

This is a technical manual. The information contained herein is subject to change.

Copyright 1981 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than circuitry embodied in a Zilog product. No other circuit patent licenses are implied.

Z-SCAN 8000 EMULATOR

.

USER'S GUIDE

. r

This manual applies to serial numbers

3000 and up

.

TABLE OF CONTENTS

SECTION	ONE: HOW TO USE THIS MANUAL	1-1
SECTION	TWO: GENERAL DESCRIPTION	
2.1 2.2 2.3 2.4 2.5	Introduction System Features Z-SCAN 8000 Specifications Ordering Information Recommended Systems for Use With Z-SCAN 8000	2-1 2-2 2-3 2-4 2-5
SECTION	THREE: UNPACKING, INSTALLATION AND CHECKOUT	
3.1 3.2 3.2.1 3.3 3 3 1	Introduction Unpacking Reshipment or Relocation Z-SCAN 8000 Power Connection	3-1 3-1 3-2 3-2 3-5

2.2.1)-)
3.3.2	Power Cord for Other Countries	3-6
3.4	Z-SCAN Unit Operational Check	3-7
3.5	Z-SCAN 8000 and CRT Connection	3-8
3.6	Z-SCAN 8000 Verification	3-10
3.7	Z-SCAN Connection to Host System	3-13
3.8	Troubleshooting Guide	3-15
3.9	Changing the CPU	3-17

SECTION FOUR: Z-SCAN MONITOR TUTORIAL

4.1	Introduction	4-
4.2	Tutorial Hardware Requirements	4-
4.3	The Keyboard and User Controls	4-
4.4	Tutorial Presentation	4-
4.4.1	Error Recovery	4-
4.5	Tutorial Script for Z8002	4-
4.6	Host System Use with Z8002	4-
4.7	Tutorial Script for Z8001	4-
4.8	Host System Use with Z8001	4-
4.9	Conclusion	4-
	,	

SECTION FIVE: TARGET HARDWARE CONNECTION

5.1	Introduction	5-1
5.2	Use of the Emulator Cable	5-1
5.2.1	Clock Source	5-1
5.2.2	Connection of the Emulator Cable	5-4
5.2.3	Checkout of Z-SCAN with Target	5-5
5.2.4	Care of the Emulator Cable	5-6
5.3	Front Panel Switches	5-7
5.4	Hardware Design and Debugging with Z-SCAN	5-9

TABLE OF CONTENTS (Continued)

5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.5 5.5.1 5.5.2 5.5.3 5.5.3	Emulator dc Characteristics Emulator ac Characteristics Dynamic Memory Refresh Target Memory I/O Access Interrupts and Traps Memory Management Considerations Direct Memory Access Termination of Emulation Use of the Hardware Trigger Break Pulse Characteristics Connection of External Equipment Choice of Logic Analyzer Recording Window	5-9 5-10 5-12 5-13 5-13 5-13 5-14 5-15 5-15 5-15 5-16 5-16 5-16
5.5.4	Clocking of Logic Analyzers	5 - 17
5.5.5	Break Pulse Demonstration	5 - 18

SECTION 6: MONITOR SOFTWARE DESCRIPTION

6.1	Introduction	6-1
6.2	Z-SCAN 8000 Operating Modes	6-1
6.3	Monitor Mode Överview	6-3
6.4	Z-SCAN Screen Layouts and Command Displays	6-5
6.4.1	The Menu Area	6-6
6.5	Cursor Manipulation	6-6
6.6	Variable Fields	6-9
6.6.1	Hexadecimal Fields	6-9
6.6.2	Multiple Choice Fields	6-11
6.6.3	Other Field Types – File Name and Memory Content	6-13
6.7	Summary of Valid User Input Sequences	6-14
6.8	The Terminal Selection Screen	6-18
6.9	The System Screen	6-20
6.10	The Memory_io Screen	6-23
6.10.1	The Compare Command	6-25
6.10.2	The Display Command	6-26
6.10.3	The eXamine Command	6-29
6.10.4	The Fill Command	6-31
6.10.5	The moVe Command	6-33
6.10.6	The reAd Command	6-34
6.10.7	The Write Command	6-36
6.10.8	The Load Command	6-37
6.10.9	The seNd Command	6-39
6.11	The Resources Screen	6-41
6.11.1	The Break Command	6-42
6.11.2	The Inst_count Command	6-46
6.11.3	The mAp Command	6-47
6.11.4	The reGister Command	6-49
6.11.5	The Peek Command	6-51
6.11.6	The Wait_states Command	6-52
6.12	The Execution Screen	6 - 53
6.12.1	The Go Command	6-56
6.12.2	The Next Command	6-56
6.12.3	The Trace Command	6-57
6.13	The Host Screen	6-60

TABLE OF CONTENTS (Continued)

.

SECTION SEVEN: INTERFACE TO NON-ZILOG HOSTS

7.1 I	Introduction	7-1
7.2 C	Data Acknowledgement Messages	7-1
7.3 C	Data Transmission Messages	7-2
7.3.1 E	Error Messages	7-2
7.3.2 D	Data Messages	7-3
7.4 C	Command Transmission	7-4
7.5 U	Jser Abort	7-5
7.6 D	Detailed Transmission Protocol	7-5
7.6.1 L	_oad Protocol	7-7
7.6.2 5	Send Protocol	7-9
7.7 M	lessage Syntax	7-10
7.8 H	Host Program Control Flow	7-11
7.8.1 L	_oad Program	7-12
7.8.2 5	Send Program	7-13

A.2.9 IBM (International Business Machines) A-9	APPENDIX A: A.1 A.2 A.2.1 A.2.2 A.2.3 A.2.4 A.2.5 A.2.6 A.2.7 A.2.8	Terminals Supported by Z8000 Introduction Terminal Details Lear Sielger ADM 31 and Soroc Terminals ADDS (Applied Digital Data Systems) Regent Series Beehive Terminals DEC (Digital Equipment Corporation) VI-52 DEC (Digital Equipment Corporation) VI 100 GII (General Terminals Inc.) I-200 etc. Hazeltine Control Sequences Hewlett Packard Terminals	A-1 A-4 A-5 A-6 A-6 A-6 A-6 A-7 A-8 A-9
	M•2•2		
	APPENDIX C:	RIO Load and Send Program Listings	C-1
APPENDIX C: RIO Load and Send Program Listings C-1	APPENDIX D:	Z-SCAN 8000 Schematics	D-1
APPENDIX C:RIO Load and Send Program ListingsC-1APPENDIX D:Z-SCAN 8000 SchematicsD-1	INDEX		I-1

LIST OF ILLUSTRATIONS

Figure		Page
3-1	High Voltage Areas - Rear	3-3
3-2	High Voltage Areas - Front	3-3
3-3	Z-SCAN Front Panel	3-4
3-4	Z-SCAN Rear Panel	3-5

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
3 - 5 3 - 6	Z-SCAN Unit and Terminal Connections The Terminal Selection Screen	3-8 3-11
3-7	The System Screen (to be inserted on this page)	3-12
3-8	Z-SCAN/Terminal/Host Configuration	3-13
3-9	Top Cover Removal	3-17
4-1	Lear Siegler ADM 31 Keyboard Layout	4-3
4-2	Terminal Selection Screen	4-6
4-3	Z8002 Monitor System Screen	4-6
4-4	28002 Monitor Memory_10 Screen	4-/
4-5	28002 Monitor Resources Screen	4-/
4-6	28002 Monitor Execution Screen	4-8
4-1	28002 Monitor Frace Screen	4-8
4-0 / 0		4-7 / 10
4-7	Cursor in Map Subscreen	4-10
4-10	Horizontal Curson Movement	4-11
4-11	Vertical Cursor Movement	4 - 12
4-12	Enabling Mannable Memory	4-10
4-14	Enabling Break Logic	4-15
4-15	Setting Break Address	4-15
4-16	Default Fill Command Display	4-16
4-17	Execution of Fill Command	4-16
4-18	Display with Default Parameters	4-17
4-19	Disassembled Memory Display	4-18
4-20	Set-up of eXamine Command	4-18
4-21	Modification of Memory Contents	4-19
4-22	Checking Memory Contents	4-19
4-23	Use of the Compare Command	4-20
4-24	Instruction Step with Next Command	4-21
4-25	Second Instruction Step	4-22
4-26	Running to Breakpoint with Go Command	4-22
4-27	Use of the Trace Screen	4-23
4-28	Indefinite Emulation with Go Command	4-24
4-29	Manual Break with NMI Switch	4-24
4-20	Insertion of New Instruction	4-25
4-21	Display of Change with Compare Command	4-25
4-22	Satting Poek Parametere	4-20
4-22	Second Manual Break	4-20
4-24 1-35	Modification of Break Parameters	4-27
4-36	Modification of man Parameters	4-20
4-37	Modification of BO Value	4-29
4-38	Irigger Break on Data Read	4-29
4-39	Adjusting Pass Counter	4-30
4-40	Break After Multiple Passes	4-30
4-41	Selection of Write Protect Break	4-31
4-42	Break After Violation	4-31
4-43	Set-up of Multiple Condition Break	4-32
4-44	Break on Address Match	4-32
4-45	Data Read Break on Trace Screen	4-33
4-46	Enabling of All mAp Address Spaces	4-35

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
4-47	Z8002 Program Example	4-38
4-48	Z8002 Program Creation with RIO	4-39
4-49	Loading of Z8002 Example Program	4-40
4-50	Copying Program with moVe Command	4-41
4-51	reGister Initialization	4-42
4-52	Set-up of Peek Parameters	4-42
4-53	Emulation and Breakpoint	4-43
4-54	Iracing Initialization Routine	4-43
4-55	Irace of Main Koutine	4-44
4-56	Irigger Due to larget Reset	4-44
4-2/	Inigger Due to Target NMI	4-45
4-58	Set-up of Stack Write Break	4-45
4-29	79001 Janminal Salastian Sanaan	4-40
4-60	20001 Terminal Selection Screen	4-40
4-01	79001 Monitor System Screen	4-40
4-02	79001 Monitor Pengurana Sanaa	4-47
4-0)	79001 Monitor Execution Sanoon	4-47
4-04	78001 Monitor Trace Screen	4-50
4-65	Host Screen Transparent Mode	4-50
4-00	Cursor in Man Subscreen	4-57
4-68	Cursor in Break Subscreen	4-52
4-69	Horizontal Cursor Movement	4-54
4-70	Vertical Cursor Movement	4-54
4-71	Fnabling Mappable Memory	4-55
4-72	Enabling Break Logic	4-56
4-73	Setting Break Address	4-56
4-74	Default Fill Command Display	4-57
4-75	Execution of Fill Command	4-57
4-76	Display with Default Parameters	4-58
4-77	Disassembled Memory Display	4-59
4-78	Set-up of eXamine Command	4-59
4-79	Modification of Memory Contents	4-60
4-80	Checking Memory Contents	4-60
4-81	Use of the Compare Command	4-61
4-82	Instruction Step with Next Command	4-62
4-83	Second Instruction Step	4-63
4-84	Running to Breakpoint with Go Command	4-63
4-85	Use of the Trace Screen	4-64
4-86	Indefinite Emulation with Go Command	4-65
4-87	Manual Break with NMI Switch	4-65
4-88	Insertion of New Instruction	4-66
4-89	Check of Change with Compare Command	4-66
4-90	Display of Change	4-6/
4-91	Setting Peek Parameters	4-67
4-92	Second Manual Break	4-68
4-7) 4 04	Modification of Break Parameters	4-67
4-74 / OC	Modification of MO Value	4-07 / 70
4-73 1 02	MULIFICATION OF RU VALUE	4-70
4-20 /1-97	Adjusting Pass Counter	4-70 /1-71
4-27 4-98	Real After Multinle Passes	4-71 4-71
+-/0	DICAR HIGE HAILING LAGGES	/1

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
$\begin{array}{r} 4-99\\ 4-100\\ 4-101\\ 4-102\\ 4-103\\ 4-104\\ 4-105\\ 4-106\\ 4-107\\ 4-108\\ 4-109\\ 4-109\\ 4-110\\ 4-111\\ 4-112\\ 4-113\\ 4-114\\ 4-115\\ 4-116\\ 4-117\\ \end{array}$	Selection of Writer-Protect Break Break After Violation Set-up of Multiple Condition Break Break on Address Match Data Read Break on Trace Screen Enabling of All mAp Address Spaces Z8001 Example Program Z8001 Program Creatiion with RIO Loading of Z8001 Example Program Copying Program with moVe reGister Initialization Set-up of Peek Parameters Emulation and Breakpoint Tracing Initialization Routine Trace of Main Routine Trigger Due to Target Reset Trigger Due to Target NMI Set-up of Stack Write Break Break on Stack Write	$\begin{array}{c} 4-72 \\ 4-72 \\ 4-73 \\ 4-74 \\ 4-74 \\ 4-76 \\ 4-78 \\ 4-79 \\ 4-80 \\ 4-81 \\ 4-82 \\ 4-82 \\ 4-82 \\ 4-82 \\ 4-85 \\ 4-85 \\ 4-86 \\ 4-86 \\ 4-87 \end{array}$
5–1 5–2 5–3	Clock Jumper Location Z-SCAN Top Cover Removal Z-SCAN and Target System Connections	5-2 5-3 5-5
6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 6-13 6-14 6-15 6-16 6-17 6-18 6-19	Z-SCAN 8000 Operating Modes The Z8001 Terminal Selection Screen The Z8001 System Screen The Z8001 Memory_io Screen The Compare Command The Display Command The Display Command The eXamine Command The Fill Command The Fill Command The reAd Command The vrite Command The Load Command The SeNd Command The SeNd Command The Z8001 Resources Screen Z-SCAN Breakpoint Logic (Conceptual Diagram) The Z8001 Execution Screen Default Trace Display Z8001 Trace Screen after Execution The Host Screen	6-3 6-19 6-21 6-23 6-25 6-30 6-32 6-32 6-33 6-36 6-38 6-40 6-42 6-42 6-44 6-54 6-57 6-59 6-60
7-1 7-2	Flowchart for LOAD Program	7-12 7-13

LIST OF TABLES

Table		Page
3-1	Cable Leads to Connector Terminal Interconnections	3-6
3-2	ADM 31 Baud Rates Supported by Z-SCAN	3-10
3-3	Zilog Host System Terminal Connectors	3-13
3-4	Host Baud Rates Supported by Z-SCAN	3-14
3-5	Troubleshooting Guide	3-15,16
4-1	Key Names and Locations	4-2
4-2	Z-SCAN Front Panel Switch Operation	4-4
4-3	Key Sequence Examples	4-4
5-1	Clock Source Selection	5-2
5-2	Response to Monitor Reset Input	5-7
5-3	Response to Monitor NMI Input	5-7
5-4	Response to Target Reset Input	5-8
5-5	Response to Target NMI Input	5-8
5-6	Monitor Mode Target Signals	5-12
5-7	Z-SCAN Target Access Transactions	5-12
6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-11 6-12 6-13 6-14 6-15 6-16 6-17 6-18 6-19 6-20 6-21 6-22 6-23 6-24 6-25	Software Monitor Commands . Effect of Cursor Control Keys . Effect of User Entry on Hexadecimal Field	6-1 6-8 6-9,10 6-12 6-22,13 6-20 6-22 6-23 6-26 6-29 6-31 6-32 6-34 6-35 6-37 6-38 6-41 6-45,46 6-48 6-49,50 6-53 6-53 6-55
A-1	Terminals Supported by the Z-SCAN Monitor	A-2
A-2	Control Sequence Protocol Symbols	A-3
A-3	ADM 31 and Soroco Terminals	A-4
A-4	ADM 31 Option Settings	A-4
A-5	ADM 31 Baud Rates Supported by Z-SCAN	A-5
A-6	Regent 40 Control Sequences	A-5

LIST OF TABLES (Continued)

Figure		Page
A-7 A-8 A-9 A-10 A-11 A-12 A-13	Beehive Control Sequences VI 52 Control Sequences VI 100 Control Sequences GII Control Sequences Hazeltine Control Sequences Hewlett Packard Control Sequences IBM 3101 Control Sequences	A-6 A-7 A-7 A-8 A-9 A-9

SECTION ONE

HOW TO USE THIS MANUAL

Z-SCAN 8000, a Zilog Stand-Alone Circuit Analyzer, is a free-standing peripheral unit used for the design, debugging, and testing of equipment based on Zilog's Z8002 16-bit microprocessor. Because different users of the Z-SCAN 8000 have varying backgrounds or needs, various approaches to using this manual are suggested.

Writing conventions used throughout this manual:

- 1. The complement of a signal is specified by a dash (-) following the signal name, e.q., ABC- specifies that ABC is active low (ABC).
- 2. The capital letter in each screen and/or command name indicates the key used to access each CRI terminal display.
- 3. Underscores used within text represent exactly how these items appear on the Z-SCAN terminal screen displays.

Important Notations: Three levels of notation are used throughout this manual to bring attention to specific information and safety precautions. The three levels of notation and their purposes are:

- NOTE Calls attention to specific points of technical or procedural importance.
- CAUTION Calls attention to conditions that could cause possible damage to equipment or facilities.
- WARNING Calls attention to conditions that could cause serious injury to personnel.

Suggested Reading Sequences

A. All users:

- 1. Read Section 3, Unpacking, Installation and Checkout, for special instructions and safety procedures.
- 2. Continue to those items below that are applicable to your situation and system configuration.

B. New Users Unfamiliar with Z-SCAN:

1. Read Section 2, General Description for an overview and glimpse of the features and capabilities of Z-SCAN.

- Read Section 3 and perform the installation and checkout procedures applicable to your system configuration. All users should work from Sections 3.1 through 3.6. Users with a host system, see items E and F.
- 3. Read Section 4, Z-SCAN Monitor Tutorial and then work through the appropriate tutorial for your system configuration. The Z8002 and Z88001 tutorials are designed to accomplish two major tasks:
 - a. Familiarize the user with the functions and capabilities of Z-SCAN.
 - b. Assure that all Z-SCAN functions operate properly.
- 4. Read Section 6, Monitor Software Description, for more detailed information on commands and displays.
- 5. Continue to those items below that are best suited to your needs.

C. Users Familiar with Z-SCAN:

- 1. Review Section 4 and work through the appropriate tutorial for your system configuration.
- 2. See Section 6, Monitor Software Description for more detailed information on commands and displays.
- 3. Continue to any of the following items that best suit your needs.

D. Users With a Target System:

- 1. Complete all items from either B or C above.
- 2. Read Section 5 for the target system connections and supporting information that describes how the Z-SCAN 8000 interacts with the target during debugging.

E. Users with Z-SCAN and a Host System:

- 1. Complete all items from either B or C above.
- 2. If your Z-SCAN configuration includes a target system, complete item 2 of D above.
- 3. Complete Section 3.7 which describes how to connect a host system to Z-SCAN and initialize Monitor mode and Transparent mode.
- 4. Read Section 4, Z-SCAN Monitor Tutorials, and then work through the appropriate tutorial for your system configuration. Section 4.6 of the Z8002 tutorial and Section 4.8 of the Z8001 tutorial describe the downloading facility used by a host system.
- 5. If you have a non-Ziloq host system, see F below.

F. Users With a Non-Zilog Host System

Z-SCAN is able to communicate with any system that supports asynchronous serial communication.

- 1. Complete all items from either B or C above.
- 2. If your Z-SCAN system configuration includes a target system, complete item 2 of D above.
- 3. Complete section 3.7 which describes how to connect a host system and initialize Monitor mode and Transparent mode.
- 4. If your host already supports Z-SCAN's downloading facility, you can familiarize yourself with its operation (Section 4.6 of the Z8002 tutorial and Section 4.8 of the Z8001 tutorial).
- 5. If your host does not support downloading, Section 7, Interface to Non-Zilog Host, contains the information needed to write the required host resident utility program.

. .

SECTION TWO

GENERAL DESCRIPTION

2.1 INTRODUCTION

Z-SCAN 8000, the Zilog Stand-Alone In-Circuit Analyzer, is a free-standing peripheral unit that emulates Zilog's Z8001 and Z8002 16-bit microprocessors. These are MOS/LSI, register-oriented CPUs designed for general-purpose applications. Features of the Z8000 CPUs include:

- o Available as 40-pin nonsegmented version (Z8002) or 48-pin segmented version (Z8001)
- o 110 instruction types
- o Eight addressing modes
- o 64-kilobyte (Z8002) or 8-megabyte (Z8001) addressing capability in each of the six address spaces
- o Synchronous and asynchronous interrupts
- o Automatic dynamic RAM refresh
- o Single +5 V dc power supply
- o Single-phase clock
- o Advanced instructions, such as hardware signed multiplication and signed division, for both 16-bit and 32-bit words

The Z8000 CPU Technical Manual (document #00-2010-C) gives a detailed description of Z8000 CPU architecture and applications.

The Z-SCAN 8000 can operate with Zilog's family of development hosts by interfacing to the host and a CRT terminal via two RS-232C serial ports. Because it employs a standard serial interface, Z-SCAN can be used with any software host system that runs a cross assembler or cross compiler capable of generating Z8000 code. Z-SCAN supports the development and testing of this code. Z-SCAN communicates with a host system through a standard serial format that requires only simple download and upload utilities in the host system. For PROM-based target systems, the Z-SCAN can operate as a stand-alone unit with a CRT terminal because the monitor and debug software are EPROM resident.

In keeping with Zilog's design philosophy of separating a development system into two identifiable units (the software host and an emulation peripheral), the Z-SCAN fits into three environments.

- o As a peripheral to Zilog's Z-LAB 8000, PDS 8000 and ZDS-1 series of development systems, the Z-SCAN 8000 completes the Zilog development support package for the Z8001 and Z8002 microprocessors.
- o As a peripheral to any development host capable of compiling or assembling Z8000 code, the Z-SCAN 8000 offers a low-cost emulation capability, which precludes substantial reinvestment in a software host system.
- o As a stand-alone in-circuit emulator operating with a CRT terminal, the Z-SCAN 8000 provides simple testing and debugging capability for PROMbased target systems.

2.2 SYSTEM FEATURES

User Interface. Instead of a line-oriented interface, the Z-SCAN 8000 incorporates a two-dimensional, screen-oriented user interface, which makes it easy to use. A choice of screen erase, line erase and cursor addressing sequences is provided, allowing most popular terminals to be used.

The object of the user interface is to provide a screen format with a menulike approach, which directs the user through the operations of the emulator. At all times, the Z-SCAN 8000 displays information about system parameters, system resources, current execution, and error messages. This feature keeps the user informed of the status of the debug process. When the system is turned on, a bootstrap routine produces a display, which informs the user of the unit's configuration and requests the user to define set-up parameters. A menu of display choices offers the user various system capabilities:

- o The Memory io screen display shows the various memory and I/O manipulation commands that give the user access to the target system.
- o The Resources screen display presents the full range of arguments applicable to target system emulation.
- o The Execution screen display lists all the commands and parameters necessary for emulation.
- o The Trace screen presents a disassembled listing of each instruction executed during an emulation.

Execution of specific Z-SCAN monitor commands is always possible, and information on other relevant system parameters and resources is always displayed. This highly interactive user interface makes it possible to use the Z-SCAN 8000 without frequent reference to the operating manual.

Shadow Memory. Although the Z-SCAN system uses a single CPU for both monitor and emulation functions, no restrictions are placed on the size of the target system memory. This is because the entire Z-SCAN monitor resides in Z-SCAN PROM (shadow) memory and therefore does not use the target system memory space or addresses.

Hardware Trigger. The Z-SCAN 8000 offers the versatility of setting breakpoints in either of two fields or in a combination of these fields: the address/data field and the control/status field. A pass counter can be set from 0 to a maximum of 255 counts to allow multiple-pass triggering. In addition, Z-SCAN 8000 can also be set to break on instruction fetches only (single-step execution) or, by using a pass counter, can be set for a maximum of 250 counts to allow triggering on multiple instruction fetches (multi-step execution).

The breakpoint logic has two operating modes. In the first, the address/data field and the control/status field must simultaneously match the programmed breakpoint condition to terminate an emulation. The second mode allows either an address/data match or a control/status match to terminate an emulation. This mode can be used to terminate emulation when either of two conditions is detected during an emulation, for example, execution of an instruction at a particular address or acknowledgement of an interrupt. This feature, when

combined with the multi-step mechanism, allows a break to be programmed on either of two target bus conditions or, if those conditions do not occur, after a set number of instruction fetches.

Mappable Memory. The Z-SCAN 8000 offers a 4K word (8192 bytes) block of high-speed static RAM. This block simulates a target system memory block, which typically is ROM. No wait states are required at 4 MHz. This block is mappable anywhere in the Z8000 address space and can be specified to respond to any combination of normal code, normal data, normal stack, system code, system data or system stack accesses. Mapping must be done on 4K word boundaries only, and the entire block can be protected against illegal emulation memory writes, causing the emulation to either terminate or continue, depending on user options. When a break results from a write protect violation, an error message appears on the CRT display informing the user of an illegal write.

Memory Peek. The Z-SCAN 8000 has a software feature that displays the contents of three 4-word areas of target memory. The display is updated every time an emulation terminates and it supplements the information displayed in the register contents. The three areas displayed, can be at any address in any memory space (system code, normal data, etc.). In addition, the Trace screen displays the data at the top of normal and system stacks.

Wait States. Under software control, Z-SCAN can insert zero to eight wait states in each bus transaction.

2.3 Z-SCAN 8000 SPECIFICATIONS

Processor:	Nonsegmented 40-pin Z8002 CPU or segmented 48-pin Z8001 CPU
Clock Rate:	3.3 MHz (internal), 500 kHz to 4.0 MHz (external)
I/0:	Two RS-232C serial ports for terminal and host
CRT:	A choice of popular types (see Table 6.6)
Baud Rate:	Automatically adjusted from 50 to 19.2K per baud set on the terminal
Mappable Memory:	4096 x 16 static RAM (no wait states at 4 MHz when operating off user clock)
Breakpoint:	Address, data, control, address and control, data and control, instruction fetch; or a combination of in- struction fetch and any field argument. The address field on the Z8001 may be offset, segment or segment and offset.
Emulator Input Loading	Reset (RESEI-), data strobe, (DS-), non-maskable interrupt (NMI-), vectored interrupt (VI-), non- vectored interrupt (NVI-), segment trap (SEGI-): one low-power Schottky transistor-to-transistor logic (LS-TTL) load plus 10k pullup plus 30 pF max. All others: one LS-TTL load plus 30pF max.

Emulator Output Drive:	Driven by LS-ITL buffer with 33 ohm series termination
Cables: Z8002 Emulator Cable	18 inches
Z8001 Emulator Cable	18 inches
Terminal Cable:	48 inches
Front Panel:	TARGET/MONITOR toggle switch, RESET and NMI momentary switches, POWER rocker switch with indicator. 40-pin connector, 3M type 3495 (Z8002) 48-pin connector, 3M type 3496 (Z8001)
Rear Panel:	BNC connector for pulse output, standard LS-TTL level 2x25 pin connectors, 3M type 3483 (terminal and host) 3-pin power connector 1-1/4 in. fuseholder, screwdriver-release type 115/220 voltage selection slide switch
Power:	180-264V ac or 90-130V ac switch selectable; 47-63 Hz; 60 VA max.
Fuse:	1-1/4 in. antisurge, 3 A (120 V), 1.5A (220 V)
Dimensions:	4 in. (10.2 cm) (H) x 17.5 in. (44.5 cm) (W) x 14.5 in. (36.8 cm) (D)
Environmental:	Operates at 10°C to 50°C: relative humidity 10% to 90%
Unit Weight:	25 pounds
Shipping Weight:	30 pounds

2.4 ORDERING INFORMATION

05-0103-01	Z-SCAN	8000	Emulator	(Supports	Z8001	and	Z8002	Emula-
	tion ar	nd Cor	ntrol)					

2-4

2.5 RECOMMENDED SYSTEMS FOR USE WITH Z-SCAN 8000

Model	Description	Prerequisite
ZDS-1/25, 1/40	Zilog Development Systems, Floppy-based	Z8000 Software Development Package
PDS 8000, Models 10, 15, 30, 35	Zilog Product Development Systems, Floppy and Hard Disk	Z8000 Software Development Package
Z-LAB 8000	Development Station	None

SECTION THREE

UNPACKING, INSTALLATION AND CHECKOUT

3.1 INTRODUCTION

This section contains instructions for unpacking, installing, checking, and verifying a Z-SCAN unit equipped with either a Z8001 or a Z8002 CPU. The latter part of the section describes the set-up and initialization of a link between the Z-SCAN and a host system. A trouble shooting guide is also included to help users. Refer to Section Five for the target system connection and verification procedures.

All Z-SCAN 8000 shipments include factory-selected 6MHz Z8001A CPU and Z8002A CPU components. The performance of the unit is impaired if standard speed 4MHz parts are used. Z-SCAN units are shipped with the Z8001A CPU already installed in the unit and the Z8002A CPU separately packaged in a plastic box inside the shipping container.

The following procedures should be followed only if there is no indication of damage. If any damage is detected, installation of the equipment should be immediately suspended and a Zilog field service representative should be contacted.

Three levels of important notations appear within this section to bring attention to specific information and safety precautions. These notations and their purposes are:

- NOTE Calls attention to specific points of technical or procedural importance.
- CAUTION Calls attention to conditions that could cause possible damage to equipment or facilities.
- WARNING Calls attention to conditions that could cause serious injury to personnel.

3.2 UNPACKING

Every Z-SCAN 8000 system is fully inspected and tested before shipment to ensure that it meets specifications. All equipment is packaged for safe transit under normal freight-handling conditions and should arrive ready to be installed. Before unpacking the system, inspect the shipping container for signs of possible damage to the unit during transit. If shipping damage is suspected, claims with the freight carrier should be filed immediately.

To unpack the system, the following steps should be taken:

1. Open top end of box and remove packing.

2. Lift system out of the carton and remove polyethylene plastic covering.

- 3. Locate the packing list, cables, and accessories and check to see that all items on the packing list are accounted for.
- 4. Replace all packing in the shipping container and store the container until the unit has been checked out and is considered operational, or if possible, keep all packing material for future use (see Section 3.2.1).
- 5. Inspect the Z-SCAN unit for external damage, such as dents, broken switches or loose connections. Any sound of loose items inside the cabinet is evidence of damage. If damage is evident or suspected, make no further attempt to operate the system.

If there is no damage a unit checkout followed by a system setup and checkout (see sections 3.5 and 3.6) should be performed without the target or host system.

3.2.1 Reshipment or Relocation

The packing material has been specially tested to protect Z-SCAN for shipment, therefore the packing boxes and materials should be retained after unpacking.

--NOTE--

Refer to Section 5.2.4, Care of the Emulator Cable, before disconnecting or relocating the Z-SCAN system.

Repack the Z-SCAN equipment in the original packing material for reshipment.

3.3 Z-SCAN 8000 POWER CONNECTION

Connecting power to a Z-SCAN 8000 is the same regardless of whether the system will be used as a Z8001 or a Z8002 system. Special consideration must be given, however, to the power cord used for Z-SCAN, especially if the system is to be used in countries outside United States. See Section 3.3.1 for information regarding Z-SCAN's power cord for U.S. usage, or Section 3.3.2 for information on Z-SCAN's special power cord to be used in all foreign countries.

--WARNINGS--

- a. The Z-SCAN 8000 must be operated with a three-wire grounded power system. Do not use a two-wire power system, as this can damage the Z-SCAN unit and poses a safety hazard to operators and maintenance personnel.
- b. The top cover of the unit must not be removed while the unit is connected to a power receptacle. Hazardous voltages exist around the power transformer, the fuse and the power switch. These areas are shown in Figures 3-1 and 3-2.

Figure 3-1. High Voltage Areas - Rear

Figure 3-2. High Voltage Areas - Front

Power Up Sequence

1. Turn the red power switch on the Z-SCAN front panel to the OFF position. Figure 3-3 illustrates the switches and connections on the Z-SCAN front panel.

Figure 3-3. Z-SCAN Front Panel

- 2. Locate the 115/220 voltage selection switch on the Z-SCAN rear panel and verify that it is set correctly for the electrical power source to be connected to the Z-SCAN system. Refer to Figure 3-4 for the approximate location of the voltage selection switch.
- 3. Locate the correct power cord for your country, and discard the other one. Two power cords are included in Z-SCAN 8000 shipments: the power cord to be used in the United States is shipped completely assembled (see Section 3.3.1); the power cord shipped without a plug is to be used in countries outside the United States. Refer to Section 3.3.2 for the instructions to attach a three-wire grounded power plug to this cord.

3.3.1 U.S. Power Cord

The U.S. power cord meets the U.S. National Electrial and Manufacturing regulations and is suitable for use in the United States only. This power cord is identified by the molded plug attached to the cord and is ready to be connected to the Z-SCAN unit. Figure 3-4 identifies the location for the power connection on Z-SCAN's rear panel.

--WARNING--

Do not use the U.S. power cord in any other country as it could damage the Z-SCAN system and pose a safety hazard to operators and maintenance personnel.

Should Z-SCAN's power cord for U.S. usage at any time require a new plug, be sure that the new plug is a three-wire plug and that it is properly grounded.

Figure 3-4. Z-SCAN Rear Panel

3.3.2 Power Cord for Other Countries

--WARNING--

The Z-SCAN unit must be safety grounded (earthed).

The power cord for countries outside the United States is shipped without a plug attached. Use the following instructions to connect a plug:

Connecting a Three-wire Plug for Usage In All Countries Except the United States

The wires in European power cable (mains lead) are colored in accordance with the following code:

• Green and Yellow - Earth (safety grounded)

•	Blue	-	Neutral
---	------	---	---------

• Brown - Live

Since these colors might not correspond with the colored markings identifying the terminals in your plug, connect as indicated in Table 3-1.

Table 3-1. Cable Leads to Connector Terminal Interconnections

Cable Lead (Wire Color)		Use	Connector Terminals: Marking or Color		
1.	Green and yellow	Ground (Earth)	E or Earth	Green or Yellow and Green	
2.	Blue	Neutral	N	Black	
3.	Brown	Live	L	Red	

3.4 Z-SCAN UNIT OPERATIONAL CHECK

It is important that following the unpacking and installation of the proper power cord to the Z-SCAN unit, all users perform the following initial check of the Z-SCAN unit. These procedures determine if your Z-SCAN unit is operational and must be done before connecting the CRT terminal to Z-SCAN or before changing the CPU to the Z8002 CPU.

--NOTE--

If during the unpacking the Z-SCAN unit appeared undamaged and the power cord installation has been successfully completed, this procedure must be attempted before requesting repair service.

- 1. Set the voltage selection switch (rear panel of Z-SCAN) to the proper setting for your facility. The two settings on Z-SCAN's voltage selection switch are 115 and 230. See Figure 3-4, Z-SCAN Rear Panel.
- 2. Power up Z-SCAN by turning the red rocker-type switch on the front left panel to the POWER position. This turns the electrical power on to the Z-SCAN unit. See Figure 3-3, Z-SCAN Front Panel.
- 3. Make sure that the red indicator in Z-SCAN's power switch is illuminated.
- 4. Make sure that the Z-SCAN cooling fan is running; do not block the fan exhaust area with cables, books, prints, etc.
- 5. Place the front panel TARGET/MONITOR switch in the MONITOR position. This is a two-position switch; the "up" position is used for Target mode operations, and the "down" position is used for Monitor mode operations.
- 6. Verify that the two other front-panel switches (to the right of the IARGET/MONITOR switch) toggle correctly. These toggle switches are the RESET switch and the NMI switch. Push up on each switch to toggle it. When released the switches should return to their original positions.
- 7. Turn the power switch to the OFF position.

3.5 Z-SCAN 8000 AND CRT TERMINAL CONNECTION

Three ribbon cables are included with Z-SCAN as follows:

- o A 25-pin terminal cable, 1-1/4" (3.2 cm) wide with identical 25-pin connectors at each end
- o A 48-pin emulator cable for the Z8001, 2-1/2" (6.5 cm) wide
- o A 40-pin emulator cable for the Z8002, 2" (5.2 cm) wide
- 1. Select the terminal cable.
- 2. Connect one end of the terminal cable to the Z-SCAN rear panel RS-232 connector labeled "terminal." Figure 3-5 illustrates the connecting areas for the CRT terminal and Z-SCAN 8000 (stand-alone configuration).

Figure 3-5. Z-SCAN Unit and Terminal Connections (Stand-Alone Configuration)

3. Connect the other end of the terminal cable to the main port connector on the rear panel of the CRI terminal. This socket is labeled "MODEM" on most types of terminals.

--NOTE--

Other CRT terminal connectors for printers or auxillary equipment are not used by Z-SCAN.

- 4. Verify that the Z-SCAN 8000 and the CRT terminal are connected to a working power outlet. DO NOT TURN ON EITHER UNIT AT THIS TIME.
- 5. Ensure that the CRT terminal is set to a baud rate supported by the Z-SCAN. Table 3-2 lists supported speeds. Appendix A gives details of specific terminals. A baud rate of 9600 is recommended for most applications.
- 6. Power up the CRT terminal only. A cursor should appear at top left of the CRT display shortly after power up.
- 7. Depress the Cap Lock key and ensure that the CRT terminal is in Cap Lock Mode. All of Z-SCAN's system operations require that the Cap Lock mode be selected on the CRT terminal. This mode is identified on the ADM 31 by the illumination of the red cap lock indicator when the key is depressed. This mode is exited by pressing the Cap Lock key again. Consult Appendix A and the terminal documentation for information on other types of terminals.
- 8. Turn the CRT terminal power switch to OFF.

3.6 Z-SCAN 8000 VERIFICATION

It is assumed that all previous procedures have been correctly performed up to this point. Begin the following procedures with both the Z-SCAN unit and the CRT terminal turned OFF.

A. CRT Terminal Power Up and Setting the Hardware Baud Rate.

- 1. Power up the CRT terminal connected to Z-SCAN. A cursor should appear at the top left of the CRT display about 10 seconds after power up.
- 2. Make sure that the cursor is displayed on the CRT terminal. If the cursor does not appear, refer to the Troubleshooting Guide at the end of this section.
- 3. Ensure that the terminal is set to a baud rate supported by the Z-SCAN. Table 3-2 lists supported speeds. Appendix A gives details of specific terminals. A baud rate of 9600 is recommended for most applications.
- 4. Make sure that the terminal is in Cap Lock mode.

Baud Rate	ADM 31 Switch Setting
75 110 134.5 150 300 600 1200 1800 2400 4800	1 2 3 4 5 6 7 8 10 12
9600	14

Table 3-2. ADM 31 Baud Rates Supported by Z-SCAN

- B. Z-SCAN Unit Power Up and Power Check
 - 1. Power up Z-SCAN by turning the red rocker-type switch on the front left panel to the POWER position.
 - 2. Make sure that red indicator in Z-SCAN's power switch is illuminated. This tells you that the Z-SCAN unit is turned on, and that power is being received from the power outlet.
 - 3. Make sure that the Z-SCAN cooling fan is running and that the fan exhaust area is kept clear.
C. Initialize the Monitor Mode, Terminal Selection Screen and System Screen.

- 1. Place the front panel TARGET/MONITOR switch in the MONITOR position. This switch must be in the MONITOR position for Z-SCAN system verification.
- 2. Toggle the RESET switch. This initializes the Z-SCAN monitor software, instructing it to synchronize its baud rate with that of the terminal as soon as a RETURN character is received.
- 3. Press RETURN once (on the terminal keyboard). Z-SCAN uses this character to complete the baud rate synchronization with the terminal and then display the Terminal Selection screen. This display is shown in Figure 3-6.

Figure 3-6. The Terminal Selection Screen

4. Enter the appropriate terminal type selection number for your particular terminal. For convenience, the selection is shown on the Terminal Selection screen display. Refer to Appendix A for further information regarding the terminals supported by Z-SCAN.

If an incorrect number was entered for the terminal type selection number (Terminal Selection), you must retrace the first three steps of item C to display the Terminal Selection screen again.

- 5. Enter a RETURN to display the System screen. As indicated in Figure 3-7, the System screen contains the following information:
 - o Z-SCAN 8000 (top line), Monitor and Version (second line) followed by a broken line.

- Terminal baud rate displays the speed at which the terminal is running.
- Host baud rate. This variable field defaults to the same value as the terminal baud rate. See Section 6.9 for further information regarding the host baud rate.
- Status to target. The default value, internal op, appears in this variable field when the System screen is initially displayed. A broken line is displayed below the status to target field. See Section 6.9 for further information on the System screen and this field.
- The bottom line on the System screen contains the name of the screen displayed (in parentheses) with the additional names of screens available from that screen. Detailed information on the monitor software is found in Section 6.

Z-SCAN 88 88	-
ZB001 MOHITOR Version 3.0	
terminal bawd rate: 9680	
host baud rate: 9688	
status_to_target: internal_op	
(Busten Screen) System Memory_10 Resources Execution Hust	

Figure 3-7. The System Screen

If you have had problems executing the procedures in this section, refer to the Troubleshooting Guide at the end of this section.

Refer to Section 4 and review the monitor tutorial for your system. Section 4 contains Z8001 and the Z8002 tutorials, both of which exercise the Z-SCAN monitor and familiarize the user with the various functions performed in Monitor mode.

3.7 Z-SCAN CONNECTION TO HOST SYSTEM

It is assumed that the user has successfully completed all of the previous installation and checkout procedures for the Z-SCAN 8000 unit and the CRT terminal connection.

The following step-by-step procedures specify how to **safely** connect a host system to the Z-SCAN system, and perform the basic initialization of the Monitor mode and Transparent mode operations.

If you have problems performing any of the following steps, refer to the Troubleshooting Guide at the end of this section.

