
Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124-3450
Phone: 408-559-7778
FAX: 408-879-4780
©2000 Xilinx Inc.
All rights reserved.

Xcell is published quarterly. XILINX,the
Xilinx logo, and CoolRunner are registered
trademarks of Xilinx,Inc. Virtex,
LogiCORE,Spartan,SpartanXL,Alliance
Series, Foundation Series, CORE Generator,
Checkpoint Verification, TimeSpecs, Smart
IP, QPRO, SelectI /O, SelectI/O+, True Dual-
Port, WebFITTER, WebPACK,Select RAM,
BlockRam,Xilinx Online, and all XC-prefix
products are trademarks, and The
Programmable Logic Company is a service
mark of Xilinx,Inc.Other brand or product
names are trademarks or registered trade-
marks of their respective owners.

The articles, information,and other materi-
als included in this issue are provided
soley for the convenience of our readers.
Xilinx makes no warranties, express,
implied,statutory, or otherwise, and
accepts no liability with respect to any
such articles, information,or other materi-
als or their use, and any use thereof is
solely at the risk of the user. Any person
or entity using such information in any
way releases and waives any claim it
might have against Xilinx for any loss,
damage, or expense caused thereby.

nce upon a time there were
two electronic giants, strug-
gling for dominance in the

Valley of Silicon. They were unfriendly
rivals; each making similar products,
each holding on to an equal share of
the marketplace, each “leapfrogging”
the other with new designs. When
Giant X introduced a new MP3 player,
for example, Giant Y would soon
introduce one with more features at a
lower cost. And, because they used
the same basic components, design
methods, and manufacturing process-
es, they each remained “competitive,”
but their profit margins were atro-
cious. The competition was fierce; life
was uncertain; no one smiled.

Then one bright morning (after
reading a particularly insightful edito-
rial in the Xcell Journal), Giant X
awoke from a vivid dream in which he
saw the future. He thought “What if I
could create new products that never
had to be replaced? What if I could sell
customized features, options, and
complete new designs, and download
them to my customers, anywhere in
the world, over the Internet? That’s
like manufacturing something once,
but selling it many times over!” He
knew it was the next “big thing.” He
grinned a big toothy grin.

Giant X began designing all his
new products using the latest pro-
grammable logic technology (from

Xilinx of course). The new FPGAs and
CPLDs were amazing; they were
dense, fast, inexpensive, and required
little power; they were easy to use
because the development tools were
fast and efficient, and there was a lot
of Intellectual Property (cores) avail-
able to make his life easy. Plus, with
Xilinx technology, he could provide an
Internet interface to all of his products
and easily download almost any new
design the market demanded. “Simply
brilliant!” remarked the press.
“Amazing!” remarked his customers.
“Highly profitable!” said his sharehold-
ers. Everyone grinned big toothy grins,
except Giant Y of course.

It wasn’t long before Giant Y’s
market share began to nosedive. In a
panic he worked night and day to keep
up with the almost daily introduction
of new products, features, and options
from Giant X; but he could no longer
compete using his old technology.
Greatly embarrassed, Giant Y quietly
packed his bags and left town; he was
never heard from again.

The moral of this story is clear.
Low-cost, high-performance pro-
grammable logic, reprogrammed
remotely, is the obvious next step in
the evolution of logic design—the
advantages are overwhelming.

This issue of Xcell will show you
some of our latest, low-cost, remotely-
reprogrammable giant killers.

EDITOR

Carlis Collins
editor@xilinx.com
408-879-4519

SENIOR DESIGNER

Jack Farage

BOARD OF ADVISORS

Dave Stieg
Dave Galli
Mike Seither
Peter Alfke

Pronto Creative
www.prontocreative.com

A Tale of Two
Giants...

http://www.prontocreative.com

5

View from the Top
The Programmable Logic Market .

Cover Story
The New Spartan-II FPGA Family,
Kiss Your ASIC Good-bye

Spartan FPGAs
New Spartan-II FPGA Family -
Ideal for ASSP Replacement

The Spartan-II Design Flow Simple,
Powerful, and Efficient

How to Create an MP3 Player,
Using a Spartan-II FPGAs

Inverse Multiplexing for
ATM (IMA)

HDLC Controller Solutions Using
Spartan-II FPGAs

Low Power Benefits of
Spartan-XL Family

CoolRunner CPLDs
The New XPLA3 CPLD Family -
The Best CoolRunner Family Yet . .

CoolRunner Power
Estimator Tool

Implementing an I2C Bus Controller
in a CoolRunner CPLD

How to Create an MP3 Player
Using a CoolRunner CPLD

Applications
Get the Best Registered I/O
Timing with Virtex-E FPGAs

Understanding Setup and
Hold Times

HDL Coding for Pseudo-random
Noise Generators

Post Synthesis Verification
for Virtex FPGAs

Using the ModelSim FPGA
Library Manager

FPGA System Simulation
and Synthesis

Columns/Reference
Industry Analyst Column

Q&A Column

Trade Show Column

Software Availability Guide

Inside This Issue:

Spartan™ FPGAs are experiencing
tremendous growth due to their inherent
advantages over ASICs.

52

26

For A FREE
Subscription
To The Xcell

Journal

1. Your full name and
mailing address

2. Your title

3. The name of your company

4. Your e-mail address

5. Is this new subscription
or a subscription renewal?

E-mail your request to: literature@xilinx.com,
please be sure to include:

This HDL design methodology can help
you use the largest Virtex™ FPGAs with
a minimum amount of time spent on
synthesis, simulation, and verification.

New CoolRunner devices are ideal for
low-power, high-performance applica-
tions.

35
CoolRunner™ CPLDs are used as the
main controller for an MP3 player. (Also
see a Spartan-II MP3 design on page 15.)

w w w. x i l i n x . c o m

4
The year 2000 promises to bring even
faster growth, with many new applica-
tions, because our technology has
passed a key milestone.

rogrammable logic technol-
ogy has made many signifi-
cant advances over the last

year, and is well on its way to
becoming the development technol-
ogy of choice for most applications.
Xilinx is growing very quickly as a result. Here
are some of the highlights of our phenomenal
growth in 1999:

• The Xilinx stock split twice, once in March
and once in December. This helped give us a
market capitalization of about $14.5 billion,
making us second only to Intel among semi-
conductor suppliers here in Silicon Valley.
This gives us an increased ability to fund new
research and bring advanced new technolo-
gies to market.

• Xilinx was placed on the Merrill Lynch “Top
10 Tech” list (replacing Intel), indicating their
highest confidence in our continued strength,
and in the growth potential of the overall pro-
grammable logic market.

• Xilinx was added to the S&P 500 index,
another indication of the market’s confidence
in our ongoing strength.

• We built a new 180,000 sq. ft. building on our
San Jose campus to handle our recent growth,
and began the development of a new 130,000
sq. ft. facility in Longmont Colorado.
Groundbreaking is scheduled for March 2000.

• We expect our revenues to approach $1 bil-
lion by the end of our fiscal year (March
2000), 50% higher than last year.

It was a very good year for Xilinx; our invest-
ments in new device and software technologies
have paid huge dividends, and our products have
consistently extended the previous limits of den-
sity and performance while significantly reducing
prices.

FPGAs were once used primarily in high-end,
low-volume equipment which consists of about
25% of the total marketplace. This was due in
part to the relatively high cost of FPGAs (as com-
pared to custom devices). To serve the other 75%
of the marketplace, our research showed us that
we would need to produce high-performance,
full-featured FPGAs with at least 100K gates, and
sell those devices, in volume, for less than
$10.00. With the introduction of our new
Spartan-II family, that’s exactly what we’ve done.
This is a significant milestone that will bring
many unique new applications.

The growth of the programmable logic mar-
ketplace is important to you because these
devices allow you to get your products to market
six to nine months faster than with ASICs, and
they allow you to upgrade your equipment over
any network after it’s installed at your cus-
tomers’ locations. We here at Xilinx will contin-
ue our innovation and this will lead to higher
densities, higher performance, more features, a
wider selection of intellectual property (cores),
and lower prices. We intend to keep making your
job easier while adding value to your products.

3

View f rom the To p

...and the year 2000 promises to bring even faster growth, with many new
applications, because our technology has passed a key milestone.

by Wim Roelandts, President and CEO, Xilinx

The Programmable Logic Market
G r e w S i g n i f i c a n t l y

in 1999.

he Spartan Series FPGAs, introduced by
Xilinx in January 1998, offer a very
attractive alternative to ASICs for your

high volume, low cost applications. The Spartan
families are designed to penetrate markets that
were once dominated by ASICs. These include
digital modems, printers, faxes, portable audio
players (such as MP3), set-top boxes, and POS
terminals. The Spartan Series is the first FPGA
family to provide a complete and compelling mix
of advanced features, low prices, high perfor-
mance, and powerful development tools; the key
ingredients required by ASIC designers. Now, the
new Spartan-II™ FPGA family sets a new stan-
dard for low cost, and high performance.

The Spartan-II Family

Fabricated on a leading 0.18 µm, six-layer metal
process, the Spartan-II family uses the most
advanced process technologies available today.
The family’s core voltage operation is 2.5V, yet it
incorporates unique I/O technology that allows
both 3.3V and 5V I/O operation.

The Spartan-II family includes new system-
level features such as delay lock loops (DLLs),
BlockRAM™, distributed RAM, multiple I/O stan-
dards, ultra-high performance, and power man-
agement. All of the features found in ASICs and
ASSP devices are now available in the Spartan-II
family at very attractive prices. Spartan-II FPGAs
also provide an impressive array of highly com-
plex cores (intellectual property) enabling you to
further leverage the time-to-market benefits
offered by programmable logic.

Memory

On-chip memory is vital to most designs, from
buffering data between two dissimilar buses to

4

Cover Story

by Jay Aggarwal, Product Marketing Manager,
Spartan Series, Xilinx, jay.aggarwal@xilinx.com

Table 1 - Integrated features.

THE NEW
Spartan-I I

F P G A F a m i l y

KISS YOUR ASIC
G O O D - B Y E

Spartan FPGAs are experiencing
tremendous growth due to their
inherent advantages over ASICs.

Device XC2S15 XC2S30 XC2S50 XC2S100 XC2S150

System Gates 15K 30K 50K 100K 150K

Logic Cells 432 972 1728 2700 3888

Block RAMBits 16,384 24,576 32,768 40,960 49,152

Block RAMBlocks 4 6 8 10 12

DLLs 4 4 4 4 4

I/O Standards Supported 17 17 17 17 17

Max I/O 86 132 176 196 260

Packages 14x14mm VQ100 VQ100

20x20mm TQ144 TQ144 TQ144 TQ144

12x12mm CS144 CS144

28x28mm PQ208 PQ208 PQ208 PQ208

17x17mm FG256 FG256 FG256

23x23mm FG456 FG456

providing storage locations of constants for high
performance DSP functions. The Spartan-II fami-
ly provides you with maximum memory flexibili-
ty.

Xilinx pioneered the capability of distributed
memory (also found on Spartan and Spartan-XL
families), which efficiently implements
wide/shallow FIFOs or scratch pads memories.
The family also incorporates BlockRAM (in
blocks of 4Kbits) which efficiently implement
memory for deep FIFOs, single port RAM, and
True Dual Port RAMs as shown in Figure 2.
Unlike competing two-port architectures, Xilinx
provides true dual port RAM operation, for high-
speed read and write operation.

Delay Locked Loops

DLLs perform the same tasks as traditional
phase lock loops (PLLs) but are more robust and

are less susceptible to noise interference, a
common problem with PLLs. The Spartan-
II DLLs allow you to multiply or divide the
incoming clock on chip, as well as drive
multiple clocks on the board. The DLL fea-
ture also allows you to de-skew the clock
on chip, ensuring all nodes on the device
are synchronized while providing mini-
mum set-up and hold times.

With four DLLs per device, the Spartan-
II family provides a sufficient number of

DLLs with which you can perform multiple func-
tions. For example, one DLL may be used to de-
skew the clock on chip, one for multiplying the
clock for accelerated performance on chip, two
DLLs to drive clocks to various devices on the
board—all at the same time. A single crystal
oscillator and a Spartan-II device may provide all
the clock management you need for your board
design.

SelectI/O™

The Spartan-II family supports most of the popu-
lar and demanding I/O standards, including
those that are optimized for high-speed memory
interfaces. The new input/output standards that
are supported, include SSTL, HSTL, AGP, GTL,
GTL+, and PCI. The integration of these stan-
dards into the Spartan-II family now allow the
elimination of costly bus transceivers that take
up valuable board space.

The I/Os for the Spartan-II family are 5V and
3.3V tolerant for interfacing with older genera-
tion technology on the board. This is a signifi-
cant advantage for the family because competing
architectures are unable to support 5V operation.

Support for high-speed interfaces significant-
ly increases performance over the Spartan (80
MHz) and Spartan-XL (100 MHz) families, to a
blazing 200 MHz.

5

Figure 2 - Spartan-II family dual port memory.

Figure 1 - Spartan-II family architecture.

Power Management

Power consumption is an important
issue, especially for portable and
hand-held designs. The Spartan-II
family extends power management
features that were first established
with the Spartan-XL family, which
provides a power down pin on each
device. Once activated, the device
goes into a low power sleep mode in
which power consumption is signifi-
cantly reduced. When the pin is de-
asserted, the device comes back into
full power mode and retains its con-
figuration as well as register states.

Pricing

The Spartan-II family has been created from the
ground-up, in keeping with the Spartan Series
philosophy, to provide industry-leading features,
density, and performance at price points that
match or beat ASICs and ASSP devices. The fam-
ily has been able to achieve a milestone, long
sought after and promised by the programmable
logic industry but now only realized by the
Spartan-II family: 100,000 gates for $10.00USD.

Below is a complete listing of high volume
prices for the Spartan-II family at introduction.

An Example of Spartan-II Value

The board diagram in Figure 3 illustrates how
you can integrate many different functions into a
Spartan-II FPGA to achieve significant cost sav-
ings. This example design includes a PCI mas-
ter/target controller, some HSTL translators, a
cache controller, SSTL-3 translators for SDRAM,
a backplane interface, some glue logic, and the
clock management device. All of these functions
can be integrated into the XC2S100 Spartan-II
device which costs just $10.00, almost two-thirds
less than the discrete solution, with room to
spare for more logic. The Spartan-II solution also
uses less board real estate, requires less power,
and provides higher reliability.

Conclusion

The Spartan-II family offers you the most cost-
effective and flexible solution, enabling the
fastest time-to-market with the lowest possible
risk.

6

For more information regarding how the Spartan-II family addresses
traditional ASIC and ASSP designs, please see the article on page 8.

Xilinx Spartan II

Product High Volume Price*

XC2S15 $ 3.95

XC2S30 $ 4.95

XC2S50 $ 7.95

XC2S100 $ 9.95

XC2S150 $ 12.95
* 250K units, a resale price, slowest speed/cheapest package

Figure 3 - Spartan-II value.

Table 2 - Spartan-II family pricing.

7

New Products - Spartan-II FPGAs

partan-II FPGAs offer more than 100,000 sys-

tem gates at under $10.00 and are the most

cost-effective PLD solution ever offered. They

build on the capabilities of the very successful Virtex™

FPGA family and include all of the Virtex features,

including SelectI/O™, BlockRAM™, Distributed RAM,

and DLLs, with clock speeds up to 200 MHz.

PLDs Penetrating the ASSP Market
In the past, programmable logic devices had limited

success in penetrating the ASSP market because they

could not compete in the key areas of density, fea-

tures, performance, and cost. However, the Spartan

family competes very well due to the use of advanced

process technologies. This approach has allowed

Xilinx to significantly reduce die sizes, and therefore

reduce the cost of the overall solution. This rapid pro-

cess transition allows the Spartan family to compete

with ASICs and ASSPs, and has opened up many new

markets for PLDs.

Advantages of a Programmable ASSP
A programmable ASSP like the Spartan-II family offers

significant advantages over a stand-alone ASSP. The

advantages are broadly classified under the following

areas:

• The value of programmable ASSPs.

• Accommodating specification changes.

• Testing and verification.

• Xilinx Online™ - field upgradability.

• Problems in creating a stand-alone ASSP.

The Value of Programmable ASSPs

ASSPs, designed for a wide array of applications, are

rarely able to meet your exact needs. With a pro-

grammable ASSP solution, such as Spartan-II FPGAs,

you can choose the optimum feature set and optimize

your design to achieve best possible results—this

gives you a better design and saves money.

The PCI case study shown in Figure 3 is a good

example. This Spartan-XL PCI solution was able to

effectively cut the total product cost in half and also

allow room to accommodate the extra logic that you

may want to add to the backend PCI interface, such

as a DMA controller, SDRAM controller, or FIFO.

Accommodating Specification Changes

ASSP vendors are motivated to quickly create solu-

tions for emerging markets because of the high profit

by Krishna Rangasayee, Manager, Strategic Applications,
Xilinx, krishna@xilinx.com

The Spartan-II family, combined with a vast portfolio of soft IP, is the first
programmable logic solution to effectively penetrate the ASSP marketplace.

Figure 1 - PLD evolution - addressing the ASSP marketplace.

8

margins they stand to gain. However, the standards

change constantly in these markets, often making

ASSPs a risky choice. These conditions create many

opportunities for the Spartan-II family, because with a

Spartan device, you can upgrade your design to

accommodate evolving specifications even after your

systems are deployed in the field.

