'
The Engineering Staff of ¢ D D‘ S”, o)

TEXAS INSTRUMENTS INCORPORATED

Semiconductor Group

- TM 990/101M
MIGROGOMPUTER

MARCH 1980

TEXAS INSTRUMENTS

INCORPORATED

—— MANUAL HISTORY

This manual contains the following revisions:

Revision Change
Date (From - to) ECN Number
02/18/80 G o D 454310

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time
in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

Copyright © 1980
TEXAS INSTRUMENTS INCORPORATED

o

SECTION

1.

TABLE OF CONTENTS

TITLE
INTRODUCTION
i General . « & v el bil%
1.2 Manual Organlzatlon o aiEs L sl e e e e g e o o8 G
T3 Produet Index & v i o 5 % e o o 4. % ® -8
1.4 Board Characteristics : « « « 3 o o« 4 & + &
1.5 General Specifications PR T)
1.6 Refercnte Doouments e, o @ @ o & hkos m @ af o @ e e
N GLOSBAIY - w« giss eciin 40 @ sl e R ke g s e @ el ok

INSTALLATION AND OPERATION OF TM990/101M-1
2k 1 General . . . g B g R B B e b B N o
2.2 Required Equipment e e R T w B Kl e Al it el et 2
2:2.1 Power Suppl¥ v « & +
2.2.2 Terminals and Cables . i
2.2.3 Power Cable/Chassis
2.2.4 Parallel I/0 Connector .
2.2.5 Miscellaneous Equipment e
npacking . . . o e A i o
ower and Termlnal Hcokup ;
y, Power Supply Connections .
b, 2 Terminal Hookup. : .
4.3 Five-Switeh DIP and Status LED .
peratlon 5 . S
5.
5.
m
6.

n N
=w

25 & %
Verlflcation - TR T A (O) e I O S
2 Fowep=lUn/BeSet & 4 7§ @ s o a0 w0 908 850 & -5 4
a ple Programs . o) P A Sy e e @
Sample Program 1 & ety 6l G Bk e
6. 2 Sample Program 2 .
ebug Checklist .

U
P
25
2
2.
0
2.
2.
2.6 8
2o
2.
D

2-7
TIBUG INTERACTIVE DEBUG MONITOR

441 GEOBPRT o™ wrad: 5 1% b i oht iy T e SR e e o Tl S (32 B D
3.2 TIBUG Commands

3.2.1 Execute Under Breakp01nt (B)

3.2.2 CRU Inspect/Change (C) S

3.2.3 Dump Memory to Cassette/Paper Tape (D)

3.2.4 Execute Command (E) 35 bt e v v

3.2.5 Find Command (F) & ik

3.2.6 Hexadecimal Arithmetic (H) &

3.2.7 Load Memory from Cassette or Paper Tape (L)
3.2.8 Memory Inspect/Change, Memory Dump (M) 5 -5
3.2.9 Inspect/Change User WP, PC, and ST Registers (R)
3.2.10 Execute in Single Setp Mode (S) £ & % &
3.2.11 TI 733 ASR Baud Rate (T) g

3.2.12 Inspect/Change User Workspace (W)

iii

PAGE

il el SNl el ', il
]
OV U = -

|
= 2 OO JIITWMNMNMNNNN = = 2 =

o o

NNNNNI\JNNNPNNNNNNNNN

—

— — —
ww

SECTION

TABLE OF CONTENTS (Continued)

TITLE
353 User Accessible Utilities .
3.3.1 Write One Hexadecimal Character to Termlnal (XOP 8)
3.3.2 Read Hexadecimal Word from Terminal (XOP 9) 3 :
3.3.3 Write Four Hexadecimal Characters to Terminal (XOP 10)
3.3.4 Echo Character (XOP 11) ;
3.3.5 Write One Character to Termlnal (XOP 12)
3.3.6 Read One Character from Terminal (XOP 13)
3.3.7 Write MEssage to Terminal (XOP 14).
3.4 TIBUG Error Message . .« . + « » o
TM990/101M INSTRUCTION EXECUTION

4.1 General .

4.2 User Memory . i

4.3 Hardware Registers B g B e R e R A L skt

4.3.1 Program Counter (PC) Al PN TS T

I.3.2 Workspace Pointer (WP) . . « . « &5 & » o« o »

4.3.3 Status register (ST)

Software Registers gL

Instruction Formats and Addre531ng Modes A

.5.1 Direct Register Addressing (T=00,).

.5.2 Indirect Register Addressing (T= 01)

.5.3 Indirect Register Autoincrement Addre331ng (T 112)

.5.4 Symbolic Memory Addressing, Indexed (T= 102)

.5.5 Symbolic Memory Addressing, Indexed (T= 102) .

.5.6 Immediate Addressing e

.5.7 Program Counter Relative AddPESSlng i

nstructions - i

.6.1 Format 1 Instructions r

Format 2 Instructions .

Format 3/9 Instructions .

Format 4 (CRU Multibit) Instructlons

Format 5 (Shift) Instructions .

Format 6 Instructions . . .

Format 7 (RTWP, Control) Instructlons k

Format 8 (Immedlate, Internal Register
Load/Store) Instructions .

.6.9 Format 9 (XOP) Instructions .

v =

4.6

FrEtrresePEEEEEFHEEEEEEE
- - - - - . -
(o)W =2 Werlle Weplio o)

5 ! .

. hy iy
o~ o EWwn

e~y

PROGRAMMING
1% | General < + .« A e R e R B .
5.2 Programming Con31derat10ns BT R R
5.2.1 Program Organization i
5.2.2 Executing TM990/100M Programs on the TM990/101M .
5.2.3 Required Use of RAM in Programs . il o Y
5.3 Programming Environment "
5371 Hardware - Registars « o s &« & @ =
5.3.2 Address Space z
5.3.3 Vectors (Interrupt and XOP) . 7 5 R
5:3:4 Workspace RegiSBers & i o s v e o s o 9 w0 miiie e

iv

| N, ST U AT N |
W - —

STEdEsEErEFrErErrTrEEEEEEEEE
1
- ik e ek OO =] N N = S X

I
a
I=

(OS2GS0 IR R IR p IRG) RG R R IR)
1
UJ = Fwwww =

SECTION

o
O <o

U\O‘\O\O‘H—] LSS RS B RS)]
-L'UJI\J—IFI @=~1 O

OO
& 8 &
-~ o\

TABLE OF CONTENTS (Continued)

TITLE

inking Instructions . . . & e e AT

1 Branch Instruction (B)

2 Branch and Link (BL).

3 Branch and Load Workspace P01nter (BLWP)

4 Return with Workspace Pointer (RTWP). . . .
5 Extended Opepation (XOP). . v o « 9 w & & u
6 Linked-Lists A M T
unications Register Unlt (CRU) G R 1 i
1 CRU Addressing £l s e S

L
Bs
5
B
5.
5
5
Co
5
5

b,
4.
4,
y.
y.
y.
mm
B
5%

.5.2 CRU Timing

Dynamically Relocatable Code « « .« . .

ProgPamiing HiBES 7 ¢ oo e wis o % 595 o 5 35 '8

Interfacing with TIBUG . & 08 & & 5 & 5 %% % #

5.8.1 Program Entry and Bxlt . & &+ ¢ % o = »

5.8.2 I/0 Using Monitor XOP'S 4 u v v « o & s 's

Interrupts and XOPs. .

5.9.1 Interrupt and XOP Llnklng Areas ; .

5.9.2 TMS 9901 Interval Timer Interrupt Program L

5.9.3 Example of Programming Timer Interrupts for
TMS 9901 and TMS 9902 L

Move Block Following Passing of Parameters ?

Blogk Compare Subroutinge . « ¢ & o s w5 % & &

URlL ID DIP=SWAECR & ov s aowiim & 0 3oiv 6 &0k 5 &

CRU Addressable LED

Using Main and Auxiliary TMS 9902's for I/O

ORY OF OPERATION

General . . PRI TRE LR e S SR - R B ey
Power Speciflcatlons g A R by OELT R Peas T e 1] i e
System Structure B]l TP T e e B0 L At B
SYSEEM Bises & i & & & w9 & W e

0T RAATASE BUS v 5 5 5 s % awla woE B

BuBae s DAt B, = % oaiiat A% & oo b e S a0 e aile ik
T o TR R " 5. G e a N i i o o Ty b 3
b.8.Y4 Control Bus « + + « s & =

System Clock . =

Central Processing Unlt

Reset/Load Logic .

6.7.1 Reset Funetion .

6.7.2 Load Function .

6.7.3 Reset and Load Fllterlng PO S A
BTl CLRCRU BIaesl - « 579 % 6. 00 5 e & A
External INSErogtlons: . ¢ o o wod & & % % @ @ w &
Address Decoding . P .

6.9.1 Memory Address Decodlng ‘

6.9.2 CRU Select v

5'.5.3 CRUY Inabtiuctions a wis & = & win 3 3/ w5

| A

I 11 I
N OEEEEE

OO OOV OYOY OYOY O Oh
w o o

6-14
6-14
614
6-15
6-15
6-19

SECTION

TABLE OF CONTENTS (Continued)

(Main Port, P2)

TITLE

6.10 Memory Timing Signals .
551071 BeaddY™ e 15 &

6.10.2 Wait .
6.10.3 MEMCYC . .

6.11 Read-Only Memory i W

6.12 Random-Access Memory . . .

6.13 Buffer Control. . . :
6.13.1 Address and Data Buffers .
6.13.2 Control Buffers
6.13.3 HOLD, HOLDA, and DMA .

6.14 Interrupt Structure . . . :

6.15 Parallel I/0 and System Tlmer .
6.15.1 Parallel I/0 . . g
6.15.2 System Titier . . « & =« =

6.16 Main Communications Port
6.16.1 EIA Interface i
6.16.2 TTY Interface. . : » »
6.16.3 Multidrop Interface

6.17 Auxiliary Communications Port . .

6. 18 Uit IT Switeh . & o te.s

6.19 Status Indicator .

OPTIONS

o | General . % :

7.2 On-Board Memory Expan31on "

7.2.1 EPROM Expansion B R o
ol -RAM.Expansion s « & = = + %

N Slow EPROM

7.4 Serial Communication Interrupt

5 RS-232-C/TTY/Multidrop Interfaces
7.5.1 TTY Interface o o
7.5.2 RS-232-C Interface
7.5.3 Multidrop Interface. :

7.6 External System Reset/Load. . . .

7.7 Remote Communications . i3

7.8 Memory Map Change . .

7.9 TM 990/402 Line-by-Line Assembler 5

7.10 TM 990/301 Microterminal .

7.11 OEM Chassis . . . s gn g %

vi

1
S O~~~ O\— —

i
n

ke i ol i e e

—AL—A
NI AV I\ b

7-12
7-13

SECTION

8.

AP
8
8.
8
8
8
8

=G HTDTQE@moOOWe

P
1
2
.3
4
5
6

TABLE OF CONTENTS (Continued)

TITLE

LICATIONS
General . i &
Off=Baard BAM . o w < = f5 &g @ e
Off-Board TMS 9901. e Wil 3 a1
Off-Board Eight-Bit I/0 Port 8 e g 4 Va5 1
Extra RS-232-C Terminal Port. 2
Direct Memory Access (DMA) Appllcations A

8.6.1 DMA System Timing.

8.6.2 Memory Cycle Timing.

8.6.3 DMA System Guidelines. ;

8.6.4 Multiple-Device Direct Memory Access Controller
EIA Serial Port Applications. . . AR AR i AP
8.7.1 Cable Pin Assignments.

8.7.2 Modem (Data Set) Interface Slgnal Deflnltlons

APPENDICES

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101M

EIA RS-232-C CABLING

ASCII CODE

BINARY, DECIMAL, AND HEXADECIMAL NUMBERING

PARTS LIST

SCHEMATICS

990 OBJECT CODE FORMAT

CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS
T™ 990/301 MICROTERMINAL

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901
EXAMPLE PROGRAMS

INDEX

vii/viii

PAGE

a:u:c:ca?:a>a>a>aa
L TR 1o AP

FIGURE

—
I
wny —

I\)I‘\JI}DI‘\)N
U =Ewmn =

W w W
1
W =

i

i1 1 1 1

I

.J:'.r::.r:-r:.:':z.x:.t:.r:'-t:‘
- O

I

1

g
rl\J_I.

LS E, IRG) IRG, RS S
1
o100 =W

1

LIST OF ILLUSTRATIONS

TITLE

TM 990/101M Major Components . .
TM 990/101M Dimensions and Component Placement %
Main and Expansion EPROM and RAM .

Power Supply Hookup . . . S i

T™ 990/101M Board In TM 990/510 Chassis ot e A s

743 KSR Terminal Hookup

Connector P2 Connected to RS-232 Dev1ce (Model 733 ASR)
Connector P2 Connected to TTY Device . S T

Memory Requirements For TIBUG
CRU Bits Inspected By C Command

Tape Tabs

MEMETY MAT o 5 & S 5 |5 ¥ 9% % 3 o5 B b

Sstatus Regigter .+ <« s i o a0 & % & =

Workspace Example . . . e e e e e e O

™ 990/101M Instruction Formats 3

Direct Register Addressing Example . .
Indirect Register Addressing Example :
Indirect Register Autoincrement Addressing Example .
Direct Memory Addressing Example . o
Direct Memory Addressing, Indexed Example .

BEWR [EXAMNle o 5 5 5 a ke e & 0@ v e 6 05 Vel v i
XOP Example

Source Listing .
Example of Separate Programs Jo;ned By Branches
to Absolute Addresses .
Linked List Example YT SR SR e
CRU Address In Register 12 vs. Address Bus Lines .
TMS 9900 CRU Interface Timing
LDCR Instruction . St oW
STCR Instruction . 5
Addition of Displacement and R12 Contents
to Drive CRU Bit Address . 2 "
Example of Program With Coding Added to Make
it Relocatable . ; i1t
Examples of Non Self- Relocating Code and
Self-Relocating Code . T
Interrupt Sequence
Six-Word Interrupt Llnklng Area e W @i R
Seven-Word XOP Interrupt Linking Area

X

PAGE

5=20
5-26
5=27
5-29

FIGURE

5-14
5-15
5-16
5-17
5-18
5-19
5-20

5-22
5-23

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16

R [P RS [o IOt [[P I [P |
R T A Tl
LLbbLS&SOELLL
-0

I
—
n

LIST OF ILLUSTRATIONS (Continued)

TITLE

Enabling and Triggering TMS 9901 Interval Timer .

Example of Code to Run TMS 9901 Interval Timer
Example Program Using Timer Interrupts 3 and 4
Move Block of Bytes Example Subroutine

Compare Blocks of Bytes Example Subroutine
Reading the DIP Switch .

Coding Example to Ascertain System Conflguratlon

Through DIP Switch Settings . . . ‘
Coding Example to Blink L.E.D. On and Off 2
Example Proglram to Converse Through Main and

Auxiliary TMS 9902's

TM 990/101M Block Diagram A
Crystal-Controlled Operation

TMS 9900 Pin Functions . . - i i

TMS 9900 Data and Address Flow

TMS 9900 CPU Flowchart 2R e e O
RESET and LOAD Logic . . . 3 K R, W %
T™ 990/101M Memory Addr9351ng 3

Memory Address Decode PROM .
Decoding Circuitry for CRU I/0 Addresses
TMS 9900 Memory Bus Timing A
Read-Only Memory i

Random Access Memory « s s o % @ % & % %
TMS 9901 & = a6 R
Serial I/0 Port EIA Interface

Serial 1I/0 Port TTY Interface
Multidrop Interface .

Jumper Placement
Memory and Capacitor Placement
Memory Expansion Maps .

Four Interrupt-Causing Condltlons at TMS 9902

Multidrop System

Multidrop Cabling . ;
Master-Slave Full Duplex Multldrop System 5
Half-Duplex Multidrop System B ga ok] o
Line-By-Line Assembler Output
T™M 990/301 Microterminal

TM 990/510 OEM Chassis - e e

OEM Chassis Backplane Schematlc e R

PAGE

. 5=-31
. 5=33
. 5-38
. 5-50
. 551
v D=53

. 5-54

5=55

. 55T

. 6-2
. 6-8
. 6-9

6-11

. 6-12
. 6-13
. 6-16
. 6-18
. 6-20
. 6-26
. 6-28
. 6-29
. 6-33
. 6-35
. 6-36
. 6-37

. 7=2
. 7=3
. 7-6
. 7-8
. 7-9
. 7=9
. 7=10
. T=-1
. T-14
. 7=15
. 7-16
. T=17

LIST OF ILLUSTRATIONS (Continued)

FIGURE TITLE PAGE
8-1 Major Components Used in I/0 . Aar e Janh 8 a5 8-2
8-2 Off-Board Memory . . . § R B e e ey W g T 8-3
8-3 Circuitry to Add TMS 9901 Off Board v 8-4
8-4 B=HiE SO0S/0B BOrE. s w v o ®iom G % w wh R R e R e e e e =SB
8-5 BordRall BaBh . 5 557 5 5 i B iR R R (e e WL e R OB
8-6 DMA Bus Control : 8-8
8-7 CPU HOLD and HOLDA Tlmlng 8-9
8-8 DMA System Timing . . . 8-10
8-9 Memory Cycle Timing d 35 e T b L5 T S e L T
8-10 DMA: System Blook DVEAFEAR « & v & 3 @ e o = 2 % & 6 5 % = o B=13
8-11 DML Deviice ContRBILBE" e w6 o« Ju o ket Be 13 o G m BT A e g B3
8-12 DMA" ContPraller s £.(5 & 5 3 w® % 5 Ldapue s 30 de mop d v & aw 81l
8-13 DML EBontroller TIMIHE w w o s 8o @ a0 6 b e <s 8 e o h byle, G=TH
8-14 Cablle CorBaRElol. o8 ' o 0 iar @ 7 o8 Bt w15 vhem wt @ e ey wws BT

xi/xid

LOAIRN IRV IR LR, RN R |

[2 P I 1
_ oy EwWwnN =

00U W =

]
o

oo OOV O O
T | | D A T |
OEWMN =

L ¥ ¥

oo ~=1-3-3-J

EWN -

LIST OF TABLES

TITLE
T 990/101M Configurations

Board Jumper Positions as Shipped . . .

TIBUG Commands e ts PRl daliaar G0 5 1R
Command Syntax Conventlons g v &l &
User Accessible Utilities . 4 + » 5 5 5 & « o 3

TIBUG Error Messages

Status bits Affected by Instructions .
Instruction Description Terms

Instruetion Set, Alphabetical Index
Instruction Set, Numerical Index

Assembler Directives Used in Examples
Register Reserved Application i
TM 990/101M Predefined CRU Addresses .

Preprogrammed Interrupt and User XOP Trap Vectors

Interrupt and User XOP Linking Area
Interrupt Example Program Description
ASRFLAG Values .

Device Supply Voltage Pin Assignments

Bus Signals . . . I P 5~
Control Bus Funetlons

External Instructions

T™M 990/101 CRU Map . w0 Tk
Implicit Decoded CRU Bit Addresses i %3
On-Board Device CRU Address . . . + « « « .
Data Buffers T ke P L W S T L
Interrupt Characterlstlcs

Dedicated Interrupt Description

Master Jumper Table . .

Jumper Pins by Board Dash Number (Factory Installatlon)

Slow EPROM Table . p
Multidrop Jumper Table . v e U
Half-Duplex Multidrop System

TMZFIIE Data Set: 'Bable v & & o "w il e 3@ @ e Ts
2027202 Datd. Deb-Bable i & & 5 % w & are EE & ¥
200 DATH Set. Babile v n 4 30 5 B T ae b e
Data Terminal Cable

xiii

PAGE

LSS IS BRC L IS 2 G) S 5
1
AWM MNO = Oy—

| T [}
o EMn

— = O U = I

DTN O OO0
1
WWW MmN =YW

I

~
| I I |
-3 LR =

7=10
7-11

8-17
8-18
8-18
8-19

e

SECTION 1

INTRODUCTION

1.1 GENERAL

The Texas Instruments TM 990/101M is a self-contained microcomputer on a single
printed-circuit board. The board's component side is shown in Figure 1-1, which also
highlights major features and components. Figure 1-2 shows board dimensions. This
microcomputer board contains features found on computer systems of much larger size,
including a central processing unit (CPU) with hardware multiply and divide,
programmable serial and parallel I/0 lines, external interrupts, and a debug-monitor
to assist the programmer in program development and execution. Other features include:

TMS 9900 microprocessor based system: the microprocessor with the minicom-
puter instruction set - software compatible with other members of the 990
family.

1K x 16 bits of TMS 4045 random-access memory (RAM) expandable on-board to
2K x 16 bits.

1K x 16 bits of TMS 2708 erasable programmable read-only memory (EPROM), ex-
pandable on-board to 2K x 16 bits. Simple jumper modifications enable sub-
stitution of the larger TMS 2716 EPROM's (16K bits each) for the smaller
TMS 2708's (8K bits each). Four TMS 2716's permit EPROM expansion to 4K x 16
bits.

NOTE
Three board configurations are available. The characteristics

of each configuration are explained in paragraph 1.3.

Buffered address, data, and control lines for off-board memory and I/0 ex-
pansion; full DMA capabilities are provided by the buffer controllers.

3 MHz crystal-controlled clock.
One 16-bit parallel I/0 port, each bit is individually programmable.

Modified EIA RS-232-C serial I/0 interface, capable of communication to both
EIA-compatible terminals and popular modems (data sets).

A local serial I/0 port, with interfaces for an EIA terminal and either a
Teletype (TTY) or a twisted-pair balanced-line multidrop system (interface
choices are detailed in paragraph 1.3).

Three programmable interval timers.

17 prioritized interrupts, including RESET and LOAD functions. Interrupt 6
is level triggered (active LOW) and edge-triggered (either polarity) and
latched on-board.

A directly addressable five-position DIP switch and an addressable light
emitting diode (LED) for custom system applications.

PROM memory decoder permits easy reassignment of memory map configuration;
see Figure 1-3 for memory map of the standard board.

1=1

c-l

*l=1 8JndTg

squsuodwoy JolLel WLOL/066 WL

5 SWITCH 1.D. DIP

RESET SWITCH §1

Y
,‘".’;fs’i;. il ||

||Illl|lll'lll"vlilllll

PARALLEL 1/O PORT (P4)
-

i".a-_g-liﬁali i || ‘
AN RN

vief o ‘R.m-m

TMS 9901
CONNECTOR P1

TIM 9904 CLOCK DRIVER

48 MHz CRYSTAL

TMS 9902 FOR MAIN PORT

TMS 9902 FOR AUXILIARY PORT
AUXILIARY PORT (P3) MAIN PORT (P2)

.........

.'l'nnnnwas i

7\ J
v
RAM SOCKETS EPROM SOCKETS

\—745287 MEMORY DECODE PROM

ADDRESS AND DATA BUFFERS

TMS 9900

E.D.

<t— SIHONI O'LL >

08 os oy 0%
| gzant 79 AZI- i | vinl 2 3 i
o SN _‘ \l.\
0 cll | N oeostean || s
' —
p ven 2 z2n > £In
~]
SEN | e2n | f2n 1 @ wn o zn
o =3 T
i (] 4 d]l g =d [8 &
) O
I3 [- 924766 ASSYENS 10L/066W1
9en | S €N | L1} ‘¥'S'N NI 30VA €N i
g S sin -
: nD d _ & %
8 8
mo: a®n sn 1 P &n | i PP
-
0 (] S _ A ey Y
m - a I "IN SININLSN) SYXIL m.l._ v @
2sn | 180dq9n esn | 2En | s2n | 6in 155 Y ;1 ‘ 1 N w
| 25 -
g 4(] Ell | — E . DS .
o ~
S [2 2 I»Nwﬂa_m g332 g I--NSB ASSY P
g0 STt ™ Vien e s0:2 mz 5.
i W
3 —— -
[— 4 4&¢ = % e g [4 mlu I S
| KCRITES 2 gl o oin L
_||ﬁ_60 (=]
8en | 9zn | HWVH “opn "EWOHAI g5 n o D N
] —=3 i.,u.
EE mm_ q | d | d 3 | c:
L4 EN
w3cowd | wuay i 22 s i,
spn 953 | L2n | L LA an P aCl.r
T— 4 L4 g _ _ _ E A
2 mm| |
td _Ed o_uju TG m 2 azie
I vi3 otz o oe '
@ AZl—

=ww e

TM 990/101M Dimensions and Component Placement

Figure 1-2.

1.2 MANUAL ORGANIZATION
Section 1 covers board specifications and characteristies. A glossary in paragraph 1.7
explains terms used throughout the manual.

Section 2 explains how to install, power-up, and operate the TM 990/101 microecomputer
with the addition of a data terminal, power supplies, and appropriate connectors.

Section 3 explains how to communicate with the TM 990/101M using the TIBUG monitor.
This versatile monitor, complete with supervisor calls and operator communication
commands, facilitates the development and execution of software.

Section Y describes the instruction set of the TM 990/101M, giving examples of each
class of instructions and providing some explanation of the TMS 9900 architecture.

Section 5 explains basic programming procedures for the microcomputer, giving an
explanation of the programming environment and hardware-dependent features. Numerous
program examples are included for utilizing the various facilities of the TM 990/101M.

Section 6 is a basic theory of operation, explaining the hardware design configuration
and eirecuitry. This section provides explanations of the bus structure, the control
logiec, and the various subsystems which make up the microcomputer.

Section 7 describes various optlions available for the microcomputer, both those
supplied on-board and those which Texas Instruments offers for off-board expansion of
the system.

Section 8 features various hardware applications which can be built using the TM
990/101M.

1.3 PRODUCT INDEX

The TM 990/701M microcomputer is available in three different configurations, which
are gpecified by a "dash number" appended to the product name; e.g., TM 990/101M-1.
These configurations are listed in Table 1-1. A memory map is shown in Figure 1-3.

Table 1-1. TM 990/101M Configurations

Main Serial Port
Option (EIA
T™ 990/101M EPROM Terminal
Dash No. Socketed Program RAM I/F Stand)
-1 2 TMS 2708 TIBUG Monitor 4 TMS Louis ITY
(1K x 16) (1K x 16)
-2 2 TMS 2716 Blank 4 TMS 4045 Multidrop
(2K x 16) (1K x 16)
-3 4 TMS 2716 Blank 8 TMS Lous TTY
(4K x 16) (2K x 16)

1-4

MAIN EPROM*

0000
0800 07FF

7! ________ OFFF

EXPANSION
EPROM

EXPANSION

RAM \

FONN ——————— -

F800 F7FF

_/ TM 990/101M
MAIN RAM

FFFF

“EPROM's programmed with TIBUG monitor.

Figure 1-3. Main And Expansion EPROM and RAM

1.4 BOARD CHARACTERISTICS

?igure 1-1 shows the major portions and components of the microcomputer. The system
bus connector is P1, which is a 100-pin (50 each side) PC board edge connector spaced
on 0.125 inch centers. Connector P2 is the main serial port and P3 is the RS-232-C
auxiliary serial port. Both connectors are standard 25-position female jacks used in
RS-232-C communications. The parallel I/0 port is PC board edge connector P4, which
has 40 pins (20 each side) spaced on 0.1-inch centers.

Figure 1-2 shows the PC board silkscreen markings which detail the various components
on the board; also included are the board dimensions and tolerances.

1.5 GENERAL SPECIFICATIONS

+5 V +12 V -12 V
Power Consumption TYP MAX TYP MAX TYP MAX
™ 990/101M-1 18" 2xb 0.30 0.50 0.25 0.00
T 990/101M-2 1.8 2.6 0.30 0.50 0.25 0.40

Clock Rate: 3 MHz

Baud Rates (set by TIBUG): 110, 300, 600, 1200, 2400, 4800, 9600, 19200

1-5

Memory Size: The microcomputer is shipped with:
RAM: Four TMS 4045 (1K x 4 bits each)
EPROM: Two TMS 2708 (1K x 8 bits each), preprogrammed with TIBUG.

Total capacity is:

RAM: Eight TMS 4045's (1K x 4 bits each)
EPROM: Four TMS 2708's (1K x 8 bits each)
or

Four TMS 2716's (2K x 8 bits each)
Board Dimensions: See Figure 1-2

Parallel I1/0 Port (P4): One 16-bit port, uses TMS 9901 programmable systems interface

Serial I/0 Port (P2 and P3): Two asynchronous ports:
Main port (P2) has two interfaces: RS-232-C answer mode and either a TTY or a
balanced-line differential multidrop interface.

Auxiliary port (P3) meets RS-232-C specification interface, capable
of either originate or answer mode.

Both serial ports use TMS 9902 asynchronous communication controllers, but the
Auxiliary Port will readily accept the TMS 9903 synchronous communication
controller. Simply plug in the TMS 9903 for synchronous systems.

1.6 REFERENCE DOCUMENTS
The following documents provide supplementary information for the TM 990/101M user's
manual.

TMS 9900 Microprocessor Data Manual

TMS 9901 Programmable Systems Interface Data Manual

TMS 9902 Asynchronous Communication Controller Data Manual
TMS 9903 Synchronous Communication Controller Data Manual
TMS 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer's
Guide (P/N 943441-9701)

TM 990/301 Microterminal

TM 990/401 TIBUG Monitor Listing

TM 990/402 Line-by-Line Assembler User's Guide

TM 990/402L Line-by-Line Assembler Listing

TM 990/502 Cable Assembly (RS-232-C)

TM 990/503 Cable Assembly (TI Terminal 743 or Tu45)

TM 990/504 Cable Assembly (Teletype)

TM 990/506 Cable Assembly (Modem cable for /101 board)

TM 990/510 Card Chassis

TM 990/511 Extender Board User's Guide

TM 990/512 Prototyping Board User's Guide

1.7 GLOSSARY
The following are definitions of terms used with the TM 990/101M. Applicable areas in
this manual are in parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory addressing is
usually represented in hexadecimal from 000044 to FFFF1g for the TM 990/101M.

Alphanumeric Character: Letters, numbers, and associated symbols.

ASCII Code: A seven-bit code used to represent alphanumeric characters and control
(Appendix C).

1-6

Assembler: Program that translates assembly language source statements into object
code.

Assembly Language: Mnemonics which can be interpreted by an assembler and translated
into an object program (paragraph 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or 0.

Breakpoint: Memory address where a program is intentionally halted. This is a program
debugging tool.

Byte: Eight bits or half a word.

Carry: A carry occurs when the most-significant bit is carried out in an arithmetic
operation (i.e., result cannot be contained in only 16 bits), (paragraph 4.3.3.4).

Central Processing Unit (CPU): The "heart" of the computer: responsibilities include
instruction access and interpretation, arithmetic functions, I/0 memory access. The
TMS 9900 is the CPU of the TM 990/101M.

Chad: Dot-like paper particles resulting from the punching of paper tape.

Command Scanner: A given set of instructions in the TIBUG monitor which takes the
user's input from the terminal and searches a table for the proper code to execute.

Context Switch: Change in program execution environment, includes new program counter
(PC) value and new workspace area.

CRU (Communications Register Unit): The TMS 9900's general purpose, command-driven
input/output interface. The CRU provides up to 4096 directly addressable input and
output bits (paragraph 4.8).

Effective Address: Memory address value resulting from interpretation of an
instruction operand, required for execution of that instruction.

EPROM: See Read Only Memory.
Hexadecimal: Numerical notation in the base 16 (Appendix D).

Immediate Addressing: An immediate or absolute value (16-bits) is part of the
instruction (second word of instruction).

Indexed Addressing: The effective address is the sum of the contents of an index
register and an absolute (or symbolic) address (paragraph 4.5.3.5).

Indirect Addressing: The effective address is the contents of a register (paragraph

1.5.3.2).

Interrupt: Context switch in which new workspace pointer (WP) and program counter (PC)
values are obtained from one of 16 interrupt traps in memory addresses 000044 to

003E4¢ (paragraph 4.9).

I1/0: The input/output lines are the signals which connect an external device to the
data lines of the TMS 9990.

Least Significant Bit (LSB): Bit having the smallest value (samllest power of base 2);
represented by the right-most bit.

Link: The process by which two or more object code modules are combined into one, with
cross-peferenced label address locations being resolved.

Load: Transfer control to operating system using the equivalent of a BLWP instructior
to vectors in upper memory (FFFC,g and FFFE;g). See Reset.

Loader: Program that places one or more absolute or relocatable object programs into
memory (Appendix G).

Machine Language: Binary code that can be interpreted by the CPU (Table U-4).

Monitor: A program that assists in the real-time aspects of program execution such as
operator command interpretation and supervisor call execution. Sometimes called
supervisor (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-most bit representing
the highest power of base 2. This bit is often used to show sign with a 1 indicating
negative and a 0 indicating positive.

Object Program: The hexadecimal interpretations of source code output by an assembler
program. This is the code executed when loaded into memory.

One's Complement: Binary representation of a number in which the negative of the
number is the complement or inverse of the positive number (all ones become zeroes,
vice versa). The MSB is one for negative numbers and zero for positive. Two
representations exist for zero: all ones or all zeroes.

Op Code: Binary operation code interpreted by the CPU to execute the instruction
(paragraph 4.5.1).

Overflow: An overflow occurs when the result of an arithmetic operation cannot be
represented in two's complement (i.e., in 15 bits plus sign bit), (paragraph 4.3.3.5).

Parity: Means for checking validity of a series of bits, usually a byte. Odd parity
means an odd number of one bits; even parity means an even number of one bits. A
parity bit is set to make all bytes conform to the selected parity. If the parity is
not as anticipated, an error flag can be set by software. The parity Jjump instruction
can be used to determine parity (paragraph 4.3.3.6).

PC Board: (Printed Circuit Board) a copper-coated fiberglass or phenolic board on
which areas of copper are selectively etched away, leaving conductor paths forming a
circuit. Various other processes such as soldermasking and silkscreen markings are
added to higher quality PC boards.

Program Counter (PC): Hardware register that points to the next instruction to be
executed or next word to be interpreted (paragraph 4.3.1).

PROM: See Read Only Memory.

Egndom Access Memory (RAM): Memory that can be written to as well as read from (vs.
ROM) .

Read Only Memory (ROM): Memory that can only be read from (can't change contents).
Some can be programmed (PROM) using a PROM burner. Some PROM's can be erased (EPROM's)
by exposure to ultraviolet light.

Reset: Transfer control to operating system using the equivalent of a BLWP instruction
to vectors in lower memory (00007 and 00027g). See Load.

Source Program: Programs written in mnemonics that can be translated into machine
language (by an assembler).

Status Register (ST): Hardware register that reflects the outcome of a previous
instruction and the current interrupt mask (paragraph 4.3.3).

SuEervisor: See Monitor

Utilities: A unique set of instructions used by differnt parts of the program to
perform the same function. In the case of TIBUG, the utilities are the I/0 XOP's
(paragraph 3.3).

Word: Sixteen bits or two bytes.

Workspace Register Area: Sixteen words, designated registers 0 to 15, located in RAM
for use by the executing program (paragraph U4.4).

Workspace Pointer (WP): Hardware register that contains the memory address of the
beginning (register 0) of the workspace area (paragraph U4.3.2).

SECTION 2

INSTALLATION AND OPERATION OF TM 990/101M-1

2.1 GENERAL

This section explains procedures for unpacking and setting up the TM 990/7101M board
for operation. This section assumes (1) the TIBUG monitor is resident on EPROM's as
initially shipped from the factory, and (2) that a terminal suitable for connection to
the main communications port is used with the proper cable assembly.

CAUTION

Be sure that the correct cable assembly is used with
your data terminal. For teletypewriters (TTY), refer to
Appendix A. For RS-232-C compatible terminals, refer to
Appendix B for the signal configuration used by the
main I/0 port. Most RS-232-C compatible terminals, such
as a Lear Siegler ADM-1, will require the TM 990/502
cable, or equivalent. A TI T43 or 745 must use a TM
990/503 cable, or equivalent because of the connector
on the terminal end of the cable. A TI 733 requires the
use of a TM 990/505 cable, or equivalent. Many RS-232-C
compatible terminals come with their own cables, and
therefore will probably work with no problem.

2.2 REQUIRED EQUIPMENT
The basic equipment required, along with appropriate options, is explained in the
following paragraphs.

2.2.1 POWER SUPPLY
A power supply capable of meeting at least the following specification is required:

Voltage Re&glation Current
+5 V 3% 1.8 A
=127V 3% 0.3 A
+12 V 3% 0.4 A

A heavier duty supply is recommended, if possible, especially for supplying the +5
voltage.

2.2.2 TERMINALS AND CABLES
A 25-pin R3-232 male plug, type DB25P, is required. Ready made cables are available
from TI: see Appendix A or B.

] RS-232-C compatible terminal, including the TI 733 (using its own cable):
see Appendix B to verify cabling you already have, or for Lnstructions to
make a custom cable.

® TI T43/TU45: see Appendix B for speecial cabling required (these terminals
usually come with the correct cable).

e Teletype Model 3320/5JE (for TM 990/101M-1 and -3 microcomputer boards
only): see Appendix A for required modifications for 20 mA neutral
current-loop operation and proper cable connections.

2.2.3 POWER CABLE/CHASSIS

Use of a TM 990/510 OEM chassis greatly facilitates operation and setup. Alternately,
one of the following 100-pin, 0.125 inch (center-to-center) PCB edge connectors may be
used to interface with connector P1, such as with wire-wrap models:

TI H321150

Amphenol 225-804-50
Viking 3VH50/9CND5

Elco 00-6064-100-061-001.

2.2.4 PARALLEL I/O CONNECTOR

If the P4 parallel I/0 port is used, a ribbon cable with a 40-pin, 0.1-inch center
spacing PCB edge connector is needed. (The TIBUG monitor does not use the parallel
port in its normal processing.) Wire-wrap connector examples are as follows:

] TI H311120
o Viking 3VH20/IJND5.

2.2.5 MISCELLANEQUS EQUIPMENT
@ Volt-ohmmeter to measure completed/open connections and to verify power sup-
ply voltages and connections.

@ If any custom connections are required, a soldering iron (25-U5 watt), rosin
core solder, and wire are needed. Suggested wire sizes are 18 AWG insulated
stranded wire for power connections, 24 AWG insulated stranded wire for I/0
connections.

2.3 UNPACKING
Lift the TM 990/101M board from its carton and remove the protective wrapping. Check
the board for shipping damage. If any damage is found, notify your TI distributor.

Verify that at least the following items are included:
® TM 990/101 User's Guide (this manual)
o TM 990/401 TIBUG Monitor Listing
® Data Manuals for the TMS 9900, TMS 9901, and TMS 9902

2.4 POWER AND TERMINAL HOOKUP

These procedures assume that the TIBUG monitor is resident in the required address
space (00004g to O07FF1g), and that a terminal and cable of the proper type to match
the intended serial interface (TTY, EIA, multidrop) is also employed.

Check the board and verify that the jumper configuration is as described in Table 2-1.
Table 7-1 (in Section 7, Options) further defines jumper configurations.

Table 2:1.

Board Jumper Positions As Shipped

Funection

Stake Pins Used

Proper Connection & Description

Interrupt 4 source
Interrupt 5 source
Slow EPROM

2708/2716 Memory Map
EPROM Enable

HI/LO Memory Map

EIA Connector Ground
Microterminal +5-V
Microterminal +12 V
Microterminal -12 V
Main EPROM TYPE
Expansion EPROM type
Teletype

EIA/MD receive select
Multidrop Termination

E1,E2,E3

El,E5,E6

ET7,E8,E53

E9,E10,E11

E12,E13,E14

E15,E16,E17

E18,E19

E20,E21

E22,E23

E24,E25

E26 through E30

E31 through E35
E36,E37

E38,E39,E40
E41 through E52

E1 to E2 - pin 18, connector P1

E4 to E5 - pin 17, connector P1

E8 to E53 - No WAIT state

E10 to E11 - Use TMS 2708's

E13 to E14 - On-board EPROM

E16 to E17 - EPROM low, RAM high

E18 to E19% - pin 1 of P3 grounded®

Shipped installed on -0001,3 only#®

Shipped installed on -0001,3 only*

Shipped installed on -0001,3 only#*

E27 to E28, E29 to E30 - TMS 2708's

E32 to E33, E34 to E35 - TMS 2708's
Shipped removed. On -0001,3 only,

if using a TTY, borrow a Micro-

terminal jumper plug for use here.

E39 to E40 - EIA (and TTY) receive

Shipped installed on =0002 only#

Resistors and Duplex Select

P3 Port Terminal/Modem E5U4,E55,E56 E54 to E55 - Terminal Use#®

o

#Jumper connection is not relevant for TIBUG operation with an RS-232-C or TTY
terminal.

CAUTION
Be very careful to apply correct voltage levels to the
TM 990/101M. Texas Instruments assumes no responsibility
for damage caused by improper wiring or voltage
application by the user.

2.4.1 POWER SUPPLY CONNECTIONS

Figure 2-1 shows how the power supply is connected to the TM 990/101M through
connector P1, using a 100-pin edge connector. Be careful to use the correct pins as
numbered on the board; these pin numbers may not correspond to the numbers on the
particular edge connector used. Check connections with an ohmmeter before applying
power if there is any doubt about the quality or location of a connection.

The table in Figure 2-1 shows suggested color coding for the power supply plugs. To
prevent incorrect connection, label the top side of the edge connector "TOP" and the
bottom "TURN OVER".

Figure 2-2 shows how to correctly place the TM 990/101M in the TM 990/510 card
chassis. Slot 1 of the chassis is reserved for the microcomputer because termination
resistors for the control bus signals are at the opposite end of the backplane,
according to transmission line concepts. Slide the microcomputer into the slot,
following the guides. Be sure the P1 connector is correctly aligned,in the socket on
the backplane, then gently but firmly push the board edge into thé edge connector
socket.

\/\

T™ 99/101M
(= P1 CONNECTOR a a
4] (ToP) %
24 7476

o0dnoondnooodoooodooooioonoloooodolinioooodooonl

EDGE CONNECTOR

SHRINK SLEEVING

= 18 AWG INSULATED STRANDED WIRE 1
— e,
I BANANA PLUGS
i SUGGEST COLOR coums)
GND l +5V THESE AS PER TABLE —12v l +12v]]
./ e
VOLTAGE P1PIN® SUGGESTED PLUG COLORS
+5V 3, 4,97, 98 RED
+12V 75,76 BLUE
—12v 73,74 GREEN
GND 1,2,99, 100 BLACK
“ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.
A0001417

Figure 2-1. Power Supply Hookup

+12 0@

+5 e
GND ©
-12e

Figure 2-2. TM 990/101M Board In TM 990/510 Chassis

Looking on the backside of the backplane, find the connections for each of the supply
voltages and connect them to the power supply.

