
•

0
m
r
r
ai
)>
en
m
c
c
m en
i5 z
c
en
m
:0 en
C>
c
c
m

• VLSI TECHNOLOGY, INC.

CELL-BASED
DESIGN
USERS
GUIDE

ASIC Division

$15.00

• VLSI TECHNOLOGY, INC.

CELL-BASED
DESIGN
USERS
GUIDE

ASIC Division

©1988 VLSI Technology, Inc. All rights reserved.
This document and the software that it describes
are the proprietary and confidential property of
VLSI Technology, Inc. ("VLSI") and Xidak Inc.,
for distribution and use only under license from
VLSI and may not be copied without VLSl's
written consent.

VLSI Technology reserves the right to make
changes in the contents of this document without
notice. VLSI Technology assumes no responsibility
for any errors that appear in this document.

Mainsail is a trademark of Xidak, Inc. Bitpad is a
trademark of Summagraphics, Inc. VAX and
Vax/VMS are trademarks of Digital Equipment
Corporation. Unix is a trademark of AT&T Bell
Laboratories. EMBOS is a trademark of Elxsi, Inc.
ROS is a trademark of Ridge Computers. Aegis is
a trademark of Apollo Computer, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in
subdivision (b) (3) (ii) of the Rights In Technical
Data and Computer Software clause at 52.227-7013
(48 CFR 252).

MACH 1000 and MACH Tools are trademarks of
Silicon Solutions Corporation. HILO and HIL03 are trademarks
of GenRad Incorporated.

• VLSI TECHNOLOGY, INC.

CONTENTS

1 Introduction 1

Purpose of Document 1

Design Flow 2

Design Types 2

System Planning 3

Design Entry And Simulation 4

Physical Design 6

Design Verification 8

Implementation g

How To Use This Guide g

Cell-Based Elements 10

Standard Cell Library 10

Compiler Cell Library 11

Megacell Library 12

Datapath Element Library 14

State Machine Elements 15

VLSI Technology Inc. - 5 April 1988

ii Contents

2

3

Design Types 17

Introduction

Turnkey Design

User Logic Design

User Design

17

18

21

23

26

29

29

Joint Design

Cost Considerations

Design Reviews

System Planning 31
Introduction 31

System Partitioning 32

Chip Economics 32

The Die Size 32

The Package 33

Power Calculations 34

Background Information 34

Causes of Power Dissipation 34

Completing the Power
Calculations Worksheet 36

Complete the Circuit Data Section 38

Calculate the Internal Power
Dissipation (Pint) 38

Calculate the External Power
Dissipation (Pext) 39

Calculate the DC Power
Dissipation (Pde) 39

VLSI Technology Inc. - 5 April 1988

4

Contents iii

Calculate the Total Power
Dissipation (Ptot) 39

Write In The Package Type 39

Write The Thermal Impedance 39

Calculate the Junction
Temperature (Tj) 40

Partitioning Methods 40

Random Logic Partitioning 40

Building Block Partitioning 40

Subsystem Partitioning 41

Integration 41

Chip Specification Package 42

1.0 Device Description 43

2.0 Electrical Specifications 44

3.0 Test Features And Description 47

New Design Information Form 48

Preliminary Design Review 48

Test Plan 49

Statement Of Work 49

Design For Testability

Designing For Testability

General Guidelines

Additional Circuitry vs. Long
Simulations

Translating A Board

51

51

53

53

53

VLSI Technology Inc. - & April 1988

iv Content.s

Provide Controllability 54

Provide Observability 55

Circuit Initialization .56

Test Modes 57

Use The Design-For-Testability
Guidelines 57

5 Design Entry 59

Creating Functional Blocks 59

With Standard Cells 60

With Compiler Cells 61

With Megacells 62

With Datapath Elements 62

vVith State Machine Elements 64

Schematic Entry 65

Logic 65

Borders 65

Node Names 65

Busses 65

Signal Drive 66

Clocks and Clock Buffers 66

Metal Migration, Current Density
and Parallel Buffers 67

Parallel Logic 68

Bus Repeater Cells For
Three-State Nodes 69

VLSI Technology Inc. - 5 April 1988

Contents v

Weighting 69

Weights on Clock Buffers 71

Buffers 72

Simulation And Test 72

Pads 73

Specifying Pad Placement in your
Schematic 73

Functional Blocks 7 4

The Top Level Design 75

Turnkey Design Markups 77

Design Screen And Review 78

Netlist Screening 78

Design Review Program 80

Pad Placement Form 86

Bonding Diagram 86

6 Simulation 89

Netlists For Timing Verification and
Simulation 89

Standard Cells, Compiler Cells
and Megacells 89

State Machine Elements 90

Datapath Elements 91

Flattening The Netlist 93

Timing Verification 93

Simulation 93

VLSI Technology Inc. - 5 April 1988

VI Contents

Netlists g4

Logic Simulation g5

External Capacitances g5

Asynchronous Logic g5

Simulation Checks g5

Timing Simulation g7

Estimate Routing Capacitance 97

Provide Output Load Capacitance 98

Bidirectional Pins 98

Worst Case Timing Can Hide
Best Case Hazards 98

Interconnect Capacitance Calculations gg

Simulator gg

Design Review Program 99

Netlist Extractor 100

Logic Compiler 101

Fault Simulation 101

Logic Design Review 102

7 Physical Design 103

Chip Compiler 103

Using The Chip Compiler 103

Before You Begin 105

Regenerate Your Netlists 105

Check V6 Blocks 105

Create Phantoms 106

VLSI Technology Inc. - 5 April !988

8

Flatten The Netlist

Compile Your Cell

Basic Operations

Convert Your Layout

Standard Cell Area.c:;

Large Chips

Fixing Uis

In The Composition Editor

In The Layout Editor

Post-Physical Design Verification

Back Annotation

Post-Physical Design Simulation

Complete The Physical Design

Phantom DRC

Phantom Netcompare

Generate 1 MHz Test Vectors

Super- Synchronous Simulation
Guidelines

Test Vector Guideline Summary

Checking Vectors

How to Check Vectors

Example

Test Specification Form

Prototype And Production Test
Specification Form

VLSI Technology Inc. - & April 1988

Contents vii

107

108

108

109

109

110

110

110

111

113

113

114

114

116

116

117

120

120

122

122

123

123

123

viii Cout.en~s

Additional Guidelines For Test
Program Generation 124

Phantom Tape Out 124

Final Design Review 125

9 Implementation 127
Generate Test Program 127

Merge Cell Layouts 128

Physical Design Verification 128

Design Rule Check 128

Extract And Netcompare 128

Visual Check 130

Simulation 130

CIF Tape Out 131

Customer Package Marking Form 131

CIF Tape Out 131

Archive The Design 131

Final Check 132

Mask Generation 132

Prototypes 132

A VLSI Design Tools 133

B Package Pin Inductances 143

c Foundry Cells 147

VLSI Technology Inc. - 6 April 1988

Contents ix

D Recommended Archive Documentation 155

Index Index 158

VLSI Technology Inc. - 5 April 1988

• VLSI TECHNOLOGY, INC.

CHAPTER 1

INTRODUCTION

This chapter describes the typical circuit elements and design
tasks encountered in cell-based design using VLSI
Technology's design tools and libraries.

Purpose of This users guide describes the methodology for designing with:
Document

• Portable library standard cells

• Compiler cells

• Megacells

• Datapath elements

• State machine elements

using VLSI Technology's software tools. Using the VLSI
design tool system, these elements may all be combined on a
single chip. By replacing LSI components with compiled cells,
megacells, and datapaths implemented as compiled layout or

VLSI Technology Inc. - 5 April 1988

2 Introduction

Design
Flow

standard cells, and the remaining glue logic with state machine
elements implemented as standard cells, a large system design
can be reduced to a single chip.

For further information on using the software tools described
in this guide, please refer to the corresponding VLSI tools
manuals. A summary of the tools and the functions they
perform can be found in Appendix A.

Design Types
VLSI offers four ways to design cell-based chips that allow you
to participate as much or as little as you wish in the design
cycle:

• Turnkey - You provide a VLSI Technology Center with
your specifications and test vectors, from which the
Technology Center engineers will design your chip.

• User Logic - You design the logic and turn it over to
the Technology Center for physical implementation.

• User - You create both the logic and the physical design.

• Joint - You participate jointly with the Technology
Center in every step of the development.

In all cases, it is the customer's responsibility to define
simulation and test patterns.

Whether you choose a turnkey design or fuller participation,
the general flow of the design cycle follows the stages outlined
in this chapter.

VLSI Technology Inc. - 5 April JQ88

Introduction 3

System Planning
The first step in creating a cell-based design is to generate
specifications and a system plan for your design (Figure 1).
VLSI's Design Assistant tool can help you decide between
alternatives at this stage.

:::::::::::::::::::::::.

~\:~~~~W.W\:!:::::::. DESIGN ENTRY
Hirni'NNINGf ::::::· ANO SIMULATION

PHYSICAL
DESIGN

:::::::::::::::::::::::

SYSTEM PLANNING

~·-·-·-·-·-·-·-·-·-·-·-·-·-i

Sized physical block i
Block of gates i
Cel 1 1 ist i
Cel 1 instance i :-.
(physical or netlist) '"'"·-'·,

.-·ii Cel I co111pi ler I
External block i

i
-·-·-·-·-·-·-·-·-·-·-·-·-·j

SYSTEM
SPECIFICATIONS

DESIGN
ASSISTANT

..:s z.
V"

To DESIGN ENTRY
ANO SIMULATION

DESIGN
VERIFICATION

FUNCTIONAL DESCRIPTION
Power Dissipation
Power Supp 1 i es
A111bient Conditions
I/O Specifications
Ti111ing

"WHAT IF" DECISIONS
Partitioning
Design Technology
Size
Power Dissipation
Packaging
On-Chip vs. Off-Chip

vs . Multichip

Figure 1. System Planning Flow

VLSI Technology Inc. - & April 1988

4 Introduction

Design Entry And Simulation
The design logic is entered using the VLSI schematic editor
(Figure 2). Some functional blocks, like compiler cells and
state machine elements, need to be generated in the cell
library window, VTicellLib, and then placed in the schematic.

The completed schematic is checked with the VLSI timing
verifier and simulated using the mixed mode simulator,
VTisim. Test vectors are generated from the output of the
simulator. Screen and review checks are performed where
applicable, and optional fault simulation is available.

When the· schematic is complete, there is
Customer /VLSI logic design review. If the
acceptable, it goes on to physical layout design.

a joint
design is

VLSI Technology Inc. - 5 April 1988

:::::::::::;::::;;:::::::::::::::::

SYSTEM
PLANNING

tiE'.s:tG.N tNtR¥ n PHYsicAL
A~R:'$IM0iJ8ifoN / DESIGN

DESIGN ENTRY
AND SIMULATION

CELL-BASED
DESIGN ENTRY

ICONS/MODELS
MEGACELLS

STANDARD CELLS
CELL COMPILERS

DATAPATH ELEMENTS
STATE MACHINE

ELEMENTS

Critical Path
Tiflling

Clock Skew

TIMING
VERIFIER

ICON
EDITOR

COpti onal)

SCHEMATIC
EDITOR

NETLIST
SCREENER

MIXED MOOE
SIMULATOR

TEST PROGRAM
GENERATION

To
PHYSICAL

DESIGN

Introduction 5

DESIGN
VERIFICATION

Logic/Tiflling
sifllulation
with gates and
behavioral
Models

Figure 2. Design Entry And Simulation Flow

VLSI Technology Inc. - 5 April I 988

6 hit.rod uction

Physical Design
Compiled layout can be created using the cell library window,
the composition editor or the layout editor. These arbitrary
blocks, and any standard cell functional blocks, are
represented as phantoms -- black boxes with connectors.
These phantoms are assembled using VLSI's chip compiler.
Placement and routing can be automatic, interactive, or a
combination of both (Figure 3).

VLSI Technology Inc. - S April 1988

SYSTEM
PLANNING

VLSI Technology Inc. - 5 April !988

Introduction 7

DESIGN ENTRY
AND SIMULATION

DESIGN
VERIFICATION

PHYSICAL DESIGN

• Autol1ia tic • · ·
Plac~ & Route

LOGIC
COMPILER:
STANDARD

CELLS AND ONE
ARBITRARY

BLOCK

. . LAYOUT,
• • COMPOSITION
· • AND CELLIB:

PHYSICAL
CELL

MODULES

POST-ROUTE

Interactive r1ace •
· · · • • ·. •. Al.1Jci .Route • •
•••• CHIP COMPILER: •

MIXED
STANDARD

CELLS AND
ONE OR MORE

ARBITRARY
BLOCKS

EDITING: LAYOUT · · · · · · · · · · · · · · · · ·
OR COMPOSITION • OptiMizat on of

___ • assefllbled chip•

To DESIGN
VERIFICATION

Figure 3. Physical Design Flow

8 Introduction

Design Verification
A netlist extracted from the completed phantom physical
database is compared to the schematic netlist using the netlist
comparison program, to assure network consistency. The
netlist is back-annotated with actual wiring capacitances and
resimulated with VTisim. Finally, a DRC verifies that the
design conforms to physical design rules (Figure 4).

SYSTEM
PLANNING

DESIGN ENTRY
AND SIMULATION

DESIGN VERIFICATION

NETLIST
COMPARISON

RE SIMULATE

PHYSICAL
DESIGN

Verify extracted
netlist against

schel'latic

WITH PARASITIC
WIRING CAPACITANCES

Resil'lulate with
back-annotated

net! ist

DESIGN RULE
CHECKING

To IMPLEMENTATION

Verify
with physical
design rules

Figure 4. Design Verification Flow

VLSI Technology Inc. - 5 April 1988

How To
Use This
Guide

Introduction 9

When the layout is completed and verified, there is a joint
Customer/VLSI final design review.

Implementation
If the finished design is approved, the phantoms are replaced
with actual layout and the design is sent for full physical
design verification, mask generation and prototype build.
When the prototype is approved, the design can be transferred
from pre-production status to full production.

Chapter 2, Design Types, specifies which tasks are performed
by the customer and which are performed by the VLSI
Technology Center for each design type: Turnkey, User Logic,
User, and Joint. When you have decided upon a design type,
check the flowchart for your design type in Chapter 2. The
blocks on the User side of the chart list the tasks for which
you are responsible. In Chapters 3 through 9, read the
explanation of those tasks that apply to your design type, and
ignore those that do not. The chapters that explain the design
cycle tasks are:

• Chapter 3 - System Planning

• Chapter 4 - Design For Testability

• Chapter 5 - Design Entry

• Chapter 6 - Simulation

• Chapter 7 - Physical Design

• Chapter 8 - Post-Physical Design Verification

• Chapter g - Implementation

VLSI Technology Inc. - f> April 1988

10 Int.roduction

Cell-Based
Elements

This section describes the types of circuit elements and
functional blocks that you can use in a VLSI cell-based design:
standard cells, compiled cells, datapath elements, and state
machine elements.

Standard Cell Library
The standard cell portable library offers a wide range of
functions, including gates, buffers, fti p-flops, multiplexers,
decoders, adder /sub tractors, synchronous counters, latches and
various I/O functions. These cells are available in the 2
micron VSClO series and the 1.5 micron VSClOO series; refer
to the appropriate library manual for more information. The
base library for each series contains a set of standard
functions, and an extended library provides additional
functionality with clock buffers, flip-flops, latches, synchronous
counters, I/ 0 pads, buffers, and crystal oscillators. The
portable netlist obtained from a design can be implemented
either as standard cells or in a gate array.

Figure 5. Standard Cells

VLSI Technology Inc. - 5 April l088

Introduction 11

Compiler Cell Library
The VCC compiler cell series consists of:

•RAM

• 2901 expandable datapath (2 micron only)

• Multiplier

• PLA

•ROM

These cells are available in the 2 micron VCClO series and the
1.5 micron VCClOO series; ref er to the appropriate library
manual for more information. You can select from parameters
such as speed, drive and number of bits to configure each
compiler cell into the version you need to suit your design
application.

NOTE: If you use these cells, you cannot implement your
design as a gate array.

VLSI Technology Inc. - S April 1988

C5:0J

EB

r-a~cc

EB OUTC7 :0

EB

NC7:0J

Figure 6. Compiler Cell

12 Introduction

Megacell Library
Megacells are the building block equivalents of standard
microprocessor peripherals. VLSI offers these megacells:

• M68C45 CRT controller

• M82C37 programmable DMA controller

• M82C50 asynchronous communications element

• M82C54 programmable interval timer/ counter

• M82C59 programmable interrupt controller

• M82C84 clock generator/ driver (2 micron only)

• M82C88 bus controller (2 micron only)

• M84COO Z80 CPU

• M84C30 counter /timer circuit

• M84C40 serial I/O controller

• M85C35 serial communications controller

VLSI Technology Inc. - & April 1988

Introduction 13

Most of these cells are available in both the 2 micron VMClO
series and the 1..5 micron VMClOO series; ref er to the
appropriate datasheet for more information. Beginning with
V7R3, all megacell datasheets will be placed in one Megacell
Library Manual binder.

VLSI Technology Inc. - 5 April !988

r-----V--.+-~--M-~ -.t-t ~,._,..._____,

r

1 c c 0 s c
k p I s c o

c k n c
I c
k
b

M02C8~a
M

e r a r s
e s r y

a s e f e n
d c f c

Figure 7. Megacell

14 Introduction

Datapath Element Library
The datapath compiler generates circuits that have similar
operations applied to several bits at once, where a variety of
logic elements are repeated and interconnected in a regular
way. Examples are n-bit ALUs, counters, adders; comparators
and registers. The high-level library elements are available in
the 2 micron VDPlO series and the 1.5 micron VDPlOO series;
refer to the appropriate library manual for more information.
The portable netlist can be implemented either as standard
cells or in a gate array. You can also generate an optimized
compiled silicon block from a datapath specification.

a

0

f) VLSJi:......

VDPl80.-!

Figure 8. Datapath

VLSI Technology Inc. - 6 April 1988

Introduction 15

State Machine Elements
A state machine is a block of logic whose outputs depend on
its inputs and its internal state. Most cell-based logic is
created by using cells; however, a state machine element is
created from a text description. Specifications for the state
machine are written in an easy-to-use high-level language that
is based on Boolean equations as input. The portable netlist
can be implemented either as standard cells or in a gate array.
You can also generate a compiled PLA block from a state
machine description.

VLSI Technology Inc. - 5 April 1988

sru barre 1 ;

clock !elk;

inputs dO dl d2 d3 d4 d5 d6 d7 so sl s2 set;

latched outputs ql3:0J;

let ql3J = !(set&!s2&!sl&!sO&!d3 I
set&!s2&!sl&sO&!d2 I
set&!s2&sl&!sO&!dl I
set&! s2&sl&s0& ! dO I
set&s2&!sl&!sO&!d7 I
set&s2& ! sl&&sO& ! d6 I
set&s2&sl&!sO&!d5 I
set&s2&sl&sO&!d4J;

let ql2J =!(set&!s2&!sl&!sO&!d2 I
set&!s2&!sl&sO&!dl I
set&!s2&sl&!sO&!dO I
set&!s2&sl&sO&!d7 I
set&s2&! sl& ! sO&! d6 I
set&s2& ! sl&sO& !d5 I
set&s2&sl& !sO& ! d4 I
set&s2&sl&sO&!d3J;

Figure Q. State Machine

barrel

ql3:0

• VLSI TECHNOLOGY, INC. 17

Introduc
tion

CHAPTER 2

DESIGN TYPES

This chapter describes the design tasks performed by the user
and VLSI for each cell-based design type.

There are four basic types of design, depending upon how the
design tasks are divided between VLSI Technology and the
customer: turnkey, user logic, user, and joint.

When you have decided upon a design type, check the
flowchart for your design type in the pages that follow. The
blocks on the User side of the chart list the tasks for which
you are responsible. In Chapters 3 through 9, read the
explanation of those tasks that apply to your design type, and
ignore those that do not.

VLSI Technology Inc.· 5 April 1988

18 Design Types

Turnkey
Design

The chapters that explain the design cycle tasks are:

• Chapter 3 - System Planning

• Chapter 4 - Design For Testability

• Chapter 5 - Design Entry

• Chapter 6 - Simulation

• Chapter 7 - Physical Design

• Chapter 8 - Post-Physical Design Verification

• Chapter g - Implementation

For a turnkey design, the customer supplies design
specifications, logic diagrams and test vectors. VLSI is
responsible for all phases of design, verification and test
program generation from the vectors provided (Figure 10).

VLSI Technology Inc. - 5 April 1988

USER

Design start, specification
and plan

Siflulation patterns
Test vectors

Design Types 19

TECHNOLOGY CENTER

Scheflatic entry

Logic/tifling siflulation

<OPTIONAL>

Netlist and vector conversion +-----------t Fault Siflulation

VLSI Technology Inc. - 6 April 1988

ok Physical design

l
llack annotation

l
Phantofl DRC and Netcoflpare

Post-physical design
siflulation

1 KHz super-synchronous
test vector generation

Figure 10. Turnkey Design

20 Design Types

1

USER TECHNOLOGY CENTER

accept

Test progra111
generation

PROTOTYPES

Manufacturing/
Test

Merge cell layouts

Physical design
verification

CIF tape out

l
Mask generation

correct

Figure 10. Turnkey Design (Cont'd)

VLSI Technology Inc. - 6 April 1988

User Logic
Design

Design Types 21

Fm a user logic design, the customer is responsible for
schematic entry, logic/timing simulation, vector generation, 1
MHz super-synchronous test vector generation, and
post-physical design simulation. VLSI is responsible for netlist
and vector conversion, logic verification, and the physical
design and verification tasks (Figure 11).

