higher, the
instruction and its parameters will be displayed. If the message level is 2
or higher, the display will be followed by a read to the terminal. At this
point, you may enter a new message level or any Menu M-4 option
followed by a <Cr>. If you set the message level to 3, a detailed
description of instruction execution will be displayed.)

1 display size and restrictions of all parameters
2 display size and restrictions of all parameters and opcodes
3 display and set LOGICAL parameter values
4 display and set LITERAL parameter values
S show the translations from LOGICAL to LITERAL values
6 return to Instruction Selection Tutorial Menu

Specify instruction parameter to change or numeric option above (6):

Figure 4-3. Instruction Options Menu - Menu M-2-InOp.

4-10

Zoran VSPS Manual

Description of menu choices for Menu M-2-InOp:

1 Display size and restrictions of all parameters

VSPS Interactive Usage

Displays the number of bits required of each parameter in the instruction
word, the first bit location, the word number for instructions that require
multiple words, and the defaults for the parameters.

2 Display size and restrictions of all parameters and operation codes
Same as display for option 1 plus additional parameters

3 Display and set LOGICAL parameter values
Displays all instruction parameters in the upper half of Menu M-2-InOp as
LOGICAL values. All logical values are preceded by a colon.

4 Display and set LITERAL parameter values
Displays all instruction parameters in the upper half of Menu M-2-lnOp as
LITERAL values. All literal values are preceded by an equal sign.

S Show the translations from LOGICAL to LITERAL values
Describes which parameters have different LOGICAL and LITERAL
descriptions. The translation formula is given for these parameters.

6 Return to Instruction Menu
Returns from the Instruction Parameter Menu (Menu M-2-InOp) to the
Instruction Menu (M-2).

Within Menu M-2-InOp, after the instruction is displayed and before it is
executed, the user may use any of the Menu M-4 options by simply typing in the
command number corresponding to the function desired (see Menu M-4, page 4-
18). -

Figure 4-3 shows a specific example of the screen created when the LD (Load)
instruction is entered from menu M-2. The upper half of the screen displays the
default LD parameters as they are defmed by the system. The lower half of the
menu allows display of certain options and setting of logical and literal parameter
values. The instruction parameters in the upper half of Figure 4-3 are unique to
the LD instruction. Other instructions would have a similar display, but with
different parameters. The six numbered menu choices in the lower half of the
figure are common to all instruction displays.

Any of the instruction parameters shown in the upper half of the menu may be
easily changed by simply typing the parameter name followed by a <Cr> at the
prompt in Menu M-2-InOp. A prompt will be displayed with a query on the new
value to be assigned. For example, if the number of points to load is desired to be
something other than what is displayed, typing 'nmpt' <Cr> will prompt the user
for the new number of points to load. The correct response is any integer less than
or equal to 128. As new parameters are entered interactively, the instruction
parameters in the upper half of the menu are updated. Typing a <er> (default 0) at
the prompt will clear Menu M-2-InOp and replace the display with the instruction
selected and its list of associated parameters. Typing a second <Cr> will execute
the instruction with the displayed parameters.

4-11

Zoran VSPS Manual VSPS Interactive Usage

Just prior to the second <Cr> which begins instruction execution, the user has the
option to change the message display level for the instruction during execution.
Different display levels provide different amounts of information about the
instruction on the screen while the instruction is executing. Table 4-1 shows the
four different message level capabilities of the simulator. The default level is '2'
when the simulator is entered. This level will display the instruction to be
executed, but not the memory contents addressed on each clock cycle. It is used
primarily for single-stepping instruction execution. . For the purpose of this
discussion, type a '3' prior to the second <Cr>. Both internal VSP RAM as well as
external RAM being addressed on each clock cycle is displayed.

Table 4-1. Display levels provided during instruction execution.

0 print nothing
1 print VSP instructions
2 print VSP instructions and wait for

RETURN or selection from this menu
3 print detailed description of each instruction .

The message level of the simulator may also be changed in Menu M-4. In fact, the
options shown in Table 4-1 are taken directly from the option of Menu M-4.
Section 4.4.5 will discuss Menu M-4 in greater detail.

If message level 2 or 3 is selected from Table 4-1, it will apply to all later
interactive instruction executions until it is manually changed by entering another
option. If message level 0 or 1 is selected, the message level may not be changed
from Menu M-2-InOp. The message level must be changed by going through
MenuM-4.

NOTE: It is recommended that the VSP engineerl.rig data sheet be consulted for
detailed descriptions of all parameters associated with the instruction set.

4-12

Zoran VSPS Manual VSPS Interactive Usage

4.4.3 Data Generation and Display Menu - Menu M-3

Figure 4-4 shows a picture of the screen created by the Data Generation and
Display Menu (M-3). From this menu options can be chosen which assist in
creating input signals, writing output signals to memory, initializing memory,
dumping VSP memory, and plotting data in external memory. Option' 15' is used
to choose the seed for the random number generator. The HELP selection is very
useful while becoming familiar with these menu selections. The only option
which leads to a subordinate menu is option '8', which calls the interactive signal
generator.

DATA GENERATION AND DISPLAY :MENU (M-3)

1 HELP
2 Command mode
3 Previous menu

External Memory:
4 Modify memory
5 Graphics plot
6 Character plot
7 List
8 Signal generation

Other Options

VSP Internal Memory:
9 Modify memory
10 Graphics plot
11 Character plot
12 List
13 Display Registers
14 Select VSP

15 Set random number generator seed
16 Initialize all memory

Specify value of your selection (0)(3):

Figure 4-4. Data Generation and Display Menu - Menu M-3.

Description of Option Selections for Menu M-3:

1 HELP
Describes the Data Generation and Display Menu (M-3).

2 Command Mode
Selects the macro command-language environment. This is the same
environment which can be entered from the Main Menu.

3 Previous Menu
Returns the simulator to the previous menu.

4-13

Zoran VSPS Manual VSPS Interactive Usage

4 Modify memory
Allows interactive entry of data in external memory at specific addresses;
data may be specified in either decimal or hexadecimal form.

S Graphics Plot
Will use the graphics capabilities of the terminal for graphically displaying
simulated external VSP memory. Options allow plotting of signals in the
following formats: complex signals, real or imaginary parts of complex
signals or packed real signals. Packed real signals indicate that successive
external memory addresses are interpreted by the plotting routines as real
(imaginary) signals. This contrasts with plotting the real or imaginary

, parts of a complex signal where every other external address is displayed.

In addition, the difference between two signals may also be plotted.

Users are interactively queried when selecting this option.

6 Character plot

7 List

Allows plotting simulated external VSP memory on display terminals
which do not have graphics capability. The queries for this option are
exactly the same as for option '5'.

This option dumps the contents of external memory locations selected by
the user. The queries for this option are exactly the same as for options 5
and6.

8 Signal Generation
Calls the simulator Signal Generation Menu (M-3-8). Menu M-3-8 is able
to generate a number of different kinds of signals which may be used for
input to the simulator. As signals are generated, they are written to
simulated external VSP memory. Menu M-3-8 is discussed in detail in
section 4.4.3.1.

9 Modify memory
Allows interactive entry of internal data in specific location.

10 Graphics plot
Will use the graphics capabilities of the terminal for graphically displaying
simulated internal VSP memory. Options allow plotting of signals in the
following formats: complex signals, real or imaginary parts of complex
signals or packed real signals. Packed real signals indicate that successive
internal memory addresses are interpreted by the plotting routines as real
(imaginary) signals. This contrasts with plotting the real or imaginary
parts of a complex signal where every other internal address is displayed.

In addition, the difference between two signals may also be plotted.

Users are interactively queried when selecting this option.

4-14

Zoran VSPS Manual VSPS Interactive Usage

11 Character plot

12 List

Allows plotting simulated internal VSP memory on display terminals
which do not have graphics capability. The queries for this option are
exactly the same as for option '10'.

This option dumps the contents of internal memory locations selected by
the user. The queries for this option are exactly the same as for options 10
and 11.

13 Display registers
Displays contents of VSP accumulators, scale registers, mode and status
registers.

14 Select VSP
Allows selection of the logical number of the VSP. This option is used
only when multiple VSPs are being simulated in a single application within
the VSPS. The default is 'O'.

15 Set random number generator seed
The user can set the seed for the random number generator. The seed for
the random number generator need not be set, but different seeds for
successive runs will ensure different random number sequences. Random
number sequences are generated in the Signal Generation Menu (M-3-8).

16 Initialize all memory
This option initializes all simulated external memory as well as internal
VSP memory associated with the simulator to non-zero values. The values
written to memory are a ramp function beginning at data value 16384.

4-15

Zoran VSPS Manual VSPS Interactive Usage

4.4.3.1 Signal Generation • Menu M-3-8

The VSP simulator contains a signal generator that creates various types of test
signals which are useful for testing algorithms. The signal generator is entered
from the Data Generation and Display Menu (M-3) as option '8'. Figure 4-5
shows what the Signal Generation Menu looks like on the terminal screen.

SIGNAL GENERATION MENU (M-3-8)

1 HELP
2 Signal generation with normalization after summation
3 Clear memory and set parameters for a new signal
4 Add a signal to memory
5 Subtract a signal from memory
6 Multiply memory by a signal
7 Divide memory by a signal
8 Save signal to disk as integers
9 Load integer signal from disk
10 Save a signal to a hex format file
11 Load a signal from a hex format file
12 Command mode
13 Return to previous menu

Specify value of your selection (0)(13):

Figure 4-5. Signal Generation Menu - Menu M-3-8.

4-16

(

(

Zoran VSPS Manual VSPS Interactive Usage

Description of menu choices for Menu M-3-8:

1 HELP
Describes the Signal Generation Menu and its options.

2 Signal generalization with normalization after summation
Generates a compound signal. A compound signal is a signal which may
be a summation of a number of signals such as sine waves, square waves,
exponentials, etc. All arithmetic is done in floating-point and then
converted to integer after the complete signal is generated. This particular
signal generator is a complete package and can be used in place of options
3 through 11, which are discussed later. In general, this signal generator
OR the integer signal generator made up of options 3 through 11 should be
used.

The user is queried about the following:

A) the memory base address (physical address in simulated external
memory) to which the data should be written;

B) total amplitude of the signal, to which the appropriate response is any
real number between -1.0 and +1.0. This fraction is scaled to a 16-
bit twos-complement full-scale integer value. Negative numbers
specify that the data generated is real. Positive numbers specify
that the data generated is complex;

C) number of samples generated;

D) bit-reversed addresses. The user can specify
·· '1' for bit-reversal, or '2' for all 0 data.

The default value is 'O' and serves to delineate the data in normal
order.

In addition to the "sum of sines" option, the user is presented with two
other options. The first is a "special" function which allows the user to
perform a "sum of sines" with exponentially increasing amplitude. (This
option, although rarely used, is primarily for the purpose of debugging
FFrs whose actual value may be somewhat masked by the symmetry of
the signals generated.) The second is a "save" function which enables the
user to restore data saved in either one of the memory save buffers or on
disk.

Following signal generation, the user is queried as to where the signal is to
be stored. Values 1-10 represent memory save buffers, in which the
signals arc stored as non-scaled floating-point. Values 11-13 will save the
signal to a disk file as follows:

11
12
13

Single precision floating-point
16-bit Integer
Double precision floating-point

4-17

Zoran VSPS Manual VSPS Interactive Usage

3 Clear memory and set parameters for a new signal
Clears an amount of simulated external VSP memory defined by the user.
This is usually done prior to generating a new signal. The user is queried
as to the physical starting address of memory to clear, the number of
samples, and whether the data is real or complex.

4 Add a signal to memory
Adds a new signal to simulated external VSP memory. The result is stored
in simulated external VSP memory. Types of signals which may be added
are: sine, cosine, and square waves, random signals, DC values, impulses
and ramps. This function may be used in conjunction with options 5
through 7 to create compound signals which are formed as sums or
products of other signals already existing in memory.

In this selection, the user is queried about several options after selecting the
type of signal to be generated. The user is queried about the following:

A) the relative amplitude of the signal. This refers to the amplitude of the
new signal with respect to the signal previously generated. This is
very important as it determines how the new signal will be scaled in
respect to the original signal.

B) the phase in degrees of the initial phase of the signal to be generated.

C) the cycles per total samples. This refers to the number of cycles in the
total number (already specified by the user) of samples, and is
independent of the sample rate.

5 Subtract a signal from memory
Performs the same function as option '4' except that a signal is subtracted
from simulated external VSP memory.

6 Multiply memory by a signal
Performs the same function as option '4' except that a new signal is
multiplied with a signal which exists in simulated external VSP memory.

7 Divide memory by a signal
Performs the same function as option '4' except that a signal existing in
simulated external VSP memory is divided by a new signal.

8 Save signal to disk as integers
Allows saving a signal which exists in simulated external VSP memory to
disk. This is useful for archival purposes or for building a library of
signals. The file is saved in the same binary format as it is generated in,
with the first four characters serving as a counter.

9 Load integer signal from disk
Allows reading a signal which exists in a disk file (in binary format) into
simulated external VSP memory.

4-18

(

(

Zoran VSPS Manual VSPS Interactive Usage

10 Save a signal to a hex format file
Allows the user to save a signal which exists in simulated external VSP
memory to a hex-format file. In this case, the signal is saved in Intel Hex
form. The first and last lines serve as the header and trailer, respectively.
The first four characters of each line refer to the line number, the second
four represent the actual number of bytes, and the final four serve as a
check sum. This check sum allows the user to verify that the signal was
transmitted without error from the original binary format to the hex-format.

11 Load a signal from a hex format file
Allows reading a signal which exists in a hex-format file (see option '10',
above) into simulated external VSP memory.

12 Command mode
Selects the macro command-language environment. This is the same
environment which can be entered from the Main Menu.

13 Return to the previous menu
Returns the simulator to the previous menu.

The difference in using option '2' versus options 3 through 11 for signal
generation is that option '2' performs all arithmetic in floating-point and converts
the results to integers after the complete signal is generated. Options 3 through 11
perform all signal generation using the 16-bit integer representation of simulated
external memory.

4.4.4 Clock Control and Other Display Options Menu - Menu M-4

Figure 4-6 shows what Menu M-4 looks like on the user screen. This menu
provides a variety of choices, and is useful in helping debug algorithms as well as
displaying or plotting results. The upper half of the menu (options 0 - 3) is used to
choose the amount and kind of message-level display desired on the terminal
while instructions arc being executed. The lower half provides utility functions for
displaying the state of VSP instructions as they arc executed: plotting data,
displaying memory and registers, displaying source code, and displaying data on
an individual VSP when several arc in use. Three of the options -- 20, 21and22 -
lead to subordinate menus. These subordinate menus will be discussed in sections
4.4.4.1, 4.4.4.2, and 4.4.4.3.

4-19

Zoran VSPS Manual VSPS Interactive Usage

DISPLAY OPTIONS MENU (M-4)

Message levels are:
0 print nothing 1 print VSP instructions
2 print VSP instructions and wait for

RETURN or selection from Display Options Menu
3 print detailed description of each instruction
9 HELP

Display external memory:
10 Graphics plot 11 Character plot 12 List

Display VSP internal memory:
13 Graphics plot 14 Character plot 15 List
16 Display registers 17 Select VSP

Display source code file and line number with instructions:
18 Start 19 Stop

Other menus:
20 Additional display options
21 VSP timing control and display
22 Control of instruction queueing and breakpoints

Setting the message level exits from this menu

Specify value of message level or other option (-1)(2):

Figure 4-6. Display Options Menu - Menu M-4.

Note while executing user or library programs at message levels 2 or 3, it is always
possible to immediately execute any of the options shown in this menu, even when
the menu is not displayed. When message level 2 or 3 is being used during
program execution, each instruction requires a <er> prior to its execution. If,
instead of typing a <er>, a user types any of the options displayed in Menu M-4
followed by a <Cr>, the option chosen will be executed. For instance, typing '10'
<Cr> will immediately begin querying the user about high-resolution plotting
parameters. Also, typing a '1' <er> will change the message level to 1 so that
instructions are printed to the screen when they are executed, but they do not
require a carriage return before they are executed.

4-20

/

(

(

Zoran VSPS Manual VSPS Interactive Usage

Description of Menu Choices for Menu M-4:

0 Print nothing .
No messages are printed to the terminal regarding the execution of VSP
instructions. After each instruction is executed, control is returned to the
calling menu.

1 Print VSP instructions
The VSP instruction being executed is printed on the screen as it is
executed. No additional information about the instruction is printed.

2 Print VSP instructions and wait for RETURN or selection from this menu
Each VSP instruction is printed on the terminal prior to its execution.
Before it can be executed, the user must confirm its execution by hitting a
<Cr> or providing a new help level (0-3) followed by a <Cr>.

3 Print detailed description of each instruction
Each VSP instruction will be printed on the terminal prior to execution as
in message level 2. Its execution must again be confirmed by a <Cr>.
After the <Cr> the Simulator will display the contents of any internal or
external memory (or both) being accessed by the instruction on each clock
cycle.

9 HELP
Describes the Display Options Menu and its options.

10 Graphics plot
Will use the graphics capabilities of the terminal for graphically displaying
simulated external VSP memory. Options allow plotting of signals in the
following formats: complex signals, real or imaginary parts of complex
signals or packed real signals. Packed real signals indicate that successive
external memory addresses are interpreted by the plotting routines as real
(imaginary) signals. This contrasts with plotting the real or imaginary
parts of a complex signal where every other external address is displayed.
The queries for this option are exactly the same as those for option '5' in
MenuM-3.

In addition, the difference between two signals may also be plotted.

Users are interactively queried when selecting this option.

11 Character plot

12 List

Allows plotting simulated external VSP memory on display terminals
which do not have graphics capability. The queries for this option are
exactly the same as for option '10' above.

This option dumps the contents of external memory selected by the user.
The queries for this option are exactly the same as for options '1 O' and '11'
above.

4-21

Zoran VSPS Manual VSPS Interactive Usage

13 Graphics plot
Will use the graphics capabilities of the terminal for graphically displaying
simulated internal VSP memory. Options allow plotting of signals in the
following formats: complex signals, real or imaginary parts of complex
signals or packed real signals. Packed real signals indicate that successive
internal memory addresses are interpreted by the plotting routines as real
(imaginary) signals. This contrasts with plotting the real or imaginary
parts of a complex signal where every other internal address is displayed.
The queries for this option are exactly the same as for option '5' in Menu
M-3.

In addition, the difference between two signals may also be plotted.

Users are interactively queried when selecting this option.

14 Character plot

15 List

Allows plotting simulated internal VSP memory on display terminals
which do not have graphics capability. The queries for this option are
exactly the same as for option '13' above.

This option dumps the contents of internal memory selected by the user.
The queries for this option are exactly the same as for options 13 and 14
above.

16 Display registers
This option displays the accumulators, scale registers, mode and status
registers of the simulated VSP with logical number 0 to the terminal. (This
is the same display as provided in option' 13' in Menu M-3.)

17 Select VSP
Performs the same dump as described in option '15' above. However, this
option can dump the contents of VSPs which are not currently active. This
option is valuable for applications simulating multiple VSPs.

18 Start display of source code file and line numbers
When VSP programs are executed, this option will display on the terminal
the source code file name and line number for each VSP instruction
executed. It is useful for tracking program execution. The option is
defaulted ON when the simulator is run.

19 Stop display of source code file and line numbers
Stops printing on terminal of the source code file names and line numbers
when VSP programs are executed with the VSPS. This option turns off
option '18 ', above.

20 Additional display options
This option calls a subordinate menu which contains additional display
options. The options available under the subordinate menu are discussed
in section 4.4.4.1.

4-22

(

(

Zoran VSPS Manual VSPS Interactive Usage

21 VSP timing control and display
This option calls a subordinate menu which initiates the VSP clock
options. The options available under the subordinate menu are described
in section 4.4.4.2.

22 Control of instruction queueing and breakpoints
This option selects a subordinate menu which controls the VSPS queueing
options and allows setting a breakpoint on a particular clock cycle. The
queueing options affect the simulation of instruction fetch and execution.
The options available under the subordinate menu are described in section
4.4.4.3.

4.4.4.1 Additional Display Options Menu - Menu M-4-20

Figure 4-7 shows what the Additional Display Options Menu (Menu M-4-20)
looks like on the terminal.

Option 1 is the HELP selection for Menu M-4-20.

Option 2 returns control to the calling menu (Menu M-4)

Options 3, 4, S and 6 are switches which select the data representation when
memory dumps are performed.

Options 7, 8 and 9 control instruction and comment dumps to disk.

Option 10 turns on and option 11 turns off the display of the file name containing
the HELP text prior to the simulator reading the HELP file. This is useful for
instances where users may want to add additional textual information to existing
HELP files. The default when the simulator is run is not to display HELP file
names.

Options 12 and 13 change the display of instruction parameters between logical
and literal formats. These last two are the same as options 3 and 4 in Menu M-2-
InOp.

Options 14 and 15 control the formatted dumping of memory and instructions to
disk.

4-23

Zoran VSPS Manual VSPS Interactive Usage

ADDmONAL DISPLAY OPTIONS MENU (M-4-20)

1 HELP
2 Previous menu

Memory and register display format:
3 Integer 4 Real S Hex 6 Binary

Disk dump of instructions and plots:
7 Start 8 Stop 9 Add comment line

Display of help file names when files are read:
10 Start 11 Stop

Instruction parameter display:
12 LOGICAL 13 LrIERAL

Other:
14 JEDEC format insttuctions dumps
IS DAISY format dumps

Specify value of display option (0)(2):

Figure 4·7. Additional Display Options Menu - Menu M-4-20.

4-24

/

(

(

Zoran VSPS Manual VSPS Interactive Usage

4.4.4.2 VSP Timing Control and Display Menu • Menu M-4-21

Figure 4-8 presents the clock options available in the VSPS environment for menu
M-4-21. Included are choices for displaying clock operation, turning the clock on
and off, clearing it, and setting the speed (in clock cycles) of external RAM.
Instruction execution times can be determined by clearing the clock and having
clock cycles displayed during instruction execution. By setting the VSPS to
execute for N clock cycles, the program will stop after N cycles at which time the
state of the VSP registers and memory may be interrogated. A HELP menu is
provided as option 'l' which explains how to use the options provided by the
menu.

VSP TIMING CONTROL AND DISPLAY MENU (M-4-21)

1 HELP
2 Return to previous menu

Print clocks with instructions:
3 Start 4 Stop

Clock:
5 On 6 Off

Cumulative clock and bus cycles:
7 Clear 8 Display

Other:
9 Set external RAM speed
10 Set clock speed
11 Set break point at N clocks

Specify value of clock option (0)(2):

Figure 4-8. VSP Timing Control and Display Menu - Menu M-4-21.

4-25

Zoran VSPS Manual VSPS Interactive Usage

4.4.4.3 Control of Instruction Queueing and Breakpoints
Menu • Menu M-4-22

Figure 4-9 shows the options available in Menu M-4-22 for modeling VSP
instruction queueing and related parameters. The upper half of the menu either
turns off the modeling of the VSP hardware queue or determines when control is
returned to the host after an instruction is written to the queue. The second half of
the menu provides options for instruction queueing. A short on-screen explanation
of the choices exists on the terminal under the menu beading. A more detailed
treatment of host/VSP coordination and instruction queueing is presented in
ChapterX.

Responding to Menu M-4-22 with any positive number sets a breakpoint at that
number of clocks cycles, then immediately returns menu control to the calling
Display Options Menu (M-4).

CONTROL OF INSTRUCTION QUEUEING AND BREAKPOINTS
MENU (M-4-22)

Any positive number N sets a break point at N clocks and returns to the
previous menu. Option "-1" turns off modeling of the VSP hardware
queue (default is off). The next three options tum on the hardware and
software queue models. In addition, they select when control is returned to
the host after an instruction queued. The instruction may or may not
complete execution. Explicit W AITs and queue full can force instruction
completion. Turning on the hardware queue also enables the software
queues unless they are specifically turned off with option " -7".

-1 Do not model queueing
-2 Return immediately to host (this defers instruction execution

until an explicit WAIT or the queue is full)
-3 Complete each instruction immediately
-4 Specify random model parameters (each instruction will execute

for a random number of clocks before returning)
-S Reset VSP instruction execution and VSP queues

VSPS software queues including fetch queue:
-6 On -7 Off

-8 Return to previous menu

Specify value of BREAK point or queueing option (-8)(-8):

Figure 4-9. Control of Instruction Queueing and Breakpoints Menu -Menu
M-4-22.

4-26

(

Zoran VSPS Manual VSPS Interactive Usage

4.4.5 VSP Simulator Signal Processing Library Menu - Menu M-5

The VSP simulator comes equipped with a number of common signal processing
algorithms already programmed. Menu M-5 is shown in Figure 4-10 and shows
which algorithms are already programmed into the simulator and what the terminal
screen looks like for selecting these algorithms. The algorithm parameters can be
"customized" by simulator users by interactively specifying queried parameters
such as the length of data vectors and where these vectors exist in simulated
external VSP memory. These algorithms are useful from the standpoint that they
are already programmed and debugged and may be used as example programs for
how to write VSP code. In addition, they are useful for evaluating VSPS accuracy
by comparing their results with the same algorithms programmed in the IEEE
Signal Processing Library.

The names of the algorithms shown in Menu M-5 are descriptive of what signal
processing function is perf onned. Additional descriptions of the algorithms are
provided below. The HELP option in the menu also goes into additional
discussions of the algorithms.

Available processes:

1 Fast convolution/correlation
2 Complex vector add
3 Complex vector multiply
4 Power spectrum of complex data
6 Magnitude of complex vector
7 Moment of power spectrum of complex vector
8 General FFf (Fast Fourier Transform)
9 256-point demo FFf
lORealFFf
11 HELP
0 Exit to Main Menu

Specify value of process (-1)(0):

Figure 4-10. VSP Simulator Signal Processing Libray Menu- Menu M-5.

4-27

Zoran VSPS Manual

Description of menu choices for Menu M·S:

1 Fast convolution/correlation

VSPS Interactive Usage

This technique calculates the convolution or correlation result of two data
sequences in the frequency domain. Rather than calculating a time-domain
convolution result, both sequences are transformed into the frequency
domain, where an element-by-element multiplication rather than a
convolution operation is performed. The multiplication result is inverse
transformed back to the time domain which corresponds to the convolution
or correlation result desired.

Note that the term fast convolution is not meant to imply that the
transform-multiplication-inverse-transform operation is always faster than
the time-domain convolution operation; it is completely data dependent.
However, for large convolution results, it may be more efficient to perform
the calculations in the frequency domain and then perform an inverse
transform to return to the time domain.

2 Complex vector add
This signal processing option performs a complex vector addition using
two vectors of arbitrary length existing in external memory. The real and
imaginary parts . of one vector are added to the corresponding real and
imaginary part of the second vector. The resulting vector is stored back
into external memory.

3 Complex vector multiply
This signal processing option performs a complex vector multiplication
using two complex vectors of arbitrary length existing in external memory.
Each complex sample in one vector is multiplied with the corresponding
complex sample in the other vector. The result is stored back into external
memory.

4 Power spectrum of complex data
This signal processing option calculates the power spectrum of a complex
vector existing in external memory. The vector length must be an even
power of two. The procedure involves first calculating the FFI' of the
complex input vector, then calculating the square of the magnitude of the
resulting transformed vector. The result is stored back into external
memory.

6 Magnitude of complex vector
This signal processing option calculates the magnitude of each complex
sample existing in an arbitrary-length complex vector in external memory.
The calculation is performed by first taking the absolute value of each
complex sample in the vector which moves all samples to the first quadrant
of the unit circle. Then each complex sample is successively rotated closer
and closer towards the 00 axis. In the limit, when the complex sample lies
on the x-axis, the imaginary component is zero and the magnitude of the
sample is equal to the x-component. After three vector rotations, the
maximum error in magnitude is 1.9%. After five vector rotations, the
maximum error in magnitude is 0.12%.

4-28

/

(

Zoran VSPS Manual VSPS Interactive Usage

7 Moment of power spectrum of complex vector
This signal processing option calculates the moment of a power spectrum.
The power spectrum is simply an FFT of a complex vector followed by an
MGSQ instruction as in option '4'. The moment operation first performs a
ML TR instruction on the output of the power spectrum with an external
ramp function, then scales the accumulated sum (from the ML TR) by the
total power accumulated by the MGSQ calculation.

The external vector used in the ramp is a "real" linear function
corresponding to the index of the spectrum; i.e., 0,1,2, ... 127 for a 128-point
spectrum. Note that the indices are scaled from 0 to 32767 corresponding
to the full scale range of the VSP. Additionally, because the output
addresses of the FFT are in bit-reversed order, the ordering of the ramp
vector in external memory is also in bit-reversed order. It is not necessary
for the user to provide the ramp vector; it is calculated and stored in
external memory by the library function. The accumulated value of the
MLTR instruction is scaled with the SCL instruction by the power in all
the frequencies accumulated during the MGSQ operation.

8 General FFf
The general FFT signal processing option uses the VSP instruction set for
calculating a general-length FFT from 2 to 4096 points. The input vector
is assumed to be complex, and the calculation uses block floating-point
scaling. The real and imaginary results of the FFT are stored back into
external memory.

9 256-point demo FFf
The 256-point demo FFT calculates 256-point complex FFr on a complex
vector which is defined as beginning at memory base address 0 in external
memory. The real and imaginary results of the FFT calculation are written
back out to external memory. There are no user parameters queried for this
demoFFT.

lORealFFf
The real FFT signal processing option is a powerful library function which
provides two different types of FFT calculations. A "real FFT'' means that
the input vector is assumed to be a real vector, not a complex vector. An
FFT calculated on real input data generates a symmetric s~trum about
the N/2 transform point. The output of each real FFT calculation is a
complex vector of length N/2 complex samples corresponding to the first
half (unfolded) portion of the spectrum.

The first real FFT option calculates two simultaneous real FFrs using one
complex FFr instruction. The real vectors are assumed to exist in external
memory with a maximum length of N=l28 real samples each. One of the
real vectors is loaded into the real portion of VSP memory, and the other
real vector is loaded into the imaginary portion of VSP memory. After the
FFr calculation, two N/2 complex-point sequences corresponding to the
transforms of the two input vectors are written to external memory.

4-29

Zoran VSPS Manual VSPS Interactive Usage

The second real FFf option calculates a 2*N-point real FFT using an N
point complex FFf instruction. The input vector is assumed to exist in
external VSP memory with a maximum length of N=256 real samples.
After the FFf calculation, an N/2 complex-point sequence is written out to
external memory corresponding to the first half of the symmetric spectrum.

4-30

(

Zoran VSPS Manual VSPS Interactive Usage

4.4.6 IEEE Signal Processing Library Menu • Menu M-6

To facilitate algorithm comparisons between the VSP integer (or block floating
point) arithmetic and full floating-point arithmetic, a package of IEEE signal
processing algorithms is included within the simulator. The algorithms included
from the IEEE are shown in Figure 4-11 as Menu M-6. All of the programs in this
menu are also included in the VSP Simulator Signal Processing Library (Menu M-
5). The difference is that the IEEE routines are written using floating-point
arithmetic, while the VSP signal processing library is written using the integer
VSP instructions. The IEEE routines are particularly useful in making
comparisons with VSPS programs for arithmetic accuracy. All queries in either
menus M-5 and M-6 are the same for the corresponding library. There are no
subordinate menus called from Menu M-6. The HELP selection provides the same
text as the HELP selection for Menu M-5.

This program contains routines adapted, with pernuss1on, from the IEEE
publication "Programs for Digital Signal Processing". ZORAN Corporation is
solely responsible for the operation and support of this program.

Available processes:

1 Fast convolution/correlation
4 Power spectrum of complex data
6 Magnitude of complex vector
8 General FFr (Fast Fourier Transform)
lORealFFr
11 HELP
0 Exit to Main Menu

Specify value of process (-1)(0):

Figure 4-11. IEEE Signal Processing Library Menu - Menu M-6.

4-31

Zoran VSPS Manual VSPS Interactive Usage

4.4. 7 Application Library Menu • Menu M-7

The applications library contains complete applications programs which have been
included in the VSPS. Currently two applications exist in this library: Doppler
shift application and a 16K-point FFT. They are shown in Figure 4-12 and
constitute Menu M-7. More applications will be included in the library with time.
It is intended that the applications library exist as a resource to simulator users for
reference and as a library from which appropriate VSP code may be extracted.

Discussions of the applications included in this menu occur in Chapter VIII.

APPLICATION LIBRARY
MAIN MENU
Select-

1 Doppler-shift application
2 16KFFT
10 Return to previous menu

Specify value of selection (0)(10):
From line 0 in ''system": WAIT ALLDONE
Type 'RETURN' to continue:

Figure 4-12. Application Library Menu - Menu M-7.

Note: The application library is currently not provided in the PC version of
the VSP simulator.

4-32

r(

Zoran VSP SM anual VSPS Interactive Usage

4.4.8 Break Menu

The simulator supports a non-destructive HELP feature which allows temporary
interruption of the current processing. At any point in time while using the
simulator, even during user program or library program execution, typing a 'ctl-C'
(control C) will interrupt the current execution and bring the Break Menu into
view. The upper half of the Break Menu resembles Menu M-4, and the lower half
provides some obvious help functions. The Break Menu is shown in Figure 4-13.

From this menu, jumps may be made to other menus for changing or setting
options, plotting or displaying memory, changing the message level, or aborting
the current processing, or the simulator may be exited entirely. It is a very useful
feature for halting or modifying program execution.

BREAK MENU
Message level determines the information
displayed during instruction execution.

Message levels are:
0 print nothing 1 print VSP instructions
2 print VSP instructions and wait for

RETURN or selection from Display Options Menu
3 print detailed description of each instruction

11 Return to Main Menu (abort current processing)
12 Display options, message level and queueing
13 Data Generation and Display
14 Exit Simulator
16 Return to current processing

Setting the message level exits from this menu

Specify value of your selection (2):

Figure 4-13. Break Menu.

Note that on the PC version of the simulator, option 11 is not supported. It is not
possible to abort the current processing and jump directly to the Main Menu. All
other options are supported on the PC.

4-33

Zoran VSPS Manual VSPS Interactive Usage

4.5 A First Session with the VSPS

This section will show a complete example of how to enter the VSPS
environment, perform some very simple operations with the VSPS, and return to
the operating system. By following the examples, a path will be traced through the
menus which will make some of the simpler choices available. After this example,
the user should have gained enough confidence to allow tracing different paths
through the simulator and its menus while making different and more sophisticated
choices. After working with this exercise, novice users are encouraged to
experiment with different menu choices, as well as read the HELP selections
available in each menu. A few such sessions should insure confidence in using the
simulator and in learning the powerful features provided in the VSPS environment.

4.5.1 Entering the VSPS Environment

With the VSPS installed on the host computer, type 'vsps' <Cr> on VAX
computers or 'vsps' <Cr> on PCs at the prompt After a short pause, the system
displays will disappear and the screen will display the Main Menu of the VSPS as
shown in Figure 4-14. From the Main Menu, if the user wishes to create and store
waveforms in simulated external memory, he should select option '3' <Cr>, as
shown in the figure. This selection calls the signal generator within the simulator
which allows many types of real or complex signals to be created and stored in
simulated external memory. The user is encouraged to use the 'l' or HELP
selection and read the material that this choice provides.

4.5.l Creating a,nd Storing a Signal In Simulated External Memory

The '3' option from the Main Menu selects the Data Generation and Display
Menu. From this menu, an '8' <er> will load a signal to simulated external
memory. This selection calls the Signal Generation Menu, which allows signal
generation and storage in simulated external VSP memory. In addition, the user is
allowed to save signals to disk files. When a '2' <er> is entered, the normalization
after summation signal generator is called. The VSPS will pause for a few
seconds before responding while it is initializing memory buffers. Presently the
message shown as the first line in Figure 4-15 will appear:

"Specify value of memory base address:"

This is the beginning of the menu choices for creating a simulated signal; the
successive prompts are also shown in Figure 4-15 as they appear on the terminal.

In this example terminal session, prompts will be responded to in most cases by
selecting the default values; the result will be the loading of a complex sine wave
starting at simulated external memory location 0 and continuing for a total of 128
complex samples. Some of the prompts display two values before pausing for a
return. To select the default value, (the second number in parentheses when two

4-34

)

ff'
~

Zoran VSPS Manual VSPS Interactive Usage

are present), simply type a <Cr>. To go back in the prompt sequence and have the
opportunity of re-entering a previous entry, type the first value displayed and then
hit a <Cr>. For example, the first prompt queries:

"Specify value of memory base address (-1) (O):"

Hitting a <Cr> will specify that the signal about to be created will be loaded
starting at physical memory address 0 in simulated external memory. Any other
legal physical address in the 64K word address space could be provided as a
response to the prompt also. Typing '1000' <Cr> would begin the storage of the
waveform at physical memory address 1000 decimal. If '-1' <Cr> is typed, the
VSPS will exit the signal generator and reposition the program to the previous
(Signal Generation) menu. In this example, the default value of 0 is selected by
typing a <Cr>. We are now asked to:

"Specify value of maximum total amplitude (negative for real data)
(1.00000):"

The default for this prompts is 1.0. If 1.0 is selected, the signal generated will be
scaled to have a peak magnitude of 16384 in simulated external memory. In other
words, external memory is scaled to its maximum integer range. Valid responses
to this prompt are from -1.0 to + 1.0. The magnitude of the number represents the
amplitude of the signal created relative to the full-scale 16-bit integer range of the
VSP. Negative values are a command to the signal generator to create a purely
real signal with no imaginary component, and to write this real signal into
consecutive 16-bit external memory locations. Positive numbers command the
signal generator to create a complex signal with real and imaginary components,
and to write the complex signal into external memory as complex pairs of real and
imaginary samples. The absolute value of a negative entry also specifies the peak
magnitude of the signal generated.

The next prompt queries:

"Specify value of number of samples (0)(128):"

The response to this prompt is used to specify the number of samples which
should be created and written to simulated external memory. Depending on
whether a real or complex signal is being generated, either N or 2*N entries
(respectively) will be created and written to simulated external memory. A <Cr> is
typed to specify 128 complex samples (128 real and 128 imaginary words).

The next prompt:

"Specify value of 1 for bit-reversed, 2 clearing memory to 0 data (-1)(0):"

allows the storing of data in simulated external memory using bit-reversed
addresses if 'l' is selected. See the section on the FFT and bit-reversing for an
explanation of bit-reversal in greater detail. Option '2' clears the number of
memory samples specified, beginning at the memory base address already
selected. Option 'O' (the default selected in this example) generates data in normal
addressing order by typing a <er>.

4-35

Zoran VSP S Manual VSPS Interactive Usage

At the next prompt:

"Specify value of 1 - Sum of Signals, 2 - Special, 3 - Saved. (OXl):"

the default value of 1 is selected by typing a <Cr> to specify a signal that will be
made from the summation of a series of signals that we will choose from the next
prompt

The next prompt:

"Signal options are:
1 - Flat or Step, 2 - Impulse, 3 - Cosine
4 - Uniform random, 5 - Square wave, 0 - to Quit
Specify value of signal type (-1)(3):"

allows the user to choose the type of signal to add to memory. In this example, the
default of a cosine wave is adequate, and is selected by typing a <Cr>.

The next prompt:

"Specify value of relative amplitude (1.00000):"

allows the user to specify the relative amplitude of the signal generated in this pass
to others created in additional passes which will be summed together to create the
final compound waveform. In this example, only one signal will be generated, so
the default value of 1.0 is selected by typing a <Cr>.

The next prompt:

"Specify value of phase in degrees (30.00000):"

allows the user to select the initial phase for the current waveform being generated.
In this example, the default value of 300 is acceptable; it is selected by typing a
<Cf>.

The next prompt:

"Specify value of cycles per total samples (1.00000):"

allows specification of how many complete cycles of the specified waveform
should be generated in the 128 samples we specified earlier. Because we would
like to take an FFf on the signal we generate, choose an option other than the
default value of 1.00000, such as '4' <Cr>.

At this point, the screen displays the list of signal types once again. H another
waveform is selected at the prompt, this signal will be added to the cosine wave
already created and the user will be asked to select the phase, relative amplitude
and number of cycles of this signal as well. This process can be continued until a
sophisticated signal with many components had been created. In this example,
option 'O' is selected to exit the signal generation process; a 'O' is selected to exit

4-36

rf
\~

Zoran VSPS Manual VSPS Interactive Usage

the Signal Generation Menu without saving the signal just created to a special
memory buffer or to a disk file. The signal has, however, been stored in simulated
external (complex) memory samples 0 through 127, or physical memory addresses
0 through 255. The screen should now display the Signal Generation Menu.

It is now necessary to return to the Main Menu because the next step in this
example is to execute VSP instructions on the data just created and stored in
simulated external memory. Selecting the default options from the Signal
Generation Menu and the Data Generation and Display Menu will return program
operation to the Main Menu.

4.5.3 Interactive Instruction Execution

Instructions can be executed one at a time in a tutorial environment by selecting
option '2' from the Main Menu. Typing '2' <Cr> selects the Instruction Selection
Tutorial Menu as is shown in Figure 4-16. The bottom half of this menu lists the
VSP instruction set. Selecting an instruction for execution is performed by simply
typing the name of the instruction plus a carriage return at the prompt. In this
particular example, the first step is to execute a load (LO) instruction on the data
we have just generated which moves data in simulated external memory into
internal VSP RAM. The first step in loading the data is to type 'LD' <Cr> at the
prompt as shown.

After 'LD' is typed, the menu shown in Figure 4-17 appears. The parameter
values displayed in the upper half of the menu are the default parameters defined
by the VSP simulator. These are the parameters which will be used when the LD
instruction is executed unless changes are made to them. For this example, we
want to load all 128 complex points that we have generated so we type 'nmpt'
<Cr> as shown; at the next prompt we type '128' <er>. We have now set the
NMPT field of the LD instruction to 128. All the other values are con'CCt for this
exercise, especially MBA:O (memory base address:O) which points to address 0 of
·simulated external memory. A <Cr> causes a rectum to the previous menu, while a
'O' <er> causes the l.D instruction and parameters to be displayed as shown in
Figure 4-17; typing a second 'O' <Cr> causes the instruction to be executed.

Now that the complex sine wave has been loaded into the simulated VSP RAM,
we want to examine this RAM to see what the data that it contains look like. To
do this, we back up to the Main Menu and there we type '3' <Cr> to select the
Data Generation and Display Menu. Once we are in the display menu we choose
option '12' to display VSP RAM and option '13' to display register contents. The
screen will begin to scroll showing a display like that of Figure 4-19.