Testing and Verification

Another problem users encounter with stand-alone

ASSPs is that the devices do not always behave as

expected. Identifying problems is a lot easier with pro-

grammable ASSPs, such as the Spartan-II FPGAs,

because they are built on the fabric of a proven FPGA

technology and the silicon has been pre-verified and

guaranteed to perform. Because a programmable

ASSP is inherently re-programmable, fixing any prob-

lem is simple. This is a tremendous value-added fea-

ture that a stand-alone ASSP cannot offer.

Xilinx Online for Field Upgradability

The Xilinx Online capability allows you to add new

hardware features and fix bugs, over a network, with-

out sending a technician to the field; this can add up

to considerable maintenance and support savings

over the entire life of the system. The value of field

upgradability is illustrated in Figure 4.

Problems in Creating a Stand-alone ASSP

Vendors who create stand-alone ASSP devices must

over-design their products to meet the requirements

of a wide range of customers. A list of the various

hurdles that an ASSP vendor faces today are:

• Choosing the Right ASSP - The ASSP vendor

must choose the right market segment.

• Product Customization - ASSP vendors face the

challenge of creating one solution that must suc-

cessfully meet the demands of a wide range of cus-

tomers.

• Development Cost and Amortization - Stand-

alone ASSPs have high NRE and engineering costs.

These costs are increasing with process technology

migration.

The Spartan-II family is unaffected by these hur-

dles and offers a cost-effective programmable ASSP

solution.

Spartan-II ASSP Replacement Value
The Spartan-II family replaces and or competes

against three classes of ASSPs, broadly classified as:

• Feature-Replacement ASSPs

• Logic-Replacement ASSPs

• Value-Added ASSPs

• Spartan FPGAs migrate to higher densities to
handle system features

–Maintaining low cost

• ASSPs attempt to offer flexibiity

–Differentiation need due to
market pressures

–Available ASSPs require programmable
logic

–Changing system standards

• ASSPs have large role in consumer,
networking & data-processing

–Where Spartan FPGAs are successful

• PCI is the first successful ASSP competition

Figure 3 - Xilinx PCI solution vs. stand-alone ASSP.

Figure 2 - Spartan-II family penetrates ASSP markets.

Figure 4 - Field upgradability extends the value
of programmable ASSPs.

9

Feature-replacement ASSPs

Examples of “Feature-replacement ASSPs” are shown

in Table 1. All of these functions are available in a

Spartan-II FPGA without using any of the PLD’s logic

resources. Plus, the price of some of the Spartan-II

devices is about the same as that of the ASSP they

replace.

Logic-replacement ASSPs

Logic-replacement ASSPs are those that can be

replaced by using the logic resources of a Spartan-II

chip in combination with various IP cores. Examples

of potential logic-replacement ASSPs are shown in

Table 2.

Value-added ASSPs

Value-Added ASSPs fall into either of two categories:

• ASSPs that take unique advantage of the Xilinx
architecture, like the ATM IMA devices from
Applied Telecom. The class of field-upgradable
ASSPs and network processors also fall into this
category.

• ASSPs that serve emerging markets and markets
that do not exist today, such as a PCI-X
Master/Target Controller.

The Spartan-II family services all three classifica-

tions of ASSPs very well. Examples of Value Added

ASSPs are shown in Table 3.

Conclusion
The new Spartan-II FPGA family, due to its advanced

features and low cost, is uniquely capable of replacing

many standard ASSP devices. And though it may not

replace all ASSPs, the Spartan family is now being

used in many new high-volume, low-cost applications

that were once dominated by stand-alone ASSPs.

Feature Replacement ASSPs Price
32-bit SSTL-3 Transceivers with Tristate Outputs $ 4.00

32-bit to 64-bit HSTL-to-LVTTL Memory Address Latch $ 6.00

32-bit LVTTL to GTL/GTL+ Transceivers with Live Insertion $ 6.00

High Speed CMOS Digital PLLs $ 1.00

High Speed Programmable Board Skew Clock Buffer $ 7.50

2K x 8 Dual-Port Static RAM $ 2.00

64,256,512,1K,2K,4K x 18 Synchronous FIFOs $ 7.00

Hot Swap Controller $ 2.00

Note:Pricing shown is approximate and for volumes of 100,000 units

Logic Replacement ASSPs Price
64-bit,66-MHz PCI v2.2 Bus Master $ 25.00
32-bit,33-MHz CompactPCI(r)
Bus Master Hot Swap Friendly PCI interface chip $ 15.00
32-bit,33-MHz Bus Target chip $ 12.00
32-bit,33-MHz PCI Master/Slave Controller $ 14.00
32-bit,33-MHz PCI Target Controller $ 12.00
STS-12C/STS-3C POS/ATM SONET Mapper $ 120.00
PCI System Controller for 64-bit MIPS
CPUs w/ Integrated SDRAM controller $ 12.00
Advanced PCI System Controller for 64-bit MIPS CPUs $ 40.00
Secondary Cache Controller for the R4600/R4700 $ 15.00
Low-Cost 8-Port 10/100 Fast Ethernet Switch Controller $ 28.00
High Speed Microcontrollers are direct
performance upgrades for the 8051 $ 8.00
256-Channel HDLC Controller $ 60.00
Multi-Channel HDLC Controller with 32-bit,
66-MHz PCI Controller $ 120.00
Block Floating Point 16 x 16 Complex
Floating Point Multiplier $ 300.00
Programmable FIR Filter $ 310.00
Standalone FFT Processor $ 450.00
Integrated Digital Switch $ 12.00
HDLC Protocol Controller $ 4.50
Multi Channel ATM AAL1 SAR $ 90.00
Dual ADPCM Transcoder $ 4.00
Integrated PCM Filter CODEC $ 4.00
Viterbi with Reed-Solomon Decoder $ 25.00
Reed-Solomon Forward Error Correction $ 20.00
ALDC Data Compression $ 12.00
DCLZ Compression $ 22.00
ISDN Terminal Adapter with HDLC Controller $ 10.00
Multichannel Network Interface
Controller for HDLC $ 60.00
Fast Ethernet (100 Mbps) Media Access
Controllers (MAC) $ 20.00
Note:Pricing shown is approximate and for volumes of 100,000 units

Table 1 - A list of potential feature replacement
ASSPs replaced by the Spartan-II Family.

Value Added ASSPs Price
64-bit,66-MHz PCI-X System Controller NA

Quad ATM IMA Chip $ 30.00

Octal ATM IMA Chip $ 50.00

ARC Processor NA
Note:Pricing shown is approximate and for volumes of 100,000 units

Table 3 - A list of potential value added ASSPs
supported by the Spartan-II Family.

Table 2 - A List of potential logic-replacement
ASSPs supported by the Spartan-II family.

Design Flow

10

ith the rapid adoptation of deep-
submicron process technology in
the design of FPGAs, Xilinx is now

able to provide you with a cost-effective alterna-
tive to using an ASIC. But the cost of silicon is
only one reason why the use of Spartan devices
in high-volume applications is skyrocketing.

Spartan devices are designed using our
robust suite of design tools. These tools have
become rich in features as a result of the inclu-
sion of a series of patented innovations. This
article describes some of the key technologies
that are included in the Xilinx development sys-
tems, including HDL optimized flows, timing
driven layout, core (intellectual property) design
and integration, and a comprehensive suite of
verification tools.

Xilinx design methodology also offers some
distinct advantages when compared to an ASIC
design flow. These improvements in the art of
logic design deliver benefits that reduce the cost
of design development and accelerate time to
market.

A Robust Suite of Design Tools

The development systems that Xilinx delivers
today incorporate the collective innovations of
over 15 years of programmable logic design
expertise. These improvements to the pro-
grammable logic design process have resulted in
the creation of a comprehensive, high quality
suite of design tools. Xilinx development systems
are packaged to deliver the best value for your
dollar, enabling you to invest in just what you
need to get the job done.

All Xilinx development systems include a
comprehensive set of key technologies that
enable the efficient design of powerful, high per-
formance products. Other tools useful in the
design of programmable logic are delivered as
options or as part of the Foundation Series
“packaged” solutions, including HDL design, sim-
ulation, synthesis, and optimization.

One of the benefits of programmable logic is
the ability to program (and reprogram) the
device at your desktop. In order to do so, you
need a set of tools that take your design from
concept to silicon. Processing your design
includes design capture (including HDL synthesis

by Craig N. Willert, Software Marketing Manager, Xilinx,
cnw@xilinx.com

A design flow that offers distinct advantages when com-
pared to an ASIC design methodology.

S o f t w a re - O v e r v i e w

Simple, Powerful, Efficient

The Spartan-II

11

and/or schematic entry), implementation, and
verification.

Capturing your Design

The first step in the creation of any logic design
is to capture the
intended functionali-
ty in electronic for-
mat. While Xilinx has
a rich history in the
support of schematic
capture programs,
over the last six
years Xilinx has been
working with leading vendors in support of HDL
design flows (synthesis and optimization). This
investment is paying dividends to designers
using Xilinx devices in terms of technology spe-
cific optimizations that enable the creation of
high performance designs from VHDL or Verilog.

The Xilinx Foundation Series™ software
includes synthesis capabilities from industry
leader Synopsys® (FPGA Express™). To ensure
the highest quality
of results through
the synthesis pro-
cess, Xilinx works
cooperatively with
all synthesis part-
ners to develop
proprietary opti-
mization technolo-
gy for Xilinx devices. This technology takes
advantage of the extensive knowledge that the
Xilinx R&D staff have of its silicon and imple-
mentation tools. These improvements are devel -
oped in a manner which allows them to be
shared with third party synthesis vendors to
ensure high quality results, through HDL design
flows, regardless of your chosen synthesis
provider.

Xilinx
also delivers
the industry’s
best design
reuse
methodology, enabling the seamless integration
of intellectual property from either third parties
(Alliance cores) or Xilinx (LogiCores). The Xilinx
CORE Generator™ enables the customization of
the core’s parameters at your desktop, creating
the exact functionality that your design requires.
The use of SmartIP™ technology in the creation
of cores ensures predictable, high-performance,
scalable functions. One of the most popular
cores is the Xilinx PCI LogiCore, currently offered
as both 32-bit/ 33-MHz and 64-bit/66-MHz
interfaces.

Implementation

Xilinx patented the timing-driven place and
route of FPGAs in the early 90s. This technology
allows you to specify timing requirements when
creating your design, and automatically optimize
your design with these requirements in mind.
Advanced integration, between the synthesis
tools and the Xilinx implementation tools,
enable the passing of timing requirements from
synthesis to place and route, and circuit delay
information from place and route back to the
synthesis algorithms.

This closed loop methodology not only saves
time, by making sure that the place and route
tools are working to create a design that meets
all of your system needs, it also provides imme-
diate feedback when timing requirements are
unrealistic, given the current design description.
In fact, the flexible verification methodology that
Xilinx provides ensures that you are given feed-
back on the feasibility and quality of your design
throughout the design flow. This Checkpoint
Verification™ process ensures that you are
spending your time most efficiently. The process

12

continues only with design iterations that will
converge on your overall system requirements,
and identifies trouble spots in designs that will
not.

Xilinx has also made great strides in simplify-
ing the process of timing driven design. The
Xilinx “Constraints Editor” (Figure 1) guides you
in your selection of signals and nodes to which
you will apply timing constraints within your
design. The Signal and Node lists are based on
the same names you provided during the cre-
ation of the schematic or HDL source.

This easy-to-use GUI provides an intuitive
interface for using industry’s most comprehen-
sive timing specification language—TimeSpecs™.
Once these timing requirements are specified
and the design is implemented, the Xilinx Timing
Analyzer (Figure 2) is used to analyze the perfor-
mance of a design. This intuitive interface
streamlines the process of evaluating your
designs timing by enabling a hierarchical analy-
sis of all of the design’s timing paths through the
use of (+) expand and (-) collapse functionality.

The key to many design flows is the ability to
rapidly iterate between design capture, imple-
mentation, and simulation (or in-system test).
Iterative design is one key advantage of using
programmable logic in your system, and to best
take advantage of this, fast compilation times
are important. To this end, Xilinx has dramatical-
ly reduced the place and route compilation times
for its Spartan-II and Virtex families. Where tra-
ditional FPGA design flows implement designs at
approximately 10K gates per minute, Xilinx v2.1i
tools compile designs at a rate of approximately
100K gates per minute. For Spartan-II devices
this translates into place and route times as fast
as 1 minute, with average run times less than 10
minutes.

Verification

The increased density and performance of pro-
grammable logic is resulting in its frequent use
as the central component in equipment design.
As such, the emphasis on verification of pro-
grammable logic designs is becoming paramount
to a program’s success. Xilinx Check Point
Verification methodology provides all of the
hooks necessary to verify the operation of your
design within the FPGA and within the target
system. Elements of the Xilinx checkpoint verifi-
cation model include:

• Support for functional, gate, and timing simu-
lation.

• LMG SmartModel™ support for the Xilinx
FPGA.

• Chip-level static timing analysis.

• STAMP™ model generation for board-level
static timing analysis.

• In-System debug with Probe™.

Through this comprehensive suite of verifica-
tion tools and data files, Xilinx provides you with
the ability to employ the verification methodolo-
gy of your choice. Our close relationships with

Figure 1: Constraints Editor

Figure 2: Training Analyzer

13

our Alliance EDA partners ensure success in the
use of partner tools, while Xilinx also offers the
Foundation Series solutions as a complete, ready
to use package of EDA and place and route
tools, automating both design compilation and
verification.

Improving the Art of Logic Design

The Xilinx design methodology leverages the
technological advantages of programmable
logic, including the fact that all devices shipped
by Xilinx are 100% functionally verified at the
factory. This fact alone translates into weeks of
savings in design time, as the processes of scan
insertion and the re-verification of a design after
scan insertion is not required.

Another key benefit in the Xilinx design flow
is that the device is ”fabricated“ (programmed)
by you, at your desktop, or in your manufactur-
ing organization. Your retention of control of this
process means that there is no Non-Recurring
Engineering (NRE) cost associated with the cre-
ation of the device. This can dramatically reduce
the emphasis frequently placed on running com-
prehensive (and time consuming) timing simula-
tions after layout, and before device ”fabricated“.

For programmable logic, a relatively compre-
hensive verification regimen can consist of func-
tional verification and static timing analysis if
good synchronous design practices are followed.
The streamlined Xilinx design flow reduces the
necessity of timing simulation, which is fre-
quently a time consuming process. If your envi-
ronment calls for the verification of your chip
design within the board (or system), Xilinx also
generates the necessary timing information for
use with board-level static timing analysis or
simulation tools.

The ability to program the Xilinx device at
your desktop also means that you can quickly
iterate your design in a ”burn and learn“ fashion,
reducing the pressure to get it right the first time.
Problems discovered during in-system verifica-
tion can actually be remedied in the chosen logic
device. This is particularly useful when industry
specifications or marketing requirements haven’t
stabilized prior to the beginning of your project.

The combination of these factors means that
the design methodology that you follow is
streamlined when compared to the process
required to design with an ASIC. The time saved
in the design flow and system verification is fre-
quently dramatic.

Conclusion

The advantages of creating your design with
programmable logic include more efficient use of
your time, faster time to market, and no NRE
costs. Our experience has found these benefits
frequently result in improved market success of
our customers’ products. In addition to these
benefits, the development systems required to
design a Spartan device into your product are
configured and priced to comfortably fit within
any budget. Visit The Silicon Expresso Cafe (the
Xilinx on-line store) or contact your local Xilinx
sales representative to learn more.

See page 63 for an overview of our software products.

P3 is rapidly becoming the defacto
standard for the delivery of high qual-
ity music on the Internet. This tech-

nology has been well received as evidenced by
the over five million MP3 software plug ins that
have been downloaded to date. This is a testa-
ment to the future potential of the MP3 technolo-
gy considering the relatively limited marketing it
has received to date.

MP3 is an abbreviation for MPEG 1 layer 3,
which is a compressed digital audio format that
keeps the file size small without losing the quali-
ty of the original audio. MP3
allows audio files to be com-
pressed to approximately
1/11th of the original size. For
example, a typical music CD
consumes 650MB; using MP3
the same audio only takes
55MB! This has allowed
music to be stored on the
PCs hard drive, allowing
users to effortlessly create
and customize music play
lists.

The compression
achieved by MP3 makes it
practical to construct a solid
state portable audio player
based upon FLASH memory
as the storage medium. This

article explores the development of a portable
MP3 player using the Spartan-II FPGA family.

Design Overview

The MP3 player discussed in this application
contains advanced user interface features, such
as the ability to store contact information, record
memos, and other functions typically found in
Personal Digital Assistants (PDAs). The design
uses an IDT RC32364 RISC processor to decode
the MP3 data and implement the graphical user
interface. The Xilinx Spartan-II FPGA is used to

implement the complex MP3
system-level glue logic
required to interface and
manage the memory and
I/O devices.

Figure 1 shows a block
diagram of the design. The
key features are:

• 128 x 128 pixel graphical
touch screen.

• USB interface for music
downloads and network
connectivity.

• IRDA-compliant infrared
interface for exchanging
data with other units.

• 32 MB of on board FLASH
storage.

