
wur~

C

()

V

XL-SERIES OVERVIEW

PRELIMINARY DATA
April 1988

The WEITEK XL-Series proces
sors are high-speed 32-bit CMOS
numeric RISC processors with sus
tained integer performance of up to
7 MIPS, and sustained floating
point performance of up to 5
MFLOPS.

These processors are supported by a
complete software development en
vironment, including C and FOR
TRAN compilers, an assembler,
program and functional simulators,
a debugger, and a board-level de
velopment system.

Contents

Features

Description

The XL-Series Processor Family 2

Related Documents 2

XL-Series Software 3
XL-Series Development System 4

Application Programmer's
Description 5

Registers 6
Instruction Set 6
Parallelism 10

System Programmer's
Description 11

Registers 11
Interrupts 13

Hardware Designer's
Description IS

Block Diagrams IS
Signal Description 18
Code Memory System 21
Data Memory System 21
OP Output Bus Summary 22
110 System 22
Interrupt System 22
Power-Up and Initialization 22
Timing 23

Instruction Set Summary 25

Physical Dimensions 27

Ordering Information 28

Documentation Request Form 31

Sales Offices back cover

XL-Series Overview
April, 1988

Copyright © WEITEK Corporation 1988
All rights reserved

WEITEK Corporation
1060 East Arques Avenue
Sunnyvale, California 94086
Telephone (408) 738-8400

WEITEK is a trademark of WEITEK Corporation

VAX is a trademark of Digital Equipment Corporation
UNIX is a trademark of AT&D Bell Laboratories
XENIX is a trademark of Microsoft Corporation
Compaq is a trademark of Compaq Corporation .

WEITEK reserves the right to make changes to these specifications at any time

Printed in the United States of America
90 89 88 8 7 6 5 4 3 2 1

C\
I~ _;

c

Features

HIGH-SPEED CMOS PROCESSORS

XL-8000: 7 MIPS integer processor

XL-8032: 7 MIPS, 5 MFLOPS single-precision
floating point processor

XL-8064: 7 MIPS, 5 MFLOPS double-precision
floating point processor

RISC ARCHITECTURE

Single-cycle execution

Three-address, register-to-register instructions

32-word register files

Separate code and data memories for high
memory bandwidth

Vectored interrupts

Description

The XL Series is a family of three VLSI RISC proces
sors: the XL-8000, a high-speed 32-bit processor; the
XL-8032, a single-precision floating point processor
with all the features of the XL-8000; and the XL-8064,
a double-precision floating point processor with all the
features of the XL-8000 plus a full implementation of
32- and 64-bit IEEE arithmetic.

All XL-Series processors have a 32-element register
file, a 33-element program control stack, an on-chip
integer multiply/divide unit, and a complete set of

DEVELOPMENT TOOLS

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

Industry-standard C and FORTRAN 77 compilers

Assembler, linker, and debugger

Functional and architectural simulators

Development system

RICH INSTRUCTION SET

Full set of arithmetic and logical functions

Single-cycle bitwise merge, field extract, field
insert, and field merge

Pre- and post-incrementing indexed addressing

Sophisticated program control instructions

arithmetic, bit manipulation, address generation, and
control instructions. The XL-8032 and XL-8064 also
have floating point units with their own on-chip register
files.

These processors give high performance and are avail
able with a full complement of development tools, in
cluding C and FORTRAN 77 compilers, assembler, de
velopment system, and hardware and software
simulators.

A Code Memory
D

!
AC

c
XL-Series

AD Processor

t
D

A Data Memory

Figure 1. Simplified block diagram of an XL-series processor

The XL-Series Processor Family

XL-8000 PROCESSOR

The XL-8000 is a general-purpose 32-bit integer RISC
processor with enhancements to support high-speed
bit-manipulation, address generation, and arithmetic.
It achieves a sustained processing rate of 7 MIPS (mil
lions of instructions per second), with a peak of
10 MIPS.

The XL-8000 is useful in applications that require
high-speed integer processing, such as 2-D graphics,
logic simulation, communications, and control.

XL-8032 PROCESSOR

The XL-8032 is a 32-bit RISC floating point processor
that achieves a sustained processing rate of 7 MIPS
and 5 MFLOPS (millions of floating point operations
per second) in the 32-bit IEEE format, with a peak
floating point rate of 20 MFLOPS. It has the same in
teger instruction set as the XL-8000.

The XL-8032 is an ideal processor for applications that
need fast single-precision floating point, such as graph-

Feature XL-SOOO

Floating point software
Capability

Code Bus 32 bits

Data Bus 32 bits

Speeds 100, 120 ns

Peak MIPS 10

Sustained MIPS* 7

Peak MFLOPS -
Sustained MFLOPS -
Number of VLSI 2
components

Maximum Code 40 MB/sec
Bandwidth

Maximum Data 40 MB/sec
Bandwidth

ics transformation or digital signal processing.

XL-8064 PROCESSOR

The XL-8064 is a 64-bit RISC floating point processor
that achieves a sustained processing rate of 7 MIPS
and 5 MFLOPS in either single- or double-precision
IEEE floating point formats, with a peak floating point
rate of 20 MFLOPS. The floating point unit is a full
implementation of the IEEE floating point standard.
The XL-8064 has the same integer instruction set as
the XL-8000.

There are two versions of the XL-8064: the XL-8164,
which has a 32-bit data bus, and the XL-8364, which
has a 64-bit data bus.

The XL-8064 is ideal for applications that need dou
ble-precision floating point, such as solids modeling, fi
nite analysis, circuit simulation and general-purpose
scientific computing.

XL-S032 XL-S064

32-bit 32- or 64-bit
IEEE-format Full IEEE implementation

64 bits 64 bits

32 bits 32 or 64 bits

100, 120 ns 100, 120 ns

10 10

7 7

20 20

5 5

3 3

80 MB/sec 80 MB/sec

40 MB/sec 80 MB/sec

• Sustained MIPS give performanoe relative to a VAX 11/780, whloh has a sustained performanoe of 1.0 MIPS.
All performanoe numbers are for the fastest speed grade.

Figure 2. Comparison of the XL-Series processors

©1988 WEITEK Corporation
All rights reserved

2

o

c

c

c

c

Related Documents

XL-SERIES COMPONENT DATA SHEETS

Data sheets for the XL-8136 program sequencing unit,
the XL-8137 integer processing unit, and the XL-3132
and XL-3164 floating point units.

XL-SERIES PROGRAMMER'S BINDER

This binder contains software and programming infor
mation, including descriptions of software tools, pro-

XL-Series Software

The XL-Series software development environment is
available for SUN-3 and VAX systems under 4.2 BSD
UNIX, and the Compaq 386 under the XENIX/386
operating system.

COMPILERS

The XL-Series compilers are advanced optimizing
compilers for C and FORTRAN 77. Each is compatible
with an industry-standard version of the language-the
C compiler is compatible with the UNIX ™ portable C
compiler, and the FORTRAN compiler conforms to
the ANSI FORTRAN 77 standard.

These compilers use a variety of techniques to increase
the speed and reduce the size of the program, includ
ing automatic allocation of register variables, loop rota
tion, strength reduction, register coalescing, and static
address elimination.

PARALLELIZER

The XL-Series parallelizer takes the output of the com
piler and performs a series of optimizations that take
advantage of the XL-Series architecture. It places in
structions in parallel when possible, makes use of
shadow instructions, and takes advantage of the float
ing point processor's pipelines. The output of the paral
lelizer is XL-Series assembly code.

The parallelizer recognizes the capabilities of each of
the XL-series processors. For example, it converts
double-precision floating point instructions to single
precision for the XL-8032, which has no double-preci
sion floating point. For the XL-8000, which has no

3

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

gramming techniques, compilers, and the XL-Series in
struction set.

XL-SERIES SYSTEM DESIGNER'S BINDER

This binder contains information about XL-Series
hardware design, systems software, functional simula
tors, and porting the XL software to a target system.

floating point processor, the parallelizer replaces float
ing point instructions with calls to routines in a software
floating point library.

ASSEMBLER

The XL-Series assembler converts assembly-language
instructions into an object module. The assembly lan
guage allows exact specification of what happens in
each cycle. Speed-critical routines or entire applica
tions can be written in assembly language for maximum
performance. Routines written in assembly language
and high-level languages can be mixed freely within an
application.

