
fanuary, 1991
!-012591

->

System Specification
for

MBus SPARC Compatible

Rev 1.0

VIA Technologies, Inc. (408)746-2200
860 East Arques A venue

Sunnyvale, CA 94086

,:;~r/!lIIA
CY'fi~YIIIA ------------------------------------

OVERVIEW OF PROCESSOR SECTION

The processor section of the compatible is based around the Cypress CY7C600 Uni-Module Board. It is a
complete SPARC chip set consisting of the CY7C601 (Integer Unit), the CY7C602 (Floating-Point Unit),
the CY7C604 (Cache Controller and Memory Management Unit), and two CY7C157s (Cache RAMs). The
processor section communicates with the rest of the system through the Mbus.

(MEMORY MANAGEMENT UNIT

:t6e memory ~~gement unit resides in the CY7C604. It provides translation from a 32 bit virtual ,
address range (4 gigabytes) to a 36 bit physical address (64 gigabytes), as provided in the SPARC refer-

,; ence MMU specification. Virtual address translation is further extented with the use of a context register,
'which is used to identify upto 4096 contexts or tasks. The cache tag entries and TLB entries contain

"context numbers to identify tasks or processes. This minimizes unnecessary cache tag and TLB entry
"replacement during task swithching.

The MMU features a 64 entry Translation Lookaside Buffer (TLB). The TLB acts as a cache for address
mapping entries used by the MMU to map a virtual address to a physical address. These mapping
entries, referred to as page table entries or PfFs, allow one of four levels of address mapping. A PTE can
be defined as the address mapping for a single 4-Kbyte page, a 256 Kbyte region, a 16 Mbyte region, or a
4 Gbyte region. The TLB entries are lockable, allowing the user to exclude important TLB entries from
replacement.

As specified by the SP ARC reference MMU, the MMU provides translation for bits 31 through 12 of the
virtual address to an expanded physical address mapping using bits 35 through 12. Bits 11 through 0 of
the virtual address are not translated, and are defined as the page offset for the 4-Kbyte memory page.

CACHE

, The cache on the compatible is a 64 Kbyte direct mapped write through virtual cache. The cache control
ler and the cache tag RAMs reside in the CY7C604 and is designed to use two CY7C157 Cache RAMs for
the cache memory. The cache is organized as 2048 cache lines of 32 bytes each. The CY7C604 has 2048
cache tag entries on-chip, one tag entry for each cache line. The virtual address field V A<15:5> selects one
of the 2048 lines of the cache. Cache data replacement is always performed by replacing cache lines.

,'rudh~ ~rite through cache used in the compatible, write access cache hits cause both the cache and the
'l;h\aifirrtemory to updated simultaneously. A write access cache miss causes only the main memory to be
'upa~ted (no write allocate). The selected cache line is invalidated for a write access cache miss .

. :, L: ><~; :"' t ':",.

;:puringread access cache hits, the cached data is read out and supplied to the IU. In case of a read access
! s~cr.fmiss, a cache line is fetched from main memory and loaded into the cache before the required data
is supplied to the IU.

Each entry in the cache tag consists of the 16 bits of virtual address (V AO 1:19», a 12 bit context number
(CXN(ll:Q)), one valid bit (V) and one modified bit (M). A supervisor bit (5) is included in the cache tag
entry. For cache tag entries which are accesible by the supervisor only (access level 6 or 7), the S bit is set.

ADVANCE

_------YIA
MAIN MEMORY SPECIFICATIONS

The main memory of the compatible consists of three sections:

1. Mbus Interface

2. Memory Array

3. DRAM Controller

The Main Memory supports a Level 2 Mbus Interface as per the SPARC Mbus Interface Specifications.
Read and write transactions of byte, halfword, word, doubleword, and bursts of 16, 32, 64, and 128 bytes
are supported. Coherent Invalidate transactions for the Level 2 Mbus Interface are also support~~

The Memory Array is organized as 2 banks of memory with each bank consisting of 8 1M x 9 DRAM
modules (SIMMs) forming a data path 64 bits wide. Parity on a per byte basis is generated when memory
is written and checked when it is read. The memory can be upgraded to use 4M x 9 DRAM modules
without changing the design. The design of the memory allows for the following 6 configurations by
setting up a configuration register in the Mbus Interface:

1. 8MB

2. 16MB

3. 16MB

4. 32MB

5. 64MB

6. 64MB

1M x 9 SIMMs, non-interleaved, half populated (lbank)

1M x 9 SIMMs, non-interleaved, fully populated

1M x 9 SIMMs, interleaved, fully populated

4M x 9 SIMMs, non-interleaved, half populated (1 bank)

4M x 9 SIMMs, non-interleaved, fully populated

4M x 9 SIMMs, interleaved, fully populated

The DRAM Controller have two sets of DRAM address and control logic so that it can control each bank
of memory independently of the other. Interleaving the two banks of memory is done on a doubleword
basis.

Transactions to Main Memory are initiated by an Mbus master. The transaction is sent across
MAD<63:0>, which is a multiplexed address and data bus, and received by the Mbus Interface. The
address, transaction type and size are latched on the other side of the Mbus Interface. For reads, the data
is parallel loaded from each of the memory banks into the Mbus Interface and transmitted,b~d~;'~<?rthe
Mbus master who initiated the transaction. For writes, the Mbus master holds the data on, MA,J?}~?? :0>
until the DRAM Controller acknowledges that it has written the data to the Memory Array. Burst transac
tions cause the DRAM Controller to do multiple DRAM page mode cycles. The DRAMConti"oile'f-has
programmable wait states based on DRAM speed and system dock frequency to provide maxitri'ii'rn
memory bandwidth given various memory configurations. ' ..)? ,,;

Reference: sr ARC Mbus Interface Specification, Revision 1.1, March 29, 1990

ADVANCE 3 MUus SP ARC Compatible syJUin Spec

YIA---'---_----
ON-BOARD AND AT Bus 110

OVERALL ARCHITECTURE

MBus

MBusto
386SX Protocol

Conversion

On-Board 1/0

I I Boot EPROM
I

386SXto

I Serial Ports I AT Protocol

I Conversion

I I Keyboard, Mouse I
Off-Bo

I RTC, NVRAM I
I

ard Memory I/O

l Floppy Disk Controller I AT Connectors

t Interrupt Register I
I

MBus SP ARC Compatible System Spec 4 ADVANCE

_------VIA
GENERAL DESCRIPTION

Devices can be interfaced in one of two ways. The first is for standard on-board devices, which can be
connected to a specialized byte-wide bus. The second is an AT interface.

AT INTERFACE

There are two levels of bus conversion in the AT interface. The first translates Mbus cycles into the the
bus protocol of the Intel 386sx.There is no actual 386 processor involved, just logic which executes the bus
cycle sequences of the 386sx, with a data path to adapt the 64- bit wide MAD data bus to a 16 bit
width. The 386sx protocol is used as an intermediate fonnat which can easily interface to other system
busses, in this case the AT.

In the second level of bus conversion, 386sx bus cycles are translated into AT cycles.Data transfer sizes
supported are: 64,32,16 and 8 bits.The AT bus has 24 bits of address and 16 bits of data. Devices on the
AT can be connected to either the full 16-bit data bus, or just to the lower 8 bits. In the case of a 16-bit
access to an 8-bit AT data path device, the AT logic executes a bus sizing sequence, perfonning two 8-bit
transfers on the AT bus.In the case of a byte access to either an 8-bit or 16-bit data path AT device, the AT
logic copies data from/to the low 8 bits of the bus to/from the high 8 bits, when the byte address that it
sees is odd (A[ol = 1).

The AT divides its address space into memory and I/O spaces,and accesses to both spaces are sup
ported. Memory and I/O spaces are distinguished by Mbus address bit 24. To address AT memory space,
accesses are made within AT address space with bit 24= 1. To address AT I/O space, accesses are made
with bit 24= O.

In addition to the set of I/O devices on board, there is the capability of expanding, by means of plugging
standard AT daughtercards into the connectors provided.

ON-BOARD DEVICES

Any transfer size permitted by the MBUS is aUowed(byte,haIfword,word,double,16,32,64, and 128 byte
burst).

EPROM

The size of the boot prom is 256K bytes. It consists physically of a 256K by 8, CMOS EPROM, part num
ber AM27C020, speed lOOns.

The boot prom is always selected when Mbus bit MBL (MAD<45» = l.Data accesses in Bypass Mode
(ASr = 20-2f) will access the boot prom using PA<17:0>.The physical base address is OxFFOOOOOOO.
Alternatively, the PROM can be accessed at address FOOOOOOOO. The only difference is that a write opera
tion to OxFFOOOOOOO will result in a null cycle, while a write to OxFOOOOOOOO will proceed as a write
operation.

ADVANCE 5 MUus SPARC Compatible System Spec

VIA _____ _
Serial Ports

There are two identical serial ports, referred to as A and B. They are contained in one 285C3O sec chip
from Zilog or AMD. The external connection is RS-232. Both ports interrupt on Mbus level 12. Port A has
higher priority than Port B. The registers are located as follows:

Address

Oxf01000000 Port B control byte readlwrite

Oxf01000001 Port BOOta byte read/write

Oxf01000002 Port A control byte readlwrite

Oxf01000003 Port A data byte readlwrite

The clock oscillator input frequency is 4.9152 Mhz.A device recovery time of 800 ns must be observed
between accesses.

KeyboardIMouse

This is also a Z85C30 sec chip, with Port A corresponding to the keyboard, and Port B the mouse. The
interrupt is on level 12, with lower priority than the 2 serial ports. The register address locations are as
follows:

Byte Address

Oxf02000000 mouse control byte read/write

Oxf0200000 1 mouse data byte readlwrite

Oxf02000002 keyboard control byte read/write

Oxf02000003 keyboard data byte read/write

The clock oscillator input frequency is 4.9152 Mhz.A device recovery time of 800 ns must be observed
between accesses.

Real-Time Clock! NVRAM

This is a Mostek MK48T02B, size 2K bytes. The base address is OxF04000000.

MBus SPARC Compatible System Spec 6 ADVANCE

___ ---VIA
Floppy Disk Controller

This is an Intel 82077 floppy disk controller. Register locations are as follows:

OxF03000000 Status Register A byte read

OxF03000001 Status Register B byte read

OxF03000002 Digital Output Register byte read/write

OxF03000004 Main Status Register byte read

OxF03000004 Data Rate Select Register byte write

OxF03000005 Data (FIFO) byte readlwr

OxF03000007 Digital Input Reg/Configuration byte readlwr

ISDN

This is an AMD AM79C30A (Digital Subscriber Controller). Its Base address is OxF05000000.

ADVANCE 7 MBus SPARC Compatible System Spec

YIA_------
SPARe MBUS TO SBus INTERFACE

The compatible has a SBus interface to attach the frame buffer and other SBus peripherals. The SBus
interface is attached to Mbus, the main system bus through which the CPU communicates with the
Memory subsystem as well as all other sections of the machine. The Mbus to SBus (M2S) interface can be
a master or a slave on either bus. The Mbus interface is designed to operate at clock frequencies up to 40
Mhz while the SBus interface is designed to operate within the range of 16.67 to 25 MHz. For Mbus clock
frequencies above 3333 Mhz, the SBus interface will operate at half of the Mbus clock frequency. In
addition to the bus interface logic, this section of the machine also contains an SBus Controller.

Msus TO SBus INTERFACE

This section cpntains the logic for connecting the 64-bit Mbus to the 32-bit SBus. This interface can behave
as both a master and a slave on either the Mbus or the SBus. For transactions going from Mbus to SBus,
the M2S interface is an Mbus slave for an Mbus master like the CPU. Mer receiving the transaction, the
M2S interface then becomes an SBus master and initiates a transfer to the targeted SBus slave. For trans
fers going from SBus to Mbus, the M2S interface is an SBus slave for an SBus master like a DVMA master.
After receiving the transfer, the M2S interface then becomes an Mbus master and initiates a transaction to
the targeted Mbus slave.

There is single set of control logic to control the interfaces on both busses. Only one Mbus to SBus trans
action or one SBus to Mbus transfer can be processed by the M2S interface at anyone time.

0[31:0]

MAO[63:00] MBus to SBus I
Interface

SBus PA[27:0]
Controller

The M2S Interface supports Mbus Read and Write transactions of the following sizes: byte, halfword,
word, doubleword. A doubleword Mbus transaction becomes two single word transfers on the SBus.

The M2S Interface supports SBus Read and Write transfers of the follOwing sizes: byte, halfword, word.

The M2S interface supports bus sizing as a master on the SBus. Bus sizing allows a master to initiate a
word or halfword transfer to a slave device without regard to whether or not the slave supports a transfer
that large. The intent is to allow a master to treat the slave as though it were a word or halfword device,
even though the slave may implement only halfword or byte transfers. Bus sizing can occur only during
word or halfword transfers. Bus sizing reduces software complexity. For example, an 8-bit frame buffer
that is otherwise functionally identical to 32-bit frame buffer can use the 32-bit software unmodified.

MBUS AS A MASTER

If the M2S interface is not busy, then the Mbus transaction is accepted. A protocol conversion is per
formed and a bus request is made to the SBus Controller. The transfer proceeds on SBus after ownership
is acquired. The M2S interface then waits for an acknowledgment from the targeted SBus slave. When the
acknowledgment is received, it is converted to an Mbus acknowledgment and the transaction is com-

MBus SPARC Compatible System Spec 8 ADVANCE

_-_____ VIA
pleted. For a read transaction the read data is driven onto Mbus during the cycle in which the acknowl
edgment is given. If the M2S interface is busy, then a Relinquish and Retry (R&R) acknowledgment is
given, indicating that the Mbus master should relinquish ownership of Mbus and retry the transaction
after the Mbus is rearbitrated.

Also, if the Mbus transaction is a doubleword transaction or if the acknowledgment from the SBus slave
results in bus sizing taking place on SBus, then a R&R acknowledgment is given back to the Mbus master.
The R&R acknowledgment frees up the Mbus for other transactions while the multiple SBus cycles are
taking place. When the SBus transfers have completed, the M2S interface waits for the Mbus master to
reissue the transaction before giving the Mbus acknowledgment.

SBus AS A MASTER

If the M2S interface is not busy, then the SBus transfer is accepted. A protocol conversion is performed
and a bus request is made to the Mbus Arbiter. The transaction proceeds on Mbus after ownership is
acquired. The M2S interface then waits for an acknowledgment from the targeted Mbus slave. When the
acknowledgment is received, it is converted to an SBus acknowledgment and the transfer is completed.
For a read transfer the read data is driven onto SBus on the cycle following the one in which the acknowl
edgment was given. If the M2S interface is busy, then a Rerun acknowledgment is given, indicating that
the SBus master should retry the transfer.

SBus CONTROLLER

The SBus Controller contains the logic for controlling the SBus. It supports transfers of the following
sizes:

Byte

Halfword (2 bytes)

Word (4 bytes)

Two Word Burst (8 bytes)

Four Word Burst (16 bytes)

Eight Word Burst (32 bytes)

Sixteen Word Burst (64 bytes)

The SBus Controller supports up to 4 SBus masters of which one is the M2S interface. It employs a fair
arbitration scheme so that all pending bus requests are granted before a master is allowed to acquire the
bus again. It supports geographically selecting six SBus slaves, one being the M2S interface. Virtual to
physical address translation is done through an eight-entry fully associative TLB with LRU as replace
ment policy. The TLBs provide translation for a 32 Mbyte address space for each SBus slot. Translation
can also be disabled on a per SBus slot basis.