This is a display of the complex sine wave now contained in (complex) memory
locations 0 through 127; each sample is indexed as VSPRAM:O [number](real
part, imaginary part). The "O" after VSPRAM: refers to the first simulated VSP in
the system (recall that the VSPS can simulate systems where several VSPs share
the same bus). The indices run from 0 to 127, indexing all of the complex samples
which we generated using the signal generator.

4-37

Zoran VSPS Manual VSPS Interactive Usage

Internal VSP RAM is 17 bits long; notice that the numbers in external memory
appear to have been multiplied by two when they were transferred to internal
RAM. They have in fact been bit-extended (left-shifted by one bit) to 17 bits.
Data conversion from 16 to 17 bits and back again is handled automatically as data
is moved from internal memory to RAM and back.

After the VSP RAM and register contents have been displayed, typing <er>
returns operation to the Data Generation and Display Menu. From there we
return to the Main Menu, and from there we select option '2' to return to the
Instruction Selection Tutorial Menu.

Now we are going to perform an FFT on the contents of internal VSP memory and
display the result. Type 'fft' <Cr> in the Instruction Selection Tutorial Menu to
choose the FFT instruction. A full description of the 'FFT' instruction exists in
section 6.7. For the purposes of this illustration we need to change the following
parameters: NMBT (for number of butterflies) to logical 128 and FPS (first point
separation) to 64. Now execute the FFT instruction just as the LD was executed
by typing 'O' plus two carriage returns; the instruction will execute and store the
results in internal VSP RAM.

In order to make sense of the display of the results from the FFT instruction we
need to bit-reverse the addresses of the output data so that they appear in normal
order. To do this, we again use the instruction tutorial. Select the ST instruction,
set .MBA to 0 and RV to 1. Executing ST ('O' plus a double <Cr>) now puts the
bit-reversed ouput of the FFT back into simulated external VSP memory
beginning at physical address 0. Since the FFT bit-reversed its results, the
memory contents are now back in normal order after the ST instruction.

4.S.4 Plotting External Memory on the Terminal

The next order of business is to display the results. Return to the Main Menu and
select option '3' for the Data Generation and Display Menu. From this menu
select option '5' for a graphics display of memory contents. From this point,
simply accept the default values which are prompted on the screen for: data type
(which will be complex), a "single series" plot, base address (which will be zero),
and the number of samples (which will be 128). After a few seconds the terminal
will display the output which is just the spike of the single frequency value of the
sine wave that was created in the beginning; this is shown in Figure 4-20.

Now type <Cr> to erase the display on the screen, follow the prompt instructions to
return to the Data Generation and Display Menu, then to the Main Menu and
finally select option '11 ', which returns control to the operating system.

We have now entered the VSPS from the system, created a signal, loaded it from
simulated external memory to simulated VSP RAM and displayed the RAM
contents on the screen. From this point we did an FFT, stored the results in nomal
order, displayed them, and backed out to the system.

You are now in a position to go in and repeat this process, this time progressively
increasing the complexity of what you do by generating more complicated signals,

4-38

(

Zoran VSPS Manual VSPS Interactive Usage

operating on them in more complicated ways and choosing other display options.
The VSPS is more than just a simulation and a teaching tool, it is a complete
algorithm and system development environment. The more time spent with the
simulator, the more will be learned about both the VSP and the ways in which the
target application can be simulated.

4-39

Zoran VSPS Manual VSPS Interactive Usage

Figure 4-14. VSPS Main Menu.

VECTOR SIGNAL PROCESSOR SIMULATOR FOR IBM PC/AT V2.35

ZORAN CORPORATION PROPRIETARY SOFTWARE
COPYRIGHT <C> 1986 ZORAN CORPORATION
ALL RIGHTS RESERVED

MAIN MENU

1 HELP
2 VSP instruction tutorial and execution
3 Data generation and display
4 Display options, timing control and queueing
5 Signal processing library for VSP
6 IEEE signal processing library
7 Application library
8 Execute user program in vspop()
9 Execute batch commands and VSPS validation

10 Cc1 mmand mc•de
11 EXIT

Specify value of your selection (0)(1):

4-40

Zoran VSPS Manual VSPS Interactive Usage

Specify value of memory base address (-ll<O>:
Specify vci.lue C•f ma:-'.imum tc•tal amplituc..ie <nega.tive fc•r re"'.l data) (1.0•.)(,,)<:i:;:
Specify value of number of samples <0><128):
Specify valuE of 1 f~r bit rever~ed. 2 cle~rinc memory to 0 C-1)(0):
Specify value of 1 - sum of signals, 2 - special, 3 - S?Jed, (0)(1):
Signal options are:

1- Flat or Step, 2- Impulse, 3- Cosine
4 - uniform random, 5 - square wave, 0 - to quit

Specify value of signal type C-1J(3):
Specify value of relative amplitude (1.00000):
Specify value of phase in degrees <30.00000>:
Sr·ecify value c·f cycles pe1- tc•tal sci.mples < 1.00000):
Signal options are:

1- Flat or Step, 2- Impulse, 3- Cosine
4 - uniform random, 5 - square wave, 0 - to quit

Specify value of signal type (-1><3>:
~ 1 -~ecify value of relative amplitude < 1.00000>:
~ Jecify value of phase in degrees (30.00000l:

Specify value of cycles per total samples (1.00000>:
Signal options are:

1- Flat or Step, 2- Impulse, 3- Cosine
4 - uniform random, 5 - square wave, 0 - to quit

Specify value of signal type <-1><3>:

Figure 4-15. Prompts from Signal Generator.

4-41

Zoran VSPS Manual

INSTRUCTION TUTORIAL: SELECTION MENU <M-2>

Enter an instruction name or a numeric option

1 HELF'
2 Set CYCMEM in mode register
3 Set number of RAM sections in mode register
4 lniti~lize scale nibbles

VSPS Interactive Usage

5 Dump instruction parameter
6 Set the VSF' number

descriptions to file

Set bit numbering: 7 right to
VSF' interrupts: 9 enable
11 Modify External RAM
12 Return to previous menu

Instruction names
NOP .JMF'I
ST STI
ADDR FFT
SCL ABS
ACCI ACCR

are:
LDSM
MLTC
DEMD
CMCN
HLT

left B left to right
10 disable

LD
MLTR
MODLT
MGSQ

STB
ADDC
SCLT
CMLT

Specify instruction or numeric option for instruction demonstration <12>:

Figure 4-16. Instruction Selection Tutorial Menu (Menu M-2).

442

Zoran VSPS Manual VSPS Interactive Usage

SET INSTRUCTION PARAMETERS AND EXECUTE <M-2-LD>

LD i nstrL1c ti c•n LOGICAL parameter val1 . ..1es:

NMF'T :64 RS : (l MDF :3 INTRP : (>

ZF' : (I EI :O MBS :128 MSS :2
RI/ : (I ZR : (I MBA : (l

0 Executes instruction 'LD'. <If the message level is 1 or higher the
instruction and its parameters will be displayed. If the message level is 2
or higher this display will be followed by a read to the terminal. At this
point you may enter a new message level or any other M-4 option followed by
RETURN. If you set the message level to 3 a detailed description
~f instruction execution will be displayed.>

1 Display size and restrictions for all parameters
2 Display size and restrictions for all parameters and operation codes
Parameter values: 3 Use LOGICAL 4 Use LITERAL 5 Display translations
6 Return to previous menu
Specify instruction parameter to change or numeric option listed above (6):

Figure 4-17. Instruction Execution Menu (Menu M-2-InOp).

4-43

Zoran VSP S Manual VSPS Interactive Usage

lllf'T:128,RS:O,ttDr:3,INTRP:O,ZP:O,EI:O,ltBS:128,ftSS:2,RV:O,ZR:O,tmA:O,I

Figure 4-18. LD instruction and parameters prior to execution.

VSPRA~:OC 0 J(56762, J2772)
VSPRM:or t J(55086, 35518)
WSPRAH:or 2 J< 53276, 38178)
VSPRAH:Ol 3 J(51138, 4074bl
VSPRA":OC 4 lt 49278, 43216)
VSPRA~:or 5 ll 4709B, 45582)
~:oc ' 1c 4480-4, 47838)
&RAff:O[1 J(42404, 49978)
VSPRNf:OC 8 J(39900, 51998)
tSPRA":oc 9 Jt moo, 53894)
VSPRA":or to J(34612, l5i60)
VSPRM:OC 1l J(31838, 57290)
ISPRAH:Ot 12 J< 28988, 58780
VRM:Ot 13 J(2'070, 60136>
tsPRA":OC 14 J(23088, '13.f2l
VSPRA~:O[15 JI 20050, 52400)
VSPP.M:or 15 J(t,%4, &JltO)
&RAff :0[17 J(13836, 64066>
mAtt:Ol 18 J< 10676, '46b8l
'5PRA":O[l' J(7490, '5114)
&RA~:O[20 1< 4UE, 55402)
WSPRM:or 21 J(1012, 65534)
VSPRM:OI 22 J(-2144, '5508>
VSPRAH:Ot 23 J(9'

Figure 4-19. Terminal dump of internal VSP RAM.

4-44

Zoran VSP SM anual

I

d
i
v

VSPS Interactive Usage

. .

e • e I • I • e I e I I I e

e I • e I a I • • I I • I e

-IJ00.._ __ ..._ __ "'-__ .._ __ ..1-__ ..i-__ -'-'

0 20 511\iles I divisicri
T!FS <a> io ara\irll! ... I

Figure 4-20. FFf of Signal Generated in Example Terminal Session.

4-45

(

5.1 Overview

CHAPTERV

VSP REGISTERS

As mentioned earlier in Chapter II, the VSP system processor contains a number
of registers in addition to the RAM and ROM memory areas. In order to use the
VSP simulator properly, the user must become familiar with the function and
usage of the registers. The mode register sets the operating mode of the VSP.
There are eight 16-bit information registers, all of which can be read: status, next
fetch address, scale, maximum scale and two accumulators. (The two
accumulators are stored in four registers as each accumulator is longer than 16
bits.) Additionally, there are three special-purpose registers: the old maximum
scale register, the instruction FIFO and the instruction base/start register. The
information registers provide the status of the VSP, the scale factors in the FFT
instruction, instructions yet to be executed, and results of vector operations in the
accumulators.

Table 5-1 lists the unique addresses of the VSP registers. Most of the registers are
either read-only or write-only. The exception to this is the scale register which can
be both written to and read. Notice that the real and imaginary accumulators are
accessible as two reads to separate VSP addresses because the accumulators are
longer than 16 bits. The sine-cosine look-up table and RAM address spaces are
also listed in this table to show how these addresses integrate with those of the
registers.

TABLE 5-1 Tabular listing of the internal VSP registers and their addresses.

Reeister Name
Mode
FIFO (without execution)
FIFO (execute immediately)
Old Maximum Scale
Instruction Base/Start
Scale Vector
Next Fetch Address
Status
Maximum Scale
Scale
Imaginary Accum (MSB)
Imaginary Accum (LSB)
Real Accum (MSB)
Real Accum (LSB)
RAM
lSine-cosine tables

S-1

Binary Address
1100000000
1100000010
1100000011
1100000100
1100000110
110001XXXX
1100000000
1100000001
1100000010
1100000011
1100000100
1100000101
1100000110
1100000111
ooxxxxxxxx
OlXXXXXXXX

Access
(write)
(write)
(write)
(write)
(write)
(read/write)
(read)
(read)
(read)
(read)
(read)
(read)
(read)
(read)
(read/write)
(read)

Zoran VSPS Manual VSP Registers

1 Note that the Sine·cosine tables are not externally addressable (readable).
They are used for internal calculations only.

The format and description of the VSP registers are provided in the following
sections.

S.2 Mode Register

This register programs the operating mode of the VSP. It is 16 bits in length, and

::~:~~~::~::~y:::_~:-J __ . ---. ---. ___ L_. --~-. ---·
IRSTIRSSISYNINCSINMSI 0 ICRQI 0 IINLI CYCMEM IIDOI 0 IILIIIFOI

+---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The names and functions of each of the mode register parameters are given below:

RST (Reset) RST resets the VSP when its value is 1. The function is the same as
that of the external RESET\ pin.

RSS (Restart Scale) RSS resets the maximum scale register and the pointer to the
scale register. This causes the next scale factor to be written to the least significant
nibble and maximum scale accumulation to restart.

SYN (Synchronization) SYN determines whether input control signals RD\, WR\,
BACK\ and SUS operate synchronously or asynchronously: 1 for synchronous, 0
for asynchronous. After a reset, this bit assumes the synchronous state.

NCS (Number of Clocks per Cycle) NCS programs the number of internal VSP
clocks required per cycle for external memory access when the system is in the
VSP addressing mode: 1 for one clock per cycle, 0 for two clocks per cycle. This
parameter is not used for instruction fetch; instruction fetch always assumes two
clocks per memory fetch. NCS is programmed to 0 after a reset.

NMS (Number of RAM sections) NMS programs .the number of sections for
internal VSP RAM: 1 for one section, 0 for two. Two RAM sections are used for
concurrent operation where the EU executes ALU instructions in one section while
the BIU simultaneously executes 1/0 instructions in the other section. NMS is
programmed to 1 after a reset.

CRQ (Continuous Bus Request) Determines whether the BRQ\ pin will become
inactive for one ICLK between consecutive memory instructions (LD, I.DSM, ST,
STI,and
STB) or not. CRQ=l will maintain BRQ\ enabled between consecutive memory
instructions. CRQ=O ensures that BRQ\ will be inactive for one ICLK between
consecutive memory instructions. CRQ is programmed to 1 after a reset.

INL (Instruction Length) INL controls whether instructions are used with their
customary length, which varies from one to three words, or with a fixed length of

5·2

Zoran VSP SM anual VSP Registers

three words. Jn., T, the one exception, is always a two-word instruction. ThTL=O
programs variable length instructions, while INL= 1 programs fixed three-word
instruction lengths. INL is programmed to 0 after a reset.

CYCMEM (Cyclic Memory) CYCMEM defines the memory block size used for
instructions which access external memory. When the VSP reaches the end of this
memory block during a load or store, it loops back to the beginning of the block.
The value of the three bits in binary is added to 9 to give the power of two
representing the number of words in the memory block.

000 ->
111 ->

2**(9+0)
2**(9+7)

For example, the following instruction:

->
->

512-word blocks
64K-word blocks

LD NMP'f =8, MBA=1020

executed while CYCMEM:O in the mode register defines a cyclic memory block
size of 512 words. When the instruction is executed, eight samples will be loaded
from memory with the following addresses: 1020, 1021, 1022, 1023, 512, 513, 514
and 515.

CYCMEM is programmed to 111 binary after a reset.

IDO (Interrupt on Data Overflow) IDO=l enables an interrupt when an overflow
occurs in the ALU. IDO is programmed to 0 after a reset.

ll.I (Interrupt on Last Instruction) Il..I= 1 enables an interrupt after the last
instruction in the FIFO is executed, the instruction queue is empty and the device
goes idle. Ill is programmed to 0 after a reset.

IFO (Interrupt on FIFO Overflow) IFO=l enables an interrupt when a new
instruction is written to the VSP when the FIFO is full. The content of the FIFO is
not affected, and the VSP ignores the new instruction. IFO is programmed to 0
after a reset.

5-3

Zoran VSPS Manual VSP Registers

5.3 Status Register

Thls 16-bit register reflects all status information about the VSP except for scaling.
It has the following format:

+---.---.---.-~-l---.---.---.---!---.---.-~-.~-~---.---.---.---+
AJUNSCO IMICI rIFOSTAT I IDIIIIAIIIDOI 0 IILIIIFOI

+-------·--~---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARINSCO (Arithmetic Instruction Code). ARINSCO represents five bits which
hold the operation code of the last arithmetic instruction executed. The operation
code is the first five bits of the first word of each instruction.

MIC (Move Instruction Code). :MIC is coded to show the last move instruction
executed as shown below:

0
1

->
->

LD, LDSM or IMPI
ST, STI or STB

FIFOSTAT (FIFO Status). FIFOSTAT provides a binary number from zero to
four indicating the number of available instruction slots in the instruction FIFO.

IMI (Interrupt on Move Instruction). IMI is set at the completion of a move
instruction.

IAI (Interrupt on Arithmetic Instruction). IAI is set at the completion of an
arithmetic instruction.

IDO, D..I and IFO in the Status Register are flags controlled by the enabling
parameters of the same name in the Mode Register. Along with the two other
mterrupt flags directly above (IMI and IAI), they are reset when the status register
is read. The other bits are updated as befits their functions, as described in the
preceding section on the mode register.

S-4

I

.. .

Zoran VSPS Manual VSP Registers

5.4 Instruction FIFO

The instruction FJFO is a 12-word buffer for holding instructions to be executed.
It can hold up to four instructions, each consisting of as many as three 16-bit
words. FIFO status is reported by the status register. Instructions fetched by the
VSP are written into the FIFO by the BIU. Instruction fetch is initiated either by
writing a JMPI instruction to the fetch queue or writing an address to the
Instruction Base/Start register.

The host controller also has the ability to write instructions directly to the
instruction FIFO independently of the BIU. If the host writes the instruction to
VSP address 302H, it will be loaded into the VSP FIFO and will not be executed
until VSP execution is enabled. This can be used for manually filling the VSP
instruction FIFO prior to execution. Up to three instructions may be buffered by
the host in the VSP FIFO in this manner. H instructions are written to VSP
address 303H, the VSP will begin execution of the instructions contained in the
FIFO. H no instructions previously existed in the FIFO, the instruction just written
to the FIFO will be executed.

The instruction length (INL) bit in the mode register defines the length of the
instructions to the BIU and instruction FIFO. Instruction word lengths may vary
from one to three words in length. Regardless of the individual length of
instructions stored in the FIFO, the FIFO will hold a maximum of four
instructions.

S-S

.
•·.

Zoran VSPS Manual VSP Registers

S.S Instruction Base/Start Register

This 16-bit register holds the base address of the program code to be executed in
external memory. Writing an address to this register commands the VSP to begin
instruction fetch and execution at the base address specified in the register.

5.6 Next Fetch Address Register

This 16-bit register holds the address of the next instruction to be fetched. It may
be read by the host by reading its memory mapped address or by using the STI
instruction.

5.7 Scale Register

The scale register is 16 bits in length and is partitioned into four four-bit nibbles. It
holds the last four scale factors created by the execution of the FFI' instruction.
The scale factor is the number of right-shifts, (or divide-by-twos) performed
during the execution of the FFr to prevent overflow. The scale factor is
automatically stored in the register after FFI' execution. A scale register pointer
indicates which nibble will store the next scale factor. After each new scale factor
is stored, the pointer is incremented to indicate the next nibble. The pointer reverts
to the least significant nibble after a reset or after the most significant nibble is
used. The register and the pointer are both reset by the Restart Scale flag (RSS) in
the mode register and by the Load Scale parameter in the LDSM instruction.

5.8 Maximum Scale Register

The maximum scale register is a four-bit register containing the largest scale factor
written since the last scale reset. It is read as a 16-bit register with all four nibbles
equal to the maximum scale register. It may be reset by the reset scale bit in the
mode register and by the load scale parameter in the LDSM instruction.

5.9 Old Maximum Scale Register

The old maximum scale register is a four-bit register containing the previous
maximum scale factor, prior to the most recent reset It can be loaded from the
maximum scale register using the LDSM command. The value in the register is
used with the SCL instruction to scale data vectors stored in internal VSP memory.
(Use of this register will be explained in greater detail in later sections of the
manual.)

5.10 Accumulators

The VSP has separate real and imaginary accumulators, each 25 bits in length.
They are used for storing. the results of vector arithmetic operations. The

S-6

(

Zoran VSPS Manual VSP Registers

accumulators are accessible to the external world as the 24 most significant bits of
each 25-bit word. Each accumulator is read as two 16-bit words. The least
significant word holds the 16 least significant bits of arithmetic data. In the most
significant word, the least significant byte consists of the upper eight bits of the
accumulator; the most significant byte consists of eight sign-extended or virtual
bits. The most significant word holds any overflow bits created during the
accumulation process.

The real accumulator is updated by the following instructions: MLTR, MLTC,
DEMO, MGSQ, CMLT, ACCR and SCL.

The imaginary accumulator is updated by Ml.TR, MLTC, DEMO, ACCI and
SCL.

When an instruction uses an accumulator, it first clears the accumulator;
instructions not requiring use of an accumulator will not affect that accumulator.

S-1

CHAPTER VI

VSP INSTRUCTION SET

6.1 Overview

This chapter covers the complete VSP instruction set It is divided into five major
sections, which cover specific types of instructions: memory, two types of ALU
control, and the FFT. Each of the VSP instructions is covered in detail in one of
the five sections. Note that the fifth section covers only the FFf instruction. This
is because more detail and time is required to understand this powerful instruction
and its parameters.

Each instruction and its respective parameter format is covered individually in one
of the sections. In the format blocks for each instruction, fixed bits arc shown as 0
or 1; the variable blocks, or parameters, arc shown by label (field name); and the
DON'T CARE bits arc left blank. Multiple-word instructions arc numbered from
0 to 2 when all three words arc used. The bits in each word arc numbered from 0
on the right end to 15 on the left end; the LSB is on the right and the MSB is on
the left

Parameters which arc common to a majority of instructions arc listed in section
6.2. This eliminates the duplication of discussing these parameters in each
instruction.

Examples accompany all instructions and illustrate how the instructions affect
both internal and external VSP memory, as well as VSP registers. Indexing
conventions used in the VSPS arc also given in these examples.

6-1

Zoran VSP S Manual VSP Instruction Set

6.2 Common Instruction Parameters

This section lists instruction parameters which are common to a large number of
instructions. The parameters are listed alphabetically for quick reference.
Reference to this section is made throughout Chapter VI when these parameters
are incJuded in an instruction field.

AD - Addressing
0 -> VSP addressing mode
1 -> Host address generation mode

AD=O is the nonnal VSP addressing mode. The VSP generates addresses
and fetches its own instructions and/or data on the separate address and
data buses.

When AD is programmed to 1, the VSP address bus assumes a high
impcdance state. It is assumed that an external device generates the
appropriate addresses to external memory. The data bus operates
independently of the AD bit for both loading and storing data.

ADF - Arithmetic Data Format: detennines which part of the operation result is
stored in internal RAM
00 -> no change; the result goes only to the accumulators
01 -> imaginary part only stored
10 -> real part only stored
11 -> complete result is stored

CN - Constant: used to specify a constant in external memory, instead of a vector,
to operate with the complex number in internal RAM.
0 -> add a vector
1 -> add a constant

EI - Enable Interrupt
0 -> no interrupt - only the status bit will be set
1 -> interrupt generated at end of instruction execution

MBA - Memory Base Address: the starting address of the data in external
memory. This parameter is constant, and must conform to the convention
described in Section 4.3.4.

6-2

i
1

~ ... /

Zoran VSPS Manual VSP Instruction Set

MBS - Memory Block Size: number of real, imaginary or complex data points to
be loaded before a skip occurs. See also RV below.

Literal
000 ->
111 ->

Loeical
1 point
128 points

Logical 2"N is ttanslated to N literal.

MDF - Memory Data Format for VSP internal RAM.
00 -> not used
01 -> imaginary only
10 -> real only
11 -> complex; first part real, second part imaginary

MSS - Memory Step Size: number of points specified in MBS plus the number of
points to be skipped.

Literal
000 ->
111 ->

Loeical
2 points
256points

Logical 2"(N+1) is translated to N literal.

NMPT - NMPT dcfmes the number of points (samples) of real, imaginary or
complex data.

Literal
0000001
1111111
0000000

->
->
->

Loeical
1 point
127 points
128 points

Logical 128 is translated to 0 literal.

RS - RAM Section number
0 -> section 0 - VSPRAM addresses 0 to 63 when NMS = 0
0 -> section 0 - VSPRAM addresses 0 to 127 when NMS = 1
1 -> section 1 - VSPRAM addresses 64 to 127 when NMS = 0

This parameter is used with the NMS parameter in the mode register to
execute arithmetic and 110 instructions concurrently. RS can be 1 only if
NMS=O (specifying two RAM sections). If an ALU instruction operates
with RS=O, a memory instruction with RS= 1 can operate in parallel with
the ALU instruction.

6-3

Zoran VSPS Manual VSP Instruction Set

RV - Reverse ordering of data after being loaded into VSP internal RAM.

00
01
10

11

->
->
->

->

data in normal order
bit-reverse order one level
data within blocks of size MBS in normal order, blocks in
bit-reversed order
data within blocks of size MBS in bit- reversed order,
blocks in normal order

HRV = 01 or JO, NMPr must be a power of two.
If RV = 10 or 11, MBS is used for both memory segmentation and

reversing - use caution. If RV is used for reversing only, set MSS =
MBS-1.

Examples 1 - 3 in section 6.3.1 illustrate the power of the RV parameter.
A description is provided in each example of how the RV parameter affects
the instruction.

6-4

Zoran VSP SM anual VSP Instruction Set

Figure 6.1 below illustrates how the VSP implements bit-reversal.

Normal Order Bit-Reversed Order
Decimal Binary Binary Mirror Image Decimal

0 00000 00000 0
1 00001 10000 16
2 00010 01000 8
3 00011 11000 24
4 00100 00100 4
5 00101 iOiOO "" .i.V

6 00110 01100 12
7 00111 11100 28

Figure 6-1. Bit-Reversal.

SH - Shift
0 -> result is not right-shifted
1 -> result is right-shifted one bit, or scaled down by two, to avoid

overflow

6-5

Zoran VSPS Manual VSP Instruction Set

6.3 Memory Instructions

Memory instructions move data between external VSP memory and internal VSP
memory or registers. All memory instructions are three words in length. The
instructions covered in this section are:

6.3.1 LD (Load)

LD (Load)
LDSM (Load Scale/Mode Register)
ST (Store)
STI (Store Information)
STB (Store Backward)

LD moves data existing in external memory to internal VSP RAM. LD is a three
word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I O I O I 0 I O I O I IRS I lNTRP IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-~-+
I HBS I HSS I av I AD I llDF I ZR I ZP I I 0 I
+---+---+--,+---+-,-+---+---+--,-+---+--~+--~+---+---+---+---+---+

I MBA I
+--------~--+

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The following parameters have definitions which are the same as those given in
section 6.2: NMPT, RS, El, MBS, MSS, RV, AD, MDF and MBA.

Parameters which are unique to the LD command:

INTRP - Interpolation: the number of zeros to be added after each data point is
read from external memory.

00 ·> no zeros added
01 -> one zero added - NMPT must be even
10 -> two zeros added - NMPT must be divisible by three
11 -> three zeros added - NMPT must be divisible by four

When using the lNTRP parameter, NMPT includes the zeros to be added
by INTRP. If zero padding (ZP=l), the constraints on NMPT above do not
apply. If the data is complex, a real zero and an imaginary zero are added
for each zero added by INTRP.

6-6

\'-....._ . /

(

Zoran VSPS Manual VSP Instruction Set

ZR - Zero Fill: used to fill a specified block of VSP internal RAM with zeros.
One of the two MDF bits must be zero to indicate which part of the data,
real or imaginary, will be filled.

0 -> internal memory unaffected
1 with MDF = 01 -> real part filled with zeros
1 with MDF = 10 -> imaginary part filled with zeros

If l\IDF = 11, ZR must be zero

ZP - Zero Padding - a11ows reading in a vector from external memory, then
padding zeros to the end of the vector. When ZP=l, NMPT must be equal
to the length of the external vector plus the number of zeros to pad.

0 -> no zero padding to end of vector
1 -> NMPT/2 or (NMPT + 1)/2 points from memory, the rest zeros

NOTE: When LD is used in the host address generation mode (AD= 1), the
following parameters are not used; their values are DON'T CARE: IN'IRP, MSS,
ZPandMBA.

6-7

Zoran VSPS Manual VSP Instruction Set

Three examples follow on how to use the LO instruction with different parameters.

EXAMPLEl:

LO NMPT:8 RS:O MDF:3 INTRP:l ZP:O EI:O MBS:128 MSS:128 RV:O ZR:O
AD:OMBA:64

Before the LD instruction After the LD instruction

ExtRAM [32] = [064, 065] VSPRAM [O] = [064, 065]
ExtRAM [33] = [066, 067] VSPRAM [l] = [O, OJ
ExtRAM [34] = [068, 069] VSPRAM [2] = [066, 067]
ExtRAM [35] = [070, 071] VSPRAM [3] = [0, 0]
ExtRAM [36] = [072, 073] VSPRAM [4] = [068, 069]
ExtRAM [37] = [074, 075] VSPRAM [5] = [O, 0]
ExtRAM [38] = [076, 077] VSPRAM [6] = [070, 071]
ExtRAM [39] = [078, 079] VSPRAM [7] = [0, 0]

Address Ext RAM Address VSP RAM

64 I D64 0 I D64 I D65 -65 I D65 1 I 0 I 0
66 I D66 2 I D66

WWW
I D67 -67 I D67 3 I 0 I 0

68 I D68 4 I D68 I D69
WWW

69 I D69 5 I 0 I 0
70 I WD70 6 I D70

WWW
I D71

71 I D71 7 I 0 0
72 I D72
73 I D73

WWW

74 I D74
75 I D75
76 I D76
77 I D77
78 I D78
79 I D79
80 I DBO
81 I D81

Example 1 loads eight complex words from external memory into the VSP RAM
section 0 beginning at physical address 64. Zeros are included between each
complex word because INTRP=l. NMPT includes the number of zeros added by
the interpolation parameter.

6-8

Zoran VSPS Manual VSP Instruction Set

' ., EXAMPLE 2:

·.:::

(/

LD NMPT:8 RS:l MDF:2 INTRP:O ZP:O EI:O MBS:8 MSS:8 RV:l ZR:O AD:O
MBA:64

Before the LD instruction

ExtRAM [32] = [D64,D65]
ExtRAM [32.1] = [D66,D67]
ExtRAM [33] = [D68,D69]
ExtRAM [33.1] = [D70,D71]
ExtRAM [34] = [D72, 073]
ExtRAM [34.1] = [D74,D75]
ExtRAM (35] = [D76, D77]
ExtRAM (35.1] = [D78,D79]

Address Ext RAM

64 I Jl64 I
65 I D65_1
66 I D66 I
67 I D67-I
68 I D68-I
69 -D69=1
70 ~70 I
71 D71 I
72 D72-I
73 D73-I
74 D74 I
75 D75 I
76 D76=1
77 D77 I
78 D78 I
79 D79-I
80 bso-1
81 D81_1

After the LD instruction

VSPRAM [64] = [D64]
VSPRAM [65] = [D68]
VSPRAM [66] = [D66]
VSPRAM [67] = [D70]
VSPRAM [68] = [D65]
VSPRAM [69] = [D69]
VSPRAM [70] = [D67]
VSPRAM [71] = [D71]

Address VSP RAM

641 D64 I
651 D68=1----
661 D66_1 ___ _
671 D70 I 681 D65_1 ___ _

691 D69-I
701 D67 ,-----
711 D71_1 ___ _

Example 2 loads eight consecutive values from external memory into the real
portion of VSP RAM section 1. The imaginary portion of memory is not affected.
The NMS bit in the mode register must be programmed to 0 to allow loading
RAM section 1. The eight samples read from external memory are stored in
internal memory in bit-reversed order. In other words,

External Address 100(000) -> internal address 100(000)
External Address 100(001) -> internal address 100(100)

. .
External Address 100(111) -> internal address 100(111)

6-9

Zoran VSPS Manual VSP Instruction Set

EXAMPLE3:

LD NMPT:8 RS:O l\IDF:l INTRP:O ZP:O EI:O MBS:2 MSS:2 RV:2 ZR:l AD:O
MBA:65

Before the LD instruction After the LD instruction

ExtRAM [32.1] = [D65] VSPRAM (0.1] = [D65]
ExtRAM [33] = [D66] VSPRAM [1.1] = [D66]
ExtRAM [33.1] = [D67] VSPRAM (2.1] = [D69]
ExtRAM [34] = [D68] VSPRAM [3.1] = [D70]
ExtRAM [34.1] = [D69] VSPRAM [4.1] = [D67]
ExtRAM [35] = [D70] VSPRAM [5.1] = [D68]
ExtRAM [35.1] = [D71] VSPRAM [6.1] = [D71]
ExtRAM [36] = [D72] VSPRAM [7.1] = [D72]

Address Ext RAM Address VSP RAM

64 I D~4 01 :0: 065 I
65 l-D65 11 'P, 066 I
66 I 066 21 9, D69-I
67 ,-~67 31 0 070 I
68 I ~§S 41 9, 067 I
69 I 12§9 SI 9, 068 -' 70 I D7Q 61 0 D71 I
71 1-011 I 71 9, 072 -' 72 1-012 I
73 ,-073-1
74 I 074 I
75 I 075 I
76 I 076 I
77 ,-077 I
78 I 078 I
79 I 079 I
80 I D80 I
81 I ~81-1

The third example loads the imaginary portion of internal VSP RAM section 0
with eight consecutive values from external memory beginning at address 65. The
real portion of memory is filled with zeros because of the combination of the l\IDF
bit and the ZR bit in the instruction. Because of the MSS parameter, the eight
words are partitioned into four blocks of two words each. In conjunction with the
RV parameter, the addressing of the four blocks is stored in bit-reversed order, but
the data within the blocks is stored in normal order.

6-10

Zoran VSPS Manual VSP Jnsrruction Set

6.3.2 LDSM (Load Scale/Mode Registers)

LDSM moves data from external memory to the VSP's 64--nibble scale RAM or to
the mode register, as determined by the MD bit in the instruction. It resets the
maximum scale register and pointer to the scale register. !DSM also updates the
old maximum scale register if MD=O and UP= l, so that the next scale factor will
be written to the least significant nibble, and maximum scale accumulation will be
restarted.

LDSM is used only in the VSP addressing mode. It is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 0 I 0 I 0 I 0 I HMPT IRS I 0 I 0 IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I l I 0 I l I l'OP IKD I O I l I l I l I 0 I I O I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I MBA I

+---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The following parameters have defmitions which are the same as those given in
section 6.2: NMPT, RS, EI and MBA.

Parameters which are unique to the LDSM command:

UP (Update): active only if MD= 0
0 -> no update, scale register pointer not reset
1 ->- old maximum scale register updated from the current scale register;

scale register pointer reset

MD (Mode)
0 -> only the scale registers and scale RAM are loaded
1 -> only the mode register is loaded

6-11

:

.<

Zoran VSPS Manual VSP Instruction Set

The following is an example of how the LDSM command may by used. Note that
scale RAM is indexed starting at 140.

LDSM NMPT:8 RS:O EI:O UP: 1 MD:O MBA:21

Before the LOSM instruction After th~ LOSM inmruction

Ext RAM 10.1] • 021
Ext RAM 11] • 022
Ext RAM 11.1) • 023
Ext RAM 12} • 024
Ext RAM 12.1] = 025
Ext RAM 13] • 026
Ext RAM 13.1) = 027
Ext RAM 14] • 028

Scale ltam - 16 bite &ztRAM
rirat 8 word.a Addr 16 bit•

21 I 1>21 I
22 I 1>22 I -23 1_1>23_1
24 l.J>24 I
25 I 1>25 I
26 I 1>26 I -27 I 1>27 I -28 I D28 I w. «oww

11az Scl aeg Ol.d KSR
+----.----.----.----+ +-----+
IKSIKSIKSIKSI ICICSI
+----.----.----.----+ +-----+

Scl bg Ptr Scale bgiater

+-----+ +----.----.----.----+
I Ptr I 1 84 I S3 I S2 I Sl I
+-----+ +----.----.----.----+

Scale 140] = 021
Scale 140.1] = 022
Scale 141) = 023
Scale 141.1] = 024
Scale 142) = 025
Scale 142.1] = 026
Scale 143) = 027
Scale 143.1) = 028

Scl.RAM &ztRAM
16 bit• Addr 16 bits

I _1>21 I 21 I ~21 I WWW. ...

I _:g22_ I 22 I 1>22 I
I 1>2~ - I 23 I 1>23 f

~
I 1>24 I 24 I 1>24 I - -
I J22L I 25 I 1>25 I
I 1>26 I 26 I 1>26 I s... - -I 1>27 I 27 - I 1>27

~ -- I
I :Q2!! . I

WWW. 4iw
28 I _:g28 I

Kaz Scl Reg 01.d KSR.
+---.---.---.---+ +----+
I 0 I 0 I 0 I 0 I I KS I
+---.---.---.-~-+ +----+

Scl Reg Ptr Scale Register
+--'.;..+ +---.---.---.---+
101 101010101
+---+ +---.---.---.---+

Referring to the LDSM example above, values existing in the internal scale RAM
are undefined. After instruction execution, the scale RAM is loaded with scale
values existing in external memory. beginning at physical address 21. External
memory remains the same. The maximum scale register, scale register pointer and
scale register all contain old values which are cleared upon instruction execution.
The old maximum scale register is loaded with the previous value stored in the
maximum scale register.

6-12

/~'

"--~ "-

(

Zoran VSP SM anual VSP Instruction Set

6.3.3 ST (Store)

ST moves data from the VSP internal RAM to external memory. ST is a three
word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 0 I 0 I 0 I 1 I RMPT IRS I IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I MBS I NSS I RV I.AD I MDF I 0 I 0 I I 0 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---·---+

MBA

+---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

All parameters defined in the ST instruction have the same definitions and use as
in the ID instruction. Their descriptions are contained in section 6.2.

6-13

Zoran VSPS Manual VSP Instruction Set

The following is an example of how the ST command may by used.

ST NMPT:S RS:l MDF:3 EI:O MBS:2 MSS:4 RV:O AD:O MBA:41

Before the ST instruction After the ST instruction

VS PRAM 64 = R0, 10 Ext RAM 20.1 = RO, IO 1
VS PRAM 65 = R1, 11 Ext RAM 21.1 a: R1, 11
VS PRAM 66 = R2, 12 Ext RAM 24.1 - R2, 12
VS PRAM 67 = R3, 13 Ext RAM 25.1 = R3, 13
VS PRAM 68 = R4, 14 Ext RAM 28.1 = R4, 14
VS PRAM 69 = RS, 15 Ext RAM 29.1 = RS, 15
VS PRAM 70 = R6, 16 Ext RAM 32.1 = R6, 16
VS PRAM 71 = R7, 17 Ext RAM 33.1 = R7, 17

VSPRAM MBA

64 RO 1P Cl RO
65 Rl ::n 42 IO
66 R2 I2 43 Rl
67 BJ I~ 44 :n
68 R4 1' 45
69 1§. IS 46
70 R6 I6 " 71 R7 I7 '8

'9 R2
50 I2
51
52 I3
53
54
55
56
57 R4
58 I4
59
60
61
62
63
64
65 R6
66 I6
67 R7
68 I7

The ST example moves eight complex samples from VSP RAM section 1 into
external memory beginning at physical address 41. The MBS parameter defines
external memory as having a block size of two complex words. The MSS
parameter defines the memory step size as four complex words. Thus, after two

6-14

Zoran VSPS Manual VSP Instruction Set

complex words are written to external memory, two additional complex memory
locations are skipped. Note that MSS = MBS + skip size.

6-15

Zoran VSPS Manual VSP Instruction Set

6.3.4 STI (Store Information Registers)

STI moves the contents of specified information registers within the VSP · to
external memory; it is used only in the VSP addressing mode.

STI is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
10101010111 HMP'l' IRS I IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I S'l'R I I OR I 0 I 1 I 0 I 1 I 0 I I 0 I

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I MaA I
+---~---+

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The following parameters have definitions which are the same as those given in
section 6.2: RS, EI and MBA.

Parameters which are unique to the STI instruction:

Nl\fi>T - Number of information registers to be read. Note that this meaning is
different from the one used in earlier instructions. Values can be one
through eight decimal, expressed as 000 0001through000 1000 binary.

STR - Starting Register: the place in the following list where the count of NMPT
registers starts.

The logical numbers and names of the VSP registers are shown below for
use with the STR parameter:

1 - Real Accumulator, LSB
2-Real Accumulator, MSB
3 - Imaginary Accumulator, LSB
4 - Imaginary Accumulator, MSB
S - Scale Register
6 - Maximum Scale Register
7 - Status Register
8 - Next Fetch Address

Literal
011 ->
010 ->
001 ->
000 ->

~ reiister stored Oo&icall
begin storage with reg # 1
begin storage with reg #5
begin storage with reg #7
begin storage with reg #8

maxCNMPf>
8
4
2
1

Logical to literal translations: 1->3, 5->2, 7->l, 8->0 literal.

6-16

Zoran VSPS Manual VSP Jnsrruction Set

There is an implied relation between NMPT (which defines the number of
registers to store) and STR (which defines the register with which to begin
the storage). This relationship is shown in the table above. For instance, if
storage begins with logical register number 5 (scale register), the maximum
number of registers which can be stored is 4. This is because the register
address counter will not roll over.

OR - Order: arrangement of the list of registers above
0 -> numbers 2 and 3 are interchanged
1 -> the order above stands unchanged

6-17

Zoran VSPS Manual VSP Instruction Ser

The following is an example of how the STI instruction may be used. Note that
the indexing of the information registers begins at 132.1.

STI NMPT:8 RS:O EI:O STR:l OR:l :MBA:32

Before the STI instruction

ACCRLSB [136] = 11
ACCRMSB [135.1] = 12
ACCILSB [135] = 13
ACCIMSB [134.1] = 14
SCALE [134) = 15]
MAXSC [133.1] = 16]
STATUS [133] = 17]
FETCHAOR [132.1] =[8]

Info Register MBA ExtRAM

1 I_ 11 32 I
21 12 33
31 13 34

ii !i 1H
8 18 39

I
I
I
I

After the STI instruction

ExtRAMl16] = 11]
ExtRAM 16.1] = 12)
ExtRAM 17] = 13)
ExtRAMf 17.1] = 14]
ExtRAM 18] = 15]
ExtRAM[18.1] = 16)
ExtRAMf 19] = 17]
ExtRAM 19.1] = 18]

Info Register MBA ExtRAM

1
2
3
4
5
6

11
12
13
14
ti
16

~ -1--:~---

32 11
33 12
34 13
35 14
36 15
37 16
38 17
39 I 18

The STI example stores all eight of the VSP informational registers to external
memory beginning at physical address 32. Because all eight registers are stored,
STR must be programmed to 1 to begin storage with the accumulators, and NMPT
must be programmed to 8 to store all eight registers.

6-18

Zoran VSP SM anual VSP Instruction Set

6.3.S STB (Store Backward)

STB moves data from the internal VSP RAM to external memory in a manner
similar to that of the ST instruction. However, with STB the memory base address
is decremented, not incremented as with ST. In other respects STB is similar to
ST.