LINKER AND LIBRARIAN

The XL-Series linker joins multiple object files into a
single executable file. It allows modules compiled at
different times to be joined together, and can also link
assembly-language modules with compiled modules.
The starting addresses of the code and data segments
can be specified, and the linker can produce ROM
able code.

The librarian allows a set of modules to be combined
into a single file, from which the desired routines can
be extracted by the linker.

SOFTWARE SIMULATOR

The XL-Series software simulator is a program that al
lows applications to be tested in the absence of a work
ing XL system. Programs can be loaded, executed, and
debugged on the simulator.

© 1988 WE1TEK Corporation
All rights reserved

XL-Series Software, continued

FUNCTIONAL SIMULATORS

The functional simulators model the behavior of the
XL-Series devices, giving the logic levels on each pin at
four points during every clock cycle (before and after
the rising and falling edges of the clock). Each simula
tor models the performance of one XL component,

XL-Series Development System

The XL-Series Prototype Development System consists
of software and the XL-Series development board,
which plugs into a Compaq Deskpro 386 ™ personal
computer. Programs written for the XL-Series proces
sors can be run on the board in a UNIX-like environ
ment. The board uses the personal computer for con
sole and file 110.

©1988 WEITEK Corporation
All rights reserved

4

and can be integrated into architectural or timing simu
lators. The simulators are routines written in C, and are
used with the designer's simulation routines to simulate
XL hardware designs, and to analyze the behavior of
the XL components.

The board has extra connectors and room for wire
wrap sockets to allow it to be used as a prototype of
new designs.

All XL-Series development software runs on the Com
paq Deskpro 386 TM under the XENIX/386 operating
system.

o

c

()

c

Application Programmer's Description

The rest of this document describes the XL series from
three points of view: that of the applications program
mer, that of the system programmer, and that of the
hardware designer.

RISC ARCHITECTURE

The XL-Series processors are true 32-bit processors
that use an extended RISC (Reduced Instruction Set
Computer) architecture. They have the following in
common with other RISC machines:

Register-to-register, three-address instructions. Both
integer and floating point instructions are register-to
register instructions, where two source registers and
one destination register can be specified in a single in
struction.

Load-store architecture. Accompanying the register-to
register concept is the idea that memory accesses are
simple load register or store register instructions. Mem
ory accesses are broken down into two instructions: ad
dress generation and data transfer. Address generation
and data transfer instructions can be overlapped to
achieve one load per cycle.

Single-cycle execution. All integer instructions except
multiply and divide complete in a single cycle. Floating
point instructions (except for floating point divide)
take no more than four cycles.

Pipelined execution. The floating point units are
pipelined to allow a new operation to be started on
every cycle.

Large register file. There are 32 general-purpose inte
ger data registers. This large orthogonal register file al
low memory accesses to be reduced by maintaining
variables and passing parameters in registers instead of
memory. The XL-8032 and XL-8064 each have a
32-element floating point register file as well.

bits: 31 .. 24 23 .. 16

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

MEMORY ARCHITECTURE

Word-oriented architecture. The 32-bit word is the ba
sic data type of the machine, and all integer instruc
tions produce results of that size. Manipulation of
fields smaller than a word must be done in registers.
Figure 3 shows how memory is addressed and how
bytes are ordered within a word.

PARALLELISM

The functional units in the XL processors operate in
parallel, allowing floating point, integer, memory, and
control operations to occur simultaneously. There are
three fields in the instruction word, called the sequen
cer field, the integer field, and the floating point field.
The sequencer field is eight bits wide, the integer field
is 24 bits wide, and the floating point field is 32 bits
wide (for a total of 64 bits). Most register-to-register
operations use only the integer field, most flow-of-con
trol instructions use only the sequencer field, and a few
instructions use both fields. Floating point arithmetic
instructions occupy the floating point field. The
XL-8000 doesn't have a floating point field, and so its
code word is only 32 bits wide.

In general, any instructions that don't have overlapping
fields and don't cause resource conflicts can execute in
parallel (resource conflicts occur when two instructions
try to use the same bus or register in conflicting ways).
Thus a short branch instruction can occur in the same
cycle as a bitwise merge instruction, since the short
branch uses only the sequencer field and the bitwise
merge uses only the integer field. Conditional branches
use the condition code generated by the operation in
the integer field to determine whether to branch or
not. This allows the test and the branch to occur in the
same cycle.

15 .. 8 7 .. 0

significance: Most Next-to-most Next-to-Ieast Least
b~e: rl ----~1~1----~----~1~0----~----~0~1----~----~00~--~

halfword:
10

word:

Figure 3. Data memory addressing and byte ordering

00

5

00

© 1988 WEITEK Corporation
All rights reserved

Registers

DATA REGISTERS

There are thirty-two 32-bit integer data registers, num
bered . rO-. r31. These are general-purpose data regis
ters, any of which can be used as the source or destina
tion for integer register-to-register operations.

FLOATING POINT REGISTERS

The XL-8032 and XL-8064 have thirty-two floating
point data registers, numbered .fO-.f31. In the
XL-8032, these registers are 32 bits wide. In the
XL-8064, they are 64 bits wide. The floating point reg
isters are general-purpose data registers, any of which
can be used as the source or destination for any float
ing point operation.

PRODUCT REGISTERS

The two 32-bitproduct registers, .am and .al, are used
by the multiply, divide, and bitwise merge instructions.

FIELD LENGTH REGISTER

The five-bit field length register is used by the dynamic
bit-manipulation commands (extract, deposit, and

Instruction Set

ARITHMETIC FUNCTIONS

The arithmetic instructions consist of signed and un
signed addition and subtraction, with and without
carry. One of the operands can be a five-bit immediate
instead of a register.

add .rO,.r1 ,.r2

add i.r30,9,.r26

subc .r1, .r30, .r12

Add .rO to .r1, store
result to . r2
Add a 5-bit immediite
to . r30, store result
to .r26
Subtract. r30 from . r1
with carry, store result
to .r12

MULTIPLY AND DIVIDE

A 32-bit signed multiply is performed in eight cycles; a
64/32 bit mixed-precision unsigned divide is done in
twenty cycles. Multiplication gives a 64-bit product; di
vision gives a 32-bit quotient and 32-bit remainder.

A mUltiply or divide can be done in parallel with any

©1988 WEITEK Corporation
All rights reserved

6

merge) to specify the length of the field to be operated
on.

SHIFT AMOUNT REGISTER

Like the field length register, the shift amount register
is a five-bit register used by the dynamic bit-manipula
tion commands. It specifies the amount of shifting
(0-31 bits) to be applied to the desired bit field.

CARRY BIT

The carry bit contains the carry from the last arithme
tic operation that generated a carry.

STACK

The processor has a 33-word by 32-bit stack for loop
counts, branch addresses, subroutine return addresses,
and data transfers. The stack consists of a 32-bit top
of-stack register and a 32-word by 32-bit RAM. Over
flow and underflow trap handlers allow the stack to be
extended to arbitrary size in data memory.

operations (except instructions that use the .am or .al
registers) .

Example of Multiplication
mpy .r1, .r2 # Multiply regs .r1 and .r2.
nop # Wait for result.
nop # Useful work could be
nop
nop
nop

done here instead of
no-ops.

mov .al, .r3 #
mov .am, .r4 #

Retrieve low-order 32 bits.
High-order 32 bits

FLOATING POINT ARITHMETIC

The XL-8032 and XL-8064 have floating point arith
metic instructions, including addition, subtraction,
multiplication, integer to floating point conversion,
floating point to integer conversion, etc .. The XL-8032
uses the divide lookup table instruction (flut) and a
Newton-Raphson approximation to perform floating
point division. The XL-8064 performs floating point di
vision and square root directly in hardware.

o

c

()

Instruction Set, continued

Floating point instructions (except divide and square
root) take three clock cycles to complete on the
XL-8032, and two cycles to complete on the XL-8064.

Floating point operations can be overlapped (pipe
lined). A new floating point operation can be started in
every cycle, without waiting for the operations in pro
gress to complete. Loads and stores to the floating
point unit can occur in parallel with floating point arith
metic.

Pipelined multiplies on the XL-8032.
One floating point operation can be
started in every cycle, and loads
and stores can occur in parallel
fmul .fO, .f1, .f2 ; fload .f9
fmul .f3, .f4, .fS ; fload .f10
fmul .f6, .f?, .f8 ; fload .f12
fmul .f9, .f10, .f11 ; fload .f13
fmul .f12, .f13, .f14 ; fstore .f2

LOGICAL FUNCTIONS

The processor performs the complete set of sixteen bit
wise logical operations, including and, or, xor, not,
nand, etc.