The SBus Controller also has an 8-bit counter to generate a bus timeout acknowledgment if an SBus slave
docs not give any acknowledgment by the 256th slave cycle.

ADVANCE 9 MBus SPARe Compatible System Spec

VIA __ ----
DMA 110 STRUCTURE

The DMA section of the Sparc processor consists of 3 main sections:

1. Sbus DMA controller

2. SCSI controller

3. Ethernet controller

Numbers 2 and.3 consist of the following ICs: NCR 53C90, and AMD7990, respectively. The Sbus DMA
controller is made from discrete logic which will be integrated into a gate array.

0_0[7:00] 8, SCSI
I Controller SCSI

SBus
SBus DMA
Controller

E_AO[15:0] 1~ Ethernet
I Controller Ethernet

SCSI CONTROLLER (NCR 53C90)

Data is transferred over the 8 - bit SCSI cable at 3 Mbytes/ sec worst case.The chip is controlled via a set
of 13 byte - wide registers, memory mapped into M bus physical addresses. SCSI commands are given
using one of these registers. For data transfers, there is a 16 deep byte-wide FIFO. Data in the FIFO
appears to the CPU as another of the 13 registers. Block transfers of data can be done either by the CPU
using this register for programmed I/O, or by means of the DMA controller. In the latter case, the SCSI
controUt;r communicates its need to send or receive another 8 bits by means of an signal called DREQ
which is connected to one of the DMA controller's channels. That is, the SCSI chip is "implicitly ad
dressed" during DMA.

In DMA mode, an interrupt will be generated when the transfer counter decrements to zero. In non-DMA
mode, an interrupt can be generated after each byte transferred, if interrupts are enabled. The interrupt
bit appears in a register visible to the CPU.

MBus SP ARC Compatible System Spec 10 ADVANCE

_______ VIA
ETHERNET CONTROLLER (AMD7990)

The Ethernet controller (LANCE) functions primarily as a bus master. Its master bus cycles are converted
into Sbus master cycles by the DMA controller. The CPU initializes the LANCE with a pointer to a control
block in main memory, from which the LANCE reads its initialization information. The CPU and the
LANCE communicate by means of shared main memory and semaphores, using circular buffer descrip
tor data structures for the transmit and recieve buffers.

ADVANCE 11 MBus SPARC Compatible System Spec

VIA _____ -,..--_
GRAPHICS

The graphics on the SUN compatible would be supported by a Frame Buffer on the Sbus. All offset
addresses need to be added to the slot base address to get the effective address.

FRAME BUFFER

The data organization for Frame buffer is as follows. Each byte of video data corresponds to a display
pixel. A color map described translates the byte of Video data into the display pixel. The high order byte
in Color Video RAM maps to the first visible pixel in the upper left comer of the display monitor. Con
secutive bytes are displayed as consecutive pixels along the horizontal scan line, left to right. After 1152
pixels are displayed on one scan line the next pixel is displayed on the next scan line. A total of 900 such
lines are displayed per frame at 66 such frames per second.

COLOR VIDEO RAM

The Color Video RAM is located in a dedicated area of system memory space and is dual ported; one for
video refresh, and the second for processor access. The size of the Color Video RAM is 1 MByte, and is
organized as an array of 256K x 32. The Color Video RAM is updated by reading and writing it directly,
like memory.

Address Mapping:

Device offset Device Size Type Sbus Transaction Size

o 0030 0000 . Color Video RAM 32-bit Read-Write Byte, halfword,word

COLOR MAP

The Color Map maps bytes in Color Video RAM into pixels. It contains three 256 Byte sections :one each,
for red, green and blue. Besides the Color Map, several registers exist in this section. The sub-space
address of the internal registers and RAM space has to be loaded into the address register before any
meaningful transaction can be done in this section.

To read color data, the SP ARC loads the address register with the address of the color palette RAM
location to be read. The SPARC then performs three successive read cycles (red, green, and blue) to access
the data from the color palette. Following the blue read cycle the address register increments to the next
location which the SP ARC may read by simply reading another sequence of red, green and blue data
from the Color palette. A write to the color palette is done exactly the way a read is done, except that the
data bytes of red, green, and blue are written. When accessing the color palette RAM, the address register
resets to $00 after the blue, read or write cycle to location $FF.

MBus SP ARC Compatible System Spec 12 ADVANCE

______ YIA
Device Offset Device Sub-Space Size Type

000100000 Address reg $xx byte Read-Write

000100001 Color palette $OO-$FF byte Read_Write

000100002 Read Mask reg $04 byte Read-Write

000100002 Blink Mask reg $05 byte Read-Write

000100002 Command reg $06 byte Read-Write

000100002 CntrVTst reg $07 byte Read-Write

Refer to Brooktree part Bt458 data sheet for details on the internal registers and also about programming
the Color Map. It is required that bit CR6 in command register be set to a 1. Bit CR7 should be set to 0 to
reflect a 4:1 multiplexing of pixels in hardware.Set bits 0 and 1,viz CRO and CR1 to O. The rest of the
command register bits is left to the discretion of the software programmer.

The Color Map is generally written during vertical retrace. Following the assertion of Level 5 interrupt
for the Color Map, the map update must complete in 600 microSeconds (the vertical retrace time) to avoid
being visible in the display. Longer updates will complete but the display appearance may be affected.

References: Brooktree Bt458 data sheet.

INTERRUPT REGISTER

At the beginning of a vertical retrace the video interrupt is set. This is a level 5 interrupt on theSbus. The
interrupt is kept pending until the software clears it.The only relevant bits are as shown below. At the
time of power-up interrupt is disabled and need to be explicitly enable4 by software by writing a 'I' to the
ENB bit. Note that the INT pending bit is writable by software and this can aid in diagnostics as well.

Device Offset Device Size Type

000200000 IntReg Byte Read-Write

1 6

tNT I ENB not relevent

7 6 5 0

ADVANCE 13 MBus SPARC Compatible System Spec

VIA _____ -_

o PROM

As per the SBus specification an IDPROM is located at the base address of this slot. It is a 8Kx8 device and
carries the relevant FCode.

Address Device Size Type

000000000 IDProm Byte Read

RESERVED

00040 0000 to 0 OOFO 0000 reserved

MBus SPARe Compatible System Spec 14 ADVANCE

______ VIA
Msus ARBITRATION FOR SPARC CLONE

The Mbus arbiter is a separate unit from both the Mbus slaves and masters. It can arbitrate among 4 Mbus
masters and incorportates both a linear and a rotating priority algorithm. One bus request will have the
highest priority. This can be used to minimize latency for an Ethernet Controller device. The other three
bus requests have a rotating priority. Arbitration is overlapped with the current bus cycle. Bus parking is
employed which means that the current master retains ownership of the bus until it is taken away by a
request from another master. Back-to-back transactions by different masters are not allowed. There must
be at least one dead cycle in between each transaction during which the bus busy signal is deasserted.

Each Mbus master has dedicated bus request and bus grant signals. The master requests the Mhus by
asserting its bus request signal. Upon receiving a bus grant from the bus arbiter, the requesting Master
can start using the bus by asserting the bus busy signal as soon as the previous masters deasserts it.

The Mbus arbiter looks at the bus requests from the 4 Mbus masters and the bus busy signal and gener
ates the bus grants for each master. Only one bus grant is asserted at any time.

ADVANCE 15 MUus SP ARC Compatible System Spec

VIA ___ --_
PHYSICAL ADDRESS MAP

The physical address map is allocated to minimize hardware decoding for the different devices in the
compatible system.

PHYSICAL ADDRESS AsSIGNMENTS

Mbus

Physical Base Address

Ox 0 0000 0000

Ox C 0000 0000

Ox D 0000 0000

Ox E 0000 0000

Ox F 0000 0000

Ox F FOOO 0000

Ox F F1000000

Ox F F200 0000

Ox F F300 0000

Ox F F400 0000

Ox F F500 0000

Ox F F600 0000

Ox F F700 0000

Ox F F800 0000

Ox F F900 0000

Ox F F ADO 0000

Ox F FBOO 0000

Ox F FCOO 0000

Ox F FOOO 0000

Ox F FEOO 0000

Ox F FFOO 0000

MBus SPARC Compatible System Spec

Device

Main Memory

reserved

reserved

SBus

AT

Physical Address Space

A[p:O]

Moos Configuration Address Map

(Moos 10 =OxO) Boot PROM

(Mbus 10 =Ox1)

(Mbus 10 =Ox2)

(Mbus 10 =Ox3)

(Mbus 10 =Ox4)

(Mbus 10 =Ox5)

(Mbus 10 =Ox6)

(Mbus 10 =Ox7)

(Mbus 10 =Ox8)

(Mbus 10 =Ox9)

(Mbus 10 =OxA)

(Mbus lD =OxB)

(Mbus 10 =OxC)

(Mbus to =OxO)

(Mbus lD =OxE)

(Mbus 10 =OxF)

16 ADVANCE

___ ---VIA
Memory - upto 64 Mbytes

SBus

Ox a 0000 0000 to Ox a 03FF FFFF

Physical Base Address

Ox E 0000 0000

Ox E 1000 0000

Device

M2S SBus Slave Interface

SBus SIot1 - SBus Connector 1

Ox E 2000 0000 SBus SIot2 - SBus Connector 2

Ox E 3000 0000 SBus DMA Controller

Ox E 4000 0000 to Ox E FOOO 0000 reserved

Physical Base Address Physical Address Space

Ox F FOOO 0000 A[17:0]

ON_- BOARD 10 AND AT

Physical Base Address

Ox F 0000 0000

Ox F 0100 0000

Ox F 0200 0000

Ox F 0300 0000

Ox F 0400 0000

Ox F 0500 0000

Ox F 0600 0000

Ox F 0700 0000

Ox F 110A 0000

Ox F 1000 0000

Device

Boot Prom

Serial Ports

Keyboard, Mouse

Floppy Disk Controller

Real Time Clock/EEPROM

ISDN

Interrupt Register,Timers

reserved

AT Memory

AT 10

Ox F 2000 0000 to Ox F FOOO 0000 reserved

ADVANCE 17

Physical Address Space

A[17:0]

A[1 :0]

A[1:0]

A[2:0]

A{10:0]

A[2:0]

A[4:0]

A[23:0]

A[9:0]

MBus SPARC Compatible System Spec

VIA __ -----
INTERRUPT ASSIGNMENTS

The Mbus allows for 161evels of interrupts. The interrupt sources are the following, with lS=highest
priority, 0= lowest.

15 - Non-Maskable Interrupts (NMI)

14 - Clock (Monitor, Profiler)

13 - Audio, AT Bus level 3

12 - Keyboard, mouse, serial ports, AT Bus level 4

11 - Floppy Disk, AT Bus level 6

10 - Clock (TImer), AT Bus level 7

9 - SBus level 7, AT Bus level 9

8 - SBus level 6, AT Bus level 10

7 - Video, SBus level 5

6 - Software Interrupt Level 6

5 - Ethernet, SBus level 4, AT Bus level 11"

4 - Software Interrupt Level 4

3 - SCSI, SBus level 3, AT Bus level 12

2 - SBus level 2, AT Bus level 14

1 - Software Interrupt Level 1,Af-Bus-leveH'S

0 - No Interrupt

Non-Maskable Interrupts include:

1. Push-Button Switch

2. Memory Parity Error

3. CPU Memory Error (Asynchronous Error on Memory Access)

4. SBus Controller Memory Exception

5. SBus Late Error

Interrupts are auto-vectored. That is, the address of the interrupt service routine is formed from a trap
base register plus an index formed from the level of the interrupt.

MBus SP ARC Compatible System Spec 18 ADVANCE

e ~.~'~~ __________ ~7 __________ -L __________ ~6~ ________ -L __________ -25 _____ ~,C~~~--'~ ____ ----~.----------~----------~3---------,r-----------~2---;R5E~V~IC5~I~O"N~5~-~,-~--~ ________ -,

MEMORY
a. 16, :32, 64 NB

1-, 2~Y INTERLf:AIJED

CLOCK GENERATION

CLI<GENl

~

I
eND

PSV
ONO

~GEJU

:J
c§GEN,~

dOCN,l

~GEN2
.~ "

W
~GE:N2

LX

":.::' ZONE LTR DESCRIPTION DATE APPR.

I I I I I

PSV
ONO

CPU

CLKGENl "'''" ..
:1 C""'C.J

OJ(GENl .CPi.JCL.2

rY = ..

,.,."CL.

CLKGEN2 MCL., rY .. MeL.'