STB is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 0 I 0 I 0 I 1 I NMPT IRS I IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

MBS I MSS I R.V IAD I llDF I I 1 I I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

llBAB

+---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

The following parameters for the STB instruction are defined in section 6.2:
NMPT, RS, El, MBS, MSS, RV and MDF.

Parameters unique to the STB instruction:

MBAB - Memory Base Address Backward: the base address to use when storing
backward. This address will store the imaginary part of the first data point

Logical N translates to the ones complement for N literal.

6-19

Zoran VSPS Manual VSP /nsrruction Set

The following is an example of how the STB instruction may be used:

STB NMPT:8 RS:O MDF:3 EI:O MBS:2 MSS:4 RV:O AD:O MBAB:41

Before the STB instruction After the STB instruction

VS PRAM 0 = R0, 10 Ext RAM 20 = R0.10
VS PRAM 1 = R1, 11 Ext RAM 19 = R1, 11
VS PRAM 2 = R2, 12 Ext RAM 16 =: R2, 12
VS PRAM 3 = R3, 13 Ext RAM 15 = R3, 13
VSPRAM 4 = R4, 14 Ext RAM 12 = R4, 14
VS PRAM 5 = R5, 15 ExtRAM 111 = R5, 15
VS PRAM 6 = R6, 16 ExtRAM 8 = R6, 16
VS PRAM 7 = R7, 17 ExtRAM 7 = R7, 17

Address VS PRAM Address Jext.RAM

0 I P.0 IO 41 I IO I
1 I P.l Il 40 1_ao_1
2 I R2 I2 39 Il I
3 I P.3 " 38 R.1 I
4 I P.4 I4 37 I
5 I ~ IS 36 I

' I P.6 I6 35 I
7 I P.7 I7 34 I

33 I2 I
32 R2 I
31 " 30 P.3
29
28
27
26
25 I4
24 P.4
23 ll
22 as
21
20
19
18
17 I6
16 P.6
15 .u
14 P.7

The STB example stores eight complex words existing in internal VSP RAM to
external memory beginning at physical address 41. Note that the physical address
is decremented from address 41. In addition, the MSS and MBS parameters
operate in the same manner as they do for the normal store instruction.

6-20

Zoran VSPS Manual VSP Instruction Set

6.4 ALU/External Memory Instructions

This section covers the four ALU instructions which operate on two data vectors,
one of which must already exist in the internal VSP memory, and the other which
must exist in external memory. When these instructions are used, it is not possible
for concurrent ALU and 110 operations to be performed because these instructions
require the use of both the BIU and the EU. All instructions in this section are
three words in length.

The instructions covered in this chapter are:

ADDR (Vector Add Real)
ADDC (Vector Add Complex)
MLTR (Vector Multiply Real Accumulate)
ML TC (Vector Multiply Complex Accumulate)

6-21

Zoran VSPS Manual VSP Instruction Set

6.4.1 ADDR (Vector Add Real)

ADDR adds a real vector in external memory to both the real and imaginary parts
of a complex vector in internal RAM, and stores the result in internal RAM.
External memory remains unchanged. The sum may be stored in internal RAM in
one of several forms, as shown below.

ADDR is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 0 I 1 I 0 I 1 I NMPT IRS I ADF IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I NBS I MSS I IAD I 1 I 0 ICN ISH I I 0 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I 11BA I
+---+

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

All of the parameters contained in the ADDR instruction are defmed in section
6.2.

6-22

rf.
'

Zoran VSPS Manual VSP Instruction Set

The following is an example of how the ADDR instruction may be used. In order
to keep the tabular structure used in previous examples, two abbreviations are used
below: E --> ExtRAM; V --> VSPRAM

ADDR NMPT:4 RS:O ADF:3 EI:O MBS:4 MSS:4 AD:O CN:O SH: 1 MBA:64

Before Instruction

E[32] • [D64]; V[O] • [RO,IO]
E[32.1] • [D65); V[l] • [Rl,Il]
E[33] • [D66]; V[2] • [R2,I2]
E[33.1] • [D67]; V[3] • [R.3,I3)

.Address SztRAM

" 65
66

"

I D64 I
I D65 I

W¥iidl

I D66 I
I D67 I -

VS PRAM

0 l_R.O_l_J.Q_I
1 l_R.l_l_Il_I
2 I R2_1 I2 I
3 1831131

After Instruction

V[O) = [(D64+RO) /2, (D64+I0) /2]
V[l] = ((D65+.R.1)/2, (D6S+Il)/2]
V(.2] • [(D66+R2) /2, (D66+I2) /2]
V[3] • [(D67+R.3) /2, (D67+I3) /2]

.Address VS PRAM

0
1
2
3

I (D64+R0>/2 I (:064+I0>/2 I -I (D65+Rl)/2 I (D6S+Il)/2 I
I (D66+R2>/2 I <:D66+I2)/2 I
I (:067+83>/2 I (D67+I3>/2 I -

The ADDR example adds a four-element real vector beginning at external physical
address 64 to both the real and imaginary portions of internal VSP RAM section 0.
The SH parameter causes each result to be scaled by two to prevent overflow.

6-23

Zoran VSPS Manual VSP Instruction Set

6.4.2 ADDC (Vector Add Complex)

ADDC adds a complex vector in external memory to a complex vector in internal
RAM by adding real parts to real parts and imaginary parts to imaginary parts,
then stores the sum in internal RAM. External memory remains unchanged.

ADDC is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I o I o I 1 I o I 0 I IRS I 1 I l IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I HBS I HSS I IAI> I 1 I 1 ICN ISH I I 0 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I 11BA I

+---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

All of the parameters contained in the ADDC instruction arc defined in section
6.2.

6-24

(_

Zoran VSPS Manual VSP Instruction Ser

The following is an example of how the ADDC instruction may be used.

ADDC NMPT:4 RS:O ADF:3 EI:O MBS:8 MSS:8 AD:O CN:O SH:O MBA:64

Before Instruction

E[32] • [D64,D65); V[OJ = [RO,IOJ
E[33] • [D66,D67]; V[l] • [Rl,Il]
E[34] = [D68,D69]; V[2J • [R2,I2J
E[35] = [D70,D71]; V[3] • [R3,I3J

Address

64
65
66
67
68
69
70
71

0
1
2
3

I D64 I -I D65 I
:wS

I D66_1
I D67 I
I D68 I -I D69 I -I D70 I :wS_.

I D71 I
:wS ~

VS PRAM

I M_l_IO_I
I 81 I Il I w WWW WWW

I R2 l_ll_I
1_8Lwl_ll I

&ft•r Instruction

V[O] • [D64+RO, D65+IO]
V[l] = [D66+Rl, D67+Il]
V[2] = [D68+R2, D69+I2]
V[3] • [D70+R3, D7l+I3]

Address VS PRAM

0
1
2
3

D64+RO I D65+IO I ... -
I D66+Rl_I D67+Il I
I D68+R2 I D69+I2 I

w# --1 D70+R3 I D7l+I3 I

The ADDC example adds a four-element complex vector existing in external
RAM beginning at physical address 64 to a complex vector existing inside the
VSP in RAM section 0. External memory is unaffected by execution of this
instruction.

6-25

Zoran VSPS Manual VSP /nsrruction Set

6.4.3 MLTR (Vector Multiply Real Accumulate)

:ML TR multiplies a complex vector in internal RAM by a real vector in external
memory. External memory remains unchanged. The product is stored in internal
RAM and added to the values in the real and imaginary accumulators. The form
of the product is selected as shown below.

:ML TR is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 0 I 0 I 1 I 1 I NMPT IRS I ADF IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I MBS llSS I IAD I 1 I 0 ICN I 0 I I 0 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I MBA I
+---+

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

All of the parameters contained in the ML TR instruction are defined in section 6.2.

6-26

Zoran VSP SM anual VSP Instruction Set

The following is an example of how the MLTR instruction may be used.

MLTR NMPT:4 RS:O ADF:3 EI:O MBS:4 MSS:4 AD:O CN:O MBA:2

Before Instruction

ExtRAM [l] -= [D2]
Ext.RAM[l.l] -= [D3]
ExtRAM[2] • [D4]
ExtRAM[2.1] • [DS]

VSPRAM[O] • [RO,IO]
VSPRAM[l] • [Rl,Il]
VSPRAM[2] • (R2,I2]
VSPRAM[3] • [R3,I3]

Address

2
3
4
s

I D2 I
1_1!3_1
I 1>4 I
I RS I

VS PRAM

REALACCOM -> JU.nit

IMAGACCOM -> JU.nit

After Instruction

VSPRAM[O] • [RO*D2, IO*D2]
VSPRAM[l] • (Rl*D3, Il*D3]
VSPRAM[2] • [R2*D4, I2*D4]
VSPRAM[3] s (R3*DS, I3*D5]

VSPACCOM =
[RO*D2 + Rl*D3 + R2*D4 + R3*DS,

IO*D2 + Il*D3 + I2*D4 + I3*DS]

Address

0
1
2
3

VS PRAM

I RO*D2 I IO*D2 --l_R.1*D3 __ 1_,_Il=-* D __ 3_1
I R2*D4 I I2*D4 I -
f_R3*DS._I I3*DS I

REALACCOM •
RO*D2 + Rl*D3 + R2*D4 + R3*DS

IMAGACCOM =
IO*D2 + Il*D3 + 12*1>4 + I3*1>5

The ML TR example multiplies a four-element real vector beginning in external
memory at physical address 2, with both the real and imaginary vectors existing in
the VSP RAM section 0. In addition, at the end of the instruction execution, the
real and imaginary accumulators each contain the sum of products obtained during
the multiplication process with the respective vector. External memory remains
unchanged after the instruction execution.

6-27

Zoran VSPS Manual VSP Instruction Set

6.4.4 MLTC (Vector Multiply Complex Accumulate)

Ml. TC multiplies a complex vector in internal RAM by a complex vector in
external memory. External memory remains unchanged. The product is stored in
internal RAM, and the sum of the products is stored in the real and imaginary
accumulators. The form of the product is selected as shown below.

Ml. TC is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
10101011101 IRS I ADF IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I HBS I llSS I I AD I l I l I CN I SB I I 0 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I MBA I

+---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

All of the parameters contained in the ML TC instruction are defined in section 6.2.

6-28

Zoran VSPS Manual VSP Instruction Set

The following is an example of how the ML TC instruction may be used.

MLTC NMPT:2 RS:O ADF:3 EI:O MBS:2 MSS:2 AD:O CN:O SH:O MBA:O

Before Instruction

EztRAM[O] • [DO,Dl)
EztRAM[l] • [D2,D3]

VSPRAM[O] • [R0,10]
VSPRAM[l] • [Rl,Il]

Address

0
1
2
3

IJQ
I Dl -l_D2
IJ,3

VS PRAM

0 l_RO l_ll
1 I Rl I Il

ltEAI.ACCOM -> JU.nit

DIAGACCtJM -> JU.nit

After Instruction

VSPRAM[O] • [RO*DO - %0*Dl, IO*DO + RO*Dl]
VSPRAM[l] • [Rl*D2 - %l*D3, Il*D2 + Rl*D3)

VSPACCO'M =
[RO*DO - IO*Dl + Rl*D2 - Il*D3,

IO*DO + RO*Dl + Il*D2 + Rl*D3]

Address VSPRAM

0
1

I RO*DO-IO*Dl I IO*DO+RO*Dl
wl ~

I Rl*D2-Il*D3 I Il*D2+Rl*D3
~ ---

REALACCt1M -
RO*DO - IO*Dl + Rl*D2 - Il*D3

IHAGACCCM •
%0*DO + RO*Dl + Il*D2 + Rl*D3

The ML TC example multiplies two complex vectors existing in external memory
beginning at physical address 0 with two complex vectors existing in VSP internal
RAM section 0. The real portions of VSP memory contain the real results of the
vector multiplies, and the imaginary portions contain the imaginary portions of the
vector multiplies. The real accumulator contains ihe summation of the real
components, and the imaginary accumulator contains the summation of the
imaginary components. External memory is left unaffected.

6-29

Zoran VS/' SM anual VSP Instruction Set

6.5 Internal ALU Instructions

There are nine instructions which carry out arithmetic operations within the VSP
using its internal registers and memory. Because the BIU is not used when these
instructions are executed, they may be executed concurrently with l/O instructions.
Instructions in this section vary in length from one to three words.

The instructions covered in this section are:

ACCR (Accumulate Real)
ACCI (Accumulate Imaginary)
ABS (Absolute Value)
CMLT (Cross Multiply)
CMCN (Complex Conjugate)
MGSQ (Magnitude Square)
DEMO (Demodulate)
MODLT (Modulate)
SCL (Scale)
SCL T (Scale Literal)

6-30

Zoran VSP SM anual VSP Instruction Set

6.5.1 ACCR (Accumulate Real)

ACCR accumulates the real part of the internal vector and stores the result in the
real accumulator. Internal memory is not changed.

ACCR is a one-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I l I 0 I 1 I 0 I 0 I NMPT IRS I 0 I 0 IEI I
+---+

15 14 13 12 11 10 g 8 7 6 5 4 3 2 l 0

The following parameters have definitions which are the same as those given in
section 6.2: NMPT, RS and El

The following is an example of how the ACCR instruction may be used.

ACCR NMPT:4 RS:O EI:O

Before Instruction

VSPRAM[O] II: [RO, IO]
VSPRAM[l] - [Rl, Il]
VSPRAM[2] -[R.2, I2]
VSPRAM[3] - [R.3, I3]

VSPACCOM • [Rinit,Iinit]

Address

0
1
2
3

VSPRAM

I RO I IO I
IRl-1 Il I ,_,,_.. _ ___,__._
I R2 I I2 I ___,_... _ ___,__._
1~_1 ll I

REALACCOM -> Rinit

IMAGACCOM -> Iinit

After Instruction

VSPRAM[O] • [RO, IO]
VSPRAM[l] • [Rl, Il]
VSPRAM[2] • [R.2, I2]
VSPRAM[3] • [R.3, I3]

HMPT-1
VSPACCtJM • [:!!:J Ri 1 Iinit]

i=O
Address VSPRAM

0
1
2
3

I RO I IO I ___,..-._ ~-
I Rl I Il I --- ,_..,,..--_ I R2 I I2 I

·l_R3_1 ll I

HMPT-1
REALACCOM • ~

i•O
IMAGACCOM -> Iinit

R· .1

The ACCR example performs an accumulation on the real portion of a four
element vector existing in VSP RAM section 0. The result is left in the real
accumulator. Neither the imaginary accumulator nor the internal memory are
affected by the ACCR instruction.

6-31

Zoran VSPS Manual VSP Instruction Set

6.5.2 ACCI (Accumulate Imaginary)

ACCI accumulates the imaginary part of the internal vector and stores the result in
the imaginary accumulator. Internal memory is not changed.

ACCI is a one-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 1 I 1 I 1 I 0 I 1 I NMPT IRS I 0 I 0 IEI I

+---+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The following parameters have definitions which are the same as those given in
section 6.2: NMPT, RS and EI.

The following is an example of how the ACCI instruction may be used.

ACCI NMPT:4 RS:O EI:O

Before Instruction

VSPRAM[O] c [RO, IO]
VSPRAM[l] c [Rl, Il]
VSPRAM[2] c [R2, I2]
VSPRAM[3] • [R3, I3]

VSPACCOM -= [Rinit, Iinit]

Address

0
1
2
3

VS PRAM

RO IO
I i1 I ll

'~-' Il I R3 I U

REALACC'OM -> Rinit

After Instruction

VSPRAM[O] c [RO, IO]
VSPRAM[l] c [Rl, Il]
VSPRAM[2] c [R2, I2]
VSPRAM[3] c [R3, I3]

NMP'l'-1
VSPACCOM c [Rinit, ~

Address

0
1
2
3

i=O
VS PRAM

l_RO_l_J..Q_I
1_· ...rR--:1._l_.ll_ I
l~_I I2 I
I R3 l___ll_I

REALACCOM -> Rinit
NMJ?'l'-1

IMAGACC'OM -> Iinit IMAGACCOM -= :e2 Ij
i•O

Ii]

The ACCI example performs an accumulation on the imaginary portion of a four
element vector existing in VSP RAM section 0. The result is left in the imaginary
accumulator. Neither the real accumulator nor the internal memory are affected by
the ACCI instruction.

6-32

Zoran VSPS Manual VSP Instruction Set

6.5.3 ABS (Absolute Value)

ABS causes selected parts of the internal vector to be replaced by their absolute
values. ADF specifies whether only the real part, only the imaginary part, or both
parts will be replaced.

ABS is a one-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 1 I 1 I 1 I 1 I NMPT IRS I ADF IEI I

+---+
15 14 13 12 11 10 g 8 7 6 5 4 3 2 1 0

All of the parameters contained in the ABS instruction are defined in section 6.2.

The following is an example of how the ABS instruction may be used.

ABS NMPT:4RS:1 ADF:3 EI:O

Before Instruction

VSPRAM[64] 11: [R.64, I64]
VSPRAM[65] 11: [R.65, I65]
VSPRAM[66] • [R.66, I66]
VSPRAM[67] • [R.67, I67]

Address

0
l
2
3

VS PRAM

l_R.64_1 I64_1
I R.651 I65 I
l_R.66 l_I66_1
l_R.67 l_I67_1

A£ter Instruction

VSPRAM[64] II: [IR.641,
VSPRAM[65] 11: [IR.651,
VSPRAM [6 6] 11: [IR.661,
VSPRAM[67] . [IR.671,

Address

" " ,,
64

VS PRAM

I I R64 I I I I64 I
!R65! I !I65! ---- ,___.
!R.66 !_I I I66 !
IR67! I !I671

II641
II651
II661
II671

]
]
]
]

The ABS example takes the absolute value of both the real and imaginary parts of
a four-element complex vector stored inside the VSP in RAM section 1.

6-33

Zoran VSPS Manual VSP Instruction Set

6.S.4 CMLT (Cross Multiply Accumulate)

CMLT multiplies the real part of the internal vector by the imaginary part, then
stores the result in the real part. The summation of these products also goes to the
real accumulator. ADF must be 10 or 00. If ADF is 00, only the real accumulator
is changed.

CMLT is a one-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 1 I 1 I 1 I 1 I 1 I NMPT IRS I ADF IEI I
+---+

15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0

All of the parameters contained in the CML T instruction are defined in section 6.2.

The following is an example of how the CML T instruction may be used.

CMLT NMPT:6RS:1 ADF:2 EI:O

aef ore Instrµction

VSPRAM[64] • (R64, I64]
VSPRAM[65] • (R65, 165]
VSPRAM[66] • (a66, 166]
VSPRAM[67] • [a67, %67]
VSPRAM[67] • [a68, I68]
VSPRAM[67] • [a69, I69]

VSPACCUM • [ainit, Ii.nit]

Address

'' 65
66
67
68
69

VS PRAM

Ul.I.ACCtJM -> ainit

DIAGACC'OM -> Ii.nit

After Instruction

VSPRAM[64] • (R64*I64, %64]
VSPRAM[65] • [R65*I65, %65]
VSPRAM[66] • (R66*I66, I66]
VSPRAM[67] • (R67*I67, I67]
VSPRAM[68] • [a68*I68, I68]
VSPRAM[69] • [a69*I69, I69]

llMP'l'-1
VSP.acctJM • [£. R.t*I.t,Iinit]

i•O

Address

64
65

" " 68
69

·. VSPRAM

I R.64*I64 I I64 I
I a65*I65 1__16~-I
t_a66*I66_1_i66_1
l_R67*I67_l_I67_1
l_R.68*I68_1 ___ ~I~6~8.._I

l_a69*I69 1_;U9_1

llMP'l'-1
Ul.I.ACCtJM • £ (R;L * I 1.)

i•O
DIAGACCUM -> Ii.nit

6-34

(

Zoran VSPS Manual VSP /nsrruction Set

6.5.S CMCN (Complex Conjugate)

CMCN replaces the complex internal vector with its complex conjugate. ADF
must be 11 binary.

CMCN is a one-word instruction. CMCN may be used as a NOP instruction by
setting ADF=O and setting NMPT = 1.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I l I l I 0 I l I HMPT IRS I ADF IEI I
+---+

15 14 13 12 11 10 9 8 7 6 s ' 3 2 l 0

All of the parameters contained in the CMCN instruction are defined in section
6.2.

The following is an example of how the CMCN instruction may be used.

CMCN NMPT:S RS:O ADF:3 EI:O

ae~ore Instruction

VSPRAM[O] • [llO, IO]
VSPRAM[l] • [al, l:l J
VSPRAM[2] • [a2, I2 J
VSPRAM(3] • [a3, I3 J
VSPRAM[4] • [ll4, IC J

Address VSPRAM

A,fter Instruction

VSPRAM[O] • (llO, -IO]
VSPRAM[l] • [al, -l:l]
VSPRAM[2] • [a2, -l:2]
VSPRAM[3] • [a3, -l:3]
VSPRAM[4] • [ll4, -l:4]

Address VSPRAM

0 1....,.8-0 I -IO __ I
1 I lll __ I -Il I
2 l~ __ I -I2 I
3 lwa3._.I -l:3 I
' IWR4 ___ 1_-I4_1

6-35

Zoran VSPS Manual VSP Instruction Ser

6.S.6 MGSQ (Mapiitude Square Accumulate)

MGSQ calculates the square of the magnitude of the internal vector. The result is
scaled dovm by two to prevent overflow, and is written into the real pan of the
internal memory. The sum of the magnitude squared elements is stored in the real
accumulator. ADF must be 10 or 00. H ADF is 00, only the accumulators are
updated.

MGSQ is a one-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 1 I O I 1 I 1 I 1 I IRS I AX>F IEI I

+---+
15 1t 13 12 11 10 • • 7 ' 5 ' 3 2 1 0

All of the parameters contained in the MGSQ instruction are defined in section
6.2.

The following is an example of how the MGSQ instruction may be used.

MGSQ NMPT:4 RS:O ADF:2

lef o;e In1tryetion

VSPJW«[O] • (ao,
VSPJW«[1] • (IU,

:VSPJW«[2] • [a2,
VSPJW«[3] • [al,

zo J
%1 J
%2 J
%3 J

After Instruction

vs•auccoJ • c cao2 + zo2)/2, zo J
VSPaaM[1] • [(IU2 + z12)/2, %1 J
VSPaaM[2] • [(Jt.22 + %22)/2, %2 J
VSPRAK[3] • [(a32 + z32)/2, %3 J

m«P'l'-1
VSPACCCK • [1/2 * .2:: (ll,t2 + ZJ.2), Zinit J

l•O

Add.re••
0
1
2
3

~->ainit

J:llAGACCCM ·> Iinit

Addre11

0
1
2
3

MNl''l'-1
u.mccaM • 1/~ (llJ.2 + IJ.2)

l•O
~->Iinit

6-36

Zoran VSPS Manual VSP Instruction Set

6.S.7 DEMO (Demodulate)

DEMO multiplies a complex vector in internal memory by a series of complex
coefficients generated from the sine-cosine look-up table. The coefficients are
specified in the instruction by a ROM base address and decrement address. The
result is stored in the real and imaginary accumulators.

The multiply operation follows the formula:

VSPRAM [i] = VSPRAM [i] * (cos 0 - j sin 0)
where 0 = RBA +RDA * i

The VSPROM contains 256 cosine values from 0 to Pl/2. The multiplication
performed in the DEMO instruction demodulates or frequency translates an input
signal by performing an element-by-clement complex multiplication with a
complex sinusoid. RBA corresponds to the initial phase and RDA determines the
frequency of the sinusoid. DEMO is precisely the same as the MODLT
instruction in section 6.5.8 except for the definition of the complex sinusoid. The
imaginary portion of the sinusoid is decremented instead of incremented as in the
MODLT instruction.

DEMO is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I O I 1 I O I 1 I O I IRS I ADF IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I 1 I ISH I I O I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

I 1 I I 1 I 1 I

+---+ 15 1C 13 12 11 10 9 8 ' 6 5 C 3 2 1 0

The following parameters for the DEMO instruction are defined in section 6.2:
NMPT, RS, ADF, EI and SH.

Parameters unique to the DEMO instruction:

RDA - ROM Decrement Address: address used to dcfme the incremental angles
for successive coefficients.

'

DEGREES* IO is the logical value for RDA.
DEGREES* 1024/360 is the literal value for RDA.

RBA ·- ROM Base Address: address of the start of the cosine values for the 1024
angles from 0 to 2 Pl.

DEGREES*lO is the logical value forRBA.
DEGREES*l024/360 is the literal value for RBA.

6-37

Zoran VSPS Manual VSP Instruction Set

FSIZ - Specifies the number of samples beginning with RBA to be addressed from
the internal sine/cosine LUT, after which the LUT address rolls back to the
RBA value.

Literal Lo&ical
000 -> 8 points
()()1 -> 16points
010 -> 32 points
011 -> 64points
100 -> 128 points

Logical 2"(N+3) translates to N literal.
The following is an example of how the DEMO instruction may be used.

DEMO NMPT:4 RS:O ADF:3 EI:O RDA:900 RBA:450 SH:O

lef ore Instruction

VSPACCCM • [Rinit,Iinit]

VSPRAM [0] - [R.0 I
VSPRAM[l] • [R.1,
VSPRAM[2] • [R.2,
VSPRAM [3] - [R.3 I

XO]
Il]
I2]
I3]

VSPROM[128] • [.707,
VSPROM[384] • [-.707,
VSPROM[640] • [-.707,
VSPROM[896] • [.707,

-.707]
-.707]

• 707]
.707]

lfter Instruction

VSPRAM[O] • [.707(%0 + R.0),
VSPRAM[l] • [.707(Il - R.1),
VSPRAM[2] • [-.707(%2 + R.2),
VSPRAM[3] • [.707(R.3 - I3),

.707(%0 - R.0)]
-.707(R.l + Il)]

.707(R.2 - I2)]

.707(R.3 + I3)]

VSPACCCM • [.707(R.O-R.1-R.2+R3+IO+Il-l2-I3),
.707(-R.0-R.1+R.2+R3+IO-Il-I2+I3)]

lefo;e Instruction

Address

0
l
2
3

VS PRAM

REALACCtJM -> Rinit

DIAGACCtJM -> Iinit

lft•r Instruction

Address

0
l
2
3

I . 707 n:o+R.0) I . 707 CIO-RQ) I
....... w41 .__

I . 707 Cil-Rl> I 707 CRl+Il> I
I_-. 707 <I2+R.2>_1 • 707 <R.2-I2> I
I .. 707 <R3-I3> I . 707 <I3+R3> I -

REALACCtJM • .707(R.O-R.1-R.2+R.3+IO+I1-I2-I3)

IMAGACCCM • .707(-R.0-R.1+R.2+R.3+IO-Il-I2+I3)

The DEMO example multiplies a four-clement complex vector with a complex
sinusoid, the result of which is equivalent to a demodulation of the complex

6-38

J

'(

Zoran VSPS Manual VSP Instruction Set

vector. The real results of the demodulation are left in the real portion of memory,
while the imaginary results are left in the imaginary portion of memory. The real
accumulator contains the accumulation of the real portion of the demodulation.
The imaginary accumulator contains the accumulation of the imaginary portion of
the demodulation. The RBA parameter specifies the phase off set or initial phase
angle; 450 in this example. The RDA parameter specifies the phase increment
(frequency); 900 in this example.

6-39

Zoran VSPS Manual VSP Instruction Set

6.5.8 MODLT (Modulate)

MODLT multiplies a complex vector in internal memory by a series of complex
coefficients generated from the sine-cosine look-up table. The coefficients are
specified in the instruction by a ROM base address and increment address. The
result is stored in the real and imaginary accumulators.

The multiply operation follows the formula:

VSPRAM [i] = VSPRAM [i] * (cos 0 + j sin 0)
whereO=RBA+RIA * i

The VSPROM contains 256 cosine values from 0 to Pl/2. The multiplication
performed in the MODLT instruction modulates or frequency translates an input
signal by performing an clement-by-element complex multiplication with a
complex sinusoid. RBA corresponds to the initial phase and RIA determines the
frequency of the sinusoid. MODLT is precisely the same as the DEMO
instruction in section 6.5. 7 except for the definition of the complex sinusoid. The
imaginary portion of the sinusoid is incremented instead of decremented as in the
DEMO instruction.

MODLT is a three-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 1 I 0 I 1 I 0 I HMPT IRS I ADI' IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I 0 I RIA I ISH I I O I
+---+---+---+---+---+---+--... +--... +---+---+---+---+---+---+---+---+

!..-----------------~------------------~-!:~-~-=-=--1---~-~-~-~-!
15 14 13 12 11 10 9 8 7 6 5 c 3 2 1 0

The following parameters for the MODLT instruction are defined in section 6.2:
NMPT, RS, ADF, EI and SH.

Parameters unique to the MODLT instruction:

RIA - ROM Increment Address: address used to define the incremental angles for
successive coefficients.

DEGREES*lO is the logical value for RIA.
DEGREES*l 0241360 is the literal value for RIA.

RBA - ROM Base Address: address of the start of the cosine values for the 1024
angles from 0 to 2 PI.

DEGREES*lO is the logical value for RBA.
DEGREES* 10241360 is the literal value for RBA.

{;

Zoran VSPS Manual VSP Instruction Set

FSIZ - Specifies the number of samples beginning with RBA to be addressed from
the internal sine/cosine LUT, after which the LUT address rolls back to the
RBA value.

Literal Lo1:ical
000 -> 8 points
001 -> 16 points
010 -> 32 points
011 -> 64 points
100 -> 128 points

Logical 2"(N+3) translates to N literal.
The following is an example of how the MODL T instruction may be used.

MODLT NMPI':4 RS:O ADF:3 EI:O RIA:900 RBA:450 SH:O

lefore Instruction

VSPACCtJM • [Rinit,Iinit]

VSPRAM[O] • [RO,
VSPRAM[l] • [R.1,
VSPRAM[2] • [R.2,
VSPRAM[3] • [R.3,

IO]
Il]
I2]
I3]

VSPROM[128] • [. 707,
VSPROM[384] • [-.707,
VSPROM[640] • [-.707,
VSPROM[896] • [.707,

. 707]

.707]
-.707]
-.707]

.After Instruction

VSPRAM[O] • [.707(R0 - IO),
VSPRAM[l] • [-.707(R1 + Il),
VSPRAM[2] • [.707(I2 - R.2),
VSPRAM[3] • [.707(R3 + I3),

.707(RO +IO)]

.707(R1 - Il)]
-.707(R2 + I2)]

. 707 (I3 - R.3)]

VSPACCtJM • [.707(RO-R1-R2+R3-IO-Il+I2+I3),
.707(RO+R1-R2-R3+IO-I1-I2+I3)]

lef ore Instruction

Address

0
1
2
3

VS PRAM

I RO I IO
l_Rl_l__ll
I R2 I I2 -
l_R.3 l_J3

REALACCtJM -> Rinit

DIAGACCtJM -> Iinit

&fter Instruction

Address

0
1
2
3

VS PRAM

. 707 (RO-IO> I . 707 (RO+IO) I ---.707(Rl+I1) I .707(R1-I1) I -- - --• 707<I2-R2> I -. 707CR2+I2> I -. 707 <R3+I3l I . 707CI3-R3) I ---
REALACCtJM • .707(RO-R1-R2+R3-IO-Il+I2+I3)

DIAGACCtJM • .707(RO+R1-R2-R3+IO-I1-I2+I3)

The MODLT example multiplies a four-element complex vector with a complex
sinusoid, the result of which is equivalent to a modulation of the complex vector.

6-41

Zoran VSPS Manual VSP Instruction Set

The real results of the modulation are left in the real portion of memory, while the
imaginary results ·are left in the imaginary portion of memory. The real
accumulator contains the accumulation of the real portion of the modulation. The
imaginary accumulator contains the accumulation of the imaginary portion of the
modulation. The RBA parameter specifies the phase offset; 450 in this example.
The RIA parameter specifies the phase increment (frequency); 900 in this
example.

6-42

Zoran VSP SM anual VSP Instruction Set

6.5.9 SCL (Scale)

SCL scales an internal complex vector down in magnitude by performing an
integer number of right shifts on the data samples of the vector operand. The
number of bits of right shifting performed is determined by elements of a scale
vector which must have been previously loaded into the VSP scale RAM.

The scale vector must be written by the host into the scale RAM prior to execution
of the SCL command, or loaded with the LDSM instruction. The scale vector can
be 1 to 64 nibbles in length. Each nibble is a scaling factor from 0 to 15,
representing the number of right-shifts -- divide by twos -- to apply to the elements
of the internal vector. The simplest example is a scale vector the same length as
the internal operand vector, where different parts of the latter are scaled by
different factors in the scale vector. If multiple successive points of the internal
operand vector are to be scaled by the same scale nibble, the scale vector may be
shorter than the operand.

The length of the scale vector is specified in the instruction setup. Also specified
is the number of successive points in the internal vector to be scaled by the same
scaling factor. When the scale vector length is shorter than the operand length, the
scale vector starts over at its beginning to process the remainder of the operand. If
the scale vector is only one nibble in length, the instruction allows specification of
which nibble out of the first four in the Scale RAM is used in the instruction
execution.

SCL also sums the scaled results into both the real and imaginary accumulators.

The content of each nibble of the scale vector is the number of right shifts (divide
by-twos) performed on the operand vector:

0000 -> no effect
0001 -> divide by 2
1111 -> divide by 32,768 (2**15)

SCL is a two-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I O I 1 I O I 1 I 1 I IRS I ADF IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I I 0 ISB I SCLVL I SCLBL I ILN I
+---+

15 14 13 12 11 10 9 8 7 ' 5 4 3 2 1 0

6-43

Zoran VSPS Manual VSP Instruction Set

The following parameters for the SCL instruction are defined in section 6.2:
NMPT, RS, ADP and EI.

Parameters unique to the SCL instruction:

SB - Subtract: source of the content of the scale factor.

0 -> use the factor in scale RAM
1 -> use the old maximum scale value minus the scale RAM value

SCL VL - Scale Vector Length

Literal
000 ->
110 ->

Lo1ical
1 nibble
64nibbles

Logical 2"N is translated to N literal.

SCLBL - Scale Block Length: SCLBL is the number of points in VSP RAM to
have the same scale factor.

Literal
000 ->
101 ->

Lo&ical
1 point
32points

Logical 2 "N is translated to N literal.

If the scale vector length is 1, SCLBL defines the nibble in the first four
Scale RAM nibbles to use.

LN - word length of instruction:

0
1

->
->

used as a three-word instruction
used as a two-word instruction

6-44

Zoran VSPS Manual VSP Instruction Set

The following is an example of how the SCL instruction may be used:

SCL NMPT: 10 RS:O ADF:3 EI:O SB: 1 SCL VL:4 SCLBL:2LN:1

Before Instruction After Instruction

VSPRAM[O] • RO, IO] VSPRAM[O] = (lt.0/8, I0/8]
VSPRAM[l] = :Rl, Il] VSPRAM[l] • (:Rl/8, Il/8]
VSPRAM[2] • R2, I2] VSPRAM[2] • (R2/ 4, I2/4]
VSPRAM[3] • R3, I3] VSPRAM[3] ., [R3/4, I3/4]
VSPRAM[4] = R4, I4] VSPRAM14l • (R4/l6, 14/16 l
VSPRAM[S] • [RS, IS] VSPRAMtS] .. [RS/16, IS/16]
VSPRAM[6] = [R6, I6] VSPRAM[6] • [R6/8, I6/8]
VSPRAM[7] -= [R7, I7] VSPRAM[7] -= [R7/8, I7/8]
VSPRAM[8] • [RS, IB] VSPRAM[8] • [R8/8, I8/8]
VSPRAM[9] • [R9, I9] VSPRAM[9] • [R9/8, I9/8]

SCLRAM[O] • (2312H]
OMSCLRAM - [5]

Add.re a a VSPRAM Add.re a a VS PRAM

0 RO I IO I 0 I R0[8 - I I0[8 I
1 I Rl I Il_ I 1 I Rll8 I I1[8 I - - w;il w.£1 --

2 I _R2_1_I2 I 2 I R2l4 I I2l4_ I -3 I _R3_1_I3_ I 3 I R3l4 I ---- ----- I3l4 I
4 I _R4_1_I4 I 4 I R4[16 I I4[16 ---- I
5 I RS l_IS_I 5 I R5l16 - I 15[16_ I
6 I _R6_1_J6_ I 6 I R6[8 - I I6[8 I
7 I _R7_1_I7_ I 7 I R7[8 I I7[8 I

--- :WW ___. -

8 I R8_1_I8 I 8 I R8[8 - I ;UlB_. I
9 I R9_1 I9_ I 9 I R9[8 - I I9[8 ---I

SCLRAM

0 1_2 1~1_1_1_2_1

Old Nazi.mum Scale Register IJ_ I

REALACCOM ->JU.nit RD.LACCOM • (RO+:Rl)/8 + (R2+R3)/4 +
(R4+R5)/16 + (R6+R7+R8+R9)/8

IMAGACCOM -> Iinit IMAGACCtJM • (IO+Il)/8 + (I2+I3)/4 +
(I4+IS)/16 + (I6+I7+I8+I9)/8

In the SCL example, the scale RAM has been previously loaded with a scale
vector with a length of four (SCLVL:4) nibbles. The old maximum scale RAM

6-45

Zoran VSPS Manual VSP Instruction Set

contains the hexadecimal nibble SH. The number of bits of right-shift performed
on each complex data sample is determined by subtracting the respective scale
constant for each sample from the old max scale RAM value (SB:l). Each value
in the scale RAM scales two complex samples (SCLBL:2). After the first eight
complex samples are scaled, the pointer to the scale RAM rolls over and points to
the first value again; VSPRAM[8] and VSPRAM[9] are scaled by the same shift
as VSPRAM[O] and VSPRAM[l]. The summation of the ten scaled values is
stored in both the real and imaginary accumulators.

6-46

'

f
'1.

(_/

Zoran VSPS Manual VSP Instruction Set

6.5.10 SCL T (Scale Literal)

SCL T scales the internal vector by a constant defined by the SHF parameter.
SCL T is a two-word instruction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 0 I 1 I 0 I 1 I 1 I RMP'l' IRS I ADF IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I I 1 I SB I I SKF I I LN I
+---+

15 14 13 12 11 10 9 8 7 6 s 4 3 2 1 0

The following parameters for the SCLT instruction are defined in section 6.2:
NMPT, RS, ADF and El.

Parameters unique to the SCLT instruction:

SHF - Shift: the number of right-shifts to apply to each vector clement.

Literal
()()()() ->
0001 ->
1111 ->

Loeical
no effect
divide by two
divide by 2**15, or 32,768

SB - Subtract: Source of the content of the scale factor.

0

1

->

->

use the SHF parameter as defmed in the instruction for the
number of right-shifts
use the old scale RAM value minus the SHF value as the
number of right-shifts to perform

6-47

Zoran VSPS Manual VSP Instruction Set

The following is an example of how the SCL T instruction may be used:

SCLT NMPT:S RS:O ADF:3 EI:O SB: 1 SHF:2LN:1

lefore Instruction

VSPRAM[O] • [RO, IO]
. VSPRAM[l] • [IU, I1]
VSPRAM[2] • [R.2, I2]
VSPRAM[3] = [R3, %3]
VSPRAM[4] • [R4, I4]

OMSCLRAM = [5]

Address

0
1
2
3
4

VS PRAM

IJQ_l_!Q_I
I IU I Il I
I B2 IJ.2 I
l_R3 I I3 I
l_R4_1 li_I

&f ter Instrpction

VSPRAM[O] • [ll0/8, I0/8]
VSPRAM[l] • [IU/8, Il/8]
VSPRAM[2] • [R.2/8, %2/8]
VSPRAM[3] • [R3/8, %3/8]
VSPRAM[4] = [R4/8, %4/8]

Address VSPRAM

Old Ma:sinn:mi Scale :Regieter l_LI

The SCL T example scales the five complex samples in VSP RAM section 0 by the
difference between the old max scale RAM value (SH) and the shift parameter
specified in the instruction field (SHF:2). In this example, all five of the complex
samples are shifted right by three.

6-48

Zoran VSPS Manual VSP Instruction Set

6.6 Control Instructions

This section covers the three instructions which control program flow in the VSP.
They vary in length from one to three words. The three instructions are:

JMPI (Jump Indirect)
HLT (Halt)
NOP (No Operation)

6.6.1 JMPI (Jump Indirect)

JMPI is the main program flow control instruction within the VSP. JMPI causes
the VSP to load a new instruction fetch address located at the memory base
address defined by MBA in the instruction word. JMPI is executed by the Bill.

JMPI may be used for both calling and returning from subroutines.

JMPI is a three-word instuction.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I O I O I 0 I O I 0 I O I 0 I O I 0 I 0 I 0 I 1 IRS I 0 I O IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
1010111 1110111111101 101
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I MBA I
+---+

15 14 13 12 11 10 9 8 7 ' 5 4 3 2 1 0

6-49

Zoran VSPS Manual VSP Instruction Set

6.6.2 HL T (Halt)

HL T stops the VSP bus-interl'ace unit from fetching any more instructions. It is
always used as the last instruction in a program or when it is desired to halt
instruction fetch. ALU instructions executing or queued in the instruction FIFO
when a HLT instruction is executed are not affected. ALU instructions will
complete and provide status to the host as defined in the particular ALU
instruction. HL T has no meaning in the slave mode.

HLT is a two-word instruction, where all but the first five bits are DON'T CARE.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
11111010101 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I I
+---+

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Examples of the use of JMPI and HL T are presented in Chapter X.

6.6.3 NOP (No Operation)

NOP is a one-word null instruction which has no effect on the execution of other
instructions, nor on registers (except the status registers which are updated) nor
memory. NOP is implemented as a CMCN instruction with ADF:OO. Note that
the execution time of the NOP instruction is a function of the NMPT parameter
defined in the instruction. This allows variable-length NOP instructions for
applications requiring predictable delays. It is sometimes useful to insert NOPs in
a program to reserve space for later use or to time operations for real-time
applications.

/ • \ 1· n I
+--- . --- . --- . --- • --- . __ ..::, . --- . --- J--- . --- . --- . --- ', _.:,._ . --- . --- . ---+
I O I 1 I 1 I O I 1 I RHPT IRS I O O IEI I

+--~--------------------+
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

All programmable parameters in the NOP instruction are defined in section 6.2.

6-50

(_

Zoran VSP SM anual VSP Instruction Set

6.7 The FFf Instruction

The FFT instruction is used to perform Fast Fourier Transforms on real or
complex vectors stored in the VSP internal memory. This chapter covers first the
instruction itself including a description of its parameters. Next it explains the
uses and inter-relationships of the parameters and how they control the execution
of a transform. Finally there is an example of an FFT algorithm which illustrates
the material already covered.