EXTRACT/DEPOSIT OPERATIONS

The processor has a 32-bit field shifter that can per
form field extract, merge, and insert operations in a
single cycle. Deposit takes fields aligned at bit zero and
converts them to unaligned fields; Extract takes un
aligned fields and converts them to aligned fields. De-

Deposit Merge
31 o 31

RB RB

RA o LirtL :s
........................... :::.. RA

Merge Immediate
31 o 31

Imm
'-----~~~

RA

Figure 4. Deposit, extract, and merge instructions

7

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

posit operations fill the bits outside the field with zeros.
Extract operations can either zero-extend or sign-ex
tend the extracted value. Merge operations merge the
bit field into the target register, leaving bits outside the
field unmodified. These instructions are illustrated in
figure 4.

The basic forms of these instructions use immediate
values for the field length and shift amount parameters.
Dynamic extract, deposit, and merge use the values in
the shift amount and field length registers. This gives
greater flexibility, but generally takes three cycles per
operation instead of one, since the shift amount and
field length registers must be set up with mov instruc
tions.

Extract
ext .r1S,3,12,.r2
Typical dynamic extract
mov .rO, .sar # Set shift amount
mov .r1, .flr # Set field length
ext .r1S, .sar, .flr, .r3# Do the extract

Simple left and right shifts are done with the deposit
and extract commands, respectively. Rotates can be
done in two cycles with a combination of two field op
erations.

PRIORITY ENCODE (FIND FIRST ONE)

This instruction counts the number of zero bits that
precede the most-significant one bit in a register. This
can be used in applications where data is bit-encoded
in order of priority.

o

o

Extract
31

RB

RA

31 o

o

© 1988 WEITEK Corporation
All rights reserved

Instruction Set, continued

PERFECT EXCHANGE

This instruction is used to swap fields or reverse the bit
order on 2, 4, 8, 16, or 32-bit fields. One use of bit
reversal is to calculate addresses in Fast Fourier Trans-

31 0

Original I first Isecmdl third I fourth I

p=11000: Reverse Byte Order

Ifourth I third Isecmdl first

p=00111: Reverse bits within byte fields

I :121i1 Ibro:lsd mirl:t I rl:t1uo11

Figure 5. Perfect exchange

Memory Access Instructions

ADDRESS GENERATION

The address generation instructions provide the follow
ing addressing forms: base, base plus displacement,
base plus index, and base plus scaled index. All of
these exist in both pre-modified and post-modified
forms. Address generation instructions take a signed
value from an immediate field or register, shift it left by
0-3 bits, and add it to a base register-optionally writ
ing the result to another register. The address may be
either the result of the addition or the contents of the
base register before the addition.

.byte, .half, and .word correspond to a shift of
0, 1, and 2 bits, respectively.
addr .r20, .r30.word # Basic addressing inst:

add and drive the sum
onto the AD bus.

+addr . r20, . r30. byte, . r1 a # As above, but also
store the sum in . r1 a

addr+ .r20,.r30,.byte,.r10 # Drive .r20 to AD bus,
then do the add. Store
the sum in .r10.

LOAD

This instruction places a word from memory into the

©1988 WEITEK Corporation
All rights reserved

8

forms. The perfect exchange operation is controlled by
a 5-bit p field in the instruction. See figure 5.

p=11111: Reverse all bits in word

I rl:t1uo1 I mirl:t Ibro:lsd :121i1

p=10000: Reverse halfword order

I third I fourth I first Isecmdl

p=01111: Reverse bits within halfwords

Ibro:lS21 :121i1 I rl:t1uo11 mirl:t I

specified register. The load must be preceded by an
addressing instruction. Another operation can be done
in parallel with load, so long as it doesn't also try to
access memory or the register being loaded.

Load example
addr .r14, 0, .word # generate the address
subi 15, .rO, .r1 ; load .r23 # Do a subtract,

while at the same time
loading data into .r23.

Byte Align For Load. The Processor always loads 32-bit
words. Align takes a smaller field, such as a byte, and
aligns (and optionally sign-extends) it to fill the entire
word. The two-bit size field determines the number of
bytes to read, and the .adr register is used to deter
mine alignment. Note that this instruction is a register
to-register instruction, and doesn't do the actual load
ing.

Byte align example
addr .r14, 0, .byte
load .rO
align .rO, .r1, .byte

generate the address
load the data
Take a byte from .rO,
align and store to . r1

o

c

()

c

Instruction Set, continued

The addressing instruction and the align instruction
must agree on the size of the data being loaded.

Floating Point Loads. Floating point loads work ex
actly like integer loads, but the data goes to the register
file on the floating point unit instead of the integer
unit.

STORE

The store instruction stores the result of the current
processor operation to memory. A store instruction
must be preceded by an addressing instruction. This
instruction always stores a full 32-bit word.

Program Control Instructions

Program control instructions come in two formats:
short and long. Short control instructions use the 8-bit
sequencer field. Short instructions include neutraliza
tion control, short branches, and some loop control in
structions.

Long control instructions use both the integer field and
24-bit sequencer field. These instructions are used for
long branches, subroutine calls, register transfer, and
miscellaneous operations.

BRANCH INSTRUCTIONS

All branch instructions are relative to the current in
struction.

Br (branch) is a long-format instruction that specifies a
24-bit displacement relative to the current instruction.

Shbr (short branch) is a short-format instruction that
branches forwards or backwards in the range of -16
to + 15 instructions. An integer operation can be per
formed in parallel with the branch.

Brc (conditional branch) is a short-format instruction
that branches conditionally if the parallel integer op
eration satisfies the test condition. Its range is 0-31 in
structions.

Fbr (floating point branch) is like brc, but uses the
floating point condition to determine whether to
branch or not.

9

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

Byte Align And Store. This instruction takes a single
field of 1-4 bytes from a register and stores it to mem
ory, optionally checking for sign bit overflow.

Floating Point Stores. Floating point stores take a reg
ister in the floating point unit and store it to memory.
Floating point stores can occur in parallel with floating
point arithmetic operations.

Example of store
addr .r14, 0, .word # Generate the address
subc .r1, .r2, .r3 ; store # Do a subtract,

and store the result to
memory at the address
in register . r14

Brstkp (branch to stack and pop) branches by the dis
placement on the top of stack, then discards the top
of-stack value. Brstkp is a short-format instruction.

CALL AND RETURN INSTRUCTIONS

Bsr (branch to subroutine) pushes the address of the
next instruction on the stack and performs a signed
28-bit-displacement branch. It is a long-format instruc
tion.

Bsrstk (bsr to stack) is used for dynamic subroutine
calls. It branches to the absolute address on the top of
stack. The address of the next instruction replaces the
value on the top of stack. It is a short-format instruc
tion.

Rts (return from subroutine) uses the top of stack as an
absolute jump address. The value is then popped off
the stack. It is a short-format instruction.

LOOPING INSTRUCTIONS

Loop pushes the next instruction address onto the top
of stack. It is a short-format instruction.

Endloop is a short-format instruction that branches to
the address on the top of stack if the parallel integer
operation satisfies the test condition. Otherwise, the
address is popped off the stack and the loop is exited.
The address is typically put there by a loop instruction.

Fndloop is like endloop, but uses the floating point
condition to determine whether to branch or not.

© 1988 WEITEK Corporation
All rights reserved

Program Control Instructions, continued

Sob (subtract one and branch) subtracts one from the
top of stack. If the result is non-zero, a branch is made
by the displacement given in a 24-bit sign-extended im
mediate value. If the result is zero, the stack is popped,
and normal sequential execution resumes. This is use
ful at bottoms of loops designed to continue a set num
ber of iterations. It is a long-format instruction.

Shsob (short sob) is similar to sob, but branches are
specified with a one-extended (Le., negative) five-bit
immediate, rather than a sign-extended 24-bit immedi
ate. It is a short-format instruction

Brp (branch and pop) Branches by a sign-extended
24-bit immediate displacement. The value on the top
of stack is popped off and discarded. Used to exit
loops prematurely. Brp is a long-format instruction.

NEUTRALIZATION

One reason for the processor's high speed is that it
fetches the next instruction at the same time it executes
the current instruction. This means that the next in
struction has already been fetched when it becomes
time to execute it.

When a branch is executed, however, the processor
has the instruction following the branch in its instruc
tion pipeline-not the instruction at the destination ad-

Parallelism

Since there are three fields in the instruction word, a
maximum of three operations may be specified for any
one instruction cycle-typically an integer operation, a
control operation, and a floating point operation. All
three will execute in parallel.