CAUTION
BEFORE connecting the power supply to the microcomputer,
use a volt-ohmmeter to verify that correct voltages are
present at the power supply. After verification, switch
the power supply OFF, and then make the connections to
the chassis as shown in Figure 2-2.

2.4.2 TERMINAL HOOKUP

Figure 2-3 shows how the TM 990/101M is connected to the TI T43 KSR terminal through
connector P2. DE15S connector attaches to the terminal; a DB25P connector attached to
P2 on the board. A table of point-to-point connections between the connectors are
shown in the figure. Figure 2-4 shows a R3-232 terminal (e.g., TI 733), and Figure 2-5
shows a TTY.

All terminals connected to the microcomputer will have a similar hookup procedure and
poeint-to-point configuration. For the differences between terminal cables, see
Appendixes A and B. Terminals for communication directly with TIBUG must be connected
to the main communications port (connector P2) at the corner of the board.

2=5

DB25P

TO P2 ON
TM 930/101M

AQ001418

Figure 2-4.

4 CONDUCTOR CABLE, 24 AWG

INSULATED STRANDED WIRE

CONNECTIONS

1

PIN ON DE15S | PIN ON DB25P SIGNAL
13 2 XMIT
12 3 RECV
1 8 DCD
7 GND

Figure 2-3.

743 KSR Terminal Hookup

DE15S

TO 743 DATA
TERMINAL

Connector P2 Connected to RS-232-C Device (Model 733 ASR)

2-6

Figure 2-5. Connector P2 Connected to TTY Device

The jumper marked EIA/MD, pins E38-EU0, should be in the EIA position, pins E39 to
ELO, at all times unless the multidrop interface is used. If connecting a RS-232
terminal, remove the TTY jumper at E36-E37, if connecting a Teletype terminal, then
insert the TTY jumper at E36-E37.

The TIBUG monitor operates the local I/0 port at one of the following baud rates:
110, 300, 600, 1200, 2400; 4800, 9600 or 19200 baud.

There is a 200 ms delay following a carriage return for all baud rates at or below
1200 baud. The delay allows for printhead travel.

The TMS 9902 asynchronous communication controller is initialized by TIBUG for a
seven-bit ASCII character, even parity, and two stop bits (for compatibility with all
terminals). At the terminal, set the baud rate of the terminal to one of the above
speeds.

TIBUG also uses conversational mode full-duplex communication. Set the communications
mode of your terminal to FULL DUPLEX, and set the OFF/ON LINE switch to ON LINE, or
the functional equivalents.

2.4.3 FIVE-SWITCH DIP AND STATUS LED

A five-switch DIP and a programmable LED are accessed through the Communications
Register Unit (CRU). Programming these is further explained in subsections 5.7 and 5.8
respectively.

2.5 OPERATION

2.5.1 VERIFICATION
Verify the following conditions before applying power:

Power connected to correct pins on P1 connector.

Terminal cable between P2 connector (NOT P3) and terminal.

Jumpers in correct positions (see Table 2-1).

Baud rate and communications mode are correctly set at the terminal;
terminal is ON LINE.

2.5.2 POWER-UP/RESET
a. Apply power to the board and the data terminal.

b. Activate the RESET switch near the corner of the microcomputer board
(see Figure 1-1). This activates the TIBUG monitor.

G Press the "A" key on the terminal (it may be more convenient to press the
carriage return key instead; this is also acceptable). TIBUG measures the
time of the start bit and determines the baud rate. A carriage return time
delay of 200 ms will be provided for all baud rates at or slower than 1200
baud.

d. TIBUG prints the TIBUG banner message and, on a new line, a question mark.
This is a request to input a command to the TIBUG command scanner. Commands
are explained in detail in Section 3, and the assembly language is described
in Section 4.

NOTE
If control is lost during operation, return control to
the TIBUG monitor by repeating steps b, ¢, and d.

2.5 SAMPLE PROGRAMS

The following sample programs can be used immediately to test the microcomputer board.
Other sample programs that can be loaded and executed are provided in Figures 5-15
(interrupt timer message) and 5-22 (L.E.D. blink). Appendix K contains example
programs that demonstrate microcomputer performance.

2.6.1 SAMPLE PROGRAM 1
The following sample program can be input using the TIBUG "M" command (paragraph
3.2.8), "R" command (paragraph 3.2.9), and "E" command (paragraph 3.2.4).

<[4 Enter the M command with a hexadecimal memory address of FE0016.

2=8

Enter the following values into memory, typing the new values then using the

space bar as described in paragraph 3.2.8.

Location Enter Value

Assembly Language

FEOO
FEO2
FEO4
FE06
FE08
FEOA
FEOC

2FAO
FE08
0460
0080
4849
0ODOA
0700

XOP @ FEO08, 14

B @ 0080

TEXT 'HI"
DATA ODOA
DATA 0700

PRINT MSG
GO TO TIBUG
MESSAGE

CR/LF
BELL/END

Exit the M command with a carriage return after entering the last value

above. The monitor will print a question mark.

Use the R command to set the address value 'FEQO" into the P register (pro-
gram counter).

Use the E command to execute the program.

The message 'HI' will print on the printer, followed by a carriage return,
line feed, and a bell. Your terminal printout should resemble the following:

TIEBU= REY.H

M FEOD
FEOQO=Dz=0n0
FENZ=e2z010
FED4=n32=
FE Qe=g:
FEOS=03n
FEOR=N32C

-

)
=
(T

L.

1
v

-
m
Il
-
O]
=

TR
W=FFC&

ZFRD
FEDZ
a0
aoan
4543
OnoR
oyan

F=01RC FEOO

TE hl

~
v

You can re-execute your program by repeating steps c¢. and d.

2-9

2.6.2 SAMPLE PROGRAM 2
Using steps 1 to 5 in paragraph 2.6.1 above, enter and execute the following program
which has been assembled by the optional TM 990/402 line-by-line assembler.

ZENN ZFAN OF 3 FEOZ«14
FENS FEII=

FENd 0450 B 3 0020
FENE QI0ET

FENE 434F FCOMGFATULATIANI, «OUR BERDoEAM WMOFY 8
FENR 4E47

FENL Sc41

FEOE 5455

FE1D <441

FE1Z S449

FE14 4F4E

FElr 5a2E

FE1E 2053

FE1R 4FSS

FE1E %5S&8&10

RFEIE SNS52

FEzN 4F47

FEZZ Sc41

FEc4 4020

FEze S74F

FE&= S24E

FESR 53=

EESC Q70F +&0ensd
FESE o7nn + nonn

You can re-execute your program by repeating c¢. and d. in paragraph 2.6.1 above.

2.7 DEBUG CHECKLIST
If the microcomputer does not respond correctly, turn the power OFF. Do not turn the

power ON again until you are reasonably sure the problem has been found. The following
is a checklist of points to verify.

® Check POWER circuits:
- Proper power supply voltages and current capacity.
- Proper connections from the power supply to the P1 edge connector.
Check pin numbers on P1. Check plug positions at your power supply.
Look for short circuits. Look for broken connections. MMalte sure board
is seated in chassis or edge connector socket correctly. Be certain
that the edge connector socket (if used) is not upside down.

] Check TERMINAL circuits:

- Proper cable hookup to P2 connector, and to terminal. Verify with data
in Appendixes A and B. One of the most common errors is that the ter-
minal cable is not plugged in. -

- Check for power at the terminal. This is another common error - the
terminal is not turned ON.

- Terminal is ON LINE mode, or equivalent.

- Terminal is in FULL DUPLEX mode, or equivalent. If the terminal is in
HALF DUPLEX mode, it will print everything you type twice, or it may
print garbage when you type. Put the terminal in FULL DUPLEX mode.

2-10

- EIA/MD jumper in EIA position (E30).
- Check BAUD RATE of terminal - it must be 110, 300, 600, 1200, 2400,
4800, 9600, or 19200 BAUD.

@ Check jumper plug positions against Table 2-1.
@ Be sure TIBUG EPROM's are in place correctly (U42 and U44).

¥ Checlt all socketed parts for correctly inserted pins. Be sure there aren't
any bent under or twisted pins. Check pin 1 location.

) If nothing happens, feel the components for excessive heat. Be careful as burns may
occur if a defeetive component is found. If the cause of inoperation cannot be found,
turn power OFF and call your TI distributor. Before calling, though, please be sure
that your power supply, terminal, and all connectors (use a volt-ohmmeter) are
working properly. i

2=11

5

SECTION 3

TIBUG INTERACTIVE DEBUG MONITOR

3.1 GENERAL

I'TBUG is a debug monitor which provides an interactive interface between the user and
the TM 990/101M. It is supplied by the factory on assembly TM 990/101M-1 only and is
available as an option, supplied on two 2708 EPROM's.

TIBUG occupies EPROM memory space from memory address (M.A.) 008041g as shown in Figure
3-1. TIBUG uses four workspaces in 40 words of RAM memory. Also in this reserved RAM
area are the restart vectors which initialize the monitor following single step
execution of instructions.

The TIBUG monitor provides seven software routines that accomplish special tasks.
These routines, called in user programs by the XOP machine instruction, perform tasks
such as writing characters to a terminal. XOP utility instructions are discussed in
detail in paragraph 3.3,

All communication with TIBUG is through a 20 mA current loop or RS-232-C device. TIBUG
is initialized as follows:

® Press the RESET pushbutton (Figure 1-2). The monitor is called up through
interrupt trap 0.

e Enter the character 'A' at the terminal. TIBUG uses this input to measure
the width of the start bit and set the TMS 9902 Asynchronous Communication
Contreoller (ACC) to the correct baud rate.

® TIBUG prints an initialization message on the terminal. On the next line it
prints a question mark indicating that the command scanner is available to
interpret terminal inputs.

@ Enter one of the commands as explained in paragraph 3.2.

3.2 TIBUG COMMANDS
TIBUG commands are listed in Table 3-1.

Table 3-1. TIBUG Commands

INPUT RESULTS PARAGRAPH
B Execute under Breakpaoint 3.2.1
Cc CRU Inspect/Change 3.2.2
D Dump Memory to Cassette/Paper Tape 3:2.3
E Execute 3.2.4
F Find Word/Byte in Memory 325
H Hex Arithmetic 3.26
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.28
R Inspect/Change User WP, PC, and ST Registers 3.2.9
5 Execute in Step Mode 3.2.10
T 1200 Baud Terminal 3. 2417
w Inspect/Change Current User Workspace S22

MEMORY
= ADDRESS

0000

INTERRUPT VECTOR (RESET)

INTERRUPT VECTORS 1 TO 15

0040

XOP VECTORS 0 AND 1

0048

XOP VECTOR 2TO 7

0060

007E

XOP VECTORS B8 TO 15
MONITOR UTILITIES

0080

07FE

TIBUG MONITOR

-~

TIBUG EPROM AREA
USER EPROM AREA

TIBUG EPROM AREA
USER EPROM AREA

-~

r TIBUG EPROM AREA

TIBUG RAM AREA

FFBO MONITOR
=¥ WORKSPACES
FFFC WP
RESTART VECTORS
FFFE rC
Figure 3-1. Minimum Memory Requirements for TIBUG

Conventions used to define command syntax in this paragraph are listed in Table 3-2.

Table 3-2. Command Syntax Conventions

CONVENTION
SYMBOL EXPLANATION
<> | ltems 'n be supplied by The user The erm stnin the angle brockets is 4 yenaiic "arm
5 |
L . Optignal trem May be included or onnited at tho user s discrenion ltems not included .n brack ets
are reqjuired
One of several optional items must be chosen.
(CR) Carriage Return
Space Bar
LF Line Feed
R ar Rn Register (n - 0 to 15)
wp Current User Workspace Pointer contents
PC Current User Program Counter contents
8T Current User Status Register conterits

NOTE

Except where indicated otherwise, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal; the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input,
they are right justified.

3.2.1 EXECUTE UNDER BREAKPOINT (B)

3.21:1 Syntax
B <address> <(CR)>

3.2.1.2 Description

This command is used to execute instructions from one memory address to another (the
stopping address is the breakpoint). When execution is complete, WP, PC, and ST
register contents are displayed and control is returned back to the monitor command
scanner. Program execution begins at the address in the PC (set by using the R
command). Execution terminates at the address specified in the B command, and a banner
is output showing the contents of the hardware WP, PC, and ST registers in that order.

The address specified must be in RAM and must be the address of the first word of an
instruction. The breakpoint is controlled by a software interrupt, XOP 15, which is
executed when program execution is at the breakpoint address.

If no address is specified, the B command defaults to an E command, where execution
continues with no halting point specified.

=3

EXAMPLE:

TH FLOA
BF FFBID FC e == A

3.2.2 CRU INSPECT/CHANGE (C)

3.2.2.1 Syntax

C < CRU address > ., < count > < (CR) >

3.2.2.2 Description
The Communication Register Unit (CRU) input bits are displayed right justified in a
16-bit hexadecimal representation. CRU addresses of the displayed bits will be:

from "CRU Software Base Address"
to "CRU Software Base Address" + 2(Count) - 2

"CRU Software Base Address" is the contents of register 12, bits 0 to 15, as used
by the CRU instruetions (paragraph 5.5). Up to 16 CRU bits may be displayed.
Following display of the sensed CRU input bits, corresponding CRU output bits at
that address may be speecified by keying in a desired hexadecimal pattern of 1 to 16
bits, right justified. A carriage return following data display forces a return to
the command scanner. A minus sign (-) or a space causes the same CRU input bits to
be displayed again. Defaults are 000044 for "Software Base Address" and 0 (count
of 16) for "Count" (the latter is a hexadecimal value of 0 to F with 0 indiecating a
decimal 16 bits).

The CRU inspect/change command displays from 1 to 16 CRU bits, right justified.
The command syntax includes the CRU software base address and the number of CRU
bits to be displayed. The CRU software base address is the 16-bit contents of R12
as explained in paragraph 5.5 (vs. the "CRU hardware base address" on bits 3 to 14
of R12); thus, the user must use 2 X CRU hardware base address. This is shown in
Figure 3-2 where 1001 is specified in the command to display values beginning with
CRU bit 8016'

2 L1007
0100=007F VALUE DISPLAYED

lé |1]2]3]4]s]s|7]8]a|0]1]12]13]14]15 ;(//

——

ZERO FILLED REQUESTED — 30 CRU BIT
1

82
83
84
85
86

>007F

Figure 3-2. CRU Bits Inspected By C Command

EXAMPLES:

(1) Examine eight CRU input bits. CRU software base address is 2016

R I |

12 1=11IF F<-— CARRIAGE RETURN ENTERED

(2) Set value of eight CRU output bits at CRU software base address 20143
new value is 0244.

VI e =

M= n=1lukF = <— 2 FOLLOWED BY CARRIAGE RETURN

CHANGE 00FF TO 0002

(3) Check changes in CRU input bit 0.

T e

D= -

CI =i - ,

= anni — MINUS SIGN ENTERED

o= anni -

nono=onnl =

(HIG=111111 «<——— CARRIAGE RETURN ENTERED

(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or clock mode
(one);

1000
(1] lisFFFE <———— ZERO IN LSB INDICATES INTERRUPT MODE

(5) Check the contents of the I/0 ports on the TMS 9901 (bits 1 to 14).
CO1E0eE

Olsa=0nng

3.2.3 DUMP MEMORY TO CASSETTE/PAPER TAPE (D)

3.2.3.1 Syntax

MONITOR PROMPT

~

D << start address > ! + < stop address >~ ! } < entry address > { IDT =<name > <

NOTE
The termination given after IDT is a space bar. A carriage
return or some other termination will cause the instruction
to function incorrectly.

3-5

3.2.3.2 Description

Memory is dumped from "start address" to "stop address." "Entry address" is the
address in memory where it is desired to begin program execution. After entering a
space or comma following the entry address, the monitor responds with an "IDT=" prompt
asking for an input of up to eight characters that will identify the program. This
program ID will be output. When the program is loaded into memory using the TIBUG
loader, code will be dumped as non-relocatable data in 990 object record format with
absolute load ("start address") and entry addresses specified. When loading this code
once more, the LOAD will ocecur at the start address specified in the D instruction. If
a user specifies a starting address while loading the object code previously dumped,
the loader will ignore the user's input and load at the starting address specified
during the 'D' command. Object record format is explained in Appendix G.

After entering the D command, the monitor will respond with "READY Y/N" and wait for a
Y keyboard entry indicating that the receiving device is ready. This allows the user
to verify switch settings, etc., before proceeding with the dump.

3.2.3.3 Dump to Cassette Example

The terminal is assumed to be a Texas Instruments 733 ASR or equivalent. The terminal
must have automatic device control (ADC). This means that the terminal recognizes the
four tape control characters DC1, DC2, DC3, and DCH.

The following procedure is carried out prior to answering the "READY Y/N" query
(Figure 3-3):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.

(2) Place the transport in the "RECORD" mode.

(3) Rewind the cassette.

(4) Load the cassette. If the cassette does not load, it may be write protected.
The write protect hole is on the bottom right side of the cassette (Figure
3-4). Cover it with the tab provided with the cassette. Now repeat steps 1

through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches must be
in the LINE position.

(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the "READY Y/N" query with a "Y"; the "Y" will not be echoed.

CASSETTE 1 ah CASSETTE 2
P) T e el
BLWIND VAT FF © RELOAD ey p— “LAVHACK © REWIND LCapg ks
— n
00 - []
i1 (O ADIY | i EADY ©
{ |
| i | P !
S—— HR) - i o
| T A i l «Q J
| I ! | |
==} — A |
e (R R !
*AYRACK CONTROL RECOHD CONTRU L ,@ |
B o re L] !
STAHRT Wil LT N CTHARACTER Bl g]
= 1 i (poo 00009 T [
I * '
I - 1
i i !
‘ +RAQR c [l
5 I
= O J NI l L
sTOP QEV J . TAPE FORMAT ERASE OFF
+ -
LINE — / LINE
/ _—
CFF / [e
i" e
LocaL ‘.‘ LOCAL
/
KEYHOARD PLAVBACK | RECORD PRINTES
L

Y e

Figure 3-3. 733 ASR Module Assembly (Upper Unit) Switch Panel

/—v TAPE SIIVE UP

Side 1
T E—
] 1
e WHITE TAB FOR SIDE 2 /
WRITE TAB FOR SIDE)

Figure 3-4. Tape Tabs

3=T

3.2.3.4 Dump to Paper Tape

The terminal is assumed to be an ASR 33 teletypewriter. The following steps should be
completed carefully to avoid punching stray characters:

L

(2)
(3)

(4)

(5)

(6)

Enter the command as described in paragraph 3.2.3.1. Do not answer the
"READY Y/N" query yet.

Change the teletype mode from ON LINE to LOCAL.

Turn on the paper tape punch and press the RUBOUT key several times, placing
RUBOUTS at the beginning of the tape for correct-reading/program-loading.

Turn off the paper tape punch, and reset the teletype mode to LINE. (This is
necessary to prevent punching stray characters).

Turn on the punch and answer the "READY Y/N" query with "Y". The Y will not
be echoed.

Punching will begin. Each file is followed by 60 rubout characters. When
these characters appear (identified by the constant punching of all holes)
the punch must be turned off.

3.2.4 EXECUTE COMMAND (E)

3.2.4.1

Syntax

E

3.2.4.2 Description

The E command causes task execution to begin at current values in the Workspace
Pointer and Program Counter.

Example: E

3.2.5 FIND COMMAND (F)

32541

Syntax

F < start address > { i< stop address > | < value > | (CR) !

3.2.5.2 Description

The contents of memory locations from "start address" to "stop address" are compared
to "value". The memory addresses whose contents equal "value" are printed out. Default
value for start address is 0. The default for "stop address" is 0. The default for
"yalue" is 0.

If the termination character of "value" is a minus sign, the search will be from
"start address" to "stop address" for the right byte in "value". If the termination
character is a carriage return, the search will be a word mode search.

3-8

EXAMPLE:

‘F _ s &l FFFF «<—————CARRIAGE RETURN ENTERED
00,

RN

1 e

Oige

F i 210 FF— =—— MINUS SIGN ENTERED
O

ooy

Do

aann

nn1e

o =

ile

oLy

3.2.6 HEXADECIMAL ARITHMETIC (H)

3.2.6.1 Syntax

H < number 1> { ' < number 2> < (CR} >

3.2.6.2 Description
The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

TH 200 100 - CARRIAGE RETURN ENTERED
Hl+H==11=110 Hl=HZ=1u11i1

3.2.7 LOAD MEMORY FROM CASSETTE OR PAPER TAPE (L)

3.2.7.7 Syntax

L < bias > < (CR) >

3.2.7.2 Description

Data in 990 object record format (defined in Appendix G) is loaded from paper tape or
cassette into memory. Bias is the relocation bias (starting address in RAM). Its
default is 0,.. Both relocatable and absolute data may be loaded into memory with the
L command. After the data is loaded, the module identifier (see tag 0 in Appendix G)
is printed on the next line.

3.2.7.3 Loading From Texas Instruments 733 ASR Terminal Cassette
The 733 ASR must be equipped with automatic device control (ADC). The following
procedure is carried out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR (cassette 1
in Figure 3-2).

(2) Place the transport in the playback mode.

=4

(3) Rewind the cassette.
(4) Load the cassette.
(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/LTNF switches to LINE.
(6) Set the TAPE FORMAT switeh to LINE.
(7) Loading will be at 1200 baud.
Execute the L command.
3.2.7.4 Loading From Paper Tape (ASR33 Teletype)
Prior to executing the L command, place the paper tape in the reader and position the
tape so the reader mechanism is in the null field prior to the file to be loaded.
Enter the load command. If the ASR33 has ADC (automatic device control), the reader

will begin to read from the tape. If the ASR33 does not have ADC, turn on the reader,
and loading will begin.

Each file is terminated with 60 rubouts. When the reader reaches this area of the
tape, turn it off. The loader will then pass control to the command scanner.

The user program counter (P) is loaded with the entry address if a 1 tag or a 2 tag is
found on the tape,

EXAMPLE:

Bl [N<=———— CARRIAGE RETURN ENTERED
FrROZFH1 «=— PROGRAM ID FROM TAPE

3.2.8 MEMORY INSPECT/CHANGE, MEMORY DUMP (M)

3.2.8.1 Syntax
® Memory Inspect/Change Syntax

M < start address > { * ;< stop address > <2 (CR) >

° Memory Dump Syntax
M < address > < (CR) >
3.2.8.2 Description

Memory inspect/change "opens" a memory location, displays it, and gives the option of
changing the data in the location. The termination character causes the following:

] If a carriage return, control is returned to the command scanner.
L] If a space, the next memory location is opened and &isplayed.
® If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the displayed
memory location is updated to the value entered.

3-10

Memory dump address directs a display of memory contents from "start address" to
"stop address". Each line of output consists of the address of the first data word
output followed by eight data words. Memory dump can be terminated at any time by
typing any character on the keyboard.

EXAMPLES:

(1)
M FEQO CARRIAGE RETURN ENTERED
FEDO=FFOF
FEO2=0012 FFFF <=—— NEW CONTENTS ENTERED
FED4=03211 — <———— MINUS SIGN ENTERED
FENZ=FFFF <———————— NEW CONTENTS
FEOd4=0=11
FEN&=0032 EEAA-=—— CARRAGE RETURN ENTERED

(2)
MO20 20
OO20=0020 0030 0000 anos QU= oDon 0000 ousg

NE0=unn

3.2.9 INSPECT/CHANGE USER WP, PC, AND ST REGISTERS (R)

3.2.9.1 Syntax

R <(CR)>

3.2.9.2 Description

The user workspace pointer (WP), program counter (PC), and status register (ST) are
inspected and changed with the R command. The output letters WP, PC, and ST identify
the values of the three principal hardware registers passed to the TMS 9900
microprocessor when a B, E, or S command is entered. WP points to the workspace
register area, PC points to the next instruction to be executed (Program Counter), and
ST is the Status Register contents.

The termination character causes the following:
® A carriage return causes control to return to the command scanner.
@ A space causes the next register to be opened.

Order of display is W, P, S.

3-11

EXAMPLES:

(1)
TF
=02 1100} <—— SPACE ENTERED
F=00in 200 -——CARRIAGE RETURN ENTERED

(2)
R

=1 00 j SPACE ENTERED
F=0z11
Z=1I1111| «=————— SPACE OR CARRIAGE RETURN ENTERED

3.2.10 EXECUTE IN SINGLE STEP MODE (S)

3.2.10.1 Syntax

S

3.2.10.2 Description

Each time tne S command is entered, a single instruction is executed at the address in
the Program Counter, then the contents of the Program Counter, Workspace Pointer, and
Status Register (after execution) are printed out. Successive instructions can be
executed by repeated S commands. Essentially, this command executes one instruction
then returns control to the monitor.

EXAMPLE:
i
A SPACES ENTERED
"':'::::E'i 'I:I o l /_ WORKSPACE POINTER
2= DE UR i PROGRAM COUNTER
ribz FFICg& FEZ<=—" &S H= STATUS REGISTER
2% FFLE FEN4 SE DA
FFrCE FE NS
FFCr FE -

NOTE

Incorrect results are obtained when the S command
causes execution of an XOP instruction (see paragraph
4.6.9) in a user program. To avoid this problem, use
the B command (breakpoint) to the XOP vectors to
execute any XOP's in a program (rather than the 3
command) with the appropriate XOP parameter
previously loaded into R11 of the XOP workspace.

3-12

3.2.11 TI 733 ASR BAUD RATE (T)

3.2.11.1 ‘Syntax

T

3.2.11.2 Description

The T command is used to alert TIBUG that the terminal being used is a 1200 baud
terminal which is not a Texas Instruments' 733 ASR (e.g., a 1200 baud CRT). To revoke
the T command, enter it again.

3.2.11.3 Use

T is used only when operating with a true 1200 baud peripheral device. Note that T is
never used when operating at other baud rates.

In TIBUG the baud rate is set by measuring the width of the character 'A' input from a
terminal. When an 'A' of 1200 baud width is measured, TIBUG is set up to automatically
insert three nulls for every character output to the terminal. These nulls are
inserted to allow correct operation of the TM 990/101M with Texas Instruments 733ASR
data terminals.

3.2.12 INSPECT/CHANGE USER WORKSPACE (W)

3.2.12.1 Syntax

W [REGISTER NUMBER] < (CR) >

3.2.12.2 Description

The W command is used to display the contents of all workspace registers or display
one register at a time while allowing the user to change the register contents. The
workspace begins at the address given by the Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the entire
workspace to be printed. Control is then passed to the command scanner.

The W command followed by a register number in hexadecimal and a carriage return
causes the display of the specified register's contents. The user may then enter a new
value into the register by entering a hexadecimal value. The following are termination
characters whether or not a new value is entered:

® A space causes display of the next register.

] A minus sign causes display of the previous register.

(] A carriage return gives control to the command scanner.
EXAMPLES:

(1)

Tl CARRIAGE RETURN ENTERED
Fl=nnzd4 ES=FASA FE3=0020 RE4=FESE FRFS=003%:2
F3=2n00 RA=0EAS FE=0000 RC=01C0 0 FIDI=0034 EE=FAZ0 RF=Ce00

Lt
[

DA
o
[
nmn
T
I &

=13

Fe=1Z00 E7=00=4

(2)

2 CARRIAGE RETURN ENTERED

Tl 2=

=025 ;456}
FZ=001E 1010
e ACE ENTERED
Ra=1502 ‘ o
FS=04s1 S00F
Fe=F=Z010) «<———— CARRIAGE RETURN ENTERED

3.3 USER ACCESSIBLE UTILITIES :

TIBUG contains seven utility subroutines that perform I/0 functions as listed in Table
3-3. These subroutines are called through the XOP (extended operation) assembly
language instruction. This instruction is covered in detail in paragraph 4.6.9. In
addition, locations for XOP's 0 and 1 contain vectors for utilities that drive th ™
990/301 microterminal, and XOP 15 is used by the monitor for the breakpoint facility.

Table 3-3. User Accessible Utilities

Xop FUNCTION PARAGRAPH
8 Write 1 Hexadecimal Character to Terminal 331
9 Read Hexadecimal Word from Terminal 3.3.2
10 Write 4 Hexadecimal Characters to Terminal 3.3.3
1M Echo Character 3.34
12 Write 1 Character to Terminal 3.35
13 Read 1 Character from Terminal 3.36
14 Write Message to Terminal [B 1
NOTE
All characters are in ASCI1 code.

NOTES

15 Initially, TIBUG will conduct I/0 through the TMS
9902 connected to connector P2: in this mode,
00801 is in TIBUG's R12 located at memory address
(M.A. FFDE,¢. To change this configuration, change
the contents of M.A. FFDE16 before executing the
I/0 XOP. For example, to use the auxiliary TMS 9902
at P3, change M.A. FFDE¢ contents to 018016' CRU
programming is discussed in paragraph 5.5.

2. The write character XOP (XOP 12) activates the
REQUEST TO SEND signal of the TMS 9902. This signal
is never deactivated by TIBUG so that modems may be
used.

3 Most of the XOP format examples herein use a
register for the source address, however, all XOP's
can also use a symbolic memory address or any of
the addressing forms available for the XOP instruc-
tion.

3-14

3.3.1 WRITE ONE HEXADECIMAL CHARACTER TO TERMINAL (XOP 8)

Format: XOP BRn,8
The least significant four bits of user register Rn are converted to their ASCII coded
hexadecimal equivalent (0 to F) and output on the terminal. Control returns to the

instruction following the extended operation.

EXAMPLE:

Assume user register 5 contains 203016' The assembly language (A.L.) and machine
language (M.L.) values are shown below.

AL. XOP R5.,8 SEND 4 LSB'S OF R5 TO TERMINAL

RE TP A R R R R ey A N . B i Y
ML.[E B - - i e l T qgl 0 o I T B f] - 2E05

Terminal Qutput: C

3.3.2 READ HEXADECIMAL WORD FROM TERMINAL (XOP 9)

Format: XOP Rn,9
DATA NULL ADDRESS OF CONTINUED EXECUTION IF
NULL IS ENTERED
DATA ERROR ADDRESS OF CONTINUED EXECUTION IF

NON HEX NO. ENTERED
(NEXT INSTRUCTION! EXECUTION CONTINUED HERE IF VALID HEX
NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the terminal is
accumulated in user register Rn. The termination character is returned in register
Rn+1. Valid termination characters are space, minus, comma, and a carriage return.
Return to the calling task is as follows:

e If a valid termination character is the only input, return is to the memory
address contained in the next word following the XOP instruection (NULL
above).

3-15

] If a non-hexadecimal character or an invalid termination character is input,
control returns to the memory address contained in the second word following
the XOP instruction (ERROR above).

® If a hexadecimal string followed by a valid termination character is input,
control returns to the word following the DATA ERROR statement above.

EXAMPLE
Al. XOP R6.9 READ HEXADECIMAL WORD INTO R6
DATA “-FFCO AETURN ADDRESS, IF NO NUMBER
DATA - FFC6 RETURN ADDRESS, IF ERROR
M.L. g 8 & I g g g B R GReed s {9 dms 34 ds
M.A. FFBO[O 0 1 0 1 I O 0 0 T 10 o] o 1 1 0 21 a6
frB2[1 1 N Al 10 8 e E W F1ie0
regsft 1 1 1 1 1 1 T - & G m @ a0 A Foith

If the valid hexadecimal character string 12C is input from the terminal followed by a
carriage return, control returns to memory address (M.A.) FFB616 with register 6
containing O12C16 and register 7 containing 0D0044.

If the hexadecimal character string 12C is input from the terminal followed by an
ASCIT plus (+) sign, control returns to location FFC61§. Registers 6 and 7 are
returned to the calling program without being altered. "+" is an invalid termination
character.

If the only input from the terminal is a earriage return, register 6 is returned
unaltered while register 7 contains 0D0016' Control is returned to address FFCO.g4.

3.3.3 WRITE FOUR HEXADECIMAL CHARACTERS TO TERMINAL (XOP 10)
Format: XOP Rn, 10

The four-digit hexadecimal representation of the contents of user register Rn is
output to the terminal. Control returns to the instruction following the XOP call.

EXAMPLE:
Assume register 1 contains 2CH616.

A.L. XOP R1,10 WRITE HEX NUMBER

0 1 2 3 a 5 6 7 8 9 30 9du...12..73 9% a5
ML [0 0 1 0 1 5 0 1 o[o 0o | o 0 0 1-| >2e81

Terminal OQutput: 2C46

3.3.4 ECHO CHARACTER (XOP 11)
Format: XOP Rn, 11

This is a combination of XOP's 13 (read character) and 12 (write character). A
character in ASCII code is read from the terminal, placed in the left byte of Rn, then
written (echoed back) to the terminal. Control returns to the instruction following
the XOP after a character is read and written. By using a code to determine a
character string termination, a series of characters can be echoed and stored at a
particular address:

CLR R2 CLEAR R2

L R1, > FEOO SET STORAGE ADDRESS

Xop R2, 11 ECHO USING R2

Cl Az, - 0D00 WAS CHARACTER A CR?

JEQ 546 YES, EXIT ROUTINE

MOVB R2.*R1+ NO, MOVE CHAR TO STORAGE
JMP $-10 REPEAT XOP

3.3.5 WRITE ONE CHARACTER TO TERMINAL (XOP 12)

Format: X0P Rn,12

The ASCII character in the left byte of user register Rn is output to the terminal.

The right byte of Rn is ignored. Control is returned to the instruction following the
call.

3.3.6 READ ONE CHARACTER FROM TERMINAL (XOP 13)
Format: XOP Rn,13

The ASCII representation of the character input from the terminal is placed in the
left byte of user register Rn. The right byte of register Rn is zeroed. When this
utility is called, control is returned to the instruction following the call only
after a character is input.

3.3.7 WRITE MESSAGE TO TERMINAL (XOP 14)

Format: XOP @MESSAGE,14
MESSAGE is the symbolic address of the first character of the ASCII character string
to be output. The string must be terminated with a byte containing binary zeroes,

After the character string is output, control is returned to the first instruction
following the call.

Assuming the following program:

MEMORY

ADDRESS OP CODE A.L. MNEMONIC
(Hex) (Hex)
FEOO 2FAD XOP @ > FEED,14
FEQZ FEEOQ
FEO4
FEEOD 5445 TEXT 'TEST'
FEE2 5354
FEE4 00 BYTE O

During the execution of this XOP, the character string 'TEST' is output on the
terminal and control is then returned to the instruction at location FEOR16. TEXT 3§
an assembler directive to transcribe characters into ASCII code.

3.4 TIBUG ERROR MESSAGES

Several error messages have been included in the TIBUG monitor to alert the user to
incorrect operation. In the event of an error, the word "ERROR' is output followed by
a single digit representing the error number.

Table 3-U4 outlines the possible error conditions.

Table 3-4. TIBUG Error Messages

ERROR CONDITION

Invalid tag detected by the loader.

Checksum error detected by the loader.
Invalid termination character detected.

Null input field detected by the dump routine.
Invalid command entered.

s W =0

In the event of errors 0 or 1, the program load process is terminated. If the program
is being input from a 733 ASR, possible causes of the errors are a faulty cassette
tape or dirty read heads in the tape transport. If the terminal device is an ASR33,
chad may be caught in a punched hole in the paper tape. In either case repeat the load
procedure.

In the event of error 2, the command is terminated. Reissue the command and parameters
with a valid termination character.

Error 3 is the result of the user inputting a null field for either the start address,
stop address, or the entry address to the dump routine. It also occurs if the ending
address is less than the beginning address. The dump command is terminated. To correct
the error, reissue the dump command and input all necessary parameters.

3-18

SECTION 4

TM 990/101M INSTRUCTION EXECUTION

4.1 GENERAL

This section covers the instruction set used with the TM 990/101M including assembly
language and machine language. This instruction set is compatible with other members
of the 990 family.

Other topics include:

° Hardware and software registers (paragraphs 4.3 and 4.4).

® CRU addressing (paragraph 4.7)

°® Interrupts (paragraph 4.10)
The TM 990/101M microcomputer is designed for use by a variety of users with varying
technical backgrounds and available support equipment. Because a TM 990/101M user has
the capability of writing his programs in machine language and entering them into
memory using the TIBUG monitor, emphasis is on binary/hexadecimal representations of
assembly language statements. The assembly language described herein can be assembled
on a 990 family assembler. If an assembler is used, this section assumes that the user

will be aware of all prerequisites for using the particular assembler.

It is also presumed that all users learning this instruction set have a working
knowledge in:

™ ASCII coded character set (described in Appendix C).
[Decimal/hexadecimal, binary number system (described in Appendix D).
Further information on the 990 assembly language is provided in the Model 990

Computer/TMS 9900 Microprocessor Assembly lLanguage Programmer's Guide (P/N
943441-9701).

4.2 USER MEMORY

Figure 4-1 shows the user RAM space in memory available for execution of user
programs. Note that the memory address value is the number of bytes beginning at 0000;
thus, all word addresses are even values from 0000 to FFFE16.

Programs in EPROM's can be read by the processor and executed; however, EPROM memory
cannot be modified (written to). Therefore, workspace register areas are in RAM where
their values can be modified. Restart vectors and TIBUG workspaces utilize the last 40
words of RAM memory space as shown in Figure U-1.

4.3 HARDWARE REGISTERS
The TM 990/101M uses three ma jor hardware registers in executing the instruction set:
Program Counter (PC), Workspace Pointer (WP), and Status Register (ST).

4.3.1 PROGRAM COUNTER (PC)

This register contains the memory address of the next instruction to be executed.
After an instruction image is read in for interpretation by the processor, the PC is
incremented by two so that it "points" to the next sequential memory word.

FEAS™

FFAE

FFBO
FFFE|

BYTE 0000
MEMORY BYTE 0001
ADDRESS §
& |
INTERRUPT VECTORS f e e e
003E : FIRST
XOP VECTORS 0 EPROM 1024
DEDICATED 007E B WORD
MEMORY £p
—— 1K X 16 ROM
MONITOR
07FE
0800 SECOND
EPROM 1024
{ TMS 2708 { WORD
1K X 16
~ EPROM*
INTERRUPT ‘1’::
AND XOP LINK AREA ®)
X % ° Z MEMORY
S s EXPANSION
~ L]
~
I e
SECOND
=t
N sl ' 1024
ke TMS 4045 WORD
USER F7FE ~ 1KX18 RAM®
AVAILABLE .
e RAM F800 >
e RAM FIRST
P TMS 4045 1024
Fhag 1K X 16 ~ WORD
S b e
s i T RAM
~
o SRR [PRIEGE SR - e e e =
FFFE

ADDRESS (HEX

0000-003F
0040-0047
0048-005F
0060-007F
0080-07FF
FEAB-FFAF
FFBO-FFFB
FFFC-FFFF

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE
FILES AND RESET VECTORS
AT FFFC AND FFFE

" NOT SUPPLIED WITH
TM 990/101M-1 OR -2

DEDICATED MEMORY
PURPOSE

Vectors for interrupts 0 (RESTART) to 15
Vectors for XOP’s 0 and 1 (Microterminal 1/0)
Vectors for XOP's 2 to 8 (Programmed by User)
Vectors for XOP’s 8 to 15 (TIBUG utilities)
TIBUG monitor

Interrupt and XOP linking area

Four overlapping monitor work spaces

Restart (load) vectors

BOARD MEMORY MAP

ADDRESS (HEX)

MEMORY TYPE

ENABLE SIGNAL

0000-07FF*
0000-OF FF*
0800-0F FF *
1000-1FFF*
FOOO-F 7FF
F800-FFFF

ROM (2708)
ROM (2716)
ROM (2708}
ROM (2716)
RAM (4045)
RAM (4045)

ROM1
ROM1
ROM2
ROM2
RAM2
RAM1

COMMENT

TIBUG monitor area

Main EPROM, blank TMS 2716

Expansion EPROM

Expansion EPROM, blank TMS 2716

Expansion RAM
Standard RAM

*EPROM pairs (e.q., U42, U44 and U43, U45) must be of the same type — both TMS 2708's or both TMS 2716’s. The
wo EPROMpairs, main and expansion, may be of different type if the appropriate jumper settings are made. This

situation means selecting the 2716 memory map jumper option.

Figure 4-1.

Memory Map

l=2

4.3.2 WORKSPACE POINTER (WP)

This register contains the memory address of the register file currently being used by
the program under execution. This workspace consists of 16 contiguous memory words
designated registers 0 to 15. The WP points to register 0. Paragraph 4.4 explains a
workspace in detail.

4.3.3 STATUS REGISTER (ST)
The Status Register contains relevant information on preceding instructions and
current interrupt level. Included are:

] Results of logical and two's complement comparisons (many instructions auto-
matically compare the results to zero).

] Carry and overflow.

° 0dd parity found (byte instructions only).

° XOP being executed.
® Lowest priority interrupt level that will be currently recognized by the
processor.

The Status Register is shown in Figure 4-2.

L] 1 2 3 4 5 8 9 10 1 12 13 14 15

6 7
¥ \ b T T T T T T T
l L> l A] EQ | c lOV I orP I X [\\\ RESERVED \\\ INTERRUPT MASK]
- . il Vi . .
L~ LOGICALLY GREATER THAN OV OVERFLOW
A ARITHMETICALLY GREATER THAN orP ODD PARITY

EQ EQUAL X XOP BEING EXECUTED
C CARRY

AD001421

Figure 4-2. Status Register

4.3.3.1 Logical Greater Than

This bit contains the result of a comparison of words or bytes as unsigned binary
numbers. Thus the most signifieant bit (MSB) does not indicate a positive or negative
sign. The MSB of words being logically compared represents 215 (32,768), and the MSB
of bytes being logically compared represents 27 (128).

4.3.3.2 Arithmetic Greater Than

The arithmetic greater than bit contains the result of a comparison of words or bytes
as two's complement numbers. In this comparison, the MSB of words or bytes being
compared represents the sign of the number, zero for positive, or one for negative.

4-3

4.3.3.3 Equal
The equal bit is set when the words or bytes being compared are equal.

4.3.3.4 Carry
The carry bit is set by a carry out of the MSB of a word or byte (sign bit)
during arithmetic operations. The carry bit is used by the shift operations to

store the value of the last bit shifted out of the workspace register being
shifted.