14

Application Note - MP3 Player

Spartan-II FPGAs are used to implement complex
MP3 system-level glue logic.

by Jasbinder Bhoot, Manager, Strategic Applications,
Xilinx, jasbinder.bhoot@xilinx.com

How To Create an

Using Spartan-II FPGAs.
MP3 Player

15

• CompactFlash interface for storage expansion
using CompactFlash cards or MicroDrive hard
drives.

Use of ASSPs

The design uses Application Specific Standard
Products (ASSPs) to implement much of the
complex logic. Typically, these ASSPs are not
designed to communicate with each other. The
Xilinx Spartan-II FPGA is used to provide the
complex glue logic for the interface between the
ASSPs and the RC32364 RISC processor from
IDT.

The Digital-to-Analog converter is the Crystal
CS4343 from Cirrus Logic. The CS4343 provides
the analog stereo headphone interface; a serial
port is used to transfer digital audio data
streams, while an I2C control port is used to con-
figure the device features such as volume, mut-
ing, equalization, and power management.

The USB interface is the USBN9602 from
National Semiconductor. This device supports
full speed USB and includes an integrated USB
transceiver. The system interface for the
USBN9602 is an 8-bit microprocessor bus that
can be configured to operate in a multiplexed or
non-multiplexed mode. To reduce the number of
pins, the multiplexed mode was used.

The FLASH memory is the Samsung
KM29U64000T 8M x 8 device based on
NAND FLASH technology. This memory
is very popular in MP3 players due to its
high density and low cost per bit.
However, this FLASH memory contains
two characteristics that present signifi-
cant design challenges:

• The KM29U64000T uses a highly
multiplexed 8-bit-wide port for
both address and data access.

• Error detection and correction is
needed to ensure system integrity.

The second and most challenging issue, data
integrity, is common with NAND-based FLASH
technology. The FLASH memory contains a
range of valid memory blocks (NVB). For the
KM29U64000T the typical NVB is 1020, the mini-
mum is 1014, and the maximum is 1024. While
the first block is guaranteed to be good, bad
blocks can occur at any other location within the
memory array. Invalid blocks are marked at the
factory by storing a “0” value at location “0” in
either the first or second block of the page. The
design must keep a record of good blocks result-
ing in a non-contiguous memory map. A further
issue is that the FLASH memory may experience
additional block failures during the memories
operational life.

Glue Logic Architecture

Figure 2 shows an overview of the architecture
implemented in the Spartan-II FPGA.

The architecture consists of the following
functional blocks:

• IP Bus Controller.

• CPU interface.

• LCD controller.

• Memory Interface.

• SDRAM controller.

Figure 1: MP3 system block diagram.

16

• FLASH Controller.

• CompactFlash Controller.

• IRDA Controller.

• Audio DAC Interface.

• Touch Screen Interface.

A simple non-multiplexed, multi-master
address data bus called the IP bus, interconnects
the blocks. Having the FLASH, SDRAM, and the
CompactFlash RAM share a common address
and data bus allows a reduction in pin count.

The IP Bus has two masters, the CPU inter-
face and the LCD controller. Multiplexers are
used for gating data into the internal datapaths,
eliminating the need for 3-state drivers.

The CPU Interface performs the CPU ini-
tialization, the protocol conversion (to and from
the CPU bus, USB interface, and the IP bus), and
the address de-multiplexing.

The LCD Controller is responsible for
refreshing the screen with the image stored in
the SDRAM. The LCD controller can obtain the

data for screen refresh independent of the CPU
activities.

The Memory Interface block implements
the data path required to map the 8- and 16-bit
memory devices to the 32-bit IP bus. Although
the RC32364 is capable of obtaining instructions
and data from devices with varying bus widths,
using the Spartan-II to implement this function
reduces the CPU bus cycles and hence, increases
performance and reduces power consumption.

The SDRAM controller is based on the
design developed by Xilinx in application note
XAPP134: Virtex Synthesizable High Performance
SDRAM Controller. There are two changes made
to this design:

• The host interface is adapted from a multi-
plexed address data bus to a non-multiplexed
data bus.

• A 16-bit wide SDRAM memory configuration
is needed in place of the 32-bit wide memory
datapath.

Figure 2: Spartan-II block diagram.

17

The FLASH Controller copies the exe-
cutable image from the FLASH memory to the
SDRAM at boot time, to overcome the FLASH
random access latency and maximize system
performance. This method also allows the NAND
FLASH error code correction to be implemented
in software, resulting in an efficient use of the
FLASH memory.

The CompactFlash Controller provides
the interface to allow the MP3 music files to be
stored in to the CompactFlash memory via the
USB serial link. The control signals required to
retrieve the MP3 music file for playback are also
contained in this block.

The IRDA Controller is essentially a spe-
cialized, fixed function UART. Separate, 2-word
receive and transmit FIFOs are used to reduce
the interrupt overhead associated with data
transmission. The IR transceiver can support a
data rate of 115 Kb/s resulting in a CPU interrupt
every 557 ms.

The Audio DAC Interface provides the
dedicated hardware needed to implement the
transfer protocol for delivering an uninterrupted
audio stream. This hardware consists of two, 4-
word FIFOs, one for each audio channel and a
state machine to manage the FIFOs and
sequence the interface signals. The audio DAC
interface also contains a 2-bit I/O port that uses
software to implement the I2C protocol used for
accessing the control and status registers in the
DAC.

The Touch Screen Interface is an I/O port
that allows the processor to read the data
returned by the two-channel analog-to-digital
converter. This allows the system software to
determine the X and Y touch screen coordinates.

Spartan Device Selection

Spartan-II devices are available in a wide range
of densities and packages. The following criteria
were used to select the device:

• I/O Pins. The design requires a total of 137
I/O pins.

• Voltage. The design operates at 3.3V.

• Density. The estimated size of the design is
83,000 gates.

• Performance. The highest clock speed used in
this application is 64 MHz; this is used to
clock the SDRAM controller. The remaining
logic operates at sub multiples of this clock.

• Packaging. The size constraints imposed on
most modern designs dictates a high-density
surface mount package.

Based on these criteria the device selected
for this design is the XC2S100. This device offers
100K gate density, 3.3V operation, 176 user I/Os,
and is packaged in a FG256 BGA package. The
cost of this device, in 100K quantities, is $12.95.

Conclusion

This design illustrates how Spartan-II FPGAs can
be used to provide time-to-market advantages in
high volume consumer applications. In this
application, the Spartan-II FPGA is used as a
cost-effective device to maximize the CPU per-
formance and reduce system power consump-
tion by providing some dedicated functions as
well as the glue logic required to interface to the
ASSPs. Using a Spartan-II FPGA also allows field
upgrade flexibility, in a market where standards
and protocols are still evolving.

18

New Products - C o re s

he Spartan-II Family, combined with an
extensive soft intellectual property (IP)
portfolio is the first programmable logic

solution to effectively penetrate the ASSP mar-
ketplace. The ATM IMA-8 core from Applied
Telecom, ported to the Spartan XC2S150 device,
is a good example, highlighting the concept of a
programmable ASSP.

Applied Telecom is the newest member of
the Xilinx AllianceCORE program and brings a
wealth of expertise in ATM, SONET, telecommu-
nications, and networking applications. The
IMA-8 core, developed, sold, and supported by
Applied Telecom, targets network access sys-
tems such as adapters, multiplexers, and switch-
es. Several leading manufacturers, including
Alcatel, Ericsson, Nokia, and Nortel, are already
using Applied Telecom’s Xilinx-based IMA tech-
nology in production systems.

What is IMA?

IMA stands for “Inverse Multiplexing for
Asynchronous Transfer Mode” (ATM) and it
allows the transmission of a high-bandwidth
stream of ATM cells over multiple T1 (1.544
Mbps) or E1 (2.048 Mbps) facilities (or circuits).
IMA is applicable to both public and private net-
works and allows end users to enjoy the many
benefits of ATM, such as Quality of Service (QoS)
provisioning, scalability, and the ability to easily

mix data, voice, and video. IMA circumvents the
high cost and unavailability of broadband trans-
mission facilities such as T3, E3, and
SONET/SDH by using only as many lower cost,
lower bandwidth facilities as necessary. With the
advent of Digital Subscriber Line (DSL) technolo-
gy, the case for IMA is even greater.

IMA Applications

IMA is applicable to many different types of ATM
Wide Area Network (WAN) access equipment
including ATM switches and routers with WAN
ports, ATM access concentrators and multiplex-
ers, and communications servers with WAN
NICs. Typically, IMA is used as the WAN interface
for general purpose access multiplexers, traffic
aggregators, and access switches. Another com-
mon application is in Digital Subscriber Line
Access Multiplexers (DSLAMs) where IMA can be
used either to interconnect the DSLAM with a
Remote Access Multiplexer (RAM) or as the high
speed network-side interface. Emerging applica-
tions are extending the IMA protocol beyond T1
or E1 to include other facilities using DSL cir-
cuits.

IMA Operation

Figure 1 illustrates the basic IMA mechanism for
sending a single ATM cell stream over a number
of lower speed transmission facilities or links.

A Programmable ASSP Solution for transmitting high-bandwidth
data over multiple T1 or E1 lines.

by James D. Beatty, President, Applied Telecom, jim@apptel.com, and Krishna
Rangasayee, Manager, Strategic Applications, Xilinx, krishna@xilinx.com

When splitting an ATM virtual circuit
among multiple T1 or E1 links, the IMA
subsystem must insert the IMA-specific
cells into the transmitted ATM cell
streams. In the receive direction, a cell-
based IMA framing process is used to
locate and remove the IMA-specific cells
so that only the ATM cells are passed to
the ATM Layer.

A variable number of physical links
and ATM bandwidth rates can be sup-
ported and mechanisms are specified for
accommodating differential delay varia-
tions present in the transmission links
and for handling link failures and
changes to the available transmission
bandwidth.

Layer Reference Model

In terms of the protocol layer reference
model, the IMA sublayer is considered to
be an extension of the Physical Layer
(PHY), sitting below the ATM Layer (ATM)
and, as much as possible, transparent to
the ATM Layer device. Table 1 illustrates
the functions performed by the IMA sub-
layer.

From an ATM layer perspective, the
behaviors exhibited by IMA groups are
different than those of real PHY facilities.
Two examples include the effects of IMA
group start-up and variations in band-
width caused by the activation/deactiva-
tion and addition/deletion of links.

In addition to the PHY layer, IMA also
affects the management layer. The man-
agement layer handles alarm detection
and processing, making it possible to
configure IMA groups, add and delete
links, and maintain IMA sublayer statis-
tics.

19

Figure 1 - Simplified IMA process.

Functions

ATM cell stream splitting and reconstruction
Differential delay accommodation
IMA Control Protocol (ICP) cell insertion /
removal
Cell rate decoupling
IMA frame synchronization
Cell stuffing,asynchronous facility compensation
Discard cells with HEC errors
Header error correction
HEC generation / verification
Cell scrambling / descrambling
Cell delineation
Scrambling / descrambling
Transmission frame generation / recovery
Bit timing,line coding
Physical medium

Table 1 - IMA sublayer reference model.

Layers

ATM Layer

Physical (PHY) Layer

Interface Specific
Transmission Convergence
(TC) Sublayer

Sub-layer

IMA Specific Transmission
Convergence Sublayer

Physical Media Dependent
(PMD) Sublayer

Figure 2 - Typical PHY implementation.

20

PHY Layer Considerations

A typical PHY layer implementation with IMA is
shown in Figure 2. In many such implementa-
tions, the Physical Layer function is resident on a
“line card” which is physically separate from the
ATM layer device to allow the ATM device to
serve many facilities. This co-location of IMA on
the line card restricts the facilities which can be
allocated to an IMA group because only the spe-
cific T1 or E1 facilities attached to that line card
can be grouped, limiting the configurability of
the system.

One solution, for maximum configurability, is
to place the IMA function with the ATM layer
device. But this is usually difficult to implement
and causes some system-level functional parti-
tioning problems (such as splitting up the PHY
layer across modules). A more common solution
that sacrifices some of the flexibility in assigning
facilities to IMA groups is to develop the IMA
functionality and the line card so that each
T1/E1 facility can be independently configured
to be part of an IMA group or be bypassed

around the IMA function to be accessed uniquely
by the ATM layer device. With this solution, the
line card is no longer a “dedicated” IMA card.

IMA Solution

Given the availability of many off-the-shelf
devices providing the T1/E1 line interface, fram-
ing, and ATM Transmission Convergence (TC)
sublayer functionality plus the wide acceptance
and usage of the ATM Forum’s UTOPIA bus
interface for ATM cell transfer, it is natural to
define an IMA solution that can be inserted
between the TC function and ATM layer. With
the availability of the Spartan-II family, a com-
plete IMA solution can be implemented using a
single XC2S150 device, an external SRAM
device, and a software driver.

The IMA-8 Core

The IMA-8 product is an XC2S150 device
solution that supports up to eight links and four
IMA groups. The external interfaces for this
FPGA device are shown in Figure 3. The IMA

Figure 3 - IMA-8 interfaces.

21

implementation has
been partitioned so the
real-time processes are
performed in the FPGA
and all non-real time
processes are performed
by a software driver. For
example, all IMA link
state machines are
implemented in the
FPGA but the IMA group
state machines are
implemented in soft-
ware. This partitioning
eliminates interrupts
from the FPGA and
allows the software to
operate as a periodic
background task on the processor.

Functional Description

A simplified block diagram of the IMA FPGA
solution is shown in Figure 4. The solution is
composed of four main functional areas:

1 - the IMA clock generators.

2 - the Transmit IMA processing.

3 - the Receive IMA processing.

4 - the Microprocessor Bus Interface.

An IMA software driver completes the IMA
implementation. To get specific details on these
components, please contact Applied Telecom or
the Xilinx High Volume Business Unit.

Conclusion

Early deployment of IMA technology meeting the
IMA v1.0 standard began in late 1997, but due to
different interpretations of this specification, true
multi-vendor interoperability was not really pos-
sible until the completion and acceptance of the
IMA v1.1 specification in 1999. Throughout this

period, the changes to the applicable technical
standard and the lessons learned through inter-
vendor testing required the flexibility of FPGA
and software implementations.

At present, stability in standardization plus
large scale IMA deployment have set the stage
for the introduction of standard silicon IMA
products. But IMA is still an emerging technolo-
gy with limited test equipment support and com-
pliance test suites. An FPGA based IMA solution
with efficient partitioning of hardware and soft-
ware functions provides the necessary scalability
and flexibility to handle all of these applications
and allow for tracking of new standards.

With the introduction of the Spartan-II FPGA
family and the IMA8L core (along with other
Xilinx-based IMA core solutions) an FPGA based
IMA implementation is simple and economical.

Figure 4 - Functional block diagram.

The IMA-8 core is available immediately for use in Spartan-II FPGAs. An
evaluation board and the DRV-IMA software are also available now. All

IMA products can be purchased directly from Applied Telecom.See
www.apptel.com.

http://www.apptel.com

22

DLC Controller cores (soft IP) have
been available for Xilinx XC4000XL
and Virtex FPGAs for some time. Now,

this technology is also available for use with the
new Spartan-II family, which is uniquely poised
to penetrate the ASSP marketplace because of its
advanced features, high performance, and low
cost. A programmable HDLC Controller solution,
with efficient partitioning of hardware and soft-
ware functions, provides the necessary scalabili-
ty and flexibility you need for any application,
and allows you to easily adapt to new standards;
you get all the benefits of an ASSP device, plus
the many advantages offered by programmable
logic.

HDLC stands for “High-Level Data Link
Control,” a bit-oriented synchronous data link
layer protocol developed by the International
Standards Organization (ISO). HDLC Controllers
are devices which execute the HDLC protocol
and their properties include:

• Transmitting and receiving the serial packet
data.

• Providing data transparency through zero
insertion and deletion.

• Generating and detecting flags that indicate
HDLC status.

• Providing 16-/32-bit CRC on data packets

using the CCITT defined polynomial.

• Recognizing the single byte address in the
received frame.

HDLC Controller Applications

HDLC Controllers are used in various data net-
working operations. Some of the key applica-
tions are:

• Frame relay switches - high density access,
FRADs.

• ISDN - basic-rate or primary-rate interfaces,
D-channel.

• X.25 and V.35 protocols.

• Internet/edge routers, bridges, and switches
for high bandwidth WAN links.

• Cellular base station switch controllers.

• Error-correction in modems.

• T1/E1, T3/E3 - channelized, clear channel
(unchannelized).

• xDSL - each port can support up to 10Mbps.

• Dual HSSI.

• SONET termination.

• Digital sets, PBXs, and private packet net-
works.

• C-channel controller to Digital Network
Interface Circuits.

• Data link controllers and protocol generators.

New Products - C o re s

by Amit Dhir, Sr. Engineer, Strategic Applications, Xilinx,
amitd@xilinx.com

HDLC Controller cores, ported to the Spartan-II family,
highlight the concept of a programmable ASSP.

H D LCController Solutions
Using

Spartan-II FPGAs

• Inter-processor communication.

• Logic consolidation.

• CSU/DSU.

• Protocol converters.

• Packet data switches.

• Distributed packet-based communications
systems.

• Multiplexer/Concentrators - remote access,
multi-service access.

Xilinx AllianceCORE Partners

Currently, there are two Xilinx AllianceCORE
partners supplying HDLC cores for Spartan-II
FPGAs: Memec Design Services, and CoreEL
MicroSystems.