A. Connect Host System to Z-SCAN.

- 1. Before connecting the host system to Z-SCAN, turn all units OFF: the Z-SCAN unit, the CRT terminal, and the host system.
- 2. Connect the host system terminal cable to the RS-232C connector on the rear panel of Z-SCAN that is marked "Host". Figure 3-8 illustrates the proper connections. Table 3-3 lists the socket to which the terminal cable should be attached on Zilog host systems.

Socket

Table 3-3. Zilog Host System Terminal Connectors

Figure 3-8. Z-SCAN/Terminal/Host Configuration

B. Initialize Monitor Mode, Terminal System Screen and System Screen.

- 1. Turn all units ON (CRT terminal, Z-SCAN and host system).
- 2. Toggle the RESET switch again and press RETURN once. The Terminal Selection screen appears.
- 3. Enter the appropriate terminal type selection number on the Terminal Selection screen and press RETURN once. The System screen appears on the terminal and Z-SCAN is now in Monitor mode.

If an incorrect terminal type selection number for your type of terminal is entered on the Terminal Selection screen, it is necessary to redo step two which re-initializes the Terminal Selection screen and then enter a RETURN to initialize the System screen.

C. Select Parameters for Variable Fields on System Screen.

- 1. If the host operates at a baud rate which differs from that of the terminal enter RETURN to move the cursor into the first variable field (host baud rate) on this screen.
- Use the SHIFT and > keys to select the appropriate baud rate for your host terminal. Refer to Table 3-4 for the host baud rates supported by Z-SCAN.

19,200	1,200	134.5
9,600	600	110
4,800	300	75
2,400	200	50
1,800	150	

- Table 3-4. Host Baud Rates Supported by Z-SCAN

 19.200
 1.200
- 3. If you wish to change the default value of the status to target field, use the cursor down key to move the cursor from the host baud rate to this variable field, then use the SHIFT and > keys repeatedly to select the parameter desired.
- 4. A RETURN must be entered to move the cursor from either of the two variable fields in the System screen to the System screen name (menu area).

NOTE

The cursor must be on the System screen name to either continue operations in Monitor mode or to change to Transparent mode.

D. Change to Transparent Mode from Monitor Mode.

1. To select Transparent mode, type H. The initialization message for the Host screen is the word HOST which appears in the upper left-hand corner of the screen. If the terminal and host baud rates differ, set the terminal baud rate to match that of the host, then enter RETURN.

The Z-SCAN system is now in the Transparent mode and serves only as a link between the terminal and the host system.

Entry of a RETURN should elicit the same response from the host, as would be expected if the terminal was directly connected to the host. Refer to the host's documentation for further details.

E. Return to Monitor Mode from Transparent Mode.

- 1. Press the terminal keyboard BREAK key.
- 2. If the baud rates selected for host and terminal differ, set the terminal baud rate to match that required by the Z-SCAN monitor, then enter RETURN. When the terminal baud rate is correct, the Z-SCAN returns to Monitor mode and displays the System screen.

3.8 TROUBLESHOOTING GUIDE

It may happen that the correct display does not appear on the terminal screen at the end of the verification procedure, or that the host system does not respond correctly. In most cases, this indicates a small oversight in connection or verification rather than a fault with the Z-SCAN or the terminal. Table 3-5 lists the most common symptoms of problems and their causes.

	Symptom	Cause	Solution
1.	Cursor does not appear and cap lock indicator does not illuminate when terminal switched on.	Terminal is not receiving power from the power outlet.	Use a live power outlet and check terminal power connection and switch.
2.	Cursor does not appear when terminal switched on.	Brightness control incorrectly adjusted.	Adjust control (small adjacent to baud rate switch on ADM 31 rear panel).

Table	7 5	Troubleebeeting	Cuida
lante	J-J.	Troubteshoorthy	GUIGE

	Symptom	Cause	Solution
3.	Terminal displays mean- ingless data as soon as it is switched on.	Z-SCAN was powered on before terminal and has interpreted switch-on of terminal as a baud rate syn- chronization signal.	Toggle Z-SCAN RESET switch, then enter RETURN. Check to see that the selected baud rate is supported by Z-SCAN (Table 3-4).
4.	Terminal displays mean- ingless data after RETURN entered.	The value set on the baud rate switch at the rear of the terminal corresponds to a rate not sup- ported by Z-SCAN.	Reset the baud rate switch at the rear of the terminal to a baud rate supported by Z-SCAN. Then toggle Z-SCAN RESET switch and enter RETURN.
5.	No display after RESET and RETURN entered.	Z-SCAN not correctly connected to terminal.	Check that cable links modem socket on terminal to terminal socket on Z-SCAN. Then toggle the Z-SCAN RESET switch and enter RETURN again.
		Z-SCAN's internal clock source jumper is in "external" position. (All units are shipped with this jumper in the "internal" position.)	Refer to Section 5.2.1 for instructions on altering clock jumper position.
6.	System screen not displayed correctly after entry of terminal selection number and return.	Terminal selection number incorrect. Terminal's option switch settings incorrect.	Repeat instructions of Section 3.6 using correct selection number. Refer to Appendix A and terminal documen- tation. Repeat instructions of Section 3.6 with correct settings.
7.	Host system does not respond to characters entered after Z-SCAN has displayed "host" message or responds with garbage.	Host incorrectly connected or in need of initialization. Host baud rate does not match Z-SCAN and terminal baud rate.	Check cable and refer to host system docu- mentation. Set terminal baud rate (Table 3-1), toggle Z-SCAN RESET switch, then enter return H.

Table 3-5. Troubleshooting Guide

3.9 CHANGING THE CPU

The Z-SCAN 8000 can emulate either the Z8001 or the Z8002 CPU, depending on the CPU type installed in the unit. The same monitor software PROMs and option jumper settings are used for either CPU type.

To change the CPU, proceed as follows:

- 1. Switch Z-SCAN power off by pressing the red power switch located on the front panel to the OFF position.
- 2. Remove the power cord from the socket on the rear of the unit.

--WARNING--

Failure to remove power from the unit prior to removal of the cover may result in exposure to hazardous voltages.

- 3. Remove the three screws and washers that secure the top cover of the unit, at the left, center and right of the rear panel, as shown in Figure 3-9. Store the screws and washers in a safe place.
- 4. Grasping the rear of the top cover, lift it upwards and move to the rear to release the cover from the top panel (Figure 3-9).

Figure 3-9. Top Cover Removal

5. Locate the two CPU sockets towards the front right of the Z-SCAN circuit board. Using a small screwdriver or IC removal tool, gently pry the installed CPU from its socket and place in conductive foam for safekeeping.

--CAUTION--

To avoid possible damage to NMOS components by static discharge, it is recommended that both the Z-SCAN chassis and the user are grounded through a high-impedance circuit while the CPU is changed. Do not use the power cord to effect a ground connection.

- 6. Install the alternative CPU in the correct socket. Care is required to avoid bending the pins. The 40-pin socket for the Z8002 is on the left, and the 48-pin socket for the Z8001 is on the right. The notch identifying pin 1 of the component must face towards the rear of the unit.
- 7. To replace the top cover, locate the front flange under the front bezel; insert the front edge of the top cover under the front bezel and swing the rear down. Make sure that the rear flange is inside the rear panel of the unit.

---WARNING---

Do not connect power to the unit until the top cover has been replaced and secured.

- 8. Replace the screws and washers removed in step three.
- 9. Reconnect the power cord to the rear of the unit and verify correct system operation by following the procedure of Section 3.6.

SECTION FOUR

Z-SCAN MONITOR TUTORIAL

4.1 INTRODUCTION

Z-SCAN monitor software is designed to utilize the facilities offered by a CRT (cathode ray tube) terminal. The entire CRT is used to present the required information, which gives a more complete picture of emulation status than would be possible on a printing terminal. This two-dimensional user interface also allows Z-SCAN to display, for user reference, all the commands that might be entered in a particular context.

These features make the monitor software very easy to use. The tutorial sessions in this section provide keystroke-by-keystroke and screendisplay-by-screen-display introduction to the Z-SCAN monitor software. As the keystrokes and displays differ slightly between the Z8001 and Z8002 CPUs, two versions of the same tuturial are presented.

The tutorials are not designed to present every feature of the Z-SCAN monitor in detail. Instead, they give a feeling for the way the software operates. Section 6 gives definitive information about each of the Z-SCAN monitor commands.

4.2 TUTORIAL HARDWARE REQUIREMENTS

The majority of the session requires no equipment other than a Z-SCAN unit and a terminal. There is no need for Z8000-based target equipment, because Z-SCAN can run emulations even when no target is connected. The final part of each tutorial requires a Zilog host system for demonstrating the Z-SCAN downloading facility. If you do not have a Zilog host system, you can still run the download demonstration if download software compatible with Z-SCAN exists on your host. For most hosts, this software is provided by the supplier of the Z8000 support software that operates on the host. If your host does not support the Z-SCAN download protocol, Section 7 provides the information required to write a suitable utility program. If you do not have a host system, the example programs can be copied from the Z-SCAN monitor ROM instead of being downloaded.

The parts of the tutorials that demonstrate the download facility do not depend on conditions set up in the previous sections of the tutorials. This means that you do not need to work through the first part of the tutorial script if you only want to use the part dealing with the Load command.

4.3 THE KEYBOARD AND USER CONTROLS

Figure 4-1 shows the layout of the Lear Siegler ADM 31 terminal keyboard. Before starting this tutorial, it is important to know the positions of the keys required and the symbols used in the text to designate these keys. This information is listed in Table 4-1. If your terminal is not an ADM-31, consult Appendix A and the terminal's documentation to find the corresponding keys on its keyboard.

Key Name	Key Symbol	Text Symbol	ADM-31 Keyboard Position
(letters)	A through Z	A through Z	Center left. Ensure cap lock key is lit.
(numbers)	0 through 9	0 through 9	Top left to center or numeric pad at right
return	RETURN	RETURN	Far right or center right
space	(blank)	space	Bottom
control-R	CTRL R	CTRL R	Press the control key and R simultaneously.
break	BREAK	BREAK	Top center right
less than	<	<	Bottom center – press shift key and comma simultaneously
greater than	>	>	Bottom center – press shift key and period simultaneously
cursor down		down	Bottom right
cursor up	A	up	Bottom right
cursor left	<	left	Bottom right
cursor right	>	right	Bottom right

Table 4-1. Key Names and Locations

Figure 4-1. Lear Siegler ADM 31 Keyboard Layout

NOTE

When using the Lear Siegler terminal with Z-SCAN, the indicator in the cap lock key at the far left of the keyboard must be illuminated; Z-SCAN ignores lower case letters except when they are used in file names. The cap lock or shift lock key must also be engaged on other terminal types.

Certain key symbols are set in boldface in the tutorial to aid in identifying error recovery points, (as described in Section 4.4.1). Enter these keys as you would normally.

Table 4-2 describes the four operations possible with the Z-SCAN front panel switches. Section 5.3 describes the effects of the TARGET/MONITOR, RESET and NMI switches.

Text Representation	User Action
Monitor RESET	1) Check that MONITOR/TARGET switch points to MONITOR 2) Push RESET switch up
Monitor NMI	1) Check that MONITOR/TARGET switch points to MONITOR 2) Push NMI switch up
Target RESET	1) Check that MONITOR/TARGET switch points to TARGET 2) Push RESET switch up
Target NMI	1) Check that MONITOR/TARGET switch points to TARGET 2) Push NMI switch up

Table 4-2. Z-SCAN Front Panel Switch Operation

Photographs of the Z-SCAN screen illustrate the sequence of operations. Each step in the sequence is separated by a comma and a space. Do not enter either. Table 4-3 gives examples of keying sequences as they are shown in the tutorial script and as they are actually entered.

Script	Keystrokes Required
A, 8, 0, B	A80B
>, <, <, 0, 1	><<01

QSRA

Table 4-3. Key Sequence Examples

4.4 TUTORIAL PRESENTATION

Q, S, R, A

Before beginning the tutorial, the Z-SCAN must be powered up and connected to a terminal, as described in Section 3.5, steps 1 through 8. If you have a Zilog host system, it must also be connected to the Z-SCAN in order to demonstrate the download feature. Host connection is detailed in Section 3.7, steps 1 through 7.

The tutorials are presented as a series of steps in tabular form. For each step, a sequence of operator actions is given. For the first few steps, you will probably want to enter each keystroke separately, examining its effect on the display before entering the next. As you become more familiar with the monitor, you will recognize common keystroke sequences that can be entered as a block. The Z-SCAN monitor has a type-ahead feature that allows it to accept new user input before it has finished processing previous input. Note, however, that type-ahead only operates when the monitor software is running, not when a user program is running during an emulation. You will also recognize that not all the keystrokes listed for each step are strictly necessary. Some redundant entries are included simply to illustrate their effect.

The accompanying text explains the effect of your input for each step in the script. In most cases, photographs of the screen highlight areas of interest. The text introduces a number of technical terms specific to Z-SCAN. The first appearence of each term is in boldface.

4.4.1 Error Recovery

It is quite likely that sometime during the tutorial you will make a keying error. Often this has no effect, because in many situations Z-SCAN ignores invalid input. You simply need to follow the incorrect keystroke with the correct one.

In other cases, an incorrect key can be accepted as valid input. When this happens, what you see on the screen at the end of a step is not the same as the photograph in the manual. It is important to backtrack and fix the incorrect parts of the screen before proceeding to the next step in the tutorial. To make this easier, error recovery points are identified in the script. If, at the end of a step, the display is incorrect, proceed as follows:

- 1. If the cursor is not inside the parentheses on line 23 of the display, enter RETURN. If this does not move the cursor to line 23, try a second RETURN, BREAK or monitor NMI.
- 2. If the screen name at the left of the line in which the cursor now rests is not that shown in the most recent photograph, call up the correct screen by entering the first character of its name.
- 3. Re-enter tutorial input from and including the last boldface keystroke in the script to the end of the current step.
- 4. If the display is still incorrect, try to correct it by using unscripted key sequences. Make sure that the cursor is in the position shown on the photograph at the end of the sequence.
- 5. Should this fail to correct the error, the safest thing to do is to restart the tutorial from step 1. It should seldom be necessary to restart, especially as you become more familiar with the Z-SCAN commands.

4.5 TUTORIAL SCRIPT FOR Z8002

The Tutorial Script for the Z8002 begins on the following page. If your unit has a Z8001 installed, follow the tutorial of Section 4.7. Be sure not to type the commas or spaces shown throughout the key sequence.

4-5

Step Key Sequence

1. Monitor RESET, RETURN

Z-SCAN is RESET. All information about the previous state of the hardware and software is lost. The monitor software uses the RETURN character to set up a baud rate generator, then displays a menu of the CRI terminal types supported by the software. The cursor (a steady or flashing bright square on most terminals) appears in the center of the bottom screen line.

2. Terminal selection digit

To configure the monitor for your terminal, enter one of the digits listed in the menu. If your terminal is not one of those listed on the menu, consult Appendix A and the documentation for the terminal. Pick a digit that corresponds to a protocol supported by the terminal.

The CRI screen is cleared, and the System screen is displayed. The cursor rests on the name of the screen, which is in parentheses on line 23, part of the menu area. This screen gives information about the status of the Z-SCAN hardware, for example, the installed CPU type and software revision level. The displayed baud rates and revision level may differ from those shown in the figure, but the CPU type must be the same. If it is not, follow the alternative tutorial of Section 4.7. If the display is corrupted, the digit entered in step 2 is incorrect and you must repeat the tutorial from step 1.

Figure 4-2. Terminal Selection Screen

Z-SCAN DOOR ZB082 NONITOR Version 3.8 terninal baud rate: 9688 best baud rate: 220 status_to_target: internal_op (hates Screen) ling (Execution Susten Henory_10 Resources

Figure 4-3, 78002 Monitor System Sorean

3. RETURN

4. M

Step

Key Sequence

The single-keystroke **commands** you are allowed to enter appear as upper-case letters in the words outside the parentheses in the menu area. The command M calls up the **Memory_io** screen. Again, the cursor rests on the name of the screen, which appears on line 23 in the menu area.

Among the valid commands shown in the menu area is S. Entering the command **reactivates** the system screen. A third screen, the Re-

sources screen, can be called up by entering R. As usual, the cursor

rests on the screen name, and legal

commands are listed in the rest of

the menu area.

Figure 4-4. Z8002 Monitor Memory io Screen

. South and an and an

Figure 4-5. Z8002 Monitor Resources Screen

5. S, R

In step 5, you went from one screen to another by way of the System screen. However, it is usually possibly to move from one screen to another with a single keystroke. The Execution screen is **activated** by the command E.

One display, the Trace screen, is accessible only from the Execution screen. Notice that there is no menu area because this screen does not support a variety of commands. It is dedicated to providing a detailed picture of program execution.

Figure 4-7. Z8002 Monitor Trace Screen

7. ľ

5/27/81

6. E

Step Key Sequence

Commentary

8. REFURN, H

Enter a REFURN to exit from the Trace screen to the Execution screen, then enter H. The Host command selects **Transparent** mode, allowing the terminal to communicate with a host system through Z-SCAN. You can enter the command even if no host is connected.

Figure 4-8. Host Screen, Transparent mode

Step Key Sequence

Iransparent mode is terminated when the BREAK key is entered. If the System screen does not reappear, consult your terminal documentation -you may have to press another key at the same time as break, or the key may be disabled by an option setting inside the terminal. A monitor reset can be used to end Iransparent mode, but its use is not recommended because it destroys any information that was set up inside the Z-SCAN.

10. R, A

9. BREAK

So far the cursor has remained at the bottom of the screen except when the Host command was used. All of the user-modifiable fields on the Z-SCAN screens are outside the menu area. The fields are divided into groups, known as subscreens. Each subscreen is associated with a particular command and can be entered by keying the capital letter in the command name as it appears in the menu area. Note that as soon as you enter the A command, the first menu line changes to reflect the selected command, and the cursor moves to the top left field in the mAp subscreen.

Figure 4-9. Cursor in mAp Subscreen

11. RETURN, B

To move the cursor back to the menu area, enter a RETURN. The menu display does not change because the mAp command is still active. It is altered when a new command, Break, is activated. The cursor moves to the top left field in the Break subscreen.

Step Key Sequence

Commentary

12. REFURN, Q, S, R, A

You should now be comfortable with activating screens and commands. The only new command in this sequence is Quit. It deactivates the current command and modifies the menu to show the names of the other screens.

13. RETURN, S, R, A

It is not necessary to use the Quit command before moving to another screen. You can enter the initial letter of the new screen name even if it is not currently listed in the menu area.

14. right, right, right left, left, left, left Most subscreens consist of more than one field. Once the cursor is in a subscreen, it can be moved to the other fields in the same subscreen by using the cursor control keys. If the cursor left key is entered while the cursor is in the leftmost field,the cursor **wraps around** to the rightmost field in a subscreen line.

Figure 4-11. Horizontal Cursor Movement

12

15. right, down, down, down, up, left, right

Key Sequence

Step

The same wrap-around applies in the vertical direction. Note that when there is only one field on a particular line of a subscreen, the horizontal cursor movement keys cannot move the cursor out of that field. The cursor keys can never move the cursor out of the active subscreen.

Inst_count 81 Hait_states 8 Break pulse_8_break Ĥ status count Ol instr_fetch1 disable address read space address system word nprotect reGister PC tpace utdrett SC SC Pert Guit Nait_states Resources Screen Break Inst.count nAp Command) refister – Peek C în

Figure 4-12. Vertical Cursor Movement

16. RETURN, RETURN

The RETURN key moves the cursor back to the menu area. Because the command remains active, a second RETURN moves the cursor to the top left field in its subscreen: there is no need to re-enter the command name.

17. >, >, <, 0, 1, space G, F, H, CTRL R, > Each of the six fields on the first line of the mAp subscreen corresponds to one of the Z8002's address spaces, and each has just two possible values. In the default state, an underbar is displayed, indicating that the 8K bytes of mappable memory will not respond to CPU accesses made to a particular address space during an emulation. In the alternative state, a two-letter abbreviation for the name of the address space (for example, SC for System Code) shows that the mappable memory will respond. You can step forward or backward through the possible values with the > and <keys or you can access them directly by entering 0 for the first choice and 1 for the second. Alternatively, space and F select the default and final values. CIRL R restores the field to the value it held when the cursor entered it. Other printable characters that are not hexadecimal digits do not affect the field.

Figure 4-13. Enabling Mappable Memory

18. RE JURN, B, 2

Key Sequence

Step

The emulation you are going to run requires a **breakpoint**, so you must enable the breakpoint logic by setting the first field of the Break subscreen to "enable*". This tells the logic to search for a simultaneous match in both the address field and the various status fields.

Figure 4-14. Enabling Break Logic

Figure 4-15. Setting Break Address

The breakpoint address is not correct and must be changed. The address field contains four hexadecimal digits and can hold any value between 0000 and FFFF. Use > and < to move the cursor within the field, and enter new hex digits to change the value. You have now set a breakpoint that will be triggered when the first word of an instruction is read from system code location 0010.

20. M

21. F

Commentary

Move to the Memory-io screen. When it is displayed, notice that the top three lines are blank.

Fill is listed as a valid command in the menu area. As soon as the command is activated, the cursor moves to the first field of the Fill subscreen, which appears at the top of the screen.

After the parameters have been set up, the command must be executed by entering a RETURN. Before execution starts, the cursor moves to the bottom of the central window area. The message "DONE" is displayed when execution is complete.

Figure 4-16. Default Fill Command Display

target: space SC begin_address 0000 end_address IFTF string (Nemory_is Screen (Bill Compand) Ouit Compare Display eXamine Fill moVe refut Write Load sefud

Figure 4-17. Execution of Fill Command

5/27/81

22. left, 1, F, F, F, down A, 8, 0, B

23. RETURN

24. D, RETURN

Key Sequence

The Z-SCAN Display command is used to look at the contents of memory. In order to look at the bottom of system code memory, you do not need to change the default parameters that appear at the top of the screen when the command is activated, so execute the command immediately. Addresses appear at the left of the screen, data in the center and at the right is an ASCII representation of the same data. Neither A8 nor OB corresponds to a printable character. Periods are used to show this. The asterisks are delimiters.

type word source: space SC address 8...... 8...... 8..... \$..... ····· B..... 8...... 8...... B..... B..... ····· 8...... (Nemory_is Screen Display Command) - Ouit Compare Display eXamine Fill move refind Hrite Load seMid

Figure 4-18. Display with Default Parameters

25. down, up, RETURN

After the Display command has filled the window area, the cursor rests at the bottom right of the screen. You can enter cursor down to display the next block of memory or cursor up to display the previous block. The command is terminated when RETURN is entered.

4-17

Step Key Sequence

Commentary

26. RETURN, left, 3 RETURN, RETURN The command remains active as long as its name appears inside the parentheses on the menu line, so a second RETURN moves the cursor back into the parameter subscreen. Set the type field so that memory is displayed as **disassembled** nonsegmented Z8002 instructions.

• • • • • • • •	and and a second se Second second second Second second	a ya shekar		· -• •/*	ny te Gaarin an S	t ta a	i de contractorio Se contractorio	e. Ha vite	.
	source: space SC	address	0000	type	nseg				
	5000 ACR 500 ACR		INCB INCB INCB INCB INCB INCB INCB INCB		412 412 412 412 412 412 412 412 412 412				
	012 - 9300 014 - 9300 014 - 9300 015 - 9300 016 - 9300 016 - 9300 016 - 9300 017 - 9300 017 - 9300 017 - 9300		INCB INCB INCB INCB INCB INCB INCB		412 412 412 412 412 412 412 412 412 412				
	(Nemory_in Scree Compare Display	n B isplay eXamine	i Command) Fill moVi	refid	Hrite La	Quit od seMd			

Figure 4-19. Disassembled Memory Display

Figure 4-20. Set-up of eXamine Command

27. X, right, 1, F, F, C RETURN

The eXamine command allows you to look at and, if desired, modify the contents of memory. Like Fill and Display, it has a private subscreen. The first location you need to examine is the word at system code location 1FFC. Its current contents are displayed when the command is executed, and you are prompted for a new value to replace them.

5/27/81

29. up, RETURN

Commentary

28. 5, E, F, <, 0, 8, 1, 8 down

This step replaces the two INCB instructions at the top of mappable memory with an unconditional jump to location 0018 (opcode 5E08 0018, mnemonic JP %0018). The < key can be used to backspace over incorrect input. When sufficient digits have been entered to fill the open location, the new value is stored and the next location is opened automatically. The cursor down key opens the next location immediately, storing any digits that have been entered. The data seen in location 2000 may vary because no memory responds at that address.

Cursor up reopens the previous location, showing that the two digits entered in the previous step have been stored right justified in a

field of zeros.

Figure 4-21. Modification of Memory Contents

Checking Memory Contents Figure 4-22.

30. C, left, 1, 0, 0, 0 left, 1, RETURN

Key Sequence

Just to check that everything is set up correctly, the Compare command is used to find the differences between the contents of the top and bottom 4K byte blocks of mappable memory. The byte count field for this commands is, like all Z-SCAN monitor numeric fields, hexadecimal (1000 hex = 4096 decimal = 4K). When the command is executed, it should reveal that just four bytes differ between the top and bottom halves of the memory. If it shows anything else, you have probably made a mistake somewhere and not corrected it. Type R, A or, if the cursor is at the bottom right of the screen, RETURN, R, A and repeat the tutorial from step 17.

BOOM DIFFERENCES MORA DIFFERE

Figure 4-23. Use of the Compare Command

Step

31. E

Step

Key Sequence

The program in the mappable memory consists of 4,094 (decimal) INCB instructions and an unconditional jump. It can be run from the Execution screen. The default values of the Program Counter (PC) and Flag and Control Word (FCW) are suitable for running this first emulation. The emulation will run in system mode because bit 14 of the FCW is set. The Z8002 CPU always runs in nonsegmented mode. It ignores bit 15 which selects segmented mode and is also set in the default FCW value provided by the monitor.

The Next command steps through the number of instructions displayed in the Instruction count field at the top right of the screen. In this case, the count is one. After the single instruction has been executed, the whole screen is redisplayed, updating the emulation status. Three registers are affected: RHO, the high byte of RO has been incremented by 12 (decimal); the PC has moved to next instruction and bit 15 of the FCW is now clear because of it cannot be set on the Z8002. The top instruction and register values reflect the state of the program after the emulation, the bottom values the state before.

4-21

32. N

Key Sequence

Commentary

33. RE FURN

Now that the Next command is active, it may be repeated by entering return. Again, the PC value changes and RHO is incremented.

The Go command starts an emulation which does not stop until a break condition is encountered. Your program should **trigger** the break-

point logic when an instruction is

fetched from location 0010. The

breakpoint is honored after the

instruction has been executed so

that the emulation ends with the Program Counter pointing to the

instruction at location 0012. Note that the termination message is

different from that of the Next

command.

Figure 4-25. Second Instruction Step

Figure 4-26. Running to Breakpoint with Go Command

34. G

4-22

5/27/81

35. I

1

36. down

Emulations can also be run from the Irace screen, which disassembles each instruction before it is executed. The instruction which appears in the center of the screen is the first to be executed when emulation starts. The bottom of the screen displays register and memory contents. The function of these fields will be explored later.

Entering cursor down results in the execution of the number of instructions given in the count field at the bottom left of the screen. PC and FCW values are given for each instruction executed, and the first instruction executed is flagged with an asterisk in column 1. The remaining registers are not redisplayed until all the instructions have been executed. The FCW values at the right of the screen show that the value in RHO has overflowed and become negative.

Figure 4-27. Use of the Trace Screen

Step Key Sequence

37. RETURN, G

Return from the Trace screen to the Execution screen and start another emulation with the Go command. This time the breakpoint is not encountered - the program loops in the address range 0018 to 1FFC, avoiding location 0010. While the emulation is running, the cursor rests in the blanked return message line and the terminal keyboard is disabled.

Figure 4-28. Indefinite Emulation with Go Command

Figure 4-29. Manual Break with NMI Switch

38. monitor NMI

The monitor NMI signal acts as a **manual break** request during emulations run from the Execution screen. The emulation terminates when execution of the current instruction is complete. The break address and register contents you see will probably be different from those in the photograph, but this does not matter.

	Step	Key	Sequence	
--	------	-----	----------	--

39. M, X, right, space CIRL R, O, O, 1, 8 To explore further facilities offered by Z-SCAN, an instruction which reads and writes memory is required. Use the Memory_io screen eXamine command to insert an instruction at location 0018. Two of the keystrokes in this sequence are redundant. The space restores the address field to its default value and CTRL R cancels any changes made since the cursor entered the field.

The instruction is "INC %0010,#16"

(increment by 16 the word at loca-

tion 0010). It has a two-word op-

code, 690F 0010.

40. RETURN, 6, 9, 0, F, 1 0, RETURN

41. C, BREAK, RETURN, left O, RETURN Check memory contents again by using the Compare command. Extra keystrokes in this sequence show that the BREAK key moves the cursor back to the menu area without executing the active command and that the monitor does not allow you to enter an illegal value in a numeric field: the previous value of the field is restored. When the command is executed it should show eight differences.

Figure 4-30. Insertion of New Instruction

source: space SC target: space SC	address 1 000 address 0000	count 1000	
SOURCE NOOR CONTENTS	TARGET ADDR CONTENTS		
1818 M8 1819 M8 1819 M8 1818 M8 1818 M8 1876 M8 1876 M8 1877 18	DAIA 69 DAIA DF DAIA DA DIA DA DFTC NO DFTC NO DFTC NO DFTC DA		
Need DIFFERENCE (Newsyn_10 Scr Campore Displ	ES een Damparo Cannand) ay eXaaine Fill nevi	Guit refid Hrite Load selld	

Figure 4-31. Check of Change with Compare Command

Step

Key Sequence

Commentary

42. D, RETURN, RETURN

Display disassembled memory to show the new instruction at location 0018.

Figure 4-32. Display of Change

Figure 4-33. Setting Peek Parameters

43. R, P, right, >, >, 1, RETURN

The added instruction modifies the contents of location 0010 each time it is executed, so it is desirable to know how they have changed after each emulation is run. Z-SCAN displays the contents of selected locations on the Execution and Trace screens. The monitored addresses are set up by the Peek command on the Resources screen. Modify the first of the three addresses to 0010.

44. E, G

45. monitor NMI

Now call up the Execution screen and start an emulation. The top line of the first Peek field shows the contents of word locations 0010 through 0016 as they were before the emulation started.

You might think that this emulation should stop with a trigger break, because location 0010 is being read by the new instruction. The trigger logic does not fire because the break parameters are set up for an instruction fetch, not a data read, so the emulation must be terminated with a manual break. Looking at the Peek memory areas, you see that the contents of location 0010 have not changed during the emulation. Remember that the mappable memory has been set to respond only to system code space accesses. This explains why the system data accesses made by the new instruction do not affect it.

Figure 4-34. Second Manual Break

46. R, B, up, left, >, >,

Step

5/27/81

Key Sequence

F, <, space, 1, 2, 9, RETURN To fix these two problems, leave the Execution screen, which, though it displays data about mappable memory and the break condition, does not allow you to modify the parameters. Use the Resources screen Break command to set up a breakpoint on a data memory request. This is one of 16 possible values in the bus cycle type field. As usual, you can select a choice either by stepping through the table of possible values or by entering a number that corresponds to the required choice. The space character selects the default value.

The second field in the mAp subscreen determines whether or not the mappable memory responds to system data accesses. Entering a 1 sets the field to "SD". The mappable memory now responds to two types of accesses. For this reason, it is not necessary to modify the memory space parameters of Peek. System code location 0010 is the same memory word as system data location 0010.

Figure 4-35. Modification of Break Parameters

Figure 4-36 Modification of mAn Parametere
Commentary

48. G, A, B, RETURN

The last action on this screen is to set up a new starting value for RO with the reGister command.

Start a new emulation. This time, the trigger fires almost immediately, and when the execution screen is redisplayed, you see that the

contents of location 0010 have

indeed changed from A80B to A81B.

The Program Counter points to location 001C, the word after the in-

struction that caused the break condition to be met. The condition

flags in the FCW reflect the fact that location 0010 holds a negative

2's complement number.

Figure 4-37. Modification of RO Value

Figure 4-38. Trigger Break on Data Read

49. E, G

Commentary

50. R, B, down, left, 5 RETURN Associated with the breakpoint logic is a **pass counter**. If you load it with 51 hex (that is 81 decimal), the program loop is executed that number of times on the next emulation.

Figure 4-39. Adjusting Pass Counter

Figure 4-40. Break After Multiple Passes

51. E, G

After the emulation begins, there is a short delay before the breakpoint is encountered the number of times programmed. When the emulation ends, location 0010 has been incremented by 510 hex (51 x 10), showing that the correct number of passes has been made.

Commentary

52. R, A, up, 2, RETURN, B, space, RETURN

The INC instruction writes memory and can be used to show the Z-SCAN's write protect feature. To do this, disable the breakpoint and enable a write protect break.

The next emulation terminates with a

message warning of a write protect violation. Although the offending

instruction has been executed, the

contents of mappable memory remain

unchanged and the data that the CPU

attempted to write into memory is

lost.

 Mult_states 0
 Inst_count 01

 underess
 St SD man
 Inst_count 01

 underess
 St SC man
 Inst_count 01

 underess
 Inst_count 01
 Inst_count 01

 underess
 Inst_count 01

Figure 4-41. Selection of Write-Protect Break

Finure 4-42 Rreak After Violation

53. E, G

5/27/81

Commentary

54. R, A, up, space, RETURN

Clear the write protect break.

55. B, 1, down, left, space, left, 1, F, F, A, RETURN Now select a break on the first occurence of either any reference to location 1FFA (in any address space) or any word read from system data memory. "enable+" designates this mode of operation.

Return to the Execution screen and run an emulation. It stops at location 1FFC because the address of the previous instruction has fired the trigger. The contents of location 0010 are unchanged, indicating that the instruction at location 0018 was not executed during the emulation.

Figure 4-43. Set-up of Multiple Condition Break

Figure 4-44. Break on Address Match

5/27/81

57. T, down

A trace terminates after only two instructions have been executed because a trigger is caused when the instruction at location 0018 performs a data memory read. Emulation stops as this event has precedence over the step count of 000B (11 decimal) instructions. A break message replaces the prompt that normally appears on the bottom screen line. The Peek display shows that the contents of location 0010 have changed.

Figure 4-45. Data Read Break on Trace Screen

4 ----

4-33

4.6 HOST SYSTEM USE WITH Z8002

The tutorial script continues on the next page. If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8002 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed directly to step 64.

58. RETURN, R, RETURN, R, A, 1, right, 1, right 1, right, 1, right, 1, right, 1, RETURN

directly to step 64.

The example program that is run in this part of the tutorial generates accesses to all six Z8002 memory spaces. Select the Resources screen and set up the mappable memory to respond to all types of access: code, data and stack references in both system and normal modes.

NOTE

If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8002 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed

Figure 4-46. Enabling of All mAp Address Spaces

4-35

59**.** H

5/27/81

Before you can use the Z-SCAN download command, you must have a Z8002 program to load. Your host's utilities and support programs can be used to create it. Type H to enter Transparent mode.

60. Bootstrap your system

Unless it is already up and running, load the operating system of your host. For Zilog PDS 8000 systems, press the reset button on the front panel of the system, then enter REIURN at the terminal keyboard. For ZDS/1 systems, press wait, then enter two returns. An operating system diskette must be present in drive zero or, for hard disk systems, the disks must be spinning. If you have a non-Zilog host, follow the bootstrap procedure described in its system manual.

61. Enter, assemble and image the example program

Figure 4-47 shows an example program that is compatible with Zilog's Z8000 PLZ/ASM assembler, version 2.02 or later. The commands needed by the Zilog RIO operating system to create it are listed in Figure 4-48. Assemblers on non-Zilog hosts probably require changes in the syntax of the source. Changes are acceptable provided that the memory image of the final program corresponds to the information at the left of Figure 4-47. Refer to the host documentation for more information. The program appears with expanded commentary in Appendix B of this manual.

Return to the Z-SCAN monitor environment.

С	ОВс	J CODE	1 2 3 4 5	EXAMNSG MODULE \$SECTION EXAMNSG_P ! Make imaging easy \$REL %0000 INTERNAL NEW_STATUS_AREA: ! Most entries unusec
02	4000	002A'	6 7 8	\$REL %0002 ! Reset status RESET ARRAY [2 WORD] := [%4000, INIT] \$REL %0008
08	4004	002A'	9 10	PRIV_VECTOR ARRAY [2 WORD] := [%4004, INIT] \$REL %000C ! System call
00	4000	003C'	11	SC_VECTOR ARRAY [2 WORD] := [%4000, BREAKER \$REL %0014 ! Non-Maskable Int.
14	4008	002A'	13	NMI_VECTOR ARRAY [2 WORD] := [%4008, INIT]
18 1C 24 28	0000 0000 0000 0000		15 16 17	PASS, LAST WORD := 0 ! Data and stack area NML_STK ARRAY [4 WORD] := 0 SYS_STK RECORD [ID OLD_FCW OLD_PC WORD] :=
2 A			18 19	GLOBAL INIT PROCEDURE ! Set up control reg' ENTRY ! and both stacks.
2 A 2 E	7600 7D0D	0000 '	20 21	LDA RO,NEW_STATUS_AREA LDCTL PSAP,RO
30 34	210F 7600	002A' 0024'	22	LD R15,#SYS_STK + SIZEOF SYS_STK LDA R0,NML_STK + SIZEOF NML_STK
38 3A 3C	7D0F 7F12		24 25 26	LDCTL NSP, RO SC #%12 ! Trap into BREAKER END INIT
3C			28	INTERNAL BREAKER PROCEDURE ! Demonstrate bus
3C 3E 42 44 46 48	A9F5 670E E604 7D02 A30E 7D0A	0026.1	30 31 32 33 34 35	INC R15,#SIZEOF SYS_STK ! Fix up system stack BIT SYS_STK.OLD_FCW,#14 ! Check previous mode JR Z,ELSE_ ! If mode was system LDCTL R0,FCW ! set normal mode by RES R0,#14 ! clearing bit 14 LDCTL FCW,R0 ! of FCW;
4 A 4 C 5 0	E808 2101 3D12	ABCD	36 37 38	JRF1_! else do 1/0.ELSE_: LDR1,#%ABCD! Dummy port address.INR2,@R1! I/O read
52 54 58	3F13 3B05 3B37	1234 1234	39 40 41 42	OUT@R1,R3! I/O writeSINR0,%1234! Special I/O readSOUT%1234,R3! Special I/O writeFI! Memory op's follow:
5C 62 64 66 6E	7602 2124 93F4 29F0 57F0 3304 7FEF	0018' 0018' FFAC	42 43 44 45 46 47 48 49	LDA R2,PASS ! Internal operation LD R4,@R2 ! Data read PUSH @R15,R4 ! Stk write INC @R15 ! Stk read, stk write POP PASS,@R15 ! Stk read, data writ LDR LAST,R4 ! Code write SC #%EF ! Trap sequence
70			50 51 52	END BREAKER

Figure 4-47. Z8002 Program Example

PYRIGHT, ZILOG, INC. 1979 All rights reserved. No part of this software may be copied or used without the express written consent of ZILOG, INC. URSDAY, NOVEMBER 1, 1979 0 REL 2.2 ATE 810424 IDAY, APRIL 24, 1981 ;SET TABSIZE=4;EDIT EXAMNSG.S IT 2.1 W FILE PUT AMNSG MODULE \$SECTION EXAMNSG_P ! Make imaging easy ! \$REL %0000 TERNAL SC #%EF ! Trap sequence ! D BREAKER D EXAMNSG IT · UIT 8000ASM EXAMNSG 000ASM 2.02 ss 1 complete 0 errors sembly complete MAGER EXAMNSG.OBJ (\$=0000 EXAMNSG_P) {0000 0080} E=002A 0=EXAMNSG AGER 2.0 BYTES LOADED XTRACT EXAMNSG CORD COUNT = 0001 RECORD LENGTH = 0200 NO. OF BYTES IN LAST RECORD = 008 TRY POINT = 002A LOW ADDRESS = 0000 HIGH_ADDRESS = 0080 STACK SIZE = 000 GMENTS: 00 007F

NOTE If the file EXAMSEG is created on a diskette, the record length shown by the EXTRACT command will be 0080.

Figure 4-48. Z8002 Program Creation with RIO

4-39

Step Key Sequence

63. M, L, down, E, X, A, M, N, S, G, RETURN

Set up and execute the Memory-io screen Load command. The program name is EXAMNSG (nonsegmented example), and it is to be loaded into system code memory. As the file is loaded, an incrementing number field appears toward the top left of the screen. This is a count of the number of records transferred from the host to target memory. Each record carries 30 or fewer bytes. When the loading is complete, the entry address of the program is displayed. If any error message appears, enter H and check the following:

- o Does the program file EXAMNSG exist?
- o Is its name correct?
- o Does the download utility LOAD
 exist?

If no message appears when the command is executed, the host has not responded to the Load command sent by Z-SCAN. Terminate the load by entering BREAK, then type H and establish why this happened. When you have fixed the fault, return to the Z-SCAN monitor environment and type M, L, return.

1990 - 1990 - 1990 1990 - 1990 - 1990 - 1990 1997 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19	n 2019 aan taa ka k	and the second	e tef tite	ul e ser e la la	an a	
	target: space SC file_name EXMMISG	J				
	entry politi geza					
er e de	(Nemory_is Screes Ba Compare Display eXamine	d Command) Fill move ref	d Hrite Lood	kit selld		

Figure 4-49. Loading of Z8002 Example Program

Step	Key Sequence	Commentary

If you have completed the four previous steps, skip the next one.

