
VHDL Reference Guide Printed in U.S.A.

VHDL
Reference
Guide

Using Foundation Express
with VHDL

Design Descriptions

Data Types

Expressions

Sequential Statements

Concurrent Statements

Register and Three-State
Inference

Writing Circuit Descriptions

Foundation Express
Directives

Foundation Express
Packages

VHDL Constructs

Appendix A—Examples

VHDL Reference Guide
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

FPGA Architect, FPGA Foundry, NeoCAD, NeoCAD EPIC, NeoCAD PRISM, NeoROUTE, Timing Wizard, TRACE,
XACT, XILINX, XC2064, XC3090, XC4005, XC5210, and XC-DS501 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

All XC-prefix product designations, A.K.A. Speed, Alliance Series, AllianceCORE, BITA, CLC, Configurable Logic
Cell, CORE Generator, CoreGenerator, CoreLINX, Dual Block, EZTag, FastCLK, FastCONNECT, FastFLASH,
FastMap, Foundation, HardWire, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroVia, PLUSASM,
PowerGuide, PowerMaze, QPro, RealPCI, RealPCI 64/66, SelectI/O, Select-RAM, Select-RAM+, Smartguide,
Smart-IP, SmartSearch, Smartspec, SMARTSwitch, Spartan, TrueMap, UIM, VectorMaze, VersaBlock,
VersaRing, Virtex, WebLINX, XABEL, XACTstep, XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner,
XACT-Performance, XAM, XAPP, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, Xilinx Foundation
Series, XPP, XSI, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,357,153;
5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189;
5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719; 5,448,181; 5,448,493; 5,450,021;
5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414; 5,481,206; 5,483,478; 5,486,707;
5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,498,979; 5,498,989; 5,499,192; 5,500,608;
5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,506,518; 5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835;
5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322; 5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018;
5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751; 5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528;
5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199;
5,581,738; 5,583,450; 5,583,452; 5,592,105; 5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597;
5,608,342; 5,610,536; 5,610,790; 5,610,829; 5,612,633; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387;
5,627,480; 5,629,637; 5,629,886; 5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545;
5,646,547; 5,646,564; 5,646,903; 5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,656,950;
5,657,290; 5,659,484; 5,661,660; 5,661,685; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270;
5,675,589; 5,677,638; 5,682,107; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,056; 5,724,276;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,715,197;
5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234; 5,737,235;
5,737,631; 5,742,178; 5,742,531; 5,744,974; 5,744,979; 5,744,995; 5,748,942; 5,748,979; 5,752,006; 5,752,035;
5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076; 5,764,534; 5,764,564; 5,768,179;
5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240; 5,787,007; 5,789,938; 5,790,479;

R

Xilinx Development System

5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548; 5,811,985; 5,815,004; 5,815,016;
5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774; 5,825,202; 5,825,662; 5,825,787; 5,828,230;
5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845; 5,831,907; 5,835,402; 5,838,167; 5,838,901;
5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829; 5,844,844; 5,847,577; 5,847,579; 5,847,580;
5,847,993; 5,852,323; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S. and foreign patents pending. Xilinx,
Inc. does not represent that devices shown or products described herein are free from patent infringement or from
any other third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise
any user of this text of any correction if such be made. Xilinx, Inc. will not assume any liability for the accuracy or
correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-1999 Xilinx, Inc. All Rights Reserved.
VHDL Reference Guide

VHDL Reference Guide
Xilinx Development System

About This Manual

This manual describes how to use the Xilinx Foundation Express
program to compile VHDL designs.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx software tools. These operations are
covered in the Quick Start Guide.

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including read-
back, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm
VHDL Reference Guide v

VHDL Reference Guide
Manual Contents
This manual covers the following topics.

• Chapter 1, “Using Foundation Express with VHDL,” discusses
general concepts about VHDL and the Foundation Express
design process and methodology.

• Chapter 2, “Design Descriptions,” describes the use and impor-
tance of hierarchy in VHDL design entities.

• Chapter 3, “Data Types,” describes VHDL data types and their
uses.

• Chapter 4, “Expressions,” discusses individual components of
expressions and how to use them.

• Chapter 5, “Sequential Statements,” describes and illustrates the
various types of sequential statements.

• Chapter 6, “Concurrent Statements,” defines and illustrates
concurrent statements and their function.

• Chapter 7, “Register and Three-State Inference,” illustrates how
to write VHDL descriptions to produce efficient synthesized
circuits.

• Chapter 8, “Writing Circuit Descriptions,” describes how to write
a VHDL description to ensure an efficient implementation.

• Chapter 9, “Foundation Express Directives,” explains how to use
Foundation Express directives and Xilinx-defined VHDL
attributes to provide circuit design information directly into the
VHDL source code.

• Chapter 10, “Foundation Express Packages,” discusses the
contents of three VHDL packages included with this release that

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL
vi Xilinx Development System

are a combination of standard IEEE packages and Synopsys
packages that have been added to the standard IEEE package.

• Chapter 11, “VHDL Constructs,” provides a list of all VHDL
language constructs with the level of support for each one and a
list of VHDL reserved words.

• Appendix A, “Examples,” presents examples that demonstrate
basic concepts of Foundation Express.
VHDL Reference Guide vii

VHDL Reference Guide
viii Xilinx Development System

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.
VHDL Reference Guide ix

VHDL Reference Guide
• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

Online Document
The following conventions are used for online documents.

• Red-underlined text indicates an interbook link, which is a cross-
reference to another book. Click the red-underlined text to open
the specified cross-reference.

• Blue-underlined text indicates an intrabook link, which is a cross-
reference within a book. Click the blue-underlined text to open
the specified cross-reference.
x Xilinx Development System

Contents
About This Manual
Additional Resources ... v
Manual Contents .. vi

Conventions
Typographical... ix
Online Document ... x

Chapter 1 Using Foundation Express with VHDL

Hardware Description Languages.. 1-1
Typical Uses for HDLs .. 1-2
Advantages of HDLs ... 1-2

About VHDL ... 1-3
Foundation Express Design Process ... 1-5
Using Foundation Express to Compile a VHDL Design 1-6
Design Methodology .. 1-6

Chapter 2 Design Descriptions

Entities ... 2-1
Entity Generic Specifications .. 2-2
Entity Port Specifications .. 2-2

Architecture .. 2-3
Declarations .. 2-6

Components .. 2-6
Sources of Components ... 2-7
Consistency of Component Ports 2-7
Component Instantiation Statement 2-8
Mapping Generic Values .. 2-9
Mapping Port Connections ... 2-9
Concurrent Statements.. 2-11
VHDL Reference Guide xi

VHDL Reference Guide
Constant Declarations ... 2-11
Processes .. 2-12
Variable Declarations .. 2-13
Signal Declarations.. 2-13
Subprograms ... 2-14
Subprogram Declarations ... 2-15
Subprogram Body ... 2-17
Subprogram Overloading .. 2-18
Operator Overloading ... 2-19
Variable Declarations .. 2-20
Type Declarations.. 2-20
Subtype Declarations .. 2-21

Examples of Architectures for NAND2 Entity............................ 2-21
Configurations .. 2-22
Packages ... 2-22

Using a Package... 2-23
Package Structure .. 2-24
Package Declarations ... 2-24
Package Body... 2-25

Resolution Functions.. 2-26

Chapter 3 Data Types

Type Overview ... 3-2
Enumeration Types .. 3-2

Enumeration Overloading ... 3-3
Enumeration Encoding.. 3-3
Enumeration Encoding Values.. 3-5

Integer Types ... 3-6
Array Types.. 3-6

Constrained Array ... 3-7
Unconstrained Array ... 3-7
Array Attributes ... 3-8

Record Types... 3-9
Record Aggregates .. 3-10
Predefined VHDL Data Types.. 3-12

Data Type BOOLEAN... 3-13
Data Type BIT... 3-13
Data Type CHARACTER .. 3-13
Data Type INTEGER .. 3-13
Data Type NATURAL.. 3-14
Data Type POSITIVE.. 3-14
Data Type STRING... 3-14
xii Xilinx Development System

Contents
Data Type BIT_VECTOR.. 3-14
Unsupported Data Types ... 3-14

Physical Types.. 3-14
Floating-Point Types ... 3-14
Access Types.. 3-15
File Types ... 3-15

Express Data Types... 3-15
Subtypes .. 3-15

Chapter 4 Expressions

Overview .. 4-1
Operators ... 4-2

Logical Operators.. 4-3
Relational Operators ... 4-5
Adding Operators.. 4-7
Unary (Signed) Operators... 4-9
Multiplying Operators .. 4-10
Miscellaneous Arithmetic Operators ... 4-13

Operands ... 4-14
Operand Bit-Width .. 4-14
Computable Operands.. 4-15
Aggregates.. 4-17
Attributes... 4-18
Expressions .. 4-19
Function Calls ... 4-19
Identifiers .. 4-20
Indexed Names... 4-21
Literals .. 4-22

Numeric Literals... 4-22
Character Literals .. 4-23
Enumeration Literals.. 4-23
String Literals... 4-24

Qualified Expressions ... 4-25
Records and Fields ... 4-26
Slice Names.. 4-27

Limitations on Null Slices... 4-28
Limitations on Noncomputable Slices.................................. 4-29

Type Conversions ... 4-29

Chapter 5 Sequential Statements

Assignment Statements and Targets ... 5-1
VHDL Reference Guide xiii

VHDL Reference Guide
Simple Name Targets ... 5-2
Indexed Name Targets ... 5-3
Slice Targets ... 5-4
Field Targets ... 5-5
Aggregate Targets .. 5-6

Variable Assignment Statements ... 5-7
Signal Assignment Statements .. 5-8

Variable Assignment ... 5-8
Signal Assignment .. 5-8

if Statements .. 5-9
Evaluating Conditions ... 5-10
Using the if Statement to Infer Registers and Latches.............. 5-11

case Statements .. 5-11
Using Different Expression Types... 5-12
Invalid case Statements.. 5-14

loop Statements ... 5-15
Basic loop Statement .. 5-15
while...loop Statements... 5-16
for...loop Statements... 5-17

Steps in the Execution of a for...loop Statement.................. 5-18
for...loop Statements and Arrays ... 5-19

next Statements ... 5-20
exit Statements .. 5-23
Subprograms.. 5-24

Subprogram Always a Combinatorial Circuit 5-24
Subprogram Declaration and Body... 5-24
Subprogram Calls ... 5-26

Procedure Calls ... 5-27
Function Calls .. 5-29

return Statements... 5-30
Procedures and Functions as Design Components.................. 5-31
Example with Component Implication Directives 5-32
Example without Component Implication Directives 5-34

wait Statements.. 5-35
Inferring Synchronous Logic ... 5-36
Combinatorial Versus Sequential Processes............................ 5-39

null Statements .. 5-41

Chapter 6 Concurrent Statements

Overview .. 6-1
process Statements ... 6-2

Combinatorial Process Example... 6-4
xiv Xilinx Development System

Contents
Sequential Process Example .. 6-5
Driving Signals .. 6-7

block Statements.. 6-8
Nested Blocks ... 6-9
Guarded Blocks .. 6-10

Concurrent Versions of Sequential Statements 6-11
Concurrent Procedure Calls.. 6-11
Concurrent Signal Assignments.. 6-13

Simple Concurrent Signal Assignments 6-14
Conditional Signal Assignments .. 6-14
Selected Signal Assignments .. 6-15

Component Instantiation Statements ... 6-17
Direct Instantiation ... 6-19
generate Statements.. 6-20

for...generate Statements ... 6-20
Steps in the Execution of a for...generate Statement 6-21
Common Usage of a for...generate Statement 6-22

if...generate Statements.. 6-24

Chapter 7 Register and Three-State Inference

Register Inference.. 7-1
The Inference Report .. 7-1
Latch Inference Warnings ... 7-2
Controlling Register Inference .. 7-3
Inferring Latches ... 7-5

Inferring Set/Reset (SR) Latches... 7-5
Inferring D Latches .. 7-7
Simple D Latch ... 7-8
D Latch with Asynchronous Set .. 7-9
D Latch with Asynchronous Reset 7-10
D Latch with Asynchronous Set and Reset 7-12
Understanding the Limitations of D Latch Inference 7-13
Inferring Master-Slave Latches.. 7-14

Inferring Flip-Flops .. 7-15
Inferring D Flip-Flops ... 7-16
Positive Edge-Triggered D Flip-Flop 7-17
Positive Edge-Triggered D Flip-Flop Using rising_edge 7-18
Negative Edge-Triggered D Flip-Flop 7-20
Negative Edge-Triggered D Flip-Flop Using falling_edge .. 7-21
D Flip-Flop with Asynchronous Set 7-22
D Flip-Flop with Asynchronous Reset 7-23
D Flip-Flop with Asynchronous Set and Reset 7-24
VHDL Reference Guide xv

VHDL Reference Guide
D Flip-Flop with Synchronous Set or Reset 7-26
D Flip-Flop with Synchronous Set 7-26
D Flip-Flop with Synchronous Reset 7-27
D Flip-Flop with Synchronous and Asynchronous Load 7-29
Multiple Flip-Flops with Asynchronous and Synchronous Controls
7-30
Inferring JK Flip-Flops.. 7-32
JK Flip-Flop ... 7-33
JK Flip-Flop With Asynchronous Set and Reset 7-34
Inferring Toggle Flip-Flops... 7-36
Toggle Flip-Flop With Asynchronous Set 7-36
Toggle Flip-Flop With Asynchronous Reset 7-38
Toggle Flip-Flop With Enable and Asynchronous Reset 7-39
Getting the Best Results .. 7-40
Minimizing Flip-Flop Count ... 7-40
Circuit Description Inferring Too Many Flip-Flops 7-40
Circuit Description Inferring Correct Number of Flip-Flops . 7-42
Correlating Synthesis Results with Simulation Results 7-44

Understanding Limitations of Register Inference 7-45
Three-State Inference .. 7-46

Reporting Three-State Inference .. 7-46
Controlling Three-State Inference... 7-46
Inferring Three-State Drivers .. 7-46

Inferring a Simple Three-State Driver 7-47
Inferring One Three-State Driver from a Single Process 7-48
Inferring Three-State Drivers from Separate Processes 7-49
Three-State Driver with Registered Enable 7-51
Three-State Driver Without Registered Enable 7-52

Understanding the Limitations of Three-State Inference 7-54

Chapter 8 Writing Circuit Descriptions

How Statements Are Mapped to Logic... 8-1
Design Structure ... 8-2
Adding Structure ... 8-2

Using Variables and Signals.. 8-2
Using Parentheses .. 8-4

Using Design Knowledge.. 8-5
Optimizing Arithmetic Expressions ... 8-5

Arranging Expression Trees for Minimum Delay 8-5
Considering Signal Arrival Times .. 8-6
Using Parentheses ... 8-7
Considering Overflow Characteristics 8-8
xvi Xilinx Development System

Contents
Sharing Common Subexpressions 8-9
Changing an Operator Bit-Width... 8-11
Using State Information .. 8-13
Propagating Constants ... 8-17
Sharing Complex Operators ... 8-17

Asynchronous Designs .. 8-18
Don’t Care Inference .. 8-24

Using Don’t Care Default Values .. 8-26
Differences Between Simulation and Synthesis 8-27

Synthesis Issues .. 8-28
Feedback Paths and Latches ... 8-28

Fully Specified Variables ... 8-28
Asynchronous Behavior... 8-30

Understanding Superset Issues and Error Checking................ 8-30

Chapter 9 Foundation Express Directives

Notation for Foundation Express Directives................................... 9-1
Foundation Express Directives .. 9-2

Translation Stop and Start Pragma Directives.......................... 9-2
synthesis_off and synthesis_on Directives 9-2
Resolution Function Directives ... 9-3
Component Implication Directives .. 9-4

Chapter 10 Foundation Express Packages

std_logic_1164 Package .. 10-1
std_logic_arith Package ... 10-2

Using the Package.. 10-3
Modifying the Package.. 10-3
Data Types.. 10-4

UNSIGNED.. 10-4
SIGNED ... 10-5

Conversion Functions ... 10-6
Arithmetic Functions ... 10-7

Example 10-1: Binary Arithmetic Functions......................... 10-8
Example 10-2: Unary Arithmetic Functions 10-9

Comparison Functions .. 10-10
Example 10-3: Ordering Functions 10-11
Example 10-4: Equality Functions 10-11

Shift Functions .. 10-12
Multiplication Using Shifts ... 10-13

ENUM_ENCODING Attribute.. 10-13
VHDL Reference Guide xvii

VHDL Reference Guide
pragma built_in ... 10-13
Two-Argument Logic Functions ... 10-14
One-Argument Logic Functions ... 10-15
Type Conversion.. 10-16

numeric_std Package... 10-16
Understanding the Limitations of numeric_std package 10-16
Using the Package.. 10-17
Data Types.. 10-17
Conversion Functions ... 10-17
Resize Function .. 10-18
Arithmetic Functions ... 10-18
Comparison Functions .. 10-19
Defining Logical Operators Functions....................................... 10-20
Shift Functions .. 10-21
Rotate Functions... 10-21
Shift and Rotate Operators ... 10-22

std_logic_misc Package... 10-23
ATTRIBUTES Package.. 10-24

Chapter 11 VHDL Constructs

VHDL Construct Support.. 11-1
Design Units.. 11-2
Data Types.. 11-3
Declarations .. 11-4
Specifications.. 11-5
Names... 11-5
Identifiers and Extended Identifiers... 11-6

Specifics of Identifiers.. 11-6
Specifics of Extended Identifiers.. 11-6

Operators .. 11-7
Shift and Rotate Operators .. 11-7
xnor Operator... 11-9

Operands and Expressions... 11-9
Sequential Statements.. 11-10
Concurrent Statements ... 11-11
Predefined Language Environment .. 11-12

VHDL Reserved Words.. 11-14

Appendix A Examples
Moore Machine .. 17
Mealy Machine ... 20
Read-Only Memory .. 23
xviii Xilinx Development System

Contents
Waveform Generator.. 25
Smart Waveform Generator ... 27
Definable-Width Adder-Subtracter ... 30
Count Zeros—Combinatorial Version .. 32
Count Zeros—Sequential Version.. 34
Soft Drink Machine—State Machine Version 36
Soft Drink Machine—Count Nickels Version.................................. 40
Carry-Lookahead Adder... 42

Carry Value Computations.. 43
Implementation ... 49

Serial-to-Parallel Converter—Counting Bits................................... 50
Input Format.. 51
Implementation Details ... 52

Serial-to-Parallel Converter—Shifting Bits 56
Programmable Logic Arrays... 60
VHDL Reference Guide xix

VHDL Reference Guide
xx Xilinx Development System

Chapter 1

Using Foundation Express with VHDL

Foundation Express translates a VHDL description to an internal
gate-level equivalent format. This format is then optimized for a
given FPGA technology.

This chapter discusses concepts that you need to work with VHDL.
These concepts are covered in the following sections.

• “Hardware Description Languages”

• “About VHDL”

• “Foundation Express Design Process”

• “Using Foundation Express to Compile a VHDL Design”

• “Design Methodology”

The United States Department of Defense, as part of its Very High
Speed Integrated Circuit (VHSIC) program, developed VHSIC HDL
(VHDL) in 1982. VHDL describes the behavior, function, inputs, and
outputs of a digital circuit design. VHDL is similar in style and
syntax to modern programing languages, but includes many hard-
ware-specific constructs.

Foundation Express reads and parses the supported VHDL syntax.
The “VHDL Constructs” chapter lists all VHDL constructs and
includes the level of support provided for each construct.

Hardware Description Languages
Hardware description languages (HDLs) are used to describe the
architecture and behavior of discrete electronic systems.

HDLs were developed to deal with increasingly complex designs. An
analogy is often made to the development of software description
VHDL Reference Guide 1-1

VHDL Reference Guide
languages; from machine code (transistors and solder) to assembly
language (netlists) to high-level languages (HDLs).

Top-down, HDL-based system design is most useful in large projects,
where several designers or teams of designers are working concur-
rently. HDLs provide structured development. After major architec-
tural decisions have been made and major components and their
connections have been identified, work can proceed independently
on subprojects.

Typical Uses for HDLs
HDLs typically support a mixed-level description, where structural
or netlist constructs can be mixed with behavioral or algorithmic
descriptions. With this mixed-level capability, you can describe
system architectures at a high level of abstraction; then incrementally
refine a design into a particular component-level or gate-level imple-
mentation. Alternatively, you can read an HDL design description
into Foundation Express, then direct the compiler to synthesize a
gate-level implementation automatically.

Advantages of HDLs
A design methodology that uses HDLs has several fundamental
advantages over a traditional gate-level design methodology. Some
of the advantages are listed below.

• You can verify design functionality early in the design process
and immediately simulate a design written as an HDL descrip-
tion.

Design simulation at this higher level, before implementation at
the gate level, allows you to test architectural and design deci-
sions.

• Foundation Express synthesizes and optimizes logic so you can
automatically convert a VHDL description to a gate-level imple-
mentation in a given technology.

This methodology eliminates the former gate-level design bottle-
neck and reduces circuit design time and errors introduced when
a VHDL specification is hand-translated to gates. With Founda-
tion Express logic optimization, you can automatically transform
a synthesized design to a smaller and faster circuit. You can
apply information gained from the synthesized and optimized
1-2 Xilinx Development System

Using Foundation Express with VHDL
circuits back to the VHDL description, perhaps to fine-tune archi-
tectural decisions.

• HDL descriptions supply technology-independent documenta-
tion of a design and its functionality.

An HDL description is more easily read and understood than a
netlist or schematic description. Because the initial HDL design
description is technology-independent, you can later reuse it to
generate the design in a different technology, without having to
translate from the original technology.

• VHDL, like most high-level software languages, provides strong
type checking.

A component that expects a four-bit-wide signal type cannot be
connected to a three- or five-bit-wide signal; this mismatch
causes an error when the HDL description is compiled. If a vari-
able’s range is defined as 1 to 15, an error results from assigning
it a value of 0. Incorrectly using types is a major source of errors
in descriptions. Type checking catches this kind of error in the
HDL description even before a design is generated.

About VHDL
VHDL is one of a few HDLs in widespread use today. VHDL is
recognized as a standard HDL by the Institute of Electrical and Elec-
tronics Engineers (IEEE Standard 1076, ratified in 1987) and by the
United States Department of Defense (MIL-STD-454L).

VHDL divides entities (components, circuits, or systems) into an
external or visible part (entity name and connections) and an internal
or hidden part (entity algorithm and implementation). After you
define the external interface to an entity, other entities can use that
entity when they all are being developed. This concept of internal
and external views is central to a VHDL view of system design. An
entity is defined, relative to other entities, by its connections and
behavior. You can explore alternate implementations (architectures)
of an entity without changing the rest of the design.

After you define an entity for one design, you can reuse it in other
designs as needed. You can develop libraries of entities to use with
many designs or a family of designs.

A VHDL hardware model is shown in the following figure.
VHDL Reference Guide 1-3

VHDL Reference Guide
Figure 1-1 VHDL Hardware Model

A VHDL entity (design) has one or more input, output, or inout ports
that are connected (wired) to neighboring systems. An entity is
composed of interconnected entities, processes, and components, all
which operate concurrently. Each entity is defined by a particular
architecture, which is composed of VHDL constructs such as arith-
metic, signal assignment, or component instantiation statements.

In VHDL, independent processes model sequential (clocked) circuits,
using flip-flops and latches, and combinatorial (unclocked) circuits,
using only logic gates. Processes can define and call (instantiate)
subprograms (subdesigns). Processes communicate with each other by
signals (wires).

A signal has a source (driver), one or more destinations (receivers),
and a user-defined type, such as “color” or “number between 0 and
15.”

X8652

ENTITY

ARCHITECTURE

Process

Ports

Sequential
Process

wait ... ;
if A
then X
else Y
end if;

Process

red,blue

(Signals)

0 to 15

Component

Combinational
Process

X and (Y xor Z);

Subprogram
1-4 Xilinx Development System

Using Foundation Express with VHDL
VHDL provides a broad set of constructs. With VHDL, you can
describe discrete electronic systems of varying complexity (systems,
boards, chips, or modules) with varying levels of abstraction.

VHDL language constructs are divided into three categories by their
level of abstraction: behavioral, dataflow, and structural. These catego-
ries are described as follows.

• Behavioral
The functional or algorithmic aspects of a design, expressed in a
sequential VHDL process

• Dataflow
The view of data as flowing through a design, from input to
output
An operation is defined in terms of a collection of data transfor-
mations, expressed as concurrent statements.

• Structural
The view closest to hardware; a model where the components of
a design are interconnected
This view is expressed by component instantiations.

Foundation Express Design Process
Foundation Express performs three functions.

• Translates VHDL to an internal format

• Optimizes the block-level representation through various optimi-
zation methods

• Maps the design’s logical structure for a specific Xilinx tech-
nology library

Foundation Express synthesizes VHDL descriptions according to the
VHDL synthesis policy defined in the “Design Descriptions” chapter.
The Xilinx VHDL synthesis policy has three parts; design method-
ology, design style, and language constructs. You use the VHDL
synthesis policy to produce high quality VHDL-based designs.
VHDL Reference Guide 1-5

VHDL Reference Guide
Using Foundation Express to Compile a VHDL
Design

When a VHDL design is read into Foundation Express, the design is
converted to an internal database format so that Foundation Express
can synthesize and optimize the design. Foundation Express restruc-
tures part or all of the design to optimize it. You control the degree of
restructuring. Foundation Express includes the following restruc-
turing options.

• Fully preserves a design’s hierarchy

• Moves full modules up or down in the hierarchy

• Combines certain modules with others

• Compresses the entire design into one module (called flattening
the design)

The “Design Methodology” section describes the design process that
uses Foundation Express with a VHDL simulator.

Design Methodology
The following figure shows a typical design process that uses Foun-
dation Express and a VHDL simulator.
1-6 Xilinx Development System

Using Foundation Express with VHDL
Figure 1-2 Design Flow

The numbers in the above figure are explained below.

1. Write a design description in VHDL.

This description can be a combination of structural and func-
tional elements (as shown in the “Design Descriptions” chapter).
Both Foundation Express and a VHDL simulator use this design
description.

2. Provide VHDL test drivers for the simulator.

X8631

1

2

4

Compare Outputs

5

63

7

Foundation Express

Foundation
Implementation Tools

VHDL SimulatorVHDL Simulator

VHDL
Description

VHDL
Test Drivers

Simulation
Output

Simulation
Output
VHDL Reference Guide 1-7

VHDL Reference Guide
The drivers supply test vectors for simulation and gather output
data. To learn about writing these drivers, see the appropriate
simulator manual.

3. Simulate the design by using a VHDL simulator and verify that
the description is correct.

4. Using Foundation Express, synthesize and optimize the VHDL
design descriptions into a gate-level netlist.

Foundation Express generates optimized netlists to satisfy timing
constraints for a targeted FPGA architecture.

5. Using your Foundation development system, link the FPGA
technology-specific version of the design to the VHDL simulator.

The development system includes simulation models and inter-
faces required for the design flow.

6. Simulate the technology-specific version of the design with the
VHDL simulator.

You can use the original VHDL simulation drivers from Step 2,
because module and port definitions are preserved through the
translation and optimization processes.

7. Compare the output of the gate-level simulation (Step 6) against
the output of the original VHDL description simulation (Step 3)
to verify that the implementation is correct.
1-8 Xilinx Development System

Chapter 2

Design Descriptions

Each VHDL structural design can have four parts, which this chapter
discusses in the following major sections.

• “Entities”

• “Architecture”

• “Configurations”

• “Packages”

• “Resolution Functions”

Entities
An entity defines the input and output ports of a design. A design
can contain more than one entity. Each entity has its own architecture
statement.

The syntax follows.

entity entity_name is [generic generic_declarations);]
 [port (port_declarations) ;]
end [entity_name] ;

• entity_name is the name of the entity.

• generic_declarations determine local constants used for sizing or
timing the entity.

• port_declarations determine the number and type of input and
output ports.

You cannot use the declaration of other in the entity specification.

An entity serves as an interface to other designs, by defining entity
characteristics that must be known to Foundation Express before it
can connect the entity to other entities and components.
VHDL Reference Guide 2-1

VHDL Reference Guide
For example, before you can connect a counter to other entities, you
must specify the number and types of its input and output ports, as
shown in the following example.

entity NAND2 is
 port(A, B: in BIT; -- Two inputs, A and B
 Z: out BIT); -- One output, Z = (A and B)’
end NAND2;

Entity Generic Specifications
Generic specifications are entity parameters. Generics can specify the
bit-widths of components—such as adders—or can provide internal
timing values.

A generic can have a default value. It receives a nondefault value
only when the entity is instantiated (see the “Declarations” section of
this chapter) or configured (see the “Configurations” section of this
chapter). Inside an entity, a generic is a constant value.

The syntax follows.

generic(
constant_name : type [:= value]
 { ; constant_name : type [:= value] }
);

• constant_name is the name of a generic constant.

• type is a previously defined data type.

• Optional value is the default value of constant_name.

Entity Port Specifications
Port specifications define the number and type of ports in the entity.
The syntax follows.

port(
port_name : mode port_type
 { ; port_name : mode port_type}
);

• port_name is the name of the port.

• mode is any of these four values.

• in can only be read.
2-2 Xilinx Development System

Design Descriptions
• out can only be assigned a value.

• inout can be read and assigned a value. The value read is that
of the port’s incoming value, not the assigned value (if any).

• buffer is similar to out but can be read. The value read is the
assigned value. It can have only one driver. For more infor-
mation about drivers, see “Driving Signals.”

• port_type is a previously defined data type.

The following example shows an entity specification for a 2-input N-
bit comparator with a default bit-width of 8.

-- Define an entity (design) called COMP
-- that has 2 N-bit inputs and one output.

entity COMP is
 generic(N: INTEGER := 8); -- default is 8 bits

port(X, Y: in BIT_VECTOR(0 to N-1);
 EQUAL: out BOOLEAN);
end COMP;

Architecture
Architecture, which determines the implementation of an entity, can
range in abstraction from an algorithm (a set of sequential statements
within a process) to a structural netlist (a set of component instantia-
tions).

The syntax follows.

architecture architecture_name of entity_name is
 { block_declarative_item }
begin
 { concurrent_statement }
end [architecture_name] ;

• architecture_name is the name of the architecture.

• entity_name is the name of the entity being implemented.

• block_declarative_item is any of the following statements.

• use statement (See the “Type Declarations” section of this
chapter.)

• Subprogram Declarations
VHDL Reference Guide 2-3

VHDL Reference Guide
• Subprogram Body

• Type Declarations

• Subtype Declarations

• Constant Declarations

• Signal Declarations

• Concurrent Statements
Define a unit of computation that reads signals, performs
computations, and assigns values to signals

The following example shows a description for a 3-bit counter that
contains an entity specification and an architecture statement.

• Entity specification for COUNTER3

• Architecture statement, MY_ARCH

entity COUNTER3 is
port (CLK : in bit;
 RESET: in bit;
 COUNT: out integer range 0 to 7);
end COUNTER3;
architecture MY_ARCH of COUNTER3 is
signal COUNT_tmp : integer range 0 to 7;

begin
 process
 begin
 wait until (CLK’event and CLK = ’1’);
 -- wait for the clock
 if RESET = ’1’ or COUNT_tmp = 7 then
 -- Check for RESET or max. count
 COUNT_tmp <= 0;
 else COUNT_tmp <= COUNT_tmp + 1;
 -- Keep counting
 end if;
 end process;
 COUNT <= COUNT_tmp;
end MY_ARCH;

The following figure shows a schematic of the previous example.
2-4 Xilinx Development System

Design Descriptions
Figure 2-1 3-Bit Counter Synthesized Circuit

Note: In an architecture, you must not give constants or signals the
same name as any of the entity’s ports in the entity specification.

If you declare a constant or signal with a port’s name, the new decla-
ration hides that port name. If the new declaration lies directly in the
architecture declaration (as shown in the following example) and not
in an inner block, Foundation Express reports an error.

entity X is
 port(SIG, CONST: in BIT;
 OUT1, OUT2: out BIT);
end X;

architecture EXAMPLE of X is
 signal SIG : BIT;
 constant CONST: BIT := ’1’;
begin
...
end EXAMPLE;

X8665

COUNT

COUNT

COUNT

FD1

FD1

FD1

CLK

RESET

NR2

NR2

NR2

OR2

NR2

MUX21H

MUX21H
VHDL Reference Guide 2-5

VHDL Reference Guide
The error messages generated for the previous example follow.

 signal SIG : BIT;
 ^
Error: (VHDL-1872) line 13
 Illegal redeclaration of SIG.

constant CONST: BIT := ’1’;
 ^
Error: (VHDL-1872) line 14
 Illegal redeclaration of CONST.

Declarations
An architecture consists of a declaration section where you declare
the following.

• Components

• Concurrent Statements

• Constant Declarations

• Processes

• Signal Declarations

• Subprograms

• Type Declarations

Components

If your design consists only of VHDL entity statements, every compo-
nent declaration in the architecture or package statement has to corre-
spond to an entity.

Components declared in an architecture are local to that architecture.

The syntax follows.

component identifier
 [generic(generic_declarations);]
 [port(port_declarations);]
end component ;

• identifier is the name of the component.

You cannot use names preceded by GTECH_ for components
other than ones provided by Foundation Express. However, you
2-6 Xilinx Development System

Design Descriptions
can use GTECH to precede a name if it is used without an under-
score, as in GTECHBUSTBUF.

• generic_declaration determines local constants used for sizing or
timing the component.

• port_declartion determines the number and type of input and
output ports.

The following example shows a simple component declaration state-
ment.

component AND2
 port(I1, I2: in BIT;
 O1: out BIT);
end component;

The following example shows a component declaration statement
that uses a generic parameter.

component ADD
 generic(N: POSITIVE);

port(X, Y: in BIT_VECTOR(N-1 downto 0);
 Z: out BIT_VECTOR(N-1 downto 0);
 CARRY: out BIT);
end component;

The component declaration makes a design entity (AND2 in the
example of the 2-input AND gate and ADD in the example of the N-
bit adder) usable within an architecture. You must declare a compo-
nent in an architecture or package before you can instantiate it.

Sources of Components A declared component can come from
the following.

• The same VHDL source file

• A different VHDL source file

• Another format, such as EDIF or XNF.

• A component from a technology library

Consistency of Component Ports Foundation Express checks for
consistency among its VHDL entities. For other entities, the port
names are taken from the original design description as follows.

• For components in a technology library, the port names are the
input and output pin names.
VHDL Reference Guide 2-7

VHDL Reference Guide
• For EDIF designs, the port names are the EDIF port names.

The bit widths of each port must also match.

• For a VHDL component, Foundation Express verifies matching.

• For components from other sources, Foundation Express checks
when linking the component to the VHDL description.

Component Instantiation Statement You use a component
instantiation statement to define a design hierarchy or build a netlist
in VHDL. A netlist is a structural description of a design.

To form a netlist, use component instantiation statements to instan-
tiate and connect components. A component instantiation statement
creates a new level of design hierarchy.

The syntax of the component instantiation statement follows.

instance_name : component_name
[generic map (

generic_name => expression
{ , generic_name => expression }

)]
port map (

[port_name =>] expression
{ , [port_name =>] expression }

);

• instance_name is the name of this instance of component type
component_name as in the following.

U1 : ADD

• generic map (optional) maps nondefault values to generics. Each
generic_name is the name of a generic, exactly as declared in the
corresponding component declaration statement. Each expres-
sion evaluates to an appropriate value.

U1 : ADD generic map (N => 4)

• port map maps the component’s ports to connections. Each
port_name is the name of a port, exactly as declared in the corre-
sponding component declaration statement. Each expression
evaluates to a signal value.

U1 : ADD generic map (N => 4)
port map (X, Y, Z, CARRY) ;
2-8 Xilinx Development System

Design Descriptions
Foundation Express uses the following two rules to select which
entity and architecture to associate with a component instantiation.

• Each component declaration must have an entity—a VHDL
entity, a design entity from another source or format, or a library
component—with the same name. This entity is used for each
component instantiation associated with the component declara-
tion.

• A VHDL entity may have only one architecture associated with
it. If multiple architectures are available, add only one of these
files to the Design Sources window.

Mapping Generic Values When you instantiate a component with
generics, you can map generics to values. A generic without a default
value must be instantiated with a generic map value.

For example, a four-bit instantiation of the component ADD in the
following example might use the following generic map.

U1: ADD generic map (N => 4)
 port map (X, Y, Z, CARRY...);

Mapping Port Connections The port map maps component ports
to actual signals.

Use named or positional association to specify port connections in
component instantiation statements, as follows.

• To identify the specific ports of the component, use named asso-
ciation. The port_name => construction identifies the ports.

• To list the component port expressions in the declared port order,
use positional association.

The first example that follows shows named and positional associa-
tion for the U5 component instantiation statement in the second
example.

EU5: or2 port map (O => n6, I1 => n3, I2 => n1);
 -- Named association

U5: or2 port map (n3, n1, n6);
 -- Positional association

Note: When you use positional association, the instantiated port
expressions (signals) must be in the same order as the ports in the
component declaration statement.
VHDL Reference Guide 2-9

VHDL Reference Guide
The following example shows a structural netlist description for the
COUNTER3 design entity.

architecture STRUCTURE of COUNTER3 is
 component DFF
 port(CLK, DATA: in BIT;
 Q: out BIT);
 end component;
 component AND2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component OR2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component NAND2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component XNOR2
 port(I1, I2: in BIT;
 O: out BIT);
 end component;
 component INV
 port(I: in BIT;
 O: out BIT);
 end component;

 signal N1, N2, N3, N4, N5, N6, N7, N8, N9: BIT;

begin
 u1: DFF port map(CLK, N1, N2);
 u2: DFF port map(CLK, N5, N3);
 u3: DFF port map(CLK, N9, N4);
 u4: INV port map(N2, N1);
 u5: OR2 port map(N3, N1, N6);
 u6: NAND2 port map(N1, N3, N7);
 u7: NAND2 port map(N6, N7, N5);
 u8: XNOR2 port map(N8, N4, N9);
 u9: NAND2 port map(N2, N3, N8);
 COUNT(0) <= N2;
 COUNT(1) <= N3;
 COUNT(2) <= N4;
end STRUCTURE;
2-10 Xilinx Development System

Design Descriptions
Concurrent Statements

Each concurrent statement in an architecture defines a unit of compu-
tation that does the following.

• Reads signals

• Performs a computation that is based on the values of the signals

• Assigns the computed values to the signals

Concurrent statements all compute their values at the same time.
Although the order of concurrent statements has no effect on the
order in which Foundation Express executes them, concurrent state-
ments coordinate their processing by communicating with each other
through signals.

The five kinds of concurrent statements follow.

• Block

Groups a set of concurrent statements.

• Component instantiation

Creates an instance of an entity, connecting its interface ports to
signals or interface ports of the entity being defined. See the
“Component Instantiation Statement” section of this chapter.

• Procedure call

Calls algorithms that compute and assign values to signals.

• Process

Defines sequential algorithms that read the values of signals and
compute new values to assign to other signals. For a discussion of
processes, see the “Declarations” section.

• Signal assignments

Assign computed values to signals or interface ports.

Concurrent statements are described further in the “Concurrent
Statements” chapter.

Constant Declarations

Constant declarations create named values of a given type. The value
of a constant can be read but not changed.
VHDL Reference Guide 2-11

VHDL Reference Guide
Constant declarations are allowed in architectures, packages, entities,
blocks, processes, and subprograms. Constants declared in an archi-
tecture are local to that architecture. An example of constant declara-
tions follows.

constant WIDTH: INTEGER := 8;
constant X : NEW_BIT := ’X’;

You can use constants in expressions, as described in the “Identifiers”
section and“Literals” section of the “Expressions” chapter and as
source values in assignment statements, as described in the “Assign-
ment Statements and Targets” section of the “Sequential Statements”
chapter.

Processes

A process, which is declared within an architecture, is a concurrent
statement. But it is made up of sequentially executed statements that
define algorithms. The sequential statements can be any of the
following, all of which are discussed in the “Sequential Statements”
chapter.

• case statement

• exit statement

• if statement

• loop statement

• next statement

• null statement

• Procedure call

• Signal assignment

• Variable assignment

• wait statement

Processes, like all other concurrent statements, read and write signals
and the values of interface ports to communicate with the rest of the
architecture and with the enclosing system.

Processes are unique in that they behave like concurrent statements
to the rest of the design, but they are internally sequential. In addi-
2-12 Xilinx Development System

Design Descriptions
tion, only processes can define variables to hold intermediate values
in a sequence of computations.

Because the statements in a process are sequentially executed, several
constructs are provided to control the order of execution, such as if
and loop statements.

Variable Declarations Variable declarations define a named value
of a given type. An example of variable declarations follows.

variable A, B: BIT;
variable INIT: NEW_BIT;

You can use variables in expressions, as described in the “Expres-
sions” chapter. You assign values to variables by using variable
assignment statements, as described in the “Variable Assignment
Statements” section of the “Sequential Statements” chapter.

Foundation Express does not support variable initialization. If you
try to initialize a variable, Foundation Express generates the
following message.

Warning: Initial values for signals are not supported
for synthesis. They are ignored on line %n (VHDL-2022)

Note: Variables are declared and used only in processes and subpro-
grams, because processes and subprograms cannot declare signals for
internal use.

Signal Declarations

Signals connect the separate concurrent statements of an architecture
to each other, and to other parts of a design, through interface ports.

Signal declarations create new named signals (wires) of a given type.
Signals can be given default (initial) values, but these initial values
are ignored for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have
associated resolution functions, as described in the “Package Body”
section. An example of signal declarations follows.

signal A, B: BIT;
signal INIT: INTEGER := -1;

Note: Ports are also signals, with the restriction that out ports cannot
be read, and in ports cannot be assigned a value. You create signals
VHDL Reference Guide 2-13

VHDL Reference Guide
either with port declarations or with signal declarations. You create
ports only with port declarations.

You can declare signals in architectures, entities, and blocks, and use
them in processes and subprograms. Processes and subprograms
cannot declare signals for internal use.

You can use signals in expressions, as described in the “Sequential
Statements” chapter. Signals are assigned values by signal assign-
ment statements, as described in the “Signal Assignment Statements”
section of the “Sequential Statements” chapter.

Subprograms

Subprograms use sequential statements to define algorithms and are
useful for performing repeated calculations, often in different parts of
an architecture. (See the “Subprograms” section of the “Sequential
Statements” chapter.) Subprograms declared in an architecture are
local to that architecture.

Subprograms differ from processes in that subprograms cannot
directly read or write signals from the rest of the architecture. All
communication is through the subprogram’s interface. Each subpro-
gram call has its own set of interface signals.

Signal declarations create new named signals (wires) of a given type.
Signals can be given default (initial) values, but these initial values
are ignored for synthesis.

Signals with multiple drivers (signals driven by wired logic) can have
associated resolution functions, as described in the “Resolution Func-
tions” section of this chapter..

Subprograms also differ from component instantiation statements, in
that the use of a subprogram by an entity or another subprogram
does not create a new level of design hierarchy.

There are two types of subprograms, which can have zero or more
parameters.

• Procedure Subprogram
A procedure returns zero or more values through its interface.

• Function Subprogram
A function returns a single value directly.

A subprogram has two parts.
2-14 Xilinx Development System

Design Descriptions
• Declaration

• Body

Note: When you declare a subprogram in a package, the subprogram
declaration must be in the package declaration and the subprogram
body must be in the package body.

When you declare a subprogram in an architecture, the program
body must be in the architecture body but there is no corresponding
subprogram declaration.

Subprogram Declarations A subprogram declaration lists the
names and types of its parameters and, for functions, the type of the
subprogram’s return value.

Procedure Declaration Syntax

The syntax of a procedure declaration follows.

procedure proc_name [(parameter_declarations)];

• proc_name is the name of the procedure.

• parameter_declarations specify the number and type of input
and output ports. The syntax follows.

[parameter_name : mode parameter_type
 { ; parameter_name : mode parameter_type}]

• parameter_name is the name of a parameter.

• mode is procedure parameters that can be any of the
following four modes.

in can only be read

out can only be assigned a value.

inout can be read and assigned a value. The value read is that
of the port’s incoming value, not the assigned value (if any).

buffer is similar to out but can be read. The value read is the
assigned value. A buffer can have only one driver. For more
information about drivers, see the “Driving Signals” section
of the “Concurrent Statements” chapter.

• parameter_type is a previously defined data type.

Function Declaration Syntax
VHDL Reference Guide 2-15

VHDL Reference Guide
The syntax of a function declaration follows.

function func_name [(parameter_declarations)]
return type_name ;

• func_name is the name of the function

• type_name is the type of the function’s returned value. Signal
parameters of type range cannot be passed to a subprogram.

• parameter_declarations specify the number and type of input
and output ports. The syntax follows.

[parameter_name : mode parameter_type
{ ; parameter_name : mode parameter_type}]

• parameter_name is the name of a parameter.

• mode: Function parameters can only use the in mode.

in can only be read.

• parameter_type is a previously defined data type.

Declaration Examples

The following example shows sample subprogram declarations for a
function and a procedure.

type BYTE is array (7 downto 0) of BIT;
type NIBBLE is array (3 downto 0) of BIT;

function IS_EVEN(NUM: in INTEGER) return BOOLEAN;
 -- Returns TRUE if NUM is even.

procedure BYTE_TO_NIBBLES(B: in BYTE;
 UPPER, LOWER: out NIBBLE);
 -- Splits a BYTE into UPPER and LOWER halves.

When Foundation Express calls a subprogram, it substitutes actual
parameters for the declared formal parameters. Actual parameters
are the following.

• Constant values

• Names of signals, variables, constants, or ports

An actual parameter must support the formal parameter’s type and
mode. For example, Foundation Express does not accept an input
port as an out parameter and uses a constant only as an in actual
parameter.
2-16 Xilinx Development System

Design Descriptions
The following example shows some calls to the subprogram declara-
tions from the example above.

signal INT : INTEGER;
variable EVEN : BOOLEAN;
. . .
INT <= 7;
EVEN := IS_EVEN(INT);
. . .

variable TOP, BOT: NIBBLE;
. . .
BYTE_TO_NIBBLES("00101101", TOP, BOT);

Subprogram Body A subprogram body defines an implementa-
tion of a subprogram’s algorithm.

Procedure Body Syntax

The syntax of a procedure body follows.

procedure procedure_name [(parameter_declarations)] is
 { subprogram_declarative_item }
begin
 { sequential_statement }
end [procedure_name] ;

• procedure_name is the name of the procedure.

• subprogram_declarative_item can be any of the following state-
ments.

• use clause

• type declaration

• subtype declaration

• constant declaration

• variable declaration

• attribute declaration

• attribute specification

• subprogram declaration (for local, or nested subprograms)

• subprogram body (for locally declared subprograms)

Function Body Syntax
VHDL Reference Guide 2-17

VHDL Reference Guide
The syntax of a function body follows.

function function_name [(parameter_declarations)]
 return type_name is
 { subprogram_declarative_item }
begin
 { sequential_statement }
end [function_name] ;

• function_name is the name of the function.

• subprogram_declarative_item can be any of the following state-
ments.