Memec Design Services (MDS)

The Single Channel XF-HDLC Controller core
conforms to the ISO/IEC 3309 specification, and
provides the entire functionality of the HDLC
Controller. The core:

• Provides 16-/32-bit CCITT-CRC
generation and checking.

• Performs flag and zero insertion
and detection.

• Allows full duplex operation.

• Operates at a DC to 53 Mbps
(STS-1) data rate.

• Provides full synchronous opera-
tion.

• Provides an interface that can be
customized for user FIFO and DMA
requirements.

CoreEL MicroSystems

The PPP8 HDLC core (CC318f) con-
forms to RFC1619 PPP over SONET
specification. The core:

• Supports programmable Address,
Control and Protocol fields.

• Supports an 8-bit Packet and PHY
framer interface.

• Allows 16-/32-bit FCS generation and verifi-
cation.

• Provides an MTU and compression enable
signal.

• Provides a scramble and de-scramble enable
signal.

• Detects the Address field, Control field,
escape sequence, and FCS packet errors.

• Provides statistics for Address field, Control
field, Protocol field, FCS field, and escape
sequence packet errors.

• Provides statistics such as the number of
packets, runt packets, valid packets, and
excess length packets.

• Detects error conditions like Transmission
Break on transmit side.

• Discards packets received with Address,
Control, or Protocol field errors.

• Optionally compresses Address, Control, and
Protocol fields.

• Generates a discard packet signal for any

23

Figure 1 - HDLC Controller block diagram.
(courtesy: Memec Design Services)

Figure 2 - Application of HDLC cores.
(courtesy: CoreEL MicroSystems)

packet with an FCS or invalid packet on pack-
et interface error.

A typical HDLC Controller Block Diagram is
shown in Figure 1. A typical application is shown
in Figure 2.

Comparing the Spartan-II HDLC Solution
with Stand-alone ASSPs

Using an HDLC IP core in conjunction with a
Spartan-II FPGA, offers significant advantages
over a fixed-logic (non-programmable) ASSP. By
using the Spartan-II family, you can implement
the feature sets required and these can be cus-
tomized to meet the exact design requirements.

You can also integrate other parts of your
design within the same FPGA, for increased per-
formance and reduced cost. For example, an
HDLC Controller supplied by a stand-alone ASSP
vendor may include a 32-bit, 33-MHz PCI
Controller. However, your design may require
something different, such as a 32-bit, 66-MHz or
a 64-bit, 33-MHz PCI Controller. By using the
Spartan-II FPGA family in conjunction with the
appropriate cores, you can create the optimal
HDLC to PCI solution for your specific require-
ments. Because of the inherent low cost of the
Spartan-II family, this flexibility comes at a sig-
nificantly lower cost than the fixed ASSP solu-
tion. Figure 3 shows the value comparison.

Programmability is Key

Conflicting specifications and lack of a clear
direction create the need for programmableASSP

solutions. The Spartan-II family accommodates
specification changes and can easily be used in
volume production. For example, the currently
available non-programmable HDLC Controller
solutions are based on X.25 (CCITT) level-2 or
OSI Layer-2, ISO3309 specifications only.
However, the solutions provided through
Spartan-II FPGAs allow you to use X.25 (CCITT)
level-2, OSI Layer-2, ISO3309, RFC1619 PPP over
SONET, and ITU recommendation (Q.921) speci-
fication standards. It would be nearly impossible,
and cost-prohibitive, for an ASSP vendor to meet
all of these specifications.

Xilinx Online for Field Updates

Through the Xilinx On-line program, the
Spartan-II family allows you to remotely update
your design, over any network. With new fea-
tures, enhancements, and bug fixes, the life of
the HDLC controller within any networking sys-
tem increases. This also allows your equipment
to adapt to changing standards. Designing sys-
tems that allow remote upgrades can provide
new revenue opportunities as well, because you
can continue to sell new features, after your
equipment is installed. You cannot easily offer
these unique features if your hardware design is
not programmable.

Conclusion
The Spartan-II family is unaffected by the hurdles that

an ASSP vendor must overcome; its inherent advan-

tages extend the reach of the Spartan family to new

levels and creates new opportunities for PLDs in the

ASSP market.

The cost difference between a stand-alone ASSP

and an equivalent programmable Spartan-II solution

is considerable. Thus, the Spartan-II family is a clear

winner in not only the HDLC Controller market, but

also other ASSP niche areas.

24

Figure 3 - Value comparison.

For more information on the MDS core, see:
www.xilinx.com/products/logicore/alliance/memec/memec.htm.
For more information on the CoreEL MicroSystems core, see:
www.xilinx.com/products/logicore/alliance/coreel/coreel.htm.

/products/logicore/alliance/memec/memec.htm
/products/logicore/alliance/coreel/coreel.htm

Perspective - Low Power Benefits

25

by Ashok Chotai, Senior Competitive Marketing
Engineer, Xilinx, ashok@xilinx.com

Low Powe r B e n e f i t s
of the Spartan-XL Family
A look at Spartan-XL power-down modes, small form factor packages, pack-
age power dissipation, and device reliability.

he Spartan™-XL family is built with an
advanced 3.3V process, a segmented
low power architecture, and a power-

down feature that significantly reduces the
FPGA’s quiescent current requirements (from
3mA to 100µA typical). This opens up a whole
new market for Spartan-XL FPGAs because these
devices can now be used in power-sensitive
applications such as laptop computers, cellular
phones, PDAs, camcorders, and so on.

Power-down Modes

There are two kinds of power-down modes:
manual and automatic. Both provide low quies-
cent (standby) current while retaining the bit
map (configuration data with which the device
had been configured).

Manual Mode

In the manual mode, the device is fully inactive,
the register data is lost, and the activation and
de-activation are controlled by the PWRDWN
pin. The following events occur in sequence to
conserve the power:

• All inputs (including M0, M1, DONE, CCLK,
and TDO) except PWRDWN are disconnected
from their sources. Internal to the device, the

input signals are tied to GND.

• All pull-up and pull-down resistors on all I/Os
(except PWRDWN) are disabled.

• The Global Set-Reset (GSR) is activated, clear-
ing all the registers in the device. This reset
state is held as long as the device is in power-
down mode.

• The Global 3-state (GTS) is activated, putting
the device outputs in high-impedance state.

The device stays in DC state, drawing mini-
mal power, until PWRDWN goes High, at which
point it returns to full operation over a period of
50 ns (max), as shown in Figure 1. The manual
power-down mode is described in detail in appli-
cation note XAPP124 on the Xilinx website at:
http://www.xilinx.com/xapp/ xapp124.pdf.

Description Symbol Min Max

Power-down Time TPWD - 50ns

Power-down Pulse Width TPWDW 50ns -

Figure 1: Power-down timing.

/xapp/xapp124.pdf

Automatic Power-down Mode

In the automatic mode the
device is active, the register
data can be retained if required,
and the power-down is initiated
without using the PWRDWN
pin. You can selectively control
the features of a design, which
may consume a relatively large
amount of power, to obtain
quiescent (standby) current
down to 100µA typical. Some of
these controllable features are:

• Pull up and pull down resistors on the IO
pins.

• 5V I/O tolerance.

• Clocks that need to run intermittently.

• The redundant use of high-frequency clocks.

The critical register data can be left operat-
ing, while disabling the remaining parts of the
design, to obtain the low quiescent power.
Unlike the manual power-down mode, this mode
does not have any power-down recovery time
when switching back to normal operation. The
automatic power-down mode is described in
detail in the application note XAPP125 on the
Xilinx website at: http://www.xilinx.com/xapp/
xapp125.pdf.

Package Power Dissipation Limit

Power consumption plays an important role in
selecting the device package. For the device to
operate reliably, the power consumed by the
device must be less than the maximum power its
package can dissipate. Use the following equa-
tion to determine the maximum power dissipa-
tion Pd for a particular package:

Pd = (TJ - TA)/θJA

where TJ is the maximum junc-
tion temperature, TA is the ambi-
ent temperature, and θJA is ther-
mal resistance of the package.

Lower power means lower
heat dissipation requirements,
thus making it possible to use
smaller footprint packages. This
in turn would provide cost sav-
ings because the package does
not need to have an extra heat
sink, and it occupies less board
space. As an illustration of this
power-performance limit, the

graph shown in Figure 2 plots dynamic power
with respect to performance for two devices of
comparable logic density: the Xilinx XCS30XL in
144-pin Chip Scale package and the Altera
10K30A in 144-pin TQFP package.

Figure 2 shows that the Chip Scale package
in the Spartan-XL family can be used up to 100
MHz without any problem with power dissipa-
tion. However, the TQ package used for the
Altera 10K30A device cannot be used above 77
MHz. The device is just not reliable beyond this
performance. To use it reliably beyond 77 MHz
performance, you would need to either add a
heat sink or force air into the package using a

26

Figure 2: Dynamic power comparison of
Spartan-XL device with 10K30A.

Superior Benefits

The low power requirements of the

Spartan-XL family makes it possi-

ble to use small form factor pack-

ages to save board space and

reduce design costs, making it an

ideal choice for most portable and

low power equipment.

/xapp/xapp125.pdf

fan, which means extra hardware, additional
cost, and more board space.

Small Form Factor Advantage

The Chip Scale package (CSP) dramatically
reduces board space and increases I/O count; it
is smaller than any competitive offering in the
industry. The package is available in 144 and 280
ball counts with 0.8 mm pitch, and is ideal for
low-power, light-weight, and small form factor
designs. Xilinx is the first programmable logic
supplier to offer the CSP package
for an FPGA that meets the JEDEC
Level 3 moisture sensitivity level
requirements. This level of reliabil-
ity enables you to reduce standard
manufacturing cycle times and fur-
ther minimize overall system cost.

As seen in Figure 3, the CS144
package offers 70% board area
savings when compared with the
TQ144 package. Similarly, the
CS280 package offers 83% board
area savings when compared with
the popular PQ240 package.

Higher Reliability

Xilinx is known for quality and reliability.
Reliability is measured in terms of Failure-In-
Time rates (FIT); failures in 109 device hours.
Lower power provides lower FIT rates and high-
er device reliability, thus reducing product test
rework and field failures. Overall device reliabil-
ity decreases exponentially as junction tempera-

ture increases. The industry standard limit for
the maximum junction temperature is 125o C for
the plastic package and 150o C for the ceramic
package. Table 1 compares FIT rates of Xilinx to
that of the nearest competitor.

Conclusion

The low power requirements of the Spartan-XL
family makes it possible to use small form factor
packages to save board space and reduce design
costs, making it an ideal choice for most
portable and low power equipment.

27

TJ (oC) 50 60 70 80 90 100

Altera 7 20 50 118 267 578

Xilinx 1.5 4 10 23 53 115

Figure 3: Package area comparison.

Table 1 - FIT rate comparison.

28

he CoolRunner™ CPLD families are the
world’s only CPLDs using the patented
Fast Zero Power (FZP) design technique

to simultaneously deliver high performance and
low power consumption. These devices offer
pin-to-pin (TPD) delays of 5.0 ns (or greater than
250 MHz system operation), and less than 100
uA of standby current (approximately 1/3 of the
power consumed by all other competing CPLDs
at FMAX).

These characteristics make CoolRunner
devices ideal for low power applications that
include portable, handheld, and power-sensitive
applications. These devices are also idea for sys-
tems that have a strict power or thermal budget,
a need for increased system reliability (less
power means less activation energy and lower
FIT rates), a need for lower cost (by eliminating
or reducing the system cooling requirements), or
a need for reduced power supply requirements
(or battery operation). Figure 1 illustrates the
CoolRunner CPLD families.

The XPLA3 Family

The XPLA3™ (eXtended Programmable Logic
Array) is the newest CoolRunner CPLD family,
and includes devices ranging from 32 to 384

macrocells. XPLA3 was created to maintain the
same competitive advantages as the existing
CoolRunner families, add additional features,
and increase performance, while delivering all
this at a substantially lower cost.

XPLA3 Architecture

The XPLA3 architecture is based on a PLA
(Programmable Logic Array). The PLA is a pro-
grammable AND Array combined with a pro-
grammable OR Array. All other competing CPLDs
employ a PAL (Programmable Array Logic) that
combines a programmable AND Array with a
fixed OR Array. Having a programmable OR
Array allows product terms (PTs) to be shared
between macrocells (effectively increasing
design density because there is no duplication of
logic), excellent pin locking (every PT is available

New Products – XPLA3 CPLDs

The New XPLA3 CPLD Family
The Best

CoolRunner Family Yet
CoolRunner devices are ideal for low-power, high-perfor-
mance applications.

by Reno Sanchez, CoolRunner Marketing &
Applications Manager, Xilinx, renos@Xilinx.com

Figure 1 - CoolRunner CPLD family.

29

to every macrocell), and very simple timing
model (timing remains the same regardless of
how many PTs are used).

The XPLA3 architecture includes a pool of 48
product terms that can be allocated to any out-
put in the logic block, a direct input register
path, multiple clocks (both dedicated and prod-
uct term generated), and both reset and preset
for each macrocell.

Figure 2 illustrates the logic block architec-
ture. Each logic block contains control terms,
clock terms, PLA array, and 16 macrocells. There
are 36 pairs of True and Complement inputs
from the ZIA that feed the programmable OR
array. In addition there are 8 foldback PTs that
are available for ease of fitting and pin retention.
Also within the 48 p-terms there are eight local
control terms (LCT 0-7) available as control
inputs to each macrocell for use as asyn-
chronous clocks, resets, presets, and output
enables. The other PTs serve as additional single
inputs into each macrocell. Sixteen of these are
coupled with the associated programmable OR
gate into the VFM (Variable Function
Multiplexer). The VFM increases logic

optimization by implementing any of the OR,
XOR, XNOR, or NOR functions before entering
the macrocell.

Each macrocell can support combinatorial or
registered inputs; a global preset and reset for
each macrocell; and configurable D, T, or L regis-
ters, with maximum clocking flexibility. Each of
these flip-flops can be clocked from any one of
nine sources. There are two global synchronous
clocks that are derived from the four external
clock pins via a four-to-two multiplexer. There is
also one universal clock signal sourced by a
global control term. The clock input signals
LCT4-LCT7 (Local Control Terms) can be individ-
ually configured as either a product term or sum
term equation created from the 36 signals avail-
able inside the logic block.

Conclusion

The XPLA3 CoolRunner CPLD family simultane-
ously delivers both high performance and low
power consumption at a very competitive price,
and will be the lead CoolRunner CPLD family for
Xilinx in 2000.

Figure 2 - XPLA3 Logic Block architecture.

he CoolRunner Power Estimator tool
was developed to help you estimate the
power consumed by your CoolRunner

CPLD designs. This is an easy to use spreadsheet
and Perl script available for download from the
Xilinx website. The latest version is available for
download from WebPACK™ by selecting the
Utilities button.

Estimating Low Power

Estimating the power consumption of
CoolRunner CPLDs is quick and easy. After you
have targeted a particular device, you import the
data created by the Perl script into the spread-

sheet. Then you enter only two types of parame-
ters:

• Signal frequencies for all signals.

• Output loading capacitance.

Output capacitive loading can be specified
for each individual pin or specified as a default
value for all pins.

Displayed in the spreadsheet (Figure 1) are
three end results based on these two input
parameters:

• Total Idd consumed by the design.

• Total power consumed by the design.

• Total power consumed by output capacitance
loading.

30

New Products - S o f t w a re

by John Hubbard, CPLD Applications Engineer, Xilinx,
john.hubbard@xilinx.com

C o o l R u n n e r
Power Estimator Tool

Here’s how to determine how much power your design will use.

There are estimates throughout the tool that
show Idd for specific architectural areas in the
device as shown in Figure 2. For example, if you
are attempting to reduce the overall device cur-
rent, you can see what fast module or logic
block is consuming the most current. Then it is
easy to see what specific signals are demanding
the most current within a logic block, because
the current estimations for individual signals are
shown.

In addition to the power esti-
mation, this tool can assist you
during the fitting process by dis-
playing other important informa-
tion. For example, statistical data
for each individual signal is
available including pin number,
fan-in number of product terms,
and fan-out number of product
terms that load the signal. Fan-in
data from the Zero Power
Interconnect Array (ZIA) can eas-
ily be seen for each logic block
as well as the fast module Global
ZIA fan-in and fan-out data for
XPLA2 devices.

This extra data is quite useful
in determining the layout of a
design within the CoolRunner
device; you can effortlessly see
the details of how the fitter
arranged the design. Using this
information, your design can be
rearranged to better improve the
timing performance.

Conclusion

The CoolRunner Power Estimator
tool is an easy way to estimate
power and Idd information. Not

only can you determine the power loading, you
can also use this tool to help improve timing
performance by visually interpreting the results
in the spreadsheet.

31

Figure 1 - Device data sheet showing results.

Figure 2 - Logic Block A sheet showing signal details.

he I2C bus is a popular serial, two-
wire interface used in many sys-
tems because of its low electrical

overhead. The two-wire interface mini-
mizes interconnections so ICs have fewer
pins and the number of traces required on
printed circuit boards is reduced. The bus
is capable of up to 100KHz operation, and
each device connected to the bus is soft-
ware addressable by a unique address with
a simple master/slave protocol.

Designing with an I 2C bus for handheld
devices requires that you minimize power
dissipation. That’s why CoolRunner CPLDs,
the lowest power CPLDs available, are the per-
fect devices for creating I2C controllers. The I 2C
design shown in this article provides both mas-
ter/slave capability with an asynchronous byte-
wide microcontroller or microprocessor inter-
face as shown in Figure 1.