It's possible to have more than three operations in pro
gress during a cycle, however, since the integer-multi
ply/divide unit will work in parallel with other instruc
tions, and several instructions can be in the pipeline of
the floating point unit.

Example of parallelism on the XL-8032
mpy .r1, .r2 # Start an integer multiply
fmul . to, . f1 , . f2 # Start a floating point mpy
fadd . f8, . f9, . f7 # Start a floating point add
Now start three operations at once:
add .r25,6,.r2; bne LABEL; fsub .f11,.f12,.f13

©1988 WEITEK Corporation
All rights reserved

dress. The instruction that has been fetched is called
the "shadow instruction." Fetching the correct instruc
tion takes an additional cycle (since it's not yet in the
pipeline) so the destination instruction is executed after
a one-cycle delay. This is called "delayed branching."

The processor normally neutralizes the cycle following
taken branch, call, and return instructions. Neutraliza
tion effectively turns an instruction into a no-op.

The processor instruction set also provides three addi
tional instructions: override neutralization, override
neutralization and increment stack pointer, and reverse
neutralization (ovneut, ovneuti, and revneut). Effi
cient code-such as that produced by the XL compil
ers-makes use of these instructions to selectively exe
cute shadow instructions, saving one clock cycle per
branch.

10

TRAPI INSTRUCTION

The trapi instruction is used with an ii-bit immediate
to make system calls. The immediate value is pushed
onto the stack, and a software interrupt is generated.
The interrupt service routine uses the value on the
stack to determine which system call is required. This
allows user-mode routines to request supervisor-mode
services in an orderly manner.

In the last cycle of this example, there are six opera
tions going on at once: Three floating point operations
(a multiply, which finishes in the next cycle, an add,
which will finish one cycle later, and a subtract, which
will finish two cycles later), an integer multiply (execut
ing in the independent multiply/divide unit), an integer
add, and a conditional branch (which tests the result of
the integer add).

o

c

Systems Programmer's Description

The systems programmer is in control of interrupts,
system initialization, privileged instructions, and debug
ging. The XL-Series processors have a number of fea
tures that make systems programming easier, including
an extra bank of data registers, a trap that signals im
minent stack overflow or underflow, vectored inter
rupts, individual and master interrupt enables, and a
breakpoint/watchpoint register.

SUPERVISOR MODE

The processor enters supervisor mode on reset and
when it honors an interrupt. A number of instructions

Registers

PROGRAM COUNTERS

There are two 32-bit program counters: the currently
executing address (.cea), the true program counter;
and the currently fetching address (.eta) , which is the
address from which a code word is being fetched for
later execution. Branches are taken relative to the cur
rently executing address.

INTERRUPT ADDRESS REGISTERS

There are four interrupt address registers: the interrupt
base register (. ibr), the interrupt last address (. ila) ,
the interrupt fetch address register (.ita) and the inter
rupt execute address register (.iea). The interrupt base
register contains the address of the interrupt vector ta
ble, which is a 64-word table in code memory. The
interrupt last address contains the address of the last
instruction that was successfully executed. The inter
rupt fetch and execute registers hold the old contents
of .cea and .eta during interrupt processing.

ADDRESS HOLDING REGISTER

The processor retains the last address generated by any
of the address generation instructions in the . adr regis
ter, so it can re-assert the address in the event of an
interrupt.

SECOND REGISTER BANK

Registers .r28-.r31 are duplicated in a second bank,
which is swapped in and out when the z bit in the proc
essor status register is toggled. These registers (named
.r28'-.r31') are used to save the state of the machine
during interrupt processing. The second bank is illus-

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

are accessible only from supervisor mode, including
most instructions that modify special registers directly
(user-mode instructions are also available in supervisor
mode). User programs (which in this case means any
code that doesn't run in supervisor mode) are ex
pected to request system services by using trapi instruc
tions, which perform software interrupts-and thus put
the processor into supervisor mode. On the return from
the trap handler, supervisor mode is restored to its pre
vious state.

11

A privilege violation trap occurs when a user-mode
program attempts to execute a supervisor-mode in
struction.

trated in figure 6. Note that .rO-.r27 are always acces
sible, regardless of the state of the z bit.

STACK POINTER

The five-bit stack pointer (.tos) is a modulo 32 counter
which increments on each push and decrements on
each pop.

An underflow exception occurs when a pop operation
empties the stack. An overflow exception is generated
when a push operation nearly fills the stack.

31
.rO

.r4

.rB

.r12

.r16

.r20

.r24

.r2B

.r31

Figure 6. Data registers

o

(.rO-.r27 are
always accessl ble,
regardless of
the state of th
bank-select
bit)

e

I
2B'
29'
30'
31'

© 1988 WEITEK Corporation
All rights reserved

Registers, continued

A pair of exception routines can implement a larger
stack in system memory. When the processor stack
overflows. it can be copied to the main memory stack;
when it underflows. data in the memory stack can be
restored to the processor stack.

PROCESSOR STATUS REGISTER

The processor retains some control information in the
processor status register (. psr). Important fields in the
processor status register are the carry bit (c). the field
length register (. fir). which is used in bit-field-manipu
lation instructions; the shift amount register (.sar).
which is also used in field-manipulation instructions;
and the register bank toggle (z). The processor status
register is shown in figures 7 and 8.

SEQUENCER STATUS REGISTER

The sequencer status register (.ssr) includes the five
bit top-of-stack register (. tos). the supervisor mode
and branch bits. ten sets of flag/enable bits which con-
trol and identify the state of interrupts and exceptions.
and the master interrupt enable bit. If the master en
able bit is cleared. all interrupts are disabled.

Instructions that explicitly read or write the sequencer
status register are restricted to code running in supervi
sor mode. The sequencer status register is illustrated in
figures 9 and 10.

The flag/enable bits selectively control the interrupts. If
an interrupt signal is asserted. or an internal exception
occurs. its flag bit is set. If the relevant enable bit is set

an interrupt sequence also occurs. Interrupt-handling
software can examine the flag bits to determine which
interrupts have occurred.

The men bit is the master interrupt enable. If men is
false and an interrupt occurs. no interrupt routine will
be called. but the associated exception flag will still be
set.

After a reset •. ssr is initialized with all zeroes except
for the supervisor mode bit. which is set; and the . tos
field. which is set to all ones to indicate an empty
stack.

31 o
reserved .flr

19 1 1 1 5 5

Figure 7. Processor status register (. psr)

Symbol Meaning

.sar Shift amount register

.flr Field length register
z Register bank select (for .r28-.r31)
c Carry bit
be Reserved (should be set to zero)
reserved Reserved (should be set to zero)

(and the master interrupt enable bit is also set). then Figure 8. Processor status register bit fields

31

I .tos I ml ext I pag I fit I pry I trp Isunlsovl tim I brk
5 1232222223

Figure 9. Sequencer status register

©1988 WEITEK Corporation
All rights reserved

12

o
s I b Ima,!
222

o

c

c

()

Registers, continued

Symbol Bit #

mal 0
1

b 2
3

s 4
5

brk 6
7
8

tim 9
10

sov 11
12

sun 13
14

trp 15
16

prv 17
18

fit 19
20

pag 21
22
23

ext 24
25

m 26

.tos 27-31

Name

malf/g
ma/en

b
bi
s
si

brkflg
brkenc
brkend

timflg
tlmen

sovflg
soven

sunflg
sunen

trpflg
trpen

prvflg
prven

ext4f1g
ext4en

ext23en
ext2f1g
ext3f1g

ext1f1g
ext 1 en

men

tos

Meaning

flag for misaligned data Interrupt
enable for misaligned data interrupt

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

reserved. State must be preserved by the programmer
reserved. State must be preserved by the programmer
reserved. State must be preserved by the programmer
reserved. State must be preserved by the programmer

flag for breakpoint interrupt
enable for code breakpoint Interrupt
enable for data breakpoint interrupt

flag for timer Interrupt
enable for timer Interrupt

flag for sequencer stack overflow Interrupt
enable for sequencer stack overflow Interrupt

flag for sequencer stack underflow Interrupt
enable for sequencer stack underflow Interrupt

flag for trap instruction Interrupt
enable for trap Instruction Interrupt

flag for privileged Instruction Interrupt
enable for privileged Instruction Interrupt

flag for EXT 4- interrupt
enable for EXT 4- Interrupt

enable for EXT2- and EXT3- interrupts
flag for EXT2- Interrupt
flag for EXT3- Interrupt

flag for external Interrupt EXT1-
enable for EXT1-

master Interrupt enable

five bit top of stack pointer

Figure 10. Sequencer Status Register bit fields

TIMER REGISTER AND INTERRUPT BREAKPOINT/WATCHPOINT REGISTER

The processor includes a 32-bit timer register. This reg
ister is decremented every clock cycle. When the value
becomes negative, the timer flag is set and a timer in
terrupt occurs.