USER

Design start, specification
and plan

no

ScheP1atic entry

l
Logic/tiPiing siP1ulation

and vector generation

Post-physical design
siP1ulation

ot;

1 MHz super-synchronous
test vector generation

reject accept

TECHNOLOGY CENTER

<OPTIONAL>

Netlist and vector conversion
Fault SiP1ulation

Physical design

llact; annotation

l
PhantoP1 DRC and NetcoP1pare

Figure 11. User Logic Design

VLSI Technology Inc. - 5 April 1988

22 Design Types

USER TECHNOLOGY CENTER

Test progran
generation

PROTOTYPES

Manufacturing/
Test

Merge cell layouts

Physical design
verification

CIF tape out

l
Mask generation

correct

Figure 11. User Logic Design (Cont'd)

VLSI Technology Inc. - 5 April 1088

User
Design

Design Types 23

For a user design, the customer is responsible for schematic
entry, logic/timing simulation, vector generation, 1 MHz
super-synchronous vector generation, physical design, phantom
design verification (design rule check and netlist comparison),
back-annotation and post-physical design simulation. VLSI is
responsible for merging cell layouts, physical design
verification, test program generation and CIF tape out (Figure
12).

VLSI Technology Inc. - 5 April 1988

24 Design Types

USER

Design start, specification
and plan

no

.!
Schel'latic entry

l
Logic/til'ling sil'lulation

and vector generation

Physical design

l
Phantol'I DRC and Netcol'lpare

Rack annotation and post
physical design sil'lulation

1 MHz super-synchronous
test vector generation

Phantol'I tape out

l

reject accept

TECHNOLOGY CENTER

<OPTIONAL>

Netlist and vector conversion
Fault Sil'lulation

Figure 12. User Design

VLSI Technology Inc. - S April 1988

USER

VLSI Technology Inc. - 5 April 1088

Design Types 25

TECHNOLOGY CENTER

Test progral'I
generation

PROTOTYPES

r

Manufacturing/
Test

~erge cell layouts

Physical design
verification

CIF tape out

l
Mask generation

correct

Figure 12. User Design (Cont'd)

'.!6 Design T.v pes

Joint
Design

For a joint design, the customer and VLSI work together on
all phases of the design and share the responsibility for its
success (Figure 13).

VLSI Technology Inc. - 5 April 1988

VLSI Technology Inc. - 5 April 1988

Design Types 27

USER and TECHNOLOGY CENTER

Design start, specification
and plan

fll---. .. 1 ___ s_c_h_e,._a_t ... i_c _e_n_tr_Y __ ___, Vr 1
Logic/tifling siflulation

and vector generation

<OPTION AU

Netlist and vector conversion
Fault Siflulation

no

Physical design

l
Phanto.. DRC and NetcoP1pare

Back annotation and post
physical design siflulation

1 MHz super-synchronous
test vector generation

Figure 13. Joint Design

28 Design T.v pes

USER and
TECHNOLOGY CENTER

TECHNOLOGY CENTER

Merge cell layouts

Physical design
verification

CIF tape out l._. .__ ___ __,I . '-----.-----' Mask generation

Test progral'I
generation

correct

PROTOTYPES

l

Manufacturing/
Test

Figure 13. Joint Design (Cont'd)

VLSI Technology Inc. - 5 April 1088

Cost
Considera
tions

Design
Reviews

Design Types 29

As shown in Figure 14, the cost of the design goes down as the
amount of user involvement increases:

$ l
c
0
s
T

I ~I
~

user user joint turnkey
logic

Figure 14. Cost vs. User Involvement

In all cases, VLSI and the customer conduct two design
reviews:

• Logic Design Review - after Logic/Timing Simulation

• Final Design Review
Simulation

after Post-Physical Design

Both of the design reviews include careful investigation of the
chip specification, design methodology, post-physical
verification, critical paths, testability and packaging
requirements.

VLSI Technology Inc. - 5 April I 988

• VLSI TECHNOLOGY, INC. 31

Introduc
tion

CHAPTER 3

SYSTEM PLANNING

This chapter describes the design start, specification and
planning task, including system partitioning, chip economics,
and power calculations.

ASIC designs are becoming increasingly complex, and it is now
possible to integrate a complete digital system onto a single
chip. The design engineer has to find the best solution for
subdividing such a system into parts that can be integrated
most efficiently. A complete system can be a one-chip ASIC
solution, or various ASIC chips of different technologies mixed
with standard parts.

VLSI Technology Inc. - 5 April 1988

32 System Planning

System
Partition
ing

Chip
Economics

How you partition your system can depend upon:

• Total system cost

• Total and partial system performance, such as speed and
power consumption

• Total system reliability, including logic design and
packaging

The various approaches to system partitioning are determined
by one or another of these objectives. Before subdividing a
system, you need to consider the semiconductor economics,
VLSI implementation approaches, and partitioning methods
appropriate to your design.

The Die Size
There is always a certain defect density on a wafer; the
probability of having a defect increases with increasing die
size. Reducing die size is the most important means of
obtaining economic chip production, and the designer must
handle this efficiently ..

The design of a cell-based chip can directly influence its die
size. It depends upon:

• The complexity of the logic: the number of gates

• The regularity and the amount of interconnect: the bus
structure

• The number and size of I/O pads on the chip

• Performance requirements

VLSI Technology Inc. - 5 April 1988

Syslem Pla.nning 33

The result can be either a, pad-limited layout, where the size of
the die is dictated by the padring, or a core-limited layout,
where the die size is dictated by the core dimensions (Figure
15). Each of these layout types requires a corresponding I/O
pad set. The VLSI chip compiler automatically selects the
appropriate pads for your design layout.

Pad-Limited

l!Ull!l!lllillilll!llll!llilliilll!lli1I
Ill
ll!J
Ill
llll
ID
1111
Iii
Ii
Ill!
I!!
1111
ill
I.!!
II
Ill
Ill
ll!l
1111111111111111111!91!1111] l!!llll!!lflll

Core-Limited

Figure 15. Core-Limited and Pad-Limited Chips

The Package
The package also contributes to the total device cost. The
package type selected depends on the number of pins required,
die size and estimated power dissipation. There are different
lead frames for the same package; one must be chosen to
match the die size and to ensure that the bonding rules are
fullfilled. Using a specific package can also affect other
objectives, such as cost, reliability, and printed circuit board
mounting techniques. Prototype chips are normally delivered
in ceramic packages, for shorter assembly times, while
subsequent production devices may be assembled in less
expensive plastic packages.

The semiconductor packages that VLSI Technology offers are
listed in the Semiconductor Package Selection Guide.

VLSI Technology Inc. - 5 April 1988

34 System Planning

Power
Calcul
ations

This document gives the materials, dimensions, pin count,
package width, VLSI bond form drawing number, pad size,
minimum and maximum die sizes, thermal resistance, and
other necessary statistics for each available package. VLSI is
continually qualifying new sizes and types of packages; consult
your Technology Center representative for package
availability.

Background Information
When you complete the Power Calculations Worksheet
according to the instructions at the end of this section, you
will be using typical power dissipation figures supplied by
VLSI. These figures are based on the considerations discussed
in this section.

Causes of Power Dissipation
The amount of heat generated within the silicon chip, known
as power dissipation, is low in CMOS technology, compared to
other technologies. Power dissipation causes temperature to
rise, increasing a circuit's propagation delay. The three causes
of power dissipation in CMOS technology are:

1. The charging and discharging of the internal capacitance
of a circuit. Known as AC power dissipation, the
charging and discharging -- switching -- of circuit
capacitance is responsible for more than 90% of a
circuit's total power dissipation. The power dissipation
in a CMOS circuit is essentially a function of the
frequency of the logic switching. The charging of a
capacitor (C) to a voltage (V) through a P-channel
device builds up a charge (CV) and stores energy
(CV*V). This energy is later discharged through the

VLSI Technology Inc. - 5 April 1988

System Pl3.nning 35

N-channel device which is paired with the P-channel
device. 'vVhen such switching takes place at a frequency
(F), the resulting power dissipation can be expressed as
P=FG\12, where Pis power dissipation.

2. DC current. There are two types of DC power
consumption: static DC current, which flows through
ON transistors; and leakage DC current, which continues
to flow when transistors are OFF. DC current can be
significant for output drivers if an external load current
is present. You need to set up a test condition in which
all static DC current can be turned off, so DC leakage
(static Idd) can be measured easily.

3. Transient currents. Transient currents occur when the
P- and N- transistors switch from the HIGH to LOW
state, or vice versa, in the period when:

VTH(N) > VIN < VDD-VTH(P)

where VTH = input threshold voltage, N = N-transistor,
VIN = input, VDD = supply voltage, and P =
P-transistor. Transient currents are responsible for less
than 10% of the total power dissipation.

The total power dissipation of a cell-based design can be
estimated by adding the estimated power dissipation for the
macros you have used in your design, and multiplying by a
correction factor to account for the percentage of gates that
switch simultaneously. Statistically, 0.20 (20%) has been
found to be a useful correction factor, reflecting the percentage
of simultaneously switching gates commonly found in
cell-based designs, although typical applications vary from
near zero to 50%. Your own estimate may be somewhat
higher or lower, depending on the characteristics of your
design.

VLSI Technology Inc. - & April 1088

36 S.vst.em Planning

The power dissipation for each VSCIO or VSCIOO macro is
given in the appropriate library manual. The maximum
allowable power dissipation, of course, depends on the package
and the cooling system used.

Another method of calculating a circuit's power dissipation is
to use the Design Assistant, which supplies an estimate of the
total power consumption in m \V.

Completing the Power Calculations Worksheet
The Power Calculations Worksheet, illustrated in Figure
16, helps you calculate your circuit's junction temperature,
which is the temperature of the die inside the package. It is
also used to arrive at certain values required on the AC /DC
Specifications Form. VLSI encourages you to include a
copy of the worksheet in the initial signo:ff review, although it
is not required. The information on the Power Calculations
Worksheet is necessary for package selection; please contact
the Technology Center about package feasibility if you omit
this form.

Completing the Power Calculations Worksheet requires
the following steps, described in detail in the text that follows:

• Complete the circuit data section.

• Calculate the Register Percentage (R).

• Calculate the Internal Power Dissipation (Pint).

• Calculate the External Power Dissipation (Pext).

• Calculate the Total Power Dissipation (Ptot).

• Calculate the Junction Temperature (Tj).

VLSI Technology Inc. - 5 April 1988

System Planning 37

POWER CALCULATIONS WORKSHEET

DESIGN NAME

VLSI TECHNOLOGY PART NUMBER

MILLTWATTS/GATE P = 0.020 mW/MHZ/GATE

AVG. OPERATING FREQUENCY (F) F =

EST. FRACTION OF GATES SWITCHING
SIMULTANEOUSLY (TYPICALLY 0.20) S =

AMBIENT OPERATING TEMPERATURE

NUMBER OF GATES

NUMBER OF OUTPUT PINS

AVG. OUTPUT LOAD CAPACITANCE

INTERNAL POWER DISSIPATION
PINT = P * F * S * G

EXTERNAL POWER DISSIPATION

Ta=

G =

B =

c =

Pint =

PEXT = 0.035 * F * B * .2 * C Pext =

DC OUTPUT POWER DISSIPATION SUM Pde =

TOTAL POWER DISSIPATION
PTOT = 0.001 * (Pint+Pext+Pdc) Ptot =

PACKAGE TYPE (INCL. # PINS)

THETA JA OF PACKAGE

JUNCTION TEMPERATURE Tj =
Tj = (Ptot * THETA JA) + Ta

REPORT GENERATED BY:

Figure 16. Power Calculations Worksheet

VLSI Technology Inc. · 5 April JQ88

MHZ

c

PF

mW

mW

mW

w

C/W

c

38 System Planning

Complete the Circuit Data Section
Complete each part of the circuit data section as follows:

• MILLIWATTS/GATE (P). Typical power dissipation in
milliwatts/MHz/ gate. The typical power dissipation for
VLSI's VSC cells is provided in the datasheets in the
VSClO Macro Library and VSClOO Macro
Library manuals.

• AVERAGE OPERATING FREQUENCY (F). Write the
circuit's operating frequency in megahertz in the blank.

• AMBIENT OPERATING TEMPERATURE (Ta). Write the
circuit's maximum ambient operating temperature in
degrees centigrade in the blank.

• NUMBER OF GATES (G). Write the number of gates
required by the circuit in the blank.

• NUMBER OF OUTPUT PINS (B). Write the number of
external outputs the circuit contains in the blank.

• AVERAGE OUTPUT LOAD CAPACITANCE (C). Estimate
the output load capacitance using the input capacitance
specifications for the interfacing chips and the
interconnect capacitance. Write your estimate of the
average, in picofarads, in the blank.

Calculate the Internal Power Dissipation (Pint)
Using the values you noted in the circuit data section, and the
Register Percentage you calculated, solve the equation shown
and write the result in the blank.

VLSI Technology Inc. - 5 April 1988

System Planning 39

Calculate the External Power Dissipation {Pext)
Using the values you noted in the circuit data section, solve
the equation shown, and write the result in the blank.

Calculate the DC Power Dissipation {Pde)
Add the individual DC currents of any output pads that drive
DC loads and write the result in the blank.

Calculate the Total Power Dissipation {Ptot)
Add the Internal Power Dissipation, External Power
Dissipation and DC Power Dissipation and multiply the sum
by .001. The result is the circuit's Total Power Dissipation in
watts. Write the results in the blank.

Write In The Package Type
Write the type of package you have chosen, including the
number of pins, in the blank provided.

Write The Thermal Impedance
Write the thermal impedance (Theta JA) of the package you
have chosen in the blank provided. This value is given in the
Semiconductor Package Selection Guide, which you can
obtain from the Technology Center .

. The junction-to-ambient (JA) thermal resistance data is based
on a 10,000 square mil die, with the board mounted in still air.
The thermal resistance varies with the materials used, die size,
process technology, air circulation, and heat dissipation
characteristics of the device. Values listed in the package
selection guide are meant to serve as guidelines and are
believed to be on the high side. For larger dice, the values are
typically lower.

VLSI Technology Inc. - 5 April 1988

40 System Planning

Partition
ing
Methods

Calculate the Junction Temperature (Tj)
Multiply the Total Power Dissipation by the thermal
impedance (8j8,) of the package you have chosen. When the
thermal impedance is given as a range, use the highest value in
the range. Add the result to the Ambient Operating
Temperature (Ta,) you noted in the circuit data section. Write
the sum in the blank. This is the estimated junction
temperature in your circuit. The recommended limit is 150
degrees C.

Your implementation approach determines the partitioning
method that you apply to a system: random logic
partitioning, building block partitioning, or subsystem
partitioning.

Random Logic Partitioning
In a total system that is built with standard parts of different
complexities, the MSI and SSI parts normally form the glue
logic between the LSI and VLSI parts. Random Logic
Partitioning consists of putting these random logic parts into
one or several ASIC chips. The total resulting chip complexity
is low, and the pin count is high. A system partitioned this
way, however, is not the most cost-efficient and space-saving
solution, because the total IC count remains high. However,
the design turnaround time is short compared to more
complex solutions, especially if a gate array is used.

Building Block Partitioning
The next step towards a higher level of integration is to
subdivide the system into separate functional building blocks.
The glue logic remains implemented externally as standard
parts or as other ASIC chips, but the main functional part of
the system is implemented as an ASIC.

VLSI Technology Inc. - 5 April 1988

System Planning 41

This approach improves cost efficiency due to a more complex
design and a better gate-to-pin ratio. But the biggest
advantage arises if the ASIC for the main functional part can
be used as a general purpose proprietary IC for other systems
in your company. In that case, additional glue logic and
external standard parts are necessary to connect to other parts
of this new system, but the "core" of the system stays the
same. The cost decreases because, for multiple systems,
Non-Recurring Engineering cost (NRE) is reduced, and the
unit price of this ASIC drops due to a higher volume usage.

Subsystem Partitioning
Going to the highest possible level of integration results in a
design that strictly matches the specific system requirements.
All random and glue logic, plus functional building blocks and
other customized parts, are integrated into one chip. The
ASIC design loses its flexibility as a general-purpose IC but,
for this specific system, the efficiency improves in terms of
space savings -- due to a lower IC count and less interconnect
on the printed circuit board -- along with higher reliability
and lower power dissipation. The resulting ASIC can be
regarded as a complete system or subsystem to be included
into an even larger total system.

Integration With the availability of various silicon compilation techniques,
the designer has to decide whether high-complexity standard
parts such as RAMs or ROMs should be partially or totally
integrated. VLSI's large library of megacells makes the choice
even more complicated. The decision to place these
components on- or off-chip can be based on purely technical
requirements, such as general system performance, or
commercial reasons, such as fluctuating prices for standard
parts.

VLSI Technology Inc.· 5 April 1988

42 System Planning

Chip
Specifica
tion
Package

The Design Assistant can help you to effectively partition your
system and to ftoorplan the individual chips. It is used prior
to the logic design of the individual chips. From a block-level
description developed in the Design Assistant, you can obtain
a high-level schematic for each of the chips.

The Design Assistant is also useful in intermediate design
phases when only some of the pieces of the design are
completed. For this scenario, the Design Assistant can be used
to get a better estimate of chip size.

Refer to the Design Assistant Manual for more
information.

The Chip Specification Form contains guidelines for
assembling your chip specification package. When this
package is completed, it contains a detailed description of the
proposed chip:

• Functional block descriptions

• Physical size and packaging

• Electrical and timing specifications

• Test features

A sample of this form can be found in the Signoff Forms
section within this binder.

This section contains an explanation of each portion of the
Chip Specification Form.

VLSI Technology Inc. - 5 April 1988

System Planning 43

1.0 Device Description
To complete the Device Description section of the
Chip Specification Form, include this information:

• 1.1 General Function And Features - Attach a brief
description of the device function and its application.

• 1.2 Logic Block Diagram Use an upper-level
schematic, or attach separate drawings of each logic
block.

• 1.3 Detailed Block Description - Include a detailed
description of the device function for each separate
functional block.

• 1.4 Physical - Make a rough estimate of the chip's size
and confirm that the prototype and production packages
are available. Package information can be found in
VLSl's Semiconductor Package Selection Guide.

Complete and attach:

• AC /DC Specification Form

• Customer Package Marking Form

These forms can be found in the Signoff Forms section
within this binder.

The Pad Placement Form is also included in the Chip
Specification package; however, it is not necessary to complete
this form until the schematic is finished.

VLSI Technology Inc. - 5 April 1988

44 System Planning

2.0 Electrical Specifications
To complete the Electrical And Environmental Specifications
section of the Chip Specification Form, include this
information:

• 2.2.1 Clock Input Timing Table - On a separate
page, insert a timing parameter table for clocks. A
sample table is shown in Figure 17.

• 2.2.2 Clock Input Waveforms - On the same page or
following pages, insert timing diagrams for the clock
timing. A sample waveform is shown in Figure 17.

VLSI Technology Inc. • 5 April !Q88

System Planning 45

Clock input timing table:

SYMBOL PARAMETER MIN TYP MAX UNITS NOTES

Tcyc Clock cycle 100 ns

Tpw Clock pulse width 40 60 ns

Tr/Tf Clock rise/fall 5 ns

NOTES:

1. MaxiMUM clock cycle tiMe is liMited by the type of logic
used. Consult VLSI for details on specific liMitations

Clock input waveforms:

~ I ~-~/ l"'~-
1 I

+--Tpw__.

Tr - ____ Tf------+I
- Tcyc

CL KIN

Figure 17. Clock Timing

• 2.3.1 I/O Timing Table - On a separate page, insert a
timing parameter table for inputs and outputs. A
sample table is shown in Figure 18.

• 2.3.2 I/O Timing Waveforms - On the same page or
following pages, insert timing diagrams for the inputs
and outputs. Sample waveforms are shown in Figure 18.

VLSI Technology Inc. - 5 April 1988

46 System Planning

1/0 timing table:

SYMBOL PARAMETER MIN TVP MAX UNITS NOTES

Tds Data setup to WRB HJ ns 1

Tdh Data hold from WRB 58 35 ns

Twr WRB pulse width HJ8 158 ns

Tda Data valid from ROB 35 ns

Tdz Data hi-Z from ROB HJ 25 ns

1/0 timing waveforms:

DEVICE DATA BUS WRITE TIMING

YRB

Tds1l-Twr-l--1Tdh
DATAC0:7l -----<(data valid)>------

DEVICE DATA BUS READ TIHING

ROB

Tdal--1 l-1Tdz
DATAC0:71 ---------<(data val Id)>------

Figure 18. I/O Timing

• 2.4 AC Critical Path Description - Create a drawing
giving the input, cells on the path, output, capacitance
load, and signal delays. A form that can be used for this
purpose is shown in Figure 19.

VLSI Technology Inc. - 5 April 1988

System Planning 47

AC Critical Path Description

~
L I+ I ~ I T l

Ii I Ii I
I J T JT

PIN - CELL _ Cl_ CELL _ Cl- CELL_ CL_ CELL _cl-

SIGNAL _ DELAY _ DELAY_ DELAY_ DELAY_

J_
T

J_
T

J_
T

OUTPUT

T
CELL _ CL _ CELL _ CL _ CELL _ Cl _ CELL _ CL _ PIN -

DELAY_ DELAY_ DELAY_ DELAY_ SIGNAL _

TOTAL PATH DELAY MAXIMUM -------- ns

VTisifll DELAY ________ ns

Figure 19. Critical Path Description

3.0 Test Features And Description
To complete the Test Features And Description section of the
Chip Specification Form, attach separate pages with this
information:

• 3.1 Testability Features - Describe the test modes/
test logic strategies that will be used to enhance
testability and test coverage. Include an overview of the
test strategy for the device.

VLSI Technology Inc. - 5 April 1988

48 Syst.em Planning

New
Design
Informa
tion Form

Prelimi
nary
Design
Review

• 3.2 Implementation of Test Features - Describe the
partitioning of the test program. For each functional
block, describe each test and which pins are of interest
for each test block. Some pins may be multi-purpose
and have various functions depending upon whether or
not the device is in test mode.

Include the New Design Information Form in your chip
specification package for the preliminary design review. It
helps you plan your usage of VLSI's standard cell and
cell-based element libraries, and estimate the size of each
functional block. It also provides the VLSI Technology Center
with information and general specifications for your design, as
well as an estimated schedule.

Using the New Design Information Form and the Chip
Specification Form package as the initial specification for
the proposed chip, conduct a preliminary design review. This
review should carefully examine the proposed design
methodology, architecture, AC and DC requirements, clock
strategy, pinout and power pin requirements.

VLSI Technology Inc.· 5 April IQ88

Test Plan

Statement
Of Work

System Planning 49

Based upon initial specifications in the Chip Specification
Form, the Technology Center engineer or the customer can
start work on a test plan. This plan specifies the overall test
strategy, including how different sections of the chip are to be
tested and what additional circuitry, if any, is necessary. Test
strategies are discussed m Chapter 4, DESIGN FOR
TESTABILITY.