Functionality

The CoolRunner CPLD implementation of the I2C
controller supports the following features:

• Microcontroller interface.

• Master or Slave operation.

• Multi-master operation.

• Software selectable acknowledge bit.

• Arbitration of lost interrupts with automatic
mode switching from Master to Slave

• Calling address identification interrupt with
automatic mode switching from Master to
Slave.

• START and STOP signal generation/detection.

• Repeated START signal generation.

• Acknowledge bit generation/detection.

32

Implementing an

I2C Bus Controller in a

CoolRunner CPLD
by Jennifer Jenkins, Applications Engineer, Xilinx,
jennifer.jenkins@xilinx.com

Application - I C Bus Contro l l e r

Here’s an overview of a complete design that you can download from the Web.

Figure 1 - CoolRunner I2C Bus Controller.

• Bus busy detection.

• 100KHz operation.

Block Diagram

The functionality of the CoolRunner I2C controller
is divided into two major blocks, the microcon-
troller interface and the I2C interface, as shown
in Figure 2. This design was created in VHDL
and verified through simulation. Xilinx software
tools were used for compilation and fitting. The
design was targeted to a 3V, 128-macrocell,
enhanced clocking, CoolRunner CPLD in a 100-
pin TQFP package (XCR3128A-10VQ100C).

Conclusion

This design offers a way to use an I2C bus in a
low power application. Using a CoolRunner

CPLD to implement the functionality of an I2C
controller is perfect for power limited applica-
tions. The design of the I2C controller that is cur-
rently available for customers includes the fol-
lowing:

• Complete detailed application note

• Complete VHDL source code

• VHDL test benches

33

Figure 2 - CoolRunner I2C Controller block diagram.

More information can be found at www.xilinx.com/apps/epld.htm,under
CoolRunner XAPP315 - Implementing an I2C Bus Controller in a
CoolRunner™ CPLD. The VHDL code and test benches created for

this design are available by contacting
Xilinx Technical Support at 1-800-255-7778.

/apps/epld.htm

MP3
ortable MP3 players are the latest trend
in music-listening technology; they
require no moving parts, and can be

built with very few components. And, because
these devices are battery operated, they require
low power technologies. That’s why the new
CoolRunner CPLD family from Xilinx is ideal for
this application; this family offers advanced 3V
and 5V devices with extremely low power dissi-
pation.

Block Diagram

The block diagram of the CoolRunner MP3
Portable Player is shown in Figure 1. The shaded
area shows the logic that is contained in the

CoolRunner CPLD. All other blocks are external
devices that can be obtained commercially.

CoolRunner CPLD Logic Modules

The CoolRunner CPLD implements the following
functions:

• The Main Control Logic provides the intelli-
gence of the CPLD logic and controls all of
the various functions.

• The Parallel Port Interface is used to
downloading MP3 data files to the MP3
portable player.

• The Flash Control logic directs the Song
Flash memory during MP3 data storage and
retrieval. It also controls the Starting Address

Flash memory which stores the begin-
ning address of each song in the Song
Flash memory.

• The I2C Master logic block controls
the DAC3550A Digital-to-Analog

converter.

• The User Interface Control logic
receives the user input and updates
the LCD display.

• The Power Management logic
monitors the power level reported

34

Application - MP3 Player

How to Create an

Portable Player Using a

CoolRunner CPLD
CoolRunner CPLDs are used as the main controller for
an MP3 player. This design is available for download
from the Web.

Figure 1 - MP3 portable player block diagram.

by Anita Schreiber, CPLD Applications Engineer,
Xilinx, anita.schreiber@xilinx.com

from the internal DC/DC converter in the
MAS3507D and insures the MP3 Portable
Player shuts down properly when the battery
voltage drops or the user wishes to turn the
player off.

External Devices

The MAS3507D MP3 Decoder chip and the
DAC3550A Stereo Audio DAC are both available
from Micronas Intermetall and provide a com-
plementary chip set for MPEG decoding and
playback. The MAS3507D contains an embedded
DC/DC converter which is used to supply the
power to the entire player.

The Flash memory bank is composed of
32Mbytes of Flash memory for the storage of
MP3 data files and 2Mbytes of Flash memory for
the storage of the starting addresses of each
song in the Song Flash memory. This design
assumes that an LCD display could be designed
with unique icons for the various MP3 user inter-
face functions.

User Interface Functions and Operations

The design of this MP3 portable player assumes
that a software package is designed that allows
users to “rip” CDs and download a collection of
their favorite MP3 files to this portable player.
The user operations for listening to MP3 songs
are shown in Table 1.

Conclusion

CoolRunner CPLDs provide the ideal pro-
grammable logic solution for any battery-operat-
ed or portable design. This design shows just
one example of how a CoolRunner CPLD can be
used in these types of applications to provide
you with the many benefits of programmable
logic while meeting the stringent power require-
ments of this market.

35

User Interface Button Function

Play Pressing this button allows the user to continuously play MP3 songs.

When the last song has been played,the MP3 player begins playing the first song again.

Rewind Pressing this button allows the user to skip to the beginning of the previous song.

Fast Forward Pressing this button allows the user to skip to the beginning of the next song.

Stop Pressing this button will halt playing of MP3 songs and resets the player to the beginning of the current song.

Volume/Mute The volume can be increased and decreased as desired. The player can also be muted.

Table 1 - User interface functions.

For more information,the following can be obtained from the
Xilinx@Work section of the Xilinx website
(http://xilinx.com/products/xaw/index.htm):

• Detailed Application Note (XAPP328)

• VHDL Source Code

• VHDL Testbenches

irtex-E FPGAs contain a number of
architectural features that enhance I/O
timing. Four dedicated clock buffer net-

works allow low skew distribution of clocks to a
large number of loads, while guaranteeing zero
hold time requirements between registers. You
can also use on-chip clock Delay Lock Loops
(DLLs) to effectively eliminate the phase differ-
ence between a clock external to the FPGA and
the internally buffered equivalent. Plus, each
Virtex-E I/O block (IOB) contains both an input
an output register, which can be used to improve
I/O timing.

The setup time for a signal brought on chip is
the sum of the I/O pad delay, any routing and
logic delays, and the intrinsic setup time of the
register or latch, minus any clock delay. Clock
delay is the sum of I/O pad delay, any clock
buffer delay, plus routing and loading delays. Of
these items, only the I/O pad delays and register
setup times are known precisely. All other fac-
tors are design dependent. Clock-to-out times
require similar calculations, except that any
clock delay worsens the clock-to-out time.

Registering Input Signals

Based on your system timing requirements you
can allocate a setup time, hold time, and clock-
to-out timing budget for the Virtex-E device.
Typically, you are looking for the minimum
required setup time for the FPGA, and zero (or
negative) hold time.

The system-level timing specification refer-
ences all input signal and clock timing values to
the pins of the FPGA device. For example, a 5ns
setup time budget means:

• Valid data will exist at the FPGA pin a mini-
mum of 5ns prior to an active clock edge at
the pin of the FPGA.

• The timing at the FPGA register used to cap-
ture this input signal must meet its own setup
and hold time requirements.

It is mandatory that both of these require-
ments be met within the overall system timing
budget.

You can alter input timing when using Virtex-
E chips by controlling the following choices:

36

Application - I/O T i m i n g

by Randy Robinson, Xilinx, randy.robinson@xilinx.com

You can achieve I/O setup times of less than 1.6 ns, and I/O clock-to-out times
of less than 3.3 ns, using LVTTL switching levels.

I/O Timing
Get the Best Registered

with Vi rtex-E FPGAs

Selection of IOB and CLB

In Virtex-E FPGAs, input signal registers can be

located in either IOBs or in CLBs. An advantage
of using an IOB register is that the data path
delay (consisting of I/O pad and buffer delays,

plus routing) is fixed. If a CLB register is used,
the routing delay will vary depending upon
where the CLB is placed, and the routing path

taken.

Using the appropriate timespecs can improve

the setup timing when using CLB registers, but
will not cause the Alliance Series™ or
Foundation Series 2.1i software to move regis-

tered signals between IOB or CLB registers. If the
source netlist contains register components with
the property IOB = TRUE, these will not be

moved. However, by either setting a MAP com-
mand line switch (map -pr i) or through enabling

a GUI-based option to allow MAP to pack regis-
ters into the IOB cells, then a netlist which did
not contain IOB registers can use IOB registers if

possible.

Using DLLs

If a clock is distributed using a global buffer only
(not a clock DLL) there is a delay between the

clock at the FPGA input pin and the clock inter-
nal to the FPGA. This delay is beneficial in that it
reduces the required setup time for the input sig-

nal. If a clock DLL is used, the propagation delay
is effectively zero, and the equivalent system
setup time is increased. This apparent disadvan-

tage of using a clock DLL is offset by removal of
the delay element (described in the next para-
graph), and the improvement in clock-to-out

times.

Using or Eliminating the IOB Delay Element

By default, a delay element is placed in the data
path of the IOB. This delay block is used to guar-

antee a zero hold time for the IOB register, but

has the effect of increasing the required setup

time. If a clock DLL output is not used as the I/O

register clock, and the delay element is removed,

the setup time required will decrease dramatical-

ly, but now a positive hold time exists.

If you use a clock DLL, the delay element can

safely be removed, giving you the dual benefit of

less required setup time and a negative hold

time. Beginning with the Alliance Series and

Foundation Series 2.1i Service Pack Number 2,

the delay element is included only when a DLL is

not used and an IOB input register is used. This

default behavior was changed from earlier soft-

ware versions.

Registering Output Signals

When you are driving a registered signal off chip,

you must meet a system clock-to-output specifi-

cation. Fortunately, you have a number of simple

options that can be used to meet this timing

when using Virtex-E devices. The choices

include:

Using IOB or CLB registers

You can choose whether the output register is an

IOB register or a CLB register. The IOB register

will always have a shorter routing path from reg-

ister output to FPGA pin, so the fastest clock-to-

out time will always be achieved by using the

IOB register. Timespecs alone will not force the

Alliance Series or Foundation Series 2.1i soft-

ware to make the register type decision.

However, by either setting a MAP command line

switch (map -pr o) or through enabling a GUI

based option to allow MAP to pack registers into

the IOB cells, IOB output registers will be used, if

possible.

37

Using Clock DLLs

Any delay of the input clock due to clock buffer
and clock routing delays adversely effect clock-
to-out timing, because this delay simply adds to
the overall datapath delay. The use of a clock
DLL will always result in faster clock-to-out
times in a Virtex-E FPGA.

Using Slew Rate and Drive Strength Options for
LVTTL Outputs

If LVTTL output buffers are selected, you can
choose between seven drive strengths, and
between fast and slow slew rate. By default, a
Virtex-E output buffer defaults to LVTTL, 12ma
drive, and slow slew rate. To improve clock-to-
out times, select a higher drive strength (16ma
or 24ma) and fast slew rate. The place and route
software will not modify output buffer settings to
meet a timespec; you must do this explicitly, typ-
ically by using a constraint file.

Summary of Recommendations
• Use IOB input and output registers when pos-

sible.

• Use clock DLLs when possible.

• Set fast slew rate and 24ma drive for LVTTL
I/O to get fastest clock-to-out times.

• Set NODELAY mode when using clock DLLs
to get shortest setup time.

• If clock DLLs are not used, NODELAY will
greatly shorten your setup time, at the cost of
a positive hold time.

Xilinx created a simple design to demon-
strate the effects discussed above. The results
are shown below.

Test Results

In Table 1 Run #1 shows the registered I/O tim-
ings using default settings and CLB registers. By
adding timespecs (5ns setup, 10ns clock-to-out),
results changed slightly (Run #2). Packing regis-
ters into IOBs (Run #3) gives a better clock-to-
out delay, and a slightly worse setup time. The
timing effects of setting NODELAY (Run #4), plus
fast slew rate (Run #5), plus high drive (Run #6)
are shown. Finally Run #7 gives the best results
with zero hold time in all cases.

Conclusion

With new Virtex-E family you can easily achieve
very fast registered I/O timing.

38

Run #1 Run #2 Run #3 Run #4 Run #5 Run #6 Run #7
Baseline Timespecs Add Pack IOB Add NODELAY Add Fast Slew Add24 ma Drive Pick Best Results

Registers

Tsu (no DLL) 0.906 ns 0.442 ns 1.795 ns -0.403 ns -0.403 ns -0.403 ns 1.795 ns

Tc2o (no DLL) 8.934 ns 9.082 ns 6.554 ns 6.554 ns 4.654 ns 4.453 ns 4.453 ns

Tsu (DLL) 2.407 ns 2.214 ns 1.555 ns 1.555 ns 1.555 ns 1.555 ns 1.555 ns

Tc2o (DLL) 7.837 ns 7.924 ns 5.325 ns 5.325 ns 3.425 ns 3.224 ns 3.224 ns

* The gray shading indicates a positive hold time requirement.

Table 1 - Runtime results.

For complete information on Virtex-E FPGAs, see www.xilinx.com.

0.906 ns 0.442 ns -0.403 ns -0.403 ns -0.403 ns

Applications - C i rcuit Design

he Xilinx software technology
provides all the information you
need to create reliable, high

performance designs, but you should
make sure that you don’t violate two of
the most important parameters:
setup and hold time.

The Basics

Synchronous elements such
as D flip-flops (DFF’s) accept
the data present on their D
inputs when the clock transi-
tions. However, the data must
be stable prior to the clock edge
(setup time, Tsu) and maintained
after the same clock edge (hold time,

Th); Th can safely be ignored with
Xilinx FPGAs (Th is 0). See Figure 1.

If the setup and hold times are
not violated, the data on the D input

is transferred to the Q output,
after the flip-flop clock-to-out-

put delay (Tcko). However, if
Tsu or Th timing is not
met, the Q output is inde-
terminate.

Controlling Logic Paths

A real design is usually
made of thousands of flip-

flops, with several levels of
logic between them, and moder-

ate to high utilization of routing

39

Understanding

Setup and Hold Times
One Key to Successful Designs

Using synchronous design techniques is one essential
key to creating reliable designs.

by Claude Gaschet, Xilinx Field Applications Engineer,
Reptronic (France), claude@xilinx.com

Figure 1 - Setup and hold timing.

resources. All those paths, from a data source
element (PAD, FF, RAM...) to a receiving element
(PAD, FF, RAM...), are known as logic paths.

Controlling those paths (giving the imple-
mentation tools the adequate directives to meet
the timing criteria) is one key to success. In the
Xilinx software tools, there are several graphical
tools (Constraints Editor, FloorPlanner) to help
you pass the right control information to the
Implementation Engine. Another set of verifica-
tion tools (the GUI or command-line-driven
Timing Analyzer or TRCE) give you everything
you need to check your results. But, what if
some of your timing criteria are not met? Is your
design failing because the timing constraint is
not possible to meet ? If so why? Is it failing
because of a setup time violation or a hold time
violation? And, how do you fix the problem?

If your timing is OK, you’ll get a Timing
Analyzer message (in the .TWR report) that says
“All Timing Constraints met.” If your timing is
not OK, you’ll see messages that tell you why
(such as “...clock frequency too high,” or “...too
many logic levels for the requested frequency,”
or “ ...too much routing delays versus logic
delays,”) and you will be given the actual timing
difference.

Two Examples of Clock Distribution

Consider a logic path starting at the Q output of
a flip-flop, going through a number of logic
stages, and ending at the D input of a another
flip-flop, as shown in Figure 2. The safe opera-
tion is specified by the equation:

Tclk ≥ Tcko + (logic and routing delays) + Tsu

The Best Case - Minimal Clock Skew

In an ideal design, there will be minimal clock
skew (all flip-flops see the clock edge at the

same time, within a few hundred picoseconds).
For synchronous designs, the optimum clock dis-
tribution is obtained when you use one of the
dedicated clock routing resources attached to a
global buffer (BUFG). Depending upon the FPGA
you select, you have from two to eight BUFGs
available.

For a given clock frequency, and for a given
FPGA, you only have to control the number of
logical levels (logic delays) the signal passes
through, and make sure that this sum of delays
does not exceed the clock period.

How to Correct the Problem

Figure 3 shows an excerpt of a report, showing a
timing error. The report shows that we missed
our timing goal (the slack value is negative, -
0.662ns). We have a 67% logic budget for a 33%
route budget (Xilinx recommends the opposite. A
50/50 ratio is generally OK for small design, and
the bigger the chip, the bigger the recommended
route budget (40/60 or 30/70).

The best solution is to decrease the number
of logic levels; this will remove one combinatori-
al logic delay (Tilo) and one net delay. An alter-
native would be to simply use a faster speed
grade, because the you only need to gain 0.66ns.

40

Figure 2 - Basic timing model.

The Worst Case - Significant Clock Skew

In designs where the number of clocks exceeds
the dedicated BUFG clock resources, some of the
clocks will need to use the non-dedicated, stan-
dard, routing resources which will introduce
clock skew. It’s best to assign the fastest, high
fanout, clocks to the dedicated BUFG routing
resources. How does clock skew affect the
design? And, how do you minimize its negative
effects?

In Figure 4, the FFB clock is delayed from the

FFA clock (skewed) and there is a direct connec-
tion from the Q output of FFA to the D input of
FFB.