• use clause

• type declaration

• subtype declaration

• constant declaration

• variable declaration

• attribute declaration

• attribute specification

• subprogram declaration (for local, or nested subprograms)

• subprogram body (for locally declared subprograms)

The following example shows subprogram bodies for the sample
subprogram declarations for a function and a procedure.

function IS_EVEN(NUM: in INTEGER)
 return BOOLEAN is
begin
 return ((NUM rem 2) = 0);
end IS_EVEN;

procedure BYTE_TO_NIBBLES(B: in BYTE;
 UPPER, LOWER: out NIBBLE) is
begin
 UPPER := NIBBLE(B(7 downto 4));
 LOWER := NIBBLE(B(3 downto 0));
end BYTE_TO_NIBBLES;

Subprogram Overloading You can overload subprograms which
means that one or more subprograms can have the same name. Each
2-18 Xilinx Development System

Design Descriptions
subprogram that uses a given name must have a different parameter
profile.

A parameter profile specifies a subprogram’s number and type of
parameters. This information determines which subprogram is called
when more than one subprogram has the same name. Overloaded
functions are also distinguished by the type of their return values.

The following example shows two subprograms with the same name,
but different parameter profiles.

type SMALL is range 0 to 100;
type LARGE is range 0 to 10000;

function IS_ODD(NUM: SMALL) return BOOLEAN;
function IS_ODD(NUM: LARGE) return BOOLEAN;

signal A_NUMBER: SMALL;
signal B: BOOLEAN;
. . .
B <= IS_ODD(A_NUMBER); -- Will call the first
 -- function above

Operator Overloading You can overload predefined operators
such as +, and, and mod. By using overloading, you can adapt
predefined operators to work with your own data types.

For example, you can declare new logic types, rather than use the
predefined types BIT and INTEGER. However, you cannot use
predefined operators with these new types unless you overload the
operators for the types.

The following example shows how some predefined operators are
overloaded for a new logic type.

type NEW BIT is (‘0’, ‘1’, ‘X’);
-- New logic type

function "and"(I1, I2: in NEW_BIT) return NEW_BIT;
function "or" (I1, I2: in NEW_BIT) return NEW_BIT;
 -- Declare overloaded operators for new logic type
. . .
signal A, B, C: NEW_BIT;
. . .

C <= (A and B) or C;

VHDL requires overloaded operator declarations to enclose the oper-
ator name or symbol in double quotation marks, because they are
VHDL Reference Guide 2-19

VHDL Reference Guide
infix operators (they are used between operands). If you declared the
overloaded operators without quotation marks, a VHDL tool
considers them functions rather than operators.

Variable Declarations Variable declarations define a named value
of a given type.

You can use variables in expressions, as described in the “Identifiers”
section and “Literals” section of the “Expressions” chapter. You
assign values to variables by using variable assignment statements,
as described in the “Variable Assignment” section of the “Sequential
Statements” chapter.

Foundation Express does not support variable initialization. If you
try to initialize a variable, Foundation Express generates the
following message.

Warning: Initial values for signals are not supported
for synthesis. They are ignored on line %n (VHDL-2022)

The following example shows some variable declarations.

variable A, B: BIT;
variable INIT: NEW_BIT;

Note: Variables are declared and used only in processes and subpro-
grams, because processes and subprograms cannot declare signals for
internal use.

To use these declarations in more than one entity or architecture,
place them in a package, as described in the “Examples of Architec-
tures for NAND2 Entity” section.

Type Declarations

You declare each signal with a type that determines the kind of data
it carries. Types declared in an architecture are local to that architec-
ture.

You can use type declarations in architectures, packages, entities,
blocks, processes, and subprograms.

Type declarations define the name and characteristics of a type.
Types and type declarations are fully described in the “Data Types”
chapter. A type is a named set of values, such as the set of integers or
the set (red, green, blue). An object of a given type, such as a signal,
can have any value of that type.
2-20 Xilinx Development System

Design Descriptions
The following example shows a type declaration for type NEW_BIT
and some functions and variables of that type.

type NEW_BIT is (’0’, ’1’, ’X’);
 -- New logic type

function ”and”(I1, I2: in NEW_BIT) return NEW_BIT;
function ”or” (I1, I2: in NEW_BIT) return NEW_BIT;
 -- Declare overloaded operators for new logic type
. . .
signal A, B, C: NEW_BIT;
. . .

C <= (A and B) or C;

Subtype Declarations Use subtype declarations to define the
name and characteristics of a constrained subset of another type or
subtype. A subtype is fully compatible with its parent type, but only
over the subtype’s range.

The following subtype declaration (NEW_LOGIC) is a subrange of
the type declaration in the previous example.

subtype NEW_LOGIC is NEW_BIT range ’0’ to ’1’;

You can use subtype declarations wherever you use type declara-
tions: in architectures, packages, entities, blocks, processes, and
subprograms.

Examples of Architectures for NAND2 Entity
The following three examples show three different architectures for
the entity NAND2. The three examples define equivalent implemen-
tations of NAND2. After optimization and synthesis, they all produce
the same circuit, a 2-input NAND gate in the target technology. The
architecture description style you use for this entity depends on your
own preferences.

The first example shows how the entity NAND2 can be implemented
by using two components from a technology library. The entity
inputs A and B are connected to AND gate U0, producing an interme-
diate I signal. Signal I is then connected to inverter U1, producing the
entity output Z.

architecture STRUCTURAL of NAND2 is
 signal I: BIT;
VHDL Reference Guide 2-21

VHDL Reference Guide
component AND_2 -- From a technology library
 port(I1, I2: in BIT;
 O1: out BIT);
 end component;

component INVERT -- From a technology library
 port(I1: in BIT;
 O1: out BIT);
 end component;

begin
 U0: AND_2 port map (I1 => A, I2 => B, O1 => I);
 U1: INVERT port map (I1 => I, O1 => Z);
end STRUCTURAL;

The following example shows how you can define the entity NAND2
by its logical function.

architecture DATAFLOW of NAND2 is
begin
 Z <= A nand B;
end DATAFLOW;

The following example shows another implementation of NAND2.

architecture RTL of NAND2 is
begin
 process(A, B)
 begin
 if (A = ’1’) and (B = ’1’) then
 Z <= ’0’;
 else
 Z <= ’1’;
 end if;
 end process;
end RTL;

Configurations
Configurations are not currently supported by Foundation Express.

Packages
A package is a collection of declarations that more than one design
can use.
2-22 Xilinx Development System

Design Descriptions
You can collect constants, data types, component declarations, and
subprograms into a VHDL package that can then be used by more
than one design or entity. A package must contain at least one of the
following constructs.

• Constants

Declare system-wide parameters, such as data-path widths.

• VHDL data type declarations

Define data types used throughout a design. All entities in a
design must use common interface types, such as common
address bus types.

• Component declarations

Specify the interfaces to entities that can be instantiated in the
design.

• Subprograms

Define algorithms that can be called anywhere in a design.

Packages are often sufficiently general so that you can use them in
many different designs. For example, the std_logic_1164 package
defines data types std_logic and std_logic_vector.

Using a Package
The use statement allows an entity to use the declarations in a
package. The supported syntax of the use statement follows.

use LIBRARY_NAME.PACKAGE_NAME.ALL;

• LIBRARY_NAME is the name of a VHDL library

• PACKAGE_NAME is the name of the included package.

A use statement is usually the first statement in a package or entity
specification source file.

Note: Foundation Express does not support different packages with
the same name when they exist in different libraries. No two pack-
ages can have the same name.
VHDL Reference Guide 2-23

VHDL Reference Guide
Package Structure
Packages have two parts; the declaration and the body.

• Package declaration

Holds public information, including constant, type, and subpro-
gram declarations

• Package body

Holds private information, including local types and subpro-
gram implementations (bodies)

Note: When a package declaration contains subprogram declara-
tions, a corresponding package body must define the subprogram
bodies.

Package Declarations
Package declarations collect information that one or more entities in a
design need. This information includes data type declarations, signal
declarations, subprogram declarations, and component declarations.

Note: Signals declared in packages cannot be shared across entities. If
two entities both use a signal from a given package, each entity has its
own copy of that signal.

Although you can declare all this information explicitly in each
design entity or architecture in a system, it is often easier to declare
system information in a separate package. Each design entity in the
system can then use the system’s package.

The syntax of a package declaration follows.

package package_name is
 { package_declarative_item }
end [package_name] ;

• package_name is the name of this package.

• A package_declarative_item is any of the following statements.

• use clause (to include other packages)

• type declaration

• subtype declaration

• constant declaration
2-24 Xilinx Development System

Design Descriptions
• signal declaration

• subprogram declaration

• component declaration

The following example shows some sample package declarations.

package EXAMPLE is

 type BYTE is range 0 to 255;
 subtype NIBBLE is BYTE range 0 to 15;

constant BYTE_FF: BYTE := 255;

 signal ADDEND: NIBBLE;

 component BYTE_ADDER
 port(A, B: in BYTE;
 C: out BYTE;
 OVERFLOW: out BOOLEAN);
 end component;

 function MY_FUNCTION (A: in BYTE) return BYTE;

end EXAMPLE;

To use the previous example declarations, add a use statement at the
beginning of your design description as follows.

use WORK.EXAMPLE.ALL;
entity . . .
architecture . . .

The “Foundation Express Packages” chapter contains more examples
of packages and their declarations.

Package Body
A package body includes the following.

• The implementations (bodies) of subprograms declared in the
package declaration.

• Internal support subprograms

But designs or entities that use the package never see this informa-
tion.

The syntax of a package body follows.
VHDL Reference Guide 2-25

VHDL Reference Guide
package body package_name is
 { package_body_declarative_item }
end [package_name] ;

• package_name is the name of the associated package.

• package_body_declarative_item is any of the following state-
ments.

• use clause

• subprogram declaration

• subprogram body

• type declaration

• subtype declaration

• constant declaration

The “Foundation Express Packages” chapter shows a package decla-
ration and body example that comes with Foundation Express.

Resolution Functions
Resolution functions are used with signals that can be connected
(wired together). For example, if two drivers directly connect to a
signal, the resolution function determines whether the signal value is
the AND, OR, or three-state function of the driving values.

Use resolution functions to assign the driving value when there are
multiple drivers. For simulation, you can write an arbitrary function
to resolve bus conflicts.

Note: A resolution function might change the value of a resolved
signal, even if all drivers have the same value.

The resolution function for a signal is part of that signal’s subtype
declaration. You create a resolved signal in four steps.

1. Declare the signal’s base type.

type SIGNAL_TYPE is ...
-- signal’s base type is SIGNAL_TYPE

2. Declare the resolution function.

function res_function (DATA: ARRAY_TYPE)
return SIGNAL_TYPE is
2-26 Xilinx Development System

Design Descriptions
-- declaration of the resolution function
-- ARRAY_TYPE must be an unconstrained array of
-- SIGNAL_TYPE

3. Declare the resolved signal’s subtype as a subtype of the base
type, which includes the name of the resolution function.

subtype res_type is res_function SIGNAL_TYPE;
-- name of the subtype is res_type
-- name of function is res_function
-- signal type is res_type (a subtype of SIGNAL_TYPE)

4. Declare resolved signals as resolved subtypes.

signal resolved_signal_name:res_type;
-- resolved_signal_name is a resolved signal

Foundation Express does not support arbitrary resolution functions.
Only wired AND, wired OR, and three-state functions are allowed.
Foundation Express requires that you mark all resolution functions
with a special directive indicating the kind of resolution you want to
perform.

Foundation Express considers the directive only when creating hard-
ware. The body of the resolution function is parsed but ignored.
Using unsupported VHDL constructs generates errors. (See the
“VHDL Constructs” chapter.)

Do not connect signals that use different resolution functions. Foun-
dation Express supports only one resolution function per network.

The three resolution function directives follow.

• synopsys resolution_method wired_and

• synopsys resolution_method wired_or

• synopsys resolution_method three_state

Pre-synthesis and post-synthesis simulation results might not match
if the body of the resolution function the simulator uses does not
match the directive the synthesizer uses.

The following example shows how to create and use a resolved signal
and how to use Foundation Express directives for resolution func-
tions. The signal’s base type is the predefined type BIT.

package RES_PACK is
 function RES_FUNC(DATA: in BIT_VECTOR) return BIT;
VHDL Reference Guide 2-27

VHDL Reference Guide
 subtype RESOLVED_BIT is RES_FUNC BIT;
end;

package body RES_PACK is
 function RES_FUNC(DATA: in BIT_VECTOR) return BIT is
 -- synopsis resolution_method wired_and
 begin
 -- The code in this function is ignored by

-- the program
 -- but parsed for correct VHDL syntax

 for I in DATA’range loop
 if DATA(I) = ’0’ then
 return ’0’;
 end if;
 end loop;
 return ’1’;
 end;
end;
use work.RES_PACK.all;
entity WAND_VHDL is
 port(X, Y: in BIT; Z: out RESOLVED_BIT);
end WAND_VHDL;

architecture WAND_VHDL of WAND_VHDL is
begin
 Z <= X;
 Z <= Y;
end WAND_VHDL;

The following figure shows the design.

Figure 2-2 Design Using Resolved Signal

X8641

X
Z

AN2

Y

2-28 Xilinx Development System

Chapter 3

Data Types

VHDL is a strongly typed language. Every constant, signal, variable,
function, and parameter is declared with a type, such as BOOLEAN
or INTEGER, and can hold or return only a value of that type.

VHDL predefines abstract data types, such as BOOLEAN, which are
part of most programming languages, and hardware-related types,
such as BIT, found in most hardware languages. VHDL predefined
types are declared in the STANDARD package supplied with all
VHDL implementations.

This chapter describes VHDL data types and their uses. Data type
information is included in the following sections.

• “Type Overview”

• “Enumeration Types”

• “Integer Types”

• “Array Types”

• “Record Types”

• “Record Aggregates”

• “Predefined VHDL Data Types”

• “Unsupported Data Types”

• “Express Data Types”

• “Subtypes”
VHDL Reference Guide

VHDL Reference Guide
Type Overview
The advantage of strong typing is that VHDL tools can detect many
common design errors, such as assigning an 8-bit value to a
4-bit-wide signal or incrementing an array index out of its range.

The following example code shows the definition of a new type,
BYTE, as an array of 8 bits, and a variable declaration, ADDEND, that
uses this type.

type BYTE is array(7 downto 0) of BIT;
variable ADDEND: BYTE;

The predefined VHDL data types are built from the basic VHDL data
types. Some VHDL types are not supported for synthesis, such as
REAL and FILE.

The examples in this chapter show type definitions and associated
object declarations. Although each constant, signal, variable, func-
tion, and parameter is declared with a type, only variable and signal
declarations are shown in this chapter’s examples. Constant, func-
tion, and parameter declarations are shown in the “Declarations”
section of the “Design Descriptions” chapter.

VHDL also provides subtypes, which are defined as subsets of other
types. Anywhere a type definition can appear, a subtype definition
can also appear. The difference between a type and a subtype is that a
subtype is a subset of a previously defined parent (or base) type or
subtype. Overlapping subtypes of a given base type can be compared
against and assigned to each other. All integer types, for example, are
technically subtypes of the built-in integer base type (see the “Integer
Types” section and “Subtypes” section of this chapter).

Enumeration Types
You define an enumeration type by listing (enumerating) all possible
values of that type.

The syntax of an enumeration type definition follows.

type type_name is (enumeration_literal {, enumeration_literal});

• type_name is an identifier

• Each enumeration_literal is either an identifier (enum_6) or a
character literal (’A’).
3-2 Xilinx Development System

Data Types
• An identifier is a sequence of letters, underscores, and numbers.
An identifier must start with a letter and cannot be a VHDL
reserved word, such as TYPE. All VHDL reserved words are
listed in the “VHDL Construct Support” section of the “VHDL
Constructs” chapter.

A character literal is any value of type CHARACTER, in single
quotes.

The following example shows two enumeration type definitions and
the corresponding variable and signal declarations.

type COLOR is (BLUE, GREEN, YELLOW, RED);
type MY_LOGIC is (’0’, ’1’, ’U’, ’Z’);
variable HUE: COLOR;
signal SIG: MY_LOGIC;
. . .
HUE := BLUE;
SIG <= ’Z’;

Enumeration Overloading
You can overload an enumeration literal by including it in the defini-
tion of two or more enumeration types. When you use such an over-
loaded enumeration literal, Foundation Express can usually
determine the literal’s type. However, under certain circumstances,
determination may be impossible. In these cases, you must qualify
the literal by explicitly stating its type. (See the “Enumeration
Literals” section of the “Expressions” chapter.) The following
example shows how you can qualify an overloaded enumeration
literal.

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
type PRIMARY_COLOR is (RED, YELLOW, BLUE);
...
A <= COLOR’(RED);

Enumeration Encoding
Enumeration types are ordered by enumeration value. By default, the
first enumeration literal is assigned the value 0, the next enumeration
literal is assigned the value 1, and so forth.

Foundation Express automatically encodes enumeration values into
bit vectors that are based on each value’s position. The length of the
VHDL Reference Guide 3-3

VHDL Reference Guide
encoding bit vector is the minimum number of bits required to
encode the number of enumerated values. For example, an enumera-
tion type with five values has a 3-bit encoding vector.

The following example shows the default encoding of an enumera-
tion type with five values.

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);

The enumeration values are encoded as follows.

RED = “000”
GREEN = “001”
YELLOW = “010”
BLUE = “011”
VIOLET = “100”

The result is RED < GREEN < YELLOW < BLUE < VIOLET.

You can override the automatic enumeration encodings and specify
your own enumeration encodings with the ENUM_ENCODING
attribute. The interpretation of the ENUM_ENCODING attribute is
specific to Foundation Express.

Several VHDL synthesis-related attributes are declared in the
ATTRIBUTES package supplied with Foundation Express. For more
information about this package, see the “ATTRIBUTES Package”
section of the “Foundation Express Packages” chapter.

A VHDL attribute is defined by its name and type and is then
declared with a value for the attributed type, as shown in the
example below.

The ENUM_ENCODING attribute must be a STRING containing a
series of vectors, one for each enumeration literal in the associated
type. The encoding vector is specified by 0s, 1s, Ds, Us, and Zs sepa-
rated by blank spaces. The meaning of these encoding vectors is
described in the “Enumeration Encoding Values” section of this
chapter.

The first vector in the attribute string specifies the encoding for the
first enumeration literal. The second vector specifies the encoding for
the second enumeration literal, and so on. The ENUM_ENCODING
attribute must immediately follow the type declaration.

The following example illustrates how the default encodings from
the previous example can be changed with the ENUM_ENCODING
attribute.
3-4 Xilinx Development System

Data Types
attribute ENUM_ENCODING: STRING;
 -- Attribute definition

type COLOR is (RED, GREEN, YELLOW, BLUE, VIOLET);
attribute ENUM_ENCODING of
 COLOR: type is "010 000 011 100 001";
 -- Attribute declaration

The enumeration values are encoded as follows.

RED = "010"
GREEN = "000"
YELLOW = "011"
BLUE = "100"
VIOLET = "001"

The result is GREEN<VIOLET<RED<YELLOW<BLUE.

Note: The interpretation of the ENUM_ENCODING attribute is
specific to Foundation Express. Other VHDL tools, such as simula-
tors, use the standard encoding (ordering).

Enumeration Encoding Values
The possible encoding values for the ENUM_ENCODING attribute
follow.

• ‘0’—bit value ‘0’

• ‘1’—bit value ‘1’

• ‘D’—don’t-care (can be either ‘0’ or ‘1’)

To use don’t care information, see the “Don’t Care Inference”
section of the “Writing Circuit Descriptions” chapter

• ‘U’—unknown

If ‘U’ appears in the encoding vector for an enumeration, you
cannot use that enumeration literal except as an operand to the =
and /= operators. You can read an enumeration literal encoded
with a ‘U’ from a variable or signal, but you cannot assign it.

For synthesis, the = operator returns FALSE and the /= operator
returns TRUE when either of the operands is an enumeration
literal whose encoding contains ‘U.’

• ‘Z’—high impedance
VHDL Reference Guide 3-5

VHDL Reference Guide
See the “Three-State Inference” section of the “Register and
Three-State Inference” chapter for more information.

Integer Types
The maximum range of a VHDL integer type is - (231-1) to 231-1 (-
2_147_483_647 .. 2_147_483_647). Integer types are defined as
subranges of this anonymous built-in type. Multi-digit numbers in
VHDL can include underscores (_) to make them easier to read.

Foundation Express encodes an integer value as a bit vector whose
length is the minimum necessary to hold the defined range and
encodes integer ranges that include negative numbers as 2s-comple-
ment bit vectors.

The syntax of an integer type definition follows.

type type_name is range integer_range ;

type_name is the name of the new integer type, and integer_range is
a subrange of the anonymous integer type.

An example of integer type definitions follows.

type PERCENT is range -100 to 100;
 -- Represented as an 8-bit vector
 -- (1 sign bit, 7 value bits)

type INTEGER is range -2147483647 to 2147483647;
 -- Represented as a 32-bit vector
 -- This is the definition of the INTEGER type

You cannot directly access the bits of an INTEGER or explicitly state
the bit width of the type. For these reasons, Express provides over-
loaded functions for arithmetic. These functions are defined in the
std_logic_signed and std_logic_unsigned packages, described in the
“std_logic_arith Package” section of the “Foundation Express Pack-
ages” chapter.

Array Types
An array is an object that is a collection of elements of the same type.
VHDL supports N-dimensional arrays, but Foundation Express
supports only one-dimensional arrays. Array elements can be of any
type. An array has an index whose value selects each element. The
3-6 Xilinx Development System

Data Types
index range determines how many elements are in the array and their
ordering (low to high, or high downto low). An index can be of any
integer type.

You can declare multidimensional arrays by building one-dimen-
sional arrays where the element type is another one-dimensional
array, as shown in the following example.

type BYTE is array (7 downto 0) of BIT;
type VECTOR is array (3 downto 0) of BYTE;

VHDL provides both constrained arrays and unconstrained arrays.
The difference between these two arrays comes from the index range
in the array type definition.

Constrained Array
A constrained array’s index range is explicitly defined; for example,
an integer range (1 to 4). When you declare a variable or signal of this
type, it has the same index range.

The syntax of a constrained array type definition follows.

type array_type_name is array (integer_range) of type_name ;

• array_type_name is the name of the new constrained array type

• integer_range is a subrange of another integer type

• type_name is the type of each array element

An example of a constrained array type definition follows.

type BYTE is array (7 downto 0) of BIT;
 -- A constrained array whose index range is
 -- (7, 6, 5, 4, 3, 2, 1, 0)

Unconstrained Array
You define an unconstrained array’s index range as a type, for
example, INTEGER. This definition implies that the index range can
consist of any contiguous subset of that type’s values. When you
declare an array variable or signal of this type, you also define its
actual index range. Different declarations can have different index
ranges.

The syntax of an unconstrained array type definition follows.
VHDL Reference Guide 3-7

VHDL Reference Guide
type array_type_name is
 array (range_type_name range <>)
 of element_type_name ;

• array_type_name is the name of the new unconstrained array
type

• range_type_name is the name of an integer type or subtype

• element_type_name is the type of each array element

An example of an unconstrained array type definition and a declara-
tion that uses it follows.

type BIT_VECTOR is array(INTEGER range <>) of BIT;
 -- An unconstrained array definition
. . .
variable MY_VECTOR : BIT_VECTOR(5 downto -5);

The advantage of using unconstrained arrays is that a VHDL tool can
recall the index range of each declaration. You can use array
attributes to determine the range (bounds) of a signal or variable of
an unconstrained array type. With this information, you can write
routines that use variables or signals of an unconstrained array type,
independently of any one array variable’s or signal’s bounds. The
next section describes array attributes and how they are used.

Array Attributes
Foundation Express supports the following predefined VHDL
attributes for use with arrays.

• left

• right

• high

• low

• length

• range

• reverse_range

The above attributes return a value corresponding to part of an
array’s range. The following table shows the values of the array
attributes for the variable MY_VECTOR in the example of an uncon-
3-8 Xilinx Development System

Data Types
strained array type definition from the previous “Unconstrained
Array” section.

The following example shows the use of array attributes in a function
that ORs together all elements of a given bit vector (declared in the
example of an unconstrained array type definition in the previous
section) and returns that value.

function OR_ALL (X: in BIT_VECTOR) return BIT is
 variable OR_BIT: BIT;
 begin
 OR_BIT := ’0’;
 for I in X’range loop
 OR_BIT := OR_BIT or X(I);
 end loop;

 return OR_BIT;
 end;

Note: This function works for a bit vector of any size.

Record Types
A record is a set of named fields of various types, unlike an array,
which is composed of identical anonymous entries. A record’s field
can be any previously defined type, including another record type.

The following example shows a record type declaration
(BYTE_AND_IX), three signals of that type, and some assignments.

constant LEN: INTEGER := 8;

subtype BYTE_VEC is BIT_VECTOR(LEN-1 downto 0);

Table 3-1 Array Index Attributes

Attribute Expression Value

MY_VECTOR’left 5

MY_VECTOR’right -5

MY_VECTOR’high 5

MY_VECTOR’low 5

MY_VECTOR’length 11

MY_VECTOR’range (5 down to -5)

MY_VECTOR’reverse_range (-5 to 5)
VHDL Reference Guide 3-9

VHDL Reference Guide
type BYTE_AND_IX is
 record
 BYTE: BYTE_VEC;
 IX: INTEGER range 0 to LEN;
 end record;

signal X, Y, Z: BYTE_AND_IX;

signal DATA: BYTE_VEC;
signal NUM: INTEGER;
. . .

X.BYTE <= "11110000";
X.IX <= 2;

DATA <= Y.BYTE;
NUM <= Y.IX;

Z <= X;

As shown in the above example, you can read values from or assign
values to records in two ways.

• By individual field name

X.BYTE <= DATA;
X.IX <= LEN;

• From another record object of the same type

Z <= X;

The individual fields of a record type object are accessed by the object
name, a period, and a field name; X.BYTE or X.IX. To access an
element of the BYTE field’s array, use the array notation X.BYTE(2).

Record Aggregates
Record aggregates (constants) have the same syntax as array aggre-
gates (see the “Aggregates” section of the “Expressions” chapter).
They can appear anywhere records appear.

The following line illustrates a named record aggregate in a descrip-
tion.

X <= (BYTE => "11110000", IX => 2);

The following line illustrates a positional record aggregate in a
description.

X <= ("11110000", 2);
3-10 Xilinx Development System

Data Types
You can use the others construct in a named or positional record
aggregate, just as you can in an array aggregate (see the “Aggregates”
section of the “Expressions” chapter).

You can mix named and positional aggregates in a description, with
the positional items listed first.

You cannot have a named item that refers to a field covered in the
positional aggregate. The following four examples illustrate this
caveat.

The following example shows a simple record type.

type rec is
record

a: integer;
b: integer;
c: integer;
d: integer;
e: integer;

end record
end

The following example shows a named aggregate for the previous
example.

(a => 1, b => 2, c => 0, d => 3, e => 0)

In a named aggregate, the items can appear in any order as shown in
the following example.

(1, 2, d => 3, others => 0)

The previous example is equivalent to the second example or the
following example of positional aggregate.

(1, 2, 0, 3, 0)

You can supply a set of choices in a description of a record aggregate,
but a choice cannot be a range. See the following two examples.

The following example shows a record aggregate equivalent to the
next example after it.

(b => 2, c => 2, d => 2, a => 1, e => 3)

The following example shows a record aggregate with a set of
choices.

(b | c | d => 2, a => 1, e =>3)
VHDL Reference Guide 3-11

VHDL Reference Guide
Predefined VHDL Data Types
IEEE VHDL describes two site-specific packages, each containing a
standard set of types and operations; the STANDARD package and
the TEXTIO package.

The STANDARD package of data types is included in all VHDL
source files by an implicit use clause. The TEXTIO package defines
types and operations for communication with a standard program-
ming environment (terminal and file I/O). You do not need this
package for synthesis, therefore, Foundation Express does not
support it.

The Foundation Express implementation of the STANDARD package
is illustrated in the following example. This STANDARD package is a
subset of the IEEE VHDL STANDARD package. Differences are
described in the “Unsupported Data Types” section of this chapter.

package STANDARD is
 type BOOLEAN is (FALSE, TRUE);
 type BIT is (’0’, ’1’);
 type CHARACTER is (
 NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
 BS, HT, LF, VT, FF, CR, SO, SI,
 DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
 CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,
 ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
 ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
 ’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

 ’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
 ’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
 ’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
 ’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

 ’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,
 ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
 ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’,
 ’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, DEL);

 type INTEGER is range -2147483647 to 2147483647;
subtype NATURAL is INTEGER range 0 to 2147483647;
subtype POSITIVE is INTEGER range 1 to 2147483647;
type STRING is array (POSITIVE range <>)

 of CHARACTER;
3-12 Xilinx Development System

Data Types
type BIT_VECTOR is array (NATURAL range <>)
 of BIT;
end STANDARD;

Data Type BOOLEAN
The BOOLEAN data type is actually an enumerated type with
two values, FALSE and TRUE, where FALSE < TRUE. Logical
functions such as equality (=) and comparison (<) functions
return a BOOLEAN value.

Convert a BIT value to a BOOLEAN value as follows.

BOOLEAN_VAR := (BIT_VAR = ’1’);

Data Type BIT
The BIT data type represents a binary value as one of two charac-
ters, 0 or 1. Logical operations, such as AND, can take and return
BIT values.

Convert a BOOLEAN value to a BIT value as follows.

if (BOOLEAN_VAR) then
BIT_VAR := ’1’;

else
BIT_VAR := ’0’;

end if;

Data Type CHARACTER
The CHARACTER data type enumerates the ASCII character set.
Nonprinting characters are represented by a three-letter name,
such as NUL for the null character. Printable characters are repre-
sented by themselves, in single quotation marks, as follows.

variable CHARACTER_VAR: CHARACTER;
. . .
CHARACTER_VAR := ’A’;

Data Type INTEGER
The INTEGER data type represents positive and negative whole
numbers.
VHDL Reference Guide 3-13

VHDL Reference Guide
Data Type NATURAL
The NATURAL data type is a subtype of INTEGER that is used
to represent natural (nonnegative) numbers.

Data Type POSITIVE
The POSITIVE data type is a subtype of INTEGER that is used to
represent positive (nonzero and nonnegative) numbers.

Data Type STRING
The STRING data type is an unconstrained array of CHAR-
ACTER data types. A STRING value is enclosed in double quota-
tion marks, as follows.

variable STRING_VAR: STRING(1 to 7);
. . .
STRING_VAR := "Rosebud";

Data Type BIT_VECTOR
The BIT_VECTOR data type represents an array of BIT values.

Unsupported Data Types
Some data types are either not useful for synthesis or are not
supported. The following sections list and describe these unsup-
ported data types.

“VHDL Construct Support” section of the “VHDL Constructs”
chapter describes the level of Foundation Express support for each
VHDL construct.

Physical Types
Foundation Express does not support physical types, such as units of
measure (for example, ns).

Floating-Point Types
Foundation Express does not support floating point types, such as
REAL.
3-14 Xilinx Development System

Data Types
Access Types
Foundation Express does not support access (pointer) types, because
no equivalent hardware construct exists.

File Types
Foundation Express does not support file (disk file) types, such as
a hardware file type RAM or ROM.

Express Data Types
The std_logic_arith package provides arithmetic operations and
numeric comparisons on array data types. The package also defines
two major data types; UNSIGNED and SIGNED. These data types,
unlike the predefined INTEGER type, provide access to the indi-
vidual bits (wires) of a numeric value. For more information, see
“std_logic_arith Package” section of the “Foundation Express Pack-
ages” chapter.

Subtypes
A subtype is a subset of a previously defined type or subtype. A
subtype definition can appear anywhere a type definition is allowed.

Using subtypes is a powerful way to use VHDL type checking to
ensure valid assignments and meaningful handling of data. Subtypes
inherit all operators and subprograms defined for their parent (base)
types.

You can also use subtypes for resolved signals to associate a resolu-
tion function with the signal type. (See the “Subtype Declarations”
section in the “Design Descriptions” chapter for more information.)

In the example of the Foundation Express STANDARD Package (in
the “Predefined VHDL Data Types” section of this chapter),
NATURAL and POSITIVE are subtypes of INTEGER, and they can
be used with any INTEGER function. These subtypes can be added,
multiplied, compared, and assigned to each other, as long as the
values are within the appropriate subtype’s range. All INTEGER
types and subtypes are actually subtypes of an anonymous
predefined numeric type.
VHDL Reference Guide 3-15

VHDL Reference Guide
The following example shows some valid and invalid assignments
between NATURAL and POSITIVE values.

variable NAT: NATURAL;
variable POS: POSITIVE;
. . .
POS := 5;
NAT := POS + 2;
. . .
NAT := 0;
POS := NAT; -- Invalid; out of range

For example, the type BIT_VECTOR is defined as follows.

type BIT_VECTOR is array(NATURAL range <>) of BIT;

If your design uses only 16-bit vectors, you can define a subtype
MY_VECTOR as the following.

subtype MY_VECTOR is BIT_VECTOR(0 to 15);

The following example shows that all functions and attributes that
operate on BIT_VECTOR also operate on MY_VECTOR.

type BIT_VECTOR is array(NATURAL range <>) of BIT;
subtype MY_VECTOR is BIT_VECTOR(0 to 15);
. . .
signal VEC1, VEC2: MY_VECTOR;
signal S_BIT: BIT;
variable UPPER_BOUND: INTEGER;
. . .
if (VEC1 = VEC2)
. . .
VEC1(4) <= S_BIT;
VEC2 <= "0000111100001111";
. . .
RIGHT_INDEX := VEC1’high;
3-16 Xilinx Development System

Chapter 4

Expressions

In VHDL, expressions perform arithmetic or logical computations by
applying an operator to one or more operands. Operators specify the
computation to be performed. Operands are the data for the compu-
tation.

The following sections of this chapter discuss the individual compo-
nents and use of expressions in a design description.

• “Overview”

• “Operators”

• “Operands”

Overview
In the following VHDL fragment, A and B are operands, + is an oper-
ator, and A + B is an expression.

C := A + B; -- Computes the sum of two values

You can use expressions in many places in a design description.
Expressions can be used in any of the following ways.

• Assign them to variables or signals or use them as the initial
values of constants

• Use them as operands to other operators

• Use them for the return value of functions

• Use them for the IN parameters in a subprogram call

• Assign them to the OUT parameters in a procedure body

• Use them to control the actions of statements such as if, loop, and
case
VHDL Reference Guide 4-1

VHDL Reference Guide
To understand expressions for VHDL, consider the individual
components of operators and operands.

Operators

• Logical Operators

• Relational Operators

• Adding Operators

• Unary (Signed) Operators

• Multiplying Operators

• Miscellaneous Arithmetic Operators

Operands

• Computable Operands

• Literals

• Identifiers

• Indexed Names

• Slice Names

• Function Calls

• Qualified Expressions

• Type Conversions

Operators
A VHDL operator is characterized by the following.

• Name

• Computation (function)

• Number of operands

• Type of operands (such as Boolean or Character)

• Type of result value
4-2 Xilinx Development System

Expressions
You can define new operators, like functions, for any type of operand
and result value. The predefined VHDL operators are listed in the
table below.

Each row in the table lists operators with the same precedence. Each
row’s operators have greater precedence than those in the row above.
An operator’s precedence determines whether it is applied before or
after adjoining operators.

The following example shows several expressions and their interpre-
tations.

A + B * C = A + (B * C)
not BOOL and (NUM = 4) = (not BOOL) and (NUM = 4)

VHDL allows existing operators to be overloaded, that is, applied to
new types of operands. For example, the AND operator can be over-
loaded to work with a new logic type. For more information, see the
“Operator Overloading” section in the “Design Descriptions”
chapter.

Logical Operators
Operands of a logical operator must be of the same type. The logical
operators AND, OR, NAND, NOR, XOR, and NOT accept operands
of type BIT or type BOOLEAN, and one-dimensional arrays of BIT or
BOOLEAN. Array operands must be the same size. A logical oper-
ator applied to two array operands is applied to pairs of the two
arrays’ elements.

The following example shows logical signal declarations and their
logical operations.

Table 4-1 Predefined VHDL Operators

Type Operators Precedence

Logical and or nand nor xor Lowest

Relational = /= < <= > >=

Adding + - &

Unary (sign) + -

Multiplying * / mod rem

Miscellaneous ** abs not Highest
VHDL Reference Guide 4-3

VHDL Reference Guide
signal A, B, C: BIT_VECTOR(3 downto 0);
signal D, E, F, G: BIT_VECTOR(1 downto 0);
signal H, I, J, K: BIT;
signal L, M, N, O, P: BOOLEAN;

A <= B and C;
D <= E or F or G;
H <= (I nand J) nand K;
L <= (M xor N) and (O xor P);

Figure 4-1 Design Schematic for Logical Operators

Normally, to use more than two operands in an expression, you must
use parentheses to group the operands. An exception is that you can
combine a sequence of AND, OR, XNOR, or XOR operators without
parentheses, such as the following sequence that uses the same oper-
ator—AND.

A and B and C and D

However, a sequence that contains more than one of these operators
requires parentheses to indicate which two operands are to be paired.
In the following sequence, AND is the first operator, OR is the
second.

A and B or C
4-4 Xilinx Development System

Expressions
Parentheses should be used in one of two ways, as shown in the
following example.

(A and B) or C

or

A and (B or C)

Relational Operators
Relational operators, such as = or >, compare two operands of the
same base type and return a BOOLEAN value.

IEEE VHDL defines the equality (=) and inequality (/=) operators for
all types. Two operands are equal if they represent the same value.
For array and record types, IEEE VHDL compares corresponding
elements of the operands.

IEEE VHDL defines the ordering operators (<, <=, >, and >=) for all
enumerated types, integer types, and one-dimensional arrays of
enumeration or integer types.

The internal order of a type’s values determines the result of the
ordering operators. Integer values are ordered from negative infinity
to positive infinity. Enumerated values are in the same order as they
were declared, unless you have changed the encoding.

Note: If you set the encoding of your enumerated types (“Enumera-
tion Encoding” section of the “Data Types” chapter), the ordering
operators compare your encoded value ordering, not the declaration
ordering. Because this interpretation is specific to Foundation
Express, a VHDL simulator continues to use the declaration’s order
of enumerated types.

Arrays are ordered alphabetically. Foundation Express determines
the relative order of two array values by comparing each pair of
elements in turn, beginning from the left bound of each array’s index
range. If a pair of array elements is not equal, the order of the
different elements determines the order of the arrays. For example,
bit vector “101011” is less than “1011” because the fourth bit of each
vector is different, and ‘0’ is less than ‘1.’

If the two arrays have different lengths, and the shorter array
matches the first part of the longer array, the shorter one is ordered
before the longer. Thus, the bit vector “10” is less than “101000.”
VHDL Reference Guide 4-5

VHDL Reference Guide
Arrays are compared from left to right, regardless of their index
ranges (to or downto).

The following example shows several expressions that evaluate to
TRUE.

’1’ = ’1’
"101" = "101"
 "1" > "011" -- Array comparison
"101" < "110"

To interpret bit vectors such as “011” as signed or unsigned binary
numbers, use the relational operators defined in the std_logic_arith
package (listed in the “Foundation Express Packages” chapter). The
third line in the above example evaluates FALSE if the operands are
of type UNSIGNED.

UNSIGNED’"1" < UNSIGNED’"011" -- Numeric comparison

The following example shows some relational expressions. The
resulting synthesized circuit follows the example.

signal A, B: BIT_VECTOR(3 downto 0);
signal C, D: BIT_VECTOR(1 downto 0);
signal E, F, G, H, I, J: BOOLEAN;

G <= (A = B);
H <= (C < D);
I <= (C >= D);
J <= (E > F);
4-6 Xilinx Development System

Expressions
Figure 4-2 Circuit for Relational Operators

Adding Operators
Adding operators include arithmetic and concatenation operators.

The arithmetic operators + and - are predefined for all integer oper-
ands. These addition and subtraction operators perform conventional
arithmetic. The following example uses the + operator.

The concatenation operator & is predefined for all one-dimensional
array operands. The concatenation operator builds arrays by
combining the operands. Each operand of & can be an array or an

X8674

G

H

I

J

A[1]

B[1]

A[2]

B[2]

A[3]

B[3]

A[0]

B[0]

D[1]

C[1]

C[0]

D[0]

F

E

EO

EO

EO

NR4

EO

EO

ND2
NR2

MUX21

ND2

OR3

OR2
IV

IV

NR2
VHDL Reference Guide 4-7

VHDL Reference Guide
element of an array. Use & to add a single element to the beginning or
end of an array, to combine two arrays, or to build an array from

elements, as shown in the following examples. The schematic for the
resulting circuits follow the examples.

signal A, D: BIT_VECTOR(3 downto 0);
signal B, C, G: BIT_VECTOR(1 downto 0);
signal E: BIT_VECTOR(2 downto 0);
signal F, H, I: BIT;

signal J, K, L: INTEGER range 0 to 3;

A <= not B & not C; -- Array & array
D <= not E & not F; -- Array & element
G <= not H & not I; -- Element & element
J <= K + L; -- Simple addition
4-8 Xilinx Development System

Expressions
Figure 4-3 Circuits for Adding Operators

Unary (Signed) Operators
A unary operator has only one operand. Foundation Express
predefines unary operators + and - for all integer types. The + oper-
ator has no effect. The - operator negates its operand as shown in the
following example.

5 = +5
5 = -(-5)

The following example shows how unary negation is synthesized.
The resulting design follows the example.

signal A, B: INTEGER range -8 to 7;

X8656

IV
C[0]

IV
C[1]

IV
B[0]

IV
B[1]

IV
F

IV
E[0]

IV
E[1]

IV
E[2]

IV
I

IV
H

J[0]

L[0]

K[0]

K[1]

L[1]

A[0]

A[1]

A[2]

A[3]

D[0]

D[1]

D[2]

D[3]

G[0]

G[1]

J[1]

EO

EO

EO

AN2
VHDL Reference Guide 4-9

VHDL Reference Guide
A <= -B;

Figure 4-4 Design Illustrating Unary Negation

Multiplying Operators
Foundation Express predefines the multiplying operators (*, /, mod,
and rem) for all integer types.

Foundation Express places some restrictions on the supported values
for the right operands of the multiplying operators, as follows.

• *—integer multiplication; no restrictions

• /—integer division; The right-hand operand must be a comput-
able power of 2 and cannot be negative. (See the “Computable
Operands” section of this chapter.) This operator is implemented
as a bit shift.

• mod—modulus; same as /

• rem—remainder; same as /

The following example shows some uses of the multiplying operators
whose right operands are all powers of 2. The resulting synthesized
circuit design follows the example.

X8673

A[1]

B[3]

B[4]

B[1]

A[2]

A[0]

EO

EO

A[3]EO

NR2

OR3

B[0]
4-10 Xilinx Development System

Expressions
signal A, B, C, D, E, F, G, H: INTEGER range 0 to 15;

 A <= B * 4;
 C <= D / 4;
 E <= F mod 4;
 G <= H rem 4;
VHDL Reference Guide 4-11

VHDL Reference Guide
Figure 4-5 Design Illustrating Multiplying Operators

X8655

G[3]

G[2]

E[3]

E[2]

C[3]

C[2]

A[1]

A[0]

B[0] A[2]

B[1] A[3]

B[2]

B[3]

D[2] C[0]

D[3] C[1]

D[0]

D[1]

F[0] E[0]

F[1] E[1]

F[2]

F[3]

H[2]

H[3]

H[0] G[0]

H[1] G[1]
4-12 Xilinx Development System

Expressions
Miscellaneous Arithmetic Operators
Foundation Express predefines the absolute value (abs) and exponen-
tiation (**) operators for all integer types. There is one restriction
placed on the ** operator. When you are using ** exponentiation, the
left operand must be the computable value 2 (see the “Computable
Operands” section of this chapter).

The following example shows how these operators are used. The
figure that illustrates the synthesized design follows the example.

signal A, B: INTEGER range -8 to 7;
signal C: INTEGER range 0 to 15;
signal D: INTEGER range 0 to 3;
A <= abs(B);
C <= 2 ** D;

Figure 4-6 Design with Arithmetic Operators

X8666

B[0]

B[1]

A[1]

A[0]

EN

C[0]NR2

C[1]

C[2]

C[3]

A[2]EO
NR2

IV

IV

IV

IV

NR2

A[3]

B[3]

B[2]

D[1]

D[0]

AN3

NR2

NR2

NR2

ND2
VHDL Reference Guide 4-13

VHDL Reference Guide
Operands
Operands specify the data that the operator uses to compute its
value. An operand returns its value to the operator.

There are many categories of operands. The simplest operand is a
literal, such as the number 7, or an identifier, such as a variable or
signal name. An operand itself can be an expression. You create
expression operands by surrounding an expression with parentheses.

The operand categories follow.

• Aggregates: my_array_type’(others => 1)

• Attributes: my_array’range

• Expressions: (A nand B)

• Function calls: LOOKUP_VAL(my_var_1, my_var_2)

• Identifiers: my_var, my_sig

• Indexed names: my_array(7

• Literals: ’0’, "101", 435, 16#FF3E#

• Qualified expressions: BIT_VECTOR’(’1’ & ’0’)

• Records and fields: my_record.a_field

• Slice names: my_array(7 to 11)

• Type conversions: THREE_STATE(’0’)

The next two sections discuss operand bit-widths and explain
computable operands. The sections following them describe the
operand types listed above.

Operand Bit-Width
Foundation Express uses the bit-width of the largest operand to
determine the bit-width needed to implement an operator in a circuit.
For example, an INTEGER operand is 32 bits wide by default. An
addition of two INTEGER operands causes Foundation Express to
build a 32-bit adder.

To use hardware resources efficiently, always indicate the bit-width
of numeric operands. For example, use a subrange of INTEGER when
declaring types, variables, or signals.
4-14 Xilinx Development System

Expressions
type ENOUGH: INTEGER range 0 to 255;
variable WIDE: INTEGER range -1024 to 1023;
signal NARROW: INTEGER range 0 to 7;

Note: During optimization, Foundation Express removes hardware
for unused bits.

Computable Operands
Some operators, such as the division operator, restrict their operands
to be computable. A computable operand is one whose value can be
determined by Foundation Express. Computability is important
because noncomputable expressions can require logic gates to deter-
mine their value.

Examples of computable operands follow.

• Literal values

• for...loop parameters, when the loop’s range is computable

• Variables assigned a computable expression

• Aggregates that contain only computable expressions

• Function calls with a computable return value

• Expressions with computable operand

• Qualified expressions when the expression is computable

• Type conversions when the expression is computable

• Value of the AND or NAND operators when one of the operands
is a computable ‘0’

• Value of the OR or NOR operators when one of the operands is a
computable ‘1’

Additionally, a variable is given a computable value if it is an OUT or
INOUT parameter of a procedure that assigns it a computable value.

Examples of noncomputable operands follow.