6.7.1 FFT. The Fast Fourier Transform Instruction

FFT executes a Fast Fourier Transform or an Inverse Fast Fourier Transform on
data stored internally in the VSP RAM. The associated parameters give this
instruction a wide range of flexibility.

+---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---+
I 1 I 0 I 0 I 1 I 0 I RMBT IRS I 1 I 1 IEI I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I R. I 0 I O I 0 I 0 I 0 I 0 I FPS I I.PS I I 0 I
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
I 0 I 1tBA I l'SIZ IAS I I I R. I
+---+

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The following parameters have definitions which are the same as those given in
section 6.2: RS and El.

Parameters which arc unique to the FFT instruction:

NMBT - Number of Butterflies per pass

The number of butterflies (NMBT) is a literal value describing the number
of butterfly operations which are to be performed. Literal NMBT is
in the range of 1 to 64.

Logical NMBT is the number of data points, which is twice the number of
butterflies. When using the simulator with logical parameters,
NMBT must be thought of as the number of samples, not the
number of butterflies. Logical NMBT is in the range 2 to 128.

R - Reverse: order of the data in internal memory

0 -> normal order
1 -> bit-reversed order

When R=l, FPS should be 6 literal, LPS less than 6 literal, and RBA=O.

6-51

Zoran VSPS Manual VSP Instruction Set

Note that R occurs a second time in the instruction parameters as the last
parameter in the third word.

FPS - First Pass Separation: the separation of the two sample points in the first
butterfly pass.

Literal
000 ->
110 ->

Loeical
64-point separation
I-point separation

Logical 2A(6-N) is translated to N literal.

LPS - Last Pass Separation: the separation of the two sample points in the last
butterfly pass

Literal
000 ->
110 ->

Loa:ical
64-point separation
I-point separation

Logical 2"(6-N) is translated to N literal.

RBA - ROM Base Address: the offset address from 0 to S 11 (:representing angles
from 0 to Pl) of the first coefficient to be used in the FFT in each pass. In
each successive pass, RBA is right-shifted one bit.

DEGREES* IO is the logical value for RBA.
DEGREES*1024/360 is the literal value for RBA.

FSIZ - FFT Size: the number of points contained in the FFf. Programming FSIZ
to a value different (smaller) than NMBT allows multiple FFfs to be
computed using a single FFf instruction. The total number of points is the
product of the number of FF'fs and FSIZ. For example, the partial
instruction:

FFTNMBT:l28, FPS:l6, LPS:l, FSIZ:32, RBA:O;

will calculate four 32-point FFI's using a single FFI' instruction.

Literal Loa:ical
000 -> 8-pointFFT
001 -> 16-point FFI'
010 -> 32-point FfT
011 -> 64-point FfT
100 -> 128-point FFT

Logical 2"(N+3) is translated to N literal.

6-52

Zoran VSP SM anual VSP Instruction Set

AS - Automatic Scale: chooses the type of scaling to perform in conjunction with
the FFT calculations.

0 -> Block floating operation. Scaling will be performed manual.ly with
the scale instruction.

1 -> Fixed divide by two each pass. Normally the scale instruction is not
used with AS=l.

Note that it is possible to experience an overflow when AS= 1.

I - Inverse

0 -> forward FFf
1 -> inverse FFf

6-53

Zoran VSPS Manual VSP Instruction Set

The following is an example of how the FFT instruction may be used.

FFT NMPT:S RS:O EI:O FPS:4 LPS: l RBA:O FSIZ:S AS: l 1:0 R:O

Before Instruction

VSPRAM[O] • [ao, IO]
VSPRAM[l] = [al, Il]
VSPRAM[2] • [R2, I2]
VSPRAM[3] • [a3, I3]
VSPRAM[4] • [R4, I4]
VSPRAM[S) = [RS, IS]
VSPRAM(6] = [R6, I6]
VSPRAM[7] • [R7, I7]

Address

0
1
2
3

' 5

' 7

VS PRAM

1_ao_1 ll_I
l_Rl l_Il_I
1_82. l_I2 I
1_83_1_I3 I
1_a,_1 14_1
1_as_1 JS I
l_M_I ILi
I a7 I ll I

After Instruction

VSPRAM[O] • [no, l'IO]
VSPRAM[l] • [l'll4, FI4]
VSPRAM[2] • [l'll2, FI2]
VSPRAM[3) • (FR6, l'I6]
VSPRAM[4] • [l'Rl, l'Il]
VSP:RAM[S] • [l'a5, l'IS]
VSP:RAM[6] = [l'a3, l'I3]
VSPRAM(7] • [l'll7, l'I7]

Address VS PRAM

0
1
2
3

' 5

' 7

l_l'RO I FIO_I
l_FR4 I l'I4 I
I m_I rx2_1
l_J'R6_1 FI6 I
1_ra1_1 rn_1
IJM_I FIS I
l_ra3_1 FI3 I
l_n7_1 l'I7 I

FR and FI arc the real and imaginary parts of the transform.

The FFT example takes a complex eight-point FFT of data stored in VSP RAM
section 0. The results of this FFT are also stored in VSP RAM section 0. The
first-pass spacing between data points is four, and the last-pass spacing is one.
This is consistent with normally-ordered input data. The results stored in internal
VSP memory after the FFT calculation are in bit-reversed order.

6-54

\•
\-._

Zoran VSP SM anual VSP Instruction Set

6. 7.2 The FIT Algorithm

The Fast Fourier Transform and its inverse are mathematically-efficient algorithms
for implementation of the the discrete Fourier transform (DFT) and the inverse
discrete Fourier transform (IDFT). "Mathematically-efficient" means that the
number of multiplications and additions required to complete the FFr calculation
are much fewer than the number required for calculation of the DFT. The
mathematical definitions of the DFT and IDFT are shown below. The number of
multiplications and additions required for the computation of the discrete Fourier
transform is of the order of N2. The number of calculations required for
computation of the FFr algorithm is of the order of N log2 (N). Because of the
mathematical efficiency of the FFr algorithm, it is a widely used technique.

The DFT is defined as:

N-1
X(k) =:8 x(n)e-j(2*pi*k*n/N)

n=O

The IDFT is defined as:

where
x(n) is a time-domain sequence of length N samples,

and
X(k.) is the transform of x(n).

Oftentimes the exponential factor e-j(2*pi*k*n/N) is simplified to the form below:

WJI. = e-j(2*pi*k*nlN),

where k and N are as defmed above.

The FFr instruction in the VSP is a very powerful command which allows a great
deal of flexibility. This flexibility allows calculations of transforms of different
lengths and dimensions. For shorter length transforms, multiple FFTs may be
calculated simultaneously. For instance, when calculating a l 6x 16 transform,
multiple rows of the two-dimensional transform may be calculated simultaneously.
The parameters of the instruction control how the algorithm is implemented. The
following sections describe the FFT algorithm and the relationship between the
instruction and the algorithm.

6-55

Zoran VSPS Manual VSP Instruction Set

6.7.3 The Decimation-in-Time Algorithm

Many efficient mathematical techniques and algorithms have been developed over
the last several years for computing the FFT. The decimation in time (DIT)
algorithm is one commonly used. It is shown in flowchart forms in Figures 6-2
and 6-3. Figure 6-2 shows how the DIT algorithm begins computation of the FFf
by forming small sub-sequences of the input time sequence and performing small
transforms on butterflies. Successively larger transforms are formed from the
smaller ones until the complete transform of the desired length is achieved. An
expanded view of the signal processing involved in each butterfly is shown in
figure 6-4.

The VSP FFT instruction executes an FFT and an inverse FFT using the DIT
algorithm. All the principles and rules in the following sections for the FFT are
also applicable to the inverse FFT. The properties of the DIT algorithm are
described and related to the parameters of the FFT instruction.

6-56

7.oran VSPS Manual VSP Instruction Set

XiD1

X(l61

X(81

X(24J

X(4)

X(201

X(12)

X(28)

X(2)

X(18)

Xj10)

lq26)

X{6)

JC(22)

X{14)

X(30)

X(1)

X(17)

Jqll)

X(25)

X(1S)

)((21)

X(13)

)((29)

X(3)

X(19)

X(11)

)((27)

xm
)((23)

X(1S)

X(31)

5THPASS I D8Ps1

Figure 6-2. FFT with Normally Ordered Input Data.

6-57

Zoran VSPS Manual VSP Instruction Set

j

.,, X(Oi

•1 X(1) - Xl2l

JICIC))C(3)

X(C))C(•) i..,, X(5)

11(12) X(6) - X(7)

XCZt JCl81

Jl(1ll Xl91

Jl(1llt X(10J - lCl11) - X(12)

11122> X(13)

XC14J X(1•l .,, X(15)

X(1) X(16)

XC17t IC(17) - X(18J cj
Jr05) IC(19) .. X(20) .,, IC(21)

XC111 XC22l

111111 ., X(23) - "'2•l

XC111 "'25l ..,,, X(26J

~ IC(27)

11(7) X(.28) .., 1(29)

X(15) X(30)

Jl(:l1)

1--,ITPASS ..,.,
IC(31)

ITHPASS
D8Ps16

Figure 6-3. FFT with Bit-Reversed Input Data.

\ __ /

6-58

,f
'\

Zoran VSPS Manual VSP Instruction Set

6.7.4 Radix-2, Butterflies and P~es

In a radix-2 transform, the number of points in the input sequence must be a power
of two. Some of the characteristics of the DIT algorithm determine the number of
computations required to compute the FfT. The DIT algorithm of Figure 6-1 is a
radix-2 transform as is the VSP FfT instruction. Some of the properties of radix-2
transforms are described below:

1) The number of passes p to complete an N-point radix-2 transform is
p=log2 N, where N is the number of points in the input sequence.

2) The number of butterfly computations b required per pass (Figure
6-3) is b = N/2.

3) The total number of butterfly computations required for an N-point
transform is pb = N/2 log N.

The parameter FSIZ in the FFr instruction is the number of points in the
transform. NMBT (literal) is the number of butterflies required per pass.
Therefore, NMBT (logical) = FSIZ times the number of FfTs of size FSIZ. This
applies to both the N-point FF'f and the IFFf. This last statement also implies that
the VSP is capable of performing multiple FfTs in a single instruction when they
are small in size.

6. 7.5 Order of Input

An important property of the DIT algorithm is that if the addresses of the input are
in normal order, the output addresses arc in bit-reversed order, as can be seen in
Figure 6-2. The converse is also true, as shown in Figure 6-3, with bit-reversed
input and normal-ordered output.

The difference in FFr computation between normal-ordered and bit-reverse
ordered input is the distance between the points used to compute the butterfly. In
Figure 6-2, note that the first pass inputs to the butterflies arc separated by 16
points, while the last pass inputs are separated by one point. In Figure 6-3, the
first-pass separation is one point and the last-pass separation is 16 points.

To summarize the above, in an N-point DIT computation:

1) If the input data is in bit-reverse order, the output will be in normal
order. The distance between first pass inputs to the butterfly is one
point; last pass distance is N/2 points.

2) If the input data is in normal order, the output is in bit-reverse
order. The distance between first pass inputs to the butterfly is N/2
points; last pass distance is one point.

The FPS parameter in the FFr instruction defines the distance between the inputs
to the butterflies in the first pass. The LPS parameter dcrmes the distance between
the inputs to the butterflies on the last pass. R specifies whether the input is in

6-59

Zoran VSPS Manual VSP Instruction Ser

normal or bit-reversed order. The use of these three parameters allows the
flexibility of ordering the input and output data as desired in the application.

FPS, LPS and R must be selected to conform to the two rules stated above. · If
FSIZ is smaller than NMBT, then FPS and LPS refer to an FFT with FSIZ number
of points. This is important to remember when perfonning multiple FFTs in a
single instruction.

The RV parameter in the lD instruction allows data to be read into the VSP in bit
reversed order. The R parameter in the FFT instruction defines this order to the
execution unit aboard the VSP. The RV parameter in the ST instruction writes
data stored in internal VSP RAM into external memory in bit-reversed order. Use
of these three parameters will allow data to be read, computed and stored in the
desired normal or bit-reversed format.

6.7.6 Overflows and Block Floating Operation

FFT computations consist of multiplications and additions, where the addition
operation may produce overflows. The magnitudes of the numbers in the data
sequences generally increase in each pass. The average rate of growth of the
magnitude is up to one bit per stage. The FFT instruction offers two scaling
techniques to prevent overflows.

One technique is the fixed divide-by-two option which right-shifts the data after
each pass. This technique guarantees against overflow only if the starting
magnitudes of the data samples are each equal to or less than one. This technique
is easy to program and fast to execute, but it causes unnecessary loss of accuracy
when no overflow occurs. Fixed scaling is implemented in the VSP by setting
AS= 1 in the FFI' instruction.

The second method to prevent overflow during FFT calculations is to use the
block floating-point operation that right-shifts the data only if overflow occurs.
This technique is more accurate than the fixed divide-by-two operation. The
block-floating operation of the FFT instruction can right-shift data by one or two
bits in each pass. Block floating-point operation is achieved in the VSP by setting
AS=O in the FFI' instruction. This technique should be used for the highest
resolution. It also requires the use of the scale commands in conjunction with the
FFI' instruction.

The use of block-floating operations requires more care when constructing large
transforms from smaller ones. Assume that a 256-point FFT is being constructed
from four 64-point FFrs, each of which have been computed with different scale
factors. In this case, it is required that each of the smaller transforms be
normalized to the same scaling factor. The 64-point transform. with the maximum
scale factor will not need additional scaling. However, each of the other three 64-
point transforms must be scaled by a factor equal to the maximum factor minus the
respective scale factor for the 64-point transform.

The VSP instruction set is tailored for this scaling operation. Using the STI
instruction, the scale register containing the four scale factors can be stored into

6-60

Zoran VSP SM anual VSP Instruction Set

external RAM. The LDSM instruction can load the scale RAM with up to 64
scale factors stored in successive memory locations. Each scale factor takes one
four-bit nibble of space; there are four scale factors per word. In the 256-point
FFT example, the LDSM instruction would load only one scale word containing
the four scale factors, one for each 64-point sub-transform. The SCL instruction
then scales the four transfonns with the parameter SB= 1. This parameter tells the
execution unit to scale (right-shift) each vector by the following amount:

old maximum scale register minus the appropriate scale
RAM value for that 64-point vector.

These commands will be demonstrated again in more detail with a design
example.

6.7.7 The FIT Coefficients

The complex FFT coefficients, designated as WNt in Figures 6-2 and 6-3, are
essential parameters in FFT computations. Each of the complex coefficients
represents an angle 0 = k/N x 360<>. The VSP internal sine-cosine look-up table
stores 256 cosine coefficients in one-quarter of a cosine wave, which specify 1024
complex FFT coefficients from 0 to 2PI. The FFr calculation uses the first 512
values from 0 to PI. This is enough for computing up to 1024-point complex
transforms without providing external sine-cosine values.

The RBA (ROM Base Address) is used to specify the starting angle used in each
pass of the FFT computation. The angle increments used throughout an FFT
computation by the VSP are automatically specified through the LPS, FPS, R,
FSIZ, NMBT, I and RBA parameters in the instruction.

• RBA does not specify a physical address in the ROM. Its logical value (RBA:O x
10) corresponds to the angle 0 = k/N x 360<>, and its literal value RBA = 0 x
1024/360<> corresponds to the offset address of W within the 512 coefficients from
0 to PI.

Figure 6-2 illustrates the use of RBA. The third pass is divided into four eight
point transforms. The first coefficient in each of the 8-point transforms is W~,
WN8, WN4 and WN12. For N=32, the angles correspond to Oo, 90o, 450 and 1350
respectively; the literal RBA values are 0, 256, 128 and 384; the logical RBA
values are 0, 900, 450 and 1350. Note that the literal values of RBA in successive
passes are obtained by right-shifting the previous literal RBA value. The FFT
instruction generates successive RBAs by this right-shift operation.

6-61

:ZOran VSPS Manual VSP /nsrruction Set

w:=COS (2r~)-JSIN (2r~)

Figure 6-4. The FfT Butterfly.

6-62

(

CHAPTER VII

MACRO COMMAND-LANGUAGE

7.1 Overview

The macro command-language provides the user with an alternative to the menu
mode of interfacing with the VSPS. When in the command mode (as opposed to
the menu mode), the user enters commands by typing them directly at the terminal.
To enter the command mode from the menu mode, the user need only choose the
command mode option which is available in most of the menus. For instance, the
command mode is entered from the main simulator menu by the '10' option. To
get back to the menu mode, the user can type 'menu' <Cr> which will bring him
back to the menu from which he entered the command mode.

All the commands available in the command mode have a uniform syntax and they
may have optional arguments. The user can specify the values for the command
arguments on the command line; if not specified on the command line, they will
assume their default values. A very useful feature of the command language is its
extensibility. The user can define new commands (macros) as collections of
existing commands and macros in order to simplify long and repetitive tasks.
These new macros are then added to the macro command library for future use.

Once the macro command mode is entered, the 'HELP' <Cr> command will
display all of the defined macros. If no new macros have been defined by the user
and added to this library, the macros defined by the system are displayed. When
macros are defined by the user, they will also be displayed by the 'HELP'
command. Descriptions and syntax of all of the functions provided by the macro
command language arc available by typing 'help/n' <Cr>, where/n is the function
name desired. For instance, typing 'help mulr' <er> will describe the mulr macro
and show the command format.

7.2 Command Syntax

This section describes the syntax of the commands. Each command line requires
the command name, followed by optional arguments. Each argument has a
defined name, default value and prompt string associated with it. These values are
dcfmed when the macro is created. Numerical arguments (as opposed to string
arguments) have minimum and maximum values associated with them. All
arguments, when specified on the command line, can be either named or
positional. "Named" arguments are entered by specifying their name and value.
Their position on the command line is unimportant. "Positional" arguments are
specified by their value only, and their respective position on the command line is
important The command interpreter checks each argument that the user enters on
the command line. If the argument is not specified, then the command interpreter
assigns it the default value. If the argument is specified, the interpreter checks its
value and then executes the command.

7-1

Zoran VSPS Manual Macro Command-Language

Command and macro names can be abbreviated to the smallest unique name. For
example, "quit" can be abbreviated to "q", provided that no other command or
macro starts with a q. Argument names can be abbreviated in the same manner,
but the abbreviations must be completely unambiguous with respect to other
arguments within the same command.

Default values for non-string arguments can be modified using a double
assignment ("==").

An extended Backus-Naur Form (BNF) notation is used to give a formal
description of the macro command-language syntax. The BNF syntax is presented
in section 7.2.3. The BNF form provides the description of the strict format
required within the command-language for creation of macros and execution of
commands. The end of this chapter will present a more detailed introduction to
the language format as well as an example session.

Prior to defining the formats required for creating new macros, pre-defined macros
and commands provided by the system are presented. Studying these commands
and macros briefly will make the BNF description more intuitive.

7.2.1 Built-in Commands

The following commands are built into the macro command-language interpreter:

HELP [command] -- Print help information on the terminal. When no argument
is given it will print the names of all the commands. When a command
name is given as an argument, it will print help information for the
specified command.

INCLUDE filename -- Include the specified file in the input stream and interpret
its contents as commands. INCLUDEs can be nested. If a MENU
command is encountered in the file, then the rest of the file will not be
interpreted.

MENU -- Return to the menu mode.

QUIT -- Halt VSPS execution and return to the system.

CLEARMEM [realcomplex, address, n] -- Cear n samples of simulated VSP
external memory to zero. CLEARMEM is normally used in conjunction
with SIGNAL. Rea/complex is one if a real signal is to be used, and two if
a complex signal is to be used. Address is the address of the first point and
n is the number of points to be cleared.

SIGNAL [address, n, amplitude, phase, f, type, optype] -- Modify the VSP
external memory by adding to it, subtracting from it, multiplying it or
dividing it by a signal to be generated in the APPENDMEM command.
The normal mode of operation is to clear the memory and then add to it as
needed. Address is the initial address in simulated external memory; n is

7-2

Zoran VSPS Manual Macro Command-Language

The normal mode of operation is to clear the memory and then add to it as
needed. Address is the initial address in simulated external memory; n is
the number of points; amplitude, phase and fare the amplitude, phase and
frequency of the signal to be appended. Type is the type of signal (1 - sine
wave, 2 - square wave, 3 - cosine wave, 4 - random signal, 5 - Flat (DC
value), 6 - impulse). Optype is the type of operation on the signal (1-add,
2-subtract, 3-multiply, 4-divide).

FFPOP -- Executes user code existing in the vspop function.

MOMENT [n, a, s] -- Calculate the moment of an input vector. N is the number
of points in the sample, a is the starting address in external memory, ands
is the address of the scratch area. MOMENT calls the VSP Signal
Processing Library (Menu M-5) and executes option '7'.

MAGCOMPLX [s, i, a, v] -- Calculates the magnitude of a complex vector. Sis
the vector length in samples, a is the input base address, i is the number of
iterations, and v is the SH parameter. MAGCOMPLX calls the VSP
Signal Processing library (Menu M-5) and executes option '6'.

POWERSPECT [a, s, fJ -- Calculate the power spectrum of a vector. A is the
length of the vector in complex samples, s is the base address of the
complex input data, and f is the base address of the packed real output.
POWERSPECT calls the VSP Signal Processing Library (Menu M-5) and
executes option '4'.

CONVOL [n, sa, a, s, fJ -- Calculate the convolution of two one-dimensional
sequences. N is the number of samples in each sequence, sa is the address
for the scratch area, a is the address of the filter imulse response, s is the
address of the real data sample, and f is the number of real data samples to
filter.

PLOT [option, cliff, address!, address2, nsamples, memtype, format] -- Plot
external or internal memory. Single sequence or a difference of two
sequences can be plotted. Option is one for complex. two for real part,
three for imaginary part and four for packed real. address] and address2
are the addresses of the real and complex parts respectively, n is the
number of points, and memtype is the type of plot (1 - dumb-terminal plot,
2 - print to terminal, 3 - VT240 plot).

VECOPT [realcomplex, address, address2, n, type] -- Perform either a vector
addition or vector multiplication operation. Realcomplex, address,
address2 and n are the same as for those in PLOT, above. Type is one for
addition and two for multiplication. VECOPT calls the VSP Signal
Processing Library (Menu M-5) and executes option '2' or '3' as a
function of the realcomplex parameter.

MSA VE [file, address, n] -- Store the signal existing in simulated external
memory to a disk file in binary format. The signal can then be loaded
using the MLOAD macro. File is the file name, address is the starting

7-3

Zoran VSPS Manual Macro Command-Language

address of the signal in external memory, and n is the number of data
points to save.

MLOAD [file, addre~, n] -- Load a signal from a disk file in binary format into
simulated external memory. The signal must have been previously saved
using MSA VE. All arguments are the same as those described in MSA VE
above.

CSA VE [command, file] -- Save a macro as a text flle. This macro can later be
loaded using the INCLUDE command. Command is the name of the
macro. File is the name of the disk file to which the macro should be
saved.

UNDEF [c] -- Undefine a macro or a command. The name of the macro (c) is
made available for redefinition.

JEDEC [file, n, address] - Dump the contents of the simulated external memory
into a disk file in IEDEC format. File is the disk file name, n is the
number of points, and address is the beginning address in simulated
external memory.

XSA VE [file, addrea, n] -- Store the signal existing in simulated external
memory to a disk file in Intel· Hex format. The signal can then be loaded
using the XLOAD macro. File is the file name, address is the starting
address of the signal in external memory, and n is the number of data
points to save.

XLOAD [file, address, n] -- Load a signal from a disk file in Intel Hex format
into simulated external memory. The signal must have been previously
saved using XSA VE. All arguments are the same as those described in
XSA VE above.

7.2.2 System Macros

The following are standard system macros. They are loaded automatically upon
initialization. They have been created on top of the built-in commands described
in section 7 .2.1. · ·

All of the system macros defined below have the same definition for the three
parameters: a and a2 are the addresses of the real and complex parts respectively,
and n is the number of points in the vector.

MULR [n, a, a2] -- Multiply two real vectors.

MULC [n, a, a2] -- Multiply two complex vectors.

ADDR [n, a, a2] -- Add two real vectors.

ADDC [n, a, a2] -- Add two complex vectors.

7-4

(

\.

Zoran VSPS Manual Macro Command-Language

LISTC [n, a, a2] -- Print the values of a complex vector.

PLOTR [n, a, a2] -- Plot a real (imaginary) vector on a "dumb" terminal in
character mode.

PLOTC [n, a, a2] -- Plot a complex vector on a "dumb" terminal in character
mode.

7.2.3 Backus-Naur Description of the Macro Command-Language

An extended BNF notation is used to give a formal description of the macro
command-language syntax. Using this notation, the vertical bar ('I') denotes a
choice or logical OR condition, curly braces ('{', '}') denote grouping, and
asterisks('*') denote zero (or more repetitions of the previous construct). Some
explanations and semantics are given in 'C' style comments following the syntax
rules.

program:= {command I definition I emptyline }*
I* i.e. the input program is a sequence of commands and definitions *I

command := ID optionalarguments <er>
I* ID is the command name. It has to be followed by optional

arguments and a carriage return <Cr>.*/

optionalarguments :=/*empty*/ I arguments {','argument}*
I* i.e. the arguments are a list of single arguments separated by

commas. *I

argument := positionalargument I namedargument
I* Positional arguments are associated with their formal parameters

through their ordinal position in the command. Named arguments
are associated by their name.*/

positionalargument := value

namedargument :=ID'=' value I ID':' value I ID '=.;..'·value
I* ID is the name of the command argument as specified in the

command definition. Three types of assignment are available,
logical (=), literal (:) and default modifying. Positional arguments
are always assigned logically.*/

value := expression I REAL V I STRINGY I QMRK I DFLT
I* The value for an argument can be an integer expression, real

constant, or string constant, depending on the type of argument
Real numbers must have a decimal point and strings must be
"quoted". In addition, the value for the argument can be a '?'
(QMRK) or a '%' (DFLT). If the value is '?', the user will be
asked for the value. If the value is '%',the interpreter will choose
the default value as defined in the command definition.*/

7-5

Zoran VSPS Manual Macro Command-Language

asked for the value. If the value is '% ', the interpreter will choose
the default value as defined in the command definition.*/

expression:= term { '+'term}* I term { '-'term}*

term :=factor { '*' factor }* I factor { '/' factor}*

7-6

(

Zoran VSP S Manual Macro Command-Language

factor:= INTV I '('expression ')'
I* Expression is a sum of products. Normal rules of operator

precedence are followed, and expressions can be nested. Unary '+'
and ' -' are not supported, and currently only integers are permitted
in an expression. *I

definition:= startline commandsequence endline

startline := DEFMAC macroname '(' macargs ')'<Cr>

endline := ENDMAC { ID } <Cr>

macargs ;=I* empty *i I onemacarg { ',' onemacarg }*
I* The arguments in the definition line are separated by commas.*/

onemacarg := argname ':' argdescription ':' prompt
I* argname is the name of the argument, and prompt is the prompt

string written to the terminal if the user desires to be interrogated
for the argument by using the '?' symbol.* I

argdescription := 'I' ':' minval ':'max.val ':' defval I
'R' ':' minval ':'max.val':' defval I
'S' ':' defstring

I* minval, rnaxval and defval are the minimum, maximum and default
values for the arguments. They should be integers for integer
arguments (specified by 'I') and real for real arguments (specified
by 'R'). */

commandsequence := { macrocommand I helpinfo }*
I* A macro may have any number of commands in its definition.

Each command starts on a new line with a '!' (exclamation mark)
as its first character. The commands are not executed during
definition, only during expansion.*/

helpinfo :='##'Rest of the line.
I* This is used to add help information to a macro definition. This

information is displayed in response to the HELP command. */

7-7

Zoran VSPS Manual Macro Command-Language

7.3 Macro Examples

In the following examples, the command innterpreter prompts with '>' in the
normal macro command mode, and with'>>' when in the macro definition mode.
Explanation comments follow the 'C' convention (i.e./* ... */).

EXAMPLE 1:

The first example illustrates how to create a simple macro:

>defmac sameashelp(item:s:thisstring:whatstring)
I* Define a new macro command with name sameashelp with one

argument of type string, default value of thisstring and prompt of
whatstring. *I

>>## A simple macro

>>!help $1
I* The first (and only) macro argument is passed to the "HELP"

command defmed already within the simulator. */
>>endmac sameashelp

I* The macro has only one command, "HELP''. *I

I* After the macro sameashelp is defmed as above, the following commands are
equivalent: */

>helpmulr
>sameashelp mulr

Typing either of the above commands will display the help information for the
'mulr' command.

Note that in the macro definition mode all the macro body commands are preceded
by '! '. Also in the definition body, all arguments to be passed on the command
line are preceded by '$'.

7-8

(

Zoran VSPS Manual Macro Command-1.Anguage

EXAMPLE2:

This example creates a more sophisticated macro that calls other macros which
have been defined by the system. The result from this macro is to create a binary
phase-shift keyed signal with a user-specified carrier frequency modulated by a
user-specified square-wave frequency. The signal is stored in a disk file with a
name provided by the user. After the signal is generated, it is plotted on the
terminal.

>def mac bpsksig(address:i:0:4095 :O:"beginning address",
nmpt:i:0:4095 :0: "number of points".
sqfrq:r:0.0:100.0:0.0:"square wave frequency",
sinfrq:r:0.0:100.0:0.0:"sine wave frequency",
fname:s:"bpsk.lib":"file name")

>>## Binary phase-shift keyed signal
>>!clearmem 1 $1 $2
>>!signal $1 $2 1.0 0.0 $3 2 1
>>!signal $1 $2 1.0 0.0 $4 1 3
>>!msave $5 $1 $2
>>!plot 1 SI ? $2 3
>>endmac

The first command of the macro defmes the name and the five parameters which
may be specified. The name of the macro is bpsksig. The first parameter, address,
is the beginning address in simulated external memory where the macro should
write the signal generated. The proper response is an integer in the range from 0
to 4095. The default value is 0, meaning that a signal will not be created if a
parameter is not specified on the command line. The prompt for the address is
beginning address. The second parameter, nmpt, is also an integer with the same
default values as address, but with the prompt number of points.

The next two parameters, sqfrq and sinfrq, specify the frequencies of the square
wave and sine wave respectively. Both parameters expect real number responses
between 0.0 and 100.0 with a default of 0.0 (which represents a DC value). The
prompts for the two parameters are square wave frequency and sine wave
frequency respectively. The fmal parameter,/name, represents the disk file name
to which the signal created should be written. The default file name is bpsk.lib.
The prompt for the file name is filename.

The first macro call is to CLEARMEM which clears the amount of simulated
external memory at the beginning address specified on the command line. The
first SIGNAL command generates the square wave and stores it in memory. The
second SIGNAL command generates the sinusoid and performs an clement-by
element multiply with the square wave just created. The result is the binary phase
shift keyed signal desired. The MSA VE command saves the signal created to a
disk file. The PLOT command plots the created signal on the terminal in the high
resolution mode.

7-9

Zoran VSPS Manual Macro Command-Language

The ENDMAC command ends the macro definition. If a 'HELP' command is
now executed, the macro we just created will be listed with in addition to all of the
macros previously defined by the system. To execute the newly created macro,
issue the following command.

>'bpsksig' <er>

This will create a BPSK signal with the defaults defined above. In order to change
the parameters, issue the same command followed by the respective parameters.
For instance,

>'bpsksig 0 256 8.0 32.0 bpsk.lib' <Cr>

will create a BPSK signal with a carrier of 32 modulated by a square wave of
frequency eight. 256 samples of the signal will be stored to simulated external
memory beginning at address 0. It will also be stored to a disk file called bpsk.lib.

7.4 Saving and Re-using Macros

Unless the macro itself is saved in a disk file, it will not be present the next time
the simulator is run. Typing the following sequence,

>'savecmd bpsksig' <er>

will save the bpslcsig macro to a disk file with the name bpslcsig. The next time the
simulator is run, the macro can be included in the list of system macros by simply
typing:

>'include bpsksig' <Cr>

Issuing a 'HELP' command will now list bpslcsig with all of the other system
macros.

It is also possible to have user-created macros included automatically when the
command mode is entered. This is implemented in one of two ways:

1) using the system text editor, create an ASCil file called usermac.
Within this file, create all of the desired macros to be loaded upon
entering the simulator. When the command mode is entered, the
interpreter checks for the existence of the usermac file and executes
the commands resident therein.

2) create user-defmed macros interactively from within the command
environment as described in the above examples. When they
execute properly, issue a 'savccmd macroname' <er> which saves
the macro command to a disk file. Then edit (create if it doesn't
exist) the usermac file, and insert the statement 'include
macroname' <Cr> in the file. If more than one macro is to be
loaded upon entering the command mode, use separate 'include'
commands for each macro.

7-10

(

Zoran VSPS Manual Macro Command-Language

7.5 An Example Session Using the Macro Command Language

Initiating a session using the VSPS by typing 'vsps' <Cr> on the terminal brings up
the Main Menu as shown:

VECTOR SIGNAL PROCESSOR SIMULATOR V2.3-5

ZORAN CORPORATION PROPRIETARY SOFTWARE
COPYRIGHT (C) 1986 ZORAN CORPORATION
ALL RIGHTS RESERVED

MAIN MENU

1 HELP
2 VSP instruction tutorial and execution
3 Data generation and display
4 Display options, timing control and queueing
S Signal processing library for VSP
6 IEEE signal processing libracy
7 Application library
8 Execute user program in vspopO
9 Execute batch commands and VSPS validation
10 Command mode
11 Exit

Specify value of your selection (0)(1):3

Entering '3' will call the Data Generation and Display Menu.
Entering '8' in the Data Generation and Display Menu will call the
Signal Generation Menu.
Entering '2' in the Signal Generation Menu will query the user
with the questions shown below. All queries are responded to with
a simple <er> which selects the default options, except in the
second to last question. Because it is desired to write only a single
signal to simulated external memory, the user should respond to
this query with a 'O' to end the signal generation.

Specify value of memory base address (-1)(0):
Specify value of total amplitude (negative for real data) (1.00000):
Specify value of number of samples (0)(128):
Specify value of 1 for bit-reversed, 2 for all 0 data (-1)(0):
Specify value of 1 - sum of Sines, 2 - special, 3 - saved, (0)(1):
Signal options are: 1- Flat or Step, 2- Impulse, 3- Cosine 4 - Uniform

Random, 5 - Square Wave, 0 - to Quit
Specify value of signal type (-1)(3):
Specify value of relative amplitude (1.00000):
Specify value of phase in degrees (30.00000):
Specify value of cycles per total samples (1.00000):

7-11

Zoran VSPS Manual Macro Command-Language

Signal options are: 1- Flat or Step, 2- Impulse, 3- Cosine 4 - Uniform
Random, 5 - Square Wave, 0 - to Quit

Specify value of signal type (-1)(3):0
Specify value of 1 thru 10 to save signal (11 through 13 to save to disk) (-

1)(0):

After the signal has been generated, the user is returned to the Signal Generation
Menu. Typing a <Cr> will return operation to the Data Generation and Display
Menu. A second <Cr> will return operation to the main simulator menu. Typing a
'10' <Cr> from the Main Menu will call the command mode.

The '>' prompt at the left margin verifies that the command mode has been
entered.

Typing 'help plot' <Cr> after the prompt will display the description and
information available for the pre-defined plot macro. The response to 'help plot'
<Cr> is shown below:

CC>~: plot
TYPE:PRIMITNE
FUNCTION: Plot or list the data in the external memory.
ARGUMENTS:

realcomplex: INTEGER
prompt: real(l) complex(2) diff(4) or exit(O)
min:O, max:4, default:2

address: INTEGER
prompt: starting address
min:O, max:32767, default:O

address2: INTEGER
prompt address2
min:O, max:32767, default:O

n:INTEGER
prompt: number of points
min: 1 max:32768, default: 128

type: INTEGER
prompt: Type of plot (1 - plot, 2 - print, 3 - graph)
min:l, max:3, default: I

7-12

I' ,.

Zoran VSPS Manual Macro Command-Language

Typing 'plot 1,0,0,20' <Cr> will execute the plot macro with the parameters
specified. The plot will be displayed on the terminal as shown below:

Minimum 0, Maximum 28381, RMS 23172.98: R - real, I - imaginary
0:0 + 1 •••• + 1 •••• + 1 •••• + 1 •••• + 1 •••• + 1 •••• + 1 ..
0: R
l: R
2:
3: R
4: R
5: R
6: R
7: R
8: R
9: R
10: R
11: R
12: R
13: R
14: R
15: R
16: R
17: R
18: R
19: R

If there are no additional functions to be performed within the command mode,
typing 'menu' <Cr> will return operation to the calling menu (the Main Menu in
this example). Typing '11' <Cr> from this point will exit the user from the
simulator and return control to the operating system.

7-13

R

('

8.1 Overview

CHAPI'ERVIIl

INTRODUCTION TO VSP AP PU CATIONS

The ZR34161 Vector Signal Processor is designed specifically for high
perfonnance signal processing applications. It is called a vector processor because
it is most efficient at processing arrays or vectors of data. Examples of vector
operations include: performing Fast Fourier Transforms, vector and matrix
multiplications or additions, and convolutions and correlations, as well as
modulation and demodulation functions. Given an input array or vector of data,
the VSP is very efficient at loading the entire array, perf onning the vector signal
processing function on this array, and storing the resulting array back into external
memory.

It is the intent of this chapter to provide an introduction to many of the signal
processing applications in which the VSP excels. The general ideas behind the
applications programmed in the simulator under the VSP Signal Processing
Library (Menu M-5) and the Applications Ubrary (Menu M-7) will also be
presented. For additional information and implementation details on these signal
processing topics, please refer to additional Zoran VSP publications and
application notes.

8.2 The Fast Fourier Transform

The Fast Fourier Transform operation is central to many signal processing
applications. In the following FFT sections, high-level explanations will be
provided as to how the FFT instruction in the VSP may be used as an efficient
"kernel" for building one- and two-dimensional transfonns consisting of from two
to 64K complex samples. Instruction execution sequences will be shown where
appropriate.

8.2.1 Direct Application of Up to 128 Complex Points

One FFT instruction in the VSP can compute radix-2 FFfs of up to 128 complex
points in length. The following simple instruction sequence illustrates the
simplicity of executing a transform of this size. The program assumes that the
input data is a 128-point complex vector (NMPT:128) existing in external VSP
memory beginning at address 0 (MBA:O). The entire vector is loaded into internal
VSP memory in instruction 1, the FFT of this data is taken in instruction 2, and the
signal is stored out to external memory beginning at address 256 in instruction 3.
When an FFT is pcrf onned on a normally-ordered input signal, the resulting
output addresses of the data are in bit-reversed order. The ST instruction writes
out the data from the VSP internal memory in bit-reversed order (RV:l) so that it
appears in external memory in nonnal order.

8-1

Zoran VSPS Manual

1
2
3

LD NMPT:128, RV:O, MBA:O
FfT NMBT:128, RBA:O, FPS:64, LPS:l
ST NMPT: 128, RV: 1, MBA:256

VSP Applications

When performing an FfT, log2(N) passes required to complete the transform.
This was discussed in greater detail in section 6. 7. When the FfT is executed, the
FPS and LPS parameters define the number of passes which are to be perfonned
by the instruction. FPS declares that the first pass spacing between data samples
is 64, while LPS declares that the last pass spacing is one sample. There are seven
passes required to get from an initial spacing of 64 samples down to a final
spacing of one.

Note in the above example that not all parameters have been defined for the three
instructions. This was done intentionally so as not to clutter the command lines
with too many parameters.

8.2.2 Overlapped Instruction Execution

If continuous transforms of less than or equal to 64 complex points are to be
implemented by the VSP, then the internal arithmetic instructions may be
overlapped with the l/O instructions to speed the processing. When overlapping
instructions, the VSP RAM is split into two 64 complex-word sections; 110
instructions such as LD and ST are performed with one section, while the FfT (or
other internal ALU instructions) is perfonned with the other section. The RS
parameter selects the RAM sections on which the instructions operate.

The following nine-instruction sequence executes continuous 64-point FfTs
overlapped with memory (l/0) instructions. The concept of this example loop is
valid regardless of whether continuous 64-point transforms arc being perfonned,
or whether larger transforms arc being perf onned with the 64-point transform as a
kernel. Note that as in the last example not all parameters arc shown for all of the
instructions. In addition, this example does not use the block floating-point
capability of the VSP, but merely uses a fixed right-shift after each FFT
instruction.

Note that instructions requiring both ALU operations and 110 simultaneously
cannot be overlapped with other ALU or 110 instructions. There are four
instructions of this kind and they arc described in section 6.4.

8-2

/ '

Zoran VSPS Manual VSP Applications

,. Tbe fira two illllNctions set up the FFT loop. 1bc fmt illaruction leads RAM section 0 witb 64 poina, while
iallNction 2 begins the FFT on the dall jUll laaded iDlo MCtion 0. Nau lhat no overtappiq is performed with

tbea two illllNCliom.

I LD NMPT:64, RS:O

2 FFI' NMBT:64, RS:O

Now load the leCOlld MCtion of RAM while the fmt NClioa is beiq tmd by lhe ALU for exec:utillg tbe FFT.
Nau 1h1t the canuol MCtiCD illternal to the VSP knowi to begin aecutiJJg iDStnlCtioo 3 just 1s 100D 1s
UallNcUOD 2 bu beFD aeeution. lllmuction 3 U the beginning of the m ioop.

LOOP: 3 LD NMPT:64, RS:I

,. Tbe DUI FFT illllnlctiCD (4) does Dot begin execution Wllil die pnviaus FFT iDIUuCtioa (2) c:ompletea;

euc:ution. Thia ii because 1be LD iuauctioa (3) tabs mucll leas time to aecute than 1be FFT illlll'Uction (2), so
Ile VSP waiu 1111til the fllll FFT ii fmilhed. After the 11CODd FFT (4) beams on the data just leaded iDlo RAM
llClioll 1, lbe VSP cadl'ol ullit i'D'"di1teJy besiu ueculicm a(Ille Sf (5) ilallnM:lioll wbidl writes CIUl the

pnYioualy lralld'armed data fn:lm RAM s:tiCD 0.

' JIFI'NMBT:64, RS:l
5 ST NMPT:64, RS:O

,. Tbe ST iUlnlcticm (5) 011111Fletea alalliCD Ware 1be FFT illltruclion (4), IO 1be coatrol llllit ill the VSP
lmmedillely be&ill• aeculion ti 1be LD illllnlc:lion (6) wbidl !Olds the data illlO RAM MCtion 1 ill preparation
for the FFT ill illllnlctiCD 7. FFI' (7) doea Dot besin ueculion lllllil FFT (4) ii CIOlllplete.