The timer continues to decrement when negative, al
lowing accurate timing even if the service routine is in
terrupted or delayed. The timer may only be set or
read from supervisor mode.

Interrupts

The processor receives interrupts from four external
sources: EXT1-, EXT2-, EXT3-, and EXT4-; and gen
erates seven interrupts internally: SRK, TIM, SOY,
SUN, TRP, MAL, and PRY. When an interrupt control
line or internal condition becomes active, the sequen
cer sets the corresponding . ssr interrupt flag. If the
master interrupt enable bit of the .ssr is set, and the

13

The 32-bit Breakpoint Register (.brk) is used to pro
vide a code breakpoint or data watchpoint for program
debugging. Breakpoints and watchpoints are set by
loading the register with the address to be monitored,
and enabling the breakpoint or watchpoint interrupt
enable bit. When the processor accesses the location
being monitored, a breakpoint interrupt will occur.

corresponding .ssr interrupt enable is active, the inter
rupt will be honored, as described below.

There are sixteen interrupt vector addresses, divided
into four classes: EXT1-, EXT2- or EXT3-, TRAP, and
Others. There is an interrupt vector for every combina
tion of the four vectors.

© 1988 WEITEK Corporation
All riJ!hts reserved

Interrupts, continued

INTERRUPT CONTROL LINES

The external interrupt sources are: EXT1-, EXT2-,
EXT3- and EXT4-. Each has status and interrupt en
able bits in the .ssr.

The interrupt mask bit for EXT1- is called ext 1 en, and
its status bit is ext1flg.

EXT2- shares an interrupt enable bit, ext23en, with
EXT3-. Its associated status bit is ext2flg.

EXT3- shares an interrupt enable bit, ext23en, with
EXT2-. Its status bit is ext3flg.

EXT 4- has an enable bit called ext4en. Its status bit is
ext4flg. It is used as the floating point exception inter
rupt on the XL-8032 and XL-8064.

EXCEPTION SOURCES

There are seven internal exception sources: PRV, SOV,
SUN, MAL, TRP, TIM and BRK. Each has a status and
interrupt enable bit in the .ssr.

PRY is set when an attempt is made to execute a privi
leged instruction while not in supervisor mode. Its in
terrupt enable and status bits are prven and prvflg, re
spectively.

©1988 WEITEK Corporation
All rights reserved

SOY and SUN indicate stack near-overflow and near
underflow. SOY occurs when data is pushed into the
third-to-Iast available word on the stack. SUN occurs
when the next-to-Iast valid data is popped off the
stack. The enable and status bits for SOY and SUN are
soven, sovflg, sunen, and sunflg.

MAL is the misaligned data exception, which occurs
when the data to be loaded or stored straddles a word
boundary. Its enable and status bits are malen and
malflg, respectively. Misaligned loads and stores can
be corrected in a trap handler if code memory can be
examined by the software. This is possible in some im
plementations. Otherwise, misaligned loads and stores
are unrecoverable errors.

TRP is set by invoking one of the trap instructions. Its
enable and status bits are trpen and trpflg, respec
tively. Trap instructions are software interrupts.

The remaining two exceptions, TIM and BRK, are set on
timer interrupts and breakpoints/watchpoints, respec
tively. Their enable and status bits are timen, timflg,
brkenc, brkend (for code and data breakpoints, re
spectively), and brkflg.

14

o

c

c

c

()

Hardware Designer's Description

PROCESSOR CHIP SETS

All XL-Series processors have an integer processing
unit (IPU) and a program sequencing unit (PSU).
Each of these units is a single CMOS device, in a
144-pin PGA package.

INTER
RUPT
SOURCES

Code
Memory
System

A D ROY

I , ,/ ~2 I

,/ ~2
... ~ /<".:';c>. <':,; '" ..•...

i" .,
;;.' AC C
:~ CONO

rt~ Program
NEUT

STAll _ Sequencing
:;':~ EXT1 Unit AsORi'

EXT2
tb~ AD

EXi'3 k<

~~
EXT4 OP ClK

r~·

. '/.

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

The XL-8032 has a 32-bit floating point unit, also in a
144-pin PGA package. The XL-8064 has a floating
point unit which comes in a 168-pin PGA package.

".

"
CONO C
NEUT

STAll Integer
Processing

AsORi' Unit
AD MOClK Clock

D --WREN
~ Logic

ClK

,~

...••....•.. '.:': <,.i·," .. , •.... ,

NOTES:

Buses are
signals in I

,/ 5

OP
Decode

shown in heavy lines,
ight lines

C Figure 11. Block diagram of an XL-8000 system

;'
,/ 32

"
A

- ROY

OE

15

;'
,/ 32

••
D

Data
Memory
System

;'
,/ 4

••
WREN

© 1988 WEITEK Corporation
All rivht,,, reserved

Hardware Designer's Description, continued

Code
Memory
System

A D

j~ ~ /64

"
/ .- :-;2

'64
/ 32

• r
AC C

FPCN

/
/ 32

, .
C

Integer Program
_ Sequencing

4;,!---i"-EXT1 Unit
COND 1+-___ --1 COND Proce~sing

Unit
INTER
RUPT
SOURCES EXT3

AD 1----..---1 AD

...• rEm

NOTES:

OP

OP
Decode

STALL, ABORT, NEUT, and eLK circuitry
has been omitted for clarity. These
signals connect to all three chips.

/
/ 32

,-
A

OE

.-
/4

,-
WE

Data
Memory
System

/
/ 32

D

M", " ,-'

/ ~2

I ,.
FPCN C

32- or 64-bit
Floating Point

Unit

FPEX D

T

Figure 12. Block diagram of an XL-8032 (32-bit FPU) system or an XL-8164 (64-bit FPU, 32-bit bus) system.

©1988 WEITEK Corporation
All rights reserved

16

o

c

c

o

o

Hardware Designer's Description, continued

INTER
RUPT
SOURCES

S:

Code
Memory
System

A 0

,~ " ,I 64

,I ,-

" 32 ,- 32

, r

AC C

Program FPCN

_ Sequencing COND EXT1 Unit
EXT2 AD
EXT3

rEXT4 OP

,,~

OP
Decode

6~ ,

f---

l, ABORT, NEUT, and elK circuitry

NOTE
STAl
has b
signal

een omitted for clarity. These
s connect to all three chips.

" '32

, ,
A

OE

,/ 32

' r

C

Integer
COND Proce~sing

Unit

AD

WREN 0

,- '4
/ ~2

WREN

~
Logic

,- 8

"
WE DHI

Data
Memory
System

cc,.

DLO

I

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

,/ ~2

"
FPCN C

64-bit
Floating Point

Unit

FPEX OX Dvz
I

32/
/

Figure 13. Block diagram of an XL-8364 system (64-bit FPU with a 64-bit data bus)

17 © 1988 WEITEK Corporation
All rights reserved

Signal Description, Buses

There are two memory buses on the XL processors:
one for code and one for data. Having separate code
and data space gives the same bus bandwidth as a con
ventional Von Neumann machine running at twice the
clock rate. Another bus, the OP bus, is used both for
external I/O and to encode information about the ma
chine state that is useful to the data memory and inter
rupt systems.

Both code and data buses have 32-bit addresses. The
width of the data bus varies among the XL-Series proc
essors. The code word of the XL-8000 is 32 bits wide.
The XL-8032 and XL-8064 have 64-bit code words to
make room for the floating point instruction field. The
XL-8000 and XL-8032 have 32-bit data words, while
the XL-8064 has configurations for either a 32- or
64-bit data word (the XL-8164 and the XL-8364 con
figurations). The XL-8364 configuration allows double
precision floating point words to be loaded or stored in
a single bus transaction.

AC BUS

The AC31 .. 0 Code Address Bus is driven by the se
quencer. It sends a 32-bit instruction address to the
code memory. The code address is not latched by the
sequencer, so an external address latch is necessary be
tween the AC bus and code memory. The sequencer is
the only XL component that uses the AC bus. The
high-order bits of the AC bus can be left floating if they
aren't going to be used.