• Signals

• Ports

• Variables assigned different computable values that depend on a
noncomputable condition
VHDL Reference Guide 4-15

VHDL Reference Guide
• Variables assigned noncomputable values

The following example shows some definitions and declarations,
followed by several computable and noncomputable expressions.

signal S: BIT;
. . .
function MUX(A, B, C: BIT) return BIT is
begin
 if (C = ’1’) then
 return(A);
 else
 return(B);
 end if;
end;

procedure COMP(A: BIT; B: out BIT) is
begin
 B := not A;
end;

process(S)
 variable V0, V1, V2: BIT;
 variable V_INT: INTEGER;
subtype MY_ARRAY is BIT_VECTOR(0 to 3);
 variable V_ARRAY: MY_ARRAY;
begin
 V0 := ’1’; -- Computable (value is ’1’)
 V1 := V0; -- Computable (value is ’1’)
 V2 := not V1; -- Computable (value is ’0’)

 for I in 0 to 3 loop
 V_INT := I; -- Computable (value depends

-- on iteration)
end loop;

 V_ARRAY := MY_ARRAY’(V1, V2, ’0’, ’0’);
 -- Computable ("1000")
 V1 := MUX(V0, V1, V2); -- Computable (value is ’1’)
 COMP(V1, V2);
 V1 := V2; -- Computable (value is ’0’)
 V0 := S and ’0’; -- Computable (value is ’0’)
 V1 := MUX(S, ’1’, ’0’);-- Computable (value is ’1’)
 V1 := MUX(’1’, ’1’, S);-- Computable (value is ’1’)

 if (S = ’1’) then
 V2 := ’0’; -- Computable (value is ’0’)
 else
4-16 Xilinx Development System

Expressions
 V2 := ’1’; -- Computable (value is ’1’)
 end if;
 V0 := V2; -- Noncomputable; V2 depends
 -- on S
 V1 := S; -- Noncomputable; S is signal
 V2 := V1; -- Noncomputable; V1 is no
 -- longer computable
end process;

Aggregates
Aggregates create array literals by giving a value to each element of
an instance of an array type. Aggregates can also be considered array
literals, because they specify an array type and the value of each
array element. The syntax follows.

type_name’ ([choice=>] expression {, [choice =>] expression})

type_name must be a constrained array type (as required by Founda-
tion Express in the previous example), an element index, a sequence
of indexes, or the others expression. Each expression provides a value
for the chosen elements and must evaluate to a value of the element’s
type.

The following example shows an array type definition and an aggre-
gate representing a literal of that array type. The two sets of assign-
ments have the same result.

subtype MY_VECTOR is BIT_VECTOR(1 to 4);
signal X: MY_VECTOR;
variable A, B: BIT;

X <= MY_VECTOR’(’1’, A nand B, ’1’, A or B) -- Aggregate
 -- assignment
X(1) <= ’1’; -- Element assignment
X(2) <= A nand B;
X(3) <= ’1’;
X(4) <= A or B;

You can specify an element’s index by using either positional or
named notation. With positional notation, each element receives the
value of its expression in order, as shown in the example above.

By using named notation, the choice => construct specifies one or
more elements of the array. The choice can contain an expression
(such as (I mod 2) =>) to indicate a single element index or a range
VHDL Reference Guide 4-17

VHDL Reference Guide
(such as 3 to 5 => or 7 downto 0 =>) to indicate a sequence of element
indexes.

An aggregate can use both positional and named notation. It is not
necessary to specify all element indexes in an aggregate. All unas-
signed values are given a value by including others => expression as
the last element of the list.

The following example shows several aggregates representing the
same value.

subtype MY_VECTOR is BIT_VECTOR(1 to 4);

MY_VECTOR’(’1’, ’1’, ’0’, ’0’);
MY_VECTOR’(2 => ’1’, 3 => ’0’, 1 => ’1’, 4 => ’0’);
MY_VECTOR’(’1’, ’1’, others => ’0’);
MY_VECTOR’(3 => ’0’, 4 => ’0’, others => ’1’);
MY_VECTOR’(3 to 4 => ’0’, 2 downto 1 => ’1’);

The others expression must be the only expression in the aggregate.
The following example shows two equivalent aggregates.

MY_VECTOR’(others => ’1’);
MY_VECTOR’(’1’, ’1’, ’1’, ’1’);

To use an aggregate as the target of an assignment statement, see the
“Assignment Statements and Targets” section of the “Sequential
Statements” chapter.

Attributes
VHDL defines attributes for various types. A VHDL attribute takes a
variable or signal of a given type and returns a value. The syntax of
an attribute follows.

object’attribute

Foundation Express supports the following predefined VHDL
attributes for use with arrays, as described in the “Array Types”
section of the “Data Types” chapter.

• left

• right

• high

• low

• length
4-18 Xilinx Development System

Expressions
• range

• reverse_range

Foundation Express also supports the following predefined VHDL
attributes to use with wait and if statements, as described in the
“Register and Three-State Inference” chapter.

• event

• stable

In addition to supporting the predefined VHDL attributes listed
above, Foundation Express has a defined set of synthesis-related
attributes. You can include these Foundation Express-specific
attributes in your VHDL design description to direct Foundation
Express during optimization.

Expressions
Operands can themselves be expressions. You create expression oper-
ands by surrounding an expression with parentheses, such as (A
nand B).

Function Calls
A function call executes a named function with the given parameter
values. The value returned to an operator is the function’s return
value. The syntax of a function call follows.

function_name ([parameter_name =>] expression
{, [parameter_name =>] expression }

• function_name is the name of a defined function.

• The optional parameter_name is the name of formal parameters,
as defined by the function. Each expression provides a value for
its parameter and must evaluate to a type appropriate for that
parameter.

You can specify parameters in positional or named notation, like
aggregate values.

In positional notation, the parameter_name => construct is
omitted. The first expression provides a value for the function’s
first parameter, the second expression provides a value for the
second parameter, and so on.
VHDL Reference Guide 4-19

VHDL Reference Guide
In named notation, parameter_name => is specified before an
expression; the named parameter gets the value of that expres-
sion.

You can mix positional and named expressions in the same function
call if you put all positional expressions before named parameter
expressions.

The following example shows a function declaration and several
equivalent function calls.

function FUNC(A, B, C: INTEGER) return BIT;
. . .
FUNC(1, 2, 3)
FUNC(B => 2, A => 1, C => 7 mod 4)
FUNC(1, 2, C => -3+6)

Identifiers
Identifiers are probably the most common operand. An identifier is
the name of a constant, variable, signal, entity, port, subprogram, or
parameter and returns the object’s value to an operand.

Identifiers that contain special characters, begin with numbers, or
have the same name as a keyword can be specified as an extended
identifier. An extended identifier starts with a backslash character
(\), followed by a sequence of characters, followed by another back-
slash character (\).

The following example shows some extended identifiers.

\a+b\ \3state\
\type\ \(a&b)|c\

The following example shows several kinds of identifiers and their
usages. All identifiers appear in bold type.

entity EXAMPLE is
 port (INT_PORT: in INTEGER;
 BIT_PORT: out BIT);
end;
. . .
signal BIT_SIG: BIT;
signal INT_SIG: INTEGER;
. . .
INT_SIG <= INT_PORT; -- Signal assignment from port
BIT_PORT <= BIT_SIG; -- Signal assignment to port
4-20 Xilinx Development System

Expressions
function FUNC(INT_PARAM: INTEGER)
 return INTEGER;
end function;
. . .
constant CONST: INTEGER := 2;
variable VAR: INTEGER;
. . .
VAR := FUNC(INT_PARAM => CONST); -- Function call

Indexed Names
An indexed name identifies one element of an array variable or
signal. The syntax of an indexed name follows.

identifier (expression)

identifier is the name a signal or variable of an array type. The
expression must return a value within the array’s index range. The
value returned to an operator is the specified array element.

If the expression is computable (see the “Computable Operands”
section of this chapter), the operand is synthesized directly. If the
expression is not computable, a circuit is synthesized that extracts the
specified element from the array.

The following example shows two indexed names—one computable
and one not computable. The figure for the resulting synthesized
circuit design follows the example.

signal A, B: BIT_VECTOR(0 to 3);
signal I: INTEGER range 0 to 3;
signal Y, Z: BIT;

Y <= A(I); -- Noncomputable index expression
Z <= B(3); -- Computable index expression
VHDL Reference Guide 4-21

VHDL Reference Guide
Figure 4-7 Design Illustrating Use of Indexed Names

You can also use indexed names as assignment targets; see the
“Assignment Statements and Targets” section of the “Sequential
Statements” chapter.

Literals
A literal (constant) operand can be a numeric literal, a character
literal, an enumeration literal, or a string literal. The following
sections describe these four kinds of literals.

Numeric Literals

Numeric literals are constant integer values. The two kinds of
numeric literals are decimal and based. A decimal literal is written in
base 10. A based literal can be written in a base from 2 to 16 and is
composed of the base number, an octothorpe (#), the value in the

X8657

A [2]

A [0]

A [1]

A [3]

I [1]

I [0]

B [3] Z

Y

B [2]

B [1]

B [0]

MUX41
4-22 Xilinx Development System

Expressions
given base, and another octothorpe (#); for example, 2#101# is
decimal 5.

The digits in either kind of numeric literal can be separated by n
underscores. The following example shows several different numeric
literals, all representing the same value, which is 170.

170
1_7_0
10#170#
2#1010_1010#
16#AA#

Character Literals

Character literals are single characters enclosed in single quotation
marks, for example, ‘A’. Character literals are used both as values for
operators and to define enumerated types, such as CHARACTER and
BIT. See the “Enumeration Types” section of the “Data Types”
chapter for the valid character types.

Enumeration Literals

Enumeration literals are values of enumerated types. The two kinds
of enumeration literals are character literals and identifiers. Character
literals were described previously. Enumeration identifiers are those
literals listed in an enumeration type definition. The following
example shows an enumeration type definition,

type SOME_ENUM is (ENUM_ID_1, ENUM_ID_2, ENUM_ID_3);

If two enumerated types use the same literals, those literals are over-
loaded. You must qualify overloaded enumeration literals when you
use them in an expression, unless their type can be determined from
context (See the “Qualified Expressions” section of this chapter.) See
“Enumeration Types” section of the “Data Types” chapter for more
information.

The example below defines two enumerated types and shows some
enumeration literal values.

type ENUM_1 is (AAA, BBB, ’A’, ’B’, ZZZ);
type ENUM_2 is (CCC, DDD, ’C’, ’D’, ZZZ);

AAA -- Enumeration identifier of type ENUM_1
’B’ -- Character literal of type ENUM_1
CCC -- Enumeration identifier of type ENUM_2
VHDL Reference Guide 4-23

VHDL Reference Guide
’D’ -- Character literal of type ENUM_2
ENUM_1’(ZZZ) -- Qualified because overloaded

String Literals

String literals are one-dimensional arrays of characters, enclosed in
double quotes (" "). The two kinds of string literals follow.

• Character strings which are sequences of characters in double
quotation marks, for example, "ABCD."

• Bit strings are similar to character strings but represent binary,
octal, or hexadecimal values. For example, B"1101", O"15", and
X"D" all represent decimal value 13.

A string literal’s type is a one-dimensional array of an enumerated
type. Each of the characters in the string represents one element of the
array. The following example shows character string literals.

"10101"
"ABCDEF"

Note: Null string literals ("") are not supported.

Bit strings, like based numeric literals, are composed of a base specific
character, a double quotation mark, a sequence of numbers in the
given base, and another double quotation mark. For example, B"0101"
represents the bit vector 0101. A bit string literal consists of the base
specifier B, O, or X, followed by a string literal. The bit string literal is
interpreted as a bit vector, a one-dimensional array of the predefined
type BIT. The base specifier determines the interpretation of the bit
string as follows.

• B (binary)

The value is in binary digits (bits, 0 or 1). Each bit in the string
represents one BIT in the generated bit vector (array).

• O (octal)

The value is in octal digits (0 to 7). Each octal digit in the string
represents three BITs in the generated bit vector (array).

• X (hexadecimal)

The value is in hexadecimal digits (0 to 9 and A to F). Each hexa-
decimal digit in the string represents four BITs in the generated
bit vector (array).
4-24 Xilinx Development System

Expressions
You can separate the digits in a bit-string literal value with under-
scores (_) for readability. The following example shows three bit
string literals that represent the value AAA.

X"AAA"
B"1010_1010_1010"
O"5252”

Qualified Expressions
Qualified expressions state the type of an ambiguous operand. You
cannot use qualified expressions for type conversion. (See the “Type
Conversions” section of this chapter.)

The syntax of a qualified expression follows.

type_name’(expression)

type_name is the name of a defined type. The expression must eval-
uate to a value of an appropriate type.

Note: Foundation Express requires a single quotation mark (tick)
between type_name and (expression). If the single quotation mark is
omitted, the construction is interpreted as a type conversion
(described in the next section).

The following example shows a qualified expression that resolves an
overloaded function by qualifying the type of a decimal literal
parameter.

type R_1 is range 0 to 10; -- Integer 0 to 10
type R_2 is range 0 to 20; -- Integer 0 to 20

function FUNC(A: R_1) return BIT;
function FUNC(A: R_2) return BIT;

FUNC(5) -- Ambiguous; could be of type R_1,
 -- R_2, or INTEGER

FUNC(R_1’(5)) -- Unambiguous

The following example shows how qualified expressions resolve
ambiguities in aggregates and enumeration literals.

type ARR_1 is array(0 to 10) of BIT;
type ARR_2 is array(0 to 20) of BIT;
. . .
(others => ’0’) -- Ambiguous; could be of
 -- type ARR_1 or ARR_2
VHDL Reference Guide 4-25

VHDL Reference Guide
ARR_1’(others => ’0’) -- Qualified; unambiguous

type ENUM_1 is (A, B);
type ENUM_2 is (B, C);
. . .
B -- Ambiguous; could be of
 -- type ENUM_1 or ENUM_2

ENUM_1’(B) -- Qualified; unambiguous

Records and Fields
Records are composed of named fields of any type. For more infor-
mation, see the “Record Types” section of the “Data Types” chapter.

In an expression, you can refer to a whole record or to a single field.
The syntax of field names follows.

record_name.field_name

• record_name is the name of the record variable or signal. A
record_ name is different for each variable or signal of that record
type.

• field_name is the name of a field in that record type. A
field_name is separated from the record_name by a period (.). A
field_name is the field name defined for that record type.

The example below shows a record type definition and record and
field access.

type BYTE_AND_IX is
 record
 BYTE: BIT_VECTOR(7 downto 0);
 IX: INTEGER range 0 to 7;
 end record;

signal X: BYTE_AND_IX;
. . .
X -- record
X.BYTE -- field: 8-bit array
X.IX -- field: integer

A field can be any type, including an array, record, or aggregate type.
Refer to a field element by using that type’s notation as in the
following example.
4-26 Xilinx Development System

Expressions
X.BYTE(2) -- one element from array field BYTE
X.BYTE(3 downto 0) -- 4-element slice of array field

-- BYTE

Slice Names
Slice names identify a sequence of elements in an array variable or
signal. The syntax follows.

identifier (expression direction expression)

identifier is the name of a signal or variable of an array type. Each
expression must return a value within the array’s index range and
must be computable. See the “Computable Operands” section of this
chapter.

The direction must be either to or downto. The direction of a slice
must be the same as the direction of the identifier’s array type. If the
left and right expressions are equal, they define a single element.

The value returned to an operator is a subarray containing the speci-
fied array elements.

The following example uses slices to assign an 8-bit input to an 8-bit
output, exchanging the lower and upper 4 bits. The figure for the
resulting synthesized circuit design follows the example. Slices are
also used as assignment targets. This usage is described in “Assign-
ment Statements and Targets” section of the “Sequential Statements”
chapter.

signal A, Z: BIT_VECTOR(0 to 7);

Z(0 to 3) <= A(4 to 7);
Z(4 to 7) <= A(0 to 3);
VHDL Reference Guide 4-27

VHDL Reference Guide
Figure 4-8 Design Illustrating Use of Slices

Limitations on Null Slices

Foundation Express does not support null slices, which are indicated
by the following.

• A null range, such as (4 to 3)

• A range with the wrong direction, such as UP_VAR(3 downto 2)
when the declared range of UP_VAR is ascending

The following example shows three null slices and one noncomput-
able slice.

subtype DOWN is BIT_VECTOR(4 downto 0);
subtype UP is BIT_VECTOR(0 to 7);
. . .
variable UP_VAR: UP;
variable DOWN_VAR: DOWN;
. . .
UP_VAR(4 to 3) -- Null slice (null range)
UP_VAR(4 downto 0) -- Null slice (wrong direction)

X8660

A [4] Z [0]

A [5] Z [1]

A [6] Z [2]

A [7] Z [3]

A [0] Z [4]

A [1] Z [5]

A [2] Z [6]

A [3] Z [7]
4-28 Xilinx Development System

Expressions
DOWN_VAR(0 to 1) -- Null slice (wrong direction)
variable I: INTEGER range 0 to 7;
. . .
UP_VAR(I to I+1) -- Noncomputable slice

Limitations on Noncomputable Slices

IEEE VHDL does not allow noncomputable slices—slices whose
range contains a noncomputable expression.

Type Conversions
Type conversions change an expression’s type. The syntax of a type
conversion follows.

type_name (expression)

type_name is the name of a defined type. The expression must eval-
uate to a value of a type that can be converted into type type_name.
The following conditions apply to type conversions.

• Type conversions can convert between integer types or between
similar array types.

• Two array types are similar if they have the same length and if
they have convertible or identical element types.

• Enumerated types cannot be converted.

The following example shows some type definitions and associated
signal declarations, followed by valid and invalid type conversions.

type INT_1 is range 0 to 10;
type INT_2 is range 0 to 20;

type ARRAY_1 is array(1 to 10) of INT_1;
type ARRAY_2 is array(11 to 20) of INT_2;

subtype MY_BIT_VECTOR is BIT_VECTOR(1 to 10);
type BIT_ARRAY_10 is array(11 to 20) of BIT;
type BIT_ARRAY_20 is array(0 to 20) of BIT;

signal S_INT: INT_1;
signal S_ARRAY: ARRAY_1;
signal S_BIT_VEC: MY_BIT_VECTOR;
signal S_BIT: BIT;

-- Legal type conversions
VHDL Reference Guide 4-29

VHDL Reference Guide
INT_2(S_INT)
 -- Integer type conversion

BIT_ARRAY_10(S_BIT_VEC)
 -- Similar array type conversion

-- Illegal type conversions

BOOLEAN(S_BIT);
 -- Can’t convert between enumerated types

INT_1(S_BIT);
 -- Can’t convert enumerated types to other types

BIT_ARRAY_20(S_BIT_VEC);
 -- Array lengths not equal

ARRAY_1(S_BIT_VEC);
 -- Element types cannot be converted
4-30 Xilinx Development System

Chapter 5

Sequential Statements

Foundation Express interprets sequential statements, such as A:= 3,
in the order in which they appear in code. VHDL sequential state-
ments can appear only in processes and subprograms.

This chapter describes and illustrates the different types of sequential
statements in the following sections.

• “Assignment Statements and Targets”

• “Variable Assignment Statements”

• “Signal Assignment Statements”

• “if Statements”

• “case Statements”

• “loop Statements”

• “next Statements”

• “exit Statements”

• “Subprograms”

• “return Statements”

• “wait Statements”

• “null Statements”

Assignment Statements and Targets
Use an assignment statement to assign a value to a variable or signal.
The syntax follows.

target := expression; -- Variable assignment
target <= expression; -- Signal assignment
VHDL Reference Guide 5-1

VHDL Reference Guide
target is a variable or signal (or part of a variable or signal, such as a
subarray) that receives the value of the expression. The expression
must evaluate to the same type as the target. See the “Expressions”
section of the “Expressions” chapter for more information.

There are five kinds of targets.

• Simple names, such as my_var

• Indexed names, such as my_array_var(3)

• Slices, such as my_array_var(3 to 6)

• Field names, such as my_record.a_field

• Aggregates, such as (my_var1, my_var2)

The difference in syntax between variable assignments and signal
assignments follows.

• Variables use the := operator.

Variables are local to a process or subprogram, and their assign-
ments take effect immediately.

• Signals use the <= operator.

Signals need to be global in a process or subprogram, and their
assignments take effect at the end of a process. Signals are the
only means of communication between processes. For more
information on semantic differences, see the “Signal Assign-
ment” section of this chapter.

Simple Name Targets
The syntax for an assignment to a simple name (identifier) target
follows.

identifier := expression; -- Variable assignment
identifier <= expression; -- Signal assignment

identifier is the name of a signal or variable. The assigned expression
must have the same type as the signal or variable. For array types, all
elements of the array are assigned values.

The following example shows assignments to simple name targets.

variable A, B: BIT;
signal C: BIT_VECTOR(1 to 4);
5-2 Xilinx Development System

Sequential Statements
-- Target Expression
 A := ’1’; -- Variable A is assigned ’1’
 B := ’0’; -- Variable B is assigned ’0’
 C <= “1100"; -- Signal array C is assigned
 -- bit value “1100"

Indexed Name Targets
The syntax for an assignment to an indexed name (identifier) target
follows.

identifier(index_expression) := expression; -- Variable assignment
identifier(index_expression) <= expression; -- Signal assignment

identifier is the name of an array type signal or variable.
index_expression must evaluate to an index value for the identifier
array’s index type and bounds but does not have to be computable
(see the “Expressions” chapter), but more hardware is synthesized if
it is not.

The assigned expression must contain the array’s element type.

In the following example, the elements for array variable A are
assigned values as indexed names.

variable A: BIT_VECTOR(1 to 4);

-- Target Expression;
 A(1) := ’1’; -- Assigns ’1’ to the first element of array A.
 A(2) := ’1’; -- Assigns ’1’ to the second element of array A.
 A(3) := ’0’; -- Assigns ’0’ to the third element of array A.
 A(4) := ’0’; -- Assigns ’0’ to the fourth element of array A.

The example below shows two indexed name targets. One of the
targets is computable, and the other is not. The figure following the
example illustrates the corresponding design.

entity example5 3 is
port (

signal A, B: BIT_VECTOR(0 to 3);
signal I: INTEGER range 0 to 3;
signal Y, Z: BIT;
);

end example5 3;

architecture behave of example5 3 is
VHDL Reference Guide 5-3

VHDL Reference Guide
begin
process (I, Y, Z)
begin

A <= “0000";
B <= “0000";
A(I) <= Y; -- Noncomputable index expression
B(3) <= Z; -- Computable index expression

end process;
end behave

Figure 5-1 Design Illustrating Indexed Name Targets

Slice Targets
The syntax for an assignment to a slice target follows.

identifier(index_expr_1 direction index_expr_2)

identifier is the name of an array type signal or variable. Each
index_expr expression must evaluate to an index value for the identi-
fier array’s index type and bounds. Both index_expr expressions

X8627

A[0]

A[1]

A[2]

A[3]

logic_0
B[2]

B[1]

B[0]

B[3]

AN3
Y

IV

IV

I[1]

I[0]

Z

AN3

AN3

AN3
5-4 Xilinx Development System

Sequential Statements
must be computable (see the “Expressions” chapter) and must lie
within the bounds of the array. The direction must match the identi-
fier array type’s direction, either to or downto.

The assigned expression must contain the array’s element type.

In the following example, array variables A and B are assigned the
same value.

variable A, B: BIT_VECTOR(1 to 4);
-- Target Expression;
 A(1 to 2) := “11"; -- Assigns “11" to the first two elements of array A
 A(3 to 4) := “00"; -- Assigns “00" to the last two elements of array A
 B(1 to 4) := “1100";-- Assigns “1100" to array B

Field Targets
The syntax for a field target follows.

identifier. field_name

identifier is the name of a record type signal or variable. field_name is
the name of a field in that record type, preceded by a period (.). The
assigned expression must contain the identified field’s type. A field
can be any type, including an array, record, or aggregate type.

The following example assigns values to the fields of record variables
A and B.

type REC is
 record
 NUM_FIELD: INTEGER range -16 to 15;
 ARRAY_FIELD: BIT_VECTOR(3 to 0);
 end record;

variable A, B: REC;

-- Target Expression;
 A.NUM_FIELD := -12;

-- Assigns -12 to record A’s field NUM_FIELD
A.ARRAY_FIELD := “0011";

-- Assigns “0011" to record A’s field ARRAY_FIELD
 A.ARRAY_FIELD(3) := ’1’;

-- Assigns ’1’ to the most significant bit of
-- record A’s field ARRAY_FIELD

B := A;
-- Assigns values of record A to corresponding fields of B
VHDL Reference Guide 5-5

VHDL Reference Guide
For more information, see the “Record Types” section of the “Data
Types” chapter.

Aggregate Targets
The syntax for an assignment to an aggregate target follows.

([choice =>] identifier
{,[choice =>] identifier}) := array_expression;

-- Variable assignment

([choice =>] identifier
{,[choice =>] identifier}) <= array_expression;

-- Signal assignment

aggregate assignment assigns the array_expression element values to
one or more variable or signal identifiers.

Each (optional) choice is an index expression selecting an element or
a slice of the assigned array_expression. Each identifier must have the
element type of array_expression element type. An identifier can be
an array type.

You can assign array element values to the identifiers by position or
by name. In positional notation, the choice => construct is not used.
Identifiers are assigned array element values in order, from the left
array bound to the right array bound.

In named notation, the choice => construct identifies specific
elements of the assigned array. A choice index expression indicates a
single element, such as 3. The type of identifier must match the
assigned expression’s element type.

Positional and named notation can be mixed, but positional associa-
tions must appear before named associations, as in the following
example.

signal A, B, C, D: BIT;
signal S: BIT_VECTOR(1 to 4);
. . .
variable E, F: BIT;
variable G: BIT_VECTOR(1 to 2);
variable H: BIT_VECTOR(1 to 4);

-- Positional notation
S <= (’0’, ’1’, ’0’, ’0’);
(A, B, C, D) <= S; -- Assigns ’0’ to A
 -- Assigns ’1’ to B
5-6 Xilinx Development System

Sequential Statements
 -- Assigns ’0’ to C
 -- Assigns ’0’ to D
-- Named notation
(3 => E, 4 => F,
 2 => G(1), 1 => G(2)) := H;
 -- Assigns H(1) to G(2)
 -- Assigns H(2) to G(1)
 -- Assigns H(3) to E
 -- Assigns H(4) to F

Variable Assignment Statements
A variable assignment changes the value of a variable. The syntax
follows.

target := expression;

target names the variables that receive the value of expression. See
the “Assignment Statements and Targets” section of this chapter for
a description of variable assignment targets.

Expression determines the assigned value; its type must be compat-
ible with target. See the “Expressions” chapter for further informa-
tion.

When a variable is assigned a value, the assignment takes place
immediately. A variable keeps its assigned value until another
assignment takes place.

The following example shows the different effects of variable and
signal assignments.

signal S1, S2: BIT;
signal S_OUT : BIT_VECTOR(1 to 8);
. . .
process(S1, S2)
 variable V1, V2: BIT;
begin
 V1 := ’1’; -- This sets the value of V1
 V2 := ’1’; -- This sets the value of V2
 S1 <= ’1’; -- This assignment is the driver for S1
 S2 <= ’1’; -- This has no effect because of the
 -- assignment later in this process

 S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
 S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
VHDL Reference Guide 5-7

VHDL Reference Guide
 S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below

V1 := ’0’; -- This sets the new value of V1
 V2 := ’0’; -- This sets the new value of V2
 S2 <= ’0’; -- This assignment overrides the previous one since it is

-- the last assignment to this signal in this process

 S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
 S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
 S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;

Signal Assignment Statements
A signal assignment changes the value being driven on a signal by
the current process. The syntax follows.

target := expression;

target names the signals that receive the value of expression. See the
“Assignment Statements and Targets” section of this chapter for a
description of variable assignment targets.

expression determines the assigned value; its type must be compat-
ible with target. For more information about expressions, see the
“Expressions” chapter.

Signals and variables behave in different ways when they receive
assigned values. The differences lie in the way the two kinds of
assignments take effect and how that influences the value Foundation
Express reads from either variables or signals.

Variable Assignment
When a variable is assigned a value, the assignment changes the
value of the variable from that point on. That value is kept until the
variable is assigned a different value.

Signal Assignment
When a signal receives an assigned value, the assignment does not
necessarily take effect, because the value of a signal is determined by
the processes (or other concurrent statements) that drive the signal.
5-8 Xilinx Development System

Sequential Statements
• If several values are assigned to a given signal in one process,
only the last assignment is effective. Even if a signal in a process
is assigned, read, and reassigned, the value read (either inside or
outside the process) is the last assignment value.

• If several processes (or other concurrent statements) assign
values to one signal, the drivers are wired together. The resulting
circuit depends on the expressions and the target technology. The
circuit might be invalid, wired AND, wired OR, or a three-state
bus. See the “Concurrent Statements” chapter for more informa-
tion.

The following example shows the different effects of variable and
signal assignments.

signal S1, S2: BIT;
signal S_OUT: BIT_VECTOR(1 to 8);
. . .
process(S1, S2)
 variable V1, V2: BIT;
begin
 V1 := ’1’; -- This sets the value of V1
 V2 := ’1’; -- This sets the value of V2
 S1 <= ’1’; -- This assignment is the driver for S1
 S2 <= ’1’; -- This has no effect because of the
 -- assignment later in this process

 S_OUT(1) <= V1; -- Assigns ’1’, the value assigned above
 S_OUT(2) <= V2; -- Assigns ’1’, the value assigned above
 S_OUT(3) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(4) <= S2; -- Assigns ’0’, the value assigned below

V1 := ’0’; -- This sets the new value of V1
 V2 := ’0’; -- This sets the new value of V2
 S2 <= ’0’; -- This assignment overrides the previous one since it is

-- the last assignment to this signal in this process

 S_OUT(5) <= V1; -- Assigns ’0’, the value assigned above
 S_OUT(6) <= V2; -- Assigns ’0’, the value assigned above
 S_OUT(7) <= S1; -- Assigns ’1’, the value assigned above
 S_OUT(8) <= S2; -- Assigns ’0’, the value assigned above
end process;

if Statements
The if statement executes a sequence of statements. The sequence
depends on the value of one or more conditions. The syntax follows.
VHDL Reference Guide 5-9

VHDL Reference Guide
if condition then
[{ sequential_statement }
 elsif condition then]
 { sequential_statement }
[else
 { sequential_statement }]
end if;

Each condition must be a Boolean expression. Each branch of an if
statement can have one or more sequential_statements.

Evaluating Conditions
An if statement evaluates each condition in order. Only the first true
condition causes the execution of the if statement’s branch state-
ments. The remainder of the if statement is skipped.

If none of the conditions is true and the else clause is present, those
statements are executed. If none of the conditions is true and no else
clause is present, none of the statements is executed.

The following example shows an if statement. The figure following
the example illustrates the corresponding circuit.

signal A, B, C, P1, P2, Z: BIT;

if (P1 = ’1’) then
 Z <= A;
elsif (P2 = ’0’) then
 Z <= B;
else
 Z <= C;
end if;

Figure 5-2 Schematic Design for if Statement
5-10 Xilinx Development System

Sequential Statements
Using the if Statement to Infer Registers and Latches
Some forms of the if statement can be used like the wait statement, to
test for signal edges and, therefore, imply synchronous logic. This
usage causes Foundation Express to infer registers or latches, as
described in the “Register and Three-State Inference” chapter.

case Statements
The case statement executes one of several sequences of statements,
depending on the value of a single expression. The syntax follows.

case expression is
 when choices =>
 { sequential_statement }
 { when choices =>
 { sequential_statement } }
end case;

expression must evaluate to an INTEGER, an enumerated type, or an
array of enumerated types, such as BIT_VECTOR. Each of the choices
must be in the following form.

choice { | choice}

Each choice can be either a static expression (such as 3) or a static
range (such as 1 to 3). The type of choice_expression determines the
type of each choice. Each value in the range of the choice_expression
type must be covered by one choice.

The final choice can be others, which matches all remaining
(unchosen) values in the range of the expression’s type. The others
choice, if present, matches expression only if no other choices match.

The case statement evaluates expression and compares that value to
each choice value. The when clause with the matching choice value
has its statements executed.

The following restrictions are placed on choices.

• No two choices can overlap.

• If an others choice is not present, all possible values of expression
must be covered by the set of choices.
VHDL Reference Guide 5-11

VHDL Reference Guide
Using Different Expression Types
The following example shows a case statement that selects one of four
signal assignment statements by using an enumerated expression
type. The figure that follows the example illustrates the corre-
sponding design with binary encoding specified.

library IEEE;
use IEEE.STD LOGIC 1164.all;

package case enum is
type ENUM is (PICK_A, PICK_B, PICK_C, PICK_D);
end case enum;

library work;
use work.case enum.all;

entity example5 9 is
port (

signal A, B, C, D: in BIT;
signal VALUE: ENUM;
signal Z: out BIT;

);
end example5 9;

architecture behave of example5 9 is

begin
process (VALUE)
begin

case VALUE is
when PICK_A =>

Z <= A;
when PICK_B =>

Z <= B;
when PICK_C =>

Z <= C;
when PICK_D =>

Z <= D;
end case;

end process;
end behave;
5-12 Xilinx Development System

Sequential Statements
Figure 5-3 Circuit for case Statement with an Enumerated Type

The following example shows a case statement again used to select
one of four signal assignment statements, this time by using an
integer expression type with multiple choices. The resulting circuit
design is shown in the figure following the example.

entity example5_10 is
port (

signal VALUE: in INTEGER range 0 to 15;
signal Z1, Z2, Z3, Z4: out BIT
);

end example5_10;
architecture behave of example5_10 is
begin

process (VALUE)
begin
Z1 <= ’0’;
Z2 <= ’0’;
Z3 <= ’0’;
Z4 <= ’0’;
case VALUE is
 when 0 => -- Matches 0
 Z1 <= ’1’;
 when 1 | 3 => -- Matches 1 or 3
 Z2 <= ’1’;
 when 4 to 7 | 2 => -- Matches 2, 4, 5, 6, or 7
 Z3 <= ’1’;
 when others => -- Matches remaining values,
 -- 8 through 15
 Z4 <= ’1’;

X8658

B

A

C

D

VALUE [0]

VALUE [1]

Z
MUX41
VHDL Reference Guide 5-13

VHDL Reference Guide
end case;
end process;
end behave;

Figure 5-4 Circuit for case Statement with Integers

Invalid case Statements
The following example shows invalid case statements with explana-
tory comments.

signal VALUE: INTEGER range 0 to 15;
signal OUT_1: BIT;

case VALUE is -- Must have at least one when clause
end case;

case VALUE is -- Values 2 to 15 are not covered by choices
 when 0 =>
 OUT_1 <= ’1’;
 when 1 =>
 OUT_1 <= ’0’;
end case;

case VALUE is -- Choices 5 to 10 overlap
 when 0 to 10 =>
 OUT_1 <= ’1’;
 when 5 to 15 =>
 OUT_1 <= ’0’;
end case;
5-14 Xilinx Development System

Sequential Statements
loop Statements
A loop statement repeatedly executes a sequence of statements. The
syntax follows.

[label :] [iteration_scheme] loop
 { sequential_statement }
 { next [label] [when condition] ; }
 { exit [label] [when condition] ; }
end loop [label];

• label, which is optional, names the loop and is useful for building
nested loops.

• iteration_scheme: There are three types of iteration_scheme; loop,
while...loop, and for...loop. They are described in the next three
sections.

The next and exit statements are sequential statements used only
within loops.

• next statement skips the remainder of the current loop and
continues with the next loop iteration.

• exit statement skips the remainder of the current loop and
continues with the next statement after the exited loop.

See the “next Statements” section and the “exit Statements”
section of this chapter.

Basic loop Statement
The basic loop statement has no iteration scheme. Foundation
Express executes enclosed statements repeatedly until it encounters
an exit or next statement. The syntax statement follows.

[label :] loop
{ sequential_statement }

end loop [label];

• loop: The label, which is optional, names this loop.

• sequential_statement can be any statement described in this
chapter. Two sequential statements are used only with loops.

• next statement skips the remainder of the current loop and
continues with the next loop iteration.
VHDL Reference Guide 5-15

VHDL Reference Guide
• exit statement skips the remainder of the current loop and
continues with the next statement after the exited loop.

See the “next Statements” section and “exit Statements” section of
this chapter.

Note: Noncomputable loops (loop and while...loop statements) must
have at least one wait statement in each enclosed logic branch. Other-
wise, a combinatorial feedback loop is created. See the “wait State-
ments” section of this chapter for more information. Conversely,
computable loops (for...loop statements) must not contain wait state-
ments. Otherwise, a race condition may result.

while...loop Statements
The while...loop statement has a Boolean iteration scheme. If the iter-
ation condition evaluates true, Foundation Express executes the
enclosed statements once. The iteration condition is then reevaluated.
As long as the iteration condition remains TRUE, the loop is repeat-
edly executed. When the iteration condition evaluates FALSE, the
loop is skipped and execution continues with the next loop iteration.
The syntax for a while...loop statement follows.

[label :] while condition loop
 { sequential_statement }
end loop [label];

• label, which is optional, names this loop.

• condition is any Boolean expression, such as ((A = ’1’) or (X < Y)).

• sequential_statement can be any statement described in this
chapter. Two sequential statements are used only with loops.

• next statement skips the remainder of the current loop and
continues with the next loop iteration.

• exit statement skips the remainder of the current loop and
continues with the next statement after the exited loop.

See the “next Statements” section and the “exit Statements” section of
this chapter.

Note: Noncomputable loops (loop and while...loop statements) must
have at least one wait statement in each enclosed logic branch. Other-
wise, a combinatorial feedback loop is created. See the “wait State-
ments” section of this chapter for more information.
5-16 Xilinx Development System

Sequential Statements
for...loop Statements
The for...loop statement has an integer iteration scheme. The integer
range determines the number of repetitions The syntax for a for...loop
statement follows.

[label :] for identifier in range loop
 { sequential_statement }
end loop [label];

• label, which is optional, names this loop.

• identifier is specific to the for..loop statement.

identifier is not declared elsewhere. It is automatically declared
by the loop itself and is local to the loop. A loop identifier over-
rides any other identifier with the same name but only within the
loop.

The value of identifier can be read only inside its loop (identifier
does not exist outside the loop). You cannot assign a value to a
loop identifier.

• range must be a computable integer range in either of the
following two forms.

integer_expression to integer_expression

integer_expression downto integer_expression

• integer_expression evaluates to an integer. For more infor-
mations, see the “Expressions” chapter.

• sequential_statement can be any statement described in this
chapter. Two sequential statements are used only with loops.

• next statement skips the remainder of the current loop and
continues with the next loop iteration.

• exit statement skips the remainder of the current loop and
continues with the next statement after the exited loop.

See the “next Statements” section and “exit Statements” section of
this chapter.

Note: Computable loops (for...loop statements) must not contain wait
statements. Otherwise, a race condition may result.
VHDL Reference Guide 5-17

VHDL Reference Guide
Steps in the Execution of a for...loop Statement

A for...loop statement executes as follows.

1. A new integer variable, which is local to the loop, is declared
with the name identifier.

2. The identifier receives the first value of range, and the sequence
of statements executes once.

3. The identifier receives the next value of range, and the sequence
of statements executes once more.

4. Step 3 is repeated until identifier receives the last value in range.
The sequence of statements then executes for the last time. Execu-
tion continues with the statement following the end loop. The
loop is then inaccessible.

The following example shows two equivalent code fragments. The
resulting circuit design is shown in the figure following the example.

variable A, B: BIT_VECTOR(1 to 3);

-- First fragment is a loop statement
for I in 1 to 3 loop
 A(I) <= B(I);
end loop;

-- Second fragment is three statements
A(1) <= B(1);
A(2) <= B(2);
A(3) <= B(3);

Figure 5-5 Circuit for for...loop Statement with Equivalent
Fragments

X8646

B [1]

B [2]

B [3]

A [1]

A [2]

A [3]
5-18 Xilinx Development System

Sequential Statements
for...loop Statements and Arrays

You can use a loop statement to operate on all elements of an array
without explicitly depending on the size of the array. The following
example shows how to use the VHDL array attribute ’range to invert
each element of bit vector A. A figure of the resulting circuit follows
the example. Unconstrained arrays and array attributes are described
in “Array Types” section of the “Data Types” chapter.

entity example5_13 is
port(

A: out BIT_VECTOR(1 to 10);
B: in BIT_VECTOR(1 to 10)
);

end example5_13;

architecture behave of example5_13 is
begin

process (B)
begin

for I in A’range loop
A(I) := not B(I);

end loop;

end process;
end behave;
VHDL Reference Guide 5-19

VHDL Reference Guide
Figure 5-6 Circuit for for...loop Statement Operating on an
Entire Array

next Statements
The next statement skips execution to the next iteration of an
enclosing loop statement, called label in the syntax, as follows.

next [label] [when condition] ;

• label: A next statement with no label terminates the current itera-
tion of the innermost enclosing loop. When you specify a loop
label, the current iteration of that named loop is terminated.

• when is an optional clause that executes its next statement when
its condition (a Boolean expression) evaluates TRUE.

The following example uses the next statement to copy bits condi-
tionally from bit vector B to bit vector A only when the next condition
5-20 Xilinx Development System

Sequential Statements
evaluates to TRUE. The corresponding design is shown in the figure
following the example.

entity example5_14 is
port(

signal B, COPY_ENABLE: in BIT_VECTOR (1 to 8);
signal A: out BIT_VECTOR (1 to 8)
);

end example5_14;

architecture behave of example5_14 is

begin
process (B, Copy_ENABLE)
begin

A <= “00000000";

for I in 1 to 8 loop
 next when COPY_ENABLE(I) = ’0’;
 A(I) <= B(I);
end loop;

end process;
end behave;
VHDL Reference Guide 5-21

VHDL Reference Guide
Figure 5-7 Circuit Design for next Statement

The example below shows the use of nested next statements in
named loops. This example processes in the following manner.

• The first element of vector X against the first element of vector Y

• The second element of vector X against each of the first two
elements of vector Y

• The third element of vector X against each of the first three
elements of vector Y

The processing continues in this manner until it is completed.

signal X, Y: BIT_VECTOR(0 to 7);

A_LOOP: for I in X’range loop
. . .
 B_LOOP: for J in Y’range loop
 . . .
 next A_LOOP when I < J;
 . . .
 end loop B_LOOP;
5-22 Xilinx Development System

Sequential Statements
. . .
end loop A_LOOP;

exit Statements
The exit statement completes execution of an enclosing loop state-
ment, called label in the syntax. The completion is conditional if the
statement includes a condition, such as the when condition in the
following syntax.

exit [label] [when condition] ;

• label: An exit statement with no label terminates the innermost
enclosing loop. When you specify a loop label, the current itera-
tion of than named loop is terminated, as shown in the previous
example of a named next statement.

• when is an optional clause that executes its next statement when
its condition (a Boolean expression) evaluates TRUE.

Note: The exit and next statements have identical syntax, and they
both skip the remainder of the enclosing (or named) loop. The differ-
ence between the two statements is that exit terminates its loop and,
then, continues with the next loop iteration (if any).

The example below compares two bit vectors. An exit statement exits
the comparison loop when a difference is found. The corresponding
circuit design is shown in the figure following this example.

entity example5 16 is
port(

signal A, B: in BIT_VECTOR(1 downto 0);
signal A_LESS_THAN_B: out Boolean;
);

end example5 16;

architecture behave of example5 16 is

begin
process (A, B)
begin

A_LESS_THAN_B <= FALSE;

for I in 1 downto 0 loop
 if (A(I) = ’1’ and B(I) = ’0’) then
 A_LESS_THAN_B <= FALSE;
 exit;
VHDL Reference Guide 5-23

VHDL Reference Guide
 elsif (A(I) = ’0’ and B(I) = ’1’) then
 A_LESS_THAN_B <= TRUE;
 exit;
 else
 null; -- Continue comparing
 end if;
end loop;
end process;
end behave;

Figure 5-8 Circuit Design for Comparator Using the exit
Statement

Subprograms
Subprograms are independent, named algorithms. A subprogram is
either a procedure (zero or more in, inout, or out parameters) or a
function (zero or more in parameters and one return value). Subpro-
grams are called by name from anywhere within a VHDL architec-
ture or a package body. Subprograms can be called sequentially (as
described later in the “Combinatorial Versus Sequential Processes”
section of this chapter) or concurrently (as described in the “Concur-
rent Statements” chapter).

Subprogram Always a Combinatorial Circuit
In hardware terms, a subprogram call is similar to module instantia-
tion, except that a subprogram call becomes part of the current
circuit. A module instantiation adds a level of hierarchy to the design.
A synthesized subprogram is always a combinatorial circuit (use a
process to create a sequential circuit).

Subprogram Declaration and Body
Subprograms, like packages, have declarations and bodies. A subpro-
gram declaration specifies its name, parameters, and return value (for
5-24 Xilinx Development System

Sequential Statements
functions). The subprogram body then implements the operation you
want.

Often, a package contains only type and subprogram declarations for
other packages to use. The bodies of the declared subprograms are
then implemented in the bodies of the declaring packages.

The advantage of the separation between declarations and bodies is
that subprogram interfaces can be declared in public packages during
system development. One group of developers can use the public
subprograms as another group develops the corresponding bodies.
You can modify package bodies, including subprogram bodies,
without affecting existing users of that package’s declarations. You
can also define subprograms locally inside an entity, block, or
process.

Foundation Express implements procedure and function calls with
combinatorial logic, unless you use the map_to_entity compiler
directive (see the “Procedures and Functions as Design Components”
section of this chapter). Foundation Express does not allow you to
infer sequential devices, such as latches or flip-flops, in subprograms.

The following example shows a package containing some procedure
and function declarations and bodies. The example itself cannot be
synthesized; it just creates a template. Designs that instantiate proce-
dure P, however, compile normally.

package EXAMPLE is
 procedure P (A: in INTEGER; B: inout INTEGER);
 -- Declaration of procedure P

 function INVERT (A: BIT) return BIT;
 -- Declaration of function INVERT
end EXAMPLE;

package body EXAMPLE is
 procedure P (A: in INTEGER; B: inout INTEGER) is
 -- Body of procedure P
 begin
 B := A + B;
 end;

 function INVERT (A: BIT) return BIT is
 -- Body of function INVERT
 begin
 return (not A);
VHDL Reference Guide 5-25

VHDL Reference Guide
 end;
end EXAMPLE;

For more information about subprograms, see the “Subprograms”
section of the “Design Descriptions” chapter.

Subprogram Calls
Subprograms can have zero or more parameters. A subprogram
declaration defines each parameter’s name, mode, and type. These
are a subprogram’s formal parameters. When the subprogram is
called, each formal parameter receives a value, termed the actual
parameter. Each actual parameter’s value (of an appropriate type)
can come from an expression, a variable, or a signal.

The mode of a parameter specifies whether the actual parameter can
be the following.

• read from (mode in)

• written to (mode out)

• both read from and written to (mode inout).

Actual parameters that use mode out and mode inout must be vari-
ables or signals and include indexed names (A(1)) and slices (A(1 to
3)). They cannot be constants or expressions.

Procedures and functions are two kinds of subprograms.

• Procedures

Can have multiple parameters that use modes in, inout, and out
Procedures do not return a value.

Procedures are used when you want to update some parameters
(modes out and inout) or when you do not need a return value.
An example might be a procedure with one inout bit vector
parameter that inverted each bit in place.

• Functions

Can have multiple parameters, but only parameters that use
mode in. Functions return their own function value. Part of a
function definition specifies its return value type (also called the
function type).
5-26 Xilinx Development System

Sequential Statements
Use functions when you do not need to update the parameters,
and you want a single return value. For example, the arithmetic
function ABS returns the absolute value of its parameter.

Procedure Calls

A procedure call executes the named procedure with the given
parameters. The syntax follows.

procedure_name [([name =>] expression
 { , [name =>] expression })] ;

expression: Each expression is called an actual parameter; expression
is often just an identifier. If a name is present (positional notation), it
is a formal parameter name associated with the actual parameter’s
expression.