4.3.3.5 Overflow

The overfiow pbit is set when the result of an arithmetic operation is too
iarge or too small to be correctly represented in two's complement
(arithmetic) representation. In addition operations, overflow is set when the
MSB's of the operands are equal and the MSB of the result is not equal to the
MSB of tne destination operand. In subtraction operations, the overflow bit is
set when the MSB's of the operands are not equal, and the MSB of the result is
not equal to the MSB of the destination operand. For a divide operation, the
overflow bit is set when the most significant sixteen bits of the dividend (a
32-bit value) are greater than or equal to the divisor. For an arithmetic left
shift, the overflow bit is set if the MSB of the workspace register being
shifted changes value. For the absolute value and negate instructions, the
overflow bit is set when the source operand is the maximum negative value,
800016.

4.3.3.6 0dd Parity

The odd parity bit is set in byte operations when the parity of the result is
odd, and is reset when the parity is even. The parity of a byte is odd when
the number of bits having a value of one is odd; when the number of bits
having a value of one is even, the parity of the byte is even.

4.3.3.7 Extended Operation
The extendea operation bit of the Status Register is set to one when a
software implemented extended operation (XOP) is initiated.

4.3.3.8 Status Bit Summary
Table 4-1 lists the instruction set and the status bits affected by each
instruction.

4.4 SOFTWARE REGISTERS

Registers used by programs are contained in memory. This speeds up context-
switeh time because the content of only one register (WP hardware register)
needs to be saved instead of the entire register file. The WP, PC, and ST
register contents are saved in a context switch.

A workspace 1s a contiguous 16 word areaj its memory location can be
designated by placing a value in the WP register through software or a
keyboard monitor command. A program can use one or several workspace areas,
depending upon register requirements.

More than three-fourths of the instructions can address the workspace register
file; all shift instructions and most immediate operand instructions use
workspace registers exclusively.

Figure 4-3 is an example of a workspace file in high-order memory (RAM). A

workspace in ROM would be ineffective since it could not be written into. Note
that several registers are used by particular instructions.

4=l

Table 4-1. Status Bits Affected by Instructions

MNEMONIC [L™>|Aa>|EQ | c |ov | op X MNEMONIC [L>|A>|EQ | ¢ |ov | oP | x
A X X % . X = - LDCR WX = = 1 L
AB X -, X X X = L % R L = = = =
ABS X i) B PR = LIMI L = - = = = .
Al X X% %K : - LREX = i - = e —
ANDI X R = = = = LWPI = = = = - — =
B £ = . = = — - MOV R - S = £ o
BL — =SSR = = = MOVB I R S & 1Ry =
BLWP = 4 - = 3 MPY L z = = - =
c X UL i e = == — NEG % X o $. = =
CB X v Wt = = = ORI %X X = = - =
ci X e 2% == - RSET —~ = = = - = =
CLR = = - = — RTWP L X, ¥ X X
coc — 2 o = — — s T w9 o= =
G626 = = X = = = sB X A SR e e M
DEC X IR AT RS R = SBO ~ - — = e N
DECT X R T T - SBZ = b : = N
DIV = A= =5 e | = SETO — - - - - - =
IDLE L — I R = SLA 6o X W X S
INC X - N T S— = soc % R ML = s . =
INCT X I - T - SOCB Koo b3 Bl = & > S
INV X % R T = SRA e T X° W e - | =
JEQ L = 2 e = SRC X X %R . -
JGT 2 = = e = e - SRL A g T R = = =
JH > -8 R S - STCR X X N 1 L
JHE - =2 = = = STST e s - = =
JL = £ - = = = = STWP = - - - - S
JLE - = = = = - — SWPB =l epe B UVE - =
T = = g = = = = szc O R = sl =l e
Imp = - - = = = — szcs TN S DL He, g
INC = = - = = = - TB £x = % = T =
INE . - — = = = = X 2) 2 2 2 2 2
INO = = = = = = XOP 2 2 2 2 2 2 2
Joc = - = s & = XOR R My e, = =
Jop — = 3 = -

NOTES

When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise these
instructions do not affect the OP bit.

. The X instruction does not affect any status bit, the instruction executed by the X instruction sets status bits normally for that
instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets status bits normally.

WP REGISTER

A0001422

MEMORY
ADDRESS

(HEXADECIMAL)

FCO02

FCo4a

FCO06

FCo8

FCOA

FCoC

FCOE

FC10

FC12

FC14

FC16

FC1i8

FC1A

FCi1C

FC1E

12

15

SHIFT
COUNT

Figure 4-3. Workspace Example

RO

R

R2

R3

R4

RS

R7

4-6

BITS 12-15 USED BY
SHIFT INSTRUCTIONS

USED BY XOP'S AND BRANCH RETURN

USED IN CRU ADDRESSING
USED IN CONTEXT

SWITCHING (XOP,
BLWP, RTWP)

——

4.5 INSTRUCTION FORMATS AND ADDRESSING MODES

The instructions used by the IM 990/101M are contained in 16-bit memory words and
require one, two, or three words for full definition. The first word (or the single
word) of an instruction will describe the purpose of the instruction while the
succeeding one or two words will be numbers that are referenced by the initial
instruction word. A word describing an instruction is interpreted by the Central
Processing Unit (CPU) by decoding the variocus fields within the 16 bits. These fields
are shown in Figure Y4-4 for the 9900 instruction set which is also categorized into
nine instruction formats as shown in the figure.

In order to construct instructions in machine language, the programmer must have a
knowledge of the fields and formats of the instructions. This knowledge is often very
important in debugging operations because it allows the programmer to change bits
within an instruction in order to solve an execution problem.

The fields within an instruction word contain the following information (see Figure
U-ly:

° Op code which identifies the desired operation to be accomplished when this
instruction is executed.

FORMAT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERAL USE

1 0P CODE B, v P .. DR T | amimumeTIC
2 P OP CODE e SIGNED DISPLACEMENT JUMP
3 OP CODE WA Ts | SR —$ LOGICAL
4 OP CODE = R Ts e SR | cRu
5 =y opgopE . - | c i gy j SHIFT
6 OP CODE | e e PROGRAM
7 i " OPCODE NOT USED 1 conTROL
8 ol ~ OPCODE N R | IMMEDIATE
9 ~ OPCODE L g8 .51~ SR | mPY DIV xoP
OP CODE OPERATION CODE
B BYTE INDICATOR (1 BYTE)
Tp DESTINATION ADDRESS TYPE®
DR DESTINATION REGISTER
Ts SOURCE ADDRESS TYPE®
SR SOURCE REGISTER
C CRUTRANSFER COUNT OR SHIFT COUNT
R REGISTER
N NOTUSED
*TpOR Tg ADDRESS MODE TYPE
00 DIRECT REGISTER
01 INDIRECT REGISTER
PROGRAM COUNTER RELATIVE, NOT INDEXED (SR OR DR = 0)
w’ {rnosnAMCOUNTEHRELAﬂVE+nnneanGmTEn1saonon>m
" INDIRECT REGISTER, AUTOINCREMENT REGISTER
AD001423

Figure 4-4. TM 990/101M Instruction Formats

4-7

® B code which identifies whether the instruction will affect a full 16-bit
word in memory or an 8-bit byte. A one indicates a byte will be addressed,
while a zero indicates a word will be addressed.

°® T fields identified by TD for the destination T field and TS for the source
T field. The T field is a two-bit code which identifies which of five dif-
ferent addressing modes will be used (direct register, indirect register,
memory address, memory address indexed, and indirect register autoincre-
mented). These modes are described in detail in paragraphs 4.5.1 through
4.5.5. The source T field is the code for the source address and the desti-
nation T field is the code for the destination address. As shown in Figure
4.4, only five instruction formats use a T field.

e Source and destination register fields which contain the number of the
register affected (0 through 15).

® Displacement fields that contain a bias to be added to the program counter
in program counter relative addressing. This form of addressing is further
described in paragraph 4.5.7.

° Fields that contain counts for indicating the number of bits that will be
shifted in a shift instruction or the number of Communication Register Unit
(CRU) bits that will be addressed in a CRU instruction.

4.5.1 DIRECT REGISTER ADDRESSING (T:OOZ)

In direct register addressing, execution involves data contained within one of the 16
workspace registers. In the first example in Figure 4-5, both the source and destina-
tion operands are registers as noted in the assembly language example at the top of
the figure. Both T fields contain 002 to denote direct register addressing and their
associated register fields contain the binary value of the number of the register
affected. The 110, in the op coderfield identifies this instruction as a move
instruction. Since the B field contains a zero, the data moved will be the full 16
bits of the register (a byte instruction addressing a register would address the left
byte of the register). The instruction specifies moving the contents of register 1 to
register 4, thus changing the contents of register 4 to the same value as in register
1. Note that the assembly language statement is constructed so that the source
register is the first item in the operand while the destination register is the second
item in the operand. This order is reversed in the machine language construction with
the destination register and its T field first and the source register and its T field
second.

4.5.2 INDIRECT REGISTER ADDRESSING (T=012)

In indirect register addressing, the register does not contain the data to be affected
by the instruction; instead, the register contains the address within memory of where
that data is stored. For example, the instruction in Figure 4-6 specifies to move the
contents of register 1 to the address which is contained in register 4 (indirect
register 4). Instead of moving the value in register 1 to register 4 as was the case
in Figure 4-5, the CPU must first read in the 16-bit value in register U4 and use that
value as a memory address at which location the contents of register 1 will be stored.
In the example, register 4 contains the value FD004g. This instruction stores the
value in register 1 into memory address (M.A.) FD0016.

Indirgct register addressing is specified in assembly language source code by
preceding the register number with an asterisk (*). For example, A #R1,*R2 means

to add the contents of the memory address in register 1 to the contents of the memory
address in register 2, leaving the sum in the memory address contained in register 2.

4-8

In direct register addressing, the contents of a register are addressed. In indirect
register addressing, the CPU goes to the register to find out what memory location to
address. This form of addressing is especially suited for repeating an instruction
while accessing successive memory addresses. For example, if you wished to add a
series of numbers in 100 consecutive memory locations, you could place the address of
the first number in a register, and execute an add indirect through that register,
causing the contents of the first memory address (source operand) to be added to
another register or memory address (destination operand). Then you could increment the
contents of the register containing the address of the number, loop back to the add
instruction, and repeat the add, only this time you will be adding the contents of the
next memory address to the accumulator (destination operand). This way a whole string
of data can be summed using a minimum of instructions. Of course, you would have to
include control instruections that would signal when the entire list of 100 addresses
have been added, but there are obvious advantages in speed of operation, better
utilization of memory space, and ease in programming.

EXAMPLE 1
ASSEMBLY LANGUAGE:
MOV R1,R4 MOVE THE CONTENTS OF R1 (SOURCE) TO R4 (DESTINATION)
SOURCE OPERAND \\x AR
DESTINATION OPERAND DIRECT REGISTER
//— //—HEGETERA T CODE FOR
— DIRECT REGISTER
/ b REGISTER 1
MACHINE LANGUAGE]]
BT AT Sk B hge e W B CAf] O g . O
. s, o -SSR SR
1 W A8 w b] A () o] W e [L
OP CODE 8 o DR Tg SR
M.A.
FCOO RO
FCO2 R1
FCoa 2 \) PLACE R1BINARY
FCOB R4 -
FCOA RS

EXAMPLE 2

ASSEMBLY LANGUAGE:
A R4,R1D ADD THE CONTENTS OF R4 (SOURCE) AND R10 (DESTINATION)

MACHINE LANGUAGE:
0 1 2

2 4
IT 0 1 0[0 0[1 0 1 0]0 OIO i 0 D__I>A234
B

OP CODE To DR Ts SR

A0001424

Figure 4-5. Direct Register Addressing Example

4-9

ASSEMBLY LANGUAGE:
MOV R1,=R4 MOVE THE CONTENTS OF RI (SOURCE) TO ADDRESS IN R4 (DESTINATION)

MACHINE LANGUAGE:
0 1 - ATIEN < A Vel N 7 8 _@ A oar 12t A ey 15

1 1 0 010 ‘IID 1 0 0 0 0 0 0 0 1 [>C501

OP CODE B o DR Ts SR
M.A
FCO0 RO
FCO2 R1 o—]
FC04 R2
rele. - Bl PLACE R1 BINARY
FRog; (Ré Fone IMAGE IN MA FD001g
Eo . | B (INDIRECT R4)
FDOO -
AD0001425 FDoz
Figure 4-6. Indirect Register Addressing Example
ASSEMBLY LANGUAGE
MOV R1,*R4+ MOVE THE CONTENTS OF RI TO ADDRESS CONTAINED IN R4,
INCREMENT ADDRESS BY 2
MACHINE LANGUAGE
pe 4 2 E w8 F B8 e W o B W 1B
ll gl a T ay e YT Cal e @] et @l o | scod
OP CODE B To DR Tg SR
BEFORE AFTER
M.A.
FCOO RO
FCO2 RI 0000 0000
FCO04 R2
FCO6 R3
FCO8 R4 FFOOD FFO2
FFOO AAAA 0000
AD001427

Figure 4-7. Indirect Register Autoincrement Addressing Example

4-10

4.5.3 INDIRECT REGISTER AUTOINCREMENT ADDRESSING (T=112)

Indirect register autoincrement addressing is the same as indirect register addressing
(paragraph U4.5.2) except for an additional feature - automatic incrementation of the
register. This saves the requirement of adding an increment (by one or two)
instruction to increment the register being used in the indirect mode. The increment
will be a value of one for byte instructions (e.g., add byte or AB) or a value of two
for full word instructions (e.g., add word or A)

In assembly language, the register number is preceded by an asterisk (*) and followed
by a plus sign (+) as shown in Figure 4-7. Note in the figure that the contents of
register 4 was incremented by two since the instruction was a move word (vs. byte)
instruction. If the example used a move byte instruction, the contents of the register
would be incremented by one so that successive bytes would be addressed (the 16-bit
word addresses in memory are always even numbers or multiples of two since each
contains two bytes). Bytes are also addressed by various instructions of the 990
instruction set.

Note that only a register can contain the indirect address.

4.5.4 SYMBOLIC MEMORY ADDRESSING, NOT INDEXED (T=102)

This mode does not use a register as an address or as a container of an address.
Instead, the address is a 16-bit value stored in the second or third word of the
instruction. The SR or DR fields will be all zeroes as shown for the destination
register field in the first example of Figure 4-8. When the T field contains 105. the
CPU retrieves the contents of the next memory location and uses these contents as the
effective address. In assembly language, a symbolic address is preceded by an at sign
(@) to differentiate a numerical memory address from a register number. All
alphanumeric labels must be preceded by an @ sign; numerical values preceded by an @
sign will be assembled as an absolute address (the TM 990/402 Line-By-Line Assembler
does not recognize alphanumeric symbols but does recognize absolute memory addresses).

In the second example in Figure 4-8, both the source and destination operands are
symbolic memory addresses. In this case, the source address is the first word
following the instruction and the destination is the second word following the
instruction in machine language.

4.5.5 SYMBOLIC MEMORY ADDRESSING, INDEXED (T=102)

Note that the T field for indexed as well as non-indexed symbolic addressing is the
same (10,). In order to differentiate between the two different modes, the associated
SR or DR field is interrogated; if this field is all zeroes (00002), non-indexed
addressing is specified; if the SR or DR field is greater than zero, indexing is
specified and the non-zero value is the index register number. As a result, register 0
cannot be used as an index register.

In assembly language, the symbolic address is followed by the number of the index
register in parentheses. In the example in Figure 4-9, the source operand is
non-indexed symbolic memory addressing while the destination operand is indexed
symbolic memory addressing. In this case, the destination effective address is the sum
of the FF‘021 value in the source memory address word plus the value in the index
register (000 16)+ The effective address in this case is FF06,¢ as shown by the
addition in the left part of the figure.

Note that only symbolic addressing can be indexed.

4-11

EXAMPLE 1

ASSEMBLY LANGUAGE:

MOV R1,@>FF00 MOVE THE CONTENTS OF RI TO ADDRESS >FF00

MACHINE LANGUAGE:

NOTE
The > sign indicates hexidecimal representation,

OP CODE B To DR s SR
0 1 2 = 3 4 5 6 7 B8 9 10 n 12 13 14 18
15t WORD Y, oIol1 olo T IS (AR u|o g 0 I
2nd WORD TR T L T R N T R T e T T (R
M.A.
RO
R1 o]
R2
X PLACE R1 BINARY
IMAGE IN
FEEE MA >FF00
FFOOD -

EXAMPLE 2

ASSEMBLY LANGUAGE:
MOV @>FFOA @>FF08

MACHINE LANGUAGE:

MOVE THE CONTENTS OF >FFOA TO >FF08

OP CODE 8 To Ts SR
0 1 2 a 4 5 6 T 8 9 10 11 12 13 14 15
1st WORD 1 | 0|0]1 OIOOUOI'l OIUOUO
2nd WORD 1 1 1 1 1 1 1 1 (1] 0 0 0 1 0 1 (1]
3rd WORD 1 1 1 1 1 1 1 1 0 0 (¢} 0 1 4]] 0
BEFORE AFTER
M.A
FFO8 FFFF 0000
FFOA 0000 0000
AQ001428
Figure 4-8. Direct Memory Addressing Example

~ ca0

- FF0OO0

>C820
>FFOA (SOURCE)

>FFO08 (DESTINATION)

ASSEMBLY LANGUAGE:
MOV @>FF00,@>FF02(R1) MOVE THE CONTENTSOF >FFODTO >FF02+RI CONTENTS

MACHINE LANGUAGE:

OP CODE B Tp DR Tg SR
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 1 0 0 1 0 0 0 0 1 1 1] 0 0 0 0 -C860
1 1 1 1 1 1 1 1 0 0 0 0 07 0 0 0 ‘FFOO (SOURCE)

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 =FF02 (DESTINATION)

BEFORE AFTER

M.A.
RO
R1 0004 0004
R2
>FF02 (D) \ \\ \
-~ 0004 (R1)
Ny = FFOO FFEE FFEE
>FFO6
~ FFO2 ocoo0 0000
FFO4 0000 0000
FFO6 0000 FFEE
AD001429

Figure 4-9. Direct Memory Addressing, Indexed Example

4.5.6 IMMEDIATE ADDRESSING
This mode allows an absolute value to be specified as an operand; this value is used

in connection with a register contents or is loaded into the WP or the Status Register
interrupt mask. Examples are shown below:

L R2,100 LOAD 100 INTO REGISTER 2
cl R8, .~ 100 COMPARE RBCONTENTS TO > 100, RESULTS IN ST
LWPI > 3C00 SET WP TO MA > 3C00

4.5.7 PROGRAM COUNTER RELATIVE ADDRESSING
This mode allows a change in Program Counter contents, either an unconditicnal change

or a change conditional on Status Register contents. Examples are shown below:

JMP 56 JUMP TO LOCATION, 6 BYTES FORWARD

JMP THERE JUMP TQ LOCATION LABELLED THERE

JEQ $+4 IF STEQBIT 1,JUMP4BYTES (MA 1 4)

Jmp > 3E26 JUMP TOM A, > 3E26 (LINE-BY-LINE ASSEMBLER ONLY)

The dollar symbol ($) means "from this address"; thus, $+6 means "this address plus 6
bytes."

4.6 INSTRUCTIONS

Table U4-2 lists terms used in describing the instructions of the TM 990/101M. Table
4-3 is an alphabetical list of instructions. Table 4-4 is a numerical list of
instructions by op code. Examples are shown in both assembly language (A.L.) and
machine language (M.L.). The greater-than sign (>) indicates hexadecimal.

Table 4-2. Instruction Description Terms

TERM DEFINITION
B Byte indicator {1 = byte, 0 = word)
C Bit count
DR Destination address register
DA Destination address
0P Immediate operand
LSB(n) Least significant (right most) bit of (n)
M.A. Memory Address
MSB(n) Most significant (left most) bit of (n)
N Don't care
PC Program counter
Result Result of operation performed by instruction
SR Source address register
SA Source address
ST Status register
STn Bit n of status register
To Destination address modifier
Tg Source address modifier
WR or R Workspace register
WRn or Rn Workspace register n
(n) Contents of n
8 b ais transferred to b
{al »b Contents of a is transferred to be
[n] Absolute value of n
+ Arithmetic addition

Arithmetic subtraction

AND Logical AND
OR Logical OR
@ Logical exclusive OR
n Logical complement of n
> Hexadecimal value

G-1y

GlL-f

| —— —— - — —

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED

MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
A ADOO 1 04 X Add (word) 461
AB BOOO 1 0-5 X Add (byte) 46.1
ABS 0740 6 0-2 X Absolute Value 46.6
Al 0220 8 04 X Add Immediate 468
ANDI 0240 8 02 X AND Immediate 468
B 0440 6 Branch 466
BL 0680 6 Branch and Link (R11) 466
BLWP 0400 6 Branch; New Workspace Pointer 4 6.6
C 8000 1 02 Compare (word) 461
cs 9000 1 025 Compare (byte) 46.1
Cl 0280 8 02 Compare |mmediate 46.8
CKOF 03C0 r User Defined 46.7
CKON 03A0 7 User Defined 46.7
CLR 04co 6 Clear Operand 4.6.6
Eac 2000 3 2 Compare Ones Corresponding 46.3
cZC 2400 3 2 Compare Zeroes Corresponding 465
DEC 0600 6 0-4 X Decrement (by one) 466
DECT 0640 6 0-4 X Decrement (by twol 466
DIV 3C00 9 4 Divide 4.6.3
IDLE 0340 7 - Computer ldie 46.7
INC 0580 6 0-4 X Increment (by onel 466
INCT 05C0 6 0-4 X Increment (by two) 4.6.6
INV 0540 6 02 X Invert (One's Complement) 46.6
JEQ 1300 2 - Jump Equal (8§T2-1) 46.2
JGT 1500 2 - Jump Greater Than (ST1=1}, Arithmetic 46.2
JH 1800 2 Jump High (STO=1 and ST2=0), Logical 46.2
JHE 1400 2 Jump High or Equal (STO or ST2=1), Logical 46.2
JL 1A00 2 Jump Low (ST0 and ST2=0), Laogical 46.2
JLE 1200 2 - Jump Low or Equal (STO=0 or ST2=1), Logical 46.2
JIF 1100 2 Jump Less Than {ST1 and ST2=0), Arithmetic 46.2
IMP 1000 2 Jump Unconditional 462
JNC 1700 2 —~ Jump No Carry (ST3=0) 46.2
JNE 1600 2 ~ Jump Not Equal (§T2=0) 462
JNO 1900 2 Jump No Overflow (ST4-0) 462
Joc 1800 2 Jump On Carry (ST3=1) 46.2

"E-t ®TqEL

Xopu] TeOoT38qeydly ‘99S UOT3ONJ3}Suf

9l=k

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED

MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
JOP 1C00 2 - Jump Odd Parity (ST5=1) 46.2
LDCR 3000 - 0-25 X Load CRU 46.4
Ll 0200 8 - X Load Immediate 468
LIMI 0300 B 12415 Load Interrupt Mask Immediate 46.8
LREX 03ED 7 1215 Load and Execute 4.6.7
LWPI 02ED 8 - Load Immediate to Workspace Pointer 46.8
MOV C0oo0 1 0-2 X Move (word) 4.6.1
MovB D000 1 0-25 X Move (byte) 46.1
MPY 3800 9 = Multiply 463
NEG 0500 6 0-2 X Negate (Two's Complement) 46.6
ORI 0260 8 0-2 X OR Immediate 468
RSET 0360 i 1215 Reset AU 467
RTWP 0380 7 015 Return from Context Switch 46,7
s 6000 1 0-4 X Subtract (word) 46.1
sSB 7000 1 0-5 X Subtract (byte) 4.6.1
SBO 1D00 2 - Set CRU Bit to One 46.2
SBZ 1E00 2 - Set CRU Bit to Zero 46.2
SETO 0700 6 — Set Ones 466
SLA 0A00 3] 0-4 X Shift Left Arithmetic 465
sOC EQOO0 1 0-2 X Set Ones Corresponding (word) 4.6.1
SOCB FOOO 1 0-2,5 X Set Ones Corresponding (byte) 46.1
SRA 0800 5 0-3 X Shift Right (sign extended) 4.6.5
SRC 0BOO 5 0-3 X Shift Right Circular 465
SRL 0900 5 0-3 X Shift Right Logical 465
STCR 3400 4 0-25 X Store From CRU 4.6.4
STST 02Ccao 8 - Store Status Register 46.8
STWP 02A0 8 - Store Workspace Pointer 468
SWPB 08C0 6 - Swap Bytes 466
SZC 4000 1 0-2 X Set Zeroes Corresponding (word) 46.1
SZCB 5000 1 0-2,5 X Set Zeroes Corresponding (byte) 46.1
T8 1F00 2 2 Test CRU Bit 46.2
X 0480 6 - Execute 46.6
XOP 2C00 9 6 Extended Operation 46.9
XOR 2800 3 o2 X Exclusive OR 46.3

*E€-1 ®IqQEL

(pepnTouo)) xapul TeoT3eqeydiy ‘39S uoIjonJa}sul

Table Uu-4,

Instruction Set, Numerical Index

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED
0200 u Load Immediate 8 0-2
0220 Al Add Immediate 8 04
0240 ANDI And Immediate 8 0-2
0260 ORI Or Immediate 8 02
0280 Cl Compare Immediate 8 02
02A0 STwP Store WP 8 —
02C0 STST Store ST 8 -
02E0 LWPI Load WP Immediate 8 -
0300 LiMI Load Int. Mask 8 1215
0340 IDLE Idle 7 -
0360 RSET Reset AU 7 12-15
0380 RTWP Return from Context Sw. i 0-15
03A0 CKON User Defined 7 -
03C0 CKOF User Defined 7 =
03EO LREX Load & Execute 7 -
0400 BLWP Branch; New WP 6 -
0440 B Branch 6 =
0480 X Execute 6 -
04C0 CLR Clear to Zeroes 6 -
0500 NEG Negate to Ones 6 0-2
0540 INV Invert 6 02
0580 INC Increment by 1 6 0-4
05C0 INCT Increment by 2 6 04
0600 DEC Decrement by 1 6 04
0640 DECT Decrement by 2 6 04
0680 BL Branch and Link 6 -
06C0 SWPB Swap Bytes 6 -
0700 SETO Set to Ones 6 =
0740 ABS Absolute Value 6 0-2
0800 SRA Shift Right Arithmetic 5 03
0900 SRL Shift Right Logical 5 03
0A00 SLA Shift Left Arithmetic 5 04
0BOO SRC Shift Right Circular | 0-3
1000 JMP Unconditional Jump 2 —
1100 JLT Jump on Less Than 2 -
1200 JLE Jump on Less Than or Equal 2 —
1300 JEQ Jump on Equal 2 -
1400 JHE Jump on High or Equal 2 —
1500 JGT Jump on Greater Than 2 -
1600 JNE Jump on Not Equal 2 -
1700 JNC Jump on No Carry 2 -
1800 Joc Jump on Carry 2 -
1900 JNO Jump on No Overflow 2 —
1A00 Ju Jump on Low 2 -
1800 JH Jump on High 2 -
1C00 JOP Jump on Odd Parity 2 -
1D00 SBO Set CRU Bits to Ones 2 -
1E00 SBZ Set CRU Bits to Zeroes 2 -
1F00 TB Test CRU Bit 2 2
2000 cocC Compare Ones Corresponding 3 2

4-17

Table 4-4,

Instruction Set, Numerical Index (Concluded)

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL MNEMONIC INSTRUCTION FORMAT AFFECTED
2400 CzC Compare Zeroes Corresponding 3 2
2800 XOR E xclusive Or 3 02
2C00 XOP Extended Operation 9 6
3000 LDCR Load CRU 4 025
3400 STCR Store CRU 4 025
38C0 MPY Multiply £
3C00 DIV Divide 9 4
4000 SZC Set Zeroes Corresponding (Word) 1 02
5000 SZCB Set Zeroes Corresponding (Byte) 1 025
6000 S Subtract Word 1 04
7000 SB Subtract Byte 1 05
8000 c Compare Word 1 02
9000 c8 Compare Byte 1 025
A000 A Add Word 1 04
B000 AB Add Byte 1 05
Co00 MOV Move Word 1 0-2
D000 MOVB Move Byte 1 025
E00O socC Set Ones Corresponding (Word) 1 02
FO0O0 socB Set Ones Corresponding (Byte) 1 025

4.6.1

FORMAT 1 INSTRUCTIONS

These are dual operand instructions with multiple addressing modes for source and

destination operands.

GENERAL FORMAT:

0 1

12

13

14 15

OP CODE

DR Tg

SR

N E) e - e [

the operands are bytes and the operand addresses are byte addresses. If B =

0, the operands are words and the operand addresses are word addresses.

4-18

e q i [‘ RESULT | STATUS
MNEMONIC 0 1 2 3 ‘ MEANING - COMPARED BITS NESCRIPTION
| . "5H)) | TOO AFFECTED
A BEEERENE i Yes T 04 (SA)+(DA} - (DA)
AB 1 8 F 1 Acdd biytes | Yes | 0-5 (SAI+(DA) = (DA]
Cc 1 0 0 0 Compare | No 0-2 Compare (SA) 10 (DA) .l set
appropriate status bits 1
cB T - 1 1 w‘ Compare bytes No 0-2,5 Compare (SA) 1o (DA) ind ser |
1 appropriate status bhirs '
MOV 1 10! 0| Mave Yes 0-2 (SA) - (DA)
MOVEB I i Move bytes Yes 025 (EA) — (DA
s 2 0 | Subtract Yes 04 (DA} - (SA) ~ (DA)
S8 [o0 | 1 | Subtract bytes Yes 05 {DA) — (SA) =~ (DA)
SOC I 0 | Set ones corresponding Yes 0-2 (DA) OR (SA) — (DA)
£0OCB 119+ 1 | Set ones carresponding by les Yes 025 (DA) OR (SA) = (DA)
SZC L I 0 Set zeroes carresponding Yes 0-2 (DA) AND (5A) ~(DA)
szc8B (2 [N (R 1 Set zeroes corresponding bytes | Yes 0-25 | (DA) AND (SA) —~ (DA

EXAMPLES

(1) ASSEMBLY LANGUAGE:
A @>100,R2 ADD CONTENTS OF MA >100 & R2, SUM IN R2

MACHINE LANGUAGE:

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 -ADAD

(2) ASSEMBLY LANGUAGE:
CB R1,R2 COMPARE BYTE R1 TO R2, SET ST

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1 o] 1 o 0 0 0 1 a 0 o 0 0 o 1 >9081

NOTE

In byte instruction designating a register, the left byte is used. In the above
example, the left byte (8 MSB's) of R1 is compared to the left byre of R2,
and the ST set to the results.

4-19

4.6.2 FORMAT 2 INSTRUCTIONS

4.6.2.1

Jump Instructions

Jump instructions cause the PC to be loaded with the value (PC+2 (signed
displacement)) if bits of the Status Register are at specified values. Otherwise, no
operation occurs and the next instruction is executed since the PC was incremented by
two and now points to the next instruction. The signed displacement field is a word
(not byte) count to be added to PC. Thus, the jump instruction has a range of -128 to
127 words (=256 to 254 bytes) from the memory address following the jump instruction.
No ST bits are affected by a jump instruction.

GENERAL FORMAT:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
OP CODE SIGNED DISPLACEMENT (WORDS)
OP CODE]
MNEMONIC 5 MEANING ST CONDITION TO CHANGE PC

01234506 7 o e it |
JEQ O-g o g 811 Jump equal S12=1
JGT 00 7T 0 10 1 Jump greater than ST1 -1
JH (o o A« B U R o R A Jump high STO=1and ST2 -0
JHE 0 8 910 T 80 Jump high ar equal STO=1o0rST2 =1
JL Q Q0 " & 49 Jump low STO=0and STZ 0
JLE 000611 0010 Jump low or equal STO=00r ST2 - 1
JLT 08 9 1 9.9 0] Jump less than ST1 - Oand ST2 O
JMP 00610 000 Jump unconditional | unconditional '
JNG gaa 10 1143 Jump no carry [ST3=0 [
JNE 00010110 Jump nat equal 5T2=0
JNO {2 S v S 7 e s P < S 3 Jump no overflow ST4 =0
Joc 6000 3110900 Jump on carry ST3=1
Jop 0Doo0o11100 Jump odd parity | 5T5=1

In assembly language, $ in the operand indicates "at this instruction". Essentially
JMP $ causes an unconditional loop to the same instruction location, and JMP $+2 is
essentially a no-op ($+2 means "here plus two bytes"). Note that the number following
the $ is a byte count while displacement in machine language is in words.

4-20

EXAMPLES:

EXAMPLES

(1) ASSEMBLY LANGUAGE:
JEQ S+ IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE:

0 1 2 3 4 5 6 ¢ 8 9 10 1 12 13 14 15
r 0 0 0 1 o 0 1 1? 0 0 0 0 0 0 0 1] 1301

JEQ $+4 = IF STATUS REGISTER BIT 2 =1

PC POINTS TO —™__ = =) SKIP NEXT INSTRUCTION

L = —

The above instruction continues execution Y4 bytes (2 words) from the instruction
location or, in other words, two bytes (one word) from the Program Counter wvalue
(incremented by 2 and now pointing to next instruction while JEQ executes). Thus, the
signed displacement of 1 word (2 bytes) is the value to be added to the PC.

[2) ASSEMBLY LANGUAGE:
JMP § REMAIN AT THIS LOCATION

MACHINE LANGUAGE:

0 1 2 3 E 5 6 7 8 9 10 1 12 13 14

1a
(0 0 0 1 0 0 0 0 l 1 1 1 1) 1 1 1:] -10FF

PC —1 WORD —» JMP $ CONTINUQUS LOOP
PC POINTS TO —> TO JMP $ (>FF =-1WORD)

This causes an unconditional loop back to one word less than the Program Counter value
(PC + FF = PC-1 word). The Status Register is not checked. A JMP $+2 means "go to the
next instruction" and has a displacement of zero (a no-op). No-ops can substitute for
deleted code or can be used for timing purposes.

4.6.2.2 CRU Single-Bit Instructions

These instructions test or set values at the Communications Register Unit (CRU). The
CRU bit is selected by the CRU address in bits 3 to 14 of register 12 plus the signed
displacement value. The selected bit is set to a one or zero, or it is tested and the
bit value placed in equal bit (2) of the Status Register. The signed displacement has
a value of =128 to 127. NOTE

CRU addressing is discussed in detail in paragraph 5.5. CRU multibit
instructions are defined in paragraph 4.6.4.

4-21

0 1 2 3 4 b 6 7 8 9 10 1 12 13 14 15
General Format: OP CODE SIGNED DISPLACEMENT
v e STATUS | |
OP CODE
MNEMONIC = T MEANING | BITS DESCRIPTION
01234567
_ £ . B s el AFFECTED J
SBO ooo01tY"Y1101 Set bit to ane Se1 the selected CRU output bit 10 1 ‘
sSBZ2 ‘ ogot11110 Set it to zero Set the selected CRU output tnt to O
_TB J 0 9 U 111 T | Testbut - . 2 It the selected CRU input bnt 1, set ST2
EXAMPLE
R12,BITS3TO 14 = >100
ASSEMBLY LANGUAGE:
SBO 4 SET CRU ADDRESS >104 TO ONE
MACHINE LANGUAGE:
0 1 2 3 4 5 7 8 9 10 1 12 13 14 15
0 0 0 1 | 1 1 [1] 0 0 0 0 1 0 0 _] >1D04

4.6.3 FORMAT 3/9 INSTRUCTIONS

These are dual operand instructions with multiple addressing modes for the source
operand, and workspace register addressing for the destination. The MPY and DIV
instructions are termed format 9 but both use the same format as format 3. The XOP
instruction is covered in paragraph 4.6.9.

5 6 7 8 9 10 1 12 13 14 15
General Format: OP CODE DR (REGISTER ONLY) Ts SR
RESULT | STATUS
OP CODE COMPARED BITS
MNEMONIC 012345 MEANING TOO AFFECTED DESCRIPTION
COoC 001000 |Compare ones No 2 Test (DR) to determine if 1's are in each
corresponding] bit position where 1's are in (SA). If so,
set ST2.
czc 001001 |Compare zeros No 2 Test (DR) to determine if 0's are in each
corresponding bit position where 1's are in (SA)_ If so,
set ST2.
XOR 001010 |Exclusive OR Yes 02 (DR) @ (SA)—> (DRI}
MPY 001110 | Multuply No Multiply wunsigned (DR) by unsigned
{SA) and place unsigned 32-bit product
in DR (mast significant) and DR + 1
(least significant). If WR15 s DR, the
next word in memory after WR15 will
be used for the least significant half of
the product
DIV 001111 |Dwide No 4 If unsigned (SA) 1s less than or equal 1o
unsigned (DR), perform no operation
and set ST4. Otherwise divide unsigned
(DR) and (DR) by unsigned (SA)
Quotient = (DR}, remainder —~ (DR 1),
If DR 15, the nex! word n memory
after WR15 will be used for the
remainder
Exclusive OR Logic 100 1
o®o o
™ o

422

EXAMPLES
(1) ASSEMBLY LANGUAGE:
MPY R2,R3 MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4

MACHINE LANGUAGE

0 1 2 3 4 5 6 7 8 8 10 11 12 13 14 149
I_ﬂ 0 1 1 1 0 : 0 0 1 1 ’ 0 0 0 0 1 i) I Wil
i
BEFORE AFTER
R2 [0002 0002
R3 ‘ 0003 ‘_D D_O_VCI? 32BIT
R4 1’ N 00(:6 RESULT

The destination operand is always a register, and the values multiplied are 16-bits,
unsigned. The 32-bit result is placed in the destination register and destination
register +1, zero filled on the left.

(2) ASSEMBLY LANGUAGE: :
DIV @>FED0,R5 DIVIDE CONTENTS OF R5 AND R6 BY VALUE AT M.A. > FEOO

MACHINE LANGUAGE:

0 0 1 1 1 1 [t} 1 0 1 1 0 0 0 0 0 ~3D60

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ~FEOO
BEFORE AFTER
M.A. > FEOD 0005 0005

/

RS 0000 0003

R6 0011 0002 |-=——— REMAINDER

4-23

The unsigned 32-bit value in the destination register and destination register +1 is
divided by the source operand value. The result is placed in the destination register.
The remaindewr is placed in the destination register +1.

(3) ASSEMBLY LANGUAGE:
coC RIORN ONES IN R10 ALSO IN R11?

MACHINE LANGUAGE:

0 0 1 0 L] 0 1 0 1 1 0 0 1 0 1] >22CA

Locate all binary ones in the source operand. If the destination operand also has ones
in these positions, set the equal flag in the Status Register; otherwise, reset this
flag. The following sets the equal flag:

R10 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0] >AAOC

A1 OS8R 8T AL R Y, ST 8 S S (e) SR
Set EQ bit in Status Register to 1.

4.6.4 FORMAT 4 (CRU MULTIBIT) INSTRUCTIONS

General Format: OP CODE Cc Ts I SR

The C field specifies the number of bits to be transferred. If C = 0, 16 bits will be
transferred. The CRU base register (WR 12, bits 3 through 14) defines the starting CRU
bit address. The bits are transferred serially and the CRU address is incremented with
each bit transfer, although the contents of WR 12 are not affected. Ts and SR provide
multiple mode addressing capability for the source operand. If 8 or fewer bits are
transferred (C = 1 through 8), the source address is a byte address. If 9 or more bits
are transferred (C = 0, 9 through 15), the source address is a word (even number)
address. If the source is addressed in the workspace register indirect autoincrement
mode, the workspace register is incremented by 1 if C = 1 through 8, and is
incremented by 2 otherwise.

NOTE

CRU addressing is discussed in detail in paragraph 5.5. CRU single bit
instructions are defined in paragraph 4.6.2.2.

4-24

OP CODE RESULT STATUS
MNEMONIC 012345 MEANING COMPARED BITS DESCRIPTION
TO0 AFFECTED
LDCR 001100 |Loadcommuncation Yes 025t Beginning with LSB of (SA), transfer the
register specified number of bits from (SA) to
the CRU.
STCR 001 101 |Store communcation Yes 0-251 Beginning with LSB of (SA], transfer the
register specitied number of bits from the CRU to
(SA). Load unfilled bit pesitions with 0.
1STE is affected only if 1 © C = 8.
EXAMPLE

ASSEMBLY LANGUAGE:

LDCR @>FE00S8 LOAD 8 BITS ON CRU FROM M.A. >FEO00

MACHINE LANGUAGE:

>3220

>FEOO

NOTE
CRU addressing is discussed in detail in paragraph 5.5.

4.6.5 FORMAT 5 (SHIFT) INSTRUCTIONS

These instructions shift (left, right, or circular) the bit patterns in a workspace
register. The last bit value shifted out is placed in the carry bit (3) of the Status
Register. If the SLA instruction causes a one to be shifted into the sign bit, the ST
overflow bit (4) is set. The C field contains the number of bits to shift.

General Format: OP CODE C R

If C = 0, bits 12 through 15 of RO contain the shift count. If C = 0 and bits 12
through 15 of WRO = 0, the shift count is 16.

4-25

RESULT STATUS
MNEMONIC oy s MEANING COMPARED BITS DESCRIPTION
¢ Rt TOO AFFECTED

SLA 0 010 ' 0 Shift left arithmetic Yes 0-4 Shift (R) left. Fill vacated bit
positions with 0.

SRA 0 D8 100 Shift right arithmetic Yes 0-3 Shift (R) right. Fill vacated bit
positions with original MSB of (R).

SRC 0 pg 1T o Shift right circular Yes 0-3 Shift (R) right. Shift previous LSB

' into MSB.