4-41

64. M, V, 6, right, 5, F, 8, O, right, O, O, 7, O, RETURN

A copy of the example program shown in Figure 4-47 exists in the Z-SCAN monitor ROM. Use the Memory_io screen moVe command to copy it into the mappable memory.

Down Ummers.is Screen med Command) Ummers.is Screen med Command) Compare Display eXamine [1]] polye refind to the Load seffet

.

Figure 4-50. Copying Program with moVe Command

,

Commentary

65. R, G, space, left
 4, O, O, O, left, O, O,
 2, A, REJURN

Set up the PC and FCW so that the program starts at location OO2A in system mode. At the same time, restore RO to its default value.

n an					i							and the second se
lia i t_s t	ates	•			Ine	it_coun	n 81					• · · · · · · · · · · · · · · · · · · ·
space address		SC SD S BORR unprate	S NC NO	MS	eni adi rei	ublet iress ud	Brea puise_& 1FFA system	k _break word	statu count data_	1 01 ar e q		
20 00000 28 00000	21 5050 29 5060	R2 0160 010 010	72 711 711	Fe R4 0000 R12 0000	Gister R5 NGQ R13	R6 9000 814 9000	R7 9000 R15 9000		PC DE2A PSAP Good	r (1) 4 4 0 1159	-))	
Port			1 2 3	ace add SC SC SC	fress 9818 9808 9808						•	
(Res. Trea	wrces L In	Screen 11_Eount	r elle	inter Co reGist	er Pe	ek i		Buit FØ				

Figure 4-51. reGister Initialization

Figure 4-52. Set-up of Peek Parameters

66. P, 1, right, 0, 0, 1, 8, down, 0, 0, 1, C, left, 5, down, 2, right, 0, 0, 2, 4, RETURN The program has data, normal stack and system stack areas. Set up the Peek fields to monitor their contents before and after each emulation is run.

Step	Key Sequence	Commentary
67. В, 2 ир, RETU	, up, left, space, left, O, O, 2, A, IRN	Finally, set up a breakpoint on the first instruction of the initiali- zation routine of the example pro- gram.
68. E, C	à	The Z-SCAN is now ready to run the

The Z-SCAN is now ready to run the program. There is a trigger break after the first instruction is executed. At this point, the only change is in the PC value.

Figure 4-53. Emulation and Breakpoint

Figure 4-54. Tracing Initialization Routine

69. T, 4, down, 1, down

Trace the next five instructions, entering numbers to change the default Trace step count. At the end of the sequence, both system and normal stack pointers have been set up, changing the displays for the two **stack areas**. The final instruction, a System Call, pushes three words of data onto the system stack, producing a further change. The data also appears in the third Peek area.

Step Key Sequence

70. 1, 0, 0, 0, BREAK

A large number of instructions can be traced with a single command. Let the display run for awhile and observe that the program loops, alternately setting and clearing bit 14 of the FCW to move in and out of system mode. Tracing can be stopped at any time by entering the terminal break key. The redisplayed memory content fields show that the contents of the data area and of both stacks have changed.

			and the second	
005C 7682 0018 0050 2124 0052 93F4 0055 57F0 0018 0056 57F0 0018 0056 57F0 0018 0056 57F0 0018 0056 76F5 0052 644 0044 7082 0040 7084 0040 7084 0040 7084 0040 2124 0052 93F4 0040 7084 0040 7085 0052 93F4 0052 93F4 0052 57F0 0010 0052 93F4 0052 93F4 0052 93F4 0052 93F4 0052 93F4 0055 57F0 0010 0055 57F0 0010 0055 57F0 0010	LDA R2 LD R4 PLSH PRIS IMC PRIS IMC R15 BIT 10026 IMC R15 BIT 20026 RES R0 LDCTL R0 RES R0 LDCTL R0 RES R0 LDCTL FCH RES R0 LDCTL FCH R15 IMC R15 IMC R15 BIT 10026	19918 eR2 R4 91 eR15 R4 96 914 2004 CC FCH 914 R8 2005 C 20018 R4 91 91 84 91 91 84 91 91 91 91 91 91 91 91 91 91 91 91 91		

Figure 4-55. Trace of Main Routine

Hait_states	â	Inst_count 81	
aftp space address	SC SD SS NC ND NS B B000 unprotect	reak enable‡ pulse_&_bre address BB2A read system wo	ak status count Bl rd instr_feichl
addr in 1982E 7D 1985E 7F	struction one 1900 LDC EF SC	nanic TL PSAP R0 \$%EF	
sp add 1 SD 961	dr memory contents 18 B51E B51D 9666 9669 9664 9663 8666 9666	R8 R1 R2 R3 R 8000 819 8010 8898 B 1294 ABCD 8818 8888 B	4 R5 R6 R7 510 8088 8898 8899 983 8888 8898 8898 12 R13 R14 R15
2 115 001	1C 9999 9999 9999 9999 9993	8686 8888 8888 8888 8888 8	868 8688 8688 882A 868 8688 8688 882A 868 8688 8688 882A 858 MSP
3 55 👪	124 7FEF 4828 8878 7688 7FEF 8888 8884 7688	962E 4888 966E 4888	9898 9824 9888 8824
Return ne	SEASE TRICCER BOFAK AT:	642E	

Figure 4-56. Trigger Due to Target Reset

5/27/81

71. RETURN, G, target RESET

Run the program. The emulation can be terminated with a target RESET because the status loaded from locations 0002 and 0004 in response to the input makes the CPU execute the instruction on which the breakpoint is set. The initial conditions of the program are not fully restored by the RESET because the data and stack areas may no longer be zero. 72. RETURN, target NMI

Key Sequence

A target NMI also terminates an emulation. Again, the initialization routine is entered in response to the input. The cause of the entry can be distinguished because the reset and NMI flag register values differ.

Figure 4-57. Trigger Due to Target NMI

Set-up of Stack Write Break Figure 4-58.

73. R, B, down, 1, down, 1, left, A, RETURN

This tutorial does not explore the full possibilities of the program, which can generate a wide variety of bus cycle types in both system and normal modes. Experiment with it if you want to explore the Z-SCAN's features in more depth. As a start, set up a breakpoint on a system stack write of data pattern 002A.

Step

This last emulation can run for as long as four seconds before the instruction at address 0064 writes the data pattern matching the programmed break condition. Z-SCAN may not stop the emulation before the next instruction is executed because the data match is detected only at the end of the last bus cycle of the INC instruction. Because of this, the next instruction, POP, is executed before the emulation terminates. This leaves the PC pointing to the LDR instruction.

Figure 4-59. Break Following Stack Write

法法律

74. E, G

5/27/81

4.7 TUTORIAL SCRIPT FOR Z8001

The tutorial script for the Z8001 begins on the following page. If your unit has a Z8002 installed, turn back to the script in Section 4.5. Be sure not to type the commas or spaces shown throughout the key sequence.

1. Monitor RESET, RETURN

Z-SCAN is RESET. All information about the previous state of the hardware and software is lost. The monitor software uses the RETURN character to set up a baud rate generator, then it displays a menu of the CRT terminal types supported by the software. The cursor (a steady or flashing bright square on most terminals) appears in the center of the bottom screen line.

2. ferminal selection digit

To configure the monitor for your terminal, enter one of the digits listed in the menu. If your terminal is not one of those listed on the menu, consult Appendix A and the documentation for the terminal. Pick a digit that corresponds to a protocol supported by the terminal.

3. RETURN

The CRT screen is cleared, and the System screen is displayed. The cursor rests on the name of the screen, which is in parentheses on line 23, part of the menu area. This screen gives information about the status of the Z-SCAN hardware, for example, the installed CPU type and software revision level. The displayed baud rates and revision levels may differ from those shown in the figure, but the CPU type must be the same. If it is not, follow the alternative tutorial of Section 4.5. If the display is corrupted, the digit entered in step 2 is incorrect and you must repeat the tutorial from step 1.

Figure 4-61. Z8001 Monitor System Screen

4. M

The single-keystroke **commands** you are allowed to enter appear as upper-case letters in the words outside the parentheses in the menu area. The command M calls up the **Memory_io** screen. Again, the cursor rests on the name of the screen, which appears on line 23 in the menu area.

Commentary

the menu area.

Figure 4-62. Z8001 Monitor Memory io Screen

Figure 4-63. Z8001 Monitor Resources Screen

5. S, R

In step 5, you went from one screen to another by way of the System screen. However, it is usually possibly to move from one screen to another with a single keystroke. The Execution screen is **activated** by the command E.

One display, the Trace screen, is accessible only from the Execution screen. Notice that there is no menu area because this screen does not support a variety of commands. It is dedicated to providing a detailed picture of program execution.

Figure 4-64. Z8001 Monitor Execution Screen

Figure 4-65. Z8001 Monitor Trace Screen

7. T

5/27/81

6. E

8. RETURN, H

Enter a RETURN to exit from the Trace screen to the Execution screen, then enter H. The Host command selects **Transparent** mode, allowing the terminal to communicate with a host system through Z-SCAN. You can enter the command even if no host is connected.

Figure 4-66. Host Screen, Transparent Mode

4-51

٨

Step Key Sequence

9. BREAK

Transparent mode is terminated when the BREAK key is entered. If the System screen does not reappear, consult your terminal documentation -you may have to press another key at the same time as break, or the key may be disabled by an option setting inside the terminal. A monitor RESET can be used to end Transparent mode, but its use is not recommended because it destroys any information that was set up inside the Z-SCAN.

So far the cursor has remained at the bottom of the screen except when the Host command was used. All of the user-modifiable fields on the Z-SCAN screens are outside the menu area. The fields are divided into groups, known as subscreens. Each subscreen is associated with a particular command and can be entered by keying the capital letter in the command name as it appears in the menu area. Note that as soon as you enter the A command, the first menu line changes to reflect the selected command (Resources screen, mAp command), and the cursor moves to the top left field in the mAp subscreen.

5/27/8

4-52

10. R, A

Commentary

11. RETURN, B

To move the cursor back to the menu area, enter a RETURN. The menu display does not change because the mAp command is still active. It is altered when a new command, Break, is activated. The cursor moves to the top left field in the Break subscreen.

Figure 4-68. Cursor in Break Subscreen

12. REIURN, **Q**, S, R, A

Step

5/27/81

Key Sequence

You should now be confortable with activating screens and commands. The only new command in this sequence is Quit. It deactivates the current command and modifies the menu to show the names of the other screens.

13. REFURN, S, R, A

command before moving to another screen. You can enter the initial letter of the new screen name even if it is not currently listed in the menu area.

Most subscreens consist of more than

one field. Once the cursor is in a

subscreen, it can be moved to the

other fields in the same subscreen

by using the cursor control keys. If the cursor left key is entered while the cursor is in the leftmost field, the cursor **wraps around** to the

rightmost field in a subscreen

line.

It is not necessary to use the Quit

14. right, right, right left, left, left, left

 right, down, down, down, up, left, right The same wrap-around applies in the vertical direction. Note that when there is only one field on a particular line of a subscreen, the horizontal cursor movement keys cannot move the cursor out of that field. The cursor keys can never move the cursor out of the active subscreen.

Figure 4-69. Horizontal Cursor Movement

Figure 4-70. Vertical Cursor Movement

Step Key Sequence	Commentary
16. RE IURN, RE IURN	The RETURN key moves the cursor back to the menu area. Because the com-
	mand remains active, a second RETURN
	moves the cursor to the top left
	field in its subscreen: there is no

17. >, >, <, 0, 1, space G, F, H, CTRL R, >

Each of the six fields on the first line of the mAp subscreen corresponds to one of the Z8001's address spaces, and each has just two possible values. In the default state, an underbar is displayed, indicating that the 8K bytes of mappable memory will not respond to CPU accesses made to a particular address space during an emulation. In the alternative state, a twoletter abbreviation for the name of the address space (for example, SC for System Code) shows that the mappable memory will respond. You can step forward or backward through the possible values with the > and <keys or you can access them directly by entering 0 for the first choice and 1 for the second. Alternatively, space and F select the default and final values. CIRL R restores the field to the value it held when the cursor entered it. Other printable characters that are not hexadecimal digits do not affect the field.

need to re-enter the command name.

Figure 4-71. Enabling Mappable Memory

Step Key Sequence

18. RETURN, B, 2

The emulation you are going to run requires a **breakpoint**, so you must enable the breakpoint logic by setting the first field of the Break subscreen to "enable*". This tells the logic to search for a simultaneous match in the segment field, the offset field and the various status fields.

Figure 4-72. Enabling Break Logic

Figure 4-73. Setting Break Address

5/27/81

19. down, right, right, >, >, >, <, 1, RETURN</pre> The breakpoint segment number is correct but the offset must be changed. The address field contains four hexadecimal digits and can hold any value between 0000 and FFFF. Use > and < to move the cursor within the field, and enter new hex digits to change the value. You have now set a breakpoint which will be triggered when the first word of an instruction is read from system code location 0010 in segment 00. Key Sequence

Commentary

20. M

21. F

Move to the Memory-io screen. When it is displayed, notice that the top three lines are blank.

Fill is listed as a valid command in the menu area. As soon as the command is activated, the cursor moves to the first field of the Fill subscreen which appears at the top of the screen.

23. RE fURN

22. left, 1, F, F, F, down A, 8, 0, B Use the Fill command to fill mappable memory, which currently extends from address 0000 to 1FFF in the first segment of system code space, with increment byte register instructions (opcode A80B, mnemonic INCB RHO, #12). In order to do this, you must change the contents of some of the fields on the subscreen. The Fill string can be up to 16 hex digits long, but only four are required in this case.

After the parameters have been set up, the command must be executed by entering a REfURN. Before execution starts, the cursor moves to the bottom of the central window area. The message "DONE" is displayed when execution is complete.

Figure 4-74. Default Fill Command Display

Figure 4-75. Execution of Fill Command

4-57

Key Sequence

24. D, RETURN

Step

The Z-SCAN Display command is used to look at the contents of memory. In order to look at the bottom of system code memory, you do not need to change the default parameters that appear at the top of the screen when the command is activated, so execute the command immediately. Addresses appear at the left of the screen, data in the center and at the right is an ASCII representation of the same data. Neither A8 nor OB corresponds to a printable character. Periods are used to show this. The asterisks are delimiters.

25. down, up, RETURN

After the Display command has filled the window area, the cursor rests at the bottom right of the screen. You can enter cursor down to display the next block of memory or cursor up to display the previous block. The command is terminated when RETURN is entered.

type word source: space SC address 8...... \$..... 8...... 8...... ····· 8..... 8..... ······ ŧ....ŧ \$..... (Memory_is Screen Display Command) Ouit Campare Display eXamine Fill move refid Write Load seMd

Figure 4-76. Display with Default Parameters

4-58

26. RETURN, left, 4 RETURN, RETURN The command remains active as long as its name appears inside the parentheses on the menu line, so a second return moves the cursor back into the parameter subscreen. Set the type field so that memory is displayed as **disassembled** segmented Z8001 instructions.

source: space SC	address 88 8888	type	889		
60 8960 A3 9 A	INCB	RHO	¢12		
88 8982 6888	INCB		112		
98 9884 ABBB	INCB	RHO	112		
06 0006 A888	INCB	RHØ	112		
16 1000 A688	INCB	4	115		
	INCU	4	112		
	INCB	4	112		
	INCO INCO		412		
	INCO THER		112		
	INCB		112		
99 9016 R688	INCB	RHO	112		
M MIB ABBB	INCB	RHO	12		
	INCB	<u>.</u>	112		
	INCE		112		
BEEN ESEM M	INCB	RH.	112		
(Memory_is Screen Compare Display	Tisplay Command) eXamine Fill moVe	reAd	Write Lo	Quit ad schid	

Figure 4-77. Disassembled Memory Display

Figure 4-78. Set-up of eXamine Command

27. X, right, right, 1, F, F, C, RETURN

The eXamine command allows you to look at and, if desired, modify the contents of memory. Like Fill and Display, it has a private subscreen. The first location you need to examine is the word at system code location 1FFC in segment 00. Its current contents are displayed when the command is executed, and you are prompted for a new value to replace them. 28. 5, E, F, <, O, 8, 1, 8 down

Key Sequence

Step

5/27/81

This step replaces the two INCB instructions at the top of mappable memory with an unconditional jump to location segment 00 0018 (opcode 5E08 0018, mnemonic JP <<00>> %0018). Short offset addressing is used to save bytes. The < key can be used to backspace over incorrect input. When sufficient digits have been entered to fill the open location, the new value is stored and the next location is opened automatically. The cursor down key opens the next location immediately, storing any digits which have been entered. The data seen in location 2000 may vary because no memory responds at that address.

Cursor up reopens the previous location, showing that the two digits entered in the previous step have been stored right justified in a field of zeros. source: space 5C address 88 1FFC type word CLERENT HEH ADOR CONTENTS CONTENTS 88 1FFC A888 (SE 88 90 1FFE A688 (18 90 2000 2801 (1) (Temory.is Screen eXamine Command) Campare Display eXamine Fill move refid Hrite Load setMd

Figure 4-79. Modification of Memory Contents

					1997 1997 1997
	source: space SC	address 88 1FFC	tupe word		
	CLIRRENT NDDR CONTENTS	NEW Contents			
	00 1FFC A888 00 1FFE 0018 00 2000 2881	(SEBB ((
	(Memory_is Scre Compare Displo	en e g anine Command) av eXanine Fill moVe	Quit refid Write Load so	Nel 1	
line in the second s					File 🛊 🖓

Figure 4-80. Checking Memory Contents

30. C, left, 1, 0, 0, 0 left, 1, RETURN

Just to check that everything is set up correctly, the Compare command is used to find the differences between the contents of the top and bottom 4K byte blocks of mappable memory. The byte count field for this commands is, like all Z-SCAN monitor numeric fields, hexadecimal (1000 hex = 4096 decimal = 4K). When the command is executed, it should reveal that just four bytes differ between the top and bottom halves of the memory. If it shows anything else, you have probably made a mistake somewhere and not corrected it. To recover type R, A or, if the cursor is at the bottom right of the screen, RETURN, R, A and repeat the tutorial from step 17.

		SC address 88 1888 count 1988		
	source: space SC target: space SC	address 88 1888 address 88 8888	count 1888	
	Solirce Ador contents	TARGET ADDR CONTENTS		
	60 1FFC 5E 68 1FFD 68 68 1FFE 60 90 1FFF 18	BB BFFC AB BB BFFD BB BB BFFE AB BB BFFF BB		
	1004 DIFFERENC	£S		
)	(Nemory_is Sci Compare Disp	reen Bompare Command lav eXamine Fill mo) Ve refid Write	Quit Load seMd

Figure 4-81. Use of the Compare Command

The program in the mappable memory consists of 4,094 (decimal) INCB instructions and an unconditional jump. It can be run from the Execution screen. The default values of the Program Counter (PC) and Flag and Control Word (FCW) are suitable for running this first emulation. The emulation will run in system mode because bit 14 of the FCW is set. Bit 15 selects segmented mode and is also set in the default FCW value provided by the monitor.

The Next command steps through the number of instructions displayed in the Instruction count field at the top right of the screen. In this case, the count is one. After the single instruction has been executed, the whole screen is redisplayed, updating the emulation status. Two registers are affected: RHO, the high byte of RO has been incremented by 12 (decimal) and the PC offset has moved to next instruc-The top row of the instruction. tion and register values reflect the state of the program after the emulation. The bottom row values reflect the state of the program at the end of the previous emulation.

Nait_s	tates		*****	Inst_co	unt 81			
afip sp ad	ace Idress	6C 80 8008 Unprotect	Bre	ak enable# seg*off read	pulse_1_ set88 8819 system	break sta cou word ina	itus int 81 itr_fetch1	1 - 1
addr DA 880 DA 880	insta 12 A686 88 A686	ruction	nneno Ince Ince	nic RH9 RH9	¢12 ¢12			
1 SC	addr 99 9999	nenory con AB98 AB98 AB98 AB98	tents ABBE ABBE ABBE ABBE	R9 R1 9099 9999 9999 9999	R2 R3 9088 9889 9988 9999	R4 R5 8888 8888 8888 8888	R6 R7 9999 9999 9999 9999	
S 2C	88 8886	abbe abbe Abbe abbe	A888 A888 A888 A888	R8 R9 8686 8688 8686 8688	R10 R11 8088 8688 8888 8889	R12 R13 9668 9689 9688 9689 9689 9689	R14 R15 8000 8000 8000 8000 8000 8000 NSP	
3 50	••• ••••	agar agar Agar agar	A398 A398 A398 A398	88 8882 88 8889	C999 C999	88 8888 88 8888	8000 8000 8000 8000	
Retu	FA_86334	e STEP BR	EAK AT: 0002					

Figure 4-82. Instruction Step with Next Command

4-62

32. N

33. RETURN

Now that the Next command is active, it may be repeated by entering RETURN. Again, the PC value changes and RHO is incremented.

The Go command starts an emulation which does not stop until a break condition is encountered. Your program should **trigger** the breakpoint logic when an instruction is fetched from location 0010. The breakpoint is honored after the instruction has been executed so that the emulation ends with the Program Counter pointing to the instruction at location 0012. Note that the termination message is different from that of the Next command.

t_states 0	Inst_cou	int 81	
space SC address 90 9000 unprotect	- Break enable* seg*offs read	pulse_&_break sta et88 8818 cou system word ins	itus int 81 itr_fetch1
r instruction 8684 A888 8682 A888	mnemonic INCB RHB INCB RHB	012 012	
sp. addr memory conten SC 98 9999 A898 A898 A89 A698 A898 A89	ts R0 R1 8 A888 1888 9889 8 A888 9000 9889	R2 R3 R4 R5 8688 8888 8888 8888 8888 8888 8888 888	R6 R7 0808 0008 0608 0000 814 815
SC 00 0000 A898 A898 A898 A898 A898 A898 A	NE ABOB 6666 6666 NE ABOB 6666 6666 NE ABOB 6666 6666	8088 8088 8688 8888 8888 8888 8888 8888	8888 8889 8888 8888 NSP
SC 66 6666 A866 A866 A866 A866 A866 A866	FL BB A898 88 6984 BB A898 88 8982	C888 88 8888 C888 88 8888	9008 9008 9008 9008
Return_message STEP BREAK	AT: 8884		
HEBBE HEBBE HEBBE SC 000 00000 ABBE ABBE ABBE ABBE ABBE ABBE ABBE ABBE	K ROGAC & COB DAGAS RG R9 RG R98 R9 RG R988 B4060 8468 PC B6 R988 B8 8488 R6 R988 B8 8682 A1: 8884 ommand)	BBBB BBBB <th< td=""><td>R14 R1 0000 00 0000 00 NS 0000 00 0000 00</td></th<>	R14 R1 0000 00 0000 00 NS 0000 00 0000 00

Figure 4-83. Second Instruction Step

Figure 4-84. Running to Breakpoint with Go Command

34. G

Emulations can also be run from the Irace screen, which disassembles each instruction before it is executed. The instruction which appears in the center of the screen is the first to be executed when emulation starts. The bottom of the screen displays register and memory contents. The function of these fields will be explored later.

Entering cursor down results in the execution of the number of instructions given in the count field at the bottom left of the screen. PC and FCW values are given for each instruction executed, and the first instruction executed is flagged with an asterisk in column 1. The remaining registers are not redisplayed until all the instructions have been executed. The FCW values at the right of the screen show that the value in RHO has overflowed and become negative.

	•			
 +AddressContents +809 8912 A898 99 9914 A898	Minemonic INCB RHB INCB RHB	¢12 ¢12		-FCN C000 C000
96 9616 A898 96 9618 A898 96 9616 A898	INCB RHB INCB RHB INCB RHB	412 412 412		C829 C829 C820 C820
86 661C R000 86 661C R008 66 6623 A086 66 6622 A086	INCB RHB INCB RHB INCB RHB INCB RHB	412 412 412	ا م ت ا	C 828 C 828 C 828 C 828
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	INCB RH8 INCB RH8 INCB RH8 -R6R7R8	012 012 012 89R18R	11R12R13R14	
5000 0000 0000 0000 0000 0000 5000 0000 0000 0000 0000 50000 0000 0000 0000 0001 0003 0005 0007 000 0000 0001 0003 0005 0007 0000 0000	1 8688 8988 9988 1 8989 8989 8889 Normal Mod 9681 8883	8888 8888 8 8888 8888 8 Ie Stack 8885 8887 8	868 8866 8866 8866 8999 6 369 8866 8866 8999 6 369 8866 8866 8999 6	
Peek 55 68 - 6000 AG98 A398 A398 A398 A398 A698 A398 A398 A398 A398		A888 A6 A888 A6 A888 A6		
Trace Step Count : 8888	Enter a Hex nua	ber, Cursor	down or Return }	

Figure 4-85. Use of the Trace Screen

5/27/81

Step

35. T

36. down

Key Sequence
37. RETURN, G

Key Sequence

Step

Return from the Trace screen to the Execution screen and start another emulation with the Go command. This time the breakpoint is not encountered - the program loops in the address range 0018 to 1FFC, avoiding location 0010. While the emulation is running, the cursor rests in the blanked return message line and the terminal keyboard is disabled.

The monitor NMI signal acts as a **manual break** request during emulations run from the Execution screen. The emulation terminates when exe-

cution of the current instruction is

complete. The break address and

register contents which you see will probably be different from those in

the photograph, but this does not

matter.

Figure 4-86. Indefinite Emulation with Go Command

Figure 4-87. Manual Break with NMI Switch

5/27/81

39. M, X, right, right, space, CTRL R, O, O, 1, 8 To explore further facilities offered by Z-SCAN, an instruction which reads and writes memory is required. Use the Memory_io screen eXamine command to insert an instruction at location 0018. Two of the keystrokes in this sequence are redundant. The space restores the address field to its default value and CIRL R cancels any changes made since the cursor entered the field.

- 40. RETURN, 6, 9, 0, F, 1 O, RETURN
- 41. C, BREAK, REIURN, left O, RETURN

The instruction is INC <<00>> %0010 , #16 in segment 00 (increment by 16 the word at location 0010). If short offset addressing is used, it has a two-word opcode, 690F 0010. Check memory contents again by using the Compare command. Extra keystrokes in this sequence show that the BREAK key moves the cursor back to the menu area without executing the active command and that the monitor does not allow you to enter an illegal value in a numeric field: the previous value of the field is restored. When the command is exe-

cuted it should show eight differ-

ences.

source: space SC	address 88 8818	type word	
CURRENT ADDR CONTENTS	NEN Contents		
06 0018 AB08 08 0018 AB08	(690F (10		

			an an an taon a Taon an taon an t	
source: space SC target: space SC	address 88 1888 address 88 8888	count 1888		
SOURCE T Roor Contents P	IARGET NOOR CONTENTS			
00 1018 A8 6 00 1019 08 6 00 1019 08 6 00 1018 08 00 1018 08	86 9818 69 88 9819 87 88 9819 87 88 9818 19 98 9818 19			
GA IFFD GA GA IFFE GA GA IFFF 18	GG GFFFD GG GG GFFFF GG GG GFFFF GG			
NONB DIFFERENCES				
 (Memory_is Scree Compare Display	en B oopare Connand) y eXamine Fill moVi	e refid Hrite	Quit Load selid	

Figure 4-89. Check of Change with Compare Command

5/27/81

Step Key Sequence

42. D, RETURN, RETURN

Display disassembled memory to show the new instruction at location 0018.

Commentary

source: space SC addre	ss 88 8888	type	8 C Q	
00 0000 AS00 00 0002 AS00 00 0004 AS00 00 00064 AS00 00 0011 AS00 00 0012 AS00 00 0012 AS00 00	INCB INCB INCB INCB INCB INCB INCB INCB	22222 22222 22222222222222222222222222	●12 ●12 ●12 ●12 ●12 ●12 ●12 ●12	

Figure 4-90. Display of Change

Figure 4-91. Setting Peek Parameters

43. R, P, left, >, >, 1, RETURN

The added instruction modifies the contents of location 0010 each time it is executed, so it is desirable to know how they have changed after each emulation is run. The Z-SCAN displays the contents of selected locations on the Execution and Trace screens. The monitored addresses are set up by the Peek command on the Resources screen. Modify the first of the three addresses to 0010.

Now call up the system screen and start an emulation. The top line of the first Peek field shows the contents of word locations 0010 through 0016 as they were before the emulation started.

45. monitor NMI

You might think that this emulation should stop with a trigger break, because location 0010 is being read by the new instruction. The trigger logic does not fire because the break parameters are set up for an instruction fetch, not a data read, so the emulation must be terminated with a manual break. Looking at the Peek memory areas, you see that the contents of location 0010 have not changed during the emulation. Remember that the mappable memory has been set to respond only to system code space accesses. This explains why the system data accesses made by the new instruction do not affect it.

Inst_count 01 Hait_states 0 año space SL adáress 88.8000 unprotect pulse_&_break status Break enable* segfoffset88 8818 read system count 81 instr_fetch1 system word nemonic instruction 112 112 1112 T.C. · k addr BS18 1 50 90 memory contents 2 50 00 3 SC 80 Return_message MANUAL BREAK AT: 8482 (Execution Screen Command) Hext Quit Trace

Figure 4-92. Second Manual Break

5/27/81

44. E, G

Step Key Sequence

Commentary

46. R, B, up, left, >, >, F <, space, 1, 2, 9, RETURN</p>

fo fix these two problems, leave the Execution screen, which, though it displays data about mappable memory and the break condition, does not allow you to modify the parameters. Use the Resources screen Break command to set up a breakpoint on a data memory request. This is one of 16 possible values in the bus cycle type field. As usual you can select a choice eiher by stepping through the table of possible values or by entering a number that corresponds to the required choice. The space character selects the default value.

47. A, right, 1, RETURN

The second field in the mAp subscreen determines whether or not the mappable memory responds to system data accesses. Entering a 1 sets the field to "SD". The mappable memory now responds to two types of accesses. For this reason, it is not necessary to modify the memory space parameters of Peek. System code location 0010 is the same memory word as system data location 0010.

Figure 4-93. Modification of Break Parameters

Figure 4-94. Modification of mAp Parameters

48. G, A, B, RETURN

The last action on this screen is to set up a new starting value for RO with the reGister command.

Figure 4-95. Modification of RO Value

Figure 4-96. Irigger Break on Data Read

4-70

Start a new emulation. This time, the trigger fires almost immediately, and when the execution screen is redisplayed, you see that the contents of location 0010 have indeed changed from A80B to A81B. The Program Counter points to location 001C, the word after the instruction that caused the break condition to be met. The condition flags in the FCW reflect the fact that location 0010 holds a negative 2's complement number.

5/27/81

Step Key Sequence

Commentary

50. R, B, down, left, 5 REIURN Associated with the breakpoint logic is a **pass counter**. If you load it with 51 hex (that is 81 decimal), the program loop is executed that number of times on the next emulation.

After the emulation begins, there is a short delay before the breakpoint is encountered the number of times

programmed. When the emulation ends, location 0010 has been

incremented by $510 \text{ hex} (51 \times 10)$,

showing that the correct number of

passes has been made.

Figure 4-97. Adjusting Pass Counter

Figure 4-98. Break After Multiple Passes

51. E, G

Step Key Sequence

Commentary

52. **R**, A, up, 2, RETURN, B, space, RETURN

The INC instruction writes memory and can be used to show the Z-SCAN's write protect feature. To do this, disable the breakpoint and enable a write protect break.

The next emulation terminates with a message warning of a write protect **violation**. Although the offending instruction has been executed, the contents of mappable memory remain unchanged and the data that the CPU attempted to write into memory is lost.

Figure 4-100. Break After Violation

Step	Кеу	Sequence	e			Co	ommentary	y
54. R, A,	up,	space, f	RE TURN	Clear	the	write	prot ect	break.

4-73

55. B, 1, down, left, space, left, 1, F, F, A, REIURN

Now select a break on the first occurence of either any reference to segment 00, location 1FFA (in any address space) or any word read from system data memory. "enable+" designates this mode of operation.

Step Key Sequence

Return to the Execution screen and run an emulation. It stops at location 1FFC because the address of the previous instruction has fired the trigger. The contents of location 0010 are unchanged, indicating that the instruction at location 0018 was not executed during the emulation.

Figure 4-102. Break on Address Match

Figure 4-103. Data Read Break on Trace Screen

5/27/81

56. E, G

57. **[,** down

A trace terminates after only two instructions have been executed because a trigger is caused when the instruction at location 0018 performs a data memory read. Emulation stops as this event has precedence over the step count of 000B (11 decimal) instructions. A break message replaces the prompt that normally appears on the bottom screen line. The Peek display shows that the contents of location 0010 have changed.

4.8 HOST SYSTEM USE WITH Z8001

The tutorial script continues on the next page. If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8001 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed directly to step 64.

Step Key Sequence

Commentary

58. RETURN, R, RETURN, R, A, 1, right, 1, right 1, right, 1, right, 1, right, 1, RETURN The example program that is run in this part of the tutorial generates accesses to all six Z8001 memory spaces. Select the Resources screen and set up the mappable memory to respond to all types of access: code, data and stack references in both system and normal modes.

Figure 4-104. Enabling of All mAp Address Spaces

If your Z-SCAN is connected to a host system that supports the generation and downloading of Z8001 programs, perform steps 59 through 63, then move on to step 65. If the example program already exists on the host file system, you can skip all the steps except 63. If you do not have a suitable host, proceed directly to step 64.

NOTE

4-76

5/27/81

59. H

Before you can use the Z-SCAN download command, you must have Z8001 program to load. Your host's utilities and support programs can be used to create it. Type H to enter Transparent mode.

60. Bootstrap your system

61. Enter, assemble and image the example program Unless it is already up and running, load the operating system of your host. For Zilog PDS 8000 systems, press the reset button on the front panel of the system, then enter RETURN at the terminal keyboard. For ZDS/1 systems, press wait, then enter two returns. An operating system diskette must be present in drive zero or, for hard disk systems, the disks must be spinning. If you have a non-Zilog host, follow the bootstrap procedure described in its system manual.

Figure 4-105 shows an example program that is compatible with Zilog's Z8000 PLZ/ASM assembler, version 2.02 or later. The commands needed by the Zilog RIO operating system to create it are listed in Figure 4-106. Assemblers on non-Zilog hosts probably require changes in the syntax of the source. Changes are acceptable provided that the memory image of the final program corresponds to the information at the left of Figure 4-105. Refer to the host documentation for more information. The program appears with expanded commentary in Appendix B of this manual.

C	OB	J CODE	1 2 3 4 5	EXAMSEG MODULE \$SEGMENTED \$SECTION EXAMSEG_P ! Make imaging easy \$REL %0000 INTERNAL
00	0000 8000 '	C000 0044 1	6 7	NEW_STATUS_AREA: ! Most entries unusec RESET ARRAY [2 LONG] := [%C000, INIT]
10	0000 8000'	COO4 0044'	8 9	<pre>\$REL %0010 ! Privileged instr. PRIV_VECTOR ARRAY [2 LONG] := [%C004, INIT]</pre>
18 1C	0000 8000 '	C000 005A'	10 11	<pre>\$REL %0018 ! System call SC_VECTOR ARRAY [2 LONG] := [%C000, BREAKER</pre>
28	0000	C008	12 13	<pre>\$REL %0028 ! Non-Maskable Int. NMI_VECTOR ARRAY [2 LONG] := [%C008, INIT]</pre>
30 34 3C 40	0000 0000 0000 0000	0000	14 15 16	PASS, LAST WORD := 0 ! Data and stack area NML_STK ARRAY [4 WORD] := 0 SYS_STK RECORD [ID OLD_FCW WORD OLD_PC LONG] := (
44			17 18	GLOBAL INIT PROCEDURE ! Set up control reg' ENTRY ! and both stacks.
44 48 4C 50 54	7600 7D0C 7D1D 760E 7600 7D0E	00' 00' 00' 44' 00' 3C'	19 20 21 22 23 24	LDA RRO, NEW_STATUS_AREA LDCTL PSAPSEG, RO LDCTL PSAPOFF, R1 LDA RR14, SYS_STK + SIZEOF SYS_STK LDA RRO, NML_STK + SIZEOF NML_STK LDCTL NSPSEG, RO
56 58 5A	7D1F 7F12		25 26 27	LDCTL NSPOFF,R1 SC #%12 ! Trap into BREAKER END INIT
5 A			29	INTERNAL BREAKER PROCEDURE ! Demonstrate bus
5 A 5 C 6 2 6 4 6 6 6 6	A9F7 670E E604 7D02 A30E 7D0A	00' 3E'	30 31 32 33 34 35 37	INC R15,#SIZEOF SYS_STK ! Fix up system stack BIT SYS_STK.OLD_FCW ,#14!Check previous mode JR Z,ELSE_ ! If mode was system LDCTL R0,FCW ! set normal mode by RES R0,#14 ! clearing bit 14 LDCTL FCW,R0 ! of FCW;
16 A	2101 3012	ABCD	38 38 39	ELSE_: LD R1,#%ABCD ! Dummy port address. TN R2.0R1 ! I/O read
170 172 176	3F13 3B05 3B37	1234 1234	40 41 42 43	OUT @R1,R3 ! I/O write SIN R0,%1234 ! Special I/O read SOUT %1234,R3 ! Special I/O write ! Memory op's follow
17 A 17 E 180	7602 2124 93E4	00' 30'	44 45 46	LDA RR2, PASS ! Internal operation LD R4, @RR2 ! Data read PUSH @RR14, R4 ! Stk write
182 184 188 18C 18E	29E0 57E0 3304 7FEF	00' 30' FFA6	47 48 50 51 52	INC@RR14! Stk read, stk writePOP!PASS!,@RR14! Stk read, data writeLDRLAST,R4! Code writeSC#%EF! Trap sequenceEND BREAKEREND EXAMSEG

Figure 4-105. Z8001 Example Program

> COPYRIGHT, ZILOG, INC. 1979 All rights reserved. No part of this software may be copied or used without the express written consent of ZILOG, INC. CHURSDAY, NOVEMBER 1, 1979 REL 2.2 6DATE 810424 FRIDAY, APRIL 24, 1981 6B;SET TABSIZE=4;EDIT EXAMSEG.S 3 EDIT 2.1 JEW FILE ENPUT EXAMSEG MODULE \$SEGMENTED \$SECTION EXAMSEG_P ! Make imaging easy ! \$REL 20000 INTERNAL SC #% E.F ! Trap sequence 1 END BREAKER END EXAMSEG EDIT QUIT JZ8000ASM EXAMSEG 28000ASM 2.02 Pass 1 complete 0 errors issembly complete \$IMAGER EXAMSEG.OBJ 0=(\$=0000 EXAMSEG_P) {0000 0090} E=0044 0=EXAMSEG [MAGER 2.0 'E BYTES LOADED SEXTRACT EXAMSEG RECORD COUNT = 0001 RECORD LENGTH = 0200 NO. OF BYTES IN LAST RECORD = 0(INTRY POINT = 0044 LOW ADDRESS = 0000 HIGH_ADDRESS = 0080 STACK SIZE = 00 **BEGMENTS:**)000 008F 5 NOTE If the file EXAMSEG is created on a diskette, the first line of information output by the EXTRACT command will

.

{ECORD COUNT = 0002 RECORD LENGTH = 0080 NO. OF BYTES IN LAST RECORD = 0(

read as follows:

Figure 4-106. Z8001 Program Creation with RIO

5/27/81

Step

62. BREAK

Key Sequence

Commentary

Return to the Z-SCAN monitor environment.

Step Key Sequence

Commentary

63. M, L, down, E, X, A, M, S, E, G, return

Set up and execute the Memory-io screen Load command. The program name is EXAMSEG (segmented example), and it is to be loaded into system code memory, segment 00. As the file is loaded, an incrementing number field appears toward the top left of the screen. This is a count of the number of records transferred from the host to target memory. Each record carries 30 or fewer bytes. When the loading is complete. the entry address of the program is displayed. If any error message appears, enter H and check the following:

- o Does the program file EXAMSEG exist?
- o Is its name correct?
- o Does the download utility LOAD
 exist?

If no message appears when the command is executed, the host has not responded to the Load command sent by Z-SCAN. Terminate the load by entering BREAK, then type H and establish why this happened. When you have fixed the fault, return to the Z-SCAN monitor environment and type M, L, return.

Figure 4-107. Loading of Z8001 Example Program

Step Key Sequence	Commentary
-------------------	------------

If you have completed the four previous steps, skip the next one.

4-81

5/27/81

64. M, V, 6, left, O, O, 9, O, left, 5, E, 7, O, RETURN A copy of the example program shown in Figure 4-105 exists in the Z-SCAN monitor ROM. Use the Memory_io screen moVe command to copy it into the mappable memory.

source: space HT address 00 5270 count 0090 target: space SC address 00 0000	
 (Hennry Io Screen addr Connand) Buit Compare Display eXaming Fill move rend Write Load send	9×940

Figure 4-108. Copying Program with moVe

	Step	Key Sequence	
5/77/81	65. R, G, space 4, 4,	, space, left e, left, O, O, , RETURN	Set up t program s system m restore R

t up the PC and FCW so that the ogram starts at location 0044 in stem mode. At the same time, store RO to its default value.

Commentary

								1.11
hit_state	n (I	nst_count (11			
eace deress	sc so a and any rat	Sã NC ND N 9 ect	5 di 80 re	lsabie pui 1934ffset 00 Iad sys	Break Ise_&_break 1996 Isen word	status count B instr_fi	1 etchi	
	22 0 0000 0 110 0 0000	2 .11	re61ster 14 5 112 813	26 87 214 87		PC 8044 PSAP 8000 800	F (2) (2) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	
bel		1 SC 1 SC 2 SC 3 SC					*****	
lasources Treak Is	Screen	refiste	r Connend) Gister Pe	rek Hait.	Quit states			

Figure 4-109. reGister Initialization

Figure 4-110. Set-up of Peek Parameters

4-82

66. P, 1, left, 0, 0, 3, 0, down, 0, 0, 3, 4, right,
5, down, 2, left, 0, 0,
3, C, RETURN

The program has data, normal stack and system stack areas. Set up the Peek fields to monitor their contents before and after each emulation is run.