Formal parameters are matched to actual parameters by positional or
named notation. A notation can mix named and positional notation,
but positional parameters must precede named parameters.

A procedure call occurs in three steps.

1. Foundation Express assigns the values of the in and inout actual
parameters to their associated formal parameters.

2. The procedure executes.

3. Foundation Express assigns the values of the inout and out
formal parameters are assigned to the actual parameters.

In the synthesized circuit, the procedure’s actual inputs and outputs
are wired to the procedure’s internal logic.

The following example shows a local procedure named SWAP that
compares two elements of an array and exchanges these elements if
they are out of order. SWAP is repeatedly called to sort an array of
three numbers. The figure following the example illustrates the corre-
sponding design.

library IEEE;
use IEEE.std_logic_1164.all;

package DATA_TYPES is
 type DATA_ELEMENT is range 0 to 3;
 type DATA_ARRAY is array (1 to 3) of DATA_ELEMENT;
end DATA_TYPES;
VHDL Reference Guide 5-27

VHDL Reference Guide
library IEEE;
use IEEEE.std_logic_1164.all;
use WORK.DATA_TYPES.ALL;

entity SORT is
 port(IN_ARRAY: in DATA_ARRAY;
 OUT_ARRAY: out DATA_ARRAY);
end SORT;

architecture EXAMPLE of SORT is
begin

process(IN_ARRAY)
procedure SWAP(DATA: inout DATA_ARRAY;

 LOW, HIGH: in INTEGER) is
variable TEMP: DATA_ELEMENT;
begin

if(DATA(LOW) > DATA(HIGH)) then -- Check
-- data

TEMP := DATA(LOW);
DATA(LOW) := DATA(HIGH); -- Swap data
DATA(HIGH) := TEMP;

end if;
end SWAP;

variable MY_ARRAY: DATA_ARRAY;

begin
MY_ARRAY := IN_ARRAY; -- Read input to

-- variable
-- Pair-wise sort

SWAP(MY_ARRAY, 1, 2); -- Swap 1st and 2nd
SWAP(MY_ARRAY, 2, 3); -- Swap 2nd and 3rd
SWAP(MY_ARRAY, 1, 2); -- Swap 1st and 2nd

-- again
OUT_ARRAY <= MY_ARRAY; -- Write result to

-- output
end process;

end EXAMPLE;

Figure 5-9 Circuit Design for Procedure Call to Sort an Array
5-28 Xilinx Development System

Sequential Statements
Function Calls

A function call executes a named function with the given parameter
values. The value returned to an operator is the function’s return
value. The syntax follows.

function_name ([parameter_name =>] expression
{, [parameter_name =>] expression }) ;

• function_name is the name of a defined function.

• parameter_name, which is optional, is the name of a formal
parameter as defined by the function. Each expression provides a
value for its parameter and must evaluate to a type appropriate
for that parameter.

You can specify parameter values in positional or named notation, as
you can aggregate values.

In positional notation, the parameter_name -> construct is omitted.
The first expression provides a value for the function’s first param-
eter, the second expression is for the second parameter, and so on.

In named notation, parameter_name -> is specified before an expres-
sion; the named parameter gets the value of that expression.

You can mix positional and named expressions in the same function
call if you put all positional expressions before named parameter
expressions.

The example below shows a simple function definition and two calls
to that function.

function INVERT (A : BIT) return BIT is
 begin
 return (not A);
 end;
...
process
 variable V1, V2, V3: BIT;
begin
 V1 := ’1’;
 V2 := INVERT (V1) xor 1;
 V3 := INVERT (’0’);
end process;
VHDL Reference Guide 5-29

VHDL Reference Guide
return Statements
The return statement terminates a subprogram. A function definition
requires a return statement. In a procedure definition, a return state-
ment is optional. The syntax follows.

return expression ; -- Functions
return ; -- Procedures

• expression provides the return value of the function. Every func-
tion must have at least one return statement. The expression type
must match the declared function type. Only one return state-
ment is reached by a given function call.

• procedure can have one or more return statements, but no
expression. A return statement, if present, is the last statement
executed in a procedure.

In the following example, the function OPERATE returns either the
AND logical operator or the OR logical parameters of its parameters
A and B. The return depends on the value of the parameter OPERA-
TION. The corresponding circuit design is shown in the figure
following the example.

package test is
function OPERATE (A, B, OPERATION: BIT) return BIT;

end test;

package body test is

function OPERATE(A, B, OPERATION: BIT) return BIT is
begin
 if (OPERATION = ’1’) then
 return (A and B);
 else
 return (A or B);
 end if;
end OPERATE;
end test;

library IEEE;
use IEEE.std_logic_1164.all;
use WORK.test.all;

entity example5_20 is
port(

signal A, B, OPERATION: in BIT;
signal RETURNED_VALUE: out BIT
5-30 Xilinx Development System

Sequential Statements
);
end example5_20;

architecture behave of example5_20 is

begin

RETURNED_VALUE <= OPERATE(A, B, OPERATION);
end behave;

Figure 5-10 Circuit for Using Multiple return Statements

Procedures and Functions as Design Components
In VHDL, entities cannot be invoked from within behavioral code.
Procedures and functions cannot exist as entities (components) but
must be represented by gates.

You can overcome this limitation with the Foundation Express direc-
tive map_to_entity, which directs Foundation Express to implement a
function or procedure as a component instantiation. Procedures and
functions that use map_to_entity are represented as components in
designs in which they are called.

When you add a map_to_entity directive to a subprogram definition,
Foundation Express assumes the existence of an entity with the iden-
tified name and the same interface. Foundation Express does not
check this assumption until it links the parent design. The matching
entity must have the same input and output port names. If the
subprogram is a function, you must also provide a return_port_name
directive, where the matching entity has an output port of the same
name.

These two directives are called component implication directives.
VHDL Reference Guide 5-31

VHDL Reference Guide
-- pragma map_to_entity entity_name
-- pragma return_port_name port_name

Insert these directives after the function or procedure definition.The
following example shows how to insert these directives.

function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
return TWO_BIT is

-- pragma map_to_entity MUX_ENTITY
-- pragma return_port_name Z
...

When Foundation Express encounters the map_to_entity directive, it
parses but ignores the contents of the subprogram definition. Use ---
pragma synthesis_off and -- pragma synthesis_on to hide simulation-
specific constructs in a map_to_entity subprogram (see “Translation
Stop and Start Pragma Directives” section of the “Foundation
Express Directives” chapter for more information about synthesis_off
and synthesis_on).

The matching entity (entity_name) does not need to be written in
VHDL. It can be in any format that Foundation Express supports.

Note: The behavioral description of the subprogram is not checked
against the functionality of the entity overloading it. Presynthesis and
post-synthesis simulation results might not match if differences in
functionality exist between the VHDL subprogram and the over-
loaded entity.

Example with Component Implication Directives
The following example shows a function that uses component impli-
cation directives. The corresponding circuit design follows the
example.

package MY_PACK is
 subtype TWO_BIT is BIT_VECTOR(1 to 2);
 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return
 TWO_BIT;
end;

package body MY_PACK is

 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT) return
 TWO_BIT is
5-32 Xilinx Development System

Sequential Statements
 -- pragma map_to_entity MUX_ENTITY
 -- pragma return_port_name Z

 -- contents of this function are ignored but should
 -- match the functionality of the module MUX_ENTITY
 -- so pre- and post simulation will match
 begin
 if(C = ’1’) then
 return(A);
 else
 return(B);
 end if;
 end;
end;

use WORK.MY_PACK.ALL;
entity TEST is
 port(A: in TWO_BIT; C: in BIT; TEST_OUT: out

TWO_BIT);
end;

architecture ARCH of TEST is
begin
 process
 begin
 TEST_OUT <= MUX_FUNC(not A, A, C);

-- Component implication call
 end process;
end ARCH;

use WORK.MY_PACK.ALL;

-- the following entity ’overloads’ the function
-- MUX_FUNC above

entity MUX_ENTITY is
 port(A, B: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

architecture ARCH of MUX_ENTITY is
begin
 process
 begin
 case C is
 when ’1’ => Z <= A;
 when ’0’ => Z <= B;
 end case;
 end process;
end ARCH;
VHDL Reference Guide 5-33

VHDL Reference Guide
Figure 5-11 Circuit for Using Component Implication Directives
on a Function

Example without Component Implication Directives
The following example shows the same design as the previous
example but without the creation of an entity for the function. The
component implication directives have been removed. The corre-
sponding circuit design is shown in the figure following the example.

package MY_PACK is
 subtype TWO_BIT is BIT_VECTOR(1 to 2);
 function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)
 return TWO_BIT;
end;

package body MY_PACK is
function MUX_FUNC(A,B: in TWO_BIT; C: in BIT)

 return TWO_BIT is
 begin
 if(C = ’1’) then
 return(A);
 else
 return(B);
 end if;
 end;
end;

use WORK.MY_PACK.ALL;

entity TEST is
 port(A: in TWO_BIT; C: in BIT; Z: out TWO_BIT);
end;

X8670

Z[1]A[2]

Z[2]

C

A[1]
IV

IV

MUX_ENTITY
5-34 Xilinx Development System

Sequential Statements
architecture ARCH of TEST is
begin
 process
 begin
 Z <= MUX_FUNC(not A, A, C);
 end process;
end ARCH;

Figure 5-12 Circuit Design without Component Implication
Directives

wait Statements
A wait statement suspends a process until Foundation Express
detects a positive-going edge or negative-going edge on a signal. The
syntax follows.

wait until signal = value ;
wait until signal’event and signal = value ;
wait until not signal’stable
 and signal = value ;

signal is the name of a single-bit signal—a signal of an enumerated
type encoded with one bit (see the “Data Types” chapter). The value
must be one of the literals of the enumerated type. If the signal type is
BIT, the awaited value is either ’1,’ for a positive-going edge, or ’0,’
for a negative-going edge.

Note: Three forms of the wait statement (a subset of IEEE VHDL),
shown in the previous syntax and in the following example, are
specific to the current implementation of Foundation Express.
VHDL Reference Guide 5-35

VHDL Reference Guide
Inferring Synchronous Logic
A wait statement implies synchronous logic, where signal is usually a
clock signal. The “Combinatorial Versus Sequential Processes”
section of this chapter describes how Foundation Express infers and
implements this logic.

The following example shows three equivalent wait statements (all
positive-edge triggered).

wait until CLK = ’1’;
wait until CLK’ event and CL = ‘1’;
wait until not CLK’stable and CLK = ’1’;

When a circuit is synthesized, the hardware in the three forms of wait
statements does not differ.

The following example shows a wait statement that suspends a
process until the next positive edge (a 0-to-1 transition) on signal
CLK.

signal CLK: BIT;
...
process
begin
 wait until CLK’event and CLK = ‘1’;
 -- Wait for positive transition (edge)
 ...
end process;

Note: IEEE VHDL specifies that a process containing a wait state-
ment must not have a sensitivity list. For more information, see the
“process Statements” section of the “Concurrent Statements” chapter.

The following example shows how a wait statement is used to
describe a circuit where a value is incremented on each positive clock
edge.

process
begin

y <= 0;
wait until (clk’event and clk = ‘1’);
while (y < MAX) loop
wait until (clk’event and clk = ‘1’);
x <= y ;
y <= y + 1;
end loop;

end process;
5-36 Xilinx Development System

Sequential Statements
The following example shows how multiple wait statements describe
a multicycle circuit. The circuit provides an average value of its input
A over four clock cycles.

process
begin
 wait until CLK’event and CLK = ‘1’;
 AVE <= A;
 wait until CLK’event and CLK = ‘1’;
 AVE <= AVE + A;
 wait until CLK’event and CLK = ‘1’;
 AVE <= AVE + A;
 wait until CLK’event and CLK = ‘1’;
 AVE <= (AVE + A)/4;
end process;

The following example shows two equivalent descriptions. The first
description uses implicit state logic, and the second uses explicit state
logic.

--Implicit State Logic
process
begin
 wait until CLK’event and CLK = ‘1’;
 if (CONDITION) then
 X <= A;
 else
 wait until CLK’event and CLK = ‘1’;
 end if;
end process;

-- Explicit State Logic
type STATE_TYPE is (SO, S1);
variable STATE : STATE_TYPE;
...
process
begin
 wait until CLK’event and CLK = ‘1’;
 case STATE is
 when S0 =>
 if (CONDITION) then
 X <= A;
 STATE := S0;

else
 STATE := S1;
 end if;
 when S1 =>
VHDL Reference Guide 5-37

VHDL Reference Guide
 STATE := S0;
 end case;
end process;

Note: You can use wait statements anywhere in a process except in
for...loop statements or subprograms. However, if any path through
the logic contains one or more wait statements, all paths must contain
at least one wait statement.

The following example shows how to describe a circuit with synchro-
nous reset using wait statements in an infinite loop. Foundation
Express checks the reset signal immediately after each wait state-
ment. The assignment statements in the following example (X <= A;
and Y <= B;) represent the sequential statements used to implement
the circuit.

process
begin
 RESET_LOOP: loop
 wait until CLOCK’event and CLOCK = ‘1’;
 next RESET_LOOP when (RESET = ’1’);
 X <= A;
 wait until CLOCK’event and CLOCK = ‘1’;
 next RESET_LOOP when (RESET = ’1’);
 Y <= B;
 end loop RESET_LOOP;
end process;

The example below shows two invalid uses of wait statements that
are specific to Foundation Express.

...
type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is -100 010
001";
signal CLK : COLOR;
...
process
 begin
 wait until CLK’event and CLK = RED;

-- Illegal: clock type is not encoded with 1 bit
 ...
 end;
...
5-38 Xilinx Development System

Sequential Statements
process
 begin
 if (X = Y) then
 wait until CLK’event and CLK = ‘1’;
 ...
 end if;
 -- Illegal: not all paths contain wait

--statements
 ...
 end;

Combinatorial Versus Sequential Processes
If a process has no wait statements, the process is synthesized with
combinatorial logic. The computations the process performs react
immediately to changes in input signals.

If a process uses one or more wait statements, it is synthesized with
sequential logic. The process performs computations only once for
each specified clock edge (positive or negative edge). The results of
these computations are saved until the next edge by storing them in
flip-flops.

The following values are stored in flip-flops.

• Signals driven by the process

See the “Signal Assignment Statements” section of this chapter.

• State vector values, where the state vector can be implicit or
explicit (as in the example of wait statements and state logic).

• Variables that might be read before they are set.

Note: Like the wait statement, some uses of the if statement can also
imply synchronous logic, causing Foundation Express to infer regis-
ters or latches. These methods are described in the “Register and
Three-State Inference” chapter.

The following example uses a wait statement to store values across
clock cycles. The example code compares the parity of a data value
with a stored value. The stored value (called CORRECT_PARITY) is
set from the NEW_CORRECT_PARITY signal if the SET_PARITY
signal is TRUE.

The corresponding circuit design is shown in the figure following the
example.
VHDL Reference Guide 5-39

VHDL Reference Guide
entity example5 30 is
port(
signal CLOCK: in BIT;
signal SET_PARITY: in Boolean;
signal PARITY_OK: out BOOLEAN;
signal NEW_CORRECT_PARITY: in BIT;
signal DATA:in BIT_VECTOR(0 to 3);
);

end example5 30;

architecture behave of example5 30 is

begin
process
 variable CORRECT_PARITY, TEMP: BIT;
begin
 wait until CLOCK’event and CLOCK = ‘1’;

 -- Set new correct parity value if requested
 if (SET_PARITY) then
 CORRECT_PARITY := NEW_CORRECT_PARITY;
 end if;

 -- Compute parity of DATA
 TEMP := ’0’;
 for I in DATA’range loop
 TEMP := TEMP xor DATA(I);
 end loop;

 -- Compare computed parity with the correct value
 PARITY_OK <= (TEMP = CORRECT_PARITY);
end process;
end behave;
5-40 Xilinx Development System

Sequential Statements
Figure 5-13 Circuit for Parity Tester Using the wait Statement

The previous figure shows two flip-flops are in the synthesized sche-
matic from the example of a parity tester using the wait statement.
The first (input) flip-flop holds the value of CORRECT_PARITY. A
flip-flop is needed here because CORRECT_PARITY is read (when it
is compared to TEMP) before it is set (if SET_PARITY is FALSE). The
second (output) flip-flop stores the value of PARITY_OK between
clock cycles. The variable TEMP is not given a flip-flop because it is
always set before it is read.

null Statements
The null statement explicitly states that no action is required. It is
often used in case statements because all choices must be covered,
even if some of the choices are ignored. The syntax follows.

null;

The following example shows a typical use of the null statement. The
corresponding circuit design is shown in the figure following the
example.

entity example5 31 is
port(

signal CONTROL: INTEGER range 0 to 7;
signal A: in BIT;
signal Z: out BIT
);

end example5 31;

X8624

PARITY_OK

NEW_CORRECT_PARITY

FD1

IV

MUX21H

SET_PARITY

DATA[0]

DATA[3]

DATA[1]

DATA[2]

CLOCK
VHDL Reference Guide 5-41

VHDL Reference Guide
architecture behave of example 5 31 is

begin

process (CONTROL, A)
begin

Z <= A;
case CONTROL is
 when 0 | 7 => -- If 0 or 7, then invert A
 Z <= not A;
 when others =>
 null; -- If not 0 or 7, then do nothing
end case;
end process;
end behave;

Figure 5-14 Circuit for null Statement
5-42 Xilinx Development System

Chapter 6

Concurrent Statements

A VHDL architecture construct comprises a set of interconnected
concurrent statements, such as blocks or processes, that describe an
overall design in terms of behavior or structure. Concurrent state-
ments in a design execute simultaneously, unlike sequential state-
ment, which execute one after another.

This chapter describes concurrent statements and their function. The
chapter is divided into the following sections.

• “Overview”

• “process Statements”

• “block Statements”

• “Concurrent Versions of Sequential Statements”

• “Component Instantiation Statements”

• “Direct Instantiation”

• “generate Statements”

Overview
The two main concurrent statements are the following.

• Process statements

• Block statements

VHDL provides two concurrent versions of sequential statements.

• Concurrent procedure calls

• Concurrent signal assignments
VHDL Reference Guide 6-1

VHDL Reference Guide
The component instantiation statement references a previously
defined hardware component.

Finally, the generate statement creates multiple copies of any concur-
rent statement.

process Statements
A process statement (which is concurrent) contains a set of sequential
statements. Although all processes in a design execute concurrently,
Foundation Express interprets the sequential statements within each
process one at a time.

A process communicates with the rest of the design by reading values
from or writing them to signals or ports outside the process.

The syntax of a process statement follows.

[label:] process [(sensitivity_list)]
 { process_declarative_item }
begin
 { sequential_statement }
end process [label] ;

• label, which is optional, names the process.

• sensitivity_list is a list of all signals (including ports) read by the
process, in the following format.

signal_name {, signal_name}

The circuit Foundation Express synthesizes is sensitive to all
signals read the process reads. To guarantee the same results
from a VHDL simulator and the synthesized circuit, a process
sensitivity list has to contain all signals whose changes require
simulating the process again.

Follow these guidelines when developing the sensitivity list.

• Synchronous processes (processes that compute values only
on clock edges) must be sensitive to the clock signal.

• Asynchronous processes (processes that compute values on
clock edges and when asynchronous conditions are true)
must be sensitive to the clock signal (if any) and to inputs
that affect asynchronous behavior.
6-2 Xilinx Development System

Concurrent Statements
Foundation Express checks sensitivity lists for completeness and
issues warning messages for any signals that are read inside a
process but are not in the sensitivity list. An error is issued if a
clock signal is read as data in a process.

Note: IEEE VHDL does not allow a sensitivity list if the process
includes a wait statement.

• process_declarative_item declares subprograms, types, constants,
and variables local to the process. These items can be any of the
following items, all of which are discussed in the “Design
Descriptions” chapter.

• use clause

• Subprogram declaration

• Subprogram body

• Type declaration

• Subtype declaration

• Constant declaration

• Variable declaration

The sequence of statements in a process defines the behavior of the
process. After executing all the statements in a process, Foundation
Express executes them all again.

The only exception is during simulation; if a process has a sensitivity
list, the process is suspended (after its last statement) until a change
occurs in one of the signals in the sensitivity list.

If a process has one or more wait statements (and therefore no sensi-
tivity list), the process is suspended at the first wait statement whose
wait condition is FALSE.

The circuit synthesized for a process is either combinatorial (not
clocked) or sequential (clocked). If a process includes a wait or if
signal’event statement, its circuit contains sequential components.
The wait and if statements are described in the “Sequential State-
ments” chapter.

Process statements provide a natural means for describing sequential
algorithms. If the values computed in a process are inherently
parallel, consider using concurrent signal assignment statements.
VHDL Reference Guide 6-3

VHDL Reference Guide
(See the “Concurrent Versions of Sequential Statements” section of
this chapter).

Combinatorial Process Example
The following example shows a process (with no wait statements)
that implements a simple modulo-10 counter. The process reads two
signals, CLEAR and IN_COUNT, and drives one signal,
OUT_COUNT.

If CLEAR is ’1’ or IN_COUNT is ‘9’, then OUT_COUNT is set to’0.’
Otherwise, OUT_COUNT is set to one more than IN_COUNT. The
resulting circuit design is shown in the figure following the example.

entity COUNTER is
 port (CLEAR: in BIT;
 IN_COUNT: in INTEGER range 0 to 9;
 OUT_COUNT: out INTEGER range 0 to 9);
end COUNTER;
architecture EXAMPLE of COUNTER is
begin
 process(IN_COUNT, CLEAR)
 begin
 if (CLEAR = ’1’ or IN_COUNT = 9) then
 OUT_COUNT <= 0;
 else
 OUT_COUNT <= IN_COUNT + 1;
 end if;
 end process;
end EXAMPLE;
6-4 Xilinx Development System

Concurrent Statements
Figure 6-1 Modulo-10 Counter Process Design

Sequential Process Example
Another way to implement the counter in the previous example is to
use a wait statement to contain the count value internally in the
process.

The process in the following example implements the counter as a
sequential (clocked) process.

• On each 0-to-1 CLOCK transition, if CLEAR is ’1’ or COUNT is
‘9,’ COUNT is set to ‘0.’

• Otherwise, Foundation Express increments the value of COUNT
by one.

• The value of the variable COUNT is stored in four flip-flops,
which Foundation Express generates because COUNT can be
read before it is set. Thus, the value of COUNT has to be main-
tained from the previous clock cycle. For more information on
using wait statements and count values, see “wait Statements”
section of the “Sequential Statements” chapter.

The resulting circuit design is shown in the figure that follows the
example.

entity COUNTER is
 port (CLEAR: in BIT;

X8622

OUT_COUNT[0]

OUT_COUNT[1]

OUT_COUNT[2]IN_COUNT[2]

IN_COUNT[0]

IN_COUNT[1]

IN_COUNT[3]

CLEAR

IV

AN2

AN2

ND3

ND2

NR2

OUT_COUNT[3]NR2
ND2

ND2

NR2
NR2

NR2

OR3

MUX21L

AN2

NR2

MUX21L
EO

EO
VHDL Reference Guide 6-5

VHDL Reference Guide
 CLOCK: in BIT;
 COUNT: buffer INTEGER range 0 to 9);
end COUNTER;

architecture EXAMPLE of COUNTER is
begin
 process
 begin
 wait until CLOCK’event and CLOCK =’1’;

 if (CLEAR = ’1’ or COUNT >= 9) then
 COUNT <= 0;
 else
 COUNT <= COUNT + 1;
 end if;
 end process;
end EXAMPLE;

Figure 6-2 Modulo-10 Counter Process with wait Statement
Design

COUNT[0]

FD1

FD1

FD1

FD1

COUNT[1]

X8621

COUNT[3]

COUNT[2]
CLEAR

CLOCK

NR2

NR2
NR2

NR2

NR2

ND2
AN3ND2

ND2
OR3

ND2

ND2

IV

EO

EO
6-6 Xilinx Development System

Concurrent Statements
Driving Signals
If a process assigns a value to a signal, the process is a driver of that
signal. If more than one process or other concurrent statement drives
a signal, that signal has multiple drivers.

The following example shows two three-state buffers driving the
same signal (SIG). The resulting circuit design is shown in the figure
following the example. To learn to infer three-state devices in VHDL,
see “Three-State Inference” section of the “Register and Three-State
Inference” chapter.

A_OUT <= A when ENABLE_A else ’Z’;
B_OUT <= B when ENABLE_B else ’Z’;
process(A_OUT)
begin
 SIG <= A_OUT;
end process;
process(B_OUT)
begin
 SIG <= B_OUT;
end process;

Figure 6-3 Two Three-State Buffers Driving the Same Signal

Bus resolution functions assign the value for a signal with multiple
drivers. For more information, see “Resolution Functions” section of
the “Design Descriptions” chapter.

block Statements
A block statement (which is concurrent) contains a set of concurrent
statements. The order of the concurrent statements does not matter,
because all statements are always executing.

X8663

A

ENABLE_A

SIGB

ENABLE_B
VHDL Reference Guide 6-7

VHDL Reference Guide
Note: Foundation Express does not create a new level of design hier-
archy from a block statement.

The syntax of a block statement follows.

label: block[(expression)]
 { block_declarative_item }
begin
 { concurrent_statement }
end block [label];

• label, which is required, names the block.

• expression is the guard condition for the block. When this
optional expression is present, Foundation Express evaluates the
expression and creates a Boolean signal called GUARD.

• A block_declarative_item declares objects local to the block,
which can be any of the following items.

• use clause

• subprogram declaration

• subprogram body

• type declaration

• subtype declaration

• constant declaration

• signal declaration

• component declaration

Objects declared in a block are visible to that block and to all blocks
nested within. When a child block (inside a parent block) declares an
object with the same name as an object in the parent block, the child
block’s declaration overrides that of the parent.

Nested Blocks
The description in the following example uses nested blocks. The
resulting circuit schematic is shown in the figure following the
example.

B1: block
 signal S: BIT; -- Declaration of "S" in block B1
6-8 Xilinx Development System

Concurrent Statements
begin
 S <= A and B; -- "S" from B1

 B2: block
 signal S: BIT; -- Declaration of "S" in block B2
 begin
 S <= C and D; -- "S" from B2

 B3: block
 begin
 Z <= S; -- "S" from B2
 end block B3;
 end block B2;
Y <= S; -- "S" from B1

end block B1;

Figure 6-4 Schematic of Nested Blocks

Guarded Blocks
The description in the following example uses guarded blocks. In the
example, z has the same value as a.

entity EG1 is
 port (a: in BIT; z: out BIT);
end;

architecture RTL of EG1 is
begin

guarded_block: block (a = ’1’)
begin

z <= ’1’ when guard else ’0’;

X8642

C
Z

AN2

D

A
Y

AN2

B

VHDL Reference Guide 6-9

VHDL Reference Guide
end block;
end RTL;

A concurrent assignment within a block statement can use the
guarded keyword. In such a case, the guard expression conditions the
signal assignment. The description in the following example
produces a level-sensitive latch.

entity EG2 is
 port (d, g: in BIT; q: out BIT);
end;

architecture RTL of EG2 is
begin

guarded_block: block (g = ’1’)
begin

q <= guarded d;
end block;

end RTL;

Note: Do not use the ’event or ’stable attributes with the guard
expression if you want to produce an edge-triggered latch using a
guarded block. The presence of either attribute prevents it.

Concurrent Versions of Sequential Statements
This section describes concurrent versions of sequential statements in
the following form.

• Concurrent Procedure Calls

• Concurrent Signal Assignments

• Simple Concurrent Signal Assignments

• Conditional Signal Assignments

• Selected Signal Assignments

Concurrent Procedure Calls
A concurrent procedure call, which is used in an architecture
construct or a block statement, is equivalent to a process with a single
sequential procedure call in it (see the following example). The syntax
is the same as that of a sequential procedure call.

procedure_name [([name =>] expression
 { , [name =>] expression })] ;
6-10 Xilinx Development System

Concurrent Statements
The equivalent process reads all the in and inout parameters of the
procedure. The following example shows a procedure declaration
and a concurrent procedure call and its equivalent process.

procedure ADD(signal A, B: in BIT;
 signal SUM: out BIT);
...
ADD(A, B, SUM); -- Concurrent procedure call
...
process(A, B) -- The equivalent process
begin
 ADD(A, B, SUM); -- Sequential procedure call
end process;

Foundation Express implements procedure and function calls with
logic unless you use the map_to_entity compiler directive. (See the
“Procedures and Functions as Design Components” section of the
“Sequential Statements” chapter.)

A common use for concurrent procedure calls is to obtain many
copies of a procedure. For example, assume that a class of
BIT_VECTOR signals must have just 1 bit with value ’1’ and the rest
of the bits with value ‘0’ (as in the following example). Suppose you
have several signals of varying widths that you want monitored at
the same time (as the second example following). One approach is to
write a procedure to detect the error in a BIT_VECTOR signal, and
then make a concurrent call to that procedure for each signal.

The following example shows a procedure, CHECK, that determines
whether a given bit vector has exactly one element with value ’1.’ If
this is not the case, CHECK sets its out parameter ERROR to TRUE,
as the example shows.

procedure CHECK(signal A: in BIT_VECTOR;
 signal ERROR: out Boolean) is

 variable FOUND_ONE: BOOLEAN:= FALSE;
 -- Set TRUE when a ’1’ is

-- seen
begin
 for I in A’range loop -- Loop across all bits in

-- the vector
 if A(I) = ’1’ then -- Found a ’1’
 if FOUND_ONE then -- Have we already found

-- one?
 ERROR <= TRUE; -- Found two ’1’s
VHDL Reference Guide 6-11

VHDL Reference Guide
 return; -- Terminate procedure
 end if;

 FOUND_ONE := TRUE;
 end if;
 end loop;

 ERROR <= not FOUND_ONE; -- Error will be TRUE if
-- no ’1’ seen

end;

The following example shows the CHECK procedure called concur-
rently for four differently sized bit vector signals. The resulting circuit
design is shown in the figure following the example.

BLK: block
 signal S1: BIT_VECTOR(0 to 0);
 signal S2: BIT_VECTOR(0 to 1);
 signal S3: BIT_VECTOR(0 to 2);
 signal S4: BIT_VECTOR(0 to 3);

 signal E1, E2, E3, E4: BOOLEAN;

begin
 CHECK(S1, E1); -- Concurrent procedure call
 CHECK(S2, E2);
 CHECK(S3, E3);
 CHECK(S4, E4);
end block BLK;

Figure 6-5 Concurrent CHECK Procedure Design

X8620

S1[0]

S2[1]

S2[0]

S3[0]

S3[2]
S3[1]

S4[0]

S4[1]

S4[2]

S4[3]

E2

E3

E1
IV

E4

EN

OR2

OR2

EO
EO

EO

ND2

ND2

ND2

ND2

ND3
6-12 Xilinx Development System

Concurrent Statements
Concurrent Signal Assignments
A concurrent signal assignment is equivalent to a process containing
a sequential assignment. Thus, each concurrent signal assignment
defines a new driver for the assigned signal. This section discusses
the three forms of concurrent signal assignment.

Simple Concurrent Signal Assignments

The syntax of the simplest form of the concurrent signal assignment
follows.

target <= expression;

target is a signal that receives the value of an expression.

The following example shows the value of expressions A and B
concurrently assigned to signal Z.

BLK: block
 signal A, B, Z: BIT;
begin
 Z <= A and B;
end block BLK;

The other two forms of concurrent signal assignment are conditional
signal assignment and selected signal assignment.

Conditional Signal Assignments

The syntax of the conditional signal assignment follows.

target <= { expression when condition else }
 expression;

target is a signal that receives the value of an expression. The expres-
sion used is the first one whose Boolean condition is TRUE.

When Foundation Express executes a conditional signal assignment
statement, it tests each condition in the order written.

• Foundation Express assigns to the target the expression of the
first condition that evaluates to TRUE.

• If no condition evaluates to TRUE, Foundation Express assigns
the final expression to the target.

• If two or more conditions are TRUE, Foundation Express assigns
only the first one to the target.
VHDL Reference Guide 6-13

VHDL Reference Guide
The following example shows a conditional signal assignment. The
target is the signal Z, which is assigned from one of the signals A, B,
or C. The signal depends on the value of the expressions ASSIGN_A
and ASSIGN_B. The resulting design is shown in the figure following
the example.

Note: The A assignment takes precedence over B, and B takes prece-
dence over C, because the first TRUE condition controls the assign-
ment.

Z <= A when ASSIGN_A = ’1’ else
 B when ASSIGN_B = ’1’ else
 C;

Figure 6-6 Conditional Signal Assignment Design

The following example shows a process equivalent to the example of
the conditional signal assignment.

process(A, ASSIGN_A, B, ASSIGN_B, C)
begin
 if ASSIGN_A = ’1’ then
 Z <= A;
 elsif ASSIGN_B = ’1’ then
 Z <= B;
 else
 Z <= C;
 end if;
end process;

X8662

ASSIGN_B

C

B

A

ASSIGN_A

Z

MUX21H

MUX21H
6-14 Xilinx Development System

Concurrent Statements
Selected Signal Assignments

The syntax of the selected signal assignment follows.

with choice_expression select
 target <= { expression when choices, }
 expression when choices;

target is a signal that receives the value of an expression. The expres-
sion selected is the first one whose choices include the value of
choice_expression.

Each choice can be either of the following.

• A static expression (such as 3)

• A static range (such as 1 to 3).

The value of each choice the target signal receives has to match the
value or values of choice_expression.

If the value of choice_expression is a static range, each value in the
range must be covered by one choice in the expression.

The final choice can be others, which matches all remaining
(unchosen) values in the range of the choice_expression type. The
others choice, if present, matches choice_expression only if none of
the other choices match. You can use others as the final choice only if
the value of choice_expression is a range.

The with...select statement evaluates choice_expression and
compares that value to each choice value. The when clause with the
matching choice value has its expression assigned to target.

The following restrictions are placed on choices.

• No two choices can overlap.

• If no others choice is present, all possible values of
choice_expression must be covered by the set of choices.

The following example shows target Z assigned from A, B, C, or D.
The assignment depends on the current value of CONTROL. The
resulting design is shown in the figure following the example.

signal A, B, C, D, Z: BIT;
signal CONTROL: bit_vector(1 down to 0);
. . .
with CONTROL select
 Z <= A when "00",
VHDL Reference Guide 6-15

VHDL Reference Guide
 B when "01",
 C when "10",
 D when "11";

Figure 6-7 Circuit for Selected Signal Assignment

The following example shows a process equivalent to the previous
example of selected signal assignment statement.

process(CONTROL, A, B, C, D)
begin
 case CONTROL is
 when 0 =>
 Z <= A;
 when 1 =>
 Z <= B;
 when 2 =>
 Z <= C;
 when 3 =>
 Z <= D;
 end case;
end process;

Component Instantiation Statements
The purpose of a component instantiation statement is to define a
design hierarchy or build a netlist in VHDL by doing the following.

• Referencing a previously defined hardware component in the
current design, at the current level of hierarchy

X8661

B

A

C

D

CONTROL [0]

CONTROL [1]

Z
MUX41
6-16 Xilinx Development System

Concurrent Statements
• Referencing components not defined in VHDL, such as the
following.

• Components from a technology library (FPGA vendor-
specific)

• Components defined in the Verilog hardware description
language

The syntax follows.

instance_name : component_name port map (
 [port_name =>] expression
 {, [port_name =>] expression });

• instance_name is the name of this instance of the component.

• component_name is the name of the component port map, which
connects each port of this instance of component_name to a
signal-valued expression in the current entity.

• port_name is the name of port.

• expression is the name of a signal, indexed name, slice name, or
aggregate, to indicate the connection method for the component’s
ports.

If expression is the VHDL reserved word open, the corre-
sponding port is left unconnected.

You can map ports to signals by named or positional notation. You
can include both named and positional connections in the port map,
but you must put all positional connections before any named
connections.

Note: For named association, the component port names must
exactly match the declared component’s port names. For positional
association, the actual port expressions must be in the same order as
the declared component’s port order.

The example below shows a component declaration (a 2-input
NAND gate) followed by three equivalent component instantiation
statements.

component ND2
 port(A, B: in BIT; C: out BIT);
end component;
. . .
signal X, Y, Z: BIT;
VHDL Reference Guide 6-17

VHDL Reference Guide
. . .
U1: ND2 port map(X, Y, Z); -- positional
U2: ND2 port map(A => X, C => Z, B => Y);-- named
U3: ND2 port map(X, Y, C => Z); -- mixed

The following example shows the component instantiation statement
defining a simple netlist. The three instances, U1, U2, and U3, are
instantiations of the 2-input NAND gate component declared in the
example of component declaration and instantiations. The resulting
circuit design is shown in the figure following the example.

signal TEMP_1, TEMP2: BIT;
. . .
 U1: ND2 port map(A, B, TEMP_1);
 U2: ND2 port map(C, D, TEMP_2);
 U3: ND2 port map(TEMP_1, TEMP_2, Z);

Figure 6-8 Simple Netlist Design

Direct Instantiation
A component instantiation statement

• Defines a subcomponent of the design entity in which it appears

• Associates signals or values with the ports of that subcomponent

• Associates values with generics of that subcomponent

The following two examples show the difference between a compo-
nent instantiation statement and the more concise direct component
instantiation statement.

ARCHITECTURE struct OF root IS
 COMPONENT leaf
 PORT (
 clk,data : in std_logic;
 Qout : out std_logic);

X8643

C
ZND2

D

A
ND2

ND2B
6-18 Xilinx Development System

Concurrent Statements
 END COMPONENT;
BEGIN
 u1 : leaf
 PORT MAP (
 clk => clk,
 data => d_in(0),
 Qout => q_out(0));

The following example shows how you can express the information
in the previous example in a direct component instantiation state-
ment.

ARCHITECTURE struct OF root IS
BEGIN
 u1 : entity work.leaf(rtl)
 port map (
 clk => clk,
 data => d_in(0),
 Qout => q_out(0));

generate Statements
A generate statement creates zero or more copies of an enclosed set of
concurrent statements. The two kinds of generate statements follow.

• For...generate—the number of copies is determined by a discrete
range.

• If...generate—zero or one copy is made, conditionally.

for...generate Statements
The syntax follows.

label: for identifier in range generate
 { concurrent_statement }
end generate [label] ;

• label, which is required, names this statement and is useful for
building nested generate statements.

• identifier is specific to the for...generate statement.

• Identifier is not declared elsewhere. It is automatically
declared by the generate statement itself and is local to the
statement. A for...generate identifier overrides any other
VHDL Reference Guide 6-19

VHDL Reference Guide
identifier with the same name, but only within the
for...generate statement.

• The value of identifier can be read only inside its
for...generate statement (identifier does not exist outside the
statement). You cannot assign a value to a for...generate iden-
tifier.

• The value of identifier cannot be assigned to any parameter
whose mode is out or inout.

• range must be a computable integer range, in either of two forms.

integer_expression to integer_expression
integer_expression downto integer_expression

• integer_expression evaluates to an integer. Each
concurrent_statement can be any of the statements described in
this chapter, including other generate statements.

Steps in the Execution of a for...generate Statement

A for...generate statement executes as follows.

1. A new local integer variable is declared with the name identifier.

2. The identifier receives the first value of range, and each concur-
rent statement executes once.

3. The identifier receives the next value of range, and each concur-
rent statement executes once more.

4. Step 3 repeats until the identifier receives the last value in the
range and each concurrent statement executes for the last time,
Execution continues with the statement following end generate.
The loop identifier is deleted.

The following example shows a code fragment that combines and
interleaves two 4-bit arrays, A and B, into an 8-bit array, C. The
resulting design is shown in the figure following the example.

signal A, B : bit_vector(3 downto 0);
signal C : bit_vector(7 downto 0);
signal X : bit;
. . .
GEN_LABEL: for I in 3 downto 0 generate
 C(2*I + 1) <= A(I) nor X;
6-20 Xilinx Development System

Concurrent Statements
 C(2*I) <= B(I) nor X;
end generate GEN_LABEL;

Figure 6-9 An 8-Bit Array Design

X8649

B[0]

A[0]
C[1]

C[0]

C[2]

NR2

NR2

NR2
B[1]

A[1]
C[3]

C[4]
B[2]

X

A[2]

C[5]

C[6]
B[3]

A[3]
C[7]

NR2

NR2

NR2

NR2

NR2

NR2
VHDL Reference Guide 6-21

VHDL Reference Guide
Common Usage of a for...generate Statement

The most common use of the generate statement is to create multiple
copies of components, processes, or blocks. The following example
and figure demonstrates this use with components. (The example and
figure following this example and figure show this usage with
processes.)

The following example shows VHDL array attribute ’range used with
the for...generate statement to instantiate a set of COMP components
that connect corresponding elements of bit vectors A and B. The
resulting design follows each of the examples.

component COMP
 port (X : in bit;
 Y : out bit);
end component;
. . .
signal A, B: BIT_VECTOR(0 to 7);
. . .
GEN: for I in A’range generate
 U: COMP port map (X => A(I),
 Y => B(I));
end generate GEN;

Figure 6-10 Design of COMP components Connecting Bit
Vectors A and B

X8648

A [0] B [0]

COMP

A [1] B [1]

COMP

A [2] B [2]

COMP

A [3] B [3]

COMP

A [4] B [4]

COMP

A [5] B [5]

COMP

A [6] B [6]

COMP

A [7] B [7]

COMP
6-22 Xilinx Development System

Concurrent Statements
For more information about arrays, see “Array Types” section of the
“Data Types” chapter.

if...generate Statements
The syntax follows.

label: if expression generate
 { concurrent_statement }
end generate [label] ;

• label identifies (names) this statement.

• expression is any expression that evaluates to a Boolean value.

• concurrent_statement is any of the statements described in this
chapter, including other generate statements.

Note: Unlike the if statement described in the “if Statements” section
of the “Sequential Statements” chapter, the if...generate statement has
no else or elsif branches.

You can use the if...generate statement to generate a regular structure
that has different circuitry at its ends. Use a for...generate statement to
iterate over the desired width of a design and use a set of if...generate
statements to define the beginning, middle, and ending sets of
connections.

The following example shows a technology-independent description
of an N-bit serial-to-parallel converter. Data is clocked into an N-bit
buffer from right to left. On each clock cycle, each bit in an N-bit
buffer is shifted up 1 bit, and the incoming DATA bit is moved into
the low-order bit. The resulting design follows the example.

entity CONVERTER is
 generic(N: INTEGER := 8);

 port(CLK, DATA: in BIT;
 CONVERT: buffer BIT_VECTOR(N-1 downto 0));
end CONVERTER;

architecture BEHAVIOR of CONVERTER is
 signal S : BIT_VECTOR(CONVERT’range);
begin

 G: for I in CONVERT’range generate

 G1: -- Shift (N-1) data bit into high-order bit
 if (I = CONVERT’left) generate
VHDL Reference Guide 6-23

VHDL Reference Guide
 process begin
 wait until (CLK’event and CLK = ‘1’);
 CONVERT(I) <= S(I-1);
 end process;
 end generate G1;

 G2: -- Shift middle bits up
 if (I > CONVERT’right and
 I < CONVERT’left) generate

 S(I) <= S(I-1) and CONVERT(I);

 process begin
 wait until (CLK’event and CLK =’1’);
 CONVERT(I) <= S(I-1);
 end process;
 end generate G2;

 G3: -- Move DATA into low-order bit
 if (I = CONVERT’right) generate
 process begin
 wait until (CLK’event and CLK = ‘1’);
 CONVERT(I) <= DATA;
 end process;
 S(I) <= CONVERT(I);
 end generate G3;

end generate G;
end BEHAVIOR;
6-24 Xilinx Development System

Concurrent Statements
Figure 6-11 Design of N-Bit Serial-to-Parallel Converter

X8619

CONVERT [0]

FD1

CONVERT [1]

FD1

CONVERT [2]

FD1

CONVERT [3]

FD1

CONVERT [4]

FD1

CONVERT [5]

FD1

CONVERT [6]

FD1

CONVERT [7]

FD1

DATA

CLK

NR2

IV

NR2

ND2
AN2

AN2
AN2
VHDL Reference Guide 6-25

VHDL Reference Guide
6-26 Xilinx Development System

Chapter 7

Register and Three-State Inference

Foundation Express infers registers (latches and flip-flops) and three-
state cells. This chapter explains inference behavior and results in the
following sections.

• “Register Inference”

• “Three-State Inference”

Register Inference
By inferring registers, you can use sequential logic in your designs
and keep your designs technology-independent. A register is a
simple, one-bit memory device, either a latch or a flip-flop. A latch is
a level-sensitive memory device. A flip-flop is an edge-triggered
memory device.

Foundation Express’ capability to infer registers supports coding
styles other than those described in this chapter. However, for best
results, do the following.

• Restrict each always block to a single type of memory-element
inferencing: latch, latch with asynchronous set or reset, flip-flop,
flip-flop with asynchronous reset, or flip-flop with synchronous
reset.

• Use the templates provided in the “Inferring Latches” section
and “Inferring Flip-Flops” section of this chapter.

The Inference Report
Foundation Express generates a general inference report when
building a design. It provides the asynchronous set or reset, synchro-
nous set or reset, and synchronous toggle conditions of each latch or
VHDL Reference Guide 7-1

VHDL Reference Guide
flip-flop, expressed in Boolean formulas. The following example
shows the inference report for a JK flip-flop.

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

The inference report shows the following.

• Y indicates that the flip-flop has a synchronous reset (SR) and a
synchronous set (SS).

• N indicates that the flip-flop does not have an asynchronous reset
(AR), an asynchronous set (AS), or a synchronous toggle (ST).

In the inference report, the last section of the report lists the objects
that control the synchronous reset and set conditions. In this example
(Inference Report for a JK Flip-Flop), a synchronous reset occurs
when J is low (logic 0) and K is high (logic 1). The last line of the
report indicates the register output value when both the set and reset
are active.

• zero (0)—Indicates that the reset has priority and the output goes
to logic 0

• one (1)—Indicates that the set has priority and the output goes to
logic 1

• X—Indicates that there is no priority and that the output value is
unstable

The “Inferring Latches” section and “Inferring Flip-Flops” section of
this chapter provide inference reports for each register template.
After you read a description in Foundation Express, check the infer-
ence report.

Latch Inference Warnings
Foundation Express generates a warning message when it infers a
latch. The warning message is useful to verify that a combinatorial
design does not contain memory components.

Register Name Type Widt
h

Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y N
7-2 Xilinx Development System

Register and Three-State Inference
Controlling Register Inference
Use directives to direct the type of sequential device you want
inferred. The default is to implement the type of latch described in
the HDL code. These attributes override this behavior.

The ATTRIBUTES package in the VHDL library defines the following
attributes for controlling register inference.

• async_set_reset

When this is set to TRUE on a signal, Foundation Express
searches for a branch that uses the signal as a condition. Founda-
tion Express then checks whether the branch contains an assign-
ment to a constant value. If the branch does, the signal becomes
an asynchronous reset or set.

Attach the async_set_reset attribute to 1-bit signals using the
following syntax.

attribute async_set_reset of signal_name_list : signal is ”true”;

• async_set_reset_local

Foundation Express treats listed signals in the specified process
as if they have the async_set_reset attribute set to TRUE.

Attach the async_set_reset_local attribute to a process label using
the following syntax.

attribute async_set_reset_local of process_label : label is ”signal_name_list”;

• async_set_reset_local_all

Foundation Express treats all signals in the specified processes as
if they have the async_set_reset attribute set to TRUE.