SRL 0 0010 0 Shift right logical Yes 0-3 Shift (R) right. Fill vacated bit

positions with 0's.
EXAMPLES
(1) ASSEMBLY LANGUAGE:

SRA R1,2

MACHINE LANGUAGE:

SHIFT R1 RIGHT 2 POSITIONS, CARRY SIGN

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 0 0 0 1 0 0 0- 0 (1] 1 0 0 0 0 1 >0841
0 1 - s 3 a] 6 I 8 9 10 1 12 13 14 15
T T T
R1 BEFORE 1 0 0] 1 1 1 1 0 0 0 0 1 1 1 1 >8FOF
< =~ ~ e,
\\\ \\\ I \\\ ' s
T
R1 AFTER 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 >E3C3
\'—'—“ SIGN BIT CARRIED IN
(2) ASSEMBLY LANGUAGE:
SRC RS54 CIRCULAR SHIFT R5 4 POSITIONS
MACHINE LANGUAGE:
1] 1 2 3 4 5 6) 8 9 10 n 12 13 14 15
0 0 /] 0 1 0 0 0 0 1 0 0 0 1 0 1 >0845
0 1 2 3 4 5 6 7 8 8 10 1 12 13 14 15
T . I T
R5 BEFORE 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 >090F

R5 AFTER

4-26

(3) ASSEMBLY LANGUAGE:

SLA R1,0 SHIFT COUNT IN RO
SHIFT COUNT
0 1 2 3 4 5 6 7 8 9 10 mn 1 13 14 1
| Q23| eps s |s (N Tl ||
RO 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 ‘€CCC3
R1 (BEFORE) 1 1 1 1 : 1 1 1 1 ‘ 1 1 1 1 1 1 1 1
e e
T T T
R1 (AFTER)) 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
R
VACATED BITS ZERO FILLED
4.6.6 FORMAT 6 INSTRUCTIONS
These are single operand instructions.
1} 1 2 3 L 5 6 7 B 9 10 1 12 13 14 15
General Format: OP CODE Ts SR
The Tg and S fields provide multiple mode addressing capability for the source operand.
i RESULT STATUS
OP CODE
MNEMONIC =g MEANING COMPARED BITS DESCRIPTION
0123456789
1] TS| BT & TO 0 AFFECTED
B 0000010001 Branch No SA -(PC)
BL 0000011010 | Branch and hink No]PC]“'(FH”:SA"""C'
BLWP 0000010000 |Branch and load No {SA) —~(WP); (SA+2) —*(PC);
wor kspace pomter lold WP) = Inew WR13)
(ol PC) = (new WR14),
told §T) = (new WR15),
the interrupt nput (INTREQ) 15 nint
tested upon completion of the
[BLWP instiuction
‘ CLA 000001001 1 |Clew upermnd No 0000 ~ (SA)
SETE 0000011V 100 |Setiuaones N FFFF1g " (SA)
INV 0000101V 01 Itvwaer) Yes 02 fﬁl -(SA) {ONE’'S complement)
NEG 0000010100 | Newie Yoy 04 | —(SA) - [SANTWO'S complement)
ABS 0000011 101 |Absolutevalue® No 04 [(sA)] —(SA) :
SWPB o 00 R0 [¢ L T I) N Swaip biytes N ISA}, hits O thiu 7 = {SA), hits
. i 8 thiu 15 (SA), inis B rhiu 15
| | (SA), bits O thiu 7
INC 00OCOYTODY1O0 Inciesment Y es 0a Sa)+ 1 *{SA)
INCT 00000101 1 1 | Inctement by twu Yes 04 [SA) '+ 2 = [SAY
DEC 0000011000 | Decrement Yes 04 ISA) — 1 =ISA)
DECT 000001 0 0 1 | Decrement by thwo Yus 04 1SA) - 2 -15A)
x1! 0000010010 |Execute No Execute the instuction ol SA
1_'_ —anle 1 l

*Operand is compared to zevo for satting the status bit (i.e., before execution).

t1f additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these
words will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (1AQ) will not be true
when the TMS 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

NOTE
Jumps, branches, and XOP's are compared in Table 4-5.

y-27

EXAMPLES

(1) ASSEMBLY LANGUAGE:
B *R2 BRANCH TO M.A. IN R2
MACHINE LANGUAGE:
o 1 yz % W B & F B w9 W A 2 1F # ME
gl e Jeh s A T e Tty e) e e e o e S 0552
R2 F D D O
M.A. >FDDO | NEXT INSTR. |
(2) ASSEMBLY LANGUAGE:
BL @>FF00 BRANCH TO M.A. >FF00, SAVE OLD PC VALUE (AFTER EXECUTION) INR11
MACHINE LANGUAGE:
Q-4 -2 % & BF & _ F & 9 1 I a2 A3 . 9% 186
0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 (] S04A0
1111'1111'onnuoooo>n=oo
R11 F C 0 4 |<—— OLDPCVALUE
M.A. ~FCO0 BL @ >FF00 PC (AFTER)
~FC02 F F 0 O
JFCO4
SFFOO0 NEXT INSTR.
TO RETURN
EXECUTE
B *R11
= B *R11
(3) ASSEMBLY LANGUAGE:
BLWP @>FD0OO0 BRANCH, GET NEW WORKSPACE AREA
MACHINE LANGUAGE:
0. W 2 @ A e el 7 TE eI e 9 T e g
0000010000[10&070—0:0420
| o~ e - a et X, N,
1 1 1 1 1 1 0 1 I»u 0 0 0 o 9 0 0 >FDOD

4-28

This context switch provides a new workspace register file and stores return values in
the new workspace. See Figure 4-10 . The operand (> FDOO above) is the M.A. of a
two-word transfer vector, the first word the new WP value, the second word the new PC

value.

BLWP @>FD00 BRANCH WITH NEW WORKSPACE
'\
M.A.>FC00 N RO
I ’ % CALLING PROGRAM
>FC80 | BLWP @ >FD00] BEFORE BLWP OCCURS
} FCO0OO wp
TRANSFER (>FDOO F F 00 (NEW WP) Fcaea| pc
VECTORS FF 20 (NEWPC) = N ST
; AFTER BLWP
4 OCCURS
>FF00 RO FFOO | WP
FF20 PC
N ST
RETURN FCOO = (OLD WP) R13
VALUES FC84 = (OLD PC) R14
OLD ST CONTENTS R15 F—NEWEXECUHONAHEA
“FF20 NEXT INSTR.
RTWP
-t
" _ATWP RETURNS EXECUTION TO CALLING
A0001430 PROGRAM STARTING AT M.A. >FC84

Figure 4-10. BLWP Example

Essentially, the RTWP instruction is z reburn to the next instruction that follows the
BLWP instruction (i.e., RTWP is a return from a BLWP context switch, similar to the B
¥R11 return from a BL instruction). BLWP provides the necessary values in registers

13, 14, and 15 (see Figure 4-10.

4-29

Table 4-5. Comparison of Jumps, Branches, XOP's

MNEMONIC PARAGRAPH DEFINITION SUMMARY

JMP 462 One-word instruction, destination restricted to +127, —128 words from Program
Counter value.

B 46.6 Two-word instruction, branch to any memaory location.
BL 46.6 Same as B with PC return address in R11.
BLWP 46.7 Same as B with new workspace; old WP, PC and ST contents (return vectors) are in

new R13, R14, R15.

XOP 46.9 Same as BLWP with address of parameter (source operand) in new R11. Sixteen XOP
vectors outside program in M A. 40,4 ta 7E 4; can be called by any program.

4.6.7 FORMAT 7 (RTWP, CONTROL) INSTRUCTIONS

0 1 2 3 4 5 6 7 8 L M0 1 12 13 14 15

General Format: OP CODE N

External instructions cause the three most-significant address lines (A0 thrcugh A2)
to be set to the levels described in the table below and cause the CRUCLK line to be
pulsed, allowing external control functions to be interpreted during CRUCLK at AQ, A1,
and A2. The RSET instruction resets the I/0 lines on the TMS 9901 to input lines; the
TMS 9902 is not affected. RSET also clears the interrupt mask in the Status Register.
The LREX instruction causes a delayed load interrupt, delayed by two IAQ cycles after
LREX execution. The 1nad operation gives control to the monitor. Note, that although
included here because of its format, the RTWP instruction is not classified as an
external instruction because it does not affect the address lines or CRUCLK.

CKOF and CKON can be used by monitoring pins 9 and 10 respectively of U25. See sheet 2
of the schematics in Appendix F.

STATUS ADDRESS

MNEMONIC OP CODE MEANING BITS DESCRIPTION BUS*
012345678910 AFFECTED A0 A1 A2

IDLE 00000071070 Idle = Suspend TMS 9900 (N B

instruction execution until
an interrupt, LOAD, or

RESET occurs
RSET 00000011011 Reset 1/0 & SR 12-15 0—=ST12 thru ST15 L H H
CKOF 00000011110 User defined S H HL
CKON 00000011101 User defined —rrm H L H
LREX 00000011711 Load interrupt Control to TIBUG HHH
RTWP 00000011100 Return from 0-15 (R13) — (WP}
Subroutine (R14) —(PC)
(R15) —=(ST)

*These outputs from the TMS 9900 go to a SN74LS5138 as shown in Figure 5-6

4-30

ASSEMBLY LANGUAGE:

RTWP

MACHINE LANGUAGE:

RETURN FROM CONTEXT SWITCH

0 1 2 3 4 5 6 £ 8 9 10 11 12 13 14 15
I T T
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 >0380
RTWP RETURN TO PREVIOUS WP (R13), PC (R14), ST (R15) VALUES
R13 FCO0O
R14 FCB8a AFTER
R15 STATUS FCO0O wpP
\ \ FC8a PC
STATUS ST
M.A. >FF40 RTWP

EXECUTION BEGINS AT M.A.

WITH RO AT M.A,

>FCO00.

>FC84

4.6.8 FORMAT 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE) INSTRUCTIONS

4.6.8.1

Immediate Register Instructions

0 1 2 3 4 5 6 7 8 9 10 1M 12 13 14 15
General format. ———— 0P CODE ’ N] R -]
- 10P =
RESULT STATUS
MNEMONIC e — MEANING COMPARED BITS DESCRIPTION
0712345678910
TOO0 AFFECTED
Al 0000001000 1 Add immediate Yes 0-4 (R) + 1OP ~(R]
ANDI 000000 1TO001 O AND immediate Yes 0-2 (R) AND 10OP —=(R)
] ooDO0O0OO0QOCG1TO1TO D Compare Yes 02 ‘ Compare (R) to |OP and set
immediate , | appropriate status bits |
Li 0000001000 O Load immediate Yes 0-2 10P -+ (R)
ORI 00000 10071 % OR immediate Yes 02 (R) OR 10P = (R) J
AND Logic: 01,10-0 OR Logic: 0+1,1+0=1
00=0 141=1
111=1 0+0=0

4-31

4.6.8.2 Internal Register Load Immediate Instructions

0 1 2 3 5 6 7 8 9 10 1 12 13 14 15
General format: ey) OPCODE — [= N
10P
MONIC ol N MEANING DESCRIPTION
TonE 0123456782910 = B
LWPI g o009t ¥m a Load wourkspace pointer immedite 1OP = (WP, no ST biuts atlected
LiMI 00D O0O0OO0CYT OO O Load intertupt mask IOP, by1s 12 thru 15 =§T12
thru ST15

4.6.8.3 Internal Register Store Instructions

0 1 2

4 5] 7 B 9 10 1 12 13 14 15
General format: OP CODE [N l R j
NO ST BITS ARE AFFECTED.
OP CODE [
MNEMONIC MEANING DESCRIPTION
0123456789 10 > |

STST o o TR o T ARG o O G TN v R T T Store status register l (ST) = (R)
STWP o Rl A 1 MK o Wl ‘L 1 o YRR AT O | Sture workspace poimter ‘ wej ~(R)
EXAMPLES
(1) ASSEMBLY LANGUAGE:

Al R2,>FF ADD >FFTO CONTENTS OF R2

MACHINE LANGUAGE:
0 1 2 3 4 8 6 7 8 9 10 1 12 13 14 15
0 0 0 0 0 0 1 L] 0 0 1 (1] I 0] 1 0 0222
T KT o 1 _—
] 1] 0 0] 0 0 (1] 1 1 1 1 1 1 1 1 “00FF
BEFORE AFTER
R2 000F 010E

(2) ASSEMBLY LANGUAGE:

Cl R2,-10E COMPARE R2 TO -10E

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 4 8 9 10 11 12 13 14 15
0 0 0 0 0 0 1 1] 1 1] 4] 0 0 0 | 0 282
By i W
0 (1] 0] 0 0 (1] 1 g 0 i} 0 0 1 1 1 0 O10E

R2 contains “after” results (~> I0E) of instruction in Example (1) above; thus the ST equal bit becomes set.

4-32

(3) ASSEMBLY LANGUAGE.
LWPI ~FCO00 WP SET AT -FCOO (M.A. OF RO)

MACHINE LANGUAGE.

1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 Q 0 1 0 1 1 1 0 0 0 0 0 02E0
— = T I U

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 -FC00

(4) ASSEMBLY LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 2A2

This places the M.A. of RO in a workspace register,

4.6.9 FORMAT 9 (XOP) INSTRUCTIONS
Other format 9 instructions (MPY, DIV) are explained in paragraph 4.6.3 (format 3).

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

General Format: | 0 0 1 0 1 1 D {XOP NUMBER) Ts SR

The TS and SR fields provide multiple mode addressing capability for the source
operand. When the XOP is executed, ST6 is set and the following transfers occur:

(40,4 +4D) - (WP) First vector at 40, ,,
(42,, +4D) — (PC) Each vector uses 4 bytes (2 words)
SA — (new R11)

(old WP} — (new WR13)
(old PC) — (new WR14)
(old ST) - (new WR15)

The TMS 9900 does not test interrupt request (INTREQ) upon completion of the XOP
instruction.

4-33

An XOP is a means of calling one of 16 subtasks available for use by any executing
task. The EPROM memory area between M.A. 4016 and 7Eqg 1s reserved for the transfer
vectors of XOP's 0 to 15 (see Figure 4-1). Each XOP vector consists of two words, the
first a WP value, the second a PC value, defining the workspace pointer and entry
point for a new subtask. These values are placed in their respective hardware
registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the BLWP
instruction) in the new workspace, registers 13, 14, and 15. Return to the calling
routine is through the RTWP instruction. Also stored, in the new R11, is the M.A. of
the source operand. This allows passing a parameter to the new subtask, such as the
memory address of a string of values to be processed by the XOP-called routine. Figure
4-11 depicts calling an XOP to process a table of data; the data begins at M.A.
FF0016. This XOP example uses XOP vectors that point directly to the XOP service
routine WP and PC. The TM 990/101M comes with interrupt and XOP vectors pointing to
linking areas that point to the service routine. The use of these linking areas is
explained in subsection 5.9.

XOP's 0, 1 and 8 to 15 are used by the TIBUG monitor, calling software routines
(supervisor calls) as requested by tasks. This user-accessible software performs tasks
such as write to terminal, convert binary to hex ASCII, etc. These monitor XOP's are
discussed in Section 3.3. XOP vectors 2 through 7 are programmed with memory vector
values, but reserved for the user. See Section 5.9 for an explanation of the
Interrupt/X0P linking area.

4-34

TNy ey - v W W

— —

ASSEMBLY LANGUAGE:

XOP

@>FF00,4

MACHINE LANGUAGE:

g & @ AW %5 & 7. % 8 W A .B 4 Weis
0 0 1 0 1 1 0 1 0 0 1 o 0 0 0 0 >2D20
TR L s e e AT o e T N
M.A
(> 0040 XOP 0 WP AFTER
>0042 XOP 0 PC FCooO we
%oP \ : FC2o0 PC
VECTORS >0050 FCO0OO N ST
>0052 FC20
-
| >o07e

CALLING INSTR.

XOP4

PROGRAM

TABLE OF
VALUES TO
BE PROCESSED

AQ001431

\

XOP @>FF00,4

3

(> FCo0

FFOO

OLD wp

OLD PC

OLD SR

L >FC20

1ST INSTR.

\

RTWP

% >FF00

Figure 4-11.

\

\

R11—=—— PASSED PARAMETER (SOURCE OPERAND)
R12

A3 RETURN VECTORS
R14 TO CALLING TASK
R15

NOTE
THIS EXAMPLE DOES NOT USE THE XOP
LINKING AREAS EXPLAINED IN SUBSECTION
5.9. THIS XOP EXAMPLE PRESUMES THE XOP
VECTORS HAVE BEEN PROGRAMMED INTO
MEMORY (M.A, 00‘50."i AND 0052151 BY THE
USER.

XOP Example

4-35

SECTION 5

PROGRAMMING

5.1 GENERAL

This section is designed to familiarize the user with programming the TM 990/101M.
Explanations about the programming environment, using TIBUG XOP's, supporting special
features of the hardware, and certain programming practices are included. Programs are
provided as examples for the user to analyze and follow, and possibly combine into
the user's system. This section is divided into, roughly, two areas: the first part
gives background information on the programming environment and shows suggested coding
practices for a variety of situations, and the second part gives specific program
examples using special features of the hardware.

For clarity, source listing examples in this section use assembler directives
recognized by larger assemblers but not recognized by the TM 990/402 Line-By-Line
Assembler (LBLA). These directives are not explained in the section on the 990
instruction set (Section 4), but are explained in detail in the Model 990 Computer,
TMS 9900 Microprocessor Assembly Language Programmer's Guide. A synopsis of their
definitions is included here. These directives are explained in Table 5-1.

Table 5-1. Assembler Directives Used In Examples

Label Opcode Operand Meaning

AORG XXXX Assemble code that follows so that it is loaded
beginning at M.A. XXXX. This is similar to the
absolute load (slash) request of the LBLA.

| DATA Yy Place the value YYYY in this location (if pre-
ceded by the greater-than sign () the quantity
is a hexadecimal representation).

DATA LABEL If LABEL represents a memory address, the memory
address value is placed at this location aligned
on an even address (word boundary).

END Signifies end of program for assembler.
AAAA EQU BBBB Wherever the symbol AAAA is found, substitute the
value BBBB.
IDT 'NAME' Program will be identified by NAME.
TEXT 'ABCD123" The ASCII value of the specified character string

is assembled in successive bytes.

SOURCE STATEMENT NO.
RELATIVE ADDRESS

OBJECT CODE (ASSEMBLED SOURCE)
LABEL FIELD
OP CODE
/—OPERAND
AL CLR

COMMENT FIELD

i M5 CLEAR FOR DECIMAL TO HEX ROUTT

iy
'

i L 51 7« CEFARM FROMFT MESZAGES
= L1 SR FIVE FROMFTZ
1 L1 =, CLEWF+4 REGISTER & ALDREZS
L L e Y W B 56 o | WRIT 7 FROMFT LIZER FOR TIME VALLE
PO O S FIEXT O GET INFUT
A TinTe MEXT ERROR ML, ERROR RTN ADR

RIL L DECIMAL CHARSZ T BEINARY

ASSEMBLED OBJECT SHOWS RELATIVE
ADDRESS OF "NEXT" AT 004A 15

Figure 5-1. Source Listing

Figure 5-1 is part of a source listing used in this section, as assembled by TI's
TXMIRA assembler. Unless specified otherwise by directive, the TXMIRA assembler will
begin assembling code relative to memory address 000016 (second column). When
resolving an address for an instruction, as shown at the bottom of the figure, the
instruction address operator is the same as the relative address in column two of the
listing. Thus, for the label NEXT, the address 004A16 is assembled which is the
relative address within the listing. This is useful when deternfining such addresses as
the destination of a labelled BLWP instruction. Note that the Line-By-Line Assembler
does not use labelled addressing, but assembles the absolute address given.

5-2

5.2 PROGRAMMING CONSIDERATIONS

. 5.2.17 PROGRAM ORGANIZATION
Programs should be organized into two major areas:

& Procedure area of executable code and data constants (never modified)
® Data area of program data and work areas whose contents will be modified.

The executable code and constant data section can be debugged as a separate entity,
and then programmed into EPROM. The work area can be placed at any other address in
RAM, and that address does not have to be contiguous with the program code area, and
can even be dynamically allocated by a Get Memory supervisor call of some kind. Even
if the program parts are loaded and executed together, the organization and debug ease
are enhanced.

In this programming section, all example programs are coded, with one exception, in
this manner. The only work area is the register set, which is arbitrarily fixed to a
RAM address. The one exception, the Two-Terminal routine, is coded to reside entirely
in RAM because the workspace is a part of the contiguous extent of code. This method
of coding is used in RAM-intensive systems because the operating system need not
manage workspaces as might be necessary in a system with very little RAM.

5.2.2 EXECUTING TM 990/100M PROGRAMS ON THE TM 990/101M

Programs developed on the TM 990/100M board use a different interrupt and XOP trap
configuration than the TM 990/101M. This must be taken into consideration when
executing programs on the TM 990/101M that were developed for running on TM
990/100M. On the TM 990/100M, interrupt vectors are programmed into PROM for INT3 and
INTY (vectors FF6816 and FF8816 for INT3 and FFAC4g and FFAC,g for INT4). This allows
immediate use of these interrupt traps such as with the TMS 9901 and TMS 9902 interval
timers. XOP vectors on the TM 990/100M are programmed for XOP's 0, 1 and 8 to 15 for
use by TIBUG. User XOP's (XOP 2-7) are not programmed.

On the TM 990/101M board, however, all interrupt and XOP vectors are programmed, and
the linking scheme in RAM 1is different. Consult the interrupt linking section
(paragraph 5.9) for the scheme used. The TM 990/100M scheme is described in the User's
Guide for that microcomputer.

5.2.3 REQUIRED USE OF RAM IN PROGRAMS

All memory locations that will be written to must be in RAM-type memory (this is
important to consider when the program is to be programmed into ROM). Areas to be
located in RAM include all registers as well as the destination operands of format 1
instructions and the source operands of most format 6 instructions.

For example, in the following source lines:

MOV . 8>0700,8>FC00 MOVE DATA

CLR @ >FC00 CLEAR MEMORY ADDRESS

ABS 8 >FC00 SET TO ABSOLUTE VALUE

INCT @ >FCo0 INCREMENT BY TWO

S R1,€> FC00 (GFC00) - R1, ANSWER IN >FCO0O

the address FCOO16 will be written to; thus, it has to be in RAM.

5=3

5.3 PROGRAMMING ENVIRONMENT

The programming environment of a computer is loosely defined as the set of conditions
imposed on a programmer by either or both the hardware and systems software, but it is
also the facilities available to the programmer because of the design of the hardware
and software. The environment in which a program resides usually determines how that
program is coded. This section gives explanations of the major areas of the TM
990/101M design from a programmer's point of view. Note all program examples given are
for a full assembler (e.g., PXRASM, TXMIRA, or SDSMAC vs. the Line-By-Line Assembler)
so that labels can be used for reader comprehension.

5.3.1 HARDWARE REGISTERS

The TMS 9900 family of processors are designed around a memory-to-memory architecture
philosophy; consequently, the only hardware registers inside the processor affecting
the programmer are the Workspace Pointer (WP) register, the Program Counter (PC)
register and the Status (ST) register. There are no accumulators or general purpose
registers which reside physically inside the microprocessor. All manipulations of data
are accomplished by using these three registers as described below.

5.3.1.1 Workspace Pointer (WP) Register

The Workspace Pointer is a register which holds the address of a sixteen word area in
memory; this memory area serves as a general purpose register set. A memory area is
designated as a workspace or general purpose register set by loading the address of
the first word (register 0) of the 16-word space into the WP register. Thus the
programmer's register set is in memory, and can be referred to with register
addressing, or if the WP value is known, with memory addressing. The registers are
simply a data area in a program with the special privileges usually given to processor
registers. This approach has several advantages for the programmer.

1, Register save areas need no longer be kept in programs, since the actual
program registers are already in memory, and are maintained by the hardware
during program linking by the use of a special class of instructions.

2. Program debugging is greatly heightened since the registers of a question-
able program remain intact in memory during debugging. The debug monitor has
its own set of registers, in memory, and there is no question of which of
many program modules has tampered with the processor registers, since each
program in question can have its own registers.

3 Recursive, re-entrant, and ROM resident code is much easier to write since
program calls are handled by special instructions, and new workspace areas,
linked together by the hardware, are available for use at each program call.

4, Linked-1list structuring of workspaces is automatically done by the hardware,
reducing system software overhead.

5. Very fast interrupt handling is possible since only three processor regis-
ters (WP, PC, ST) are stored by the hardware during the interrupt (instead
of a whole register set) usually by a software instruction or routine,

5.3.1.2 Program Counter (PC) Register

The Program Counter (PC) register holds the address of the next instruction to be
executed by the processor. As such, it is no different than the PC in any other
processor and is incremented while fetching instructions unless modified by a program
branch or jump, or during an interrupt sequence.

5-4

5.3.1.3 Status (ST) Register

The Status Register holds the processor status and is the only one of the three
processor registers which has nothing to do with memory, directly. It is divided into
two parts: the status bits, which are set to reflect the attributes of data being
handled by the processor, and the interrupt mask, which governs the priority structure
of interrupt processing. The ST is organized as shown in Figure 4-2.

5.3.2 ADDRESS SPACE

The TMS 9900 microprocessor addresses 65,536 (6U4K) bytes (8-bits each). Although the
data bus is 16 bits wide, and the instruction set is mainly word (16-bits) oriented,
the basic unit of address is a byte. The actual memory architecture is 32,768 (32K)
words of two bytes each, and byte processing is accomplished within the processor
after fetching a word from memory. Because the instruction set is mainly
arithmetically oriented, and usually operates on 16-bit words, it is probably best to
view the address space as a collection of words, each containing, usually for I/0
purposes, two bytes.

NOTE
This subsection covers the interrupt and XOP environments
in general; programming of interrupts and XOPs is covered
in detail in subsection 5.9.

5.3.3 VECTORS (INTERRUPT AND XOP)

Interrupt and XOP vectors are located beginning with address 0000414 and extend through
007F1¢. The first half, addresses 00004 through 003Fyg, contain the interrupt
vectors. There are 16 prioritized interrupts. Level 0 is the highest priority, with a
vector pair at 000045 and 0002q¢. Level 15 is the lowest priority, with its vector
pair at 003Cqg and 003Eq5. Level 0 interrupt is synonomous with the RESET function. A
vector pair consists of a workspace pointer and a program counter, both values
identifying the interrupt program environment.

Before an interrupt can occur, the processor must recognize it as having an equal or
higher priority than the interrupt mask in the Status Register. After a valid
interrupt has occurred the interrupt vector values are retrieved from memory, and the
hardware equivalent of a BLWP instruction takes place.

There is one additional vector pair, at FFFCqg and FFFEqg, for the LOAD function. When
signaled, this interrupt always occurs and cannot be disabled by the Status Register
interrupt mask. Note also that RESET being level zero, cannot be disabled, since its
Status Register priority value of zero is always equal to or higher than any value in
the interrupt mask field.

The XOP vectors work in a similar manner. Vector location begins at 00404 and extend
through 007F1g. These vectors are triggered by execution of the XOP instruction, with
a number from 0 to 15. There is no prioritizing; these are software-triggered
interrupts, and XOP service routines may freely execute other XOP's. One additional
event happens during the vector action: the source operand of the XOP instruction is
evaluated as an address and placed in the new Workspace Register 11. This provides a
parameter to the XOP routine.

The TIBUG monitor uses several XOP's for I/0 service from the terminal; some of these
are available for the user as explained in subsection 3.3. In addition, the programmer
may wish to program interrupt and XOP vectors for special functions.

5.3.4 WORKSPACE REGISTERS

The actual workspace registers, in memory, provide general working areas for a
program. Some registers can also be used for special purposes; these are listed in
Table 5-2.

Table 5-2. Register Reserved Application

Register Application

0: Bits 12-15 (least significant half-byte) provide the shift count for
shift instructions coded to refer to this register. This register can-
not be used for indexed addressing.

LLE Holds return address following execution of a BL instruction. Dur-
ing XOP service routine, it holds resolved memory address of argument
in XOP instruction.

12: CRU Base Address.

132 During BLWP, RTWP, interrupts, and XOP's: holds old WP contents.
14: During BLWP, RTWP, interrupts, and XOP's: holds old PC contents.
15: During BLWP, RTWP, interrupts, and XOP's: holds old ST contents.

In general, then, registers 1 to 10 are available for unrestricted use, although the
programmer can use the reserved registers for other purposes, if proper consideration
is given.

One advantage of the workspace concept is that one program can request an almost
unlimited number of register sets, or, alternatively, every little module in a program
system can have at least one set of its own registers. Programs are usually written to
take advantage of the benefits associated with program operands in registers.

5.4 LINKING INSTRUCTIONS
These are of vital interest to a programmer for they answer the all important question
of how to get in and out of a program. These instructions are:

® B (paragraph 5.4.1) Branch

° BL (paragraph 5.4.2) Branch with return link in R11

° BLWP (paragraph 5.4.3) Branch, new workspace, return link in R13 to R15
® RTWP (paragraph 5.4.4) Return, use vectors in R13 and R14

° XOP (paragraph 5.4.5) Branch, new workspace, vectors in low memory

5.4.1 BRANCH INSTRUCTION (B)

Though not normally considered a program linking instruction, the branch instruction
can be used to link to programs in a known location, such as TIBUG. Since the
Workspace Pointer is not affected by the instruction, program systems using this
convention usually delegate the responsibility for establishing workspaces to each
program. Thus we may have branches to various programs as shown in Figure 5-2. Note
that each program sets up its own WP (LWPI instruction). The AORG and EQU directives
are explained in paragraph 5.1.

#PGMA PROGRAM #PGMB PROGRAM ¥PGMC PROGRAM

AORG >0800 AORG >0A00 AORG >1000
PGMB EQU >0A00 PGMA EQU >0800 PGMA EQU >0800
PGMC EQU >1000 PGMC EQU >1000 PGMB EQU >0A00
PGMA LWPI >FF90 PGMB LWPI >FFT0 PGMC LWPI SFF50
B @PGMB -/ B @PGMC = B @PGMA
B @0080

Figure 5-2. Example of Separate Programs Joined By Branches to Absolute Addresses

5.4.2 BRANCH AND LINK (BL)

The BL instruction is designed mainly for the calling of subprograms with a convenient
means of returning back to the calling program. Since the processor puts the address
of the next instruction in register 11 (it effectively transfers the PC to R11) before
branching, the return path is established. To return (using the same workspace) simply
execute a B #R11 (or RT instruction).

Note, though, that only one level of subroutine call is possible if only one workspace

area is used, unless register 11 is saved by the first subroutine wishing to branch
and link to a second subroutine.

CALLING PROGRAM FIRST LINK SECOND LINK
BL @FE00 FEQO LI R6,47 FDOO CI RS5,22
—~— o

MoV R11,RTE//// B %#R11 ::)
: -

BL @>FDOO0

.

B %#R10

The BL subroutine can include XOP instructions to provide special services needed to
accomplish the subroutine function, as in the following example:

CALLING PROGRAM SUBROUTINE
RDNUM Xop R1,13 READ A CHARACTER
BL @RDNUM CI R1,>3000 IS IT BELOW A ZERO?
a JL RDNUM YES, GO BACK
CI R1, >3900 IS IT ABOVE A NINE?
JH RDNUM YES, GO BACK
XOP R1;12 ECHO THE CHARACTER
B #11 RETURN

5=T7

The very simple routine shown above reads a character from the terminal and checks for
a decimal digit 0-9. If the character is acceptable, it is echoed back to the
terminal, and then control is returned to the calling program. If the character is
unacceptable, the routine drops it and requests another; the bad character is not
echoed to show the user that another character must be typed.

5.4.3 BRANCH AND LOAD WORKSPACE POINTER (BLWP)

This is the most sophisticated linking instruction in that it causes a complete
program environment change (context switch), and automatically links the old workspace
to the new, also preserving the old processor status. As such, it behaves in the same
way as the interrupt sequence or XOP sequence, and it is therefore possible to vector
to an interrupt or XOP service routine without actually causing an interrupt or
executing an XOP. For example, executing a BLWP @0 will vector to the RESET interrupt
handler, which if TIBUG is resident, causes the user to set the baud rate and start
TIBUG again.

Since the TMS 9900 is a linked-list rather than a stack machine, those used to a stack
for systems programming may need some readjustment, but the superior flexibility of
linked=-lists is simplified by the fact that the programmer can move nodes around,
whereas in a stack, the nodes are fixed in Last-In First-Out (LIFO) order. The
transition is made painlessly since the hardware completes program linking with the
execution of one instruction, and very little effort is required on the part of the
programmer.

There are two immediate possibilities to discuss in using the BLWP instruction. For
simple subroutine linking, the following is an example:

CALLING PROGRAM SUBROUTINE
ENTRY .
BLWP @SUBA PCSUBA . ENTRY POINT
RTWP
SUBA DATA WPSUBA WPSUBA =
DATA PCSUBA .

Note the double word vector pointed to by the BLWP operand, the values WPSUBA and
PCSUBA. These two DATA statements provide the memory addresses of these vectors. The
latter (PCSUBA) is the entry point, and is well defined. However, the WP value is
shown here without a definition. This raises a fundamental question: if there are many
programs operating together, such as TIBUG, possibly a user-written monitor, and a
collection of application programs and subroutines, who is responsible for managing
the workspaces? If each individual program is responsible, then the following
definition would be added to the above subroutine:

WPSUBA EQU >FFT70
Note this defines WPSUBA as M.A. FF70,4 and ties down one area of memory to the
subroutine; thus, no other program in the system can call this subroutine without

chancing some conflict by using the same workspace. Thus, it is reserved for one
subroutine.

5-8

A second approach is to code a value which is designated as a common workspace for
whoever is in control at the time. In the EQU statement above, the value could be, by
agreement, the common workspace. This implies that there are now two entities - the
reserved workspace, which must be carefully mapped out ahead of time so there is no
overlap, and the common workspace, of which there may be one or more, and whose status
is such that any program can use it, but if control leaves that program, then that
workspace is no longer considered needed, and thus can be used by another program.

Note the previous discussion assumes that the program code is in EPROM. If the code is
to be executed from RAM, then writing the program is simple; put the workspace at the
end of the program as a data area.

In either case, the user is responsible for partitioning his memory such that
workspaces do not overlap or interfere with TIBUG or the X0OP's defined by TIBUG, along
with any user defined workspaces.

5.4.4 RETURN WITH WORKSPACE POINTER (RTWP)

The RTWP instruction can be used to both return from a program, and to link to a
program. Since the instruction reloads the processor WP, PC, ST registers from
workspace registers 13, 14, and 15, then the contents of these registers governs where
control will go. If those registers were initialized by a BLWP instruction, then the
action can be seen as a return, but if special values are placed in these registers,
the action can be viewed as a subroutine call. Actually, program calls are not
limited to a nesting structure, as in stack architectures, but are generalized so that
chains and even rings may be formed. The TIBUG monitor uses the RTWP instruction in
this manner. Using the "R" command, the user fills TIBUG's registers 13, 14, and 15.
Using the "E" command causes TIBUG to execute a RTWP instruction using the values in
these registers.

Since the RTWP does not affect the new workspace at all, there is no way for the
called program to return to the caller unless the caller had initialized the new
workspace registers before executing the RTWP. This type of program transfer is thus
in a "forward" direction only, and is usually suitable only for a monitor program in a
fixed location such as TIBUG.

5.4.5 EXTENDED OPERATION (XOP)

The XOP instruction works almost like a BLWP instruction, except that the address
containing the double-word vector area is between 00401 and 007Fq1g, and is selected
by an argument of from 0 to 15, and that the new workspace register 11 is initialized
with the fully resolved address of the first operand of the XOP instruction. This
means that if the operand is a register, the actual memory address is computed and
placed in the new register 11.

The XOP instruction is meant as a "supervisor call" or special function operation. As
such, a programmer might wish to implement routines which perform some standard
process such as a character string search or setting the system timer, on the next
page.

CALLING PROGRAM XOP TRAPS AND SUBROUTINE

#AT M.A. O0O48: FF903 TIMER ROUTINE WP XOP 2
#AT M.A. OO4A: 10AE3 TIMER ROUTINE PC VECTORS
LI RO,11719 ®AT M.A. 10AE: IDT 'TIMER'
XO0P RO,2 ENTRY MOV ®*11,11 GET VALUE
LI 12, > 0100 ADDRESS 9901
SLA 10 PR SHIFT CLOCK COUNT
ORI 11,1 SET CLOCK MODE
LDCR 11,15 START CLOCK
SBZ 0 SET INTERRUPT MODE
SBO 3 ENABLE INT3 MASK
RTWP

The main program requests 11719 clock counts, which is a desired time of 0.25 second.
This number is found by taking the system clock frequency, dividing it by 64 to find
the timer frequency, then reciprocating that to give the timer interval, then dividing
the desired time delay by the timer interval to find the clock counter value. It is
assumed here that XOP 2 is available for this function. The timer routine translates
the request and starts the system timer. One quarter second later, an interrupt
through INT3 will be generated.

TIBUG supplies definitions for XOPs 0, 1, and 8 through 15, leaving 2 through 7
available for the user. XOP's 2 through 7 are programmed according to a scheme
described in subsection 5.9.

5.4.6 LINKED-LISTS

A linked list is a data organization where a collection of related data, called a
node, contains information which links it to other nodes. The prime example here is a
workspace register set, it contains sixteen words of data. If there are many
workspaces present at one time connected by BLWP instructions, then every register 13
contains the address of the previous workspace, forming a linked list. At the same
time, the BLWP also places the previous program counter value in register 14,
providing a means of returning back to the previous program environment.

For example, the E or execute TIBUG command uses the RTWP instruction to begin program
execution at the WP, PC, and ST values in current registers 13, 14, and 15. The R or
register inspect/change TIBUG command can be used to set up these registers prior to
the execute command. In the example in Figure 5-3, program PGMA is executed using the
TIBUG E command; it later gives control to program PGMB using the BLWP command. In
doing so, the processor forges links back to PGMA by placing return WP, PC, and ST
values in registers 13, 14, and 15 of PGMB. Likewise, PGMB branches to PGMC with
return links to PGMB forged into R13 to R15 of PGMC. Each can return to the previous
program by executing an RTWP instruction, and the processor can travel up the linked
list until PGMA is reached again.

5.5 COMMUNICATIONS REGISTER UNIT (CRU)

Input and output is mainly done on the TM 990/101M using the Communications Register
Unit or CRU. This is a separate hardware structure with its own data and control
lines. Thus the TMS 9900 microprocessor has one address bus, but two sets of control
and data busses. One set, the memory set, has a 16-bit parallel bidirectional data bus
and three control lines, MEMEN, DBIN, and WE.

The other set the CRU I/0 set, uses two lines, one line for input (CRUIN), and one for
output (CRUOUT). There is one control line, CRUCLK, used to strobe a bit being output
on CRUQUT. A bit being input on CRUIN has no strobe and is simply sampled by the
microprocessor at its discretion.

CRU devices are run on one phase of the system clocks, and therefore, the rate of data
transfer on the CRUIN line is a function of the system clock. Since the CPU also uses
this system clock, it will sample the CRUIN line at a rate that is a function of the
system clock when doing a CRU read operation (executing a CRU read instruction - STCR
or TB).

PGMA

BLWP CALL PGMB

CALL
PGMC

RTWP

RETURN
LINKS TO
PGMA

RTWP

RETURN
LINKS TO
PGMB

R13-15

Figure 5-3. Linked List Example

Thus, the CRU data group consists of three lines - CRUIN, CRUOUT, and CRUCLK. The
address bus supplies CRU addresses as well as memory addresses; which operation being
performed is determined by the presence of the proper control signals. Memory
operations use address bits 0 through 14 externally, bit 15 is used inside the
microprocessor for byte operations. CRU operations, however, use only bits 3 through
14; bits 0, 1, and 2 are set to zero, and bit 15 of an address is totally ignored.

When CRU instructions are executed, data is written or read through the CRUOUT or
CRUIN pins, respectively, of the TMS 9900 to or from designated devices addressed
via the address bus of the microprocessor.

The CRU software base address is maintained in register 12 (bits 0 to 15) of the
workspace register area. Only bits 3 to 14 of the register are interpreted by the CPU
for the CRU address, and this 12-bit value is called the CRU hardware base address.
When the displacement is added to the hardware base address, the result is the CRU bit
address further explained in paragraph 5.5.1.

The CRU address is maintained in register 12 of the workspace register area. Only bits
3 through 14 of the register are interpreted by the CPU for the desired CRU address,
and this 12-bit value is called the CRU bit address.

T™ 990/101M devices driven off of the CRU interface include the TMS 9901 parallel
interface and the TMS 9902 serial interface, which are accessed through the CRU
addresses noted in Table 5-3. This table also lists the functions of the other CRU
addresses which can be used for on-board or off-board I/0 use. Addressing the TMS 9901
and TMS 9902 for use as interval timers is explained, along with programming examples,
in subsections 5.9.3 and 5.9.4. Further detailed information on these two devices can
be obtained from their respective data manuals.

Table 5-3. TM 990/101M Predefined CRU Addresses

CRU Hardware CRU Software
Function Base Address Base Address
(R12, bits 3-14) (R12, bits 3-14)

Status L.E.D 0000 0000
Unit I.D. Switch 0020 0040
TMS 9902, Main I/0 (Lower Half) 0040 0080
TMS 9902, Main I/0 (Upper Half) 0050 00A0
TMS 9901 Interrupt Mask, System Timer 0080 0100
TMS 9901 Parallel I/0 0090 0120
RESET Interrupt 6 0046 014c
TMS 9902, Auxiliary I/0 (Lower Half) 00Co 0180
TMS 9902, Auxiliary I1I/0 (Upper Half) 00D0 0140
RS-232 Handshaking Signals 00EQ 01CO
Offboard CRU 0100 0200

NOTES

1. Besides theexamples used herein, Appendix J contains examples

of the various CRU instructions programmed to drive the on-board
TMS 9901 or monitor signals to the TMS 9901.

2. The CRU software base address is equal to 2X the hardware base
address, or the hardware base address is 1/2 the software base
address.

5=-12

5.5«1 CRU ADDRESSING

The CRU software base address is contained in the 16 bits of register 12.
From the CRU software base address, the processor is able to determine the CRU
hardware base address and the resulting CRU bit address. These concepts are
illustrated in Figure 5-4.

5.5.1.1 CRU Address

The CRU bit address is the address that will be placed on the address bus at
the beginning of a CRU instruction. This is the address bus value that,
when decoded by hardware attached to the address bus, will enable the device
so that it can be driven by the CRU I1/0 and clock 1lines. The CRU bit
address is the sum of the displacement value of the CRU instruction
(displacement applies to single-bit instructions TB, SBO, and SBZ only) and
the CRU hardware base address in bits 3 to 14 of R12. Note that the sign
bit of the eight-bit displacement is extended to the left and added as part of
the address. The resulting CRU hardware bit address is then placed on address
lines A3 to AlY4; address lines A0 to A3 will always be zeroes in CRU
instruction execution.

5.5.1.2 CRU Hardware Base Address

The CRU hardware base address is the value in bits 3 to 14 of R12. For
instructions that do not specify a displacement (LDCR and STCR do not), the
CRU hardware base address is the same as the first CRU bit address (see
above). An important aspect of the CRU hardware base address is that it does
not use the least significant bit of register 12 (bit 15); this bit is ignored
in deriving the CRU bit address.

5.5.1.3 CRU Software Base Address

The CRU software base address is the entire 16-bit contents of R12. 1In
essence, this is the CRU hardware base address divided by two. Bits 0, 1,
2, and 15 of the CRU software base address are ignored in deriving the CRU
hardware base address and the CRU bit address.