CLf(~M! .(U

['l>.., ".2,2

W

U I
~~~p p~H ~ ~~ 

e b 

• AT· 
- t<E:Y~DIM::xJ5E:: 
- SERII'L PORTS 
- EEPROM/CI'LENmR 
- TII"£ Of" DAY CLOO< 
- INTERRLPT REGISTER 
- BOOT PROM H5U 

~ .,20 
Hl2V 

SBUS 
- SCSI 
- ETJ-ERf'ET 
- UrILO. COLor< f"¥=lP 

P50 
""0 
Pl2V 
Hl2V 

POWER-ON, PUSHBUTTON RESET 

~f5O ~ ., 
• POll> 

POWER CONNECTOR 

...Ill8I!!I.IL 
TITLE=BREE2£: 

ABBI=l(V!t~ 

LA~IT_MODlrn:D=WIIO rl!b 27 12: Ell: 0"1 i95H 

SPM<: cOi"PATIBLE - ~SE: B 

~EZE TOP l.OJEL 

SIZE I c OEV. 

I 

I DRAwING NO. 

I BREEZE 

13-£E:T 1 CF 1 



status of m2m chip: 

DESIGN: Partially done. 
MIH signal is not being handled correctly. 
Parity error checking on memory reads is not being done. 

SIMULATION: Functionally about 90% simulated. 
The arbiter circuitry not simulated. 
Diagnostics : Not Done. 

BUGS: Several relating to IO. For example, the perr signal 
should be open-collector, the mrty pin should be 
tristate etc. 
Initial values of registers. 

SYNOPSYS: Mapped to Fujitsu library (0.8um). 
The arbiter circuitry not compiled yet. 

LOCATION OF FILES: 
verilog hdl desc. : -biyani/pc/m2m/v10.0/vlg 
verilog library : /tools/lib/model/hdl, Fujitsu libraries 
synopsys environment: -biyani/pc/m2m/v3.0 
simulation environment : /s/users/sparc/breeze/memory 



VIA Memory Interface ASIC 

MBus 

11/12/90 
1.111290 

ADVANCE 

General Description 
This ASIC connects the MBus to the memory controller. Ideally, the interface logic and the 
memory controller should be in the same ASIC, but it results in a very high pin count ASIC. 
Also, the combined ASIC would need external drivers to drive the address, RAS and CAS lines. 
Thus, the need to have two ASIC's, the memory interface ASIC and the memory controller 
ASIC. 
The function of the Memory Interface logic is fairly straightforward and is shown below. 

r--

64 64 64 
~ I ... I I .. 

I I I 
Data 

'---

Parity 

PERR* .... Gen 
~ 

r---

~ 
'---

[Write Path] 

4 Deep fifo 

..---
8 
I .. 

I 

~ r> 
L--

Parity Reg 

.---

(.., 
["'I 

< 
'---

[Read Path] 

r--

... 

-

... Byte 
Parity 

... Memo ry Address 
5:0> -r- <3 

.. Data Bus 
<63:0> 

VIA Technologies, Inc. (408) 746-2200 
860 East Arques A venue 

Sunnyvale, CA 94086 



_______ VIA 
What makes the chip complicated is that the Memory Interface Logic has to be sliced into two chips. The 
slicing becomes a little tricky as the address is available on only the lower 36 bits. Another complication 
is the design of the dual-ported FIFO, simultaneous Read and Write should be done on the 4-deep fifo. 
This would significantly improve the performance of the memory system. 

Objectives for ASIC 
This ASIC designed for memory interface must achieve the following objectives: 

• Only one load on MBus 

• Fit in a 128 PQFP 

• Run up 40MHz 
• The filling and emptying of the on board buffers can take place simultaneously. 

• The ASIC should support all burst modes. 

Slicing Methodology 
Byte Defintion 

Bits 

Byte No. 

63:56 

o 
55:48 1 

1 

47:40 

,2 

SLAVE 

39:32 

3 

.31:24 

4 

MASTER 

23:16 

5, 

115:8 

6 

Even though the two slices are identical, I define them as the MASTER and SLAVE. This would become 
clear later in the SPEC. The slicing is done as follows: 

MASTER Slice would receive bytes 2,3,4,5 from MBus 

SLAVE Slice would receive bytes 0,1,6,7 from MBus. 

The advantage of this scheme is that the 36 bits of physical MBus address is split 16 bit in SLAVE and 20 
bits in MASTER. Further, the Type (MBus <39:36» and Size (MBus <42:40» will originate for the 
memory controller from the 'MASTER SLICE'. 

2 Memory Interface ASIC 



YIA ______ _ 
Internal Registers 

Configuration/Parity Error Register 
Address OXFFnXXXXXB 

(This is a Read/Write Register) 

31 28 27 24 23 22 21 

IPERR I PI I PEP I MS 

20 

CS 
19 

S 
18 17 98 0 

R I Upper_Bound I Lower_Bound 

This register would be read from the 'MASTER Slice', using double word read. 

Upper-bound = highest address supported by DRAM controller. 
Lower-bound = lowest address supported by DRAM controller. 
The Memory Interface would respond if Lower-bound < Target Address (MBus < 31:23» < Upper-bound 
and MBus <35:32> is OX) in the address phase of MBus operation. 
R RAM Size 

S Spare 
CS Clock Speed 
MS Memory Speed 
I Interleave 
PE Parity Enable (4 bytes) 

PI Parity Invert <bytes 2,3,4,5> (per byte) 
PERR Parity Error <bytes 2,3,4,5> (per byte> 

MBus Port Register 
Address OXFFnXXXXXC 
This is a Read/Write register. This would be read from the SLAVE slice using the double word READ. 
The double word Read/Write at address OXFFnXXXXX8 would access this register from the SLAVE. 
This register is accessed from SLAVE. 

31 2827 24 23 22 

I PERR I PI I PE I SPACE 

MVEND Vendor ID 
MREV Rev # of device 

MDEV Device # 

PE Parity Enable 

1615 

MDEV 

PI Parity Invert <bytes 0,1,6,7> (per byte) 
PERR Parity Error <bytes 0,1,6,7> (per byte) 

Memory Interface ASIC 

87 43 o 
MREV MVENDI 

3 



_______ YIA 
Bus Error Register I 
Address OXFFnXXXXXO 

This again is a 32 Read/Write registe .... This can be accessed by double word Read or Write. This register 
contains a copy of the address from MAS cycle for operation. This is accessed from MASfER. 

31 

Bus Error Register II 
Address OXFFnXXXXX4 

o 

This register is identical to Bus Error Register I except its address. This is accessed from the SLAVE. The 
Read/Write access to this register is done by doing a double word access on address OXFFnXXXXXO. 

Pinouts of Memory Interface 
Count 

32 

32 

16 

4 

1 

1 

1 

3 

1 

4 

1 

1 

1 

Pin Name ~ 
MAD <31:0> I/O 
MD<31:O> I/O 
MA<15:0> 0 
P ARlTY <3:0> I/O 

MASTER/SLAVE I 
C-Mrdy* 

TYPE I/O 

SIZE <2:0> I/O 

MAS* I 

ID <3:0> I 

REGIN/REGOUT I/O 

REGADDRO I/O 
/REGADDRI 

MRDY* 0 

4 

Description 

MBus mul~plexed 32 bit address data 

Memory Data Bus 

Memory Address Bus 

Byte Parity 

Defines physical location of chip 

I Handshare signal from memory controller. Tells 
interface controller done. 

This is a Multifunction pin. In the MASTER it is an 
output pin describing the type of operation as 
Read/Write. If SLAVE it has the same meaning as 
above, but is an input. 

this is a multifunction pin. In the MASTER it 
drives the size information to the memory control
ler. In SLAVE it is an input pin and receives the 
size information. 

Memory Address Strobe on MBUS 

For MASTER these 4 pins define the MBus slot ID 
through some internal jumper setting. These pins 
have no meaning for SLAVE. 

This is a multifunction pin. For the MASTER slice 
this pin is ~n output indicating a register operation 
was decoded. For SLAVE this is an input pin 
indicating a register operation. 

This is a multifunction pin. For the MASTER slice 
this is an input pin with the dw address of the 
register set. 

In the MASTER slice it drives the MBus MRDY* 

Memory Interface ASIC 



YIA ______ _ 
1 MERR* 

1 AERR* 

1 MREQ*/MOP* 

o 

0 

I/O 

signal. In slave slice is unconnected. 

This is a multifunction pin. For the MASTER slice 
this is the MERR* signal for the MBus*. For the 
slave this is nco 

This is an open collector signal and is the PERR* 
from each slice. 

This is a multifunction bit. In MASTER it drives 
'MREQ' signal to memory controller. In SLAVE it 
is an input indicating a memory operation. 

1 MEMBSY* I This is an input indicating that the memory is busy. 
This signal comes from the memory controller. 

1 

1 
4 

109 

CLK 

RESET"" 

CONFIG <3:0> 

I 

I 

0 

Clock Line 

Reset input 
In the MASTER this feeds the configuration 
information to the memory controller. In SLAVE it 
isNC. 

Software Format of Configuration Registers 
To have a thorough idea of qhat a double word register access would give to the processor it is better to 
see it pictorially. this is because the bytes sent to each of the slices and not contiguous. 

DW access on location address OXFFnXXXXXO 

63 4847 1615 0 

I BUSE~REGII 
<3 :16> I BIS ;~> 

Byte No. ° 1 2 3 4 

DW access on location on register address OXFFnXXXXX8 

63 60 59 54 48 47 

PERR <0,1,6,7> Indicates Parity error for bytes 0,1,6,7 

PERR <2,3,4,5> Indicates Parity error for bytes 2,3,4,5 

PI <0,1,6,7> Indicates Parity Invert for bytes 0,1,6,7 

PI <2,3,4,5> Indicates Parity Invert for bytes 2,3,4,5 

PE <0,1,6,7> For enabling parity for bytes 0,1,6,7 

PE <2,3,4,5> For enabling parity for bytes 2,3,4,5 

Memory Interface ASIC 5 

REI I I BUS E.t! II 
<15. > I 

5 6 7 

35 3433 2524 



status Wed Feb 27 09:14:55 1991 1 

/s/users/sparc/breeze/sLm/v 

status of DRMC chip: 

DESIGN : complete 

SIMULATION :test suite in /s/users/sparc/breeze/sLm/v/{debug.v,mem.diag6,rgrs} 
testing of rgrs is not complete and could yield unknown problems. 

BUGS: none outstanding. 

SYNOPSYS: mapped to att. 

LOCATION of files: 
verilog hdl description of chip: 

/s/users/sparc/breeze/memory/v/tst/{memctrl.v, raseas.v, rowe ol.v, 
coladr.v,maddr.v,maxadr.v,refentr.v,enable.v} 

sLmualtion environment: /s/users/spare/breeze/sLm/v 



MBus DRAM Controller Specification 

'ecember, 1990 
.::.011691 

VIA Technologies, Inc. (408) 746-2200 
860 East Arques A venue 

Sunnyvale, CA 94086 



YIA _____ _ 
BLOCK DIAGRAM 

RESEr' 

Row 
Address 

MAO<10:0> 

MA1<10:0> 
LA<25:0> 

MA2<10:0> 

MA3<10:0> 

Col 
Address 

MREQ* RASO<1:0> .. 
SIZE<2:0> .. RAS1<1:0> • DRAM 

CASO<7:0> R/W* .. 
MEMSIZE .. and CAS1<7:0> .. 
INTLVD .. 
SPDSELO 

Refresh 
WEO<1:0> 

Control 
SPDSEL1 WE1<1 :0> 

CMRDY* 

BUSY 

DRAM Controller Block Diagram 

MBus DRAM Controller Specs 2 Advance 



______ YIA 
OVERVIEW 

The DRAM controller is a high-performance CMOS integrated circuit that provides all the necessary 
control signals between the DRAM array and a pair of MBUS interface ICs in a SP ARC based worksta
tion. The rest of the document describes the functions supported in this Ie. 

FEATURES: 

Advance 

• 2-way Interleaving for High Performance. 

• 1 to 128 byte DRAM Read, Write Transaction Using Fast Page Mode. 

• Byte Wide Parity. 

• CAS Before RAS Refresh Scheme. 

• Supports 1 Megabyte and 4 Megabyte RAM Modules. 

• Memory Configurations Supported: 

• 8 Mbytes - 1M x 9 SIM:M DRAM's even bank non-interleved. 

• 16 Mbytes - 1M x 9 SIMM DRAM's both banks and interleaved. 

• 32 Mbytes - 4M x 9 SIMM DRAM's even bank non-interleaved. 

• 64 Mbytes - 4M x 9 SIMM DRAM's both banks and interleaved. 

• Clock Speed - 25 Mhz, 33 MHz and 40 MHz. 

• No External Buffers Needed for RAS*, CAS* , WE* and 
Memory Address For 64 Mbytes of DRAM. 

• Needs a Pair of VIA MBus Interface IC's or Equivalent For Optimum Perfor
mance on MBus. 

• Built in Scan Chain for 100% Fault Grading. 

3 MBus DRAM Controller Specs 



YIA _____ _ 
PINOUT 

Signal Name No. of Pins Input/Output Signal Description 

LA<25:0> 26 Input latched 26 bit memory address 
SIZE<2:0> 3 Input Transaction size 
RDIWR* 1 Input Rd if =1 else wr 
MREQ* 1 Input Request for memory operation 
MEMSIZE 1 Input 1 =4M Byte ,0=1 M Byte sel 
SPDSElO 1 Input Wait state generator bit 0 
SPDSEl1 1 Input Wait state generator bit 1 
INTlVD 1 Input Turns on 2-way interleaving 
CMRDY* 1 Output Operation done 
BUSY 1 Output Controller Busy 
MAO<10:0> 11 Output (12 rna) DRAM address copy 0 
MA1<10:0> 11 Output (12 rna) DRAM address copy 1 
MA2<10:0> 11 Output (12 rna) DRAM address copy 2 
MA3<10:0> 11 Output (12 rna) DRAM address copy 3 
RASO<1:0>* 2 Output (12 rna) Even DRAM RAS 
RAS1<1:0>* 2 Output(12 rna) Odd DRAM RAS 
CASO<7:0>* 8 Output (12 rna) Even DRAM CAS 
CAS1<7:0>* 8 Output (12 rna) Odd DRAM CAS 
WEO<1:0>* 2 Output (12 rna) Even DRAM WE 
WE1<1:0>* 2 Output (12 rna) Odd DRAM WE 
RESEr 1 Input System Reset 
VDD 4 Power 
VSS 4 Ground 
SCAN_OUT 1 Output(4ma) Scan Data Out 
SCAN_IN 1 Input Scan Data In 
TM_OE* 1 Input Test Mode/Output Enable 

Pinout Summary: 107 Signal I/O 

4 VDD 

4 VSS 

115 Total Pins 

MBus DRAM Controller Specs 4 Advance 



______ YIA 
FUNCTIONAL DESCRIPTION 

The DRAMC is initiated by MREQ* signal being active for a cycle. At which time if the DRAMC is not 
busy doing either a memory operation or refreshing the DRAMs a new memory operation is started on 
the DRAMs. Depending on the information on the MEM_SIZE and INTL VD pins, the address on the 
LA<25:O> are muxed onto MAn<10:0> as row and column addresses at the appropriate time intervals. 
Again one address bit is used to select the bank. The address muxing is as shown below 

Interleaved memory mapping: 
1 MegaByte SIMM 

a25a23 a22 a13 a24 a12 a7 a6 a4 a3 a2 aO 

x col3 row9 .................... rowO x coI9 ...... coI4 col2.col0 byte2 .. byteO 

4 MegaByte SIMM 

a25 a23 

bank select: '0' = even; '1' = a:!:! 

a13a24 a12 a7 a6 

I 

a4 a3 a2 aO 

col3 row10 ......................... rowO col1 (J coI9 .. coI4 coI2 .. coI0 byte2 . byteO 

bank select: '0' = even" '1' = Ouu 

Non-Interleaved memory mapping: 
1 MegaByte SIMM 

I 

a25 a23a22 a13a24 a12 a3 a2 aO I x I I row9 .................... rowO I x I col9 ........................... colO I byte2 .. byte~ 

'---- bank select: '0' = lower; '1' = upper 

4 MegaByte SIMM 

a25a23 a13 a24 a12 a3 a2 aO 

I I rowl 0 ...................... rOwOlcoll 01 col9 .............................. coIO Ibyte2 ... byte9 
I bank select: '0' = lower; '1' = upper 

Advance 5 MBus DRAM Controller Specs 



VIA _____ _ 
CAS WIDTH SELEer: 

The DRAMC is optimized for system clock speeds of 25Mhz to 40 MHz and DRAM access times of 100 ns or 
better for the fast page mode operation. The deafult count for RAS_to_ CAS delay,viz RCD is 2 cycles and the 
default CAS"" cycle time is 1 cycle. However additional cycles can be added by setting the SPDSELO and 
SPDSELl pins to appropriate levels as shown below. 

spdsel1 spdselO CAS· RCD 

0 0 ---- ----
0 1 --- +1 
1 0 ---- +1 
1 1 +1 +1 

TRANSACI10N SIZE: 

The SIZE<2:0> lines carry the encoded version of the transaction size as shown in the table below. 

SIZE<2:0> Transaction 

000 Byte 
001 2 Bytes 
010 4 Bytes 
011 8 Bytes 
100 16 Bytes 
101 32 Bytes 
110 64 Bytes 
111 128 Bytes 

MBus DRAM Controller Specs 6 Advance 



______ YIA 
TYPICAL MEMORY ORGANIZATION 

Advance 

VIA 
MBus 

Interface IC 

MBus <63:0> 

Latched address and 
other control in/ormation. 

md<63:32> 

is 
00 .......... v v 
0 ..... 

~~ 

even bank RASP 

SIMM(7:0) 
CASE* 

I 

VIA 
DRAM 

Controller 

7 

is 
00 ..... ..... v v 

~~ 
RASO* 

CASO* 

" 9. ...... 
~ v 

VIA 
MBus 

Interface IC 

md<31:0> 

odd bank 

SIMM(7:0) 

I 

" 9. 
~ 
\0 
V 

~ 

MBus DRAM Controller Specs 



VIA 