6 LD NMPT:64, RS:O
7 FFI' NMBT:64, RS:O

,. Store the ruulU from the FFI' (4) while FFT (7) ii ill propeu. .,
I STNMPT:64, RS:l

,. Tbe buic FFT loop ii .ow oamplele. JMPJ,. •• 111 illdiJKl ;imp bact to illltruclion 3 IO besin 1be aext

llqllCDCC o(lrllllfonm. Nau tbat FFTLOOP ii 111 addrul wbic:h points to LOOP, and its "Vlhae is DOl delc:ribed
ill tbi1 example.

9 JMPJ FFTLOOP

8-3

Zoran VSPS Manual VSP Applications

8.2.3 Groups of Small Transforms

The high functionality of the FFT instruction allows the caJculation of multiple
transforms in parallel with one FfT instruction. The only restrictions are that all
of the small transforms must be the same size, and that the total number of points
in all the transforms be less than or equal to 128 complex points. Up to eight 16-
point transforms may be calculated in parallel using a single 128-complex·point
FfT instruction. The FSIZ parameter in the FfT instruction is specified to equal
the size of each of the small transforms. In this case, PSJZ == 16. The FPS and
LPS parameters are specified for a l~point transfonn, not for a 128-point
transform. The following sequence executes eight l~point complex FFTs in
parallel:

1 LD NMPT:128, MBS:l6, MSS:16, RV:O
2 FFf NMBT:128, FSIZ:16, RBA:O, FPS:8, LPS:l
3 ST NMPT:128, MBS:l6, MSS:l6, RV:3

When small FFTs arc performed in parallel, all transforms perf orrned in the same
pass are scaled by the same scaling factor (if the SCI.. instruction is being used).
Because of this, the accuracy on each individual l~point transform may be less
than jf that same I ~point transfonn were calculated by itself. Note that the ST
instruction in the example performs bit·reversal within each 1 ~point block, so all
eight transforms are stored out in memory in normal order.

8.2.4 FITs Larger Than 128 Complex Points

FFTs larger than 128 complex points can be easily computed by the VSP using the
FfT instruction as a building block. The larger FFTs must be decomposed or
factored into smaller FFT blocks of 128 points or less. As a demonstration, a 256·
point complex FfT is shown using four ~point complex FFTs followed by 64
four·point complex FFI's. Only eight calls to the FFT instruction are needed.
Because ~point transforms arc being used, the FfT calculations may be
overlapped as described in the continuous ~point transform example in section
8.2.2. The mathematical derivation and programming details of this process arc
described in Zoran 's Vector Signal Processor FFT Handbook.

A way to visualize the decomposition of the 2S~point transform is to observe the
following grid:

xO x4 x8 x.12•..•... x.252

xl x.5 x9 x13 .•..•............ x.253

x2 x6 xlO x.14 ...••..•........ x254

x3 x7 xll xlS xlSS

Notice that we have, in effect, created a tw<Hiimensional representation of the
one-dimensional 2S~point transform; each of the four rows contain 128 samples.
This procedure involves calculating four ~point row transforms, followed by 64

8-4

Zoran VSP SM anual VSP Applications

four-point column transforms to complete FFT. All transforms larger than 128
complex points may be factored in this way. The program for this transform is
shown below. Instruction defaults have been defined prior to the VSP instructions.

DEFAULT MDF:3, AD:O, El:O, ZP:O, INTRP:O, ZR:O, AS:l, 1:0; ,. Thi5 llClioa of code calculalu the four 64-point row tnnsforms llld stores the semlls back out IO enema!

memory.

LD NMPT:64, RS:O, MBS:l, MSS:4, RV:O. MBA:IN;

FFT NMBT:64, RS:O, fSIZ:64, FPS:32, LPS:l, RBA:O;

LD NMPT:64, RS:l, MBS:l, MSS:4, llV:O, MBA:IN+2;

FFT NMBT:64, RS:l, fSIZ:64, FPS:32, LPS:l, R.BA:O;
ST NMPT:64, RS:O, MBS:l, M55:4, JlV:O, MBA:IN;

LD NMPT:64, R.S:O, MBS:l, MSS:4, JlV:O, MBA:IN+4;

FFT NMBT:64, RS:O, fSIZ:64, FPS:32, LPS:l, RBA:O;

ST NMPT:64, RS:l, MBS:l, MSS:4, RV:O, MBA:IN+2;

LD NMPr:64, R.S:l, MBS:l, MSS:4, RV:O, MBA:IN+6;
FFT NMBT:64, R.S:l, FSIZ.-64, FPS:32, LPS:J, RBA:O;

ST NMPT:64, RS:O, MBS:l, MSS:4, RV:O, MBA:IN+4;

ST NMPT:64, RS:l, MBS:l, MSS:4, RV:O, MBA:IN+6;

,. This -=iicm rA code cak:11J11e1 tbe 64 four-poial cohmm trllllforma ud llcnl die Nmllll btct aut to 111en111
memory; rmaJts lie bil-rewned wilbill eacll block. .,

LD NMPT:64, lS:O, MBS:64, MSS:64, lV:O, MBA:IN;

FFT NMBT:64, RS:O, FSIZ.-64, FPS:l, LPS:l, IBA:O;

LD NMPT:64, R.S:l, MBS:64, MSS:64, 1.V:O, MBA:IN+128;

FFT RS:l, IBA:16;

ST NMPT:64, RS:O, MBS:64, MSS:64, RV:O, MBA:SCRATCH;

LD RS:O, MBA:IN+256;

FFT RS:O, IBA:I;

ST NMPT:64, RS:l, MBS:64, MSS:64, 1.V:O, MBA:SCRATCH+128;

LD RS:l, MBA:IN+384;

FFI' RS:l, RBA:24;

ST NMPT:64, RS:O, MBS:l, MSS:4, 1.V:l, MBA:IN+2;

ST NMPT:64, RS:l, MBS:l, MSS:4, l.V:l, MBA:IN+6;

LD NMPT:64, l.S:O, MBS:64, MSS:64, RV:O, MBA:SCR.ATCH;

ST NMPT:64, RS:O, MBS:l, MSS:4, 1.V:l, MBA:IN;

LD NMPT:64, lS:O, MBS:64, MSS:64, ·1.v:0, MBA:SCR.ATCH+128;

ST NMPT:64, lS:O, MBS:l, MSS:4, 1.V:l, MBA:IN+4;

The RBA parameter assumes values other than 0 in the second set of FFT
instructions because the FFT instructions are completing the final four passes
required of the 256-point FFT. The RBA parameter is determined by observing a
flowchart for the particular FFT being performed. The VSP ROM contains
enough coefficients for up to 1024-point transforms; for larger transforms, the
coefficients will need to be provided by an external look-up table.

8-5

Zoran VSP S Manual VSP Applications

Note that the 256-point FFT can also be computed by two 128-point row FFTs
followed by 128 two-point column FFTs, or similarly by eight 32-point row FFTs
followed by 32 eight-point column FFTs, or any combination of row and column
transforms that equal 256 points. Other large transforms may also be decomposed
in a similar manner. The signal processing option in the simulator (Menu M-5)
which computes general FFTs greater than 128 points are computed in the same
way.

The demonstration 256-point FFT in the VSP Signal Processing Library is an
example of a two by 128 decomposition of the 256-point FFT.

To summarize, the general procedure for constructing transforms greater than 128
points is outlined below:

1.
2.
3.

4.

s.
6.

7.

Decompose the data into columns and rows as above.
Perform row transforms.
If block floating operation is used, scale all row transforms to one
common scale factor.
Figure the ROM coefficients for the passes needed to complete the
column transforms. Specify the proper RBA and multiply by the
proper FFr coefficients where necessary.
Do the column transforms.
If block floating operation is used, scale all column transforms to
one common scale factor.
Store the output of the transforms in normal order.

8-6

c ...

Zoran VSPS Manual VSP Applications

8.3 Additional Discu~ions About the VSP Signal Processing Library

The following sections contain additional discussions of some of the signal
processing algorithms which are contained in the VSP Signal Processing Library
(Menu M-5) as well as the Applications Library (Menu M-7).

8.3.1 Real FFf s

The term "real FFT" means the computation of a complex FFT from a purely real
sequence containing no imaginary components. The mput is a real sequence, but
the output is a complex FFT. There are advantages in certain applications to
performing calculations involving real FFTs. Real FFTs can be computed from
the complex FFT instruction in the signal processing library in two ways: 1) two
N-point real FFTs can be calculated simultaneously using one N-point complex
FFT, or 2) one 2N-point real FFI' can be calculated with one N-point complex
FFT.

Both of the applications discussed in this section are included in the VSP Signal
Processing Ubrary (Menu M-5), as well as in the IEEE Signal Processing Ubrary
(McnuM-6).

The first method of two N-point real FFI's from one N-point complex FFT:

1. Functions h(n) and g(n) are real; n = 0,1, ... ,N-1

2. Form the function y(n) = h(n) + jg(n); n = 0,1, •.. ,N-1

3. Compute the FFI' of y(n):

Y(k) = y(n)*exp[-]2*pi*k*n/N] = R(k) + Jl{k),

where R(k) and l(k) are the real and imaginary parts of the
transform Y(k).

4. Compute the transform of h(n) and g(n) from R(k) and l(k):

H(k) = [R(k)/2 + R(N-k)/2] + j[l(k)/2 + l(N-k)/2]

G(k) = [l(k)/2 + l(N-k)/2] - JlR{k)/2 - R(N-k)/2];

k = 0,1, ••. ,N-1,

where H(k) and g(k) arc the real transforms of h(n) and g(n).

The second method of one 2N-point FFI' from one N-point complex FFT:

1. Function x(n) is real; n = 0,1, •.. ,2N-1

2. Divide x(n) into two functions:

8-7

Zoran VSPS Manual VSP Applications

h(n) = x(2n) and g(n) = x(2n + l); n = 0,1, ... ,N-1

3. Form the function y(n) = h(n) + jg(n) n = 0, 1, ... ,N-1

4. Compute the transform ofy(n):

Y(k) = y(n)*exp[-j2*pi*k*n/N] = R(k) + Jl(k);

k = 0,1, ... ,N-1,

where R(k) and l(k) arc the real and imaginary parts of the
transform Y(k).

S. Compute:

Xr(k) = [R(k)/2 + R(N-k)/2] + cos[l(k)/2 + l(N-k)/2]
-sin[R(k)/2 - R(N-k)/2]; k = 0,1, ... ,N-1

Xi(k) = [I(k)/2 - I(N-k)/2] - sin[I(k)/2 + l(N-k)/2]
-cos[R(k)/2 - R(N-k)/2]; k = 0,1, •.. ,N-1

where Xr(k) and Xi(k) arc the real and imaginary parts of the FFT
of the 2N real points of x(n).

8.3.2 Fast Convolution and Correlation

This application performs fast convolution or correlation using the FFT. It is
based on the fact that convolution in the · time-domain is equivalent to
multiplication in the frequency domain. The algorithm is designed to convolve or
correlate a small real vector of length N samples with a second real vector as large
as desired (but with a number of data points equal to some multiple of N). The
length of the output will be the difference beWJecn the lengths of the two input
vectors plus 'l '. Notice that circular convolution is not being performed with this
technique; this is why the resulting convolution output is not equal to the sum of
the lengths of the two vectors minus 'l '. The limits on N arc 16 to 32 points.

The fast convolution application discussed in this section is included in the VSP
Signal Processing library (Menu M-5).

The basic algorithm is as follows:

1 The N-point impulse response of the filter is copied to the real part
of a complex vector; the imaginary part remains zero. If correlation
rather than convolution is desired, the complex vector is copied in
the reverse order.

2 N zeros are appended to this vector making a new impulse response
vector of length 2N points.

8-8

('

Zoran VSPS Manual VSP Applications

3 A complex FfT is performed on the 2N-point impulse response
vector. The result is saved.

4 The larger vector is broken into 2N-point vectors that overlap by N
points. 2N points of the larger vector are copied to the real part of a
complex vector. The next 2N points are copied to the imaginary
part of the complex vector starting at the Nth point. This loading of
overlapped vectors into a complex vector allows two N-point real
FfTs to be computed in parallel.

S A 2N-point FFr of the complex vector is computed.

6 A complex multiplication is performed with the results of steps 3
andS.

7 An inverse FFr of the product in step 6 is pcrf ormed.

8 The complex vector result of step 7 contains the first N output
points of the convolution in the last N points of the rca1 part, and
the next N output points of the convolution in the last N points of
the imaginary part.

8-9

Zoran VSPS Manual VSP Applications

8.4 Additional Disc~ions About the VSP Applications Library

The VSP Applications Library currently contains two complete applications: a
16K-point FFT and a Doppler-shift application. The following sections will
introduce the concepts of these two applications.

NOTE: These two applications arc not currently available under the PC release
(version 2.3-5) of the VSP simulator.

8.4.1 A 16K-Point FFf Application

This 16K-point FFT application is included in the VSP Applications Library as
Menu M-7-2. Multiple VSPs (one, two, four or eight) can be used in the
application to improve computation time. At critical points during the execution
of the FFT, users arc queried with the option of displaying any pan of VSP
memory using the plotting facilities of the VSPS.

After the FFT is complete, any number of the resulting transform points may be
displayed in order of magnitude. The ordering begins at the point with the largest
magnitude. After this, any additional part of the resulting memory can be
displayed. The results can be written to a disk file for later reference. Because the
vector size in the VSP is limited to 128 complex samples, the FFf must be broken
into smaller FFrs and complex multiplications as described in the 256-point FfT
example in section 8.2.4. Complex multiplications arc required in this application
because the VSP contains a sine/cosine look-up table equivalent to 1024 samples,
and the FFf size is l 6K points.

Following the ideas outlined in Section 8.2.4, the 16K-point transform can be
visualized as carrying out the complete FFf by viewing the 16384 points as an
array of 128 by 128 points (as shown in Figure 8-1, below). In this figure, the
numbers in the grid arc the indices of the complex data points. First 128 128-point
FFTs are performed on the columns of the array. Then these results are multiplied
by the twiddle factors. Nex~ 128 128-point FFTs are carried out across the rows
of the array.

8-10

.{

~

c····

Zoran VSP SM anual VSP Applications

O I 1 I 2 I ••• 127 I

128 I 129 I 130 I .•• 255 I

116256 I 16257 I 16258 I ••• • . • I 16383 I

Figure 8-1. Data Array For A 16K-Point FFT.

This program assumes the following configuration for the architecture of the VSP:
one, two, four or eight VSPs in parallel on a bus with 64K RAM and a host
processor. The signal generator of the simulator is called first in order to
interactively create any test signal desired.

The fmt set of FFrs is done down the columns of the may; that is, each FFT
loads 128 points, with the starting addresses being 0, 1, 2, 3, ... 127, for each
column vector. Using the VSP ID and ST instructions, the loading and storing of
data is perf onned with MBS: 1 and MSS: 128 for each instruction while MBA=O, 1,
2, ... 127. Note the bit-reversal being performed during the store instruction. This
restores proper ordering to the results of the decimation-in-time FFT.

The VSP uses block floating-point arithmetic during the FfT computation. This
means that the result of each FFT instruction loads the VSP scale register with the
number of right-shifts (divide-by-twos) required during that particular transfonn to
avoid arithmetic overflow. This number is entirely.dependent on the input data.
The fmal transform results of the columns must have a common scale factor before
any processing across the rows can be perf onned. The next step does this scaling
and multiplies the intermediate result by the twiddle factors. The scaling is done
by reading the maximum scale factor register and subtracting from it the scale
value found for each column transform. Then each column is shifted by this scale
difference while being multiplied by the twiddle factor.

The second set of FFI's is then done across the rows of the amy. In this case,
each FFT loads 128 consecutive points, starting at addresses 0, 128, 256, ... 16256.
Using the VSP ID and ST instructions, the loading and storing of data is done
with MBS:128 MSS:128, while MBA=O, 128, 256, ... 16256. Again, bit-reversal
is used to correct the ordering of the results.

Another pass is then made to get the scale factors across each row to be the same,
just as was done for the columns.

8-11

Zoran VSPS Manual VSP Applications

Finally, the results arc transposed using a series of loads and stores. The transpose
maps memory location 128*11 + 12 into memory location 128*12 + 11 and vice
versa.

8.4.2 Doppler Shift Application

Menu M-7-1 includes a Doppler-shift application corresponding to the block
diagram contained in Figure 8-2. The purpose of the application is to calculate the
frequency shift (or drift) of a carrier of known frequency. The source of the carrier
and the cause of its frequency drift arc independent of the application. As an
example, a satellite ground-station receiving a signal from a satellite circling the
earth in a non-geosynchronous orbit will need to track the frequency shift of the
carrier. This application is designed to determine the frequency shift. Note that
the numbers used for the example in this text are arbitrary, and any other numbers
may be used depending on the particular application.

This application fU"St demodulates a received signal down to baseband with the
known (unshifted) center frequency of the transmitted signal. After demodulation,
the sampling-rate of the signal can normally be decimated (reduced) by a user
specified factor. As an example, assume that the carrier of the satellite is lMHz,
the frequency drift about the carrier is 30kHz, and the carrier is digitil.ed at 4MHz.
After demodulation, the 4MHz sampling of the 30kHz baseband signal is
excessive; its sampling rate can be decimated. In this example, assume that
decimation is pcrf onned by a factor of 64; this reduces the 4MHz sampling rate
down to 62.SkHz. The decimated signal is then placed in a buff er with a length of
128 complex points. The power spectrum of the complex input vector is taken by
perf onning an FFf and then a magnitude square operation. Finally, the peak
component of the power spectrum is found and its bin number is printed out The

, system is shown in Figure 8-2 below.

8-12

Zoran VSPS Manual

CCS11o1T)

•NlwTJ

NAL
I

121
COMP1..EX

POINTS
IUFFER

121
COMP I.EX

POINTS

'"

MAGNl'fUDE
IOUA"EC

OF
121

llC:tNTS
MSUl..'T

VSP Applications

PEAK
DE'T.

81N

'

Figure 8-2. Doppler-Shift Application Block Diagram.

The complex demodulation, filtering and decimation arc all implemented using a
single ML 1R instruction. In this example, assume that the low-pass ftltcr is 64
taps in length, and that decimation is also by a factor of 64. In an initialization
routine as the system is powered on, the low-pass filter coefficients arc multiplied
component-wise with the sinusoidal demodulation coefficients and saved in
external memory. A single ML 1R instruction then corresponds to both
demodulating and low-,ass filtering of the input signal. The decimation result is
taken as the output o the real and imaginary accumulators after the ML TR,
corresponding to the summation of the demodulated and filtered signal. Thus, for
every 64 samples read into the VSP for demodulation and ftltcring, a single output
sample is generated corresponding to a decimation by 64.

The results of the vector multiplies arc placed in a 128-J;Tt external buffer. After
128 ML 1R instructions, the buffer is full and the and subsequently the
MGSQ of the buffer is taken. This corresponds to the power spectrum of the
baseband signal, which after decimation was sampled at 62.SkHz. After the
magnitude square of the signal is calculated, the peak in the spectrum corresponds
to the Doppler-shift of the canier. · ·

8-13

CHAPTER IX

CREATING USER PROGRAMS AND UNKING TO THE VSP SIMULATOR

9.1 Overview

The VSP simulator provides a powerful engineering environment designed to
allow complete system-level applications development This includes algorithm
development and verification, test signal generation, modeling of VSP arithmetic,
generation of JEDEC files for burning directly into PROMS, the ability to model
the world external to the VSP and high-level software modeling of a host
processor which may control VSP activity. Many of these functions have already
been discussed in this manual.

Up to this point in the manual, all of the interactive features of the simulator have
been discussed in detail. The process of writing and ultimately executing user
developed programs has not been covered. This section will discuss the process of
writing, parsing, compiling and linking user-generated programs integrating both
high-level language Sllllulations of the external environment and VSP instructions
into the same simulation.

The following steps highlight the process of writing, parsing, compiling and
linking programs with the VSP simulator. Figure 9-1 shows figuratively the same
process.

1.

2.

3.

4.

s.

Algorithms arc sometimes (at least partially) tested in the
interactive (tutorial) mode of the simulator (option '2' from the
main simulator menu).

Signal processing algorithms arc written using the VSP instruction
set and combined with algorithms simulating the host or external
environment written in 'C' or a 'C' callable language.

The VSPS parser is used as a preprocessor to translate the
combined 'C' NSP language program into a compilable 'C'
program.

The system 'C' compiler is used to create an object program from
the VSPS parser output

The linker is used to tie together the separately compiled modules,
to coordinate cross-references, and to create an executable load
module.

Languages other than 'C' (such as Fortran or Pascal) can be used for external
environment simulation as Jong as they can be called from a 'C' main program.

9-1

Zoran VSPS Manual Creating User Programs and Unking to the VSP Simulator

..,..

Sll!'I•

~ION

__..
~

~
-..

lrile Prouam rtran Subroutine calla •Jntermi% C or l'o
• VSP Code

..t.
proa.ffp

-Tranalala TSP

•Generate• calla t

mnenonlc1 to binary

o run-time 1yslem

or build blocks
ure)

Parse· •Generates code f
(advanced feat

proa.ph - Binary VSP ln1tructi om
proa.ck - can. to check flzed field values

nm-Ume .,.tem proa.c
~~

Compile

·~
Ltnk

~~

Run Simulator,
Select VSPOP

Debug
Program

l
VSP Object

Code

- Hoit C and call1 to

Kain Simulator i.-r Code

~ Runtime
S11tem

.

• lnalruction queue
maintenance

• Run-Ume bound•
checkin&

•Simulates VSP
interface

Figure 9-1. The VSP Simulator Program Development Cycle.

9-2

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.2 Simple Example

The following program is a relatively simple example designed to illustrate the
philosophy of system and algorithm development possible using the VSP
simulator. It uses a minimum of VSP and 'C' programming features, yet it gives
an indication of how VSP instructions can be used within a high-level 'C'
program. It will be referenced in later sections of this chapter to illustrate the
parsing, compiling and linking required to create a complete applications program.

This program creates a complex 64-sample single-cycle square wave test signal (in
'C') and saves the signal in simulated external VSP memory indices 0 to 63. Then
the FFT of the signal is taken by the VSP. The real and imaginary parts of the
FFT arc displayed on the terminal (from 'C'). Then the square of the magnitude
{power spectrum) is calculated by the V SP and displayed by a 'C' program.
Comments are written into the program in traditional 'C' style by enclosing them
between the'/*' and'*/' delimiters.

9-3

I ; "-. __ /

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

,. program• example.ffp

#include "ff.ii,!(__ _
#define EX1MEM zrmexter->exmem
l#D#I

vspopO
{

inti;

Main simulator routine - must be umed vspop0

Only variable declared within wpop()

,. Define the default ~rameten to be assigned for all instructions. Jf a parameter ia not ~ified on the instruction line,
the default values will be used. If a parameter is specified both on the co!DIDIDd line and in the defaults, the parameter
on the command line takes highest priority . . ,

/#

#!

l#E#I

DEF.\ULTNMPT:64, RS·O"MDF·3,)]'1TR_p~o,. .. _'.ll"0. MBS·!28, MSS:!28;
DEFAULT ZR:O~~:OA El:v, RV:O, MGSQ.ru.iF:2;
DEFAULT FFr .. .iwA•v, AS:O, R:O, 1:0;

,. Generate one cycle of 1 64 complex-point square wave signal in 'C' and store it in simulated external memory. The
even indices are the real pan oflhe signal, and the odd indices are the imaginary pan. .,

for (i·O~c64;i++)

{ if' (ic32) EXTMEM[2*il • 16384;
else EXTMEM[2•i] • - 6384;
EXTMEM[2•i+ll • 0;

}

,. Using VSP instructions, load the entire 64-JlQint complex vector into internal VSP memory1 take the fil and store the
result& back out IO external memory. 1be STI illltnletica llOres the llClle value calculated auring the rr 1 out to address
512.

,,

#!

LDMBA·O;
FFr NMBT:64, FSIZ:64, FPS:32, LPS:l;
ST RV:J MBA-128;
sn NMPT:t, oR-1, sn:s, MBA-s12;

,. Usi,ng 'C', display the resul1' of the FFT insuuClion stored in limulated external melllOJY. Also display the scale
n:gisler result lloi'ed in external memory . . ,

for (i-0~<64;i++)
_printf("real('l>d)·'l>d~imag(~·IJ,d\n", i, EXTMEM(2*i+128], i, EX1MEM[2*i+129]);

printf("llClle register• W.x\n",EXTMEM[5121);

,. Calculate the sguare of the magnitude of the FFr (power ~m). The FFr results still exist inside the VSP, so they
do not have to tie read in from external memory. After the MGSQ, write the power spectrum results out to external
memory beginning 11 physical address 256. .,

#I

MGSO·
ST RV !1, MBA·2S6, MDF·2;

,. Using 'C'. print out the reJUlt& of the power spectrum. .,
for (i·O·i<64;i++)

pid('magnitude ofbin'l.d•IJl,d\n", i. EXTMEM(i+256]);

--

9-4

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.3 Mixed 'C'/VSP Language Programming Constructs

This section uses the examp1e in section 9.2 to describe the constructs used in
writing mixed 'C' and VSP language programs. It is not the purpose of this
section to teach the 'C' programming language to inexperienced users; hence, this
section will concentrate on1y on those constructs needed to write the combined 'C'
and VSP code for the VSPS parser. In fact, if languages other than 'C' are going
to be used for the majority of the simulation, it is not necessary to fully learn the
'C' language. It is only necessary to use the constructs contained in the example
as a template for creating programs. A brief introduction to the 'C' programming
language is given in Appendix C.

9.3.1 #include

The statement:

#include "/da/ffp/rclcase/ffp.h"

loads a set of 'C' declarations, such as the declaration of arrays containing VSP
external memory. This statement is required, and its particular form will depend
on what system the VSP simulator is running and how the VSPS was installed in
the directory structure of the host computer. When running on VAX computers,
either "ffp.h" must exist in the current directory, or the directory path must be
specified in the include statement as shown in the example. If questions exist
about the path where "ffp.h" exists, they should be directed to the system manager.
In the example of section 9.3, the directory path of "ffp.h" is ldalffplreleasel.

PC versions of the simulator have similar requirements for declaring the path of
"ffp.h". However, a "set include" command may be issued as described in the PC
installation procedure which may eliminate having to declare the path of "ffp.h"
within the program if it docs not exist in the current directory.

The general form of using the "#include" command is:

#include "linstall_pathlffp.h"

where install_path is the path where "ffp.h" is located.

9.3.2 #define

The statement:

#defme EXTMEM mnexter->exmem

makes the data structure defining external memory in the simulator easier to use.
It allows external memory to be addressed as an array such as
'EXTMEM[address]'. This form was used in the example in section 9.2.
'EXTMEM' is an arbitrary variable name chosen for this example; any valid 'C'
variable name may be used in place of 'EXTMEM'.

9-5

('\

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.3.3 Delimiters

The end of external declarations must be shown with the '/#D#/' marker.
Similarly, the '/#E#/' marker defines to the VSPS parser where executable code
begins. The end-of-program marker '##' must be included at the very end of the
VSP code module.

Comments in 'C' are delimited by the markers '/*' and '*/'. The example has
made extensive use of the comment delimeters outside of the blocks of VSP
instructions. It is possible to embed comments within blocks of VSP code as well
by using the same comment delimeters.

Source programs as in the previous example may contain both high-level 'C' code
as well as VSP instructions. It is up to the VSPS parser to distinguish between the
two types of code which may be present. The distinction is made by the use of the
two delimiters '/#' and '#/', indicating the start and finish respectively of VSP
instructions. The VSPS parser passes unchanged all code outside these markers.
Code within the markers must be valid VSP instructions or comments. The VSP
instructions are translated into external 'C' function calls to the instruction library
by the VSPS parser.

Note in the example that within the first and last program delimiters('{' and '}'),
VSP code exists in two different places, and 'C' code exists in three different
places. This can be repeated as many times as desired by simply using the VSP
instruction delimeters as previously defmed.

9.3.4 The vspop() Function

VspopO is the required name of the main user function in the combined 'C'NSP
program. The VSP simulator calls the vspop() function to execute the user
program when option '8' from the Main Menu is executed. The vspop()
subroutine may in turn invoke other 'C' subroutines using standard 'C' function
calls. VspopO can also be used to call a subroutine in a language other than 'C',
where that subroutine may invoke other subroutines containing VSP code
embedded in 'C'.

The left brace'{' is a required 'C' construct defining the beginning of the vspop()
subroutine. The last right brace'}' in the program defmes the end of the vspop()
subroutine.

Note that all variables in a 'C' program must be declared prior to their use. All
such variables may be used freely in both 'C' and VSP code. In the example, the
im i command defines an integer with the name i.

9-6

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.3.S Specifying Instruction Parameters

The parameters for each VSP instruction can be set in a number of ways. The
previous example illustrates two of those ways. The first way to declare
parameters is to use the DEFAULT construct as is shown in the example.
Towards the beginning of the program (but inside the vspop() function), the
DEFAULT command defines all parameter defaults. The second way to declare
parameters is to specify them on the VSP instruction command line. If parameters
are not specified on the instruction line, the parser looks through the DEFAULT
parameters to see if they have been defined. If parameters are specified on the
command line, they will ovenide the default values. As an example of this, if the
ST instruction executed after the MGSQ instruction defines MDF=2, and in the
default parameters MDF was defined as 3, then the assignment of MDF=2 takes
precedence because it exists on the command line. The third way of specifying
instruction parameters is to define them using any valid 'C' arithmetic expression.
For applications using multiple VSPs, the simulator allows specifying which VSP
the instruction is directed to.

Parameters may be defined as either literal or logical values by using the colon (:)
for logical values and the equal sign (=) for literal values. Descriptions of the
differences between logical and literal values arc included in section 4.3.1. The
example in section 9.2 uses both logical and literal parameter specifications.

9-7

(

:

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.4 The VSPS Parser

The VSPS parser is a program that translates a source file made up of both VSP
instructions and high-level 'C' code into a form suitable for compilation by the
system 'C' compiler. High-level 'C' programming statements outside the'/#' and
'#/' delimeters arc not affected by the VSPS parser. The parser identifies VSP
instructions embedded within the high-level program and translates these
instructions into external function calls to the VSP instruction library. The output
of the parser is a standard 'C' program containing the original 'C' source code and
the external function calls. This parsed output is then run through the system 'C'
compiler to create an object module. The object module is then linked with the
instruction library which creates an executable module ready to run.

The use and syntax of the VSPS parser must be understood in order to use the VSP
simulator to its fullest potential. Parser options are discussed in more detail later
in this chapter. Formal constructs arc discussed in Appendix D. This section will
show how to issue the "parse" command. Note that the format of the "parse"
command is independent of the operating system being used.

Parsing a program module is pcrf ormed by one of the following commands:

parsefilename.ffp [-options] for VAX Computers
vp filename.ffp [-options] for PCs

where filename is the file name of the user program module. The file name is
arbitrary, but it must have ".ffp" as the file type. Optional additional parameters
may be specified on the parse command line following the file name.

As a part of the VSP compilation process, several files with the file name filename
are created. These arc:

filename.c

filename.ph

filename.ck

filename.sub

- main output to be processed with the system 'C'
compiler.

- initialization "include" file containing VSP
instructions.

- .. include" file to check siz.e of compile time initialized
fields.

- "include" file containing functions generated from
instruction blocks.

As an example, assume that the example program in section 9.2 was created with a
file name "examplc.ffp". This program could be parsed by issuing the command:

parse emmple!fp
vpemmple

on the VAX, or
on the PC.

Note in this case that no optional parameters were specified on the "parse"
command line.

9-8

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.5 Compiling, Linking and Running a Parsed Program

After the parsing process is complete, the output file "filename.c" must be
compiled by the system 'C' compiler and then linked with the VSPS. The
commands to do this are dependent on the operating system and are described in
sections 9.5.1, 9.5.2 and 9.5.3 for ULTRIX, VMS and DOS respectively.

9.5.1 Compiling and Linking Under UL TRIX

Compiling a 'C' source program under ULTRIX is implemented as:

cc -cfilename.c

'cc' calls the system 'C' compiler with the input file filename.c. The '-c' option
suppresses loading the program after compilation is complete. The output from
the compiler is the object file 'filename.o', which can then be loaded along with
the simulator libraries using the command:

f77 filename.o lsim_pathlffp.a -lm-ofilename

f77 is a shell script in UL TRIX which calls the loader. f77 is used because the
VSP simulator contains the IEEE routines which are written in Fortran and call
Fortran libraries, while the main body of the simulator is written in 'C'; f77 is
thus used to link both the Fortran and 'C' libraries. This load produces an
executable copy of the simulator with the name filename containing the user
source code.

The simulator containing a linked copy of the user source code is run by typing
'filename' <er> at an ULTRIX prompt.

9.5.2 Compiling and Linking Under VMS

Compilation is implemented under VMS by issuing the following command:

CC filename.C

This compiles filename.C, and creates the object file filename.O. This output is
loaded along with the simulator libraries using the command:

LINKjilename.OBJ, FFP$INC:EMA1N, FFP/LIB

This produces an executable copy of the simulator named filename, with a link to
the user program module. To execute the linked program, type 'run filename'
<Cr> at a VMS prompt. The logical FFP$INC should be defined in the local user
login.corn file or by the system to point to the appropriate directory.

9-9

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.5.3 Compiling and Linking Under DOS

When the DOS diskettes are distributed with a copy of the simulator, four batch
(.BAT) files are included which simplify the compiling and linking process. The
names of the four files are descriptive of the functions performed by them. The
four files are:

vp.bat for parsing user ".ffp" programs
vc.bat for compiling ".c" files from the parser output.
vl.bat for linking the compiled program to the simulator.
create.bat for combining the three commands above into one

In order to manually parse, compile and link user programs, it is only necessary to
issue the commands as shown below:

vp filename .ffp [-options]
vcfi/ename.c
vlfilename

After the 'vlfilename' command is issued, the simulator is ready to run by issuing
a 'filename' <CI'> command at a DOS prompt.

The fourth file listed, 'create.bat', can be used to automate the manual parse,
compile and link process. For instance, the command:

create filename

will parse an input file of the name 'filename.ftp', compile the 'filename.c' output
file from the parser, and create the executable file named 'filename.exe'. The
simulator with a copy of the user source program is ready to run by issuing
'filename' <cr> at the DOS prompt.

9.5.4 Running the Compiled Program

Following the steps described above, a copy of the VSPS containing the linked
program module is now running. The Main Menu of the VSPS will appear on the
terminal screen. To run the program, select option '8' from the Main Menu,
identified as:

"execute user code in vspop()".

The simulator will branch to and execute the code written in the original source
program and contained in the function vspop(). When execution is completed, the
simulator will return operation to the Main Menu.

All of the menu functions, utilities and other tools discussed in Chapter IV are still
available for system and algorithm development and debugging when user
programs are linked to the simulator. The only difference between the simulator
now running and the simulator which runs without linking the user source code is

9-10

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

that option '8' from the Main Menu now has a vspop() function from which to
execute a user program.

The example in Section 9.2 loads simulated external VSP memory with specific
values created from the 'C' program. If desired, this part of the user source code
could be eliminated. The memory space could instead be loaded manually from
the signal generator within the simulator, or loaded from an external signal library.
After the memory is loaded, then option '8' could be run which would perform the
FFr on the data in that memory. Additionally, the VSPS can be used to plot
simulated external memory and examine internal memory and register contents.
Any other option in the VSPS menu structure can be selected before or after
running the user program. If the message level in the simulator is defined as either
2 or 3, any option in Menu M-4 can be selected for memory or register display
prior to or after each instruction is executed.

9.6 Linking Multiple Applications Programs to One VSP Simulator

The way the VSP simulator has been presented, each time an application is written
for the VSPS, a user source file is created, parsed, compiled and linked into an
executable module. If a number of independent applications requiring the VSPS
exist, each of them would individually link a copy of the simulator creating
multiple large executable files, one for each application.

The way around creating multiple copies of the simulator is to create a user menu
within the main vspop() function which in tum calls different user applications,
each written as an external function call. If a new application is generated, simply
add its name to the menu called from vspop() and add an external function call to
the new application. Note that the individual applications should not have a
vspop() function; this should be reserved for the main routine containing the
calling menu.

The new application source file is parsed and compiled in the same manner as
described in sections 9.5.1 through 9.5.3 for single applications which are linked to
the simulator. However, when linking multiple applications to one simulator, all
of the application object modules must be specified on the link command line to
create the fmal executable file which is able to call all of the user applications.

When linking under ULTRIX and VMS, this is a straightforward task of simply
adding the object file for each application to the link command line. Under DOS,
it is a matter of creating a filename.Ink file which simply contains the names of the
user modules which are to be linked to the application. Additional discussions of
this process under DOS are contained in Appendix A.3.

9-11

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.7 Using Fortran for Simulating the External Environment

Although the VSPS parser translates code written in 'C' with embedded VSP
instructions into a 'C' program, it is not necessary to learn the full constructs of
'C' to program the VSPS. Any language that can be called from 'C' can be used
to write the bulk of the simulation for the external environment. There are a few
constructs about 'C' that must be understood in order to properly set up the main
program. These include properly defining the beginning and end of the program,
as well as the correct format for calling subroutines and passing parameters from
'C' to the language perf orrning the bulk of the simulation. Unfortunately, the
conventions for calling subroutines and passing parameters vary with different
operating systems and languages.

This section describes the minimum 'C' knowledge required to call Fortran
subroutines and pass parameters under the UL TRIX, VMS and DOS operating
systems. Familiarity is assumed with the example in section 9.2 and the 'C'
constructs described in section 9.3. Variable and array declarations in 'C', as well
as assignment statements and the 'C' "for" statement (equivalent to the Fortran
"DO") are covered in Appendix C for those not familiar with 'C' programming
basics. An example 'C' program which calls Fortran subroutines is included at the
end of this section, and on the disks which accompany the PC version of the
simulator. It may be helpful to refer to this example when reading sections 9.7.1
through 9.7.3.

9.7.1 Calling Fortran Subroutines From 'C'

Calling Fortran subroutines from 'C' requires knowledge of the conventions for
naming subroutines and passing parameters. These are not the same in all three
operating systems currently supported by the simulator. Under ULTRIX, the
underscore character "_" must be appended to the name of any Fortran subroutine.
This must not be done under either VMS or DOS. Also, the conventions for
default declaration of integer values are different between the two operating
systems. Under ULTRIX, an integer value defaults to 32 bits or INTEGER*4.
Under VMS, the default is to 16 bits or INTEGER *2. The remainder of this
section applies to all operating systems.

In Fortran, parameters are passed to subroutines by address. In 'C', parameters
are normally passed by value. When a parameter is passed from'C' to Fortran, the
'C' construct must be used which passes the address of the parameter to maintain
compatibility with the Fortran subroutine. The variable name should be prefaced
with the ampersand,"&", and enclosed in parentheses, as can be observed in the
'C' program example at the end of this section by the

initmem _(&(EXTMEM[O)))

command line. "initmem _" is the name of the Fortran subroutine being called
(note the underscore in the subroutine call used for UL TRIX), while the
ampersand passes the address of the first element in the EXTMEM array to the
Fortran subroutine. It is not possible to pass literals or expressions in this manner;

9-12

Zoran VSPS Manual Creating User Programs and linking to the VSP Simulator

instead, the literal or expression must fll'St be assigned to a variable and then the
address of the variable is passed to the subroutine.

For the sake of accuracy, in 'C' arrays are referenced through pointers to
structures. However, it is not necessary to understand either pointers or structures
to correctly pass arrays to Fortran subroutines. The example just discussed
illustrates the concept of passing arrays to Fortran subroutines.

All arrays in 'C' start at index 0. In Fortran, the common convention (and the only
one supported by some compilers) is to start the array at index 1. This should be
kept in mind when passing parameters between 'C' and Fortran.

The following example is functionally identical to the example written with
combined 'C' and VSP instructions in Section 9.2; it illustrates all the points
elucidated in the above paragraphs. The example is designed to work under
UL TRIX, VMS or DOS. This requires that cliff erent names be used depending on
the operating system which is being used. To allow for this, the program uses
conditional compilation in 'C'. The code between "#ifdef unix" and "#else" will
be compiled only under ULTRIX, whereas the code between 11#else" and "#end.if'
will be compiled only under VMS.

9-13

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

c
c

Program • exsub.f

C Fortran example file simulating lhe environment external to lhe VSP. These
C subroutines are called from the vspopO routine in lhe main 'C' PTC!gr.im
C These subroutines _provide lhe same func:tion as the 'C' code simulating lhe
C external world in Ule example of sect.ion 9 .2.

SUBROUTINE INITMEM(IEXlMEM)
INTEGER•2 IEX1MEM(l)
DO 1001·1,64
IX·2•(1-1)+1

~.LT~33l IEXTMEM(!X) • 16384
IF .GE.33 JEXTMEM(IX) • -16384

TM M(lX+I) • 0
100 CONTINUE
END

SUBROUTINE OUTCMPLX(IEXTMEM)
INTEGER •2 IEXTMEM(l)
DO 1001·1,64
IX·2•(1-1)+129
PRINT SO, 1-1, IEXlMEM(IX), 1-1 IEXlMEM(IX+l)

SO FORM A T("real(',16 ")-",16,",imagt'.16 ")•",,16)
100 CONTINUE ' '

60 ~~6¥-~~g:;i,18)
END

SUBROUTINE OUTPWR(IEXTMEM)
INTEGER•2 IEXTMEM(l)
DO 1001•1,64
IX·2•(1-1)+2S7
PRINT 50, 1-1, lEX'IMEM(IX)

SO FORMA TC' magnitude of bin" ,16," • ",16)
100 CONTINUE
C TIIIS FINAL PRINT NEEDED TO FORCE OUT 11IE LAST LINE ON VMS

PRINT ISO
150 FORMAT('"')
END

9-14

·'

Zoran VSPS Manual Creating User Programs and I.inking to the VSP Simulator

Propm • exmnple.ffp .,
I* Progmn exmnple showing how the main 'C' program can call Fortran subroutines and ~· ~rameaen to thOle

l'Olllmes. The program reiu!IS are exactly the lllJle 11 tha1e shown in the example of section 9.2.