Attach the async_set_reset_local_all attribute to process labels by
using the following syntax.

attribute async_set_reset_local_all of process_label_list : label is ”true”;

• sync_set_reset

When this is set to TRUE on a signal, Foundation Express checks
the signal to determine whether it synchronously sets or resets a
register in the design.

Attach the sync_set_reset attribute to 1-bit signals by using the
following syntax.
VHDL Reference Guide 7-3

VHDL Reference Guide
attribute sync_set_reset of signal_name_list : signal is ”true”;

• sync_set_reset_local

Foundation Express treats listed signals in the specified process
as if they have the sync_set_reset attribute set to TRUE.

Attach the sync_set_reset_local attribute to a process label by
using the following syntax.

attribute sync_set_reset_local of process_label : label is ”signal_name_list”;

• sync_set_reset_local_all

Foundation Express treats all signals in the specified processes as
if they have the sync_set_reset attribute set to TRUE.

Attach the sync_set_reset_local_all attribute to process labels by
using the following syntax.

attribute sync_set_reset_local_all of process_label_list : label is ”true”;

• one_cold

A one-cold implementation means that all signals in a group are
active low and that only one signal can be active at a given time.
The one_cold directive prevents Foundation Express from imple-
menting priority encoding logic for the set and reset signals.

Add an assertion to the VHDL code to ensure that the group of
signals has a one-cold implementation. Foundation Express does
not produce any logic to check this assertion.

Attach the one_cold attribute to set or reset signals on sequential
devices by using the following syntax.

attribute one_cold signal_name_list : signal is ”true”;

• one_hot

A one_hot implementation means that all signals in a group are
active-high and that only one signal can be active at a given time.
The one_hot attribute prevents Foundation Express from imple-
menting priority encoding logic for the set and reset signals.

Add an assertion to the VHDL code to ensure that the group of
signals has a one_hot implementation. Foundation Express does
not produce any logic to check this assertion.

Attach the one_hot attribute to set or reset signals on sequential
devices using the following syntax.
7-4 Xilinx Development System

Register and Three-State Inference
attribute one_hot signal_name_list : signal is ”true”;

Inferring Latches
In simulation, a signal or variable holds its value until that output is
reassigned. In hardware, a latch implements this holding-of-state
capability. Foundation Express supports inference of the following
types of latches.

• SR latch

• D latch

• Master-slave latch

The following sections provide details about each of these latch types.

Inferring Set/Reset (SR) Latches

Use SR latches with caution, because they are difficult to test. If you
decide to use SR latches, you must verify that the inputs are hazard-
free (do not glitch). During synthesis, Foundation Express does not
ensure that the logic driving the inputs is hazard-free.

The following example of an SR latch provides the VHDL code that
implements the SR latch described in the truth table. The inference
report following the truth table for an SR latch shows the inference
report that Foundation Express generates.

The following example shows an SR latch.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity sr_latch is
 port (SET, RESET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of SET, RESET :

set reset y

0 0 Not stable

0 1 1

1 0 0

1 1 y
VHDL Reference Guide 7-5

VHDL Reference Guide
 signal is ”true”;
end sr_latch;

architecture rtl of sr_latch is
begin

infer: process (SET, RESET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (RESET = ’0’) then
 Q <= ’0’;
 end if;
end process infer;

end rtl;

The example below shows an inference report for an SR latch and its
schematic.

y_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: 1

Figure 7-1 SR Latch

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -

Q

X8590a
SET

RESET
7-6 Xilinx Development System

Register and Three-State Inference
Inferring D Latches

When you do not specify the resulting value for an output under all
conditions, as in an incompletely specified if statement, Foundation
Express infers a D latch.

For example, the if statement in the following example infers a D
latch because there is no else clause. The resulting value for output Q
is specified only when input enable has a logic 1 value. As a result,
output Q becomes a latched value.

process(DATA, GATE) begin
 if (GATE = ’1’) then
 Q <= DATA;
 end if;
end process;

To avoid latch inference, assign a value to the signal under all condi-
tions, as shown in the following example.

process(DATA, GATE) begin
 if (GATE = ’1’) then
 Q <= DATA;
 else
 Q <= ’0’;
 end if;
end process;

Variables declared locally within a subprogram do not hold their
value over time, because each time a subprogram is called, its vari-
ables are reinitialized. Therefore, Foundation Express does not infer
latches for variables declared in subprograms. In the following
example, Foundation Express does not infer a latch for output Q.

function MY_FUNC(DATA, GATE : std_logic) return
std_logic is

 variable STATE: std_logic;
begin
 if (GATE = ’1’) then
 STATE <= DATA;
 end if;
 return STATE;
end;
. . .
Q <= MY_FUNC(DATA, GATE);
VHDL Reference Guide 7-7

VHDL Reference Guide
The following sections provide code examples, inference reports, and
figures for these types of D latches.

• Simple D latch

• D latch with asynchronous set

• D latch with asynchronous reset

• D latch with asynchronous set and reset

Simple D Latch When you infer a D latch, control the gate and data
signals from the top-level design ports or through combinatorial
logic. Gate and data signals that can be controlled ensure that simula-
tion can initialize the design.

The following example provides the VHDL template for a D latch.
Foundation Express generates the inference report shown after the
example for a D latch. The figure “D Latch” shows the inferred latch.

library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
 port (GATE, DATA: in std_logic;
 Q : out std_logic);
end d_latch;

architecture rtl of d_latch is
begin

infer: process (GATE, DATA) begin
 if (GATE = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

The example below shows an inference report for a D latch.

Q_reg
reset/set:none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N N - - -
7-8 Xilinx Development System

Register and Three-State Inference
Figure 7-2 D Latch

D Latch with Asynchronous Set The template in this section uses
the async_set_reset attribute to direct Foundation Express to the
asynchronous set (AS) pins of the inferred latch.

The following example provides the VHDL template for a D latch
with an asynchronous set. Foundation Express generates the infer-
ence report shown following the example for a D latch with asyn-
chronous set. The figure “D Latch with Asynchronous Set” shows the
inferred latch.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_set is
port (GATE, DATA, SET : in std_logic;

 Q : out std_logic);
 attribute async_set_reset of SET :
 signal is ”true”;
end d_latch_async_set;

architecture rtl of d_latch_async_set is
begin

infer: process (GATE, DATA, SET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (GATE = ’1’) then
 Q <= DATA;

QDATA

GATE

X8591
VHDL Reference Guide 7-9

VHDL Reference Guide
 end if;
end process infer;

end rtl;

The following example shows an inference report for a D latch with
asynchronous set.

Q_reg
Async-set: SET’

Figure 7-3 D Latch with Asynchronous Set

Note: Because the target technology library does not contain a latch
with an asynchronous set, Foundation Express synthesizes the set
logic by using combinatorial logic.

D Latch with Asynchronous Reset The template in this section
uses the async_set_reset attribute to direct Foundation Express to the
asynchronous reset (AR) pins of the inferred latch.

The following example provides the VHDL template for a D latch
with an asynchronous reset. Foundation Express generates the infer-
ence report shown following the example for a D latch with asyn-
chronous reset. The figure “D Latch with Asynchronous Reset”
shows the inferred latch.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N Y - - -

X8592

Q

SET

GATE

DATA
7-10 Xilinx Development System

Register and Three-State Inference
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async_reset is
 port (GATE, DATA, RESET : in std_logic;
 Q : out std_logic);
 attribute async_set_reset of RESET :
 signal is ”true”;
end d_latch_async_reset;

architecture rtl of d_latch_async_reset is
begin

infer : process (GATE, DATA, RESET) begin
 if (RESET = ’0’) then
 Q <= ’0’;
 elsif (GATE = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a D latch with
asynchronous reset.

Q_reg
Async-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y N - - -
VHDL Reference Guide 7-11

VHDL Reference Guide
Figure 7-4 D Latch with Asynchronous Reset

D Latch with Asynchronous Set and Reset The following
example provides the VHDL template for a D latch with an active-
low asynchronous set and reset. This template uses the
async_set_reset_local attribute to direct Foundation Express to the
asynchronous signals in the infer process.

The template in the following example uses the one_cold attribute to
prevent priority encoding of the set and reset signals. If you do not
specify the one_cold attribute, the set signal has priority, because it is
used as the condition for the if clause. Foundation Express generates
the inference report shown following the example for a D latch with
asynchronous set and reset. The figure “D Latch with Asynchronous
Set and Reset” shows the inferred latch.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity d_latch_async is
 port (GATE, DATA, SET, RESET :in std_logic;
 Q : out std_logic);
attribute one_cold of SET, RESET :
 signal is ”true”;
end d_latch_async;

architecture rtl of d_latch_async is
 attribute async_set_reset_local of infer :

QDATA

GATE

X8593a

RESET
7-12 Xilinx Development System

Register and Three-State Inference
 label is ”SET, RESET”;
begin

infer : process (GATE, DATA, SET, RESET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (RESET = ’0’) then
 Q <= ’0’;
 elsif (GATE = ’1’) then
 Q <= DATA;
 end if;
end process infer;
end rtl;

The following example shows an inference report for a D latch with
asynchronous set and reset.

Q_reg
Async-reset: RESET’
Async-set: SET’
Async-set and Async-reset ==> Q: X

Figure 7-5 D Latch with Asynchronous Set and Reset

Understanding the Limitations of D Latch Inference A variable
must always have a value before it is read. As a result, a conditionally
assigned variable cannot be read after the if statement in which it is
assigned. A conditionally assigned variable is assigned a new value

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - Y Y - - -

X8594

QSET

GATE

DATA

RESET
VHDL Reference Guide 7-13

VHDL Reference Guide
under some, but not all, conditions. The following example shows an
invalid use of the conditionally assigned variable VALUE.

signal X, Y : std_logic;
. . .
process
 variable VALUE : std_logic;
begin
 if (condition) then
 VALUE <= X;
 end if;
 Y <= VALUE; -- Invalid read of variable VALUE
end process;

Inferring Master-Slave Latches

You can infer two-phase systems by using D latches.The following
example shows a simple two-phase system with clocks MCK and
SCK. The inference reports follow the example. The figure “Two-
Phase Clocks” shows the inferred latch.

library IEEE;
use IEEE.std_Logic_1164.all;

entity LATCH_VHDL is
 port(MCK, SCK, DATA: in std_logic;
 Q : out std_logic);
end LATCH_VHDL;

architecture rtl of LATCH_VHDL is
 signal TEMP : std_logic;
begin

process (MCK, DATA) begin
 if (MCK = ’1’) then
 TEMP <= DATA;
 end if;
end process;

process (SCK, TEMP) begin
 if (SCK = ’1’) then
 Q <= TEMP;
 end if;
end process;
7-14 Xilinx Development System

Register and Three-State Inference
end rtl;

TEMP_reg
reset/set: none

Q_reg
reset/set: none

Figure 7-6 Two-Phase Clocks

Inferring Flip-Flops
Foundation Express can infer D flip-flops, JK flip-flops, and toggle
flip-flops. The following sections provide details about each of these
flip-flop types.

Many FPGA devices have a dedicated set/reset hardware resource
that should be used. For this reason, you should infer asynchronous
set/reset signals for all flip-flops in the design. Foundation Express
will then use the global set/reset lines.

Register Name Type Width Bus MB AR AS SR SS ST

TEMP_reg Latch 1 - - N N - - -

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Latch 1 - - N N - - -
VHDL Reference Guide 7-15

VHDL Reference Guide
Inferring D Flip-Flops

Foundation Express infers a D flip-flop whenever the condition of a
wait or if statement uses an edge expression (a test for the rising or
falling edge of a signal). Use the following syntax to describe a rising
edge.

SIGNAL’event and SIGNAL = ’1’

Use the following syntax to describe a falling edge.

SIGNAL’event and SIGNAL = ’0’

If you are using the IEEE std_logic_1164 package, you can use the
following syntax to describe a rising edge and a falling edge.

if (rising_edge (CLK)) then

if (falling_edge (CLK)) then

If you are using the IEEE std_logic_1164 package, you can use the
following syntax for a bused clock. You can also use a member of a
bus as a signal.

sig (3)’event and sig (3) = ’1’

rising_edge (sig(3))

A wait statement containing an edge expression causes Foundation
Express to create flip-flops for all signals, and some variables are
assigned values in the process. The following example shows the
most common usage of the wait statement to infer a flip-flop.

process
begin
 wait until (edge);
 ...
end process;

An if statement implies flip-flops for signals and variables in the
branches of the if statement. The following example shows the most
common usages of the if statement to infer a flip-flop.

process (sensitivity_list)
begin
 if (edge)
 ...
 end if;
end process;
7-16 Xilinx Development System

Register and Three-State Inference
process (sensitivity_list)
begin
 if (...) then
 ...
 elsif (...)
 ...
 elsif (edge) then
 ...
 end if;
end process;

You can sometimes use wait and if statements interchangeably. If
possible, use the if statement, because it provides greater control over
the inferred registers.

The following sections provide code examples, inference reports, and
figures for these types of D flip-flops.

• Positive edge-triggered D flip-flop

• Positive edge-triggered D flip-flop using rising_edge

• Negative edge-triggered D flip-flop

• Negative edge-triggered D flip-flop using falling_edge

• D flip-flop with asynchronous set

• D flip-flop with asynchronous reset

• D flip-flop with asynchronous set and reset

• D flip-flop with synchronous set

• D flip-flop with synchronous reset

• D flip-flop with synchronous and asynchronous load

• Multiple flip-flops with asynchronous and synchronous controls

Positive Edge-Triggered D Flip-Flop When you infer a D flip-
flop, control the clock and data signals from the top-level design
ports or through combinatorial logic. Clock and data signals that can
be controlled ensure that simulation can initialize the design. If you
cannot control the clock and data signals, infer a D flip-flop with
asynchronous reset or set or with a synchronous reset or set.

The following example provides the VHDL template for a positive
edge-triggered D flip-flop. Foundation Express generates the infer-
ence report shown following the example for a positive edge-trig-
VHDL Reference Guide 7-17

VHDL Reference Guide
gered D flip-flop. The figure “Positive-Edge-Triggered D Flip-flop”
shows the inferred flip-flop.

library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_pos;

architecture rtl of dff_pos is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a positive edge-
triggered D flip-flop.

Q_reg
set/reset/toggle: none

Figure 7-7 Positive Edge-Triggered D Flip-Flop

Positive Edge-Triggered D Flip-Flop Using rising_edge The
following example provides the VHDL template for a positive edge-

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N

QDATA

CLK

X8595
7-18 Xilinx Development System

Register and Three-State Inference
triggered D flip-flop using the IEEE_std_logic_1164 package and
rising_edge.

Foundation Express generates the inference report shown after the
example. The figure following the inference report shows the inferred
flip-flop.

library IEEE ;
use IEEE.std_logic_1164.all;

entity dff_pos is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_pos;

architecture rtl of dff_pos is
begin

infer : process (CLK) begin
 if (rising_edge (CLK)) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

Q_reg
set/reset/toggle: none

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
VHDL Reference Guide 7-19

VHDL Reference Guide
Figure 7-8 Positive Edge-Triggered D Flip-Flop Using
rising_edge

Negative Edge-Triggered D Flip-Flop The following example
provides the VHDL template for a negative edge-triggered D flip-
flop. Foundation Express generates the inference report following the
example for a negative edge-triggered D flip-flop. The figure “Nega-
tive Edge-Triggered D Flip-Flop” shows the inferred flip-flop.

library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_neg;

architecture rtl of dff_neg is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’0’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

QDATA

CLK

X8595
7-20 Xilinx Development System

Register and Three-State Inference
The following example shows an inference report for a negative
edge-triggered D flip-flop.

Q_reg
set/reset/toggle: none

Figure 7-9 Negative Edge-Triggered D Flip-Flop

Negative Edge-Triggered D Flip-Flop Using falling_edge The
following example provides the VHDL template for a negative edge-
triggered D flip-flop using the IEEE_std_logic_1164 package and
falling_edge.

Foundation Express generates the inference report shown after the
following example. The figure following the inference report shows
the inferred flip-flop.

library IEEE;
use IEEE.std_logic_1164.all;

entity dff_neg is
 port (DATA, CLK : in std_logic;
 Q : out std_logic);
end dff_neg;

architecture rtl of dff_neg is
begin

infer : process (CLK) begin
 if (falling_edge (CLK)) then
 Q <= DATA;

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N

QDATA

CLK

X8596
VHDL Reference Guide 7-21

VHDL Reference Guide
 end if;
end process infer;

end rtl;

Q_reg
set/reset/toggle: none

Figure 7-10 Negative Edge-Triggered D Flip-Flop Using
falling_edge

D Flip-Flop with Asynchronous Set The following example
provides the VHDL template for a D flip-flop with an asynchronous
set. Foundation Express generates the inference report shown
following the example for a D flip-flop with asynchronous set. The
figure “D Flip-Flop with Asynchronous Set” shows the inferred flip-
flop.

library IEEE;
use IEEE.std_logic_1164.all;

entity dff_async_set is
 port (DATA, CLK, SET : in std_logic;
 Q : out std_logic);
end dff_async_set;

Register Name Type Widt
h

Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N

QDATA

CLK

X8596
7-22 Xilinx Development System

Register and Three-State Inference
architecture rtl of dff_async_set is
begin

infer : process (CLK, SET) begin
 if (SET = ’0’) then
 Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;
end rtl;

The following example shows an inference report for a D flip-flop
with asynchronous set.

Q_reg
Async-set: SET’

Figure 7-11 D Flip-Flop with Asynchronous Set

D Flip-Flop with Asynchronous Reset The following example
provides the VHDL template for a D flip-flop with an asynchronous
reset. Foundation Express generates the inference report following
the example for a D flip-flop with asynchronous reset. The figure “D
Flip-Flop with Asynchronous Reset” shows the inferred flip-flop.

library IEEE;
use IEEE.std_logic_1164.all;

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N Y N N N

QDATA

CLK

X8597

SET
VHDL Reference Guide 7-23

VHDL Reference Guide
entity dff_async_reset is
 port (DATA, CLK, RESET : in std_logic;
 Q : out std_logic);
end dff_async_reset;

architecture rtl of dff_async_reset is
begin

infer : process (CLK, RESET) begin
 if (RESET = ’1’) then
 Q <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a D flip-flop
with asynchronous reset.

Q_reg
Async-reset: RESET

Figure 7-12 D Flip-Flop with Asynchronous Reset

D Flip-Flop with Asynchronous Set and Reset The following
example provides the VHDL template for a D flip-flop with active
high asynchronous set and reset pins. The template uses the one_hot

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y N N N N

QDATA

CLK

X8598

RESET
7-24 Xilinx Development System

Register and Three-State Inference
attribute to prevent priority encoding of the set and reset signals. If
you do not specify the one_hot attribute, the reset signal has priority,
because it is used as the condition for the if clause. Foundation
Express generates the inference report following the example for a D
flip-flop with asynchronous set and reset. The figure “D Flip-Flop
with Asynchronous Set and Reset” shows the inferred flip-flop.

Note: Most FPGA architectures do not have a register with an asyn-
chronous set and asynchronous reset cell available. For this reason,
avoid this construct.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_async is
 port (DATA, CLK, SET, RESET : in std_logic;
 Q : out std_logic);
 attribute one_hot of SET, RESET : signal is ”true”;
end dff_async;

architecture rtl of dff_async is
begin
infer : process (CLK, SET, RESET) begin
 if (RESET = ’1’) then
 Q <= ’0’;
 elsif (SET = ’1’) then
 Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 Q <= DATA;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a D flip-flop
with asynchronous set and reset.

Q_reg
Async-reset: RESET
Async-set: SET
Async-set and Async-reset ==> Q: X

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y N N N
VHDL Reference Guide 7-25

VHDL Reference Guide
Figure 7-13 D Flip-flop with Asynchronous Set and Reset

D Flip-Flop with Synchronous Set or Reset The previous exam-
ples illustrate how to infer a D flip-flop with asynchronous controls—
one way to initialize or control the state of a sequential device. You
can also synchronously reset or set the flip-flop (see the following
two examples in the next section). The sync_set_reset attribute directs
Foundation Express to the synchronous controls of the sequential
device.

When the target technology library does not have a D flip-flop with
synchronous reset, Foundation Express infers a D flip-flop with
synchronous reset logic as the input to the D pin of the flip-flop. If the
reset (or set) logic is not directly in front of the D pin of the flip-flop,
initialization problems can occur during gate-level simulation of the
design.

D Flip-Flop with Synchronous Set The following example
provides the VHDL template for a D flip-flop with synchronous set.
Foundation Express generates the inference report shown following
the example for a D flip-flop with synchronous set. The figure “D
Flip-Flop with Synchronous Set” shows the inferred flip-flop.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;
entity dff_sync_set is
 port (DATA, CLK, SET : in std_logic;

Q

CLK

RESET

DATA

SET

X8599
7-26 Xilinx Development System

Register and Three-State Inference
 Q : out std_logic);
 attribute sync_set_reset of SET : signal is ”true”;
end dff_sync_set;

architecture rtl of dff_sync_set is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 if (SET = ’1’) then
 Q <= ’1’;
 else
 Q <= DATA;
 end if;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a D flip-flop
with synchronous set.

Q_reg
Sync-set: SET

Figure 7-14 D Flip-Flop with Synchronous Set

D Flip-Flop with Synchronous Reset The following example
provides the VHDL template for a D flip-flop with synchronous reset.
Foundation Express generates the inference report shown following
the example for a D flip-flop with synchronous reset. The figure “D
Flip-Flop with Synchronous Reset” shows the inferred flip-flop.

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N Y N

SET

DATA

CLK

Q

X8600
VHDL Reference Guide 7-27

VHDL Reference Guide
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity dff_sync_reset is
 port (DATA, CLK, RESET : in std_logic;
 Q : out std_logic);
attribute sync_set_reset of RESET :
 signal is ”true”;
end dff_sync_reset;

architecture rtl of dff_sync_reset is
begin

infer : process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 if (RESET = ’0’) then
 Q <= ’0’;
 else
 Q <= DATA;
 end if;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a D flip-flop
with synchronous reset.

Q_reg
Sync-reset: RESET’

Figure 7-15 D Flip-Flop with Synchronous Reset

Register Name Type Width Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y N N

RESET

DATA

CLK

Q

X8601
7-28 Xilinx Development System

Register and Three-State Inference
D Flip-Flop with Synchronous and Asynchronous Load D flip-
flops can have asynchronous or synchronous controls. You must
check the asynchronous conditions before you check the synchronous
conditions.

The following example provides the VHDL template for a D flip-flop
with synchronous load (called SLOAD) and an asynchronous load
(called ALOAD). Foundation Express generates the inference report
shown following the example for a D flip-flop with synchronous and
asynchronous load. The figure “D Flip-Flop with Synchronous and
Asynchronous Load” shows the inferred flip-flop.

library IEEE;
use IEEE.std_logic_1164.all;

entity dff_a_s_load is
 port(SLOAD, ALOAD, ADATA, SDATA,
 CLK : in std_logic;
 Q : out std_logic);
end dff_a_s_load;

architecture rtl of dff_a_s_load is
begin

infer: process (CLK, ALOAD) begin
 if (ALOAD = ’1’) then
 Q <= ADATA;
 elsif (CLK’event and CLK = ’1’) then
 if (SLOAD = ’1’) then
 Q <= SDATA;
 end if;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a D flip-flop
with synchronous and asynchronous load.

Q_reg
set/reset/toggle: none

Register Name Type Widt
h

Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N N N N
VHDL Reference Guide 7-29

VHDL Reference Guide
Figure 7-16 D Flip-Flop with Synchronous and Asynchronous
Load

Multiple Flip-Flops with Asynchronous and Synchronous
Controls If a signal is synchronous in one process but asynchro-
nous in another, use the sync_set_reset_local and
async_set_reset_local attributes to direct Foundation Express to the
correct implementation.

In the following example, block infer_sync uses the reset signal as a
synchronous reset, and the process infer_async uses the reset signal
as an asynchronous reset. Foundation Express generates the inference
report shown following the example for multiple flip-flops with
asynchronous and synchronous controls. The figure “Multiple Flip-
flops with Asynchronous and Synchronous Controls” shows the
resulting design.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity multi_attr is
 port (DATA1, DATA2, CLK, RESET, SLOAD : in

std_logic;
 Q1, Q2 : out std_logic);
end multi_attr;

architecture rtl of multi_attr is
 attribute async_set_reset_local of infer_async :

X8602

ALOAD

Q

ADATA

SLOAD
SDATA

CLK
7-30 Xilinx Development System

Register and Three-State Inference
 label is ”RESET”;
 attribute sync_set_reset_local of infer_sync :
 label is ”RESET”;
begin

infer_sync: process (CLK) begin
 if (CLK’event and CLK = ’1’) then
 if (RESET = ’0’) then
 Q1 <= ’0’;
 elsif (SLOAD = ’1’) then
 Q1 <= DATA1;
 end if;
 end if;
end process infer_sync;

infer_async: process (CLK, RESET) begin
 if (RESET = ’0’) then
 Q2 <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 if (SLOAD = ’1’) then
 Q2 <= DATA2;
 end if;
 end if;
end process infer_async;

end rtl;

The following example shows inference reports for multiple flip-flops
with asynchronous and synchronous controls.

Q1_reg
Sync-reset: RESET’

Q2_reg
Async-reset: RESET’

Register Name Type Width Bus MB AR AS SR SS ST

Q1_reg Flip-flop 1 - - N N Y N N

Register Name Type Width Bus MB AR AS SR SS ST

Q2_reg Flip-flop 1 - - Y N N N N
VHDL Reference Guide 7-31

VHDL Reference Guide
Figure 7-17 Multiple Flip-Flops with Asynchronous and
Synchronous Controls

A flip-flop inference has specific limitations. See the “Understanding
Limitations of Register Inference” section of this chapter.

Inferring JK Flip-Flops

When you infer a JK flip-flop, make sure you can control the J, K, and
clock signals from the top-level design ports to ensure that simulation
can initialize the design.The following sections provide code exam-
ples, inference reports, and figures for these types of JK flip-flops.

• JK flip-flop

• JK flip-flop with asynchronous set and reset

X8603a

DATA2

DATA1
Q1

Q2

SLOAD

CLK

RESET
7-32 Xilinx Development System

Register and Three-State Inference
JK Flip-Flop When you infer a JK flip-flop, make sure you can
control the J, K, and clock signals from the top-level design ports to
ensure that simulation can initialize the design.

In the JK flip-flop, the J and K signals act as active-high synchronous
set and reset. Use the sync_set_reset directive to indicate that the J
and K signals are the synchronous set and reset for the design.

The following example provides the VHDL code that implements the
JK flip-flop described in the truth table.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk is
 port(J, K, CLK : in std_logic;
 Q_out : out std_logic);
 attribute sync_set_reset of J, K :
 signal is ”true”;
end jk;

architecture rtl of jk is
 signal Q : std_logic;
begin
infer: process
 variable JK : std_logic_vector (1 downto 0);
begin
 wait until (CLK’event and CLK = ’1’);
 JK <= (J & K);
 case JK is
 when ”01” => Q <= ’0’;
 when ”10” => Q <= ’1’;
 when ”11” => Q <= not (Q);
 when ”00” => Q <= Q;
 when others => Q <= ’X’;

Table 7-1 Truth Table for JK Flip-Flop

J K CLK Qn+1

0 0 Rising Qn

0 1 Rising 0

1 0 Rising 1

1 1 Rising QnB

X X Falling Qn
VHDL Reference Guide 7-33

VHDL Reference Guide
 end case;
end process infer;

Q_out <= Q;
end rtl;

The following example shows the inference report generated by
Foundation Express for a JK flip-flop, and the figure following the
report, “JK Flip-Flop,” shows the inferred flip-flop.

Q_reg
Sync-reset: J’ K
Sync-set: J K’
Sync-toggle: J K
Sync-set and Sync-reset ==> Q: X

Figure 7-18 JK Flip-Flop

JK Flip-Flop With Asynchronous Set and Reset Use the
sync_set_reset attribute to indicate the JK function. Use the one_hot
attribute to prevent priority encoding of the J and K signals.

The following example provides the VHDL template for a JK flip-flop
with asynchronous set and reset.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity jk_async_sr is
 port (SET, RESET, J, K, CLK : in std_logic;
 Q_out : out std_logic);

Register Name Type Widt
h

Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - N N Y Y Y
7-34 Xilinx Development System

Register and Three-State Inference
 attribute sync_set_reset of J, K :
 signal is ”true”;
 attribute one_hot of SET,RESET : signal is ”true”;
end jk_async_sr;

architecture rtl of jk_async_sr is
 signal Q : std_logic;
begin

infer : process (CLK, SET, RESET)
 variable JK : std_logic_vector (1 downto 0);
begin
 if (RESET = ’1’) then
 Q <= ’0’;
 elsif (SET = ’1’) then
 Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 JK <= (J & K);
 case JK is
 when ”01” => Q <= ’0’;
 when ”10” => Q <= ’1’;
 when ”11” => Q <= not(Q);
 when ”00” => Q <= Q;
 when others => Q <= ’X’;
 end case;
 end if;
end process infer;
Q_out <= Q;

end rtl;

The following table shows the inference report Foundation Express
generates for a JK flip-flop with asynchronous set and reset, and the
figure following the report, “JK Flip-Flop with Asynchronous Set and
Reset,” shows the inferred flip-flop.

Q_reg
 Async-reset: RESET
 Async-set: SET
 Sync-reset: J’ K
 Sync-set: J K’
 Sync-toggle: J K

Register Name Type Widt
h

Bus MB AR AS SR SS ST

Q_reg Flip-flop 1 - - Y Y Y Y Y
VHDL Reference Guide 7-35

VHDL Reference Guide
 Async-set and Async-reset ==> Q: X
 Sync-set and Sync-reset ==> Q: X

Figure 7-19 JK Flip-Flop with Asynchronous Set and Reset

Inferring Toggle Flip-Flops

To infer toggle flip-flops, follow the coding style in the following
examples. You must include asynchronous controls in the toggle flip-
flop description. Without them, you cannot initialize toggle flip-flops
to a known state.

The following sections provide code examples, inference reports, and
figures for these types of toggle flip-flops.

• Toggle flip-flop with asynchronous set

• Toggle flip-flop with asynchronous reset

• Toggle flip-flop with enable and asynchronous reset

Toggle Flip-Flop With Asynchronous Set The following
example shows the VHDL template for a toggle flip-flop with asyn-
chronous set. Foundation Express generates the inference report
shown following the example, and the figure “Toggle Flip-Flop with
Asynchronous Set” shows the flip-flop.

X8944

SET

CLK

Q_OUT

RESET

K

J

7-36 Xilinx Development System

Register and Three-State Inference
library IEEE, synopsys;
use IEEE.std_logic_1164.all;
entity t_async_set is
 port(SET, CLK : in std_logic;
 Q : out std_logic);
end t_async_set;
architecture rtl of t_async_set is
 signal TMP_Q : std_logic;
begin

infer: process (CLK, SET) begin
 if (SET = ’1’) then
 TMP_Q <= ’1’;
 elsif (CLK’event and CLK = ’1’) then
 TMP_Q <= not (TMP_Q);
 end if;
 Q <= TMP_Q;
end process infer;

end rtl;

TMP_Q_reg
Async-set: SET
Sync-toggle: true

Figure 7-20 Toggle Flip-Flop with Asynchronous Set

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - N Y N N Y
VHDL Reference Guide 7-37

VHDL Reference Guide
Toggle Flip-Flop With Asynchronous Reset The following
example provides the VHDL template for a toggle flip-flop with
asynchronous reset. The table following the example shows the infer-
ence report, and the figure following the report, “Toggle Flip-Flop
with Asynchronous Reset,” shows the inferred flip-flop.

library IEEE ;
use IEEE.std_logic_1164.all;

entity t_async_reset is
 port(RESET, CLK : in std_logic;
 Q : out std_logic);
end t_async_reset;

architecture rtl of t_async_reset is
 signal TMP_Q : std_logic;
begin

infer: process (CLK, RESET) begin
 if (RESET = ’1’) then
 TMP_Q <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 TMP_Q <= not (TMP_Q);
 end if;
 Q <= TMP_Q;
end process infer;

end rtl;

TMP_Q_reg
Async-reset: RESET

 Sync-toggle: true

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
7-38 Xilinx Development System

Register and Three-State Inference
Figure 7-21 Toggle Flip-Flop with Asynchronous Reset

Toggle Flip-Flop With Enable and Asynchronous Reset The
following example provides the VHDL template for a toggle flip-flop
with an enable and an asynchronous reset. The flip-flop toggles only
when the enable (TOGGLE signal) has a logic 1 value.

Foundation Express generates the inference report shown following
the example, and the figure following the report, “Toggle Flip-Flop
with Enable and Asynchronous Reset,” shows the inferred flip-flop.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
use synopsys.attributes.all;

entity t_async_en_r is
 port(RESET, TOGGLE, CLK : in std_logic;
 Q : out std_logic);
end t_async_en_r;

architecture rtl of t_async_en_r is
 signal TMP_Q : std_logic;
begin

infer: process (CLK, RESET) begin
 if (RESET = ’1’) then
 TMP_Q <= ’0’;
 elsif (CLK’event and CLK = ’1’) then
 if (TOGGLE = ’1’) then
 TMP_Q <= not (TMP_Q);
 end if;
 end if;
end process infer;

Q <= TMP_Q;
VHDL Reference Guide 7-39

VHDL Reference Guide
end rtl;

TMP_Q_reg
Async-reset: RESET
Sync-toggle: TOGGLE

Figure 7-22 Toggle Flip-Flop with Enable and Asynchronous
Reset

Getting the Best Results

This section provides tips for improving the results you achieve
during flip-flop inference. The following topics are covered.

• Minimizing flip-flop count

• Correlating synthesis results with simulation results

Minimizing Flip-Flop Count HDL descriptions should build only
as many flip-flops as the design requires.

Circuit Description Inferring Too Many Flip-Flops The following
example shows a description that infers too many flip-flops. The
inference report is shown following the example. The figure “Circuit
with Six Inferred Flip-Flops” shows the inferred flip-flops.

Register Name Type Width Bus MB AR AS SR SS ST

TMP_Q_reg Flip-flop 1 - - Y N N N Y
7-40 Xilinx Development System

Register and Three-State Inference
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count is
 port (CLK, RESET : in std_logic;
 AND_BITS, OR_BITS,
 XOR_BITS : out std_logic);
end count;

architecture rtl of count is
begin

process
 variable COUNT : std_logic_vector (2 downto 0);
begin
 wait until (CLK’event and CLK = ’1’);
 if (RESET = ’1’) then
 COUNT <= ”000”;
 else
 COUNT <= COUNT + 1;
 end if;
 AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
 OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
 XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
end process;

end rtl;

The following example has only one process, which contains a wait
statement and six output signals. Foundation Express infers six flip-
flops, one for each output signal in the process.

• COUNT(2:0) (three inferred flip-flops)

• AND_BITS (one inferred flip-flop)

• OR_BITS (one inferred flip-flop)

• XOR_BITS (one inferred flip-flop)

However, because the outputs AND_BITS, OR_BITS, and XOR_BITS
depend solely on the value of variable COUNT, and variable COUNT
is registered, these three outputs do not need to be registered. There-
fore, assign AND_BITS, OR_BITS, and XOR_BITS within a process
VHDL Reference Guide 7-41

VHDL Reference Guide
that does not have a wait statement (see the next section, “Circuit
Description Inferring Correct Number of Flip-Flops”).

Figure 7-23 Circuit with Six Inferred Flip-Flops

Circuit Description Inferring Correct Number of Flip-Flops To
avoid inferring extra flip-flops, assign the output signals from within
a process that does not have a wait statement.

The following example shows a description with two processes, one
with a wait statement and one without. The registered (synchronous)
assignments are in the first process, which contains the wait state-
ment. The other (asynchronous) assignments are in the second
process. Signals communicate between the two processes.

This description style lets you choose the signals that are registered
and those that are not. The inference report is shown following the
example. The figure “Circuit with Three Inferred Flip-Flops” shows
the resulting circuit.

Register Name Type Widt
h

Bus MB AR AS SR SS ST

AND_BITS_reg Flip-flop 1 - - N N N N N

COUNT_reg Flip-flop 3 Y N N N N N N

OR_BITS_reg Flip-flop 1 - - N N N N N

XOR_BITS_reg Flip-flop 1 - - N N N N N
7-42 Xilinx Development System

Register and Three-State Inference
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count is
 port(CLK, RESET : in std_logic;
 AND_BITS, OR_BITS, XOR_BITS : out std_logic);
end count;

architecture rtl of count is
 signal COUNT : std_logic_vector (2 downto 0);
begin

reg : process begin
 wait until (CLK’event and CLK = ’1’);
 if (RESET = ’1’) then
 COUNT <= ”000”;
 else
 COUNT <= COUNT + 1;
 end if;
end process reg;
combine : process(count) begin
 AND_BITS <= COUNT(2) and COUNT(1) and COUNT(0);
 OR_BITS <= COUNT(2) or COUNT(1) or COUNT(0);
 XOR_BITS <= COUNT(2) xor COUNT(1) xor COUNT(0);
end process combine;

end rtl;

COUNT_reg (width 3)
set/reset/toggle: none

Register Name Type Widt
h

Bus MB AR AS SR SS ST

COUNT_reg Flip-flop 3 Y N N N N N N
VHDL Reference Guide 7-43

VHDL Reference Guide
Figure 7-24 Circuit with Three Inferred Flip-Flops

This technique of separating combinatorial logic from registered or
sequential logic in your design is useful when describing finite state
machines. See these in the “Examples” appendix.

• “Moore Machine”

• “Mealy Machine”

• “Count Zeros—Sequential Version””

• “Soft Drink Machine—State Machine Version”

Correlating Synthesis Results with Simulation Results Using
delay specifications with registered values can cause the simulation
to behave differently from the logic Foundation Express synthesizes.
For example, the description in the following example contains delay
information that causes Foundation Express to synthesize a circuit
that behaves unexpectedly (the post-synthesis simulation results do
not match the pre-synthesis simulation results).

component flip_flop (D, CLK : in std_logic;
 Q : out std_logic);
end component;

process (A, CLK);
 signal B: std_logic;
begin
 B <= A after 100ns;

F1: flip_flop port map (A, CLK, C),

F2: flip_flop port map (B, CLK, D);
end process;

In the above example, B changes 100 nanoseconds after A changes. If
the clock period is less than 100 nanoseconds, output D is one or
7-44 Xilinx Development System

Register and Three-State Inference
more clock cycles behind output C during simulation of the design.
However, because Foundation Express ignores the delay informa-
tion, A and B change values at the same time and so do C and D. This
behavior is not the same as in the post-synthesis simulation.

When using delay information in your designs, make sure that the
delays do not affect registered values. In general, you can safely
include delay information in your description if it does not change
the value that gets clocked into a flip-flop.

Understanding Limitations of Register Inference
Foundation Express cannot infer the following components. You
must instantiate these components in your VHDL description.

• Flip-flops and latches with three-state outputs

• Flip-flops with bidirectional pins

• Flip-flips with multiple clock inputs

• Multiport latches

• Register banks

Note: Although you can instantiate flip-flops with bidirectional pins,
Foundation Express interprets these cells as black boxes.

If you use an if statement to infer D flip-flops, your design must meet
the following requirements.

• An edge expression must be the only condition of an if or an elsif
clause.

The following if statement is invalid because it has multiple
conditions in the if clause.

if (edge and RST = ’1’)

• You can have only one edge expression in an if clause, and the if
clause must not have an else clause.

The following if statement is invalid, because you cannot include
an else clause when using an edge expression as the if or elsif
condition.

if X > 5 then
 sequential_statement;
elsif edge then
VHDL Reference Guide 7-45

VHDL Reference Guide
 sequential_statement;
else
 sequential_statement;
end if;

• An edge expression cannot be part of another logical expression
or be used as an argument.

The following function call is invalid, because you cannot use the
edge expression as an argument.

any_function(edge);

Three-State Inference
Foundation Express infers a three-state driver when you assign the
value of Z to a variable. The Z value represents the high-impedance
state. Foundation Express infers one three-state driver per process.
You can assign high-impedance values to single-bit or bused signals
(or variables).

Reporting Three-State Inference
The following example shows a three-state inference report.

The first column of the report indicates the name of the inferred
three-state device. The second column of the report indicates the type
of three-state device that Foundation Express inferred. The third
column indicates whether the three-state device has multiple bits.

Controlling Three-State Inference
Foundation Express always infers a three-state driver when you
assign the value of Z to a signal or variable. Foundation Express does
not provide any means of controlling the inference.

Inferring Three-State Drivers
This section contains VHDL examples that infer the following types
of three-state drivers.

• Simple three-state driver

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
7-46 Xilinx Development System

Register and Three-State Inference
• Three-state driver with registered enable

• Three-state driver without registered enable

Inferring a Simple Three-State Driver

This section provides a template for a simple three-state driver. In
addition, this section supplies examples of how allocating high-
impedance assignments to different processes affects three-state
inference.

The following example provides the VHDL template for a simple
three-state driver. Foundation Express generates the inference report
shown following the example for a simple three-state driver. The
figure “Three-State Driver” shows the inferred three-state driver.

library IEEE, synopsys;
use IEEE.std_logic_1164.all;
entity three_state is
port(IN1, ENABLE : in std_logic;
 OUT1 : out std_logic);
end;

architecture rtl of three_state is
begin

process (IN1, ENABLE) begin
 if (ENABLE = ’1’) then
 OUT1 <= IN1;
 else
 OUT1 <= ’Z’; -- assigns high-impedance state
 end if;
end process;

end rtl;

The following example shows an inference report for a simple three-
state driver.

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N
VHDL Reference Guide 7-47

VHDL Reference Guide
Figure 7-25 Simple Three-State Driver

Inferring One Three-State Driver from a Single Process The
following example shows how to place all high-impedance assign-
ments in a single process. In this case, the data is gated and Founda-
tion Express infers a single three-state driver. An inference report for
a single process follows the example. The figure “Inferring One
Three-State Driver” shows the schematic the code generates.

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (A, B, SELA, SELB : in std_logic ;
 T : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer : process (SELA, A, SELB, B) begin
 T <= ’Z’;
 if (SELA = ’1’) then
 T <= A;
 elsif (SELB = ’1’) then
 T <= B;
 end if;
end process infer;

end rtl;

The following example shows a single block inference report.

Three-State Device Name Type MB

T_tri Three-State Buffer N

X8604

IN1 OUT1

ENABLE
7-48 Xilinx Development System

Register and Three-State Inference
Figure 7-26 Inferring One Three-State Driver

Inferring Three-State Drivers from Separate Processes The
following example shows how to place each high-impedance assign-
ment in a separate process. In this case, Foundation Express infers
multiple three-state drivers.

The inference report for two three-state drivers follows the example.
The figure “Inferring Two Three-State Drivers” shows the schematic
the code generates.

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (A, B, SELA, SELB : in std_logic ;
 T : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer1 : process (SELA, A) begin
 if (SELA = ’1’) then
 T <= A;
VHDL Reference Guide 7-49

VHDL Reference Guide
 else
 T <= ’Z’;
 end if;
end process infer1;

infer2 : process (SELB, B) begin
 if (SELB = ’1’) then
 T <= B;
 else
 T <= ’Z’;
 end if;
end process infer2;

end rtl;

The following example shows an inference report for two three-state
drivers from separate processes.

Figure 7-27 Inferring Two Three-State Drivers

Three-State Device Name Type MB

T_tri Three-State Buffer N

Three-State Device Name Type MB

T_tri2 Three-State Buffer N

X8606

A T

SELA

B

SELB
7-50 Xilinx Development System

Register and Three-State Inference
Three-State Driver with Registered Enable

When a variable, such as THREE_STATE in the following example, is
assigned to a register and defined as a three-state gate within the
same process, Foundation Express also registers the enable pin of the
three-state gate.

The following example shows this type of code, and the inference
report for a three-state driver with registered enable follows the
example. The figure “Three-State Driver with Registered Enable”
shows the schematic the code generates, a three-state gate with a
register on its enable pin.

library IEEE;
use IEEE.std_logic_1164.all;

entity three_state is
 port (DATA, CLK, THREE_STATE : in std_logic ;
 OUT1 : out std_logic);
end three_state;

architecture rtl of three_state is
begin
infer : process (THREE_STATE, CLK) begin
 if (THREE_STATE = ’0’) then
 OUT1 <= ’Z’;
 elsif (CLK’event and CLK = ’1’) then
 OUT1 <= DATA;
 end if;
end process infer;

end rtl;

The following example shows an inference report for a three-state
driver with registered enable.

Register Name Type Widt
h

Bus MB AR AS SR SS ST

OUT1_reg Flip-flop 1 - - N N N N N

Three-State Device Name Type MB

OUT1_tri
OUT1_tr_enable_reg

Three-State Buffer
Flip-Flop (width 1)

N
N

VHDL Reference Guide 7-51

VHDL Reference Guide
OUT1_reg
set/reset/toggle: none

Figure 7-28 Three-State Driver with Registered Enable

Three-State Driver Without Registered Enable

The following example uses two processes to instantiate a three-state
gate with a flip-flop on the input. The inference report for a three-
state driver without registered enable follows the example. The
figure “Three-State Driver without Registered Enable” shows the
schematic the code generates.

library IEEE;
use IEEE.std_logic_1164.all;

entity ff_3state2 is
 port (DATA, CLK, THREE_STATE : in std_logic ;
 OUT1 : out std_logic);
end ff_3state2;

architecture rtl of ff_3state2 is
 signal TEMP : std_logic;
begin

process (CLK) begin
 if (CLK’event and CLK = ’1’) then

THREE_STATE

CLK

X8607

DATA OUT1
7-52 Xilinx Development System

Register and Three-State Inference
 TEMP <= DATA;
 end if;
end process;

process (THREE_STATE, TEMP) begin
 if (THREE_STATE = ’0’) then
 OUT1 <= ’Z’;
 else
 OUT1 <= TEMP;
 end if;
end process;

end rtl;

The following example shows an inference report for a three-state
driver without registered enable.

.

TEMP_reg
set/reset/toggle: none

Figure 7-29 Three-State Driver without Registered Enable

Register Name Type Widt
h

Bus MB AR AS SR SS ST

TEMP_reg Flip-flop 1 - - N N N N N

Three-State Device Name Type MB

OUT1_tri Three-State Buffer N

OUT1

CLK

DATA

THREE_STATE

X8608
VHDL Reference Guide 7-53

VHDL Reference Guide
Understanding the Limitations of Three-State
Inference

You can use the Z value in the following ways.

• Signal assignment

• Variable assignment

• Function call argument

• Return value

• Aggregate definition

You cannot use the Z value in an expression, except for comparison
with Z. Be careful when using expressions that compare with the Z
value. Foundation Express always evaluates these expressions to
FALSE, and the pre- and post-synthesis simulation results might
differ. For this reason, Foundation Express issues a warning when it
synthesizes such comparisons.

The following example shows the incorrect use of the Z value in an
expression.

OUT_VAL = (1’bz && IN_VAL);

The following example shows the correct use of the Z value in an
expression.

if (IN_VAL == 1’bz) then
7-54 Xilinx Development System

Chapter 8

Writing Circuit Descriptions

To understand Foundation Express and to write VHDL descriptions
that produce efficient synthesized circuits, study the information
presented in the following sections of this chapter.