Typical M2M and DRAMC Interface TIming 

CLK 

MAS' 1 jl jl 
MAO ~ AOORO : X : 00 ~ ( ADDR1 X 01 

lMA OlD MEIUIADDR ~X MEM ~RO VAlI~ ~X ME~ ADDR1 V~lIO 

MREO" n n H ji 
MRDV' ~ I ~ I n ji 
RAS' 

CAS' 

CMRDY· 

CBUSY 

MD<63.0> ~ ____ S_~~'_~_O_A_T_A~: ____ --J)(~ ____ ~ ____ ~ ______ ~DO ____________________ --J)(~~_0_1 ____ ~ __ 

MBus DRAM Controller Specs 8 Advance 



/tmp/STATUS Tua Feb 26 19:18:15 1991 1 

/s/users/sparc/breeze/at/STATUS 

status of M2SX chip: 

DESIGN: complete 

SIMULATION: test suite in /s/users/sparc/breeze/at/{main.v,test.v} 
additional testing which could be done: half speed mode 

BUGS: none outstanding 

SYNOPSYS: mapped to att (13571 cells, minimum cycle time 16.48 ns),vti 

LOCATIONS of files: 

verilog hdl description 
verilog library: 
synopsys environment : 
simulation environment 

status of AT subsection: 

DESIGN: complete 

of chip: Is/users/sparc/breeze/at/synopsys/pure hdl 
Itools/lib/model/hdl -

Is/users/sparc/breeze/at/synopsys 
: Is/users/sparc/breeze/at 

SIMULATION: test suite in Is/users/sparc/breeze/at/test.v 
additional testing which could be done: refresh,dma, off-board master 

BUGS: none outstanding 

LOCATIONS of files: 

drawings:/s/users/sparc/breeze/at/at 
simulation environment:/s/users/sparc/breeze/at 
verilog libraries: Itools/lib/model 

Itools/lib/lai vlog 
Itools/lib/v -
Itools/lib/oki 
Is/users/sparc/breeze/v/breezeCustom.v 
Is/users/sparc/breeze/v/breezeLaiInt.v 
Is/users/sparc/breeze/at/synopsys/pure_hdl 



~bruary, 1991 
1.020591 

M2SX Chip Specification 

Rev 1.0 

VIA Technologies, Inc. (408) 746-2200 
860 East Arques Avenue 

Sunnyvale, CA 94086 



VIA _____ _ 
INTRODUCTION 

The M2SX chip provides a means by which Mbus slave accesses are transformed into accesses in 386SX 
protocol. That is, the Mbus interface of the chip acts as an Mbus slave, while the 386SX side acts as a 
master. Then, other logic can translate the 386 master cycles into bus cycles of a standard system bus, 
such as the AT. 

Another function of the M2SX chip is to handle accesses to basic on-board devices, such as the boot prom 
and serial ports. These do not proceed as 386SX cycles, but do use the 386 address and data busses. No 
additional "glue" logic is necessary to connect these to the M2SX. 

MBUS SLAVE INTERFACE 

Mbus is a multiplexed address and data bus. During the address phase the Mbus master drives the 
physical address (PA), transaction type (TYPE) and size (SIZE), and other control signals. The M2SX chip 
compares PA<35:32> with its Mbus Slot Address, MSLOf, to determine if whether it is the target of the 
transaction. MSLOT is a field in its internal Status/Control Register. The internal registers themselves 
are addressed when PA<35:28>=FF hex and PA<27:24> equals the value on the ID<3:0> inputs. Finally, 
physical addresses of FFOxxxxxx will result in boot PROM accesses.This address comparison is summa
rized below: 

if PA<35:0> = FFnxxxxOO, where n = 10<3:0> -> Internal Registers 

else if PA<35:0> = FFOxxxxxx -> Boot Prom space 

else if PA<35:32> = MSLOT <3:0> -> on-board I/O and AT space 

INTERNAL REGISTERS 

offset(bytes) description access type size(bits) 

0 Bus Error Register Read 64 

8 Status/Control Register read/write 32 
C Mbus Port Register read 32 
10 Latency Register read/write 64 
18 Recovery Register read/write 64 

M2SX Chip Spec 2 ADVANCE 



______ YIA 
ATI ON BOARD 10 ADDRESS MAPPING 

Mbus address bit pattern 

31 30 29 28 27 26 25 24 

0 0 0 1 X X X 1 -> AT memory space 

0 0 0 1 X X X 0 -> AT I/O space 

0 0 0 0 X 0 0 0 -> on-board I/O device #0 (boot prom) 

0 0 0 0 X 0 0 1 -> on-board I/O device #1 

0 0 0 0 X 0 1 0 -> on-board I/O device #2 

0 0 0 0 X 0 1 1 -> on-board I/O device #3 

0 0 0 0 X 1 0 0 -> on-board I/O device #4 

0 0 0 0 X 1 0 1 -> on-board I/O device #5 

0 0 0 0 X 1 1 0 -> on-board I/O device #6 

0 0 0 0 X 1 1 1 -> on-board I/O device #7 

The M2SX chip will accept two transaction types: Read (TYPE<3:0>=OOOl) and Write (TYPE<3:0>=0000). 
All other transaction types are not supported. 

TYPE<3:O> Transaction Type 

0000 Write 

0001 Read 

00lx Illegal 

01xx Illegal 

1 xxx Illegal 

Transaction Sizes Supported 

For on-board I/O and AT accesses, all Mbus size transactions are supported, that is byte, halfword, word, 
doubleword, and bursts of 16,32,64 and 128 bytes. 

For the internal registers, byte, halfword, word and doubleword reads are supported. For writes, only 
word and doubleword sizes are allowed. Unsupported size transactions will result in a bus error 
acknowledgement being given.This is summarized in the following table: 

ADVANCE 3 M2SX Chip Spec 



YIA _____ _ 
Allowed internal register accesses 

size type 
read write 

byte OK illegal 

short OK illegal 

word OK OK 

double OK OK 

burst illegal illegal 

There are three transaction status bits, MERR*, MRDY*, and MRTY*, that the M2SX chip uses to send an 
acknowledgment back to the Mbus master for a transaction it receives. The transaction status is shown 
as follows: 

MERR* MRDY* MRTY* Acknowledgment 

1 1 1 Idle Cycle 

1 1 0 Relinquish and Retry 

1 0 1 Valid Data Transfer 

0 1 1 Errorl => Bus Error 

Valid Data Transfer. On Mbus Write transactions, the M2SX chip will assert MRDY* when it senses the 
386 READY* signal becoming active, which signals that the 386 peripheral has accepted the write data. 
For Mbus Read transactions, MRDY* is asserted when the read data is driven by the M2SX onto Mbus. 

Bus Error Acknowledgment. The M2SX will assert MERR* when it detects an unsupported operation for 
an Mbus transaction which has targetted it. An unsupported operation is defined as one for which the 
TYPE and/or SIZE is not supported, as defined above. 

Relinquish and Retry Acknowledgment. The M2SX chip will give a Relinquish and Retry acknowledg
ment (R&R) if it is the target of an Mbus transaction, but the 386 bus is not immediately available because 
another master is controlling from the 386 side. 

M2SX Chip Spec 4 ADVANCE 



______ YIA 
MBUS POR.T REGISTER. 

The Mbus Port Register (MPR) is a read only register which contains the Implementation Number and 
Version Number of the M2SX Chip. It is addressed when PA<35:0>=FFnxxxxxC where n=ID<3:O>. The 
format of the MPR is shown below: 

16 8 4 4 

Reserved MDEV I MREV I MVEND I 
31 16 15 8 7 4 3 o 

MDEV: Mbus Device Number. This field contains a unique number which identifies the device as a VIA 
M2SXChip. 

MREV: Mbus Revision Number. This field contains the revision number for the VIA M2SX Chip. 

MVEND: Mbus Vendor Number. This field contains the vendor number for VIA. 

STA TUs/CONTR.OL REGISTER. 

The Status/Control Register (SCR) is addressed when PA<35:0>=FFnxxxxx8 where n=ID<3:O>. The 
format of the SCR is shown below: 

27 1 4 

Reserved 

31 5 4 3 o 

MSLar: Mbus Slot Address (read/write, bits 3:0). This field contains a unique number among all Mbus 
modules which reside on Mbus. MSLOT is compared with PA<35:32> to determine whether this chip is 
the target of the transaction. This register should be configured by the Operating System after it has read 
all of the MPRs for the modules which reside on MbUs. The Mslot value is set to value 0 upon reset. 

ALT_MASTER (read only, bit 4). This status bit being high indicates that another bus master has control 
of the 386SX bus. 

ADVANCE 5 M2SX Chip Spec 



YIA _____ _ 
Bus ERROR REGISTER 

The Bus Error Register is a read only register which contains information about the circumstances that 
caused the M2SX Chip to assert MERR"'. It is addressed when PA<35:0>= FFnxxxxxO where n=MlD<3:O>. 
MERR'" is asserted when the Mbus Slave interface face receives a transaction which it does not support. 
The physical address, size, type, and acknowledgment for the transaction is saved in the Bus Error 
Register. The fonnat of the Bus Error Register is shown below: 

MID: Module Identifier. This field contains a copy of the Mbus Module Identifier of the Mbus master 
which was the source of the transaction which led to the bus error. 

ace: Error Occurred. This bit = 1 if a bus error has occurred since the Bus Error register was last read. It 
is cleared upon reading this register. ace is initially = 0 upon system reset. If a bus error occurs, the bit 
is set and the register's contents are updated. The Bus Error Register's contents are then held until it is 
read by the CPU, at which point it is re-armed again. 

4 20 1 3 4 36 

Reserved I acel SIZE I TYPE I PA 

63 60 59 44 43 42 40 39 36 35 

SIZE: Mbus Transaction Size. This field contains a copy of the Mbus transaction size. 

TYPE: Mbus Transaction Type. This field contains a copy of the Mbus transaction type. 

o 

P A: Physical Address. This field contains a copy of the physical address for the Mbus transaction. 

LATENCY REGISTER 

This 64-bit register is used with on-board I/O (OBIO) accesses. There is an eight-bit value for each of 
theeight possible OBIO devices. This value is programmable by the CPU and has a default value of 0xA. 
The ordering is such that the value for OBIO device 0 (boot prom) comes from register bits [63:56], while 
the value for device 7 comes from register bits [7:0]. The latency value set for a device determines the 
number of additional clock cycles that the read or write strobe is active for an I/O access to that device. 
The total number can vary between 1 and 256 clock cycles. For example, consider a system with a 25ns 
Mbus cycle time, and a read of the boot prom in which the latency register bits[63:56] = Ox8.The read 
strobe will be active for (1 + 8)x25ns=225ns. 

I LATO LATl LAT2 LAT3 LAT4 LAT5 LAT6 LAT7 

63 o 

M2SX Chip Spec 6 ADVANCE 



______ YIA 
RECOVERY REGISTER 

This 64-bit register is also used with on-board I/O (OBIO) accesses. There is an eight-bit value for each of 
the eight possible OBIO devices. This value is programmable by the CPU and has a default value of Oxl. 
The ordering is such that the value for OBIO device 0 (boot prom) comes from register bits [63:56], while 
the value for device 7 comes from register bits [7:0]. The recovery value set for a device determines the 
number of additional clock cycles between the time that the chip select becomes active for that device and 
the time that the read or write strobe becomes active. This serves two functions: 1) to ensure enough 
address set-up time before the read or write strobe becomes active and 2) to provide enough recovery 
time (time between successive read or write strobes to the same device.) The total number can vary 
between 1 and 256 clock cycles. For example, consider a system with a 25ns Mhus cycle time, and a write 
of the serial port in which the latency register bits = Oxlf.The recovery register will provide (1+ 
31)x25ns=8OOns between when the chip select for the serial port becomes active and when the write 
strobe becomes active. 

I RECO RECl REC2 REO REC4 RECS REC6 REC7 

63 o 

386 MEMORY AND 110 SPACES 

The 386 processor has a concept of memory and I/O address spaces. The cycles are the same except for 
the state of the MEMIO bit, which is high for memory cycles and low for I/O cycles. This function is 
simulated by the M2SX chip by making the state of PA <24> during each 386 access determine whether a 
memory or I/O cycle is performed. Setting PA<24> = 1 causes a memory access, PA<24> = 0 causes an I/ 
o access. 

ADVANCE 7 M2SX Chip Spec 



VIA _____ _ 
ttBIG-ENDIAN" VS. ttLI1TLE-ENDIAN" CONVERSION 

The Mbus and the 386 are opposites with respect to the "big-endian" vs. "little-endian" convention. 
Because of this, for byte accesses, the least significant bit of the Mbus address is complemented before 
being put out as a 386 address. 

Low-order addresses formed by 386sx sequencer 
Mbus cycle size initial byte address from Mbus byte address sequence 

doubleword 0 0,2,4,6 

word 0 0,2 

word 4 4,6 

halfword 0 0 

halfword 2 2 

halfword 4 4 

halfword 6 6 

byte 0 1 

byte 1 0 

byte 2 3 

byte 3 2 

byte 4 5 

byte 5 4 

byte 6 7 

byte 7 6 

MlSX Chip Spec 8 ADVANCE 



______ YIA 
M2SXPINOUT 

Signal Name # Pins I/O Signal Description 

MAD<63:0> 64 I/O (4ma) Mbus Address/Control/Data 

MAS* 1 Input Mbus Address Strobe 

MERR* 1 Output (4ma) Mbus Error Indicator 

MRDY* 1 Output (4ma) Mbus Data Ready Indicator 

MRTY* 1 Output (4ma) Mbus Retry Indicator 

10<3:0> 4 Input Mbus Module Identifier 

MCL!( 1 Input MbusOock 

RSTIN* 1 Input MbusReset 

A<23:0> 24 Output (4ma) 386SX address 

0<15:0> 16 I/O (4ma) 386SXData 

ADS'" 1 Output (4ma) 386SX Address Strobe 

READY'" 1 Input 386SX Bus Ready 

WR 1 Output (4ma) 386SX Write 

MIa 1 Output (4ma) 386SX Memory Cycle 

BHE* 1 Output (4ma) 386SX Byte High Enable 

CPUCLK 1 Input 386SX Processor Clock 

CLK2/2 1 Input Slow mode clock 

HOLD 1 Input 386SX Hold Request 

HLDA'" 1 Output (4ma) 386SX Hold Acknowledge 

IOR* 1 Input AT I/O Read Strobe 

MEMR* 1 Input AT Memory Read Strobe 

SCAN_OUT 1 Output (4ma) Scan Data Out 

SCAN_IN 1 Input Scan Data In 

TM_OE* 1 Input Test Mode/Output Enable 

OBIO_WR'" 1 Output (4ma) On-board I/O write strobe 

OBIO_RD* 1 Output (4ma) On-board I/O read strobe 

OBIO _ CS<7:0>'" 8 Output (4ma) On-board I/O chip selects 

Total 138 Signal pins. 

ADVANCE 9 M2SX Chip Spec 



VIA _____ _ 
CLOCKING CONSIDERATIONS 

The Mhus may operate at clock rates of as high as 40Mhz, while most 386 system logic, such as an AT 
chipset, has a maximum of from 25 to 33 Mhz. If the Mhus is running at a clock rate higher than a particu
lar set of 386 system logic can accomodate, there is provision for running the 386 system logic at half the 
Mhus dock rate, and having the M2SX chip automatically synchronize to the slower speed by means of 
the CLK2/2 synchronizing input. 

ALTERNATE Bus MASTERS 

The M2SX has provision for allowing alternate bus masters on the 386sx bus. If the 386SX bus request 
signal (HOLD) is asserted, the M2SX will assert the bus acknowledge (HLDA) and go into a state in 
which it tristates its address data and control lines, until HOLD is negated. During that time, internal 
accesses to the M2SX can proceed, but onboard I/O accesses by the CPU will generally result in a retry 
acknowledgement on the Mbus. The exception is the case of a boot prom access to space OxFFOXXXXXX, 
in which the M2SX will wait until the alternate bus master cycle is over, then proceed with the cycle 
normally. 

SIGNAL DESCRIPTIONS 

MAD<63:0>: Mbus Multiplexed Address and Data. 