#inc:lude..'.'.ff JUi:
#define .EX1MEM zrmexter->umem
l#D#I

vspopO

~ Define the default ~rameten to be usigned for all instructions. If a parameter is llClt ~ified on the instruction line,
the default values Will be used. If a parameter is specified both on thi CODllDIAd liae alid in the defaults, the parameter
OD the command line tatees highest priority . . ,

I#
DEFAULT NMPT:64.RS:O.MDF:3,Il'ITllP:OZP:O,MBS: 128,MSS: 128;
DEFAULT ZR:0,_~:0,El:O,RV:O,MGSQ.ADF:2;
DEFAULT FFT • .1UJA•O,AS:O,R:O,l:O;

#/

l#E#I

I* Oenerate the lell signal in 'C' and store it in lin11lated external memory. 'Ibe signal is one c:yc:le of a real square wave
llOred in simulated external JDe!'l!OfY at indices 0 to 63. The even indices are the real pan oflhe signal, and fhe odd
indit:eli ~ the i~ginary P!lt. Note that a c:onditional compilation is being performed depending OD whether the
program 11 IUDIWI& under 'UL TRIX or VMS . . ,

ff def ultrix

#else
illicmem_(A(EXTMEM{O]));

INITMEM(A(EX'IMEM[O]));
#mclif

I* Using VSP iDSlnldi0111, laad the entire 64-point vector into illlemal VSP memo_ry1 late the F'PL.!.nd store the results
back out lO aterna1 memory. The sn iastruc:tion llOrel the scale value c:alculalCCI during the l'l' ! out to address 512. .,

I#

#/

LDMBA·O;
fFT NMBT:64, fSIZ:64, PPS:32, LPS:l;
STRV:l MBA·l28;
sn NMPf:1, oR.-1, STR.:s, MBA-512;

I* Using Fortran, cli~y the mults of the FFT instruc:tiOD llOred in simulated external mem~. Also display the scale
ngi~r ruult ll~ m external memory. Note that a CODditional compilation is perf anned aepending on Whether the
open11ng syaem 11 UL TR.lX or VMS. · .,

ff def ultrix

#else
ow:mplx_(A(EXTMEM{O)));

lendif
OUTCMPLX(A(EX'IMEM(O)));

I* Now find pcllWSI' llling VSP iulrucliou and llOft tbe IUUlts in uternal amory. •t
I#

MOSO;
ST RV:l, MBA·2S6;

" ,. Print this nsu1t CIUl llling a FolmD 111bnlutine. •1

#if def ultrix
outpwr_(AEX'I'MEM[O));

#else
OUTPWll(AEX'I'MEM(OJ);

#endif

9-15

/ ~'

' - /

'.I
··~

(

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.7.2 Compiling and Linking Fortran Subroutines Under ULTRIX

A description of how to compile and link the Fortran and 'C' programs together is
illustrated best by example. Assume the two example files above are called
"exsub.f' and "example.ffp" as shown in the bodies of the programs. The
commands to parse, compile and link them with the VSP simulator are as follows:

parse example.ffp
f77 -lm example.c exsub.f ffp.a -o example

The first statement invokes the VSPS parser to translate example.ffp to a
compilable 'C' program as described in earlier sections. The second statement
compiles the resulting 'C' code from the parser output ("example.c"), compiles the
Fortran code (''exsub.f'), and links these object modules to the simulator. The
executable file "example" is generated as output.

9.7.3 Compiling and Linking Fortran Subroutines Under VMS

Assume the two files above arc called EXSUB.F and EXAMPLE.FFP as shown in
the bodies of the programs. The commands to parse, compile and link. the
programs with the VSP simulator arc as follows:

PARSE EXAMPLE.FFP
CC EXAMPLE.C
FORTRAN EXSUB.F
LINK EXAMPLE, EXSUB, FFP$INC:EMAIN, FFP/LIB

The first statement invokes the VSPS parser to translate EXAMPLE.FFP to a 'C'
compilable program as described in previous sections. The next statement
compiles the resulting 'C' program (''example.c") from the parser output. Then
the Fortran program is compiled. Finally, all of the object modules are linked with
the VSP simulator and the executable file EXAMPLE.EXE is generated.

9.7.4 Compiling and Linking Fortran Subroutines Under DOS

Assume that the ma.in 'C' program is named example.ffp on the PC. This program
calls external Fortran subroutines existing in the exsub.for file. The compilation
and linking of the programs is illustrated below as:

vpexample
vcexample
vf exsub
vlexample

The vp command parses the ".ffp" program which in tum generates a ".c" output
file. The vc command compiles the ".c" output from the parser. The vf command
compiles the Fortran subroutines contained in exsubfor. The vi command links
the multiple module program together by looking for an example.Ink file which
contains the linking instructions. The file name of the ".Ink" file should have the

9-16

Zoran VSPS Manual Creating User Programs and linking to the VSP Simulator

same name as the program which contains the vspop() function. In the current
example, the example.Ink file simply contains the single line of text:

FILE example cxsub

This text tells the linker to link the two separate object modules example.obj and
ex.sub.obj together.

Note that in cases not using multiple object modules, the example.Ink file need not
exist at all.

Additional discussions of multiple-module linking under DOS is included in
Appendix A-3.

9-17

('

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.8 Additional VSP Simulator Programming Concepts

As the first few sections in this chapter illustrate, the VSP simulator is an easy tool
to use for system development. The process of writing VSP instructions and
including high-level 'C' or Fortran routines with the VSP instructions is
straightforward. However, there are additional powerful programming constructs
provided by the VSPS which allow even higher levels of programming
sophistication. It is the purpose of the remainder of the sections in this chapter to
introduce these concepts. Many of the discussions contained in the remainder of
this chapter are also covered with a formal language description in Appendix D.

9.8.1 VSP Statements

The VSP language has three types of statements: VSP instructions, pseudo
operations (commands to the parser and run-time interpreter), and instruction
blocks. With the latter, instruction parameters can be efficiently defined outside of
instruction loops. Instructions can be labeled so that the program will WAIT until
a specified instruction has executed. In a multi-VSP system, instructions can be
sent to a designated VSP by following the instruction with the "@ expression"
statement. The expression is evaluated to determine the VSP number.

9.8.2 VSP Instructions

The format of VSP instructions used when writing programs for the VSPS is the
same as it is in the instruction tutorial mode. For example, the following FFr
instruction:

FFI' NMBT:64,RS-O,ADF·3,AS-O,R:O,FSIZ:64,El·O.FPS:32, IJ>S: 1, 1:0,RBA:O;

Parameters can be declared with either LITERAL or LOGICAL values. The
designators show whether a parameter value is logical ":" or literal "=". Literal
values are the exact value of the parameter which will be used in the instruction
field of the instruction at execution time. Logical parameters use a more natural
representation of the value for some parameters. Translations from logical to
literal values arc provided with the description of the instructions in the instruction
tutorial section of the VSPS (Menu M-2-lnOp).

9.8.3 Pseudo-Operations

Pseudo-operations arc commands to the VSPS parser. They provide information
to the parser (STATIC and DEFAULT), control VSP/host coordination (WAIT),
control the disposition of VSP instructions (DEFER and JMMEDIA TE), and
control parser options (OFfION).

ST A TIC: This inf onns the parser that certain variables arc defined at compile or
load time, and can be initialized. If a parameter is set to an expression with a
variable not declared as static, that parameter will be initialized at execution time.

9-18

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

DEFAULT: This provides default values for instruction parameters to the parser.
Default values can be defined for every occurrence of a parameter, or can be set
for a specific instruction. The command:

DEFAULT NMPT=5;

will set the value of NMPT in every instruction using this parameter. The
command:

DEFAULT LD.NMPT =5;

will set the default value of NMPT only in the LD instruction. Similarly,
parameters can also be defined as either literal values, using "=",or logical values,
using ":".

WAIT: This causes 'C' code execution to be suspended until the specified VSP
instruction is completed. DONE suspends execution until all issued VSP
instructions have been executed. Specifying a label effects a WAIT for the labeled
instruction to terminate. Following a label with a":" and an expression with the
value N suspends execution until the Nth instance of the labeled instruction has
been executed. For example, the command :

WAIT STINS:4 @2;

will effect a WAIT in VSP 2 until the instruction labeled STINS has been
executed four times.

OPTION: This statement sets parser options. SET and CLEAR (non VALUE)
options can also be set at parse time. For instance, the command:

parse myprog ftp -ccksize -cline

will parse the program named myprog ftp and include the "ccksize" and "cline"
options with the parse process. The two parameters need not be specified in the
".ffp" program when specified on the "parse" command line.

All parser options are shown below. Initial values are· shown in parentheses.

9-19

Zoran VSPS Manual Creating User Programs and linking to the VSP Simulator

OPTION SET/CLEARN ALUE MEANING

VSPID VALUE (0) Sets default VSP number
ERRLEV VALUE (0) Sets level of error messages (no

effect in current
implementation)

WAITALL VALUE (0) l indicates wait for completion
after each VSP instruction

CK SIZE VALUE (1) 1 indicates check size of all

SCKSIZE SET
parameters

Sets CKSIZE to 1
CCKSIZE CLEAR Clears CKSIZE
LINE SET (SET) Outputs comments containing

source code line numbers
CLINE CLEAR Clears line
CMPEQ SET(CLEAR) Complains about LITERAL

CCMPEQ CLEAR
parameter settings

OearsCMPEQ
CMPCO SET(CLEAR) Complains about LOGICAL

CCMPCO CLEAR
parameter settings

Clears CMPCO
CMPALL SET(SET) Complains about every instance

for CMPEQ and CMPCO
CCMPALL CLEAR Oears CMPALL so only the

first instance generates a
complaint

INDL SET(SET) Causes emission of "#line" card

CINDL CLEAR
in ".C" output file

Clears INDL
LOGICAL SET(SET) Use logical parameter values in

error messages
LITERAL CLEAR Use literal parameter values in

error messages

9.8.4 DEFER and IMMEDIATE Programming Constructs

The DEFER and IMMEDIATE pseudo-operations are important commands which
require their own section. They provide a number of powerful features when
writing VSP programs. They must be used as a pair; a DEFER command requires
an IMMEDIATE command at some later point in the program. DEFER causes
instructions which follow to be written to simulated external VSP memory at the
address specified in the following "expression". The instructions are not executed
as they are written to external memory. IMMEDIATE turns off DEFER and
causes subsequent instructions to be executed immediately.

In "real" hardware VSP applications, the VSP would normally fetch its
instructions out of external memory and then execute those instructions. When
programs such as the example program in section 9.2 are run, the simulator makes
no attempt to fetch instructions out of simulated external memory as would be
done in a "real" system. The instructions are executed within the simulator, but no

9-20

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

attempt has been made to model the storage and fetching of instructions out of
external memory.

The DEFER instruction writes all instructions which follow into simulated
external memory at the address specified by the "expression" until an
IMMEDIATE command is encountered. The instructions are written to memory
in the binary image that a hardware VSP would expect to f'md in a "real" system.
The reason for doing this is that now the simulator can actually model the VSP
fetching instructions from external memory. Additional parameters such as bus
timing and usage as well as the number of clock cycles required can also be
accurately modeled.

. . A second important feature is provided by the DEFER!Th1MEDIA TE commands.
When instructions are written (DEFERred) to simulated external memory, they are
written in the same binary executable format that a hardware VSP would expect to
read in a "real" system. The simulator is able to dump this simulated memory
containing binary executable VSP instructions in a JEDEC format to a disk file.
The JEDEC file is in the proper format for burning into PROMs using industry
standard programming tools. The PROMs can be used directly in a hardware
system incorporating the VSP. The VSP simulator then ties together the
instructions executed in the simulator environment with the formatting for the end
hardware system.

The following example shows how the DEFER and IMMEDIATE commands are
used.

#include "ff.1!,h.'.'._ _
#define EXTMEM D111Ufer·>UDID
1#0#1
vspop()

/#Ell/

I#
EXTMEM[IUbnuiaeJ • ltuei

,. Nole: no VSP imbuc:lioGa will be ueculld after die DEFER llllemelll lllltil ID IMMEDIATE l&llement is
encountered .• ,

#I

DEFERltue;
,. VSP code to be DEFERred •1

HLT·
iMMEDIATE;

When this program is run, all VSP code between the DEFER and IMMEDIATE
commands will be written to external memory, including the HLT. Note that
JMPI is not written to external memory. because it is outside the
DEFER/IMMEDIATE loop. When the JMPI is encountered after the
IMMEDIATE command, the simulator jumps indirectly to the beginning of the
instructions which exist in simulated external memory at address "base". All
instructions are executed from external memory until the HL T instruction is
encountered.

9-21

Zoran VSPS Manual Creating User Programs and I.inking to the VSP Simulator

Instructions which have been DEFERred cannot be controlled by the WAIT
statement. If DEFER and IMMEDIATE options are used, coordination between
the VSP and host must be handled directly, or else reliance must be made on the
"W AlT DONE;" statement. Chapter X discusses host and VSP coordination in
more detail.

9.8.S Creation of JEDEC-Formatted PROM Files

H the instructions execute correctly in the simulator, users may want to create
JEDEC formatted files of these instructions for burning into PROMs. Option '14'
from Menu M-4-20 is used for this purpose. This selection will prompt for the file
name to write the JEDEC formatted instructions into, as well as the number of
words of memory and the starting address in simulated external memory where the
instructions exist.

The simulator currently assumes that the PROMs to be burned are of size 2K
words by eight bits (16K). The JEDEC-output file name is specified by the user.
The simulator appends a number to the end of the user-specified name
corresponding to the number of 2K-word blocks which are created. In addition,
the formatter assumes that the memory size is 16 bits (as in the simulator), so high
and low byte files are created. For instance, if 3K words of instructions exist in
simulated external VSP memory and are formatted by the JEDEC option, the
program will create four files, named.fileO.lo,fileO.hi,filel.lo, and.fi/el.hi, where
file is the name provided by the user.

9.8.6 Instruction Blocks

The instruction block construct supported by the simulator can be useful for filling
in instruction parameter fields for the VSP when repetitive loops are being
implemented. For instance, the overlapped l/O example discussed in section 8.2.2
introduced the concept of the FFT loop. With the basic instructions of ST, ID and
FFT, FFTs of various sizes can be implemented using the 64-point FFT as a
building block. While this example did not specifically address the
implementation of large FFTs, the repetitive nature of the loop was illustrated
between instructions 3 and 9.

The BUil..D construct of the simulator is designed to simplify the process of
instruction parameter field definition for the specific case when nested instruction
loops exist and some parameters in the outer loop change slowly while parameters
in the inner loop change quickly.

The syntax for instruction blocks is similar to that for 'C' subroutines. The
instruction delimiters '/#' and '#/' can be used inside instruction blocks; 'C' code
placed between them is included in the subroutine created for the block. Each
instruction block defines a 'C' subroutine of the same name and with the same set
of parameters (all of type "int") as the instruction block name and parameters.

Code for an instruction block is emitted at two distinct places. The fint is within
the subroutine, and the second is at the point in the calling program where the

9-22

Zoran VSPS Manual Creating User Programs and linking to the VSP Simulator

block is defmed. The subroutine definition is written to a separate file to be read
with "#include" where the "/#D#f' marker occurs. All fields that do not contain
parameters for the block will be filled in when the block definition is executed.
The remaining parameters will be filled in when the 'C' subroutine with the same
name as the block is called.

The code to execute VSP instructions is issued when the subroutine is called.
Because of this, the block definition must be executed before the call to the
instruction block to fill in the fields. The example below shows how an instruction
block might be used.

I* Example: Static Declaration and Instruction Block Build*.'

#include "ffp.h"
#define offset 62
l#D#I
vspop()
{

"

" /IE#! ,.

illt i, j. ipb, base, bue2;

DEFAULTNMPT:64 FFI'.NMBT:l28,FFI'.RBA•O JNTRP-o ZP·O
MDF-3_. ADF~RS-0, El:Ot.MBS:~S:2. RV~~;.o,
AD~H·I, O')U\•l, A0)9U, a-0, F , FPS-0, i.n-6, -0.
sa....,o•I;

DEFAULTLDSM.NMPT•l,LDSM.UP-O,m.OR·l;
STATICafflll;

for(i•l; idOO; I++) {

Bun.D llli{isib) f
I.D MBA:ipb;

,. MBA in this iDltnlction is a function of the bloct~meter ipb which ii passed .tlen the "let.I ... fuDc:tion ii called. It
IDl1St be palled each time lbe block ii called, ar 10,000 times per execution of lbe outer "for'' loop . . ,

ST MBA:bue2+i;

,. MBA in this imlluclioD i1 Cllmlaled for eacb value af i, or 100 times per ueallioa of lbe outer "for'' loop . . ,
STB MBAB:aft'set;

,. Tbe BUILD procedure Mii all iDllnM:tioa fJelds in block "aell"' tbat are a fuDc:tion of i . . ,
"

)

) I* elld af 1be BUIU> procedure •1

for O-O; jdOO;j+t)
llli(j + bue)•

I* elld af 1be loop OD i ... ,

The operation of this program is as follows. The BUllD construct names a
function "seti" which defmes three instructions; in this instance they are ID, ST
and STB. The BUilD definition is executed 100 times, but the block of code
associated with the BUil.D construct is not executed in the outer "for'' loop; it is
only executed when called by "seti" in the inner "for" loop. Each time BUilD is
executed in the. outer loop, the parameters in the ST and STB instruction are
updated. For each time BUilD is executed, the inner loop calls "seti" 100 times
and passes the parameter "ipb" to "seti". Therefore, the parameter MBA in the ID
instruction is updated 10,000 times because "ipb" is passed to the "scti" function
10,000 times. However, the parameter MBA in the ST instruction is only updated
100 times - when the BUllD defmition is executed. The parameter MBAB in the
STB instruction is never changed because it is dcfmed as the value 62 by the
"#defme" at the beginning of the program.

\

""-- -

{,/

Zoran VSPS Manual Creating User Programs and linking to the VSP Simulator

The power of the instruction block construct is the ability to set slowly changing
parameter values in an outer loop rather than in an inner loop. This reduces the
overhead involved in always defining parameter fields in an inner loop; in large
applications execution time may be increased significantly.

9-24

Zoran VSPS Manual Creating User Programs and Linking to the VSP Simulator

9.8. 7 Programming Hints

It is preferable to use logical parameter values for instruction fields in most
instances. This makes it easier to understand the fields in the instruction.

When the MODE register is set, all parameters in the register are changed.
When changing a single parameter, ensure that each parameter is set to the
desired value.

The VSPS programs expect to operate with two RAM sections; the
simulator should be left in this mode when control is returned to the
interactive mode.

In linking with the VSP simulator there may be name conflicts between
names used in "FFP.H" and VSPS external variables. Compiler or linker
errors may be received due to this.

9-25

(
CHAPTERX

SIMULATING THE E'NTIRE VSPIHOSI' SYSI'EM

10.1 Overview

The VSP simulator executes VSP instructions with the assumption of a specific
hardware architecture and hardware configuration which is described in this
chapter. The parser also must address a specific form of the assumed host
controller operating system which deals with the queueing of VSP instructions to
be executed.

In general, VSP instructions are not executed as soon as they are encountered in a
user program; they are entered in an instruction queue for later execution. The
VSPS simulates two types of software queues that work together with the VSP on
board FIFO. The software operating system manages these software queues. This
can be done using polling methods or using special interrupts from the VSP.

10.2 Hardware Configuration

The VSPS models up to eight VSPs in parallel in a single application, all sharing
the same host controller, RAM and bus. This configuration is shown in Figure 10-
1.

BOST I EX'l'DNAL I
l_IWl_I

I
I

VSPO VSPl VSP7

-----'----------------
DATA »m .at>I>RESS BUS

Figure 10-1. Hardware architecture assume by the VSPS.

Since the bus is shared, if more than one VSP is accessing the bus at any one time,
all but the highest priority VSP will have to wait to gain control of the bus.
Priority among VSPs is assigned according to their index number. VSP 0 will get
the bus before VSP 1 if they both request it in the same bus cycle. Delays
encountered in waiting for the bus when there are multiple VSPs in the system are
modeled by the simulator.

The VSPS monitors the number of bus cycles used in executing user programs.
The number of clock cycles can be monitored by using menu M-4-21 which
selects the VSP clock sub-menu.

10-1

Zoran VSPS Manual Simulating the Entire VSPIHost System

A subroutine to be described later can be used to model the usage of the bus by the
host controller.

10-2

\, /

(~

Zoran VSPS Manual Simulating the Entire VSPIHost System

10.3 Instruction Queueing in General

Since the VSP normally operates independently of the host controller or
microprocessor, the execution speed of instructions can be increased by queueing
instructions for the VSP. The host can be freed for other processing if it can dump
instructions for the VSP into a queue, then return once the VSP has completed
their execution. There are a variety of possible approaches to instruction queueing
with different cost/benefit tradeoffs. The simplest scheme that uses the least host
memory is the hardware queueing of up to four instructions built into the VSP
using the on-board FIFO. The hardware queue may be supplemented with
software queues, allowing the host to dump larger blocks of VSP instructions into
an external memory buffer. The memory buffer is then either read by the VSP, or
the host later transfers instructions from the software queue into the VSP
instruction FIFO. The efficiency of software queues may be improved by
allowing the VSP to fetch its own instructions as well as by using the JMPI and
HL T instructions for moving between blocks of instructions within queues.

Figure 10-2 shows the relationship between these different queues. The dividing
line separates the hardware queue (maintained entirely within the VSP by the
host), from the software queue, which is maintained entirely by the host processor.
The fetch queue resides midway between these two methods. The fetch queue
uses host external memory for instruction queueing, and the VSP and the host
jointly manage the instructions in the queue. Additional discussion on VSP
instruction queueing is handled in the sections to follow.

four
instruc
tions

Hardware Queue

(l'IFO) In VSP

-'_,_
-'-. I .
. I .
. I .

-'--'-
retch Queue

many
instruc
tions

SOFTWARE

Software Queue

Figure 10-2. Relationship of Queues

The inter-dependence of the host controller and VSP requires that the operating
system have a way to control the flow of execution. The WAIT statement in the
VSPS programming language meets this need. It stops the host from issuing
further instructions to the VSP until it has executed all the instructions in the
queues. There are many ways to use the WAIT statement: it can be issued in an
instruction stream, or it can be issued to operate on a certain occurrence of an
instruction during a loop. This will be described more fully in Appendix D.

10-3

Zoran VSPS Manual Simulating the Entire VSP!Host System

The major alternatives for instruction queueing and their relative advantages are
listed below.

10.3.1 Hardware Queueing Using the VSP Instruction FIFO

The first and simplest approach for queueing instructions to the VSP is to use only
the hardware queue (instruction FIFO) in the VSP. When an instruction is to be
executed, the host checks the FIFOST AT field of the status register. If an
instruction slot is open, the instruction is written to the VSP. If no slot is
available, the host can either loop, continuing to check for an available slot, or
wait for an interrupt from the VSP. When an instruction slot is available within
the VSP, the host writes the instruction into the instruction FIFO.

10.3.2 Hardware and Software Queueing

A step beyond using just the VSP instruction FIFO for queueing is to use a
software queue from which instructions are written to the VSP instruction FIFO by
the host controller. A system using a software queue first checks to see if the
hardware queue of the VSP is full. H it is not full, the instruction is written into
the VSP FIFO. H the hardware queue is full, instructions are placed in the
software queue in system memory. The host must continuously check the VSP
instruction FIFO to see when space is available to move instructions from the
software queue to the FIFO.

While adding a software queue is an improvement over simple hardware queueing,
there is still significant host overhead associated with polling the FIFOST AT
register and handling an interrupt when the queue is empty.

10.3.3 Instruction Fetch Queueing

One way to get around the disadvantages of the two methods just proposed is to
use the instruction fetch feature of the VSP for instruction queueing. VSP
instructions are written to a block of memory by the host controller which is
common to both the controller and the VSP. Then VSP instruction fetch is started
from that common block. While the VSP is fetching ·instructions from one portion
of the common queue, the host controller can be writing additional instructions
into another part of the queue. Note that this method differs from the software
queue in that the VSP fetches its own instructions from the queue. In the
software queue example, the host wrote instructions either to the VSP or the
software queue as a function of the FIFOSTAT bit in the VSP.

Any new instructions to be queued are appended to the queue by the host
controller. A JMPI instruction at the physical end of the block can be used to
return the program to the start of the block, using it as a circular or continuous
buffer. AHL T instruction must be used at the logical end of the block so the VSP
doesn't execute invalid instructions. When the host has additional instructions to
append to the end of this block, it does so by writing the entire block, all except for
the first word of the first instruction. Once this is done, the HLT can be

10-4

Zoran VSPS Manual Simulating the Entire VSP!Host System

overwritten with the first word of the first instruction. Caution shouJd be used
with this method as described in section 10.5.

10-5

Zoran VSPS Manual Simulating the Entire VSPIHost System

10.4 Interrupt Support for Queueing

There are three types of VSP interrupts which help with instruction queueing. The
types of interrupts and their associated bits are:

IFO, indicating an instruction FIFO overflow.
ll.J, indicating the last instruction in the FIFO has been executed.
IMl and IAI, one of which will be set after any instruction is
executed with the EI (Enable Interrupt) bit set. IMI indicates that
some type of data move instruction has completed, while IA1
indicates that an arithmetic instruction has completed.

Under some conditions and on some systems it may be more efficient to write an
instruction to the hardware queue and test for overflow than to check beforehand
for an available slot. This function and error detection are the principle uses of the
interrupt on FIFO overflow.

The FIFO-empty interrupt is useful when using a software-queued system. The
interrupt informs the host controller that the VSP instruction FIFO is empty and
instructions should be written from the software queue to the FIFO. This should
be done with caution when using a fetch queue, because the instruction FIFO can
become empty~when the VSP is in the middle of an instruction fetch block.

Referring back to Chapter VI, it can be observed that every instruction but HL T
has an EI parameter in the LSB of the first word in the instruction. This bit can be
set to flag the end of an instruction fetch block. The EI bit of each instruction can
be used to signal when a particular instruction has been executed. This can
operate to control both software and instruction-fetch queueing methods.

10.5 Queueing Algorith~

Instruction queueing algorithms which can be used for programming the VSPS are
straightforward. Regardless of the queueing method chosen, the user always has
control of the VSP through the proper use of the mode register, the interrupts and
the applicable instructions. If a software queue is used, and the VSP instruction
FIFO is full, the insertion of additional instructions into the FIFO is not possible
until the space is available. As an alternative, the memory space for the software
queue can be increased using the "malloc" function in 'C'.

If interrupts are used, the transfer of control between the software queue managed
by the controller and instruction fetching managed by the VSP is precise and
efficient. If interrupts are not used, the run-time interpreter tests for the need to
transfer queue control. There is a special call to the interpreter to request such a
check.

When instruction fetch queueing is used, particular attention must be paid to the
use of the m.. T command. When an instruction is added to the queue, the m.. T
instruction may be overwritten at the logical end of the queue as the new

10-6

\ . ./

r.• ,_

Zoran VSPS Manual Simulating the Entire VSP!Host System

instruction is added. It may happen that the VSP tries to execute HLT while the
host controller is updating the queue. To guard against this, do the following:

1. Save the first word of the first instruction in a different memory
space; do not write it into the software queue yet

2. Write the second word of the first instruction to the second word of
the existing HLT instruction. Although HLT is two words, the
second word is a DON'T CARE.

3. Write all succeeding instructions after the HL T instruction.

4. Write HLT at the end of these instructions.

S. Now overwrite the first word of the original HLT with the first
word of the first instruction to be executed.

6. Read the instruction counter to determine if the instruction fetch
unit read the lfi.,T before it was overwritten. If it has not reached
the address of the HL T, or has passed it, the HL Twas not read.

7. If the instruction counter is at the second word of the instruction
following HLT, or at the word after that, the WAIT command must
be used until all queued instructions have been executed; then the
user must find out if the program counter goes past the address after
HLT.

8. If it does, the HL T was not read, and the program can continue. If
it doesn't, and the VSP goes idle, the HLTwas read, and the proper
instructions must be used in order to continue the program.

Quite a bit of information on instruction queueing algorithms can be found in the
on-screen text in the various HELP options. Menus M-1 through M-6 all have
HELP screens.

10.6 VSPS Instruction Queueing

The software operating system simulated by the VSPS can be set up to use any of
the three queueing options described in Section 10.3 above. It can also run using a
fourth queueing method which combines the first three.

10.6.1 Enabling VSPS Hardware Queueing

Using this option, the VSP simulator models only the hardware queueing of up to
three instructions, as described in section 10.3.1. When an instruction is to be
executed from the source program, it is sent to the VSP instruction FIFO. If the
queue is full, the host stops sending the instruction and polls the FIFOSTA T
parameter of the VSP status register until the queue has a free slot Keep in mind

10-7

Zoran VSPS Manual Simulating the Entire VSP/Host System

that this procedure causes the interrupt bits in the VSP to be reset. When the host
finds a free slot in the VSP, it writes the next instruction and continues execution.

This model is enabled by selecting option '2', '3' or '4' from Menu M-4-22, then
selecting option '8' from the same menu to shut off all software queueing. To
disable this model (and all queueing) select option 'l' from Menu M-4-22.

This model is also enabled by using the ZRSETSYS subroutine described in
Section 10.8.

10.6.2 Enabling VSPS Hardware and Software Queueing

In this case a software queue is used as described in Section 10.3.2. Interrupts are
not used, so the VSPS models the host as polling the status register, with the result
that interrupt bits are reset every time it is read. This cannot be done through the
interactive interface; it can only be enabled by a call to the ZRSETSYS subroutine
from the user source program. This is described in Section 10.8.2.

10.6.3 Enabling the VSPS Hardware and Instruction Fetch Queue

This option defines a queueing system as described in Section 10.3.3. Again
interrupts are not used, and the VSPS host model polls the status register of the
VSPS. This option cannot be reached through the interactive interface, and is
enabled only by calling the ZRSETSYS subroutine from the source program. This
is described in Section 10.8.2.

10.6.4 Enabling VSPS Fetch, Software and Hardware Queues

With this option, the VSPS combines all of the queueing methods described in
Section 10.3 into one method. The reason for providing this method is that when
there is considerable VSP/Host interaction, it may not be feasible to queue more
than a few instructions before a WAIT is required. The additional overhead of
setting up an instruction fetch queue may not be justified by the queue length. A
combination of software and instruction fetch queueing techniques can be used to
get around this problem.

The combined queue simulation operates as follows: When an instruction is to be
executed from the source program, it is written to the VSP if the hardware queue
has an available slot. If no such slot is found, a software queue with a pre
determined length is checked, and if a slot is available, the instruction is written to
this software queue. If the software queue is full - past a preset size - an
instruction fetch queue is set up, instructions are transferred from the software
queue to the fetch queue, and the new instruction is entered in the fetch queue.
When the hardware queue has a slot available, a JMPI to the instruction fetch
block is executed.

The ZRSETSYS subroutine is used to enable this queueing option and to defme its
parameters.

10-8

/·.

\.~

(

Zoran VSPS Manual Simulating the Entire VSPIHost System

10.7 Modeling Host/VSP Coordination

When a queueing model is enabled in the VSPS, the way the host and VSP interact
on the shared bus can be selected. Of the four choices, the fint three determine
how long it takes for the VSP to return control of the bus to the host. With the last
option, users can define their own model of the host Figure 10-3 shows the
relationship among the fint three methods.

Option 2 Option 3 Option 1
Control Control Returned to Host Control
Returned At Random '!rime In '1'hia Returned
'1'o Boat Interval '1'o Host

Here I Here
I I I
I I I
I ,, I ,, I ,,

I \
I \

1---1->
A TIMI!: A

Boat Issues
Instruction

VSP Completes
Instruction

Figure 10-3. Host/VSP Coordination Modeling Schemes.

10.7.1 Complete Instructions as Issued

With this option, the host waits for the VSP to finish the instruction currently
being executed. This option will remove any scheduling problems caused by
queues. It is most useful when initially debugging VSP programs and is invoked
by selecting option '2' in Menu M-4-22.

10.7.2 Immediate Return to Host

With this option, the host continues execution of code immediately after issuing a
VSP instruction. The VSP instructions arc executed when some form of the
W AlT statement is reached, or when the active queues become full. This option is
the opposite of the fint method above, "complete instruction as issued" (Section
10.7.1), in that the VSP instructions are delayed as long as possible before they are
executed, and is invoked by selecting option '3' in Menu M-4-22.

10-9

Zoran VSPS Manual Simulating the Entire VSP/Host System

10.7.3 Random Return to Host

This option more accurately simulates the conditions in a real system. The upper
and lower bounds of a uniform random number generator can be set which
determines the number of clock cycles elapsing before the VSP returns to the host.

This option is invoked by selecting option '4' in Menu M-4-22.

10.7.4 User Defined Host

The host controller and the number of bus cycles it requires on the bus in
executing the VSP program are not specified by the VSPS. The particular bus
requirements of the host program can be defined by using the ZRHSTBU
subroutine. This subroutine is called every clock cycle. Its form is

zrhstbu(busav)
int busav;

{
<)'Our model goes here>

}

The variable "busav" has the value 0 if the bus is not available to the host; if the
bus is available, the value of "busav" is 1. A 0 is returned if the user host model
requires the bus; a 1 is returned if it doesn't.

10-10

(,

Zoran VSPS Manual Simulating the Entire VSP!Host System

10.8 System Setup Subroutine

A 'C' subroutine for defining queueing and other system parameters, ZRSETSYS,
is callable from the user program. Most of the options described above can be set
using the menus. ZRSETSYS is used to set them from a VSP program.

10.8.1 General Features of ZRSETSYS

The options of ZRSETSYS allow defining the maximum number of VSPs in the
system, the maximum size of external memory, and the options that control the
software and fetch queues.

With this first set of options, the hardware system can be defined by specifying the
number of VSPs and the size of external memory.

MAXVSPS VAL Specifies the maximum number of VSP devices to
simulate on the same bus; VAL must not exceed eight The default
value is eight

MAXEXTME VAL The maximum size of external memory. The
maximum and default values are 65536.

The next set of options controls how the host and VSP interact. Section 10.6
describes how to do this using the simulator menu structure.

NOQUEUE Do not model any VSP queueing. This is the default option.

QRETCOMP Model the hardware queue and return control to the host
program as soon as an instruction is queued.

QRETIMM Model the hardware queue but do not return control to the
host program until each VSP instruction has completed execution.

QRANMIN VAL Model the hardware queue and return control to the host
program after a random number of clock cycles. The number is
taken from a uniform distribution with the minimum value equal to
VAL. The default for VAL is 0. ·

QRANMAX VAL Model the hardware queue and return control to the
host program after a random number of clock cycles has been
completed. The number is taken from a uniform distribution with
the maximum value equal to VAL. The default for VAL is 1024.

10-11

Zoran VSPS Manual Simulating the Entire VSP!Host System

The last set of options control how the queueing is performed. These parameters
control the selection of the queue models as described in Section 10.6.

SOFTQSZ VAL The maximum number of instructions in the software
queue. H this value is zero then the software queue is not used.
The default value is zero.

SOFTQLIM VAL The threshold for the software queue. An attempt will
be made to move an instruction out of the software queue when this
threshold is reached. The default value is 16.

FETCHQBS VAL The base address in external memory for the fetch
queue. The default address is the top of memory less the number of
VSPs times 256.

FETCHQSZ VAL The size in words of the fetch queue. This space is
divided equally among the number of VSPs specified. The default
value is 256 for each VSP.

FETCHQTH VAL The threshold queue size for transferring an instruction
from the fetch queue to the hardware queue. The default value is
24.

The declaration in the 'C' program for ZRSETSYS is as follows:

zrsetsys(opts)
structops

{ char *zmame;
long val;

};
opts[];

To use ZRSETSYS, an external or static variable should be declared and
initialized as follows:

static struct {char *zmame; long val;} zrrst[] =
{

};

{"maxvsps" ,8},
{"maxestme" ,zrcxmax},
{"qretimm" ,0},
{"softqsz",30},
{"spftqlim",15},
{"fetchqbs" ,zrexmax-4096},
{"fctchqsz", 128},
{"fetchqth" ,8},
{0,0}

10-12

Zoran VSP SM anua/ Simulating the Entire VSP!Host System

Each entry in the structure is the name of the option followed by its value. To set
the options, ZRSETSYS is called with a pointer to the initialized array as a
parameter. For example, with the array above the call would be:

zrsetsys(zrrst);

10.8.2 Setup for Various Queueing Options

To model any queueing, the hardware queue (VSP instruction FIFO) must be
enabled. This is done by setting one of the variables QRETCOMP, QRETIMM,
QRANMIN VAL or QRANMAX VAL. Remember, to enable any of the software
queues described below, the hardware queue must also be enabled.

To initialize the system for the hardware and software queuing described in
Section 10.6.2, ZRSETSYS is called with FETCHQSZ VAL equal to zero, and
SOFTQSZ VAL and SOFTQLIM VAL are set to the desired values.

To enable instruction fetch queueing only, set the SOFTQSZ VAL to zero, and set
FETCHQBS VAL and FETCHQSZ VAL to the desired values.

If the instruction fetch and software queues are to be modeled as described in
Section 10.6.4, initialize the software queue with SOFTQSZ VAL, SOFTQLIM
VAL, and the instruction fetch queue with FETCHQBS VAL and FETCHQSZ
VAL. Set FETCHQTH VAL to the desired length of the fetch queue. All that is
required to enable this queueing method is to set SOFTQSZ VAL to a value other
than zero; if the other values are not set, their default values will be used.

10.9 The ZRCKMSG Subroutine

Like the ZRHSTBU and ZRSETSYS subroutines described in the last section, the
subroutine ZRCKMSG can be called from within the source program. This
subroutine allows resetting the message level of the VSPS during program
execution. Recall that the message level detennines the amount of instruction
printout during execution. It is useful to call this subroutine at critical points in the
program to allow skipping over parts of the program that are not of interest. The
formal declaration in the VSP simulator for ZRCKMSG is:

zrckmsgOevel)
int level;

{
};

The call to the subroutine from the source program is simply:

zrckmsgOevel);

10-13

Zoran VSPS Manual Simulating the Entire VSP!Host System

where level is an integer variable. The level variable sets the message level, which
can be any number from 0 through 3 or 10 through 17 corresponding to the options
available in Menu M-4.

Note that external RAM can be plotted by calling this subroutine with level= 10.

10.10 A Summary of the VSP and Host Coordination

The code for the host and VSP is intended for two or more processors. In general,
VSP instructions are not executed as soon as a VSP instruction occurs in the host
stream. Instead, they are entered in a software or hardware queue for later
execution. At various points in a program it is necessary to insure that certain VSP
instructions have completed execution before host execution can proceed. From a
scheduling standpoint the host and VSPs are in a master-slave relationship. The
host controls all scheduling by not issuing VSP instructions until all necessary data
is available and certain VSP instructions have completed execution.

To coordinate this, execution must be suspended until the VSP has completed
certain instructions. For added flexibility a capability must exist to allow testing
whether a specific instruction has completed without necessarily suspending
execution.

It is important to distinguish between a line of source code that contains a VSP
instruction and an instance of that instruction issued for execution to the VSP. The
same source code line may be issued for execution many times within a program.
In general, it is desirable to WAIT on a particular instance of an instruction. This
may not be the most recently issued instruction. A VSP instruction is issued
whenever the host executes the line of code containing it. It must be possible to
specify the instruction on which to WAIT, as well as which instance of the
instruction - the most recent, or a previous one.

10.10.1 Deferred Instructions

Ordinarily when a VSP instruction is reached in a VSP program it is queued for
execution. There are two exceptions: the first involves instruction blocks, the
second involves deferred instructions. Both subjects are discussed in Chapter IX.
There is a software switch in the run-time interpreter that determines the
disposition of instructions. This switch is normally cleared. It can be set by the
DEFER pseudo-operation and is cleared by the IMMEDIATE pseudo-operation.
When ·it is set, instructions are written to shared host/VSP memory beginning at
the address specified immediately after the DEFER command. These instructions
can be executed later by using an immediate JMPI instruction to branch to their
location in simulated memory. However, the run-time interpreter docs not monitor
deferred instructions. When using DEFER, users can define their own queueing
and generate data to be used in programming ROMs for the VSP.

10-14

\. /

Zoran VSPS Manual Simulating the Entire VSPIHost System

10.10.2 Instruction Labels

To assist with queueing, the VSP language uses instruction labels and the WAIT
and CHECK pseudo-operations. Instruction labels are similar to those found in
'C'. They are stored in a separate table. The same name can be used to label 'C'
statements, but this is not generally good practice. W A1T and CHECK statements
can refer to any labeled instruction. VSP instruction labels must be unique in each
separately compiled program; the VSP parser does not use the 'C' block structure
in limiting the scope of labels.

10.10.3 WAIT Statements

The WAIT statement is used in two ways for a single VSP: WAIT on an
instruction, and WAIT DONE. WAIT All.DONE effects a wait until all VSPs
have completed execution.

WAIT on an Instruction

WAIT label[:expression][@expression];

Any valid variable name may be used for "label". The label and the WAIT
statement must be in the same compiled module. The ":expression" part is
optional; if it is omitted, the WAIT will apply to the most recently issued instance
of the labeled instruction. Otherwise the expression is evaluated each time the
WAIT statement is executed, yielding an integer value N. The WAIT will then be
on the Nth most recently issued instance of the labeled instruction. H N is 0, the
WAIT is on the most recent instance. H fewer then N instances of the instruction
have been issued, no WAIT occurs. This is not flagged as an error. Negative N is
a fatal execution time error. Limitations on queue size restrict values of N to a few
hundred. The"@ expression" part is also optional. It designates the particular
VSP to which the statement applies.

WAIT DONE

WAIT OONE[@ expression];

The optional"@ expression" designates a particular VSP. If this part is omitted,
the statement applies to the default VSP. This statement waits until all instructions
issued to the specified VSP have completed execution. This form of WAIT can be
used with deferred instructions.

WAIT ALL DONE

This statement causes a wait until all instructions to all VSPs have completed
execution.

CHECK and SET

CHECK AIL OONE SET name;
CHECK SET name : expression : expression[@ expression]

10-15

Zoran VSPS Manual Simulating the Entire VSPIHost System

CHECK SET name expression;
CHECK SET name DONE@ expression

The optional "@ expression" part has the same interpretation as in the WAIT
statement. The "name" after SET is the name of an integer variable declared in the
'C' program. The CHECK and SET statement sets the named variable to 1 if the
labeled instruction has completed execution. Otherwise the named variable is set
toO.

10-16

(
APPENDIX A

VSPS INSTAUATION PROCEDURE

The installation procedures for the VSPS are different under all of the three
operating systems supported by the simulator: VMS, UL TRIX and DOS. A
summary of the installation procedures is given for all of the operating systems in
the following sections.

VMS and ULTRIX differ in the way they treat upper case characters. ULTRIX
always distinguishes between upper and lower case. VMS accepts file names and
program names in either upper or lower case and always outputs such names in
upper case. For this reason all VMS examples are shown with names in upper
case. When using VMS, either upper or lower case may be used for entering text.
In contrast, examples under UL TRIX use mostly lower case and the correct case
must be used in entering the names under this operating system.