• “How Statements Are Mapped to Logic”

• “Asynchronous Designs”

• “Don’t Care Inference”

• “Synthesis Issues”

Here are some general guidelines for writing efficient circuit descrip-
tions:

• Restructure a design that makes repeated use of several large
components, to minimize the number of instantiations.

• In a design that needs some, but not all, of its variables or signals
stored during operation, minimize the number of latches or flip-
flops required.

• Consider collapsing hierarchy for more efficient synthesis.

How Statements Are Mapped to Logic
VHDL descriptions are mapped to combinatorial logic by the
creation of blocks of logic. A statement or an operator in a VHDL
function can represent a block of combinatorial logic or, in some
cases, a latch or register.

The statements shown in the following example represent four logic
blocks.

• A comparator that compares the value of B with 10

• An adder that has A and B as inputs
VHDL Reference Guide 8-1

VHDL Reference Guide
• An adder that has A and 10 as inputs

• A multiplexer (implied by the if statement) that controls the final
value of Y

if (B < 10)
Y = A + B;

else
Y = A+ 10;

The logic blocks created by Foundation Express are custom-built for
their environment. That is, if A and B are 4-bit quantities, a 4-bit
adder is built. If A and B are 9-bit quantities, a 9-bit adder is built.
Because Foundation Express incorporates a large set of these custom-
ized logic blocks, it can translate most VHDL statements and opera-
tors.

Design Structure
A design’s structure influences the size and complexity of the
resulting synthesized circuit. These sections help you understand the
following concepts.

• Adding Structure

• Using Design Knowledge

• Optimizing Arithmetic Expressions

• Changing an Operator Bit-Width

• Using State Information

• Propagating Constants

• Sharing Complex Operators

Adding Structure
Foundation Express gives you significant control over the preoptimi-
zation structure, or organization of components, in your design.
Whether or not your design structure is preserved after optimization
depends on the options you select.

Using Variables and Signals

You control design structure with your ordering of assignment state-
ments and your use of variables. Each VHDL signal assignment,
8-2 Xilinx Development System

Writing Circuit Descriptions
process, or component instantiation implies a piece of logic. Each
variable or signal implies a wire. By using these constructs, you can
connect entities in any configuration.

The following two examples show two possible descriptions of an
adder’s carry chain. The figure following the examples illustrates the
resulting design.

-- A is the addend
-- B is the augend
-- C is the carry
-- Cin is the carry in
C0 <= (A0 and B0) or
 ((A0 or B0) and Cin);
C1 <= (A1 and B1) or
 ((A1 or B1) and C0);

The following example shows a carry-lookahead chain.

-- Ps are propagate
-- Gs are generate
p0 <= a0 or b0;
g0 <= a0 and b0;
p1 <= a1 or b1;
g1 <= a1 and b1;
c0 <= g0 or (p0 and cin);
c1 <= g1 or (p1 and g0) or
 (p1 and p0 and cin);

Figure 8-1 Ripple Carry and Carry-Lookahead Chain Design
VHDL Reference Guide 8-3

VHDL Reference Guide
Using Parentheses

Another way to control the structure of a design is to use parentheses
to define logic groupings. The following example describes a 4-input
adder grouping. The figure following the example illustrates the
resulting design.

Z <= (A + B) + C + D;

Figure 8-2 Diagram of 4-Input Adder

The following example describes a 4-input adder grouping that is
structured with parentheses. The figure following the example illus-
trates the design.

Z <= (A + B) + (C + D);
8-4 Xilinx Development System

Writing Circuit Descriptions
Figure 8-3 Diagram of 4-Input Adder With Parentheses

Using Design Knowledge
In many circumstances, you can improve the quality of synthesized
circuits by better describing your high-level knowledge of a circuit.
Foundation Express cannot always derive details of a circuit architec-
ture. Any additional architectural information you can provide to
Foundation Express can result in a more efficient circuit.

Optimizing Arithmetic Expressions
Foundation Express uses the properties of arithmetic operators (such
as the associative and commutative properties of addition) to rear-
range an expression so that it results in an optimized implementa-
tion. You can also use arithmetic properties to control the choice of
implementation for an expression. Three forms of arithmetic optimi-
zation are discussed in this section.

• Arranging Expression Trees for Minimum Delay

• Sharing Common Subexpressions

Arranging Expression Trees for Minimum Delay

If your goal is to speed up your design, arithmetic optimization can
minimize the delay through an expression tree by rearranging the
sequence of the operations. Consider the statement in the following
example.

Z <= A + B + C + D;
VHDL Reference Guide 8-5

VHDL Reference Guide
The parser performs each addition in order, as though parentheses
were placed within the expression as follows.

Z <= ((A + B) + C) + D);

The parser constructs the expression tree shown in the following
figure.

Figure 8-4 Default Expression Tree

Considering Signal Arrival Times To determine the delay
through an expression tree, Foundation Express considers the arrival
times of each signal in the expression. If the arrival times of all the
signals are the same, the length of the critical path of the expression
in the previous example of a simple arithmetic expression equals
three adder delays. The critical path delay can be reduced to two
adder delays if you insert parentheses as follows.

Z <= (A + B) + (C + D);

The parser constructs the subexpression tree as shown in the
following figure.

Figure 8-5 Balanced Adder Tree (Same Arrival Times for All
Signals)
8-6 Xilinx Development System

Writing Circuit Descriptions
Suppose signals B, C, and D arrive at the same time and signal A
arrives last. The expression tree that produces the minimum delay is
shown in the following figure.

Figure 8-6 Expression Tree With Minimum Delay (Signal A
Arrives Last)

Using Parentheses You can use parentheses in expressions to
exercise more control over the way expression trees are constructed.
Parentheses are regarded as user directives that force an expression
tree to use the groupings inside the parentheses. The expression tree
cannot be rearranged in a way that violates these groupings.

To illustrate the effect of parentheses on the construction of an
expression tree, consider the following example.

Q <= ((A + (B + C)) + D + E) + F;

The parentheses in the expression in the above example define the
following subexpressions.

1 (B + C)
2 (A + (B + C))
3 ((A + (B + C)) + D + E)

These subexpressions must be preserved in the expression tree. The
default expression tree for the above example is shown in the
following figure.
VHDL Reference Guide 8-7

VHDL Reference Guide
Figure 8-7 Expression Tree With Subexpressions Dictated by
Parentheses

Considering Overflow Characteristics When Foundation Express
performs arithmetic optimization, it considers how to handle the
overflow from carry bits during addition. The optimized structure of
an expression tree is affected by the bit-widths you declare for storing
intermediate results. For example, suppose you write an expression
that adds two 4-bit numbers and stores the result in a 4-bit register. If
the result of the addition overflows the 4-bit output, the most signifi-
cant bits are truncated. The following example shows how Founda-
tion Express handles overflow characteristics.

t <= a + b; --a and b are 4-bit numbers
z <= t + c; --c is a 6-bit number

In the above example, three variables are added (a + b + c). A tempo-
rary variable, t, holds the intermediate result of a + b. If t is declared
as a 4-bit variable, the overflow bits from the addition of a + b are
truncated. The parser determines the default structure of the expres-
sion tree, which is shown in the following figure.
8-8 Xilinx Development System

Writing Circuit Descriptions
Figure 8-8 Default Expression Tree With 4-Bit Temporary
Variable

Now suppose the addition is performed without a temporary vari-
able (z = a + b + c). Foundation Express determines that five bits are
needed to store the intermediate result of the addition, so no over-
flow condition exists. The results of the final addition might be
different from the first case, where a 4-bit temporary variable is
declared that truncates the result of the intermediate addition. There-
fore, these two expression trees do not always yield the same result.
The expression tree for the second case is shown in the following
figure.

Figure 8-9 Expression Tree With 5-Bit Intermediate Result

Sharing Common Subexpressions

Subexpressions consist of two or more variables in an expression. If
the same subexpression appears in more than one equation, you
might want to share these operations to reduce the area of your
circuit.
VHDL Reference Guide 8-9

VHDL Reference Guide
You can force common subexpressions to be shared by declaring a
temporary variable to store the subexpression, then use the tempo-
rary variable wherever you want to repeat the subexpression. The
following example shows a group of simple additions that use the
common subexpression (a + b).

temp <= a + b;
x <= temp;
y <= temp + c;

Instead of manually forcing common subexpressions to be shared,
you can let Foundation Express automatically determine whether
sharing common subexpressions improves your circuit. You do not
need to declare a temporary variable to hold the common subexpres-
sion in this case.

In some cases, sharing common subexpressions results in more
adders being built. Consider the following example, where A + B is a
common subexpression.

if cond1
Y <= A + B;

else
Y <= C + D;

end;
if cond2

Z <= E + F;
else

Z <= A + B;
end;

If the common subexpression A + B is shared, three adders are
needed to implement this section of code.

(A + B)
(C + D)
(E + F)

If the common subexpression is not shared, only two adders are
needed: one to implement the additions A + B and C + D and one to
implement the additions E + F and A + B.

Foundation Express analyzes common subexpressions during the
resource sharing phase of the compile process and considers area
costs and timing characteristics. To turn off the sharing of common
subexpressions for the current design, use the constraint manager.
The default is TRUE.
8-10 Xilinx Development System

Writing Circuit Descriptions
Y <= A + B + C;
Z <= D + A + B;

The parser does not recognize A + B as a common subexpression,
because it parses the second equation as (D + A) + B. You can force
the parser to recognize the common subexpression by rewriting the
second assignment statement as follows.

Z <= A + B + D;

or

Z <= D + (A + B);

Note: You do not have to rewrite the assignment statement, because
Foundation Express recognizes common subexpressions automati-
cally.

Changing an Operator Bit-Width
The adder in the following example sums the 8-bit value of A (a
BYTE) with the 8-bit value of TEMP. TEMP’s value is either B, which
is used only when it is less than 16, or C, which is a 4-bit value (a
NIBBLE).Therefore, the upper four bits of TEMP are always 0. Foun-
dation Express cannot derive this fact, because TEMP is declared
with type BYTE.

You can simplify the synthesized circuit by changing the declared
type of TEMP to NIBBLE (a 4-bit value). With this modification, half
adders, rather than full adders, are required to implement the top
four bits of the adder circuit, which figure, “Function with One
Adder Schematic,” illustrates.

function ADD_IT_16 (A, B: BYTE; C: NIBBLE) return BYTE is
 variable TEMP: BYTE;
begin
 if B < 16 then
 TEMP <= B;
 else
 TEMP <= C;
 end if;
 return A + TEMP;
end;
VHDL Reference Guide 8-11

VHDL Reference Guide
Figure 8-10 Function With One Adder Schematic

The following example shows how this change in TEMP’s declaration
can yield a significant savings in circuit area, which the figure
following the example illustrates.

function ADD_IT_16 (A, B: BYTE; C: NIBBLE)
 return BYTE is
 variable TEMP: NIBBLE; -- Now only 4 bits
begin
 if B < 16 then
 TEMP <= NIBBLE(B); -- Cast BYTE to NIBBLE
 else
 TEMP <= C;
 end if;
 return A + TEMP; -- Single adder
end;
8-12 Xilinx Development System

Writing Circuit Descriptions
Figure 8-11 Using TEMP Declaration to Save Circuit Area

Using State Information
You can also apply design knowledge in sequential designs. Often
you can make strong assertions about the value of a signal in a partic-
ular state of a finite-state machine. You can describe this information
to Foundation Express. The following example shows the VHDL
description of a simple state machine that uses two processes.

package STATES is
 type STATE_TYPE is (SET0, HOLD0, SET1);
end STATES;

use work.STATES.all;

entity MACHINE is
 port(X, CLOCK: in BIT;
 CURRENT_STATE: buffer STATE_TYPE;
 Z: buffer BIT);
end MACHINE;
VHDL Reference Guide 8-13

VHDL Reference Guide
architecture BEHAVIOR of MACHINE is
 signal NEXT_STATE: STATE_TYPE;
 signal PREVIOUS_Z: BIT;begin

 -- Process to hold combinatorial logic.
 COMBIN: process(CURRENT_STATE, X, PREVIOUS_Z)
 begin
 case CURRENT_STATE is
 when SET0 =>
 Z <= ’0’; -- Set Z to ’0’
 NEXT_STATE <= HOLD0;

 when HOLD0 =>
 Z <= PREVIOUS_Z; -- Hold value of Z
 if X = ’0’ then
 NEXT_STATE <= HOLD0;
 else
 NEXT_STATE <= SET1;
 end if;

 when SET1 => -- Set Z to ’1’
 Z <= ’1’;
 NEXT_STATE <= SET0;
 end case;
 end process COMBIN;

 -- Process to hold synchronous elements (flip-
flops).
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 PREVIOUS_Z <= Z;
 end process SYNCH;
end BEHAVIOR;
8-14 Xilinx Development System

Writing Circuit Descriptions
Figure 8-12 Schematic of Simple State Machine with Two
Processes

The following figure shows a schematic of a simple state machine
with two processes.In the state hold0, the output Z retains its value
from the previous state. To accomplish this, you insert a flip-flop to
hold the PREVIOUS_Z. However, you can make some assertions
about the value of Z. In state HOLD0, the value of Z is always 0. You
can deduce this from the fact that the state HOLD0 is entered only
from the state SET0, where Z is always assigned ‘0.’

The following example shows how you can change the VHDL
description to use this assertion, resulting in a simpler circuit. The
figure following the example illustrates the circuit.

package STATES is
 type STATE_TYPE is (SET0, HOLD0, SET1);
end STATES;
use work.STATES.all;

entity MACHINE is
 port(X, CLOCK: in BIT;
 CURRENT_STATE: buffer STATE_TYPE;
 Z: buffer BIT);
end MACHINE;

architecture BEHAVIOR of MACHINE is
 signal NEXT_STATE: STATE_TYPE;
begin
 -- Combinatorial logic.
 COMBIN: process(CURRENT_STATE, X)
VHDL Reference Guide 8-15

VHDL Reference Guide
 begin
 case CURRENT_STATE is
 when SET0 =>
 Z <= ’0’; -- Set Z to ’0’
 NEXT_STATE <= HOLD0;
 when HOLD0 =>
 Z <= ’0’; -- Hold Z at ’0’
 if X = ’0’ then
 NEXT_STATE <= HOLD0;
 else
 NEXT_STATE <= SET1;
 end if;
 when SET1 => -- Set Z to ’1’
 Z <= ’1’;
 NEXT_STATE <= SET0;
 end case;
 end process COMBIN;
 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process SYNCH;
end BEHAVIOR;

Figure 8-13 Schematic of an Improved State Machine
8-16 Xilinx Development System

Writing Circuit Descriptions
Propagating Constants
Constant propagation is the compile-time evaluation of expressions
containing constants. Foundation Express uses constant propagation
to reduce the amount of hardware required to implement operators.
For example, a + operator with a constant 1 as one of its arguments
causes an incrementer to be built, rather than a general adder. If both
arguments of + or any other operator are constants, no hardware is
constructed, because the expression’s value is calculated by Founda-
tion Express and inserted directly in the circuit.

Other operators that benefit from constant propagation include
comparators and shifters. Shifting a vector by a constant amount
requires no logic to implement; it requires only a reshuffling
(rewiring) of bits.

Sharing Complex Operators
The efficiency of a synthesized design depends primarily on how you
describe its component structure. The optimization of individual
components, especially those made from random logic, produces
similar results from two very different descriptions. Therefore,
concentrate the majority of your design effort on the implied compo-
nent hierarchy (as discussed in the preceding sections) rather than on
the logical descriptions. The “Design Descriptions” chapter discusses
how to define a VHDL design hierarchy.

Foundation Express supports many shorthand VHDL expressions.
There is no benefit to using a verbose syntax when a shorter descrip-
tion is adequate. The following example shows four equivalent
groups of statements.

signal A, B, C: BIT_VECTOR(3 downto 0);
 . . .
 C <= A and B;

 C(3 downto 0) <= A(3 downto 0) and B(3 downto 0);

 C(3) <= A(3) and B(3);
 C(2) <= A(2) and B(2);
 C(1) <= A(1) and B(1);
 C(0) <= A(0) and B(0);

 for I in 3 downto 0 loop
VHDL Reference Guide 8-17

VHDL Reference Guide
 C(I) <= A(I) and B(I);
 end loop;

Asynchronous Designs
In a synchronous design, all flip-flops use a single clock that is a
primary input to the design and there are no combinatorial feedback
paths. Synchronous designs perform the same function regardless of
the clock rate if all signals can propagate through the design’s combi-
natorial logic during the clock’s cycle time.

Foundation Express treats all designs as synchronous. It can therefore
change the timing behavior of the combinatorial logic if the
maximum and minimum delay requirements are met.

Foundation Express always preserves the Boolean function
computed by logic, assuming that the clock arrives after all signals
have propagated. Foundation Express’ built-in timing verifier helps
determine the slowest path (critical path) through the logic, which
determines how fast the clock can run.

Foundation Express provides some support for asynchronous
designs, but you must assume a greater responsibility for the accu-
racy of your circuits. Although fully synchronous circuits usually
agree with their simulation models, asynchronous circuits might not.
Foundation Express might not warn you when a design is not fully
synchronous. Be aware of the possibility of asynchronous timing
problems.

The most common way to produce asynchronous logic in VHDL is to
use gated clocks on latches or flip-flops. The following figure shows a
fully synchronous design, a counter with synchronous ENABLE and
RESET inputs. Because it is synchronous, this counter works if the
clock speed is slower than the critical path. The figure following the
example illustrates the design.

entity COUNT is
 port(RESET, ENABLE, CLK: in BIT;
 Z: buffer INTEGER range 0 to 7);
end;
architecture ARCH of COUNT is
begin
 process(RESET, ENABLE, CLK, Z)
 begin
 if (CLK’event and CLK = ’1’) then
8-18 Xilinx Development System

Writing Circuit Descriptions
 if (RESET = ’1’) then -- occurs on clock
--edge

 Z <= 0;
 elsif (ENABLE = ’1’) then -- occurs on clock

--edge
 if (Z = 7) then
 Z <= 0;
 else
 Z <= Z + 1;
 end if;
 end if;
 end if;
 end process;
end ARCH;

The schematic for the synchronous counter is shown in the following
figure.

Figure 8-14 Schematic of Synchronous Counter with Reset and
Enable

The following example shows an asynchronous version of the design
in the previous example. The version in the following example uses
two common asynchronous design techniques.

• The first technique, shown in the example of a better implemen-
tation of a state machine, enables the counter by using an AND
gate on the clock and enable signals.

• The second technique, shown in the example of four equivalent
groups of statements, uses an asynchronous reset.
VHDL Reference Guide 8-19

VHDL Reference Guide
These techniques work only when the proper timing relationships
exist between the reset signal (RESET) and the clock signal (CLK) and
there are no glitches in these signals.

The following example shows a design with gated clock and asyn-
chronous reset.

entity COUNT is
 port(RESET, ENABLE, CLK: in BIT;
 Z: buffer INTEGER range 0 to 7);
end;

architecture ARCH of COUNT is
 signal GATED_CLK: BIT;
begin
 GATED_CLK <= CLK and ENABLE; -- clock gated by
ENABLE

 process(RESET, GATED_CLK, Z)
 begin
 if (RESET = ’1’) then -- asynchronous reset
 Z <= 0;
 elsif (GATED_CLK’event and GATED_CLK = ’1’) then
 if (Z = 7) then
 Z <= 0;
 else
 Z <= Z + 1;
 end if;
 end if;
 end process;
end ARCH;
8-20 Xilinx Development System

Writing Circuit Descriptions
Figure 8-15 Design with AND Gate on Clock and Enable Signals
VHDL Reference Guide 8-21

VHDL Reference Guide
Figure 8-16 Design with Asynchronous Reset

The following example shows an asynchronous design that might not
work, because Foundation Express does not guarantee that the
combinatorial logic it builds has no hazards (glitches).

entity COUNT is
 port(LOAD_ENABLE, CLK: in BIT;
 LOAD_DATA: in INTEGER range 0 to 7;
 Z: buffer INTEGER range 0 to 7);
end;

architecture ARCH of COUNT is

begin
 process(LOAD_ENABLE, LOAD_DATA, CLK, Z)
 begin
 if (LOAD_ENABLE = ’1’) then
 Z <= LOAD_DATA;
 elsif (CLK’event and CLK = ’1’) then
 if (Z = 7) then
 Z <= 0;
 else
8-22 Xilinx Development System

Writing Circuit Descriptions
 Z <= Z + 1;
 end if;
 end if;
 end process;
end ARCH;

The design in the previous example works only when the logic
driving the preset and clear pins of the flip-flops that hold Z is faster
than the clock speed. If you use this design style, you must simulate
the synthesized circuit thoroughly. You also need to inspect the
synthesized logic, because potential glitches might not appear in
simulation. For a safer design, use a synchronous LOAD_ENABLE.

A design synthesized with complex logic driving the gate of a latch
rarely works. The following example describes an asynchronous
design that never works. The figure following the example shows the
resulting schematic.

entity COMP is
 port(A, B: in INTEGER range 0 to 7;
 Z: buffer INTEGER range 0 to 7);
end;
architecture ARCH of COMP is
begin
 process(A, B)
 begin
 if (A = B) then
 Z <= A;
 end if;
 end process;
end ARCH;
VHDL Reference Guide 8-23

VHDL Reference Guide
Figure 8-17 Schematic of Incorrect Asynchronous Design

In the previous example and figure, the comparator’s output latches
the value A onto the value Z. This design might work under behav-
ioral simulation where the comparison happens instantly. However,
the hardware comparator generates glitches that cause the latches to
store new data when they should not.

Don’t Care Inference
You can greatly reduce circuit area by using don’t care values. To use
a don’t care value in your design, create an enumerated type for the
don’t care value.

Don’t care values are best used as default assignments to variables.
You can assign a don’t care value to a variable at the beginning of a
module, in the default section of a case statement, or in the else
section of an if statement.

The following example shows don’t care encoding for a seven-
segment LED decoder. Enumeration encoding ’D’ represents the
don’t care state. The figure following the example illustrates the
design.

entity CONVERTER is
 port (BCD: in BIT_VECTOR(3 downto 0);
 LED: out BIT_VECTOR(6 downto 0));
8-24 Xilinx Development System

Writing Circuit Descriptions
 -- pragma dc_script_begin
 -- set_flatten true
 -- pragma dc_script_end
end CONVERTER;

architecture BEHAVIORAL of CONVERTER is
begin
CONV: process(BCD)
 begin
 case BCD is
 when ”0000” => LED <= ”1111110”;
 when ”0001” => LED <= ”1100000”;
 when ”0010” => LED <= ”1011011”;
 when ”0011” => LED <= ”1110011”;
 when ”0100” => LED <= ”1100101”;
 when ”0101” => LED <= ”0110111”;
 when ”0110” => LED <= ”0111111”;
 when ”0111” => LED <= ”1100010”;
 when ”1000” => LED <= ”1111111”;
 when ”1001” => LED <= ”1110111”;
 when others => LED <= ”0000000”;
 end case;
 end process CONV;
end BEHAVIORAL;
VHDL Reference Guide 8-25

VHDL Reference Guide
Figure 8-18 Seven-Segment LED Decoder with O LED Default

Using Don’t Care Default Values
You do not always want to assign a default value or don’t care,
although it can be beneficial in some cases, as the seven-segment
decoder in the previous example shows.

The reasons for not always defaulting to don’t care follow.

• The potential for mismatches between simulation and synthesis
is greater.

• Defaults for variables can hide mistakes in the VHDL code.

For example, you might assign a default don’t care value to VAR.
If you later assign a value to VAR, expecting VAR to be a don’t
care value, you might have overlooked an intervening condition
under which VAR is assigned.
8-26 Xilinx Development System

Writing Circuit Descriptions
Therefore, when you assign a value to a variable (or signal) that
contains a don’t care value, make sure that the variable (or signal)
is really a don’t care value under those conditions.

Differences Between Simulation and Synthesis
Don’t care values are treated differently in simulation and in
synthesis, and there can be a mismatch between the two. To a simu-
lator, a don’t care is a distinct value, different from a 1 or a 0. In
synthesis, however, a don’t care becomes a 0 or a 1 (and the hardware
built treats the don’t care value as either a 0 or a 1).

Whenever a comparison is made with a variable whose value is don’t
care, simulation and synthesis can differ. The safest way to use don’t
care values is to do the following.

• Assign don’t care values only to output ports

• Make sure that the design never reads output ports

These guidelines guarantee that when you simulate within the scope
of the design, the only difference between simulation and synthesis
occurs when the simulator defines an output as a don’t care.

Note: If you use don’t care values internally to a design, expressions
compared to don’t care (‘D’) are synthesized as though their values
are not equal to ‘D.’

For example,

if X = ’D’ then
...

is synthesized as

if FALSE then

If you use expressions comparing values with ‘D,’ there might be a
difference between pre-synthesis and post-synthesis simulation
results. For this reason, Foundation Express issues a warning when it
synthesizes such comparisons.

Warning: A partial don’t-care value was read in
routine test line 24 in file ’test.vhdl’ This may
cause simulation to disagree with synthesis. (HDL-171)
VHDL Reference Guide 8-27

VHDL Reference Guide
Synthesis Issues
Feedback paths and latches result from ambiguities in signal or vari-
able assignments and language supersets or the differences between
a VHDL simulator view and the Foundation Express use of VHDL.

Feedback Paths and Latches
Implied combinatorial feedback paths or latches in synthesized logic
can occur when a signal or variable in a combinatorial process (one
without a wait or if signal’event statement) is not fully specified in
the VHDL description. A variable or signal is fully specified when it
is assigned under all possible conditions. A variable or signal is not
fully specified when a condition exists under which the variable is
not assigned.

Fully Specified Variables

The following example shows several variables. A, B, and C are fully
specified; X is not.

process (COND1)
 variable A, B, C, X : BIT;
begin
 A <= ’0’ -- A is hereby fully specified
 C <= ’0’ -- C is hereby fully specified

 if (COND1) then
 B <= ’1’; -- B is assigned when COND1 is TRUE
 C <= ’1’; -- C is already fully specified
 X <= ’1’; -- X is assigned when COND1 is TRUE
 else
 B <= ’0’; -- B is assigned when COND1 is FALSE
 end if;
 -- A is assigned regardless of COND1, so A is fully
 -- specified.

 -- B is assigned under all branches of if (COND1),
 -- that is, both when COND1 is TRUE and when
 -- COND1 is FALSE, so B is fully specified.

 -- C is assigned regardless of COND1, so C is fully
 -- specified. (The second assignment to C does
8-28 Xilinx Development System

Writing Circuit Descriptions
 -- not change this.)

 -- X is not assigned under all branches of
 -- if (COND1), namely, when COND1 is FALSE,
 -- so X is not fully specified.
end process;

The conditions of each if and else statement are considered indepen-
dent in the previous example. A is considered not fully specified in
the following fragment.

if (COND1) then
 A <= ’1’;
end if;

if (not COND1) then
 A <= ’0’;
end if;

A variable or signal that is not fully specified in a combinatorial
process is considered conditionally specified. In this case, a flow-
through latch is implied. You can conditionally assign a variable, but
you cannot read a conditionally specified variable. You can, however,
both conditionally assign and read a signal.

If a fully specified variable is read before its assignment statements,
combinatorial feedback might exist. For example, the following frag-
ment synthesizes combinatorial feedback for VAL.

process(NEW, LOAD)
 variable VAL: BIT;
begin
 if (LOAD) then
 VAL <= NEW;
 else
 VAL <= VAL;
 end if;

 VAL_OUT <= VAL;
end process;

In a combinatorial process, you can ensure that a variable or signal is
fully specified by providing an initial (default) assignment to the
variable at the beginning of the process. This default assignment
assures that the variable is always assigned a value, regardless of
conditions. Subsequent assignment statements can override the
VHDL Reference Guide 8-29

VHDL Reference Guide
default. A default assignment is made to variables A and C in the
example of fully specified variables.

Another way to ensure that you do not imply combinatorial feedback
is to use a sequential process (one with a wait or if signal’event state-
ment). In such a case, variables and signals are registered. The regis-
ters break the combinatorial feedback loop.

See the “Register and Three-State Inference” chapter for more infor-
mation about sequential processes and the conditions under which
Foundation Express infers registers and latches.

Asynchronous Behavior

Some forms of asynchronous behavior are not supported. An
example is a circuit description of a one-hot signal generator of the
following form.

X <= A nand (not(not(not A)));

You might expect this circuit description to generate three inverters
(an inverting delay line) and a NAND gate, but it is optimized to the
following.

X <= A nand (not A);

Then, it is optimized to the following.

X <= 1;

c[0] = a[0] & b[0];

for (i = 0; i <= 3; i = i + 1)
c[i] = a[i] & b[i];

Understanding Superset Issues and Error Checking
The Foundation Express VHDL Analyzer is a full IEEE 1076 VHDL
analyzer.

When Foundation Express reads in a VHDL design, it first calls the
VHDL Analyzer to check the VHDL source for errors and then trans-
lates the VHDL source to an intermediate form for synthesis. If an
error is in the VHDL source, you get a VHDL Analyzer message and
possibly a VHDL Compiler message.
8-30 Xilinx Development System

Writing Circuit Descriptions
VHDL Compiler allows globally static objects where only locally
static objects are allowed, without issuing an error message.
VHDL Reference Guide 8-31

VHDL Reference Guide
8-32 Xilinx Development System

Chapter 9

Foundation Express Directives

The Foundation Express HDL compiler has several methods of
writing circuit design information directly in your VHDL source
code.

Using Foundation Express directives, you can direct the translation
from VHDL to components with special VHDL comments. These
synthetic comments turn translation on or off, specify one of several
hard-wired resolution methods, and provide a means to map subpro-
grams to hardware components.

To familiarize yourself with Foundation Express directives, consider
the following topics presented in this chapter.

• “Notation for Foundation Express Directives”

• “Foundation Express Directives”

Notation for Foundation Express Directives
Foundation Express directives are special (synthetic) VHDL
comments that affect the actions of Foundation Express. These
comments are a special case of regular VHDL comments, which are
ignored by other VHDL tools. Synthetic comments are used only to
direct the actions of Foundation Express.

Synthetic comments begin with two hyphens (--) like a regular
comment. If the word following these characters is pragma or
synopsys, Foundation Express treats the remaining comment text as a
directive.

Note: Foundation Express displays a syntax error if an unrecognized
directive is encountered after -- synopsys or -- pragma.
VHDL Reference Guide 9-1

VHDL Reference Guide
Foundation Express Directives
The three types of directives follow.

• Translation stop and start directives

-- pragma synthesis_off
-- pragma synthesis_on

-- pragma translate_off Use not recommended.
-- pragma translate_on Use not recommended.

• Resolution function directives

-- pragma resolution_method wired_and
-- pragma resolution_method wired_or
-- pragma resolution_method three_state

• Component implication directives

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name

Translation Stop and Start Pragma Directives
Foundation Express supports the synthesis_off and synthesis_on
pragma directives.

Note: It is recommended that you not use the following directives.

-- pragma translate_off
-- pragma translate_on

The use of these directives in Foundation Express can lead to errors in
your design.

synthesis_off and synthesis_on Directives
The synthesis_off and synthesis_on directives are the recommended
mechanisms for hiding simulation-only constructs from synthesis.
Any text between these directives is checked for syntax, but no corre-
sponding hardware is synthesized.

The example below shows how you can use the directives to protect a
simulation driver.

-- The following test driver for entity EXAMPLE
-- should not be translated:
9-2 Xilinx Development System

Foundation Express Directives
-- pragma synthesis_off
-- Translation stops

entity DRIVER is
end DRIVER;
architecture VHDL of DRIVER is
 signal A, B : INTEGER range 0 to 255;
 signal SUM : INTEGER range 0 to 511;

 component EXAMPLE
 port (A, B: in INTEGER range 0 to 255;
 SUM: out INTEGER range 0 to 511);
 end component;

begin
 U1: EXAMPLE port map(A, B, SUM);
 process
 begin
 for I in 0 to 255 loop
 for J in 0 to 255 loop
 A <= I;
 B <= J;
 wait for 10 ns;
 assert SUM = A + B;
 end loop;
 end loop;
 end process;
end VHDL;

-- pragma synthesis_on
-- Code from here on is translated

entity EXAMPLE is
 port (A, B: in INTEGER range 0 to 255;
 SUM: out INTEGER range 0 to 511);
end EXAMPLE;

architecture VHDL of EXAMPLE is
begin
 SUM <= A + B;
end VHDL;

Resolution Function Directives
Resolution function directives determine the resolution function
associated with resolved signals. (See the “Resolution Functions”
section of the “Design Descriptions” chapter.) Foundation Express
VHDL Reference Guide 9-3

VHDL Reference Guide
does not support arbitrary resolution functions. It does support the
following three methods.

-- pragma resolution_method wired_and
-- pragma resolution_method wired_or
-- pragma resolution_method three_state

Note: Do not connect signals that use different resolution functions.
Foundation Express supports only one resolution function per
network.

Component Implication Directives
Component implication directives map VHDL subprograms onto
existing components or VHDL entities. These directives are described
under the “Procedures and Functions as Design Components”
section of the “Sequential Statements” chapter.

-- pragma map_to_entity entity_name
-- pragma return_port_name port_name
9-4 Xilinx Development System

Chapter 10

Foundation Express Packages

Three VHDL packages are included with this release. This chapter
discusses the contents of each package. Each section of this chapter
explains one of these packages.

• “std_logic_1164 Package”

Defines a standard for designers to use when describing the
interconnection data types used in VHDL modeling

• “std_logic_arith Package”

Provides a set of arithmetic, conversion, and comparison func-
tions for SIGNED, UNSIGNED, INTEGER, STD_ULOGIC,
STD_LOGIC, and STD_LOGIC_VECTOR types

• “numeric_std Package”

The numeric_std package is an alternative to the std_logic_arith
package. It is the IEEE standard 1076.3-1997, and documentation
about it is available from IEEE.

• “std_logic_misc Package”

Defines supplemental types, subtypes, constants, and functions
for the std_logic_1164 package.

• “ATTRIBUTES Package”

Declares synthesis attributes and the resource sharing subtype
and its attributes.

std_logic_1164 Package
This package defines the IEEE standard for designers to use when
describing the interconnection data types used in VHDL modeling.
The logic system defined in this package might be insufficient for
VHDL Reference Guide 10-1

VHDL Reference Guide
modeling switched transistors, because such a requirement is out of
the scope of this package. Furthermore, mathematics, primitives, and
timing standards are considered orthogonal issues as they relate to
this package and are, therefore, beyond its scope.

The std_logic_1164 package has been updated with Foundation
Express synthesis directives.

To use this package in a VHDL source file, include the following lines
at the beginning of the source file.

library IEEE;
use IEEE.std_logic_1164.all;

When you analyze your VHDL source file, Foundation Express auto-
matically finds the IEEE library and the std_logic_1164 package.
However, you must analyze the use packages not contained in the
IEEE and Foundation Express libraries before processing a source file
that uses them.

std_logic_arith Package
Functions defined in the std_logic_arith package provide conversion
to and from the predefined VHDL data type INTEGER and arith-
metic, comparison, and BOOLEAN operations. With this package,
you can perform arithmetic operations and numeric comparisons on
array data types. The package defines some arithmetic operators (+, -
, *, and ABS) and the relational operators (<, >, <=, >=, =, and /=).
(IEEE VHDL does not define arithmetic operators for arrays and
defines the comparison operators in a manner inconsistent with an
arithmetic interpretation of array values.)

The package also defines two major data types of its own;
UNSIGNED and SIGNED. Find details in the “Data Types” section of
this chapter. The std_logic_arith package is legal VHDL; you can use
it for both synthesis and simulation.

You can configure the std_logic_arith package to work on any array
of single-bit types. You encode single-bit types in 1 bit with the
ENUM_ENCODING attribute.

You can make the vector type (for example, std_logic_vector) synon-
ymous with either SIGNED or UNSIGNED. This way, if you plan to
use mostly UNSIGNED numbers, you do not need to convert your
vector type to call UNSIGNED functions. The disadvantage of
10-2 Xilinx Development System

Foundation Express Packages
making your vector type synonymous with either UNSIGNED or
SIGNED is that it causes the standard VHDL comparison functions
(=, /=, <, >, <=, and >=) to be redefined.

The table below shows that the standard comparison functions for
BIT_VECTOR do not match the SIGNED and UNSIGNED functions.

Using the Package
To use this package in a VHDL source file, include the following lines
at the beginning of the source file.

library IEEE;
use IEEE.std_logic_arith.all;

Modifying the Package
The std_logic_arith package is written in standard VHDL. You can
modify or add to it. The appropriate hardware is then synthesized.

For example, to convert a vector of multivalued logic to an INTEGER,
you can write the function shown in the following example. This
MVL_TO_INTEGER function returns the integer value corre-
sponding to the vector when the vector is interpreted as an unsigned
(natural) number. If unknown values are in the vector, the return
value is -1.

library IEEE;
use IEEE.std_logic_1164.all;

function MVL_TO_INTEGER(ARG : MVL_VECTOR)
 return INTEGER is
 -- pragma built_in SYN_FEED_THRU

Table 10-1 UNSIGNED, SIGNED, and BIT_VECTOR Comparison
Functions

ARG1 op ARG2 UNSIGNED SIGNED BIT_VECTOR

"000" = "000" TRUE TRUE TRUE

"00" = "000" TRUE TRUE FALSE

"100" = "0100" TRUE FALSE FALSE

"000" < "000" FALSE FALSE FALSE

"00" < "000" FALSE FALSE TRUE

"100" < "0100" FALSE TRUE FALSE
VHDL Reference Guide 10-3

VHDL Reference Guide
 variable uns: UNSIGNED (ARG’range);
begin
 for i in ARG’range loop
 case ARG(i) is
 when ’0’ | ’L’ => uns(i) := ’0’;
 when ’1’ | ’H’ => uns(i) := ’1’;
 when others => return -1;
 end case;
 end loop;
 return CONV_INTEGER(uns);
end MLV TO INTEGER;

Notice how the CONV_INTEGER function is used in the above
example.

Foundation Express performs almost all synthesis directly from the
VHDL descriptions. However, several functions are hard wired for
efficiency. These functions can be identified by the following
comment in their declarations.

-- pragma built_in

This statement marks functions as special, causing the body of the
function to be ignored. Modifying the body does not change the
synthesized logic unless you remove the built_in comment. If you
want new functionality, use the built_in functions; this is more effi-
cient than removing the built_in and modifying the body of the func-
tion.

Data Types
The std_logic_arith package defines two data types, UNSIGNED and
SIGNED.

type UNSIGNED is array (natural range <>) of std_logic;
type SIGNED is array (natural range <>) of std_logic;

These data types are similar to the predefined VHDL type
BIT_VECTOR, but the std_logic_arith package defines the interpreta-
tion of variables and signals of these types as numeric values.

UNSIGNED

The UNSIGNED data type represents an unsigned numeric value.
Foundation Express interprets the number as a binary representation,
10-4 Xilinx Development System

Foundation Express Packages
with the farthest-left bit being most significant. For example, the
decimal number 8 can be represented by the following.

UNSIGNED’("1000")

When you declare variables or signals of type UNSIGNED, a larger
vector holds a larger number. A 4-bit variable holds values up to
decimal 15; an 8-bit variable holds values up to 255 and so on. By
definition, negative numbers cannot be represented in an
UNSIGNED variable. Zero is the smallest value that can be repre-
sented.

The following example illustrates some UNSIGNED declarations.
The most significant bit is the farthest-left array bound, rather than
the high or low range value.

variable VAR: UNSIGNED (1 to 10);
 -- 11-bit number
 -- VAR(VAR’left) = VAR(1) is the most significant
bit

signal SIG: UNSIGNED (5 downto 0);
 -- 6-bit number
 -- SIG(SIG’left) = SIG(5) is the most significant

-- bit

SIGNED

The SIGNED data type represents a signed numeric value. Founda-
tion Express interprets the number as a 2’s complement binary repre-
sentation, with the farthest-left bit as the sign bit. For example, you
can represent decimal 5 and -5 by the following.

SIGNED’("0101") -- represents +5
SIGNED’("1011") -- represents -5

When you declare SIGNED variables or signals, a larger vector holds
a larger number. A 4-bit variable holds values from -8 to 7; an 8-bit
variable holds values from –128 to 127. Notice that a SIGNED value
cannot hold as large a value as an UNSIGNED value with the same
bit-width.

The following example shows some SIGNED declarations. The sign
bit is the farthest-left bit, rather than the highest or lowest.

variable S_VAR: SIGNED (1 to 10);
 -- 11-bit number
 -- S_VAR(S_VAR’left) = S_VAR(1) is the sign bit
VHDL Reference Guide 10-5

VHDL Reference Guide
signal S_SIG: SIGNED (5 downto 0);
 -- 6-bit number
 -- S_SIG(S_SIG’left) = S_SIG(5) is the sign bit

Conversion Functions
The std_logic_arith package provides three sets of functions to
convert values between its UNSIGNED and SIGNED types and the
predefined type INTEGER. This package also provides the
std_logic_vector.

The following example shows the declarations of these conversion
functions, with BIT and BIT_VECTOR types.

subtype SMALL_INT is INTEGER range 0 to 1;
function CONV_INTEGER(ARG: INTEGER) return INTEGER;
function CONV_INTEGER(ARG: UNSIGNED) return INTEGER;
function CONV_INTEGER(ARG: SIGNED) return INTEGER;
function CONV_INTEGER(ARG: STD_ULOGIC) return SMALL_INT;

function CONV_UNSIGNED(ARG: INTEGER;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: UNSIGNED;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: SIGNED;
 SIZE: INTEGER) return UNSIGNED;
function CONV_UNSIGNED(ARG: STD_ULOGIC;
 SIZE: INTEGER) return UNSIGNED;

function CONV_SIGNED(ARG: INTEGER;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: UNSIGNED;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: SIGNED;
 SIZE: INTEGER) return SIGNED;
function CONV_SIGNED(ARG: STD_ULOGIC;
 SIZE: INTEGER) return SIGNED;

function CONV_STD_LOGIC_VECTOR(ARG: INTEGER;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: UNSIGNED;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: SIGNED;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;
function CONV_STD_LOGIC_VECTOR(ARG: STD_ULOGIC;
 SIZE: INTEGER) return STD_LOGIC_VECTOR;

There are four versions of each conversion function.
10-6 Xilinx Development System

Foundation Express Packages
The VHDL operator overloading mechanism of VHDL determines
the correct version from the function call’s argument types.

The CONV_INTEGER functions convert an argument of type
INTEGER, UNSIGNED, SIGNED, or STD_ULOGIC to an INTEGER
return value. The CONV_UNSIGNED and CONV_SIGNED func-
tions convert an argument of type INTEGER, UNSIGNED, SIGNED,
or STD_ULOGIC to an UNSIGNED or SIGNED return value whose
bit width is SIZE.

The CONV_INTEGER functions have a limitation on the size of oper-
ands. VHDL defines INTEGER values as between -2147483647 and
2147483647. This range corresponds to a 31-bit UNSIGNED value or a
32-bit SIGNED value. You cannot convert an argument outside this
range to an INTEGER.

The CONV_UNSIGNED and CONV_SIGNED functions each require
two operands. The first operand is the value converted. The second
operand is an INTEGER that specifies the expected size of the
converted result. For example, the following function call returns a
10-bit UNSIGNED value representing the value in sig.

ten_unsigned_bits := CONV_UNSIGNED(sig, 10);

If the value passed to CONV_UNSIGNED or CONV_SIGNED is
smaller than the expected bit-width (such as representing the value 2
in a 24-bit number), the value is bit-extended appropriately. Founda-
tion Express places zeros in the more significant (left) bits for an
UNSIGNED return value and uses sign extension for a SIGNED
return value.

You can use the conversion functions to extend a number’s bit-width
even if conversion is not required. An example follows.

CONV_SIGNED(SIGNED’("110"), 8) % "11111110"

An UNSIGNED or SIGNED return value is truncated when its bit-
width is too small to hold the ARG value. An example follows.

CONV_SIGNED(UNSIGNED’("1101010"), 3) % "010"

Arithmetic Functions
The std_logic_arith package provides arithmetic functions for use
with combinations of Xilinx’s UNSIGNED and SIGNED data types
and the predefined types STD_ULOGIC and INTEGER. These func-
tions produce adders and subtracters.
VHDL Reference Guide 10-7

VHDL Reference Guide
There are two sets of arithmetic functions; binary functions with two
arguments, such as A+B or A*B, and unary functions with one argu-
ment, such as -A. The declarations for these functions are shown in
the following examples.

Example 10-1: Binary Arithmetic Functions

function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "+"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "+"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: INTEGER) return SIGNED;
function "+"(L: INTEGER; R: SIGNED) return SIGNED;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "+"(L: STD_ULOGIC; R: SIGNED) return SIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "+"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "+"(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "+"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "+"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: SIGNED) return SIGNED;
function "-"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: INTEGER) return UNSIGNED;
function "-"(L: INTEGER; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: INTEGER) return SIGNED;
function "-"(L: INTEGER; R: SIGNED) return SIGNED;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return UNSIGNED;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return UNSIGNED;
function "-"(L: SIGNED; R: STD_ULOGIC) return SIGNED;
function "-"(L: STD_ULOGIC; R: SIGNED) return SIGNED;
10-8 Xilinx Development System

Foundation Express Packages
function "-"(L: UNSIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: INTEGER) return STD_LOGIC_VECTOR;
function "-"(L: INTEGER; R: SIGNED) return STD_LOGIC_VECTOR;
function "-"(L: UNSIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: UNSIGNED) return STD_LOGIC_VECTOR;
function "-"(L: SIGNED; R: STD_ULOGIC) return STD_LOGIC_VECTOR;
function "-"(L: STD_ULOGIC; R: SIGNED) return STD_LOGIC_VECTOR;

function "*"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED;
function "*"(L: SIGNED; R: SIGNED) return SIGNED;
function "*"(L: SIGNED; R: UNSIGNED) return SIGNED;
function "*"(L: UNSIGNED; R: SIGNED) return SIGNED;

Example 10-2: Unary Arithmetic Functions

function "+"(L: UNSIGNED) return UNSIGNED;
function "+"(L: SIGNED) return SIGNED;
function "-"(L: SIGNED) return SIGNED;
function "ABS"(L: SIGNED) return SIGNED;

These unary arithmetic functions in the previous two examples deter-
mine the width of their return values as follows.

• When only one UNSIGNED or SIGNED argument is present, the
width of the return value is the same as that argument’s.

• When both arguments are either UNSIGNED or SIGNED, the
width of the return value is the larger of the two argument
widths. An exception is when an UNSIGNED number is added to
or subtracted from a SIGNED number of the same size or smaller,
the return value is a SIGNED number one bit wider than the
UNSIGNED argument. This size guarantees that the return value
is large enough to hold any (positive) value of the UNSIGNED
argument.

The number of bits returned by + and - is illustrated in the following
table.

signal U4: UNSIGNED (3 downto 0);
signal U8: UNSIGNED (7 downto 0);
VHDL Reference Guide 10-9

VHDL Reference Guide
signal S4: SIGNED (3 downto 0);
signal S8: SIGNED (7 downto 0);

In some circumstances, you might need to obtain a carry-out bit from
the + or - operation. To do this, extend the larger operand by one bit.
The high bit of the return value is the carry-out bit, as illustrated in
the example below.

process
 variable a, b, sum: UNSIGNED (7 downto 0);
 variable temp: UNSIGNED (8 downto 0);
 variable carry: BIT;
begin
 temp := CONV_UNSIGNED(a,9) + b;
 sum := temp(7 downto 0);
 carry := temp(8);
end process;

Comparison Functions
The std_logic_arith package provides functions to compare
UNSIGNED and SIGNED data types with each other and with the
predefined type INTEGER. Foundation Express compares the
numeric values of the arguments, returning a BOOLEAN value. For
example, the following expression evaluates TRUE.