MAS"": Mhus Address Strobe. This signal goes active low to indicate the portion of the address cycle 
when the MAD bus contains address information. 

MERR"". This signal is asserted when the M2SX detects an error condition, such as an unsupported 
operation. 

MRDY"". This signal is asserted by the M2SX to indicate the successful completion of a transfer. 

MRTY"". This signal is asserted by the M2SX to indicate that the requested operation cannot be completed 
now, and should be retried later. 

10<3:0>. These pins define a unique ID for each Mhus module in the system. In the case of the M2SX 
they determine the Mhus space in which its configuration registers lie. 

MCLK: Mhus System Oock. 

RSTIN"": Mhus System Reset. 

A[23:0]: Address Bus for the 386SX. 

D[15:0]: Data Bus for the 386SX. 

ADS"". This signal from the M2SX, when active low, is used by 386SX system logic to store the 386 
address A[23:0], and signals 386 system logic that a bus cycle is beginning. 

READY"". This signal from 386 system logic,when active low, indicates to the M2SX chip that a 386 cycle 
is complete. 

WR. 386 bus control signal which when high indicates a write transfer. 

MIO. 386 bus control signal which when high indicates a memory cycle. 

M2SX Chip Spec 10 ADVANCE 



______ YIA 
BHE"". 386 bus control signal which when active low, indicates that valid data is on bits 15:8 of 0(15:0). 

CPUCLK: 386 Processor Oock. Normally = MCLK/2, except if chip is configured for slow mode, in 
which case it = MCLK/4. 

CLK2/2: Slow Mode Oock. Normally =MCLK. It could be the case MCLK is running at a sufficiently 
high clock rate such that the 386 system support logic external to theM2SX cannot use MCLK directly as 
its clock input, and must divide MCLK down by 2. In that case, connecting this pin to MCLK/2 will make 
the M2SX automatically synchronize the signals it sends to the 386 support logic, running at the slower 
speed. 

HOLD. This signal is asserted by the 386 system support logic when it desires to take control of the 
386SXbus. 

HLDA. This signal is asserted by the M2SX to indicate to the 386 system support logic that it has granted 
the 386 bus to it. 

lOR"'. This signal's positive-going edge clocks data into the M2SX on AT I/O reads. 

MEMR"'. This signal's positive-going edge clocks data into the M2SX on AT Memory reads. 

OBIO _ WR"'. Write strobe for on-board I/O accesses. 

OBIO_RD"'. Read strobe for on-board I/O accesses. 

OBIO_CS<7:0>"'. Chip selects for on-board I/O accesses. 

SCAN_OUT 

SCAN_IN 

SCAN_MODE 

ADVANCE 11 M2SX Chip Spec 



YIA _____ _ 
M2SX DATA PATH 

64 

64 64 
MBus 

24 

64 

M2SX Chip Spec 

Internal 
Registers 

24 

12 

64 

386A 

16 

16 

16 
3860 

ADVANCE 



/s/users/sparc/breeze/sbus/STATUS 

status of SBus subsection: 

DESIGN: complete 

SIMULATION: test suite in /s/users/sparc/breeze/v 
m2s.diag contains a concatenation of m2s.diagX individual 
diagnostics for the Mbus to SBus interface logic. 
tlb.diag contains a concatenation of tlb.diagX individual 
diagnostics for the SBus Controller and its I/O MMU. 
all.diag contains a concatenation of m2s.diag and tlb.diag. 
Simulation environment includes the DMA subsection. 
See /s/users/sparc/breeze/v/verilog.cmd for verilog 
simulation files. 

BUGS: none outstanding 

LOCATIONS of files: 
drawings: /s/users/sparc/breeze/sbus/sbus 
simulation environment : see above 
verilog libraries: see /s/users/sparc/breeze/v/verilog.cmd 

status of M2SCHIP chip: 

DESIGN: complete 

SIMULATION: test suite in /s/users/sparc/breeze/v 
m2s.diag contains a concatenation of m2s.diagX individual 
diagnostics for the Mbus to SBus interface logic. 
tlb.diag contains a concatenation of tlb.diagX individual 
diagnostics for the SBus Controller and its I/O MMU. 
all.diag contains a concatenation of m2s.diag and tlb.diag. 
Simulation environment includes the SBus subsection 
with the DMA subsection mapped to an SBus Driver. 
See /s/users/sparc/breeze/v/verilog.cmd for verilog 
simulation files. 

BUGS: none outstanding 

SYNOPSYS: not mapped at all 

LOCATIONS of files: 
verilog hdl description of chip: 

/s/users/sparc/breeze/sbus/v/m2sChip.v 
/s/users/sparc/breeze/sbus/v/m2s.v 
/s/users/sparc/breeze/sbus/v/sbusController.v 
/s/users/sparc/breeze/sbus/v/tlbs.v 

verilog library: /tools/lib/model/hdl 
synopsys environment : none 
simulation environment : /s/users/sparc/breeze/v 



.nuary, 1991 
3.020891 

M2S Chip Specification 

Rev 1.0 

VIA Technologies, Inc. (408) 746-2200 
860 East Arques Avenue 

Sunnyvale, CA 94086 



YIA _____ _ 
M2S PINOUT 

Signal Name # Pins InpuVOutput Signal Description 

MAD<31:0> 32 InpuVOutput (4ma) Mbus Address/ControVData 
MAS* 1 InpuVOutput (8ma) Mbus Address Strobe 
MERR* 1 InpuVOutput (8ma) Mbus Error Indicator 
MRDY* 1 InpuVOutput (8ma) Mbus Data Ready Indicator 
MRTY* 1 InpuVOutput (8ma) Mbus Retry Indicator 
MBR* 1 Output (4rna) Mbus Request 
MBG* 1 Input Mbus Grant 
MBB* 1 InpuVOutput (8ma) Mbus Busy Indicator 
MID<3:0> 4 Input Mbus Module Identifier 
MCLK 1 Input Mbus Clock 
SBR<3:1>* 3 Input SBus Request 
SBG<3:1>* 3 Output (4ma) SBus Grant 
D<31:0> 32 InpuVOutput (4ma) SBus Data 
RD 1 InpuVOutput (4ma) SBus Transfer Direction 
SIZ<2:0> 3 InpuVOutput (4ma) SBus Transfer Size 
PA<27:0> 28 Output (4rna) SBus Physical Address 
AS* 1 Output (4ma) SBus Address Strobe 
SEL<5:1>* 5 Output (4ma) SBus Slave Selects 
ACK<2:0> 3 InpuVOutput (4ma) SBus Transfer Acknowledgment 
CLK 1 Input SBus Clock 
RESET* 1 Output (4ma) SBus Reset 
POR* 1 Input Power-On Reset 
MEXC* 1 Output (4ma) SBC Memory Exception 
TLB_MISS 1 Output (4ma) SBC TLB Miss 
SCAN_OUT 1 Output (4ma) Scan Data Out 
SCAN_IN 1 Input Scan Data In 
SCAN_MODE 1 Input Scan Mode 
INT_OP_OUT 1 Output (4rna) Internal Operation to Other Chip 
LEGAL_OP 1 InpuVOutput (4ma) Legal Mbus Operation 
MDOUBLE 1 InpuVOutput (4ma) Mbus Double Word Transaction 
MID_MATCH 1 InpuVOutput (4ma) Mbus ID Compare for R&R 
MPA <3:07> 4 InpuVOutput (4ma) Mbus Physical Address <3:0> 
MTYPE 1 InpuVOutput (4ma) Mbus Transaction Type (R/w*) 
SLOT DET* 1 InpuVOutput (4ma) Mbus Transaction for This Mbus Slot 
INT_OP_IN* 1 Input Internal Operation from Other Chip 
ODD 1 Input Odd Chip Position 

Pinout Summary: 143 Signal I/O 
10 VDD 
7 VSS 

160 Total Pins 

M2S Chip Spec 2 ADVANCE 



______ YIA 
INTRODUCTION 

The M2S chip contains the logic for connecting the 64-bit Mbus to the 32-bit SBus. This interface can 
behave as both a master or slave on either Mbus or SBus. For transactions going from Mbus to SBus, the 
M2S chip is an Mbus slave for an Mbus master like the Cpu. After receiving the transaction, the M2S 
chip then becomes an SBus master and initiates a transfer to the targeted SBus slave. For transfers going 
from SBus to Mbus, the M2S chip is an SBus slave for an SBus master like a DVMA master. After receiv
ing the transfer, the M2S chip then becomes an Mbus master and initiates a transaction to the targeted 
Mbusslave. 

Due to limitations, the Mbus data path has been word sliced. This means that two M2S chips are required 
to interface to Mbus, one to MAD <63:32> and the other to MAD <31:0>. Both chips are required to be 
connected to SBus. The chips' position (even/ odd) and/or the address of the transfer determine which 
chip drives the bussed output signals. There is a set of pins for passing information between the two 
chips. 

Since Mbus and SBus have different bus data widths, data buffers are needed to provide temporary 
storage while data is being packed or unpacked. There are two sets of 4-byte buffers, one for data trans
fers from Mbus to SBus and the other for data transfers from SBus to Mbus. This allows a pair of M2S 
chips to handle byte, halfword, word and doubleword transfers on Mbus and byte, halfword and word 
transfers on SBus. 

Mbus and SBus may be running at different clock frequencies. Mbus will be typically be running at 33 or 
40 MHz while SBus has to run between 16.67 and 25 MHz. In order to keep both busses synchronized the 
SBus clock will be at the same frequency as the Mbus clock for clock frequencies of 25 MHz or less and at 
half of the Mbus clock frequency for frequencies greater than 25 MHz. Note that Mbus clock frequencies 
less than 16.67 MHz, between 25 and 33 MHz, and greater than 50 MHz are all illegal. 

The M2S chip also contains the logic for an SBus Controller. The SBus Controller can arbitrate between 4 
SBus masters, 1 being the M2S Logic and the other three being external SBus masters. It supports geo
graphically selecting six SBus Slaves, one being the M2S Logic, the other five being external SBus slots. 
Virtual to physical address translation is done through an eight-entry fully associative TLB with LRU as a 
replacement policy. The TLBs provide translation for a 32 MByte address space for each SBus slot. 
Translations can also be disabled on a per SBus slot basis. 

ADVANCE 3 M2S Chip Spec 



YIA _____ _ 
~BUSSLAVEINTERFACE 

Mbus is a multiplexed address and data bus. During the address phase the Mbus master drives the 
physical address (PA), transaction type (TYPE) and size(SIZE), and other control signals. The M2S chip 
compares PA<35:32> with its Mbus Slot Address, MSLOf, to determine if whether it is the target of the 
transaction. MSLOT is a field in its internal Status/Control Register. The internal registers themselves 
are addressed when PA<35:28>=FF hex and PA<27:24> equals the value on the MID<3:0> inputs. This 
address comparison is summarized below: 

PA<35:32> = MSLOT<3:0> 

or 

". PA<35:0> 

FFnxxxxxC Mbus Port Register 

FFnxxxxx8 Status/Control Register 

FFnxxxxxO Bus Error Register 

where n = MIO<3:0> 

The M2S chip will only accept two transaction types: Read (TYPE<3:O>=OOOl) and Write 
(TYPE<3:0>=OOOO). All other transactions types are illegal. 

TYPE<3:0> Transaction Type 

0000 Write 

0001 Read 

001x Illegal 

01xx Illegal 

1 xxx Illegal 

M2S Chip Spec 4 ADVANCE 



______ YIA 
The M2S chip will accept Read and Write transaction sizes of byte, halfword, word and doubleword. All 
other transaction sizes are illegal. 

SIZE<2:0> Transaction Size 

000 Byte 

001 Halfword (2 bytes) 

010 Word (4 bytes) 

011 Doubleword (8 bytes) 

1xx Illegal 

Doubleword transactions are transformed into two separate SBus word transfers. This is done because 
many SBus slave devices may not support two-word burst transfers. The first two bus cycles are made 
atomic so that double word width registers on an SBus slave device can be written on two consecutive 
bus cycles. If bus sizing occurs, then any bus cycle after the first two is not atomic. 

There are three transaction status bits, MERR*, MRDY*, and MRTY*, that the M2S chip uses to send an 
acknowledgment back to the Mbus master for a transaction it receives. The transaction status is shown 
as follows: 

MERR* MRDY* MRTY* Acknowledgment 

1 1 1 Idle Cycle 

1 1 0 Relinquish and Retry 

1 0 1 Valid Data Transfer 

0 1 1 Error1 => Bus Error 

Relinquish and Retry Acknowledgment: The M2S chip will give a Relinquish and Retry acknowledgment 
(R&R) if it is the target of an Mbus transaction, but is currently busy processing an SBus transfer. If the 
SBus transfer receives a Rerun Acknowledgment on the first SBus cycle, then an R&R will be given back 
to the Mbus master. Also, for Mbus Read transactions, if the transaction size is a doubleword or if the 
transaction results in dynamic bus sizing on SBus, then a R&R is also given. When the read data from 
SBus has been buffered in the M2S chip, it will wait for the Mbus master to retry the transaction before 
sending it the data. This allows other Mbus masters to use the bus while the M2S chip is doing a long 
transfer on SBus. 

Valid Data Transfer: For Mbus Read transactions MRDY* is asserted when the read data is driven by the 
M2S chip onto Mbus. For Mbus Write transactions MRDY* is asserted after the write transfer has com
pleted on SBus. Mbus doubleword transactions are transformed into two separate word transfers on 
SBus. MRDY* is not asserted until after the second word transfer has completed. 

Bus Error Acknowledgment: The M2S chip will assert MERR* when it detects an illegal operation for an 
Mbus transaction which has targeted it. Also, if the SBus transfer receives an Error Acknowledgment, 
then MERR* will be asserted. 

ADVANCE 5 M2S Chip Spec 



YIA _____ _ 
MBUS MASTER INTERFACE 

If an SBus master wants to perform an operation on an Mbus slave, then it must do it through the M2S 
chip. After the M2S chip receives an SBus transfer as an SBus slave, it does a protocol conversion and 
then becomes an Mbus master. It must request Mbus if it is not already being granted the bus. After 
receiving the grant it can start the transaction as soon as the bus becomes free. 

The M2S chip supports protocol conversions on SBus transfers of byte, halfword or word. During the 
address phase of the Mbus transaction the M2S chip assembles and drives out a doubleword with the 
following format: 

4 16 1 3 4 36 

OxFFFC I 0 I SIZE I TYPE I PA 

63 6059 44 43 42 4039 3635 o 

MID: Module Identifier. This field is sourced by all Mbus modules and reflects the value input into the 
module on the MID<3:O> input pins. 

SIZE: Transaction Size. This field encodes the size of the transaction as 10g2 of the number of data bytes 
being transferred. The encodings are the same as that shown previously for the Mbus slave interface, 
except that doubleword transactions are not generated. 

TYPE: Transaction Type. This field encodes the type of transaction. Only two types of transactions are 
supported, Read (TYPE<3:0>=OOOl) and Write (TYPE<3:0>=OOOO). TYPE<3:1> are always driven with 
zeroes. 

P A: PhYSical Address. This field contains the physical address from the SBus Controller. 

The address is driven out for one cycle followed by any write data on the next cycle. The Mbus master 
interface asserts MAS'" during the address cycle to indicate to the Mbus slave that this is the first cycle of 
the transaction and that the address is on the bus. For a Write transaction the data is held on the bus until 
the slave gives an acknowledgment. 

M2S Chip Spec 6 ADVANCE 



______ YIA 
The Mbus master interface will accept all acknowledgments that are defined by Mbus. The transaction 
status is decoded as follows: 

MERR* MRDY* MRTY* Acknowledgment 

1 1 1 Idle Cycle 

1 1 0 Relinquish and Retry 

1 0 1 Valid Data Transfer 

1 0 0 Undefined 

0 1 1 Error1 => Bus Error 

0 1 0 Error2 => Timeout 