A.I VSPS Installation Under VMS

A.1.1 General Information

You should select a directory in which the VSP software is to be installed. All the
files needed for executing the VSP simulator should be put in this directory. VMS
accepts file names and program names in either upper or lower case and always
outputs such names in upper case. For this reason we give all VMS examples with
these names in upper case. You may use either upper or lower case in entering
them. In writing your own VSP programs you must link your program with the
VSPS simulator. This can be done in two ways. Either you can create a totally
independent executable module, or you can create a sharable image. The former
approach is more portable between different VMS versions. The sharable image
approach uses less disk space and links much faster. We provide instructions for
both types of installation.

The steps for installing the VSP simulator and language under VMS are as
follows: ·.

A.1.2 Reading the Distribution Tape

1) Define the physical name of the selected directory
to be the logical name 'FFP$1NC'. The VMS command for this is:

2)

$ DEF FFP$INC equivalence_ name

Read the files on the distribution tape to the selected directory. In the
example below, we use MTAO as the tape drive and DUAO:[DA.VSP] as
the directory in which the VSP code is to be installed. These should be
changed as appropriate. The tape is supplied in VMS backup format.

A-1

Zoran VSPS Manual VSPS Installation Procedure

Make sure there is not a write ring in the tape before mounting it on the
drive. The VMS commands to read the tape are:

$ ALLOCATE MT AO:
$MOUNT MTAO:/FORINOWRITE/DEN=1600
$BACKUP /LOG/VERIFY MT AO: DUAO:[DA. VSP]
$DISMOUNT MTAO:
$DEALLOCATE MTAO:

A.1.3 Using the VSP Simulator and Parser to Generate Fully Linked
Executable Images

3) Define the physical name of the simulator and compiler to be executable
VMS programs. The VMS commands for this are as follows:

VSPS :== FFPINC:VSPS.EXE
PARSE :== FFPINC:P ARSE.EXE

4) The 'DEF' in 1 above and the definitions of PARSE and VSPS may be
system wide commands or be included in the LOGIN.COM file for anyone
who will be using the VSP software.

5) A command file TEST.COM and a file READ.ME are contained in the
tape. The file READ.ME contains a copy of these instructions and may
contain additional information. The file TEST.COM serves to validate that
all programs have been correctly installed. To validate the installation
copy TEST.COM to the directory of a VSP user and execute the command
file (@TEST). If all goes well, a file V ALDTE.ERR will be created and it
will end with the following message:

Test(O:l) INSTAll. completed with no errors.

If you do not receive this message then there may have been some error in
the installation procedure. Please go over the above procedure and recheck
everything. If this does not clear up all problems please contact your
ZORAN representative.

6) To use the VSP simulator interactively you need only type: 'VSPS'. Note
that the simulator is set up to use a VTlOO compatible terminal. If you
have a different terminal, you must create a file '1ERMINAL.ID' in the
directory in which you are running. This file should contain the single
character '1 '. In this dumb terminal mode you will retain full VSP
simulator capability but menus will scroll on the screen and the prompt
lines will not be emphasized as they are on VTlOO compatible terminals.

7) The high resolution graphics routines require a DEC VT240 compatible
graphics terminal. If you do not have such a terminal you should not select
this menu option. High resolution graphics under VMS is available in
versions 2.2 and higher. MAKE SURE YOUR TERMINAL PORT IS

A-2

c

Zoran VSPS Manual VSPS Installation Procedure

SET FOR NOWRAP IF YOU ARE USING lilGH RESOLUTION
GRAPlilCS. TIIE COMMAND TO SET nus IS:

SET TERM /NOWRAP

The remaining steps explain how to link your application with the VSP parser.
Command files are provided to do this easily. Before we describe those we will
describe how to do the linking manually. Understanding what the steps are will be
helpful in interpreting error conditions that may arise.

8) Assume you have prepared a VSP program called 'SOURCE.FFP' and you
wish to compile and execute it. (Note: the program suffix must be FFP and
it must contain a 'main' subroutine called 'vspop' .) The procedure is as
follows:

A) Convert your source program to 'C' code using the VSP compiler.
The VMS command for this is:

SPARSE SOURCE.FFP

As a part of the compilation process several files with the prefix
'SOURCE' will be created. These are:

'SOURCE.C' - main output to be processed with 'C' compiler.

'SOURCE.PH' - initialization include file containing VSP
instructions.

'SOURCE.CK' - include file to check size of compile time
initialized fields.

'SOURCE.SUB' - include file containing subroutines generated
from instruction blocks.

If you wish to change any of the VSP compiler options you should include
these in quotes on the line in which you invoke the VSP compiler. In the
following example the options 'CLINE' and 'CCKSIZE' are set (this
clears the options 'LINE' and 'CKSIZE' which are the compiler defaults.

$PARSE SOURCE.FFP "-CCKSIZE" "-CLINE"

B) Next you must compile the above output with the VMS 'C' .
compiler. The command for this is:

SCCSOURCE

Remember to have the statement '#include ''FFP$INC:FFP .H" in the file
'SOURCE.FFP' and to use 'SET DEF' to defme FFP$INC to be the
physical name of the directory for the VSP files. If you have any syntax
errors the line numbers of the errors may refer to either the original file
'SOURCE.FFP' or to any of the generated files containing 'C' code listed

A-3

Zoran VSPS Manual VSPS Installation Procedure

above. In the latter case you may determine which lines in the original file
generated the errors by looking for comments in the file with the error.
Lines in the form:

I* 'SOURCE.FFP':nnn */

give the original file and line number (nnn) which give rise to the code that
follows immediately.

In general errors in the 'C' code included in 'SOURCE.FFP' will be
flagged with reference to that file. Errors in the 'C' code that is generated
by the VSP compiler will be referenced relative to the files output by the
compiler. The compiler should not generate invalid 'C' code but it does
copy arithmetic expressions without parsing them itself and these may
contain syntax errors.

C) The output from the 'C' compiler is a linkable module
'SOURCE.OBJ.' This must now be linked with the remainder of
the emulator code which is in the library: 'FFP$INC:FFP.OLB.'
The main program is not included in the library. Instead, a copy is
provided as'FFP$INC:EMA1N.OBJ.' The commands to create and
executable module that includes 'SOURCE.OBJ' are :

$DEF LNK$LIBRARY SYS$LIBRARY:V AXCR1L.OLB
$LINK SOURCE,FFP$INC:EMAIN,FFPILIB

The first line tells the linker to use the 'C' library files. The name for these
files may change with different VMS versions and/or different simulator
releases. The second line in the command file does the linking. This will
create an executable file 'SOURCE.EXE'.

D) To begin execution type:

$RUNSOURCE

To execute the code you generated in SOURCE.FFP choose option '8' in
the Main Menu and subroutine 'vspop' will be called.

E) Command files are provided to simplify the above process.
However, it is important that you understand what the files are
doing as outlined above so you can interpret any error conditions
that arise. There are two command files. L VSPLINK does a
complete parse, compile and link for one to eight '.FFP' files. It
cannot be used if you want to specify command line options to the
parser. In that case you must do a manual parse and compile.

There is a command, @FFP$INC:INLARGE, to set the VSP definitions. It
can be invoked from the VSP user's LOGIN.COM. However make sure
that FFP$INC is defined before this command file is invoked.

This command file contains the following lines:

A-4

(

Zoran VSPS Manual VSPS Installation Procedure

$ VSPS :== FFPINC:VSPS.EXE
$PARSE :== FFPINC:P ARSE.EXE
$ LVSP :== @FFP$INC:LVSP.COM
$ LVSPLINK :== @FFP$INC:LVSPLINK.COM

The first two lines define VSPS and PARSE. The next two lines define the
command files for parse, compile and link and for link only. After this you
can do a link as follows.

L VSPLINK Fll..El FILE2 ...

Do not include the '.OBJ' suffix on the command line. The executable file
created will be 'FILEl.EXE'. Similarly you can parse, compile and link
up to eight parser input files (with suffix '.FFP') using the command:

LVSPFILEl FILE2 ...

Again do not include the '.FFP' suffix in the command line. The
executable file created will be 'Fll..El.EXE'.

A.1.4 Using Sharable Images Under VMS

When you link your application to the VSP simulator as described above you will
create a large '.EXE' file that includes a copy of all the simulator code. If you
wish to link many separate applications, this can require substantial disk space. In
addition, because you are actually linking the entire simulator, the time to perform
the link is fairly long. These space and time problems can be avoided by· using
sharable images under VMS. mus, IT IS RECOMMENDED TilA T YOU USE
SHARABLE IMAGES WHENEVER POSSIBLE. THERE ARE TWO NOlES
OF CAUTION. YOUR SYSTEM MUST BE INSTALi.ED TO SUPPORT
SHARABLE IMAGES. IF YOU ARE USING A VERSION OF VMS OTHER
THAN THE ONE ON WlllCH THE SIMULATOR RELEASE WAS
PREPARED, PROBLEMS ARE MORE LIKELY TO ARISE WITH
SHARABLE IMAGES THAN WITH SIMPLE LINKING TO A LIBRARY.

A.1.5 Instructions for Installing the Zoran VSP Simulator as a Sharable
Image

9)

10)

Make sure you have completed at least steps 1 and 2 for reading the
distribution tape.

Execute the command file '@FFP$INC:INSHARE'. Note: this command
file should be included in the 'LOGIN.COM' file of anyone using the
simulator regularly. It must occur after the definition of FFPSINC. Its
contents follow.

$ VSPS :== FFPINC:VSPS.EXE
$PARSE :== FFPINC:PARSE.EXE

A-S

Zoran VSPS Manual VSPS Installation Procedure

$ VSP :== @FFP$INC:VSP.COM
$ VSPLINK :==@FFP$INC:VSPLINK.COM
$DEF VSP$SHARE FFP$INC:VSP16SHR.EXE

(NOTE: 1F YOU WISH TO LINK USING BOTH SHARABLE IMAGES
AND FULL LINKS OF COMPLETE EXECUTABLE IMAGES, USE
THE COMMAND FILE: FFP$INC:INBOTH)

After executing this command you can link one to eight '.OBJ' files to the
simulator by entering

VSPLINK FIL.El FILE2 ...

Do not include the '.OBJ' suffix on the command line. The executable file
created will be 'FILE I .EXE'. Similarly you can parse, compile and link
up to eight parser input files (with suffix '.FFP'). Using the command:

VSP FILEl FILE2 ...

Again do not include the '.FFP' suffix in the command line. The
executable file created will be 'FILEl.EXE'.

The definition of 'VSP$SHARE' is necessary to tell the linker where to
access the sharable image to link with your object code.

11) To validate the installation using sharable images copy SHTEST.COM to
the directory of a VSP user and execute the command file (@SHTEST). If
all goes well, a file V AIDTE.ERR will be created and it will end with the
following message:

Tcst(O: 1) SHARE_ INST ALL completed with no errors.

If you do not receive this message then there may have been some error in the
installation procedure. Please go over the above procedure and recheck everything.
If this does not clear up all problems please contact your ZORAN representative.

A.1.6 Summary of Command Files

INBOTH.COM - Set up names for both sharable image and independent module
linking.
Names defined: VSPS, PARSE, VSP, L VSPL, VSPLINK and LVSPLINK

INLARGE.COM - Set up names for linking independent modules.
Names defmed: VSPS, PARSE, LVSP and L VSPLINK

INSHARE.COM - Set up names for sharable image linking.
Names defmed: VSPS, PARSE, VSP and VSPLINK

SHTEST.COM - Sharable image installation test.

A-6

(

Zoran VSPS Manual

TEST.COM - Independent linking installation test.

A.1.7 Summary of VMS Simulator Logical Names

VSPS - Invoke VSP simulator.
Defined to be FFPSINC:VSPS

FFP$INC - Home directory of VSP simulator files.

L VSP - Link one to eight '.OBJ' files to simulator.
Defined to be @FFP$INC:L VSPL

VSPS Installation Procedure

L VSPLINK - Parse compile and link one to eight '.FFP' files.
Defined to be@FFP$INC:LVSPLINK

PARSE - Parse a '.FFP' file generating 'C' code as output.
Defined to be FFP$1NC:P ARSE.EXE

VSP - Link one to eight '.OBJ' files to simulator using sharable images.
Defined to be @FFP$INC:VSPL

VSPLINK - Parse compile and link one to eight • .FFP' files using sharable
images.
Defmed to be @FFP$INC:VSPLINK

A.1.8 VMS Versions for VSP Simulator Version 2.3-5

VMS Operating System: 4.2

'C' Compiler and Libraries: 2.1-007

A-7

Zoran VSPS Manual VSP S Installation Procedure

A.2 VSPS Installation Under UL TRIX

The steps for installing the VSPS and language under UL TRIX are described
below. In all cases it is assumed that you are using the 'C' shell and not the
Bourne shell.

1. Set the shell variable "ffp_home" to the directory containing the VSP files.
The ULTRIX command for this is:

set ffp _ home=physical _name

2. Read the files on the distribution tape to the selected directory. In the
example below we use mtO as the tape drive and /da/vsp as the directory
where the VSP code is to be installed. These should be changed as
appropriate. If a different tape drive is used, include it as part of the tar
key below. See Volume 1 of the UNIX programmers manual under tar(l)
for more details.

The tape is supplied in tar format. The file names arc relative and will be
copied to the directory you arc connected to when you run tar. Make sure
there is no write ring in the tape before mounting it on the drive.

The UL TR.IX commands to read the tape arc:

cd/da/vsp
tar xv ./vsp

3. Define the physical name of the simulator and compiler to be executable
ULTRIX programs. The ULTRIX commands for this are as follows:

alias parse directory name/parse
alias vsps dircctory _name/vsps

4. It is a good idea to include the "set" in 1 above and the aliasing of "parse"
and "vsps" in the ".cshrc" file for all users of the VSP software.

S. A command file "test" and a file "read.me" arc contained in the tape. The
file "read.me" contains a copy of these instructions and may contain
additional information. The file "test" · validates coITCCt program
installation. To validate the installation, copy "test" to the directory of a
VSP user and execute "test". If all goes well, a file "valdte.err" will be
created and it will end with the following message:

Tcst(O: 1) INST Al.L completed with no errors.

If you don't get this message, there may have been an error in the
installation procedure. Go over the above procedure and recheck
everything. If this does not clear up all problems, contact your ZDRAN
representative.

A-8

{

Zoran VSPS Manual VSPS Installation Procedure

6. To use the VSPS, type "VSPS". Note that the VSPS is set up to use a
VTlOO compatible tenninal. If you have a different tenninal, you must
create a ftle 'TERMJNAL.ID' in your directory, with the single character
"l ". Note that in UL TRIX the file name must be all upper case. In this
dumb terminal mode you will have full VSPS capability, but menus will
scroll on the screen instead of flashing, and the prompt lines will not be
emphasized as they arc on VTlOO compatible tenninals.

7. The high resolution graphics routines require a DEC VT240 compatible
terminal. If you do not have such a terminal, do not select this menu
option.

8. Assume you have prepared a VSP program called "source.ffp" and you
want to compile and execute it. Note that the program suffix must be
".ffp.". The procedure follows:

a. Convert your source program to 'C' code using the VSP compiler.
The ULTRIX command for this is:

parse source.ffp

As a part of the compilation process several files with the prefix "source"
will be created. These are:

source.c - main output to be processed with the 'C' compiler
source.ph - initialization include file containing VSP instructions
source.ck - include file to check size of compile time for initialized fields
source.sub - include file containing subroutines generated from instruction

blocks

If you want to change any of the VSP compiler options, include these in
quotes on the line where you invoke the VSP compiler. In the following
example the options "CLINE" and "CCKSIZE" are set; this clears the
options "LINE" and "CKSIZE", the compiler defaults.

parse source.ffp -CCKSIZE -CLINE

b. Next, compile the above output with the ULTRIX 'C' compiler.
The command for this is: ·

cc source.c

Remember to put '#include "clirectory_name/ffp.h"' in the file
"source.ffp", where "directory name" is the directory containing the VSP
files. If there are syntax errors: the line numbers of the errors may refer to
either the original file "source.ffp" or to any of the generated files
containing the 'C' code listed above. In the latter case you may determine
which lines in the original file generated the eITors by looking for
comments in the file with the em>r, in the form:

I* "source.ffp":nnn •1

A-9

Zoran VSPS Manual VSP SI nsrallation Procedure

This gives the original file and line number (nnn) which generated the
code immediately following.

In general, cITors in the 'C' code in "source.ffp" will be flagged with
reference to that file. EITors in the 'C' code generated by . the VSP
compiler will be referenced relative to the files output by the compiler.
The compiler should not generate invalid 'C' code, but it does copy
arithmetic expressions without parsing them and these may contain syntax
mors.

c. The output from the 'C' compiler is a linkable module "source.o".
This must now be linked with the remainder of the Simulator code
in the library, "ffp.a". The ULTRIX command to perform this link
is: ·

n1 -Im source.o dircctory_name/ffp.a -14014-o exe_name

The n1 version of the linker command file must be used because of the
FORTRAN code in "ffp.a". This will create an executable file
"cxe _name".

d. To begin execution, type:

cxe_name

To execute the code you generated in "sourcc.ffp" choose option '8' in the
Main Menu.

A-10

Zoran VSPS Man-ual

(- A.3 VSPS Installation On MS-DOS

CONTENTS

VSPS Installation Procedure

1 TERM.S ...••.•..•............ I •••••••••••••••• • A-12

2 REQUIREMENTS
2.1 Required Hardware•. A-13
2.2 Recommended Hardware••••......... A-13
2.3 Optional Hardware••........... A-13
2.4 The VSP Evaluation Board (VSPE) A-14
2.5 Software Needed to Operate the Simulator A-15
2.6 Software Required to Create User Simulators•.... A-15
2. 7 Software for User Simulators Using FORTRAN A-15

3 INSTAILATION
3.1 Getting Started Quickly•..•...............•... A-16
3.2 VSPS Automatic Installation Requirements • . . • • • A-16
3.3 VSPS Automatic Installation Procedure • . • • • . . • . . . • . A-17
3.4 VSPE Automatic Installation Procedure • . . • A-17

4 CONFIGURATION
4.1 CONFIG.SYS and ANSI.SYS • . . . •• A-19
4.2 TERMINAL.ID, Simulator Display Configuration .••........• A-19
4.3 Microsoft 'C' Compiler ••..•••.••..•....•••......•• A-19
4.4 Microsoft FORTRAN Compiler••........••..... A-19
4.S PLlnk.86 Linker A-19
4.6 Printing Graphic Screens ..•........................ A-20
4.7 AUTOEXEC.BAT and AUTOEXEC.TXT•.••..... A-20

S DIRECTORIES AND FILES
S.1 ... for the Simulator •••••....••..•...•••.•..••.•.•. A-22
S.2 ... for Creating User Simulators .••..•.........••...... .A-23
S.3 ••. for the VSP Evaluation Board (VSPE) ..•.....••.•..•..• A-24

6 TESTS
6.1 VSPS Installation Test ••.••.•.•••••..•..•..••••..• A-25
6.2 User Simulator Creation Test .•.••..•..•.•...•.••.•.. A-25
6.3 VSPE Installation Test ..•.••.•...•..••.••......••• A-26
6.4 User Simulator Test with VSPE Support .••....•.......•.. A-26

7 RUNNING 1lIE SIMULATOR •••..••.•..•...•.•..•..•. .A-27

8 DEVELOPING USER SIMULATORS
8.1 Single User Module ..•.•......•.................. A-28
8.2 Single User Module with VSPE Support••..••.•.•... A-29
8.3 Multiple User Modules •••••.•..•..•..••••.••.••••• A-29
8.4 Multiple User Modules with VSPE Support • • ••••• A-29

9 OffiCKI-IST .A-30

A-11

Zoran VSP SM anual VSPS Installation Procedure

1 TERMS

a) In this section 'DOS' refers to the Microsoft MSDOS operating system, not the IB~
mainframe operating system called DOS. MSDOS is called PCDOS when running on the
IBM personal computer family.

b) 'Computer' means an IBM PC/AT or compatible (see Required Hardware).

c) 'Simulator' and 'VSPS' refer to the VSP Simulator program provided by Zoran.

d) 'User simulator' refers to a simulator created by linking user VSP code.

e) 'simulator' (lower case) usually applies to both the VSPS and user simulators.

f) 'VSPE' refers to Zoran's Vector Signal Processor Evaluation board for the IBM PC/AT and
compatibles.

g) Directories are 'siblings' if they share a common parent. Thus the directories \ZORM'\VM
and \ZORAN\VEXAMPLE are siblings because their parent is \ZORAN.

h) DOS commands and fllenames are CAPITALIZED for emphasis although DOS actually
ignores case. ·

i) When referring to a product, the word 'version' may be abbreviated 'v', or omitted. Examples:
'VSPS v2.35', 'DOS 3.1 '.

A-12

(

c

Zoran VSPS Manual

2 REQUIREMENTS

To install and run the Simulator you need the following:

2.1 Required Hardware

VSPS Installation Procedure

a) An IBM PC/AT computer or close compatible (example: Compaq Deskpro 286). Older PCs
such as the PC/XT have an 8-bit expansion bus and will not accept future Zoran development
boards. Also, the speed of an AT-class machine is needed for linking user simulators in a
reasonable time.

: b) A hard disk with at least two megabytes space available

c) 640K of RAM.

NOTE: the Simulator requires 640K of RAM, less the amount for DOS.
'Resident' software loaded after DOS must not occupy more than about five
Kbytes. The DOS command 'CHKDSK' will tell you how much disk and RAM
space is available. CHKDSK displays a summary which includes the following
lines:

xxxxxxx bytes available on disk - item 'b' above
xxxxxx bytes free -- should be >578000

2.2 Recommended Hardware

For computers other than Compaq:

* Color Graphics Adapter C'CGA") or Enhanced Graphics Adapter C'EGA") (or compatible
boards) and appropriate monitor, on PCs.

The Simulator can use an IBM monochrome adapter (text-only display), but will display only
'character' plots of signals; a color adapter allows 'graphic' plots.

The present Simulator does not use color or the special features of the EGA, so the least-cost
. display for graphic plots would be the CGA and a "composite" green or amber monitor.

2.3 Optional Hardware

* An 80287 math co-processor.

The Simulator automatically uses a math co-processor if one is present. This increases the speed
of floating-point ("real-number") operations.

Zoran VSPS Manual VSPS Installation Procedure

2.4 The VSP Evaluation Board (VSPE)

With Zoran 's Vector Signal Processor Evaluation (VSPE) board, you can test your VSP programs
on an actual VSP as well as via simulation. The VSPE package includes all software for creating
user simulators with VSPE support. This software installs automatically. ·

2.5 Software Required to Operate the Simulator

* MSIPCDOS Operating System, version 3.1. Version 3.2 supports the IBM Convertible and is
not required. Version 3.00 should work, but is not tested by Zoran.

NOTE: The DOS 'VER' command displays the version number.

2.6 Software Required to Create User Simulators:

*Microsoft's 'C' Compiler, version 3.00
*Phoenix Software's Associates 'Plink.86' Object Linker, version 1.47 or 1.48.

NOTE: The current Plink.86 version is 1.48. The VSPS link files will work for
1.47 and 1.48, but we recommend that users of vl.47 contact Phoenix for an
upgrade to 1.48 as support for 1.47 may be dropped in the next release of the
VSPS.

The file OVERLAY .LIB which comes with Plink86 is specific to a given Plink86
version; when upgrading be sure to replace this file.

2. 7 Software for User Simulators Using FORTRAN:

•Microsoft's FORTRAN compiler, version 3.31 or higher.

A-14

Zoran VSPS Manual VSPS Installation Procedure

3 INSTALLATION

The Simulator software is distributed on a set of diskettes. An installation procedure on the first
diskette will automatically copy the Simulator files to the proper directories on the hard disk.

This procedure will:

* expect to find a hard disk drive named C:
* use the DOS 'RESTORE.COM' program (see section 3.2: VSPS Automatic Installation

Requirements, below)
* create a \ZORAN directory on drive C: if no such directory exists
* create several subdirectories under the \ZORAN directory

t * create a \MSF directory on drive C: if no such directory exists

3.1 Getting Started Quickly

To use the Simulator immediately, just complete the following steps:

3.2. VSPS automatic installation requirements

3.3. VSPS automatic installation procedure

4.1. CONFIGURING 1HE PC: CONFIG.SYS and ANSI.SYS

4.2. CONFIGURING 1HE PC: TERMINAL.ID

... then proceed to section 7, "Running the Simulator".

To completely configure the Simulator, proceed to the section "Configuring the PC''. Refer to the
Checklist in section 9.

3.2 VSPS Automatic Installation Requirements

Two conditions must be true for the VSPS automatic installation procedure to work. (These do
not apply to VSP E installation).

Requirements:

1) 'RESTORE.COM' must be on the DOS search path

To see if this is true, enter the command 'PA TH' at the DOS prompt on the hard disk. PA TH will
respond with either:

a) 'No path', or
b) 'PA TH=', followed by a list of directories (the 'path directories')

. For RESTORE.COM to be 'on the path',

* a PA 1H must be in effect (response 'b' above), and
* RESTORE.COM must be on one of the path directories

If both of these are true then RESTORE.COM is 'on the path', so proceed to "2) No resident
programs ... ", below.

A-15

Zoran VSP S Manual VSPS Installation Procedure

Otherwise:

*If no path is set ('a' above), set a temporary path by entering 'PATii \'. Verify that the path has
been set by entering 'PATH' again. This time, PATH should respond

'PATii=\'

* If RESTORE.COM is not on the hard disk, copy it from the DOS SYSTEM diskette to one of
the path directories. (If you just entered 'PATii \',copy it to 'C:\', the root directory of the hard
disk).

* If RESTORE.COM is already on the hard disk, copy it from its present directory to one of the
path directories. (If you just entered 'PA TH \', copy it to 'C:\', the root directory of the hard
disk).

2) No resident programs should be installed
(example: Borland's 'SideKick')

SideKick is one resident program which intelferes with RESTORE.COM. If your
\AUTOEXEC.BAT file installs any resident programs, you should temporarily change your
\AUTOEXEC.BAT file to disable their installation, reboot the PC, install the VSP Simulator,
then undo the changes to \AUTOEXEC.BAT.

3.3 VSPS Automatic Installation Procedure

To install the Simulator files:

*Place release diskette #1 in drive A:

* Type the following command at the DOS prompt:

A:INSTALL

* Follow the instructions displayed by the installation program. Be sure to insert the diskettes in
the proper order.

* When installation is complete, follow any supplemental instructions displayed by the
installation procedure.

3.4 VSPE Automatic Installation Procedure

[Skip this section if you do not have a VSPE board]

To install the VSPE files:

* Place the release diskette in drive A:

* Type the following command at the DOS prompt:

A:INSTALL

A-16

. f
l

(~/

Zoran VSPS Manual VSPS Installation Procedure

* Follow the instructions displayed by the installation program.

* When installation is complete, follow any supplemental instructions displayed by the
installation procedure .

A-17

Zoran VSPS Manual VSPS Installation Procedure

4 CONFIGURING THE PC

4.1 CONFIG.SYS and ANSI.SYS

The file \CONFIG.SYS ('\' means 'on the root directory') should include the following statement
as its first line to ensure correct operation of the Simulator:

DEVICE=ANSI.SYS

For the above statement to work, the file ANSI.SYS must also be on the root directory of the hard
disk. ANSI.SYS is found on the DOS SYSTEM diskette.

Changes to \CONFIG.SYS do not take effect until you reboot your PC (hold down the C1RL and
ALT keys, then press DEL).

4.2 TERMINAL.ID, Simulator Display Configuration File

ff your system does not have a graphics display (e.g. a 'Color Graphics' or 'Enhanced Graphics'
adapter with appropriate monitor), rename the file TERMINAL.IDX on the \ZORAN\VM\
directory to TERMINAL.ID. This disables 'graphic' plotting, which is not possible on a
monochrome text adapter; use 'character' plotting instead.

4.3 Microsoft 'C' Compiler

The Microsoft 'C' Compiler should be installed and be accessible via the DOS search path. In
addition, a 'SET INCLUDE=' command must be issued to tell the compiler where to find
'include' (header) files. Details of both operations appear in the section 'AUTOEXEC.BAT .. .'
below.

4.4 Microsoft FORTRAN Compiler

The automatic installation procedure copies two Microsoft FORTRAN library files to the \MSF
directory, creating the directory if necessary. H you do not wish to create user simulators using
FORTRAN source code, the compiler itself is not required.

H you wish to create user simulators using FORTRAN, the Microsoft FORTRAN compiler
should be installed on the directory listed in the file \ZORAN\ VM\E.LNK (which currently
specifies the \MSF directory).

4.5 PLink86 Linker

The PLink86 linker should be installed and be accessible via the DOS search path. In addition, a
'SET OBJ=' command must be issued to tell PLINK86 where to find its overlay library,
OVERLAY.LIB. Details of both operations appear in the section 'AUTOEXEC.BAT ... ', below.

A-18

(

(-

/

Zoran VSPS Manual VSPS Installation Procedure

4.6 Printing Graphic Screens

The contents of the screen of a PC can be copied to the printer by pressing SHIFf-PrtSc (hold
down SlilFT while pressing the */PrtSc key). This is knows as a 'screen dump'.

However, to obtain screen dumps of graphic screens (rather than text mode) you must:

*have a graphics display (of course);
*have a graphics printer such as an EPSON MX- or FX- series;
* run the MSOOS 'resident' command GRAPIDCS.COM before running the Simulator. This

may be done automatically when your PC is booted via the AUTOEXEC.BA T file (see the
following section).

4.7 AUTOEXEC.BAT and AUTOEXEC.TXT

For the VSPS and its utilities to run from directories other than \ZORAN\ VM, the DOS search
path must be set properly.

Also, for Microsoft 'C' and the PLink86 linker to work, the DOS search path must be set properly
and two SET commands must be issued. The usual place for these things to be done is in the
\AUTOEXEC.BAT file, which is executed when the PC is booted.

NOTE: spaces are significant in the SET command. There should not be a space
before the equal sign('=').

Lastly, a program called GRAPIIlCS must be run to enable graphic screen dumps (see previous
section).

A-19

Zoran VSPS Manual VSPS Installation Procedure

The following 'fragment' of an AUTOEXEC.BA T file, stored as 1,.,- '

\ZORAN\VM\AUTOEXEC.TXT, performs all the required operations. Your hard disk probably
has an existing \AUTOEXEC.BAT file; do not simply replace it with the contents of
AUTOEX.EC.TXT. Instead, use AUTOEXEC.TXT as a guide when changing your
\AUTOEXEC.BAT, with appropriate changes if your directory layout differs. Lines beginning
with ':' are comments.

: AUTOEXEC.TXT: Fragment of\AUTOEXEC.BAT for VSPS
: Last edit 811186 JJC .
: Set DOS prompt to show the search path
PROl\iiPI' pg $a .
: Set DOS search path so DOS can find 'C' compiler
: and PLink86. Assumes 'C' compiler is on \MSC,
: FORTRAN compiler (if installed) is on \MSF, and
: PLINK86.EXE is on \UTILS.
: Edit this string into PA TH command in \AUTOEXEC.BAT
PA TH \UTILS;\ZORAN\ VM;\MSC;\MSF; . .
: Set 'INCLUDE' environment variable so Microsoft 'C'
: can find header files for itself and the VSPS.
SET INCLUDE=\MSC\lNC;\ZORAN\ VM .
: Set the 'OBJ' environment variable so PLink86
: can find the file OVERLA Y.Lm (assumed here to be
: on the \UTILS directory). \ZORAN\VM\E.LNK tells
: where to find other library and object files.
: NOTE: NO SPACES BETWEEN 'OBJ' and '='.
SET OBJ=\UTILS . .
: Install the DOS graphic print-screen facility.
: To be done after all PROl\iiPI', PA TH and SET commands.
: (GRAPIDCS need not be installed on text-only systems)
: GRAPIDCS.COM must be on the root directory or
: on the PATIL
GRAPIDCS

A-20

Zoran VSPS Manual VSPS Installation Procedure

1f 5 DIRECTORIES AND FILES

5.1 Simulator Directories and Files

Directory (directory description)
File =De~sc=n-·p~ti~on=-~~~~~~~~~~~~

\MSF (Microsoft FORTRAN files)
MA TII.LIB Microsoft FORTRAN libraries;
FORTRAN.LIB used to link user simulators

\ZORAN\ VEXAMPLE
EXA.c"\fl'LE 1.FFP
DEFERI.FFP
EXAMPLE2.FFP
EXAMPLE3.FFP
EXAMPLE4.FFP

FORP ACK.FOR
EXAMPLE4.LNK

TEST2.*
TESTVSPE.*

(Examples for creating user simulators)
VSP source code example: Load, FFI', Store
Load, FFI', Store, with DEFER
FFf of cosine, find max freq
Overlapped FFfs (separate RAM sections)
Use FORTRAN subroutines to create
squarewave, print FFr and power spectrum
FORTRAN code for subroutines in EXAMPLE4
"Link file" to link EXAMPLE4.0BJ and
FORP ACK.OBJ into a user simulator
User simulator creation test
User simulator creation test with VSPE
board support; installed with VSPE

\ZORAN\ VM ('VM' = 'VSPS MAIN' directory)
AUTOEXEC.TXT Fragment of\AUTOEXEC.BAT
B.LNK Beginning of user simulator link
CREA TE.BAT Parses, compiles, and links VSP source

CLEANUP.BAT

E.LNK
INST ALLI .BAT
PARSER.EXE

READ ME
TEST!.*

TRAILER
VP.BAT
VC.BAT

VL.BAT

VSPS.EXE
(others)

into a user simulator
Deletes parse, compile, link results;
leaves .FFP and .EXE
End of user simulator link
From installation; can be deleted
(''Parser"); produces 'C' code from VSP
source ('.FFP'). Driven by VP.BAT
(this file)
Installation test
(must run in this directory)
Message from installation; can be deleted
Parses .FFP into .'C' (drives PARSER.EXE)
Compiles . 'C' into .OBJ (drives Microsoft
'C' compiler)
Links .OBJ into a simulator (drives
PLink86 linker)
The VSP Simulator program
Used by installation test

\ZORAN\ VSPUTILS (VSPS helpfiles and miscellaneous)
(several) Used in simulator execution

A-21

Zoran VSPS Manual VSP S Installation Procedure

\ZORAN\ VSPE (VSPE board support files, if installed)
*.OBJ Object files for creating user simulators

*.HEX
INSTALLl.BAT
VSPE B.LNK
VSPE-E.LNK
VSPTEST.EXE
LOADTEST.DAT

with VSPE support
VSP files for board test
From installation; can be deleted
Beginning of link with VSPE support
End of link with VSPE support
Board test (runs only in this directory)
Used by board test

\ZORAN\VUSER (Your source files go here)
NULLFILE Used for installation; can be deleted

NOTE: You can make other VSP user directories, but they must have \ZORAN as
their parent directory. Choose any names other than the directory names listed
above (\ZORAN\VUSER can be renamed).

5.2 Directories and Files for Creating User Simulators

Files Suggested If elsewhere. change

Microsoft 'C' ("MSC') \MSC 'PATII' in \AUTOEXEC.BAT
MSC '.H' files \MSC\INC 'SET INCLUDE' in \AUTOEXEC.BAT
MSC '.LIB' files \MSC\LIB

PLink86 Linker \UTil..S 'PATII' in \AUTOEXEC.BAT
OVERLAY.LIB \UTil..S 'SET OBJ' in \AUTOEXEC.BAT

MATII.LIB \MSF \ZORAN\ VM\E.LNK
FORTRAN.LIB \MSF \ZORAN\ VM\E.LNK

(The rest of the FORTRAN compiler files are only required if you develop VSP applications
using the FORTRAN language.)

Other FORTRAN
compiler files

\MSF 'PA TH' in \AUTOEXEC.BAT

A-22

Zoran VSPS Manual VSPS Installation Procedure

{ 5.3 Filename Extensions

The following DOS filename extensions are used by the VSP Simulator package:

Extension

.BAT

.BIN

.c

.CK

.DAT

.ERR

.EXE

.FFP

.FOR

.GEN

.H

.IEE

.INP

.LER

.LNK

.MAP

.MSG

.OBJ

.PH

.SPS

.SUB

.TST

.TXT

.(none)

Used for

DOS batch (command) file
VSP object code (binary)
'C' source (or Parser output)
Intermediate file produced by Parser
Installation test data
'C' or FOR1RAN compilation error file
MS-DOS executable program
VSP source code
FORTRAN source
Installation test data
'C' header (''#include") file
Installation test data
Installation test input (keystrokes)
Link error file
Link instructions for PLink86 linker
Link map of user simulator
Simulator help files
Object code ('C' or FORTRAN compiler
Intermediate file produced by Parser
Installation test data
Intermediate file produced by Parser
Installation test commands
Text files (human-readable)
Macro files, or installation text files

A-23

Zoran VSPS Manual VSP SI nstallation Procedure

6 TESTS

6.1 VSPS Installation Test

The Installation Test verifies proper installation of the Simulator files. This test is performed
automatically at the end of the automatic installation procedure.

To run this test, go to the \ZORAN\ VM directory and enter:

TESTl

This test takes several minutes to complete. Expect a message with the words "completed with
no errors".

6.2 User Simulator Creation Test

The User Simulator creation test checks that the Parser, Microsoft 'C' Compiler, Microsoft
FORTRAN library files, and the PLink86 Linker are in place.

To run this test, go to the \ZORAN\ VEXAMPLE directory and enter:

CREA TE EXAMPLE!

This creates a user simulator called EXAMPLE! .EXE, which can then be run by entering:

EXAMPLE!

This procedure, CREA TE, is the same one you will use when creating your own User Simulator.

You can test this user simulator via the command:

TEST2

A user simulator takes up substantial space on the disk. When satisfied with the results of
TEST2, enter the following commands to delete EXAMPLEl.EXE and several other files which
were generated by CREA TE:

CLEANUP EXAMPLE!

DEL EXAMPLEl.EXE

A-24

C'

Zoran VSPS Manual VSPS Installation Procedure

6.3 VSPE Installation Test

(This section applies only if you have a VSPE board installed)

The VSPE Installation Test verifies proper operation of the VSPE board. This test is performed
automatically at the end of the automatic installation procedure for the VSPE software.

To run this test, go to the \ZORAN\VSPE directory and enter:

VSP'IEST

This test takes several minutes to complete.

6.4 User Simulator Test with VSPE support

This test checks the operation of the VSPE board with a user simulator, and is similar to the test
described in section 6.2.

On the \ZORAN\ VEXAMPLE directory, create a user simulator with VSPE support from the
VSP source file EXAMPI...El.FFP:

CREA TE EXAMPLE! VSPE

To start the test, enter:

TESTVSPE

A-25

Zoran VSPS Manual VSPS Installation Procedure

7 RUNNINGTHESIMULATOR

To run the Simulator, go to the \ZORAN\ VM directory and enter:

VSPS

You can also run the Simulator or its command files from any sibling directory of \ZORAN\ VM.
(For this to work, the DOS PATII must be set properly. See section 3, "Configuring the PC").

You will typically use the directory \ZORAN\VUSER when developing your own ("user")
simulator from VSP source code. During the Installation Test the Simulator expects the current
directory to be \ZORAN\ VM.

NOTE: The current release of the Simulator cannot be run from any directory
whose parent is not \ZORAN, since it expects certain of its files to be located in
\ZORAN\ VSPUTILS, which is a sibling of \ZORAN\ VM.

A-26

Zoran VSPS Manual VSP S Installation Procedure

f- 8 DEVELOPING USER SIMULATORS

To develop your own VSP code using the simulator facilities, you create a 'user simulator' by
parsing and compiling your code, then linking the resulting object code with the rest of the
simulator. The directory \ZORAN\VUSER is provided for user simulator files, but you may
rename this directory or create one or more sibling directories for your VSP code (e.g.
\ZORAN\MYPROJl, \ZORAN\MYPROJ2, etc).

NOTE: In the present VSPS release, user simulators will not operate on any
directory that is not a sibling of\ZORAN\VSPUm..s.

8.1 Single User Module (Simplest Case)

The simplest way to create a user simulator is by putting all VSP and 'C' source code in a single
module:

a) Write VSP source code, possibly intermixed with 'C' statements, using your favorite text
editor.

This source file must have the '.FFP' extension and must reside on a directory whose parent is
\ZORAN. (Here we use 'EXAMPLEl.FFP', a file found on \ZORAN\VEXAMPLE)

b) Parse the VSP source (e.g. EXAMPLEl.FFP) into a 'C' source file (e.g. EXAMPLEl.C),
using the VP command. Omit the '.FFP' extension:

VP EXAMPLEl

c) Compile the 'C' source code created by the parse operation (e.g. EXAMPLEl.C), using the VC
command. Omit the '.C' extension:

VC EXAMPLEl

d) Link the resulting object code (e.g. EXAMPLEl.OBJ) to create a user simulator (e.g.
EXAMPLEl.EXE). Omit the '.OBJ' extension:

VL EXAMPLEl

As an alternative to 'b' through 'd' you can VP, VC and VL in one operation by entering:

CREATE EXAMPLEl

e) Run your user simulator by entering its name, e.g.:

EXAMPLEl

and invoke the 'vspop' option from the Main Menu to test your application code using the full
power of the VSPS facilities. The 'vspop' function in your .FFP module is the entry point to
your application.

8.2 Single user module with VSPE support

If the VSPE board and support software have been installed, you can include VSPE board support
in your user simulator via the second form of the 'CREA TE' and 'VL' commands,

A-27

Zoran VSPS Manual VSPS Installation Procedure

Following the example of the previous section:

CREATE EXAMPLEl VSPE

or

VL EXAMPLEl VSPE

Run your user simulator by entering its name, e.g.:

EXAMPLE I

The 'VSP Evaluation Board Control' option of the main menu leads to a submenu which enables
you to control the VSPE board and invoke your code ('vspop' function). As before, the 'vspop'
function in your .FFP module is the entry point to your application.

8.3 Multiple User Modules

Creating a user simulator from multiple user modules is similar to the single-module case, with
several additions. Modules can be VSP source (.FFP), °C" (.C), or FORTRAN (.FOR). The files
EXAMPLE4.FFP, FORPACK.FOR, and EXAMPLE4.LNK. on \ZORAN\VEXAMPLE form a
multi-module example.