\Vhen you have completed system partitioning and planning,
create a chip specification. Determine the type of design you
will be doing: turnkey, user logic, user, or joint. Fill out the
Statement Of Work form, specifying responsibilities for
each design task (Figure 20). Get the quote number from
VLSI sales and write it in the QUOTE # blank.

STATEMENT OF WORK Page 1 of 2

CUSTOMER; VLSI Technology DESIGN TYPE: User Logic QUOTE #: 5817

DESIGN
STEP

:RESPONSIBILITY: COHPL: COMPLETION SIGNOFFI
:VLSI:CUST:Born: DATE : REFERENCE DOCUMENTS

-----------------------------------+----+----+----+------+----------------------
CUSTOMER TRAINING : , , : VLSI __ _
i~~f~fller- tr-ained on VLSI design ; X i ; ! ; ~~f~ =ooc~. --
-----------------------------------+----+----+----+------+----------------------

~~;!!~n s;~ff~~fA~~~i~~~f:~~:E i ! 1 x ! i tQ~~ --
~~=~~-~~~~~~~~-~~~-==~~~~:------!----!----l----+------l-~~~:-~~:-~-
DESIGN START
Design worll. begif\s.

' . ' '
: x : : :
' ' ' '

lt~~~---
: R£f. ooc:-------------------------------------+----+----+----+------t------------