For FFB to clock in the correct data, you must
respect the following condition :

Tcko(FFA) ≥ SKEW

However, due to the clock delay, the D out-
put of FFA may be unstable, changing, when FFB
receives the clock edge, causing FFB to latch the
wrong data. The CLK frequency does not affect
the problem, therefore reducing the CLK speed
won’t solve the problem.

Once again, the .TWR report will give you the
detailed information you need to identify and
correct the problem. In the report, shown in
Figure 5, you can quickly see that you missed
your timing goal (the report shows negative
slack, -3.234ns). The summary gives a (logic +
route delay) of 3.06ns for a 6.6ns clock skew;
The message “6.592ns skew between D_186 and
D_188” should alert you to a probable data hold
violation.

41

Figure 4 - Synchronous circuit with clock skew.

Timing constraint:TS_CLK = PERIOD TIMEGRP “CLK”5 nS HIGH 50.000 % ;

1 item analyzed,1 timing error detected.

Minimum period is 5.662ns.

————————————————————————————

Slack:-0.662ns path DLY1 to $Net00012_ relative to

5.000ns delay constraint

Path DLY1 to $Net00012_ contains 4 levels of logic:

Path starting from Comp:CLB_R5C4.K (from $Net00004_)

To Delay type Delay(ns) Physical Resource

Logical Resource(s)

————————————————————-———————

CLB_R5C4.XQ Tcko 1.192R DLY1

$I3/$1I37

CLB_R5C4.F1 net (fanout=1) 0.530R DIN_Q

CLB_R5C4.X Tilo 0.959R DLY1

$I8

CLB_R5C5.F1 net (fanout=1) 0.832R DLY1

CLB_R5C5.X Tilo 0.959R DLY2

$I9

CLB_R6C5.F1 net (fanout=1) 0.522R DLY2

CLB_R6C5.K Tick 0.668R $Net00012_

$I10

$I7/$1I37

——————————————————————————-

Total (3.778ns logic,1.884ns route) 5.662ns (to $Net00004_)

(66.7% logic,33.3% route)

Figure 3 - A .TWR report showing a timing violation.

How to Correct the Problem

The easiest solution is to compensate for the
clock skew by adding dummy logic in the data
path to delay the data.

Another solution is to propagate clock and
data in the opposite direction, as shown in
Figure 6, (this may require manual edits, using
the FPGA_Editor). You’ll still get skew, and it will
be reported in the .TWR, but you won’t experi-
ence data loss.

Compared to the first equation, now you
have the following relationship:

Tclk-skew = Tcko + (logic and routing delays) + Tsu

This simply means that you now have less
time for logic and routing delays, and you’ll have
to be careful not to violate the receiving flip-flop
setup time, especially for high frequency opera-
tion.

Of course, the best solution would be to use
BUFG to distribute the clock, which will elimi-
nate the skew entirely.

Conclusion

The techniques discussed here apply to any type
of logic design, not just programmable logic.
However, it’s easy to get reliable results with
Xilinx components because they include special
clock distribution networks (BUFGs). In our
newer families (Virtex, Virtex-E, SPARTAN-II) we
also include Delay Locked Loops that eliminate
skew for both on-chip and off-chip clocks.

42

Slack: -3.234ns path D_186 to D_188 relative to

6.592ns skew between D_186 and D_188

Path D_186 to D_188 contains 2 levels of logic:

Path starting from Comp: CLB_R45C25.S0.CLK (from clk_0)

To Delay type Delay(ns) Physical Resource

Logical Resource(s)

————————————————————————-

CLB_R45C25.S0.YQ Tcko 1.065F D_186

genck_0__genreg_185__ff

CLB_R45C10.S0.BY net (fanout=1) 2.127F D_186

CLB_R45C10.S0.CLK Tckdi -0.166F D_188

genck_0__genreg_186__ff

————————————————————————-

Total (0.899ns logic, 2.127ns route) 3.026ns (to clk_0)

(29.7% logic, 70.3% route)

Figure 5 - Timing report showing clock skew.

Figure 6 - Controlling the effects of clock skew through
propagating the clock in the opposite direction.

If you need more help, go to www.support.xilinx.com

http://www.support.xilinx.com

43

inear Feedback Shift Registers (LFSRs)
are a fundamental function in applica-
tions such as pseudo-random noise (PN)

generators, stream encryption, and error detec-
tion/correction. You can achieve extremely effi-
cient LFSR implementations by using the Virtex
Shift Register LUT (SRL). And, with today’s
Virtex-friendly synthesis tools, HDL code can be
used to infer the SRL, thereby maintaining code
portability.

PN Generators

PN generators are at the heart of every spread
spectrum system, and are a good example for
demonstrating how you can dramatically reduce
FPGA utilization by exploiting the Virtex SRL. In
a CDMA system, many PN generators are needed
to distinguish channels, base stations, and hand-
sets. Rake receivers, used in CDMA systems,
consist of many copies of the same receiver,
each called a finger, and each finger requires
two PN generators, one for the “I” (In-phase) and
one for the “Q” (Quadrature) channel.

Finding a way to improve the FPGA imple-
mentation efficiency of a circuit that is copied

many times in a system (such as a PN genera-
tor), will obviously provide a huge savings.

Linear Feedback Shift Registers

Though the mathematics behind a PN code can
be extremely complicated, the LFSR implementa-
tion can be relatively simple. A typical LFSR con-
sists of a chain of registers and a modulo-2
adder (XOR gate). Predefined registers are
“tapped” and fed to the XOR gate, and the XOR
output is fed back to the first register in the
chain, as shown in Figure 1. In a CDMA system,
the predefined register taps are carefully deter-
mined to provided good auto correlation and
cross correlation, and are often expressed as a
polynomial such as, P(x) = x17+ x4 + 1. An LFSR
with n registers can sequence through (2n - 1)
states. (See Xilinx XAPP 210 and XAPP 211 for
additional information regarding LFSRs and
SRLs).

Applications - S o f t w a re

Inferring Virtex SRL macros results in extremely efficient Linear
Feedback Shift Register implementations.

by Mike Gulotta, Field Application Engineer, Xilinx,
mike.gulotta@xilinx.com

HDL Coding for

PSEUDO-RANDOM

Figure 1 - A typical LFSR.

Noise Generators

44

CDMA system requirements may require
additional control of the basic LFSR.
“Augmenting” the sequence, by adding an addi-
tional state, may be required to achieve 2n states
(instead of 2n - 1), to maintain an even modulo
count. Also, “puncturing” the sequence by peri-
odically skipping a state may be required, if only
a subset of the total 2n states (such as 3 out of 4)
are needed.

LFSR HDL Coding

The Virtex FPGA architecture is highly efficient
for creating LFSRs. For example, the following
code will infer a 64-bit shift register using Virtex
SRLs rather than flip-flops (FFs).

Using SRLs instead of FFs, this circuit will
cost only one Configurable Logic Block (CLB)
instead of 16. With such dramatic savings it is
worth looking into ways to use SRLs whenever
possible.

However, SRL registers cannot be loaded or
read simultaneously, nor can they be asyn-
chronously reset. In a PN generator application it
may be necessary to jump out of sequence,
which can be done by various techniques such
as parallel loading the LFSR with a predeter-
mined state. This can still be satisfied with the

SRL by serially filling the LFSR with a predeter-
mined state. To do this, a multiplexer is required
in the LFSR feedback path allowing the loop to
be broken while the predetermined state is shift-
ed in, as shown in figure 3.

The following verilog code implements an
LFSR with several input controls that may be
used to accommodate a PN generator applica-
tion. The ShiftEn signal may be used to stall
(augment) and/or puncture the sequence, and
the FillSel and DataIn signals may be used to
jump out of sequence. The `define compiler
directive along with the Reset signal provide
code portability by allowing the code to infer
SRLs if targeting Virtex FPGAs, or to infer typical
asynchronous reset FFs if targeting another tech-
nology. The number of taps are fixed, however
the tap points and LFSR length are parameter-
ized.

Conclusion

The Virtex architecture is very efficient for creat-
ing PN generators by using the Virtex Shift
Register LUT (SRL). The SRL can also be used in
many other applications such as pipeline bal-
ancers, filters, dividers, and waveform genera-
tors. In large systems, such as CDMA, the overall
FPGA utilization can be reduced considerably by

VHDL Verilog

process(clk) Always @(posedge clk) begin

begin Y <= {Y[62:0],INPUT};

if clk’event and clk=’1’ then end

Y <= Y(62 downto 0) & INPUT;

end if;

end process;

Figure 3 - PN generator.

Figure 2 - HDL Code.

45

taking advantage of the SRL, which can lead to
smaller, fewer, and less expensive parts. With
only a basic understanding of the SRL, along
with today’s Virtex-friendly synthesis tools, these
savings can be accomplished easily and without
sacrificing code portability.

/**

The following is example code that implements an LFSR that can be used as

part of a pn generator.

The number of taps are fixed,however the tap points are parameratized. The

LFSR length is also parameritized. This code is not intended to be technology

specific. When targeting Xilinx (Virtex) however, all the latest synthesis tools

(Leonardo, Synplify, and FPGA Express) will infer the Shift Register LUTS

(SRL16) resulting in a very efficient implementation.

Control signals have been provided to allow external circuitry to control such

things as filling,puncturing,stalling (augmentation),etc. Only minimal simula-

tions have been run on this code as it is intended to be used for reference pur-

poses only.

A compiler directive can be used to steer the following code to infer typical FF’s

(w/async resets),or, infer Virtex SLR16E elements. Controlling the compiler

flow can be done by uncommenting the following line. This can also be done

from a top level module.

**/

//`define non_Virtex_device // Comment out to infer Virtex SRL16s.

module pn_gen_iq__srl (clk, pn_out_i,ShiftEn,FillSel, DataIn_i,RESET);

parameter Width = 17; // LFSR length (ie, number of storage elements)

// Parameratize I channel LFSR taps.

// I(x) = X**17 + X**4 + 1

parameter I_tap4 = 4; // I channel LFSR,single tap.

// Ports

input clk,DataIn_i,FillSel,ShiftEn,RESET;

output pn_out_i;

// I channel ////////////////////

reg [I_tap4-1:0] srl1_i;

reg [Width-1:I_tap4] srl2_i;

wire lfsr_in_i,par_out_i;

assign pn_out_i = srl1_i[0];

assign par_out_i = srl2_i[I_tap4] ^ srl1_i[0];

assign lfsr_in_i = FillSel ? DataIn_i :par_out_i;

`ifdef non_Virtex_device // compiler directive, if defined,will infer asyn reset FF.

always @(posedge clk or negedge RESET) begin

if (!RESET) begin

srl1_i <= 0;

srl2_i <= 0;

end

else

`else // compiler directive, if not defined,will infer SRL16.

always @(posedge clk) begin

`endif

if (ShiftEn) begin

srl2_i <= {lfsr_in_i,srl2_i[Width-1:I_tap4+1]};

srl1_i <= {srl2_i[I_tap4],srl1_i[I_tap4-1:1]};

end

end

endmodule

When targeting Virtex,all the latest synthesis tools (Leonardo,

Synplify, and FPGA Express) will infer the SRL16E resulting in a very

efficient implementation. The compiler directive, used to steer the

code to infer FFs or Virtex SLR16E elements, may not be supported

by all synthesis tools. Controlling the compiler flow can be done by

un-commenting the first line. (This can also be done from a top

level module). Only minimal simulations have been run on this

code as it is intended to be used for reference purposes only.

46

Applications - S o f t w a re

s FPGAs grow bigger and faster it
becomes increasingly important to veri-
fy your designs; this saves you time and

produces better designs. Verification after syn-
thesis should be part of the design process
because this ensures that you pass the correct
netlist to the Xilinx place and route tools. Also,
you can debug your designs faster, whether you
are using an RTL netlist (RTL verification) or a
synthesized netlist (post synthesis verification).

Post Synthesis Verification

A synthesis tool usually writes a netlist based on
the UNISIM library. The cells in the library are
modeled well for both simulation and synthesis.
For example in the verilog UNISIM library, the
LUTs (look up tables) are modeled using UDP
(user defined primitives). This can speed up your
design simulation considerably, and because
most of the combinational logic will be mapped
to LUTs, overall simulation will also be fast. In
short, if the synthesis tool can write a
Verilog/VHDL netlist with LUT cells and their
INIT attributes, verification will be very accurate
and fast.

Enhancements in Leonardo Spectrum

Traditionally, verification was performed on the
Verilog or VHDL netlist generated by the Xilinx
place and route tools. Thanks to new functional-

ity in the latest release of LeonardoSpectrum
from Exemplar Logic, gate-level verification is
now supported prior to place and route, using
the Xilinx UNISIM simulation library.

Procedure for Using Gate-level Simulation

A special variable in LeonardoSpectrum must be
set, to turn on this feature:

xi_write_init_on_luts (default is FALSE)

This variable must to be set to “TRUE” before
writing out the Verilog/VHDL netlist. The vari-
able can either be set in the GUI, using Tools ->
Variable Editor, or in the interactive shell you
can type:

set xi_write_init_on_luts TRUE

Verilog Example

Here is a simple Verilog example, to demonstrate
the feature. The RTL design is synthesized in
LeonardoSpectrum and a Verilog netlist (with the
above variable set to TRUE) is written out. The
synthesized netlist is simulated using the MTI
(Modeltech) Verilog simulation tool. The design
output is the registered value of A and B and C.
The register clock is four times slower than the
main clock; it uses CLKDLL to divide the main
clock by four. The output waveform is shown in
Figure 1.

Notice the INIT properties being used to con-
figure the LUT cells of the synthesized netlist.

For large designs especially, verification throughout
the design flow will save you time and effort.

Nij Dorairaj, Sr. CAD Engineer, Exemplar Logic, Inc., nij@exemplar.com

Post Synthesis

Ve r i f i c a t i o n
for Virtex FPGAs

47

// module defintion of CLKDLL
module CLKDLL (CLKIN, CLKFB, RST, CLK0,CLK90,CLK180,CLK270,

CLK2X,CLKDV, LOCKED
) ;

parameter CLKDV_DIVIDE = "2.0" ;
parameter DUTY_CYCLE_CORRECTION = "TRUE";
input CLKIN, CLKFB, RST ;
output CLK0,CLK90,CLK180,CLK270,CLK2X,CLKDV, LOCKED ;

endmodule // CLKDLL

module slow_clk_dll (CLKOUT, CLKIN, RST);
input CLKIN, RST;
output CLKOUT;
wire IBUFG_OUT, BUFG_A_IN, BUFG_A_OUT, BUFG_B_IN, BUFG_B_OUT;
IBUFG Ub_ibufg (.I(CLKIN),.O(IBUFG_OUT));
CLKDLL Ub_clkdll (.CLKIN(IBUFG_OUT),.CLKFB(BUFG_A_OUT),.RST(RST),

.CLK0(BUFG_A_IN),.CLKDV(BUFG_B_IN));
// divide the input clock by 4
defparam Ub_clkdll.CLKDV_DIVIDE = "4.0";
BUFG Ub_bufgA (.I (BUFG_A_IN),.O(BUFG_A_OUT));
BUFG Ub_bufgB (.I (BUFG_B_IN),.O(BUFG_B_OUT));
assign CLKOUT = BUFG_B_OUT;

endmodule // slow_clk_dll

module simple (A,B , C, RST, OUT, CLK);
input A, B, C, RST, CLK;
output OUT;
reg OUT;
wire SLOW_STEADY_CLK;
slow_clk_dll simple_clk (SLOW_STEADY_CLK,CLK,RST);
always @ (posedge SLOW_STEADY_CLK)
begin

if (RST)
OUT = 1'b0;

else
OUT = A & B & C;

end
endmodule // simple

Conclusion

With LeonardoSpectrum you can verify the cor-
rectness of your netlist before you go to place
and route, and get high quality results for your
Virtex FPGA designs.

References
1. Virtex chapter in LeonardoSpectrum technology manual (leo_tech.pdf). 2. Verilog GSR/GTS Simulation Methodology in Xcell issue 33 (3rd quarter 1999).

RTL Design Synthesized Netlist
module simple (A, B, C, RST, OUT, CLK) ;

input A , B, C, RST, CLK;
output OUT ;
wire SLOW_STEADY_CLK,simple_clk_BUFG_B_IN, simple_clk_BUFG_A_OUT,

simple_clk_BUFG_A_IN, simple_clk_IBUFG_OUT, A_int,B_int,C_int,
RST_int,OUT_dup0,nx53,nx54;

wire [4:0] \$dummy ;
IBUFG simple_clk_Ub_ibufg (.O (simple_clk_IBUFG_OUT),.I (CLK)) ;
CLKDLL simple_clk_Ub_clkdll (.CLK0 (simple_clk_BUFG_A_IN),.CLK90 (

\$dummy [0]),.CLK180 (\$dummy [1]),.CLK270 (\$dummy [2]),.CLK2X (
\$dummy [3]),.CLKDV (simple_clk_BUFG_B_IN),.LOCKED (\$dummy [4]),.CLKIN (
simple_clk_IBUFG_OUT),.CLKFB (simple_clk_BUFG_A_OUT),.RST (RST_int)
) ;
defparam simple_clk_Ub_clkdll.CLKDV_DIVIDE = 4.0;
defparam simple_clk_Ub_clkdll.DUTY_CYCLE_CORRECTION = "TRUE";

BUFG simple_clk_Ub_bufgA (.O (simple_clk_BUFG_A_OUT),.I (
simple_clk_BUFG_A_IN)) ;

BUFG simple_clk_Ub_bufgB (.O (SLOW_STEADY_CLK),.I (simple_clk_BUFG_B_IN)) ;
OBUF OUT_obuf (.O (OUT),.I (OUT_dup0)) ;
IBUF RST_ibuf (.O (RST_int),.I (RST)) ;
IBUF C_ibuf (.O (C_int),.I (C)) ;
IBUF B_ibuf (.O (B_int),.I (B)) ;
IBUF A_ibuf (.O (A_int),.I (A)) ;
FDR reg_OUT (.Q (OUT_dup0),.D (nx54),.C (SLOW_STEADY_CLK),.R (nx53)) ;
LUT2 ix46 (.O (nx53),.I0 (C_int),.I1 (RST_int)) ;

defparam ix46.INIT = 4'hD;
LUT2 ix47 (.O (nx54),.I0 (A_int),.I1 (B_int)) ;

defparam ix47.INIT = 4'h8;
endmodule

A more complete version of this article, with a test bench,is available at:
http://www.exemplar.com/support/appnotes.html.