 67. B, 2, up, left, space, up, left, 0, 0, 4, 4, REFURN 67. B, 2, up, left, space, instruction of the initiali- zation routine of the example pro- gram. 	Step	Key Sequence	Commentary
	67. B, 2, up, 1 RETUR	, up, left, space, left, O, O, 4, 4, RN	Finally, set up a breakpoint on the first instruction of the initiali- zation routine of the example pro- gram.

The Z-SCAN is now ready to run the program. There is a trigger break after the first instruction is executed. At this point, the only change is in the PC value.

Figure 4-111. Emulation and Breakpoint

Step Key Sequence

69. I, 6, down, 1, down

Trace the next five instructions, entering numbers to change the default Trace step count. At the end of the sequence, both system and normal stack pointers have been set up, changing the displays for the two stack areas. Notice that when the LDA instruction is used with a short offset address, the low byte of the address is loaded into both halves of the long word destination regiter. This is acceptable because the low eight bits of the segment register are ignored. Also, bit 7 of the PC segment number is a don't care. The final instruction, a System Call, pushes four words of data onto the system stack, producing a further change. The data also appears in the third Peek area.

Figure 4-112. Tracing Initialization Routine

5/27/81

Step Key Sequence

Commentary

70. 1, 0, 0, 0, BREAK

A large number of instructions can be traced with a single command. Let the display run for a while and observe that the program loops, alternately setting and clearing bit 14 of the FCW to move in and out of system mode. Tracing can be stopped at any time by entering the terminal break key. The redisplayed memory content fields show that the contents of the data area and of both stacks have changed.

Figure 4-113. Trace of Main Routine

4-85

71. RETURN, G, target RESET

Run the program. The emulation can be terminated with a target RESET because the status loaded from locations 0002 through 0006 in response to the input makes the CPU execute the instruction on which the breakpoint is set. The initial conditions of the program are not fully restored by the RESET because the data and stack areas may no longer be zero. 5/27 72. RETURN, target NMI

A target NMI also terminates an emulation. Again, the initialization routine is entered in response to the input. The cause of the entry can be distinguished because the reset and NMI flag register values differ.

Figure 4-115. Trigger Due to Target NMI

Figure 4-116. Set-up of Stack Write Break

4-86

73. R, B, down, 3, down, 1, left, A, RETURN This tutorial does not explore the full possibilities of the program, which can generate a wide variety of bus cycle types in both system and normal modes. Experiment with it if you want to explore the Z-SCAN's features in more depth. As a start, set up a breakpoint on a system stack write of data pattern 0044.

Step Key Sequence

74. E, G

This last emulation can run for as long as four seconds before the instruction at address OO82 writes the data pattern matching the programmed break condition. The Z-SCAN may not stop the emulation before the next instruction is executed because the data match is detected only at the end of the last bus cycle of the INC instruction. Because of this, the next instuction, POP, is executed before the emulation terminates. This leaves the PC pointing to the LDR instruction.

4-87

4.9 CONCLUSION

This concludes the Z-SCAN monitor tutorials. They have shown many of Z-SCAN's features and most of its displays. A few commands have not been explored; these are discussed in Section 6. New users should now proceed to Section 5 which describes the connection of target hardware to Z-SCAN.

SECTION 5

TARGET HARDWARE CONNECTION

5.1 INTRODUCTION

The Z-SCAN 8000's major function is to replace a Z8001 or Z8002 microprocessor in a target system with an in-circuit emulator. This section details the method of connection. Readers are assumed to have some familiarity with the Z-SCAN monitor software. New users are advised to work through the tutorial in Section 4 before proceeding to the connection of a target system.

While Z-SCAN is designed to mimic the Z8000 processors as accurately as possible, the characteristics of any microprocessor emulator inevitably differ slightly from those of the CPU it replaces. These differences and their impact on the behavior of Z-SCAN in certain types of target hardware are discussed. Designers of Z8000-based hardware should read this material. Users debugging existing designs may find that this section explains certain aspects of Z-SCAN's behavior in their target systems.

The combination of a Z-SCAN and a logic analyzer forms a powerful tool capable of real-time recording of logic signals in the target during emulations. The way Z-SCAN's break pulse output can be used to trigger the analyzer, or an oscilloscope, is described in the final part of the section.

5.2 USE OF THE EMULATOR CABLE

5.2.1 Clock Source

Z-SCAN is capable of operating either from its own 3.3 MHz internal clock or from an external clock supplied through the emulator cable from the target hardware. The external clock can have any frequency from 0.5 to 4:0 MHz.

If Z-SCAN is used without a target, as might be the case during the debugging of a non-hardware-dependent software module no larger than the 8K bytes of mappable memory, the internal clock source must be used. When Z-SCAN is connected to a target that has its own clock source, Z-SCAN must use the target's clock to ensure that its CPU operates at the same speed as synchronous logic elements in the target and to ensure successful emulation.

Changeover from internal to external clock is accomplished by moving a single jumper on the Z-SCAN printed circuit board. The jumper, designated E10, E11, E12, is located towards the front left of the board, as shown in Figure 5-1. The jumper is the only one on the board the user should alter, and it selects clock source as listed in Table 5-1.

Table 5-1. Clock Source Selection

C	onnection	Clock Source
E	10 to E11	Internal
E	11 to E12	External

Figure 5-1. Clock Jumper Location

In order to select a new clock source, proceed as follows:

- 1. Switch the Z-SCAN power off by toggling the red power switch, located on the front panel, to the OFF position.
- 2. Remove the power cord from the socket on the rear of the unit.

--DANGER--

Failure to remove power from the unit prior to removal of the cover may result in exposure to hazardous voltages.

- 3. Remove the three screws and washers that secure the top cover of the unit at the top left, center, and right of the rear panel, as shown in Figure 5-2. Store the screws and washers in a safe place.
- 4. Grasping the rear of the top cover, lift it upwards and move it to the rear to release it from the front panel.

- 5. Locate the clock source jumper (see Figure 5-1) and move to the required position (see Table 5-1).
- 6. To replace the top cover, locate the front flange under the front bezel and swing the rear down. Make sure that the rear flange is inside the rear panel of the unit.

--DANGER--

Do not reconnect power to the unit until the top cover has been replaced and secured.

Figure 5-2. Z-SCAN Top Cover Removal

- 7. Replace the three screws and washers removed in step 3.
- 8. Reconnect the power cord to the rear of the unit, but do not switch power on at this stage.
- 9. If the external clock was selected in step 5, procede to Section 5.2.2 below, which describes the connection of the emulator cable. Z-SCAN requires the connection of a target in order to function when the external clock has been selected.
- 10. If the internal clock was selected in step 5, the unit can now be powered on by moving the front panel power switch to the on position. Correct operation can be verified by following the procedure described in Section 3.6.

5.2.2 Connection of the Emulator Cable

Two emulator cables are shipped with each Z-SCAN. The 40-way cable is used for Z8002 emulation and the 48-way for emulation of the Z8001. Before connecting either of the cables to the Z-SCAN, check that the correct processor is installed. The processor type is displayed on the System screen. Section 3.9 describes how to change the processor.

When the correct processor is installed, the target system can be connected to Z-SCAN with the emulator cable. To do this, procede as follows:

- 1. If Z-SCAN is not already switched OFF, switch it OFF using the front panel POWER/OFF switch.
- 2. Turn the target system OFF.
- 3. If the Z-SCAN unit is equipped with a Z8002 CPU, plug the 40-pin flat cable connector into the right-hand socket marked Z8002 on the front panel of the Z-SCAN. If a Z8001 is installed, plug the 50-pin flat cable connector into the left-hand socket marked Z8001. The stripe indicating Line 1 should be to the right of the cable.

--CAUTION--

It is possible to insert either connector upside-down. Incorrect connection can result in damage both to Z-SCAN and to the target system.

- 4. Remove the plastic pin protector from the DIL header and store it in a safe place.
- 5. Plug the header into the CPU socket in the target system, making sure that the pin marked "1" on the header is mated with pin 1 of the socket. Figure 5-3 shows the Z-SCAN unit correctly connected to a target system.

5-4

Figure 5-3. Z-SCAN and Z8002 Target System Connections

5.2.3 Checkout of Z-SCAN with Target System

To check that Z-SCAN can operate with the newly connected target system, the following test should be carried out. Note that this simple procedure only verifies that the target is correctly connected and is providing an adequate clock signal to the unit. It does not verify that the target is functional in any other respect.

- 1. Turn on the target system.
- 2. Power the Z-SCAN by moving the front panel Power/OFF switch to the POWER position.
- 3. Place the TARGET/MONITOR switch in the MONITOR position.
- 4. Toggle the RESET switch.
- 5. On the keyboard, enter RETURN once. The Z-SCAN sets its baud rate and displays the terminal menu.
 - If the terminal menu does not appear, check the following:
 - Emulator cable is correctly connected.
 - Target system is powered.
 - Target clock circuitry is functioning properly.

- Target clock rate is within Z8000 specification (0.5 4.0 MHz).
- Target clock meets minimum high- or low-time requirements of Z8000 CPU (105 ns) and has proper rise time (less than 20 ns).
- Clock source selection jumper is correctly installed (see Section 5.2.1).
- Emulator cable assembly is not damaged (see Section 5.2.4).

After the problem has been identified and corrected, the Terminal Selection screen should appear after the checkout procedure. If problems persist despite the availability of an adequate clock from the target system, the Z-SCAN may require maintenance. In this event, the user should contact the nearest Zilog sales office.

6. Select a terminal number, then enter return. If the target system contains dynamic memory components, enter the key sequence:

RETURN, cursor down, 1, RETURN

This updates the status to target field on the System screen from internal op to refresh. For further details see Section 5.4.3.

5.2.4 Care of the Emulator Cable

The emulator cable assembly is 18 inches (45.7 cm) long and is constructed from a special high-quality flat cable that has a ground wire adjacent to each signal wire for optimum transmission characteristics. Standard flat cable connectors cannot be used with this type of cable. If the assembly is damaged during use, a replacement must be obtained from Zilog. Z-SCAN's performance will be degraded if a substitute is constructed with standard cable and connectors.

While the assembly is quite sturdy, it can be damaged by incorrect handling. Observe the following precautions to minimize the possibility of damage:

- Never pull on the cable. Use the procedures detailed below to remove the connectors from the Z-SCAN or from the target system.
- When the cable is not plugged into a target system, cover the exposed pins on the emulator plug with the pin protector supplied with the unit. If the protector is lost, a small pad of conductive foam or styrofoam is an acceptable substitute.
- Once the cable has been connected to the Z-SCAN, do not remove it unless absolutely necessary. When removal is required, grip both sides of the cable and the connector between the thumbs and forefingers of both hands. Move the connector up and down slightly while gently pulling until it is free.
- To remove the emulator plug from the target system CPU socket, use a small screwdriver as a lever to lift each end of the Augat header from the socket in the target a little at a time. When the plug is free, cover the exposed pins with the pin protector supplied with the unit.

• If target hardware modifications are made, remove the cable from the target system to avoid contact with a hot soldering iron.

5.3 FRONT PANEL SWITCHES

The three switches at the right of the Z-SCAN front panel were described in Sections 3 and 4. This section describes the exact effect of each of the four types of input that these switches can generate to Z-SCAN. See Table 4-2 for details of how to generate each type. Z-SCAN's response to a particular input is determined primarily by the operating mode at the time the input is received (see Tables 5-2 through 5-5).

At no time does Z-SCAN drive the target system's RESET- or NMI- signals. Thus, while the Z-SCAN CPU responds correctly to a target RESET or NMI generated with the Z-SCAN front panel switches, circuitry in the target hardware that relies on these signals' being active does not respond. This makes it possible that the behavior of the target following a front panel reset or NMI will differ from that which occurs when either signal is generated by the target itself.

Operating Mode Before Monitor RESET	Operating Mode After Monitor RESET	Notes
Monitor	Monitor	The CPU and Z-SCAN hardware is RESET to its initial state. All information
Host	Monitor	about the previous state of Z-SCAN is lost. Type RETURN to set baud rate
Target	Monitor	13 105t. Type herony to set badd fate.

	Table	5-2.	Response	to	Monitor	RESET	Input
--	-------	------	----------	----	---------	-------	-------

	Ta	ble	5-3.	Response	to	Monitor	NMI	Input
--	----	-----	------	----------	----	---------	-----	-------

Operating Mode Before Monitor NMI	Operating Mode After Monitor NMI	Notes
Monitor	Monitor	The input is ignored.
Host	Monitor	The input is ignored.
Target	Monitor	This is the Z-SCAN's manual BREAK.

Table	5-4.	Response	to	Target	RESET	Input

Operating Mode Before Target RESET	Operating Mode After Target RESET	Notes
Monitor	Monitor	Returns Z-SCAN to its initial condition.
Host	Monitor	Has same effect as Monitor reset.
Tarqet	Target	Has the same effect as the target sys- tem's RESET- input to Z-SCAN. The The Z8000 CPU in Z-SCAN is reset. All other Z-SCAN hardware is unaffected. See Section 7.4 of the <u>Z8000 CPU Technical</u> <u>Manual</u> .

Table 5-5.	Response	to	Target	NMI	Input

Operating Mode Before Target NMI	Operating Mode After Target NMI	Notes
Monitor	Monitor	The input is ignored.
Host	Host	The input is ignored.
Target	Target	Has the same effect as the target sys- tem's NMI- input to the Z-SCAN. The Z8000 CPU in Z-SCAN will respond to an NMI All other Z-SCAN hardware is unaffected. See Section 7.6 of the Z8000 CPU Technical Manual.

5.4 HARDWARE DESIGN AND DEBUGGING WITH Z-SCAN

The Z-SCAN 8000 has been designed to emulate the Z8000 CPUs faithfully in both new and existing hardware designs. This means that any target that operates correctly when a CPU chip is installed should also operate correctly when a Z-SCAN emulator is used in place of the CPU. The converse is also true. However, the ac and dc characteristics of Z-SCAN, and under certain circumstances, its bus signal sequences differ slightly from those of an actual CPU. These differences arise from the buffering required to isolate the Z-SCAN CPU from possible faults in the target system and from the need to prevent execution of the Z-SCAN monitor software from affecting the target system.

The remainder of this subsection details the areas in which differences exist and describes their possible effects on emulation and debugging. Hints to designers allow potential problems to be avoided before they arise. The hints in general reflect conservative design practices and ensure that equipment can be produced reliably and repeatably once the design has been finalized. Additionally, each paragraph suggests ways in which small problems in existing target hardware designs can be overcome or circumvented.

5.4.1 Emulator DC Characteristics

The dc characteristics of the Z-SCAN emulator differ from those of an actual CPU in three respects:

- Input Loading: Z8000 CPUs load inputs very lightly (no more than 10 uA and, except in the case of CLK, less than 10 pF). The Z-SCAN, in contrast, loads each input with 30 pF and a low-power Schottky TTL buffer (200 uA). In addition, the NMI-, NVI-, SEGT-, WAIT-, RESET-, DS- and VI- inputs have 10k pullups for an additional load of 500 uA.
- Output Drive: Z8000 CPUs are specified with a load of 100 pF and 2 mA. Because it has low-power Schottky ITL drivers, Z-SCAN can drive a much greater load.
- Input Levels: The majority of Z8000 inputs are completely TTL compatible. Two are not: CLK has more stringent high- and low-level requirements, and RESET- requires a slightly greater input high level. In contrast, all inputs to Z-SCAN are TTL compatible.

The electrical differences between a Z-SCAN and the Z8000 CPUs make it possible (though unlikely) that a target system could work with Z-SCAN but not with a CPU, or vice-versa. Such problems can easily be avoided at the design stage by adopting a few simple standards:

- Clock Driver: Never attempt to drive the CLK pin of the CPU directly from a TTL output. A special drive circuit capable of meeting the stringent requirements of the Z8000 is required. The Zilog application note <u>A Small Z8000 System</u> (document #03-8060) details a suitable design. A TTL output with a pullup resistor is not a satisfactory alternative.
- Reset Driver: If RESET- is driven by a TTL output, add a pullup resistor. The value is not critical: 4.7 K will do.

• Bus Loading: Do not attach too many loads directly to the bus signal pins of the CPU. As a rule of thumb, Z8000 processors can accommodate up to ten NMOS loads plus one low-power Schottky TTL load on each bus signal line, provided that the total length of the line is not greater than 8 in (20 cm) of printed circuit track. Greater loading is likely to exceed the capacitive drive capability of the CPU, even if dc loading limits are not exceeded. If there is any doubt about loading levels, or if bus signals are to be carried between circuit boards, use buffers.

Emulation problems arising from the differences between the dc characteristics of Z-SCAN and those of a Z8000 CPU are likely to show one or more of the following symptoms:

- Intermittency: The symptoms appear and disappear unpredictably.
- Temperature Sensitivity: The symptoms are seen only when Z-SCAN or the target system is warm and can be removed by cooling a particular component in the target system.
- Voltage Sensitivity: Raising or lowering the supply voltage in the target system affects the symptoms.
- Locality: Z-SCAN is able to access all features of the target system except those associated with a particular component or logic block.

If it is established that the Z-SCAN capacitive loading is increasing access times in the target to an unacceptable level, and that the target is capable of meeting the worst case ac specification of the Z8000, a temporary solution is to replace the target memory or I/O components with faster parts. Alternatively, provided that full-speed emulation is not required, the Z-SCAN Wait_states command can be used to relax access time requirements. Section 6.10.6 gives more details.

In general, quick fix solutions to such problems are not recommended because they probably indicate a marginal hardware design which, even if it works correctly with a CPU in prototype form, could suffer from repetitative or reliability problems when it is moved into production. The user is urged to determine the source of the problem and incorporate a permanent solution into the target hardware.

5.4.2 Emulator AC Characteristics

The ac characteristics of Z-SCAN differ from those of a Z8000 CPU because of delays introduced by signal buffering. The differences are minimized by using a factory-selected CPU in Z-SCAN.

Problems might also occur in synchronous logic in the target. Typically, such logic uses the system clock to latch signals coming from the CPU. For example, a dynamic memory controller might latch MREQ- on the rising edge of CLK-. The Z8000 has been designed to allow comparatively long set-up times in such cases, so it is unlikely that the slight reduction of time that results when Z-SCAN is used will cause problems. If a problem does occur because the timing skew introduced by the Z-SCAN is unacceptable to the target, it can usually be solved by introducing extra delay in the clock path to the synchronous logic

in the target. Designers should be aware that such a solution may affect the access time requirements of memory or $\rm I/O$ components controlled by the synchronous logic.

5.4.3 Dynamic Memory Refresh

Z8000 microprocessors have a feature that allows them to refresh dynamic memory components automatically with a minimum of external logic. This is described in Chapter 8 of the <u>Z8000 CPU Technical Manual</u> (document #00-2010-C). Zilog's application note <u>A Small Z8000 System</u> suggests a suitable logic design and shows the relationship between the contents of the upper byte of the refresh register and refresh rate.

Z-SCAN supports automatic refresh before, during, and after emulations to preserve the integrity of the contents of dynamic memory in the target system. Z-SCAN itself contains no dynamic memory and so does not require refresh to be enabled in order to operate correctly.

Refresh is controlled by the Z8000 refresh register. Z-SCAN does not exercise as close control over the contents of this register as it does over those of others, partly because changes in its contents are largely independent of the code which is being executed, and also because some of its bits are write-only bits. For these reasons it does not appear on the Resources or Execution screens (Sections 6.10 and 6.11). Z-SCAN only alters the contents of the refresh register when the status to target field on the System screen is changed by the user. When refresh is selected, the register is loaded with %9E00; when internal op is selected, a value of %0000 is loaded. The System screen is described in Section 6.8.

The hexadecimal value %9E00 causes the CPU to perform a refresh operation every 60 clock cycles. At a 4 MHz clock rate, this results in 128 refresh cycles every 1.92 ms, sufficient to satisfy the worst case requirements of typical dynamic RAM components. For targets in which the clock rate is significantly lower or in which a higher refresh rate is required, the user must change the value in the refresh register if worst case requirements are to be met. The alteration can be accomplished in one of two ways:

- Run an emulation of the initialization portion of the target application software. This should contain code that loads the refresh register with the value required by the target.
- Using the eXamine command on the Memory io screen, load the opcode %7DOB (LDCTL REFRESH,RO) into any available RAM location. Use mappable memory if all the target memory is dynamic. Then use the Resources screen reGister command to load the required refresh register value into RO, the location of the instruction into PC, and %4000 into FCW. Finally, step through the instruction with the Execution screen Next command.

It is worthwhile to consider the exact effects of the two possible status to target values on the bus signals in the target system (Table 5-6).

status_to_target	st ₀₋₃	AD ₀₋₁₅	AS-	MREQ-	DS-
internal_op	internal op (0000)	active	active	3-stated	inactive*
refresh	internal op (0000) or refresh (0001)	active	active	active	inactive*

Table 5-6. Monitor Mode Target Signals

*DS- is held high by a 10 kilo ohm pullup resistor

When internal op is selected, every bus transaction generated by the monitor appears to be an internal operation to the target system. Because AS- is still active, self-refreshing (pseudo-static) memories in the target retain their contents provided that they use AS- and not MREQ- as a clocking signal.

When refresh is selected, most Z-SCAN monitor bus transactions appear as internal operations to the target system. They differ from the internal operations generated by an actual CPU because MREQ- may be active. Refresh cycles, generated when the CPU refresh rate counter times out, present refresh status to the target.

5.4.4 Target Memory and I/O Access

When Z-SCAN accesses target memory during emulations, the transactions it generates are identical to those that would be generated by a Z8000 CPU. However, when such accesses are made by the Z-SCAN monitor software, there may be differences. All the commands available on the Memory io screen (see Section 6.9) cause Z-SCAN to perform memory or I/O operations in the target system. The Peek and current instruction fields on the Execution screen also require target memory accesses in order to be updated.

The Memory io screen reAd and Write commands access target byte and word standard and special I/O ports using operations exactly like those produced when I/O instructions are executed by a program running under emulation. For target memory accesses, however, Z-SCAN always uses the same width of data (word or byte) for each type of operation, independent of the width (long word, word, or byte) selected by the user for the display of information. Table 5-7 lists the operation types, together with the transactions generated by Z-SCAN.

Operation	Transaction	Notes
Memory read	Byte read	
Memory write	Byte read, word write	A read-modify-write sequence for each byte to be written accommodates memories that do not support byte writes.

[able 5	-7.	Z-SCAN	Target	Memory	Access	Transactions
---------	-----	--------	--------	--------	--------	--------------
Z-SCAN's choice of transaction types should cause no problems in most target systems. There are, however, some unusual design configurations where target accesses may produce unexpected results:

- Memory that does not support byte reads: A correctly designed Z8000 memory control circuit does not need to distinguish between byte and word reads and hence implicitly supports both (see <u>A Small Z8000 System</u>). If, for any reason, a target's memory does not respond to byte read transactions, the Z-SCAN monitor will not be able to access that memory.
- Systems using B/W- as a memory bank select signal: The Z-SCAN monitor expects the same memory space to be accessed by both byte and word transactions. The Z-SCAN memory modification commands cannot be used in unorthodox target systems that use the B/W- (Byte/Word) signal to choose between two separate memory banks.
- Word-wide, memory-mapped I/O: The Z-SCAN memory modification commands cannot operate on write-only, word-wide memory-mapped I/O, nor do they give correct results on memory-mapped ports that require all 16 bits to be written or read in a single operation.

5.4.5 Interrupts and Traps

Z-SCAN terminates all emulations by giving the CPU a non-maskable interrupt. This interrupt has a higher priority than the three other external interrupts supported by the Z8000--segment trap, vectored and non-vectored. This means that all break conditions--step, manual, trigger and write protect --have priority over interrupts generated by the target hardware, including target NMI (see Section 6.10.1).

The Trace command (see Section 6.12.3) and the Next command (see Section 6.12.2), if used with an instruction count of one, give the CPU an NMI after each user instruction. This prevents the acknowledgement of any target interrupt, even though the target program is being executed. This does not prevent interrupt service routines from being traced, but it does mean that they cannot be entered while another part of the program is being traced.

The Z8000 CPU always fetches one instruction that it does not execute after it has accepted an interrupt or trap. See Section 9.4.5 of the Z8000 CPU <u>Technical Manual</u> for further details. The aborted operation is indistinguishable from any other instruction fetch, first word, bus cycle, and so can trigger the Z-SCAN breakpoint logic if suitable conditions have been set up. When this happens, the state of the user program following the breakpoint will differ from the state expected.

Unexpected breaks of this type do not corrupt the target program: if emulation is resumed, the instruction is fetched and executed normally after the target handler interrupt is executed.

5.4.6 Memory Management Considerations

Many applications use a Z8001 CPU in conjunction with a Z8010 Memory Management Unit, or some other memory management hardware. These external components increase system reliability and flexibility by serving two functions:

- Translation of logical address information from the CPU to physical addresses for memory components.
- Protection of memory from invalid access by the CPU.

When the Z-SCAN mappable memory is used in conjunction with a target system that has a memory manager, the user should be aware that the mappable memory is fixed in logical address space during emulations. It responds directly to the untranslated addresses output by the CPU. It cannot be relocated or protected by the action of the memory manager.

The protection attributes of target system memory may be violated by a program running under emulation. In such cases, the MMU activates the SEGT- signal and the user's trap handler is entered to deal with the problem. It is also possible for target memory accesses generated when Z-SCAN is in monitor mode to violate protection attributes. For example, the user could use the Fill command on a write protected memory area. An external memory manager responds to these violations by asserting SEGT-, but the monitor does not acknowledge the signal, and so it remains outstanding until the next emulation starts. The user's trap handler is then entered to deal with a violation that is not caused by the user program.

A message displayed at the lower right of the System and Trace screens warns the user if SEGT- is asserted before an emulation is started (see Section 6.12). If the user does not want the trap routine to be entered, the Memory_io screen Write command must be used to reset the memory management hardware before emulation.

5.4.7 Direct Memory Access

Z-SCAN fully supports Direct Memory Access (DMA) in the target system while emulations are running. Note that if a trigger or manual break condition occurs during a DMA operation, emulation does not stop until the DMA controller releases the bus, because the CPU cannot service the break request until it has regained control of the bus. Also, because BUSACK- is not a term in the breakpoint equation, Z-SCAN cannot distinguish between transactions generated by the CPU and those generated by another bus master.

DMA controllers (or any other types of bus masters) are able to read and write the Z-SCAN mappable memory once they have gained control of the bus during an emulation. A prerequisite for such operations is that the alternative bus master and the CPU socket must be connected to the same bus. Any buffering between the socket and the alternative bus master probably prevents access to mappable memory because the buffers may be 3-stated during DMA operations.

Z-SCAN does not acknowledge bus requests from the target when no emulation is in progress. This means that DMA devices that repeatedly request the bus once it is enabled (for example, CRT refresh controllers) do not have their requests honored after an emulation has terminated. For problem-free operation with Z-SCAN, such controllers should be designed to accommodate the possibility that the bus may not be granted an indefinite period following a request. Designs that abort or shut down if a request is not honored within a certain time may not restart correctly when emuation is resumed.

5.4.8 Termination of Emulation

The previous section mentioned that a breakpoint, whether manual or programmed, is not activated until the end of a bus acknowledge state. The same is true of wait and stop states: an emulation cannot terminate unless RESET-, BUSACK-, WAIT-, and STOP- are all inactive. The only certain method of returning control to the Z-SCAN monitor if any of these signals is stuck in the active state is to apply a monitor reset using the Z-SCAN front panel switches. This action, which must be followed by RETURN, reinitializes the monitor, meaning that the Z-SCAN must be completely reprogrammed. This can be avoided by first resetting the target with its own reset logic (a Target mode reset from Z-SCAN front panel switches may not have the required effect; see Section 4.3) and then entering a manual break with a Monitor mode non-maskable interrupt (NMI).

There are occasions when it appears that a programmed breakpoint should have been encountered--execution has proceeded past the point at which the breakpoint was expected to occur--but emulation continues. This is likely to happen when the bus transaction on which the breakpoint was set does not completely match the conditions set up with the Breakpoint command. The mismatch can arise from the fact that the Z-SCAN address/data bus breakpoint comparator is a full 16 bits wide and so does not detect byte data or interrupt vector matches (eight bits) or refresh address matches (nine bits). Problems can often be circumvented either by eliminating the offending term from the break condition or by choosing an alternative bus transaction as the trigger condition. This topic is discussed in more detail in Section 6.10.1.

Unless one or more of the signals mentioned in the first paragraph is active, it should always be possible to stop an emulation with a front panel monitor NMI. If emulation cannot be stopped this way, it is possible that the CPU has entered an illegal state as a result of being driven by target-generated signals that are out of specification. The most likely culprit is the clock. Another possibility is that substantial ground currents are flowing in the emulator cable and disrupting dc levels. This can happen when Z-SCAN and the target system are connected to different power ground distributions. For this reason it is recommended that Z-SCAN and the target system are both connected to the same power receptacle.

5.5 USE OF THE HARDWARE TRIGGER

The rear panel BNC connector which carries the Z-SCAN break pulse output signal allows the unit to be used in conjunction with other test instruments such as oscilloscopes and logic analyzers. Section 6.10.1 details the programming of the break pulse logic. This section discusses the use of the break pulse in general terms only because of the wide variety of equipment with which Z-SCAN can be used.

5.5.1 Break Pulse Characteristics

The pulse from the rear panel is positive going. This means that the rising edge of the pulse signals the time when the programmed bus condition is detected. Detection occurs shortly after the rising edge of clock in T2, and the pulse is one clock cycle long. The pulse appears in the same cycle that

causes the match when the programmed condition is address, control/status, or control/status with address. For data or control/status with data, the pulse is output during the bus cycle that follows the programmed condition causing the match. A separate pulse is produced for each cycle which results in a match, even when a number of consecutive cycles all match the programmed condition.

The pass counter logic can be used in conjunction with the pulse feature. For a pass count of n, a pulse is output every nth time the programmed condition is satisfied. There is no output at any other time.

The Z-SCAN pulse logic is inhibited when no emulation is in progress, so there is no danger of spurious triggering of external equipment, even if the programmed match condition is satisfied during the execution of the monitor software.

5.5.2 Connection of External Equipment

Connection of an oscilloscope or logic analyzer to the Z-SCAN break pulse output is a simple matter, typically accomplished with a coaxial cable terminated with BNC connectors.

--CAUTION--

The break pulse output is driven directly by the output of a low-power Schottky TTL gate, which may be damaged if subjected to a sustained short circuit.

Due to its short duration, the pulse should be used as an external trigger when Z-SCAN is used in conjunction with a logic analyzer. It is not suitable for use as a gating, qualifying, or enabling signal. The analyzer should be set to expect a positive-going TIL-level trigger pulse.

The pulse can also be used as an external trigger for an oscilloscope. The time base should be set to trigger on the positive edge of the dc-coupled input signal. AC coupling is not recommended because the mean level of the signal--and hence the trigger point--changes according to the frequency of the pulses. If the break pulse is displayed on an oscilloscope for any reason, it may have a slight but inconsequential ringing on transitions, because the output is not terminated.

5.5.3 Choice of Logic Analyser Recording Window

When a logic analyzer receives a trigger, one of three things happens:

- The logic analyzer stops recording, and its memory holds information about events prior to the trigger.
- It starts recording, stopping when its memory is full. Here, events after the trigger are recorded.
- It continues recording but stops after a certain number of sample clock cycles. Information about events before and after the trigger is recorded.

All three options can be used in conjunction with the Z-SCAN break pulse output when the pulse_only option is selected with the Break command (see Section 6.11.1).

Z-SCAN also outputs a break pulse when the pulse & break option is selected. This allows a logic analyzer to be used to record events in the target system prior to the break if the analyzer is set to stop recording when it receives a trigger pulse.

5.5.4 Clocking of Logic Analyzers

With most logic analyzers, users have a choice of two sources for the clock that determines the rate at which logic inputs are sampled. The analyzer's internal clock, which typically allows sampling rates of between tens of nanoseconds and milliseconds, can be used. Alternatively, the user can provide an external clock signal from the system under test.

Both sources have their uses in the development of Z8000-based designs. The internal clock is used both for simplicity of set-up and for maximum resolution. The sample rate should be such that the sample period is shorter than the duration of the shortest pulse being monitored; this avoids the possibility of pulses being missed. The shortest pulse generated by the Z8000 is Address Strobe (AS-), which has a minimum duration of 20 ns less than the CPU's clock high width (85 ns with a 4 MHz clock). In order to reliably capture AS-, a sample period of 50 ns is required in a 4 MHz system with an internally clocked logic analyzer. Still shorter periods may be required to capture glitches of short duration in the target hardware.

The disadvantage of internal clocking is that the analyzer must sample the input signals at a higher rate than is strictly necessary to record events occurring in a system that is driven synchronously by its own clock source. As a result, the number of events that can be recorded by the analyzer before its memory becomes saturated is less than optimal. For example, with a 50 ns sample period it takes only about 50 Z8000 bus cycles to saturate a 1024-word sample memory. A greater number of cycles could be accommodated if a clocking signal precisely matched to the Z8000 system were used. Of course, such a signal is readily available in the CPU clock signal.

When the CPU clock is used as an external clock for a logic analyzer, its negative edge (high-to-low transition) should be treated as active. It is on this edge that Address Strobe is active, that address and status are valid in T1 of any bus cycle, that WAIT- is sampled during T2, and that data is sampled in T3 during read operations. For further details, see Section 9.4 of the Z8000 CPU Technical Manual. Using the clock, a 1024-word sample memory in an analyzer can record about 250 Z8000 bus cycles, five times more than is possible with the analyzer's own clock.

In certain situations it may be desirable to use a more selective clock source than the clock signal. For example, the user may wish to record only I/O transactions or only refresh cycles. This can be accomplished in one of two ways, depending on the amount of information required about the transactions:

- Address and Status Only: When just one sample occurring shortly after Address Strobe is sufficient, the break pulse output of Z-SCAN can be used directly as a positive-going clock signal. Use the Break command (see Section 6.11.1) to select pulse only on the selected status condition, with ignore AD and a count of $\overline{01}$.
- Full Record: When complete information about each transaction is required, the analyzer should be clocked either from its internal clock source or from the target clock, as described above, but the clock must be qualified by the Z8000 status signals in order to select particular types of transactions. Most analyzers have a clock qualifier input that can be used to gate the clock in this way. The qualifying signal must come from the target, from a proprietary qualifying probe pod available from the supplier of the analyzer, or from a temporary circuit constructed from logic components and attached to the target system. Most Z8000 systems fully decode the status lines SI_{0-3} . An output of the decoder can often be used directly as a clock qualifier, avoiding the requirement for additional logic.

5.5.5 Break Pulse Demonstration

The wide variety of equipment that can be used with Z-SCAN makes it impossible to give a step-by-step tutorial. It is suggested that users having logic analyzers and wishing to become familiar with the break pulse should procede as follows:

- 1. Connect the emulator cable to the Z-SCAN as described in Section 5.2.2, steps 1 through 4.
- 2. Attach logic analyzer signal probes to signal pins of interest on the header at the target end of the cable. Suggested signals are SI_{0-3} (pins 21-18 on the Z8002, 23-20 on the Z8001), AS- (pins 29-34), DS- (pins 17-19), MREQ- (pins 16-18), and R/W- (pins 25-30). Consult the logic analyzer manual to find out how to arrange these so SI_{0-3} can be interpreted as a hex digit with SI_3 as the most significant bit.

--WARNING--

Take care not to bend or break the pins on the header.

- 3. Connect the Z-SCAN rear panel break pulse output to the external trigger input of the analyzer. On analyzers without such an input, connect the break pulse to an unused signal input. The position of the connector is shown in Figure 3-2.
- 4. Ensure that the analyzer is on, then turn on the Z-SCAN.
- 5. Set up the analyzer for pre-trigger recording with an internal clock period of 50 ns. Select a positive-going trigger from the external trigger input rather than from the analyzer's internal word recognizer. For analyzers without an external trigger, select the signal input

carrying the break pulse as the only significant term in the trigger equation: all other inputs should be "don't cares." Consult the logic analyzer manual for its set-up procedure.

- 6. Prime the analyzer manually so that it starts to record information.
- 7. Work through the tutorial of Section 4 of this manual. Experienced users can ignore some of the redundant keystrokes in arriving at the steps that perform emulations.

Each time an emulation terminating with a trigger break is run, the analyzer should capture information about the transactions preceding the break. If it does not, it is probably not set up or primed properly. Check the manual again. Once the error has been corrected, use the Z-SCAN Register command (see Section 6.10.4) to reset the PC register to the value it held before emulation, then rerun the emulation with the Go command (Section 6.11.1). Before each emulation, reprime the analyzer so that it can record the new information.

The format in which the recorded information is displayed depends both on the particular analyzer used and on the display mode selected. The signals suggested above in step 2 are best suited to the Timing Diagram Display mode supported by most analyzers. These signals give insight into the way the processor uses the bus while executing programs.

.

SECTION SIX

MONITOR SOFTWARE DESCRIPTION

6.1 INTRODUCTION

The main functions of the monitor program software are to monitor the interaction between the Z-SCAN system and the target system during emulation, to supervise the changeover from Target mode to Monitor mode, and to control the passing of program files between a host system and Z-SCAN. A secondary but more visible aspect of the program is its user interface, which controls, monitors, and acts upon user input from the terminal keyboard. Section 6.2 describes the Z-SCAN operating modes in more detail.

The user interface controls the commands available to the user throughout the set-up and execution phases of emulation. It also checks the syntax and sequence of user input and acts upon correct sequences by updating the screen display and, if necessary, the values of operating parameter fields. The Z-SCAN screen displays are introduced in Section 6.3. If user input is invalid, the monitor ignores it completely. Valid inputs are discussed in Sections 6.4 through 6.7.

Table 6-1 is an alphabetical summary of the software commands available in the monitor program and the keys that must be entered to access them. Sections 6.8 through 6.12 describe each command, its parameters, and its usage in detail.

Command	Key	Command	Key	Command	Key
Break	В	Inst count	I	reAd	А
Compare	С	Load	L	reGister	G
Display	D	mAp	A	Resources	R
eXamine	Х	Memory io	М	seNd	N
Execution	E	moVe -	V	System	S
Fill	F	Next	N	Trace	T
Go	G	Peek	Р	Wait states	W
Host	н	Quit	Q	Write	W

Table 6-1. Software Monitor Commands

6.2 Z-SCAN 8000 OPERATING MODES

The Z-SCAN 8000 system can operate in any of three modes: Monitor mode, Transparent mode and the Target Mode. One of these can be used only in configurations that include a host system for software development. The three modes are:

6-1

1. Monitor Mode

- The Z-SCAN terminal is logically connected to the Z-SCAN unit, giving the user access to the monitor's commands.
- In this mode, the user has access to five distinct displays on the terminal's CRT. These screens allow the examination, enabling, and modification of resources belonging to the Z-SCAN or to the target system.
- If the Z-SCAN system configuration includes a host system, program files can be passed between the host file system and Z-SCAN's memory when the Z-SCAN Monitor mode is in effect.

2. Iransparent Mode

- This mode logically connects the Z-SCAN terminal to the host system, giving the user unrestricted access to host system resources.
- The user has no access to the Z-SCAN monitor commands during Transparent mode, but can enter host system commands just as if the terminal were directly connected to the host.
- Transparent mode can be entered from Monitor mode at any time and does not affect any parameters the user has set up to control the debugging process.

3. Target Mode

- This mode dedicates Z-SCAN resources to running either Z8001 or Z8002 emulation on the target system, depending on the CPU installed in the Z-SCAN unit.
- While Target mode is in effect, the user cannot enter keyboard commands either for Z-SCAN or for the host system.

Following a RESET and baud rate synchronization (see Section 3.5), the Z-SCAN software enters Monitor mode. Transition to either Transparent mode or Target mode occurs in response to specific commands entered on the terminal keyboard. The reverse transitions take place in response to generation of the Z-SCAN break signals. Alternatively, transition from Target mode to Monitor mode can take place if the program running during emulation generates a condition that triggers the Z-SCAN breakpoint logic.

Figure 6-1 diagrams the allowed transitions and their causes. Note that direct transitions between Transparent and Target modes are not allowed.

Figure 6-1. Z-SCAN 8000 Operating Modes

6.3 MONITOR MODE OVERVIEW

Almost all interaction between the user and Z-SCAN monitor software occurs in Monitor mode. During Transparent and Target modes, the user cannot give commands to the monitor. For this reason, the remainder of this section describes Monitor mode commands and displays.

The commands available while Z-SCAN is in Transparent mode are determined by the host system and its operating software and are not described here. Refer to the host system's documentation for further details.

While operating in Target mode, Z-SCAN 8000 emulates either the Z8001 or the Z8002, so its behavior is described in the Z8000 CPU Technical Manual (document #00-2010-C). Further information can be found in Section 5.4 of this manual.

In Monitor mode, Z-SCAN gives the user access to five screens, each allowing the user to select from a menu of commands and other screens in order to set up and control the emulation process. The basic functions of each screen are listed below. In keeping with the format used by the Z-SCAN CRT terminal displays, the capital letter in each screen or command name indicates the key entered to activate the screen or command. Sections 6.8 through 6.13 give a complete description of each screen and how its associated commands can be used.

The seven screens available in Monitor mode and the functions of each are:

1. Terminal Selection screen

- o Displayed following monitor reset and entry of RETURN.
- o Allows the user to select from a choice of terminal cursor control protocols.