The AC bus produces code word addresses, not byte
addresses. The code word size is 32 bits on the
XL-8000 and 64 bits on the XL-8032 and XL-8064.

AD BUS

The AD31 .. 0 Data Address Bus provides addresses for
data memory operations. It is also used for intra-proc
essor communication and communication with external
hardware. It connects to the integer processor and se
quencer, but not to the floating point processor. It can
also be used as a bidirectional data bus for transfers to
and from other hardware. The AD bus is not latched,
so an external address register is necessary between the
AD bus and data memory.

©1988 WEITEK Corporation
All rights reserved

All 32 bits of the AD bus need to be attached between
the sequencer and integer processor, but the high-or
der bits can be ignored by external memory if the full
32 bits of memory space isn't going to used.

The address on the AD bus is a byte address. Since the
integer processor and floating point unit always load
full words, and the write-enable bits (WREN-) indicate
which bytes are to be written, it isn't necessary to con
nect ADl..o to memory or peripherals.

18

C BUS

The C31 .. 0 or C63 .. 0 Code bus is driven by the code
memory with the 32- or 64-bit instruction word. The
code word is latched by the processor at the rising edge
of the clock. This bus provides instruction words for all
components in the XL-Series processor.

D BUS

The D31..0 or D63 .. 0 Data bus is used as a bi
directional input/output bus. It transfers data words be
tween data memory and the processor. The integer
processing unit always loads 32-bit words, but can store
bytes or haIfwords. The data is latched by the proces
sor. This bus is connected to the floating point proces
sor and integer processor, but not to the sequencer.

The 64-bit configuration of the D bus can be used by
the XL-8364 floating point processor to allow double
precision floating point words to be loaded or stored in
one bus transaction. The integer processor accesses
memory 32 bits at a time; only the floating point proc
essor can do 64-bit transfers.

OP BUS

The OP4 .. 0 output bus indicates the type of instruction
that is executing, and can be used to control external
hardware. The memory system decodes the OP bus
outputs to determine when to read, when to write, and
when to latch the data address. In addition, fifteen of
the 32 OP combinations are used to signal loads or
stores to "external registers" 0-14, which can be any
external hardware. These external register transfers
take place over the AD bus. The OP bus is on the
XL-8136 sequencer.

)

o

o

c

c

o

Signal Description, Bus Control

ABORT-

ABORT-is a "not-ready" line for data memory. It is
asserted by the data memory subsystem when the data
at the requested address cannot be accessed on the
next cycle. The XL components each cancel both their
current and next instructions, and attempt to re-start
the current instruction. The instruction will be re-exe
cuted the cycle after ABORT - is de-asserted. All the
XL-Series components must have their ABORT - lines
tied together.

STALL-

STAll- is a "not-ready" line for code memory. It is
asserted by the code memory subsystem when the re
quested code word cannot be read in the current cycle.
The XL components each cancel their currently fetch
ing instruction, and attempt to fetch it again on the
next cycle. The instruction will be executed when

Other Signals

NEUT-

NEUT - is a signal that goes from the PSU to the IPU
and FPU. It is not normally used by hardware outside
the processor chip set. NEUT - is asserted by the se
quencer, and instructs all XL components to cancel
their current instructions. This is done on branches,
calls, and interrupts to prevent the instruction in the
pipeline from being executed. All XL-Series compo
nents must have their NEUT - lines tied together.

EXT1-, EXT2-, EXT3-, and EXT4-

Level-sensitive interrupt request lines. The current in
struction is allowed to complete (unless ABORT - is also
asserted, in which case the instruction is canceled, and
will be re-executed when the interrupt routine returns),
and execution proceeds from one of the interrupt vec
tors. External interrupts can be enabled and disabled
in the sequencer status register. Interrupt signals are
examined only at the rising edge of the clock.

EXT4- is used by the XL-8032 and XL-8064 as a float
ing point exception interrupt.

COND

Condition code signal. Goes from the IPU to the PSU.
Not normally used outside the processor chip set.

19

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

STAll- is de-asserted. All the XL-Series components
must have their STAll- lines tied together.

OEA- OEAD-, OED-, OEX-, AND OEAC-

OEAD-, OED-, and OEAC- are asynchronous output
enable signals for the AD, D, and AC buses respec
tively. The buses are tri-stated when disabled. OEX- is
the XL-3132 equivalent for OED-. OEA- is the
XL-813Ts equivalent for OED-. These signals allow
easy access to the code and data buses for cycle-steal
ing or DMA hardware.

WREN-

The WRENi.o signals are write-enables for each byte
in the data word. The WREN- lines are driven when a
store instruction is executed by the processor.

FPCN

Floating point condition code. Goes from the FPU to
the PSU. Not normally used outside the processor chip
set. Tied to GND in the XL-8000, which does not have
a floating point unit.

ZERO

XL-3132 zero condition output. Not used in XL.
(Leave floating.)

CLK

The Clock signal, ClK, is a single-phase TTL-level
clock signal.

MDCLK

The mUltiply/divide clock signal, MDClK, is a single
phase TTL-level clock signal. This signal must be syn
chronized to the rising and falling edges of the ClK
signal, and runs at twice the frequency of ClK.

SUP

An output that indicates that the processor is in super
visor mode. Can be used to implement protected mem
ory.

© 1988 WEITEK Corporation
All rights reserved

Other Signals, Continued

RESET-

A level-sensitive input that resets the. sequencer and
causes a branch to address O. The stack pointer is in
itialized to 31 (empty stack), and supervisor mode is
set. The other registers in the sequencer are undefined.
Reset is not useful as a non-maskable interrupt.

After the power-up reset, only the program counter
and the sequencer status register are defined. All other
register contents are undefined. Registers that can
cause exceptions (such as the timer and breakpoint
registers) must be initialized before their exceptions are
enabled.

OEA+

A signal on the XL-8137 that causes the ALU result to
be driven onto the AD bus on every cycle. Tied low in

©1988 WEITEK Corporation
All rights reserved

all XL configurations. Note that this is not the same
signal as OEA-.

VCC AND GND

vee is a +5.0 volt supply. GND is a system ground. All
vee and GND pins must be connected-floating pins
are not allowed.

NC

No connection. Reserved for future expansion.

20

)

o

()

o

Code Memory System

A simple code memory system is shown in figure 14.
The code address comes out the AC bus, is latched by
a set of 373-type latches, and fed into a 32- or 64-bit
wide array of ROMs or static RAMs. The output of the
memory devices is driven onto the C bus.

More complex memory systems-such as cached
DRAM or static column DRAM-won't always have
code ready at the end of a cycle, so the STALL- line
has been provided for memory handshaking. Asserting
ST ALL- will cause the code fetch cycle to be retried on
the next clock cycle. STALL- can be asserted for as
many cycles as necessary to retrieve the code word.

Memory faults such as accesses to non-existent mem
ory or virtual memory page faults can be corrected by
asserting STALL- and an interrupt at the same time.
The interrupt takes precedence over the stall, so the
interrupt routine can take corrective action and return,
and the stalled instruction will be tried again.

Data Memory System

A simple data memory system is shown in figure 15.
Data addresses are driven onto the AD bus by the proc
essor, latched by a set of 374-type registers, and fed
into a 32-bit-wide array of static RAMs. The output of
the RAMs is driven onto the D bus. More complex
memory systems include DRAMs with a static RAM
cache, and multiple banks of DRAM.

The OP bus is decoded to determine what operations
are taking place during the cycle. An address opera
tion, a read, a write, or an address operation plus a
read can take place during a single cycle. The decoded
OP bus is used to drive the read/write and output en
able lines on the data RAMs, and as an input to the
clock generation logic, which needs to refrain from
clocking the external address register under certain
conditions.

If the memory system is not going to be ready in time,
ABORT - is used as a data memory handshake signal.
ABORT-can be held for any length of time.

Unlike STALL-, ABORT-causes the system to back up
and re-execute the aborted instruction when it is re
leased. This allows the failed bus transfer to be re-exe
cuted. The external address register should not be
clocked during an ABORT-sequence.

21

!
AC C

PROGRAM

1

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

CODE
LATCH

• CODE
MEMORY

I

j
C

INTEGER
SEQUENCING PROCESSING

UNIT, UNIT
FLOATING

POINT UNIT

Figure 14. Simple code memory system

AD
BUS

ADDRESS
REGISTER

DATA

<
OE

MEMORY WE

D
BUS

(to PSU, FPU)

I--

MASTER
CLOCK

CLOCK
LOGIC ~

OP WREN
BUS 0 3 ..