UNSIGNED’("001") > SIGNED’("111")

The std_logic_arith comparison functions are similar to the built-in
VHDL comparison functions. The only difference is that the
std_logic_arith functions accommodate signed numbers and varying
bit-widths. The predefined VHDL comparison functions perform
bit-wise comparisons and so do not have the correct semantics for
comparing numeric values. (See the “Relational Operators” section of
the “Expressions” chapter.)

Table 10-2 Number of Bits Returned by + and -

+ or - U4 U8 S4 S8

U4 4 8 5 8

U8 8 8 9 9

S4 5 9 4 8

S8 8 9 8 8
10-10 Xilinx Development System

Foundation Express Packages
These functions produce comparators. The function declarations are
listed in two groups, ordering functions (<, <=, >, and >=) and
equality functions (= and /=) in the following examples.

Example 10-3: Ordering Functions

function "<"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<"(L: SIGNED; R: SIGNED) return Boolean;
function "<"(L: UNSIGNED; R: SIGNED) return Boolean;
function "<"(L: SIGNED; R: UNSIGNED) return Boolean;
function "<"(L: UNSIGNED; R: INTEGER) return Boolean;
function "<"(L: INTEGER; R: UNSIGNED) return Boolean;
function "<"(L: SIGNED; R: INTEGER) return Boolean;
function "<"(L: INTEGER; R: SIGNED) return Boolean;

function "<="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "<="(L: SIGNED; R: SIGNED) return Boolean;
function "<="(L: UNSIGNED; R: SIGNED) return Boolean;
function "<="(L: SIGNED; R: UNSIGNED) return Boolean;
function "<="(L: UNSIGNED; R: INTEGER) return Boolean;
function "<="(L: INTEGER; R: UNSIGNED) return Boolean;
function "<="(L: SIGNED; R: INTEGER) return Boolean;
function "<="(L: INTEGER; R: SIGNED) return Boolean;

function "" functions">">"(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">"(L: SIGNED; R: SIGNED) return Boolean;
function ">"(L: UNSIGNED; R: SIGNED) return Boolean;
function ">"(L: SIGNED; R: UNSIGNED) return Boolean;
function ">"(L: UNSIGNED; R: INTEGER) return Boolean;
function ">"(L: INTEGER; R: UNSIGNED) return Boolean;
function ">"(L: SIGNED; R: INTEGER) return Boolean;
function ">"(L: INTEGER; R: SIGNED) return Boolean;

function ="" functions">">="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function ">="(L: SIGNED; R: SIGNED) return Boolean;
function ">="(L: UNSIGNED; R: SIGNED) return Boolean;
function ">="(L: SIGNED; R: UNSIGNED) return Boolean;
function ">="(L: UNSIGNED; R: INTEGER) return Boolean;
function ">="(L: INTEGER; R: UNSIGNED) return Boolean;
function ">="(L: SIGNED; R: INTEGER) return Boolean;
function ">="(L: INTEGER; R: SIGNED) return Boolean;

Example 10-4: Equality Functions

function "="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "="(L: SIGNED; R: SIGNED) return Boolean;
function "="(L: UNSIGNED; R: SIGNED) return Boolean;
VHDL Reference Guide 10-11

VHDL Reference Guide
function "="(L: SIGNED; R: UNSIGNED) return Boolean;
function "="(L: UNSIGNED; R: INTEGER) return Boolean;
function "="(L: INTEGER; R: UNSIGNED) return Boolean;
function "="(L: SIGNED; R: INTEGER) return Boolean;
function "="(L: INTEGER; R: SIGNED) return Boolean;

function "/="(L: UNSIGNED; R: UNSIGNED) return Boolean;
function "/="(L: SIGNED; R: SIGNED) return Boolean;
function "/="(L: UNSIGNED; R: SIGNED) return Boolean;
function "/="(L: SIGNED; R: UNSIGNED) return Boolean;
function "/="(L: UNSIGNED; R: INTEGER) return Boolean;
function "/="(L: INTEGER; R: UNSIGNED) return Boolean;
function "/="(L: SIGNED; R: INTEGER) return Boolean;
function "/="(L: INTEGER; R: SIGNED) return Boolean;

Shift Functions
The std_logic_arith package provides functions for shifting the bits in
SIGNED and UNSIGNED numbers. These functions produce
shifters. See the following example for shift function declarations. For
a list of shift and rotate operators, see the “Operators” section of the
“VHDL Constructs” chapter.

function SHL(ARG: UNSIGNED;
 COUNT: UNSIGNED) return UNSIGNED;
function SHL(ARG: SIGNED;
 COUNT: UNSIGNED) return SIGNED;

function SHR(ARG: UNSIGNED;
 COUNT: UNSIGNED) return UNSIGNED;
function SHR(ARG: SIGNED;
 COUNT: UNSIGNED) return SIGNED;

The SHL function shifts the bits of its argument ARG to the left by
COUNT bits. The SHR shifts the bits of its argument ARG to the right
by COUNT bits.

The SHL functions work the same for both UNSIGNED and SIGNED
values of ARG, shifting in zero bits as necessary. The SHR functions
treat UNSIGNED and SIGNED values differently. If ARG is an
UNSIGNED number, vacated bits are filled with zeros; if ARG is a
SIGNED number, the vacated bits are copied from the sign bit of
ARG.

The following example shows some shift function calls and their
return values.
10-12 Xilinx Development System

Foundation Express Packages
variable U1, U2: UNSIGNED (7 downto 0);
variable S1, S2: SIGNED (7 downto 0);
variable COUNT: UNSIGNED (1 downto 0);
. . .
U1 := "01101011";
U2 := "11101011";

S1 := "01101011";
S2 := "11101011";

COUNT := CONV_UNSIGNED(ARG => 3, SIZE => 2);
. . .
SHL(U1, COUNT) = "01011000"
SHL(S1, COUNT) = "01011000"
SHL(U2, COUNT) = "01011000"
SHL(S2, COUNT) = "01011000"

SHR(U1, COUNT) = "00001101"
SHR(S1, COUNT) = "00001101"
SHR(U2, COUNT) = "00011101"
SHR(S2, COUNT) = "11111101"

Multiplication Using Shifts You can use shift operations for
simple multiplication and division of UNSIGNED numbers, if you
multiply or divide by a power of 2.

For example, to divide the following UNSIGNED variable U by 4, see
the following.

variable U: UNSIGNED (7 downto 0) := "11010101";
variable quarter_U: UNSIGNED (5 downto 0);

quarter_U := SHR(U, "01");

ENUM_ENCODING Attribute
Place the synthesis attribute ENUM_ENCODING on your primary
logic type. (See the “Enumeration Encoding” section of the “Data
Types” chapter.) This attribute allows Foundation Express to inter-
pret your logic correctly.

pragma built_in
Label your primary logic functions with the built_in pragma.
Pragmas allow Foundation Express to interpret your logic functions
easily. When you use a built_in pragma, Foundation Express parses
but ignores the body of the function. Instead, Foundation Express
VHDL Reference Guide 10-13

VHDL Reference Guide
directly substitutes the appropriate logic for the function. You are not
required to use built_in pragmas; however, using these pragmas can
result in run times that are ten times faster.

Use built_in pragmas by placing a comment in the declaration part of
a function. Foundation Express interprets a comment as a directive if
the first word of the comment is pragma.

The following example shows how to use a built_in pragma.

function "XOR" (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_XOR
 begin
 if (L = ’1’) xor (R = ’1’) then
 return ’1’;
 else
 return ’0’;
 end if;
end "XOR";

Two-Argument Logic Functions

Xilinx provides six built-in functions to perform two-argument logic
functions.

• SYN_AND

• SYN_OR

• SYN_NAND

• SYN_NOR

• SYN_XOR

• SYN_XNOR

You can use these functions on single-bit arguments or equal-length
arrays of single bits.

The following example shows a function that takes the logical AND
of two equal-size arrays.

function "AND" (L, R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_AND
 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable MY_R: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
10-14 Xilinx Development System

Foundation Express Packages
 assert L’length = R’length;
 MY_L := L;
 MY_R := R;
 for i in RESULT’range loop
 if (MY_L(i) = ’1’) and (MY_R(i) = ’1’) then
 RESULT(i) := ’1’;
 else
 RESULT(i) := ’0’;
 end if;
 end loop;
 return RESULT;
end "AND";

One-Argument Logic Functions

Foundation Express provides two built-in functions to perform
one-argument logic functions.

• SYN_NOT

• SYN_BUF

You can use these functions on single-bit arguments or equal-length
arrays of single bits. The following example shows a function that
takes the logical NOT of an array.

function "NOT" (L: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
 -- pragma built_in SYN_NOT
 variable MY_L: STD_LOGIC_VECTOR (L’length-1 downto 0);
 variable RESULT: STD_LOGIC_VECTOR (L’length-1 downto 0);
begin
 MY_L := L;
 for i in result’range loop
 if (MY_L(i) = ’0’ or MY_L(i) = ’L’) then
 RESULT(i) := ’1’;
 elsif (MY_L(i) = ’1’ or MY_L(i) = ’H’) then
 RESULT(i) := ’0’;
 else
 RESULT(i) := ’X’;
 end if;
 end loop;
 return RESULT;
end "NOT";
end;
VHDL Reference Guide 10-15

VHDL Reference Guide
Type Conversion

The built-in function SYN_FEED_THRU performs fast type conver-
sion between unrelated types. The synthesized logic from
SYN_FEED_THRU wires the single input of a function to the return
value. This connection can save the CPU time required to process a
complicated conversion function, as shown in the following example.

type COLOR is (RED, GREEN, BLUE);
attribute ENUM_ENCODING : STRING;
attribute ENUM_ENCODING of COLOR : type is "01 10 11";
...

function COLOR_TO_BV (L: COLOR) return BIT_VECTOR is
 -- pragma built_in SYN_FEED_THRU
begin
 case L is
 when RED => return "01";
 when GREEN => return "10";
 when BLUE => return "11";
 end case;
end COLOR_TO_BV;

numeric_std Package
Foundation Express supports nearly all of numeric_std, the IEEE
Standard VHDL Synthesis Package, which defines numeric types and
arithmetic functions.

Warning: The numeric_std package and the std_logic_arith package
have overlapping operations. Using these two packages simulta-
neously during analysis could cause type mismatches.

Understanding the Limitations of numeric_std
package

The 1999.05 version of Foundation Express does not support the
following numeric_std package components:

• divide, rem, or mod operators

If your design contains these operators, use the std_logic_arith
package.

• TO_01 function as a simulation construct
10-16 Xilinx Development System

Foundation Express Packages
Using the Package
Access numeric_std package with the following statement in your
VHDL code.

library IEEE;
use IEEE.numeric_std.all;

These VHDL packages are pre-analyzed and do not require further
analyzing. To list the packages currently in memory, use the
following command.

report_design_lib

Data Types
The numeric_std package defines the following two data types in the
same way that the std_logic_arith package does.

• UNSIGNED

type UNSIGNED is array (NATURAL range <>) of
STD_LOGIC;

See the “UNSIGNED” section of this chapter for more informa-
tion.

• SIGNED

type SIGNED is array (NATURAL range <>) of STD_LOGIC;

See the “SIGNED” section of this chapter for more information.

Conversion Functions
The numeric_std package provides functions to convert values
between its UNSIGNED and SIGNED types. The following example
shows the declarations of these conversion functions.

function TO_INTEGER (ARG: UNSIGNED) return NATURAL;
function TO_INTEGER (ARG: SIGNED) return INTEGER;
function TO_UNSIGNED (ARG, SIZE: NATURAL) return UNSIGNED;
function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL) return SIGNED;

TO_INTEGER, TO_SIGNED, and TO_UNSIGNED are similar to
CONV_INTEGER, CONV_SIGNED, and CONV_UNSIGNED in
std_logic_arith (see the “Conversion Functions” section of this
chapter).
VHDL Reference Guide 10-17

VHDL Reference Guide
Resize Function
The resize function numeric_std supports is shown in the declara-
tions in the following example.

function RESIZE (ARG: SIGNED; NEW_SIZE: NATURAL) return SIGNED;
function RESIZE (ARG: UNSIGNED; NEW_SIZE: NATURAL) return UNSIGNED;

Arithmetic Functions
The numeric_std package provides arithmetic functions for use with
combinations of UNSIGNED and SIGNED data types and the
predefined types STD_ULOGIC and INTEGER. These functions
produce adders and subtracters.

There are two sets of arithmetic functions, which the numeric_std
package defines in the same way that the std_logic_arith package
does.

• Binary functions having two arguments, such as the following.

A+B

A*B

• Unary functions having one argument, such as the following.

–A

abs A

The following example shows the declarations for binary functions
having two arguments.

function "+" (L, R: UNSIGNED) return UNSIGNED;
function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "+" (L: INTEGER; R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: INTEGER) return SIGNED;

function "-" (L, R: UNSIGNED) return UNSIGNED;
function "-" (L, R: SIGNED) return SIGNED;
function "-" (L: UNSIGNED;R: NATURAL) return UNSIGNED;
function "-" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "-" (L: SIGNED; R: INTEGER) return SIGNED;
function "-" (L: INTEGER; R: SIGNED) return SIGNED;
10-18 Xilinx Development System

Foundation Express Packages
function "*" (L, R: UNSIGNED) return UNSIGNED;
function "*" (L, R: SIGNED) return SIGNED;
function "*" (L: UNSIGNED; R: NATURAL) return UNSIGNED;
function "*" (L: NATURAL; R: UNSIGNED) return UNSIGNED;
function "*" (L: SIGNED; R: INTEGER) return SIGNED;
function "*" (L: INTEGER; R: SIGNED) return SIGNED;

The following example shows the declarations for unary functions
having one argument.

function "abs" (ARG: SIGNED) return SIGNED;
function "-" (ARG: SIGNED) return SIGNED;

Comparison Functions
The numeric_std package provides functions to compare
UNSIGNED and SIGNED data types to each other and to the
predefined type INTEGER. Foundation Express compares the
numeric values of the arguments and returns a BOOLEAN value.

These functions produce comparators. The function declarations are
listed in two groups.

• Ordering functions ("<", "<=", ">", ">="), shown in the following
example

• Equality functions ("=", "/="), shown in the second example

function ">" (L, R: UNSIGNED) return BOOLEAN;
function ">" (L, R: SIGNED) return BOOLEAN;
function ">" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function ">" (L: INTEGER; R: SIGNED) return BOOLEAN;
function ">" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function ">" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "<" (L, R: UNSIGNED) return BOOLEAN;
function "<" (L, R: SIGNED) return BOOLEAN;
function "<" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "<" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "<" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "<" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "<=" (L, R: UNSIGNED) return BOOLEAN;
function "<=" (L, R: SIGNED) return BOOLEAN;
function "<=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "<=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "<=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "<=" (L: SIGNED; R: INTEGER) return BOOLEAN;
VHDL Reference Guide 10-19

VHDL Reference Guide
function ">=" (L, R: UNSIGNED) return BOOLEAN;
function ">=" (L, R: SIGNED) return BOOLEAN;
function ">=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function ">=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function ">=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function ">=" (L: SIGNED; R: INTEGER) return BOOLEAN;

The following example shows numeric_std equality functions.

function "=" (L, R: UNSIGNED) return BOOLEAN;
function "=" (L, R: SIGNED) return BOOLEAN;
function "=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "=" (L: SIGNED; R: INTEGER) return BOOLEAN;

function "/=" (L, R: UNSIGNED) return BOOLEAN;
function "/=" (L, R: SIGNED) return BOOLEAN;
function "/=" (L: NATURAL; R: UNSIGNED) return BOOLEAN;
function "/=" (L: INTEGER; R: SIGNED) return BOOLEAN;
function "/=" (L: UNSIGNED; R: NATURAL) return BOOLEAN;
function "/=" (L: SIGNED; R: INTEGER) return BOOLEAN;

Defining Logical Operators Functions
The numeric_std package provides functions that define all of the
logical operators: NOT, AND, OR, NAND, NOR, XOR, and XNOR.
These functions work just like similar functions in std_logic_1164,
except that they operate on SIGNED and UNSIGNED values rather
than on STD_LOGIC_VECTOR values. The following example shows
these function declarations.

function "not" (L: UNSIGNED) return UNSIGNED;
function "and" (L, R: UNSIGNED) return UNSIGNED;
function "or" (L, R: UNSIGNED) return UNSIGNED;
function "nand" (L, R: UNSIGNED) return UNSIGNED;
function "nor" (L, R: UNSIGNED) return UNSIGNED;
function "xor" (L, R: UNSIGNED) return UNSIGNED;
function "xnor" (L, R: UNSIGNED) return UNSIGNED;

function "not" (L: SIGNED) return SIGNED;
function "and" (L, R: SIGNED) return SIGNED;
function "or" (L, R: SIGNED) return SIGNED;
function "nand" (L, R: SIGNED) return SIGNED;
function "nor" (L, R: SIGNED) return SIGNED;
function "xor" (L, R: SIGNED) return SIGNED;
function "xnor" (L, R: SIGNED) return SIGNED;
10-20 Xilinx Development System

Foundation Express Packages
Shift Functions
The numeric_std package provides functions for shifting the bits in
UNSIGNED and SIGNED numbers. These functions produce
shifters. The following example shows the shift function declarations.

function SHIFT_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function SHIFT_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function SHIFT_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
function SHIFT_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

function ROTATE_LEFT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function ROTATE_RIGHT (ARG: UNSIGNED; COUNT: NATURAL) return UNSIGNED;
function ROTATE_LEFT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;
function ROTATE_RIGHT (ARG: SIGNED; COUNT: NATURAL) return SIGNED;

The SHIFT_LEFT function shifts the bits of its argument ARG left by
COUNT bits. SHIFT_RIGHT shifts the bits of its argument ARG right
by COUNT bits.

The SHIFT_LEFT functions work the same for both UNSIGNED and
SIGNED values of ARG, shifting in zero bits as necessary. The
SHIFT_RIGHT functions treat UNSIGNED and SIGNED values
differently.

• If ARG is an UNSIGNED number, vacated bits are filled with
zeros

• If ARG is a SIGNED number, the vacated bits are copied from the
ARG sign bit

The example in the “Shift and Rotate Operators” section of this
chapter shows some shift functions calls and their return values.

Rotate Functions
ROTATE_LEFT and ROTATE_RIGHT are similar to the shift func-
tions.

The following example shows rotate function declarations.

ROTATE_LEFT (U1, COUNT) = "01011011"

ROTATE_LEFT (S1, COUNT) = "01011011"

ROTATE_LEFT (U2, COUNT) = "01011111"

ROTATE_LEFT (S2, COUNT) = "01011111"
VHDL Reference Guide 10-21

VHDL Reference Guide
ROTATE_RIGHT (U1, COUNT) = "01101101"
ROTATE_RIGHT (S1, COUNT) = "01101101"
ROTATE_RIGHT (U2, COUNT) = "01111101"
ROTATE_RIGHT (S2, COUNT) = "01111101"

Shift and Rotate Operators
The numeric_std package provides shift operators and rotate opera-
tors, which work in the same way that shift functions and rotate func-
tions do. The shift operators are sll, srl, sla, and sra.

The following example shows some shift and rotate operator declara-
tions.

function "sll" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "sll" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "srl" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "srl" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "rol" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "rol" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;
function "ror" (ARG: UNSIGNED; COUNT: INTEGER) return UNSIGNED;
function "ror" (ARG: SIGNED; COUNT: INTEGER) return SIGNED;

The following example includes some shift and rotate operators.

Variable U1, U2: UNSIGNED (7 downto 0);
Variable S1, S2: SIGNED (7 downto 0);
Variable COUNT: NATURAL;
...
U1 <= "01101011";
U2 <= "11101011";
S1 <= "01101011";
S2 <= "11101011";
COUNT <= 3;
...
SHIFT_LEFT (U1, COUNT) = "01011000"
SHIFT_LEFT (S1, COUNT) = "01011000"
SHIFT_LEFT (U2, COUNT) = "01011000"
SHIFT_LEFT (S2, COUNT) = "01011000"

SHIFT_RIGHT (U1, COUNT) = "00001101"
SHIFT_RIGHT (S1, COUNT) = "00001101"
SHIFT_RIGHT (U2, COUNT) = "00011101"
SHIFT_RIGHT (S2, COUNT) = "11111101"

U1 sll COUNT = "01011000"
S1 sll COUNT = "01011000"
10-22 Xilinx Development System

Foundation Express Packages
U2 sll COUNT = "01011000"
S2 sll COUNT = "01011000"

U1 srl COUNT = "00001101"
S1 srl COUNT = "00001101"
U2 srl COUNT = "00011101"
S2 srl COUNT = "11111101"

U1 rol COUNT = "01011011"
S1 rol COUNT = "01011011"
U2 rol COUNT = "01011111"
S2 rol COUNT = "01011111"

U1 ror COUNT = "01101101"
S1 ror COUNT = "01101101"
U2 ror COUNT = "01111101"
S2 ror COUNT = "01111101"

std_logic_misc Package
This package resides in the Xilinx Foundation synthesis libraries
directory ($XILINX/synth/lib/packages/IEEE/src/
std_logic_misc.vhd). The std_logic_misc package declares the
primary data types the Foundation Express VSS tools support.

Boolean reduction functions take one argument, an array of bits, and
return a single bit. For example, the AND reduction of “101” is “0”,
the logical AND of all three bits.

Several functions in the std_logic_misc package provide Boolean
reduction operations for the predefined type STD_LOGIC_VECTOR.
The following example shows the declarations of these functions.

function AND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function OR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function NOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function XOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_LOGIC_VECTOR) return UX01;
function AND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function NAND_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function OR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function NOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function XOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
function XNOR_REDUCE (ARG: STD_ULOGIC_VECTOR) return UX01;
VHDL Reference Guide 10-23

VHDL Reference Guide
These functions combine the bits of STD_LOGIC_VECTOR, as the
name of the function indicates. For example, XOR_REDUCE returns
the XOR value of all bits in ARG.

The following example shows some reduction function calls and their
return values.

AND_REDUCE("111") = ’1’
AND_REDUCE("011") = ’0’

OR_REDUCE("000") = ’0’
OR_REDUCE("001") = ’1’

XOR_REDUCE("100") = ’1’
XOR_REDUCE("101") = ’0’

NAND_REDUCE("111") = ’0’
NAND_REDUCE("011") = ’1’

NOR_REDUCE("000") = ’1’
NOR_REDUCE("001") = ’0’

XNOR_REDUCE("100") = ’0’
XNOR_REDUCE("101") = ’1’

ATTRIBUTES Package
The ATTRIBUTES package declares all the supported synthesis (and
simulation) attributes. These include the following.

• Foundation Express constraints and attributes

• State vector attributes

• Resource sharing attributes

• General attributes for interpreting VHDL (described in the “Data
Types” chapter)

• Attributes to use with the Foundation Express VSS tools

Reference this package when you use synthesis attributes.

library SYNOPSYS;
use SYNOPSYS.ATTRIBUTES.all;
10-24 Xilinx Development System

Chapter 11

VHDL Constructs

Many VHDL language constructs, although useful for simulation and
other stages in the design process, are not relevant to synthesis.
Because these constructs cannot be synthesized, Foundation Express
does not support them.

This chapter provides a list of all VHDL language constructs with the
level of support for each. At the end of the chapter is a list of VHDL
reserved words.

The chapter is divided into the following sections.

• “VHDL Construct Support”

• “VHDL Reserved Words”

VHDL Construct Support
A construct can be fully supported, ignored, or unsupported. Ignored
and unsupported constructs are defined as follows.

• Ignored means that the construct is allowed in the VHDL source
but is ignored by Foundation Express.

• Unsupported means that the construct is not allowed in the
VHDL source and that Foundation Express flags the construct as
an error. If errors are found in a VHDL description, the descrip-
tion is not translated (synthesized).

Constructs are listed in the following order.

• Design units

• Data types

• Declarations

• Specifications
VHDL Reference Guide 11-1

VHDL Reference Guide
• Names

• Operators

• Operands and expressions

• Sequential statements

• Concurrent statements

• Predefined language environment

Design Units
• entity

The entity statement part is ignored.
Generics are supported, but only of type INTEGER.
Default values for ports are ignored.

• architecture

Multiple architectures are allowed.
Global signal interaction between architectures is unsupported.

• configuration

Configuration declarations and block configurations are
supported but only to specify the top-level architecture for a
top-level entity.

Attribute specifications, use clauses, component configurations,
and nested block configurations are unsupported.

• package

Packages are fully supported.

• library

Libraries and separate compilation are supported.

• subprogram

Default values for parameters are unsupported. Assigning
subprograms to indexes and slices of unconstrained out parame-
ters is unsupported, unless the actual parameter is an identifier.

Subprogram recursion is unsupported if the recursion is not
bounded by a static value.
11-2 Xilinx Development System

VHDL Constructs
Resolution functions are supported for wired-logic and
three-state functions only.

Subprograms can only be declared in packages and in the decla-
ration part of an architecture.

Data Types
• enumeration

Enumeration is fully supported.

• integer

Infinite-precision arithmetic is unsupported.

Integer types are automatically converted to bit vectors whose
width is as small as possible to accommodate all possible values
of the type’s range, either in unsigned binary for nonnegative
ranges or in 2’s-complement form for ranges that include nega-
tive numbers.

• physical

Physical type declarations are ignored. The use of physical types
is ignored in delay specifications.

• floating

Floating-point type declarations are ignored. The use of
floating-point types is unsupported except for floating-point
constants used with Express-defined attributes.

• array

Array ranges and indexes other than integers are unsupported.

Multidimensional arrays are unsupported, but arrays of arrays
are supported.

• record

Record data types are fully supported.

• access

Access type declarations are ignored, and the use of access types
is unsupported.

• file
VHDL Reference Guide 11-3

VHDL Reference Guide
File type declarations are ignored, and the use of file types is
unsupported.

• incomplete type declarations

Incomplete type declarations are unsupported.

Declarations
• constant

Constant declarations are supported except for deferred constant
declarations.

• signal

Register and bus declarations are unsupported. Resolution func-
tions are supported for wired and three-state functions only.
Only declarations from a globally static type are supported.
Initial values are unsupported.

• variable

Only declarations from a globally static type are supported.
Initial values are unsupported.

• shared variable

Variable shared by different processes. Shared variables are fully
supported.

• file

File declarations are unsupported.

• interface

Buffer and linkage are translated to out and inout, respectively.

• alias

Alias declarations are supported, with the following exceptions.

• An alias declaration that lacks a subtype indication

• A nonobject alias—such as an alias that refers to a type.

• component

Only component declarations that list a valid entity name are
supported.
11-4 Xilinx Development System

VHDL Constructs
• attribute

Attribute declarations are fully supported. However, the use of
user-defined attributes is unsupported.

Specifications
• attribute

Others and all are unsupported in attribute specifications.
User-defined attributes can be specified, but the use of
user-defined attributes is unsupported.

• configuration

Configuration specifications are unsupported.

• disconnection

Disconnection specifications are unsupported. Attribute declara-
tions are fully supported. However, the use of user-defined
attributes is unsupported.

Names
• simple

Simple names are fully supported.

• selected

Selected (qualified) names outside of a use clause are unsup-
ported. Overriding the scopes of identifiers is unsupported.

• operator symbol

Operator symbols are fully supported.

• indexed

Indexed names are fully supported with one exception. Indexing
an unconstrained out parameter in a procedure is unsupported.

• slice

Slice names are fully supported with one exception. Using a slice
of an unconstrained out parameter in a procedure is unsupported
unless the actual parameter is an identifier.

• attribute
VHDL Reference Guide 11-5

VHDL Reference Guide
Only the following predefined attributes are supported; base,
left, right, high, low, range, reverse_range, and length. The event
and stable attributes are supported only as described with the
wait and if statements. (See the “wait Statements” section of the
“Sequential Statements” chapter.) User-defined attribute names
are unsupported. The use of attributes with selected names
(name.name’attribute) is unsupported.

Identifiers and Extended Identifiers
An identifier in VHDL is a user-defined name for any of the
following: constant, variable, function, signal, entity, port, subpro-
gram, parameter, and instance.

Specifics of Identifiers

The characteristics of identifiers follow.

• They can be composed of letters, digits, and the underscore char-
acter (_).

• Their first character cannot be a number, unless it is an extended
identifier (see the example in the next section).

• They can be of any length.

• They are case-insensitive.

• All of their characters are significant.

Specifics of Extended Identifiers

The characteristics of extended identifiers follow.

• Any of the following can be defined as an extended identifier.

• Identifiers that contain special characters

• Identifiers that begin with numbers

• Identifiers that have the same name as a keyword

• They start with a backslash character (\), followed by a sequence
of characters, followed by another backslash (\).

• They are case-sensitive.

The following example shows some extended identifiers.
11-6 Xilinx Development System

VHDL Constructs
\a+b\ \3state\
\type\ \(a&b)|c\

For more information about identifiers and extended identifiers, see
the “Identifiers” section of the “Expressions” chapter.

Operators
• logical

Logical operators are fully supported.

• relational

Relational operators are fully supported.

• addition

Concatenation and arithmetic operators are both fully supported.

• signing

Signing operators are fully supported.

• multiplying

The * (multiply) operator is fully supported. The / (division),
mod, and rem operators are supported only when both operands
are constant or when the right operand is a constant power of 2.

• miscellaneous

The ** operator is supported only when both operands are
constant or when the left operand is 2. The abs operator is fully
supported.

• operator overloading

Operator overloading is fully supported.

• short-circuit operations

The short-circuit behavior of operators is not supported.

Shift and Rotate Operators

You can define shift and rotate operators for any one-dimensional
array type whose element type is either of the predefined types, BIT
or Boolean. The right operand is always of type integer. The type of
the result of a shift operator is the same as the type of the left
VHDL Reference Guide 11-7

VHDL Reference Guide
operand. The shift and rotate operators are included in the list of
VHDL reserved words in the “VHDL Construct Support” section of
this chapter. There is more information about the shift and rotate
operators that numeric_std supports in the “Shift and Rotate Opera-
tors” section of the “Foundation Express Packages” chapter. The shift
operators follow.

• sll

Shift left logical

• srl

Shift right logical

• sla

Shift left arithmetic

• sra

Shift right arithmetic

The rotate operators follow.

• rol

Rotate left logical

• ror

Rotate right logical

The following example illustrates the use of shift and rotate opera-
tors.

architecture arch of shft_op is
begin

a <= "01101";
q1 <= a sll 1;-- q1 = "11010"
q2 <= a srl 3;-- q2 = "00001"
q3 <= a rol 2;-- q3 = "10101"
q4 <= a ror 1;-- q4 = "10110"
q5 <= a sla 2;-- q5 = "10100"
q6 <= a sra 1;-- q6 = "00110"

end;
11-8 Xilinx Development System

VHDL Constructs
xnor Operator

You can define the binary logical operator xnor for predefined types
BIT and Boolean, as well as for any one-dimensional array type
whose element type is BIT or Boolean. The operands must be the
same type and length. The result also has the same type and length.
The xnor operator is included in the list of VHDL reserved words in
the “VHDL Reserved Words” section of this chapter.

a <= "10101";
b <= "11100";
c <= a xnor b; -- c = "10110"

Operands and Expressions
• based literal

Based literals are fully supported.

• null literal

Null slices, null ranges, and null arrays are unsupported.

• physical literal

Physical literals are ignored.

• string

Strings are fully supported.

• aggregate

The use of types as aggregate choices is unsupported. Record
aggregates are supported.

• function call

Function calls are supported, with one exception: Function
conversions on input ports are not supported, because type
conversions on formal ports in a connection specification (port
map) are not supported.

• qualified expression

Qualified expressions are fully supported.

• type conversion

Type conversion is fully supported.
VHDL Reference Guide 11-9

VHDL Reference Guide
• allocator

Allocators are unsupported.

• static expression

Static expressions are fully supported.

• universal expression

Floating-point expressions are unsupported, except in a
Express-recognized attribute definition. Infinite-precision expres-
sions are not supported. Precision is limited to 32 bits; all inter-
mediate results are converted to integer.

Sequential Statements
• wait

The wait statement is unsupported unless it is one of the
following forms.

wait until clock = VALUE;
wait until clock’event and clock = VALUE;
wait until not clock’stable and clock = VALUE;

VALUE is ‘0’, ‘1,’ or an enumeration literal whose encoding is 0
or 1. A wait statement in this form is interpreted to mean “wait
until the falling (VALUE is ‘0’) or rising (VALUE is ‘1’) edge of
the signal named clock.”

You cannot use wait statements in subprograms.

• assert

Assert statements are ignored.

• report

Report statements are ignored.

• statement label

Statement labels are ignored.

• signal

Guarded signal assignment is unsupported. The Transport and
after signals are ignored. Multiple waveform elements in signal
assignment statements are unsupported.
11-10 Xilinx Development System

VHDL Constructs
• variable

Variable statements are fully supported.

• procedure call

Type conversion on formal parameters is unsupported. Assign-
ment to single bits of vectored ports is unsupported.

• if

If statements are fully supported.

• case

Case statements are fully supported.

• loop

The for...loops are supported, with two constraints; the loop
index range must be globally static, and the loop body must not
contain a wait statement. The while loops are supported, but the
loop body must contain at least one wait statement. Loop state-
ments with no iteration scheme (infinite loops) are supported,
but the loop body must contain at least one wait statement.

• next

Next statements are fully supported.

• exit

Exit statements are fully supported.

• return

Return statements are fully supported.

• null

Null statements are fully supported.

Concurrent Statements
• block

Guards on block statements are supported. Ports and generics in
block statements are unsupported.

• process

Sensitivity lists in process statements are ignored.
VHDL Reference Guide 11-11

VHDL Reference Guide
• concurrent procedure call

Concurrent procedure call statements are fully supported.

• concurrent assertion

Concurrent assertion statements are ignored.

• concurrent signal assignment

The guarded keyword is supported. The transport keyword is
ignored. Multiple waveforms are unsupported.

• component instantiation

Type conversion on the formal port of a connection specification
is unsupported.

• generate

The generate statements are fully supported.

Predefined Language Environment
• severity_level type

The severity_level type is unsupported.

• time type

The time type is ignored if time variables and constants are used
only in after clauses. In the following two code fragments, both
the after clause and TD are ignored.

constant TD: time := 1.4 ns;
X <= Y after TD;

X <= Y after 1.4 ns;

• now function

The now function is unsupported.

• TEXTIO package

The TEXTIO package is unsupported.

• predefined attributes

These predefined attributes are supported: base, left, right, high,
low, range, reverse_range, ascending, and length. The event and
stable attributes are supported only in the if and wait statements,
11-12 Xilinx Development System

VHDL Constructs
as described in the “wait Statements” section of the “Sequential
Statements” chapter.
VHDL Reference Guide 11-13

VHDL Reference Guide
VHDL Reserved Words
The following words are reserved for the VHDL language and cannot
be used as identifiers.

abs if reject

access impure rem

after in report

alias inertial return

all inout rol

and is ror

architecture

array label select

assert library severity

attribute linkage shared

literal signal

begin loop sla

block sll

body map sra

buffer mod srl

bus subtype

nand

case new then

component next to

configuration nor transport

constant not type

null

disconnect unaffected

downto of units

on until

else open use

elsif or

end others variable
11-14 Xilinx Development System

VHDL Constructs
entity out wait

exit when

package while

file port with

for procedure

function process xnor

xor

generate range

generic record

guarded register
VHDL Reference Guide 11-15

VHDL Reference Guide
11-16 Xilinx Development System

Examples
Appendix A

Examples

This appendix presents examples that demonstrate basic concepts of
Foundation Express.

• “Moore Machine”

• “Mealy Machine”

• “Read-Only Memory”

• “Waveform Generator”

• “Smart Waveform Generator”

• “Definable-Width Adder-Subtracter”

• “Count Zeros—Combinatorial Version”

• “Count Zeros—Sequential Version”

• “Soft Drink Machine—State Machine Version”

• “Soft Drink Machine—Count Nickels Version”

• “Carry-Lookahead Adder”

• “Serial-to-Parallel Converter—Counting Bits”

• “Serial-to-Parallel Converter—Shifting Bits”

• “Programmable Logic Arrays”

Moore Machine
The following figure is a diagram of a simple Moore finite state
machine. It has one input (X), four internal states (S0 to S3), and one
output (Z).
VHDL Reference Guide A-17

VHDL Reference Guide
Moore Machine Specification

Figure A-1 Moore Machine Specification
A-18 Xilinx Development System

Examples
The VHDL code implementing this finite state machine is shown in
the following example, which includes a schematic of the synthesized
circuit.

The machine description includes two processes. One process defines
the synchronous elements of the design (state registers); the other
process defines the combinatorial part of the design (state assignment
case statement). For more details on using the two processes, see the
“Combinatorial Versus Sequential Processes” section of the “Sequen-
tial Statements” chapter.

entity MOORE is -- Moore machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end MOORE;

architecture BEHAVIOR of MOORE is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin

 -- Process to hold combinatorial logic
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 Z <= ’1’;
 if X = ’0’ then
 NEXT_STATE <= S0;
 else
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 Z <= ’1’;
 if X = ’0’ then
 NEXT_STATE <= S2;
 else
 NEXT_STATE <= S3;
 end if;
 when S3 =>
VHDL Reference Guide A-19

VHDL Reference Guide
 Z <= ’0’;
 if X = ’0’ then
 NEXT_STATE <= S3;
 else
 NEXT_STATE <= S1;
 end if;
 end case;
 end process COMBIN;

 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process SYNCH;
end BEHAVIOR;

Moore Machine Schematic

Figure A-2 Moore Machine Schematic

Mealy Machine
The following figure is a diagram of a simple Mealy finite state
machine. The VHDL code for implementing this finite state machine
is shown in the example following the diagram. The machine descrip-
tion includes two processes, as in the previous Moore machine
example.
A-20 Xilinx Development System

Examples
Mealy Machine Specification

Figure A-3 Mealy Machine Specification-1

Figure A-4 Mealy Machine Specification-2

entity MEALY is -- Mealy machine
 port(X, CLOCK: in BIT;
 Z: out BIT);
end MEALY;

architecture BEHAVIOR of MEALY is
 type STATE_TYPE is (S0, S1, S2, S3);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
begin
VHDL Reference Guide A-21

VHDL Reference Guide
 -- Process to hold combinatorial logic.
 COMBIN: process(CURRENT_STATE, X)
 begin
 case CURRENT_STATE is
 when S0 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’1’;
 NEXT_STATE <= S2;
 end if;
 when S1 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S0;
 else
 Z <= ’0’;
 NEXT_STATE <= S2;
 end if;
 when S2 =>
 if X = ’0’ then
 Z <= ’1’;
 NEXT_STATE <= S2;
 else
 Z <= ’0’;
 NEXT_STATE <= S3;
 end if;
 when S3 =>
 if X = ’0’ then
 Z <= ’0’;
 NEXT_STATE <= S3;
 else
 Z <= ’1’;
 NEXT_STATE <= S1;
 end if;
 end case;
 end process COMBIN;
 -- Process to hold synchronous elements (flip-flops)
 SYNCH: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process SYNCH;
end BEHAVIOR;
A-22 Xilinx Development System

Examples
Mealy Machine Schematic

Figure A-5 Mealy Machine Schematic

Read-Only Memory
The following example shows how you can define a read-only
memory in VHDL. The ROM is defined as an array constant, ROM.
Each line of the constant array specification defines the contents of
one ROM address. To read from the ROM, index into the array.

The number of ROM storage locations and bit-width is easy to
change. The subtype ROM_RANGE specifies that the ROM contains
storage locations 0 to 7. The constant ROM_WIDTH specifies that the
ROM is 5 bits wide.

After you define a ROM constant, you can index into that constant
many times to read many values from the ROM. If the ROM address
is computable (see the “Computable Operands” section of the
“Expressions” chapter), no logic is built and the appropriate data
value is inserted. If the ROM address is not computable, logic is built
for each index into the value. In the following example, ADDR is not
computable, so logic is synthesized to compute the value.

Foundation Express does not actually instantiate a typical array-logic
ROM, such as those available from ASIC vendors. Instead, it creates
the ROM from random logic gates (AND, OR, NOT, and so on). This
type of implementation is preferable for small ROMs and for ROMs
that are regular. For very large ROMs, consider using an array-logic
implementation supplied by your ASIC vendor.

The following example shows the VHDL source code and the synthe-
sized circuit schematic.
VHDL Reference Guide A-23

VHDL Reference Guide
package ROMS is
 -- declare a 5x8 ROM called ROM
 constant ROM_WIDTH: INTEGER := 5;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 7;
 type ROM_TABLE is array (0 to 7) of ROM_WORD;
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ROM_WORD’(”10101”), -- ROM contents
 ROM_WORD’(”10000”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”10000”),
 ROM_WORD’(”10101”),
 ROM_WORD’(”11111”),
 ROM_WORD’(”11111”));
end ROMS;
use work.ROMS.all; -- Entity that uses ROM
entity ROM_5x8 is
 port(ADDR: in ROM_RANGE;
 DATA: out ROM_WORD);
end ROM_5x8;
architecture BEHAVIOR of ROM_5x8 is
begin
 DATA <= ROM(ADDR); -- Read from the ROM
end BEHAVIOR;

ROM Schematic

Figure A-6 ROM Schematic
A-24 Xilinx Development System

Examples
Waveform Generator
The waveform generator example shows how to use the previous
ROM example to implement a waveform generator.

Assume that you want to produce the waveform output shown in the
following figure.

1. First, declare a ROM wide enough to hold the output signals
(4 bits) and deep enough to hold all time steps (0 to 12, for a total
of 13).

2. Next, define the ROM so that each time step is represented by an
entry in the ROM.

3. Finally, create a counter that cycles through the time steps (ROM
addresses), generating the waveform at each time step.

Waveform Example

Figure A-7 Waveform Example

The following example shows an implementation for the waveform
generator. It consists of a ROM, a counter, and some simple reset
logic.

package ROMS is
 -- a 4x13 ROM called ROM that contains the waveform
 constant ROM_WIDTH: INTEGER := 4;
 subtype ROM_WORD is BIT_VECTOR (1 to ROM_WIDTH);
 subtype ROM_RANGE is INTEGER range 0 to 12;
 type ROM_TABLE is array (0 to 12) of ROM_WORD;
VHDL Reference Guide A-25

VHDL Reference Guide
 constant ROM: ROM_TABLE := ROM_TABLE’(
 ”1100”, -- time step 0
 ”1100”, -- time step 1
 ”0100”, -- time step 2
 ”0000”, -- time step 3
 ”0110”, -- time step 4
 ”0101”, -- time step 5
 ”0111”, -- time step 6
 ”1100”, -- time step 7
 ”0100”, -- time step 8
 ”0000”, -- time step 9
 ”0110”, -- time step 10
 ”0101”, -- time step 11
 ”0111”); -- time step 12
end ROMS;

use work.ROMS.all;
entity WAVEFORM is -- Waveform generator
 port(CLOCK: in BIT;
 RESET: in BOOLEAN;
 WAVES: out ROM_WORD);
end WAVEFORM;

architecture BEHAVIOR of WAVEFORM is
 signal STEP: ROM_RANGE;
begin

 TIMESTEP_COUNTER: process -- Time stepping process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then -- Detect reset
 STEP <= ROM_RANGE’low; -- Restart
 elsif STEP = ROM_RANGE’high then -- Finished?
 STEP <= ROM_RANGE’high; -- Hold at last value
 -- STEP <= ROM_RANGE’low; -- Continuous wave
 else
 STEP <= STEP + 1; -- Continue stepping
 end if;
 end process TIMESTEP_COUNTER;

 WAVES <= ROM(STEP);
end BEHAVIOR;
A-26 Xilinx Development System

Examples
Waveform Generator Schematic

Figure A-8 Waveform Generator Schematic

When the counter STEP reaches the end of the ROM, STEP stops,
generates the last value, then waits until a reset. To make the
sequence automatically repeat, remove the following statement.

STEP <= ROM_RANGE’high; -- Hold at last value

Use the following statement instead (commented out in the previous
example).

STEP <= ROM_RANGE’low; -- Continuous wave

Smart Waveform Generator
The smart waveform generator in the following figure is an extension
of the waveform generator in the figure “Waveform Example.” But
VHDL Reference Guide A-27

VHDL Reference Guide
this smart waveform generator is capable of holding the waveform at
any time step for several clock cycles.

Figure A-9 Waveform for Smart Waveform Generator

The implementation of the smart waveform generator is shown in the
following example. It is similar to the waveform generator in the
“Mealy Machine Schematic” figure in the Mealy Machine section, but
has two additions. A new ROM, D_ROM, has been added to hold the
length of each time step. A value of 1 specifies that the corresponding
time step should be one clock cycle long; a value of 80 specifies that
the time step should be 80 clock cycles long. The second addition to
the previous waveform generator is a delay counter that counts the
clock cycles between time steps.

In the architecture of the following example, a selected signal assign-
ment determines the value of the NEXT_STEP counter.

package ROMS is

-- a 4x13 ROM called W_ROM containing the waveform
 constant W_ROM_WIDTH: INTEGER := 4;
 subtype W_ROM_WORD is BIT_VECTOR (1 to W_ROM_WIDTH);
 subtype W_ROM_RANGE is INTEGER range 0 to 12;
 type W_ROM_TABLE is array (0 to 12) of W_ROM_WORD;
 constant W_ROM: W_ROM_TABLE := W_ROM_TABLE’(
 ”1100”, -- time step 0
 ”1100”, -- time step 1
 ”0100”, -- time step 2
A-28 Xilinx Development System

Examples
 ”0000”, -- time step 3
 ”0110”, -- time step 4
 ”0101”, -- time step 5
 ”0111”, -- time step 6
 ”1100”, -- time step 7
 ”0100”, -- time step 8
 ”0000”, -- time step 9
 ”0110”, -- time step 10
 ”0101”, -- time step 11
 ”0111”); -- time step 12

-- a 7x13 ROM called D_ROM containing the delays
 subtype D_ROM_WORD is INTEGER range 0 to 100;
 subtype D_ROM_RANGE is INTEGER range 0 to 12;
 type D_ROM_TABLE is array (0 to 12) of D_ROM_WORD;
 constant D_ROM: D_ROM_TABLE := D_ROM_TABLE’(
 1,80,5,1,1,1,1,20,5,1,1,1,1);
end ROMS;

use work.ROMS.all;
entity WAVEFORM is -- Smart Waveform Generator
 port(CLOCK: in BIT;
 RESET: in BOOLEAN;
 WAVES: out W_ROM_WORD);
end WAVEFORM;

architecture BEHAVIOR of WAVEFORM is
 signal STEP, NEXT_STEP: W_ROM_RANGE;
 signal DELAY: D_ROM_WORD;
begin

 -- Determine the value of the next time step
 NEXT_STEP <= W_ROM_RANGE’high when
 STEP = W_ROM_RANGE’high
 else
 STEP + 1;
 -- Keep track of which time step we are in
 TIMESTEP_COUNTER: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then -- Detect reset
 STEP <= 0; -- Restart waveform
 elsif DELAY = 1 then
 STEP <= NEXT_STEP; -- Continue stepping
 else
 null; -- Wait for DELAY to count down;
VHDL Reference Guide A-29

VHDL Reference Guide
 end if; -- do nothing here
 end process TIMESTEP_COUNTER;

 -- Count the delay between time steps
 DELAY_COUNTER: process
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 if RESET then -- Detect reset
 DELAY <= D_ROM(0); -- Restart
 elsif DELAY = 1 then -- Have we counted down?
 DELAY <= D_ROM(NEXT_STEP); -- Next delay value

else
 DELAY <= DELAY - 1; -- decrement DELAY counter

end if;
end process DELAY_COUNTER;

 WAVES <= W_ROM(STEP); -- Output waveform value
end BEHAVIOR;

Figure A-10 Smart Waveform Generator Schematic

Definable-Width Adder-Subtracter
VHDL lets you create functions for use with array operands of any
size. This example shows an adder-subtracter circuit that, when
called, is adjusted to fit the size of its operands.