CRU SOFTWARE BASE ADDRESS (CONTENTS OF R12)

ADDRESS

A3 A4 A5 A6 A7 AB A9 A10 AN Al12 A3 Al4 =0 LINES

R12 | 0 0 0

0o o 0T8T i T 0 0 0 0 0o o
— T m—
ZEROES \—,\/—‘—/mugns

CRU HARDWARE BASE ADDRESS
SIGM] 0] 0 0 1 0 0 1 0 0 0 + DISPLACEMENT"
EXTENDED 0

0
\\‘N
— T ——
ALL ZEROES FOR
CRU OPERATIONS CRU BIT ADDRESS

*The displacement added to the CRU hardware base address is a signed eight-bit value,
with sign extended, used only when executing one of the single-bit CRU instructions
(T8, SBO, and SBZ).

FIGURE 5-4. CRU BASE AND BIT ADDRESSES

5-13

Because bit 15 of R12 is not used, some confusion can result in programming.
Instead of loading the CRU address in bits 0 to 15 of register 12 (e.g., LI
R12,>80 to address the TMS 9901 at CRU address 804¢), the programmer must
shift the base address value one bit to the left so that it is in bits 3 to 14
instead of in bits 4 to 15. Several programming methods can be used to ensure
this correct placement, and all of the following examples place the TMS
9901 bit address of 804¢ correctly in R12.

LI R12,>100 PLACES >80 IN BITS 3 TO 14
or
LI R12,>80%2 MULTIPLY BASE ADDRESS BY 2 (NOT RECOGNIZED BY LINE-BY-
LINE ASSEMBLER)

or
LI R12,>80 BASE ADDRESS IN BITS 4 TO 15
SLA R12,1 SHIFT BASE ADDRESS ONE BIT TO THE LEFT

From a programming standpoint, it may be best to view addressing of the CRU
through the entire 16 bits of R12. 1In this context, blocks of a maximum of 16
CRU bits can be addressed, and in order to address an adjacent 16-bit block, a
value of 00201, must be added or subtracted from R12. For example, with R12
containing 000044, CRU bits 0 to Fqg can be addressed. By adding 002044 to
R12, CRU bits 104¢f to 1Fqg can be addresses, etec.

5.5.2 CRU Timing

CRU timing is shown in Figure 5-5. Timing phases (g1 to gl) are shown at the
top of the figure. The CRU address is valid on the address bus beginning at
the start of of p2, and stays valid for eight timing phases (two clock
cycles). At the start of the next g2 phase, CRUCLK at the TMS 9900 goes high
for two phases to provide timing for CRUOUT sampling. Note that for LDCR and
STCR instructions, the address bus is incremented for each data bit to be
output or input. For input operations, the address is placed on the address
bus at the beginning of phase g2, and the input is sampled between phases gl
and ¢#1.

5.5.3 CRU Instructions
The five instructions that program the CRU interface are:

e LDCR Place the CRU hardware base address on address lines A3 to Al4.
Load from memory a pattern of 1 to 16 bits and serially
transmit this pattern through the CRUOUT pin of of the TMS
9900. Increment the address on A3 to A14 after each CRUOUT
transmission.

e STCR Place the CRU hardware base address on lines A3 to A14., Store
into memory a pattern of 1 to 16 bits obtained serially at the
CRUIN pin of the TMS 9900. Increment the address on A3 to Al4
after each CRUIN sampling.

e SBO Place the CRU hardware base address plus the instruction's
signed displacement on address lines A3 to A14. Send a logical
one through the CRUOUT pin of the TMS 9900.

e SBZ Place the CRU hardware base address plus the instruction's
signed displacement on address lines A3 to A14. Send a logical
zero through the CRUOUT pin of the TMS 9900.

e TB Place the CRU hardware base address plus the instruction's
signed displacement on address lines A3 to A14. Sample the

5-14

CRUIN pin of the TMS 9900 and place the bit read into ST2, the
Equal Bit of the Status register.

NOTE

Examples of single- and multi-bit CRU instruction execution using
the TMS 9901 are presented graphically in Appendix J.

5.5.3.1 CRU Multibit Instruction

The two multibit instructions, LDCR and STCR, address the CRU devices by
placing bits 3 through 14 (hardware base address) of R12 on address lines A3
through A14. A0, A1, and A2 are set to zero for all CRU operations. The first
operand is the source field address and the second operand is the number of
bits in the operation.

If the length is coded as from 1 through 8 bits, only the left byte of the
source or receiving field takes part in the operation, and bits are shifted in
or out from the least significant bit of that left byte. Thus a LDCR R2, 1
outputs bit 7 of R2 to the CRU at the address derived from register 12. An
STCR R5,2 would receive two bits of data serially and insert them into bit 7
and then bit 6 of register 5. The CRU address lines are automatically
incremented to address each new CRU bit, until the required number of bits are
transferred. In an STCR instruction, unused bits of the byte or word are
zeroed. In this last example, bits 0-5 are zerced, the right byte is
unaffected.

o 1 1 1) [S . B .
R ST, - T TR o T U o I R A
o3 o5 N 8 : M g L M1 7] Ot T
o T D B O i v T) B
' |
| | | | | | ‘
I | |
r ' | | !
P sl | , |
AQA1S UNKNOWN X CRUBIT ADDRESSn X CRU ADDRESS n + 1 b0 K ™ cruaocpressm | A
| TR N |)]
T o 5 = S |
5F | ' | I |
- l l
3k : : I I |
= CRUOUT UNKNOWN X CRU DATA OUT n X CRUDATAOUTn+1 ‘y :: ’ UNKNOWN [X
[! | ! s
| [| | |
z | | | r |
== '
£3 caun COOOOCOO00C0OCCR R T EARE X000, XN B e XK XXXD)
& | | | | INPUT VALID

B INPUT BITm

vV vV
CRU QUTPUT CRU INPUT

FIGURE 5-5. TMS 9900 CRU INTERFACE TIMING

5-15

An LDCR loads the CRU device serially from memory over CRUOUT timed by CRUCLK. An STCR
stores data into memory obtained serially through CRUIN from the addressed CRU device.
Figures 5-6 and 5-7 show this operation graphically. The TMS 9901 is used in the
example as the CRU device because it most simply shows the bit transfers involved.

LI R12>200 LOAD CRU BASE ADDRESS >100IN BITS3T0 14 OF R12
LDCR R56 6 BITS TO CRU

0 1 2 3 4 H] 6 7 8 9 10 1 12 13 14 15

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 ~020C
T T
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0200
0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 3185
0 2 7 8 15
RS — = 1 1 0 1 0 1 1 0 1 0 0 1 1 | 1 0
— — 1 L— = —0 - CRU Address >100
IGNORE e = e oM TR
L] - L]
- J "l
—3
—a
= |—5 - CRU Address >105

8 BITS OR LESS - BYTE ADDRESS —10

9 BITS OR MORE — WORD ADDRESS
NOTE: EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

AO001434 TMS 9901 ARE SHOWN IN APPENDIX J,

Figure 5-6. LDCR Instruction

5-16

LI R12,>120*2 LOAD CRU BASE ADDRESS >120 IN BITS 3TO 14 OF R12
STCR R4,10 10 BITS FROM CRU TO R4

0 1 2 3 4 L] 6 7 8 9 10 1 12 13 14 15

0 0 0 0 0 0 1 0 0 0 0 V] 1 1 0 0 >020C

o 0 0 0 0 0 1 0 0 1 o 0 0 0 0 0 >0240

0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 >3684

g 6 15
R4 0 0 0 (1] o 0
ZERO FILL E[O +CRU Address >120
UNUSED LEFT-SIDE BITS . . . i]
-2
-3
— 4
-5
-6
-7
-8
-9 «—CRU Address >129
- A
NOTES: -8
8 BITS OR LESS - BYTE ADDRESS -
9 BITS OR MORE - WORD ADDRESS 8
THE MULTIPLICATION IN THE DESTINATION OPERAND (>120*2) D
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER. £
THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS - F
=10

OF REGISTER 12. .
EXAMPLES OF CRU INSTRUCTIONS ADDRESSING THE

TMS 9901 ARE SHOWN IN APPENDIX J.

Figure 5-7. STCR Instruction

5.5.3.2 CRU Single-Bit Instructions

The three single-bit instructions are SBZ (set bit to zero), SBO (set bit to one), and
TB (test bit). The first two are output instructions, and the last one is an input
instruction. All three instructions have only one operand, which is assembled into an
eight-bit signed displacement to be added to the CRU hardware base address to provide
the CRU bit address. The SBZ instruction sets the addressed bit to zero (zero on
CRUQOUT), and the SBO instruction sets the addressed bit to one (one on CRUOUT). The TB
instruction reads the logical value on the CRUIN line and places this value in bit 2
(EQ) of the status register; the test can be proven by using the JEQ or JNE
instructions.

The operand value is treated as a signed, eight-bit number, and thus has a range of
values of -128 to +127. This number is added to the CRU hardware base address derived
from bits 3 to 14 of R12, and the result is placed on the address lines. This process
is illustrated in Figure 5-8.

Notice that after execution of a TB instruction, a JEQ instruction will cause a jump
if the logic value on CRUIN was a one, and JNE will cause a jump if the logic value
was a zero.

SOFTWARE BASE ADDRESS

_JI\
F \
HARDWARE BASE ADDRESS
FAN
/ A

0 1 2 3 4 5 6 I 8 9 10 11 12 13 14 15

X X X X | wiz
DON'T CARE

SIGNED
L. BN \ DISPLACEMENT
o
BIT 8 SIGN
EXTENDED 4 L,
0 - 2 3 4 5 6 7 8 9 10 11 12 13 14
o|o0 0 . . ADDRESS BUS
\ s —rE, /
W A4
SET TO ZERO EFFECTIVE CRU BIT ADDRESS
FOR ALL CRU
OPERATIONS

Figure 5-8. Addition Of Displacement And R12 Contents To Drive CRU Bit Address

5.6 DYNAMICALLY RELOCATABLE CODE

Most programs written for the TM 990/101M will contain references in memory. These
references are given by means of a symbolic name preceded by an at (@) sign. Examples
are @>FE00 (M.A. FE0O4g, recognized by the LBLA) or @3SUM (recognized by a
symbol-reading assembler, not the LBLA).

For example, a short program, located at M.A. 0900445 to 090F15, adds two memory
addresses then branches to the monitor:

M.A.

0900 MOV 8>090C,R1 MOVE VALUE AT M.A. 090C TO R1

0904 A €>090E,R1 ADD VALUE AT M.A. 090E TO R1 (R1=ANSW)
0908 B €>0080 RETURN TO MONITOR

090cC DATA 100 FIRST NUMBER

090E DATA 200 SECOND NUMBER

In this program, a number in EPROM is moved to a register in RAM, and another number
in EPROM is added to that register (the destination of an add must be in RAM in order
for the sum to be written into it). If it is desired to move this entire program to
another address (such as to RAM for debugging purposes to allow data changes as
desired), then the locations in the code must be changed to reflect the new addresses.
For example, to relocate the above example to start at address FC004g, each of the
addresses of the numbers must be changed before the program can execute; otherwise,
the program will try to access numbers in M.A, 090Cqg and 090Eqg when they have been
relocated to M.A. FCOCqg and FCOEqg respectively.

For a variety of reasons, it may be advantageous to have code that is
"self-relocating," that is, it can be relocated anywhere in memory and execute
correctly. Such "position-independent" or "dynamic-relocating" code is of great
advantage when the code is programmed into EPROM. In this manner, the EPROMs can be
installed in any socket, responding to any address, and the program will still execute
correctely. Such programs are possible with the TM 990/101M by merely beginning the
program with the code segment shown below (register 10 is used in the following
examples). Thereafter, memory addresses can be indexed, relative to the beginning of
the program (using R10 at the index register, in this case)., This code is shown in
Figure 5-9.

M.A. OPCODE/OPERANDS COMMENTS

0000 START LWPI FE0O RO AT M.A. FE00

0004 LI R10,START LOOK AT START ADDR.

0008 JEQ RELOC IF NOT BIASED, NEED RELOCATING
Base 000A CLR R10 LOADER HAS BIAS, CLEAR BASE REG.
Reg. 000C JMP STARTX GO TO PROGRAM
Setup O00OE RELOC LI R10,>045B B *R11 OPCODE IN R10

0012 BL R10 PC VALUE TO R11

0014 RELOCX AI R11,START-RELOCX PC-10 = PROGRAM START

0018 MOV R11,R10 PROGRAM START TO R10

001E STARTX MOV 6>001A(R10),R1 MOVE FIRST NUMBER TO R1
Relo- 0012 A 6>001C(R10),R2 ADD 2D NO. TO R1, ANSW IN R1
catable { 0016 B 8>0080 RETURN TO MONITOR
Program j 001A DATA 100 FIRST NUMBER

001C DATA 200 SECOND NUMBER

Figure 5-9. Example Of Program With Coding Added to Make it Relocatable

This coding first sets up a program base register which computes the address of the
beginning of the program. This is accomplished by:

® establishing the beginning workspace register address with LWPI

® placing the opcode for the instruction B #R11 in the designated index
register address (R10 above)

® execute a branch and link to R10; this places the address of the next in-
struction following BL R10 into register 11; a branch to R10 means a return
indirect through R11

e compute the beginning address of the program by subtracting 1095 from the
address in register 11.

° move this beginning address to R10, allowing R11 to be further used as a
linking register.

° Index all future relocatable addresses using R10.

There are several considerations. Absolute addresses (e.g., beginning of monitor at
008016) need not be indexed, and other types of memory indexing should consider the
contents of the base register; it may be necessary to add the contents of the base
register to another indexing register. Also, an immediate load of an address into a
register will require that the base address in the index register be added to the
register also. For example:

LI R2,>0980 ADDRESS OF VALUES IN R2
A R10,R2 ADD BASE ADDRESS

Figure 5-10 is an example of a program that searches a table of numbers for a value.
The example is shown in both relocatable and in non-relocatable code, for comparison.
Symbolic addressing is used.

#NON SELF-RELOCATING #SELF-RELOCATING
#NO BASE REGISTER USED #R10 IS BASE REGISTER
LI R3,TABLE POINT TO TABLE LI R3,TABLE POINT TO TABLE
% A R10,R3 ADD BASE REG.
*REMAINDER OF CODE NOT INDEXED ¥REMAINDER OF CODE INDEXED
MOV @COUNT,R2 GET COUNT MOV @COUNT(R10),R2 GET COUNT
SEARCH C R1, ®*R3+ (R1) IN TABLE? SEARCH C R1,%R3+ (R1) IN TABLE?
JEQ FOUND YES JEQ FOUND YES
DEC R2 NO, DEC COUNTER DEC R2 NO, DEC COUNTER
JNE SEARCH LOOK AGAIN JNE SEARCH LOOK AGAIN
COUNT DATA 6 COUNT DATA 6

TABLE DATA 12,15,59,62,73,92 TABLE DATA 12,15,59,62,73,92

Figure 5-10. Examples of Non Self-Relocating Code and
Self-Relocating Code

5-20

Great care must be taken with B, BL, and BLWP. If linking to other modules is needed,
these modules must be part of a system which is linked together by the linker program
(e.g., TXLINK on the FS990 system), and all modules must be coded as self-relocating.

When programming the EPROM's, the code must be loaded such that the address START has
the value ZERO, i.e. The code must appear biased at location 0000 4¢-

5.7 PROGRAMMING HINTS
In any programming environment there are several ways to accomplish a task. Table 5-4
contains alternate coding practices; some have an advantage over conventional coding.

Table 5-4. Alternate Programming Conventions

CONVENTIONAL ALTERNATE ALTERNATE CODE
PURPOSE CODE CODE ADVANTAGE
Compare Register Contents to 0 CI RX;0 MOV RX,RX Saves one word
Increment A Register by U INCT RX (5 #RX+, *RX+ Saves one word
INCT RX
Access old workspace MOV @N(R13),R1 N is twice the
registers number of the
old register
wanted
Swap two registers MOV RX,RHOLD| XOR RX,RY Saves a regis-
MOV RY,RX XOR RY,RX ter: "RHOLD"
MOV RHOLD,RY| XOR RX,RY Not needed
Clear a register CLR RX XOR RX,RX (None)
CLR RX SUB RX,RX (None)

5.8 INTERFACING WITH TIBUG

The TIBUG monitor provides a starting point for the programmer to consider when
looking for program examples. The monitor contains some basic user facilities, and the
user will probably enter and exit programs through TIBUG.

5.8.1 PROGRAM ENTRY AND EXIT
To execute a program under TIBUG, use the "R" and "E" commands as explained in Section
3 of this manual.

Exit from a program to TIBUG can be through:
B €>0080

TIBUG will print the prompting question mark. Note that the power-up initialization
routine is not entered; instead, control goes directly to TIBUG's command Scanner.

5-21

5.8.2 1I/0 USING MONITOR XOP's

5.8.2.1 Character I/0
Four XOP's deal specifically with character I/0:
o Echo Character X0P 11
] Write Character X0P 12
° Read Character X0P 13
° Write Message XOP 14

The echo XOP (11) is a read character XOP (13) followed by a write character XOP (12).
The following code reads in a character from a terminal. If an A or E is found, the
character is writen back to the terminal and program execution continues; otherwise,
the program loops back waiting for another keyboard entry.

GETCHR Xop R1,13 READ CHARACTER

CI R1,>4100 COMPARE R1 to ASCII "A"

JEQ 0K IF "A™ FOUND JUMP

CI R1,>4500 COMPARE R1 TO ASCII "E"

JEQ OK IF "E" FOUND, JUMP

JMP GETCHR RETURN TO READ ANOTHER CHARACTER
0K XOP R1,12 WRITE CHARACTER AS ECHO

XOP 14 causes a string of characters to be written to the terminal. Characters are
written until a byte of all zeroes is found.

XOP 13 reads one character and stores it into the left byte of a work; the right byte

is zero filled. The previous coding example could also have been completed with the
following:

OK XOP R1,14
Instructions are written in uninterrupted form; thus, messages should be grouped in a

block separated from the continuous executable code. Each message must be delimited by
a byte of all zeroes:

#*MESSAGES

CRLF BYTE >0D

LF BYTE >0A,>00

MSG1 TEXT 'BEGIN PGMA'
BYTE 0

MSG2 TEXT 'END PGMA'
BYTE 0

MSG3 TEXT '# ERRORS (IN HEX):'
BYTE 0

MSG4 TEXT 'ERROR EXP VALUE='
BYTE 0

MSGS TEXT ' ,RCV VALUE='
BYTE 0

5=22

Note in the preceding example, that if it is desired to send a carriage return and a
line feed, use the following: XOP BCRLF,714. But if only a line feed is wanted, use:
XOP 6LF, 14.

2.8.2.2__Hexadecimal 1/0

Three XOP's handle hexadecimal numbers.
e Write one hexadecimal character XOP 8
] Read a four-digit hexadecimal word XOP 9
® Write four hexadecimal characters XOP 10

Using the message block in paragraph 5.8.2.1, an example code segment might be:

¥ERROR ROUTINE

ERROR XOP @MSGY, 14 START ERROR LINE
XOP R1,10 PRINT CORRECT EXPECTED VALUE
XOP eMSG5, 14 MORE ERROR LINE
Xop R2,10 PRINT ERRORED RCV VALUE
XOP @CRLF, 14 DO CARRIAGE RETURN/LINE FEED
XOP 6LF, 14 ONE MORE LF FOR DOUBLE SPACE

XOP 8 is actually called four times by XOP 10, after positioning the next digit to be
written into the least significant four bits of the work register.

The following shows how to input values to a program by asking for inputs from the
terminal.

GET XOP R4,9 CALL TO GET HEX # ROUTINE
DATA NULL ,ERROR NO INPUT/BAD INPUT ADDRESSES
OK A R3,RY ADD OLD NUMBER IN
JMP XXX CONTINUE PROGRAM
NULL LI R4,>3AF1 LOAD DEFAULT VALUE
XOP 6DEFMSG, 14 PRINT DEFAULT MESSAGE
JMP 0K
ERROR XOP @ERRMSG, 14 PRINT ERROR MSG
JMP GET TRY AGAIN
DEFMSG TEXT 'DEFAULT USED'
BYTE 0
ERRMSG TEXT 'ERROR: USE 0-9, A-F ONLY'
BYTE)

Note that the XOP 9 routine stores only the last four digits typed before the
termination character (delimiter) is typed. This means if a wrong number is entered,
continue typing until four correct digits are entered; then type a delimiter (space,
carriage return, or minus sign). Typing fewer than four digits total (but at least one
digit) causes leading zeroes to be inserted. Typing only a delimiter gives control to
the first address following the XOP, and typing an illegal character at any time
causes control to go to the address specified in the second word following the XOP
call.

5=23

5.9 INTERRUPTS AND XOPS

5.9.1 INTERRUPT AND XOP LINKING AREAS

When an interrupt or XOP instruction is executed, program control is passed to WP and
PC vectors located in lower memory. Interrupt vectors are contained in M.A. 000044 to
003F,¢; and XOP vectors are contained in M.A. 004016 to 007F,g. User-available
interrupt and XOP vectors are preprogrammed in the EPROM chip with WP and PC values
that allow the user to implement interrupt service routines (ISR's) and XOP service
routines (XSR's). This includes programming an intermediate linking area as well as
the ISR or XSR code.

When an interrupt or X0OP is executed, it first passes control to the vectors which
point to the linking area. The linking area directs execution to the actual ISR or
XSR. The linking areas are shown in Table 5-5. The linking area is designed to leave
as much space free as possible when not using all the interrupts. That is, the most
frequently used areas are butted up against TIBUG area, the least frequently used
areas extend downward into RAM.

Return from the ISR or XSR is through return vectors in R13, R14, and R15 at the ISR
or XSR workspace and at the linking area workspace.

How to program these linking areas is explained in the following paragraphs.
NOTE

Interrupts 3 and 4 are used by the timers at the TMS
9901 and TMS 9902 respectively.

Table 5-4. Preprogrammed Interrupt And User XOP Trap Vectors

VECTORS VECTORS
M.A. Int. WP PC M.A. XOP " WP PC
0000 INTO TIBUG TIBUG 0048 XOP2 FFL48 FF5A
0004 INT1 FF5A FFTA oouc XO0P3 FF3A FFLC
0008 INT2 FFUE FF6E 0050 XOPY FF2C FF3E
000C INT3 FF8A FFAA 0054 XOP5 FF1E FF30
0010 INTY FFTE FFIE 0058 XOP6 FF10 FF22
0014 INTS FF72 FF92 005C XOP7 FF02 FF14
0018 INT6 FF66 FF86
0014 INT7 FEEE FFOE
0020 INTS FEE2 FF02
0024 INT9 FED6 FEF6
0028 INT10 FECA FEEA
002C INT11 FEBE FEDE
0030 INT12 FEB2 FED2
0034 INT13 FEA6 FEC6
0038 INT14 FE9A FEBA
003C INT15 FESE FEAE

5-24

Table 5-5. Interrupt and User XOP Linking Areas

BYTE

M.A. 0-1 P=3 -5 6T . | 0=8 A-B C-D " E-F

1 USER RAM AREA
FE90
FEAO INT15 INT15 INT15 INT15
FEBO |INT15 | INT15 INT1Y4 INT14 INT14 INT14 INT14 INT14
FECO |INT13 | INT13 INT13 INT13 INT13 INT13 INT12 INT12
FEDO |INT12 | INT12 INT12 INT12 INT11 INT11 INT11 INT11
FEEO |INT11 | INT11 INT10 INT10 INT10 INT10 INT10 INT10
FEFO |INT9 INT9 INT9 INT9 INT9 INT9 INT8 INT8
FFOO |INT8 INT8 INT8 INT8 INT7 INT7 INT7 INT7
FF10 |INT7 INT7 XOP7 XOP7 XOP7 XOPT XOPT XOP7
FF20 |XOP7 XOP6 XOP6 XOP6 XOP6 XOP6 XOP6 XOP6
FF30 |XOP5 XOP5 XOP5 XOP5 XOP5 XOP5 XOP5 XOPY4
FF40 |XOPY4 XOPY4 XOPY4 XOPY4 XOPY4 XOPY XOP3 XOP3
FF50 |[XOP3 X0P3 XOP3 XOP3 XOP3 XOP2 XOP2 X0P2
FF60 |XOP2 X0P2 XOP2 X0P2 INT2 INT2 INT2 INT2
FFT0 |INT2 INT2 INT1 INT1 INT1 INT1 INT1 INT1
FF80 |INT6 INT6 INT6 INT6 INT6 INT6 INTS INTS
FF90 |INTS INTS INTS INTS INTY INTY INTY INTY
FFAO |INTY INTY INT3 INT3 INT3 INT3 INT3 INT3
FFBO
FFFB TIBUG WORKSPACE

5.9.1.1 Interrupt Linking Areas

When one of the programmable interrupts (INT1 to INT15) is executed, it traps to an
interrupt linking area in RAM. Each linking area consists of six words (12 bytes) as
shown in Figures 5-11 and 5-12. The first three words contain the last three registers
of the called interrupt vector workspace (R13, R1Y4, and R15), and the second three
words, located at the interrupt vector PC address, are intended to be programmed by
the user to contain code for a BLWP instruection, a second word for the BLWP
destination address, and an RTWP instruction code (all three words to be entered by
the user). When the ISR is completed, control returns to this linking area where the
return values (to the interrupted program) are loaded into the linking area's three
registers (R13 to R15), then the BLWP instruction (at the PC vector address) is
executed using the M.A. provided by the user (the BLWP instruction consists of two
words, the BLWP operator and the destination address; the destination address points
to a two-word area also programmed by the user).

Return from the interrupt service routine is through the RTWP instruction (routine's
last instruction). This places the (previous) WP and PC values at the time of the BLWP
instruction (in the six-word linking area) into the WP and PC registers. Thus, the
RTWP code that follows the BLWP instruction will now be executed, causing a second
return routine to occur, this time to the interrupted program using the return values
in R13, R14, and R15 of the interrupt link area. This is shown graphically in Figure
5-11.

5=25

®

M.A, 0000 WP
0002 PC
0004 FF5A
0006 FF7A

INTERRUPT
VECTORS IN
EPROM

1,2

34

5

6

INTERRUPT NO. 1
RECOGNIZED

FF5A

RO

R13 (OLD WP)

R14 (OLD PC)

R15 (OLD ST)

7777777
BLWP

N

NS
Nox Y
NER
\X:

S
N

INTERRUPTED
PROGRAM

INTERRUPT EXECUTION TRAPS TO 6-WORD INTERRUPT LINK AREA.
BLWP EXECUTED TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (ISR)

RTWP FROM ISR TRAPS BACK TO 6WORD LINK AREA.
RTWP FROM LINK AREA RETURNS BACK TO INTERRUPTED PROGRAM.

V%

= LINKAGE PROGRAMMED BY USER

Figure 5-11.

FIRST REGISTER
IN WORKSPACE

6-WORD INTERRUPT LINK AREA

XXXX

WH Y NYY

A///////%

f/ L LA TS
/// PC 2222

////_.{'_Z/L/

{

Y XYY

R13 FF5A

R14 FF7E

R15 (OLD ST)

2222

RTWP

INTERRUPT SERVICE ROUTINE

Interrupt Sequence

5-26

9

Each interrupt linking area is set up so that it can be programmed in this manner. In
summary, each six-word linking area can be programmed as follows:

0. Determine the location of the linking area as shown by the WP and PC vectors
in Table 5-=4.
] The PC vector will point to the last three words of the six-word area. The

user must program these three words respectively with 042016 for a BLWP in-
struction, the address (BLWP operand) of the 2-word vector pointing to the
interrupt service routine, and 038016 for an RTWP instruction as shown in
Figure 5-12.

® At the vector address for the BLWP operand, place the WP and PC values
respectively of the interrupt handler.

EXAMPLE USING INT1 LINKING AREA (WP = FF5A, PC = FF7A)

M.A.
EEBA e (ACTUAL ADDRESS OF RO OF INTERRUPT VECTOR
WP)
-
[]
®
FF74 R13 (OLD WP)
FF76 R14 (OLD PC USED TO SAVE RETURN VALUES (TO
INTERRUPTED PROGRAM)
FE78 R15 (OLD ST)
TO BE FF7A 0420 (BLWP) <— INT1VECTOR PC ADDRESS (CONTAINS BLWP)
;iouii‘;MMED FETC XX XX e ADDRESS OF 2 - WORD VECTOR POINTING TO
Lo T e, WP AND PC VALUES OF ISR
RETURN PC VALUE IN ISR POINTS TO THIS
ATWP INSTR.

NOTE

-DO NOT USE RO—-R12 OF THE LINKING AREA WORKSPACE,
BECAUSE THE OVERLAPPING STRUCTURE WILL DESTROY
THE CONTENTS OF A LINKING AREA FOR ANOTHER INTER-
RUPT OR XQOP.

Figure 5-12. Six-Word Interrupt Linking Area

5=27

Example coding to program the linkage to the interrupt service routine for INT1 is as
follows:

®PROGRAM POINTER TO INT1 SERVICE ROUTINE FOLLOWING BLWP INSTRUCTION

AORG SFFTA INT1 PC VECTOR ADDRESS
DATA >0420 HEX VALUE OF BLWP OP CODE
DATA >FA00 LOCATION OF 2-WORD VECTORS TO ISR (EXAMPLE)
DATA >0380 HEX VALUE OF RTWP OP CODE
®PROGRAM POINTER TO 2-WORD VECTORS TO INTERRUPT SERVICE ROUTINE (EXAMPLE)
AORG >FA00
DATA >FBOO WP OF INTERRUPT SERVICE ROUTINE (EXAMPLE)
DATA SFAQY PC OF INTERRUPT SERVICE ROUTINE (EXAMPLE)

EINT1 ISR FOLLOWS (BEGINS AT M.A. FAO04)

The interrupt service routine which begins at M.A. FA0416 will terminate with an RTWP
instruction.

5.9.1.2 XOP Linking Area

The XOP linking area contains seven words (14 bytes), of which the first two and the
fourth words must be programmed by the user. Each XOP vector pair contains the pointer
to the new WP (in the first word) and a pointer to the new PC (in the second word)
which points to the first instruction to be executed.

In the seven-word XOP linking area, the first word is the destination of the XOP PC
vector. The last three words are the final three registers (R13, R14, and R15) of the
linking area workspace which will contain the return vectors back to the program that
called the XOP. The third word of the seven-word area is R11, which contains the
parameter being passed to the XOP service routine. This is shown in Figure 5-13.

For example, when X0P2 is executed, the PC vector points to the BLWP instruction shown
at M.A. FF5A4¢ in Figure 5-13. This executes, transferring control to the
preprogrammed WP and PC values at the address in the next word (YYYY as shown in
Figure 5-13). To obtain the parameter passed to R11 of the vector WP (M.A. FF5E.¢ in
Figure 5-13), use the following code in the XOP service routine:

MOV ¥R14+,R1 MOVE PARAMETER TO R1

This moves the parameter to R1 from the old R11 (the old PC value in R14 was pointing
to this address following the BLWP instruction immediately above it, effectively to
R11), and increments the XOP service routine PC value in its R14 to the RTWP
instruction at M.A. FF6016. Thus an RTWP return from the XOP service routine will
branch back to the RTWP instruction at FF6016 which returns control back to the
instruction following the XOP.

5-28

EXAMPLE USING XOP 2 LINKING AREA (WP - FF48, PC - FF5A)

M.A (ACTUAL ADDRESS OF RO OF XOP2
FF48 VECTOR WP)
e MOR
®
®
FEBA 0420 (BLWP) l«————— X0OP2 VECTOR PC POINTS TO HERE
TOBE EF5C YYYY «—————— POINTS TO XSR WP & PC VECTORS
PROGRAMMED
BY USER FF5E R11 (PARAMETER) lg— ————— XOP SOURCE ADDR. PARAMETER
EF60 0380 (RTWP) le———— RTWP BACK TO CALLING PROGRAM
FEE2 R13 (OLD WP)
frey 714 (OLD PC) USED TO SAVE RETURN VALUES
{TO INTERRUPTED PROGRAM)
FFB6 R15 (OLD ST)

Figure 5-13. Seven-Word XOP Interrupt Linking Area

In summary, the seven-word XOP linking area can be programmed as follows:
° Determine the value of the PC vector for the XOP as shown in Table 5-U4.

® The PC value will point to the first word of the seven-word linkage area.
The user must program three of the first four words of this area
respectively with 0420 for a BLWP instruction, the address of the two-word
vector that points to the XOP service routine, ignore the third word, and
038016 for an RTWP instruction in the fourth word.

] At the address of the BLWP destination in the second word, place the WP and
PC values respectively to the XOP service routine.

5=29

An example of coding to program the XOP linkage for XOP 2 as shown in Figure 5-13 i:
as follows:

¥PROGRAM POINTER TO XOP SERVICE ROUTINE AT XOP2 LINK AREA

AORG >FF5A XOP2 PC VECTOR ADDRESS
DATA >0420 HEX VALUE OF BLWP CODE
DATA >FA0O LOCATION OF 2-WORD VECTORS TO XSR (EXAMPLE)
DATA 0 IGNORE
DATA >0380 HEX VALUE OF RTWP CODE
¥PROGRAM POINTER TO 2-WORD VECTORS TO XOP2 SERVICE ROUTINE (EXAMPLE)
AORG >FA00 LOCATION OF VECTORS
DATA >FB0O WP OF XOP SERVICE ROUTINE (EXAMPLE)
DATA >FAQ4 PC OF XOP SERVICE ROUTINE (EXAMPLE

¥XSR CODE FOLLOWS (BEGINS AT M.A. FAO4)

At the XOP service routine, the following code uses the PC return value (in R14 of the
XOP service routine workspace) to obtain the parameter in R11 (in the link area) as
well as set the return PC value in R14 (in the XOP service routine workspace) to the
RTWP in the link area:

MOV ¥R14+,R1 MOVE OLD R11 CONTENTS TO R1 OF XOP SERVICE ROUTINE

Now R14 points to the RTWP instruction in the link area. The last instruction in the
X0P service routine is RTWP. RTWP execution causes a return to the link area where =z
second RTWP executes, returning control to the next instruction following the XOP.

5.9.2 TMS 9901 INTERVAL TIMER INTERRUPT PROGRAM

A detailed discussion of the TMS 9901 interval timer can be found in the TMS 9901 dat
manual. There are several possible sequences of coding that can program and enable the
interrupt 3 interval timer, and since the timer has a maximum period of 349
milliseconds before issuing an interrupt, the programmer must decide whether to set
the interval period in the calling program or in the code handling the interrupt. If
the interrupt period desired is longer than 349 milliseconds, then it may be
advantageous to reset the timer in the interrupt subroutine which also triggers the
interrupt and returns control back to the interrupted program. In any case, the timer
must be initially set and triggered following the general sequence below:

1. Set the CRU address of the TMS 9901 in bits 3 to 14 of R12.

2 Set up the interrupt 3 linking area.

3. Enable the clock interrupt at the TMS 9901 (interrupt 3).

y, Set the Status Register interrupt mask to a value of 3 or greater.

5 Set a register to the value of the interval desired (bits 1 to 14) with bit
15 set to one to enable the clock as shown in Figure 5-14. This figure shows
the code and a representation of the CRU for setting a time of 250 milli-
seconds and for setting the TMS 9901 to the clock mode. The first bit
serially brought in on the CRU will be a value of one in bit 15 of the
register which sets the TMS 9901 to the clock mode; successive bits (1 to
14) then set the clock interval value. The final bit brought in triggers the
timer.

5-30

6. When the interrupt occurs, the interrupt handler must reset the interrupt at
the TMS 9901 before returning to the interrupted program.

LI /12, > 100 CRU ADDRESS OF TMS 9901 (2 X >80 = > 100)
L A1, > 5B8F CLOCK, >>2DC7 COUNTS, AND SET CLOCK MODE BIT
LDCR R1, 16 SET CLOCK VALUE AT CLOCK REGISTER
of1|2|a|als|e]7]s]e]|10]11]12]13]1a]1s CRU T™S 9901
22 I D I D D0 DN L (S L T, e O T | >s88F ADDR ASSIGNMENT
fe———— CLK1TOCLK14 = >2DC7 = 11,719 —— L—’ 1 80 1=CLOCK MODE
11,718/46,875Hz = 250MS =11 | & CLK1
1 82 CLK2
©
@
&
1| s CLK14
8F

NOTE:
THE FIRST SERIAL INPUT FROM CRU (A ONE IN BIT 15 OF R1) SETS CLOCK MODE.
LAST INPUT TO CLOCK REGISTER (CLK1 TO CLK14) STARTS THE CLOCK.

A0001436

Figure 5-14. Enabling and Triggering TMS 9901 Interval Timer

5

31

The clock decrements the value set in step 5 at the rate of o/64 (approximately 46,875
Hz with a 3 MHz clock). The maximum interval register value of all ones in 14 bits

(16,383) takes approximately 349 milliseconds to decrement to zero.

The code in Figure 5-15 is an example of a code to set up and call the TMS 9901
interval timer and also the code of the interrupt handling subroutine. Note that the
calling program first clears the counting register (RO) of the interrupt workspace.
Then it sets up the interrupt masks at the TMS 9901 and TMS 9900 after setting the TMS
9901 address in R12. Then the calling program sets an initial wvalue in the timer
register (CLK1 to CLK14 as shown in the TMS 9901 data manual). Because the desired
output on the terminal is a message every 15 seconds, a minimum interval is set in the
calling program while the interrupt handler is responsible for setting the time and
clearing the interrupt after it occurs. The handler keeps a count of the intervals to
determine the 15 seconds.

At the bottom of the figure is the interrupt linking area. Since all the code in this
figure is loaded as if at absolute memory address values (using the AORG assembler
directive) data statements are used here at the appropriate memory address. This
program can be loaded and executed by placing the machine-language assembler output
in the third column at the address shown in the second column., Then execute with the

program start at M.A. FD0016*

The TMS 9901 can also be used as an event timer by starting the counter at the
beginning of an interval and reading the counter after the event has occurred. To read
the current value in the counter, the TMS 9901 must be taken out of the clock mode and
put into the interrupt mode for at least 21.4 usee (1 TMS 9901 clock period). After
that, putting the 9901 back into clock mode and reading the clock/int mask bits gives
the current clock value (elapsed bit count divided by 46,875 equals elapsed time in
seconds).

5.9.3 EXAMPLE OF PROGRAMMING TIMER INTERRUPTS FOR TMS 9901 AND TMS 9902

This subsection explains how to use the interrupt vector scheme to program the TMS
9901 and TMS 9902 timers. These timers use, respectively, interrupts 3 and 4 to trap
to interrupt service routines following timer countdown.

The program described in the following paragraphs is an example fhat does the
following:

o Initializes the interrupt linking areas for the TMS 9901 and TMS 9902 timers
(interrupts 3 and U4 respectively).

o Loads the timers with interval values.
e Triggers the timers which cause interrupts when the countdown is complete.
] Contains interrupt service routines (ISR's) which execute when interrupts 3

or 4 are executed.

) Provides modules that perform hexadecimal-to-decimal conversions and
decimal-to-hexadecimal conversions.

The individual modules of this program are summarized in Table 5-6. Please read these

descriptions before continuing. The listing of this example program is provided in
Figure 5-16, sheets 1 to 12.

5-32

TIMER TXMIRA 936227 ## 07:02:10 122/78 FAGE 0001

0001 C O T T TR R S T T S A T A T
0002 # THIS PROGRAM CALSESZ AN INTERRUFT THROUGH INT3: #*
0003 # EVERY 15 SECONDS IVSING THE INTERVAL TIMER IN THE #*
Q004 # TMES 9901. THE ACORG DIRECTIVE CAUSES THE CODE TO BE +#
0005 # ASSEMELED BY THE TXMIRA ASSEMBLER BEGINNIMG AT THE =
0004& # ADDRESS SPECIFIED (SAME AS SLASH COMMAND ON THE #
0007 # LINE-BY-LINE ASSEMBLER). THISZ FROGRAM CAN BE EXE- =+
00o0g # CUTED BY LOADING THE FROGRAM WITH THE TIBUG "M" *#
0002 # ZOMMAND AND EXECUTING WITH THE "E" COMMAND AT PC 3#*
Q01O #+ ADDRE:SS FDOOO, LOAD OBJECT IN THIRD COLLUMN OF #*
0011 # THIZS LISTING AT ADDRESS IN Z0 COLUMN. J.WALSH ¥#*
o1z # 00# # ¥ # ¥ H ¥ # ® O B ¥ € ¥ B OB O F
0013 IDT *TIMER”
0014 #*
0015 # REGISTER EQUATEZS
0016 +*
0017 Q000 RO ECLl O
oo1a 0001 R1 EfL 1
001z o00z R12 EQL 12
0020 #*
0021 # PROGRAM CALLING THE INTERRUFT
002z #*
0023 FLOOO ADORG >FDOO BEGIN ASSEMBLY AT M.A. ZFDOO
0024 FDOO OZEO LWFI >FD20 DEFINE WORKSFACE ADDRESS
FLOZ FLOZO ’
0025 FDO4 OQ4E0 CLR @>FE&O CLEAR INTERRLUFT REG O
FDO&6 FEAOQ
00246 FLOS Q200 - R1Z, 20100 “201 CRL ADDRE=Z IN R1Z
FDOA O100
0027 FDOC 1EQO SBZ O 2201 TO INTERRUFT MODE
0022 FDOE 1DO3= SBO 3 ENABLE INTERRLUFT =
002% FO10 0200 LIMl 2 ENAEBLE INTZ AT TMS 2700
FD12 OQO00Z
0030 FD14 OZ01 LI R1.2 2 ONES TO TMS 9901
FD14& 0003
0031 FOlg 23C1 LDCR R1,1% ENABLE CLOCK AT 9901
0032 FD1A 10FF JMP % LOOF HERE, WAIT FOR INTERRUPT
0032 #
00z4 # INTERRUFT SUEBROLUTINE
0025 3*
0024 FEOQO ACORG *FEOQO BEGIN AZSEMELY AT M.A.Z>FEOQQ
0027 FEOQO FE&O DATA FE&LO BLWP WP VECTOR FIOR INT
0038 FEOZ FEO4 DATA >FEO4 ELWF FC VECTOR FOR INT
0032 FEO4 Q300 LIMI © DISABLE INTERRURPTS
FEO& OOO0O0
0040 FEOZ 0220 54 | RO, AQ COUNT = A0 = 15 SECONDS?
FEOA 0O03C
0041 FEOC 130R JER FEZ4 YES. PRINT MESSAGE
0042 FEOE 0520 INZ RO N, INCREMENT COUNTER
0043 FEL10 020C LI R12, 100 2201 CRL ADDRESS
FE12 0100
0044 FE14 0201 =Y R1,>5B%F CLOCK COUNT OF 11,719
FE14& SB?F
0045 FE1g8 Z3C1 LOCR R1,1%5 AFFLY COUNT, START COUNTER

Figure 5-15. Example of Code to Run TMS 9901 Interval Timer (Sheet 1 of 2)

5=33

TIMER

Q044
0047
0045

0049
0050

0051
0052

0054

Q0SS
Q05A
Q057
Q053
0059
Q0AO
Q0&1
0062
QO&3

TXMIRA 936227 ##

FE1A 1E0QO
FEIC 1003
FE1E 03Z00
FEZ0O 0003
FEZZ 0Z20
FEZ4 ZFAOD
FEZ4 FEZE
FEZEZ 04C0

FEZA 0440
FEZC FEOA4
FEZE 31
FE2F 35
FE30 20
FE31 53
FE32 45
FE33 43
FE24 4F
FE3S 4E
FEZ& 44
FE27 53
FEZZ 20
FE3? 48
FE2A 41
FE3B Sé
FEXC 45
FE3D 20
FESE 45
FE3F 4C
FE4O 41
FE41 S0
FE4Z 53
FE42 45
FE44 44
FEAS 2E
FE44 0707
FE43 0707
FE4A 00
FFAA

FFAA 0420
FFAC FEOO
FFAE 0380

0000 ERRORS

NOTE:

3#*

=RZ
SRO
LIMI

RTWF
XOF

CLR
B

TEXT

OATA

BYTE

#+ INTERRUFT

*

AORG
DATA
DATA
DATA
END

AR

@>FEZE. 14

RO
e:FEO4

-15 SECONDS

>0707,20707

0

Q9102210

122/73 FAGE OO0OZ

201 TO INTERRUFT MOLDE
CLEAR INTERRUFT AFTER EXECUTED
RESET INT MASE AT TMZ 2700

RETURN TO CALLING FROGRAM
WRITE MEZSAGE

RESET TIMER COUNT
BEGIN AT INTERRUFT ZTART

ELAFSED. ~

BELLS

END OF MESSAGE DELIMITER

LINE AREA FROGRAMMING

>FFAA
>0420
>FEQQ
>0320

BEGIN ASSEMELY AT M.A. >FFAA
BLWP INSTRUCTION CODE
BLWFP VECTORS LOCATION
RTWP INSTRUCTION CODE

As an exercise, the user can load and execute this code: (1) load the machine code values shown

in column 3 into the memory locations shown in column 2, or (2) reassemble : if the Line-By-

Line Assemnbler (LBLA) is used, substitute the slash command for the AORG directive and follow
the DATA and TEXT statement conventions for the LELA. Execute using the E TIBUG command.