0 0 1 Error3 => Uncorrectable 

0 0 0 Retry 

Relinquish and Retry Acknowledgment: For a Relinquish and Retry acknowledgment, a Rerun acknowl
edgment will be given by the SBus slave interface back to the SBus master. 

Undefined, Error Acknowledgment: For the Undefined or any of the Error acknowledgments, an Error 
acknowledgment will be given by the SBus slave interface back to the SBus master. The type of error and 
the physical address, size, and other information for the transaction that generated the error will be saved 
in the Bus Error Register. 

SBus SLAVE INTERFACE 

To determine if an SBus transfer is targeting the M2S chip, the SBus slave interface checks to see if AS'" 
and SEL" are both asserted. If they are, then the M2S chip will proceed to do a protocol conversion on the 
SBus transfer into an Mbus transaction. 

The M2S chip decodes the RD input to determine whether the transfer is a Read (RD= 1) or a Write 
(RD=O). 

The M2S chip will accept Read and Write transfers of byte, halfword and word. All other transfer sizes 
are illegal. 

SIZ<2:0> Function 

000 Word transfer (4 bytes) 

001 Byte transfer 

010 Halfword transfer (2 bytes) 

011 Illegal 

1xx Illegal 

ADVANCE 7 M2S Chip Spec 



YIA _____ _ 
There are three transfer acknowledgment signals, ACK<2:O>, that the M2S chip uses to send an acknowl
edgment back to the SBus master for a transfer it receives. The acknowledgment encoding is shown as 
follows: 

ACK<2:0> 

111 

110 

100 

011 

Acknowledgment 

Idle/Wait 

Error acknowledgment 

Rerun acknowledgment 

Word (data) acknowledgment 

Error Acknowledgment: If the transfer size is illegal, then the SBus slave interface will give an Error 
Acknowledgment. An Error acknowledgment will also be given if an Mbus transaction receives an 
Undefined or Error acknowledgment. 

Rerun Acknowledgment: The M2S chip will give a Rerun acknowledgment if it is selected for an SBus 
transfer, but is currently busy processing an Mbus transaction. For this situation a flag also set which will 
cause the Mbus slave interface to give Relinquish and Retry acknowledgments until the SBus slave 
interface has accepted a transfer and completed the transaction on Mbus. This avoids a deadlock situation 
when the SBus master is in a mode that prevents it from servicing a slave request due to its master mode 
requirements. A Rerun acknowledgment will also be given if an Mbus transaction receives a Relinquish 
and Retry acknowledgment. 

Word Acknowledgment: For SBus Read transfers the Word acknowledgment is given the cycle before 
the read data is driven by the M2S chip onto SBus. For SBus Write transfers the word acknowledgment is 
given after the write transaction has completed on Mbus. 

SBus MASTER INTERFACE 

If an Mbus master wants to perform an operation on an SBus slave, then it must do it through the M2S 
chip. After the M2S chip receives an MbUS transaction as an Mbus slave, it does a protocol conversion 
and becomes an SBus master. It must acquire ownership of SBus by first making a request to the SBus 
Controller. After receiving the grant it must drive the low order 32 bits of the Mbus physical address 
onto D<31:0> during the address cycle. The SBus Controller, knowing that the M2S chip has been 
granted the bus, passes the low order 28 bits of this data through to PA<27:0>. The high order nibble, 
PA<31:28>, is decoded to generate the SBus Slave Selects, SEL*. No virtual address translation is neces
sary since the M2S chip is already providing a physical address. The M2S chip must also drive RD and 
SIZ<2:0>. If the transfer is a Write, then the write data is driven onto the bus the cycle following the 
address cycle. The M2S chip then waits for an acknowledgment from the targeted slave or from the SBus 
Controller in the case of a timeout. 

M2S Chip Spec 8 ADVANCE 



______ YIA 
The SBus master interface will recognize all of the SBus Acknowledgments. A table of ACK<2:O> 
encodings is shown below: 

ACK<2:0> Acknowledgment 

111 Idle/Wait 

110 Error acknowledgment 

101 Byte (data) acknowledgment 

100 Rerun acknowledgment 

011 Word (data) acknowledgment 

010 Reserved 

001 Halfword (data) acknowledgment 

000 Reserved 

Rerun Acknowledgment For a Rerun acknowledgment, a Relinquish and Retry acknowledgment will be 
given by the Mbus slave interface back to the Mbus master. 

Reserved, Error Acknowledgment: For the Reserved and Error acknowledgments, a Bus Error acknowl
edgment will be given by the Mbus slave interface back to the Mbus master. The type of error and the 
physical address, size, and other information for the transfer that generated the error will be saved in the 
Bus Error Register. 

Data Acknowledgment: For Byte or Halfword Data acknowledgments the SBus master interface supports 
dynamic bus sizing as defined in the SBus Specification. This features allows the SBus master interface to 
initiate a word transfer to a halfword or byte wide SBus slave device, or a halfword transfer to a byte 
wide SBus slave device. Dynamic bus sizing never occurs for a byte transfer. During dynamic bus sizing, 
multiple SBus cycles are used to transfer each byte or halfword. For a word transfer two SBus cycles are 
required for an SBus slave which responds with Halfword Data acknowledgments. Likewise, four SBus 
cycles are required for an SBus slave which responds with Byte Data acknowledgments. The SBus master 
interface must generate the correct address for the datum being transferred during each SBus cycle of the 
transfer. The SBus slave must respond with the same data acknowledgment for each SBus cycle of a bus 
sizing operation. If the SBus slave gives a Rerun acknowledgment, then the SBus master interface will 
rerun the current SBus cycle. It will not restart the transfer at the original bus cycle. 

In addition to supporting dynamic bus sizing the SBus master interface will also support port locations 
within a data word as shown below: 

31 24 23 1615 8 7 o 
BYTE 0 I BYTE 1 BYTE 2 I BYTE 3 

HALFWORD 0 HALFWORD 1 

WORD 

ADVANCE 9 M2S Chip Spec 



YIA _____ _ 
When the SBus master interface performs a byte write, it will place a copy of the write data on byte 0 in 
addition to the byte'S natural location within the word. For example, if the byte'S address ends in 10, 
then the write data will appear at both bytes 0 and 2. Similarly, for halfword writes a copy of the data 
will appear on halfword 0 in addition to the halfword's natural location within the word. If the halfword 
address ends in 10, then the write data will appear at both halfword 0 and 1. 

When reading data from an SBus slave, the location of the data depends on the slave's data acknowledg
ment. For a Byte Data acknowledgment the data is transferred on byte 0, the most Significant byte. For a 
Halfword Data acknowledgment the data is transferred on halfword 0, the most significant halfword. 
Byte addressing within the halfword is determined by PA<O>. Similarly, for Word Data acknowledg
ments the data is transferred on the entire word. Halfword addressing within the word is determined by 
PAd> and byte addressing within the word is determined by PA<1:0>. 

MBUS PORT REGISTER 

The Mbus Port Register (MPR) is a read only register which contains the Implementation Number and 
Version Number of the M2S Chip. It is addressed when PA<35:O>=FFnxxxxxC where n=MID<3:O>. The 
format of the MPR is shown below: 

16 8 4 4 

Reserved MDEV MREV MVEND 

31 16 15 8 7 4 3 o 

MDEV: Mbus Device Number. This field contains a unique number identifying the device as a VIA M2S 
Chip. 

MREV: Mbus Revision Number. This field contains the revision number for the VIA M2S Chip. 

MVEND: Mbus Vendor Number. This field contains the vendor number for VIA. 

STATUS/CONTROL REGISTER 

The Status/Control Register (SCR) is a read/write register which contains the Mbus Slot Address, 
MSLOT. It is addressed when PA<35:0>=FFnxxxxx8 where n=MID<3:0>. Writes must be done with 
doubleword transactions with the MSLOT write data replicated for the odd word. The format of the SCR 
is shown below: 

28 4 

Reserved MSLOT 

31 4 3 o 

M2S Chip Spec 10 ADVANCE 



______ YIA 
MSLOf: Mbus Slot Address. This field contains a unique number among all Mbus modules which reside 
on Mbus. MSLOT is compared with PA<35:32> to determine whether this chip is the target of the transac
tion. This register should be configured by the Operating System after it has read all of the MPRs for the 
modules which reside on Mbus. 

Bus ERROR REGISTER 

The Bus Error Register is a read only register which contains information about an error, reserved or 
undefined acknowledgment that the M2S chip received as a master on Mbus or SBus. It is addressed 
when P A<35:0>= FFnxxxxxO where n=MID<3:0>. The physical address, size, type, and acknowledgment 
for the transaction is saved in the Bus Error Register. Once an error has been detected, the Bus Error 
Register cannot be overwritten by another error until it is read or until POR"" is asserted. The format of the 
Bus Error Register is shown below: 

4 8 4 4 1 3 4 36 

MID I Rsvd I MCODE I SCODE 10 I SIZE I TYPE I PA 

63 6059 5251 4847 44 43 42 4039 3635 o 

MID: Module Identifier. This field contains a copy of the Mbus Module Identifier. If the M2S Chip was 
an Mbus slave for the Mbus transaction, then the MID will be the Module Identifier for the Mbus master. 
If the M2S Chip was the Mbus master for the Mbus transaction, then the MID is the Module Identifier for 
the M2S Chip sourced from the MID<3:0> input pins. 

MCODE: Mbus Error Code. This field contains the error code information for an Mbus Bus Error. Bit 51 
is a 1 if an Mbus Bus Error occurred. Bits 50-48 are a copy of the Mbus transaction status bits; MERR"", 
MRDY"", and MRTY*, respectively. Bit 51 is cleared after reading the Bus Error Register and whenever 
POR"" is asserted. 

SCODE: SBus Error Code. This field contains the error code information for an SBus Bus Error. Bit 47 is a 
1 if an SBus Bus Error occurred. Bits 46-44 are a copy of the SBus transfer acknowledgment bits; 
ACK<2:0>. Bit 47 is cleared after reading the Bus Error register and whenever POR"" is asserted. 

SIZE: Mbus Transaction Size or SBus Transfer Size. This field contains a copy of either the Mbus transac
tion size or the SBus transfer size depending on which bus the error occurred. 

TYPE: Mbus Transaction Type or SBus Transfer Direction. This field contains a copy of the Mbus transac
tion type or the SBus transfer direction depending on which bus the error occurred. For an SBus Bus 
Error, the SBus transfer direction is recorded in bit 36. Bits 39-37 will be zeroes. 

P A: Physical Address. This field contains a copy of the physical address for either the Mbus transaction 
or the SBus transfer. 

ADVANCE 11 M2S Chip Spec 



YIA _____ _ 

/ f4. 
32 

1 ... , 

"-

32 
1 

I 

32 

MBUS 
I 

I 

-
32 32 

I .. I .. , , 
-

M2S Chip Spec 

;---

Protocol 
36 

A ... I 
Convert I 

'---

;---

32 32 B S·· L 32 
1 0 

... I us IZlng 1 , , 
/ Support 

, 
'---

32 
Internal 1 
Registers I 

-

A 
Protocol "-Convert 

32 
- -+ 

~/ 

-
32 B S·· /32 

0 
I.. us IZlng 1 

, / Support , 
-

12 

32 
1 

I 

SBUS PA, 
RD,SIZ 

SBUSD 

ADVANCE 



______ YIA 
Bus ARBITRATION 

The SBus Controller can arbitrate between 4 masters. It employs a fair arbitration scheme which is 
similar to round-robin prioritization. While the bus is idle, the master that is given the highest priority 
for the bus changes every cycle in a rotating fashion. Except for an atomic transfer, once a master has 
been granted use of the bus, he is not allowed to use the bus again until all of the other masters that had 
requested the bus while he was using it have been granted use of the bus. The other masters may not 
necessarily be granted the bus in chronological order. Each master has its own request line, BR*. The 
SBus Controller arbitrates these requests and provides each master with its own grant line, BG*. The 
assignment of request and grant lines is as follows: 

BR<O>*, BG<O>* 

BR<l>*, BG<l>* 

BR<2>*, BG<2>* 

BR<3>*, BG<3>* 

- SBus slot O. (M2S master, internal) 

- SBus slot 1. (on-board or plug-in master) 

- SBus slot 2. (on-board or plug-in master) 

- SBus slot 3. (on-board or plug-in master) 

BR<O>* and BG<O>* are internal signals that are used by the M2S SBus master interface. 

TRANSLATING VIRTUAL TO PHYSICAL ADDRESSES 

Translation of virtual addresses to physical addresses is done through an I/O MMU. The I/O MMU 
stores the eight most recently used Page Table Entries (PTEs) in a fully associative TLB and uses one of 
those to translate the virtual page address to the physical page address. The virtual address bits for 
within a page are passed through unmodified to the same bits of the physical address. The SBus Control
ler provides 36 bits of physical address from a translation of the 32-bit virtual address. Virtual address 
translation for up to 32 MBytes of physical address space is provided for each SBus slot. Translation can 
be enabled or disabled for each of these slots by writing the appropriate value into the SBus Controller 
Control Register. For the M2S SBus master, translation is permanently disabled since it already has a 
physical address from Mbus. More details on the I/O MMU are described elsewhere in this specification. 

SLAVE SELECTS DECODING 

Each SBus slave is geographically addressed, which means that they each receive a unique unary en
coded address signal, called SEL *. The SBus Controller translates a 32-bit virtual address driven by a 
master and generates a 36-bit physical address, PA<35:0>, of which the low order 28 bits, PA<27:0>, are 
driven onto SBus. PA<35:28> are decoded to generate SBus slave selects, SEL<5:0>*. PA<35:32> are 
compared with MSLOT <3:0> to determine whether the target is on SBus or Mbus. MSLOT <3:0> is the 
Mbus slot address for the M2S chip. PA<35:12> comes from a field in the TLB while PA<11:0> are passed 
through from VA<11:0>. If translation is disabled, then PA<31:0> comes directly from VA<31:0> and 
PA<3S:32> = 0 hex. 

ADVANCE 13 M2S Chip Spec 



YIA------
The SBus slave selects are decoded as follows: 

if (PA<35:32> < > MSLaI'<3:0» then 

SEL<O>"'=O / / SBus slot 0 (M2S SBus Slave) 

if (PA,,<35:32> = = MSLaI'<3:0» then 

PA<3I:28> 

o if (M2S owns SBus) then 

1 

2 

3 

4 

5 

6thru F 

SBus Controller Internal Registers 

- SEL<l>"', SBus slot 1 

SEL<2>"', SBus slot 2 

- SEL<3>"', SBus slot 3 