Follow these steps:

a) Only one .FFP module (here, EXAMPLE4.FFP) provides a 'vspop' function.

b) Parse all .FFP sources, then compile 'C' sources (VC ...) and FORTRAN sources (VF ...) into
object files. In our example we would do the following:

VP EXAMPLE4

VC EXAMPLE4

VF FORPACK.

c) Provide a "link file" -- a short text file which tells the linker how to link your multiple-module
simulator. The link file should:

* have the same name as the file which defines 'vspop',
* have the extension' LNK',
* must consist exclusively of one or more lines of the form:

Fll..E namel name2 name3 ...

where the 'names' are the names of you compiled object modules. Each line is terminated by
carriage-return/linefeed. PLink assumes 'name' means 'name.OBJ', so omit the '.OBJ'
suffix unless you use a different one.

In our example, the link file EXAMPLE4.LNK. contains the following line:

Fll..E example4 forpack

A-28

_

Zoran VSPS Manual VSPS Installation Procedure

1(~ d) Link the user simulator as you would a single user module. For example:
~'

VL EXAMPLE4

Again, we could have performed only the following two steps:

VF FORPACK

CREA TE EXAMPLE4]

CREA TE and VL automatically perform a multiple-module link if they find a .LNK file of the
proper name. The link file is combined with \ZORAN\ VM\B.LNK and
\ZO~~\VM\E.L~, which PLink86 uses to lbtlc the user simulator.

If no link file is found, CREA TE and VL perform a single-module link.

8.4 Multiple user modules with VSPE support

If the VSPE board and support software have been installed, you can include VSPE board support
in your user simulator via the second form of the 'CREATE' and 'VL' commands just as with
single user modules. Following the example of the previous section:

CREATE EXAMPLE4 VSPE

or

VL EXAMPLE4 VSPE

A-29

Zoran VSPS Manual

9 CHECKLIST

a. Requirements (section 2)

* PC/ AT or close compatible, and DOS 3.1
* At least two megabytes available on hard disk
*640KRAM
* No resident programs over SK long

VSP SI nstallation Procedure

b. Getting started quickly (assumes 'Requirements' are met)

* Automatic installation (A:INST ALL) performed:
~ *If graphics display, TERMINAL.ID deleted

from \ZORAN\ VM directory
* CONFIG.SYS includes 'DEVICE=ANSI.SYS'
*ANSI.SYS file is on PC's root directory
*PC has been rebooted so changes to CONFIG.SYS
and AUTOEXEC.BAT take effect

c. For developing user simulators (assumes 'a' and 'b')

* AUTOEXEC.BAT: PATH includes
\ZORAN\VM
Microsoft 'C' directory
PLink86 directory

* Microsoft 'C' compiler installed
* AUTOEXEC.BAT: SET INCLUDE specifies

Microsoft 'C' header (* .H) file directory
\ZORAN\VM

* AUTOEXEC.BAT: SET OBJ specifies
location of PLink86 'OVERLAY.LIB' file

*PC has been rebooted so changes to CONFIG.SYS
and AUTOEXEC.BAT take effect

d.ForFORTRANcompilation(optional)

* Microsoft FORTRAN compiler installed
* AUTOEXEC.BAT: PATH includes

Microsoft FORTRAN directory
* PC has been rebooted so changes to CONFIG.SYS

and AUTOEXEC.BAT take effect

e. For creating user simulators with VSPE support

* VSPE Automatic installation (A:INST ALL) performed:

A-30

()
()
()
()

()

()
()
()
()

()
()
()
()

()
()
()

()

()

()
()

()

(~\

/

(~:

APPENDIXB

SIMULATOR DIFFERENCES BEIWEEN THE VAX AND PC

The versions of the VSP simulator supported on the VAX and the PC are identical
in structure, execution and usage. However, the larger memory address space of
the VAX allows a higher level of functionality in certain areas of simulator
operation than does the version provided on the PC. The differences between the
two simulators are tabularized below:

Specification MS-DOS version VAX versions

VSP program and data l 6K words total 64K words each

Maximum IEEE FFr size lK points BK points

Number of simulated VSPs 2 8

Application Library Not in this release Included

B-1

APPENDIXC

ENOUGH 'C' TO AUOW PROGRAMMING IN FORTRAN

C.1 Overview

The intent of this appendix is to provide a simple overview of the 'C'
programming language. It is not intended to cover the language in its entirety.
However, having read this section, it is likely that the examples provided in the
manual will be more understandable for those not familiar at all with 'C'. For a
more complete treatment of the language, please see reference 4 in Appendix E or
any other suitable 'C' reference manual.

C.2 Declaring Variables in 'C'

When writing subroutines that are to be called from 'C' in another language, it is
necessary to know how variables are declared in 'C'. There are primarily four
variable types with which to be concerned. They are: integers (32-bit twos
complement), short integers (16-bit twos complement), floating-point (32-bit
floating-point) and double-precision floating-point (64-bit floating-point). In
addition, each of the integer types can be declared to be unsigned.

All variables in 'C' must be declared before they are used. The declaration may be
either prior to and external to a subroutine, or just after the bracket "{" in the
subroutine body. In the former case the variables are external and available to all
subroutines, like COMMON variables in Fortran. In the latter case they are
defined only within the body of the subroutine. The end of all statements in 'C'
are delimited with a semicolon.

Declarations of the four variable types are illustrated below.

int a, b, ix;

short int kshort;
unsigned int uns;
float ireal, imag;

double test;

I* Declares three 32-bit integer variables with names a,
band ix *I

I* Declares a single 16-bit integer named kshort *I
I* Declares a 32-bit unsigned integer named uns *I
I* Declares two single-precision floating-point values

named irea/ and imag *I
I* Declares a double precision value named test *I

C.3 Declaring Arrays in 'C'

Within the VSPS, host memory is modeled as an array of 16-bit integers. The real
and imaginary parts are stored in even and odd addresses, respectively. Data may
be read from, and written to, this array in order to provide input and output from
the simulated VSP. (Technically it is not an array, but part of a structure and is
accessed by a pointer to a structure. However, by including the define for
EXTRAM as discussed in Chapter, IX it can be accessed as an array.)

C-1

(~

Zoran VSPS Manual Enough 'C' to Allow Programming in Fonran

'C' denotes array subscripts using square brackets "[]". For multi-dimensional
arrays, a series of square brackets is used. Arrays are declared similarly to
variables as shown below.

int ary[20];
short int sary[l0][15];

I* This declares an array named ary of 20 integers*/
I* This declares a two-dimensional array named sary of

150 elements*/

In 'C', all array subscripts begin at 0. The elements in ary as declared above are:
ary[O], ary[l], ... , ary[19].

C.4 DO Loops and Assignment Statements in 'C'

This section will describe how to set up simple loops and assignment statements in
'C'.

The basic form of a loop in 'C' is illustrated below:

for (i=l; i<=lOO; i=i+l)
{

/*body of loop* I
}

This is equivalent to the FORTRAN commands:

DO 50 l=l,100,l
C BODY OF LOOP

SO CONTINUE

The "i= 1" and "i=i+ l" parts of the "for" statement can be any valid 'C' statement.
The statement "i=i+ 1" can be abbreviated as "i++", which indicates that "i" should
be post-incremented (after it is used). The scope of the loop in 'C' is delimited
with braces "{}" rather than with statement label numbers. The characters "<="
denote the relationship less than or equal to. The following table gives the 'C'
equivalent for various FORTRAN relational operators:

FORTRAN 'C'

LT. < less than
.GT. > greater than
LE. <= less than or equal to
.GE. >= greater than or equal to
.EQ. -- logical equality (be sure to use

a double equal sign; a single equal
sign has a different meaning in 'C'

.NE. != not equal

.AND. && logical AND (warning as above)

.OR. II logical OR (warning as above)

.NOT. ! logical negation

C-2

Zoran VSPS Manual Enough 'C' to Allow Programming in Fortran

'C' allows the nesting of loops, as shown below:

for (i=l; i<lOI; i++)
{for (j=3;j<17;j=j+2)

{

I* body ofloop*/

}/*end loop onj*/
}/*end loop on i*/

This is equivalent to the FORTRAN code below.

DO 101=1,100
DO 201=3,16,2

C BODY OF LOOP

20 CONTINUE
10 CONTINUE

A number of examples of 'C' assignment statements have been shown here as well
as the examples in Chapter IX. The equal sign "=" is used to equate a variable
with a value or result of an arithmetic operation. In this respect, 'C' maintains
compatibility with Fortran.

There is a difference between 'C' and Fortran in the use of statements. In 'C',
statements are separated with semicolons. It is perfectly acceptable to put multiple
statements on a single line if they are separated by a semicolon. In Fortran,
statements are separated by lines; it is not possible to have multiple statements on
a given line. This construct is illustrated by referring to the."for" statement in the
'C' example above. Notice that the "for" statement is really composed of three
assignment statements.

A number of differences exist between 'C' and Fortran expressions. One general
difference is that all logical expressions using the operators in the previous table
can be included in arithmetic expressions in 'C' because they are treated as
integers. The value of a logical expression is integer 1 if the expression is true;
otherwise it is 0. Similarly, arithmetic expressions can be used as logical
expressions with 0 denoting false and any non-zero value being true. The
arithmetic operators are the same in both languages.

C-3

APPENDIXD

FORMAL VSP PROGRAMMING LANGUAGE SPECIFICATION

D.1 Overview

Chapters IX and X in the manual present a solid foundation for the formal
specification of the VSP programming language which is included in this
appendix. The VSPS also has a "batch verification" mode which is useful for
performing automated tests. Batch verification is covered in this appendix.

D.2 VSP Language Syntax

The VSP language is specified in a Backus-Naur Fonn (BNF) type of notation.
This notation uses symbols as a shorthand way of describing the language
construction:

Symbol Meaning

"symbol"

indicates end of a statement
read literally as "is defined as"
read literally as "or"
used to tie words together - indicates
a string of contiguous letters
used to define a symbol that is part of
the syntax of a command

If you work with yacc on the UNIX system, you will recognize this as the same
notation.

D.3 VSP Program

program: program _part PRGEND;

program _part:
program _part ffp _statementl
program_part VSPEND VSPBEGI
program_part VSPEND STRTEX VSPBEGI
program_part VSPEND STRTEXI
program _part VSPENDI
marker VSPBEG ;

VSPBEG and VSPEND are the delimiters "/#"and "#f' respectively. Everything
outside of these is ignored by the VSP language, and written unchanged to the
output file by the parser. PRGEND is the marker"##" that must always be at the
end of the program.

D-1

Zoran VSPS Manual Formal VSP Programming Language Specification

D.4 VSP Program Markers

marker: ENDDEC I STRTEX I ENDDEC STRTEX I error I ;

The markers show the VSPS parser where the external declarations end in the 'C'
source, and where the executable statements begin. The former is always required.
The latter is necessary only if you have requested run time checks on the size of
the instruction parameters.

ENDDEC is the marker "l#D#f' where external declarations end. At this point,
write an #include statement to load the predefined array of partially built VSP
instructions.

STRTEX is the marker "/#E#f' where executable code starts. At this point a
subroutine is called to check the size of parameters defmed at load time (not at
VSP parse time).

The token "error" occurring in the syntax is to allow the parser to recover from
syntax errors. If no correct input is found, the token "error" can match any
sequence of inputs.

D.5 VSP St.atements

ffp_instruction: label"::" ulffp_instruction lulffp_instruction;

ffp _statement: ffp _instruction I instruction_ set;

ulffp instruction: cit list"@" expression";" I
- clt_list ";" I -

pseudo op";" I
error ";" I
"·" . • •

The VSP language has three types of statements: VSP instructions, pseudo
opcrations (commands to the compiler and run time interpreter), and instruction
blocks. With the latter you can load instruction parameters efficiently outside of
loops. Instructions can be labeled so you can WAIT until a specified instruction
has executed. In a multi-VSP system, instructions can be sent to a designated VSP
by following the instruction with"@ expression". The expression is evaluated to
determine the VSP number.

D.5.1 VSP Instructions

elt_ list:elt_ list "," name_ cit I
iname name_clt I iname;

name cit: tname ":"expression!
tname"=" expression;

))..2

(

(

Zoran VSPS Manual Formal VSP Programming Language Specification

The format of VSP instructions is the same as it is in the interactive mode. For
example:

FFf mvIBT : 64, RS=O, ADF=3, AS=O, R:O, FSIZ:64, El=O, FPS:32,
LPS:l, 1:0, RBA:O;

Parameters can be set with LITERAL values or LOGICAL values. The
designators show whether a parameter value is logical ":" or literal "=". Literal
values are the exact value of the expression. Logical parameters use a more
natural representation of the value for some parameters. You are given the
translation of logical to literal values with the description of the instructions and
in the instruction tutorial in the VSPS.

D.5.2 Pseudo-Operations

Pseudo-operations are commands to the VSP parser. They give the parser
information (STATIC and DEFAULT), control VSP/host coordination (WAIT)
and the disposition of VSP instructions (DEFER and IMMEDIATE), or control
compiler options (OPTION). The formal syntax of the VSP pseudo-operations are
presented below.

pseudo_op: STATIC sname_list I DEFAULT xelt_listl
WAIT wait tail I DEFER expression I IMMEDIA TEI

OPTION option_ list;

option_list: option_list "," set_option I set_ option;

set_ option: oname "="expression I oname;

sname_list: sname_list "," sname I sname;

xelt : xtname ":" PNUMBER I xtname "=" PNUMBER;

xelt list : xelt list "," xelt I xelt I
- xelt_list error"," xelt;

xtname : iname "." tname I tname;

wait_ tail : DONE I wlabel "@" expression I wlabel;

wlabel:wname" :"expression! wname;

STATIC. This informs the compiler that certain variables are defined at compile
or load time, and can be initialized. If a parameter is set to an expression with a
variable not static, that parameter will be initialized at execution time.

DEFAULT. This gives the compiler default values for instruction parameters.
You can set a default value for every occUITCnce of a parameter, or set it for a

D-3

Zoran VSPS Manual Formal VSP Programming Language Specification

specific instruction. DEFAULT NMPT=S; will set the value of NMPT in every
instruction using this parameter. DEFAULT LD.NMPT=5; will set the default
value of NMPT only in the LD instruction. You can set the values of parameters
with either literal values, using"=", or logical values, using":".

WAIT. This causes 'C' code execution to be suspended until the specified VSP
instruction is completed. DONE suspends execution until all issued VSP
instructions have been executed. Specifying a label effects a WAIT for the labeled
instruction to terminate. Following a label with a ":" and an expression with the
value N suspends execution until the Nth instance of the labeled instruction has
been executed. For example: WAIT STINS:4 @2; will effect a WAIT in VSP 2
until the instruction labeled STINS has been executed four times.

DEFER and IMMEDIATE. These are low-level operations for use with the
JMPI instruction. DEFER causes subsequent instructions to be written to VSP
external memory at the address specified in the "expression". IMMEDIATE turns
off DEFER and causes subsequent instructions to be executed immediately.

Instructions which have been DEFERred cannot be controlled by the WAIT
statement. If you use the DEFER and IMMEDIATE options you must handle
coordination between the VSP and host directly, or rely on the "WAIT DONE;"
statement.

When this program is executed, all VSP code except the JMPI instruction will be
written to external memory. JMPI will then be executed and will start execution of
the code in external memory. Execution from memory will cease when fil T is
executed.

OPTION. This statement sets compiler options. SET and CLEAR (non VALUE)
options can also be set at compile time, as explained above in the section on
Executing the VSP Compiler. The compiler options are all shown in section 9.8.3.

D.S.3 Instruction Blocks

The syntax for instruction blocks is similar to that for 'C' subroutines. You can
use VSPEND and VSPBEG inside instruction blocks; 'C' code placed between
them is included in the subroutine created for the block. Each instruction block
defines a 'C' subroutine of the same name and with the same set of parameters (all
of type "int") as the instruction block name and parameters. A formal description
of the instruction block language is given below.

instruction_ set:instruction _set_ head instruction_ block;

instruction_set_head:build_begin"("parameter_list")";

build_ begin:BUIID bname;

parameter _list:parameter _list" ,"parm _ name!parm _namel;

instruction_ block:" {"instruction _list"}";

D-4

'"---

(~

Zoran VSP SM anual Formal VSP Programming Language Specification

instruction_ list:instruction _list ffp instruction I
instruction_list VSPSND VSPBEG I ffp_instruction I

VSPSND VSPBEG ;

Code for an instruction block is emitted at two distinct places. The first is within
the subroutine, and the second is at the point in the calling program where the
block is defined. The subroutine definition is written to a separate file to be read
with "#include" where the "/#D#f' marker occurs. All fields that do not contain
parameters for the block will be filled in when the block definition is executed.
The remaining parameters will be filled in when the 'C' subroutine with the same
name as the block is called.

An example of the use of the instruction block is given in section 9.8.6.

D.6 VSP Expressions and Names

expression: expression P AREXP I expression.name I
PNUMBER I PAREXP I ename;

iname:ename:tname: wname: sname:
label: oname: parm_name: bname: NAME;

VSP expressions are not parsed by the VSP compiler. You may get a syntax error
in the 'C' compiler from expression code copied by the parser. To trace this to
your original source code, check the line number in the VSP source code
comment.

The VSP language contains many different tokens for NAME. This allows
executing different semantic actions based on context. All names begin with an
alphabetic character. Following characters may be alphabetic, numeric or the
underscore character "_". Upper and lower case characters are different. Name
length should not exceed 20 characters.

D-5

Zoran VSPS Manual Formal VSP Programming Language Specification

D.7 Running The VSPS in Batch Verification Mode

You can run your program in a background mode, where the VSPS uses command
files and can generate or check results for a program run .. Select Main Menu
option M·9. This mode allows large test cases or batch jobs to be built up in
macro fashion from a series of files. After you select M-9, you are prompted to
enter the name of the file containing the commands. The commands are described
in detail below.

When the VSPS is run in this mode, it creates a file named V ALDTE.ERR which
lists the results of the tests. It will list the errors from the COMP AR command
listed below, or will tell you that there were no comparison errors.

D.7.1 Batch Verification Mode Commands

Commands in this first set control execution and output format.

NAME name - sets name of test. When the command is executed, all notes
in V AIDTE.ERR will use "name" to identify output from this
particular test. This command can be executed many times in one
file.

BRANCH filename - tells the VSPS to branch to a new ftle and begin
executing commands there. The VSPS returns to the original file
when the BRANCHED file has completed execution.

VISIBLE - shows dialogue between the VSPS and file input.

INVISmLE - disables VISIBLE if command was given.

MSGLEV LEVEL - sets message level. The variable "level" (declared int)
is set to a number representing a pattern in the four least significant
bits. The action of the bits is:

Bit Action

0 (lsb) Enable requests for input
1 Turn on all output for instructions as executed
2 List instructions as executed
3 Enable display of timing information

For example, the command "MSGLEV 2" will activate printout just as will option
'2' on Menu M-4 in the interactive mode.

SEED seed - sets the random number generator seed.

MOVE basel base2 size - moves data of length size in external RAM
location basel to external RAM location base2.

D-6

/

Zoran VSPS Manual Formal VSP Programming Language Specification

SPS DES FILE - the VSPS executes the simulator signal processing
opoon from DES FILE. This is the same as calling Menu M-5,
only now the VSPS obtains the algorithm and its parameters from
DES_FILE instead of interactively.

IEEE DES FILE - the VSPS executes its IEEE signal processing options
on DES FILE. This is the same sort of comm.and as SPS above,
and is the same as calling Menu M-6. DES_Fll..E contains the
commands you would enter interactively.

APP DES FILE - the VSPS executes its applications library from
DES Fn..E. The procedure is the same as that for SPS above, but it
is called from Menu M-7, and DES_Fil.E contains the command
sequence.

FFPOP - tells the VSPS to execute the code in ffpop. Your program
should not contain any prompts to the user. If you have to pick up
parameters in your program, open a file just as you would in 'C',
and get the parameters from this file.

The commands in this next set control the VSPS software operating system.

QOPT n - sets the VSP/host coordination type. Exactly like setting options
1,3,4 and 7 in Menu M-4-21, except that n ranges from 0 to 3 (0
represents option 1, 1 represents option 3, 2 represents option 4,
and 31'Cpresents option 7).

AfLQ - tells the VSPS to model all fetch software and hardware queues.
- This command docs the same thing as option 9 in Menu M-4-11.

HWQO - tells the VSPS to model only the hardware queue. This
command is the same as option 2 in Menu M-4-22, except that only
the hardware queue is enabled. If you want to change the VSP/host
interaction model from this default, use QOPT.

EXDMEM - causes the VSPS to do an instruction fetch from the program
memory addressed by the freeze pin of the VSP. This option
moves the fetch queue of the VSPS software operating system into
program memory. and enables you to access program memory if
you do your own instruction fetching (using the DEFER pseudo
operation).

SHRMEM - causes the VSP to do instruction fetch from external RAM.

The commands in this last set control the testing functions.

CREA TE - makes the VSPS run a test creating input and output files for
future validation. It puts the VSPS into a mode which affects the
operation of several commands until it is disabled using TEST or
the particular run terminates. '

D-7

Zoran VSPS Manual Formal VSP Programming Language Specification

TEST- disables CREATE mode.

DATA DES FILE DAT_ FILE base size - used to generate signals.
DES_'PILE contains a description of the input data, answering the
same prompts as the signal generator in the interactive mode. You
need not save this data file; it is created automatically when the
VSPS is run in this mode. DAT FILE is the name of the file where
the data is saved. Note that i>ES _ Fll..E will be read only if
DAT FILE does not exist or if CREA TE is set. "base" is the
address to write data (also in DES FU). "size" is the number of
16-bit words (must be<= size in D£S_FlLE).

SKIP - disables signal generation by the VSPS if it is in CREA TE mode
and the DAT_FILE already exists.

NOSKIP - forces signal generation by the VSPS if it is in CREA TE mode,
even if a copy of the file being created already exists.

COMPAR DAT_FlLE basel size - compares data located at address
"basel" in VSP external ram with DAT FILE. If the VSPS is in
CREATE mode, COMPAR creates a fife named DAT FILE, by
writing "size" words of the VSP external RAM starting from
address "basel''.

MCOMP AR basel base2 size max_ err - compares data located at address
"basel" in VSP external RAM with data located at address "base2"
in VSP external RAM. This is done for "size" comparisons. An
error is reported if the maximum difference exceeds max _err.

WRTCMP - puts the VSPS in a mode to write the VSP external RAM to a
file when a COMP AR is executed. The format of the file is the
same as that for COMP AR in CREA TE mode. The name of this
file is formed by appending "er#" to the prefix of the name in
COMPAR. "#"is the QOPT number (0, 1, 2 or 3) if you have only
hardware queueing enabled; or B, C or D if you have ALLQ
enabled and QOPT set to 1, 2 or 3. For example, if DAT_FJLE in
the COMP AR command was "test.cmp", and you had executed a
WRTCMP previous to this command, with ALLQ and QOPT 3,
you would get "test.crD" as the output file.

SKIPCMP-disables WRTCMP mode.

COUNTERR - causes the VSPS to count errors but not list them in the
V ALDTE.ERR file.

USTERR- causes the VSPS to list errors, and give a total error count in
the V ALDTE.ERR file.

TIME TIM FILE - causes the VSPS to check the execution time since the
last leset of the clock, or since the VSPS was started against the

D-8

\.

' I
\ ... ··

Zoran VSPS Manual Formal VSP Programming LAnguage Specification

contents of TIM FILE. The clock is reset after the comparison is
finished. In cREA TE mode, the VSPS creates a file which
contains these numbers. There are three numbers: the first is the
number of clock ticks since reset, the second is the number of
instructions executed, and the third is the number of clock ticks that
the bus was in use.

QTIME QTIM _FILE - does the same as TIME except that the file name
has the queue option symbol appended to its prefix. This symbol is
the same as the "#" described for WRTCMP. For example: if
QTIM _FIL is given as "test.rim", and the VSPS is running with
QOPT 1 and HWQO, the time file generated would be "testl.tim".
H the VSPS is running with QOPT 2 and ALLQ it would be
"testC. tim".

CRETIM - puts the VSPS in a mode to create only new time files, not new
data files.

CKTIM-disables CRETIM mode.

D.7.2 Validation Example

To validate an algorithm with the VSPS, you must first generate the code you want
to check by compiling a new version of the VSPS, as described in Chapter IX.
This example uses the program first described in Section 9.2. H you follow the
steps in Chapter IX, you will end up with your private copy of the VSPS
containing that program. Here are the batch verification mode command files.

file 1 : "batch I .mac"

MSGLEV2
VISIBLE
CREATE
NAMEcreateit
BRANCHbatch2.mac
TEST
NAMEtestit
BRANCHbatch2.mac

file2:"batch2.mac"

FFPOP
COMP ARbtest.cmp0256
TIMEbtesttim

Next, run this copy of the VSPS, and select option M-9. When it prompts you for
a file, type in <batchl.mac>, and the VSPS will pick up the first file. Assuming
you have compiled a new version of the VSPS with the simple example in FFPOP,
this will run a batch job which first generates test data, then runs the program

D-9

Zoran VSPS Manual Formal VSP Programming language Specification

again to check the results. Ordinarily you would not use the create and test modes
on the same data in the same run; they are shown here for illustration only.

D-10

(

Zoran VSP SM anual Formal VSP Programming Language Specification

D.8 The ZRCKMSG Subroutine

Like the ZRHSTBU and ZRSETSYS subroutines described in the Chapter IX, the
subroutine ZRCKMSG can be called from within your program. This subroutine
enables you to reset the message level of the VSPS. Recall that the message level
determines the amount of instruction printout during execution. It is useful to call
this subroutine at critical points in the program so that you can skip over those
parts of the program you are not interested in. The declaration in the VSPS for
ZRCKMSG is:

zrckmsgOevel)
intlevel;

{
};

The call to the subroutine from your program is

zrckmsg(level);

where level is an int variable. The level variable sets the message level, which can
be any number from 0 through 3 or 10 through 17. This call will activate the
corresponding option in Menu M-4.

Note that you can plot external RAM by calling this subroutine with level= 10.

D-11

(~

APPENDIXE

REFERENCES

1. Brigham, E. Oran. The Fast Fourier Transform, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1974.

2. Oppenheim, A.V. and Schafer, R.W. Digital Si&nal Processing, Prentice
Hall, Inc., Englewood Cliffs, NJ, 1975.

3. Rabiner, L.R. and Gold, Bernard. Theory and Application of Digital
Si&nal Processing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

4. Kernighan, Brian W., and Ritchie, Dennis M., The C Programming
Language, Prentice-Hall, Inc, Englewood Cliffs, NJ, 1978.

E-1

(

APPENDIXF

GWSSARY

ALU Arithmetic and logic unit. That part of a computer processor performing
arithmetic, logical, and related operations.

binary Pertaining to a selection or condition that has two possible values or states.
Pertaining to a number system with a base of two.

bit Binary digit. A 1 or a 0 in binary arithmetic. A unit of data in the binary
numbering system.

buff er An assigned block of memory for temporarily holding data.

bus A set of conductors for transmitting signals or power.

butterfly An element of the computation of a Fourier transform in which two data
elements are transformed by complex multiplication and addition into two new
data elements in a different domain.

byte A fixed number of consecutive binary digits, (usually eight) operated on as a unit.

clock cycle one pulse of the output of a device that generates periodic signals for
timing and synchronization. In this manual a clock cycle is 100 nanoseconds.

C A high-level computer programming language characterized by economy of
expression, modem control flow and data structures, and a rich set of operators.

/
/

DIP Dual in-line/package.
/

DSP DigiWsignal processing.
/

envirognient The setting, consisting of the computer and the operating system, in which
/a software program operates.

external In this manual, external means outside the VSP or VSPS.

FFf Fast Fourier transform.

F-1

Zoran VSPS Manual Glossary

high-level language A program.ming language that is problem-oriented rather than
machine-oriented.

host The main computer system in which a VSP system is installed, or in which the
VSPSruns.

IDFr Inverse discrete Fourier transform.

IFFT Inverse fast Fourier transform.

interrupt A hardware or software device that can suspend a process when triggered
by an outside event, and does this in such a way that the process can be resumed.

LSB Least significant bit.

MSB Most significant bit.

nibble A group of four consecutive binary digits, usually half a byte, forming a usable
data element

parameter As applied to a VSP instruction: a named element of the instruction to
which values are assigned that direct and control the execution of the instruction.

preprocessor A program that translates preliminary setup code, pseudo-operation code,
or other special instructions into a form for compilation by the principal compiler.

RAM Random access memory. Computer memory which can be read or written to
directly by specifying an address.

reset To cause a counter, flag or value to revert to an initial state or value. The reverse
of "set".

ROM Read only memory. Computer memory with fixed information that can be read
but not changed.

set To cause a counter, flag or value to take a specified state or value.

ULTRIX The Digital Equipment Corporation proprietary version of UNIX.

UNIX A widely used proprietary operating system originally created at AT&T Bell
Laboratories.

VAX The proprietary name for a series of minicomputers manufactured by Digital
Equipment Corporation.

VDT Video display terminal.

VMS A proprietary operating system of Digital Equipment Corporation.

VSP Vector Signal Processor. The proprietary name of a product of Zoran Corporation.

VTlOOThe proprietary name of a widely used video display terminal of Digital
Equipment Corporation.

F-2

Zoran VSPS Manual Glossary

VT240The proprietary name of a video display terminal of Digital Equipment
Corporation with advanced graphics capability.

word A character-string or bit-string that it is convenient for some purpose to consider
as an entity. On the VAX and in the VSPS software, a word is two 8-bit bytes, or
16 bits.

F-3

ADDENDUM

VSP161 SIMULATOR PLUS EVALUATION BOARD DRIVER (VSPE)

INDEX

1. Introciuction . 1
2. Using the VSP161 Simulator•••.•.............. l
3. Using the VSP161 Evaluation Board 2

3.1 VSP161 Speed and Memory Mapped Reads 3
3.2 Determining if VSP161 Is Halted•............ 3
3.3 ~IA TE. Execution . 4
3.4 Executing DEFERred Instructions • • • 5
3.5 Instruction Queueing Not Supported • . . •5
3.6 Message 1.,evels 6
3.7 Macro Command-Language•..•............ 7

4. Switching Between the Evaluation Board and the VSP Simulator . . . • . . . • . 7
S. Menu Descriptions 8

5.1 Evaluation Board Driver Display Options (M-8) ••.......••.•. 8
5.2 Debugging Commands (M-8-19) • . • •8

-~-- ./

(

Zoran VSPS Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

ADDENDUM

1. Introduction

The VSP Simulator with the addition of the board driver interface can perf onn
virtually all of its operations directly on the VSP Evaluation Board. This includes
signal and data generation, external memory plotting and listing, execution of
programs in the signal processing library and execution of user programs.

This supplement assumes that you are thoroughly familiar with the VSPS. The
Evaluation Board Driver consists of additional files that are linked with the VSPS
to support execution of VSP161 programs on either the Simulator or the
Evaluation Board. You can switch back and forth between these two modes of
execution. As you switch physically, different memory is used to model the
external memory of the VSP161 Systems Processor. All simulator functions,
library programs and user programs will be changed to point to either of these two
separate memory regions. In contrast, internal VSP memory and registers are
treated differently in each of the two. Separate commands and menu items are
available to access the internal memory and registers of the simulated and actual
VSP161 Systems Processor. The Instruction Tutorial always runs on the VSP161
Simulator.

2. Using the VSP161 Simulator

In default mode, the VSPE begins execution of programs on the simulator. All
items in the menus are the same as they are in the standard simulator, with the
exception of option '8' in the Main Menu. Instead of allowing execution of user
programs, as in the VSPS, this option now invokes a new menu for controlling the
Evaluation Board. A user program can be invoked by selecting option '16' in this
new menu (Menu M-8). Options 11 and 12 in Menu M-8 allow the user to choose
execution on either the Evaluation Board or the Simulator.

All of the standard macro commands are available on the Evaluation Board and
function as they do in the VSP161 Simulator. In addition, there are a number of
new commands that are tied directly to board execution and should NOT be used
unless the VSPE is set to run on the Evaluation Board.

Commands that can be used in either simulation mode or evaluation board mode
are:

disasm -disassemble instructions in memory

DOS -temporarily return to DOS

AD-3

Zoran VSPS Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

MBF -fill memory region with specified constant

Mdisp -provide a condensed HEX dump

l\.flF -interactively fill memory

Note that the macro command-language accepts upper or lower case letters. It
also allows abbreviation of the commands the the shortest unambiguous name.
See Chapter VII of this manual for general information on the macro command
language and the User's Manual VSP Debugger Software for additional
information on macros not included in the VSPS.

3. Using the VSP161 Evaluation Board

To use the VSPE with the Evaluation Board, select option '11' in Menu M-8. This
will cause two changes in the internal VSPE state. First, all accesses to VSP
memory will be changed to point to the evaluation board memory. (The only
exceptions are commands to move data between the two memories. Such
commands will work correctly regardless of which mode VSPE is set to.) The
second change is that all VSP instruction execution will be directed to the VSP
Evaluation Board. The only exception is the Instruction Tutorial, which always
runs on the Simulator.

The second line in the Evaluation Board Display Options Menu (M-8) indicates if
VSPE is set to run with the board or with the Simulator.

A possible source of confusion is the different way that internal and external
memory are treated when you switch to the Evaluation Board. Commands that
access external memory will all use board memory. Commands that access
internal memory will not be changed. Only menu options in menus M-8 and M-8-
19 access internal memory and registers on the VSPE board. All other commands
and menus ALWAYS access the simulated internal registers and memory.

3.1 VSP161 Speed and Memory Mapped Reads

The VSPE evaluation board mode contains two submodes which are dependent on
the way in which the board is configured. H you have a 15.MHz crystal, then
memory mapped reads must not be used to interrogate any of the VSP161
registers. Doing so will cause program failure!

The one exception to this is the status register. Memory mapped reads may be
used to clear the interrupt bits in this register. H you are using a 10.MHz crystal,
the memory mapped reads are fully supported and can be used. (This limitation of
the VSP161 will be removed in the C stepping.) The VSPE automatically
measures the speed of the board you are using and sets the memory mapped flag
accordingly. To ensure that this test runs correctly, do not type ahead when
starting execution of VSPE--wait until it prompts for input. The third line of
Menu M-8 indicates if memory mapped reads are used when the VSPE is set to
run on the evaluation board.

AD-4

Zoran VSPS Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

The implication of not having memory mapped reads is that it is not possible to
determine any internal state information unless the VSP is halted. In particular, it
is not possible to read the fetch address unless the VSP is halted. Because of this,
there are only two reliable methods for insuring that a VSP program has halted
when executing in this mode. You may either wait long enough to be certain that
the program has halted (time out) or you must disable all interrupts by setting the
VSP161 mode register appropriately and by setting the EI bit in the last instruction
of the program (the EI bit is not maskable). Because of the VSP161 instruction
overlap capability, special precautions must be taken if the mode register is set for
two RAM sections. In this case, the last two instructions in the program should be
NOPs with the RS fields set to 0 and 1, respectively. The last NOP should have
the EI bit set.

3.2 Determining If the VSP161 Is Halted

In the C stepping of the VSP161, the Ill interrupt can only occur when the
processor is completely idle. In this stepping, memory mapped reads will be
supported at full processor speed. Because of errors in the B stepping, there are a
number of different tests for VSP161 idle that are applicable, depending on the
execution mode. The following table summarizes these tests when using the
VSP161 instruction fetch feature.

Interrupt
on
Completion
Only

All
Interrupts
Enabled

Memory Mapped
Reads
I
I Quit on any
I Interrupt
I

I
I Quit on ILi
I Interrupt and
I Fetch Address at
I HLT

No Memory Mapped
Reads
I
I Quit on any
I Interrupt
I

I
I Always Time Out
I
I
I

By using options 7 and 8 in Menu M-8-19 the user can inform the VSPE if the
programs are set up to interrupt ONLY on completion or whether additional
interrupts may occur.

AD-5

Zoran VSPS Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

3.3 IMMEDIATE Execution

The DEFER and IMMEDIATE commands of the VSP parser work on the board in
the same way as they do on the VSPS. In IMMEDIATE mode, each instruction is
written to the VSP161 queue. The AT then goes into a WAIT loop until and ILI
interrupt occurs. MAKE SURE THAT TIIlS INTERRUPT IS NOT MASKED
WHEN EXECUTING INSTRUCTIONS IN nns MODE OR TIIERE WILL BE
A TIME OUT ON EVERY INSTRUCTION. If a JMPI is encountered when
running in this mode, the protocol for controlling the VSP161 changes to deal with
DEFERred instructions.

3.4 Executing DEFERred Instructions

The protocol for DEFERred instructions is a function of whether memory mapped
reads are supported. If they are not supported, execution is assumed to have
terminated only if an interrupt occurs and none of the maskable status register
interrupt flags are set. Such an interrupt can only be generated by setting the EI bit
in an instruction. If this is not done, execution will time out Thus, the first thing
the user should do in a block of def erred instructions is to clear all interrupts in the
mode register.

Note: this is in contrast to the requirement that the ILi interrupt be enabled
in IMMEDIATE mode.

If memory mapped reads are supported, then the protocol assumes that the VSP
Systems Processor has halted only if the ILi bit is set and the instruction at the
address of the last instruction fetched (as determined by reading the fetch address
register) is a HLT. This test only works if the ILi interrupt has been enabled.
Thus, when running programs in this mode the user must enable the ILi interrupt.

3.5 Instruction Queueing Not Supported

The various queueing options of the VSPS are not supported with the Evaluation
Board or the B stepping of the VSP161. However, all parser statements and
simulator options associated with queueing can be used. Code will execute
correctly, but the increased efficiency from queueing will not be realized. Note:
the various timing options associated with queueing were intended to model the
asynchronous behavior of the host and VSP161. Thus, when running with a real
host (the AT) and the VSP161 processor, they are no longer meaningful and have
no effect.

AD-6

(

Zoran VSPS Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

3.6 M~age Levels

Executing instructions on the evaluation board is similar to executing them on the
VSPS. The message levels set in either Menu M-4 and Menu M-8 determine what
information is displayed. At message level 0, nothing other than error messages or
the decision made with regard to interrupt processing are shown. At message level
l, each instruction is shown disassembled. In addition, the contents of the status
register before and after each instruction execution are shown.

Finally, the contents of the fetch registers are displayed. IMPI behaves very
differently on the two systems. On the board, the instructions executed after the
IMPI will not be displayed. Only the fetch and status registers at interrupts or
termination of execution will be shown. This is true regardless of the message
level. In order to single step DEFERred instructions, the user should use the
macro command 'step'.

The information displayed at message level 3 is much less detailed than that
available when running on the VSPS. For those instructions that load, store or
modify VSP RAM, the contents of the portion of VSP RAM affected are displayed
after instruction completion. Similarly, the accumulators are displayed after
instructions that modify them. Other instructions have no additional information
displayed at message level 3. The contents of RAM before execution is not
displayed (although in general it will be displayed from the "output" on a previous
instruction).

Note that on the VSPS when running at message level 2, entering any number
causes the associated option in Menu M-4 to be executed. When running on the
board, the number entered selects an option from Menu M-8. Message level
settings 0-3 work the same in both of these menus. Other options, however,
operate differently.

In addition, the user must be aware that the Break Menu docs not change as a
function of VSPE mode. The message levels set by either Menu M-8 or the Break
Menu apply equally to execution on the board and execution on the Simulator.

3.7 Macro Command-Language

There are several macro commands that must only be used when executing on
the Evaluation Board. Erroneous and unpredictable results can be expected if
these command are executed in VSPE when set in the Simulator mode. These
commands arc:

breakpoint -set a break point in VSP code

continue -continue execution after break point

AD-7

Zoran VSPS Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

compare -compare memory regions (between or within memory types)

Mmove -move data blocks (between or within memory types)

run -execute instructions in VSP memory

step -single step instructions in VSP memory

test -check Evaluation Board

There are additional macros that affect only the Evaluation Board but will execute
correctly regardless of VSPE mode. These are:

reset -reset the Evaluation Board

Rclisp -display VSP161 registers

4. Switching Between the Evaluation Board and the VSP Simulator

In some cases it may be useful to switch between execution on the Simulator and
exectution on the board. In such cases it is advisable that the user create his
program and data to both board memory and Simulator external memory. This can
be done through options available in the debugging menu, M-8-19.

S. Menu Descriptions

Below is a brief description of the options availabe on menus that are unique to the
VSPE and are not available on the VSPS.

AD-8

{~

Zoran VSP S Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

5.1 Evaluation Board Driver Display Options (Menu M-8)

Options 0 through 4 in this menu set the message level. Options S through 9 are
reserved for future expansion. Option '10' displays a HELP ftle. Option' 11' sets
VSPE to run programs on the Evaluation Board. Option .'12' sets VSPE to run
programs on the Simulator. Option '13' displays VSP internal RAM. This display
is scaled for the 17-bit integers in the VSP memory. However, the values
displayed are those that follow after the automatic unbiased rounding of the least
significant bit. This rounding is done whenever the memory is read, and there is
no non-destructive way to know the actual value of all 17 bits. There is an option
in Menu M-8-19 to read destructively all 17 significant bits plus the two overflow
bits ofVSP161 RAM.

Option '14' in Menu M-8 displays the VSP161 registers, including the
accumulators and the registers used by the SCL instruction. Option '15' will
allow execution to begin at any location in memory. A valid program must exist
in memory at these locations or the VSP161 will hang up and need to be reset

Options 17 and 18 go to standard simulator for displaying memory and controlling
display options. Internal memory displays arrived at through these options always
refer to Simulator memory. Option '19' branches to additional debugging
commands.

5.2 Debugging Commands (Menu M-8-19)

The first two options in this menu copy Evaluation Board memory to and from
Simulator external memory. This is useful for running the same program with the
same data on both the Simulator and the Evaluation Board. Option '4' resets the
Evaluation Board and the VSP161 Systems Processor. Option 'S' is only available
when set to run on the Evaluation Board. It displays all 19 bits of VSP161 internal
RAM. To do this, it runs a short program that changes both the mode register and
RAM contents.

AD-9

Zoran VSPS Manual VSP 162 Simulator Plus Evaluation Board Driver (VSPE)

QRtion ·~' aUdWs1 th~ l,l~t: t0:1qi!j.Usct tlf~~ slie'·of tke' time out' counter limit SbtUtig
tljti) tdQ ltigijhyill c~11.UU1~-f~•ys .. Settil1g it too, low may take tli~' bus
~m,Y~SP · r~cfOIJ.' · · · ·. · •• pleted. Options'' 7 and 8 allow the~u~r
tfijhf~ . . if.. #J set to genera~:an interrupt ONI:.Y at

: · · • It'· df..!'this way, and memory mapped reads
nm~.fd_.· :m·. j then the ·· · ····. 'to insure prog$m completion is to do

AD-10