SCHEMATIC CAPTURE : VLSI ___ _
Enter custOf'ler logic into VLSI , : X :, i, : CUST

~~~:=-~~~~-~=~::=~-~=~~~-~~~-=:~---!----+----+----+------!-~:~:_=~~~~---
TEST PLAN : 
Establish overa! I chip test phi lo- : 

1 and test vec 

Figure 20. Statement Of \!\Tork 

The Statement Of Work form is updated after each step 
has been completed. This form is a record of the design 
progress. Include it in your chip specification package for the 
preliminary design review. 

VLSI Technology Inc. - 5 April 1988 





• VLSI TECHNOLOGY, INC. 51 

Designing 
For 
Testability 

CHAPTER 4 

DESIGN FOR TESTABILITY 

This chapter describes the concepts needed to design for 
testability in the system planning and schematic entry tasks. 

Design for testability in integrated circuits refers to design 
approaches that enable you to test VLSI systems with minimal 
effort and maximum coverage. The key concepts in designing 
for testability are: 

• Controllability -- The portion of circuitry to be tested 
must be easily stimulated from the inputs of the circuit. 

• Observability -- The response of that portion of the 
circuitry must be easily observable from the outputs of 
the circuit. 

VLSI Technology Inc. - 5 April 1988 



52 Design For Testa.bility 

In order to assure high fault coverage for the various types of 
functional blocks used in cell-based designs, VLSI Technology 
recommends these techniques: 

• Megacells Use the high-coverage canned test 
programs provided with the megacell. Detailed 
instructions for using these programs are given in the 
Megacell Test Development Methodology 
application note, in the APPLICATION NOTES section 
of this binder. 

• Compiled Cells -- Vector compilers that generate 
high-fault-coverage test vectors have been developed for 
several of the cell compilers. These compilers, described 
in the application note Vector Compilers For 
Compiled Cells, are currently supported only for VLSI 
Technology Centers. Please consult your Technology 
Center engineer. 

• Standard Cells, State Machine Elements, and 
Datapath Elements -- Use the methods described in 
the application note entitled Design-For- Testability 
Guidelines, in the APPLICATION NOTES section of 
this binder. 

The Design-For-Testability Guidelines apply to the whole 
design as a collection of interconnected function blocks, as well 
as to the standard cell or glue logic portions of your design. 
Using the suggestions in this application note, you can greatly 
reduce the amount of work involved in simulating and 
creating test patterns for some designs by adding a small 
amount of testability logic. For this reason, the question of 
circuit testability should be addressed at the very beginning of 
the logic design process. 

VLSI Technology Inc. - 5 April IQ88 



General 
Guidelines 

Design For Testability 5:3 

For highly sequential circuits, testability issues can be 
complicated, and test logic can consume a significant portion 
of the complete logic design. Even for simple circuits, 
however, there are a few fundamental testability issues to keep 
in mind when designing a circuit. 

This section describes general design-for-testability techniques. 
Refer to the application note entitled Design-For
Testability Guidelines, in the APPLICATION NOTES 
section of this binder, for a detailed discussion of 
design-for-testability techniques. 

Additional Circuitry vs. Long Simulations 
Designers are sometimes reluctant to add test logic because 
they are trying to minimize the logic. It is important to 
consider the cost of long simulations during the design cycle, 
and to make the appropriate trade-offs regarding testability 
logic at the beginning of the design phase. In some cases, as 
with encoding sequential systems, minimizing the logic may 
lead to asynchronous designs with no recognizable cycles, 
which cannot be tested. 

VLSI Technology Center engineers are available to assist with 
testability considerations at the beginning of the design phase. 

Translating A Board 
If you are converting the contents of a large TTL printed 
circuit board to a single chip, avoid direct translation. Boards 
and chips have different controllability and observability 
characteristics. 

VLSI Technology Inc. - 5 April !Q88 



54 Design For Test.ability 

Provide Controllability 
You can provide direct access to the inputs of each functional 
block by using a variety of techniques: bus architectures, 
de-gating, scan paths, microcode, and built-in tests. The 
important idea is that the stimulus to control a particular 
block can be applied to the inputs without passing through 
lots of other circuitry before reaching the block. This block 
isolation technique is described in detail in Megacell Test 
Development Methodology. 

As shown in Figure 21, signals must propagate through blocks 
1 and 2 in order to stimulate functional block 3. If these 
blocks contain sequential circuitry, a large number of vectors 
will be required to apply the stimulus to the inputs of block 3. 

IN ----t----1 Block 1 I--- Block 2 t--1 Block 3 I--+- OUT 

Figure 21. Controllability Problem 

By allowing block 3 to receive its signals either from block 2 or 
directly from the circuit inputs, the stimulus can be applied 
directly to block 3 without being affected by blocks 1 or 2 
(Figure 22). 

VLSI Technology Inc. - 5 April 1988 



Design For Testability 55 

IN BI ock 1 t--- Block 2 t----1 

MUX t--- BI ock 3 OUT 

ELECT J 
J 

Figure 22. Stimulus From Inputs 

Provide Observability 
You can obtain direct access to the outputs of each functional 
block using a variety of techniques: bus architectures, 
de-gating, scan paths, microcode, and built-in tests. The 
important idea is that the output response values for a 
particular block can be observed at the outputs of the circuit 
without requiring the response values to propagate through 
lots of other circuitry before reaching the circuit outputs. 
This block isolation technique is described in detail in 
Megacell Test Development Methodology. 

When trying to observe the response of functional block 1, the 
response values must propagate through blocks 2 and 3. If 
these blocks contain sequential circuitry, a large number of 
vectors will be required to observe the response from block 1 
at the outputs of the circuit (Figure 23 ). 

VLSI Technology Inc. - 5 April 1988 



50 Design For Testability 

IN --+---- Block l t-- 81 ock 2 I-----1 Block 3 I--+- OUT 

Figure 23. Observability Problem 

By allowing block 1 to be directly accessed from the circuit 
outputs, as shown in Figure 24, the response values can be 
easily verified during test or simulation. These response values 
are not affected by blocks 2 or 3. 

IN--+- Block l Block 2 t-----1 Block 3 1---+--- OUT 

'---------------+-- TSTOUT 

Figure 24. Response From Outputs 

Circuit Initialization 
You must be able to initialize the circuit to a known state. 
This allows most of the functional tests to be executed in an 
arbitrary sequence and provides for simple partitioning of the 
test vectors during test. Also, for a test program to be 
generated from a simulation trace file, none of the internal 
nodes of the circuit may be stimulated at any time during the 
simulation. 

VLSI Technology Inc. - 5 April 1988 



Design For Testability 57 

Even though a circuit may function correctly regardless of the 
initial state of storage elements upon power-up, this causes 
problems for the tester. For example, in order for the tester to 
be easily synchronized with the circuit, latches and memory 
elements must have a set/reset capability. By adding the reset 
capability, the circuit can be set directly into a known state, 
and the tester knows exactly how many vectors to apply to 
achieve the expected output. 

Test Modes 
If there are no I/O pins available for use as test mode input 
pins, it is often possible to use some illegal combination of 
inputs, or an input combination that cannot occur during the 
normal operation of the circuit, to place the circuit in test 
mode. On-chip test logic can be added to test portions of the 
circuit while it is operating in test mode. You can add simple 
bypass multiplexers to key inputs and outputs of the circuit, 
to directly access important internal nodes. 

Use The Design-For-Testability Guidelines 
This is a summary of the guidelines: 

• Provide set/reset capabilities on latches or memory 
devices and provide the capability to initialize the circuit 
to a known state. 

• Avoid asynchronous circuitry. 

• Allow internal clocks to be bypassed. 

• Allow counters, dividers, and other sequential circuitry to 
be bypassed. 

• Provide access to RAMs, ROMs, and other functional 
blocks from the inputs and outputs of the circuit. 

VLSI Technology Inc. - 5 April 1988 



58 Design For Testability 

• Partition circuitry that has more than 8 bits of cascaded 
latches, such as 24-bit counters and 10-bit dividers. 

• A voi cl nesting of sequential circuitry. 

• Provide access to allow redundant circuitry to be tested. 

• Be aware of signals that fan out and reconverge at the 
inputs to a functional block. 

• Allow analog circuits to be bypassed during testing of 
digi ta! portions. 

Detailed examples of each guideline are presented in the 
TESTABLE DESIGN GUIDELINES chapter of the 
Design-For-Testability Guidelines. 

VLSI Technology Inc. - 5 April 1988 



• VLSI TECHNOLOGY, INC. 59 

Creating 
Functional 
Blocks 

CHAPTER 5 

DESIGN ENTRY 

This chapter describes the schematic entry task for all types of 
cell-based elements, including design screening and review and 
completing the pad placement and bonding forms. 

This section describes how to create a functional block 
containing one or more of these elements: 

• Standard cells 

• Compiler cells 

• Megacells 

• Datapath elements 

• State machine elements 

You can place and interconnect instances of these blocks into 
higher-level schematics to create a hierarchical des~gn, in 
accordance with your system partitioning plan. The top level 

VLSI Technology Inc. - 5 April 1988 



60 Design Entry 

of the design hierarc;hy should contain all pads, pad drivers 
and a core block. 

With Standard Cells 
To create a functional block with standard cells, be sure you 
have the VSClO or VSClOO standard cell library on your 
search path: 

• VSClO - pvsc010d 

• VSClOO - pvsc100d 

If you have no vti. boo startup file, you can add the library 
to your search path by selecting the canned startup file for the 
library you want when you first bring up the tools. This is 
described in the VTitools Fundamentals Manual. 

If you already have a startup file, you can bring up the tools, 
go to the cell manager window, and click 
I library I- I search path I· When the search path menu 
is displayed, add the library name to your search path as 
described in the Cell Manager Manual. 

When the library you want has been added to your search 
path, bring up the schematic editor window and create a 
functional block composed of standard cells, or other types of 
cells, as described in the VLSI Schematic Editor Manual. 

To make an icon of the functional block, click on 
I misc 1-fmake iconf. You can place this icon in a 
higher-level schematic. You can also use the VLSI icon editor 
to edit this icon or create a new one. If you do, be sure to: 

• Bring up the I set up I property sheet while you 
have the schematic loaded in the schematic editor and 
type in the name of your icon cell. 

VLSI Technology Inc. - 5 April IQ88 



Design Entry 61 

• Click on I match up I when you are in the icon editor 
window, to match your completed icon cell to the 
functional block schematic. 

• Make sure the node names on the new icon match the 
node names !n your schPmatic. 

You can make your own custom standard cells and use them 
as you would VLSI's standard cells. Refer to the application 
note entitled Designing Custom Standard Cells for more 
information. 

With Compiler Cells 
Compiler cells are placed in a schematic the same way as 
standard cells. Be sure the compiler cell library is on your 
search path as described for the standard cells. The libraries 
are: 

• VCClO - vcc010d 

• VCClOO - vcc100d 

You have to specify cell parameters 111 order to create a 
compiler cell: 

1. Bring up the compiler cell library >.vindow, cellLib. 

2. Find the type of compiler cell you want in the browser. 

3. Click on either the [tpl] (template cell) or the [pcl] 

(parameter cell) for the cell type you want. 

4. Click on I load ! I· 

5. When the prompt box appears, type in a name of your 
choice for the compiler cell to be created. 

VLSI Technology Inc. - 5 April 1988 



62 Design Entry 

6. Click on I edit 
such as RAM size. 

to specify parameters for the cell, 

7. Click on I output I-+ I model-schematic I to make 
an [sc] schematic cell of the compiler cell in your 
working directory. 

8. In the schematic editor, place the completed compiler 
[sc] cell in your schematics as you would a standard 
cell; a default icon is automatically generated by the 
system when the cell is placed. 

With Megacells 
Each megacell is in a separate library; you should have the 
names of the megacell libraries you want to use on your search 
path. The name of the library is the megacell name plus OlOd 
for VMClO or lOOd for VMClOO. For example, the 2 micron 
M82C54 megacell is in the m82c54010d library, and the 1.5 
micron version is in m82c54100d. 

In the schematic editor, place the megacell in your schematics 
as you would a standard cell. 

With Datapath Elements 
To create a datapath functional block: 

1. Make sure that the 2 micron vdp010d or 1.5 micron 
vdp100d library is on your searchpath. 

2. Using the schematic editor, create a specification 
schematic with datapath elements as described in the 
Datapath Compiler Manual. 

3. Place a title block in the top level datapath schematic. 

4. Click on save! I· 

VLSI Technology Inc. - o April 1988 



Design Entry 63 

.5. Open a cel!Lib window and select the datapath template, 
[tpl] cdp, in the browser. 

6. Click on I make I· The system will prompt you for 
a parameter cell name; type in a name that is 
DIFFERENT from the name of your specification 
schematic. 

IMPORTANT: The name for the 
model-schematic is derived from the [pcl] name 
you enter here. The model-schematic must have 
a different name from that of your specification 
schematic. 

For example, if you name your specification schematic 
dpath, the resulting schematic cell is [sc] dpath. If 
you give the same name to the [pcl] cell, it is also 
applied to the resulting functional block schematic; so 
the new [sc] dpath overwrites the old, and your 
specification schematic is destroyed. 

7. Click on I edit I· The system displays a parameter 
sheet. Type in the name of your specification schematic 
on the DP _specification line to cross-reference the 
parameter cell to your datapath specification schematic. 

8. Click on I output I-+ I model-schematic I to create 
a functional block [sc] schematic cell. 

9. Place the resulting functional block schematic cell in 
your schematics as you would a standard cell. 

VLSI Technology Inc. - o April 1988 



64 Design Entry 

With State Machfoe Elements 
To create function blocks with state machine elements: 

1. Create the filename. srn text file containing the state 
machine specification. 

2. Be sure that the srnachnOOOd library is on your search 
path. 

3. Bring up the cellLib window. 

4. In the srnachn library, 
[tpl] srnachn and click on I 

select the 
load! I· 

cell called 

5. When the system displays the prompt box, type in the 
name to assign to the parameter cell; this should be the 
same name as your state machine specification file. The 
system creates [pcl] filename. 

6. Click on I ed1 t I; when the property sheet is 
displayed, type in the name of your state machine 
specification file, to cross-reference it to the [pcl] cell. 

There are two ways you can create a schematic of your state 
machine element to place in a higher-level schematic. In the 
cellLib window you can load the [pcl] cell and use 
I output I-+ I model-schematic\ to get an [sc] cell of 
your state machine circuit. Or: 

1. In the schematic editor window, go to your working 
directory and select the state machine [pcl] cell. 

2. Click the IDOi I button where you want to place the state 
machine element; there will be no cell outline. The 
system automatically generates an [sc] cell and places 
it in your schematic. 

VLSI Technology Inc. - 6 April 1988 



Schematic 
Entry 

Design Entry 65 

Enter your schematic using the VLSI schematic editor, 
VTischematic. Refer to the VTischematic Manual for 
detailed instructions. This section contains information on 
general topics that may be of use when entering schematics. 

Logic 
Synchronous logic is preferred, because testers use cycles, and 
the circuit should be able to work under cycle constraints. If 
it is necessary to use asynchronous logic, follow the 
recommendations in Chapter 6, SIMULATION. 

Borders 
Use the same size border for most schematics. B size is 
generally large enough for all schematic pages. Place the 
latest change date, the project name, and the responsible 
engineer's name in the lower right corner of each schematic. 

Node Names 
The character strings VDD, PWR, VCC, BULK, VSS and 
GND are reserved system names, or have special meanings in 
one or more of the VLSI tools. Do not use them in node, 
instance or connector names in your schematics, or as part of 
a name, such as TOPVSS. 

Busses 
Use busses whenever possible; they are quicker to enter and 
easier to trace. However, do not bundle unrelated signals in 
order to make an arbitrary bus. 

VLSI Technology Inc.· 5 April 1988 



66 Design Entry 

Signal Drive 
To provide adequate signal drive: 

• Buffer all internal signal outputs sufficiently. 

• Internal signal rise/fall delays should be kept to a 
minimum; IO ns or less is recommended. The IO ns 
maximum rise/fall time for internal nodes is independent 
of chip clock speed. Extremely slow rise and fall times 
on internal nodes can lead to excessive DC current and 
may possibly disturb internal states. 

• Clock signal rise/fall delay to internal cells should not 
exceed 5 ns. 

• Be aware of output diffusion capacitance on three-state 
drivers; it is sometimes high because a number of drivers 
are driving the same node. 

• Create a clock tree to adequately buffer clock inputs and 
to avoid clock skew to different parts of the chip. See 
the application note entitled Power And Clock 
Distribution In Cell-Based IC Design, in the 
APPLICATION _NOTES section of this binder, for more 
details. 

Clocks and Clock Buffers 
All unbuffered flip-fl.ops and latches must be driven by a clock 
buffer cell in order to minimize clock skew. 

A clock buffer cell's output pins must drive both inputs on 
one or more cells, in order to reduce the amount of skew 
between output pins C and CN (Figure 25). 

VLSI Technology Inc. - 5 April 1988 



Design Entry fi7 

Figure 25. Clock Skew Problem 

Do not scatter clock trees among many schematics as it makes 
visual checking of the schematics difficult. Try to keep the 
clock tree on a single sheet. 

Use flip-flops and latches with internally buffered clocks. 

Metal Migration, Current Density and Parallel Buffers 
A design formula for metal migration, based on RMS current, 
that you can use to determine the number of fanouts a buffer 
can drive is: 

where: 

B = Buffer size; 1 for a lX buffer, 2 for a 2X buffer, and 
so on. 

L - The number of fanouts. The interconnect 
capacitance should be converted into the equivalent 
number of fanouts, and added to the value of L. 

F = The frequency of the node in MHz. 

VLSI Technology Inc. - 5 April 1988 



()8 Design Ent.ry 

The result of this calculation should stay below the current 
density figure of merit, which is: 

• VSClO - 1003 

• VSClOO - 9034 

As a general rule, use IX drive per 3 loads, regardless of clock 
speed, as the flip-flop delay is the same at any frequency of 
operation. 

Do not forget to include some estimate of interconnect 
capacitance when making these calculations. 

Parallel Logic 
It is bad design practice to parallel cells with dissimiliar logic 
functions, as it results in contention. If this situation should 
occur in a design, the VLSI netlist screener produces an error 
message to indicate that a signal is driven by more than one 
type of cell, unless the cells are three-state (Figure 26). 

an02dl 

Figure 26. Parallel Cells 

VLSI Technology Inc. - o April 1088 



Design Entry 69 

\i\Then a signal is driven by wired-OR cells whose input signals 
are not common, contention results. If this situation occurs in 
a design, the VLSI netlist screener produces an error message 
unless the cells a.re three-state (Figure 27). 

1EJ--
an02dl 

Figure 27. Common Inputs 

Bus Repeater Cells For Three-State Nodes 
Bus repeater cells prevent excess power consumption caused by 
floating three-state nodes driving other logic. The bus 
repeater cell, RPOlDl, holds the last value that was driven 
onto the node. Only one bus repeater cell should be used for 
each three-state node. Bus repeater cells should not be used 
on nodes that are not three-state. If the circuit is such that 
the three-state node never fl.oats, a bus repeater is not 
required. 

Weighting 
You can specify routing priority by using net weights in your 
schematic. 

Net weights are used to guide the automatic place and route 
system. If a node is weighted, instances which share the node 
are placed together during place and route. Ref er to the 
description of the WEIGHT cell in the VSClO or VSClOO 
Portable Library Manual. To weight a node, select the 
weight icon in the browser under logicComp SYMBOLS, and 
place it near the line you want to weight. Wire from the 

VLSI Technology Inc. - 5 April 1Q88 



70 Design Ent.ry 

weight icon to the selected line as you would any other cell 
(Figure 28). 

raot Mllllll(IJC(UNtllOMS 
111.SilutllOS Dft0lt£RSlllUX•s 

ff'$/COUllT0S/LATCM£S 
CllT[S/llISC ...... ........ 

Figure 28. Weight Symbol 

To set the value of the weight, click on 
I commands I-+ I SetParam I, then point to the weight and 
click 1001 I to bring up the weight property sheet (Figure 29). 

value default 

Figure 29. Weight Property Sheet 

The value set in this box becomes the routing priority for that 
net. All nets have a default weight of 1. A net with a higher 
weight is considered more important than other nets at cell 
placement time. A net assigned a weight of 5 is considered 5 

VLSI Technology Inc. - 5 April 1988 



Design Entry 71 

times as important as a. normal net. \i\Teights should be used 
sparingly; never use a weight greater than 10. Excessive use of 
weights will adversely affect routing time and efficiency. 

Only one weight has to be attached to a net: everything 
traced in a single net by VTischematic has the same routing 
priority. The entire net highlighted in the illustration below 
has the same priority (Figure 30) . 

................. ... ...................... . ............. ································ ... . . ........................................... . 

. . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . ............................................ ~ .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
························ ................. ······································· 

: : : : : : : : : : : : : .. : :df'Ctriti: : : .. . ............. ......... ... . 
··············· ... . 

······· .... 

. ........................................ . 
········· ..... ··················· ..... . ............. .............. ......................................... . 

.................................................. ............................... . 

Figure 30. Weighted Net 

Use weights to minimize wiring and parasitic capacitance on a 
node. Do NOT use weights to minimize chip area, since 
weights alter the overall wiring and usually result in increased 
die area. Never weight a node like RESET that runs all over 
the chip. 

Weights on Clock Buffers 
The clock buffer cell's output pins need to be weighted in 
order to minimize wire length and clock skew. The weight 
must be balanced, as shown in Figure 31. 

VLSI Technology Inc. - 5 April 1988 



72 Design Entry 

Figure 31. Weights On Clock Buffers 

Buffers 
Make sure that any line with a heavy load on it, such as a 
global RESET line, is properly buffered. 

Simulation And Test 
Add any circuitry necessary for efficiently testing the chip. 
Make sure that this circuitry does not interfere with normal 
operation. 

Include circuitry so that the circuit is initialized to a known 
state for simulation, testing and actual operation. 

Refer to Chapter 4, DESIGN FOR TESTABILITY, and the 
Test Generation Guidelines application note, for more 
information on designing testability into your circuit. In 
addition, the application note entitled Megacell Test 
Development Methodology, provides special guidance for 
megacell testing. Megacells, and some com piled cells, come 
with canned test programs, which must be integrated into the 
overall test program. 

VLSI Technology Inc. - 5 April IQ88 



Design Ent.ry 73 

Pads 
Use the minimum drive output drivers that meet your AC and 
DC requirements. Available driver output currents are 2, 4, 8, 
and 12 mA. 

Determine the number of power and ground pins needed using 
the application note entitled Power And Clock 
Distribution In Cell-Based IC Design, in this binder. The 
power to the padring should be separated from the power to 
the core, if possible. Place PCVDDl and PCVSSl pads for 
core power pins. Place PCVDD2 and PCVSS2 pads for 
padring power pins. If padring and core power pins must be 
common, place PCVDD3 and PCVSS3 pads. 

The number of VDD and VSS pads in the schematic should 
match the number used in the layout. This simplifies your 
netcompare results and design documentation. 

This step should be completed early in the design cycle, either 
during system planning or design entry. 

Specifying Pad Placement in your Schematic 
Optionally, you can assign pad placement in VTischematic by 
modifying the property sheet associated with a specific pad. 

You can do this by clicking on I commands 1-1 SetParam I, 
clicking 1010 I on the pl=l.d, and clicking IDOi I to bring up the 
parameter sheet. The value assigned to PinNumber is used 
for the die pad number for this pad. 

VLSI Technology Inc. - 6 April 1988 



74. Design Ent.ry 

Put a # sign before the pad number. Any number not 
preceded by a # is interpreted as the package pin number, not 
the intended die pad number (Figure 32). 

: m~~~i.e'' '~ ..... ·:~a ..................... ~e.fa·u·a· .. m:: 
: : 1 J_PinNu•ber _lli.DiDI indirect L*~ J 0 : : : : :.:.:::::::::: 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : \::::::::::::::::::::::::::::::::::: 

Figure 32. Die Pad Number Specification 

In the chip compiler, die pad number 1 corresponds to the 
center pad on the top side of the padring. The pad number 
increases counterclockwise. The location of package pin 