- SEL<4>"', SBus slot 4 (Slave only) 

- SEL<5>"', SBus slot 5 (Slave only) 

- reserved 

SEL<O>'" is an internal signal that is used to select the M2S SBus Slave. 

Note that if some SBus master other than M2S tries to select the SBus Controller Internal Registers 
(PA<35:32> == MSLOT<3:0> and PA<3I:28> = 0 hex), then no SBus slot will be selected and a timeout 
will be given by the SBus Controller. 

ADDRESS STROBE GENERATION 

The SBus Controller asserts an address strobe, AS"', to indicate to slaves that the slave selects, SEL<5:O>"', 
and the physical address, P A, are valid on the bus. AS'" is kept asserted until the clock cycle following the 
final acknowledgment for the transfer, whether it be a data, rerun, or error acknowledgment. 

SLAVE ACKNOWLEDGMENT MONITORING 

The SBus Controller monitors the SBus lines RD, SIZ<2:0>, and ACK<2:0> to determine when to de-assert 
the BG<3:0>'" and AS'" lines. If a master is performing a burst transfer, then the SBus Controller must 
count the number of word acknowledgments given by the slave to determine when the transfer has 
completed. A 32-byte burst transfer would be completed after the fourth word acknowledgment. A slave 
must give word acknowledgments for a burst transfer. For non-burst transfers or for byte or halfword 
acknowledgments the transfer is complete after one acknowledgment cycle. 

If the SBus Controller sees an error acknowledgement on a non-CPU DVMA cycle, then the error will be 
saved in the ID /Control Register. If the MEXC_EN bit is a 1, then MEXC'" will be asserted to interrupt the 
CPU. 

M2S Chip Spec 14 ADVANCE 



______ YIA 
Bus TIMEOUT GENERATION 

The SBus Controller will drive an error acknowledgment on ACK<2:0> if a slave does not generate its 
own acknowledgment no later than the 255th clock cycle following the assertion of AS"'. The SBus 
Controller will drive ACK<2:0> on the 256th clock cycle with the error acknowledgment, followed by an 
idle acknowledgment on the next cycle. On the cycle after that AS'" is de-asserted. 

SBus CONTROLLER SLAVE INTERFACE 

If PA<35:28>=nO hex, where n=MSLOT<3:0> and the M2S SBus master owns SBus, then an SBus transfer 
is targeting the SBus Controller Internal Registers. The SBus Controller will assert an internal slave select 
signal and AS'" just like it would for any other slave cycle. The SBus Controller slave interface will look to 
see if both of these signals are asserted. If they are, then the SBus Controller slave interface will proceed 
to execute the transfer. 

The SBus Controller slave interface decodes the RD input to detennine whether the transfer is a Read 
(RD=1) or a Write (RD=O). 

The SBus Controller slave interface will only accept word transfers. All other transfer sizes are illegal. 

SIZE<2:0> Function 

000 Word transfer (4 bytes) 

There are three transfer acknowledgment signals, ACK<2:0>, that the SBus Controller slave interface chip 
uses to send an acknowledgment back to the SBus master for a transfer it receives. The acknowledgment 
encoding is shown as follows: 

ACK<2:0> 

111 

110 

100 

011 

Acknowledgment 

Idle/Wait 

Error acknowledgment 

Rerun acknowledgment 

Word (data) acknowledgment 

Error Acknowledgment: If the transfer size is not a word, then the SBus Controller slave interface will 
give an Error acknowledgment. 

Rerun Acknowledgment: If the M2S SBus master tries to access an internal register on the SBus Control
ler while it is processing a TLB Miss, then the SBus Controller will give it a Rerun acknowledgment. 

Word Acknowledgment: The SBus Controller slave interface will give Word acknowledgments for word 
transfers to the SBus Controller Internal Registers. For Read transfers the Word acknowledgment is given 
the cycle before the read data is driven onto SBus. 

ADVANCE 15 M2S Chip Spec 



YIA _____ _ 
SBus CONTROLLER MASTER INTERFACE 

When the SBus Controller detects a TLB Miss, it will give the SBus master a rerun acknowledgment and 
proceed to fetch a PTE from main memory. All other bus requests are held off while the SBus Controller 
master interface assembles the physical address of the PTE from the Page Table Pointer, slot address of 
the SBus Master, and V A<24:12>. The SBus Controller master interface does not require a translation 
cycle. RD is driven high and SIZ<2:0> is driven with zeroes for the size of a word. The SBus Controller 
drives out PA<35:0>, AS*, and SEL * as it normally does. The SBus Controller master interface then waits 
for an acknowledgment from the targeted slave. Upon receiving the PTE, the SBus Controller master 
interface will build the TLB and update the appropriate entry. 

The SBus Controller master interface will recognize all of the SBus Acknowledgements. A table of 
ACK<2:0> encodings is shown below: 

ACK<2:0> Acknowledgment 

111 Idle/Wait 

110 Error acknowledgment 

101 Byte (data) acknowledgment 

100 Rerun acknowledgment 

011 Word (data) acknowledgment 

010 Reserved 

001 Halfword (data) acknowledgment 

000 Reserved 

Reserved, Error, Byte, Halfword Acknowledgment: For the Reserved, Error, Byte and Halfword ac
knowledgments, the SBus Controller master interface will assert MEXC* to cause an interrupt to the CPU. 
A copy of the virtual address is saved in the Fault Address Register. The ACK_ERROR bit is set in the 
ID/Control Register and ACK<2:0> is copied into SCODE<2:0>. 

Rerun Acknowledgment: For a Rerun acknowledgment the SBus Controller master interface will retry 
the SBus transfer. 

ID/CONTROL REGISTER 

The SBus Controller has an ID I Control Register which contains status and control information. There is 
also a unique hardwired ID number. The format of the register is shown below: 

4 5 1 1 1 4 7 1 1 2 1 1 1 

31 2827 23 22 21 20 19 16 15 9 8 7 6 54 3 2 1 0 

M2S Chip Spec 16 ADVANCE 



______ YIA 
DEV _10: Device 10 Number (Read Only). These bits are hardwired to a value that is used to identify the 
device. For the current implementation, the field is set to 0000. 

L: LRU Error (Read Only). This bit indicates that a TLB entry has been updated for a TLB Miss when all 
the TLB entries were locked. MEXC* is asserted when this bit is a 1. This bit is cleared after reading the 
10/ Control Register and whenever POR* is asserted. 

T: TLB Error (Read Only). This bit indicates that an invalid PTE was used to update a TLB entry for a 
TLB Miss. MEXC* is asserted when this bit is a 1. This bit is cleared after reading the ID / Control Register 
and whenever POR* is asserted. 

A: Ack Error (Read Only). This bit indicates that the SBus Controller master interface received a Re
served, Error, Byte, or Halfword Acknowledgment while reading a PTE from main memory. MEXC* is 
asserted when this bit is a 1. This bit is cleared after reading the ID/Control Register and whenever POR* 
is asserted. 

SCODE: SBus Error Code (Read Only). This field contains the error code information for an SBus Bus 
Error. Bit 19 is a 1 if an SBus Bus Error occurred. Bits 18-16 are a copy of the SBus transfer 
acknowledgment bits, ACK<2:0>. MEXC* is asserted if bit 19 is a 1 and MEXC_EN is also a 1. Bit 19 is 
cleared after reading the ID/Control Register and whenever POR* is asserted. 

IOBV A: I/O Base Virtual Address (R/W). These bits are used to compare with V A<31:2S> to determine 
if the address is within the 32 MByte virtual address space for SBus devices. 

MEXC_EN: Memory Exception Enable (R/W). This bit is used to enable the MEXC* output when 
SCODE<3> is a 1. This bit is cleared when POR* is asserted. 

RESET: Reset (R/W). This bit is used to assert RESET*, the SBus reset signal. Software can assert an SBus 
Reset by writing a 1 to this bit. RESET* will remain asserted until the bit is cleared. POR* will assert the 
RESET* signal. 

DM: Diagnostic Mode (R/W). This bit is used to inhibit the LRU from being decremented when writing a 
TLB entry. When TLB entries are invalidated, the LRUs for those TLBs that have a larger value than the 
one being written are decremented so that no "holes" are left in the LRU counts. Setting this bit will allow 
writing a TLB without affecting the LRU fields of other TLBs. This may be useful when testing the TLBs 
while running some sort of diagnostic. 

ME3-MEl: MMU Enable for SBus Slot 3-1 (R/W). These bits are used to enable virtual address transla
tion for the masters in SBus slots 3, 2, and 1. Virtual address translation is enabled for a particular SBus 
slot by writing its corresponding MMU Enable bit to a 1. SBus slot 0 is used by an M2S Interface which 
already has !he physical address, so no translation is needed. Translation for this SBus slot is always 
disabled. These bits are cleared whenever POR* is asserted. 

The ID/Control Register is selected when PA<35:0>=nOOxxxxxO where n=MSLOT<3:0>. The ID/Control 
Register is read to or written from SBus D<31:0>. 

ADVANCE 17 M2S Chip Spec 



YIA _____ _ 
FAULT ADDRESS REGISTER 

The SBus Cqntroller has an Fault Address Register (FAR) which contains a copy of the 32-bit virtual 
address of a reference that resulted in a memory exception. A memory exception can occur if LRU Error, 
TLB Error, or Ack Error is set, or if SCODE<3> and MEXC_EN are both 1. Once an error occurs, the FAR 
is not reclocked for any subsequent error until the first error is cleared by reading the ID/Control Regis
ter or by asserting POR*. 

The FAR is a read only register. It is selected when PA<35:O>=nOOxxxxx4 where n=MSLOT<3:0>. The 
FAR is read from SBus D<31:0>. 

PAGE TABLE POINTER 

The SBus Controller has a page table pointer (PTP) which contains the high order bits of the physical 
address for the start of the I/O Page Table. When the SBus Controller detects a TLB Miss, it tries to 
resolve it by doing a 'table walk' to fetch a PTE. VA<24:12> are used in conjunction with the PTP to index 
into the page table. The format of the PTP is defined as follows: 

19 13 

PTP Reserved 

31 13 12 o 

The PTP is a read/write register. It is selected when PA<35:O>=n00xxxxx8 where n=MSLOT <3:0>. The 
PTP is read to or written from SBus 0<31:0>. 

The format of the physical address for fetching a PTE as it appears on Mbus PA<35:0> is shown as 
follows: 

19 2 13 1 1 

PTP VA<24:12> 

35 17161514 2 1 0 

The 2 LSBs must be zeroes since all PTEs in main memory have the size of a word (4 bytes). The SA field 
is the SBus slot address which has the same value as the SBus slot number. SBus slot 0 does not use any 
TLBs, so 5<1:0>=0 is illegal. 

M2S Chip Spec 18 ADVANCE 



______ YIA 
PAGE TABLE ENTRY 

The page table entry (PTE) has a format similar to that found in the SP ARC Reference MMU. Memory 
management bits for Referenced, Modified, and Cacheable are not needed, so they are not defined. The 
access permission code is also not needed, so those bits are also omitted. The format of the PTE is defined 
as follows: 

24 6 2 

PPN Reserved I ET I 
31 8 7 21 0 

PPN: Physical Page Number. These are the high order 24 bits of the physical address which appear on 
PA<35:12> after the virtual address is translated. 

ET: Entry Type. These bits are 10 for a valid PTE. 

TLB ENTRIES 

The TLBs are read/write registers. Since they are 64 bits they must be read and written in two single 
word transfers. The first word of the transfer reads/writes bits <63:32> of the TLB while the second word 
read/writes bits <31:0> onto/from SBus 0<31:0>. The TLBs are selected when PA<35:0>=n02xxxxxx, 
where n=MSLOT <3:0>. They can only be accessed from the M2S interface. The CPU should use Mbus 
doubleword accesses which will be transformed into two SBus word atomic transfers by the M2S inter
face. 

The TLBs are organized as an 8-entry associative memory. The encoded SBus slot address and V A<24:12> 
are used to compare with the correspondingly field in all eight TLB entries simultaneously. If there is a 
match, the physical page address from the entry that matched is used for the virtual address translation. 

When TLB is full and an entry needs to be replaced, a Least Recently Used (LRU) replacement policy is 
used to decide which entry will be replaced. A 3-bit field in each TLB entry is used to keep track of when 
they were last accessed. If there is a TLB Hit, the LRU for the TLB that hit is set to o. The LRU for all other 
valid TLB entries whose value was originally lower than the TLB hit are incremented, while the rest 
remain unchanged. If there is a TLB Miss and the TLB is not full, then the LRU for the new entry is set to 
o and the LRU for all other valid entries are incremented. If there is a TLB Miss and the TLB is full, then 
the TLB entry whose LRU has the highest value is replaced. The LRU for the new entry is set to 0 and the 
LRU for all the other TLB entries are incremented. 

ADVANCE 19 M2S Chip Spec 



YIA _____ _ 
TLB entries can also be individually locked by setting their Lock bit. A TLB entry must be valid in order 
to be locked. A locked TLB entry does not participate in the LRU replacement policy. 

The physical address to access the TLBs is defined as follows: 

PA<3S:O> TLB 

nOlxxxxOO TLBO 

nOlxxxx08 TLBl 

nOlxxxxlO TLB2 

nOlxxxx18 TLB3 

nOlxxxx20 TLB4 

nOlxxxx28 TLBS 

nOlxxxx30 TLB6 

nOlxxxx38 TLB7 

where n=MSLOT <3:0> 

The format of the TLB is defined as follows: 

7 13 10 2 24 1 1 2 1 

TAG PPN 

63 5756 44 43 34 33 32 31 87643210 

TAG: Address TAG. These bits are compared with VA<24:12> to determine if this is the TLB to be used 
for the translation. 

SA: Slot Address. These bits are the SBus slot address of the SBus master which owns the TLB entry. 

PPN: Physical Page Number. These bits are a copy of the PPN field in the PTE. They are the high order 
24 bits of th~ physical address which appear on PA<3S:12> when the translation is completed. PA<ll:O> 
come directly from V A<ll:O>. 

LRU: Least Recently Used. These bits are used to implement the LRU replacement policy. 

L: Lock. This bit indicates whether the TLB entry is locked or not. A locked TLB entry does not partici
pate in the LRU replacement policy. 

V: Valid Bit. This bit indicates whether the TLB entry is valid or not. 

M2S Chip Spec 20 ADVANCE 



______ YIA 
TLB HIT COMPARISON 

The following four conditions must occur in order to have a TLB Hit: 

1) Incoming VA<31:2S> must be equal to the IOBV A. 

2) The valid bit in the referenced TLB must be on. 

3) Incoming VA<24:12> must match the TAG field in the referenced TLB. 

4) Incoming SBus slot address must match the SA field in the referenced TLB. 