Figure 5-15.

Example of Code to Run TMS 9901 Interval Timer (Sheet 2 of 2)

5-34

Table 5-6. Interrupt Example Program Description

Module

Sheet Number
of Figure 5-16

Program Description

Interrupt Link

User Start

Timer, TMS 9901

Timer, TMS 9902

Real Time Clock ISR

Keyboard Initialization

Keyboard Scan ISR

Hex/Decimal Conversions

1

2 to 4

5

6

7 and 8

8

9 and 10
11 and! ‘42

This module sets up the interrupt linkage
areas for interrupts 3 and 4, loads vectors
pointing to Module REALCK for interrupt 3
and to Module KYBDSC for interrupt 4. This
is the first program called, and it calls
Module User Start.

"User Start" routine; this is the start of
the general user control program. This
contains mainline code to the timers, and
calls KYINIT before starting the timers.

This module sets TMS 9901 timer to specified
value, starts countdown (countdown
completion causes interrupt through
interrupt level 3).

This module sets TMS 9902 timer of local I/0
port to specified value, starts countdown
(countdown completion causes interrupt
through interrupt 4).

This Real-Time Clock routine is the
Interrupt Service Routine (ISR) for
interrupt 3. It accumulates counts at
one-fifth second intervals to keep a real
time clock count; time values are
initialized by User Start.

This module initializes I/0 buffer for
keyboard input.

This is the Keyboard Scan Routine ISR for
interrupt 4. It polls the keyboard unit for
a new character, and then puts the character
in buffer. Backspace and delete monitoring
is provided.

These modules convert decimal numbers to
hexadecimal equivalents (sheet 11) and
hexadecimal numbers to decimal equivalents
(sheet 12).

=35

5.9.3.1 Interrupt Linking Area Set-Up (Figure 5-16, Sheet 1)

This module sets up the interrupt linking areas that point to the two interrupt
service routines for the timers in the TMS 9901 and TMS 9902. The workspace for this
module is the space just below the INT3 and INTY linking areas. Since this example
uses only interrupts 3 and 4, the linking areas for interrupts 1, 2, and 5 through 15
are free space.

5.9.3.2 User Start Program (Figure 5-16, Sheets 2, 3, 4)

This module organizes the other modules into a user program. It sets up control
functions and calls other modules in a prescribed sequence. This program receives
control after the interrupt linking areas are initialized as described in paragraph
5.9.2.1. It then sets the timing values for the TMS 9901 timer and begins the
countdown by a BLWP @TIMEO1. It also calls the keyboard initialization module (BLWP
@KYINIT) which calls the TMS 9902 set and execute module (BLWP @TIMEO2).

NOTE
This User Start Program is for example purposes, and is
intended only as a vehicle to demonstrate usage of the
following subroutine modules.

5.9.3.3 TMS 9901 Timer Set Routine (Figure 5-16, Sheet 5)

This module sets and executes the interval timer of the TMS 9901. The calling routine
specifies the number of 21.333-microsecond periods (at 3 MHz) to be counted by loading
its own register 0. The TIMEO1 routine then picks this number (limited to 14 bits) by
indirect addressing through R13 (return WP value = RO). It shifts it while in R9,
supplies the correct control bit (bit 0 = 1 by ORing), starts the timer (LDCR
instruction) and enables the interrupt. Control returns to the calling program, which
will be interrupted by the timer interrupt when the count reaches zero. The calling
sequence to the timer set routine is:

LI R0, 9375 1/5TH SECOND INTERVALS
BLWP @TIMEO1 SET TIMER

The interrupt service routine for interrupt 3 is in paragraph 5.9.3.5.

5.9.3.4 TMS 9902 Timer Set Routine (Figure 5-16, Sheet 6)

This module sets and executes interval timer of the TMS 9902. The calling routine
specifies (in its own register 0) the number of 64 microsecond periods (at 3 MHz, with
the TMS 9902's CLKY4M control bit zeroed) to be counted before generating the
interrupt. This routine then picks this number up (through WP return value in R13, old
RO), puts it in the left byte of R9, sets the LDIR (Load Interval Register) flag to
enable loading of the timer value, resets LDCTRL (Load Control Register) to bypass
loading the control register, loads the timer which begins the count, and then enables
interrupt 4 on the TMS 9901. Notice that the user must have a jumper plug between pins
E2 and E3 for an interrupt to occur. Control returns to the calling program which will
be interrupted by the timer sometime later (called ISR described in paragraph
G 3B

5-36

5.9.3.5 TMS 9901 24-Hour Real-Time Clock Service Routine (Figure 5-16, Sheet T7)

In this module, the TMS 9901 timer is used as a real time cloeck; an interrupt occurs
every fifth of a second and a fractions counter is updated. The calling program
initially sets the second-interval counter (R1) to 5. Every five counts, the seconds
counter is updated; every sixty seconds the minutes counter is updated, etc. Note that
since the initial period (one-fifth second) is long, the execution time of this
service routine is trivial from a system throughput standpoint. Note also that because
this timer is associated with interrupt 3, it has higher priority than the TMS 9902
timer, which will be used for miscellaneous timing purposes in this example. This
ensures the integrity of the real time clock recording the elapsed time from system
initialization.

5.9.3.6 TMS 9902 Used To Poll Keyboard Service Routine (Figure 5-16, Sheets 9 and 10)
In this module, the TMS 9902 timer is being used as a general purpose delay timer. The
service routine samples an ASCII encoded keyboard's output, and if a set time has
elapsed and a strobe change occurred, it reads the character. The time delay and
strobe change ensure a new character has been sent from the keyboard. The strobe for
any one character is assumed to last longer than the interval set in the timer for
scanning, and a flag is used in the software to simulate an edge-triggered data
capture condition. The ASCII encoded keyboard is assumed to be connected to the TMS
9901 through connector P4,

When the strobe goes from high to low, data is read, and the flag turned on. Only when
the strobe goes high again is the flag reset and a new character can be received.

5.9.3.7 Decimal To Hexadecimal Conversion (Figure 5-16, Sheet 11)

This module is a sample decimal-to hexadecimal-conversion routine. The calling program
places the least significant four digits in its register 0, and the most significant
(fifth) digit is right-justified in its register 1. A BLWP @DECHEX instruction gives
control to the conversion routine.

The called routine isolates each decimal digit and uses it to index a loop which adds
the proper place value (10,100,1000, etc.) to the result register. As each digit is
isolated, a table pointer is bumped through the decimal powers. The resultant
hexadecimal number is returned to the caller routine's register 0. The caller's
register 1 is not disturbed.

5.9.3.8 Hexadecimal To Decimal Conversion (Figure 5-16, Sheet 12)

This module is a sample hexadecimal to decimal conversion routine. The calling routine
places the hexadecimal number in its own register 0, then performs a BLWP @HEXDEC. The
converted result is placed back in the caller's register 0 (through address in R13),
with a fifth digit (most significant) in register 1 of the calling program. Both
registers in the calling program are always altered.

The routine repeatedly divides the number by 10, and collects the remainders. These
remainders, properly collected by the shift and SOC instructions, form the decimal
number.

5=-37

TEE

O001
(RLaTabe
OO03
0004
QO0nD
IRIRTATC
0007
O00s
Qe
0010
0011
D01z
001z

014
0015
0014
0017
0018
001

D070

0021

OZ5

QNO0
QOO0
0004
D00 A

DR LA T
OO0
QOO
OO0OFE
0010
001z
0014
001 A
O01E
D01A
Q011
O01E

OO0
00ZZ
Q0z4

2 0024

o2

00zA

[T DEI
ODZE

TXMIRA Z32L227 +## DErOn e 122/ 78 FaGE 0001
DT “TEST™
e e i St S e e S R o s & e i T i s s e i
INTERRUFT LIMEING AREA INITIALIZATION ROUTIHE.
* THIZ ROUTINE INITIALIZES THE INTERRUFT LINEINMG
AREA IN HIGH RAM FUOR INTERRUFTZ 3 ARD 4.
#* A "BELWF" INSTRIMCTION I BUILT. WITH THE
* ADDRE=S OF THE FARTICULAR INTERRUFT SERVICE
ROUTIME WHICH WILL THEN RECEIVE CONTROL
% WHEN THE INTERRUFT I3 ACTIVATED. ToO COMFLETE
+* THE RETURN FATH. A "RTWF" INSTRUCTION IZ
* BUILT IN RAM ALSZO,
e e LT e e e ey e
OZER ENTRY LWF1 FF78 GET WORESFPACE
FF7&
DEO0 LML A CIT GQFF INTERRUFTS
O0O0O0
#* THE FOLLOWING CODE LOADS THE REGISTERS WITH THE
+ FROFER VALUES FOR INITIALIZING THE RAM AREA.
COAQ MOV @=000E, 1 GET INT 3 PC PTR
NOOE
COND MOV @>001Z2,2 GET INT 4 PC FTR
Q012
Qz0z N e 20420 LLOAD BLWF OFCODE
kil &, 20220 LOAD RTWF OFCODE
LI S, INTEVC ADDR OF 2201 TIMER EOUTINE
0204 L1 L, INTAVE AODR OF 2202 TIMER ROLITIMNE
o106z
2 THE FOLLOWING CODE TAEKES THE INFORMATION IN THE
REGI=ZTERZ AND MOVES IT T TO INITIALIZE THE
* RAM LINEING AREA. FIRZT INTERRUFT = AREAR IS
* INITIALIZED., THEN THE INTERRUFT 4 NREA.
3
* INTERRUFT = — TMZ 2901 TIMER
o4z MOV 2, #1+ MOVE "EBLWF" QOFCODE
[MOV S, +#1+ MOVE ZERVICE ROUTINE ADDRESS
44 MOV 4,#1+ MIVE "RTWF" OQFCODE
INTERRUFT 4 - TMZ 2202 TIMER
MOV EL #3234+ MIVE "BLWF" COFCODE
MOV &, #5+ MOVE SERVICE ROUTINE ADDRESE
MOV 4, #Z2+ MOVE "RTWF" OFCODE
* RETZORE INTERRLUIFTE
000 LIMI 4 TURN INTERRUFTS BACKE 0N

0004

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 1 of 12)

5-38

-' .
=)

TXMIRA F3I4L227 #+# D05 22 122/78 FAGE 000z

ooz T e e e e e e e e e e e e e e
0040 3* MAIN ROUTINE
0041 #* THIZ ROUTINE IS A SMALL =AMFLE OF WHAT TYFE
0042 * OF CODE SHOULD BE LUSED TO CONTROL THE FLUNCTIONS
NnOaz s OF THE VYNARIOUES PARTS OF THE SYSTEM BEING
0044 * USED IN THIZ EXAMPLE. FLEASE KEEF IN MINDO
Q045 & THAT THIZ ENTIRE FROGRAMMING EXAMFLE I=
004 £ it STILL OMLY AN EXAMFLE OF HOW THE FACILITIES
0047 * OF THE MICROCOMPUTER CAN BE IJSED: [T I= NOT
Q042 * INTENDED TO SERVE A= A SOFTWARE EBASE FOR
004z #* A LIZER APFPLICATION FROGRAM.
QNS0 e e e e e e e e e
0051 +* THIS MAIN ROIJTINE RECEIVES CONTROL AFTER
005z # THE INTERRUFT LINEING AREA IS5 INITIALIZED.
QoS3 #* IT CALLS THE EEYBOARD IMITIALIZATION
0054 # ROLUTINE. AND STARTS BOTH TIMERS GOING,
O0nEs5 # IT THEN INTERROGATES THE NEW-LINE FLAG
O0SA # AND "DISFOZSESY OF THE USER DATA BY
Q07 # FPRINTING IT. (OF COURSE. AN APFPLICATION
Q05 # FROGRAM WOULD DO MORE WITH THE LDATA).
0057 o e e e o e et e e et et e e P e e e e g
QOOAD *
D0A1 3* WORE. AREA DEFINITICONS
Q0AZ *
OQLZ FF1i2 KYBDWF EGLl FFi& FEYRIARD ROUTINE WORKEFACE
OO FEF2 EYBLUF E@u >FEF3 FEYBOARD BILFFER
O0LS FF22 CLEWF ERU >FF3g REAL-TIME CLOCE WORKSFACE
0O0&A FF72 LCOMRG EelLl >FF78 TRANZIENT ROUTINE COMMON WORES
O0&7 FFS2 MAINFRG EGN) >FFSE MAIN REGEZ FOR THIS ROUTINE
0062 *
Q0L #* XOF DEFINITIONZ
0070 * :
0071 OX0OF REALD, 11 READ ONE CHARACTER
D072 DXOF WRIT.14 WRITE A STRING
Q073 OXOP HEXI.9 HEX # INFLUT
0074 OXOP HEXD, 10 HEX # OUTPUT
Q075 *
Q0764 & ENTRY FOINT
0077 *
0078 0030 OZEQO USERST LWFI CLEWR CLOCE REGS FOR INITIALIZATION
0032 FF33
0079 0024 0401 CLR. 1 CLEAR FOR DECIMAL TO HEX ROUTI
QOO0 0036 0207 L1 7, CEFARM PRIOMFT MESSAGES
QO3 O0RC”
0081 00Z2A OZO2 LI 2,5 FIVE FROMFTS
00ZC 0005
0022 O0ZE 0Z09 123 <, CLEWF+4 REGISTER Z ADDRESS
0040 FF3C
Q022 0042 ZF97 LOOF1 WRIT #7 FROMFT IUSER FOR TIME VALLE
00234 0044 ZE4O HEXI O GET INPUT
0085 0044 0O04A° DATA NEXT.,ERROR NULL, ERRIR RTN ALR
0042 QORL”
00246 004A 0420 NEXT BLWF @LECHEX DECIMAL CHARS TO BINARY

004C 0Z0A~

Figure 5-16. Example Program Using Timer Interrupts 3 And 4 (Sheet 2 of 12)

5-39

TEST
00x7
QOEE
Q0O
Qo070
0021
009z
Q73
0074
Q095
Q0% A
0027
0O0Owa
OOy
0100

0101
o1oz

0103

0104

0105

O104
0107

0102
Q10%

0110
0111
0112

0113z
0114

0114
047
011z
112

Figure 5-16.

OO4E
Q050
0052
0054
Q0S4
0053
O05A
005
0O0SE
Q0&LD
OOAZ
Q0O&4
Q0LEA
00&E
O0AA
OOAL
OOLE
QO70
0072
0074
QO7f
007z
0074
0070C
QO7E

QOO =

OO=EZ
004
D04
QO
QOEA
OO=C
QOO=E
OO0
0092
004
OO
OO
Q0YA
QO
OO2E
QOOAD
00AZ
00A4
OOAA
DOAE
O0AA
QOAC
O0AE
O0ORO
DORZ
OOE4
OORA
OORS

TXMIRA 2

ZE4O
ZFAO
01007
0z27
QOOC
QLOS
14F32
2F27
2ECS
ZFAOQ

01007

0200
249F
0420

0104~

Qz01
ODOSs
OZEQ
FF52
0420
01347
CE20
FF1=
FFiz
123FC
SET0
EFz

OOFE -

1205
ZFAD
01007
ZFA0
FEF3
10F=
0207
OORC
QOZ0=
Q005
0209
FF3C
il SR
Q=R
0420
Q252"
ZE&R0
2FA0
01007
G227
QOO
QA0S
1AFS
10E1
2FAQ
01007

WAIT

TIME

ERRIOR

RE22T7
MoV
WRIT
Al
DEC
INE
WRIT
READ
WRIT
LI
BLWF
LI
LWFI
BLWF

MOV

JEC!

-

JER
WRIT

WRIT

AMF
LI

i §
LI
WRIT
MOV
ELWF

HEXO
WRIT

Al

DEC
JNE
AMF
WRIT

032 05: 22
0, #94+

CCRLF

s & s

S

LOOF 1

#*7
=

@CRLF
O, 927%
CTIMED1
1.5
MAINRIG

CEYINIT

@EYBIOWF » @K YELWF

WAIT
CEYBLF.@TI

TIME

CCRLF

EEYHLIF

WAIT
7+ CEFARM

(i

]

%, CLEWF+4

*7
#'T4,0)
CHEXDEL

0
BCRLF

7212

i

LO0F 2
WATT
@CRLF

Example Program Using Timer Interrupts 3 and 4 (Sheet 3 of

=2/78 FAGE O00%

FUT VYALLE IN CLOCK REGISTERS

DN CARRIAGE RETLRN / LINE FEED

NEXT FROMFT IN TAEBLE

CONE LEZ=
30 BACE IF NOT DONE

READY. GET SET. GO !
ISER RESFIONZE =TARTS
NEW L INE

TO GO

CLOCE

ONE-FIFTH SECOND INTERVALS
SET TIMER
INTERRLIFTS / SECOND

N LUSE THIS ROUTINE S REGE

START SCANNING EEYBOARD

LOOE. AT LINE FLAG

NOT COMPLETE LINE YET

GO FPRINMT REAL TIME

FINIZH LINE

SFILL THE BUFFEFR

WAIT FOR MORE TYFELD
FROMFT STRING=

STUFF
MOW HEADI NG

OF ITEME
CLOCEKE REGISTERS Z.2.4.5:6
FRINT HEADING

GET TIME FARM FRUOM CLOCK
CONVERT BINARY T DECIMAL

FRINT TIME
FINIZH LINE

NEXT HEADING
ONE LESZ TG Ga
GO BACE IF NOT DIONME

OIONE . G WATT
i O 2 P

12)

5-40

TEST TXMIRA P3LZ2Z2T7 +# Q05 2e 2E/TE FAGE 0004
0120 00BA 10CE JMEP LOOP1L
0121 3*
01zz2 * OATA CONSTANTS
0123 #
0124 OO0ORC 52 CEFARM TEXT “SECONDE
0125 00C7 Q0 BYTE O
o124 00CE 4T TEXT “MINUTE
0127 oobD= 00 BYTE O
0125 0004 4% TEXT “HOUR
0129 00DF 00 BYTE ©
Q120 OQEO a4 TEXT “DAY NUMEBER
01321 OOER Qo0 BYTE ©
0132 00EC 59 TEXT “YEAR
0133 OOF7 00 BYTE ©
0124 QOFZ 47 TEXT <68 2
0135 OQFD 00 BYTE O
0134 QOFE sS4 TI TEXT *T1~
0127 0100 on CRLF BYTE >=D.>A,0
0101 0A

0102 00

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 4 of 12)

5l 1

0139 i i 2 o e e e e e B e S
0140 * TME 9901 TIMER SET ROUTINE
0141 * THIS ROUTINE SETS THE INTERVAL TIMER 0N THE TMS%901
014z * WITH A VALLE FASSED BY THE CALLING FROGRAM. THE
0143 # VALLE FASSED 15 SIMPLY AN INTEGER COUNT OF THE
0144 # NUMEER OF 21.%33 MICROSECOND FERIODS DESIRED. THIS
0145 #* ROUTINE TAKES CARE OF LOADING THE TIMER REGISTER

3+

0144 FROFPERLY. AND ENABLING THE TIMER INTERRUFT.
0147 B e e e e e e e e e e e T
D142 0104 FF7& TIMEO1 DATA FF72,ENTOL

0104 01037

0149 0108 0Z00 ENTO1 LIMI O TURN OFF INTERRUFT=
010A 0000
0150 0100 C25D MOy #1372 GET TIMER VALLE
0151 Q10E 0OZO0C L] 12,0100 ADDRESS 9701
0110 0100
0152 6112 OAlY SLae .1 SHIFT CLOCE ZOUNT
0152 0114 0247 ORI 2,1 SET CLOCE MODE
0114 0001
0154 0112 22CY LICR 9?:15 START CLOCE
0155 011A 1EOO SBZ © INTERRLUFT MOLDE
0156 0110 100z SRO 32 ENAEBLE INT = RER MASE
0157 O11E 0300 LIMI 4 TURN INTERRUFTES BACE 0N
G120 0004
O18s 0122 OIE0 RTWF RETURN TO CALLER

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 5 of 12)

5-42

TEST TXMIRA 94227 #% =05 22 122,78 FAGE 0O00A

0140 e e e e e e o e A s

ﬁ;fi # TMZ 9202 INTERVAL TIMER =ET ROUTINE

DLse = THIS FROGRAM SETS THE INTERVAL TIMER OF THE TMS 9902

a14s * UEING THE VALUE FASSED BY THE CALLING FROGRAM,

0164 » THE FROGRAM LOADS THE YALLUE PROPERLY AND ENAELES

0145 - THE AFFROPRIATE INTERRLET. '

014&& F e e e e e R e e e e e o e e e e e

0167 0124 FF72@ TIMEO2 DATA >FF7&,ENTOZ e
0124 0128

OLAS 0122 0200 ENTOZ LIMI O CUT OFF INTERRUFTS
O1Z2A 0000 v =
0143 Ql2C CasD MOV 13,9 GET TIMER VALLE
Q170 L2k DAEY SWPE @ FUT IN LEFT BYTE FOR LOCR
0171 0120 OzZOC LI 12, 20080 FOINT To 22032
0122 0050 o TS
45 Sk zgqm SBO0 13 SET LDIR TO LOAD VALUE
bt e, iﬁgE Sgs A& RESET LOCTRL, BYFASS CONTROL R
0175 013A 1014 L9 LOAD TIMER, BEGIN COLNT
paral B, LR SBO 20 SET TIMENE FOR INTERRUFT
gl?@ glfu OALC LA 1241 FOINT TO 2901
aeee Cidh LBD SBZ O SET INTERRUFT MOLE
0172 0140 1004 SEO 4 ENAELE INT 4 Mﬁék
0179 0142 0200 LIMI 4 - o S ey
0144 0004 SIVE BACE INTERRUPTS
0120 0144 0220 RTWE RETLIRN

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 6 of 12)

5-43

ST TXMIRA 93L22T7 %3 021052 22

%]
-
[
b
~
~
e

FAGE 0007

0182 B e e e e e e e e e e e e e e e
n1ez * TMZ 2201 REAL TIME CLOCE ROUTINE

0124 * THIS ROUTINE IS ACTIVATED WHEN THE TMZ 9201

0135 * INTERVAL TIMER COUNTS DOWM TO ZERD, COWSING

Q154 #* INTERRUFT =. THIZ ROUTINE COUMTS THE NUMBER

0157 # OF ONE-FIFTH SECOND INTERVALS=S NCCURRING AND

0128 #* UFDATES THE AFPFROFRIATE COUNTER. AT THE END

o1a9 * OF A SECOND, THE MINMUTE COUNTER 12 CHECKED.

0170 #* AND UPDATED IF NECEZZARY. THIZ FROCEDURE I3

Ltk B | 3* REFEATED FOR EACH SUCCESSIVELY LARGER TIME

0192 * LUNIT,. WP TO A YEAR. LEAF YEARES DONST COLNT.

Q1= o e e e i e e e e e e e e £ e e e £y e 5 i e e e e e e e

0194 0143 FFZ2 INTZVC DATA CLEWF. INZFC
0144 01407

Q1925 014C O20C INSFC LI 12,0100 POINT T 9%01
O14E 0100
0194 0150 1E0O0 SBZ © INTERRLUFT MODE
0197 0152 1DOZ SEO 3 ACENDOWLEDGE INTERRUFT
0192 0154 0401 DEC 1 ODCE FRACTION COUNTER
0192 D154 14615 JINE RETLURN NOT DONME WITH A SECOND YET
QZ00 #* NEW ZECOND
0201 0158 0201 0) 1:5 NEW SECOND COUNTDOWN
015A 000%
0z02 0150 0522 INC 2 ADD ONE ZECOND TO CLOCE
0202 015E 0232 B 25,60 A0 SECONDS YET?
Q160 O0O3C
QZ04 Q162 1&40F JNE RETLRN NO, GO RETLURN
0205 # NEW MINUTE
0204& 0144 04CZ LR 2 NEW MINLUTE: CLEAR SECONDS
0207 0166 05233 NG 3 ADD ONE MINUTE
QZ0Z 01462 0282 CI T &0 A0 MINUTES YET®
O14A OO2C
0zZ0% O1&C 140A JANE RETURN N, RETURN
0210 # NEW HOLR
0211 O1&6E Q4CE CLR 2 NEW HOUR: TLEAR MINUTES
0212 0170 0524 INC 4 ADD ONE HOIUR
0212 0172 0224 CI 4,24 MIDONIGHT YET?
0174 0012
0214 0176 1605 JNE RETLURN NIt
0215 * NEW DAY
0214 0178 OS25 INC S ALDD ONE DAY
0217 O17A Q2325 Cl S, 366 END OF YEAR™
017C O1AE
0212 017E 1401 JINE RETURN NC, RETLIRN
0219 # NEW YEAR
0220 0180 0586 INC & NEXT YEAR

0221 0122 0320 RETURN RTWF

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 7 of 12)

5-4Y

TEST TXMIRA 936227 %% 0%t 05 22 122/7% FAGE 000
0223 e e
0224 KEYROARD INITIALIZATION ROUTINE

THIS ROUTINE INITIALIZES THE WORE AREA LISED BY THE
022& EEYRBOARD SCANNING ROUTINE WHEN THE TMZ 9202 TIMER
0227 TIMES OUT. THE TM= 2702 TIMER 1S5 DEDICATED TO TIMING

++
0225 »
E-3
+#+
0228 * THE INTERVAL BETWEEN KEYROARD SCANS, IT IS SET
3+
+*
#

-

0229 IN THIS ROUTINE, AND THE KEYBOARD CHARACTER BUFFER
0230 1% CLEARED 0OUT, AS WELL AS THE AFPFROFRIATE FLAGS RESE
i 1 U
0232 0184 FF1& KYINIT DATA KYEDWF, KYENT

0136 0138~

0Z32 0188 0207 KYENT L1 7,327 # WORD= IN BLIFFER
O123A 0025
0Z24 013C Q208 LI £, EYRUF EEYROARD INFUT EBUFFER

O13E FEF3

Q225 01720 Q04F2 LOOF CLR #2+ WIFE TWD BYTES OUT
Q234 0122 0609 DEC %2 # OF WORDZ LEFT
0z%7 0194 14FD JNE LOOF GO BACE
QZ33 01246 Q4002 LR 2 CLEAR INDEX FTR: NEW LINE
0229 0198 04C2 CLR & CLEAR STROBE FLAG
0240 0124 0410 CLR 'D CLEAR NEW-LINE FLAMG
0241 O19C 04C1 ELR. '} CLEAR DATA AREA
Q242 OL12E Q200 M Qs 208 75 SCANZ /7 SECOND
01480 OO0O
02437 0O1AZ 0420 ELWP @TIMEOZ S0 START TIMER
Q1RA4 01247
0244 O1AL OZE0 RTWF [IINE

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 8 of 12)

5-45

A8 01A=
01AA

Q1AL
0O1AE
D1RO

e 1§ 2t
O1R4
O1BL
O1RS
& O1RA
O1EBC
275 O1RE
0100

o1z
014
= 010
L QlCs
01CA
L L
OZzéA O1CE
0100
O1nz
o 0104
0105
(bR =
O10n
DY
Q10E
O1ED

TXMIRES
S
#*
3
i
&
24
B2
“*
+
*
5
%
-3
%
£
#*
+#
*
.2
o
+
*
FFiz INTAVLC
O1AC
B3
QzZ02 INAPLC
QOO
1014
#
OO
0120
|0 P
1204
1FO&
1&47
0403
1015
*
1FOZ SCAN
1213
Q703
SE0]
0z41
TFEOO

O2=1
O=Z00
1z00
0z21
TEOD
150G
o=s1

FEF=

[0

FAGE N00D

FEYROARD SCANMING ROUT IME

THIS ROUTINE SCANZ AN AZCII-ENCODED
COMNECTED DIRECTLY T THE FARNLLEL
170 BRITS 0O-7 ARE ASCIT LATHA. AND BLIT =
ENGE-TRIGGERED (HIGH-TO-LOW) =TROBE.

FEYEOARD
1/0 FORT,
15 AN

Fia.

THI= ROUTIME 1% EMTERED WHEN THE INTERVAL TIMER
IN THE THMS 2202 TIMES OUUT. THE INTERRUFT I3
ACENOWLEDGETD, AND THE =TNATE OF THE STROBE FL&A

1% SENMZED. IF PREVIOUILY TMACTIVE AND NOW ACTIVE,

A NEW CTHARACTER HAS AFFEARED ON THE I/0 FORT,

WHICH IS READ IMMEDIATELY. IF THE STROEE IS
INACTIVE.: OFR IF PREVICIEELY ACTIVE AND STILL ACTIVE,
THEN THE I/0 FORT IS IGNORED. WHEN A NEW CHARAGCTER
1% READ: THE STROBE FlLAG IZ ZET. AND I5 RESET

DNLY AFTER THE STROBE ROES INACTIVE.

CHARACTERE ARE COLLECTED IN THE EEYEROARD EBUFFEFR
AND WHEN A CARRIAGE RETURM I% INFUT, OR WHERN

THE EWFFER 1% FLLL, THE NEW-LINE FLAG IS ZET.

IT 1% AZSUMED THERE IS 0N ROUTINE SOMEWHERE

WHICH INZFECTS THE NEW-L INE FLAG, AND LIEEZ

THE COLLECTED DATA FOR SOME FURFSE.

OATA EYBDWF, INAFL
=902, TURM OFF INTERKLIFT
FIOINT TO

ADDRESS THE TM=

LI 12, 0080 a0

REZET INTERRLIFT

ADORE== THE TM= 2901, AND POLL THE EEYBOARD =TATUS
.1 12,0120 FARALLEL I/00 220)

MY H, 3 CHECE STRIOBE FLAG

JERY 8B REZET: ZIDAN KEYBOARD

TE & LOGgE. AT STROEBE

JANE GUBACE STILL LW FROM LAST CHAR
GLE 3 HIGH: DNONE WITH OLD CHAR
JAMFP GIOBACE SINCE NO CHAR. RETURN
STROBE FLAG WAS REZET. =0 SCAN EEYBOARD

TH = LDoE AT STRORBE

JEGR GORGTE HIGH: NO CHAR YET

SETO = SET STROBE FLAG, NEW CHAR
STCR 1,8 GRAE BYTE FROM EEYEOQARD
ANDI 1, =7F00 STRIF PARITY EIT

1 1, 20200 BACESFACE?

JEZ BE GO DD BACKESFACE

<) 1, >7F00 PDELETE LINE?

JEG TIEL G0 TDELETE LINE

MOVE 1, Q@EYRLF{(Z) FLUT CHAR IN EUFFER

INC Z CHAR PTR TO NXT LOC

CT 2472 END OF BUFFERT

Figure 5-16. Example Program Using Timer Interrupts 3 and 4 (Sheet 9 of 12)

5-U6

TEST

01EZ

=2 01E4

24 Q1lE&
OlEZ

0295 OLEA
0296 OLlEC

0228 01EE
0299 O1FO
0200 O1FZ
0z01 O1F4
0202
0203 O1FA
01F2
O1FA
0Z04 O1FC
0305 OLFE
0Z00
0z07z
OZ06 0OZ04
Q307 Q0204

0202 0208

Figure 5-16.

TXMIRA 92LZ2T7 ## ok

004z

1202
021
(@) ulals]
1202

Q220

0&OZ
10FLD
042
10C4A

DeA0

0zOR"

FEF =
osaz

0=a0

Q209

FEF3
Q700
10ED
QOnoo

-

SOBAICE,
3*

BS

DEL

#
LINE

LINEX

o
o
n
h.‘
I
i
[
k3
S
~
(i x]

FAGE 0010

JEE LINE YES, FORGE LINE DIINE
3| 1, 0000 CARRIAGE RETIUIRN 7
JEE LINEX YEZ, SET END-OF-L. INE
RTWF DIONE

SFECIAL CHARACTER HANDLING ROJTINES

DEC 2 MOVE INDEX BACE

JAMF GORACK

CUR 2 CLEAR INDEX

JME RETLIRN
BUFFER OVERFLOW HANDLIMNG ROUTINE

MOVE @CRX.@EYERLUF (2) FORCE <CR>
INC 2 BLIMF FOINTER FOR NULL BYTE

MOVE @CRX+1,@KYBUF(Z) NULL DIT EMD OF LINE

SETO O TURN LINE FLAG ON
JMF RETUIRN
DATA 0000

Example Program Using Timer Interrupts 3 and 4 (Sheet 10 of 12)

5-47

TEST

0310
0311
0312
0313

0314
0315
0316
0317

o318

0319
0320
0321
0322

0323
0324
0325
0326
0327
0323
0329
0330
0331

0332
0333
0334
N335
03346
0337
0338
0339

020A
Q20C
0Z0E
0210
0z12
0214
0216
0218
021A
0Z1E
021E
0220
0222
0224
0z2z24
0223
0Z2A
Q22C
02ZZE
0230
0232
0zZ34
Q224
0232
0Z3A
023C
OZ22E
0240
0242
0244
0Z44
0248
0244
024
QZA4E
0250

TXMIRA 936227 #x

FF78
0Z0E~“
cCOo30
CosD
o440
0202
0004
0203
02483~
04C4
2173
C180
0244
QOO0OF
C184
1303
ALOS
0606
1&6FD
0740
Q&LO0Z
146F4
0241
DOO0OF
1204
C153
A10S
0601
14FL
Z744
Qz20
0001
QO00A
00L4
OZEE
2710

Figure 5-16.

08:05:22

122/78 PAGE 0011

%*

DECIMAL TO HEXADECIMAL CONVERSION ROUTINE

GET 4 LSD’S
GET 1 MSD
RESTORE QLD WP
SET UP COUNTER

ADDRESS OF MULTIPLY TABLE

CLEAR SUM

GET MULTIPLIER
COPY OVER INPUT
STRIP WANTED DIGIT

IS NEW DIGIT ZEROQ 7
YES, SKIP ADDITIONS

ADD INTO SUM

ODECREMENT COLUNTER

IF NOT DONE, JUMP BACK
MOVE NEXT DIGIT QVER
DECREMENT LDIGIT COUNTER
IF NOT ALL DIGITS, JUMP
LOCOK. AT MSD ONLY

IF 2ER0O, EXIT

GET 10 K VALUE

ADD IT ON

DECREMENT THE COUNTER
IF NOT ZERO, JUMP

PLUT DATA IN OLD REGS.
RETLIRN

3
1 g
DECHEX DATA >FF78,DECHI1
DECH1I MOV #13+,0

MOV #13,1

DECT 13

LI 2.4

18§ 3. MULT

CLR 4
DECHZ MOV #3+,5

MOV 0,4

ANDI &, >F

MOV & A

JER DECH4
DECHZ A 5.4

DEC &

JNE DECHZ
DECH4 SRL 0.4

DEC 2

JNE DECHZ

ANDI 1,>F

JEE DECHA

MOV #3,5
DECHS A 5,4

DEE . &

JNE DECHS
DECHS MOV 4,#13

RTWF
MULT DATA 1,10,100,1000, 10000

Example Program Using Timer Interrupts 3 and 4 (Sheet 11 of 12)

TEST

0241
0242
0343
0z44

0345
0344
03247

0z48

03z4%2
0350
03251
0352
03532
0254
Q355
035A
0357
03583
0359
0260
0361
0362
0363
0364
0365
Q364
03267
0343
03469
0370
0371

0000 ERRORS

0252
0254
Q254
0253
0Z5A
0250
025E
0260
0262
0264
Q2&b
02463
Q2Z4A
02460C
QZLE
0270
0272
0274
Q27&
0272
0zZ7A
027C
027E
0230
0zez
0Z24
Q2es

FF72
02567
CORD
04120
0z04
Q004
0205
000/
OB4O
cogz
120C
cocz
Q4c2
2035
EQOZ
0604
16F7
QOR40
co4z
Cc741
Q&40
Z740
0zZe0
0OB40
0&04
146FD
10F7

Figure 5-16.

HEXADECIMAL TO

HEXDEC DATA >FF72,HEXD1

HEXLD1 MOV
CLR
L1

LI

HEXDZ SRC
MoV
JEG
MOV
CLR
DIv
sS0C
DEC
UNE
SRC

HEXD4 MOV
Moy
DECT
MOy
RTWF

HEXD32 SRC
DEC
JNE
JMP

* k%

ENL

.10

0,4
2.2
HEXDZ
T2

2

Sa 2
20

4
HEXLDZ
0,4
2,1
1,#13
1z

0, #13

0,4
4

HEXD3
HEXD'4

FROGRAM END

DECIMAL

CONVERZION ROUTINE

GET HEX VALLE
CLEAR RETLIRN VALLUE
ZET UF COUNTER

DIVIZOR IS 10

MAKE ROOM FOR NEW DATA

IS QUOTIENT > O ?

IF NO, IMF

SET UP FOR NEXT DIVIDE

CLEAR UPFER HALF COF DOUBRLEWORD
DIVIDE BY 10

PUT NEW DATA IN O

DECREMENT CILINTER

IF NOT DONE. JUMF BACK

MOVE DATA OVER 1 NIBBLE

SET P MsDh

FUT DATA IN CALLER REG,1

OLD WP ADDRESS

PUT DATA IN CALLER REG.O

EXIT

MOVE DATA OVER

DECREMENT COUNTER

IF NOT DONE., CONTINUE SHIFTING
GO XFER DATA AND EXIT

Example Program Using Timer Interrupts 3 and 4 (Sheet 12 of 12)

5-49

5-10 MOVE BLOCK FOLLOWING PASSING OF PARAMETERS

The coding in Figure 5-17 is an example of a called subroutine that will move a block
of data from one location to another. The three parameters of (1) move-from address,
(2) move-to address, and (3) length of block are provided to the subroutine either
through registers 0 to 2, or by the three words following the calling program's BLWP
insruction, or by a combination of both. The block move subroutine first interrogates
the words following the calling program's BLWP instruction; if a zero is found, it
looks in a register for the parameter. In Figure 5-17, the calling program provides
the move-from and bleock length parameters in registers, and the move-to parameter in

the second word following the BLWP instruction.

LI

RO,>F100 MOVE-FROM ADDRESS
LI R2,125 MOVE 125 BYTES
BLWP @MVBLK BRANCH TO SUBROUTINE
DATA 0 MOVE-FROM ADDR IN RO
DATA >F200 MOVE-TO ADDRESS
DATA 0 BYTE COUNT IN R2

(a) Calling Program
MVBLK DATA >FF90,MVBLK1 WP, PC OF SUBROUTINE
MVBLK1 MOV 13,12 SAVE WP
MOV ® 14,1 GET "FROM" ADR
JNE MVBLK?Z2 NON-ZERO: PARM IN-LINE
MOV ¥13+,1 PICK UP FROM REG INSTEAD
MVEBLK?2 MOV #1442 GET "TO" ADR
JNE MVBLK?3 PARM IN IN-LINE CODE
MOV *#13+,2 GET FROM REGS
MVBLK3 MOV ®#14+,3 GET LENGTH
JNE MVBLKUY IN-LINE PARM
MOV *13,3 GET FROM REGS
MVBLKY MOVB #4, #2024 MOVE BYTE
DEC 3 ONE LESS TO GO
JNE MVBLKY NOT DONE YET
MOV 12513 RESTORE WP
RTWP RETURN TO CALLING PROGRAM
(b) Move Block Subroutine

Figure 5-17.

Move Block of Bytes Example Subroutine

5=50

5.11 BLOCK COMPARE SUBROUTINE

Figure 5-18 shows a sample block-compare subroutine which accepts three parameters
from the calling program, in the same manner as the block-move subroutine (paragraph
5.10.1). This compare subroutine inspects two strings, comparing successive bytes
until an unequal byte is found or until the specified string length is exhausted. The
Status Register bits in register 15 are updated accordingly, and the subroutine
returns to the calling routine with the altered status bits, which may be used
immediately for conditional jumps.