number 1, however, varies depending upon the package you 
select; refer to the Semiconductor Package Selection 
Guide. 

Functional Blocks 
All instances that are to be placed into a given arbitrary block 
during the physical design of the chip should be placed in the 
same schematic. There are several reasons for this: 

• In the chip compiler, this allows you to fix the placement 
of this block of standard cell logic, which may have 
critical timing, by using the hierarchical name in a wild 
card specification for a standard cell area. 

• If you want to do a chip compilation on the block level 
to group standard cells and arbitrary cells, such as 
RAMs, ROMs, PLAs, megacells and compiled layout, 
then you should hierarchically group these cells in the 
schematic. 

VLSI Technology Inc. - 5 April 1988 



Design Entry 7,5 

• If you are editing multiple arbitrary cells in the 
composition editor, these cells must be hierarchically 
grouped in order to use the chip compiler to place your 
composed cell with the rest of the logic. 

• You can perform a sub-block netcompare on an arbitrary 
block when the physical hierarchy matches the 
schematic. 

The Top Level Design 
The top level of the design hierarchy should contain all the 
I/O pads, any required pad drivers and a core block (Figure 
33). Place a connector on the external outputs of all pads. 
Only VDD, VSS and I/O pad signals should have connectors 
on them at the top level. The VLSI netlist screener will report 
an error otherwise. 

VLSI Technology Inc. - 5 April 1988 



76 Design Ent.ry 

~
DD 

VDD 

0 

core 

,]',~ 
L;J L;J 

Figure 33. Top Level Of Design 

Three-state, bidirectional, open drain and open source pad 
control signals should be explicitly named (Figure 34); these 
signals must be watched in the 1 MHz simulation used for test 
vector generation. Refer to the VTischematic Manual for 
the syntax of legal signal names. Also, all three-state, 
bidirectional, open drain and open source output buffers must 
be driven by a pad driver. The output pad's NGATE and 
PGATE pins must be connected to a single driver cell's 
NGATE and PGATE pins respectively. 

VLSI Technology Inc. - 5 April IQ88 



Design Entry 77 

~· .. 

I PGATE 

ptOldl 

OE NGATE 

pc ICUl I 

t!O • 

Figure 34. Pad Drivers 

For designs created with standard cell libraries prior to the 
VSCIO/VSCIOO series, use TTL, Schmitt Trigger or CMOS 
level shihers where appropriate. Doublecheck that level 
shihers are placed correctly, although input pads or output 
buffer cells that are not correctly connected to a level shiher 
are flagged by the netlist screener. Refer to the VLSI Netlist 
Screener Manual for more information on these checks. 

Turnkey Design Markups 
In turnkey designs, if VLSI schematics are derived from 
customer schematics, the Technology Center engineer should 
"yellow line" the VLSI and customer schematics to make sure 
that they are logically equivalent. This is a node-by-node 
comparison; each node on one schematic that matches a node 
in the other schematic is highlighted in yellow. When the 
yellow-line is completed, nodes that are m1ssmg (not 
highlighted) in either schematic are investigated. 

VLSI Technology Inc. - 5 April 1988 



78 Design Ent.ry 

Design 
Screen And 
Review 

The screen and review checks should be performed at various 
checkpoint stages during the logic design. When you want to 
check a functional block, or the top-level schematic, create an 
[hns] netlist as described in the Schematic Editor 
Manual. 

Net list Screening 
Run VTiscreen to identify simple errors and potential 
problems in the logic design. Refer to the VTiscreen 
Manual for more details. 

When you run VTiscreen to read the [hns] netlist created by 
the schematic editor, it: 

• Calculates the internal cell and I/O pad utilization, and 
prints the results in a summary report. 

• Provides a Design Statistics report listing information on 
the number of nets and FromTos -- connections between 
two pins -- in your design. 

• Provides a Design Complexity report listing gate 
equivalents per cell. 

• Checks for certain design and connectivity errors and 
other potential problems in your design. 

• Prints the report to your terminal as well as producing a 
disk file, [scr], containing the entire report. 

• Optionally writes a Logical Design Structure file, [lds], 
to be used by VLSI's design review or vector conversion 
programs. 

An example follows. 

VLSI Technology Inc. - 5 April 1988 



VTiscreen 1. 2 
VTiscreen> read [hns]latch8 
VTiscreen> screen 

VTiscreen - latch8 design. 

Design Ent.ry 79 

**************************************************************************** 
* VTiscreen Utilization Summary for latch8 * 
* * 
* Number of Input Pads 0 * 
* Number of Output Pads 0 * 
* Number of Bidirectional Pads 0 * 
* Number of VDD 0 * 
* Number of vss 0 * 
* Number of VDD Pads 0 * 
* Number of vss Pads 0 * 
* Number of VDD Core 0 * 
* Number of vss Core 0 * 
* * 
* ·Number of Gate Equivalents Used 30.00 * 
* * 
* Number of Non-Primitive Blocks Used 1 * 
**************************************************************************** 
Press return to continue 

Design Statistics: 
Number of Nets 
Average Number of Pins per Net 9.0 
Maximum Number of Pins per Net 9 

Design Complexity: 

Cell Name 

lanfnn 
ni01d3 

Totals: 

Number 
Occurrences 

8 

9 

Number Gate 
Equivalents 
Per Cell 

3.50 
2.00 

*** Summary of design warnings and errors 

Total Gate 
Equivalents 

*** 

28.00 
2.00 

30.00 

WARNING> The following signals do not drive any cells: 

u2.Q 
u8.Q 

u3.Q 
u9.Q 

u4.Q u5.Q u6.Q u7.Q 

ERROR> The following primary input signals should go thru input buffers: 

Y7 
YO 

Y6 
GN 

Y5 Y4 Y3 Y2 Yl 

ERROR> The following primary output signals should go thru output buffers: 

VLSI Technology Inc. - 6 April 11188 



80 Design Entry 

P7 
PO 

P6 

End of screener check 

P5 P4 P3 P2 Pl 

A summary of the reports, warnings, and errors provided by 
VTiscreen can be found in the VLSI Netlist Screener 
Manual. 

To create an [lds] file for the design review or vector 
conversion program to read, use the save command. Before 
creating an [lds] file, you should remove any errors that the 
screen command finds. Only a~er your design is free of 
errors should you proceed to use the design review program. 

Design Review Program 
VLSI's design review program assists standard cell designers in 
analyzing and simulating their designs, by generating: 

• A pre-route or post-route design report · 

• A post-route back-annotation file 

The design report contains a design summary which gives the 
number of cells, transistors, equivalent gates, inputs, outputs, 
bidirectionals, and pins, as well as capacitance, power 
dissipation and average frequency. There can be up to eleven 
tables following the design summary: 

• Internal node timing verification 

• Output pad timing verification 

• Standard cells used 

• Macro inputs connected to VDD 

• Macro inputs connected to VSS 

VLSI Technology Inc. - 5 April 1988 



• 1v1acro inpuLs unconnected 

• J\1acro outputs unconnected 

• Signal name/alias cross-reference 

• Ports of customer-designed macros 

• \i\Torst rising ramp delay 

• \i\Torst falling ramp delay 

An example is: 

VTI> util review 

***************************************************** 
***************************************************** 
** ** 
** A Pre route design report (. RPP) ** 
** B Post route design report (. RPA) ** 
** ** 
** c Post route back annotation file (.PST) ** 
** ** 
** Q Quit the execution ** 
** ** 
***************************************************** 
***************************************************** 
REVIEW: a 
Enter design name: latch8 
unable to open LATCH8.0FF 
all off chip loads set to O 
Is this a gate array design? (Y/N/Q): n 
Is this a standard cell design? (Y/N/Q): y 

Design Ent.r.v 81 

Average Frequency = percentagel * frequencyl + percentage2 * frequency2 ... 
Enter a percentage (%) 100 
Enter a frequency (MHz) : 
Average frequency = 1 MHz 

SELECT A DELAY MODE: 
MINIMUM MAXIMUM * 0.36 

2 TYPICAL MAXIMUM* 0.6 
3 MAXIMUM DATA BOOK INDUSTRIAL 

VLSI Technology Inc. - 5 April 1988 



82 Design Entry 

4 MINTYP (MINIMUM+TYPICAL)/2 
5 TYPMAX = (TYPICAL+MAXIMUM)/2 
6 MAXMIN = (MAXIMUM+MINIMUM)/2 
7 DEFINE = VDD PROCESS TEMPERATURE 

Enter a delay mode: 6 
Do you want to write the timing list? (Y/N) y 

Select a 
SIGNAL 
FI 
GATECAP 
PRER 
CANCEL 

Response 

sorting method for timing list (CR 
= by signal names 

by number of fan-ins 
by gate capacitance 

MACRO 
FO 
PREMET 

= by predictive rise time PREF 
= no sorting 
(? for valid responses) : premet 

= signal) : 
by macro types 
by number of fan-outs 
by predictive metal capacitance 

= by predictive fall time 

Should the list be sorted in ascending or descending order? (A/D) : d 
Should the capacitance be in pf or unit load? (PF/UL) : pf 
Do you want to write the list again with another sorting method? (Y/N) n 

======================= 
OUTPUT FILE: LATCH8.RPP 
======================= 

VLSI Technology Inc. - 5 April 1988 



Design E1it.ry 83 

***************************************************************************** 
* * 
* VLSI DESIGN SUMMARY * 
* (PRE PLACE AND ROUTE) * 
* * 
* DESIGN NAME: latch8 * 
* USER NAME: USER SOURCE: hnl * 
* DATE: 24 AUGUST 1987 TIME: 16:21:33 * 

* * 
****************************DESIGN STATISTICS******************************** 
* * 
* NUMBER OF MACRO TYPES 2 NUMBER OF MACROS USED 9 * 
* NUMBER OF TRANSISTORS 120 NUMBER OF EQUIV GATES 30 * 
* * 
* NUMBER OF PRIMARY INPUTS 9 NUMBER OF PRIMARY OUTPUTS 8 * 
* NUMBER OF PRIMARY BIDIRS 0 AVAILABLE PADS USED 17 * 
* * 
* MACRO INPUTS TO VDD 0 MACRO INPUTS TO VSS 0 * 
* NO. OF UNC. MACRO INPUTS 0 NO. OF UNC. MACRO OUTPUTS 8 * 
* * 
* NUMBER OF PINS 9 NUMBER OF NETS 1 * 
* AVERAGE PINS/NET 9.00 MAXIMUM PINS/NET 9 * 
* * 
* TOTAL GATE CAP LOAD(PF) 1.12 TOTAL METAL CAP LOAD(PF) .60 * 
* TOTAL OFF CHIP LOAD(PF) .00 TOTAL DIFFUSION LOAD(PF) 1.52 * 
* TOTAL LOAD(PF) 3.24 AVERAGE FREQUENCY(MHz) 1.00 * 
* POWER DISSIPATION(mW) .10 * 
* * 
***************************************************************************** 
* * 
* DELAY IMPLEMENTATION FOR TIMING VERIFICATION: * 
* * 
* MINIMUM = MAXIMUM * 0.36 * 
* MAXIMUM = DATA BOOK INDUSTRIAL * 
* MAXMIN = (MAXIMUM + MINIMUM) I 2 * 
* * 
***************************************************************************** 

TABLE 1 STANDARD CELLS USED 
============================================================================= 

2 

MACRO 
NAME 

lanfnn 
ni01d3 

OCCURENCES TRANSISTORS TRANSISTORS MACRO 

8 
1 

I MACRO TOTAL TYPE 

14 
8 

112 INTERNAL 
8 INTERNAL 

============================================================================= 
TOTAL 9 120 INTERNAL 

VLSI Technology Inc. - 5 April 1988 



84 Design Ent.ry 

TABLE 2 PORTS OF CUSTOMER DESIGNED MACROS 
============================================================================= 
MACRO NAME: 

INPUTS : 

OUTPUTS: 

latch8 

GN 
YO 
Yl 
Y2 
Y3 
Y4 

Y5 
Y6 
Y7 

P7 
P6 
P5 
P4 
P3 
P2 
Pl 
PO 

============================================================================= 

TABLE 3 MACRO OUTPUTS UNCONNECTED 
============================================================================= 

MACRO PORT INSTANCE 

1 lanfnn Q u2 
2 lanfnn Q u3 
3 lanfnn Q u4 
4 lanfnn Q u5 
5 lanfnn Q u6 
6 lanfnn Q u7 
7 lanfnn Q u8 
8 lanfnn Q u9 

VLSI Technology Inc. - 5 April 1988 



D•~sign Ent.ry 85 

TABLE 4 OUTPUT PAD TIMING VERIFICATION WITH MAXMIN DELAY 

TYPE TYPE OF THE MACRO DRIVING THE SIGNAL 
ULCAP OFF CHIP LOAD CAPACITANCE [IN UNIT LOAD] 
PFCAP OFF CHIP LOAD CAPACITANCE [IN PICO FARAD] 
RISE BASE RISE DELAY + RISE LOAD FACTOR * OFF CHIP LOAD [IN NANO SECOND] 
FALL BASE FALL DELAY + FALL LOAD FACTOR * OFF CHIP LOAD [IN NANO SECOND] 

TOP SIGNAL NAME TYPE UL CAP PFC AP RISE FALL 
--------------------
P7 LANFNN .0 .0 1.4 1.0 
P6 LANFNN .0 .0 1.4 1. 0 
P5 LANFNN .0 .0 1.4 1.0 
P4 LANFNN .0 .0 1.4 1.0 
P3 LANFNN .0 .0 1.4 1.0 
P2 LANFNN .0 .0 1.4 1.0 
Pl LANFNN .0 .0 1.4 1.0 
PO LANFNN .0 .0 1. 4 1. 0 

TABLE 5 INTERNAL NODE TIMING VERIFICATION WITH MAXMIN DELAY 
(sorted by predictive metal capacitance in descending order) 

TYPE = TYPE OF THE MACRO DRIVING THE SIGNAL 
FI NUMBER OF DRIVING PORTS 
FO NUMBER OF DRIVEN PORTS 
GCAP GATE CAPACITANCE THE SIGNAL DRIVES [IN PICO FARAD] 
MCAP METAL CAPACITANCE THE SIGNAL DRIVES [IN PICO FARAD] 
RISE = BASE RISE DELAY + RISE LOAD FACTOR * (GCAP + MCAP) [IN NANO SECOND] 
FALL = BASE FALL DELAY + FALL LOAD FACTOR * (GCAP + MCAP) [IN NANO SECOND] 

PREDICTIVE 

TOP SIGNAL NAME TYPE FI FD GCAP MCAP RISE FALL 

u10.Z NI01D3 8 .6 .6 2.4 2.4 

TABLE 6 WORST RISING RAMP DELAYS 
============================================================================= 
RAMP = LOAD FACTOR * (GATE CAP + METAL CAP) [IN NANO SECOND] 
RECOMMENDED RAMP DELAY LIMIT = 10 NS; ramp values = data book industrial 

TOP SIGNAL NAME TYPE RAMP 

u10.Z NI01D3 1.9 

VLSI Technology Inc. - 5 April 1988 



86 Design Entry 

TABLE 7 WORST FALLING RAMP DELAYS 
============================================================================= 
RAMP = LOAD FACTOR * (GATE CAP + METAL CAP) [IN NANO SECOND] 
RECOMMENDED RAMP DELAY LIMIT = 10 NS; ramp values = data book industrial 

TOP SIGNAL NAME TYPE RAMP 

u10.Z NI01D3 1.9 

The post-route design report also contains an Actual vs. 
Predicted Wirelength Comparison report. 

Information on usage and examples of design review checks 
can be found in the VTlreview Manual. 

Pad Place- vVhen you have finished design entry, complete the Pad 
ment Form Placement Form and attach it to the Chip Specification 

Form. 

Bonding 
Diagram 

Complete a bonding diagram for prototype and production 
packaging. To generate the bonding diagram, plot the full 
chip CIF at the same scale as the blank bond form for the 
desired package; this is usually 20X. Bond form part numbers 
and package information are given in the Semiconductor 
Package Selection Guide. The bond form documentation 
for the package you select gives the scale at which the bond 
form was plotted. Place the plot in the center of the blank 
form and draw wire connections between the package pins and 
the die pads. 

A good general procedure to follow when generating your 
bonding diagram is: 

VLSI Technology Inc. - 5 April 1988 



Design EnLry 87 

1. Mark Lhe low inductance pms on the bond form. 
Package pin inductances for many of the available VLST 
packages are given in Appendix B. 

2. Bond VSS and VDD first, using the low inductance pins. 

:3. Bond the outputs in a distributed manner, without 
bunching them. 

4. Bond the inputs. 

Figure 35. Sample Bonding Diagram 

VLSI Technology Inc. - 5 April 1988 



88 Design Erit.ry 

When bonding, use these common-sense gnidelines: 

• Bond from pad to pin. 

• Keep angles to a minimum. 

• Don't cross over pads, core, or other wires. 

VLSI Technology Inc. - 5 April 1988 



• VLSI TECHNOLOGY, INC. 89 

Netlists 
For 
Timing 
Verifi
cation and 
Simulation 

CHAPTER 6 

SIMULATION 

This chapter describes the logic/timing simulation, fault 
simulation and Logic Design Review tasks. 

You will need netlists of all your functional blocks and the 
top-level design in order to run the timing verifier and the 
simulator. This section describes how to create netlists for the 
various types of cell- based elements. 

Standard Cells, Compiler Cells and Megacells 
\Nhen you have the schematic loaded in the schematic editor, 
click on I misc I_,. I make HNL I or I make HNL tree I 
to create an [hn s] hierarchical net list. Load this net list in to 
the simulator. \iVhile the simulator is loading your file, it is 
flattened to an [fns] netlist file. 

VLSI Technology Inc. - 5 April 1088 



\JO Simulat.io!l 

State Machine Elements 
You can initially simulate a state machine element without 
creating a netlist. Create a [pcl] parameter cell, as described 
in the DESIGN ENTRY chapter, then bring up the simulator 
window and load the [pcl] file. Set the clock and inputs 
and run the simulation. 

To generate a portable netlist for standard eel 
implementation, open a cellLib window and load the state 
machine [pcl] file. Click on 
I output I-+ I portable-netlist I to generate a file 
named [hns] pclName_P. 

You can place the state machine element in a higher-level 
schematic, generate an [hns] netlist for that schematic, and 
load the [hns] into the simulator. In this case, VTisim will 
simulate the state machine with a behavioral model. The 
model does not model delays, loads, or drives accurately, but it 
is quicker than simulating at gate level. To use the portable 
netlist [hns] you created instead of the behavioral model 
make a switch cell, as shown in Figure 36. 

accept addJ de l I move I 
J Dest !.l!LJ Dest Naroe J Dest Pc l On/Off Src ~ Src Na roe J_ Src Pc l l * Inst 

lilim liil!llm l sroachn l counter l DB l counter P J 

Figure 36. State Machine Switch Cell 

Bring up the switch cell editor, click on I edit I, and 
click on the add box to create a new switch cell. Click on the 
Src Typ box until it displays mde. Click on the Src Name 
box and type in smachn. Click on the Src Pel box and type 
in the name of your state machine [pcl] cell. Click on the 
Dest Typ box and type in hns. Click on the Dest Name 
box and type in the name of your net list file, pclName _P. 

VLSI Technology Inc. - 5 April 1988 



Sin1ulat.ion 91 

When you bring up the simulator window, 
set switch pclName before you load your chip. 
finds the state machine model, it will replace it 
compiled netlist. 

Datapath Elements 

type in 
When it 
with the 

Datapath elements can be implemented as standard cells with 
a portable library netlist, or as compiled layout with a layout 
model netlist. Which netlist you use in simulation depends 
upon how you implement your datapath. 

To generate a portable netlist for standard cell 
implementation, open a cellLib window and load the datapath 
[pcl] file. Click on I output I---> I portable-netlist I 
to generate a file named [hns] pclName_P. 

To generate a layout model netlist for compiled layout 
implementation, open a cellLib window and load the datapath 
[pcl] file. To generate a file named [hns] pcJName _ L, click 
on I output I---> I layout model netlist I· 

To use the netlist you generated, you need to create a switch, 
as shown in Figure 37; refer to the state machine section for 
details. For the portable netlist, your switch should contain: 

• Src Typ of mde 

• Src Name of mdp 

• Src Pel of pclName 

• Dest Typ of hns 

• Dest Name of pclName_ p 

VLSI Technology Inc. - 5 April 1988 



92 Simulation 

nst Dest Name Dest Pc I 
counter _P 

Figure 37. Portable Netlist Switch Cell 

As shown in Figure 38, your switch for the layout model 
netlist should contain: 

• Src Typ of mde 

• Src Name of mdp 

• Src Pel of pclName 

• Dest Typ of hns 

• Dest Name of pclName L -

re cl Inst Dest Name 
counter counter _L 

Figure 38. Layout Model Netlist Switch 

\;\Then you bring up the simulator window, 
set switch pclName before you load your chip. 
finds the datapath model, it will replace it with the 
netlist. 

Dest c I 

type in 
\;\Then it 
compiled 

VLSI Technology Inc. - 5 April 1988 



Flattening 
The Netlist 

Timing 
Verifi
cation 

Simulation 

Simulation 93 

When you load a hierarchical netlist [hns] into VTisim, it 
automatically flattens the netlist down to the transistor level, 
into an [fns] form that it can use. To save time, you can 
use the HNL utility to flatten your netlist. Using the 
non-graphic shell environment or a VTiterminal window 
ru11n1ng 1 shell! I, t3rpe utili t.y HNL to the VTI> 
prompt. Then type flat ten to get into the flatten 
subsystem. Finally, flatten your [hns] file using 
options simflatten. For more information, please see the 
VTitools Utilities Manual. 

A~er the schematic is entered and checked, it is useful to 
check critical paths for timing verification. VLSI's timing 
verifier allows you to determine if your design functions 
properly at your clock speed, and that all critical paths meet 
their specified timing. This step is optional. Ref er to the 
VLSI Timing Verifier Manual for more information on 
timing analysis. 

Simulation generally takes much longer than the schematic 
entry phase of the design, so you should allow enough time for 
a thorough simulation. Use VLSI's mixed mode simulator, 
VTisim, to run your simulations as described in the VTisim 
Manual. VTisim creates waveform plots and a trace file, 
[trc]. 

There are two kinds of simulation: 

• System Simulation -- Both Logic and Timing simulations; 
exercise the circuit as if it were in the system. There are 
no restrictions on simulation timing. 

VLSI Technology Inc. - 5 April 1Q88 



94 Simula.tion 

Netlists 

• Test Generation Simulation -- Exercises the circuit 
functionally. Since the results are used to generate test 
vectors, this simulation must subscribe to VLSI's 
super-synchronous guidelines. 

Maximum clock speed for the test generation simulation for 
cell-based designs is 1 :MHz. If the chip is intended to run at a 
higher speed, run system simulations at this higher speed and 
then adjust the test to 1 :MHz to create test vectors. Test 
vector generation is covered in the POST-PHYSICAL DESIGN 
VERIFICATION chapter in this manual, and in the Test 
Generation Guidelines. 

Normally 10,000 vectors are sufficient to test a chip. If more 
than 10,000 vectors are required, extra charges may be 
applied. Check with the Technology Center to determine the 
extent of these charges. 

Create a set of at-speed timing and test program engineering 
simulations, where the pre-route performance of the chip is 
predicted by simulating with predicted wire capacitances. 
Create the simulation driver using the VLSI mixed-mode 
simulator for each of the sub-blocks, as described in the 
VTisim Manual, then create a test driver for the entire chip. 
Document the results of this simulation. 

There is no interlock mechanism to ensure that the 
hierarchical netlist (HNL) files used for your simulation are up 
to date. Periodically delete all HNL files and recreate new 
ones by loading the top-level schematic into the simulator, 
especially before you start the physical design, and before final 
logic simulation. Re-simulate and re-verify this final netlist. 

VLSI Technology Inc. - 5 April 1988 



Logic 
Simulation 

Sirnula.t.ion 95 

NOTE: Avoid deleting your state machine and 
datapath netlist files, as they take considerably longer 
to regenerate. 

External Capacitances 
Include external capacitances in all your simulations. These 
are the off-chip loads for full chip simulation, and the output 
loads for lower level simulations. 

Asynchronous Logic 
By default, VTisim is run only in slow (worst case) mode. If 
you use asynchronous logic, run it in fast (best case) mode as 
well as slow mode. This can be approximated by using the 
command set simparms delayFactor . 25 in VTisim. 
For any critical timing questions, Spice simulation is 
recommended. In addition, contact the Technology Center for 
help in test program development for asynchronous logic. 

Simulation Checks 
Be sure to use the following checks at the logic/timing 
simulation stage, as well as earlier in the design cycle: 

• Static Checks -- Perform static checks in VTisim on the 
top-level [hns] files. Record the results in a log file. 
Static checks include check inputs, check 
outputs, check pushpull, check usage, show 
power, show syn *vdd*, and show syn *VSS*. 

• Toggle Checks -- Use the set toggles command. Run 
the full chip simulation. Use the show toggles 
command. Examine the nodes for any that have not 
been toggled. If necessary, add test vectors and iterate. 

VLSI Technology Inc. - 5 April 1988 



96 Simulation 

The toggle check does not report interior model nodes. 
To obtain detailed fault coverage information, see the 
Fault Simulation section, in this chapter. 

• Internal Node Load Checks -- Load the top-level [hns] 
into VTisim. Execute the show cap * command. 
Investigate any internal node with unusually high 
capacitance; usually, any capacitance greater than 2 pF 
should be checked. Add extra buffers or use higher drive 
buffers where necessary. This check may result in 
lengthy listings. The netlist screener can also be used; 
this provides a more detailed analysis of loading and 
ramps. 

• Clock Tree Check -- Use the timing verifier to check the 
clock tree. If this is not possible, use the simulator to 
examine the clock tree, making sure that it is balanced 
and that all clock polarities are correct. Visually 
examiny the schematics. Load the [hns] file into the 
simulator. Start at a clock input and proceed down the 
tree using the . show after and show synonym 
commands and looking for anomalies. Watch for 
polarity errors that may be missed by simulation. 

• Schematic Check -- Review the schematics with the 
Technology Center engineer. 

VLSI Technology Inc. - 5 April 1988 



Timing 
Simulation 

Si 111 ulation 97 

Timing simulation allows you to deternine if your design 
functions properly at your specified clock speed and that all 
critical speed paths meet their specified timing. 

Estimate Routing Capacitance 
Use estimated routing capacitance wnlle simu1atmg your 
design. To add estimated routing capacitance to your netlist, 
use the proper simparms command and parameters in the 
simulator. Chip compilation has many variables for routing 
and is an iterative process. It is vital to estimate performance 
at the schematic simulation stage to save on expensive and 
time-consuming chip compilation iterations, especially for 
circuits over 16,000 devices/ 4,000 gates, or for circuits that 
have strict critical paths. 

There are special simulation parameters that can be set in the 
simulator to estimate interconnect capacitance; they are the 
default capacitance and incremental capacitance. An example 
is: 

set simparms defCap 0.05 
set simparms incCap 0.20 

The system default is def Cap . 010 and incCap O. 0. The 
incremental capacitance is in units of pF per functional pin. 
Using our example, if an output (1 pin) goes to five inputs (5 
pins), the interconnect capacitance -- in addition to the gate 
and overlap capacitances which are included in all functional 
model instances -- is going to be: 

0.05 + (1 + 5) * 0.20 = 1.25 pF 

VLSI Technology Inc. - 5 April 1988 



98 Sim11bt.in11 

Provide Output Load Capacitance 
Include the exLernal load capacitance that the output buffers 
will see in your design application. To load your output 
buffer::;, use the set capacitance command in VTisim. The 
following exan1ple loads output RAS with 50pF and output 
CAS with 150 pF. Default units for the simulator are 
picofarads. 

VTisim> set capacitance 50 RAS 

VTisim> set capacitance 150 CAS 

The set capacitance command overrides any previous 
capacitance value assigned OJ' computed for a node. If the 
load on HAS is currently 5 pF, and you give the 
set capacitance 50 command, the load on RAS becomes 
50 pF, not 55 pF. If you wish to increase the existing load, 
set capacitance to the total value desired. 