6-3

• Provides access to the System screen.

2. System screen

- Informs the user of the monitor software release level and of the baud rate selected for communications between the terminal, Z-SCAN's monitor and the target system.
- Allows the user to select the appropriate baud rate for the host system communication link.
- Allows the user to select one of two values, internal operation or refresh, for the CPU status that is sent to the target system while the monitor software is running.
- Allows other screens to be selected.

3. Memory io screen

- Presents a choice of commands that allow manipulation of target system memory: Compare, Display, eXamine, Fill and moVe.
- Allows target system input and output ports to be manipulated with the reAd and Write commands.
- Permits program files to be loaded from the host system into memory. This function is controlled by the Load command.
- Permits program files or information to be sent to the host system from Z-SCAN via the seNd command.
- Allows other screens to be selected.

4. Resources screen

- Gives the user access to the Z-SCAN emulation control resources through the Break, Inst count, mAp, reGister, Peek and Wait states commands.
- Allows other screens to be selected.

5. Execution screen

- Displays the conditions selected for the execution and control of emulations and the state of the processor before and after each emulation.
- Allows emulations to be started with the Go and Next commands.
- Upon termination of each emulation begun by either the Go or Next commands, displays a message stating the reason for termination.

- Allows access to the Trace screen.
- Allows other screens to be selected.

6. Trace screen

- Accessible from Execution screen.
- Provides an instruction-by-instruction analysis of the execution of the user program and its effect on registers and memory.
- Allows return to the Execution screen.

7. Host screen

- Displayed when Z-SCAN enters the Transparent mode.
- Indicates that control of the display has passed from the Z-SCAN monitor to the host system's software.
- Does not allow access to Z-SCAN monitor commands or to other screens.

6.4 Z-SCAN SCREEN LAYOUTS AND COMMAND DISPLAYS

With the exception of the Terminal Selection screen and the Host screen, each of the Z-SCAN displays is divided into two or more areas by horizontal rows of dashes. Each area has one of three distinct functions:

- Menu area. This area appears below the bottom row of dashes on the System, Memory io, Resources and Execution screens. It lists the name of the screen, the commands available on the screen, and the active command. If no command is active, the names of alternative screens are listed.
- Window area. This type of area appears on the Memory_io screen only, directly above the menu area. It displays variable amounts of information during the execution of commands available on the Memory io screen.
- Command area. Any area above both the menu area and (on the Memory_io screen only) the window area is a command area. These areas display fixed amounts of information. Much of the information displayed in command areas is invariant, consisting of headings or of Z-SCAN parameters that cannot be changed on the particular screen displayed. The contents of certain fields in command areas can be altered by the user. This process is described in Sections 6.5, Cursor Manipulation, and Section 6.6, Variable Fields.

Command areas are divided into subscreens. Each subscreen is controlled by one of the Z-SCAN monitor commands. On the Memory io screen, only the subscreen associated with the active command is displayed, whereas on other screens, all subscreens are displayed at all times.

6.4.1 The Menu Area

The menu area appears on all screens except the Terminal Selection screen and the Host screen. The format and content of other areas varies from screen to screen and is discussed in following sections that relate to specific screens.

Examples of menu displays can be found at the bottoms of Figures 4-5 and 4-9. Moving through the two lines of the menu area from left to right and top to bottom, the first items encountered are enclosed in parentheses. The item on the far left is the name of the screen itself--for example "Resources screen." If there is another item inside the parentheses, it is the name of an active command, which is a command the user has selected from those displayed on the lower line of the menu.

Outside the parentheses, the contents of the upper line vary according to whether or not a command has been selected. If no command is active, the line names alternative screens. To select another screen the user enters the initial letter of the desired screen name. When a command is active, the only information outside the parentheses is the name of any command supplementary to the active command. To execute a supplementary command, the user enters the letter in its name that is capitalized. The only supplementary command is Quit, which deactivates the current command.

The contents of the lower line of the menu area are fixed for each particular screen; they do not change in response to user input. The lower line lists the commands available on a particular screen. The user can activate any one of these commands by entering the letter in its name that is capitalized, for example, "A" for the mAp command.

6.5 CURSOR MANIPULATION

When a screen is first displayed, the cursor rests on the initial letter of the name of the screen, which is inside the parentheses at the top left of the menu area. When a command is activated, its name is added to the information inside the parentheses, and the cursor automatically moves to the first variable field associated with the active command. For commands controlling more than one field, the "first" field is that nearest the top left of the subscreen associated with the command.

Once the cursor has been positioned on the first variable field in a subscreen, the contents of that field can be altered by user input. This process is described in Section 6.6. To allow other fields on the same subscreen to be altered, the cursor must be moved into those fields. The four cursor control keys, \blacklozenge , \blacklozenge , \blacklozenge , <--, and --> (cursor up, cursor down, cursor left, and cursor right) are used for this purpose.

Each cursor control key moves the cursor into a variable field that is logically adjacent to the current field. Logical adjacency requires the destination field to be part of the subscreen associated with the active command. A field that is physically adjacent (for example, on the same display line as the current field) but is not part of the subscreen associated with the active command cannot be entered through the use of the cursor control keys alone. For consistency, the top and bottom variable fields in a given subscreen column are considered to be logically adjacent, as are the far left and far right fields on a given subscreen line. This means that if, for example, the cursor is moved up from the top field, it appears on the bottom field. Sometimes there is only one variable field in a particular subscreen row. In such cases, the cursor left and cursor right keys cannot move the cursor out of the field, because there is no field logically adjacent to it in those directions (in fact, the implementation considers the field to be logically adjacent to itself). Similar reasoning applies to fields without a logically adjacent field above or below them.

After the values held by the fields in a given subscreen are updated, the cursor must be returned to the menu area before a new command be activated or an alternative screen selected. Entering RETURN achieves this, moving the cursor from the current field to the name of the active command. The command itself is not deactivated until a new command is selected or the Quit command is executed.

Table 6-2 shows how the cursor can be manipulated to access parameter fields in a typical subscreen. The example shows the effect of the cursor movement keys when the Resources screen is active. The cursor position in each step is at the left of the field shown in boldface type. Refer to Section 6.10.5 for further details of the Peek command.

Table 6-2. Effect of Cursor Control Keys (Peek command, Resources screen)

Step	Di	splay	Keystroke	Notes
1.	SC SC SC	00 0000 00 0000 00 0000		Cursor is on screen name (Resources screen) prior to selecting Peek command.
			P	The Peek command is activated by keying P. This moves the cursor to the first variable item in the Peek command area. (Cursor position is indicated by bold characters of the following display.)
2.	SC SC	00 0000 00 0000 00 0000	>	Move right. This key positions the cursor at the beginning of the second variable item in this command area.
3.	SC SC SC	00 0000 00 0000 00 0000	Ļ	Move down to vertically adjacent field.
4.	SC SC SC	00 0000 00 0000 00 0000	<	Move left.
5.	SC SC SC	00 0000 00 0000 00 0000	ţ	Move up to vertically adjacent field.
6.	SC SC SC	00 0000 00 0000 00 0000	↑	Move directly down to bottom row of this field.
7.	SC SC SC	00 0000 00 0000 00 0000	RETURN	Remove cursor from subscreen.

6.6 VARIABLE FIELDS

As mentioned above, command areas display information the user is allowed to alter. There are two main types of modifiable fields: hexadecimal and multiple choice. The next two subsections discuss these in detail. A third subsection mentions two additional types of fields, the file name and memory content fields.

6.6.1 Hexadecimal Fields

A hexadecimal field may contain two, four or 16 hexadecimal digits and can be modified, once the cursor has been positioned in the field, by entering new digits (0-9 and upper case A-F). A space restores the default value of a hex field whereas entering the control (CTRL) and R keys returns it to the value it held when the cursor was last moved into it. CTRL R is entered by holding down the control key while pressing the R key.

If the user does not want to modify the particular digit on which the cursor rests, "<" or ">" can be entered to move the cursor left or right within the field. The SHIFT key must be held down while these characters (< or >) are entered.

None of the keys mentioned above is able to move the cursor out of the variable field. When the cursor is moved to the right of the far-right character, it wraps around to the far-left character. The reverse is also true. The cursor can be moved out of the field by using the cursor control functions described in the previous section.

Table 6-3 gives examples of the effects of valid keys on a four-digit hexadecimal field. Although the count field in the Compare command (Memory_io screen) has been used for this example, the effects of keystrokes as shown in Table 6-3 apply to all similar hexadecimal fields. The position of the cursor is shown in Table 6-3 by a vertical arrow.

Step 7 of the key sequence shown in the table gives the result shown only if the field holds the value 0018 when the cursor is moved into it. If you wish to examine the effect of the sequence yourself, you must first set up the field by selecting the Memory io screen, then enter the following keystrokes:

C, left, 0, 0, 1, 8, left, right

Step	Keystroke	Contents	Notes
1.	(see note)	0018 ≜	Not default value. Use instructions in previous paragraph to start with OO18 in the count field and with the cursor on the first O.
2.	1	1018	Changes digit that cursor is on to 1.

Table 6-3. Effect of User Entry on Hexadecimal Field (Compare command, Memory io screen)

Step	Keystroke	Contents	Notes
3.	SHIFT >	1018 A	Moves cursor right one position. (Repeated use of the SHIFT and > keys steps the cursor forward through each position. This is useful in moving the cursor to a particular position with- out having to rekey any of the other digits.)
4.	G	1018	Z-SCAN ignores this input because it is not a valid hex digit.
5.	F	10F8 ♠	Hex digit "F" is inserted and the cursor automatically moves to the next position.
6.	SHIFT >	10F8 ♠	These keys are used to move forward through each position in the field. If the cursor is on the last position of a hexadecimal field, SHIFT > moves the cursor back to the first position of the field.
7.	space	000C	Entering a space always restores the field to the default value. Also, the cursor returns to the first position of the field each time a space is used.
8.	SHIFT <	000C	These keys (SHIFT and <) move the cursor backwards through each position of the field. If the cursor was on the first position before using these keys, then the use of these keys moves the cursor to the last position of this field.
9.	CTRL R	0018. †	CTRL R is used to restore the contents of a field to the value it held when the cursor firts moved into the field.

Table 6-3. Effect of User Entry on Hexadecimal Field--Continued (Compare command, Memory_io screen)

All hexadecimal fields are initialized to meaningful default values by a monitor reset or power-up sequence. The range of values that can be held in some hexadecimal fields is constrained: for example, a count field cannot contain zero. If the user attempts to move the cursor out of a field that contains an illegal value, the monitor automatically restores the contents of the field to what it held when the cursor last entered it.

6.6.2 Multiple-Choice Fields

The other main type of modifiable field is the multiple-choice field. As the name suggests, such fields allow the user to choose a value from a fixed number of alternatives.

An example of such a field is the data type associated with the Display command (see Section 6.10.2). It has five valid values: word, byte, long (for 32-bit long words), nseg (for nonsegmented disassembly) and seg (for segmented disassembly). Rather than displaying the value selected as a single-digit code, the monitor displays a descriptive string. Single digit codes are used internally by Z-SCAN as indexes into tables of possible values for each multiple-choice field. Consequently, when the cursor is positioned on a multiple-choice field, the user can select a particular value (table entry) by entering the single hexadecimal digit that indexes that choice. Valid indexes range from zero to one less than the number of entries in the table. If the user inputs a digit outside the allowed range, the last entry in the table is used.

It is unreasonable to expect all users to learn the index numbers for each possible value in each of the Z-SCAN multiple choice fields. Consequently, an alternative method of selecting values is provided: when the cursor rests on a multiple choice field, SHIFT and > can be entered to select and display the next possible value. The preceding table entry is selected by entering SHIFT and <. As previously indicated, the SHIFT key must be depressed during the entry of either of these characters (< or >). This feature allows the user to step forward or backward through the list of available values until the desired value is found. Stepping forward from the last available value reselects the first possible value. The reverse is also true.

Besides the hexadecimal digits, the "greater than" and the "less than" keys, two other keys are accepted as valid inputs for multiple choice fields. The space character is considered equivalent to zero, and so it selects the first of the possible choices. Entering the CTRL and R keys returns the contents of a multiple choice field to what it held when the cursor last entered it.

Like hexadecimal fields, multiple choice fields are initialized to meaningful default values by a monitor reset or power-up sequence. The default corresponds to the first entry in the table of possible values. This makes it possible to restore the default value with a single keystroke: zero or space, either of which selects the first value in the table.

Table 6-4 lists the hexadecimal digits that can be used to make particular choices in one of the multiple choice fields; this particular field is the "type" field of the Memory io Screen's Display command.

Index	Choice	Selected by
0	word	O, space, Monitor reset
1	byte	1
2	long	2
3	nseg	3
4	seg	4, or any of the hex digits greater than 4 (i.e., 5 thru F)

Table 6-4. Multiple Choice Field Indexes (Display command, Memory io screen)

Entering an F always selects the last possible choice in any of the multiple choice fields, whereas entering a O or space always selects the first possible choice in any multiple-choice field.

Table 6-5 shows the effect of user input including some key sequences other than Index entries on the same example field. These examples show how user input is handled on all multiple choice fields by the Z-SCAN monitor. If you wish to perform the sequential steps in this table, select the Memory_io screen, then enter the following keystrokes:

D, left, 4, left, right

Step	Keystroke	Contents	Index	Notes
1.	(none)	seg	4	The field holds this value when the cursor is moved into it. Step 6 recalls the same value.
2.	1	byte	1	Select second table entry by the index value of 1.
3.	SHIFT <	word	0	Step back to preceeding table entry via SHIFT and < keys.
4.	SHIFT >	byte	1	Step forward to next table entry via SHIFT and > key.
5.	2	long	2	Move directly to third entry of table using index value.

Table 6-5. Effect of User Input on Multiple Choice Field (Display command, Memory_io screen)

6-12

Step	Keystroke	Contents	Index	Notes
6.	CTRL R	seg	4	Restore field to value that existed at the time the cursor was moved into the field. This is the value shown in step 1 above.
7.	F	seg	4	Move directly to last entry in table.
8.	SHIFT >	word	0	Step forward and loop back to first entry in table.
9.	6	seg	4	Any hex number larger than number of items in table always selects the last table entry.
10.	3	nseg	3	Selects fourth entry in table.
11.	space	word	0	Restores field to the default value.

Table 6-5. Effect of User Input on Multiple Choice Field (Display command, Memory_io screen)

6.6.3 Other Field Types - File Name and Memory Content

In addition to hexadecimal and multiple choice fields, the Z-SCAN monitor uses two other types of fields. Each is used in only one situation.

o The file name field appears only in the Load and seNd command subscreens (see Sections 6.10.8 and 6.10.9). This field can hold up to 32 non-space characters. Z-SCAN makes no check on input because it has no knowledge of the file-naming conventions of the host system. It is the responsibility of the host system's LOAD command to check the file name for validity. For further details see Section 7, Interface to Non-Zilog Hosts.

The SHIFT >, SHIFT <, and control (CTRL) and R keys are used in the same way in the file name field as in a hexadecimal field (see Section 6.6.1). Hence, Z-SCAN does not allow these characters to be sent to the host as part of a file name. If you put a space in a file name, Z-SCAN treats it as a terminator and shows this by erasing all input to the right of the inserted space.

o The Memory Content field is used exclusively by the eXamine command and is tailored to the special requirements of that command. Its behavior is similar to that of a hexadecimal field with two, four or eight digits. The differences are summarized in paragraph seven of the next section.

6.7 SUMMARY OF VALID USER INPUT SEQUENCES

The three preceding sections discussed the keystrokes used to achieve the following objectives:

- Moving from one screen display to another.
- Activating commands available on the current screen.
- Moving the cursor into and out of modifiable fields in parameter areas.
- Updating the contents of modifiable fields.

This section summarizes the keys that can be entered, which generally depend on the position of the cursor on the screen. Refer to Section 6.8 for complete information on executing commands.

Many of the terminals supported by the Z-SCAN monitor offer features which are not needed by the monitor. In many cases, Z-SCAN ignores data received when keys associated with such features are entered. Some keys, however, may send data that is considered to be valid. The function keys on some terminals do this, while others affect the display on the terminal screen without sending data to the Z-SCAN. Local editing keys such as line delete and character insert have this effect.

If the display is corrupted by the entry of an incorrect key, the user should activate another screen (the following paragraphs explain how to do this), then reactivate the corrupted screen. If any of the variable fields on the screen contains an incorrect value, they should be corrected before the user continues.

1. Following a power-up or monitor reset from front panel:

- To synchronize Z-SCAN's baud rate with that of your terminal, enter RETURN. The terminal selection screen is displayed. Entry of an incorrect character may result in garbage being displayed. To correct this, RESET Z-SCAN, then enter RETURN.
- To select a terminal type, enter one of the numbers listed on the screen. Invalid entries are ignored. Incorrect entries can be replaced by entering another selection. Appendix A details the terminals supported by the Z-SCAN monitor.
- When the terminal type has been selected, enter RETURN to activate the System screen. If the display is corrupted, the terminal selection is incorrect. RESET Z-SCAN and repeat the steps above.

2. Cursor on current screen name inside menu area parentheses:

• To select another of the five screen displays, enter the appropriate capital letter from the screen name.

- To activate a command on the current screen, enter the appropriate capital letter from the command name. This automatically moves the cursor to the first position of the first item in the associated command area.
- System screen only: Enter RETURN to move cursor into the host baud rate field.

All other input is considered invalid and does not change the state of the monitor software. Screen editing keys must not be used as they can cause unpredictable results.

3. Cursor on a hexadecimal variable field in a command area:

- Enter hex digits (0-9, capital A-F) or spaces to modify the value in the field.
- Enter SHIFT > or SHIFT < to move the cursor forward or backward inside the current field without modifying its contents.
- Enter space to change the contents of the field to the default value.
- Enter CTRL R to restore the field to the value it held when the cursor was moved into it.
- Use the cursor control keys (cursor up, cursor down, cursor right or cursor left) to move the cursor to other fields in the subscreen associated with the active command.
- To return the cursor to the menu area (state six below) without executing the active command, enter BREAK.
- To execute the current command, enter RETURN.

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

4. Cursor on a multiple choice, variable field in a command area:

- Enter a single hexadecimal digit (0-9, A-F) to select a corresponding value to a particular entry in the Z-SCAN internal table of choices.
- Enter SHIFT > or SHIFT < to select the next or previous value from the Z-SCAN internal table of choices.
- Enter CTRL R to restore the field to the value it held when the cursor was moved into it.
- Enter space to restore the field to the default value.

- Use the cursor control keys (cursor up, cursor down, cursor left or cursor right) to move the cursor to other fields in the subscreen associated with the active command.
- To return the cursor to the menu area (state six below) without executing the active command, enter BREAK.
- To execute the current command, enter RETURN.

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

- 5. Cursor on file name field (Memory io screen Load and seNd commands only):
 - Enter any keys not mentioned below to update the value of the field
 - Enter SHIFT > or SHIFT < to move the cursor forward or backward inside the current field without modifying its contents.
 - Enter CIRL R to restore the field to the value it held when the cursor was moved into it.
 - Enter space to terminate the file name.
 - Use the cursor control keys (cursor up or cursor down) to move the cursor to other fields in the subscreen associated with the active command.
 - To return the cursor to the menu area without excecuting the command, enter BREAK.
 - To execute the command, enter RETURN.

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

6. Cursor on active command name inside menu area parentheses:

- To move the cursor to the first variable field associated with the active command, enter RETURN.
- To select another command on the same screen, enter the appropriate capital letter from the command name. The cursor moves automatically from the command name to the first position of the first field associated with the new command.
- To deactivate the current command, enter Q. The upper menu line is rewritten to display the names of alternative screens.

• To display another screen, enter the appropriate capital letter from the screen name. It is not necessary to enter Q prior to displaying another screen when the cursor is on an active command name inside the menu area parentheses. (The Terminal Selection screen cannot be called up in this manner and the Trace screen can only be selected from the Execution screen.)

Any other key is considered invalid and is ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

- 7. Cursor in window area (Memory io screen eXamine command only):
 - Enter hex digits (O-9, A-F) to modify the value in the memory location currently open. After sufficient digits are entered to fill the current location, the next location is automatically opened.
 - Use the <-- (cursor left) key or SHIFT < to backspace over and delete incorrectly entered digits.
 - The and (cursor up and cursor down) keys can be used to open the previous and next locations respectively.
 - To return the cursor to the menu area, enter RETURN.

Any other key is considered invalid and is completely ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

- 8. Cursor resting in window area (Memory io screen only):
 - Enter cursor down to clear the window area and display the next block of data.
 - Enter cursor up to clear the window and display the previous block of data (Display command only).
 - Enter BREAK to abort the Load or seNd command.
 - Enter RETURN to move the cursor to the menu area.

Any other key is considered invalid and is completely ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

9. Cursor resting at bottom right of Trace screen:

- Enter cursor down to execute the number of instructions shown in the step count field.
- Enter hex digits (0-9, A-F) to alter the value in the step count field. Execution begins after four digits have been entered. Use cursor left or SHIFT < to backspace over and delete incorrect entries.

• Enter RETURN to move to the Execution screen.

Any other key is considered invalid and is completely ignored by the Z-SCAN monitor software. Screen editing keys must not be used as they can cause unpredictable results.

10. Cursor writing data onto screen:

- Enter CTRL S to force a temporary pause in data output to the terminal. Enter CTRL Q to resume output. Some terminals have a scroll control key which sends CTRL S and CTRL Q alternately.
- Enter BREAK to ensure that output stops when the screen is full and before any part of the screen is overwritten with new data. Break achieves this by aborting execution on the Trace screen and by flushing the type ahead input buffer. Any commands entered but not yet executed are lost.

Any other key (with the exception of screen editing keys) can be entered while the Z-SCAN is sending data to the terminal or while output is paused. The input is buffered and is not acted upon until output is complete.

- 11. Cursor resting in Execution screen return message area (Z-SCAN in Target mode):
 - To force a return to Monitor mode, use the Z-SCAN front panel switches to enter a Monitor NMI.

Input from the keyboard is not accepted while Z-SCAN is in Target mode.

- 12. Transparent mode (all cases not mentioned above):
 - Enter data in the format required by the host system.
 - To return to Monitor mode from Transparent mode, use the BREAK key. If the host and terminal baud rates differ, the user is prompted to set the baud rate of the terminal to the Monitor mode value. The System screen is displayed when the terminal baud rate is correctly set up.

6.8 THE TERMINAL SELECTION SCREEN

Following a power-up or monitor RESET sequence, Z-SCAN must establish two characteristics of the terminal being used:

- Baud rate.
- Cursor addressing protocol.

To set up the baud rate, the user enters a RETURN. Z-SCAN measures the width of the start bit of the character, then programs a baud rate generator to match the calculated speed. Fourteen rates, listed in Table 6-7, are supported.

When the terminal baud rate is established, the Terminal Selection screen shown in Figure 6-2 is displayed. If the terminal is running at a baud rate not supported by Z-SCAN or if an incorrect character is entered, the display will be corrupted or will not appear. Z-SCAN must be RESET before the baud rate can be set up correctly.

The display prompts the user to enter a terminal selection digit. Valid choices are listed on the screen. Invalid entries are ignored. If an incorrect choice is entered, it can be replaced by entering the correct choice.

Figure 6-2. The Terminal Selection Screen

Table 6-6 lists a number of terminals supported by the Z-SCAN monitor and the corresponding selection digits. Appendix A gives further information about the supported terminals and describes how to find out whether an unlisted type can work with Z-SCAN.

After the selection digit has been entered, the user must enter RETURN to move to the System screen (Section 6.9). If garbage appears instead of the System screen, the terminal selection digit is incorrect. Z-SCAN must be RESET and baud rate synchronization re-established before the correct digit can be entered.

Supplier	Model	Selection Number
ADDS	Regent 20, 40 or 60	1
Beehive	8-100 or Bee-1	2
DEC	VT52	3
DEC	VT100	4
General terminals	I-200, I-400	5
Hazeltine	1420 or 1500 series	6
Hewlett Packard	2620 or 2640 series	7
IBM	3101	8
Lear Siegler	ADM 31	0
Soroc	IQ 120 or IQ 135	- 0
Televideo	TVI 912 or TVI 920	0
Zentec	Zephyr	0

Table 6-6. Terminals and Terminal Type Selection Numbers

6.9 THE SYSTEM SCREEN

Figure 6-3 shows the System screen in the default state. The display area is divided into three parts by rows of dashes. The bottom is a Menu area (see Section 6.4.1) and the other two are Command areas. Since there is no choice of commands on this Screen, the second line of the menu area is blank.

		-
	Z-SCAN BOOD	·
	28001 MONITOR Version 3.0	
-		
t	erminal baud rate: 9680	
1	host baud rate: 9680	
	status_to_target: internal_op	
	(Justen Screen) System Memory_Io Resources Execution Hust	
1. 4 .		

Figure 6-3. The System Screen

The top Command area identifies the Z-SCAN monitor software. It shows the release level of the software and identifies the CPU type (Z8001 or Z8002) installed. It does not contain any user modifiable fields. The release level may differ from that shown in Figure 6-3.

The first field in the center command area specifies the terminal baud rate. This is not a variable field (as discussed in Section 6.6) and cannot be changed by the user on the System screen. The terminal baud rate is used between Z-SCAN and the terminal during Monitor mode.

The second field in the center command area specifies the host baud rate. This variable field allows the user to select the baud rate used between the terminal and a host system (if connected). Following a RESET, its value defaults to the same value as the terminal baud rate.

- o To move the cursor to the host baud rate field from the menu area, enter RETURN.
- o To step forward through the 14 selections available for the host baud rate use SHIFT >.
- o To step backward through the various selections available for this field, use SHIFT <.</p>

Table 6-7 lists the Host baud rates supported by Z-SCAN. Many terminals do not support all the rates supported by Z-SCAN. Some terminals support rates not available on Z-SCAN. These speeds must not be used. The effects of the terminal baud rate selection are discussed in Section 6.13.

. .

Field name	Туре	Values (M-C) Range (hex)	Index/ Default	Notes
Host baud rate	mult choice	19200 9600 4800 2400 1800 1200 600 300 200 150 134.5 110 75 50	0 1 2 3 4 5 6 7 8 9 A B C D	See text 134.5 baud

Table 6-7. Host Baud Rate Values

--NOTE--

In this and subsequent tables, mult choice stands for multiple choice. Hex-N, where N is 2, 4 or 16, indicates a hexadecimal field with the given number of digits. The fourth column lists indexes for multiple-choice fields. The default is always the choice with an index of zero. A default value is given for hexadecimal fields.

The third field in the center command area specifies the status to target. This variable field determines the status code sent to the target system during Monitor mode and Transparent mode. It is a multiple-choice field with two possible values: internal op (internal operation, the default value) or refresh. The implications of each possible status are covered in Section 5.4.3.

- To move the cursor from the host baud rate field to the status_to_ target field, enter cursor down (↓).
- To move the cursor back to the host baud rate field, enter cursor up (
).
- To move the cursor to the menu area from either of the two variable fields, enter RETURN.

Table 6-8 summarizes the behavior of the status to target field.

Field Name	Туре	Values (m-c) Range (hex)	Index/ Default	Notes
status_to_target	mult choice	internal_op refresh	0 1	see Section 5.4.3

Table 6-8. Status to target Values

6.10 THE MEMORY_IO SCREEN

The Memory io screen (Figure 6-4) supports nine commands that can manipulate the contents of memory and I/O ports in the target system. The memory commands can also operate on the Z-SCAN mappable memory (see Section 6.11.3) and on the Z-SCAN monitor memory. Monitor commands and emulations are prohibited from operating on the Z-SCAN I/O ports.

--NOTE--

To set up conditions for emulation, it should not be necessary for the user to operate on the contents of monitor memory with Memory_io screen commands. If the commands are used to operate on monitor memory, the user should exercise great care, since changes to the contents of the memory could prevent the monitor from functioning correctly.

Figure 6-4. The Memory io Screen

The Memory_io screen display is divided into three areas by lines of dashes. The bottom area is the menu area. Above it is a window area, used primarily for the display of data during the execution of commands. The window is initially empty and remains so until a command is executed. The command area at the top of the screen is also initially blank but is used to display a subscreen associated with the command as soon as any command is activated. Refer to Section 6.4 for further information on screen layouts and command displays.

Once a command has been activated, the cursor automatically moves up into the first variable field in the newly displayed subscreen, allowing the contents of the various fields to be updated as described in Section 6.6.

Simply updating the values held by variable fields does not result in the actual performance of an active command. For example, changing the start address field in the memory display command does not result in the immediate display of the contents of the newly addressed block of memory. In order for the action defined by the command and its parameters to be performed, the command must be executed. Execution is accomplished by entering a RETURN after all the command parameters are set to the desired values. The cursor is in the command parameter area just before execution takes place.

Execution of any command clears the window area (which may contain data resulting from a previous execution) and then performs the command. As execution proceeds, data or messages are displayed in the window. If a command requires the display of more data than will fit in the window, the window is repeatedly filled from top to bottom as many times as are necessary to display all the data. The user is given the opportunity to abort or continue with the command after each block of data is displayed.

Execution of commands that operate on large areas of memory may take a long time because Z-SCAN runs one or two separate emulations for each byte in the block. Section 5.4.4 discusses the hardware implications of these memory accesses.

Execution can be suspended temporarily by entering CTRL S to stop the display of further data. CTRL Q terminates the suspension.

When execution is complete, all commands except Display and eXamine give a closing message, usually DONE. The cursor returns to the menu area, and the command is still active. The state of the software is as described in state seven of Section 6.7.

In summary:

- To abort the current command, enter BREAK. This moves the cursor to the menu area without executing the command.
- To execute the current command, enter RETURN.
- To temporarily stop the execution process, enter CTRL S. To continue, enter CTRL Q.
- To continue when the window is full, enter (cursor down); to abort the execution, enter RETURN.

6.10.1 The Compare Command

This command performs a byte-by-byte comparison of the contents of two areas. Any differences between corresponding bytes in the source and target blocks are reported. The terms source and target have no significance; the result of comparing two blocks of memory does not depend on which is named in the source field and which is in the target.

Execution of the command clears the window area and displays a heading at its top left. Bytes from the source and target areas are then compared. Each time a difference is found the two bytes and their addresses are displayed on a new line. This continues either until the examination is complete or until the window area is full. In the first case, a count of differences is displayed at the bottom left of the window, and the cursor returns to the menu area. When the window is full no message is displayed. The cursor rests at the bottom right of the area. Two user input characters are valid:

- Cursor down clears the window and redisplays the heading, allowing more data to be displayed.
- RETURN terminates the command, moving the cursor to the menu area. The message ABORTED appears, indicating that not all the differences between the blocks were displayed.

If there are no differences between the source and target areas, the headings and the message NO DIFFERENCES appear before the cursor returns to the menu area.

Figure 6-5 is an example of a display produced by the Compare command.

sourc targe	e: space SC addres t: space SC addres	is 08 1008 count is 08 0009	1000	·
Sourc	e target Contents addr co	ITENTS		
60 18 66 16 60 11 60 11 60 11 60 1	18 AB 08 0818 19 68 68 6819 11 AB 68 6819 118 AB 68 6818 118 AB 68 6818 116 AB 68 6818 17C SE 68 687 FD AB 68 677 FFD 88 68 677	69 8F 90 18 48 88		
	FFF 18 ON OFFF			
	O DIFFERENCES			
(n Ca	maru_is Screen (Dom Apare Display eXamin	are Cossend) e Fill move refid Hr	Quit lte Load seMd	

Figure 6-5. The Compare Command

Additional examples of the Compare command are included in the tutorials in Section 4.

Table 6-9 summarizes the Compare command's fields and parameters.

Field name	Туре	Values (M-C) Range (hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
source address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00 0000	Does not appear if Z8002 is installed This is the only address field on the Z8002
count	Hex-4	0001 - FFFF	000C	This is a byte count
target space	mult choice	same as for source space		
target address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00 0000	See notes for source address

Table 6-9. Compare Command Fields

6.10.2 The Display Command

The Display command allows the contents of blocks of memory to be displayed on the screen. It does not allow the user to modify those contents; that function is handled by the eXamine command, described in Section 6.10.3. The Display command has two operating modes: memory dump and disassembly. In the first, sixteen bytes are displayed per screen line. The hexadecimal representation of their contents follows the address of the first byte, which appears at the left of the screen. The data can be formatted on the display as bytes, words, or long words (two, four or eight hex digits per data item, respectively). The right of the screen is used to display an ASCII representation of the same data, delimited at each end by asterisks (*). Non-printing characters (00-1F and 7E-FF) are represented by periods (.). There are 17 (decimal) display lines giving a total of 110 hex bytes per display. The Display command can also disassemble the contents of memory in segmented or nonsegmented mode. The format of the disassembled instruction mnemonics and operands is as described in the Z8000 PLZ/ASM Assembly Language Programming Manual (document # 03-3055-02). Addresses and most immediate operands are presented as hexadecimal values. Decimal representation is used for immediate values represented by four or fewer bits.

٦

The display is presented in listing format with addresses at the left of the screen, mnemonics in the center and operands at the right. The memory words disassembled from the decoded instructions appear between the address and the mnemonic.

If the disassembler encounters one of the Z8000's extended instructions, the message * * UNIMPLEMENTED INSTRUCTION * * is displayed in the place of the mnemonic and operands, but the correct number of disassembled words appear to the right of the address. Extended instructions, which may be two, three or four words in length depending on addressing mode and address format, are described in Section 6.8 of the Z8000 CPU Technical Manual (document # 00-2010-C).

When the disassembler finds that the first word of an instruction does not correspond to an operation available on the Z8000, the message * * INVALID OPCODE * * appears and just one word appears to the right of the address. The same message is shown if an illegal register designator--for example, an odd valued long word designator--appears anywhere in the instruction. The number of words disassembled is determined by the opcode and addressing mode of the first instruction word. No error message is generated if invalid constant or opcode fields appear in the second word of an instruction. The invalid instruction message is likely to appear when data areas are disassembled, or when an incorrect disassembly mode (segmented or nonsegmented) is used.

Seventeen instructions are displayed in the window area by disassembly. The number of bytes displayed depends on the instructions disassembled.

--NOTE--

The Z-SCAN memory target access method allows the Display command to address words at odd memory addresses. Individual Z8000 instructions address words only at even addresses. See Section 5.4.4 for more details.

After 110 (hex) bytes or 17 (decimal) instructions have been decoded, the cursor rests at the bottom right of the window area. One of three characters must be entered:

• Cursor down clears the screen, then displays the next block of memory. For word, byte and long display types, the next block starts at the address shown at the bottom left of the display before the screen is cleared, giving an overlap of 16 (decimal) bytes. For disassembly, the next block starts at the address following that of the last word displayed before the screen is cleared.

- Cursor up clears the screen, then displays the previous block of memory. For word, byte and long display types, the final line of the block is the same as the first line of data on the screen just erased. Again, this gives an overlap of 16 (decimal) bytes. For disassembly, the first word disassembled is fetched from an address 44 hex bytes below that which follows the last word displayed before the screen is cleared.
- Return moves the cursor to the menu area. The command remains active and the window area is not cleared.

Figure 6-6 shows a display produced by the execution of the Display command.

Figure 6-6. The Display Command

Table 6-10 details the variable fields in the Display Command.
Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
source address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00 0000	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002. It should be even except when the type field is set to byte.
tуре	mult choice	word byte long nseg seg	0 1 2 3 4	Non-segmented disassembly Segmented disassembly

Table 6-10. Display Command Fields

.

6.10.3 The eXamine Command

The function of this command is to allow the user to examine, and optionally to modify, the contents of individual bytes, words, or long words in memory. When the eXamine command is executed, the contents of the location specified in the command area at the top of the screen are displayed in the window area, and the user is prompted for a new value that will replace those contents.

Figure 6-7 shows the initial screen obtained by the eXamine command. Additional examples of this command are included in the tutorials of Section 4.

source: space. SC	address 08 1FFC	type word		
CURRENT Roor Contents	NEN Contents			
NO 1FFC ABOR	(
		0		
Compare Displ	ern examine (ommand) ans examine Fill mov	e refid Write Load se	Piel .	

Figure 6-7. The eXamine Command

Table 6-11 lists the parameters of the eXamine command. After setting up the parameters, one of two keys must be entered:

- BREAK returns the cursor to the menu area without executing the command. The command remains active.
- RETURN clears the window area then displays the address of the location selected by the parameters, its contents, and a prompt for a new value.

At this stage, the following keys are valid:

- Hex digits can be used to alter the value held in the open location.
- Cursor up and cursor down keys open the previous and the next memory locations, respectively.
- The next location (in the new contents field) is automatically opened after enough hex digits have been entered to fill the location.
- Erroneous input can be deleted with the cursor left or SHIFT < keys.
- Execution of this command is terminated by entering RETURN. The cursor moves to the menu area and the command remains active.

The eXamine command is capable of writing into the Z-SCAN mappable memory. A write protection feature is available that protects the contents of this memory (see Section 6.11.3). Write protection applies only during Target mode; Memory_io screen commands can still write to the memory. The user should exercise caution to avoid overwriting data that should be preserved.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
source address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00 0000	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002. It should be even except when the type field is set to byte.
type	mult choice	word byte long	0 1 2	

Table 6-11. eXamine Command Fields

6.10.4 The Fill Command

The Fill command allows the user to replicate a specified string one to eight bytes in length throughout a specified memory area. If the length of the memory area in bytes is not exactly divisible by the length of the string in bytes, the final copy of the string is truncated. The length of the memory area is defined as end_address- (begin_address + 1). This implies that the last byte filled is the one located at the end address. If end_address is less than begin_address, filling continues from the bottom of memory after the top of memory has been passed.

The string is specified as a sequence of up to 16 (decimal) hex digits. The string used to fill memory always consists of a whole number of bytes. Thus, if the user enters a string that has an odd number of digits, a leading zero is assumed. For example, a user input of 12345 is interpreted as a three-byte string: 01, 23, 45.

The default string is empty; that is, it has no digits and its length is zero. It is equivalent to a field of spaces. Z-SCAN automatically aborts the Fill command if it is executed with such a fill string.

The area to be filled may include the Z-SCAN mappable memory, which is described in Section 6.10.3. The Fill command can alter its contents even if it is write protected.

The only display produced by this command in the window area is the termination message DONE. See Figure 4-20 for an example. Table 6-11 lists the command's variable fields.

Figure 6-8. The Fill Command

Table 6-12 lists the variable fields for the Fill command.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
target space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
begin_address (segment number) (offset)	Hex-2 Hex-4	00-FF 0000-FFFF	00 0000	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002.
end_address	Hex-4	0000-FFFF	0000	On the Z8001, the same segment number is used for both address fields.
string	Hex-16	empty - FFFFFF	empty	Leading zero is implied if length is odd.

Table 6-12. Fill Command Fields

6.10.5 The move Command

The move command allows the user to copy the contents of one area of memory into another area. The contents of the source area are not altered by this command. The source and target areas can be in the same or in different address spaces, and they can overlap. Thus, it is possible for the target address to be within the block specified by the start address and by the length. Similarly, the source address can be within the block specified by the target address and the length. Note that the length is always specified in bytes.

As with the eXamine and Fill commands, the target memory area for the moVe command may include the Z-SCAN mappable memory (see Section 6.11.3). The moVe command can alter its contents even if it is write protected.

Figure 6-9 shows an example of the moVe command. This display results from setting parameters to move the contents of 10 bytes starting at location 0000 in system code space to the 10 bytes starting at location 2000 in system code space. A RETURN is entered after setting up the parameters. This executes the command and displays the DONE message when complete.

		•		•
source: space SC target: space SC	address 98 0000 address 90 2000	count B RIA		
(Henory_io_Screen Compare_Display	solle (semand) eXamine Fill soVe	refhi Hrite Lo	Qurit ani sella	

Figure 6-9. The move Command

Table 6-13 summarizes the moVe command's parameters.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
source address (segment number) (offset)	Hex-2 Hex-4	00-FF 0000-FFFF	00 0000	Segment number does not appear if Z8002 is installed This is the only address field on the Z8002.
count	Hex-4	0001-FFFF	0001	This is a byte count.
target space	mult choice	same as for source space		
target address	Hex-2	00-7F	00	See notes for source
(offset)	Hex-4	0000-FFFF	0000	

Table 6-13. moVe Command Fields

6.10.6 The reAd Command

The user can read byte- or word-wide ports in the target system through the use of this command. Up to FFFF read operations can be performed and their results displayed. Both standard and special operations are supported by the reAd command.

Note that Z-SCAN's own ports cannot be accessed by this command, just as they cannot be accessed during emulations.

Execution of the reAd command first clears the window area, then displays the data read, one word or byte per line. An ordinal number appears to the left of each value.

If the number of operations specified by the count field in the command area is not complete when the bottom of the window is reached the cursor waits at the bottom right of the area. Two keys are valid in this context:

- Cursor down clears the screen and displays more data.
- Return aborts the command, moving the cursor to the menu area. The message ABORT is displayed.

The message DONE is displayed when the requested number of reads has taken place.

Figure 6-10 is an example of a display following execution of the reAd command.

.

Figure 6-10. The reAd Command

Table 6-14 details the reAd command parameters.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
input_port	Hex-4	0000-FFFF	0000	See Section 5.4.4.
count	Hex-4	0001-FFFF	0001	Counts words or bytes.
type	multi choice	std_word std_byte spl_word spl_byte	0 1 2 3	Reads whole bus. Reads bits O-7 of bus if address is odd, or bits 8-16 of bus if address is even. Reads whole bus. Reads bits O-7 of bus if address is odd, or bits 8-16 of bus if address is even.