If any of the above conditions is not met, then a TLB Miss occurs. H the incoming V A<31:25> does not 
equal the IOBV A, then the SBus Controller will give an error acknowledgment back to the master. When 
a TLB Miss occurs, the SBus Controller gives a rerun acknowledgment to the master and then proceeds to 
read a PTE from main memory using the PTP, the SBus slot address, and VA<24:12> to construct the 
address. All other bus requests are held off until the corresponding TLB entry has been validated. When 
the master retries its transfer, it should get a TLB Hit and the SBus Controller will be able to translate the 
virtual address. 

110 MMU FLUSH OPERATIONS 

The SBus Controller supports flush operations that allow software invalidations of selected entries in the 
TLB. Several different types of TLB flushing operations are supported. The types are: page, segment, 
region, slot, and entire flush; in which each type can include or exclude locked TLB entries. The format of 
the virtual address for TLB flushing is shown below: 

7 6 6 

0000010 SEGMENT PAGE 

31 25 24 23 1817 12 11 87 210 

Bits 31-28 must be zero so that the SBus Controller Slave Interface will be selected. Bits 27-25 must be 010 
to be decoded as an I/O MMU Flush Operation. 

REGION: Virtual Region Address. This bit selects a 16 MByte region to be flushed. 

SEGMENT: Virtual Segment Address. These bits select a 256 KByte segment to be flushed. 

PAGE: Virtual Address Page. These bits select a 4 KByte page to be flushed. 

TYPE: Flush Operation Type. These bits define the address comparison required to match a TLB entry for 
flushing. The different types are listed in the table below: 

ADVANCE 21 M2S Chip Spec 



YIA _____ _ 
Type Flush Comparison 

0000 Page (including locked entries) Slot, region, segment, page 

0001 Segment (including locked entries) Slot, region, segment 

0010 Region (including locked entries) Slot, region 

0011 Slot (including locked entries) Slot 

0100 Entire (including locked entries) None 

0101-0111 Reserved 

1000 Page (excluding locked entries) Slot, region, segment, page 

1001 Segment (excluding locked entries) Slot, region, segment 

1010 Region (excluding locked entries) Slot, region 

1011 Slot (excluding locked entries) Slot 

1101 Entire (excluding locked entries) Unlocked 

1110 -1111 Reserved 

An I/O MMU flush operation is selected when PA<35:24> = nnnnOlOx and PA<23:0> = xxxxxx where 
nnnn= MSLOT<3:0>. 

M2S Chip Spec 22 ADVANCE 



______ YIA 
BGs 

~ 
BG 31 2524 12 11 0 

Encode VAl vr~ 1 PAGE I 
I 

TLBs 

TAG SA PPN LRU l V 

t-

t-

I 

IIOBVA I 

J ~ 35 12 11 0 

PAl PPN lpAGEI 
COMPARE .. =? 

Slave 
Select 
Decode 

, 
TLB Hit 

ADVANCE 23 M2S Chip Spec 



/tmp/STATUS Tue Feb 26 19:16:26 1991 1 

/s/users/sparc/breeze/dma/STATUS 

~tatus of SBUSDMA chip: 

DESIGN: complete 

SIMULATION: test suite in /s/users/sparc/breeze/dma/{debug.v,do_test.v,do_test_e.v} 

BUGS: none outstanding 

SYNOPSYS: mapped to att ,vti, 
fujitsu (area 6034, cycle time 30.58),lsi. 

LOCATIONS of files: 

verilog hdl description of chip: 
/s/users/sparc/breeze/dma/synopsys 
/s/users/sparc/breeze/dma/synopsys/pure_hdl 

verilog library: /tools/lib/model/hdl 
synopsys environment : /s/users/sparc/breeze/dma/synopsys 
simulation environment : /s/users/sparc/breeze/dma 

Notes 

There is a problem with Synopsys generating spurious buffers near I/Os in the ver 
It is a known problem (STAR 4095) and is expected to be fixed in the production re 
Synopsys 2.0, scheduled for late March 1991. There is a similar problem with I/Os 
and Test Compiler. 

status of DMA subsection: 

DESIGN: complete 

SIMULATION: test suite in /s/users/sparc/breeze/dma/{debug.v,do_test.v,do_test_e.v} 

BUGS: none outstanding 

LOCATIONS of files: 

drawings:/s/users/sparc/breeze/dma/dma 
simulation environment:/s/users/sparc/breeze/dma 
important directories for verilog: 

/s/users/sparc/breeze/dma 
/s/users/sparc/breeze/dma/synopsys 
/s/users/sparc/breeze/dma/synopsys/pure hdl 
/tools/lib/model -
/tools/lib/lai vlog 
/s/users/sparc7breeze/v 



/anuary, 1991 
1.012991 

SBus DMA Controller 

Rev 1.0 

VIA Technologies, Inc. (408) 746-2200 
860 East Arques A venue 

Sunnyvale, CA 94086 



__ ----YIA 
r-----------------------------------I 

I 
I 
I 
I 
I 
I 

SBus 0: 

32 : 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SBus Interface ... 

E Channel 

address I I , 
-

data I I , 

Internal 0 
32 

o Channel 

address JL--__ ---I, 

I 
I 
I 
I 

E-AO ~ 
16 I 

I 
I 
I 
I 
I 

E-A I 
I 

8 

: _ count I I 0-0: 
I 8 I 
I I I 
I status c=:J I 

I control I 
I I 

: data I I I I I : 
I I 
I I 

~----------------------------------~ 

Figure 1. SBus DMA Data Path 

ADVANCE 3 

Ethernet 
Controller 

SCSI 
Controller 

IO/FCOOE 
PROM 

Ethernet 
1 

SCSI 

8 

SBus DMA Controller 



______ YIA 
WRITE: Read/Write (Bit 8, Read/Write). The state of this bit determines the direction of 0 channel 
DMA transfers. When set, the direction of transfer is from I/O peripherals towards S bus memory, (Sbus 
memory write); if clear, the direction is from Sbus memory to peripheral (Sbus memory read). 

EN_DMA: Enable DMA (Bit 9, Read/Write). When set, the 0 channel state machine will respond to 
DMA request signals from the 0 channel controller. When clear it will not respond,and the transfer is in 
effect suspended. 

REQPEND: Request Pending (Bit 10, Read Only). This bit becomes set at the time a 0 channel controller 
first makes a DMA request, and remains active until the block transfer completes by reaching its terminal 
count. This bit can be used to poll the state of the transfer. 

BYTE_AD DR: Byte Address (Bits 12-11, Read Only. This two-bit field contains the lowest two bits of the 
address of the next byte to be accessed by the D channel controller. 

EN_ CNT: Enable Counter (Bit 13 , Read/Write). The set state enables operation of the Byte Counter 
Register. Since TC is a function of the byte count, this bit also implicitly enables TC. 

TC: Tenninal Count (Bit 14, Read Only). This bit is set when the byte counter makes a transition from 
000001 to 000000. TC is cleared by RESET or FLUSH. 

Reserved: Bits 31-15. This register is accessed as a 32 bit value, via an Sbus word access, even though not 
all 32 bits are currently used. 

D CHANNEL ADDRESS COUNTER (READ/WRITE) 

address count 

31 o 

This counter is written with the starting address of a 0 channel DMA transfer, to or from SBus memory. 
The counter increments by 1 or 4 depending on the size of the transfer. The contents of this register are 
not defined by RESET. 

D CHANNEL BYTE COUNTER (READ/WRITE) 

I 00000000 I byte count 

31 24 23 o 

The 24-bit byte counter contains the number of bytes left to move in the current 0 channel DMA transfer. 
When the counter decrements to zero it will generate an interrupt, if INT_EN is set. Its action is enabled 
by setting EN_CNT in the SCR. The contents of this register after RESET are not guaranteed to be any 
particular value. 

ADVANCE 5 SBus DMA Controller 



_______ YIA 
For the 0 channel and E channel external registers, additional address lines are connected directly to the 
peripheral controllers, as needed. 

E CHANNEL ADDRESS REGISTER 

set by cpu set by peripheral controller 

31 24 23 0 

The E Channel Address Register contains the Sbus virtual address sent out during E channel S bus 
accesses. The lower 24 bits come from latching the address sourced from the E channel peripheral control
ler in its bus master mode.The upper 8 bits can be set by a CPU register access to the address location 
specified in the memory map. On powerup or Sbus reset, the value is initialized to value hex ff. 

ADVANCE 7 SBus DMA Controller 



______ YIA 
SLA VE ACCESSES ( READS AND WRITES TO INTERNAL AND EXTERNAL REGISTERS) 

1) A CPU LOAD or STORE causes the Sbus Select (SEL *) connected to the DMA controller to be 
asserted. An Sbus physical address intended for the DMA controller and address strobe are also 
active. 

2) The DMA controller looks at two bits of the physical address to determine whether the access is 
for 1) Sbus ID, 2)DMA controller internal registers, 3) D channel external registers, or 4) E 
channel external registers. 

3) The sequence depends on the type of register accessed: 

3.1 If the access is to the internal ID, that 32-bit value is enabled for read back. If the access is to 
an external ID /Fcode PROM, a sequence takes place using the D controller's 8 bit data bus, by 
which a byte is read back. 

3.2 If the access is to a 32-bit internal value, the data on Sbus D[31:0) is read from or written to 
an internal register, Specified by Sbus address lines P A[3:2). 

3.3 If the access is to the D channel external registers, the data transfer over the Sbus must be of 
size byte.The data is passed between the Sbus and D channel data D _D[7:0), through the DMA 
controller without any buffering in the Pack/Unpack register. The DMA Controller asserts the 
appropriate slave access signals to the peripheral controller, such as D _ CS* and D _RD*. 

If the access is to the E channel external registers, the data transfer over the Sbus must be of size 
halfword.The data is passed between the Sbus and E channel data E_AD[15:0), through the 
DMA controller without any buffering in the Pack/Unpack register. The DMA Controller 
asserts the appropriate slave access signals to the peripheral controller, such as E_CS* and 
E_READ. 

4) Data is transferred from the appropriate Unpack register until the register is empty. 

5) The DMA controller generates an Sbus acknowledge corresponding to the size of the transfer. 

6) If a slave access is attempted while either the D or E channels is actively accessing the Pack/ 
Unpack registers, the DMA controller will assert Rerun Acknowledge. 

ADVANCE 9 SBus DMA Controller 



____ --YIA 
SIGNAL DESCRIPTIONS 

SBus INTERFACE SIGNALS 

ACK[2:O): SBus Acknowledge (bidirectional, active low, TfL input levels, internal pull up, 4ma output 
drive, Pins 15,77 and 14 where ACK[2] is Pin 15). The SBus Acknowledge is asserted by the DMA 
Controller to indicate its response to an SBus selection when in slave mode. 

AS: SBus Address Strobe (input, active low, TIL level, internal pullup, Pin 82). The SBus Address Strobe 
being active signals that a valid address is on the P A lines. 

BR: SBus Request (3-state output, active low, CMOS, 4ma output drive, Pin 13). The DMA Controller 
drives SBus Request low to request control of the SBus. 

BG: SBus Grant (input, active low, TfL level, internal pullup, Pin 12). The SBus Grant being active 
signals the DMA Controller that it has been given control of the SBus by the SBus arbiter. 

CLK: SBus Clock (input, Pin 44). SBus Clock is derived from the main SBus system clock. 

D(31:OO]: SBus Data (bidirectional, TTL input levels, internal pullup, 4ma output drive, Pins 120-115, 113-
106, 102-93,90-83 respectively where D[31] is Pin 120). SBus Data are the data lines of the SBus. 

INTREQ: SBus Interrupt Request (open drain output, active low, 4ma output drive, Pin 14). SBus Inter
rupt Request is used to interrupt the CPU at the completion of a transfer or the occurrence of an error. 

LERR: SBus Late Error (input, active low, TIL level, internal puUup, Pin 11). The SBus Late Error signal 
can be used to indicate an error in an SBus cycle. It does not become active until after the cycle has 
already finished. 

PA[3:1]: SBus Physical Address, Low Order (input, TfL level, internal pullup, Pins 4-{) where PA[3] is 
Pin 4). The DMA controller decodes the pattern on these lines when responding as a slave to determine 
which register in a group of registers is to be accessed. 

PAX, PAY: SBus Physical Address, High Order (input, TfL level, internal pullup, Pins 9-10 where PAX is 
Pin 9). The DMA Controller decodes the value on these lines to determine whether a slave access is to an 
Internal Register, D Channel Register, E Channel Register, or Fcode Prom. 

RD: SBus Read/Write (bidirectional, internal pullup, 4ma output drive, TfL input level, Pin 79). SBus 
Read/Write signifies the direction of data transfers. High signifies Read, low indicates Write. 

RESET: SBus Reset (input, active low, TTL level, internal pUllup, Pin 78). SBus Reset is used to initialize 
the state of the DMA Controller. 

SEL: SBus Select (input, active low, TIL level, internal pullup, Pin 81). SBus Select being active signifies 
that the DMA Controller is being selected as a slave during an SBus cycle. 

SIZ[2:0]: SBus Transfer Size (bidirectional, active high, TfL input levels, 4ma output drive, internal 
pullup, Pins 16-18 with SIZ[2] being Pin 16). The SBus Transfer Size lines are used by an SBus master to 
specify the number of bytes to be transferred on that bus cycle. 

ADVANCE 11 SBus DMA Controller 



______ YIA 
o _IRQ: DMA Interrupt Request (input, active low, TIL level, internal pullup, Pin 40). DMA Interrupt 
Request is asserted by the 0 Channel Controller to signal data transfer completion or other event. 

o _RD: DMA Read Strobe (CMOS output, active low, 4ma output drive, Pin 45). DMA Read Strobe 
becomes active in two cases: in conjunction with D_CS, to perform a read access of the 0 Channel 
Controller's internal registers, or in conjunction with 0 _ACK during an actual DMA SBus write transfer. 

D _RESET: DMA Reset (CMOS output, 4ma output drive, Pin 39). DMA Reset can be used to reset the 0 
Channel Controller. 

o _REQ: DMA Request (input, TTL level, Pin 47). DMA Request is asserted by the D Channel Controller 
to request the transfer of a byte during a DMA transfer. 

0_ WR: DMA Write Strobe (CMOS output, active low, 4ma output drive, Pin 46). DMA Write Strobe 
becomes active in two cases: in conjunction with 0_ CS to perform a write access of the D Channel 
Controller's internal registers, or in conjunction with D_ACK during a DMA SBllS read transfer. 

ID_CS: Secondary Device Select (bidirectional, active low, TTL input level,4ma output drive, Pin 21). 
Pulling Secondary Device Select high signifies the existence of an external PROM to the DMA Controller. 
It is driven by the DMA Controller to select an external PROM. 

SLOW: Fast/Slow DMA Acknowledge (input, active low, TTL level, internal pull up, Pin 1). Fast/Slow 
DMA Acknowledge being pulled low adds a two-clock delay to D Channel cycles. 

VDD: Power (Pins 7,19,43,61,72,104). 

VSS: Ground (Pins 8, 30, 42,52,71,80,91, lOS, 114). 

ADVANCE 13 SBus DMA Controller 