OP
DECODE

Figure 15. Simple data memory system

© 1988 WEITEK Corporation
All rights reserved

OP Output Bus

The OP Bus is available to control external registers
and transceivers. Its encoding reports the following ac
tions: address generation, interrupt acknowledge, re-

110 System

Data can be transferred to external devices over the
AD bus at the rate of one 32-bit word per clock cycle.
Such transfers are signaled with the OP bus codes
10000-11110, which select "external registers" 0-14.
The OP bus code is used to select the external device.
Each external register should be associated with one
data direction, since there is no data direction signal
for OP bus transfers. External I/O is performed in as
sembly language with the input and output instructions,

Interrupt System

An external interrupt will only be acknowledged if both
the master interrupt enable bit and the individual inter
rupt enable bit are set on the cycle the interrupt is as
serted. Interrupts are level-sensitive and synchronous,
and are read at the rising edge of the clock.

INTERRUPT SEQUENCE

When an interrupt is detected, the processor decides
whether to allow the current instruction to proceed.
This decision is based upon the state of the ABORT
signal.

The current instruction is allowed to complete if the
ABORT-signal is not asserted; it is canceled otherwise.

Power-up and Initialization

On power-up, the state of the processor is undefined.
RESET - should be held while the the system is powered
up, then released. RESET-is a level-sensitive, synchro-

©1988 WEITEK Corporation
All rights reserved

tum from interrupt, data load, data store, and I/O
through external registers 0-14.

which transfer one of the 32 data registers over the AD
bus.

I/O can also be memory-mapped. External DMA can
be performed by tri-stating the buses and asserting
ABORT -; at which point data memory can be taken
over for any length of time. External code memory ac
cess can be performed by asserting ST ALL- and
OEAC-.

This allows the system to re-execute the current in
struction after returning from the interrupt.

The processor then enters supervisor mode, neutralizes
the fetched instruction, saves state information in .iea,
.ifa, and .ssr, and branches to the interrupt vector ad
dress.

22

Interrupts can be nested to any depth by saving the
processor state and re-enabling interrupts.

To return from an interrupt, two special interrupt re
turn instructions must be executed, return-from-inter
rupt-O (rfiO) and return-from-interrupt-1 (rfi1).

nous signal that is sampled on the rising edge of the
clock. When RESET - is asserted, a branch to absolute
address zero occurs.

\

)

..~

(J

c

c

o

Timing

The figures below give cycle-by-cycle timing for typical
bus operations. Both code and data memory systems
use overlapped address generation and loads. This
memory pipeline allows the system to use slower RAMs
without a performance penalty. Loads on both memory
systems occur at the rate of one per cycle. Stores on
the data memory system can occur at the rate of one
every two cycles. 110 transfers using the input and out
put instructions can take place every cycle.

ClK

AC BUS

C BUS

STAll-

Figure 16. Code memory system timing

ClK

Instruction

AD BUS

OP BUS

ABORT-

ADDRESS
REGISTER

D BUS

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

OP bus values are encoded to show an external register
address or a combination of address generation, load/
store, interrupt acknowledge, and similar operations.
There is also a default encoding that occurs when none
of the other conditions apply. These conditions are
shown in the OP bus entries in the timing diagrams.
The OP bus bit encodings are given in the XL-8136
data sheet.

Figure 17. Data memory timing-loads. "ADDRESS REGISTER" is the external data address register

23 © 1988 WEITEK Corporation
All rights reserved

Timing, continued

ClK

AD BUS

OP BUS

ABORT-

ADDRESS
REGISTER

D BUS

WREN-

Figure 18. Data memory timing-stores. "ADDRESS REGISTER" is the external data address register

ClK

AD BUS

OP BUS

Figure 19. External I/O timing (for data transfers over the AD bus)

ClK

AC BUS

EXT

C BUS

INST

OP

Figure 20. Interrupt sequence. ("INST" identifies which instruction is being executed.)

©1988 WEITEK Corporation
All rights reserved

24

o

C
Instruction Set Summary

XL-SERIES CONTROL INSTRUCTIONS

br Branch
brp Branch and Pop
brstkp Branch to Stack and Pop
bsr Branch to Subroutine
bsrstk Branch to Subroutine from Stack
cont Continue
endloop Cond~onal End of Loop
loop Enter Loop
ovneut Override Neutralization
ovneuti Override Neut. and Increment Stack
pops Pop from Sequencer Stack
pushs Push onto Sequencer Stack
revneut Reverse Neutralization
rfiO Return from Interrupt 0
rfi1 Return from Interrupt 1
rts Return from Subroutine
seq Sequencer Housekeeping Instruction
shbr Branch (short form)

0
shsob Sob (short form)
sob Subtract One and Branch
trap Trap
trapb Trap and Back Up
trapi Trap Immediate

XL-SERIES INTEGER INSTRUCTIONS

add Signed Add
adda Add Address
addai Add Address Immediate
addam Add Register .am
addami Add Register .am Immediate
addamis Add .am Immediate plus Sign
addc Signed Add with Carry
addi Signed Add Immediate
addi10 Signed Add 10-bit Immediate
addr Generate Address (no increment)
addr+ Indexed Addressing (post-increment)
+addr Indexed Addressing (pre-increment)
addrd Generate Address with Displacement
addshft Shift and Add
align Byte Align for Load

o
25

and
asrtadr
bmerge
clr
dep
div
ext
fto
input
Idamal
load
mer
meri
mov
movi
movih
mpy
nand
neg
nop
nor
not
or
output
pexch
rapsr
salign
set
setsema
srpsr
store
sstore
sub
suba
subc
subai
subi
swap
uadd
uaddc
usub
usubc
xnor
xor

Logical AND

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

Put Address Register on AD Bus
Bitwise Merge
Clear
Deposit
Divide
Extract
Find First One (Priority Encode)
Input from AD Bus
Load Multiply Result Registers
Load from Memory
Merge Bit Fields
Merge Immediate
Move
Move Halfword Immediate
Move Immediate High
Multiply
Logical NAND
Signed Negate
No Operation
Logical NOR
Logical NOT
Logical Or
Output to AD Bus
Perfect Exchange
Restore .adr and .psr
Signed Byte Align
Set to Ones
Set Semaphore
Save and Restore . psr
Store to Memory
Signed Store to Memory
Signed Subtract
Subtract Address
Signed Subtract with Carry
Subtract Address Immediate
Signed Subtract Immediate
Save . psr and Swap Banks
Unsigned Add
Unsigned Add with Carry
Unsigned Subtract
Unsigned Subtract with Carry
Logical XNOR
Logical XOR

© 1988 WEITEK Corporation
All rights reserved

Instruction Set, continued

XL-8032 INSTRUCTIONS

The XL-8032 can execute all of the XL-Series control
and instructions, and has the following instructions as
well:

fadd
fabs
fbr
fclr
fclsr
fix
fload
float
flut
fmac
fmode
fmov
fmul
fstore
fstsr
fsub,fsubr

Floating Point Addition
Floating Point Absolute Value
Floating Point Branch
Clear Floating Point Register
Clear Floating Point Status Register
Float-to-Fix Conversion
Load Floating Point Data
Fixed-to-Float Conversion
Read Floating Point Look-up Table
Multiply-Accumulate
Set Floating Point Mode
Copy Floating Point Register
Floating Point Multiplication
Floating Point Store
Store Floating Point Status Register
Floating Point Subtraction

XL-8064 INSTRUCTION SET

The XL-8064 can execute all XL-Series control and
integer instructions. The following is a partial list of the
XL-8064 instructions:

dfabs
dfadd
dfcmp
dfcnvt
dcnvtf
dfdiv
dfix
dfixr
dfloat

Double Absolute Value
Double Floating Add
Double Floating Compare
Convert Double to Single
Convert Single to Double
Double Floating Divide
Double-Precision to Integer (trunc.)
Double-Precision to Integer (round)
Fixed to Double-Precision

©1988 WEITEK Corporation
All rights reserved

26

dfmov
dfmul
dfneg
dfsqrt
dfsub
dfsubr
dload
dloadl
dloadm
dstore
dstorel

dstorem

fadd
fabs
fbr
fclr
fclsr
fcmp
fdiv
fix
fixr
fload
float
fmov
fmul
fsqrt
fstore
fstsr
fsub,fsubr
fdcnvt
max
min