/simple_system/AST_lb
/simple_system/A_lb
/simple_system/B_lb
/simple_system/C_lb

/simple_system/CLK_lb
/simple/systemU1/SLOW_STEADY_CLK

/simple_system/CUT_lb

Figure 1 - Output waveform from Modeltech.

http://www.exemplar.com/support/appnotes.html

48

odelSim is a mixed-language, single-
kernel simulator, allowing you to
simulate Xilinx FPGA instances

implemented in Verilog, together with other
instances in VHDL, in the same simulation run.
You have flexibility in your choice of HDL lan-
guage, and you can easily build the simulation
library for your chosen Xilinx FPGA (and HDL
language) with the FGPA Library Manager which
supports simprim, unisim, and LogiBLOX simula-
tion libraries in both Verilog and VHDL for all
Xilinx FPGA families.

Using the FPGA Library Manager

The new ModelSim FPGA library manager guides
you through the process of compiling the FPGA
libraries provided by Xilinx. These compiled
libraries can then be used with your design to
simulate with ModelSim. The source code for the
Xilinx libraries is included with the Alliance
Series Software, and is referenced by the
“XILINX” Environment Variable.

Here are step by step instructions for using
the Library Manager:

• Invoke ModelSim and go to a working direc-
tory where you want to compile the FPGA

libraries (this can be where your design
source files are located). A welcome banner
will appear. This new banner contains several
new features, including a new Project Wizard.
The Project Wizard is documented in the
ModelSim Reference Manual, and in the
Tutorial which has an example project.
Dismiss the Welcome Banner, continue to
ModelSim.

• From the main ModelSim window change
directories. Use File > Change Directory to
Browse for your working directory

• From the main window command line enter:
vlib work

• Select the FPGA Library Manager which will
build the FPGA library. Use Design > FPGA
Library Manager.

• Use the Browser to select the Xilinx TCL
script. (ModelSim uses TCL as a scripting lan-
guage.) The Library manager uses a support
file that resided in the ModelSim_install_direc-
tory/contrib. These scripts will be updated as
the Xilinx parts list evolves. See the
Additional Information section below for
updated script downloads. Use Browse >
Select fpgavendor_xilinx.tcl > Open >
Next (Please refer to Figure 1 “ModelSim XIL-
INX FPGA Library Manager Window”.)

• Select a ModelSim project initialization file

Using the ModelSim FPGA
Library Manager

Applications - S o f t w a re

Using the new FPGA Library Manager will improve your simulation time by
easily building Xilinx FGPA libraries for use within ModelSim.

by Joe Rodriguez, Technical Marketing Engineer, Model
Technology Inc., joer@model.com

49

(which contains default settings
for ModelSim). The Xilinx root
directory value is from your sys-
tem environment variables.

• Choose your HDL language (VHDL
or Verilog). If you have a VHDL
testbench, you can run a Verilog
description of your design with
ModelSim, if the pin names match
exactly (d[0:31] does not match
d1,d2....d31) and you are using
STD LOGIC at the IO (ModelSim
will map VHDL to Verilog
strength).

• Select the Xilinx FPGA Library.
The Xilinx Library source code
that gets compiled is from the
Xilinx root directory, which is read
from your system environment
variable. The example uses the
XC5200 Family. The Maps To entry
is a name of the ModelSim library
you wish to use. This can be any
name you wish, default is XILINX.
This physical name can be
mapped to the needed logical
name required by the source code.

• Select Write Build Script; the
default path name is the current
directory. (ModelSim is a full fea-
tured simulation tool that can be
run in UI mode, command line
mode, or batch mode. The
ModelSim FPGA Library Manager
can create a script that can be
used to re-compile the FPGA
library.) The TCL script can be
seen in Figure 2: the vlib com-
mand creates a ModelSim library,
vcom is the VHDL compiler, and

Figure 1: ModelSim Xilinx FPGA library manager window.

Figure 2: ModelSim Xilinx FPGA library script.

50

vmap maps the physical location to the logi-
cal name used in your VHDL source code.
This script can now be used to build the
library without the use of the FPGA Library
Manager. See the MTI Application Notes for a
full description of the use of scripts with
ModelSim.

• Select Build Library. The Main Window
scrolls messages indicating the library has
been built as shown in Figure 3. When the
library compilation is complete an informa-
tion window will appear. Dismiss the library
compiled information window, and Exit the
FPGA Library Manager. The ModelSim build
script is shown in Figure 2.

Main Window -> Open ->Open Source, select

buildxilinx.do.

The library is now available for use
with your source files.

Additional Information

For updates to the Xilinx FPGA vendor
compile scripts, go to:

http://www.model.com/resources/fpgalibmgr.html

For a complete Application Note
ModelSim 5.2 With Xilinx Alliance 2.1
showing step by step instructions for
using ModelSim to compile and simu-
late any of your Xilinx designs, go to:

http://www.model.com/pdf/113_xilinx_21.pdf

For a list of all MTI Application
Notes, including ModelSim 5.2 with
Alliance 1.5, and example circuits for

use with Application Notes, go to:

http://www.model.com/support/technote/index.html

Conclusion

The new ModelSim FPGA library manager
removes the question of how to compile the
Xilinx FPGA libraries, so you can focus on the
verification of your Xilinx design.

Figure 3: Main ModelSim window.

http://www.model.com/resources/fpgalibmgr.html
http://www.model.com/pdf/113_xilinx_21.pdf
http://www.model.com/support/technote/index.html

Application - Simulation & Synthesis

51

by Srikanth Vijayaraghavan, Applications Consultant, Synopsys,
raghavan@synopsys.com

ynopsys has combined its powerful logic
synthesis technology with innovative
architecture-specific optimization technol-

ogy to address the needs of FPGA designers who
are now adopting an HDL methodology. FPGA
Compiler II delivers powerful architecture-specif-
ic synthesis capabilities with features such as
behavioral re-timing and pipelining capability.
Synopsys VCS (Verilog Compiled Simulator) pro-
vides a fully-featured implementation of the ver-
ilog language as defined in the IEEE Standard
Hardware Description Language (IEEE Std 1364-
1995).

VCS is specifically designed to simulate large,
complex designs faster than any other Verilog-
HDL simulator. VCS supports interfaces to a vari-
ety of other simulators and models, including
(but not limited to) user PLI applications con-
forming to IEEE Std 1363-1995, delay calcula-
tors, SDF delay annotation, LMG Smatmodels,
and the LMSI hardware modeler.

The combination of the FPGA Compiler II
synthesis tool and the VCS simulator provides a
simple and accurate design and verification flow
that significantly reduces your total development
time.

Detailed Design Flow

The steps involved in taking a design from an
RTL description to a production FPGA are sum-

marized in Figure 1. These steps are explained in
detail using the RTL description of a flip-flop
shown in Example 1. After synthesizing the RTL
code for this flip-flop using FPGA Compiler II,
you can automatically generate a functional
Verilog simulation netlist as shown in Example
2. FPGA Compiler II is capable of synthesizing
the design, either by flattening the design com-
pletely, or by preserving the complete hierarchy.

FPGA System

Simulation and Synthesis
Using Synopsys VCS and FPGA Compiler II

Module reg1 (clk,reset,din,dout);

input clk,reset;

input din;

output dout;

wire clk,clk_enbl,reset;

wire din;

reg dout;

always@(negedge clk or posedge reset)

if (reset)

dout = 0;

else

dout = din;

endmodule

Example 1 - RTL description of a simple flip-flop.

This HDL design methodology can help you use the largest Virtex
FPGAs with a minimum amount of time spent on synthesis, simula-
tion, and verification.

52

The netlist can be simulated in VCS like any
other Verilog file. FPGA Compiler II maintains
the port names at the module level and therefore
debugging through the hierarchy is very easy.

Assuming you have a testbench for the
design module named test_reg1.v, a simple com-
mand line script for simulation in VCS will look
as follows:

vcs -RI -Mupdate reg1.v test_reg1.v -o reg1.simv -l reg1.log

Where:

• -RI is for simulating and bringing up the
XVCS Debugging debugging GUI
automatically.

• -Mupdate is to enable incremental compile.

• -o is to provide a distinct name for the exe-
cutable file; default name is simv.

• -l is to provide a distinct name for the log file
produced during compile.

Once the functionality of the design is veri-
fied, the EDIF equivalent to this Verilog netlist is
generated using FPGA Compiler II. The timing
constraints entered in the FPGA Compiler II GUI
can be exported into a spec file (.ncf), which is
understood by the Xilinx software tools. The
Xilinx software uses this EDIF netlist and the .ncf
constraint file to place and route the design.

If the design routes successfully, you can
write a Verilog simulation netlist in terms of gate
cells, and also a delay file (.sdf, Standard Delay
Format). A part of the delay file that corresponds
to the gate level netlist is shown in Example 3.
This .sdf file should be included during simula-
tion to back annotate the original delays into the
design.

The delay values need to be back annotated
through the PLI interface in VCS. The .sdf file is
called from the gate-level netlist through the
“$sdf_annotate” utility. For performing a gate-

// Synopsys FPGA Compiler II
// automatically generated file
// Author: raghavan
// Program:FPGA Compiler II
// Version:3.2.0.4206

module FDC_1 (Q ,D ,C ,CLR);
output Q ;
input D ;
input C ;
input CLR ;
wire synch_enable ;
reg Q ;
always@(negedge C or posedge CLR)
begin

if (CLR) Q = 1’b0;
else Q = (D);

end
assign synch_enable = (1’b1);
endmodule

module IBUF (O ,I);
output O ;
input I ;
assign O = (I);

endmodule

module OBUF_S_12 (O ,I);
output O ;
input I ;
assign O = (I);

endmodule

module reg1 (clk ,reset ,din ,dout);
input clk ;
input reset ;
input din ;
output dout ;

wire N_clk ;
wire N_reset ;
wire N_din ;
wire N_dout ;

FDC_1 dout_reg (.CLR (N_reset),.Q (N_dout),.C (N_clk),.D (N_din));
IBUF C_clk (.I (clk),.O (N_clk));
IBUF C_reset (.I reset),.O(N_reset));
IBUF C_din (.I (din),.O (N_din));
OBUF_S_12
C_dout (.I (N_dout),.O (dout));

Endmodule

Example 2 - Post synthesis functional netlist
generated by FPGA Compiler II.

53

level simulation, you need to first create
a table file. This table file will list all the
PLI tasks that need to be included. The
“simprims” directory inside the Xilinx
installation contains the Verilog descrip-
tion of all the library cells (.vmd exten-
sion). These descriptions contain the
timing checks for the setup and hold
time violations. Annotating the original
delay values from the .sdf file during
simulation performs these checks.

Now create a pli.tab file, with the fol-
lowing content:

$sdf_annotate call=sdf_annotate_call
acc+=mp,prx:reg_gate+

Where: reg_gate is the name of the
top level module

Now, to perform a gate level simulation,
you can use a sample script as follows:

vcs -RI -Mupdate reg_gate.v test_reg.v

-o gate_reg -l gate_reg.log \

-y $XILINX/verilog/src/simprims \

+libext+.vmd+ \

-P pli.tab

Where:

• -y stands for the library directory.

• +libext+.vmd+ stands for all the files with
extension .vmd.

• -P stands for pli table file.

Conclusion

The Synopsys FPGA Compiler II and VCS provide
an easy and intuitive HDL design methodology, a
seamless design flow, and high level control
within the design process. In addition, using
FPGA Compiler II gives you the power to effec-
tively use Xilinx Virtex devices with the highest
quality results.

(TIMESCALE 1 ps)
(CELL

(CELLTYPE “X_FF”)
(INSTANCE dout_reg)

(DELAY
(ABSOLUTE

(PORT IN (1948:1948:1948) (1948:1948:1948))
(PORT CLK (1520:1520:1520) (1520:1520:1520))
(PORT RST (0:0:0) (0:0:0))
(IOPATH CLK OUT (887:887:887) (887:887:887))
(IOPATH SET OUT (887:887:887) (887:887:887))
(IOPATH RST OUT (887:887:887) (887:887:887))

)
)

(TIMINGCHECK
(SETUP (negedge RST) (posedge CLK) (479:479:479))
(SETUP (posedge IN) (posedge CLK) (195:195:195))
(SETUP (negedge IN) (posedge CLK) (195:195:195))
(HOLD (posedge IN) (posedge CLK) (0:0:0))
(HOLD (negedge IN) (posedge CLK) (0:0:0))
(WIDTH (negedge CLK) (3456:3456:3456))
(WIDTH (posedge CLK) (3456:3456:3456))
(WIDTH (posedge RST) (3456:3456:3456))

)
)

Example 3 - SDF file generated by Xilinx software.

Figure 1 - Detailed design f.low for Xilinx FPGA’s

54

Column - Industry A n a l y s t

ccording to market
researchers, the digital set-
top box (DSTB) market is

projected to grow at a compound
annual growth rate approaching
17% over the next few years. Production is antic-
ipated to double between 1999 and 2002, to over
forty million units a year.

Today, most set top boxes deliver minimal
functionality, and the market remains fragment-
ed with varying levels of features and disparate
standards. In addition, cable suppliers are seek-
ing to expand services and features, and include
the functions currently offered by other con-
sumer appliances, to justify increased fees. This
is an ideal application for the flexibility, low cost,
and time-to-market benefits of Spartan FPGAs.

Possible Features

Some of the possible features that can be offered

by DSTBs:

• Phone caller ID displayed to the television
screen.

• E-commerce for grocery shopping, Web
browsing, and banking.

• Infotainment such as interactive games, Video
on Demand, on-line casinos.

• E-mail.

• Videoconferencing.

• Downloading music files from the internet.

• Recording television programs.

Market Structure

In the set top box market, a small number of
producers dominate. However, standards still
remain fragmented and some DSTB
manufactures deliver proprietary
architectures. Adding to the
confusion, the cable

by Rebecca Burr, Manager of Market Analysis,
Xilinx, burr@xilinx.com

digital SET-TOP boxes
A n I d e a l A p p l i c a t i o n

for SPARTAN FPGAs
Digital set top boxes are a catalyst for consumer-based computing,
and they hasten the shift towards a networked home.

market is essentially a subscriber-based business
where the service providers furnish the hardware
for free. Recently, the digital satellite industry
also began adopting this approach by offering a
rental option for set-top boxes.

The Collective DSTB Market

The DSTB market is composed of three compet-
ing technologies:

• Digital Terrestrial systems use conventional
antennas, and are already in limited use in
Europe, with broader service launches expect-
ed over the next few years. Japan also expects
to launch Digital Terrestrial services in the
2003 timeframe. Because it leverages the
existing infrastructure, this technology is
expected to exhibit explosive growth.

• Digital Cable is a conversion of existing ana-
log cable distribution systems, and broadcast-
ers have been swift to implement these stan-
dards.

• Digital Satellite technology is still in its
infancy, offering lower cost distribution, ser-
vice delivery to thinly populated regions, and
ease of upgradeability. Standards for Digital
Satellite systems are not consistent between
broadcasters.

Conclusion

DSTB designers must optimize for both price and
performance in an increasingly competitive mar-
ketplace. Plus, they must provide more function-
ality and create robust designs that offer flexibili-
ty for varying standards and for backward and
forward compatibility. This is an impossible task
for ASICs, and that’s why the Spartan FPGA fam-
ily is a key component of any DSTB strategy.

55

Q

Q

Q

&
How do I pull the I/O pins to 5 Volts using external
pullups?

To pull up the I/O pins to 5V externally, only three I/O

standards are allowed: LVTTL, LVCMOS, and PCI33_5.

The internal I/O pullup can be considered to be a

50K resistor to Vcco (for 3.3-V or 2.5-V devices). If you

try to pull an I/O to a voltage higher than Vcco, you

need to do so with a resistor, with a smaller value

than 50K. The devices have circuitry to disable the

internal pullup if the I/O is pulled higher than about

Vcco + 0.7V (a threshold voltage higher than Vcco), so

if you pull an I/O up to 5V, there will be no static cur-

rent into Vcco. But if you don’t pull up the I/O past

Vcco + 0.7V, then the internal pullup remains enabled

and will “fight” with the external pullup.

Our recommendation is to use a 4.7K pullup resis-

tor, but any value less than 4.7K will also work.