Bidirectional Pins 
ON BIDIRECTIONAL PINS, USE set charged. The 
set input high and set input low commands override 
anything the pad tries to do, and can hide contention or 
design problems. 

Worst Case Timing Can Hide Best Case Hazards 
All of VLSI's portable library models use worst case process 
timing in the models. You should analyze your circuit for race 
conditions caused by best case processing. One possibility is to 
use the VTlsim set simparms delayfactor n statement, 
where n is the best case derating factor for process, 
temperature or voltage factors. Derating factors are given in 
the General Information section of the standard cell library 
manuals. ff necessary, contact the \11..,Sl Technology Center 
for assistance. 

VLSI Technology Inc. - 5 April JQ88 



Intercon
nect 
Capaci
tance 
Calcula
tions 

Simulation 99 

This section describes how interconnect capacitance is 
calculated by the mixed-mode simulator, the design review 
program, the netlist extractor, and the logic compiler. 

Simulator 
If a post-route capacitances file, [pst], is loaded, VTisim uses 
the capacitance value given in the node's capacitance 
statement. If there is no [pst] file, interconnect capacitance 
is predicted using this formula: 

C = A + N * B 
where: 

C = interconnect capacitance 

A - the def Cap value given in the 
set simparms defCap statement. 

N = The number of model and gate pins on the node, 
including the pin driving the node. 

B - the incCap value given in the 
set simparms incCap statement. 

The defCap and incCap values are normally set by loading 
[sim] predcap, which is a one-line simulation command file 
that does a set simparms command. There is a different 
[sim] predcap in each technology's logic design library. 

Design Review Program 
The formula used by VTireview to calculate post-route 
interconnect capacitance is: 

C = Li * CM1 + L2 * CM2 

VLSI Technology Inc. - 5 April 1988 



100 Si 111 u]a.t.ion 

where: 

C = The interconnect capacitance in fF. 

Ll = The length of the metall wire in microns. 

CMl = The capacitance per micron for me tall in fF. 

L2 = The length of the metal2 wire in microns. 

CM2 = The capacitance per micron for metal2 in fF. 

Ll and L2 are read from a wire length file, [wrl]. 

For standard cells, the capacitance-per-micron factors are 
found by multiplying the hard coded gate array capacitance 
factors by the standard cell wire widths divided by 4. For 
gate arrays, CMl and CM2 are hardcoded to 0.255 and 0.171, 
respectively. These values may be altered by defining new 
values in your vti. boo startup file, as shown in this example: 

define gaCapPerLength1 0.274 
define gaCapPerLength2 0.186 

For predictive wire lengths, the calculation is: 

L1 = L2 = 100 + 250 * N 

where N is the number of macro pins on the node. 

Netlist Extractor 
The extractor calculates capacitance by multiplying the areas 
and perimeters of wires by the plate capacitance and sidewall 
capacitance values in the [etf] file. It also adds a 
metall/metal2 overlap capacitance. 

VLSI Technology Inc. - 5 April 1988 



Fault 
Simulation 

Sirnula.~io11 101 

Logic Compiler 
The logic compiler uses the same plate and sidewall 
capacitance factors as the extractor, but adds a factor to these 
to account for overlap capacitance, instead of calculating the 
exact overlap. The factors used are in the [tch] file, 
document.ed hy comments in the file. 

Fault simulation provides an automated algorithmic measure 
of a test program's ability to exercise nodes in your circuit. 
VLSI Technology Centers, as a service, offer assistance in 
performing fault simulation. 

Using your design netlist and simulation vectors, VLSI runs 
either the GenRad HIL03 so~ware simulator or the Silicon 
Solutions 1v1ACH 1000 hardware accelerator, and provides you 
with a detailed report of the results, as generated by VLSI's 
fault simulation post processor. The report includes fault 
coverage and counts of detected, not detected, and 
undetectable faults. Additionally, VLSI provides a file of 
undetected faults, a cross-reference file, a netlist screen file, 
and the original fault simulator output file. 

Assistance in analyzing the results is also provided to help you 
determine if the fault coverage is acceptable; otherwise, 
additional vectors are needed. VLSI can also assist you to 
enhance your fault coverage. 

VLSI Technology Inc. • 5 April 1988 



102 Si mu lat.ion 

Logic 
Design 
Review 

The steps in performing a fault simulation are: 

1. Translate the netlist to the fault simulator format using 
VTiexchange. 

2. Translate vectors to the fault simulator format using 
VTivector. 

3. Perform fault simulation. 

4. Run VLSI's fault simulation post processor to generate a 
more useful results file. 

5. Review the results of the fault simulation with the 
customer. Make any necessary changes to test vectors or 
logic to improve the coverage. 

Fault simulation is an optional step. 

When simulation is complete, the files and completed forms 
listed on the Logic Design Review Checklist are assembled 
for the joint Customer /VLSI logic design review. If everything 
is satisfactory, the customer and VLSI engineers sign the 
Statement of Work for all completed milestones. 

VLSI Technology Inc. - 5 April 1Q88 



• VLSI TECHNOLOGY, INC. ]():) 

Chip 
Compiler 

CHAPTER 7 

PHYSICAL DESIGN 

This chapter describes the physical design task usmg VLSI's 
chip compiler and other physical design tools. 

Using The Chip Compiler 
VLSI's chip compiler works with standard cell and arbitrary 
functional blocks. An arbitrary block does not follow the 
predefined standard cell layout rules, while a standard cell 
block contains standard cells of rixcd height. An arbitrary 
block can be a compiled cell, a mcgacell, custom layout, a 
datapath element implemented as compiled layout, or a state 
machine element implemented as a PLA. A standard cell block 
can be a standard cell subcircuit, or a datapath or state 
machine element implemented as standard cells. 

When you load your netli.st into the chip compiler, it places 
your arbitrary blocks as separate functional blocks, and 
initially puts all your standard cells in one block (Figure :39). 
After the initial placement, you can divide the standard cells 
up into a number of different areas, and move the various 
standard cell blocks and arbitrary blocks around until you get 
a good ftoorplan. 

VLSI Technology Inc. - 5 April 1988 



lll·l Physical Design 

~CMSSta,,oor 
¥0~!~1-) 

;~~~~~:~ 
_ c•os $Cheuucs-> 

~lSl 2u c"os ShMir 

ll•Cl) rHJ~~c 
[fn\) r~9~tC 
C.;cJ rt9oec 
cnn~J regotc_P 
lfn•lregO•t_p 

mt:mr_p 
[pell rise 
llgl r,.c 
lorpJr••t 
Cl~l rnnr.ip 

l~cl r1~unq:• .!li;l rl~<:tMP_tori! 

\~~: ~:~~~~,:~ }MIJ' rtmM ... i 
(fn•l rtS(tl\lp :ll<;J MHChlPJI 
C•~tl r1>cen1p :ts<l r(5ccMp_p 
l<el ri.ccn1p :toocl rhccn1p_p 
Hxtl r1sctn1p_cMJ -!Msl r!scc1>1p_p 
Uxtl risccMp cnn2 tlnsl r!stcMp_p 
[\Kl l r1•CCl>1p:cnn3 .[S~tl R!SC(HlP .! 
ll~tl risc.o1>1p_tPlM (eel rucchip_p 
ftxtl rioccn1p_CM$_lhtl risccMp_p_ch 
[\Ktl riHChip_Chn6°[tKll rlicthtp_p_ch 
(txtl rincr.ip_cnni [lyl rucc1>1p_p_co 

Figure 39. Chip Compiler Floorplan 

\!\Then you are satisfied with the floorplan, use the automatic 
routers to route within the standard cell areas. Draw routing 
guidance for power nets and special signal nets, then route all 
the functional blocks. If you included logical pads in your 
schematic netlist, you can generate a padring and route to it. 

It may take several iterations to get the most efficient 
placement and routing. The chip compiler allows you to undo 
previous operations, so you can try different configurations. It 
will probably take at least three passes of placement and 
routing to get a satisfactory fioorplan. If you have a large 
number of blocks, it can take more. If you are trying to 
obtain the smallest possible area, it may take IO to 20 passes 
of placement and routing. 

IMP OR TANT: This changes the interconnect capacitances. 

When you are satisfied with the placement, you can run a final 
compacted routing, which typically reduces the routing area 
by 20%. 

VLSI Technology Inc. - 5 April JQ88 



Physica.I Design 105 

You can convert your design to composition editor [cp] 
format, or layout editor [ly] format, to connect any 
incomplete routing and do additional manual editing. 

Before You Regenerate Your Netlists 
Begin To ensure that your netlists match your most current 

schematic, delete all HNL files and recreate new ones from 
your top-level schematic. Avoid deleting your state machine 
and datapath netlist files, however, since they take 
considerably longer to regenerate. 

Check V6 Blocks 
Before loading your netlist into VTichipComp, you should 
check any arbitrary blocks that were created with Version V6 
of VLSI's tools. 

While VTichipComp uses gridless · block routing, connectors 
must be spaced so that a via can be placed in front of any two 
adjacent connectors without causing a design rule violation. 
For CMN20A (VSClO), for example, this means a 
center-to-center separation of 8 lambda or more for connectors 
with a width of 4 lambda or less. For connectors that are 
wider than 4 lambda, the minimum center-to-center separation 
is larger. VTlchipComp only allows connectors on two routing 
layers, metall and metal2 for .CMN20A, and it does not 
support corner connectors. 

Unfortunately, the VLSI Tools Version V6 compiler cells and 
megacells do not obey these spacing rules. The V6 version of 
VTilogicComp also does not produce cells that obey these 
rules. 

Use I other I-+ I check macro cell! I in VTilayout or 
VTicompose, or checkMacroCell in Utility ChipComp to 

VLSI Technology Inc. - 5 April 1088 



100 P hysica.1 Design 

check all arbitrary bloeks to make sure the connectors obey 
the VTichipComp spacing rules. Any violation of the spacing 
rules is reported. 

If you started a chip design in V6, you need to rerun the cell 
compilers in V7 or manually fix all the connector spacing 
problems. The megacells and compiler cells have been fixed 
for Version V7, and VTilogicComp and VTichipComp in V7 
produce cells that obey these spacing rules. 

Create Phantoms 
Using the non-graphic shell environment or a VTiterminal 
window running I shell! I, use utility mcpconv to 
generate [mcp] phantoms for all of your arbitrary blocks 
before loading your netlist. An arbitrary block is any 
functional block that you implemented as compiled silicon. 
This utility is not necessary for megacells, which already have 
[mcp] cells, or compiled cells, which automatically generate 
the appropriate [mcp] cells. 

An example of an mcpconv session, from a VTiterminal screen 
running I shell! I or from the shell environment, is: 

VTI> util mcpconv 
Enter input physical cell (default type is [cif]): addchip 
Reading input physical cell. 
Writing output [mcp] cell. 

VTI> 

When there are multiple physical implementation types for a 
cell available, VTichipComp takes an [mcp] cell rather than a 
[cif] (Caltech Intermediate Form), [ly] (layout) or [cp] 
(composition) cell. The [mcp] cells load into memory faster, 
so using them makes your netlist load faster. Generating the 
[mcp] also provides you with the elements you need to verify 
your design with phantom extract, DRC and netcompare. 

VLSI Technology Inc. - 5 April 1988 



Physical Design 107 

NOTE: VLSI supplies a corresponding [mcp] for each 
megacell. 

VTichipComp does not automatically regenerate [mcp] cells if 
they are out of date. If you change the layout of your 
arbitrary block, you need to regenerate your [mcp] cells. 

Flatten The Netlist 
If the netlist you load into the chip compiler is a hierarchical 
netlist, usually [hns], the chip compiler uses the HNL 
flattener to flatten the netlist. Then the flattened netlist is 
loaded. If the netlist is a flattened netlist, usually [fns], then 
the netlist will simply be loaded. 

However, a netlist that has been flattened for the simulator 
cannot be used by the chip compiler, because it deletes items 
that do not appear at the transistor level, such as the weight 
schematic and the power and ground pads. To provide a 
flattened netlist for the chip compiler, either load the [hns] 
into the chip compiler, which will flatten it appropriately, or 
use the HNL utility with special switches, as described in the 
GUIDELINES chapter of the Chip Compiler Application 
Note. 

The flattener does not flatten the netlist all the way down to 
the transistor level. Instead, it stops flattening a cell if it is in 
the standard cell library or is listed in a file called 
place. els. List the names of all your arbitrary blocks, and 
any custom cells that are not in the standard cell library, in 
this file. Use VTitext or a system text editor to create a file 
named place. els, and list the arbitrary cell names, one per 
line, as shown in the example that follows. 

VLSI Technology Inc. - 5 April 1988 



108 Physical Design 

Compile 
Your Cell 

c8255 
it02d2a 
shif t4 
counter4 

# arbitrary block 
# custom standard cell 

NOTE: If you do not use the flattener -- that is, if you load an 
[fns] file -- the place. els file is not read, and the chip 
compiler will not know about your arbitrary blocks. 

Basic Operations 
The basic sequence of operations to compile a cell is: 

• Create phantoms for your arbitrary blocks. 

• Load the netlist. 

• Set the general floor plan options. 

• Run block placement to place all blocks. 

• Manually modify the floor plan. 

• Evaluate the floor plan. 

• Set desired seed placements. 

• Run initial placement to place standard cells, connectors, 
and pads. 

• Run placement improvement on the initial placement of 
the standard cells; a maximum of three passes should be 
sufficient. 

• Manually modify the standard cell placement. 

VLSI Technology Inc. - S April 1988 



Convert 
Your 
Layout 

Physical Design 109 

• Run the router to connect up the standard cells in each 
standard cell area. 

• Draw routing guidances and set desired widths for power 
nets and special signal nets. 

• Use the checkRouteBK command to review the block 
routing. 

• Run the router to connect all the blocks. 

• If the netlist contains I/ 0 pads, run the padring 
generator. 

• Convert the finished cell to layout or composition cells. 

Complete details on these operations are given in the Chip 
Compiler Manual and Chip Compiler Application 
Note. 

You need to convert your design to a physical layout format, 
either [ly] for the layout editor or [cp] for the composition 
editor. When the design is in a physical format, you can finish 
any incomplete routing, and do any additional manual editing 
that is required. Also, the design must be in a physical layout 
format in order to verify it with DRC and netcompare. 

Standard Cell Areas 
Convert standard cell areas to [ly] (layout) rather than 
[cp] (composition) format. Most standard cell areas are too 
big to be converted to [cp] format. The composition editor 
works best with about 20 instances per cell. It can be used for 
cells with 100 to 200 instances. Most large standard cell areas 
exceed this limit. 

VLSI Technology Inc. - S April 1988 



llO Physical Design 

Fixing Uls 

Large Chips 
For large chips, use the save on convert option in the chip 
compiler's I set up I property sheet. This option causes 
those cells being converted to [ly] format to be directly 
written to the disk without creating a cell in memory. This 
reduces the memory utilization and speeds up the conversion 
process for big chips. 

Another possibility for large chips is to use 
ut111 ty chipComp in VTishell to do the conversion. This 
reduces the memory required and makes the conversion run 
faster. The save on convert option defaults to on when 
you use ut111 ty chipComp. 

If most of the Unimplemented Interconnect (Uls) in a large 
design are in the padring, convert the core to [ly] and the 
padring to [cp], and correct the routing in the composition 
editor. 

In The Composition Edito:r 
You can use either the layout editor or the composition editor 
to fix any incomplete routes. If you convert your standard cell 
areas to [ly] cells, then you can convert your core cell to 
[cp]. However, just using I route I-+ I all Uis ! I and 
I compact I will not produce a working chip. Most of the 
Uls occur because there is no room to route them. You need 
to move wires and add jogs to create enough room to route 
these Uls. 

Compacting large chips in the composition editor may be slow 
or even impossible, depending upon your hardware. For 
core-limited designs, compacting in the composition editor 
pulls all the pads to the bottom left corner. 

VLSI Technology Inc. - 5 April 1988 



Physica.I Design J J J 

Use the composition editor check connectors, 
check node names and check constraints commands to 
look for disconnects, design rule violations and nodes that are 
sh.orted together. 

In The Layout Editor 
In the layout editor, your Uls are converted to lines on the 
TEXT layer. If you fix Uls in the layout editor, be sure to use 
I error I_. I run window DRC I to check the area around 
each UI you fix before running a DRC on the whole chip. 

IMPORTANT: Any time you alter the physical design or 
manually connect wiring, you must check the changes with 
DRC and netcompare. 

VLSI Technology Inc. - 5 April 1988 





• VLSI TECHNOLOGY, INC. 

CHAPTER 8 

POST-PHYSICAL DESIGN VERIFICATION 

This chapter describes the back-annotation and post-physical 
design simulation, phantom DRC and netcompare, 1 MHz test 
vector generation, phantom tape out, and Final Design Review 
design tasks. 

Back In the chip compiler, back-annotate your design with routing 
Annotation capacitances as described in the GUIDELINES chapter of the 

Chip Compiler Application Note. This is done by loading 
your design and using the I misc I_. I make PS'DJ 
command, which generates a [pst] cell containing the 
interconnect capacitances resulting from the routing wires. It 
also includes statistical allowances for fringing capacitance and 
other effects, for a more accurate simulation. 

VLSI Technology Inc. - 5 April JQ88 



11-1 PosL-Physica.I Design Ve,rifica.t.ion 

Post-Phy
sical 
Design 
Simulation 

Complete 
The 
Physical 
Design 

Be sure that you have a netlist that is correctly flattened for 
simulation purposes. Refer to the Netlists For Timing 
Verification and Simulation section, in the SIMULATION 
chapter, for a discussion of simulation netlists. 

Load your schematic netlist into the simulator, then load the 
[pst] file using the command load filename. pst. 
Resimulate the design using the back-annotated capacitances. 
Examine all of the critical paths carefully at this time. 

Use the show cap * command. Investigate any nodes that 
have become heavily loaded due to routing capacitance. If 
necessary, modify the schematics and redo the place and route 
as necessary. Pay close attention to the clock tree and critical 
paths. Using show cap * may result in a very large file. 
This can be especially cumbersome if the line limit in the 
simulator is kept at its default value of 100 lines. 

Before verifying the physical design, you need to generate the 
artwork for the logo, device number and revision level, 
trademark and copyright, layer numbers, and any other text 
you need to put on the final artwork. These should be added 
before you run the final netlist comparison and DRC. 

In the graphic tools, bring up the cellLib window. In the 
browser, select the VCCIO or VCCIOO library and the 
FOUNDRY category within it (Figure 40). Generate compiler 
cells for these elements, as described in the compiler cell 
library manual: 

• CLOGOI - The VLSI logo on the metall layer; an [ly] 
cell. 

VLSI Technology Inc. - 5 April 1988 



Post-Physical Design Verification 115 

• CFNDEV - The device number and revision letter; a 
[tpl] cell. Obtain this number from the Technology 
Center. 

• CTMARK1/CTMARK2 - The VLSI trademark in metall 
or metal2; an [ly] cell. 

• COPYR1/COPYR2 - The copyright symbol and year m 
metall or metal2. 

• CFNLAY - Layer numbers; a [tpl] cell. 

• CTEXT - A text generator; a [tpl] cell. 

--' . 
DEVICE NUMBER 

LOGO 

TEXT 

~::; l 
N/~ H. 

,, I 
MASK TRADEMARK, MET AL! MASK TRADEMARK, MET AL2 

COPYRIGHT, METAL! COPYRIGHT, METAL2 

Figure 40. Foundry Artwork 

LAYER 
NUMBERS 

Appendix C contains the data sheets for the CFNDEV, 
CFNLA Y and CTEXT elements. 

VLSI Technology Inc. - 5 April !988 



116 Post.-Physica.I Design Verificat.ion 

Phantom 
DRC 

Phantom 
Net
compare 

Output [elf] cells for the compiler cells you want. In the 
composition editor, place them in your top-level design at least 
10 lambda from other geometries. Place the copyright line 
above CTMARK. Visually check all the placements. 

Output the top level design from the composition editor as a 
[elf] cell. 

A~er the physical design is completed, generate CIF for your 
design. The cells will be represented as phantoms: black 
boxes with connectors. The actual physical layout for these 
cells will be merged in later by the VLSI Technology Center 
engineer. Use the [elf] cell as input to the design rule 
checking program, DRC. You can run DRC from the shell 
environment, or in a graphic terminal window. Ref er to the 
DRC Manual for detailed information on how to run a DRC 
and check the output. 

Be sure that there are [mep] cells for any datapath elements 
you have included in your design. For correct results, the 
phantom DRC needs an [mep] cell rather than a [elf] cell 
when checking datapath blocks. The DRC automatically uses 
the [mep] cell if it is present. 

The netlist comparison program compares the netlist extracted 
from the physical layout of your design to the corresponding 
schematic netlist. VLSI's netlist extractor generates a netlist 
from your physical layout cell -- [elf] , [ly] or [ep] -
that includes all the interconnect and capacitances. Refer to 
the VTiextract Manual for detailed information on 
extracting a netlist from physical layout. 

VLSI Technology Inc. - 5 April 1088 



Generate 1 
MHz Test 
Vectors 

Po::;c-Physica.I DPsign Veritlc~at.ion 117 

For the schematic netlist~ use an unflaHenecl original netlist 
that refers to any datapath elements using the model 
schematic, [mde] mdp (ceJJName). 

In both netlists, the cells will be represented as phantoms: 
black boxes with connectors. Bring up the netcompare graphic 
window and run a phantom netcompare as described in the 
Netlist Comparison Manual. 

All the vectors that were developed during logic and timing 
simulation were developed for at-speed simulation. In order to 
generate a prototype test program that can be used to deliver 
tested prototyes, you must create a set of low-speed, 
synchronous simulation vectors that can be converted into a 
test program. 

The application note entitled Test Generation Guidelines 
describes VLSI's requirements for developing test vectors. 
This application note should be read and understood before 
you generate your test vectors. This section provides a short 
synopsis of the test vector requirements; you should refer to 
the application note for more information. 

VLSI Technology provides a vector check utility that verifies 
that your test generation vectors adhere to the 
super-synchronous guidelines described 111 the Test 
Generation Guidelines application note. 
described in the VTlcheck manual. 

This utility is 

To create the simulation vectors, prepare a standard 1 MHz 
test program driver file and run a simulation to generate either 
a dynamic or report-on-change tabular [trc] trace output 
file. Regular report-on-strobe tabular format does not have 
the necessary timing information in it. This trace file is used 
to create the test program for the specified tester. 

VLSI Technology Inc. - 5 April 1988 



118 Post-Physical De.sign Verification 

There are three ways to create the required [trc] file, as 
shown in Figure 41: 

• Use VTitest to drive VTisim as described in the VTitest 
Manual. 

• Use VTisim commands entered manually or from a 
command file. 

• Write a Mainsail .MS file to drive VTisirn as described in 
the VTisim Manual. 

In all cases, the resulting output [trc] file is used by 
VTivector, run by a VLSI Technology Center, to create t,l1e 
test program. 

VLSI Technology Inc. - 5 April 1988 



VTisim 
command 

file 

Post.-Physical Design VerilkaLion 119 

test program 

Figure 41. Trace File Generation 

VLSI uses your simulation trace file, [trc], produced by 
VTisim, and the [lds] file produced by VTiscreen or 
VTicheck to generate the correct test vectors. An additional 
file used by VTlvector to re-verify that the vectors are 
synchronous is the [1 tg] file, produced by the vector checker, 
VTicheck. 

If you want your test program to contain a critical path check, 
an optional Critical Path Check [cpc] file may be specified. 

VLSI Technology Inc. - 5 April 1988 



120 Post-Physical D•·sign V•,rifirnt.ion 

Super-
Syn-
chronous 
Simulation 
Guidelines 

See the application note entitled Test Generation 
Guidelines for more information on creating the [1 tg] and 
[ cpc] files. 

The super-synchronous simulation guidelines described in the 
application note Test Generation Guidelines are 
summarized in this section. These are the simulation 
guidelines used by VLSI Technology's vector checker, 
VTicheck. 

Test Vector Guideline Summary 

• Run your simulation at 1 MHz. 

• Limit the number of required timing generators to 6 or 
fewer. 

• For a given input, all transitions must occur at the same 
edgetime throughout the simulation. 

• Edgetimes for input transitions must be multiples of 100 
ns, and must be between 0 and 800 ns. 

• No two timing generators can share the same edgetime 
assignment. 

• Inputs cannot change format during the simulation. 

• Bidirectional nodes and bidirectional control nodes may 
have only one transition per cycle. 

VLSI Technology Inc. - 5 April 1988 



Pose-Physical Design Verification 121 

• If a bidirectional node transitions during the same cycle 
as its control signal changes, the control signal must 
transition before the bidirectional node. 

• Avoid race conditions between paths. 

• Include all external signals and all control signals on 
bidirectional and three-state outputs in your trace file. 

• Submit only one trace file and limit your simulation to 
10,000 cycles or less. 

• Do not submit simulation vectors if there are any setup 
or hold violations, or any bidirectional conflicts. 

• Begin your simulation with all internal signals m the 
unknown state. 

• Design your circuit so that it can be initialized to a 
known state, and begin your simulation with vectors 
that initialize the circuit. 

• Never force the values of internal signals during 
simulation. 

• If you have any open drain or three-state outputs with 
pullups, simulate them with a rise time of 50 ns. 

• Make each output go both HIGH and LO\tV during the 
first 1000 cycles. 

• Submit an Input Timing Generator file. 

• If you want critical paths checked, submit a Critical 