The sample calling program is at the top of Figure 5-18. Note that the conditional
Jumps follow directly after the calling code, so the calling program simply compares
(through the subroutine) and jumps, in the normal programming manner.

LI RO,>F100 FIRST BLOCK START ADDRESS

LI R1,>F200 SECOND BLOCK START ADDRESS
BLWP @CMBLK BRANCH TO SUBROUTINE

DATA 0 START ADDR. IN RO (1ST BLOCK)
DATA 0 START ADDR. IN R1 (2ND BLOCK)
DATA 100 COMPARE 100 BYTES

JLE $+10 IF LESS THAN OR EQUAL, JUMP
JGT IF GREATER THAN, JUMP

(a) Calling Program

CMBLK DATA >FF90,CMBLK1 WP, PC OF SUBROUTINE
CMBLK1 MOV 13,12 SAVE WP

MOV L R GET "A™ ADR

JNE CMBLK?2

MOV ¥13+4,1 GET IN CALLER REG
CMBLK2 MOV ¥4, 2 GET "B"™ ADDR

JNE CMBLK3

MOV %¥13+,2 GET FROM IN CALLER REG
CMBLK3 MOV ¥14+,3 GET LENGTH

JNE CMBLKU4

MOV %#13,3 GET FROM REG
CMBLK4 CB 14, %24 LOOK AT STRINGS

JNE CMBLKS FOUND UNEQUAL

DEC 3 ONE LESS BYTE

JNE CMBLKA4 STILL MORE TO LOOK AT
CMBLKS STST 15 STORE FINAL STATUS

RTWP RETURN TO CALLING PROGRAM

(b) Compare Block Subroutine

Figure 5-18. Compare Blocks of Bytes Example Subroutine

5-51

5.12 UNIT ID DIP-SWITCH

The Unit ID switch is a very versatile piece of hardware. The practical uses of this
small device are limited only by the imagination. The proper way to read the switch
settings is shown in Figure 5-19.

One example use of the switch is in a multidrop environment where each board on the
communications line is assigned an ID number through the settings on the switch. The
same software can be used in all the boards in the system, instead of having to
maintain up to 32 separate copies, each unique only in an I.D. field. Figure 5-20
shows an example program segment in a communications routine.

Another example for use is in systems configuration. Whereas the main communications
port (P2) is designed for use specifically for a terminal, the auxiliary
communications port (P3) is a general purpose RS-232 port and can be connected to
modems, serial line printers, device interfaces such as cassette or floppy disk
controllers, etc., as well as terminals. The switch can be set to indicate the nature
and baud rate of the device attached to the remote port. Figure 5-21 shows a progran
segment example.

5.13 CRU ADDRESSABLE LED

The light-emitting diode (LED) DS1 on the TM 990/101M is addressable through the CRU
at software base address 00001g. Writing a zero to the LED turns it on and writing a
one turns it off. Figure 5-22 shows a sample routine to blink the LED on and off once
a second, using the TMS 9901 timer. The LED is on for one-quarter second and off for
three-quarters of a second.

5.14 CRU ADDRESSABLE LED

The TIBUG XOP routines (XOP 8 to 14) are written to accomplish input and output
through a TMS 9902. When the TIBUG monitor is entered, the address for all I/0
is directed to the main TMS 9902 (through connector P2). Any time a user program
branches bacx into TIBUG at address 008045 or when a RESET function is activated, the
CRU address is set to the main TMS 9902. However, a user program may use all of the
above-mentioned XOP calls to program any TMS 9902 in the system by first moving the
software base address of the desired TMS Y902 into R12 of the I/0 routines; this
register is located at M.A. FFDEqg. In other words, move the software base address
for the TMS 9902 (board addresses shown in Table 5-3) into memory address FFDE4g.
Figure 5-23 is an example where both serial I/0 ports of the TM 990/101M are activated
for conversation to each other. Two terminals are assumed to be connected, one to each
port, and the operators may type messages to each other. This principle can be
expanded to support any of a number of TMS 9902-controlled serial I/0 ports. (A
variety of custom line interfaces may be used with a TMS 9902.)

The write character XOP service routine first ensures that the Request-to-Sent signal
is active. This signal is not deactivated by TIBUG so that modem users will retain
their data carrier. If a modem user wishes to drop the data carrier, the affected TMS
9902 must be addressed by the user program, and then the Request-to-Send signal is
deactivated through the CRU.

Only the main TMS 9902, at CRU software base address 008016 is initialized by TIBUG;
other TMS 9902's in a system must be initialized by the user. Note the first portion
of the example program in Figure 5-23. Part of TIBUG's initialization is to sense the
baud rate of the attached terminal. If the baud rate is 110, 300, or 1200 baud, then
the XOP routine waits 200 milliseconds after transmitting a carriage return. In
addition, 1200 baud causes every character transmitted to be followed by 25

milliseconds of delay time. Only at 2400 and 9600 baud are characters transmitted
without delays.

For 110, 300, and 1200 baud, the monitor ASRFLAG is set to one to cause a wait state
following writing of a carriage return. If the TIBUG I/0 XOP routines are used for
other I/0 ports, the state of the monitor's ASRFLAG will also govern delay loops used
by the Write Character XOP. The user should then swap out the contents of the ASRFLAG
(memory address FFF416) with one of the three values of ASRFLAG as listed in Table
5-7.

SWITCH 5 LsB WHEN READ

T SET TO ON, ZERO READ (GROUNDED) ;
0
N
0
F
F

1 2 3 4 4

N

5 A
\ SET TO OFF, ONE READ

SWITCH 1 MSB WHEN READ

NOTE
If all five switch settings are stored (using CRU),
switch 1 would be the MSB and switch 5 would be the LSB.
For example, if switch 1 was set to OFF, and the others
set to ON, storage of the five settings would be
represented by 104 or 10000,. Code to store the switch
contents in register 0 is shown below:

®READING THE DIP SWITCH

CLR RO CLEAR HOLDING AREA
LI R12,>40 DIP SWITCH ADDRESS
STCR RO,5 SWITCH VALUES IN REGISTER 0

Figure 5-19. Reading the DIP Switch

=23

MULTIDROF

REGIZTER
CLR
LI

1 CONTAING
RO
R1%. -0

STCR RO S

i
EG

R+ R1
PROCES

BLWF @CLRBUF

RTWF

Figure

SYSTEM WITH DIF
DEZIRED

SWITCH

1D VALLUE
CLEAR HOLDING AREN
DIF SWITCH ADDRESS

SWITCOH VALUES IM REG. O
1% HME==AGE FOR MET

YEZ, B0 PROGESS 17

M, CLEAR BUFFER

FETLRN BACE T RESCHEDULE

5-20. Example Code The Check Board ID at DIP Switch

for Multidrop Environment

SYSTEM:= COMFIGURATION EXAMFLE

CLE
LT

STCR
LT

(WA
JNE
=ZRL
A B
JER
SRL
GZE
JE
SRL
(A
ED
=N
CZC
JER
XaF

Figure

RO
R1Z, 240

R, 5
R1,3x10

R1,RO
MOTIUZ
Ri.1
R1:R0O
TERMNL.
R1.1
R1.RO
MODEM
Ri.1
R1,R0O
IODEY
Ri1.1
Fi1.RO
FRNTR
@SYSERR-. 14

CLEAR HOLDING AREN
DIF SWITCH CRU ADDRERS

SWITCH WYALLIET IN REG. ©
LanD "1 RBIT FOR WALEIMG COMEN

I REMOTE FORT UWSED?

N, JUME DT OF ROUTINE

SET TOQ 08 FOR CHECE

IDZ: IZ TERMINAL CONNECTEDT
YE=, IE, 104, 105 - BALD RATE
NO, SET TO 204 FOR CHECE

IDZ: MODEM CONNECTEDRT

YE=Z, ID4, IDS = MODEM TYFE

NCO, SET TO 402 TO CHECE IDA
ID4: I/0 DEVICE CONTROLLERT
YES, 105, 1 = TAFE. O = FLOFPY
MO, SET TO 201 TO CHECE ID4
IDS: SERIAL LINE FRIMTER?

YE=

N, FRINT ERROR MESSAGE

BECALISE WRONG SWITCH SETTINGE

5-21. Coding Example to Ascertain System Configuration

Through DIP Switch Settings

5-5Y4

BLINK

0001
0002
0003
Q004
0005
Q004
0007
[alala}=]
00n0e
0010
o011
0012
0013
0014
0015
Q014
0017
oo1g

0019
O0Z0

0021
0022

Q023

0024

0025
0024
0027

00z

QOZY

0032
0033
00=4
D035
0034

0027

Figure

FCO0

FCOO
FCo2
FiZ04
FCO4A
FCog
FCOA
FCoC
FCOE
FC10
FC1Z2
FC14
FC14
FCig

FC1A
FClE
FCILIE
FCZ0
FC22
FC-Z24
FC2&
FZ232
FC2ZA
FCzC
FLZE
FC30
FC=2
FCZz4
FC2A
FCz2
FCZA

TXMIRA

OZEQ
FFOQOQ
CO&O
Q00E
0202
0420
CcCc4z
0Z02
FOOO
cCcAz
Q202
QZ220
-442

OZ00
0000
QzZoC
0100
0Z0z
0200
0204
0200
QZ0%
0003
2104
20232
04CT
1000
QzZ00
QDO
10FF

de o o % ok ok ok ok ok ok % ok ok ok

33

P3L227 ** 14:02: 22 121/78 FPAGE 0001

IDT “BLINK~"
4 # #* * #* # # #* #* # # # #* #
THIS PROGRAM SETS UP THE INTERRUPT LINEING AREA AND THE
TIMER AT THE TMZ 9901. IT EXECUTES THE TIMER. WHEN THE
THE TIMER COUNTS DOWN. AN INTERRUFT IS EXECUTED THROUGH
INTERRUFT TRAF = WHICH TRANSFERZ CONTROL TO THE ISR AT
THE BOTTOM OF THIS LISTING. THE CALLING PROGRAM AND ISR
USE THE ZAME WORKSFACE (>FF00). THIS PROGRAM IS CODED
AT ABRSOLUTE ADDRESSES USING THE AORG ASSEMBLER DIRECTIVE
THUS, IT CAN BE CODED USING THE LINE-BY-LINE ASSEMELER
WITH THE SLASH COMMAND USED INSTEAD OF THE AODRSG COMMAND.
#* #* #* * #* # #* # # # #* # * #

CALLING FROGRAM

AORG FCO0D BEGIN CODE AT M.A. FCOO

SET UP INTZ2 LINKING AREA
LWFI >FFOO WORESFACE ADDR (FOR BOTH FGM=)
MOV @F000E, 1 INTZ FC VECTOR T2 R1
X 2, 20420 FLACE BLWF MACH. CODE IN RZ
MOy 2, %1+ MOVE BLWF CODE TO LINE AREA
LI 2, >FDOO ADDRES= OF VECTORZE TO ISR
MOV 2, #1+ MOVE VECTOR ADDR TO LINK AREA
58 2. #0320 FLACE RTWF MACHINE CODE IN RZ
MOV 2, %1 MOVE RTWF TO LINE AREN

LOAD AND EXECUTE TIMER AT TMZ 2201
LIMI © DIZABLE INTERRLUFTS
LI 2, 0100 TMZ 201 CRL ADDRESS
11 e 0300 CLOCE. MODE, COUNT = 1
. § 4, 0200 INTERRUFT MODE, ENMNAELE INT:Z
LI T 3 INITIALIZE TIMER COUNTER
LOCR 4,4 ENAEBLE INTZ AT %201
LDCR 2,2 START CLOCE AT 2901
ckR, 12 y FOINT TO L.E.D.
SEO O TURN L.E.D. OFF
LIMI 3 ENABLE INTZ= AT TMZ 2200
JMP % WAIT HERE FOR INTERRLIFT

5-22. Coding Example to Blink L.E.D. On and OFF (Sheet 1 of 2)

5=55

NOTE:

BLINK

00329
040
0041
0042
0043

0044
0045

Q044
0047

Q004E
Q042

Q050
0051
0052
0053
Q054
0055
Q0S4
0057
Q05&

0059
OO&LD
0041
Q0&2

0046=
n0&4

0000 ERRORE

FOOO
FDOO
FLooO2
FOO4
FOOA
FLoO=
FDOA
FLooC
FDOE
FD10
FOiiz
FD14
FO1&
FD1&
FD1A
FD1c
FDIE

FD20
Fozz2
FD24
FD2&
FD22
FDZA
FD2C
FDZE
FD30
FO22
FD24
FO3é

TXMIRA 93L227

FFOO
Froo4
Q=00
Q000
OZ0C
0100
1003
0207
2009
0ALT
(sl -5
0001
S0 L
1EOQO
O4CEC
04605

Cc145
14064
1EOD
0zZ05
Q003
0200
0003

0320

1000
O=00
0003
Q280

+

INTERRLUFT
e

SERVICE ROUTINE

121173 FAGE 000z

AORG =FDOO BEGIN CODE AT M.A. >FLOO
OATA >FFOO, >FLO4 WF: FPC OF ISR
LIMI © DISABLE INTERRUFTE
LI 12,0100 TMS 2201 CRU ALDDRE=:S
SBED 3 CLEAR INTERRUFT AT 2701
LI 2, 15425 1/4 SECOND COUNT FOR TM=Z 29901
sSLA 7.1 SHIFT CLOQCE COUNT
IRI 751 SET CLOCK MODE
LOCR #,1% START CLOCE
SBZ O SET INTERRUFT MODE AT 2201
CLR 12 L.E.D. CRLU ADDRESE
DEC 5 DECREMENT COLUNTER
SET L.E.O. TO ON OR OFF STATUS
MOV 5.5 REG. = = ZERO7?
JNE FIIZO0 NO, TLUREN OFF L.E.D.
SBZ 6 YES; TLWRN N L.E.D.
LI TR RELDOAD INTERRLUFT COUNT
LIMI =2 ENABLE INTZ
RTWF RETURN T FROGRAM
sBo O TURN 2JFF L.E.D
LIMI =2 ENARLE INT:=
RTWF RETLIRN TO FROGRAM
END

As an exercise, the user can load and exscute this code:
(1) load the machine code values shown in column 3 into
the memory locations shown in column 2, or (2) reassemble;
if the Line-By-Line Asssmbler (LBLA) is used, substitute the
slash command for the AORG directive and follow the
DATA and TEXT statement conventions for the LBLA. Ex-
ecute using the E TIBUG command.

Figure 5-22.

Coding Example to Blink L.E.D. On and Off (Sheet 2 of 2)

5-56

o

TWOTRM

0001
Q00zZ
0003
Q004
0005
Q00&
Q007
Q008
0007
Q010
0011
0012
0013
0014
Q013
0014
Q017
0018
001L?
0020
0021
0022
Q0232

0024

Q025
Q0zZ4A
0oz7
0023

Q02
0020
D0z1
0032
O0OZ3
0034
0035
O0O3=Rs

00z7

0028
003
0040
0041
00472
0043
0044
0045
0044

Q047
0042
0049

OO00
Q002
Q004
Q004

QOO
Q0oA
QOOC
OO0OE
0010
o012
o014
Q014
001E
001A
001C
O01E
Q020
00ZZ

Q024
0026
Qozs
O0ZA
QOZC
0OZE
0030
0022
Q00z4
QO34
alelcis

TXMIRA

QZEOD
QOCC”
QZ0C
01120

1D1iF
1000
32F0
OOR&
1EOD
O41C0
Q4Cz
1FOF
13FE
05230
1FOF
1&FD
0201
Q0AZ”

2040
1202
030C1
1OFC
2E11
Co51
nzel
O1A0
1103
1&02
Q702

Ao g ok ok ok ok A ok oAk ok oKk & ok ok ok ook ok %k Xk

*

SFLOOFP

#
#*
EDLOOF

MATCH

DIE227 w* 081118379 122/78 FAGE 0001

IDT “TWOTRM~
TWD TERMINAL PROGRAM EXAMPLE
THIZ ROUTINE INITIALIZES THE AUXILIARY I1/0 FORT
OF THE TM?20/101M MICROCOMPUTER. BOTH SERIAL
FORTS ARE THEN USED IN A CONVERZATIONAL MIDE
WITH EACH DOTHER. THE FROCEDURE IS5 TO INSPECT
THE RECEIVE BLUFFER EBIT IN THE ADDRESSED TMS?%02
TO SEE IF A CHARACTER HAS BEEN ASSEMBLED
IN THE UART. IF =0, 1T IS ECHOED TO THE
ORIGINATING TERMINAL. AND THEN TRANSMITTED
T THE OTHER TERMINAL. THEN THE OTHER
TERMINAL IS INSPECTED FOR A CHARACTER. ETC.
THE FOINTE TO NOTE ARE:
1) THE AUXILIARY TMS920Z MUST BE INITIALIZED.
2) THE OLD "ASR"-FLAG MUST BE SAVELD,
AND A NEW ONE DETERMINED FOR THE
NEW TERMINAL (AUXILIARY FORT).
3) EVERY WRITE OPERATION CONSISTS DF
MOVING THE DESIRED ADDRESS TO TIBUG,
AND MOVING THE DESIRED "ASR"-FLAG TO TIBLUG.

LWFI REGS IISE SPARE SFACE AT END OF PROG
=¥ 12,0180 AUXILIARY FORT ADDRESS
INITIALIZE AUXILIARY SERIAL FORT

spO 31 RESET UART

NOP RESET TIMING DELAY

LOCR @CTL.2 LOAD CONTROL CHARACTER

SHZ 13 BYFASS INTERVAL REGISTER

CLR o BALUD RATE LOOP COUNTER

CLR Z AZR FLAG FOR THIS FORT

TB 15 LODE, AT RIN

JER TSTSP WAIT FOR USER TO TYFE SOMETHIN
INZ O P BALD LOOP COUNTER

TR 15 RIN NOW HAS A SFACE:

JANE SPLOOP DROP QUT ON A MAREK

1L 1.TABLE BALD RATE TAELE

NOW INSPECT BALID RATE TAEBLE FOR A LOOF
COUNT WHICH MATCHES. THEN LOAD BAUD RATE.

ic 0,#1+ LOOK AT ATELE LOOFP COUNT

JLE MATICH IF < OR = WE HAVE A MATCH
INCT 1 SEIF BAD BAULD RATE. NEXT LOGF
JMF BOLOOF Lok, AT NEXT LOOP COUNT

LOCR #1,12 LOADRY BALID RATE CONTROL VALLE
MOV #1,.1 GET VALLE ITSELF

CI 1,201A0 1200 BAULD 7

JLT HIRATE NCO. HIGHER BAULD RATE

JNE BEGIN NO. LOWER BAWUD RATE

SETO 2 SET LOCAL AZR FLAG

Figure 5-23. Example Program to Converse Through

Main and Auxiliary TMS 9902's (Sheet 1 of 3)

557

TWITRM

0050
oS
Q052
00s3

Q0O5A
0057

Q0%

0052
OOAD
0041
Q0AZ
004&3
QA4
00465
Q0LL
Q0&7
004L=
00L&
QO70

0071
07z

Q073
0074
0075
Q076
Q077
00753
00779
00g0

0031
o082

O0ZA
OOE0

QOZE
Q040
004z
0044
0044
0042
004/
Q04C
Q04E
Q050
0052
0054
QOSA
0oss
00O5A
0050
O0SE

QOAQ
DOAZ
0044
O0&L
006
00AA
QOA&LC
OOAE
Q070
0072
Q074
0074
0078
00747
007C
0O0O7E
0030
0032
0034
0084
0033
008A
DO
Q0CE
0090
o092
0094
Q096
0023
O0%A
QOIC

TXMIRA 226227 #+# 02:11:39 122/73 FAGE 0002
1001 JUMP EEGIN ANDO FRINT BEGIN MESZAGE
OS2 HIRATE INC MAREK, NO <CR> DELAY
THE AHXILIﬁRY FORT IS NOW IUFP. PRINT GREETING,
CE20 BEGIN MOV @X1320,@XOPCRU AllX. PORT ADR. TO TIBLWG
O0OAD”
FFDE
COEQ MOV RASRFLG, = SAVE MAIN FORT ASR-FLAG
FFF4
a0z MOV 2, @ASRFLG AUX. FORT ASR-FLAG
FFF4
2F 40 XOF 0,13 READ BY OLD IMIT. CHAR.
ZFAQ XOF @RGNMZG, 14 FRINT BEGIN MESSAGE
OOB7~
Ca20 MOV @XE0, eXOFCRL MAIN FORT ADR ToO TIELG
QOFE”
EFDE .
ce0z MQV 2, @ASRFLG MAIN FORT ASR-FLAG
FFF4
ZFA0 XOF @HBGNMSG. 14 FRINT BEGIN MESSAGE HERE, ToOO
OOB7” {
* THIS IS THE MAIN LOOF.
* FIRST ADDREZS MAIN PORT. THEN THE AUXILIARY FORT
C320 LOOP MOV @X80,12 ADDREZS FOR MAIN FORT
QO2E”
iIF1S TR 21 CHARACTER TYFPED HERE 7
140RB JNE NEXT N2, TRY OTHER PORT
CEoc Moy 12, @XOPCRL YES, GIVE ADDRESSE TO TIBUG
FFLDE
ca0z MOV 3, @ASRFLG MOVE ASR-FLAG
FFF4
ZECO XOF 0.11 READ/ECHO CHAR TO ORIGINATING
C220 MOV @X130,@X0OFCRL AUXILIARY PORT ADDRESS
QOAOD -
FFDE
ca0z MY 2, @ASRFLG AUXILIARY FORT ASR-FLAG
FFF4
ZF00 XOF 0,12 WRITE CHARACTER TO OTHER TERMI
C320 NEXT MOV exiz20,12 ADDRESS FOR AUXILIARY FORT
QOAO~
1F1S TE 21 CHARACTER TYFED HERE 7
14ED JNE LDOF ND, TRY MAIN FORT
Cc20c MOV 12, @X0OFCRLU YES, GIVE ADDRESS TO TIRUG
FFDE
cC202 MOV 2, RASRFLG MOVE ASR-FLAG
FFF4
ZECO XaF 0,11 READ/ECHDO CHAR TO ORIGINATING
C320 MOV @X230,eX0PCRU MAIN PORT ADDRESS
QO%E~
FFDE)
Ccg0z MOV 3, @ASRFLG MAIN FORT ASR-FLAG
FFF4
2F 00 XOF 0,12 WRITE CHARACTER TO MAIN TERMIN
10E1 JMP - LOOP
o —— e et e e e e et e . e e

Figure 5-23.

Example Program to Converse Through

Main and Auxiliary TMS 9902's (Sheet 2 of 3)

5-58

-_

TWATRM

00832
0024
0085 QO%E
003464 00AO0
0087
Q0s3
0089 00AZ
Q0A4q
0020 00A&
00AZ
00%1 00AA
QOAL
Q092 00AE
00BO
0093 Q0OBZ
00B4
Q024 0O0B&
0095 00R7
OORS
Q096 Q0B
0027 00CR2
OOCe
QOCA
Q092 Q0OCC
OOCE
aTa)als)
ooDz
QOn4g
o0né
QOng
Q0DA
QoD
QODE
QOEOQ
O0EZ2
OQE4
0O0E&
QOES
Q0EA
OO9Y

0000 ERRIORS

TXMIRA

0080
0180
FFF4
FFDE
0010
00324
0040
0ono
Q070
O1A0
QzZ00
0400
0400
04633

&2

oh

0A

4z

oD

OA

00
0000
0000
QOO0
Q000
0000
QOO0
Q000
Q000
Q000
0000
0000
QOO0
0000
0000
alalale]
Q000

Figure 5-23.

#* DATA
#*

X20 DATA
X180 DATA
ASRFLG EQU

XOPCRU EQU

TABLE DATA

DATA
OATA
DATA
DATA

BYTE
BYTE

CTL
BGNMS

(]

TEXT
BYTE

REGZ DATA

END

PBL227 #*#

03:11:329

AREA
>0020
>0130
>FFF4
>FFDE
>10,2>324
40, =00
70, F1A0
200,400
=400, A8

>62
>00, >0A

“BEGIN OPERATION-

>0D0, >04A, 200

122/72

MAIN PORT
AUXILIARY
TIBUG ASK
TIBUG XOP
24600 BALID
2400 BALD
1200 BAUD
200 RALUD

110 EBAULD

PAGE 0003

R1Z BASE ALDDRESS
PORT R12Z BASE ADDRES

FLAG ADDRESS
R12 ADDRESE

902z CONTROL

c}‘lo’oi 0.(" c” CJ‘I 0'! 07 c)'l c‘, c") c”c‘iﬂ, (_'

Example Program to Converse Through

Main and Auxiliary TMS 9902's (Sheet 3 of 3)

5=59

Table 5-7.

ASRFLAG Values

ASRFLAG
Value#®

Recommended Baud Rate

Description/Recommendations

Positive No.

Zero

Negative No.

2400, 9600
110, 300
1200

No delays. Use for CRT's, modems.

Carriage Return Delay only. Use for hardcopy
terminals.

Carriage Return and Character padding delays.
Use with "T" command if terminal is not a
TL 733

¥ASRFLAG located in RAM at M.A. FFF416

5-60

.

SECTION 6

THEORY OF OPERATION

6.1 GENERAL

This section presents the theory of operation of the TM 990/101M microcomputer.
Information in the following manuals can be used to supplement material in this
section:

® TMS 9900 Microprocessor Data Manual

® TMS 9901 Programmable Systems Interface Data Manual

TMS 9902 Asynchronous Communications Controller Data Manual
e TTL Data Book, Second Edition

® Bipolar Microcomputer Components Data Book

° The MOS Memory Data Book.

Figure 6-1 shows a block diagram of the TM 990/101M, highlighting the four major
buses:

] Address bus

@ Control bus

e Data bus

® Communications register unit (CRU) bus

In normal operation the TMS 9900 microprocessor commands the address bus and most of
the control bus; the data bus is bidirectional, driven by both the microprocessor and
the memory devices. The two-line CRU bus is not bidirectional; the serial output line
is microprocessor driven and the serial input line is driven by the CRU device.

The major features of the TM 990/101M microcomputer board are the clock driver, the
microprocessor, the TMS 9901, the two TMS 9902's and peripheral circuitry, the
bidirectional and normal backplane buffers, the EPROM, the RAM, the additional CRU
devices, and the miscellaneous signals. These features are discussed in the following
paragraphs of this section.

6.2 POWER SPECIFICATIONS

Approximate power values required by the TM 990/101M-1 are listed in the following
table:

Current
=12V +5V +12V Watts
Typical 0.24 1.8A 0.25A 15.0W
Maximum 0.35A 2.5A 0.3A 19.7W

¢-9

"1-9 eunatd

weddeTq A00TH WLOL/066 WL

e i
— 2% 8vrE 2KBYTE <— —_>
™S ™S BUFFER
—MN 20855 4045's CONTROL
_V (four) (four)
MEMORY
ADRESS (2716
DECODE |V
™S ™S
J\ 2708 2708)
| r2me 12716 MisC
CONTROL
4 DATA ADDRESS SIGNAL
o T T -2708 BUFFERS BUFFERS and
5 jr—r_/ 7168 CRU
[2 BUFFERS
£
4
g ™S ™S
MEMORY | 2708 } 2708 »
M CONTROL ;s V] 27T !
i | 16 MISC. g
I DATA BUS S CONTROL -
TIM cLocK t
s i [CONTROL BUS i
REGET ADDRESS BUS 15 CNTL
™S
2300
<
CRU BUS —
CRU RS-232 =1
ADDRESS <o | TERMINAL
RESET DECODE
g | LOAD g | semiaL
-
RESET) l I [i 5 PCART
=k FLREX 9902 TTY or z
= INTERRUPTS PR z
Q
INT1-INT15 14 sids <—| <
9901 w
EDGE MICROTER-
INTS o
INTE+ TRIGGER MINAL
LOGIC
INT6— _
INTEL T
™S
St >| Rsz3: e
/9903 TERMINAL
9 7
SERIAL
PORT
J B

SHARED /0 DEDICATED I/0

l

EDGE CONNECTOR

]

PARALLEL PORT

L.E.D.

/——" DTR
=

DiP
SWITCH

EIA CONNECTOR

SYSTEM EDGE CONNECTOR

L

The supply =5V is derived on the board by the UAT905 regulator from the =12V line
supplied from off board. The -5V supply is used primarily by the TMS 9900
microprocessor and the TMS 2708/2716 EPROM's for back-biasing the substrate, and by
the multidrop interface as a supply voltage. The -12V supply is used for the EIA line
drivers as well as for supplying the voltage to the -5V regulator.

The +12V supply is used by the TMS 9900 microprocessor and the TMS 2708/2716 EPROM's
as the main voltage supply since these are MOS parts. The +12V also is used for the
EIA line drivers.

All integrated circuits on the board, except the EIA line drivers, use the +5V supply,
and because of the heavy load this voltage is not derived by an on-board regulator but
must be supplied from off the board. The MOS parts use this supply for TTL
compatibility, and, in fact, the TMS 9901, 9902, 9903, and 4045 use only this voltage
for supply since they contain internal charge pumps, eliminating the need for -5 or
+12V in their operation.

Table 6~1 lists the pin assignments of each integrated circuit for the supply voltages
each uses.

Table 6-1. Device Supply Voltage Pin Assignments
SUPPLY VOLTAGES TO PIN NUMBER
Device =12V -5V GND +5V +12V

TMS 9900 1 26,40 2,59 27
™S 9901 16 4o
T™MS 9902 9 18
TMS 9902/03 socket 9 20
TMS 9904 3,10 20 13
TMS 4045 9 18
TMS 2708/2716 21 12 24 ‘ 19
THLS241, THLS245 10 20
75188 1 7 14
75189 T 14
75154 8 15
75107 13 T 14
75112 ¢ | i 14
T4L5138, 153, 251, 259; TuS287 8 16
THLSXX b g 14

6-3

6.3 SYSTEM STRUCTURE

The block diagram in Figure 6-1 shows the system structure of the TM 990/101M
microcomputer board. The microcomputer design centers around five buses: power,
control, address, data, and CRU. The major blocks of the system are the processor, the
miscellaneous control signals, address decoding, on-board memory, the TMS 9901, and
two TMS 9902 serial ports, and the miscellaneous CRU devices.

Functionally, these major blocks represent the processing, memory and I/0 portions of
the microcomputer.

Throughout the remainder of this section, each block's funection is discussed, grouping
the explanations into three categories: processing, memory, and I/0. The first subject
is the buses since the buses tie all the blocks together.

The power bus is explained in paragraph 6.2 above, so the following paragraph deals
with the remaining buses.

6.4 SYSTEM BUSES

The four major buses are subdivided by function in Table 6-2. By referring to the
schematies in Appendix G, each random logic line as well as the bus lines can all be
traced. All bus signals appear on connector P1.

6.4.1 ADDRESS BUS

The 16-1line address bus consists of lines A0 through A15. Only 15 of these, A0 through
A14, are normally used for addressing memory. Memory access deals with a 16-bit word,
and A15, the byte address bit, is not brought out of the TMS 9900 since byte
operations are handled by fetching a 16-bit word into the processor, and modifying the
addressed byte, rewriting the 16-bit word back to memory if necessary. Therefore, A15
appears only on connector P1 and is grounded to show a zero off-board, thereby
fetching words on even address boundaries.

On the board the address lines are routed to the address decoding PROM which, with
MEMEN, selects on-board memory if the address presented lies within the limits of the
memory map programmed into the PROM.

Lines A0, A1, and A2 also are routed to the THLS138 external instruction decoder
where, upon a CRUCLK pulse, the state of the address lines determines whether a CRU
operation (A0, A1, A2 = 0) or an external instruction is occurring. This leaves A3
through A14 for CRU addressing; A3 through A14 are routed to the I/0 decode logie and
the CRU devices.

6.4.2 DATA BUS

The data bus consists of 16 bidirectional lines which are routed from the processor to
the on-board memory and to the bidirectional buffers for off-board use. DO is the most
significant bit, and D15 is the least significant bit.

6.4.3 CRU BUS

The three lines in the CRU bus are CRUIN, CRUOUT, and CRUCLK. Whenever an address is
present on the address bus and MEMEN is not also active, a CRU operation is
assumed. Note that even if some CRU device responds to the address bus while it
changes value or is in any way invalid, no harm is done because the data presented to
CRUIN by the addressed device will be ignored by the processor. Since the processor
will poll CRUIN only when required, CRU address decoding is simplified.

6-U

Table 6-2. Bus Signals

Signal ~ Functional Device Connections
Address Bus
AO, A1, A2 Address decode PROM, external instruction decode
A3, A4 Address decode PROM, CRU decode logic, TMS 2716 EPROM
A5, A6, A7, A8, A9 CRU decode logic, all memory devices
A10, A1, A12 All memory devices, TMS 9901, TMS 9902/3, one T4LS251
A13, A4 All memory devices, TMS 9901, TMS 9902/3, both T4LS251's
(A15.B) Byte indicator: always zero, off-board signal only
Data Bus
DO-D7 Most significant byte, 1 EPROM/byte, 2 TMS 4045/byte
D8-D15 Least significant byte, 1 EPROM/byte, 2 TMS 4045/byte
CRU Bus
CRUIN CRU input line, TMS 9901, TMS 9902/3, T4LS251 (TIM9905)
CRUOUT CRU output line, TMS 9901, TMS 9902/3 TA4LS259 (TIM9906)
CRUCLKB CRU clock, TMS 9901, TMS 9902/3, TuLS251 (TIM9905),

74LS259 (TIM9906), Edge-triggered logic

Control Bus
Memory control: address decode PROM

DBIN Memory control: RAM decode logic, data bus buffer control
WE Memory control: RAM decode logic, all TMS 4045 RAM's
MEMCYC Memory control: off-board only

READY Memory control: slow EPROM logic, off-board WAIT state
Auxiliary Control

91, #3 Clock: TMS 9901, TMS 9902/3, RESET/LOAD logic

‘EXTCLK.B, CLK.B Clock: off-board only

PRES.B, RESTART.B,
RST, COAD, TORST.B RESET/LOAD logic, TMS 9900, TMS 9901

INT1-INT6 Interrupt Control: dedicated TMS 9901
INT7-INT15 Interrupt Control: shared I/0, TMS 9901

HOLD, HOLDA Address, Data, Memory Control for DMA: TMS 9900
IAQ Miscellaneous: TMS 9900

6-5

When an address is present on the address bus and MEMEN is not aective and if AO, A1,
and A2 are all zero, the CRUCLK pulse is gated through the external instruction
decoder, and any data on CRUOUT is strobed into the addressed CRU device. This is a
CRU output operation, and it is distinct from an input operation in that CRUCLK is
active during output; whereas, it is inactive upon input.

As mentioned above, CRU input is achieved by the processor asserting an address while
keeping the MEMEN signal inactive, and then polling CRUIN at the appropriate time.

6.4.4 CONTROL BUS

This bus is not as homogenous as the other buses; therefore it is divided into groups
as shown in Table 6-2. Table 6-3 gives a brief explanation of each function.

Table 6-3. Control Bus Functions
Signal Active State Group Purpose

MEMEN (memory enable) Low Memory Enables memory devices, address
on address bus is for memory

DBIN (data bus input) High Memory Shows state of processor's data
bus: high is input to proe-
essor, low is output.

WE (write enable) Low Memory Strobe to memory devices for
writing data to memory.

MEMCYC (memory cycle) Low Memory Indicates beginning and end of
one memory cycle. For succes-
sive memory cycles, MEMEN can
be active continuously, MEMCYC
goes inactive between each
separate memory cycle,

READY High Memory Indicates memory is ready with
read data on next clock, or has
disposed of data on write
cycle. Wait states are gene-
rated by pulling this line low.

WAIT High Memory Acknowledges that memory is not
ready, indicating a walt state.

HOLD Low Processor Requests processor to give up

Activity control of address, data buses
and MEMEN, WE, and DBIN.

HOLDA High Processor Acknowledges that processor has

Activity given up control of buses given

above, and has suspended
activity.

6-6

Table 6-3. Control Bus Functions (Concluded)

Signal Active State Group _ Purpose

g1, 3 Low Clock TTL level clocks

EXTCLK.B Low Clock External TTL clock input to
TIM 9904.

CLK.B Low Clock Qutput of internal oscillator of
TIM 9904.

PRES.B Low Reset/Load Causes reset interrupt

RST Low Reset/Load Reset interrupt input, TMS 9900

RSET Low Reset/Load External instruction, causes IORST

IORST Low I/0 reset to TMS 9901's. Does not
cause reset interrupt

RESTART.B Low Reset/Load Causes load function delayed by two

LOAD Low Reset/Load IAQ or idle pulses. (LOAD is name
of external instruction and load
function pulse)

INT 1-15 Low Interrupt Request for interrupt to TMS 9901

IAQ High Miscellaneous | Signifies this memory cycle to be

an instruction fetch.

6.5. SYSTEM CLOCK

The system clock is generated by a crystal and tank circuit tuned to 16 times the
desired system frequency. This network is attached to the TIM 9904 clock driver, which
counts down the input signal from the tank and crystal into four non-overlapping clock
phases at MOS signal levels for the TMS 9900. The inverse of these phases is output to
TTL levels for the remainder of the system.

Also on the TIM 9904, the reset function is latched and synchronously presented to the
TMS 9900; this ensures synchronization with the correct phase.

The crystal is a third overtone series/parallel-resonant crystal, set in an HC-180
holder (see Figure 6-2).

The TTL clocks are routed to the RESET/LOAD and MEMCYC logic, as well as to the

Pl1-connector and the TMS 9901 and TMS 9902/9903's.

If pins 11 and 12 of the TMS 9904 (g1 and ¢2) are shorted, the de-
vice will overheat and go into thermal runaway almost instantly.

6-7

XTAL 1 o1 o
M
auanrtz L L 2 8

CRYST
REATAR XTAL 2 b ¥ _p2 Av.?.' P2 9 TMS 9900
i a MICROPROCESSOR
TANK 1 3 -7 b8
I 1 cCLOCK 8 VWA 28
0.38uH E 18 DF DRIVER , R
- 25

+5V +12v

Figure 6-2. Crystal-Controlled Operation

é.ﬁ CENTRAL PROCESSING UNIT
The TMS G900 microprocessor is the central processing unit (CPU) for the TM 990/101M.
The responsibilities of the CPU include:

® Memory, CRU and general bus control

o Instruction acquisition and interpretation
] Timing of most control signals and data
-] General system initialization.

Figure 6-3 groups the TMS 9900 pins by function. The address bus addresses memory and
the CRU devices, and provides the codes for the external instructions. The data bus
carries all memory data, including instruction code as well as program data and
addresses. Interrupt requests are encoded as a binary number by the TMS 9901 for
presentation to the TMS 9900 microprocessor.

Memory operations are initiated by placing an address on the address lines along with
MEMEN, DBIN, and eventually, WE. If the memory cycle is an instruction fetch, IAQ goes
active also. READY is sampled and the memory cycle is ended one clock cycle after
READY is active.

- RESET g (MS8) Do 41
—— L‘—b
RESET/LOAD 1 —-—"'? TMS 9900 D1 f—p
: a4
LoGiC L -—1AQ D2 r"—-L-—--
D3 r--i-——-
i 7 Sl | a5
——™HoLD N e
5 46
- —— HOLDA Ds P ——"
62 a7
—_—— g ——————— -
CONTROL BUS GOES READY 06 32
TO MEMORY DECODER, { <-——3 | wair D7 jet——
MEMORY, EXPANSION o 49
-p————— =
BUFFERS. i ps ==
<————— MEMEN D9 [*———>
| =——2oain profe—2"
on | —R—
>
-—-—8.- ol 012--‘——51——-—-
54
FROM SYSTEM CLOCK + 55
S— - =4 3 Di1g p———»
55
L — D 04 015 f—=
31 24
I ————— 1 CAUIN (MSB) AD —-;5-—-—-—"-
CRU /O - A CRUQUT al pb—m—
60 22
<—— | CRUCLK a2 b——m»
\ 21
M = .
r 32
—— INTREQ e =i
2 19
—_— ICO Al p—i
FRAOM TMS 9901 5 ol ne 18 .
INTERRUPT CONTROL 14 17
— = iC? a7 Tﬁ-
" —33 lica A8 p——
~ 15
A9 ——m
1 14
-5V Vgg A1 f———
13
+5V 2 Vee AN p—
59 12
Vee A12 '-—';1—-—'—"'
12y & Vop P T —
% 10
Vg v A4
e s Ss
i‘u
Figure 6-3. TMS 9900 Pin Functions

DATA BUS GOES TO
r~ MEMORY, EXPANSION
BUFFERS

ADDRESS BUS GOES TO
MEMORY AND 1/0 DECODER,
r MEMORY, EXPANSION
BUFFERS, TMS 9901,

TMS 9902, WIRE-WRAP AREA.

6-9

CRU operations are initiated by placing an address on the address bus. CRUIN is
sampled for an input operation; otherwise it is ignored, and for an output operation
the datum is placed on CRUOUT and strobed with CRUCLK. Aside from I/0 purposes, CRU
operations also program the operation of such devices as the TMS 9901, 9902, and 9903.

Figures 6-4 and 6-5 show the data flow and operational flowchart of the
microprocessor. Figure 6-6 shows the decoding of the external instructions. For more
information, refer to the TMS 9900 Microprocessor Data Manual.

6.7 RESET/LOAD LOGIC
After the clock and the CRU, the next block most closely associated with microcomputer
operation is the random leogic dealing with RESET and LOAD. This bloeck initializes the
system and is also used to return control to TIBUG when using single-step operation
(refer to Figure 6-6).

6.7.1 RESET FUNCTION

The RESET pushbutton feeds a latch formed from back-coupled inverters for debouncing.
The PRES.B signal from connector P1 joins the RESET pushbutton signal in a Schmitt
trigger gate to assure that multiple reset pulses due to noise or bounce do not affect
the microcomputer. After being inverted again, the reset signal is routed to the TIM
9904 which then synchronizes it with ¢3 and then presents the signal to the
microprocessor.

The RESET signal also goes to two flip-flops which generate the IORST signal, which
clears TMS 9901's and any other devices attached to it off-board. This IORST signal is
also generated by the external instruction RSET, but it is important to realize that
the RSET instruction in a program generates only IORST and not a full RESET interrupt.
IORST can be active for up to two o3 clock periods.
Reset causes the following to occur:

@ Clears I/0 devices on IORST line (on board TMS 9901)

] Inhibits memory write and CRU operations

® Sets TMS 9900 status register interrupt mask to 0000

® Processor traps to vectors at 0000 and 0002
Reset is caused by:

® Actuating the RESET switch on the PC board

® Setting the PRES.B signal to a logic ZERO state on connector P1.