Table 6-14. reAd Command Fields

6.10.7 The Write Command

With this command, a string of up to eight bytes can be written to a single byte or word-wide I/O port in the target system. The Write command also supports both standard and special operations. The output string can contain

up to 16 hex digits. If the string contains an odd number of digits and the destination is a byte port, a leading zero is assumed. Thus, the high nibble of the first byte transmitted is zero. Similarly, if the destination is a word port, up to three leading zeros can be assumed to ensure that the string fills a whole number of words. For example, the user input 12345 could be interpreted as three bytes (01, 23, 45) or as two words (0001 and 2345).

As each word or byte is output, it is displayed in the window area to the right of an ordinal number. No output occurs if the command is executed with the default string, which is empty (equivalent to a user input of spaces). Note that this command cannot access Z-SCAN's own output ports. The message DONE indicates completion.

An example of the Write command's default screen display is shown in Figure 6-11.

extpet_port		type std_word	
string	012345ABCDEFFFFF		
COUNT DATA			
9001 9123 9002 4578 9003 CDEF			
INDA FEFF			
DONE			
(Meanry_10	Screen Brite Comend) Gwit	

1

Figure 6-11 The Write Command

Table 6-15 lists the parameters for the Write command.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
output_port	Hex-4	0000 - FFFF	0000	
type	mult	std_word	0	16 bits of data appear on bus
	choice	std_byte	1	Data duplicated on high and low halves of bus
		spl_word	2	16 bits of data appear on bus
		spl_byte	3	Data duplicated on high and low halves of bus
string	Hex-16	empty – FFFFFF	empty	Leading zeros may be implied See above.

Table 6-15. Write Command Fields

6.10.8 The Load Command

The Load command allows the downloading of executable files (procedure files) from a host system into memory controlled by Z-SCAN. This section describes the user interface to the command. Section 7 of this manual details the download transactions between Z-SCAN and the host system.

Z-SCAN requires three items of information in order to load a program. It needs to know which address space it will be loaded into. A load address is not required, since the file itself contains this information. If Z-SCAN is using the Z8001 CPU, the second item of information needed is the segment number. The last item of information required is the file name, which may contain up to 32 arbitrary characters. Refer to Section 6.6.3 for further information on file names.

When the Load command is executed, Z-SCAN requests the host system's load utility to open the requested file. It is possible that the host cannot run the load utility or that the requested file cannot be opened for some reason. In either of these cases, an error message is displayed in the window area and execution is terminated. If the host does not respond to the request at all, Z-SCAN waits indefinitely for a response. In this case, the user must abort the command by entering a BREAK.

More often, the load utility runs successfully and the contents of the file are loaded into the target memory area. As this happens, a record count is displayed at the top left of the window area. Each record contains about 30 (decimal) bytes of data. When loading is complete, the entry point of the program just loaded is displayed before execution of the command terminates. The user can abort loading at any time by entering BREAK.

Load can be used to write the contents of a program file into the Z-SCAN mappable memory, which is described in Section 6.11.3. As with other monitor commands that can write to this memory, Load is able to alter its contents even if it is write protected.

Figure 6-12 shows an example screen for the Load command. The tutorials in Section 4 include other examples of the Load command.

target: space SC segment BU	
ENTRY POINT 8844	
	_
Compary Division (Section 2011) and Command) Guit	
A CONTRACT CONTINUE FILL BUVE FRYIN MALVE LOUD ACTIV	

Figure 6-12 The Load Command

Table 6-15 lists the parameters for the Load command.

Table	6-16.	Load	Command	Fields	

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
segment number	Hex-2	00	00–7F	Segment number does not appear if Z8002 is installed
file_name	file name any		blank	32 arbitrary characters terminated by space.

6.10.9 The seNd Command

The seNd command allows the uploading of information or procedure files contained in memory controlled by Z-SCAN. This section describes the interface to the command. Section 7 of this manual details the upload transactions between Z-SCAN and the host system.

Z-SCAN requires several items of information in order to seNd (upload) information or files to the host system. The begin_address and end_address identify the block of data to be sent from the source address space. The Z8001 requires the segment number to be stated. Both begin address and end_address are offsets in the same segment. The number of bytes sent is (end_address - begin_address + 1), so that the last byte in the block is that at end address.

The seNd command is intended mainly for saving patched programs. For this reason, it has an entry point field to define the address at which execution of the program should begin. The entry point must be greater than or equal to the begin address and less than the end address. seNd can be used to save the contents of data areas provided that a dummy entry point is supplied.

When the command is executed, the validity of the addresses is checked. If the check fails, INVALID ADDRESS is displayed and the command aborts. If the parameters are acceptable, the host's SEND utility is activated. An error message is displayed if the host cannot load the utility or if the file name is unacceptable--for example, the file already exists with the same file name as the one given in the seNd command. More normally, the host program is activated without error and records are sent to the host by Z-SCAN. An incrementing number at the top left of the screen counts the records, which each contain 30 or fewer bytes. Execution terminates when the transfer is complete.

Figure 6-13 shows an example of the initial display obtained by accessing the seNd command.

Figure 6-13 The seNd Command

Table 6-17 describes the parameters for the seNd command.

.

Field Name	Туре	Values (M-C) Range (hex)	Index/ Default	Notes
source space	mult choice	SC SD SS NC ND NS MT	0 1 2 3 4 5 6	System code space System data space System stack space Normal code space Normal data space Normal stack space Monitor memory space
begin_address (segment number) (offset)	Hex-2 Hex-4	00–7F 0000–FFFF	00	Segment number does not appear if Z8002 is installed. This is the only field on the Z8002. Must be less than end_address.
end_address	Hex-4	0000-FFFF	0000	Must be greater than begin_address.
entry_address	Hex-4	0000-FFFF	0000	Must be in range of begin_address to end_address -1.
file_name	file_na	me any	blank	32 non-blank characters

Table 6-17. seNd Command Fields

6.11 RESOURCES SCREEN

Before an emulation can be run, a number of parameters must be set up to define the emulation starting conditions, its environment and the constraints placed on it. Without such controls, the emulator would have little advantage over a CPU for debugging purposes.

The Resources screen allows the user to enter control information of this type. A set of six commands is available on this screen. Some of these configure the Z-SCAN resources, for example, its mappable memory and breakpoint logic, whereas others affect the CPU's state and behavior during emulations.

The Resources screen is shown in Figure 6-14. Above the Menu area there are three command areas which are further divided into six subscreens, one for each command. Unlike the Memory is screen, the Resources screen displays all its subscreens continually, whether the associated command has been activated or not. Commands are activated by entering the capital letter from their names when the cursor is in the menu area.

Once a command has been activated, the cursor automatically moves into the first variable field in the associated subscreen, which allows the contents of the fields to be updated as described in Section 6.6. Entering a RETURN or BREAK moves the cursor back to the menu area.

Figure 6-14. The Resources Screen

Each of the following subsections describes one of the six commands available from the Resource screen (Break, Inst_count, mAp, reGister, Peek and Wait states).

6.11.1 The Break Command

The Z-SCAN breakpoint logic is very flexible, allowing BREAKs to be set or pulses to be output in response to a wide variety of conditions. Consequently, the monitor must maintain a large number of variables in order to control its functions. The Break command provides a comprehensive and comprehensible interface to those functions. The default parameters for the Break command fields are included in the Resources Screen, Figure 6-14.

One of the two main inputs to the Z-SCAN breakpoint logic is the address/data bus and, in the case of the Z8001 only, the segment number. The logic can be programmed to search for address matches or data matches, but not both at once. Hence, it is possible to request a break to occur when a particular location is read, but it is not possible to simultaneously request that the break take place only when a particular data pattern is read from that location. Instead, a break can be programmed when that data pattern is read from any location. On the Z8002, the only address field is the 16-bit address/data bus contents. On the Z8001, it may be the segment number, the offset, or both. The segment field is ignored when searching for data matches. The Z-SCAN address/data comparator is 16 bits wide. This must be taken into account when setting up breaks conditioned on byte data. With byte write operations, the user can take advantage of the fact that the Z8001 duplicates the eight bits of data on the upper and lower halves of the bus during all such operations. For example, to break when an ASCII A (code 41 hex) is written, load the match field with 4141. During byte read operations, it is difficult to predict the data that will be seen on the unused part of the bus (upper byte for odd addresses, lower byte for even), so it is seldom possible to program a break conditioned on byte read data. For similar reasons, the user is cautioned against the setting of breakpoints on specific 8-bit interrupt vectors or 9-bit refresh addresses.

The other input to the breakpoint logic is the set of seven signals that constitute the Z8000's status: read/write, normal/system, byte/word and the four status code lines, ST_{0-3} . Users can select any of 128 possible combinations, although some of these are meaningless because the CPU never generates them. An example of such a meaningless status is a normal mode I/O operation, a transaction that is specifically prohibited by the processor architecture.

The design of the breakpoint logic makes it possible to break following a nonmaskable interrupt acknowledge cycle. However, because the logic that controls the change of mode from Target to Monitor traps this particular status code, an NMI acknowledge that triggers the breakpoint is prevented from reaching the target system. This is likely to prevent the target's service routine from being entered correctly, even when emulation is resumed. For this reason, breaks on NMI acknowledges are not allowed and the corresponding status code appears as "reserved".

When some characteristic of either Z-SCAN or the target system makes it undesirable to select a certain set of breakpoint conditions, it is almost always possible to program an alternative condition that ends the emulation under identical or very similar circumstances. Such alternatives take advantage either of program flow or of CPU characteristics. In the case of NMI acknowledge, the operating sequence of the CPU ensures that the new program status area in system code space is referenced soon after such a cycle. Thus, a breakpoint placed on the NMI status entry is an acceptable substitute for a break on NMI acknowledge. Similarly, it may be possible to pick out a certain instruction that will be executed if and only if a particular byte data value is read.

The outputs of the address/data and status comparators feed the trigger logic. Either of these inputs can be masked out (a "don't care" condition). The trigger logic can be fired either when both of its inputs are true (the logical AND condition represented by enable*) or when either of the inputs is true (the logical OR condition, enable+). If either of the inputs is a "don't care" when a logical OR trigger is selected, the break condition is always satisfied, and any emulation stops at once if the trigger logic is enabled (pulse & break selected).

The trigger can be further conditioned by a pass counter, which can count up to FF pulses (255 decimal) before providing a trigger output. Values other than 01 should not be used in conjunction with the Execution screen Trace command (Section 6.12.3) because this command loads the pass counter with the count value before each instruction is emulated. This usually prevents a multiple pass break condition from being satisfied. Figure 6-15 is a conceptual diagram of the breakpoint logic chain. It is provided to help users visualize the action of the logic, not to illustrate the actual implementation. The instruction counter shown on the diagram is discussed in connection with the Inst count command in the Section 6.11.2.

Figure 6-15. Z-SCAN Breakpoint Logic (Conceptual Diagram)

Table 6-16 lists the Break command fields and their possible values. Steps 19 and 20 of the tutorial in Section 4.5, together with their associated Figures 4-14 and 4-15, show the setting of a breakpoint that uses the enable* option. The alternative, enable+, is shown in step 55 and Figure 4-43.

5/27/81

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
master enable	mult choice	disable enable+ enable*	0 1 2	Inhibit pulse and break Enable, OR condition Enable, AND condition
effect	mult choice	pulse_&_break pulse_only	0 1	Trigger ends emulation Trigger does not stop emulation
status select	mult choice	status ST_dontcare	0 1	Status affects break Status ignored
address/data select (Z8002 installed)	mult choice	address data ignore_AD	0 1 1	Address affects break Data affects break Address/data ignored
address/data select (Z8001 installed)	mult choice	seg*offset offset segment data ignore_AD	0 1 2 3 4	Segment and offset must match for break Offset affects break Segment affects break Data affects break Address/data and segment ignored
segment number		00–7F	00	Used for address matches only with Z8001
match pattern	Hex-4	0000-FFFF	0000	See above notes
count	Hex-2	01-FF	01	Pass count field
read/write	mult choice	read write	0 1	
normal/system	mult choice	system normal	0 1	
byte/word	mult choice	word byte	0	

Table 6-18. Break Command Fields

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
status code	mult choice	instr_fetch1 internal_op mem_refresh io_reference special_io seg_trap_ack reserved nvi_ack vi_ack data_mreq stk_mreq EPU_data_mrq EPU_data_mrq EPU_stk_mrq code_sp_access EPA_transfer reserved	0 1 2 3 4 5 6 7 8 9 A B C D E F	Instruction fetch, 1st word Internal operation Memory refresh Standard I/O Special I/O Not produced by 28002 NMI acknowledge. See above Non-vectored int. ack. Vectored interrupt ack. Data memory access Stack memory access Extended Processing Unit Memory operations Code space access, Nth word CPU to EPU transfer Not used by CPU

Table 6-18. Break Command Fields--Continued

6.11.2 The Inst count Command

As well as the breakpoint logic described in the previous section, Z-SCAN contains an instruction counter that can be programmed to stop an emulation after a given number of instructions have been executed. The user must start the emulation with the Execution screen Next command (see Section 6.12.2) if the instruction counter is to affect the trigger condition. Figure 6-5 shows the relationship between the instruction counter and the breakpoint logic.

The instruction counter can be used in conjunction with a programmed break condition to run emulations that stop either when a specified number of instructions is executed or when a particular condition is detected on the bus. This feature further increases the flexibility of Z-SCAN.

Up to FB (251 decimal) instructions can be counted. The difference between this maximum and that of the breakpoint pass counter (FF) arises because four instructions are fetched between the time that the instruction counter is enabled and the time at which the next emulation actually begins. Table 6-19 summarizes the range of values for the field.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
Inst_count	Hex-2	01-FB	01	

Table	6-19.	Inst count	Command	Field

6.11.3 The mAp Command

Z-SCAN contains an 8K byte (8192 decimal bytes) block of mappable memory. This feature facilitates the development and debugging of target hardware, because the mappable memory can be used as a substitute for memory in the target system. This feature is generally used in one of two situations:

- Target memory not implemented. Often, when a prototype is made, it does not include as much memory as is provided by the final design. Alternatively, it may be found that the preliminary memory design does not function correctly. In either of these cases, Z-SCAN mappable memory can substitute for the missing or faulty memory, allowing software debugging to proceed even before the target hardware is fully functional. The memory can also be used for the loading of test programs that exercise the target hardware, thus speeding hardware development.
- Target memory is read-only. Many applications, particularly those addressed by small, dedicated systems, require software that is totally ROM (Read-Only Memory) based. This non volatile method of program storage allows systems to operate without requiring backup storage devices (floppy disks, for example) to save and protect the software when power is removed from the equipment. The production advantages of ROM-based software (also known as firmware) are balanced by a development disadvantage: it is difficult to make changes in firmware in order to debug applications programs. The non volatile nature of the memory means that it must be removed from the prototype in order to modify its contents--if they can be modified at all. Z-SCAN circumvents such problems by allowing the mappable memory to substitute for target system ROM. Because the memory can be written as well as read, the user can easily make changes to its contents as debugging proceeds. An additional feature protects the mappable memory against write accesses, permitting it to simulate read-only memory.

The mAp command allows the user to define the types of memory accesses to which the mappable memory responds. The address space (or spaces) in which the memory appears must be selected, then the ranges of addresses within those spaces. Finally, write protection can be enabled or disabled, as required.

.

Mappable memory can appear in any combination of the Z8000's six memory address spaces (system code, system data, ..., normal stack) and can be mapped as a single block onto any 8K byte boundary within those spaces. Such boundaries are multiples of 2000 hex. It is not possible for the memory to appear at different addresses in different spaces, nor is it possible for it to be write-enabled in one space and write-protected in another. When the memory is mapped at a particular address in a particular block, it responds to all CPU accesses in the range between the base address and base address + 1FFF hex. Memory in the target may respond in the same address range. Even so, CPU read accesses read data from the mappable memory, not from the target. CPU writes are to both the mappable memory and the target memory.

The user may sometimes want to develop ROM-based applications that require more memory than is provided by the Z-SCAN mapping feature. The recommended approach in such cases is to develop and debug the software as a number of separate pieces, consigning each piece to ROM when it is considered fully functional. This allows the amount of code in the mappable memory to be kept within the allowed limits. The Z8000 support software available on many host systems permits newly written routines to be linked to existing procedures in ROM.

Table 6-20 details the mAp command's parameter fields. The tutorials in Section 4 include examples of operations using the mAp command.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
system code select	mult choice	– sc	0	Mappable memory does not respond to system code accesses. Mappable memory responds to
				system code accesses.
system data select	mult choice	SD	0 1	Similar to first field
system stack select	mult choice	รีร	0 1	Similar to first field
normal code select	mult choice	NC	0 1	Similar to first field
normal data select	mult choice	ND	0 1	Similar to first field
normal stack select	mult choice	NS	0 1	Similar to first field
segment	Hex-2	00–7F	00	Segment number does not ap- pear if Z8002 is installed.
address	mult choice	0000 2000 C000 E000	0 1 6 7	This is NOT a hex field , because the index required by the choice table.
protection	mult choice	unprotect protect break	0 1 2	Mappable memory can be written. Mappable memory cannot be written, but emulation continues if an attempt is made to do so. Mappable memory cannot be written, and emulation terminates if an attempt is made to do so.

Table 6-20. mAp Command Fields

5/27/81

6.11.4 The reGister Command

By default, Z-SCAN saves the contents of the CPU registers at the end of each emulation and retores the same values at the start of the next emulation. The reGister command allows the user to alter register contents between emulations so that the next emulation starts with modified values. For example, the Program Counter's contents can be changed so that the next emulation does not start where the previous one finished, or in order to set up the entry point of a newly loaded file.

Changes made to register contents on the Resources screen are reflected in the upper rows of register values on the Execution screen (see Section 6.12). Table 6-21, parts 1 and 2, details the reGister command's variable fields. The tutorials in Section 4 demonstrate the use of the reGister command.

Some of the control registers are used only on the segmented Z8001. They do not appear when a Z8002 is installed in Z-SCAN. These registers are the Program Counter and new program status area segment numbers and normal mode register 14 (NSPSEG). and a second The second s The second se The second second

Field name	Туре	Values (M-C) Range (Hex).	Index/ Default	Notes
RD	Hex-4	0000-FFFF		Word register zero. High byte is byte register RHO, low byte is RLO. Can be used as more significant part of long word reg. RRO or as most significant part of quad reg. ROD.
R <u>1</u>	Hex-4	0000+FFFF	0000 -	Alte RH1, RL1, RR0, RQO
R2 -	Hex-4	0000-FFFF	0000	See notes above
R3	Hex-4	000 0- FFFF	0000	See notes above
R4	Hex-4	0000-FFFF	0000	See notes above
R5	Hex-4	0000-FFFF	0000	See notes above
R6	Hex-4	0000-FFFF	0000	See notes above
R7	Hex-4	00 00- FFFF	0000	See notes above
PC Seg. no.	Hex-2	00-FF	00	Segment number for Program Counter. This does not appear if Z8002 CPU installed. MSB may be set as a result of program execution, but cannot be set by user.

Table 6-21. reGister Command Fields

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
PC (offset for Z8001)	Hex-4	0000-FFFF	0000	Program Counter. Action of CPU undefined if contents are odd.
FCW	Hex-4	0000-FFFF	C000	Flag and Control Word. See <u>Z8000 Technical Manual</u> to determine legal values. Default is segmented system mode with interrupts disabled. The Z8002 ignores the fact that the segmentation flag is set.
R8	Hex-4	0000-FFFF	0000	Also RR8, RQ8
R9	Hex-4	0000-FFFF	0000	See notes above
R10	Hex-4	0000-FFFF	0000	See notes above
R11	Hex-4	0000-FFFF	0000	See notes above
R12	Hex-4	0000-FFFF	0000	See notes above
R13	Hex-4	0000-FFFF	0000	See notes above 200
R14	Hex-4	0 090-FFFF	0000	See notes above. Also segment number of system stack pointer for Z8001.
R15	Hex 4	OCCD-FFF	0000	System mode Stack Pointer, must contain an even value if used for this function. Also less significant half of R814 in system mode only
PSAP Segment no.	Hex-2	▲ 80 -7F	0000	Program Status Area Pointer segment number. Not displayed if Z8002 is installed.
PSAP (offset for Z8001)	Hex 4	0000-FFFF	0000	Program Status Area Pointer. Low byte is ignored by CPU.
NSP Segment Segment no.	Hex-4	0000-FFFF	0000	Normal mode Stack Pointer Segment no. (R14). Not dis- played if Z8002 is installed.
NSP offset	Hex-4	0000-FFFF	0000	Normal mode stack pointer (offset on Z8001) R15.

Table 6-21. reGister Command Fields (continued)

6.11.5 The Peek Command

Z-SCAN automatically captures and displays the contents of the CPU registers at the end of an emulation. This information appears on the Execution screen (Section 6.12) and can be updated with the reGister command (Section 6.11.4). Often, the user wants to know the contents of selected areas of memory at the end of each emulation as well as register contents. In order to satisfy this request, Z-SCAN provides three windows, each four words in length, into target memory and displays the contents of these windows alongside the register information. Note that this usage of the word window is different from that used in connection with the window area on the Memory io screen.

The Peek command allows the user to select the memory space and start address for each of the three windows. Table 6-22 lists its variable fields. An example of its use is given in step 66 of the tutorial, Section 4.6.

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
space #1	mult choice	SC SD SS NC ND NS	0 1 2 3 4 5	System code space System data space System stack space Normal code space Normal data space Normal stack space
address #1 (segment number)	Hex-2	00-7F	00	Window segment number. Segment number does not appear if Z8002 is
(offset)	Hex-4	0000 - FFFF	0000	installed. This is the only address field on the Z8002.
space #2	mult choice	same as spa	ace #1	
address #2	Hex-2	00-7F	00	See notes for address #1.
(offset)	Hex-4	0000-FFFF	0000	
space #3	mult choice	same as spa	ace #1	
address #3	Hex-2	00-7F	00	See notes for address #1
(offset)	Hex-4	0000-FFFF	0000	

Table 6-22. Peek Command Fields

6.11.6 The Wait states Command

Not all memory components meet the maximum access time requirement of 350 ns required by the Z8000 to run at full speed with a 4 MHz clock frequency. A common example of such a memory component is the EPROM (Erasable Programmable Read Only Memory), which has a typical access time of 450 ns. If the Z8000 is used with slow memory or with slow I/O, its access time requirement must be increased. This function is handled by the WAIT- input to the CPU, which must be driven by an external wait state generator in systems that cannot meet full speed access time requirements.

To eliminate the need for each user to implement a wait state generator at an early stage in development, Z-SCAN provides its own generator. This can insert between zero and eight wait states in each memory transaction. It also affects I/O and interrupt acknowledge cycles, as detailed in Table 6-23. The differences between the three types of transactions arise because the CPU samples the WAIT- signal at a different time, relative to Address Strobe, in each type of transaction. Note that refresh operations are not affected because the CPU does not sample the WAIT- line during these cycles. Table 6-24 summarizes the choice of values available in the single variable field controlled by this command.

	Memory R	eference	I/O Re	ference	Interrupt /	Acknowledge
Wait_states Field Value	Cycles Added	Total Length	Cycles Added	Total Length	Cycles Added	Total Length
0	0	3	0	4	0	10
1	1	4	0	4	n	10
2	2	5	1	5	0	10
3	3	6	2	6	0	10
4	4	7	3	7	1	11
5	5	8	4	8	2	12
6	6	9	5	9	3	13
7	7	10	6	10	4	14
8	8	11	7	11	5	15

Table 6-23. Effect of Wait States

Table 6-24. Wait_states Command Field

Field name	Туре	Values (M-C) Range (Hex)	Index/ Default	Notes
Wait_states	mult choice	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8	No waits

6.12 THE EXECUTION SCREEN

The Execution screen differs from those discussed previously in that it has no variable fields. Instead, it performs the following functions:

- Display of Z-SCAN parameters pertinent to emulation--for example, the setting of the breakpoint logic.
- Display of information on the status of the processor and selected target memory areas before and after each emulation.
- Display of a message that indicates the reason for termination of each emulation.
- Provision of commands to start emulations (Go and Next).
- Access to the Trace screen for detailed program analysis.

Figure 6-16 shows the screen as it appears between emulations. It is shown in this state rather than in its default state to better illustrate the functions of the various fields. Note that the screen is divided into five command areas (although they are not used for the entry of command parameters) and a menu area.

Ap space address Break 00000 disable scent file pulse 8.break count 81 status count 81 address 80 80000 scent 81 scent 81 scent 81 unprotect read sustem word instr_fetch1 ddr instruction memonic word instr_fetch1 space addr memory contents R0 R1 %200 space addr addr memory contents R0 R1 R2 R1 R1	ait_states	8		Inst_cou	nt 01			
ddr instruction mnemonic #8 80808 8081 8083 ADDB RH1 \$280 \$8 80808 8081 8083 ADDB RH1 \$280 \$9 addr memory contents R0 R1 \$280 \$9 addr memory contents R0 R1 R2 R3 \$1 SC 08 80608 8063 8067 80607 80608 8068 8068 \$2 SC 08 8063 8067 8067 8068 8068 8068 \$2 SC 08 90691 8063 8067 8068 8068 8068 \$2 SC 08 90691 8063 8067 8068 8068 8068 4049 <t< th=""><th>Ap space address</th><th>88 8888 unprotect</th><th>Break</th><th>disable seg*offs read</th><th>pulse_&_ et00_0000 system</th><th>break s c word 1</th><th>tatus ount 01 nstr_fet</th><th>chi</th></t<>	Ap space address	88 8888 unprotect	Break	disable seg*offs read	pulse_&_ et00_0000 system	break s c word 1	tatus ount 01 nstr_fet	chi
Sp addr memory contents R9 R1 R2 R3 R4 R5 R6 R7 1 SC 080 00001 00003 00005 00007 00007 00008 0	uddr inst 86 8888 888 88 8888 888	truction 1 0003 1 0003	ane aon i ADDB ADDB	c RH1 RH1	4200 4200			
2 SC 89 0606 8961 9063 9685 9687 9686 9768 9768 9768 9768 9768 9768	sp addr 1 SC 98 9899	memory content 9001-0003-0905 9001-9603-9905	800 7 8 9997 8	80 R1 1000 0000 1000 0000	R2 R3 9999 9999 9999 9999 819 R11	R4 R 0000 00 0000 00 R12 R	R6 1119 11199 1119 11199 119 1119 13 1111	R7 8000 8000 8000 R15
<u>3 SC 00 00000 0001 0003 0005 0007 00 0000 (000 00 000 000 000 000 00</u>	2 SC 80 989	8	8 887 8887	8000 8000 8000 8000 PC	0000 0000 0000 0000 ECH	HUNN H HUNN H HUNN H	ана айий айа айий ар	HUUU HUUU NSP
	3 SC 80 800	19 8991 8893 889 8991 8893 889	5 0 00 7 5 0 00 7	99 9999 99 9999	(889 (889	88 994 99 999	a internet A internet	9499

Figure 6-16. The Execution Screen

The two top command areas contain Z-SCAN status information that describes the state of the Wait_states, Inst_count, mAp and Break variable fields. These displays are for reference only, since the fields can be modified only by Resources screen commands. For further details, see Sections 6.11.1 through 6.11.3 and 6.11.6.

Moving toward the bottom of the screen, the next command area contains two lines of data that correspond to the Program Counter contents before and after the last emulation and to the instructions at those locations. The current information, captured after the emulation stopped, appears as the upper row of data, and the status from before the emulation is displayed on the lower line. The display lines are generated by the disassembler described in Section 6.10.2. Disassembly is always nonsegmented if a Z8002 is installed in Z-SCAN. For the Z8001, the segmentation bit (bit 15) of the FCW controls disassembly segmentation mode.

Below the instruction information is a large command area that contains information about register and memory contents. The memory locations displayed to the left of this area are selected by the Resources screen Peek command (see Section 6.11.5). There are two rows of data for each location, again corresponding to the status before (lower row) and after (upper row) the last emulation. To the right of the memory trace information is a display of register contents. As with the instruction and trace fields, the two rows of data represent the status before and after the last emulation. As with the Resources screen reGister command, three control registers do not appear if a Z8002 is installed in Z-SCAN. Refer to Table 6-21 for details. It is possible for bit seven of the Program Counter segment number to be set by program execution on the Z8001, for example, when a long offset direct address mode call instruction is executed. This has no consequence: a segment number of 80 is equivalent to 00, 81 to 01 and so on.

Register contents and traced addresses can be changed using the Resources screen reGister and Peek commands, respectively (see Sections 6.11.4 and 6.11.5). Any such change is reflected in the top entry for the corresponding field on the Execution screen. In other words, it is the status captured after the last emulation that is modified. It is this status that is used when the next emulation begins.

The bottom Command area on the Execution screen is headed Return message. It is here that the monitor writes a short message stating where (\overline{PC} contents) and why (cause of transition from Target to Monitor mode) the previous emulation terminated. This field is blank when the Execution screen is first displayed unless a segment trap is outstanding on the Z8001. Section 5.4.6 discusses this situation. Table 6-25 lists the four possible causes of break conditions. One or more of these messages appears each time an emulation terminates.

Message	Notes
TRIGGER BREAK	The condition set up by the Break command was satisfied.
MANUAL BREAK	The user generated a monitor NMI with the Z-SCAN front panel switches.
WRITE PROTECT BREAK	The executing program attempted to write into the Z-SCAN mappable memory when a write-protect break was enabled.
STEP BREAK	The number of instructions defined by the Inst_count field was executed during an emulation started with the Next command.

Table 6-25. Termination Messages

The menu area of the Execution screen lists two commands that are specific to the screen: Go and Next. These are described in Sections 6.12.1 and 6.12.2. There is a third command, Trace, which generates its own screen. The Trace command is described in Section 6.12.3.

6.12.1 The Go Command

This command starts an emulation at the address held in the PC register. The emulation continues until one of three conditions occur:

- The breakpoint condition selected with the Break command is met.
- The user generates a Monitor NMI with the Z-SCAN front panel switches.
- The program running under emulation attempts to write into the Z-SCAN mappable memory when a break is set on write protect violation.

If any of the above conditions is detected, the emulation either stops at once or executes a maximum of one more instruction in Target mode before Z-SCAN switches back to Monitor mode. This implies that the CPU must be executing instructions so that the transition between modes can occur. This topic is discussed in Section 5.4.8. The tutorials in Section 4 include examples of the Go command.

6.12.2 The Next Command

The Next command allows the user to start an emulation that executes a given number of instructions before it is automatically terminated. The number of instructions is determined by the contents of the Inst count field, which can be modified on the Resources screen (see Section 6.11.2). This command is useful for stepping through programs one or more instructions at a time.

It is possible for an emulation started by the Next command to terminate before the instruction count is exhausted if an alternative break condition arises. The Next command can terminate when:

- The programmed instruction count is exhausted.
- The breakpoint condition selected with the Break command is met.
- The user generates a monitor NMI with the Z-SCAN front panel switches.
 - The program running under emulation attempts to write into the Z-SCAN mappable memory when a break has been set on write-protect violation

If any of the above conditions is detected, the emulation either stops at once or executes a maximum of one more instruction in Target mode before Z-SCAN switches back to Monitor mode. This implies that the CPU must be executing instructions so that the transition betweeen modes can occur. This topic is discussed in Section 5.4.8 (Termination of Emulation). The tutorials in Section 4 include examples of the use of the Next command.

The user should be aware of the effect of stepping through the Z8002's block instructions, for example LDIR or OTDRB. When Inst count is set to one, each step results in a single operation on one word or byte, and the Program Counter value is not changed by the operation unless the Block Count register named in the instruction is decremented to zero. If, on the other hand, Inst count has a value greater than one, the block instruction executes in tion counting logic is concerned. This is a consequence of the interaction between the interruptable block instructions and Z-SCAN's use of non-maskable interrupts to terminate emulation (see Section 5.4.6). The <u>Z8000 CPU Techni-</u> cal Manual provides more information about the operation of block instructions.

6.12.3 The Trace Command

The Trace command provides a more detailed picture of program execution than either the Go or Next command because it disassembles and displays each instruction before it is executed. Disassembly incurs a time penalty, so unlike Go or Next, Trace cannot run emulations in real time. The monitor traces the user program by forcing a non-maskable interrupt after each instruction. This prevents acceptance of any interrupts or traps generated by the target hardware. Section 5.4.6 discusses this behavior in detail.

Figure 6-17 shows the Trace screen in its default state. The contents of all memory data fields in the figure is arbitrary and has no significance in the following discussion.

Heil Benome Here Right <th< th=""><th>AddressContents</th><th></th><th>nemonic</th><th></th><th></th><th></th><th>F(CM</th></th<>	AddressContents		nemonic				F(C M
R0R1 R2R2 R3R4 R5R4 R15 R0000 R0000 R0000 R0000 R0000 R0000 R0000 R0000 R0000 R10R1 R12 R13R1 R14 R15 R0000	960 99999 9991 9994		000				
	R08R1R2R3 90008-90009-90009-90009-90009 90009-90009-90009-90009 System Podes Stact 9001-9003-9005-9007 9001-9003-9005-9007 Pet-SC	H R4R5R6- 8999 8999 899 8999 8999 899 8999 8998 8999 8998	UUB RH - R7R8- 9 9999 9999 9 9999 9999 9 9999 999 Normal M 9991 999 9991 999	1 \$206 	8009 8000 8009 8000 8009 8000	R13 - R14 9 9669 9669 9 9900 9900 9 9900 9900 9 9909	(000 R15 R H008 H008 M5P- A R000 H000

Figure 6-17. Default Trace Display

In its default state, the screen displays a heading followed by ten blank lines. Below these, a single disassembled instruction appears in the format described in Section 6.10.2, followed by the FCW value. Disassembly mode is always nonsegmented if a Z8002 is installed in Z-SCAN. The segmentation bit (bit 15) of the FCW controls the mode on the Z8001. The instruction will be executed when emulation starts. Below the instruction, two lines of general-purpose register contents are shown. The values in the top line are loaded before the next emulation starts; those in the lower line were used when the last emulation started. Space limitations prevent the display of the normal mode stack pointer (NSP) in this area. It appears elsewhere on the screen. The program status area pointer (PSAP) is not shown on the Trace screen.

Two stack area displays appear below the register contents. Again there are two lines of data, corresponding to the current and previous stack states. The left hand area displays the 12 (decimal) bytes at the top of the system stack, which starts at the address in RR14 (Z8001 segmented mode) or R15 (Z8001 nonsegmented mode or Z8002). Thus, the address of the first byte displayed varies as data is added to or removed from the system stack.

To the right, the normal stack is displayed in a similar format. The normal stack pointer register contents appear at the far right. The segment number register (NSPSEG) is not displayed if a Z8002 is installed in Z-SCAN.

The final data area displays the contents of the memory areas defined by the Resources screen Peek command (Section 6.11.5). Current and previous contents appear on the upper and lower lines respectively.

The field at the left of the bottom line defines a step count; that is the number of instructions to be executed when emulation starts. The default value is 000B (11 decimal), sufficient to fill the upper half of the screen with disassembled instructions. The value can be changed as described below. A prompt filling the remainder of the line invites the user to enter hex digits, cursor down or RETURN. The effect of these keys are as follows:

- Enter cursor down to execute the number of instructions shown in the step count field.
- Enter hex digits (0-9, A-F) to alter the value in the step count field. Execution begins after four digits have been entered. Use cursor left or SHIFT < to backspace over and delete incorrect entries.
- Enter RETURN to move to the Execution screen.

When tracing starts, the bottommost instruction on the screen is redisplayed. An asterisk in column one shows that it is the first instruction executed in the series of traced instructions.

Tracing can be stopped by four events:

- The number of instructions defined by the step count has been traced. This is the normal termination. The prompt is redisplayed on the bottom screen line.
- The condition set up by the Resources screen Break command (Section 6.11.1) is satisfied. Tracing terminates at once and the message TRIGGER BREAK replaces the prompt.

- A traced instruction attempts to write to write protected mappable memory. Tracing terminates at once and the message WRITE PROTECT BREAK replaces the prompt.
- o The user enters the terminal keyboard BREAK key. Tracing terminates at once and the message MANUAL BREAK replaces the prompt.

When tracing terminates, the register, stack and peek memory contents fields are updated. All instructions shown in the top half of the screen have been executed except the bottommost. The next emulation starts by executing this instruction. The FCW values at the right of the screen show the state of the CPU **before** the execution of the instruction to the left. Figure 6-18 shows the Trace screen after execution.

AddressContents	Hnenon i c		-FON
*88 1FFC SE88 8818 98 9818 598F 8818 98 981C 6888 89 - R1 - R2 - R3 - R4 K5 4788 8988 8988 8988 9988 9988 9988 9981 9988 5988 9989 9989 9989 9981 9983 9985 9987 9899 9098 Pet-SC - 90 - 9018 Pet-SC - 90 - 9018 Pet-SC - 90 - 9018 Pet-SC - 90 - 9018 Pet-SC - 90 - 9018	JP :((98 INC :(98))29818: INC :(98))29818: INC : RH- 412 R5- R7- R8- R9- R18- Bess 9698 9698 9698 9698 9698 9698 9698 9698	>>>20018: \$15 \$15 \$11-\$12-\$13-\$14 \$0000 0000 0000 0000 \$0000 0000 0000	C2000 C2000 C820 R15- 8000 8000 R5P- 8000 8000
Trace Step Count : 0000	TRIGGER BREAK AT: BBIC		

Figure 6-18. Trace Screen after Execution

Three termination conditions described above replace the prompt on the bottom screen line with an informative message. The user input required is not changed: hex digits, cursor down and RETURN are still valid keys.

As discussed in Section 5.4.7, the Z-SCAN monitor may violate protection attributes set up in the memory manager of a Z8001-based target system. The user is warned of this condition by the appearance of a warning message at the bottom right of the screen. The message overwrites the previous contents of the area. Segment traps cannot be serviced during tracing for the reasons outlined at the beginning of this section. Other screens and commands must be used to correct the condition.

6-59

6.13 The Host Screen

The characteristics of the host screen are defined almost entirely by the host system rather than by Z-SCAN. The initial screen, which is displayed in response to the Host command, is shown in Figure 6-19. It is clear, except for the message "Host" at the top left. When the contents of the host baud rate and terminal baud rate fields set up on the System screen (Section 6.9) differ, a supplementary message, "Set baud rate of terminal to (speed), then enter RETURN and ">", appears. The speed is taken from the host baud rate field. The monitor waits until a RETURN character is received at the host baud rate before enabling communication between the terminal and the host system. Consult the terminal documentation for details of its baud rate setting procedure.

When the baud rate is correct, Transparent mode is entered. This mode is terminated when the user enters BREAK. If the System screen host and terminal baud rates are the same, the System screen is displayed at once. If they differ, the procedure described in the previous panel is repeated, telling the user to set the baud rate of the terminal to that required by the monitor. The System screen is displayed after a RETURN has been entered at the correct baud rate.

Figure 6-19. The Host Screen

SECTION SEVEN

INTERFACE TO NON-ZILOG HOSTS

7.1 INTRODUCTION

This section describes the overall communications protocol of the Z-SCAN monitor so that custom host software can be designed to interact successfully with the Load/seNd utility built into Z-SCAN.

Load/send communication between a Zilog (or other) host system and the Z-SCAN monitor is accomplished by exchanging messages containing printable ASCII characters. Message types are:

- o Single-character, data-block acknowledgement
- o Error text
- o Data block

All messages exchanged during a Load or seNd command are text lines, each ending in RETURN (carriage return). Memory and other data are converted into hexadecimal numerals for transmission, and the resultant message is readable left-to-right, high-order digit first, as it is transmitted over the RS-232 link.

The following illustrates a simplified form of Z-SCAN's Load/seNd transmission protocol:

Mode	Host Message	Message Path	Z-SCAN Message
either		< ·	start command
mode	acknowledge	>	
Load	data	>	
		<	acknowledge
seNd	 acknowledge	<>	data

In this illustration, data/acknowledge message pairs are continually sent until the desired amount of data is transmitted successfully, or a fatal error or user abort occurs.

7.2 DATA ACKNOWLEDGEMENT MESSAGES

Of the three types of Load/seNd messages, data-block acknowledgements are the simplest. A data-block acknowledgement must be sent each time a data message is received. It consists of exactly one of three characters--0, 7, or 9--followed by a RETURN. The characters have the following meaning:

- 0 Data block received with valid checksums.
- 7 Transmission error, please resend last block
- 9 Bad load address or error message received, abort process.

Thus, the sender (either the host system or Z-SCAN) simply places a data message on the RS-232 link and after one echoed line, receives one of these three characters. If the host does not echo the input characters, it must at least precede any acknowledgement with RETURN or RETURN and linefeed. This happens if, for example, the host is half duplex.

If a 7 is persistently returned to the host system because of checksum errors, the sender must decide when to stop trying to send a message. In the Z-SCAN seNd command, this occurs after a total of 10 trys. A custom host Load command can use some other value, if desired. In any case, once the sender stops re-sending data, it notifies the receiver that it is giving up the whole communication effort by sending one of the error messages (// RETURN) described below.

Z-SCAN Load/seNd acknowledgement logic allows for don't-care regions in acknowledgement lines, such as:

xxxx O xxxx RETURN xxxx ...

Here, Z-SCAN's seNd command examines all characters returning from the host after a data message has been sent. It throws out all data until a 0, 7 or 9 is found. The data preceding the acknowledgement character must not contain 0, 7 or 9. It also throws away the rest of the line. Z-SCAN does not currently use these regions, so the host receives 0, 7 or 9 and RETURN in unadulterated form, even if it chooses to send "dirty" acknowledgements.

7.3 DATA TRANSMISSION MESSAGES

All memory or other numerical data sent over the host/Z-SCAN link is formatted as ASCII characters that represent each data byte as two hexadecimal digits. Error-message text can also be sent. Since each transmission is terminated by a RETURN, it appears to the host as if the source were simply a standard ASCII terminal. This formatting allows Z-SCAN to be connected to a standard terminal port on the host, which, in turn, makes possible its transparent (user-to-host) mode of operation.