The following example shows an adder-subtracter defined for two
unconstrained arrays of bits (type BIT_VECTOR) in a package named
A-30 Xilinx Development System

Examples
MATH. When an unconstrained array type is used for an argument
to a subprogram, the actual constraints of the array are taken from
the actual parameter values in a subprogram call.

package MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR;
 -- Add or subtract two BIT_VECTORs of equal length
end MATH;

package body MATH is
 function ADD_SUB(L, R: BIT_VECTOR; ADD: BOOLEAN)
 return BIT_VECTOR is
 variable CARRY: BIT;
 variable A, B, SUM:
 BIT_VECTOR(L’length-1 downto 0);
 begin
 if ADD then
 -- Prepare for an ”add” operation
 A := L;
 B := R;
 CARRY := ’0’;
 else

-- Prepare for a ”subtract” operation
 A := L;
 B := not R;
 CARRY := ’1’;
 end if;

 -- Create a ripple carry chain; sum up bits
 for i in 0 to A’left loop
 SUM(i) := A(i) xor B(i) xor CARRY;
 CARRY := (A(i) and B(i)) or
 (A(i) and CARRY) or
 (CARRY and B(i));
 end loop;
 return SUM; -- Result
 end;
end MATH;

Within the function ADD_SUB, two temporary variables, A and B,
are declared. These variables are declared to be the same length as L
(and necessarily, R) but have their index constraints normalized to
L’length-1 downto 0. After the arguments are normalized, you can
create a ripple carry adder by using a for loop.
VHDL Reference Guide A-31

VHDL Reference Guide
No explicit references to a fixed array length are in the function
ADD_SUB. Instead, the VHDL array attributes ’left and ’length are
used. These attributes allow the function to work on arrays of any
length.

The following example shows how to use the adder-subtracter
defined in the MATH package. In this example, the vector arguments
to functions ARG1 and ARG2 are declared as BIT_VECTOR(1 to 6).
This declaration causes ADD_SUB to work with 6-bit arrays. A sche-
matic of the synthesized circuit follows the example.

use work.MATH.all;

entity EXAMPLE is
 port(ARG1, ARG2: in BIT_VECTOR(1 to 6);
 ADD: in BOOLEAN;
 RESULT : out BIT_VECTOR(1 to 6));
end EXAMPLE;

architecture BEHAVIOR of EXAMPLE is
begin
 RESULT <= ADD_SUB(ARG1, ARG2, ADD);
end BEHAVIOR;

Figure A-11 6-Bit Adder-Subtracter Schematic

Count Zeros—Combinatorial Version
The count zeros—combinatorial example illustrates a design problem
in which an 8-bit-wide value is given and the circuit determines two
things.

• That no more than one sequence of zeros is in the value.
A-32 Xilinx Development System

Examples
• The number of zeros in that sequence (if any). This computation
must be completed in a single clock cycle.

The circuit produces two outputs: the number of zeros found and an
error indication.

A valid input value can have at most one consecutive series of zeros.
A value consisting entirely of ones is defined as a valid value. If a
value is invalid, the zero counter resets to 0. For example, the value
00000000 is valid and has eight zeros; value 11000111 is valid and has
three zeros; value 00111100 is invalid.

The following example shows the VHDL description for the circuit. It
consists of a single process with a for loop that iterates across each bit
in the given value. At each iteration, a temporary INTEGER variable
(TEMP_COUNT) counts the number of zeros encountered. Two
temporary Boolean variables (SEEN_ZERO and SEEN_TRAILING),
initially false, are set to true when the beginning and end of the first
sequence of zeros is detected.

If a zero is detected after the end of the first sequence of zeros (after
SEEN_TRAILING is true), the zero count is reset (to 0), ERROR is set
to true, and the for loop is exited.

The following example shows a combinatorial (parallel) approach to
counting the zeros. The second example shows a sequential (serial)
approach.

entity COUNT_COMB_VHDL is
 port(DATA: in BIT_VECTOR(7 downto 0);
 COUNT: out INTEGER range 0 to 8;
 ERROR: out BOOLEAN);
end COUNT_COMB_VHDL;

architecture BEHAVIOR of COUNT_COMB_VHDL is
begin
 process(DATA)
 variable TEMP_COUNT : INTEGER range 0 to 8;
 variable SEEN_ZERO, SEEN_TRAILING : BOOLEAN;
 begin
 ERROR <= FALSE;
 SEEN_ZERO <= FALSE;
 SEEN_TRAILING <= FALSE;
 TEMP_COUNT <= 0;
 for I in 0 to 7 loop
 if (SEEN_TRAILING and DATA(I) = ’0’) then
 TEMP_COUNT <= 0;
VHDL Reference Guide A-33

VHDL Reference Guide
 ERROR <= TRUE;
 exit;
 elsif (SEEN_ZERO and DATA(I) = ’1’) then
 SEEN_TRAILING <= TRUE;
 elsif (DATA(I) = ’0’) then
 SEEN_ZERO <= TRUE;
 TEMP_COUNT <= TEMP_COUNT + 1;
 end if;
 end loop;

COUNT <= TEMP_COUNT;
 end process;

end BEHAVIOR;

Figure A-12 Count Zeros—Combinatorial Schematic

Count Zeros—Sequential Version
The count zeros—sequential example shows a sequential (clocked)
variant of the preceding design (Count Zeros—Combinatorial
Version).

The circuit now accepts the 8-bit data value serially, 1 bit per clock
cycle, by using the DATA and CLK inputs. The other two inputs
follow.
A-34 Xilinx Development System

Examples
• RESET, which resets the circuit

• READ, which causes the circuit to begin accepting data bits

The circuit’s three outputs follow.

• IS_LEGAL, which is true if the data was a valid value

• COUNT_READY, which is true at the first invalid bit or when all
8 bits have been processed

• COUNT, the number of zeros (if IS_LEGAL is true)

Note: The output port COUNT is declared with mode BUFFER so
that it can be read inside the process. OUT ports can only be written
to, not read in.

entity COUNT_SEQ_VHDL is
 port(DATA, CLK: in BIT;
 RESET, READ: in BOOLEAN;
 COUNT: buffer INTEGER range 0 to 8;
 IS_LEGAL: out BOOLEAN;
 COUNT_READY: out BOOLEAN);
end COUNT_SEQ_VHDL;
architecture BEHAVIOR of COUNT_SEQ_VHDL is
begin
 process
 variable SEEN_ZERO, SEEN_TRAILING: BOOLEAN;
 variable BITS_SEEN: INTEGER range 0 to 7;
 begin
 wait until CLK’event and CLK = ’1’;

 if(RESET) then
 COUNT_READY<= FALSE;
 IS_LEGAL <= TRUE;-- signal assignment
 SEEN_ZERO<= FALSE;-- variable assignment
 SEEN_TRAILING <= FALSE;
 COUNT<= 0;
 BITS_SEEN<= 0;
 else
 if (READ) then
 if (SEEN_TRAILING and DATA = ’0’) then
 IS_LEGAL <= FALSE;
 COUNT <= 0;
 COUNT_READY <= TRUE;
 elsif (SEEN_ZERO and DATA = ’1’) then
 SEEN_TRAILING := TRUE;
 elsif (DATA = ’0’) then
VHDL Reference Guide A-35

VHDL Reference Guide
 SEEN_ZERO <= TRUE;
 COUNT <= COUNT + 1;
 end if;

 if (BITS_SEEN = 7) then
 COUNT_READY <= TRUE;
 else
 BITS_SEEN <= BITS_SEEN + 1;
 end if;

 end if; -- if (READ)
 end if; -- if (RESET)
 end process;
end BEHAVIOR;

Figure A-13 Count Zeros—Sequential Schematic

Soft Drink Machine—State Machine Version
The soft drink machine—state machine example is a control unit for a
soft drink vending machine.

The circuit reads signals from a coin input unit and sends outputs to a
change dispensing unit and a drink dispensing unit.

Here are the design parameters for the following two examples.

• This example assumes that only one kind of soft drink is
dispensed.

• This is a clocked design with CLK and RESET input signals.
A-36 Xilinx Development System

Examples
• The price of the drink is 35 cents.

• The input signals from the coin input unit are NICKEL_IN
(nickel deposited), DIME_IN (dime deposited), and
QUARTER_IN (quarter deposited).

• The output signals to the change dispensing unit are
NICKEL_OUT and DIME_OUT.

• The output signal to the drink dispensing unit is DISPENSE
(dispense drink).

• The first VHDL description for this design uses a state machine
description style. The second VHDL description is in the example
after the following example.

library synopsys; use synopsys.attributes.all;

entity DRINK_STATE_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET: BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end DRINK_STATE_VHDL;

architecture BEHAVIOR of DRINK_STATE_VHDL is
 type STATE_TYPE is (IDLE, FIVE, TEN, FIFTEEN,

TWENTY, TWENTY_FIVE, THIRTY, OWE_DIME);
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 attribute STATE_VECTOR : STRING;
 attribute STATE_VECTOR of BEHAVIOR : architecture is
 ”CURRENT_STATE”;

attribute sync_set_reset of reset : signal is ”true”;
begin

process(NICKEL_IN, DIME_IN, QUARTER_IN,
 CURRENT_STATE, RESET, CLK)
 begin
 -- Default assignments
 NEXT_STATE <= CURRENT_STATE;
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;

-- Synchronous reset
 if(RESET) then
 NEXT_STATE <= IDLE;
 else
VHDL Reference Guide A-37

VHDL Reference Guide
-- State transitions and output logic
case CURRENT_STATE is

 when IDLE =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= TEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 end if;

when FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= TEN;
 elsif(DIME_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(QUARTER_IN) then
 NEXT_STATE <= THIRTY;
 end if;
 when TEN =>
 if(NICKEL_IN) then
 NEXT_STATE <= FIFTEEN;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 end if;
 when FIFTEEN =>
 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY;
 elsif(DIME_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;
 when TWENTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= TWENTY_FIVE;
 elsif(DIME_IN) then
 NEXT_STATE <= THIRTY;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
A-38 Xilinx Development System

Examples
 DIME_OUT <= TRUE;
 end if;

when TWENTY_FIVE =>
 if(NICKEL_IN) then
 NEXT_STATE <= THIRTY;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 NICKEL_OUT <= TRUE;
 end if;

when THIRTY =>
 if(NICKEL_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 elsif(DIME_IN) then
 NEXT_STATE <= IDLE;
 DISPENSE <= TRUE;
 NICKEL_OUT <= TRUE;
 elsif(QUARTER_IN) then
 NEXT_STATE <= OWE_DIME;
 DISPENSE <= TRUE;
 DIME_OUT <= TRUE;
 end if;

when OWE_DIME =>
 NEXT_STATE <= IDLE;
 DIME_OUT <= TRUE;

 end case;
 end if;
 end process;

-- Synchronize state value with clock
 -- This causes it to be stored in flip-flops
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 end process;
end BEHAVIOR;
VHDL Reference Guide A-39

VHDL Reference Guide
Figure A-14 Soft Drink Machine—State Machine Schematic

Soft Drink Machine—Count Nickels Version
The soft drink machine—count nickels example uses the same design
parameters as the preceding example of a soft drink machine—state
machine with the same input and output signals. In this version, a
counter counts the number of nickels deposited. The counter in the
following example is incremented by one if the deposit is a nickel, by
two if it is a dime, and by five if it is a quarter.

entity DRINK_COUNT_VHDL is
 port(NICKEL_IN, DIME_IN, QUARTER_IN, RESET:

BOOLEAN;
 CLK: BIT;
 NICKEL_OUT, DIME_OUT, DISPENSE: out BOOLEAN);
end DRINK_COUNT_VHDL;

architecture BEHAVIOR of DRINK_COUNT_VHDL is
 signal CURRENT_NICKEL_COUNT,
 NEXT_NICKEL_COUNT: INTEGER range 0 to 7;
 signal CURRENT_RETURN_CHANGE, NEXT_RETURN_CHANGE :
BOOLEAN;
begin
A-40 Xilinx Development System

Examples
process(NICKEL_IN, DIME_IN, QUARTER_IN, RESET, CLK,
 CURRENT_NICKEL_COUNT, CURRENT_RETURN_CHANGE)
 variable TEMP_NICKEL_COUNT: INTEGER range 0 to 12;
begin
 -- Default assignments
 NICKEL_OUT <= FALSE;
 DIME_OUT <= FALSE;
 DISPENSE <= FALSE;
 NEXT_NICKEL_COUNT <= 0;
 NEXT_RETURN_CHANGE <= FALSE;

-- Synchronous reset
 if (not RESET) then
 TEMP_NICKEL_COUNT <= CURRENT_NICKEL_COUNT;

 -- Check whether money has come in
 if (NICKEL_IN) then
 -- NOTE: This design will be flattened, so
 -- these multiple adders will be optimized
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 1;
 elsif(DIME_IN) then
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 2;
 elsif(QUARTER_IN) then
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT + 5;
 end if;

-- Enough deposited so far?
 if(TEMP_NICKEL_COUNT >= 7) then
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 7;
 DISPENSE <= TRUE;
 end if;

-- Return change
 if(TEMP_NICKEL_COUNT >= 1 or
 CURRENT_RETURN_CHANGE) then
 if(TEMP_NICKEL_COUNT >= 2) then
 DIME_OUT <= TRUE;
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 2;
 NEXT_RETURN_CHANGE <= TRUE;
 end if;
 if(TEMP_NICKEL_COUNT = 1) then
 NICKEL_OUT <= TRUE;
 TEMP_NICKEL_COUNT <= TEMP_NICKEL_COUNT - 1;
 end if;
 end if;
VHDL Reference Guide A-41

VHDL Reference Guide
NEXT_NICKEL_COUNT <= TEMP_NICKEL_COUNT;
 end if;
 end process;

-- Remember the return-change flag and
 -- the nickel count for the next cycle
 process
 begin
 wait until CLK’event and CLK = ’1’;
 CURRENT_RETURN_CHANGE <= NEXT_RETURN_CHANGE;
 CURRENT_NICKEL_COUNT <= NEXT_NICKEL_COUNT;
 end process;

end BEHAVIOR;

Figure A-15 Soft Drink Machine—Count Nickels Version
Schematic

Carry-Lookahead Adder
This example of a carry-lookahead adder uses concurrent procedure
calls to build a 32-bit carry-lookahead adder. The adder is built by
A-42 Xilinx Development System

Examples
partitioning of the 32-bit input into eight slices of 4 bits each. Each of
the eight slices computes propagate and generate values by using the
PG procedure.

Propagate (output P from PG) is ’1’ for a bit position if that position
propagates a carry from the next-lower position to the next-higher
position. Generate (output G) is ’1’ for a bit position if that position
generates a carry to the next-higher position, regardless of the carry-
in from the next lower position. The carry-lookahead logic reads the
carry-in, propagate, and generate information computed from the
inputs. The logic computes the carry value for each bit position and
makes the addition operation an XOR of the inputs and the carry
values.

Carry Value Computations
The carry values are computed by a three-level tree of 4-bit carry-
lookahead blocks.

• The first level of the tree computes the 32 carry values and the
eight group-propagate and generate values. Each of the first-level
group-propagate and generate values tells if that 4-bit slice prop-
agates and generates carry values from the next-lower group to
the next-higher group. The first-level lookahead blocks read the
group carry computed at the second level.

• The second-level lookahead blocks read the group-propagate and
generate information from the four first-level blocks and then
compute their own group-propagate and generate information.
The second-level lookahead blocks also read group carry infor-
mation computed at the third level to compute the carries for
each of the third-level blocks.

• The third-level block reads the propagate and generate informa-
tion of the second level to compute a propagate and generate
value for the entire adder. It also reads the external carry to
compute each second-level carry. The carry-out for the adder is
’1’ if the third-level generate is ’1’ or if the third-level propagate is
’1’ and the external carry is ’1’.

The third-level carry-lookahead block is capable of processing
four second-level blocks. But because there are only two second-
level blocks, the high-order 2 bits of the computed carry are
ignored; the high-order two bits of the generate input to the
VHDL Reference Guide A-43

VHDL Reference Guide
third-level are set to zero, ”00”; and the propagate high-order bits
are set to ”11”. These settings cause the unused portion to propa-
gate carries but not to generate them. The following figure shows
the overall structure for the carry-lookahead adder.
A-44 Xilinx Development System

Examples
Figure A-16 Carry-Lookahead Adder Block Diagram
VHDL Reference Guide A-45

VHDL Reference Guide
The VHDL implementation of the design in the previous figure is
accomplished with four procedures:

• CLA—Names a 4-bit carry-lookahead block.

• PG—Computes first-level propagate and generate information.

• SUM—Computes the sum by adding the XOR values to the
inputs with the carry values computed by CLA.

• BITSLICE—Collects the first-level CLA blocks, the PG computa-
tions, and the SUM. This procedure performs all the work for a 4-
bit value except for the second- and third-level lookaheads.

The following example shows a VHDL description of the adder.

package LOCAL is
constant N: INTEGER := 4;

procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
 procedure PG(
 A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0));
 function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR;
 procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT);
end LOCAL;

package body LOCAL is

 -- Compute sum and group outputs from a, b, cin

procedure BITSLICE(
 A, B: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 signal S: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT) is

variable P, G, C: BIT_VECTOR(3 downto 0);
 begin
 PG(A, B, P, G);
A-46 Xilinx Development System

Examples
 CLA(P, G, CIN, C, GP, GG);
 S <= SUM(A, B, C);
 end;

--
 -- Compute propagate and generate from input bits
--

procedure PG(A, B: in BIT_VECTOR(3 downto 0);
 P, G: out BIT_VECTOR(3 downto 0)) is

begin
 P <= A or B;
 G <= A and B;
end;

--
 -- Compute sum from the input bits and the carries
--

function SUM(A, B, C: BIT_VECTOR(3 downto 0))
 return BIT_VECTOR is

begin
 return(A xor B xor C);
 end;

 -- 4-bit carry-lookahead block

procedure CLA(
 P, G: in BIT_VECTOR(3 downto 0);
 CIN: in BIT;
 C: out BIT_VECTOR(3 downto 0);
 signal GP, GG: out BIT) is
 variable TEMP_GP, TEMP_GG, LAST_C: BIT;
begin
 TEMP_GP <= P(0);
 TEMP_GG <= G(0);
 LAST_C <= CIN;
 C(0) <= CIN;

for I in 1 to N-1 loop
 TEMP_GP <= TEMP_GP and P(I);
 TEMP_GG <= (TEMP_GG and P(I)) or G(I);
 LAST_C <= (LAST_C and P(I-1)) or G(I-1);
 C(I) <= LAST_C;
 end loop;
VHDL Reference Guide A-47

VHDL Reference Guide
GP <= TEMP_GP;
 GG <= TEMP_GG;
 end;
end LOCAL;

use WORK.LOCAL.ALL;

-- A 32-bit carry-lookahead adder

entity ADDER is
 port(A, B: in BIT_VECTOR(31 downto 0);
 CIN: in BIT;
 S: out BIT_VECTOR(31 downto 0);
 COUT: out BIT);
end ADDER;
architecture BEHAVIOR of ADDER is

signal GG,GP,GC: BIT_VECTOR(7 downto 0);
 -- First-level generate, propagate, carry
 signal GGG, GGP, GGC: BIT_VECTOR(3 downto 0);
 -- Second-level gen, prop, carry
 signal GGGG, GGGP: BIT;
 -- Third-level gen, prop

begin
 -- Compute Sum and 1st-level Generate and Propagate
 -- Use input data and the 1st-level Carries computed
 -- later.
 BITSLICE(A(3 downto 0),B(3 downto 0),GC(0),
 S(3 downto 0),GP(0), GG(0));
 BITSLICE(A(7 downto 4),B(7 downto 4),GC(1),
 S(7 downto 4),GP(1), GG(1));
 BITSLICE(A(11 downto 8),B(11 downto 8),GC(2),
 S(11 downto 8),GP(2), GG(2));
 BITSLICE(A(15 downto 12),B(15 downto 12),GC(3),
 S(15 downto 12),GP(3), GG(3));
 BITSLICE(A(19 downto 16),B(19 downto 16),GC(4),
 S(19 downto 16),GP(4), GG(4));
 BITSLICE(A(23 downto 20),B(23 downto 20),GC(5),
 S(23 downto 20),GP(5), GG(5));
 BITSLICE(A(27 downto 24),B(27 downto 24),GC(6),
 S(27 downto 24),GP(6), GG(6));
 BITSLICE(A(31 downto 28),B(31 downto 28),GC(7),
 S(31 downto 28),GP(7), GG(7));
A-48 Xilinx Development System

Examples
-- Compute first-level Carries and second-level
 -- generate and propagate.
 -- Use first-level Generate, Propagate, and
 -- second-level carry.
 process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(3 downto 0), GG(3 downto 0), GGC(0), TEMP,
 GGP(0), GGG(0));
 GC(3 downto 0) <= TEMP;
 end process;

process(GP, GG, GGC)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GP(7 downto 4), GG(7 downto 4), GGC(1), TEMP,
 GGP(1), GGG(1));
 GC(7 downto 4) <= TEMP;
 end process;

-- Compute second-level Carry and third-level
 -- Generate and Propagate
 -- Use second-level Generate, Propagate and Carry-in
 -- (CIN)
 process(GGP, GGG, CIN)
 variable TEMP: BIT_VECTOR(3 downto 0);
 begin
 CLA(GGP, GGG, CIN, TEMP, GGGP, GGGG);
 GGC <= TEMP;
 end process;

-- Assign unused bits of second-level Generate and
 -- Propagate
 GGP(3 downto 2) <= ”11”;
 GGG(3 downto 2) <= ”00”;

-- Compute Carry-out (COUT)
 -- Use third-level Generate and Propagate and
 -- Carry-in (CIN).
 COUT <= GGGG or (GGGP and CIN);
end BEHAVIOR;

Implementation
In the carry-lookahead adder implementation, procedures perform
the computation of the design. The procedures can also be in the form
of separate entities and used by component instantiation, producing
VHDL Reference Guide A-49

VHDL Reference Guide
a hierarchical design. Foundation Express does not collapse a hier-
archy of entities, but it does collapse the procedure call hierarchy into
one design.

The keyword signal is included before some of the interface param-
eter declarations. This keyword is required for the out formal param-
eters when the actual parameters must be signals.

The output parameter C from the CLA procedure is not declared as a
signal; thus, it is not allowed in a concurrent procedure call. Only
signals can be used in such calls. To overcome this problem, subpro-
cesses are used, declaring a temporary variable TEMP. TEMP
receives the value of the C parameter and assigns it to the appro-
priate signal (a generally useful technique).

Serial-to-Parallel Converter—Counting Bits
This example shows the design of a serial-to-parallel converter that
reads a serial, bit-stream input and produces an 8-bit output.

The design reads the following inputs.

• SERIAL_IN—The serial input data.

• RESET—The input that, when it is ’1’, causes the converter to
reset. All outputs are set to 0, and the converter is prepared to
read the next serial word.

• CLOCK—The value of RESET and SERIAL_IN, which is read on
the positive transition of this clock. Outputs of the converter are
also valid only on positive transitions.

The design produces the following outputs:

• PARALLEL_OUT—The 8-bit value read from the SERIAL_IN
port.

• READ_ENABLE—The output that, when it is ’1’ on the positive
transition of CLOCK, causes the data on PARALLEL_OUT to be
read.

• PARITY_ERROR—The output that, when it is ’1’ on the positive
transition of CLOCK, indicates that a parity error has been
detected on the SERIAL_IN port. When a parity error is detected,
the converter halts until restarted by the RESET port.
A-50 Xilinx Development System

Examples
Input Format
When no data is being transmitted to the serial port, keep it at a value
of ’0’. Each 8-bit value requires ten clock cycles to read it. On the elev-
enth clock cycle, the parallel output value can be read.

In the first cycle, a ’1’ is placed on the serial input. This assignment
indicates that an 8-bit value follows. The next eight cycles transmit
each bit of the value. The most significant bit is transmitted first. The
tenth cycle transmits the parity of the 8-bit value. It must be ’0’ if an
even number of ’1’ values are in the 8-bit data, and ’1’ otherwise. If
the converter detects a parity error, it sets the PARITY_ERROR
output to ’1’ and waits until the value is reset.

On the eleventh cycle, the READ_ENABLE output is set to ’1’ and the
8-bit value can be read from the PARALLEL_OUT port. If the
SERIAL_IN port has a ’1’ on the eleventh cycle, another 8-bit value is
read immediately; otherwise, the converter waits until SERIAL_IN
goes to ’1’.

The following figure shows the timing of this design.

Figure A-17 Sample Waveform through the Converter
VHDL Reference Guide A-51

VHDL Reference Guide
Implementation Details
The implementation of the converter is as a four-state finite-state
machine with synchronous reset. When a reset is detected, the
converter enters a WAIT_FOR_START state. The description of each
state follows.

• WAIT_FOR_START

Stay in this state until a ’1’ is detected on the serial input. When a
’1’ is detected, clear the PARALLEL_OUT registers and go to the
READ_BITS state.

• READ_BITS

If the value of the current_bit_position counter is 8, all 8 bits have
been read. Check the computed parity with the transmitted
parity. If it is correct, go to the ALLOW_READ state; otherwise,
go to the PARITY_ERROR state.

If all 8 bits have not yet been read, set the appropriate bit in the
PARALLEL_OUT buffer to the SERIAL_IN value, compute the
parity of the bits read so far, and increment the
current_bit_position.

• ALLOW_READ

This is the state where the outside world reads the
PARALLEL_OUT value. When that value is read, the design
returns to the WAIT_FOR_START state.

• PARITY_ERROR_DETECTED

In this state, the PARITY_ERROR output is set to ’1’ and nothing
else is done.

This design has four values stored in registers.

• CURRENT_STATE

Remembers the state as of the last clock edge.

• CURRENT_BIT_POSITION

Remembers how many bits have been read so far.

• CURRENT_PARITY

Keeps a running XOR of the bits read.
A-52 Xilinx Development System

Examples
• CURRENT_PARALLEL_OUT

Stores each parallel bit as it is found.

The design has two processes: the combinatorial NEXT_ST
containing the combinatorial logic and the sequential SYNCH that is
clocked.

NEXT_ST performs all the computations and state assignments. The
NEXT_ST process starts by assigning default values to all the signals
it drives. This assignment guarantees that all signals are driven under
all conditions. Next, the RESET input is processed. If RESET is not
active, a case statement determines the current state and its computa-
tions. State transitions are performed by assigning the next state’s
value you want to the NEXT_STATE signal.

The serial-to-parallel conversion itself is performed by these two
statements in the NEXT_ST process.

NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <= SERIAL_IN;
NEXT_BIT_POSITION <= CURRENT_BIT_POSITION + 1;

The first statement assigns the current serial input bit to a particular
bit of the parallel output. The second statement increments the next
bit position to be assigned.

SYNCH registers and updates the stored values previously
described. Each registered signal has two parts, NEXT_... and
CURRENT_... :

• NEXT_...

Signals hold values computed by the NEXT_ST process.

• CURRENT_...

Signals hold the values driven by the SYNCH process. The
CURRENT_... signals hold the values of the NEXT_... signals as
of the last clock edge.

The following example shows a VHDL description of the converter.

-- Serial-to-Parallel Converter, counting bits

package TYPES is
 -- Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
VHDL Reference Guide A-53

VHDL Reference Guide
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;
 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT-1);
 subtype PARALLEL_TYPE is
BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; -- Use the TYPES package

entity SER_PAR is -- Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);
end SER_PAR;

architecture BEHAVIOR of SER_PAR is
 -- Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;
 signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_BIT_POSITION, NEXT_BIT_POSITION:
 INTEGER range PARALLEL_BIT_COUNT downto 0;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin
NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_BIT_POSITION, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 -- This process computes all outputs, the next
 -- state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; -- Default values for all
 READ_ENABLE <= ’0’; -- outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_BIT_POSITION <= 0;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

if (RESET = ’1’) then -- Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
 case CURRENT_STATE is -- State processing
 when WAIT_FOR_START =>
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
A-54 Xilinx Development System

Examples
 end if;
 when READ_BITS =>
 if (CURRENT_BIT_POSITION =
 PARALLEL_BIT_COUNT) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_PARALLEL_OUT(CURRENT_BIT_POSITION) <=
 SERIAL_IN;
 NEXT_BIT_POSITION <=
 CURRENT_BIT_POSITION + 1;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process NEXT_ST;

SYNCH: process
 -- This process remembers the stored values
 -- across clock cycles
begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 CURRENT_BIT_POSITION <= NEXT_BIT_POSITION;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
end process SYNCH;

PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;
VHDL Reference Guide A-55

VHDL Reference Guide
Figure A-18 Serial-to Parallet Converter—Counting Bits
Schematic

Serial-to-Parallel Converter—Shifting Bits
This example describes another implementation of the serial-to-
parallel converter in the last example. This design performs the same
function as the previous one but uses a different algorithm to do the
conversion.

The previous implementation used a counter to indicate the bit of the
output that was set when a new serial bit was read. In this implemen-
tation, the serial bits are shifted into place. Before the conversion
occurs, a ’1’ is placed in the least-significant bit position. When that
’1’ is shifted out of the most significant position (position 0), the
signal NEXT_HIGH_BIT is set to ’1’ and the conversion is complete.

The following example shows the listing of the second implementa-
tion. The differences are highlighted in bold. The differences relate to
the removal of the ..._BIT_POSITION signals, the addition of
..._HIGH_BIT signals, and the change in the way
NEXT_PARALLEL_OUT is computed.
A-56 Xilinx Development System

Examples
package TYPES is
 -- Declares types used in the rest of the design
 type STATE_TYPE is (WAIT_FOR_START,
 READ_BITS,
 PARITY_ERROR_DETECTED,
 ALLOW_READ);
 constant PARALLEL_BIT_COUNT: INTEGER := 8;
 subtype PARALLEL_RANGE is INTEGER
 range 0 to (PARALLEL_BIT_COUNT-1);
 subtype PARALLEL_TYPE is

BIT_VECTOR(PARALLEL_RANGE);
end TYPES;

use WORK.TYPES.ALL; -- Use the TYPES package

entity SER_PAR is -- Declare the interface
 port(SERIAL_IN, CLOCK, RESET: in BIT;
 PARALLEL_OUT: out PARALLEL_TYPE;
 PARITY_ERROR, READ_ENABLE: out BIT);
end SER_PAR;

architecture BEHAVIOR of SER_PAR is
 -- Signals for stored values
 signal CURRENT_STATE, NEXT_STATE: STATE_TYPE;

signal CURRENT_PARITY, NEXT_PARITY: BIT;
 signal CURRENT_HIGH_BIT, NEXT_HIGH_BIT: BIT;
 signal CURRENT_PARALLEL_OUT, NEXT_PARALLEL_OUT:
 PARALLEL_TYPE;
begin

NEXT_ST: process(SERIAL_IN, CURRENT_STATE, RESET,
 CURRENT_HIGH_BIT, CURRENT_PARITY,
 CURRENT_PARALLEL_OUT)
 -- This process computes all outputs, the next
 -- state, and the next value of all stored values
 begin
 PARITY_ERROR <= ’0’; -- Default values for all
 READ_ENABLE <= ’0’; -- outputs and stored values
 NEXT_STATE <= CURRENT_STATE;
 NEXT_HIGH_BIT <= ’0’;
 NEXT_PARITY <= ’0’;
 NEXT_PARALLEL_OUT <= PARALLEL_TYPE’(others=>’0’) ;
 if(RESET = ’1’) then -- Synchronous reset
 NEXT_STATE <= WAIT_FOR_START;
 else
 case CURRENT_STATE is -- State processing
 when WAIT_FOR_START =>
VHDL Reference Guide A-57

VHDL Reference Guide
 if (SERIAL_IN = ’1’) then
 NEXT_STATE <= READ_BITS;
 NEXT_PARALLEL_OUT <=
 PARALLEL_TYPE’(others=>’0’);
 end if;
 when READ_BITS =>
 if (CURRENT_HIGH_BIT = ’1’) then
 if (CURRENT_PARITY = SERIAL_IN) then
 NEXT_STATE <= ALLOW_READ;
 READ_ENABLE <= ’1’;
 else
 NEXT_STATE <= PARITY_ERROR_DETECTED;
 end if;
 else
 NEXT_HIGH_BIT <= CURRENT_PARALLEL_OUT(0);
 NEXT_PARALLEL_OUT <=
 CURRENT_PARALLEL_OUT(
 1 to PARALLEL_BIT_COUNT-1) &
 SERIAL_IN;
 NEXT_PARITY <= CURRENT_PARITY xor
 SERIAL_IN;
 end if;
 when PARITY_ERROR_DETECTED =>
 PARITY_ERROR <= ’1’;
 when ALLOW_READ =>
 NEXT_STATE <= WAIT_FOR_START;
 end case;
 end if;
 end process NEXT_ST;

SYNCH: process
 -- This process remembers the stored values
 -- across clock cycles
 begin
 wait until CLOCK’event and CLOCK = ’1’;
 CURRENT_STATE <= NEXT_STATE;
 CURRENT_HIGH_BIT <= NEXT_HIGH_BIT;
 CURRENT_PARITY <= NEXT_PARITY;
 CURRENT_PARALLEL_OUT <= NEXT_PARALLEL_OUT;
 end process SYNCH;

PARALLEL_OUT <= CURRENT_PARALLEL_OUT;

end BEHAVIOR;

Note: The synthesized schematic for the shifter implementation is
much simpler than that of the previous count implementation in the
A-58 Xilinx Development System

Examples
example of the serial-to-parallel converter—counting bits. It is
simpler because the shifter algorithm is inherently easier to imple-
ment.

Figure A-19 Serial-to-Parallel Converter—Shifting Bits
Schematic

With the count algorithm, each of the flip-flops holding the
PARALLEL_OUT bits needed logic that decoded the value stored in
the BIT_POSITION flip-flops to see when to route in the value of
SERIAL_IN. Also, the BIT_POSITION flip-flops needed an incre-
menter to compute their next value.

In contrast, the shifter algorithm requires neither an incrementer nor
flip-flops to hold BIT_POSITION. Additionally, the logic in front of
most PARALLEL_OUT bits needs to read only the value of the
previous flip-flop or ’0’. The value depends on whether bits are
currently being read. In the shifter algorithm, the SERIAL_IN port
needs to be connected only to the least significant bit (number 7) of
the PARALLEL_OUT flip-flops.

These two implementations illustrate the importance of designing
efficient algorithms. Both work properly, but the shifter algorithm
produces a faster, more area-efficient design.
VHDL Reference Guide A-59

VHDL Reference Guide
Programmable Logic Arrays
This example shows a way to build programmable logic arrays
(PLAs) in VHDL. The PLA function uses an input lookup vector as an
index into a constant PLA table and then returns the output vector
specified by the PLA.

The PLA table is an array of PLA rows, where each row is an array of
PLA elements. Each element is either a one, a zero, a minus, or a
space (’1’, ’0’, ’–’, or ’ ’). The table is split between an input plane and
an output plane. The input plane is specified by zeros, ones, and
minuses. The output plane is specified by zeros and ones. The two
planes’ values are separated by a space.

In the PLA function, the output vector is first initialized to be all
zeros. When the input vector matches an input plane in a row of the
PLA table, the ones in the output plane are assigned to the corre-
sponding bits in the output vector. A match is determined as follows.

• If a zero or one is in the input plane, the input vector must have
the same value in the same position.

• If a minus is in the input plane, it matches any input vector value
at that position.

The generic PLA table types and the PLA function are defined in a
package named LOCAL. An entity PLA_VHDL that uses LOCAL
needs only to specify its PLA table as a constant, then call the PLA
function.

The PLA function does not explicitly depend on the size of the PLA.
To change the size of the PLA, change the initialization of the TABLE
constant and the initialization of the constants INPUT_COUNT,
OUTPUT_COUNT, and ROW_COUNT. In the following example,
these constants are initialized to a PLA equivalent to the ROM shown
previously in the ROM example in the “Read-Only Memory” section
of this appendix. Accordingly, the synthesized schematic is the same
as that of the ROM, with one difference: in the example of the imple-
mentation of a ROM in random logic, the DATA output port range is
1 to 5; in the following example, the OUT_VECTOR output port
range is 4 down to 0.

package LOCAL is
 constant INPUT_COUNT: INTEGER := 3;
 constant OUTPUT_COUNT: INTEGER := 5;
 constant ROW_COUNT: INTEGER := 6;
A-60 Xilinx Development System

Examples
 constant ROW_SIZE: INTEGER := INPUT_COUNT +
 OUTPUT_COUNT + 1;
 type PLA_ELEMENT is (’1’, ’0’, ’-’, ’ ’);
 type PLA_VECTOR is
 array (INTEGER range <>) of PLA_ELEMENT;
 subtype PLA_ROW is
 PLA_VECTOR(ROW_SIZE - 1 downto 0);
 subtype PLA_OUTPUT is
 PLA_VECTOR(OUTPUT_COUNT - 1 downto 0);
 type PLA_TABLE is
 array(ROW_COUNT - 1 downto 0) of PLA_ROW;

function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR;
end LOCAL;

package body LOCAL is

function PLA(IN_VECTOR: BIT_VECTOR;
 TABLE: PLA_TABLE)
 return BIT_VECTOR is
 subtype RESULT_TYPE is
 BIT_VECTOR(OUTPUT_COUNT - 1 downto 0);
 variable RESULT: RESULT_TYPE;
 variable ROW: PLA_ROW;
 variable MATCH: BOOLEAN;
 variable IN_POS: INTEGER;

begin
 RESULT <= RESULT_TYPE’(others => BIT’(’0’));
 for I in TABLE’range loop
 ROW <= TABLE(I);
 MATCH <= TRUE;
 IN_POS <= IN_VECTOR’left;

-- Check for match in input plane
 for J in ROW_SIZE - 1 downto OUTPUT_COUNT loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 MATCH <= MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’1’));
 elsif(ROW(J) = PLA_ELEMENT’(’0’)) then
 MATCH <= MATCH and
 (IN_VECTOR(IN_POS) = BIT’(’0’));
 else
 null; -- Must be minus (”don’t care”)
 end if;
VHDL Reference Guide A-61

VHDL Reference Guide
 IN_POS <= IN_POS - 1;
 end loop;

-- Set output plane
 if(MATCH) then
 for J in RESULT’range loop
 if(ROW(J) = PLA_ELEMENT’(’1’)) then
 RESULT(J) <= BIT’(’1’);
 end if;
 end loop;
 end if;
 end loop;
 return(RESULT);
 end;
end LOCAL;

use WORK.LOCAL.all;
entity PLA_VHDL is
 port(IN_VECTOR: BIT_VECTOR(2 downto 0);
 OUT_VECTOR: out BIT_VECTOR(4 downto 0));
end PLA_VHDL;

architecture BEHAVIOR of PLA_VHDL is
 constant TABLE: PLA_TABLE := PLA_TABLE’(
 PLA_ROW’(”--- 10000”),
 PLA_ROW’(”-1- 01000”),
 PLA_ROW’(”0-0 00101”),
 PLA_ROW’(”-1- 00101”),
 PLA_ROW’(”1-1 00101”),
 PLA_ROW’(”-1- 00010”));

begin
 OUT_VECTOR <= PLA(IN_VECTOR, TABLE);
end BEHAVIOR;
A-62 Xilinx Development System

Examples
Figure A-20 Programmable Logic Array Schematic
VHDL Reference Guide A-63

VHDL Reference Guide
A-64 Xilinx Development System

	About This Manual
	Additional Resources
	Manual Contents

	Conventions
	Typographical
	Online Document

	Using Foundation Express with VHDL
	Hardware Description Languages
	Typical Uses for HDLs
	Advantages of HDLs

	About VHDL
	Foundation Express Design Process
	Using Foundation Express to Compile a VHDL Design
	Design Methodology

	Design Descriptions
	Entities
	Entity Generic Specifications
	Entity Port Specifications

	Architecture
	Declarations
	Components
	Concurrent Statements
	Constant Declarations
	Processes
	Signal Declarations
	Subprograms
	Type Declarations

	Examples of Architectures for NAND2 Entity

	Configurations
	Packages
	Using a Package
	Package Structure
	Package Declarations
	Package Body

	Resolution Functions

	Data Types
	Type Overview
	Enumeration Types
	Enumeration Overloading
	Enumeration Encoding
	Enumeration Encoding Values

	Integer Types
	Array Types
	Constrained Array
	Unconstrained Array
	Array Attributes

	Record Types
	Record Aggregates
	Predefined VHDL Data Types
	Data Type BOOLEAN
	Data Type BIT
	Data Type CHARACTER
	Data Type INTEGER
	Data Type NATURAL
	Data Type POSITIVE
	Data Type STRING
	Data Type BIT_VECTOR

	Unsupported Data Types
	Physical Types
	Floating-Point Types
	Access Types
	File Types

	Express Data Types
	Subtypes

	Expressions
	Overview
	Operators
	Logical Operators
	Relational Operators
	Adding Operators
	Unary (Signed) Operators
	Multiplying Operators
	Miscellaneous Arithmetic Operators

	Operands
	Operand Bit-Width
	Computable Operands
	Aggregates
	Attributes
	Expressions
	Function Calls
	Identifiers
	Indexed Names
	Literals
	Numeric Literals
	Character Literals
	Enumeration Literals
	String Literals

	Qualified Expressions
	Records and Fields
	Slice Names
	Limitations on Null Slices
	Limitations on Noncomputable Slices

	Type Conversions

	Sequential Statements
	Assignment Statements and Targets
	Simple Name Targets
	Indexed Name Targets
	Slice Targets
	Field Targets
	Aggregate Targets

	Variable Assignment Statements
	Signal Assignment Statements
	Variable Assignment
	Signal Assignment

	if Statements
	Evaluating Conditions
	Using the if Statement to Infer Registers and Latches

	case Statements
	Using Different Expression Types
	Invalid case Statements

	loop Statements
	Basic loop Statement
	while...loop Statements
	for...loop Statements
	Steps in the Execution of a for...loop Statement
	for...loop Statements and Arrays

	next Statements
	exit Statements
	Subprograms
	Subprogram Always a Combinatorial Circuit
	Subprogram Declaration and Body
	Subprogram Calls
	Procedure Calls
	Function Calls

	return Statements
	Procedures and Functions as Design Components
	Example with Component Implication Directives
	Example without Component Implication Directives

	wait Statements
	Inferring Synchronous Logic
	Combinatorial Versus Sequential Processes

	null Statements

	Concurrent Statements
	Overview
	process Statements
	Combinatorial Process Example
	Sequential Process Example
	Driving Signals

	block Statements
	Nested Blocks
	Guarded Blocks

	Concurrent Versions of Sequential Statements
	Concurrent Procedure Calls
	Concurrent Signal Assignments
	Simple Concurrent Signal Assignments
	Conditional Signal Assignments
	Selected Signal Assignments

	Component Instantiation Statements
	Direct Instantiation
	generate Statements
	for...generate Statements
	Steps in the Execution of a for...generate Statement
	Common Usage of a for...generate Statement

	if...generate Statements

	Register and Three-State Inference
	Register Inference
	The Inference Report
	Latch Inference Warnings
	Controlling Register Inference
	Inferring Latches
	Inferring Set/Reset (SR) Latches
	Inferring D Latches
	Inferring Master-Slave Latches

	Inferring Flip-Flops
	Inferring D Flip-Flops
	Inferring JK Flip-Flops
	Inferring Toggle Flip-Flops
	Getting the Best Results

	Understanding Limitations of Register Inference

	Three-State Inference
	Reporting Three-State Inference
	Controlling Three-State Inference
	Inferring Three-State Drivers
	Inferring a Simple Three-State Driver
	Three-State Driver with Registered Enable
	Three-State Driver Without Registered Enable

	Understanding the Limitations of Three-State Inference

	Writing Circuit Descriptions
	How Statements Are Mapped to Logic
	Design Structure
	Adding Structure
	Using Variables and Signals
	Using Parentheses

	Using Design Knowledge
	Optimizing Arithmetic Expressions
	Arranging Expression Trees for Minimum Delay
	Sharing Common Subexpressions

	Changing an Operator Bit-Width
	Using State Information
	Propagating Constants
	Sharing Complex Operators

	Asynchronous Designs
	Don’t Care Inference
	Using Don’t Care Default Values
	Differences Between Simulation and Synthesis

	Synthesis Issues
	Feedback Paths and Latches
	Fully Specified Variables
	Asynchronous Behavior

	Understanding Superset Issues and Error Checking

	Foundation Express Directives
	Notation for Foundation Express Directives
	Foundation Express Directives
	Translation Stop and Start Pragma Directives
	synthesis_off and synthesis_on Directives
	Resolution Function Directives
	Component Implication Directives

	Foundation Express Packages
	std_logic_1164 Package
	std_logic_arith Package
	Using the Package
	Modifying the Package
	Data Types
	UNSIGNED
	SIGNED

	Conversion Functions
	Arithmetic Functions
	Example 10-1: Binary Arithmetic Functions
	Example 10-2: Unary Arithmetic Functions

	Comparison Functions
	Example 10-3: Ordering Functions
	Example 10-4: Equality Functions

	Shift Functions
	ENUM_ENCODING Attribute
	pragma built_in
	Two�Argument Logic Functions
	One�Argument Logic Functions
	Type Conversion

	numeric_std Package
	Understanding the Limitations of numeric_std package
	Using the Package
	Data Types
	Conversion Functions
	Resize Function
	Arithmetic Functions
	Comparison Functions
	Defining Logical Operators Functions
	Shift Functions
	Rotate Functions
	Shift and Rotate Operators

	std_logic_misc Package
	ATTRIBUTES Package

	VHDL Constructs
	VHDL Construct Support
	Design Units
	Data Types
	Declarations
	Specifications
	Names
	Identifiers and Extended Identifiers
	Specifics of Identifiers
	Specifics of Extended Identifiers

	Operators
	Shift and Rotate Operators
	xnor Operator

	Operands and Expressions
	Sequential Statements
	Concurrent Statements
	Predefined Language Environment

	VHDL Reserved Words

	Examples
	Moore Machine
	Mealy Machine
	Read-Only Memory
	Waveform Generator
	Smart Waveform Generator
	Definable-Width Adder-Subtracter
	Count Zeros—Combinatorial Version
	Count Zeros—Sequential Version
	Soft Drink Machine—State Machine Version
	Soft Drink Machine—Count Nickels Version
	Carry-Lookahead Adder
	Carry Value Computations
	Implementation

	Serial-to-Parallel Converter—Counting Bits
	Input Format
	Implementation Details

	Serial-to-Parallel Converter—Shifting Bits
	Programmable Logic Arrays