Copy Floating Point Register
Double Floating Multiply
Double Floating Negate
Double Floating Square Root
Double Floating Subtract
Reverse Double Floating Subtract
Double-Precision Load
Double-Precision Load L.S. Data
Double-Precision Load M.S. Data
Double-Precision Store
Double-Precision Store, Least
Significant Word
Double-Precision Store, Most
Significant Word
Floating Point Addition
Floating Point Absolute Value
Floating Point Branch
Clear Floating Point Register
Clear Floating Point Status Register
Floating Point Compare
Floating Point Divide
Float-to-Fix Conversion
Float-to-Fix Conversion (round)
Load Floating Point Data
Fixed-to-Float Conversion
Copy Floating Point Register
Floating Point Multiplication
Floating Point Square Root
Floating Point Store
Store Floating Point Status Register
Floating Point Subtraction
Convert Single to Double
Maximum of Two Values
Minimum of Two Values

,/

o

o

c:

o

o

Physical Dimensions

Symbol

A1
A2
A3
D
E1
E2
E3
d
e

BOTTOM VIEW SIDE VIEW TOP VIEW

XL-SERIES
OVERVIEW

PRELIMINARY DATA
April 1988

LIMITS
INCHES MM

MIN MAX MIN MAX
.080 + .008 2.032 + 0.203
.180 typo 4.572 typo
.050 1.270

1.575 sa. t .016 40.005 sa. t 0.406
1.400 sa. t .012 35.560 sa. + 0.305

.050 dia. typo 1.270 dla. typo

.018 t .002

.070 dla. typo 1.778 dia. typo

.100 typo 2.540 typo

Figure 21. Physical dimensions for all XL-Series devices except the XL-8364 floating point unit

I 0 I E2tJ1:'
.-~~~~~~~~~~~~~~~ ~

" Illir0j[ili "t-
000 000
000 000
000 000
000 000 STAND
000000000000000 OFF
000000000000000 KOVAR

~~~000000000008~ 

'\d -I.L I bI 
BOTTOM VIEW SIDE VIEW TOP VIEW 

Figure 22. Physical dimensions for the XL-8364 floating point unit 

27 

Symbol 

Al 

A2 

A3 

0 

El 

E2 

E3 

d 

e 

DIMENSIONS 

INCHES MM 

0.095 + 0.013 2.41 + 0.33 

0.180 typo 4.57 typo 

0.050 tVD. 1.27 tVD. 

1. 750 sq. ± 0.022 44.5 sq. + 0.56 

1.600 sq. ± 0.016 40.6 sq.± 0.41 

0.050 dla. typo 1.27 dla. typo 

0.018 +0.002 .46 + 0.05 

0.065 dla. typo 1.65 dia. typo 

0.100 typo 2.54 typo 

© 1988 WEITEK Corporation 
All riRhts reserved 



Ordering Information 

DEVICES PACKAGE TYPE SPEED 

2 144-Pin Grid Array 120 ns 

2 144-Pin Grid Array 100 ns 

Flgure 23. Ordenng mformatlon for the XL-8000 

DEVICES PACKAGE TYPE SPEED 

3 144-Pin Grid Array 120 ns 

3 144-Pin Grid Array 100 ns 

Flgure 24. Ordenng mformatlon for the XL-8032 

DEVICES PACKAGE TYPE SPEED 

3 144-Pin Grid Array 120 ns 

3 144-Pin Grid Array 100 ns 

Figure 25. Ordering information for the XL-8164 

DEVICES PACKAGE TYPE SPEED 

2 144-Pin Grid Array 120 ns 

1 168-Pin Grid Array 

2 144-Pin Grid Array 100 ns 
1 168-Pin Grid Array 

Figure 26. Ordering informatlOn for the XL-8364 

©1988 WEITEK Corporation 
All rights reserved 

\ 

TEMPERATURE RANGE ORDER NUMBER 

Tc = 0-85 DC XL -8000-120-GCD 

Tc = 0-85 DC XL -8000-1 OO-GCD 

TEMPERATURE RANGE ORDER NUMBER 

Tc = 0-85 DC XL-8032-120-GCD 

Tc = 0-85 DC XL-8032-100-GCD 

TEMPERATURE RANGE ORDER NUMBER 

Tc = 0-85 DC XL-8164-120-GCD c 
Tc = 0-85 DC XL -81 64-1 OO-GCD 

TEMPERATURE RANGE ORDER NUMBER 

Tc = 0-85 DC XL-8364-120-GCD 

Tc = 0-85 DC XL-8364-100-GCD 

o 
28 



c 

c 

C···) 
/ 

XL-SERIES 
OVERVIEW 

PRELIMINARY DATA 
April 1988 



o 



c 

c 

c 

For additional information on WEITEK products, please fill out the form below and mail. 

Name Title 

Company Phone 

Address 

Comments 
I am currently involved in a design with the following Weitek products ______________ and wish to be added to your 
design data base to insure that I receive status updates. 

APPLICATION: 

D ENGINEERING WORKSTATIONS 

D GRAPHICS 

D PERSONAL COMPUTERS 

Check the products on which you wish to receive data sheets: 

ATTACHED PROCESSORS 

D XL-SERIES OVERVIEW 

WEITEKuse: Rec'd 

Status 

COPROCESSORS 

D 1167 

D 1164/1165 

D 3164/3364 

Out 

WEITEK XL-SERIES OVERVIEW 

D SCIENTIFIC COMPUTERS 

D arHER _______ _ 

BUILDING BWCKS 

D 2264/2265 

D 3132/3332 

D 1232/1233 

D 1066 

TPT 

Please Comment On The Quality Of This Data Sheet. 

o Have a sales person call 

D 2010 

D 2245 

D 2516 

D 2517 

Source: DS 

Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have 
missed something that may be important to you. If you believe this is the case, please describe what the 
miSSing information is, and we will consider including it in the next printing of the data sheet. 



Fold, Staple and Mail to Weitek Corp. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1374 SUNNYVALE, CA 

POSTAGE WILL BE PAID BY ADDRESSEE 

WEITEK Corporation 
1060 E. Arques Ave. 
Sunnyvale, CA 94086-BRM-9759 

ATTN: Ed Masuda 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

o 

C' " _. ' 



(; 

c\ 



WEITEK~ 

Headquarters 
Weitek Corporation 
1060 E. Arques Avenue 
Sunnyvale, CA 94086 
TWX 910-339-9545 

WEITEKSVL 
FAX (408) 738-1185 
TEL (408) 738-8400 

WEITEK'S CUSTOMER COMMITMENT: 

Weitek's mission is simple: to provide you with VLSI solutions 
to solve your compute-intensive problems. We translate that 
mission into the following corporate objectives: 

1. To be first to market with performance breakthroughs, allow
ing you to develop and market systems at the edge of your art. 

2. To understand your product, technology, and market needs, so 
that we can develop Weitek products and corporate plans that 
will help you succeed. 

3. To price our products based on the fair value they represent to 
you, our customers. 

4. To invest far in excess of the industry average in Research and 
Development, giving you the latest products through techno
logical innovation. 

5. To invest far in excess of the industry average in Selling, Mar
keting, and Technical Applications Support, in order to pro
vide you with service and support unmatched in the industry. 

6. To serve as a reliable. resourceful, and quality business part
ner to our customers. 

These are our objectives. We're committed to making them 
happen. If you have comments or suggestions on how we can 
do more for you, please don't hesitate to contact us. 

Domestic Sales Offices 
Weitek Corporation 
1060 E. Arques Avenue 
Sunnyvale, CA 94086 
TWX 910-339-9545 

WEITEKSVL 
FAX (408) 738-1185 
TEL (408) 738-8400 

Knox Trail Office Building 
2352 Main Street 
Concord, MA 01742 
TWX 910-380-7101 
FAX (617) 897-6729 
TEL (617) 897-3252 

European Sales Headquarters 
Greyhound House, 23/24 George St. 
Richmond, Surrey, TW9 UY 
England 
TELEX 928940 RICHBI G 
FAX 011-441 940 6208 
TEL0l1-4415490164 

Japanese Representative 
C. Itoh Techno/Sciences 
Company Ltd. 
C. Itoh Building 
2-5-1 Kita-Aoyama 
Minato-Ku, Tokyo 107 
TELEX 781242 3240 
FAX (81) 3-497-4879 
TEL (81) 3-497-4975 

o 

o 

o 