Data and error messages begin with a slash (/) to distinguish them from acknowledgements. The basic format for a message is:

/ printable ASCII characters RETURN

7.3.1 Error Messages

To distinguish error messages from data blocks, an error message has the form:

/ / error text RETURN

where the degenerate case, //, is used by the Z-SCAN seNd command to respond to the last 7 in a failed sequence of sending retries (see Section 7.2). Z-SCAN thus signals the host to abort the entire communication process. When sent by the host, error messages cause the Z-SCAN Load and seNd commands to abort, but any error text is first copied to the user's terminal to indicate that an error has occurred.

The error-message facility thus allows the sender to force the receiver to abort, while optionally providing an informative message of up to 40 characters. Error messages can only be sent in place of a data message--that is, only when a data message might otherwise by sent. The appropriate acknowledgement of any error message is 9. Z-SCAN supplies but does not expect such closure, since all error messages from Z-SCAN correspond to abort conditions.

7.3.2 Data Messages

A data message begins with /, ends with RETURN, and contains printable characters that are translated from hexadecimal numerals into memory bytes, checksum bytes, or address words. The sender's message encoding proceeds byte by byte, nibble-by-nibble, building a string of hexadecimal text digits O through F. The receiver must then reverse the translation to obtain binary byte values. The basic format of a data message is:

/ address byte count checksum1 data checksum2 RETURN

char:1 2 3 4 5 6 7 8 9 10... 2xbyte count+10 2xbyte count+11

where the items sent are defined as:

- address 4-digit hexadecimal (O-F) representation of a 16-bit destination address for data, highest-order digit first. If the byte count is zero, it corresponds to a program file's entry address and must be even.
- byte_count 2-digit hexadecimal, 8-bit count of the physical memory bytes to be constructed from data numerals. OD indicates the final record in the transmission and that the program's entry address was sent in this message. For the Z-SCAN seNd command, the maximum count is 30 (decimal). For Load, the byte count is limited by the Z-SCAN input buffer size.
- checksum1 2-digit hexadecimal, 8-bit sum of address and byte-count values, nibble-by-nibble, done prior to conversion to ASCII 0 to F. Data nibbles are simply added successively into an 8-bit register to produce the checksum, which is then translated into the two numerals sent.
- data 2-digit hexadecimal, 8-bit memory bytes, starting with numerals for the byte at the address sent--30 bytes (60 numerals) maximum length for seNd.
- checksum2 2-digit hexadecimal, 8-bit sum of data-byte nibbles with the overflow ignored. The ability of this checksum to trap errors decreases once the sum of all data nibbles exceeds 255, which also depends on the byte count.

During reception of data messages, all ASCII control characters (codes below 32 decimal) are ignored except for RETURN. Furthermore, all characters following RETURN up to the beginning of the next message (/) are ignored. In combination with the fact that only sufficient numerals are used to exhaust the byte count and checksum2, identification of don't-care regions within a stream of data messages is possible:

xxxx / address... data checksum2 xxxx RETURN xxxx /...

The xxxx regions could conceivably be used to transmit any information that does not conflict with the basic format used. As with the acknowledgement message, Z-SCAN does not use this feature, though a custom host program can do so, with the limitation that during Load operations, any host should not send more message characters than can fit in Z-SCAN's input buffer (currently 128).

Note that the only characters that have meaning in data messages are /, RETURN, 0 to 9 and A to F, and the overall transmission format corresponds to one originally developed by Tektronix. Each data message must be acknowledged before the next can be sent.

7.4 COMMAND TRANSMISSION

Both the Load and seNd commands initiated in Z-SCAN by the user at the terminal rely on the host to run the appropriate program (LOAD or SEND) to complete the communications link and to transfer the desired data. To begin the process, Z-SCAN sends a command line to the host. This line includes a file name taken from the corresponding field on the Load or seNd command subscreen. The seNd command line also includes the start address, end address and entry point for the file, encoded as four-digit hex numbers. The host program may choose to ignore this information since it is also contained in the data records sent to the host by Z-SCAN. Thus, the host operating system must be able to receive either of two commands from Z-SCAN:

B;LOAD filename RETURN

or:

B;SEND filename start address end address entry point RETURN

The host operating system should then run the appropriate program, passing the parameters, which may be followed by trailing blanks, to the program for parsing.

The "B;" prefix instructs the Zilog RIO operating system to cease verbose mode re-echoing of commands after RETURN. If no such feature exists in the host being used, these two characters must be ignored. In any case, Z-SCAN ignores echoing of the command line and the next line too if it begins with B; and awaits activation of the corresponding program.

The user can enter BREAK to abort command transmission. If this is not done, Z-SCAN does one of three things once the command line has been sent to the host and any echo(s) have been ignored:
- host failure 0, 7, or 9 RETURN not received: pass what was received to user's terminal as host error diagnostic and abort.
- file unopened 7 or 9 RETURN received: desired file not found or can't be opened: display error message and abort.
- proceed O received: LOAD/SEND running and ready to send or receive data.

Note that in host failure, the host's response is passed directly to the user's terminal regardless of its structure. The transmission or reception of data by the host begins as soon as the host LOAD/SEND program issues its initial O response.

Once Z-SCAN has ignored command echoing, any text beginning with B is skipped until the next RETURN:

B; SEND...RETURN... B XXXX RETURN XXXX O XXXX RETURN

This feature is not used by Zilog's host software, though it may be implemented by a custom host.

7.5 USER ABORT

The Z-SCAN software monitors terminal activity and break keystrokes during Load/seNd activities. In this way it can abort data transfers entirely. Whenever an abort occurs after successful command transmission, the host is sent either 9 or //, depending on the context (Z-SCAN receiving or sending, respectively), and is expected to abort the LOAD/SEND program immediately. The Z-SCAN never waits for acknowledgement of the degenerate error message (//) and terminates seNd activity at once. BREAK aborts Z-SCAN Load/seNd regardless of the host program's current state, functional or not. During Load activity, the 9 is sent just after the last acknowledge, allowing the host to send an extra data block that is acknowledged by the waiting 9 but is never received by the already aborted Z-SCAN.

7.6 DETAILED TRANSMISSION PROTOCOL

The following sections describe the assumptions of the sequential details of host/Z-SCAN Load/seNd transactions and data transmission currently made by the Z-SCAN monitor.

Load/seNd communication is always initiated by Z-SCAN because it responds to commands from the user terminal. Whether Z-SCAN issues a Load or seNd command, the initial sequence of messages is the same:

Z-SCAN Sends	Host Sends	
B; COMMAND REFURN	normal_echo RETURN line feed verbose_echo RETURN line feed O RETURN	(of command) (possible) (file found and ready)

where the command sent by Z-SCAN always begins with either B;LOAD or B;SEND, and where the host operating system (RIO on Zilog systems) determines the nature and existence of command echoing. Z-SCAN assumes that there is one echo line, and that if B starts the second line received, the host was in verbose mode and acknowledgement will be found in the next line (0...). Thus, the first one or two lines received from the host are completely ignored by Z-SCAN. For custom hosts or host programs, this means that if no echoing occurs (for example, if normal, full-duplex echoing is turned off), all messages sent to Z-SCAN must be preceded by RETURN, since Z-SCAN assumes that each message sent to the host is echoed. The acknowledgement above would then be RETURN O RETURN.

Just before sending the host command, Z-SCAN also checks to see if the user has entered BREAK. If so, Z-SCAN sends 9 RETURN to the host, as it does during data transmission, but does not send the command. Typically, the host operating system does not understand this meaningless message and, in turn, generates a meaningless error message.

Note that every message line sent to the host by Z-SCAN is echoed by the host if echoing is on. For simplicity, this is not shown in subsequent examples except for command transmission. Z-SCAN automatically skips one received line for each line it sends.

It is, however, possible that communication is not successfully established. In fact, once Z-SCAN has sent the Load or seNd command line to the host and received and ignored normal and verbose echoes, three possibilities exist:

- The command contains an error that prevents the operating system from running the load or send program. In this case, a 0 is not transmitted, but any response or error message the operating system chooses is sent. Whatever is returned is passed directly to the user's terminal to indicate the failure of the command.
- 2. The command is correct, and the load or send program runs but cannot find or open the desired file. In this case, either a 7 or a 9 (no preference) is returned by the host program to Z-SCAN, generating an error message on the user's terminal.
- 3. The command is correct, the LOAD/SEND program runs, and the desired file is opened. In this case, a O is returned to signify that data transmission will (Load), or may begin (seNd).

Samples of successful command transmission appear in the data transmission examples in subsequent sections. Listed here are some failure possibilities:

	Z-SCAN Sends	Host Sends
1.	B;LOAD X RETURN	CAN'T FIND PROGRAM: LOAD RETURN line feed
2.	B;LOAD X RETURN	7 RETURN (LOAD can't open X)
3.	9 RETURN	ILLEGAL FILENAME: 9 RETURN line feed
		(user entered BREAK)

In the first case, Z-SCAN copies the host message to the user's terminal, while in the second case, Z-SCAN generates its file-error message. In all cases, Z-SCAN aborts the Load/seNd activity, and in the second case, the host program does the same.

7.6.1 Load Protocol

After command transmission to the host, the message-exchange protocol for down-loading a program into Z-SCAN is:

Host Message	Path	Z-SCAN Message	Notes
data message	>		Skip until /, then wait for RETURN. Check first message character for error flag (/), validate checksums, and load data into memory.
	<	0	Acknowledge valid data so next block can be sent. Done if final block. Check for BREAK by user.
	<	7	Request re-sending of block due to checksum error. Check for BREAK by user.
	<	9	Acknowledge error message or indicate that BREAK was typed, and transmis- sion must be aborted. Done.

Possible message sequences between the Z-SCAN and the host might be:

Z-SCAN Sends	Host Sends
B;LOAD X RETURN	
	B;LOAD X RETURN line feed (normal echo)
	/ data1 RETURN acknowledgement)
O RETURN	/ data2 DETURN
7 RETURN	/ Galaz Keturn
0.0571101	/ data2 RETURN (data re-sent)
U RETURN	/ data3 RETURN
•	
•	
·	
	•
O RETURN	/ dataend RETURN (O-count data message with entry point address)

Here, both Z-SCAN and the host system reach normal completion after the final acknowledge.

An error transmission might be:

Z-SCAN Sends	Host Sends	
B;LOAD X RETURN	B;LOAD X RETURN line feed O RETURN	(from host OS) (from LOAD program)
7 RETURN	/ datal RETURN	(checksum bad)
•	•	
7 RETURN 9 RETURN	// error RETURN	(retries exhausted)

Here, both Z-SCAN and the host program abort the transmission attempt after error-message acknowledgement.

An example of a user-induced abort during data transmission might be:

Z-SCAN Sends	Host Sends	
B;LOAD X RETURN O RETURN 9 RETURN	B;LOAD X RETURN lin O RETURN / data1 RETURN / data2 RETURN	e feed (user enters BREAK) (host sees O) (sends next data) (then sees 9)

The BREAK is entered during data1 transmission, but Z-SCAN acknowledges the data anyway and then immediately sends its abort signal. The host, operating line by line on Z-SCAN messages, sends data2, sees the abort acknowledgement waiting in its input buffer, and then terminates. Z-SCAN terminated earlier, upon sending the 9.

7.6.2 Send Protocol

In the seNd protocol, as in Load, command transmission takes place first. Subsequent protocol elements are:

Host Message	Path	Z-SCAN Message	Notes
	<	data message	See Section 7.7, Message Syntax
O RETURN	>		Acknowledge valid data
7 RETURN	>		Request to re-send data
		:	
	<	11	Error - re-send count exhausted
9 RETURN	>		Acknowledge error and abort

A message sequence might look like:

Z-SCAN Sends	Host Sends
B;SEND W start end entry RETURN	B;SEND W RETURN line feed
/ data1 RETURN	
/ data2 RETURN	
	•
•	
•	
/ dataend RETURN	O RETURN

As a result of this sequence, the Z-SCAN command and the host program simply terminate.

An error transmission might be:

Z-SCAN Sends	Host Sends
B;SEND W start end entry RETURN	RISEND W PETHEN line food
/ data1 PETURN	O RETURN
/ Uatal REIDAN	7 RETURN
• •	
•	•
	•
// RETURN	9 RETURN

Again both programs terminate, but in failure.

A user abort might take place before command transmission (see Section 7.5, User Abort) or during data transmission:

Z-SCAN Sends	Host Sends
B;SEND W start end entry RETURN	B;SEND W start end entry RETURN line feed O
/ data1 RETURN //	0 (user enters BREAK) 9

Here, BREAK was struck after Z-SCAN began sending data1 and the error-abort message was sent instead of data2.

7.7 MESSAGE SYNTAX

The three types of messages symmetrically exchanged over the host-Z-SCAN link can be described in Backus-Nauer form:

<z-scan message=""></z-scan>	::= <message string=""> RETURN</message>
<message string=""></message>	::= <acknowledgement> <data string=""> <end string=""> </end></data></acknowledgement>
- -	<pror string=""></pror>
<acknowledgement></acknowledgement>	::="0" "7" "9"
<data string=""></data>	::="/" <address> <count> <sum> <data> <sum></sum></data></sum></count></address>
<pre><end string=""></end></pre>	::="/" <address> "00" <sum></sum></address>
<address></address>	<pre>::=<digit> <digit> <digit> </digit></digit></digit></pre>
<count></count>	::= <digit> <digit></digit></digit>
<sum></sum>	::= <digit> <digit></digit></digit>
<data></data>	::= <digit> <data> <digit></digit></data></digit>
<pror string=""></pror>	::="//" <error string=""> <ascii char=""></ascii></error>
<digit></digit>	::="0" "1" "9"
	"A" "B" "F"

A valid data message must have twice the value of <count> data digits in the <data> string. The end string is a special case of the data string and is the last message to be sent by the sender. In this case, <address> is the entry (starting) point of the procedure (program) file being transferred and must be even for Z8000 programs.

The two checksum (<sum>) values are computed by adding all nibbles of the data they are to check. This is done in an 8-bit accumulator, which generally overflows for the <data> portion of the transmission. Note that the addition occurs before the data is translated into ASCII numerals. Thus the host SEND program must translate the received Z-SCAN data before computing the checksum for comparison with the value of either <sum>.

For any of the three message types, Z-SCAN ignores control characters (except RETURN) and any characters between those needed to decode the message and the end of the line sent (RETURN). Z-SCAN also ignores characters between the last RETURN and the next / when receiving data/error messages.

Command transmission syntax is defined by Z-SCAN, and because it describes unidirectional communication, it is of interest only to the host:

<z-scan command=""></z-scan>	::="B;" <name> sp</name>	<body> sp* RE1</body>	IURN
<name></name>	::="LOAD" "SEND'	1	
<body></body>	::= <filename> [<parameter>]*</parameter></filename>		
<pre><parameter></parameter></pre>	::=start_address	end_address	entry_point

where sp denotes ASCII space, filename is the name entered by the user, and * indicates an item that occurs zero or more times.

7.8 HOST PROGRAM CONTROL FLOW

The following outlines the sequential behavior of a host LOAD or SEND program that successfully interacts with Z-SCAN. It is an alternative way of stating the protocol definition already discussed from the host program's point of view. An example of such a program, the LOAD utility for Zilog's Z80 RIO operating system, is given in Appendix A.

7.8.1 Load Program

. •

The host LOAD program flow is shown in Figure 7-1.

Figure 7-1. Flowchart for LOAD Program

7-12

7.8.2 seNd Program

٩,

The host SEND program flow is shown in Figure 7-2.

Figure 7-2. Flowchart for SEND Program

• .

APPENDIX A

ĸ

TERMINALS SUPPORTED BY Z8000

.

APPENDIX A

Terminals Supported by Z-SCAN

A.1 INTRODUCTION

The two-dimensional user interface of the Z-SCAN monitor software requires a CRT terminal with a 24-line by 80-column display. In addition, the monitor software requires the following functions:

- Clear screen
- Clear to end of line
- Position cursor
- Cursor control keys (move cursor up, down, left or right)

Most terminals offer these features, but the character sequences that distinguish them vary according to the terminal manufacturer.

The monitor software supports nine distinct CRT control protocols, allowing Z-SCAN to be used in conjunction with terminals from many different manufacturers. The user must select the terminal type by entering a hex digit during the initialization of the software. See Section 3.5 for further details. Table A-1 summarizes the terminal types that are supported.

A.2 TERMINAL DETAILS

The Z-SCAN can be used with a terminal not listed in Table A-1 provided that the terminal is compatible with one of those which is listed. The following paragraphs detail the control sequences generated by the monitor for each supported control protocol. Table A-2 lists the symbols used to describe the protocols. Commas and spaces that appear in the descriptions are simply separators: they are not part of the transmitted sequences.

Selection Digit	Manufacturer	Model		
0	Lear Siegler Televideo	ADM 31 TVI 912 TVI 920		
	Zentec	Zephyr		
	Soroc	IQ 120 IQ 135		
1	ADDS	Regent series		
2	Beehive	Bee 100 Bee 107 Micro-B 1		
3	DEC	VT52		
4	DEC (any)	VT100 ANSI A3.64 or ISO DP 6429 compatible		
5	General Terminals Inc.	I-200 I-400		
6	Hazeltine	1420 1500 Exec 80		
7	Hewlett Packard	. 2620 2640		
8	IBM	3101		

Table A-1. Terminals Supported by the Z-SCAN Monitor

. . ·

Symbol Type	Representation	Notes
escape (hex 1B)	esc	
other control chars. (codes OO to 1F)	∧ char	This code is that transmitted when the control key and the given character key are press- ed together.
tilde (hex 7E)	tilde	This character, \sim , does not display on some terminals.
cursor row (binary)	rb	This is a single character giving the row number, 1-24 decimal, offset by 31 decimal unless otherwise stated.
cursor column (binary)	cb	This is a single character giving the column number, 1-80 decimal, offset by 31 decimal unless otherwide stated.
cursor row (decimal)	rd	This is the row number sent as two printable characters. The range is 00 to 23 for HP ter- minals and 01 to 24 for the ANSI compatible DEC VT100.
cursor column (decimal)	cd	This is the column number sent as two printable characters. The range is 00 to 79 for HP terminals and 01 to 80 for the ANSI compatible DEC VI100.
all others	as displayed	

Many terminals offer options that can be selected by entering commands at the keyboard when the terminal is in a special set-up mode, or by setting concealed switches. The Z-SCAN monitor is not able to function correctly when certain options are selected. The option settings required on each major terminal type are listed. The monitor is not sensitive to the setting of any option that is not mentioned. Refer to the manufacturer's documentation if further information is required about any particular terminal.

Special considerations apply when certain terminals are used with Z-SCAN. For example, some low-cost terminals do not have cursor movement keys, so the user must enter control characters manually in order to acheive the desired effect. Such considerations are mentioned when they apply.

A-3

A.2.1 Lear Sielger ADM 31 and Soroc Terminals

Table A-3 lists the control sequences used with the ADM 31 and compatible terminals:

Clear Screen	Clear Line	Move Cursor	Cursor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
^^ ,esc, Y	esc, T	esc, =, rb, c	ь ^ к	л ј	^ L	^ H

Table	A-3.	ADM	31	Control	Sequences
-------	------	-----	----	---------	-----------

The following internal switch settings are required when an ADM-31 is used in conjunction with Z-SCAN. It should not be necessary to check these settings unless problems are experienced during use:

Switch Bank	Switch	Setting	Function
1	1	On	Break enable
	5	Off	8 bits, no parity
	7	Off	Conversational mode
	8	On	Full duplex
3	8	On	Disable polling
4	4	Off	Current loop disable
	6	On	Display nulls as nulls

Table A-4. ADM 31 Option Settings

The following ADM 31 baud rates may be used in conjunction with the Z-SCAN monitor. Note that, because some of the features of the terminal do not function at 19200 baud, this speed should not be used. The baud rate selection switch is at the left rear of the terminal.

Baud Rate	Switch Setting	Baud rate	Switch Setting
75	1	1200	7
110	2	1800	8
134.5	3	2400	10
150	4	4800	12
300	5	9600	14
600	6		

Table A-5. ADM 31 Baud Rates Supported by Z-SCAN

The sequences used to control the ADM 31 are compatible with the Soroc IQ 120 and IQ 135 terminals. Z-SCAN supports all baud rates available on these terminals except 1000, 2000, 3600 and 7200 baud. Users of the IQ 135 should be aware that either of the SHIFT keys must be pressed at the same time as BREAK in order for a break to be transmitted. Switch bank K8 switch, 8 must be in the up position. Parity should be disabled when a Soroc terminal is used with Z-SCAN.

A.2.2 ADDS (Applied Digital Data Systems) Regent Series

The Z-SCAN monitor supports the protocol used by the Regent 40 and other compatible terminals in the ADDS range. Table A-6 lists the control sequences used.

Table A-6. Regent 40 Control Sequences

Clear Screen	Clear Line	Move Cursor	Cursor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
^ L	esc, K	esc, Y, rb, ct	^ Z	^]	^ F	^ U

Because of the wide variety of terminals in the Regent series, it is not possible to list the options and baud rates required for compatibility with the Z-SCAN monitor in each case. If difficulties are experienced, refer to the terminal documentation and check that each of the following statements is true:

- Line mode is full duplex.
- Parity bit is spacing.
- Baud rate is supported by Z-SCAN (See Table 6-7).
- Termination character is CR.
- Auto scroll is on.
- Interface is EIA (not current loop).
- Z-SCAN is connected to EAI/CURRENT LOOP connector.

A.2.3 Beehive Terminals

The protocol used by the Bee 100, Bee 107 and Micro B 1 terminals is given in Table A-7.

Clear Screen Sequence	Clear Line Sequence	Move Cursor Sequence	Cursor Up	Cursor Down	Cu rsor Left	Cursor Right
esc,E	esc, K	esc, F, rb, cb	esc, A	esc, B	esc, C	esc, D
alternati	ve sequences	s - see below>	^ K	^ ј	^ L	^ н

Table A-7. Beehive Control Sequences

The cursor up, down, left and right keys on the Bee 100 operate locally: they move the cursor on the screen but do not transmit codes on the serial link. They are thus unsuitable for use with the Z-SCAN monitor. The user must enter the sequences manually. The single control characters listed above may be used to save keystrokes. As a further alternative, Beehive's service organization can arrange for incorporation of the field change that transforms a Bee 100 into a Bee 107. The Bee 107 cursor control keys transmit escape sequences on the serial link. Cursor control sequence transmission is a switchselectable option on the Micro B1. The option should be enabled.

A.2.4 DEC (Digital Equipment Corporation) VT52

Table A-8 lists the control sequences used with the DEC VI 52 terminal.

Clear Screen	Clear Line	Move Cursor	Cu rsor	Cursor	Cursor	Cursor
Sequence	Sequence	Sequence	Up	Down	Left	Right
esc, H, esc, J	esc, K	esc, Y, rb, cb	esc, A	esc, B	esc, C	esc, D

Table A-8. VT 52 Control Sequences

A.2.5 DEC (Digital Equipment Corporation) VT 100

The VT 100 terminal control sequences are compatible with those specified by ANSI standard A 3.64 and ISO standard DP 6429 and so can be used with any terminal that supports either standard. The standards allow some flexibility in implementation, so users should check that any alternative terminal is compatible with the VT 100 for the small number of functions required. The

SYSTEM LOC	CALL VECTOBJ CODE	OR M STMT	LO SOURCE ST	DAD Fatemen	IT		PAGE 13 ASM 5.9
)2C5)2C7 02C9	0000 0000 00	523 524 525 526		DEFW DEFW DEFB	0 0 0		
		527 528	;CONSOL	E READ	AND WRITE		
02CA 02CB 02CC 02CE 02D0 02D2 02D4	01 0C 0000 0000 0000 0000 0000	529 530 531 532 533 534 535	CONVEC: CONDTA: CONLEN:	DEFB (DEFB 2 DEFW (DEFW (DEFW (DEFW (DEFB (CONIN DREDA))))		
02D5 02D6 02D7 02D9 02DB 02DB 02DD 02DF	02 0E 0000 0000 0000 0000 0000	530 537 538 539 540 541 542 543	STRVEC: STRDTA: STRLEN:	DEFB (DEFB 2 DEFW (DEFW (DEFW (DEFW (DEFB (CONOUT DWRTB))))		
02E0 02E1 02F8 02FA 02FB	1B 2F2F554E 3830 29 0D	546 546 547 548 550 551 551	NOOPEN: ERADR: BO	DEFB DEFM DEFW DEFB DEFB EQU	BO-NOOPEN '//UNABLE 3038H ')' ODH \$-1	TO OPE	N FILE ('
02FC 02FD 030D	11 2F2F4649 0D	552 553 554 555 556 557	ERFILE: B1	DEFB DEFM DEFB EQU	B1-ERFILE '//FILENA ODH \$-1	ME ERRO	P R *
030E 030F 0323	15 2F2F4E4F 0D	558 559 560 561	NOPROC: B2	DEFB DEFM DEFB EQU	B2-NOPROC '//NOT PR ODH \$-1	OCEDURE	: FILE'
0324 0325 033E 0340 0341	1D 2F2F4552 3830 29 0D	562 563 564 565 566 567 568	RDBAD: ERRADR: B3	DEFB DEFM DEFW DEFB DEFB EQU	B3-RDBAD '//ERROR 3038H ')' ODH \$-1	IN READ	ING FILE ('
0342 0343 0357	15 2F2F5245 0D	570 571 572 573 574	TRYMCH: B4	DEFB DEFM DEFB EQU	B4-TRYMCH '//RECORD ODH \$-1	CKSUM	ERROR
0358 0359 035A	02 30 0D	575 576 577	ACKMSG:	DEFB DEFB DEFB	2 101 0DH		
035B 035D	0000 0000	579 580	RECBYE: SEGPTR:	DEFW DEFW	0 0		; RECORD BYTE COUN ; SEGMENT TABLE PO

SYSTEM	CALL VECTO	OR M STMT	SOURCE S	LOAD STATEMENT			PAGE 14 ASM 5.9
)35F	0000	581	CORADR	: DEFW	0	;	CORE ADDR USED IN
)361	0000	582 583	SEGCNT	: DEFW	0	, , ,	# OF BYTE REMAINI CURRENT SEGMENT
)363	0000	584	CURBUF	: DEFW	0	;	CURRENT FILBFR AD
)365	0000	585	REMCNT	: DEFW	0	,	REMAINING BYTE IN
)367	0000	5,86	RTYCNT	: DEFW	0	;	RETRY COUNT
)369		587	CHRBUF	: DEFS	128	;	INPUT BUFFER
)3E9		588	FILBFR	: DEFS	500H	;	FILBFR FOR FILE I
)8E9		589	OUTBUF	: DEFS	132	;	BUF FOR OUTPUT ME

CROSS I Symbol	REFERI VAL	EN (M	CE DEFN	REFS		LOAD				
\CKMSG ACKOK 30 B1 B2 B3 B4 CHMORE	0358 00FE 02FB 030D 0323 0341 0357 001D	R R R R R R R R R R	575 229 550 556 568 573 62	50 220 545 553 558 563 570 58						
CH RB UF CLSF COMS Y1 CON DTA CON IN CON IN P	0369 014E 000D 02CC 0001 01E0	R R R R R	587 284 49 531 438	315 221 46 440 529 310	439 273	275				
CONLEN CONOUT CONVEC	02CE 0002 02CA	R R	532 10 529	442 537 443						
CORADR CURBUF FRADR	035F 0363 02F8	R R R	581 584 547	174 186 88	232 217	234 379	366	368		
ERFILE	02FC 033E	R R	553 565	96 198	553					
FILASV FILBFR FILCLS	0202 03E9 023F	R R R	470 588 495	118 185 79	521 285					
FILDEV FILERR	0005	R	8 96	470 63	484 65	495 67	519			
FILPRM FILPRP	0252 024B 0252	R R	503 508	75	486					
FILPTR FILRDV FILRL	0204 02BF 024F	R R R	472 519 506	117 188						
FILSA FILSMT	0253 0267	R R	509 511	264 146	266					
FILSPV FINL	020F 0121	R R	479 257	125 161	477	491	282			
GENHEX HIGADR	01C6 02BB	R R	41 <u>3</u> 513	265	267	269	367	369	371	377
LOWADR MAXRTY NACK	02B9 000A 0170	R R	512 16 329	214 320	258					
NIBBLE NIBDIG	01CF 01DB	R R	420 428	418 426						
NOOPEN NOPROC NPROC	02E0 030E 0052	R R R	545 558 94	91 94 81	545 558					
NXTBFR NXTLIN NXTSFG	009C 00D5	R R	177 206	248 193 250	238					
OPNB OPNFIL	0044 005E	R R	87 116	250 71 70						
OPNINP OUTBUF PROC	0000 08E9 0080	R	15 589 14	124 260 77	362	384	388			
PROCF PUTCLS	0040 014B	R R	83 282	78 202		·	C-1	5		

ΡA	GE	15
----	----	----

C-15

IOSS Imbol	REFERI VAL	EN (M	CE Defn	REFS		LOAD			1			1
JTS JTSTR)BAD)FTLE	005A 01F3 0324 007E	R R R R	97 458 563 145	92 52 201 84	95 97 563	282						
DVLEN	02C3	R	522	184	191	245						
EMCNT	0365	R	585	206	211	235						
EYCNT EGCNT	0367	R R	586 582	215 177	259 183	330 244						
EGPTR	035D	R	580	147	149	158						
CRDTA CRLEN	02D7 02D9	R R	539 540	389 387	460 461							
CRVEC	02D5	R	537	337	390	462						
(STEM	0000	X	3	80	119	127	189	286	338	391	444	463
EKLIN	0182	R	362	218								
(MSFN	0191	R	3/4	310								
CSWAT	0156	R	301	219	272	322	220					
1U CH	0148	R	278	223		522						
RYMCH	0342	R	570	279	570							
3IG1	OOAB	R	184	182								
31G2	00E4	R	212	210								
DCLOS	0002		20	471								
DOPEN	0000		22	490								
DRDST	0040		26	- U)								
DREDA	0000		24	530								
DREDB	000A		23	520								
DWRTB	000E		25	538								

C-16

PAGE 16

AIN ROUTINE SEND LOC OBJ CODE M STMT SOURCE STATEMENT

1	*HEADING MAIN ROUTINE	
2 3 4	EXTERNAL	SYSTEM
5 6 7	;PREDEFINED DEVICES	
8 9 10	FILDEV EQU 5 CONIN EQU 1 CONOUT EQU 2	;DEVICE FOR FILES ;CONSOLE INPUT ;CONSOLE OUTPUT
12	; CODE FOR OPEN NEW FIL	E
13 14 15 16	OPNEWF EQU 2	; OPEN NEW FILE
17 18	;DEVICE FUNCTION CODES	
19 20 21 22 23 24	ZDASGN EQU 2 ZDOPEN EQU 4 ZDCLOS EQU 6 ZDREDB EQU OAH ZDREDA EQU OCH ZDWBTB FOU OFH	;ASSIGN ;OPEN ;CLOSE DEVICE ;READ BINARY ;READ ASCII LINE ;WRITE BINARY
2		,

25

.

.

AIN PROGRAM

SEND LOC OBJ CODE M STMT SOURCE STATEMENT

		26 27	*HEADINC	G MAIN PR	OGRAM		
		28 29	; *****;	*****	*****	***	******
		301 323 335 3367 3390 412 43	* THIS * RECE * IF 1 * FILE * CONS * IF 1 * THIS * IF 1 * THIS * IF 2 * SENI * IF 0 * IF 0	S PROGRAM IVING FR THE FILE C, THIS F SOLE OUTF DATA RECC S PROGRAM THE CHECK CONSOLE D TO THE CHECKSUM	I IS USED TO CRE OM THE Z8000 EV HAS ALREADY EXI PROGRAM WILL SEN OUT, AND PROGRAM ORD WITH TWO LEA WILL ALSO BE A SUM OF THE DATA INPUT ARE VERIE CONSOLE OUTPUT. DOES NOT VERIES	EATE VALU ISTE ND A 4 WI ADIN ABOR A RE FIED A C.	A FILE WITH DATA ATION BOARD. D OR UNABLE TO OPE N ASCII 9 TO THE LL BE ABORTED. G '//' IS RECIVIEI TED. CORD RECEIVING FR(, AN ASCII 0 WILL N ASCII 7 WILL BE
000 002	180B 44415445	44 45 46 47 48		JR DEFM 'D#	COMSY1 TE:790629'		
00D 00E	E 1 E 3	49 50 51	COMSY1:	PO P E X	HL (SP),HL	;;	RIO RETURN GET COMMAND POINT
00F 010 012 014 015	7 E FE20 2003 23 18F8	52 53 54 55 56 57	SKIPSP:	L D C P J R I N C J R	A,(HL) NZ, CHMORE HL SKIPSP	;	SKIP OVER SPACE
017 019 01B 01D 01F 021	FE3B 2819 FE2C 2815 FE0D 2811	58 59 60 61 62 63 64	CH MO RE:	C P J R C P J R C P J R J R	Z, SEND9 Z, SEND9 ODH Z, SEND9	;	CHECK FOR DELIMIT
023	CD3800 200C	66 R 67 68 69		CALL JR	OPNFIL NZ, SEND9	;;	OPEN FILE FOR INP UNABLE TO OPEN FI
028	CD5800	70 R 71		CALL	STRFIL	;	GET DATA FROM CON
02B	C8	72 73		RET	Z	; ;	& STORE IN FILE FILE CLOSE, EVERYT
		75 75	; RECEI	VE ABORT	MESSAGE OR HAV	ING	WRITE FILE PROBLE
)02C)030)033	FD213F03 CD0000 C9	R 77 X 78 79		LD CALL RET	IY,FILCLS SYSTEM	;	CLOSE FILE
)034)037	CD8101 C9	R 81 82	SEND9:	CALL RET	ABRCKS	;	SEND '9'

OPNFIL LOC	ROUTINE OBJ CODE	M STMT	SEND Source statement	PAGE 3 ASM 5.9
		83 84 85 86 87 88 90 91 92 93 95 97	<pre>#HEADING OPNFIL ROUT ###################################</pre>	INE ************************************
0038 003B 003F 0042 0046	220403 FD210203 CD0000 FDCB0A76 C0	98 99 R 100 R 101 X 102 103 104 105	OPNFIL: LD (FIL LD IY, CALL SYST BIT 6, (RET NZ	PTR), HL ; FILENAME PTR INT(FILASV EM ; ASSIGN FILE IY+10) ; ASSIGN OK? ; NO
0047 0049 004C 0050 0053 0057	3E02 320F03 FD213203 CD0000 FDCB0A76 C9	100 107 R 108 R 109 X 110 111 112	LD A,OF LD (FIL LD IY, CALL SYST BIT 6, (RET	NEWF ; OPEN TYPE - NEWF: SPV),A FILOPN ; OPEN FILE EM IY+10) ; OPEN OK? ; RETURN NZ OR Z

•

[RFIL Loc	ROUTINE OBJ CODE	М	STMT	SOURCE S	EN D FATEMENT		PAGE 4 ASM 5.9	
			113 114	*HEADIN	G STRFIL	ROUTINE		
			115 116	: *****	* * * * * * * * *	*************	*****	*
			117 118 119 120 121 122 123 124 125 126 127 128 129	; * * * * * * * * * * * * * * * * * * *	FIL RECE TEKTI THE I AND S DATA END (IF DA WILL IF E AN AS DATA	IVE DATA RECORD RONIX FORMAT. W RECEIVING DATA, STORE THEM IN A RECORD WITH ZEN OF DATA, THEN TH ATA RECORD WITH STOP RECIVING I RROR OCCUR WHILH SCII 9 WILL BE S TRANSFERING.	FROM CONSOLE INPUT VERIFIY TWO CHECKSUM UNPACK DATA TO HEX FILE RO BYTE COUNT INDICA HE FILE WILL BE CLOS TWO LEADING //, ALS DATA AND CLOSE THE F E WRITING DATA INTO SEND OUT TO ABORT TH	IN IS VI EI SO FII FI
			130 131 132 133	; * TEK ; * ; *	TRONIX FO / <core <br=""><data(2< td=""><td>DRMAT: ADDRESS(4)><byth 2)><data(2)></data(2)></byth </td><td>E COUNT(2)><checksun <b< td=""><td>11 (12 (</td></b<></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></checksun </td></data(2<></core>	DRMAT: ADDRESS(4)> <byth 2)><data(2)></data(2)></byth 	E COUNT(2)> <checksun <b< td=""><td>11 (12 (</td></b<></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></checksun 	11 (12 (
			134 135 136 137 138	; * ; * OUT ; * ; *	PUT: RE RE	TURN Z FOR SAVI TURN NZ FOR HAVI DATA ON	NG DATA ON FILE ING PROBLEM IN WRIT: FILE	EN(
			139	; ****	*****	*****	********************	F ¥ -
058 05B 05E 061 064 067	210000 22F603 216703 116803 015200 3600	R R R	141 142 143 144 145 146 147	STRFIL:	LD LD LD LD LD LD	HL,0 (SEGPTR), HL HL,FILSMT DE,FILSMT+1 BC,82 (HL),0	; INIT SEGMENT TAN ; INIT SEGMENT TAN	3L) 3L
069 06B	EDBO CD3B02	R	148 149		LDIR CALL	BLKBUF	; BLANK FILBFR WI	ΓН
06 E	CD7501	R	150 151 152	LODFRO:	CALL	GODCKS	; SEND ACKNOWLEDG	E
071 074 077 079	CD0201 3A0009 FE2F 287E	R R	153 154 155 156 157 158	LODF:	CALL LD CP JR	LODREC A,(OUTBUF) '/' Z,CLSE	; GET RECORD OF D. ; CHECK IF ERROR ; YES, ABORT & CL	AT RE OS
			159 160	; VERIF	ту тио сн	ECKSUM & UNPACK	ED DATA	
07B 07E 080 083 085	210009 0603 CD8701 380B 78 A7	R R	161 162 163 164 165 166 167		LD LD CALL JR LD AND	HL, OUTBUF B,3 CHKCKS C, CHKBAD A,B A	; VERIFY ADDR & C ; BAD CHECKSUM ; CHECK BYTE COUN	N T T
)087	280C		168		JR	Z. LODOK	: COUNT=0. NO DAT	A

169 170 ; BYTE COUNT NOT ZERO, VERIFY DATA CHECKSUM

3TRFIL LOC	ROUTINE OBJ CODE	М	STMT SOURCE	SEND STATEM	ENT		PAGE 5 ASM 5.9
)089)08A)08D)08E	C5 CD8701 C1 3005	R	171 172 173 174 175 176 CHKBA	PUSH CALL POP JR	BC CHKCKS BC NC, LODOK	• 7 • 7	SAVE BYTE COUNT CKSUM DATA,B=BYTE
)090)093	CD7B01 18DC	R	177 178 170	CALL JR	BADCKS LODF	;;	SEND NON-ACKNOWLE GET DATA RECORD
			180 ; CHE 181 ; FI	CKSUM A LE ATTR	RE VERIFIED, GENERAT IBUTES, FILE RECORD	:Е	ADDRESS & POINTER .ETC
0095 0096 0097	78 A7 2828		182 183 LODOK 184 185 186	L: LD AND JR	A, B A Z, FINLOD	;;;;	BYTE COUNT=O INDI LAST RECORD YES, LAST RECORD
0099	ED43F403	R	187	LD	(RECBYE), BC	;	SAVE BYTE COUNT
009D 00A0 00A3 00A6	210009 CD6B01 CD9A01 2806	R R R	188 189 190 191 192 193	LD CALL CALL JR	HL,OUTBUF GENADL BUFADM Z, LODCON	;;;;;	GET ADDRESS FROM GENERATE BUF ADDR NO ERROR IN WRITI
00 A 8 00 A B 00 A D	CD8101 F601 C9	R	194 SED9: 195 196 RETN2 197 198	CALL OR RET	ABRCKS 1	;;	SEND '9' TO ABORI RETURN NZ FOR FAI
			199 ; UNE 200 ;	PACK DAT HL -	A IN OUTBUF TO FILBE FILBFR ADDRESS TO S	FR ST	ORE DATA
00 AE 00 AF 00 B3 00 B6 00 B9 00 BA 00 BB 00 BC 00 BD 00 BF	D9 ED4BF403 210809 CD3601 D9 77 23 D9 10F7 18AD	R R R	201 202 LODCO 203 204 205 206 LODFI 207 208 209 210 211 212 213	DN: EXX LD LD CALL EXX LD INC EXX DJ NZ JR	BC, (RECBYE) HL,OUTBUF+8 LODBYL (HL),A HL LODFR3 LODFR0	• 7 • 7 • 7 • 7 • 7 • 7 • 7	BYTE COUNT ADDRESS OF 1ST DA CONVERT TO HEX VA SAVE IN FILE BUFF NEXT BYTE DONE WITH CURRENT SEND TO L CET NEY
			215 214 215 216 ; RE(217 ; DES 218	CEIVE LA Scriptor	ST DATA RECORD WITH	; B FI	YTE COUNT=0, SET ULE TO DISK
00C1 00C4 00C7 00CA	210009 CD6B01 225303 CDBC02	R R R R	219 FINL 220 221 222 223 224 225 226	DD: LD CALL LD CALL CALL	HL,OUTBUF GENADL (FILSA),HL SETCNT	• 7 • 7 • 7 • 7 • 7	GENERATE ENTRY AI & STORE IN FILE ADJUST CURRENT SI ENTRY 2ND WORD
00CD 00D1	DD360000 DD360100		227 228	LD LD	(IX),0 (IX+1),0 C-21	, ; ;	CLEAR ONE SEGMEN: TO INDICATE END 5/27/81

IRFIL LOC	ROUTINE OBJ CODE	М	STMT	SOURCE	SEND STATEMENT		PAGE 6 ASM 5.9
0D5 0D9	DD360200		229 230		LD LD	(IX+2),0 (IX+3),0	
ODD OEO	CD4 D02 2 ABB03	R R	231		CALL LD	TSTMXR HL.(HIGADR)	; FIX UP HIGH ADDRES
0E3	2B		233		DEC	HL (UTCADB) HI	; ADDRESS IS 1 TOO H
0 E4 0 E7	CD5D02	R R	234		CALL	WRTDSK	; WRITE CURRENT FILM
OEA OEC	20BC CD6F02	R	236 237		JR CALL	NZ, SED9 ADJ DSK	; WRITE FILE ERROR ; CHECK ANY MORE DAT
0 E F 0 F 1	3805 CD5D02	R	238 239		JR CALL	C,CLSS WRTDSK	; NO MORE DATA, CLOSE ; MORE DATA TO WRITE
0F4 0F6	20B2 CD7501	R	240 241	CLSS:	JR CALL	NZ,SED9 GODCKS	; WRITE FILE ERROR
OF9 OFD	FD21CA03	R	242 243 244	CLSE:	LD IY,F	ILCLP	;CLOSE PROCEDURE FI
100 101	AF C9	л	245 246 247		XOR RET	A	; RETURN Z FOR OK

.