Path Check file. Critical paths cannot be checked within 
the first 5 cycles. 

VLSI Technology Inc. - 5 April 1988 



Checking 
Vectors 

How to 
Check 
Vectors 

• If your design includes a block for which VLSI 
Technology supplies a test program, submit a Test Block 
Map file. 

VLSI provides a vector checking utility, VTicheck, that scans 
a set of trace vectors for adherence to VLSI's 
super-synchronous vector guidelines. These guidelines ensure 
that the vectors are easily convertible to a variety of testers. 
\Nhile checking the trace file for conformance to 
super-synchronous vector guidelines, VTicheck creates the 
utility files that are required to convert the vectors. 

VTicheck requires only a trace file and netlist for inputs, and 
produces not only an error report, VER, but also a complete 
trace definition file, TDF, and input timing generator file, ITG 
as well. 

The VTicheck utility examines vectors for conformity to an 
expected timing format. The timing format can be specified 
explicity, by providing an ITG or TDF file, or the timing 
information can be derived from the trace vectors as they are 
checked. 

If an Ids file, output from VTiscreen, or an HNS netlist is 
supplied, VTicheck creates a TDF file. Otherwise, a TDF file, 
either with or without explicit timing information, must be 
supplied as input. If a TDF file without timing information is 
supplied, the TDF file 1s modified to include timing 
information. 

VLSI Technology Inc. - 5 April 1988 



Test 
Specifi
cation 
Form 

Post.-Physi<~a.1 Design Verification 12~~ 

If for some reason, such as the unavailability of a netlist, it is 
not possible to create an Ids file, the vector checker can still be 
used, but you must create a TDF file by hand. The syntax of 
the TDF file is given in the VTlcheck Manual. 

Example 
Be sure that your trace and Ids files are available, then call 
VTicheck by typing utility check, as shown in this 
example: 

VTI> utility check 
VTicheck> input [trc]counter 
VTicheck> netlist [hns]counter 
VTicheck> itg [itg]counter (optional) 
VTicheck> duration 1000 (defaults to 1000 ns) 
VTicheck> source vlsi (defaults to VLSI) 
VTicheck> output counter 
VTicheck> create 
####################################################################### 

#### No Errors - Vectors are Super Synchronous #### 
####################################################################### 

VTicheck> quit 

The [ver], [i tg] and [tdf] outputs all share the same 
cellname, given with the output statement. 

Prototype And Production Test Specification Form 
When the 1 MHz test vectors have been successfully generated, 
the customer and VLSI complete and approve the Prototype 
And Production Test Specification Form. Complete 
additional forms if there is more than one critical path to be 
tested. 

VLSI Technology Inc. - 5 April 1988 



l'.24 Post-Physical Design Veritkat.ion 

Phantom 
Tape Out 

Additional Guidelines For Test Program Generation 

• Submit a Pad Placement Form before fabrication begins. 

• Include a brief functional description for each device pin 
in the Pad Placement Form. 

• When performing final simulations that will be used to 
test the device, do not place stimulus values on internal 
nodes with check ini t. 

• Signal names used during final simulations must be 
identical to the signal names defined on the Pad 
Placement Form. 

• Submit only one top-level trace file from the final 
simulation to the test engineer. 

\\Then the physical design and verification are completed, 
create a tape of the layout database in [cif] format, with the 
phantoms, and send it to the Technology Center. The 
Technology Center engineer reviews the package and then, 
upon customer approval, merges in the cell layouts and 
completes the physical design verification and the test program 
generation. 

VLSI Technology Inc. - 5 April 1088 



Final 
Design 
Review 

Post-Physical Design Verification 125 

When the post-physical design simulation is complete, the 
issues listed on the Final Design Review Checklist are 
reviewed jointly by the customer and the VLSI design 
engineer, to ensure that all possible problems have been 
resolved. The Tape Out Checklist at the end of the form 
enst1rcs that a.11 t ],,, 

V.1..1.V data required to create prototype8 h::is 

been submitted. 

The Performance Approval Form is also completed at this 
time, and signed off by the customer and VLSI. This form 
authorizes mask generation and prototype production. 

Finally, the customer and VLSI engineers sign the 
Statement of Work for all milestones that have been 
completed. 

VLSI Technology Inc. - 5 April !988 





• VLSI TECHNOLOGY, INC. ] ·>-
"' 

Generate 
Test 
Program 

CHAPTER 9 

IMPLEMENTATION 

This chapter describes the implementation tasks in the 
cell-based design cycle, including test program generation, 
layout merge, physical design verification and simulation, CIF 
tape out, and final check. 

All the test vectors developed using VTitest or the 
mixed-mode simulator should follow the I MHz guidelines. 
These vectors are then converted to a Sentry test program 
using VTivector at the VLSI Technology Center. If the design 
uses megacells, the Technology Center integrates the canned 
megacell test programs with the test vectors provided by the 
customer, as described in the Megacell Test Development 
Methodology application note. If there are any 
asynchronous designs requiring special test programs, they are 
developed manually or by using VTitest with the help of the 
Technology Centers. 

VLSI Technology Inc. - 5 April JQ88 



128 Irnplernent.at.ion 

Merge Cell 
Layouts 

Physical 
Design 
Verifica
tion 

This step is performed by the Technology Center engineer, 
who uses the PHMERG utility to merge the layouts of the 
standard cells into the phantom structures. The stdphy 
library must be on the search path before running PHMERGE. 
PHMERG accepts either [cif] or [ly] files, and creates a file 
called design_ merge. cif. This is the final, complete CIF 
database which is used to generate masks. It is very 
important to perform the full physical design verification on 
this database. 

Certain compiled blocks are represented by a composite CIF 
with a model built in, for simulation purposes, because a 
transistor-level simulation of the block would be too 
time-consuming. The Technology Center engineer must be 
sure to have the actual full CIF for these blocks, rather than 
the composite/model file. 

Run the standard design verification programs on the full 
physical layout as described for the phantom DRC, extract 
and netcompare. Refer to the POST-PHYSICAL DESIGN 
VERIFICATION chapter for more information. 

Design Rule Check 
Perform DRC, using the merged physical layout, and iterate 
until the results are correct. Record the results in a log file. 

Extract And Netcompare 
Extract the netlist from the [cif] file using VTiextract, as 
described in the POST-PHYSICAL DESIGN VERIFICATION 
chapter, and perform a netlist comparison against the 
schematic that was used for the full simulation. Refer to the 
Netlist Comparison Manual for complete information on 
performing a full physical netlist comparison. 

VLSI Technology Inc. - 5 April 1Q88 



Implementation 12!) 

In a full transistor-level netcompare, the schernatic netlist only 
contains references to models (mde ). In order to compare the 
interconnect within the cells, you need to switch in the 
flattened extract netlist, fne, for each mde referenced in the 
schematic netlist. This creates an equivalent transistor-level 
schematic. Although the netlists for layout and schematic are 
the same for standard cells, this netcompare checks for any 
problems created by wiring over a cell in the layout or 
composition editor. The netcompare catches any shorts in the 
CIF file that result from this wiring. 

Do not use an hnc netlist from the composition editor for this 
netcompare. The netlist is based upon the center line of the 
wire and does not contain wire width information. For 
example, if two wires are 3 microns apart, and each wire is 10 
microns wide, the hnc represents them as separate, but the 
CIF shows a short. 

Do not use the flattener utility to generate the fne by 
switching a logical phantom (lph) to an fne, as the flattener 
drops the pad node name in the pads. 

Repeat the netcompare until the results are correct. Record 
the results in a log file. 

Supply the starting identifications manually; do not use au to, 
which can hide VDD and VSS shorts and opens. 

The netcompare should result in 0 errors. However, there may 
not be 100% identification, and all unidentified nodes must be 
examined and understood. For example, compiled cells, such 
as RAMs, often contain large numbers of internal nodes that 
cannot be identified. 

Netcompare should report that the physical netlist has the 
same number of VDD and VSS nodes that the chip is to have. 

VLSI Technology Inc. - 5 April 1988 



130 lrnplementat.ion 

Simulation 

The numbe!' of schematic VDD and VSS nodes is not 
significant. If netcompare results indicate that any layout 
changes need to be made, the verification loop has to be 
repeated. 

Visual Check 
Make a large plot of the final CIF and review it visually. 

Load the top level [fne] file into VTisim and perform static 
checks. Record the results in a log file. Static checks include: 

• check inputs 

• check outputs 

• check push pull 

• check usage 

• show power 

• show syn *Vdd* 

• show syn *VSS* 

If there are compiled instances in the chip, static checks may 
result in lengthy listings. 

Use the VTisim commands set power high and 
set power low to set power and ground at the pads only: 
do not use the wild cards *Vdd* or *VSS*. Using the exact 
pad names rather than wildcards prevents power shorts and 
opens from being masked. By driving the power and ground 

VLSI Technology Inc. - 5 April 1988 



CIF Tape 
Out 

Implementation 131 

only at the pads, power and ground bus connectivity 1s 
thoroughly checked and floating wells are flagged. 

Customer Package :Marking Form 
Complete the Customer Package Marking Form and 
attach it to the Chip Specification Form. Be sure to sign 
the form. 

CIF Tape Out 
Review the physical layout DRC and netcompare logs, [hns] 
static checks, [fne] static checks, CIF plot, specification 
documentation, tooling form and CIF tape out form with the 
Technology Center engineer. Create a tape of the full chip 
CIF file and send it to the Technology Center. 

Send the test vectors, including the [tst] , [vec] and 
[s10] or [s20] files, to the VLSI test engineer. If you used 
VTitest, the pindef section of the VTitest [tst] file should 
have the same pinout as the chip. If you have not already 
done so, sign the Test Program Done portion of the 
Statement of Work. 

Archive The Design 
Aher Tape Out, archive the database according to instructions 
from the Technology Center System Administrator. The 
Administrator is given an archive tape, and the VLSI engineer 
keeps a second archive tape, along with a copy of the 
specifications and a complete set of the schematics. Appendix 
D gives a recommended outline of project tape and binder 
documentation for archiving. 

VLSI Technology Inc. - 5 April 1988 



13:2 lmplementa.tion 

Final 
Check 

Mask 
Generation 

Prototypes 

Review the prototype packaging with the .. VLSI Product 
Engineer. Inform the Product Engineer and Test Engineer 
about any unusual requirements for chip testing. If VTitest 
was used, and the chip pinout is not identical to the pinDef 
section, notify these engineers. 

The VLSI Mask Layout department generates masks from the 
final database after all physical design verification is complete 
and customer approval is obtained. 

Prototypes are delivered to the customer in the prototype 
package specified. The customer evaluates the prototypes and, 
when functionality is approved, fills out the Prototype 
Approval Form and returns it to the Technology Center. 
Production can begin after this milestone is completed. 

VLSI Technology Inc. - S April 1988 



• VLSI TECHNOLOGY, INC. 1;33 

APPENDIX A 

VLSI DESIGN TOOLS 

The descriptions below summarize the functions of each of the 
VLSI design tools used in the cell-based design cycle. Each 
description is meant as an overview of that particular tool; for 
a more detailed description, refer to the appropriate users 
guide. 

Cell Compiler - VTlcellLib 
The VLSI Cell Compiler is the interface to the VLSI Cell 
Compiler Library, and to the Datapath and State Machine 
compilers. With VTicellLib, you can specify parameter values 
and display parameter properties for compiler cells and timing 
models. Supported compiler cells include RAM, ROM, PLA 
and Multiplier. Outputs from the Cell Compiler are the 
physical representation ( CIF) of the parameterized cell, an icon 
of it for use in the schematic editor, and a behavioral model of 
it for simulation in VLSI's mixed mode simulator. 

Chip Compiler - Mixed Standard Cells and Multiple 
Blocks 
The Chip Compiler is an integrated arbitrary block and 
standard cell placement and routing system. It provides a 
highly automated methodology for chip assembly. The system 

VLSI Technology Inc. - 6 April 1988 



J:H APPENDIX A: VLSI Design Tools 

allows you to place arbitrary blocks interactively, and to fill in 
the regions between those blocks with standard cells. Analysis 
aids are inc:luded to evaluate the eftlciency of the chip's 
floorplan on the basis of interconnect routing density. 

The Chip Compiler automatically sizes the defined standard 
cell regions to properly accommodate all the standard cells and 
their interconnections as they are listed in the design. After 
automatic placement of the standard cells, these regions and 
the interconnections between them are routed usmg a 
compaction algorithm to minimize chip area. 

You can specify wire widths and routing guidance for 
interconnection paths with rough diagrams within the 
floorplan. The Chip Compiler follows this guidance to help 
optimize the floorplan and minimize the routing area for 
critical paths, such as power or highly propagated signals. 

If the padring is specified in the design's schematic, the Chip 
Compiler automatically assembles it around the chip. The 
system evaluates the area of the design and selects the proper 
pad type based on the pitch for a core-limited or pad-limited 
design. 

Composition Editor for Post-Route Editing 
VTicompose 
The Composition Editor is a graphical chip assembly tool used 
for placement and routing of arbitrarily-sized rectangular 
blocks. As is the case with the Chip Compiler, each block can 
be one of several types, or a combination of custom cells 
and/or cells from the VLSI standard cell library, cell compiler 
library, or megacell library. Routing can be done manually or 
automatically from a netlist. 

Once the design is placed and routed, you can use the 
VTicompose compactor to minimize silicon area consistent 

VLSI Technology Inc. - 5 April IQ88 



APPENDIX A: VLSI Design Tools 13& 

with the design rules of a given technology. The compaction 
process automatically displays the critical paths limiting 
further compaction, allowing you to optimize the design by 
rearranging blocks and interconnects with an extensive set of 
manual editing commands. VTicompose can generate CIF for 
mask fabrication, and a hierarchical netlist, back-annotated 
with interconnect capacitances, for resimulation of the design. 

Datapath Compiler 
The Datapath Compiler is a silicon compiler used to help 
create repetitive portions of a design. It can generate the 
design in either a netlist format based on the VLSI Portable 
Library, or in a high-density layout form. The Datapath 
Compiler is good at implementing logic that is applied to each 
signal in a bus, such as in the execution unit of a computer. It 
is not restricted to computer design, however, and is useful in 
many areas of system design. 

A datapath is specified by drawing a schematic using elements 
from the datapath library. This schematic is used as input to 
the compiler to tell it what elements are required and how 
they are to be interconnected. As is the case for other VLSI 
compilers, a parameter cell must be created to specify other 
necessary options. Functional units and bus interconnections 
are normally the specified word width; however, special 
operators can be used to reduce the number of bits. Arbitrary 
inter-bitslice routing is provided using the same special 
operators. 

The Technology Center engineer can add cells to the datapath 
compiler in any of three ways: schematic only for 
implementation in either standard cells or as a gate array; 
layout, following VLSI's layout practices to add cells 
compatible with the existing cells from the datapath library; 
or layout to new rules using the compiler just to assemble the 
new cells. 

VLSI Technology Inc. - 5 April 1988 



1;~5 APPENDIX A: VLSJ Design Tools 

\Vith a specification schematic and a parameter cell, you can 
create a gate-level netlist suitable for gate array or standard 
cell implementation, a CIF implementation of the datapath, or 
a gate-level simulation and timing analysis model of the CIF 
implementation. An interface to the VLSI Design Assistant 
a.Ilows you to make fast tradeoffs when planning and 
partitioning a system containing datapaths. 

Design Assistant 
The Design Assistant evaluates the different implementation 
technologies such as gate array, standard cell, full custom and 
silicon compilation to identify the most efficient and effective 
method in which to implement a chip. Feasibility studies for 
different chip designs can be implemented at whatever level of 
design detail is available. Through the use of artificial 
intelligence algorithms, the system provides a list of design 
alternatives rationalized by power, size, and packaging 
requirements. 

Design Rule Check - VTidrc 
VLSI's design rule checker verifies that geometric layouts 
conform to fabrication process constraints. For ease in 
editing, the errors can either be printed textually, plotted, or 
highlighted in the Layout Editor, along with the physical 
layout, for edit-in-place design corrections. 

Exchange Netlist Formats - VTiexchange 
VTiexchange is a program that translates netlists from one 
format to another. It has a screening utility to identify simple 
errors and other potential problems in your logic design. 
VTiexchange can read VLSI's HNS and FNS formats, 
GenRad's HILO, Mentor's MIF, Silvar-Lisco's SDL, and Tegas. 
VTiexchange can write VLSI HNS and FNS, HILO, Silicon 
Solutions' MACH 1000, SDL, Tegas, and Merlyn's VR. 

VLSI Technology Inc. - 5 April 1988 



APPENDIX A: VLSI D~sign Tools 1:37 

Extract Netlist - VTiextract 
VTiextract extracts a transistor-level netlist from the physical 
database. The extracted netlist contains transistor sizes, node 
names and accurate interconnect eapacitances. It can be used 
as input to the Mixed-Mode Simulator, or compared to the 
netlist produced by the Schematic Editor with the Netlist 
Comparison program to verify circuit performance. 

Fault Simulation - HIL03 and MACH 1000 
Fault simulation is performed with either the GenRad HIL03 
or the Silicon Solutions 1v1ACH 1000 software. Using these 
packages, the Technology Center runs either a complete fa ult 
simulation, 1vhich covers all of the faults in the fault set, or an 
incremental fault simulation, rerunning the fault simulation 
after incorporating additional test vectors. 

The report includes fault coverage and counts of detected, not 
detected, and undetectable faults. Additionally, VLSI provides 
a file of undetected faults, a cross-reference file, a netlist screen 
file, and the original fault simulator output file. 

Icon Editor - VTiicon 
The icon editor is a symbolic editor which allows you to create 
custom symbols, called icons, to represent gate-level, 
transistor-level or higher-level cells in the schematic editor. 

Logic Compiler for Standard Cells and One Arbitrary 
Block - VTllogicComp 
The VLSI logic compiler provides a means of implementing a 
schematic netlist into a physical structure consisting of placed 
and routed standard cells and, optionally, a single arbitrary 
block. The schematic is loaded into the VTilogicComp 
window where it is automatically placed and routed. The 
Logic Compiler can either generate an entire chip, with pads; 
or a functional block that can be used with other functional 
blocks, such as compiled cells or megacells, to implement a 

VLSI Technology Inc. - 5 April 1Q88 



138 APPENDIX A: VLSI Design Tools 

larger chip. Using the Logic Coinpiler, you can control the 
placement of critical paths by weighting nets or seed-placing 
cells. You can also control I/O placement and the shape of 
the functional block. 

VTilogicComp is optimized for double-metal routing. Second 
layer metal is routed over cells, based on automatically 
generated blockage masks. You can generate a 
back-annotated netlist that contains interconnect capacitances, 
and resimulate it to verify circuit performance. Functional 
verification can also be accomplished through the use of 
behavioral models. 

This tool has been replaced by the Chip Compiler in V7. 

Netlist Comparison - VTinetComp 
VTinetComp takes the netlists produced from any two of the 
VLSI Tools and compares them to verify that they match. 
For example, a netlist from VTischematic and one from the 
Chip Compiler can be compared to see if the physical layout 
does, indeed, represent the original logical data. 

Review Program - VTireview 
'lLSI's Design Review program assists the designer of gate 
array or standard cell blocks in analyzing and simulating 
circuits. It offers the following major functions: 

• Generates a pre-route or post-route design report. 

• Generates a post-route back-annotation file which 
includes parasitic wiring capacitances. 

Schematic Editor - VTischematic 
The schematic editor allows you to create, view, edit, annotate 
and plot hierarchical schematic diagrams of standard cells, 
megacells, gate arrays, compiled cells and custom cells. Its 

VLSI Technology Inc. - 5 April 1988 



APPENDIX A: VLSI Design Tools 1:3\J 

output is a hierarchical netlist that can be simulated or 
netlist-cornparecl for design verification. 

Screener - VTiscreen 
The netlist screener is a program that identifies simple errors 
and other potential problems in the logic design. It also 
provides useful information about cell usage. VTiscreen reads 
the netlist of the design and performs the following 
calculations: 

• Calculates the internal cell and I/O pad utilization and 
prints a summary report. 

• Provides a Design Statistics report listing information on 
the number of nets and FromTos - connections between 
two pins - in the design. 

• Provides a Design Complexity report listing gate 
equivalents per cell. 

• Checks for certain design and connectivity errors and 
other potential problems in the design. 

• Optionally writes a Logical Design Structure [lds] file 
to be used by VLSI's design review or vector conversion 
programs. 

Simulator - VTlsim 
VTisim can simulate a mixture of gate-level, transistor-level 
and behavioral-level models, which simplifies design 
verification against pre-defined specifications. vVith VTisim, 
you can simulate interactively with immediate textual and 
graphical feedback, or simulate in batch mode. Waveforms 
can be displayed during the simulation and/or plotted from a 
trace file produced by the simulation. 

VLSI Technology Inc. - 5 April 1088 



140 APPENDIX A: VLSI Design Tools 

State Machine Compiler 
The State Machine Compiler is a logic synthesizer that 
provides a fast and simple means of generating the control and 
state logic of a chip. The state machine is specified in a 
high-level, state-transition language. You write equations for 
each state to generate outputs and to change to a new state. 
If you want to check the specifications, the compiler 
accelerates the process by simulating the state machine 
directly from its specifications, without taking the time to 
create a final netlist. 

When the design is ready, the compiler translates the state 
machine specifications into an internal gate form which it can 
implement either as a netlist for a gate array or standard cells, 
or as a PLA layout. 

Test/Simulation Description Language - VTitest 
VTitest allows you to describe the physical characteristics, 
timing information and expected response values for a circuit. 
VTitest uses a high-level test description language that 
automatically translates input information into commands 
that can be executed by VTisim. The output can be used to 
generate a complete test program for the Sentry series of IC 
testers. 

Timing Verifier - VTitv 
The VLSI timing verifier is intended for a designer who is 
designing a medium-to-high performance part. No knowledge 
of transistor-level design is required to use this tool. Since 
static timing analysis is performed, no input or case vectors 
are given and no assertions have to be added to the circuit to 
be verified. 

The timing verifier is intended to work with synchronous 
systems: systems that are composed of alternating levels of 
storage elements and combinatorial logic. All clocks must be 

VLSI Technology Inc. - 5 April I 088 



APPENDIX A: VLSI Design Tools 141 

explicit,Jy declarecl: the verifier is not able Lo derive clocks from 
counter chains. It is also not able to verify the correctness of 
self-clocked or data-clocked logic. 

The timing verifier should be used to find potential timing 
problems in the design after the design has been entered with 
the scliematic editor and its primary functionality has been 
verified with simulation. Using the verifier to find and rectify 
timing problems decreases some of the simulation burden. 
Among the checks made by the timing verifier are: 

• ·whether the delay along a given path is within specified 
tolerance. 

• If there are any set up and/or hold violations. 

• ·whether the clock skew between any two clock signals is 
within a specified tolerance. 

• ·which are the critical paths in the circuit. 

• Cycle time of the circuit. 

• Delay along any specified paths. 

• Minimum period for any dock. 

• "\Vorst" paths: tli<' paths with the greatest or least 
delay. 

Vector Conversion Program - VTivector 
VTivector 1s a general-purpose vector conversion and 
companson program. Using VTivector, a designer can 
automatically convert a simulation trace file into the input 
driver format of another simulator, or create test vectors for 
any of the tester formats VTivector supports. 

VLSI Technology Inc. - .5 April 1988 



142 APPENDIX i\: VLSI Design Tools 

Vector Checker - VTicheck 
VTicheck checks 1 MHz test simulation vectors for conformity 
to VLSI's super-synchronous vector guidelines for creating 
prototype test programs. 

VLSI Technology Inc. - 5 April 1088 



• VLSI TECHNOLOGY, INC. 

APPENDIX B 

PACKAGE PIN INDUCTANCES 

This appendix lists the package pin inductances for the 
semiconductor packages offered by VLSI Technology. 

S/B Pin Inductance - S/B Packages 