What do I do if my Alliance Series or Foundation Series
2.1i installation does not complete as a result of one of
the following issues:

• The splash screen appears, then disappears with-

out an error message.

• An unexpected error occurs during setup.

There may be several reasons for either of the

error messages to appear. In general, ensure that you

have administrative privileges and that there is plenty

of hard drive space on the destination drive.

Additionally, a re-boot is sometimes needed to release

any locked Windows DLLs.

If you have done the above, and the installation

still fails, the most likely problem has to do with the

way the registry settings for certain environment vari-

ables are interacting with the 2.1i installer. Typically,

simply resetting these variables will over-write the

registry entry that is causing this problem, and allow

the installer to succeed.

The variables that have been seen to exhibit the

problem are: PATH, TEMP, and TMP.

• Win9x: Make sure these variables are listed in

your autoexec.bat file.

• WinNT: You can check your environment by exe-

cuting:

‘Start -> Settings -> Control Panel -> System -> Environment Tab’

In the System Variable section, there should be a

PATH variable listed. In the User Variable section,

there should be both TEMP and TMP variables. Re-

updating each of these variables will correct the set-

ting in the registry.

If there is no PATH variable listed in the User sec-

tion, then create one. To do this:

1. Click on the Variable line and type in PATH.

2. Click on the value, and type in %PATH%.

By doing the above, the registry entries should get

corrected, allowing the installation to succeed. For

further information please reference:

• http://support.xilinx.com/techdocs/7074.htm

• http://support.xilinx.com/techdocs/7362.htm

Are there any cores to speed up the implementation of
Virtex designs?

The following cores are either included in the Xilinx

2.1i software release, or can be downloaded from the

Xilinx CORE Generator Cores and IP Updates page:

(http://www.xilinx.com/ipcenter/

coregen/updates.htm#updatesCurrent)

56

Column - Q & A

Questions Answers
From the Xilinx Applications Engineering Staff

by Rohit Sawhney, Product Applications Manager, Xilinx, rohit@xilinx.com

/ipcenter/coregen/updates.htm#updatesCurrent

57

Q

Q

Q

Q

Q
The following cores are included in the 2.1i Release

CD:

• Dynamic Constant Coefficient Multiplier.

• Divider.

• Block Memory modules (single and dual port).

The following cores can be downloaded from the

Xilinx CORE Generator Cores and IP Updates page:

• Gate functions (AND, NAND, OR, NOR, XOR,

XNOR, INVERTER).

• Multiplexer functions (bit, bus, slice BUFE/BUFT).

• Register functions (flip-flop and latch based).

• Parallel Multiplier (pipelined and combinatorial).

• Sine/Cosine Lookup TAble.

• Distributed Memories (single and dual port RAM

and ROM).

• Adder/Subtractor.

• Accumulator.

• Comparator.

• Binary Counter.

• Decoder.

• FD-Based Shift Register.

• RAM-based Shift Register.

• Two’s Complement.

• Numerically Controlled Oscillator (Single and Dual

Channel)

• Distributed Arithmetic FIR Filter.

• Asynchronous FIFO.

• FFT and Inverse FFT (16-, 64-, 256-, and 1024-

point).

Note: All Xilinx CORE Generator LogiCORE modules

that support the Virtex architecture also support

Virtex-E and Spartan-II architectures.

How can I instantiate a CLKDLL using Exemplar Spectrum
or Synplicity?

Currently, CLKDLL has to be instantiated or manually

inserted in Exemplar and Synplicity.

• A sample design and procedure for CLKDLL inser-

tion in Exemplar Spectrum is documented in the

following solution: http://www.xilinx.com/tech-

docs/7737.htm

• A sample design for CLKDLL instantiation in

Synplicity is documented in the following solution:

http://www.xilinx.com/techdocs/8144.htm

How can I infer a BlockRAM in Exemplar or Synplicity?

Both Exemplar Spectrum and Synplicity now support

Virtex BlockRAM (a fully synchronized RAM) infer-

ence.

• Xilinx Solution 7929 (http://www.xilinx.com/tech-

docs/7929.htm) provides VHDL/Verilog example

for Exemplar Spectrum.

• Xilinx Solution 2508 (http://www.xilinx.com/tech-

docs/2508.htm) provides VHDL/Verilog example

for Synplicity.

Note: The BlockRAM inference example provided in

XCELL 32 for Leonardo Spectrum was incorrect.

How can I infer a ROM in Synplicity?

One of the new features in Synplify 5.3 is ROM infer-

ence. Earlier versions of the Synplify compilers were

able to infer ROM tables. Synplify 5.3 now maps these

inferred ROMs to Xilinx ROM primitives (ROM16X1

and ROM32X1) with the use of an attribute called

syn_romstyle.

Xilinx Solution 8183 shows how to infer these

ROMs for the 4K and Virtex families in VHDL/Verilog:

http://www.xilinx.com/techdocs/8183.htm.

How do I use glbl.v module in the Verilog simulation?

In the 2.1i Alliance Series, the general procedure for

specifying global signals for the Verilog simulation

flow involves defining the global signals with the

$XILINX/verilog/src/glbl.v module. This module

allows a global signal to be modeled as a wire in a

global module.

The glbl.v module connects the global signals to

the design, which is why it is necessary to compile

this module with the other design files and load it

along with the toplevel.v file or the testbench.v file for

simulation.

What are the supported Xilinx cable, software, and device
combinations?

The following combinations are supported, as

described in http://support.xilinx.com/tech-

docs/8097.htm:

/techdocs/8144.htm
/techdocs/7929.htm
/techdocs/2508.htm
/techdocs/8183.htm
/techdocs/7737.htm

58

Q

Q
Q

Q1. MultiLINX cable with Hardware Debugger
v2.1i (or later):

• Supports slave serial configuration of XC3000A,

Spartan/XL, XC4000E/EX/XL/XLA/XV, and

Virtex/E devices.

• SelectMAP configuration on Virtex/E devices.

• Readback verify supported for XC4000E/EX/XL/

XLA/XV, XC9500/XL/XV, Spartan/XL, and

Virtex/E devices.

2. MultiLINX with JTAG Programmer v2.1i sp3
(or later):

• Supports JTAG configuration of XC1804,

XC4000E/EX/XL/XLA/XV, XC9500/XL/XV,

Spartan/XL, and Virtex/E devices.

• Supports Readback-Verify of the XC9500/XL/XV

devices.

3. Parallel Cable III with Hardware Debugger
v2.1i (or later):

• Supports slave serial configuration of XC3000A,

XC4000E/EX/XL/XLA/XV, Spartan/XL, and

Virtex/E devices.

4. Parallel Cable III with JTAG Programmer
v2.1i sp3 (or later):

• Supports JTAG configuration of XC1804,

XC4000E/EX/XL/XLA/XV, XC9500/XL/XV,

Spartan/XL, Virtex/E devices.

• Supports Readback-Verify of the XC9500/XL/XV

devices.

5. XChecker with Hardware Debugger v2.1i (or
later):

• Supports slave serial configuration of XC3000A,

XC4000E/EX/XL/XLA/XV, Spartan/XL, and

Virtex/E devices.

• Supports Readback-Verify and Readback-Capture

of XC4000E/EX/XL/XLA/XV, and Spartan/XL

devices with a configuration bit stream of 250,000

bits or less.

6. XChecker with JTAG Programmer v2.1i sp3
(or later):

• Supports JTAG configuration of XC1804,

XC4000E/EX/XL/XLA/XV, XC9500/XL/XV,

Spartan/XL, Virtex/E devices.

• Supports Readback-Verify of the XC9500/XL/XV

devices.

Where can I find information on performing JTAG config-
uration on a Virtex device?

See Application Note 139 (Xapp139) Configuration and

Readback of Virtex FPGAs Using (JTAG) Boundary-Scan

at: http://www.xilinx.com/xapp/xapp139.pdf.

What cable should be used with the Coolrunner ISP pro-
grammer?

The Xilinx Parallel III Cable should be used. Please ref-

erence: http://support.xilinx.com/techdocs/7588.htm.

Which CoolRunner devices support ISP or Boundary Scan
Operations?

The Coolrunner ISP and Boundary Scan support is list-

ed in the following reference:

http://support.xilinx.com/techdocs/8173.htm

What recent improvements have been made to the sup-
port.xilinx.com search engine?

A number of improvements have been made to our

Web search engine:

• The first improvement was to update the underly-

ing search algorithm. Previously we were AND-ing

search terms together, which returned very precise

results but often made it difficult for users to find

what they were looking for. We decided to imple-

ment a more Internet friendly algorithm by using

an ‘ACCRUE’ operation. This allows user queries

to be scored, returning documents matching the

highest number of keywords at the top of the list.

Documents containing only one or two keywords

would be returned at the bottom.

• The second improvement was to collect our older

answer records into a separate archive. When new

Xilinx users search our database, they no longer

have to worry about sorting through older answer

records to find the most current information.

However, you will still have access to this older

information.

• Finally, we’ve included the ability to search our

software manuals from the same interface. It is

now possible to search the Answers Database and

online software documentation at the same time.

/xapp/xapp139.pdf

59

ilinx started the year with two new
product releases addressing low power
requirements-Spartan-II FPGAs and

CoolRunner XPLA3 CPLDs. At the Portable
Design 2000 and Wireless Symposium 2000
events, Xilinx demonstrated how our technology
is “Spanning the Low Power Spectrum” with new
wireless connectivity and MP3 Player demonstra-
tions.

You can also expect to see numerous new
partnerships and solutions, demonstrated at
more shows and events worldwide. You’ll also
see where Xilinx is making a difference in appli-

cations such as telecom, communications, con-
sumer, automotive, medical and more. FPGAs
are everywhere and so is Xilinx!

by Darby Mason-Merchant, Trade Show Manager, Xilinx, darby@xilinx.com

Column - Trade Shows

Year 2000 North American Trade Show Schedule

Jan 25-26 Portable Design 2000 San Diego, CA

Feb 22-24 Wireless Symposium 2000 San Jose, CA

Feb 9-11 FPGA Conference 2000 Monterey, CA

March 14 Synopsys User’s Group 2000 San Jose, CA

March 21-22 IP2000 Santa Clara,CA

April 10-12 DSP Spring Conference 2000 San Jose, CA

April 2000 FCCM Conference 2000 Napa,CA

May-Dec Embedded Computing Shows US & Canada

May 23-24 AC Developers Conference 2000 Santa Clara,CA

June 5-7 37th Design Automation Conference Los Angeles, CA

June 21-23 WITI Technology Summit 2000 Santa Clara,CA

July 24-28 NSREC 2000 Reno, NV

Sept 6-7 Embedded Internet Conference 2000 San Jose, CA

Sept 26-28 MAPLD 2000 Laurel,MD

Oct 17-18 NCF / InfoVision 2000 Chicago, IL

Oct 18-20 Frontiers in Education 2000 Kansas City, MI

For more information about Xilinx Worldwide Trade

Show Programs, please contact one of the following

Xilinx team members or see our website at:

http://www.xilinx.com/company/tradeshows.htm

• US Shows: Darby Mason-Merchant at: darby@

xilinx.com or Evangeline Tanner at etanner@

xilinx.com.

• European Shows: Andrea Fionda at: andrea.

fionda@xilinx.com.

• Japanese Shows: Tetsuo Souyama at: tetsuo.

souyama@xilinx.com

• SouthEast Asian Shows: Mary Leung at: mary.

leung@xilinx.com

Year 2000 European Trade Show Schedule

Nov 2000 Electronica 2000 Munich,Germany

Year 2000 South East Asian Trade Show Schedule

March 23-24 IIC 2000 Guanzhou,China

March 27-28 IIC 2000 Shanghai,China

March 20-21 IIC 2000 Beijing,China

May 3-4 IIC Taipei Taipei, Taiwan

October 2000 EDA&T Hsinchu,Taiwan

October 2000 E D A & T B e i j i n g , C h i n a

Year 2000 Japanese Trade Show Schedule

Jan 27-28 EDA Techno Fair 2000 Tokyo, Japan

Nov 2000 Micon System Tool Fair 2000 Tokyo, Japan

Year 2000 Worldwide Xilinx
Trade Show Schedules

Year 2000 Worldwide Xilinx
Trade Show Schedules

Xilinx Trade Show Programs
Attend these events and see for yo u r s e l f
Xilinx technology at wo r k .

/company/tradeshows.htm

60

Device Selection Guide

Continued on page 62.

61

Go to the Xilinx web site to get the latest product information:

http://www.xilinx.com/products/products.htm

Device Selection Guide

ilinx offers a variety of development system

solutions, enabling the design and imple-

mentation of Xilinx Programmable Logic

devices. These development systems combine the

industry’s fastest place and route technology, with a

flexible and easy to use graphical interface to help you

achieve the best possible designs within your project

schedule, regardless of your experience level.

Xilinx Alliance Series Software
http://www.xilinx.com/products/alliance.htm

The Alliance Series development sys-

tems are designed for customers who have made an

investment in a customized EDA environment. The

Xilinx Alliance Series software integrates into these

environments by leveraging open systems standards,

interfaces, and formats such as EDIF, SDF, VHDL,

VITAL/Verilog, and STAMP. Combining the strengths

of our EDA partners’ tools with our advanced imple-

mentation features gives you the ultimate in flexibility

and design performance.

Xilinx Foundation Series Software
http://www.xilinx.com/products/found.htm

The Foundation Series development systems are

designed for customer’s who are interested in pur-

chasing a complete, ready-to-use design solution for

all of their programmable logic needs. Xilinx

Foundation Series solutions enable both new and

experienced programmable logic designers to achieve

handcrafted results automatically, through push-but-

ton design flows. Foundation Series solutions support

schematic-only, HDL-only, and mixed-level design

flows by seamlessly integrating some of the industry’s

best EDA tools.

ModelSim Xilinx Edition

http://www.xilinx.com/products/software/mxe.htm

The ModelSim Xilinx Edition (XE) simulator is a com-

plete HDL simulation environment, optimized for use

in verifying Xilinx programmable logic designs.

ModelSim XE enables designers to verify the source

code (VHDL and Verilog), as well as the functional

and timing models of their design using a common

“self-checking” testbench. ModelSim XE provides a

powerful first step into the world of HDL simulation

with capacity and performance designed for the verifi-

cation of the Xilinx XC9500 CPLD and Spartan series

FPGA devices as well as lower-density XC4000 and

Virtex series FPGAs.

ModelSim XE is most valuable for customers who

understand the benefits of VHDL or Verilog simula-

tion, and are looking for a cost-effective solution for

low-density programmable logic design. It is available

in both VHDL and Verilog versions. ModelSim XE may

only be used with Xilinx v2.1i development systems

and later. Xilinx sells the ModelSim XE products as

options to any of its development systems.

CPLD Web-powered Software Solutions

The Xilinx CPLD Web-powered Software Solutions

offer designers the flexibility to do CPLD design evalu-

ation and fitting on-line or on their desktop. The

WebFITTER is an on-line device fitting and evaluation

tool which accepts VHDL, Verilog, ABEL, or netlist

files. The WebPACK downloadable desktop solutions

offer free CPLD software modules from ABEL and HDL

synthesis to device fitting and JTAG programming.

WebFITTER
http://www.xilinx.com/sxpresso/webfitter.htm

The Xilinx WebFITTER is a free, Web-based CPLD

design evaluation and fitting software tool that allows

system designers to target their designs using the

industry’s best CPLDs, the XC9500 Series and the

CoolRunner Series, on the latest version of Xilinx soft-

ware and get their results and pricing in minutes.

WebPACK
http://www.xilinx.com/sxpresso/webpack.htm

The Xilinx WebPACK contains free downloadable soft-

ware solutions for Xilinx XC9500 and CoolRunner

Series CPLDs. Each solution provides a simple and

intuitive design environment for any Xilinx CPLD fam-

ily. The WebPACK is a collection of three design suites:

design entry, device fitting, and programming. These

tools can be downloaded and used individually or,

when installed together, become an integrated design

environment for Xilinx CPLDs.

62

Development

System Solutions

S o f t w a re - Availability Guide

63

2100 Logic Drive
San Jose, CA 95124-3450

First Class Presort

U.S. Postage

PAID

Permit No. 2196

San Jose, CA

Q100

	From the Editor
	Table of Contents
	The Programmable Logic Market Grew Significantly in 1999
	The New Spartan-II FPGA Family
	Spartan-II FPGA Family - The Programmable ASSP
	The Spartan-II Design Flow
	How to Create an MP3 Player Using Spartan-II FPGAs
	Inverse Multiplexing for ATM
	HDLC Controller Solutions Using Spartan-II FPGAs
	Low Power Benefits of the Spartan-XL Family
	The New XPLA3 CPLD Family
	CoolRunner Power Estimator Tool
	Implementing an I2C Bus Controller in a CoolRunner CPLD
	How to Create an MP3 Portable Player Using a CoolRunner CPLD
	Get the Best Registered I/O Timing with Virtex-E FPGAs
	Understanding Setup and Hold TImes One Key to Successfule Designs
	HDL Coding for Pseudo-Random Noise Generators
	Post Synthesis Verification for Virtex FPGAs
	Using the ModelSim FPGA Library Manager
	FPGA System Simulation and Synthesis
	Digittal Set-Top Boxes An Ideal Application for Spartan FPGAs
	Questions and Answers
	Xilinx Trade Show Programs
	Development System Solutions