.ODREC LOC	ROUTINE OBJ CODE	М	STMT	SOURCE ST	END FATEMENT			PAGE 7 ASM 5.9
			248 249 250	*HEADIN(G LODREC	ROUTINE		
			251	; *****	* * * * * * * * *	*********	*******	*********
			252 253 254 255 256 257 258	; * LOD ; * ; * ; * ; *	REC RECEI MAXIN CARRI AFTEF THE L	IVING AN INPU MUM READ 128 IAGE RETURN. R A '/', AND EADING / WIL	T LINE FRO CHARACTERS ONLY ACCE IGNORE ALL L BE INCLU	M CONSOLE INP TERMAINATED PT CHARACTERS CONTROL CHAR DED IN THE BU
			259 260	; * 001	PUT: 001	IBUF - CONTAL	N DATA STR	ING
			261 262	****	******	* * * * * * * * * * * * * *	*****	**********
0102 0105 0108	CDE002 3AD903 47	R R	263 264 265 266	LODREC:	CALL LD LD	CONINP A,(CONLEN) B,A	; GET ; # OF	INPUT LINE 12 CHAR IN INPU
0109	218009	R	267 268		LD	HL, CHRBUF	; INPU	T LINE BUFFER
010C 010D 010E 0110 0112	7 E 23 E6 7 F F E2 F 280 7		269 270 271 272 273	NCHR:	LD INC AND CP JR	A, (HL) HL 7FH '/' Z. GOTLSH	; LOOK	FOR 1/1
0110	1056		274			NCUD		/ CHECK NEX
0116 0119	CD7 B0 1 18E7	R	275 276 277 278		CALL JR	BADCKS LODREC	; CAN' ; IN	T FIND '/', C IPUT LINE
011B 011C 011F 0120 0121 0123 0124	05 110009 7E 23 E67F 12 FE0D	R	279 280 281 282 283 284 285 286	GOTLSH: NXT:	DEC LD LD INC AND LD CP	B DE,OUTBUF A,(HL) HL 7FH (DE),A ODH	; CHAR ; FILL ; MOVE : CHEC	COUNT OUTBUF WITH CHAR INTO OU CK END OF LINH
0126	C8		287	, }	RET	Z	,	
0127 0129 012B 012D	FE20 3004 10F2 1803		289 290 291 292 293		CP JR DJNZ JR	NC, CHROK NXT CEND	; CHEC ; CHAF ; NEXT ; TERM	CK FOR CONTROL OK CHARACTER MINATE WITH CI
012F 0130	13 10ED		294 295 296 297	CHROK:	INC DJNZ	DE N X T		
0132 0134 0135	3EOD 12 C9		298 299 300 301 302	CEND:	LD LD RET	A,ODH (DE),A	; JUSI	FPUT CR AT EN

DDBYL Loc	ROUTINE OBJ CODE	М	STMT	SOURCE	SEND STATEI	MENT					P	AGE ASM	8 5.9
			303 304	*HEAD	ING LO	DBYL	ROUTIN	IE					
			305	; ***	* * * * * *	* * * * *	*****	*****	****	****	* * * *	***	******
			306 307 308 309 310	; * C ; * C ; * S ; * I ; * A	ONVERT TREAM S CONV DDED TO	THE IOA ERTED DAC	NEXT 1 8-BIT D TO 4- CHECKSU	TWO AS HEX V BIT H IM ACC	CII C ALUE. EX VA UMULA	HARAC AFTE LUE, TOR.	CTERS ER EA THE	S IN CH A HEX	THE INF ASCII CF VALUE]
			312 313 314	; * I ; * ; *	NPUT:	HL - C -	POINT CHECH	CER TO	CH A R C C U M U	ACTER LATOR	R STR R	EAM	
			315 316 317 318	; * C ; * ; *	UTPUT:	HL - C - A -	- INCRI UPDA - 8 BI	EMENTE CED CH C HEX	D BY ECKSU VALUE	2 M AC(0F 1	CUMUL CWO A	ATOI	R I CHAR
			319 320 321	, * , * , *		R E TU R E TU	JRN NC JRN C	FOR FOR	CONVE NON-A	RSION SCII	N SUC Char	CESS IN	SFUL BUFFER
			322	, ***	*****	* * * * *	{** ***	*****	****	****	****	***	******
136 139	CD4D01 D8	R	323 324 325	LODBY	L: CAL	L HEX	KDCD			;GET ;BAD	CHR	AN D	CHECK
13A 13B 13C 13C 13E 13F 140 142 143 146 147 148 149 148	F5 81 4F F1 07 07 07 07 5F CD4D01 D8 F5 81 4F F1	R	326 327 328 329 331 332 333 334 335 335 336 337 338 339 340		PUS ADD LD POP RLC RLC RLC LD CAL RET PUS ADD LD POP	H AF A,C C,A AF A A A A A A A A C A F C,A AF	HEXDC	D		;SAV ; NE	E PAF	TIA TE	L BYTE
14B	B3 C9		341 342 343 344		OR RET		E			; ME ; OR	RGE SET	IWO NC	HEX VAL For ok
			345										
			347	; **:	******	****	*****	* * * * * *	****	****	* * * *	* * * *	******
			348 349 350 351	; * ; * [; *	IEXDCD	CONV HEX	ERT A VALUE.	SINGLE (41	E ASCI	LI CH A, 3	ARAC' 7 ->	TER 7)	TO A 4-
			352	, * :	INPUT:	HL ·	- POIN	TER TO	ASCI	LI CH	ARAC	TER	
			353 354 355 355	;	OUTPUT:	HL · A ·	- INCR - 4-BI	EMENTE TS HEX	ED BY VALU	1 JE			
			357 358 359	, 关 , 关 , 关		R E T R E T	URN NC URN C	FOR C FOR C	CONVEI CHARA (RSION CTER	SUC IS N	CESS ON-A	FUL SCII
			360	; **	* * * * * * *	****	*****	* * * * * *	{ * * * * *	* * * * *	* * * *	* * * *	* * * * * * *

.ODBYL Loc	ROUTINE OBJ CODE	MS	STMT	SOURCE	SI SI	EN D FATEMENT			Р.	AGE ASM 5	9
)14D)14E)14F)151)153)1557)1558)1557)1550)1550)162)168)168)169)16A	7 E 23 FE5 B 3802 CBAF FE30 D8 FE47 300D FE3A 3806 FE41 3805 D637 E60F C9 37 C9		361 362 363 364 365 368 371 3773 3775 3778 3778 3780 381	HEXDC HEXUP USEDI HEXBA	D: R: D:	LD INC CP JR RES CP RET CP JR CP JR CP JR SUB AND RET SCF RET	A, (HL) HL 'Z'+1 C, HEXUP 5,A 'O' C 'F'+1 NC, HEXB '9'+1 C, USEDIG 'A' C, HEXBAD 'A'-10 OFH	; R ; ; AD ; ;	GET CHAN CHECK FON FORCE T NOT 0-9 NOT A-F IS DIGI RETURN RETURN	RACTE OR LO O UPF T NC FF C FOF	R WER C. PER CA PER CA ROM AN R BAD
)16B)16E	CD3601 57	R	382 3834 386 3889 3889 39912 3995 3997 3995 3997	; *** ; * G ; * ; * I ; * O ; * ; * GENAD	** EN NP UT **	ADL CONV VALU UT: HL PUT: HL ******** CALL LO LD D, A	ERT 4 ASC E IN HL. - POINTER - 16-BIT ********	********* II CHARAC TO FIRST HEX VALUE ****	******** TERS TO ASCII C	**** A 16 HARA(****	BIT H CTER
)16F)172)173)174	CD3601 5F EB C9	R	398 399 400 401 402 403 404 405 406 407 408 409 410 412 413 414 415 416 417 418	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	OD CK ON BR IT N	CALL LO LD E, A EX DE, H RET ********* CKS SEND NOWLEDGE CKS SEND - ACKNOWL CKS SEND HER ERRC DISK FIL ********	DBYL L ASCII 0 ASCII 7 EDGE. ASCII 9 R IN OPEN E.	FOLLOWED FOLLOWED FOLLOWED FOLLOWED FILE OR	******** BY CARRI BY CARRI ERROR IN	**** AGE 1 AGE 1 AGE 1 WRI WRI ****	***** RETURN RETURN RETURN TE DAT *****

.

)DBYL .OC	ROUTINE OBJ CODE	М	STMT	SOURCE	SEND STATEMENT				PAGE ASM	10 5.9
75 78	21EB03 C3F302	R R	419 420 421	GODCKS	S: LD JP	HL,ACKMSG PUTSTR	;	SEND	ASCII	101
7B 7E	21EE03 C3F302	R R	422 423 424	BADCKS	S: LD JP	HL, NAKMSG PUTSTR	;	SEND	ASCII	171
181 184	21F103 C3F302	R R	425 426	ABRCKS	S: LD JP	HL, ABRMSG PUTSTR	;	SEND	ASCII	'9'

HKCKS LOC	ROUTINE OBJ CODE	M STMT	SEND Source stateme	IN T	PAGE 11 ASM 5.9
		427 428 429	*HEADING CHKC	KS ROUTINE	
		430 431 432 433 434 435 436 437 438	*********** CHKCKS VERI CHARACTERS THE CHECKS THE ASCII HEX VALUES INPUT: HI	FIES RECORD CHECKSU TO THEIR CORRESPON SUM BY ADDING THESE RECORD CHECKSUM WHI AND COMPARE TO THE POINTER TO ASCII	M. FIRST CONVERT TI DING HEX VALUE, CAL HEX VALUES, THEN CO CH FOLLOWED THE DAT CALCULATED CHECKSU STRING
		439 440 441 442		- # OF CHARACTER F (TOTAL CHARACTE	PAIR TO BE CHECKSUM ERS TO CHECKSUM IS (
		442 443 444 445 446 446	, 001701. RI ; RI ; *********	ETURN C IF INCORREC	T CHECKSUM
)187)189)18C)18D)18F	0E00 CD3601 D8 10FA 47	448 R 449 450 451 452	CHKCKS: LD C CK1: CALL RET C DJNZ LD B	O LODBYL CK1 A	;INITIAL CKSUM ACCU ; KEEPS C UPDATED ;ERROR, NON-ASCII C
)190)191)194	C5 CD3601 C1	453 R 454 455	PUSH CALL POP I	BC LODBYL 3C	;SAVE ACCUMULATED C ; CONVERT STORED CK
)195)196	D8 B9	456 457 458	RET (CP	C C	; ERROR, NON-ASCII C ; COMPARE STORED CK ; WITH CALC.CKSUM
)197)198)199	C8 37 C9	459 460 461	RET Z SCF RET		; OK ; BAD CHECKUSM, FORC

. .

JFADM Loc	ROUTINE OBJ CODE	М	STMT S	SE OURCE ST	N D ATEMENT			PAC	GE 12 SM 5.9
			462	*HEADING	BUFADM	ROUTINE			
			464	; *****	******	******	******	* * * * * * * *	********
			465 466 867	; BUFADM	BREAKS	UP THE LOAD	STREAM	INTO DI	SK SEGMENI
			468 469	; INPUT:	HL- CO B - BY	RE ADDRESS I TE COUNT IN	IN LOAD LOAD RI	RECORD ECORD	
			470 471	; ; OUTPUT	': HL - F	ILBFR ADDRES	SS TO S	TORE DAT	A
			472 473	; OUTPUT	: RETUR	N Z IF NO EL	RROR IN	FILE WR	ITING
			474 475 276		REIUR	N NZ IF PROP	SLEMS I.	N FILE W	KIIING
			470 477 478	; FIRST	SEGMENT.	SEGPIREO) IC	J INDIC.	AIE IHAI	IHIS IS .
			479 480	; ; *****	*****	*****	******	******	********
			481	BUFADM					
19A 19D	22F803 ED5BF603	R R	483 484	201	LD LD	(CORADR), HL DE. (SEGPTR)	; ;	CORE ADD	RESS FIRST TI
1A1 1A2	7A B3	••	4 85 4 86		LD OR	A, D E	,		
1A3	201B		487 488		JR	NZ,NOTFST	;	NOT FIRS	T TIME
			489 490	: INIT V	ARIABLES	•			
			491 492	;	SEGPTR - HIGADR -	SEGMENT TA HIGH ADDRE	BLE POI SS FOR	NTER FILE ATT	RIBUTES
			493 494	, ,	LOWADR - BOTRNG -	LOW ADDRES	S FOR F S OF CU	ILE ATTR RRENT FI	IBUTES LE RECORD
			495 496	;	TOPRNG - TOPUSD -	TOP ADDRES FILBFR ADD	S OF CU R. WHER	RRENT FI E LAST B	LE RECORD YTE DATA
			497 498	; , Also	SET UP E	NTRY IN SEG	MENT TA	BLE	
			499 500	, , ,	1ST WORD 2ND WORD) - LOW CORE) - HIGH COR	ADDRES E ADDRE	S OF CUR SS OF CU	RENT SEGM
.1.45	116700	~	501	;	. D	(IEMPUKA	RI, SHU	ULD SEI	IU SEGMEN
1 4 8	ED53F603	R R	503 504 505			(SEGPTR), DE	;	SEGMENT	TABLE POI
1AC	CDA602	R	506		CALL	G EN RNG	;	SET UP A	ADDRESSES SEGMENT
1AF	22BB03 2AFA03	R R	508			(HIGADR), HL	, ;	ADDRESS	FOR FILE
1B5	228903	R	510 511		LD	(LOWADR), HL	•	,	
			512 513	BLKBFR:					
)1B8)1BB	CD3B02 210004	R	514		CALL LD	BLKBUF HL.FILBFR	;	INIT FIL	_BFR WITH
)1BE	1816	-1	516 517		JR	COMADM	;	FIGURE H FILBFR	HOW FAR TO (TOPUSD)
			518 519	; CHECK	IF CORE	ADDRESS OF	RECEIVI	ENG DATA	IS BEYOND
						-			

BUFADM LOC	ROUTINE OBJ CODE	М	STMT	SOURCE ST	EN D FATEMENT		PAGE 13 ASM 5.9
			520 521 522	; RANGI ; OUT I	E OF CURF DATA LEFT	RENT FILE RECORN IN FILBFR TO N	D ADDRESS, IF SO, WRI FILE, AND CREATE NEW
01C0 01C4 01C6	ED5BFC03 ED52 302C	R	523 524 525 526 527	NOTFST:	L D SB C J R	DE,(TOPRNG) HL,DE NC,NXTRNG	; TOP ADDRESS OF CU ; FILE RECORD ; NEED TO WRITE FIL
			528 529	; FIGURI	E THE ADI	DRESS OF FILBFR	FOR STORING RECEIVIN
01C8 01C9 01CC 01D0 01D2	A7 2AF803 ED5BFA03 ED52 110004	R R R	530 531 532 533 533		AND LD LD SBC LD	A HL,(CORADR) DE,(BOTRNG) HL,DE DE,FILBFR	; CORE ADDRESS IN F
01D5	19		535 536 537 538		ADD	HL, DE	; FILBFR ADDRESS F(; BYTE = (CORADR)- ; +FILBFR
			539	; COMPU	TE THE TO	OP ADDRESS OF F	ILBFR FOR STORING TH
			540 541 542 543	; ALSO ; DATA	SET UP TH IN 2ND V	HE CORE ADDRESS NORD OF SEGMENT	OF THE LAST RECEIVIN TABLE ENTRY
01D6 01DA 01DB	ED4BF403 48 0600	R	544 545 546 547	COMADM:	LD LD LD	BC,(RECBYE) C,B B,O	; BYTE COUNT
01DE	E5		549		PUSH	HL HL	; FILBFR ADDR FOR
01E0	22FE03	R	550 551 552 553		LD	(TOPUSD), HL	; ADDRESS OF FILBF ; STORING LAST DA
01E3 01E6	2AF803 09	R	554 555		LD ADD	HL,(CORADR) HL,BC	; CORD ADDRESS
01E7 01EB 01EE	DD2AF603 DD7502 DD7403	R	556 557 558		LD LD LD	IX,(SEGPTR) (IX+2),L (IX+3),H	; SET 2ND WORD SEG ; WITH ADDRESS OF
01F1 01F2 01F3	E1 BF C9		560 560 562 563		POP CP RET	HL A	; FILBFR ADDR FOR ; RETURN Z FOR OK
			564 565 566 567 568	; WRITE ; THE ; IN	OUT DAT REST OF (BOTRNG)	A IN FILBFR (M DATA, RECOMPUTE & (TOPRNG)	AX.80 BYTES), AND MO ADDRESS OF NEXT FIL
01F4 01F7	CD5D02 C0	R	569 570 571 572	NXTRNG:	CALL RET	WRTDSK NZ	; WRITE FILE ERROR
01F8 01FB	CD6F02 08	R	573 574 575		CALL EX	ADJDSK AF,AF'	; MOVE DATA UP TO ; SAVE CARRY FOR B
01FC	2AFC03	R	577		LD	HL,(TOPRNG)	; RESET ADDRESS OF 5/27/81

UFADM LOC	ROUTINE OBJ CODE	М	STMT	SOURCE	SEND STATEMENT				PAGE ASM	: 1 15.	4 9	
)1FF)202)206	22FA03 ED5B4E03 19	R R	578 579 580		LD LD ADD	(BOTRNG),HL DE,(FILRL) HL,DE	;	FILE RECORI	RECO D LEN	RD IG TH	N FLI	
1207	227003	ĸ	582 583 584 585 586	; CHEC ; RAI ; KEI	LD CK IF CORE NGE OF THE EP FILLING	ADDRESS OF REC NEXT NEW FILE DATA IN FILBFR	; EIVI RECC	ING DAT	TA IS DRESS	BES,	YONE IF	
)20A)20E)211)214	DD2AF603 DD6E02 DD6603 19	R	587 588 589 590 591		LD LD LD ADD	IX,(SEGPTR) L,(IX+2) H,(IX+3) HL,DE	;	CORE A	ADDRF	ESS 1	FOR	
)215)219)21A	ED5BF803 A7 ED52	R	592 593 594		LD AND SBC	DE,(CORADR) A HL,DE	;	CORE	ADDR	OF	RECI	
)21C)21D	EB 3806		595 596 597		EX JR	DE, HL C, WRTS	;;	HL = WRITE	CORE OUT	ADD DAT	R A	
)21F)220)223	08 DC3B02 189B	R	598 599 600 601		EX CALL JR	AF,AF' C,BLKBUF NOTFST	;	BLANK USE S	FILE AME H	BFR FILE	IF E RE(
			602 603 604 605	; ADD ; CU ; CR	RESS OF NE RRENT FILE EATE A NEW	XT RECORD DATA RECORD, WRITE SEGMENT	IS I OUT	NOT IN DATA	THE IN FI	RAN ILBF	GE ('R, /	
0225 0226 0228 0228	08 3804 CD5D02 C0	R	607 608 609 610 611	WAIS.	EX AF,A JR C,NX CALL WR RET	F' TRN2 TDSK NZ	; ; ; (WAS TH NO GET RI WRITE	ERE N D OF FILI	MORE REM E ER	E IN IAINI ROR	
0220	CDBC02	R	612 613	NXTRN	2: CALL	SETCNT	;	SET S Ment	EGMEN TABI	NT S Le	SIZE	
022F 0232 0235	2AF803 CDA602 CD4D02	R R R	614 615 616 617		LD CALL CALL	HL, (CORADR) GENRNG TSTMXR	;	SET F SET H ATTR	ILE I IGHAI IBUT	R E C C D D R E E S	RD I ESS I	
0238	C3B801	R	618 619		JP	BLKBFR	, ,	BLANK	FIL	BFR	& Sʻ	
3LKBUF, LOC	TSTMXR, OBJ CODE	W R M	TDSK, STMT	ADJD SOURCE	SEN ST <i>i</i>	ND ATEMENT					PAGE ASM !	15 5.9
--	--	-------------	--	---	------------------------------------	---	--	------------------------------	---------------------------------	--	--------------------------------	--
			620 621	*HEAD	ING	BLKBUF	, TSTMX	R, WRT	DSK,	ADJDSK	****	*****
			623 624 625	; BLK	BUF	FILL 1	HE FILB	FR BUF	FER W	ITH DAT	A FF.	
)23B)23C)23D)240)243)246)248)248)248)248)24B)24B	E5 C5 210004 110104 01FF03 36FF EDB0 C1 E1 C9	R R	6278901234 62290123456 63333356 633356 633578 66	; *** BLKBU	F: I I I I I I I	PUSH PUSH LD LD LD LD LDIR POP POP RET	HL BC HL,FIL DE,FIL BC, 3F (HL),0 BC HL	BFR BFR+1 FH FFH	;;;	BUFFER SIZE C FILL 1	ADDR F BUF ST BY	F TE WII
			639 639 641 642 643 644 645 645	; *** ; TS1 ; IF ; GF ; ***	*** 'MXR (T(EAT) ***	******* SET TH OPUSD) ER THAN *****	HE HIGH TOP ADD THEVAL	ADDRES DRESS C UE IN(S FOR F CUR HIGAD	******** THE FI RENT FJ R),THEN ******	LE AT LE AT LE RE SET	****** TRIBUJ CORD J HIGADF
024D 0250 0254 0255 0257 0258 025C	2 ABB03 ED5BFC03 A7 ED52 D0 ED53BB03 C9	R R R	647 648 650 651 652 653 655 655	TSTM	.R: 1	LD HL, LD DE, AND A SBC HL, RET NC LD (HIC RET	(HIGADR) (TOPRNG) ,DE GADR),DE	5	;;	OK RESET		
			656 657 658 659 660 661 662 663	; *** ; WR1 ; BL ; OU1	DSK FFE: PUT	WRITE R TO TI : RETU: RETU:	THE FIF HE DISK. RN NZ FOF RN Z FOF	RST 80 DR WRII R NO EF	BYTES BYTES CE FIL ROR	OF DAT	**** * FA IN R	FILBFF
			665 666 667	; ; **:	***	*****	******	*****	*****	*****	F * * * * *	*****
025D 0260 0263 0267 026A 026E	2 A4 E03 22C303 FD21BF03 CD0000 FDCB0A76 C9	R R X	668 669 670 671 672 673 674 675 675	WRTDS	5K:	LD HL, LD CALL BIT RET	(FILRL) (FILDI IY,FII SYSTEN 6,(IY-	L),HL LVEC M +10)	; ; ;	FILE WRITE RETURI RETURI	RECORD DATA NZFC NNZF) LENG TO FII)R NO 1 FOR WR:
			677	; **	{ * * *	* * * * * *	* * * * * * * *	* * * * * * *	* * * * * *	*****	*****	*****

3LKBUF, TSTMXR, WRTDSK, ADJD SEND PAGE 16 OBJ CODE M STMT SOURCE STATEMENT LOC ASM 5.9 678 679 ADJDSK DELETES THE DATA IN FILBFR THAT HAS BEEN V ; 680 TO FILE. THEN MOVES UP THE REST OF DATA AND BLANK ; 681 THE UNUSED PART OF FILBFR. ALSO RESET (TOPUSD) ; 682 FOR ADDRESS OF FILBFR LAST USED. 683 684 OUTPUT: RETURN NC IF THERE IS VALID DATA IN FILE ; 685 RETURN C IF FILBFR EMPTY 686 , 687 688 689 026F 690 ADJDSK: LD HL, (TOPUSD) 2AFE03 R 0272 110004 691 LD DE, FILBFR R 0275 692 A7 AND A 0276 ; # OF BYTE OF DATA IN FILI ED52 693 SBC HL, DE ; NO DATA IN FILBFR 0278 D8 694 RET C 695 0279 ED5B4E03 R 696 LD DE.(FILRL) ;THIS MUCH WAS WRITTEN SBC HL, DE 027D 697 ED52 027F D8 698 RET C :NOTHING MORE IN FILBFR 699 700 ; MOVE UP DATA 701 0280 702 23 INC HL 0281 44 703 LD B,H 0282 4D 704 LD C.L ;READY FOR LDIR 0283 LD HL, (FILRL) 2 A 4 E 0 3 705 R 0286 110004 R 706 LD DE, FILBFR 0289 19 707 ADD HL, DE FROM TOP TO BOTTOM 028A C5 708 PUSH BC # OF BYTE GOT MOVE 028B 709 EDB0 LDIR 028D POP BC 710 C1 028E LD HL,400H-1 21FF03 711 0291 712 AND A ; BLANK REST OF FILBFR WIT A7 SBC HL, BC 0292 ED42 713 0294 44 LD B,H 714 0295 4D 715 LD C,L 0296 D5 716 PUSH DE : FILBFR ADDRESS FOR NEXT 717 0297 62 718 LD H,D 0298 6 B 719 LD L,E 0299 36FF 720 LD (HL), OFFH INC DE 029B 13 721 029C EDBO 722 LDIR ;CLEAR REMAINDER WITH FF 723 029E D1 POP DE 029F 724 DEC DE 1B 02A0 ED53FE03 R 725 LD (TOPUSD), DE ; DATA ARE FILL UP TO THIS FORCE NO CARRY ON RETURN 02A4 726 A7 AND A 02A5 **C**9 727 RET 728 729 730 ; 731 ; 732 GENRNG SET UP SEGMENT ADDRESS IN SEGMENT TABLE. ; 733 734 BOTRNG - LOW ADDRESS OF NEW FILE RECORD SET ; TOPRNG - HIGH ADDRESS OF NEW FILE RECORD ; 735

C-32

;

LKBUF, TSTMXR, LOC OBJ CODE	WRTDSK, ADJD SEND M STMT SOURCE STATEMENT	PAGE 17 ASM 5.9
	736 ; INPUT: HL - CORE ADDRESS 737 ; SEGPTR - POINTER TO SEGME 738 ; 739 ; ***********************************	NT TABLE
2A622FA032A9DD2AF6032ADDD74012B0DD75002B3ED5B4E032B7192B822FC032BBC9	R 741 GENRNG: LD (BOTRNG), HL R 742 LD IX, (SEGPTR) 743 LD (IX+1), H 744 LD (IX), L R 745 LD DE, (FILRL) 746 ADD HL, DE ;TC R 747 LD (TOPRNG), HL 748 RET 749 750 751)P
	752 753 754 ; SETCNT COMPUTES THE SEGMENT SIZE 755 ; THE SECOND WORD IN THE SEGMENT 756 ; UPDATED WITH THE HIGHEST ADDRES 757 ; REPLACE WITH THE ACTUAL SEGMENT 758 759 ; INPUT: SEGPTR - POINTER TO THE SI 760 761 ; OUTPUT: SEGPTR - UPDATED BY 4 TO 762 ; 763 ; 764 765	IN THE SEGMENT T TABLE HAS BEEN K SS-1 SO FAR. IT SIZE. EGMENT TABLE POINT TO NEXT SE
12BCDD2AF60312C0DD660312C3DD6E0212C6DD560112C9DD5E0012C0ED5212CF2312D0DD740312D3DD750212D611040012D9DD1912D8DD22F60312DFC9	R 766 SETCNT: LD IX, (SEGPTR) 767 LD H, (IX+3) 768 LD D, (IX+1) 769 LD E, (IX+2) 769 LD E, (IX) 770 LD E, (IX) 771 AND A 772 SBC HL, DE 773 INC HL 774 LD (IX+3), H 775 LD (IX+2), L 776 LD DE, 4 777 ADD IX, DE R 778 LD (SEGPTR), IX ; I 779 RET	LST WORD OF SEGME ND WORD OF SEGME CONVERT TO SIZE

BROUT OC	INE.S OBJ CODE	М	STMT	SEND SOURCE STATEMENT	PAGE 18 ASM 5.9
			780 781 782 783	*HEADING SUBROUTINE.S	******
			784 785 786	CONINP GET INPUT LINE FROM	CONSOLE INPUT
			787 788 789	*****	***************************************
E0 E3 E6 E9 EC F0	218009 22D703 218000 22D903 FD21D503 C30000	R R R R X	790 791 792 793 794 795 795 796	CONINP: LD HL, CHRBUF LD (CONDTA), HL LD HL, CHRSIZ LD (CONLEN), HL LD IY, CONVEC JP SYSTEM	; RECEIVE CHARACTER ; SIZE OF INPUT CHAR ; LENGTH OF BUF
			798 799 800 801 802 803 804 805	PUTSTR OUTPUT A STRING OF INPUT: HL - POINT TO A ME:	CHARACTER TO CONSOLE OUT SSAGE IN DEFT FORMAT
2F3 2F4 2F5 2F8 2F8 2FF 2FF	7E 23 22E203 32E403 FD21E003 C30000	R R R X	808 807 808 809 810 811 812 813 814 815	; PUTSTR: LD A,(HL) INC HL LD (STRDTA),HL LD (STRLEN),A LD IY,STRVEC JP SYSTEM	;GET COUNT ;OTHER PART IS ALWAY

.

YSTEM Loc	CALL VECT OBJ CODE	COR M	STMT	SOURCE S	END TATEMENT			PAGE 19 ASM 5.9
			816 817 818	*HEADIN	G SYSTEM	CALL VE	CTOR	
			819 820	; ASSIG	N FILE			
302 303 304 306 308 30A 300	05 02 0000 0000 0000 0000 00		821 822 823 824 825 826 827	FILASV: FILPTR:	DEFB DEFB DEFW DEFW DEFW DEFB	FILDEV ZDASGN O O O O O	9 9 9	ASSIGN REQUEST COI FILENAME POINTER
300	0103	R	828 829		DEFW	FILSPV	;	SUPPL. PARAMETER VI
30F 310	00		830 831 832	FILSPV:	DEFB DEFS	0 34	: این است این است	FLAG BYTE
			833	; OPEN	FILE			
332 333 334 336 338 338 338 332 330	05 04 4B03 7400 0000 0000 00 00 0F03	R R	835 836 837 838 839 839 841 842	FILOPN:	DEFB DEFW DEFW DEFW DEFW DEFB DEFW	FILDEV ZDOPEN FILPRM 116 0 0 0 FILSPV		SAME UNIT AS ASSIC OPEN REQUEST CODE FILE ATTRIBUTES AN LENGTH OF FILE ATT SUPPL. PARAMETER VI
			844	; CLOSE	FILE			
133F 1340 1341 1343 1345 1345 1347 1349	05 06 0000 0000 0000 0000 0000		845 846 847 849 851 852 852	FILCLS:	DEFB DEFB DEFW DEFW DEFW DEFW DEFW	FILDEV ZDCLOS O O O O O O	; ;	SAME UNIT AS ASSI(CLOSE REQUEST COD
ם ול כו	80		854	FILPRM:		90 <i>1</i>		
)34C)34E)350)352	0000 0000 0000 0000		856 857 858 859	FILRL:	DEFB DEFW DEFW DEFB DEFB	0 00H 0 0	; FILE II ; SIZE ; RECORD ; BLOCKIN ; PROPERT	PE (MUST BE PROC. LENGTH, DEFAULT G IES
1355	0002		861	FILDA:	DEFW DEFW	200H	; BYTE IN	LAST RECORD
)357)367)3B9)3BB)3BD	0000 0000 8000		862 863 864 865 866 867 868	FILSMT: LOWADR: HIGADR:	DEFS DEFS DEFW DEFW DEFW	16 82 0 80H	; WILL CH ; CREATIO ; SEGMENT ; LOWEST ; HIGHEST ; STACK S	ANGE TO 80H IF FLO N DATE POINTER TABLE ADDRESS USED ADDRESS UES IZE
			869 870	;FILE W	RITE VEC	TOR		
)3BF)3C0	05 0E		871 872 873	FILVEC:	DEFB FI DEFB ZDI	LDEV WRTB		

SYSTEM LOC	CALL VECT OBJ CODE	COF M	R STMT	SOURCE ST	EN D FATEMI	ENT		
D3C1 D3C3 D3C5 D3C7 D3C9	0004 0000 0000 00	R	874 875 876 877 878 879	FILDL:	DEFW DEFS DEFW DEFW DEFB	FILBFR 2 0 0 0		
03CA 03CB 03CC 03CE 03D0 03D2 03D4	05 06 4 B0 3 7 400 0000 0000 0000	R	- 880 882 882 883 884 885 886 886 888 886 888 889 889	; CLOSE FILCLP:	FOR DEFB DEFW DEFW DEFW DEFW DEFW DEFB	PROCEDURE FILE FILDEV ZDCLOS FILPRM 116 0 0 0		
03D5 03D6 03D7 03D9 03DB 03DD 03DF	01 0C 0000 0000 0000 0000 0000		891 892 893 894 895 896 896 897 898 899	; CONSOLE CONVEC: CONDTA: CONLEN:	E REAL DEFB DEFB DEFW DEFW DEFW DEFW DEFB	D AND WRITE CONIN ZDREDA O O O O O		
03E0 03E1 03E2 03E4 03E6 03E8 03EA	02 0E 0000 0000 0000 0000 0000		900 901 902 903 904 905 906 907 908	STRVEC: STRDTA: STRLEN:	DEFB DEFB DEFW DEFW DEFW DEFW DEFB	CONOUT ZDWRTB O O O O O		
03EB 03EC 03ED 03EE 03FF 03F0 03F1 03F2 03F3	02 30 0D 02 37 0D 02 39 0D		909 910 912 912 913 914 915 916 917 918	ACKMSG: NAKMSG: ABRMSG:	DEFB DEFB DEFB DEFB DEFB DEFB DEFB DEFB	2 101 0DH 2 171 0DH 2 191 0DH		
03F4 03F6 03F8 03FA	0000 0000 0000 0000		919 920 921 922 923	RECBYE: SEGPTR: CORADR: BOTRNG:	DEFW DEFW DEFW DEFW	0 0 0 0 0	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	R ECO S EGI A D DI L OW
03FC	0000		925	TOPRNG:	DEFW	0	; ;	HIG
03FE 0400 0900 0980	0000		927 928 929 930 931	TOPUSD: FILBFR: OUTBUF: CHRBUF: CHRSIZ	DEFW DEFS DEFS DEFS EQU	0 500H 128 128 \$-CHRBUF	, , , , , , , , ,	FII TOP FIL BUF INP

RECORD BYTE COUN SEGMENT TABLE PO ADDRESS IN LOAD LOW ADDRESS OF C FILE RECORD HIGH ADDRESS OF FILE RECORD TOP ADDRESS OF F FILE BUFFER BUF WITH TEKTRON INPUT BUF FROM C

PAGE 20 ASM 5.9

C-36

CROSS H Symbol	REFERI VAL	EN C M	CE DEFN	REFS		SEND						PAGE
AB RCKS AB RMSG ACKMSG	0181 03F1 03EB	R R R	425 915 909	81 425 419	195							
BLKBFR	017B 01B8	R R	422 513	177 618	276							
BLKBUF BOTRNG BUFADM CEND	023B 03FA 019A 0132	R R R R	627 923 482 298	149 509 191 292	514 532	599 578	741					
CHKBAD CHKCKS	0090 0187	R R	176 448	165 164	173							
CHROKE	0980 012F	R R R	930 294	267 290	791	931		- -				
CHRSIZ CK1	0080 0189	R	931 449	793 451					°₩.			
CLSE CLSS	00F9 00F6	R R	242 241	157 238								
COMADA COMSY1 CONDTA	000D 03D7	R R R	49 895	46 792	J				· •		5 (27) 1 (27) 1 (2	
CONIN CONINP	0001 02E0	R	9 790	893 264								
CONLEN CONOUT	03D9 0002	R	896 10 802	265 901 705	794							
CORADR FILASV	03F8 0302	R R	922 821	483 101	531	554	592	614				
FILBFR FILCLP	0400 03CA	R R	928 882	515 243	534	629	630	691	706	874		
FILCLS FILDEV	033F 0005	R	846 875	77 821	835	846	872	882				
FILOPN	0332 034B	R R	835 854	109 837	884				,			
FILPTR FILRL	0304 034E	R R	823 857	100 579	668	696	705	745				
FILSA FILSMT	0353 0367	R R	860 864 820	224 144	145	503						
FILVEC	030F 03BF 00C1	R R R	872 219	670 185	020	042						
GENADL GENRNG	016B 02A6	R R	396 741	190 506	223 615							
GODCKS GOTLSH	0175 011B	R R	419 279	152 273	241							
HEXDCD	0109 014D 0155	R R R	379 362 367	370 324 365	374							
HIGADR LODBYL	03BB 0136	R R	866 324	232 206	234 396	508 398	648 449	653 454				
LODCON	00AE 0071	R R	202 153	192 178								
LODFRO LODFR3	006E	R R P	151 206	212 211 169	175							
LODREC	0102	л R	264	154	277							

-

.

5/27/81

21

ROSS Ymbol	REFERI VAL	EN (M	CE Defn	REFS		S EN D					
.OW ADR IAKMSG ICHR IOTFST IXT IXTRN2 IXTRN2 IXTRNG DPN EWF	03B9 03EE 010C 01C0 011F 022C 01F4 0002	R R R R R R R	865 912 269 524 282 612 569 14	510 422 275 487 291 608 526 107	600 296						
)PNFIL DUTBUF PUTSTR RECBYE RETN7	0038 0900 02F3 03F4	R R R R R	99 929 809 920	67 155 420 187	162 423 204	189 426 545	205	222	281		
SED9 SEGPTR SEND9 SETCNT SKIPSP STRDTA	00A8 03F6 0034 02BC 000F 03E2	R R R R R R R R R	194 921 81 766 53 903	236 143 60 225 57 811	240 484 62 612	504 64	556 68	587	742	766	778
STRFIL STRLEN STRVEC SYSTEM FOPRNG	0058 03E4 03E0 0000 03FC	R R R X R	141 904 901 3 925	71 812 813 78 524	102 577	110 581	244 649	671 747	796	814	
TOPUSD TSTMXR JSEDIG	03FE 024D 0166	R R R	927 648 376	551 231 372	690 616	725	-				
NRTDSK NRTS ZDASGN	025D 0225 0002	R R	668 606 19	235 596 822	239	570	609				
Z DCLOS Z DOPEN Z DREDA Z DREDB	0006 0004 000C		21 20 23 22	847 836 894	883						
ZDWRTB	000E		24	873	902						

•

PAGE 22

APPENDIX D

æ 1

 $(1-1)^{-1} = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 + \left(-\frac{10}{2} \right)^2 \right] = \frac{10}{2} \left[\left(-\frac{10}{2} \right)^2 + \left(-$

100

Z-SCAN 8000 SCHEMATICS

Zilog Sales Office

West

Sales & Technical Center Zilog, Incorporated 1333 Lawrence Expressway Suite 400 Santa Clara, CA 95051 Tele: (408) 446-9843

Sales & Technical Center Zilog, Incorporated 18023 Sky Park Circle Suite J Irvine, CA 92714 Tele: (714) 549-2891 TWX: 910 595-2803

Sales & Technical Center Zilog, Incorporated 15643 Sherman Way Suite 430 Van Nuys, CA 91406 Tele: (213) 989-7484 TWX: 910-495-1765

Midwest

Sales & Technical Center Zilog, Incorporated 890 East Higgins Road Suite 147 Schaumburg, IL 60195 Tele: (312) 885-8080 TWX: 910 291 1064

South

Sales & Technical Center Zilog, Incorporated 2711 Valley View, Suite 103 Dallas, TX 75234 Tele: (214) 243-6550 TWX: 910 860 5850

Technical Center Zilog, Incorporated 1442 U.S. Hwy 19 South Suite 135 Clearwater, FL 33516 Tele: (813) 535-5571

East

Sales & Technical Center Zilog, Incorporated Corporate Place 99 South Bedford St. Burlington, MA 01803 Tele: (617) 273-4222 TWX: 710 332-1726

Sales & Technical Center Zilog, Incorporated 110 Gibraltar Road Horsham, PA 19044 Tele: (215) 441-8282 TWX: 510 665 7077

United Kingdom

Zilog (U.K.) Limited Babbage House, King Street Maidenhead SL6 1DU Berkshire, United Kingdom Tele: (628) 36131 TELEX: 848609

West Germany

Zilog GmbH Zugspitzstrasse 2a D-8011 Vaterstetten Munich, West Germany Tele: 08106 4035 TELEX: 529110 Zilog d.

Japan

Zilog, Japan KK Linden Sky Heights Bldg. 1F 13-2 Sakuragaoka-Machi Shibuya-Ku Tokyo 105 Japan Tele: (3) 476-3010 TWX: 781 23723 Lawright