PKG. Low Mediur1 Low Mediur1 High 
<O - 5 nH) <5 - 10 nH) <10 - 15 nH) <15 - 20 nH) 

22-pin 2, 3, 7-10, 1, 4, 5, 11, 

S/B 13, 14, 18-21 12, 15, 16, 6, 17 
22 

24-pin 2-11, 1, 12, 13, 24 S/B 14-23 

28-pin 4-11, 2, 3, 12, 13, 1, 14, 15, 
S/B 18-25 16,17,26, 28 
250x250 27 

28-pin 6-9, 1-5, 10-19, 
SIB 20-23 24-28 
310x310 
28-pin 

4-11, 1-3, 12-17, S/B 
18-25 26-28 350x350 

40-pin 8-13,28-33 
2-7, 14-19, 

1, 20, 21, 40 22-27, SIB 34-39 

48-pin 10-15, 4-9, 16-21, 1-3, 22-27, 
34-39 28-33, 46-48 S/B 40-45 

64-pin 10-23, 2-9, 24-31, 1, 32, 33, 64 
S/B 42-55 34-41,56-63 (23.4 nHl 

VLSI Technology Inc. - 5 April 1088 



H4 APPENDIX B: Package Pin !11dud.a.111.:es 

CPGA 
Pin Inductance - CPGA Packages 

low Mediul'I low Mediul'I High PKG. <O - 5 nH) (5 - 10 nH) <10 - 15 nH) 05 - 20 nH) 

68-pin All pins 
CPGA 9,26,43,60 except 9, 26, 

43 and 60 

84-pin Al I pins 
CPGA 1, 22, 43, 64 excep.t 1, 22, 

43 and 64 

1, 2, 4, 5, 3, 6, 27, 30, 
7-2G, 28, 29, 33, 3G, 57, 
31, 32, 34, 35, 60, 63, G6, 

120-pin 37-56, 58, 59, 87, 90, 93, 
CPGA Gl, 62, G4, 65, SG, 117, 120 

87-86, 88, 89, 
91, 92, 94, 95, 
97-116, 118, 
119 

23, 68, 113, 1, 10, 11, 2-9, 12-15, 83, 173 
158 16-18, 22, 19-21, 23, 

180-pin 24, 28, 31, 25-27, 29, 

CPGA 46, 63, 64, 30, 32-45, 
66, 70, 71, 47-G2, 65, 
91, 100, 101, 67,69, 72-
106-108, 82, 84-90, 
112, 114, 92-99, 
118, 121, 102-105, 
136, 153, 109-111, 
154, 156, 115-117, 
160, 161 119, 120, 

122-135, 
137-152, 
155, 157, 
159, 
162-172, 
174-180 

VLSI Technology Inc.· 5 April 1988 



APPENDIX B: Package Pin lncluct.n.nceo H5 

PDIP 
Pin Inductance - PDIP Packages 

Low Mediur1 Low Mediur1 High 
PKG. <O - 5 nH) (5 - 10 nfD <10 - 15 nH) (15 - 20 nH) 

20-pin 2-9, 12-19 1, 10, 11, 
PDIP 20 

40-pin 8-13, 2-7, 14-19, 1, 20, 21, 
PDIP 28-33 22-27, 40 

180x180 34-39 

40-pin 6-15, 2-5, 1, 20, 21, 
PDIP 26-35 16-19, 40 

200x200 
22-25, 
36-39 

40-pin 2-19, 1, 20, 21, 
PDIP 22-39 40 

260x266 

PLCC 
Pin Inductance - PLCC Packages 

Low Mediur1 Low Mediur1 High 
PKG. <O - 5 nH) (5 - 10 nH) <10 - 15 nH) <15 - 20 nH) 

28-pin All pins PLCC 

44-pin 1-4,9-15, 5-8, 16-19, 
PLCC 20-26, 27-30, 

31-37, 38-41 
42-44 

68-pin 
PLCC 

All pins 

84-pin All pins 
PLCC 

VLSI Technology Inc. - 5 April !D88 



146 APPENDIX B: Packa.ge Pin Inductances 

Pin Inductance - LLCCC and LDCCC Packages 
PKG. Low MediuM Low MediuM High 

<O - 5 nH) (5 - 10 nH) 00 - 15 nH) (15 - 20 nH) 

44-pin 1-5,8-16 6,7,17,18, 
19-27, 30-38, 28, 29, 39, LDCCC 41-44 40 

68-pin Al 1 pins 
LL CCC 

84-pin 1, 21, 22, 43, 2-10, 13-20, 11, 12, 32, 
LL CCC 44,64,65,84 23-31,34- 33, 53, 54, 

42, 45-52, 74, 75 
55-63,66-
73, 76-83 

VLSI Technology Inc. - 5 April 1988 



• VLSI TECHNOLOGY, INC. 117 

APPENDIX C 

FOUNDRY CELLS 

CFNDEV - REV 1.1 
CMOS STANDARD DEVICE IDENTIFICATION NUMBEH 
TEXT CELL 

DESCRIPTION 

CFNDEV is a text generator cell, used to place the device 
number of a particular chip on selected mask levels. The 
device number (typically four digits, with an optional one or 
two character revision/ device variation extension) and the 
magnification (size of the text) are parameters to the cell. 

PARAMETERS 
+--------------------------------------------------------------------------+ 

I PARAMETER 
I NAME 

I PARAMETER 
I DESCRIPTION 

I DEFAULT I RANGE 
I VALUE I MIN/MAX I 

[-----------------------+------------------------------+---------+---------[ 
I FNDEV_device_number I 4 digit device number, 0-2 I 0 I N/A I 

I I character revision/variant I I I 

[-----------------------+------------------------------+---------+---------[ 
I FNDEV_magnification I Size of text. (Width, in I 2.L I 1 I** I 

I I lambda, of geometries within I I I 

I I text.) I I I 

[-----------------------+------------------------------+---------+---------! 
I FNDEV_draw_all_layers I See note (1) I FALSE I N/A I 

+--------------------------------------------------------------------------+ 

** No real range. 

VLSI Technology Inc. - 5 April 1988 



148 APPENDIX C: Foundry Cells 

Note (1) - When FNDEV_draw_all_layers is FALSE, the text is drawn on PWELL, 
NWELL, P diffusion, N diffusion and METALl layers. 
When FNDEV_draw_all_layers is TRUE, the text is drawn on all 
layers except the passivation layer, CG. Text is never drawn 
on the passivation layer. 

CELL SIZE 

For FNDEV-magnification = 2.0L, 

WIDTH = 90 lambda, HEIGHT = 20 lambda 

NOTES: The abutment box for the cell is 3 lambda beyond 
the maximum size of the actual geometries. There is an 
EXCLUDE layer around the entire cell. This EXCLUDE layer 
prevents the DRC program from checking the internal 
geometries (text) and thus prevents false DRC errors. 

USING THE DEVICE NUMBER CELL: 

The parameters to this cell are 1) the device number of the 
circuit, and 2) the width of the geometries used to generate 
text on the mask layers. 

The cell assumes that the device number is 4 digits, optionally 
followed by up to 2 revision letters. This format is the VLSI 
standard. The device number field is padded by blank 
characters to make the length 6 characters. 

VLSI Technology Inc. - 5 April 1Q88 



APPENDIX C: Foundry Cells 149 

CFNLAY - REV 1.1 
CMOS MASK REVISION LETTER TEXT CELL 

DESCRIPTION 

CFNLA Y is a text generator cell, used to place the rev1s1on 
ieLLer of each mask iayer within a particular circuit. This celi 
is used to track changes that affect only one or a few mask 
layers. Unlike other CMOS cell compilers, this cell requires 
that the engineer knows which physical masks are affected by 
changes in drawn layers. A chart illustrating drawn layers 
and their corresponding physical layers is included to make 
this easier. 

PARAMETERS 
+-------------------------------------------------------------------------+ 

PARAMETER 
NAME 

I PARAMETER 
J DESCRIPTION 

J DEFAULT J RANGE 
I VALUE I MIN/MAX 

----------------------+------------------------------+---------+---------
FNLAY _magnification I Size of text. (geometry's I 2. 1 /** 

I width within text, in lambda) I 
----------------------+------------------------------+---------+---------

FNLAY uses metal2 TRUE: Output mask revision 
for metal 2 and via. 

FALSE: No metal 2 or vias 
used in this circuit. If 
other cell compilers are 
used, this must be TRUE. 

TRUE N/A 

----------------------+------------------------------+---------+---------
FNLAY mask 10 rev I Diffusion mask revision I * I N/A 

----------------------+------------------------------+---------+---------
FNLAY mask 11 rev I Field Dope mask revision I * I N/A 

----------------------+------------------------------+---------+---------
FNLAY mask 20 rev I Vtn mask revision I * I N/A 

----------------------+------------------------------+---------+---------
FNLAY mask 21 rev I Vtp Adjust mask revision I * I N/A 

----------------------+------------------------------+---------+---------
FNLAY mask 23 rev I P-well mask revision I * I N/A 

----------------------+------------------------------+---------+---------
FNLAY mask 24 rev I N+ diffusion implant mask 

I revision ** 
I * 
I 

I N/A 
I 

----------------------+------------------------------+---------+---------
FNLAY mask 25 rev I P+· diffusion implant mask 

I revision 
I * 
I 

I N/A 
I 

+----------------------+------------------------------+---------+---------+ 

VLSI Technology Inc. - 5 April 1988 



150 APPENDIX C: Fo11ndr.v Cells 

+-----------------------------------------------------------------------------+ 
PARAMETER 
NAME 

I PARAMETER 
I DESCRIPTION 

I DEFAULT I RANGE I 
I VALUE I MIN/MAX I 

-------------------------+------------------------------+----------+---------! 
FNLAY mask 26 rev I N-well mask revision I * I N/A I 

-------------------------+------------------------------+----------+---------! 
FNLAY mask 40 rev I Polysilicon mask revision I * I N/A I 

------=----=--=----------+------------------------------+----------+---------! 
FNLAY mask 50 rev I Contact mask revision I * I N/A I 

------=----=--=----------+------------------------------+----------+---------! 
FNLAY mask 51 rev I Via mask revision I * I N/A I 

------=----=--=----------+------------------------------+----------+---------! 
FNLAY _mask 60 rev I Metal 1 mask revision I * I N/ A I 

+-----------------------------------------------------------------------------+ 
I FNLAY mask 61 rev 1 Metal 2 mask revision I * I N/A 
!------=----=--=----------+------------------------------+----------+---------! 
I FNLAY mask 70 rev ++ I Oxide passivation mask I * I N/A I 
I - - - I revision ++ I I I 
+-----------------------------------------------------------------------------+ 

NOTE: * - means no revision letter, implying first silicon mask. 
** - derived from p+ diffusion 
++ - text on mask layer 70 is outputed on the top metal layer. 

USING THE NlASK REVISION CELL: 

Any alphanumeric character is acceptable as a parameter 
value. 

The size of the cell is 62 by 267 lambda. Note however that 
the abutment box for the cell is 3 lambda beyond the 
maximum size of the actual geometries. Also note that there 
is an EXCLUDE layer around the entire cell. This EXCLUDE 
layer prevents the drc program from checking the internal 
geometries (text), and thus prevents false drc errors. 

VLSI Technology Inc. - 5 April 1988 



APPENDIX C: Foundry Cells 151 

The particular masks used to fabricate VLSI's CMOS circuits 
are derived from the drawn layers -- a given drawn layer may 
influence several masks. The table below should be consulted 
to determine which mask or masks are affected by a change to 
a particular drawn layer: 

MASK layer number 
Drawn 
layer I 10 I 11 I 20 I 21 I 23 I 24 I 25 I 26 I 40 I 50 I 60 I 51 I 61 I 70 

1 ___ 1 __ 1_1_1_1 __ 1 ____ 1_1 __ 1 ___ 1_1 __ 1 ___ 1 __ 
P-well I * I * I I I I I I 

1---- ----1---- ---- ----1----1----1---- ----1----1---- ---- ----1----
N-we 11 I * I I I I * I I I 

1---- ----1---- ---- ----1----1----1---- ----1----1---- ---- ----1----
p diff I * I * I * I * I I I I 

1---- ----1---- ---- ----1----1----1---- ----1----1---- ---- ----1----
N dif f I * I * I I I I I I 

1---- ----1---- ---- ----1----1----1---- ----1----1---- ---- ----!----
poly I I I I I * I I 

---- ----!---- ---- ----!---- ----!---- ----1----1---- ---- ---- ----
cont I I I I * I 

---- ----1---- ---- ----1---- ----1---- ----1----1---- ---- ---- ----
metal 1 I I I I I * 

---- ----1---- ---- ----!---- ----1----1----1----1---- ---- ---- ----
metal2 I I I I I I I * 

---- ----!---- ---- ----1---- ----1----1----1----1----1---- ---- ----
via I I I I I I I * 

---- ----!---- ---- ----!---- ----1----1----1----1----1---- ---- ----
res * I * I I * I I I I 

---- ----!---- ---- ----1---- ----1----1----1----1----1---- ---- ----
pad I I I I I I I * 

+----+----+----+----+----+----+----+----+----+----+----+----+----+----+ 

VLSI Technology Inc. - 5 April 1988 



15:! APPENDIX C: Foundry Cells 

CTEXT - REV l. l 
TEXT GENERATOR 

DESCRIPTION 

CTEXT generates user-specified text strings. The drawn layer 
of the text and the size of the text geometries are cell 
parameters. This cell is used to imprint miscellaneous text on 
a drawn layer. 

Note only one layer at a time can be imprinted with text and 
only one layer can be specified in the text-layer parameter. 
If no layer is specified, the default layer is imprinted with the 
text string specified. If more than one layer requires text, this 
cell can be compiled again with the next layer and text string 
to be imprinted specified. 

P AR.AMETL1~RS 

+---------------------------------------------------------------------------+ 
I PARAMETER I PARAMETER I DEFAULT I RANGE I 
I NAME I DESCRIPTION I VALUE * !Min/Maxi 
!-------------------+------------------------------------+----------+-------! 
I TEXT_STRING I Text string to be placed on a mask. I n/a ** I n/a I 
!-------------------+------------------------------------+----------+-------! 
I TEXT MAGNIFICATION! Size of letters and numbers I 2. 0 + I n/a I 
!-----=-------------+------------------------------------+----------+-------! 
I TEXT_ LAYER I Layer name I CM + I n/a I 
+---------------------------------------------------------------------------+ 

* Cell specific parameters are specific to the cell and should be 
changed to match the design if the default value does not meet 
the design criteria. These values are in .lambda units unless 
noted otherwise. 

** If space characters (blanks) are needed between words in 
the text string, mark them with the character - (underline). 
This character generates a blank. 

VLSI Technology Inc. - 5 April 1988 



APPENDIX C: Foundry Cells 153 

+ CM for meLal, CND for N diffusion, CPD for P diffusion, 
text for text layer and CP for Poly. Text on passivation (CG) 
layer is illegal. The compiler does not generate a cif for the 
CG layer. 

VLSI Technology Inc. - 5 April 1988 





• VLSI TECHNOLOGY, INC. 

APPENDIX D 

RECOMMENDED ARCHIVE 
DOCUMENTATION 

155 

This appendix lists the recommended project files and 
documents to be included in a project's archive package. 

Pre-Design Documents 

• Quote from Design Center to Sales* 

• Quote from Sales to Customer* 

• Copy of the contract between VLSI Technology and the 
Customer, if applicable* 

• Customer's logic and/ or block diagram* 

Device Specifications: final versions, signed off 

• VCxxxx specification* 

• Packaging specification* 

• Marking specifications* 

VLSI Technology Inc. - 5 April 1088 



156 APPENDIX D: Recommended Archive Document.a.tion 

• Bonding diagrams* 

Device Schematics 

• Hierarchy tree of the design* 

• Top-level schematic and schematics of all submodules 

Logic Simulation 

• Driver files and simulations of all schematics, where 
applicable 

• Driver files for extracted device simulations 

• Tabular and/or timing output logic verification 
simulation 

• Tabular and/ or timing output device verification 
simulation 

• ROM/PLA/P AL code files 

• Logic design/verification customer signoff 

Transistor-level circuit simulations 

• Simulation schematics 

• All pertinent ASPEC or HSPICE simulation 
input/output files 

Physical Design 

• Plots of all custom CIF /layout cells used in the design 

VLSI Technology Inc. - 5 April 1988 



APPENDIX D: Recommended Ard1ive Documentation 157 

• A complete copy of the physical library used to build t,he 
device 

• Top-level data base and Extract files 

• CalculaLiou <laLa 

• Physical simulation customer signoff 

Post-Design Documents 

• Design schedules, history, and statistics* 

• Billings forecast/ actual worksheets* 

• VTitest/VTivector output for test program generation 

• Special considerations, problems, explanations, etc.* 

• Directory of archive tape contents* 

• Project archive notes and checklist form* 

Prototypes 

• Prototype approval 

• Prototype and production test waivers 

• Characterization results 

* Required to be in binder in hardcopy form 

VLSI Technology Inc. - 5 April !988 



1&8 

A AC power dissipation 34 

B 

AC/DC Specification Form 43 

aliases 81 

ambient temperature 38 

arbitrary blocks 
definition 103, 106 
from V6 105 
list file 107 

archive the completed design 

asynchronous 
designs 127 
logic 65, 95 

at-speed simulation 94 

back-annotation 
file 80 
in chip compiler 

bidirectional pins 
set capacitance 

block diagrams 43 

bond form 86 

bonding diagram 86 

borders 65 

buffers 72 
clock 66 

113 

98 

clock, weights on 71 

131 

fanout for, metal migration 67 

bus repeater cells 69 

INDEX 

c 

busses 65 

bypass multiplexers 57 

capacitance 
default interconnect 97 
estimated routing 97 
external 95 
fringing 113 
incremental interconnect 97 
interconnect 

calculated by design review program 
99 

calculated by logic compiler 
calculated by netlist extractor 
calculated by simulator 99 

interconnect calculations 99 
internal node check 96 
output 98 
output diffusion 55 
output load 38 
post-route 113 
to minimize 71 
to set 98 
to set for bidirectional pins 98 

cell compilation 108 

cell library window 61 

cell manager 60 

cell-based elements 

cellLib 114 

ce,llLib window 51 

101 
100 

VLSI Technology Inc. - 5 April jg88 



CFNDEV 115 

CFNLAY 115 

checkjlist 
final design review 12,) 

checklist 
logic design review 102 

chip compiler 97, 103 

chip manager 60 

Chip Specification Form 42 

chipcomp utility 1()5, llO 

CIF 
cell ll6 
cell, final 124 
database, final 128 
tape out 1:31 

CIF tape out 131 

circuit initialization 56 

clock 
input timing 44 
input waveforms 44 
skew 66 

clock buffers 66 
weights on 71 

clock skew 66 

clock tree check 96 

CLOGOl 114 

compile a cell 108 

compiler cells 
create functional block with 61 
fault coverage 52 
library 11 

composition cell 109 

composition editor 105 

connectivity errors, screener check 78 

connector 
at top level 75 
names 65 
rules 105 

contention 68, 98 

controllability 51, 54 

COPYR 115 

copyright 114 

core block 75 

core-limited layout 33 

VLSI Technology Inc. - 5 April 1988 

D 

Index 1.59 

cp cells 105, 109 

CPC file ll9 

critical pa.th 123 

Critical Path Check file 119 

Critical Pa.th Description 46 

critical paths 114 

CTEXT ll5 

CTMARK 115 

custom cells 61, 81 

Customer Package Marking Form 4~~. 131 

<la.ta.path elements 
create functional block with 
fa.ult coverage 52 
li bra.ry 14 

datapath model schematic 117 

DC current leaka.ge 35 

default capacitance 97 

defCap 97, 99 

delay 
clock input rise/fall 66 
rise/ fall 66 
worst 81 

delay factor, to set 98 

derating factors 98 

Design Assistant 42 

62 

design complexity report, screener 78 

design cycle 2 

design entry and simulation flow 4 

design report 80 

design review program 80 

design reviews 29 

design statistics report, screener 78 

design summary 80 

design tasks 9 

design types 2 

design verification flow 8 

DRC 
window lll 

DRC, phantom 116 



150 Index 

DRC, physica.I 1:28 

drive, signa.1 66 

drivers 
pad 73 
simulation 117 

dynamic trace file 124 

E economic considerations 29, 32 

editing layout 105 

elements, cell-based 1, 10 

estimated routing capacitance 97 

external capacitances 95 

extract netlist 116 

extract, physical 128 

F ranouts for metal migration 67 

fault coverage 52, 101 

fault simulation 101 

fault simulaton post processor 101 

final check 132 

final design review 29, 125 

final design review checklist 125 

flattened netlist 
for chip compiler 107 
for post-physical design simulation 114 
for simulation 93 
for simulator 89 

floating wells 131 

floorplan 103 

flow 
design entry and simulation 4 
design verification 8 
implementation 9 
physical design 6 
system planning 3 

fne 129 

fns 
for chip compiler 107 
netlist 89 

foundry artwork 114 

frequency, operating 38 

fromTos 78 

functional blocks 
creating 59 
placement 7 4 
test 48 

G gates required 38 

generate test program 127 

guidance, routing 104 

guidelines 
design for testability 57 
testability 53 

H hierarchical designs 59 

hierarchical netlist 89 

HIL03 101 

hnc 129 

HNL 

hns 

files 105 
keeping current 94 
to make 89 
utility 93, 107 

for chip compiler 107 
for datapath layout model netlist 91 
for datapath portable netlist 91 
for screening 78 
for state machine portable netlist 90 
netlist 89 

J I/O pads 75 

icon, to make 60 

impedance, thermal 40 

implementation flow 9 

incCap 97, 99 

incremental capacitance lJ7 

VLSI Technology Inc. - 5 April 1988 



initializa.tion 
circuit .56 

initialization, circuit 72 

input connections 80 

instance na.mes 65 

integration 41 

interconnect capacitance 99 

internal nodes 
buffering 
load check 

66 
96 

simulating 56 
testing 57 
timing 65 
unidentified in netcompare 

J joint design 2, 26 

junction temperature 40 

L large chips 110 

layer numbers 114 

layout cell 109 

layout editor 105 

Ids file 78, 119, 122 

lds file, to create 80 

level shifters 77 

library 
add to search path 60 
compiler cells 11, 51 
datapath 62 
datapath elements 14 
megacell 12, 52 
standard cell physical layout 
standard cells 10, 50 

load capacitance, output 98 

loads, off-chip 95 

logic design review 29, 102 

logic design review checklist 102 

logic simulation 93, 95 

logical design structure file 78 

logo 114 

VLSI Technology Inc. - 5 April JQ88 

M 

129 

128 

N 

Index 151 

lph 129 

ly cells 105, 109 

MACI-11000 101 

macro library 36 

Mainsail driver file 118 

make HNL 89 

manager window 60 

manual routing 105 

mask generation 132 

mcp cell 106 

mcp cell for datapath DRC 116 

mcpconv utility 106 

megacell phantom cell 106 

megacells 
create functional block with 62 
fault coverage 52 
library 12 
testing 72 

merge phantoms 124 

metal migration 67 

mixed-mode simulator 93 

model schematic, datapath 117 

model-schematic output 
for compiler cell 62 
for datapath 63-64 

models, simulation 98 

modes, test 57 

MS file 118 

multiplexers, bypass 57 

names 
explicit 76 
for bidirectional nodes 76 
for open drain nodes 76 
for open source nodes 76 
for three-state nodes 76 
node 65 
signal in final simulation 124 

net weights 69 



l62 Index 

netcom pare 
phantom 116 
physical 128 

netlist 
extractor 116 
for screening 78 
for simulation 89 
regenerate for physical design 105 
schematic editor creates 89 
screener 68, 77-78 
to simulate compiler cells 89 

to simulate datapath elements 91 
to simulate mega.cells 89 
to simulate standard cells 89 
to simulate state machine elements 90 

New Design Information Form 48 

node names 65 
explicit 76 

Q observability 51, 55 

p 

off-chip loads 95 

operating frequency 38 

opt.ions simllatten 93 

output buffers 76 

output drivers 73 

output load capacitance 38, 98 

output pins required 38 

output portable net.list 
for state machine 90 

package 
production 
prototype 
selection 

43 
43 

33 
size estimate 43 

pad drivers 73, 76 

pad placement 73 

Pad Placement Form 43, 124 

pad-limited layout 33 

pad ring 
generated by chip compiler 104 

pads 
drive 73 
in top level design 7 5 
placement, specifying location 73 
power 73 

pages, schematic 65 

parallel logic 68 

parameter cell 
for compiler cell 61 
for data.path 63 
for state machine 64 
used to simulate state ma.chine 

pa.rarneters 
compiler cells 61 
pad specification 73 

parasitic capacitance 71 

partitioning 
building block 40 
random logic 40 
subsystem 41 
system 31 

PC boards, tra.nslati ng 53 

pc! cell 
for compiler cell 61 
for data.path 63 
for state machine 64 

90 

used to simulate state ma.chine 90 

performance approval form 125 

phantom 
definition 6, 116 
DRC 106, 116 
extract 106 
merge 124 
netcompa.re 106, 116 
tape out 124 
to create 106 

phantom merge 128 

phmerg utility 128 

physical design flow 6 

physical layout formats 109 

pinouts 131 

pins required, output 38 

place.els file 107 

portable netlist 
for data.path simulation 91 
for state machine simulation 90 

post-route design report 80 

VLSI Technology Inc. - 5 April 1988 



power S 
to core 73 
to padring 73 

power calculations 34 

Power Calculations Worksheet 38 

power dissipation 34, 36 
DC 39 

internal 38 
total 39 

pre-route design report 80 

predictive routing capacita.nce 97 

preliminary design review 48 

priority, routing 69 

production package 43 

prototype 
approval form 132 
delivery 132 
package 43 

prototype and production test specification form 
123 

pst cell 113 

Q quote number, VLSI 49 

R repeater cells 69 

reserved names 65 

reset for storage elements 57 

review program 80 

rise/fall time, suggested 65 

RMS current 67 

routing 104 
capacitance 71 
estimated capacitance 97 
guidance 104 
incomplete routes 110 
manual 105 
priority 69 

Uis 110 

rpOldl 59 

VLSI Technology Inc. - 5 April 1988 

save-on-convert. opt.ion 110 

schematic cell 
data.path ()3 

for compiler cell 62 
fo1· data.path 5:3 
state machine (i4 

schema.tic editor 55 
make netlist 89 

schema.tic pages 65 

scr file 78 

screener report file 78 

screening nellist 78 

search path, to add to 60 

Index 16:3 

Semiconductor Package Selection Guide 34, 
86 

Sentry test program 127 

set capacitance 98 

set simparms dela.yfactor 98 

set/reset for storage elements 57 

setParam for pad placement 73 

signal drive G6 

signal naming 76 

simflatten 93 

simparms 97, gg 

simulation 52 
1 MHz 94 
checks 95 
clock tree check 96 
driver file 117 
fault 101 
full physical design 130 
logic 93 
sta.tic checks 95 
test generation 94 
timing 93 
toggle checks 95 

simulator 93 

skew, clock 66 

standard cell 
areas 109 
block, definition 10:3 
library 10 
list file 107 



164 Index 

standard cells 
create functional block with 60 
custom 61 
fault coverage 52 

startup file 60 

state machine elements 15 
create functional block with 64 
fault coverage 52 

Statement Of Work 49 

static checks 95, 130 

stdphy library 128 

storage elements, testing 57 

switch cell 
for datapath simulation 

layout model netlist 92 
portable netlist 91 

for state machine simulation 90 

synchronous logic 65 

system partitioning 31 

system planning flow 3 

T tape out checklist 125 

tasks, design cycle 9 

TDF file for timing verification 122 

temperature 
ambient 38 
junction 40 

template cell 
for compiler cell 61 
for datapath 53 
for foundry 115 
for state machine 54 

test 
circuitry 72 
driver 94 
generation simulation 94 
modes 57 
patterns 52 
plan 49 
program generation 127 
vectors submitting 131 

test vectors 
submitting 124 

u 

testa.bility 
definition 51 
fe>"tures 47 
logic 52 

text vectors 
generate 117 

thermal impedance 40 

theta ja. 40 

three-state nodes 69 

timing 
clock input 44 
I/ 0 wa.veforms 45 
parameter table 45 
simulation 93, 97 
verification 80 
verifier 93 
worst case 98 

timing format, VT!check 122 

title block 
for da.tapath schematic 62 
for schema.tic pages 55 

toggle checks 95 

top level of design 75 

tpl cell 
for compiler cell 51 
for data.path 63 
for foundry 115 
for state ma.chine 64 

Trace Definition File 122 

trace output file 117 

trace vectors 122 

trademark 114 

transient current 

translating a. board 

trc file 117, 119 

35 

53 

turnkey design 2, 18, 77 

types of designs 2 

Uls 
fixing 110 

unidentified nodes 129 

unimplemented interconnect 110 

user design 2, 23 

VLSI Technology Inc. - 5 April 1988 



v 

w 

user logic design 2, 21 

utility chipcomp 105, llO 

utility HNL 93, 107 

utility mcpconv 106 

utility phmerg 128 

utilization summary, screener 78 

VDD/VSS 
connections 80 
drive at pads 130 
nodes 129 

vector 
check 122 
limit 94 

vector error report 122 

visual check 130 

vti.boo file 60 

VTicheck 122-123 

VTiexchange 102 

VTlextract 116, 128 

VTischematic 65, 73 

VTiscreen 78 

VTisim 93, 118 

VTltest 118, 131 

VTlvector 102, 118 

waveforms 
clock input 
1/0 45 

44 

weight icon 69 

weighting 69 

window DRC 111 

wiring capacitance 71 

worst case timing 98 

VLSI Technology Inc. - 5 April 1988 

lndP.x 165 

y yellow-lines 77 

[ [mde]mdp 117 









• VLSI TECHNOLOGY, INC. 

VLSI Technology, Inc. 
ASIC Division 
1109 McKay Drive 
San Jose, CA 95131 
408-434-31 00 
TLX: 278807 
FAX: 408-263-2511 

1988 VLSI Technology, Inc., Printed in U.S.A., SM 420102-001 