CRUCLK

P1-0pa

INTREQ (COIC3
AD-A14
/|;\.
(™
"\
A4
16 INTERRUPT
REGISTER MEMORY
INSTRUCTION ADDRESS
REGISTER REGISTER
8l e T
—\
i 12
16
w - >
CONTHOL PROGRAM COUNTER S
AOM
WORKSPACE REGISTER STATUS
REGISTER
6
C
0
N J
y
A
4]
L u N
A
ALy
SR
13
CONTROL
LOGIC r I e
1
A
4
N

SHIFT
COUMTER

SONKCE DAt A
HEUSTIH

J

16

SHIFT REGISTER

"HL

HN

TMS 9900 Data and Address Flow

CRUOUT

RESET SIGNAL
CAUSES IMMEDIATE

ENTRY HERE

{

INSTRUCTION
ACQUISITION

i

INSTRUCTION
EXECUTION

UPDATE PC

)

LOAD

GET RESET VECTOR
(WP AND PC)

FROM LOCATION O, 2
STORE PREVIOUS PC,
WP, AND ST IN NEW
WORKSPACE SET

INTERRUPT MASK
(ST12-5T15) =0

LOAD Y
ACTIVE/

GET LOAD VECTOR
(WP AND PC) FROM
LOCATION FFFC1G,
FFFEqg

STORE PREVIOUS PC,
WP, AND ST IN NEW
WORKSPACE SET
INTERRUPT MASK
IST12 - ST15) - 0

{

ACTIVE’

XOP OR BLWP

INSTRUCTION -

INTERRUPT?
(INTREG
ACTIVE)

GET INTERRUPT LEVEL
VECTOR (WP AND PC)
STORE PREVIOUS PC,
WP _AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
~ST15) TO LEVEL — 1

{

IDLE
INSTRUCTION?

Figure 6-5.

TMS 9900 CPU Flowchart

&

T4L.504

74
1ALE137 181,504 L5
MESET B el :@i'DO—‘

S ——— >
oAV 1 l
"
[5 I AT p SR o G
T
jaLs132 140574 740874 TALETA
e Oal
LAEX ' ek, 1P —pek, op— ok, 0 wpdald
| " h 1 1
el 3
e AL§132) :
D3t
Sy - -
1ag > 5 l 1
741504
| F | p C1A T
i ELECTROLYTIC I | TODFF BDARD
= = 74L574 Tl . 1a
s s ek ap beLw njpBSU
Y P L TO ON BOARD
1*] o
-
RESTART B i
4w p—
P133 —AAA -
A
T] TaLs0R _
g = sV g
| T F I :L
| ELECTROLYTHE | MEMEN o " g l_ R
L] 7aLs74 74L574 740574
& oK 0 £ o [al-
CLR cin CLA
_ a 1
J . WALt
JL Fa A ~ l m'c

5V
FROM PFROCESSOR

CIREWIT

Figure 6-6. RESET and LOAD Logic

6.7.2 LOAD FUNCTION

The LOAD function is triggered by either activating RESTART.B or executing the
external instruction LREX. Both of these are combined in the same way the RESET
function is. The first flip-flop presents the LOAD request to the second, and the
second and third flip-flops count two IAQ or IDLE pulses and then present the LOAD
function request to the microprocessor. The second flip-flop clears the first one so
that only one LOAD is generated even though, for instance, the RESTART.B signal may be
continuously active.

RESET overrides LOAD because a RESET signal clears the LOAD flip-flops. This is
important when both requests occur simultaneously.

Load causes the following to occur:

° LOAD function is delayed two instructions (IAQ) or idle pulses (IDLE), then
triggered

e Processor traps to vectors at M.A. »FFFC and >FFFE
Load is caused by the following if RESET is inactive:

® Executing the software instruction LREX

© Setting RESTART.B to logic ZERO state on connector P1.

6.7.3 RESET AND LOAD FILTERING
Installing a 39 microfarad capacitor at C18 will debounce the PRES.B signal. This
would be adequate for manual actuation by an SPST pushbutton to ground.

A 39 microfarad capacitor at C23 debounces the RESTART.B signal, suitable for
connection to a manually actuated switech in the same way as above.

These capacitors are user options, and these values are suggested values.

6.7.4 CLRCRU SIGNAL

The CLRCRU (elear CRU) signal is a power-up IORST which resets the edge-triggered
interrupt 6, the status LED, and remote serial port Data Terminal Ready signal. The
status LED is lighted and Data Terminal Ready is inactive.

6.8 EXTERNAL INSTRUCTIONS

The so=-called external instructions are those which, when executed by the processor,
cause address lines A0, A1, and A2 to be set to a state, and CRUCLK to become active.
The instructions and descriptions are listed in Table 6-4.

Table 6-4. External Instructions

Instruction | Opcode | AO | A1 | A2 Description

IDLE 0340 0 1 0 Suspends processor until RESET, LOAD,
or interrupt occur

RSET 0360 0 1 1 Zeroes TMS 9900 interrupt mask,
generates IORST

CKON 03A0 1 0 1 Not used on TM 990/101M

CKOF 03Cco 1 1 0 Not used on TM 990/101M

LREX 03EQ 1 1 1 Causes LOAD, delayed by two IAQ or

IDLE pulses

6-14

The CKON and CKOF instructions are used by other 990-family systems to control the
system timer. On the TM 990/101M the system timer is incorporated into the TMS 9901;
hence, these instructions are not used.

The RSET instruction generates the IORST signal to clear all I/0 devices (on board TMS
9901) attached to it. It alsoc clears out the status register interrupt mask, which
allows only a RESET interrupt or a LOAD function to be granted.

The LREX instruction causes a LOAD function request to be presented to the processor
after two IAQ or IDLE pulses. This means that the LOAD function occurs after two
instructions are executed following the LREX. TIBUG uses this function to do single
step by executing the LREX, a RTWP to the user, then one user instruction. The LOAD
function becomes active and vectors back to TIBUG, which then prints the processor
registers.

IDLE causes the processor to suspend operation; it is, in essence, a HALT instruction.
An interrupt or LOAD terminates the idle state.

In all cases, note that A0, A1, and A2 are nonzero values so that these instructions
are differentiated from a CRU output operation.

6.9 ADDRESS DECODING
This subsection explains address decoding for both memory and CRU I/0 along with their
memory maps. The memory address map configurations are shown in Figure 6-7T.

6.9.1 MEMORY ADDRESS DECODING

6.9.1.1 Memory Address Decoding PROM

The memory map is programmed in a T7U4S287 PROM as shown in Figure 6-8. The PROM is a
256 x 4 bit memory, and each four-bit word (DO4 to DO1) is used to determine memory to
be enabled. The most significant bit of the PROM word, DOY, is the RAM enable control
line. Programming a ZERO on DOY4 will cause RAM to become active. Since there are two
banks of RAM on the board and since there is no room on the PROM to decode the two
banks separately, each bank is enabled by the state of address line A4. Therefore, all
RAM is decoded by the PROM as a complete block and cannot be separated.

The next two bits of the PROM word (D03 and D0O2) enable each EPROM bank separately and
directly. EPROM's are enabled by programming a zero.

The least significant bit of the PROM word (D0O1) is a negative-logic "OR" of the other
three bits of the PROM word. If any of the other three bits are zero, this bit must be
zero also. This signal indicates to data bus buffer control whether memory addressed
is on-board or off-board; a zero state indicates on-board memory.

6-15

91L-9

*1-9 eJandTJ

FuTsseJppy AJOWSR WLOL/066 WL

oooo

0800

1000

FOD0

F800

EPROM 1
(TMS 2708)

EPROM 2
(TMS 2708)

OFF-BOARD
MEMORY

RAM 2
TMS 4045

RAM 1
TMS 4045

07FE

OFFE

EFFE

F7FE

FFFE

a) 2K EPROM (2708's)

2K RAM

Q000

1000

2000

FOOO0

FB800

EPROM 1
TMS 2716

EPROM 2
TMS 2716

OFF-BOARD
MEMORY

RAM 2
TMS 4045

RAM 1
TMS 4045

OFFE

1FFE

EFFE

F7FE

FFFE

b) 4K EPROM (2708's)

2K RAM

1. All addresses in hexadecimal,

NOTES

0000

0800

1000

2000

FODO

F800

EPROM 1
TMS 2708

EPROM 1]
TMS 2708

EPROM 2
TMS 2716

OFF-BOARD
MEMORY

RAM 2
TMS 4045

RAM 1
TMS 4045

O7FE

OFFE

1FFE

EFFE

F7FE

FFFE

c) 3K EPROM (2708 & 2716)
2K RAM

2. EPROM selection in each bank is a jumper option.

0000

1000

1800

2000

F0O00

FBOO

EPROM 1
TrS 2716

EPROM 2
TMS 2708

EPROM 2
TMS 2708

OFF.-BOARD
MEMORY

RAM 2
TMS 4045

RAM 1
TMS 4045

OFFE

17FE

1FFE

EFFE

F7FE

FFFE

d) 3K EPROM (2708 & 2716)

2K RAM

The memory address decoding PROM is enabled by MEMEN when active low, and the lower
five input bits are the most significant bits of the address bus (A0 to A4). The PROM
thus selects memory in blocks of 1K words. The upper three address bits of the PROM
have jumper options to choose between TMS 2708's and TMS 2716's and to select or
deselect on-board EPROM, and to configure the memory map either with EPROM in low
addresses and RAM in high addresses, or RAM low and EPROM high. There are thus eight
different address maps in the PROM controlled by the three jumpers (23 = 8). Each
address map consists of 32 four-bit words, showing the state of each 1K word block in
memory.

When MEMEN is inactive, the PROM is disabled.

6.9.1.2 EPROM Selection

There are two basic memory maps for the EPROM - one for the TMS 2708's and the other
for TMS 2716's. These correspond to cases (a) and (b) of Figure 6-7. Each bank of
EPROM actually consists of two EPROM devices, one for bits 0 to 7 of the addressed
word, and the other for bits 8-15. Beginning addresses are shown to the left of the
figure; ending addresses are shown to the right. BEach EPROM bank is separate and can
be programmed into any location by reprogramming the address decode PROM.

Case (c¢) and (d) of the memory map in Figure 6-7 show what happens if the jumper is
configured to "2716" position, and TMS 2708's are used. Case (e¢) shows that if a word
at address 0000 is accessed, that same word can be read at 0800. Likewise, both 0002
and 0802 will address the same word, etc.

On the board, the jumper next to the EPROM's selects the proper pin configuration for
the particular EPROM in use. Note that address line A4 is routed to the EPROM when the
jumper is in the "2716" position.

To deselect, or ignore, on-board EPROM, move the EPROM select jumper to connect pin
E12 to E13. This causes on-board EPROM sockets to disappear completely from the memory
map.

6.9.1.3 RAM Selection

The RAM is treated as one block, since it is decoded with only one output line from
the address decode PROM. There are four RAM's per bank and two banks in the block. The
selection of a specific bank of RAM is decided by the state of address line AH.
Selection is accomplished by the gate array shown in Figure 6-8. Each RAM select is
set up by the PROM and A4, and becomes valid when WE goes low for a write, or DBIN
goes high for a read. Note that DBIN will assert at the same time MEMEN goes low
during a read cyecle, reference Figure 6-10, but WE will not assert until some time
after MEMEN goes to 0. The user should be aware that a chip select will not occur
during a write cycle until after WE drops. This is to prevent fast RAMs, which sample
WE as soon as they are selected, from sampling WE before it goes low during a write
cycle,

At this point, the second jumper option becomes meaningful. This option selects where
EPROM and RAM appear in the memory map. In the normal "RAM HI" position, the RAM bank
address begins at F000ig and EPROM begins at 00001g5. Moving the jumper plug to the
alternate position causes "2708" EPROMs to be at F000:g ("2716" EPROM's begin at
E0001g), and RAM to be at 000044.

JUMPERS SELECT MAP 0 TO 7 (0005 TO 1113)

WE _))_RAM 1
R23 DBIN P
E11 a./K
AAA- 5V ="
W5
E10 1
o De
E9Q
0O = GATE ARBAY
E17
O 2708/2716 15
ADH
E16 RAMHI 1 ulg
O ADG "
” EPROMSEL 2) G pod (2 _BAM |
i .| N} pos oot _Houe
E14 11 ROM1
O Ll 4] apD 002 p—--—o
A2 / 12 ONBOARDMEM
E13 ADC Dol fp———
O A3l s
E12
! L ADA
52
i 14 O 745287
- MEMEN PROM
TABLE A. ADDRESS IN/DATA OUT
ADDRESS
INPUT
ADH TO
ADA (LSB) MAP PROM OUTPUT (4 BITS EACH)
00 0 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
20 1 BGEF ‘FFEF EEFF EFFF ‘FFEF FFEF FFFF (CCAA
40 2 FFFF FFFF FFFE FFFF FFFF FFFE FFFF FF66
60 3 CCAA FFFF FFFF FFFF FFFF FFFF FFFF FF66
80 4 66FF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
A0 § G66FF FFFF FFFF FFFF FFFF FFFF FFFF FFCA
co 6 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FF66
E0 7 CAFF FFFF FFFF FFFF FFFF FFFF FFFF FF66
TABLE B. MAP CONFIGURATION (SET BY JUMPERS)
2708 OR LOW OR
2716 USED? HIGH RAM? REACEreoNe
MAP 0 = TMS 2716 Low RAM No EPROM
Map 1= TMS 2716 Low RAM High EPROM
Map 2 = TMS 2716 High RAM No EPROM
Map 3 = T™MS 2716 High RAM Low EPROM
Map 4 = TMS 2708 Low RAM No EPROM
Map 5 = TMS 2708 Low RAM High EPROM
Map 6 = TMS 2708 High RAM No EPROM
Map 7 = TMS 2708 High RAM Low EPROM
Figure 6-8. Memory Address Decode PROM

6.9.1.4 Memory Mapping

The memory map can be changed by the user substituting another user programmed PROM
in the address decoder socket. (The 745287 PROM's are available from your Texas
Instruments distributor.) Using the guidelines in paragraph 6.9.1, the user can
produce many different memory maps. In general, if active output 1is desired for any
particular input combination, the bit code is set to zero. Starting at the initial
input address to the PROM, the output states desired are determined. ADA is the
least-significant address input, and ADH is the most-significant. D01 is the least
significant output bit, and DO4 is the most-significant.

CAUTION

When planning a memory map, or when using any memory
off-board (such as a TM 930/201 or TM 990/206 memory
board), the memory devices on the TM 990/101M board must
not overlap in address space either with each other or
with devices off-board. On-board memory devices MUST be
mapped into unique locations, and no other off-board
devices may respond to addresses intended for any
on-board memory device.

The 745287 PROM's are field-programmable, fusible-link devices, The PROM's are
delivered in a state of all binary ONE's. By blowing a fuse link during programming, a
ZERO is programmed. Once a bit is programmed as ZERO, there is no way to restore the
bit to a ONE. Be careful to program the device completely; partially programmed
devices have been known to have random bits revert back to the ONE state because the
fuse link was not blown completely.

MSB and LSB conventions are those used by the 990-family systems hardware and software
for PROM and EPROM programming.

6.9.2 CRU SELECT

The CRU I/0 decoding is done by a gate array and a 74LS138 decoder as shown in Figure
6-9. Address lines A3 through A9 are decoded, providing eight on-board select lines,
each line addressing a block of 32 CRU bits, These select lines, ISELO through ISEL7,
go to the various on-board CRU devices, with the exception of the ISEL3 line which is
reserved for future use. The INTCRU/EXTCRU line is defined by the upper four address
bits (A3=-A6) and MEMEN; the line activates the T4LS138 decoder and deactivates the
THULS241 buffer with CRUIN.B and CRUOUT.B when an on-board CRU address is asserted. At
all other times the buffer is enabled, and the on-board decoder is disabled, allowing
some off-board CRU device to respond. Because of this manner of decoding, overlapping
CRU addresses off-board will be ignored if they are mapped into on-board CRU space.
On-board CRU address space thus is reserved; and because there is no PROM, the CRU
address map cannot be changed.

MEMEN 9

0] 8
uig
A3 3 1
B T ——. | 1 12
A4 2 | uz 1" /aLs08
—e) 13] uig
741502
Ab 8 741 508
_-——.c
AB 9 u
—— s Y
741502
- 3§ vop
6 14 ISEL1
G ¥
4 13 ISEL2
G2A Y2 p-
—— 5 12 ISEL3
= Gze Y3ip
AT 3 11 ISEL4
{ o Y40
AB 2 2 -f5~10 ISELS
A9 i ISELG
A Y6P—
7 ISEL?
Y1p
7415138 38 DECODER
SIGNAL EMABLES
ISELO L ED Cwcun
ISELY DIP Swatch
ISELL2 Main TMS 9802 (P2)
ISEL3 Nat Used
ISELA TMS 9901
ISELS RESET Edge-Triggeled Intertupt
ISELG Auxiliary TMS 9902 (P3)
ISEL? Auxiliary EIA Signals

Figure 6-9. Decoding Circuitry for CRU I/0 Addresses

6-20

Table 6-5.

T™ 990/101 CRU Map

CRU
Software Base

Bit

Address (Hex) | Address (Hex) Function Input Output

000016 0000 STATUS LED
0001 RESERVED
001F RESERVED

UU”OTB 0020 UNIT ID 4 (LSB) INPUT ONLY
0021 UNIT ID 3
0022 UNIT ID 2
0023 UNIT ID 1
o024 UNIT ID O (MSB) INPUT ONLY
0025 GROUNDED
0026 GROUNDED
0027 GROUNDED
0028 RESERVED
TO
003F RESERVED

008016 0040 SERIAL I/0 RBRO CTRLO
0041 PORT A P2 RBR1 CTRL1
0042 TMS 9902 RBR2 CTRL2
0043 RBR3 CTRL3
004y RBRY CTRLY
0045 RBR5S CTRLS
0046 RBR6 CTRL6
oou7 RBR7 CTRL7
0048 0 CTRL8
0049 RCVERR CTRL9
004A RPER CTRL10Q
004B ROVER LXDR
004C RFER LRDR
004D RFBD LDIR
004E RSBD LDCTRL
004F RIN TSTMD
0050 RBINT RTSON
0051 XBINT BRKON
0052 0 RIENB
0053 TIMINT XBIENB
0054 DSCINT TIMENB
0055 RBRL DSCENB
0056 XBRE NOT USED
0057 XSRE NOT USED
0058 TIMERR NOT USED
0059 TIMELP NOT USED
005A RTS NOT USED
005B DTR NOT USED
005C CTS NOT USED
005D DSCH NOT USED
005E FLAG NOT USED
005F INT RESET

6-21

Table 6-5.

TM 990/101 C3U MAP (Continued)

CRU

Software Base Bit
Address (Hex) | Aduress (Hex) Function Input Dutput.
0060 RESERVED
|
i 1
007F RESERVED
01004 0080 i TMS 9901 CONTROL BIT CONTROL BIT
0081 PSI INT1 /CLK1 MASK1 /CLK1
0082 INT2 /CLK2 MASK2 /CLK2
0083 INT3 /CLK3 MASK3 /CLK3
; 0084 INTH /CLKY MASK# /CLKM
| 0085 INT5 /CLKS MASKS /CLKS
| 0086 INT6 /CLK6 MASK6 /CLK6
‘ 0087 INT7 /CLK7 MASK7 /CLKT
0088 | INT8 /CLK8 MASK8 /CLK8
0089 ; | . INT9 /CLK9 MASK9 /CLK9
‘ 008A i INT10/CLK10 MASK10/CLK10
008B ‘ INT11/CLK11 MASK11/CLK11
| 008C i . INT12/CLK12 MASK12/CLK12
| 008D | INT13/CLK13 MASK13/CLK13
| 008E | . INT14/CLK1Y4 MASK14/CLK14
- 008F | INT15/INTREQ MASK15/RST2
0090 ' PO INPUT PO QUTPUT
0091 . P1 INPUT P1 OUTPUT
0092 | P2 INPUT P2 OUTPUT
_ 0093 P3 INPUT P3 OUTPUT
| 0094 | P4 INPUT P4 QUTPUT
| 0095 P5 INPUT PS OUTPUT
0096 P6 INPUT P6 OUTPUT
0097 ‘ P7 INPUT P7 OUTPUT
0098 P8 INPUT P8 OUTPUT
0099 P9 INPUT P9 OUTZUT
; 0094 | | P10 INPUT P10 OUTPUT
| 009B | P11 INPUT P11 OUTPUT
009C . P12 INPUT P12 OUTPUT
| 009D ! P13 INPUT P13 QUTPUT
‘ 009E | TMS 9901 P14 INPUT P14 QUTPUT
| 009F | PSI P15 INPUT P15 OUT2UT
014044 | 0040 RESEFVED
| S, P
. 0045 RESET INT6
: 00A7 RESERVED
TO
’ 00BF RESERVED

6-22

Table 6-5. TM 990/101 CRU Map (Continued)

CRU
Software Base Bit
Address (Hex) | Address (Hex) Function Input Output

018044 00C0 SERIAL 1/0 RBRO CTRLO
00C1 PORT B P3 RBR1 CTRL1
oocz (TMS 99021 RBR2 CTRL2
00C3 RBR3 CTRL3
oocHy RBRY CTRLA4
00C5 RBR5 CTRLS
00C6 RBR6 CTRL6
00C7 RBR7 CTRLT
00cCs8 0 CTRLS
00C9 RCVERR CTRL9
00CA RPER CTRL10
00CB ROVER LXDR
oocc RFER LRDR
00CD RFBD LDIR
00CE RSBD LDCTRL
00CF RIN TSTMD
00DO RBINT RTSON
00D1 XBINT BRKON
oob2 0 RIENB
00D3 TIMINT XBIENB
00D4 DSCINT TIMENB
00D5 RBRL DSCENB
00D6 XBRE NOT USED
00D7 XSRE
00D8 TIMERR
00D9 TIMELP
00DA RTS
00DB DCD (NOT DSR)
00DC CTsS
00DD DSCH
00DE FLAG NOT USED
00DF INT RESET

010016 00EO DTR DTR
00E1 DSR
00E2 RI
00E3
00EY]
00E5
00E6 RI
00ET 0 DTR
00ES8 RESERVED RESERVED
00E9
OOEA
00EB
00EC
00ED
00EE \j
QO0EF PORT B 0 RESERVED

6-23

Table 6-5. TM 990/101 CRU Map (Concluded)

CRU
Software Base 3it
Address (Hex) | Address (Hex) Function Input Output
01C04¢ 00F0 RESERVED
TO
00FF RESERVED
020016 0100 OFF BOARD
™ CRU
0 e

CAUTION

Although CRU addresses are decoded into 32-bit blocks,
not all CRU devices use or completely decode the entire
32 bits. This can result in a CRU device being enabled
by addresses other than those specified. Note the
alternate addresses in Table 6-6. This condition may be
referred to as implicit decoding, and should be
considered where it is necessary to debug a CRU scheme.

Note that address lines AQ, A1, and A2 do not enter into the decoding. If an external
instruction is being executed, it is true that some CRU device may be addressed by the
lines A3 through A14, but since CRUCLK is trapped in the external instruction decoder,
no CRUO output can be done. Therefore, since CRUCLK is absent from the addressed
device, it will assume a CRU input operation, and present a datum to CRUIN, which the

processor will ignore. No harm is done in either case, so lines A0, A1, and A2 are
don't care conditions.

6-24

Table 6-5.

Implicit Decoded CRU Bit Addresses

Normal Address Range
Device (R12, Bits 3 to 14) Alternate Address Ranges
Status LED 0000 0001 - 001F
Unit ID Switch 0020-0027 0028 - 002F, 0030 - 0037,
0038 - DO3F
Edge Trig INT6 Clear 00A6 00A0 - OQO0BF
DTR (Input) 00EO 00EY4, 0OE8, 00EC, 00F0, OOFA,
00F8, O0OFC
DTR (Qutput) 00EO 0O0E1 - OOFF
DSR (Input) 00E1 00E5, 00E9, QOOED, 0Q0F1, OOF9
00FD
RI (Input) 00E2 00E6, OOEA, OOEE, O0OF2, 0OF6,
O0FA, OOFE
NOTES
1. The above are CRU bit addresses, not R12 contents.
2. Response to an alternate address (right column) will be the

same as to using the normal address (middle column); however,
the user should program using only the normal address.

Table 6-6 gives nominal address values for all on-board CRU devices. These are the
nominal values which should be used in programs.

Table 6-6. On-Board Device CRU Address
CRU Address Maximum CRU Bit Address Range
(R12, Bits 0-15) Displacement (R12, Bits 3-14)

Device (Hexadecimal) (Decimal) (Hexadecimal)
Status LED 0000 0 0000
Unit ID Switch 0040 4 0020 - 0024
Local TMS 9902 0080 31 0040 - OOS5SF
TMS 9901,

Interrupt/Timer 0100 15/31% 0080 - 0Q08F
TMS 9901, Parallel I/0 0120 15/31% 0090 - 009F
Reset Interrupt 6 014cC 0 00AB
Remote TMS 9902 0180 31 00co - 0ODF
DTR, DSR, RI 01C0 2 00E0 - 00E2

8The TMS 9901 is shown split into its two separately functional parts; each has a
maximum displacement of 15. Together, the device has a maximum displacement of 31.

6-25

6.10 MEMORY TIMING SIGNALS
The three memory timing signals are READY, WAIT, and MEMCYC. These are arbitrarily
grouped together for a discussion of their theory of operation.

6.10.1 READY

The READY signal is an input to the TMS 9900 microprocessor which indicates that
during a memory cycle, the memory devices addressed will be ready at the next &1 clock
phase for successful disposition of data.

The READY signal is sampled by the processor during @1, after MEMEN has gone low, If
READY is high when sampled, the 9900 CPU will continue the memory operation in
progress as shown by the READ cycle part of Figure 6-10. During a read cycle if READY
is sampled and found to be high, the processor will read data from the selected memory
device(s) on the leading edge of the next @1. During a write cycle, if READY is
sampled on the leading edge of @1 and found high, the CPU will assume that data has
successfully been stored in the selected memory device(s) by the time the next leading
edge of @1 occurs. If the selected memory device(s) cannot meet this timing
constraint, the READY signal can be pulled low, which puts the TMS 9900 CPU into a
wait state. The WAIT signal will go high to signify that the processor is in a wait
state, and CPU operations will be suspended until READY is sampled high. When READY
goes high again, WAIT will drop and the CPU will continue execution from the point
where it stopped. (Refer to the write cycle portion of Figure 6-=10.)

333 ns WITH 3MHz CLOCK

7y A (I P B
) RO = T 1 GO 15, e L, VRS i, L
|
Al B ATy Y B
IO S g O e ST W P
] b
:

[

=

-

R e

MEMEN I\,
DBIN |/

. |
: ' | |

l | I X | VN

l I | : l |
Al AVa X VALID ADDRESS |_X K VALID ADDRESS x

l

HEADY

WE

| |
|

wart ¢ { | / | \ (
i

DO.D1S cruDRIVEN X INPUT MODE weur X cruoriven X CPUWRITE DATA | X CPUDRIVEN
! T
L | |

1A I !
U . SHOWN ASSUMING THIS \
CYCLE iS AN INSTRUCTION
ACQUISITION CYCLE
\ E \ /
f \/ \/
MEMORY HEAD CYCLE WITH NO WAITS MEMORY WRITE CYCLE WITH ONE WAIT

R0 READDATA

Figure 6-10. TMS 9900 Memory Bus Timing

6-26

The READY line can be held low for any amount of time, so the user can utilize memory
devices with very slow access times. As an example, consider the memory cycle times
for the TMS 4045 memories resident on the CPU board. With a system clock freqguency of
3 MHz, the total time is about 600 nsec between (1) assertion of DBIN, MEMEN and valid
address and (2) the actual processor read. When rise and fall times for these
signals plus setup times for the data are computed, the memory device should have an
access time of 490 nsec or less from valid address. For processor write operations,
counting rise and fall times plus data hold times, the cycle time should be less than
600 nsec from valid address. TMS 4045 devices will have data available for the
processor to read a maximum of 450 nsec after receiving a valid address. For write
operations, the data must be held valid for at least 200 nsec before the WE signal
goes high. If Figure 6-10 is examined, the user will notice these constraints are
easily met. If the memory devices do not meet these times, wait states can be inserted
to hold control, address and data lines valid until the timing criteria for the device
is met. Each wait state extends valid control, address and data information by 333
nsec.

For 3 MHz operation, data must be available during a read cycle 490 nanoseconds after
the start of the cycle. For a write operation data must be captured by the memory
devices 600 nanoseconds after the start of the cycle. IF these times cannot be met the
processor can be put in a wait state by forcing READY.B low for as long as necessary
(indefinitely, if need be). After READY.B becomes high, the memory cycle will occupy
one more clock cycle and then be completed. Refer to Figure 6«10.

6.10.2 WAIT

The WAIT signal is output by the processor to acknowledge that addressed memory
devices are not ready and that the processor is in a wait state.)

Note that if one wait state is required, as is specified by the SLOW jumper, WAIT can
be connected to READY. At the start of the cycle, WAIT is inactive and thus low. When
the processor samples READY, it sees that memory is not ready because the READY line
is low. The processor acknowledges by raising WAIT to high, and being connected to
READY, when the processor samples READY again, it finds it high and therefore
completes the memory cycle. The SLOW jumper must be inserted for memories which cannot
meet the speed requirements listed in paragraph 6.10.1.

6.10.3 MEMCYC

It is possible for the TMS 9900 microprocessor to activate MEMEN and accomplish many
fetches from memory by shifting the address bus, all while MEMEN is still active. The
MEMCYC signal is synchronized to the ¢3 clock edge after the beginning of' the memory
cycle, and goes inactive just before the instant the address bus could change. This
signal thus delimits one complete memory cycle and differentiates between separate
memory cycles.

The MEMCYC signal is used by dynamic memories which must be able to intervene between
memory cycles for burst refresh, if necessary.

6.11 READ-ONLY MEMORY

The two EPROM blocks, shown in Figure 6-11 each contain two devices. Each device
provides an eight-bit output; the two in parallel in each block thus provide a 16-bit
word. TMS 2708 EPROM's contain 1K x 8 bits; therefore, each block is 1K words. Using
TMS 2716 EPROM's, capacity is expanded to 2K words per block. A fully expanded EPROM
section thus contains YK words or 8K bytes of addressability. Each block is separately
mapped into the address space as explained in paragraph 6.9.1.2.

6-27

6.12 RANDOM ACCESS MEMORY

The two RAM blocks, RAM 1 and RAM 2, each contain four TMS 4045 devices. Each device
provides four-bit storage; four devices in parallel in each block provide a 16-bit
word. Each TMS 4045 device contains 1K x 4 bits; therefore, each block is 1K words. A
fully expanded RAM section thus consists of 2K words. Both blocks are mapped into
contiguous address space, and are selected as explained in paragraph 6.9.1.3. Block
RAM 2 is shown in Figure 6-12.

6.13 BUFFER CONTROL

Connector P1 is the system bus edge connector. It contains, in approximate order by
pins: the system power, interrupt, data, address, and control signals. Table H-1 lists
pins and their functions. Power lines are detailed in paragraph 6.2, and interrupts
are detailed in paragraph 6.14., This discussion covers the address bus buffers, the
data bus buffers, control bus buffers, and a short discussion of HOLD, HOLDA, and
direct memory access (DMA).

a4 o o B
a7k E26 | E27 £28| E29| E30
BV oy
HOM? e
AS 22 20 Ah 22 20
= sy LY
A6 23 18 A6 23 18
— A8
a7 1 17 Do Al 1 12 o8&
= Al v8
AB 16 1 A8 2 16 Lo
AG k| o - 15 .’
2 5 D2 iy 3 ; 15 [ER10
A W84 ol u L4z
A0 A 14 03 AlD A 14 D11
Al 05
AT 5 13 D4 All & 13 01z
Al 04
Al2 & 11 D5 aiz [17" o113
Az 03
A13 7 10 D& A3 7 10 G4
Al 62
Ald B B gy Al4 8] (I
Al 01
TMS 2708/2716 TMS 2708/2716
L o/_“\ 45
Ea1 | eaz| e3z | eaa| e e
Al = HOM2 |

AS 22 0 L] 22 20

AB 23. 18 . AR 23 18

A7 1 17 0o AT 1 17 o8

ag 2 16 D1 AB 2 16 D9

AG 3 15 D2 AG 3 16 oo

At0 4 45 14 b3 AlD 4 A 14 ot

Al & 13 o4 an ' 13 B2
—Mz 6 1 D& a2 G 1 et

A1l 7 10 e A1l ! 10 [214

Ala B 9 o7 ald 8 9 s

TME 27082716 TMS 270B/2716

Figure 6-11. Read-Only Memory

6-28

LY

a
~
A5 15 1 A5 15 f1 18
N——— A9 oI SRS, 5 \acae 0 ol I
A6 16 12 oy A6 16 12
N—— 1 A8 03 p——— hAE e =t 09
AT v 47 13 AT AT 13 D10
o I e Y A0 L 1d D2
A7 1102 D2 pool Tl SRER AL
A8] 14 D3 AB 1 14 D11
A6 o1 —— ————
A9 2 A9 2
N———— A5 U36 (e AR Lida
A10 3 A0 3
g A4 N—— |
Al
AR g L Al 4
A1z 7 A12 7
A2 a1
A3 6| . 8 ' At13: @ 8
Al4 5 1
ks St I WE 10 _A1d__ 5 0
WE- TMS 4045 TMS 4045
&
RAM2-
=
L A5 15 11 D4 A5 15 | | 11 D1y
L A6 16 12 Ds | L. AB 16 . 12 D134
L A7 17 13 D6 J AT i 13 D14}
_A8 1 14 D7) A8 1 14 DI5
L A9 2 A9 2
Al0 3 u3o0 A0 3 u28
et b N e -]
L A1l 4 L AT &
L A1 7 AFET 7
L A13 6 8 |13 % 8
\, Al4 5 10 kA“‘ 5 10
TMS 4045 TMS 4045

Figure 6-12. Random Access Memory

6-29

6.13.1 ADDRESS AND DATA BUFFERS

The address buffers consist of two TULS245 octal bus transceivers. The address lines
normally flow off-board. Upon a HOLDA signal, the direction reverses, allowing a DMA
controller to input an address onto the board for disposition by the address decoder
section. Address and data buffers are shown on sheet 3 of the schematics (Appendix F,

page F-3).

The same devices are used as the data bus buffers. Direction data flow, however, is
governed by the TULS153 decoder using the states of ONBDMEM and HOLDA (listed in Table
6-8).

Table 6-8. Data Buffers

Data Flow
HOLDA ONBDMEN Bus Command (READ) (WRITE) Operation
Low Low DBIN On-board |Off-board Normal off-board
Low High Low Off-board| Off-board Normal on-board
High Low High On-board |On~board DMA off-board
High High DBIN Off-board|On~board DMA on-board

Note that during normal off-board operation, the direction is as expected. During
normal on-board operation, the direction of data flow is always off-board so that
off-board data will not interfere with the on-board operation. This also permits an
external logic system to monitor on-board activities for debugging purposes. For
example, illegal op codes can be caught by monitoring the data bus during IAQ time.
Following the same logie, data flow is always on-board during an off-board DMA
operation so that no interference occurs. Finally, on-board DMA requires that the
buffers be in a state opposite that normally expected since the controller is
of f-board.

6.13.2 CONTROL BUFFERS

Three types of enabling are used on control line buffers: HOLDA, CRU, and always
enabled. The lines that are always enabled are those whose source is always on-board,
such as the clocks, IAQ, IORST, CRUCLK, and HOLDA.

The second type, the CRU signals, are governed by the INTCRU/EXTCRU signal derived by
the CRU address decoder (see paragraph 6.9.2). Normally enabled, CRUIN.B and CRUOUT.B
are disabled for on-board operation to prevent possible interference during address
and CRU data stabilization.

The third type of control buffer is the type directly affected by CPU or DMA
operations: the memory control signals MEMEN, WE, and DBIN. Normally enabled flowing
off=board, these lines reverse direction when flowing on-board for DMA operations so
that the DMA controller can command on-board memory. These lines are keyed on the
state of HOLDA.

6-30

6.13.4 HOLD, HOLDA, and DMA
When an off-board direct memory access controller (DMAC) wishes to initiate operation,
it asserts a low state onto the HOLD line. After finishing the current memory cycle,
the microprocessor responds by floating its address, data, MEMEN, DBIN, and WE lines,
and then forces HOLDA (HOLD acknowledge) high.

The DMAC is now free to use the system buses to transfer data directly in and out of
memory as it wishes. For a more detailed discussion of DMA operations, refer to

Section 8 of the manual, Applications.

6.14 INTERRUPT STRUCTURE

The TM 990/101M provides total of 17 interrupts. The characteristics of each are
listed in Table 6-9.

Table 6-9. Interrupt Characteristics

Tnterrupt Types Maskable Prioritized Characteristics

RESET Dedicated No Yes INT 0, resets 1/0,
TMS 9900 mask

1=5 Dedicated Yes Yes Level triggered, all
defined¥

6 Dedicated Yes Yes Level or edge-
triggered¥

7-15 Shared 1/0 Yes Yes Level-triggered,
undefined

LOAD Dedicated No No Level triggered, will
always occur unless
locked out by a RESET

®*Definitions in Table 6-10

Table b-10, Dedicated Interrupt Description

Tﬁférrupt
Level Purpose
1 Power fail interrupt, brought out on OEM chassis
2 Reserved for future use
3 System timer: TMS 9901
4y Main I/0 port: TMS 9902
5 Auxiliary I/O port: TMS 9902/03
6 External device - edge (positive or negative) triggered or level
sensitive.

6-31

All interrupts except RESET and LOAD are processed by the TMS 9901 Programmable
Systems Interface device. This device handles both parallel I/0 and interrupt
requests. Because of the pinout limitation on the package, the TMS 9901 must share
INT7 through INT15 (interrupt requests 7 through 15) with the parallel I/0 lines P15
through P7, respectively. This reverse arrangement provides contiguous I/0 and
interrupt lines if some of the shared lines are used for interrupts and others for I/0
(see Figure 6-13).

The basic operation of the interrupt facility must be initialized by the
microprocessor through the CRU. The 15-bit interrupt mask is set under program control
to allow interrupt requests by writing a ONE state into those mask register positions.
The mask bits that contain ZERQ will not honor interrupt requests. Note that the
condition of the processor's Status Register priority mask is irrelevant if the TMS
9901's Interrupt Mask Register is a ZERO for a particular interrupt: the request will
not even be presented to the processor.

When one or more interrupt requests are presented on the INT1 to INT15 lines, only
those whose corresponding mask bits are ONE are considered. The highest priority
request present is encoded onto lines ICO through IC3, and INTREQ becomes active
(low).

The TMS 9900 receives the coded request and compares its value to the interrupt mask
in its status register. If equal or higher priority, (a lower interrupt number) the
interrupt is honored, the mask is set to one less than the current interrupt number,
and the vector process begins. Note that level 0 is the highest priority, and cannot
be masked out since it is a number that is always equal to or lower than any number
which can be in the mask register of the processor. The lowest pricrity is 15.

There is extra logic for INT6 to be triggered either in the normal manner by
presenting a low level to P1 pin 20, or in an edge-triggered manner. A low-to-high
transition should be presented to P4-8, and a high-to-low transition on P4-6. These
edge-triggered signals are converted to level-sensitive signals, and are latched by a
pair of flip-flops. The interrupt request line can be set inactive by the interrupt-
service routine by writing a bit, either a ONE or a ZERO, to CRU bit address 00A6
(R12 base address 014Cq4). These flip-flops are automatically cleared by the CLRCRU
signal.

6.15 PARALLEL I/0 AND SYSTEM TIMER

The TMS 9901 provides sixteen lines of parallel I/0. The TM 990/101M user can read or
write to any single bit of this parallel port because it is under CRU control. For
example, eight bits can be used for output at the same time the eight other bits are
used for input. This allows applications such as scanning a custom keyboard for input,
or outputting multiplexed signals to a seven-segment display device; all under program
control. A timer is also integrated into this device.

6-32

~

AD0D1450

e TMS9901
U LA B S o] T
ico 1 e
2dico NTZ
¢ P et
ict wl T
i —_——
v i 13 lica iNTA
i3 12 e
1c3 TNTS
per L =t INTE
B 10 = INTT/P1S
ChRUIN 5 CRUIN INTB/P14
CRUOUT 2} auout INTG/P13
CRUCLKG 3 o=
CRUCLK INT10/P12
ISEL4- 5 =iy,
CE INTT1/P11
A0 39 S—
s¢ INT12/P10
AN 6 .
e INT13/P9
Al S—
: 38 12 INT14/P8
A1l ——
22 1 INT15/P7
Ala 24
sS4 P&
5y 40
Vcc PS
16
T—GND P4
4 P3
P2
P
Po

Figure 6-13.

TMS 9901

6-33

=) {
2 < ALL 10 k2 (o—--PMB
T E2
17 INT1 e
INT2 E3
18 l P1-13 o IE
la iNT3 =5| 80
& P115 o 2 P
e z
|s 3 INT4 H=l ko
(:'TPHB
7 INTS
. ES
6 INTE
o N E6 s
[____. sz g%
‘ P16 o°| 2@ P
ocl=]| ©
. rew | B2l 25
o P15
fom Pa3s
L . - P18
= P4-36
L o P1-7
30 S EDGE TRIGGER
T P¥13 LOGIC
29 Pa-32
P19
4 |
28 A— P4.30 !-"1-2!1!-——f
T ::3 P4-6
- L R p111 P48
23 == P426
> P1-14
19 [————nu
P4.12
20
P4-10
21
Pa18
P4 16
P4-14
— P4-22
2 - P4-20
> > > > L >
ALL 10 k(2

6.15.1 PARALLEL 1/0

Lines PO through P6 are dedicated I/0 lines, while P7 through P15 are shared with
INT15 through INTT7, respectively., When a user system is configured, it must be decided
how to allocate these shared lines between interrupts and I/0. When written to, each
parallel line remains in the same state until written to again. The parallel I/0 lines
are initialized by resetting the 9901. This may be done in 3 ways; by

(1) Activating the RESET switch or pulling PRESET.B to O
(2) executing a RSET instruction
(3) Putting the TMS 9901 in the clock mode and then writing a 0 to CRU bit 15

(refer to Table 1, TMS 9901 manual). Instructions to accomplish this for the
TMS 9901 on the /101M CPU board are:

LI R12,>100
SBO 0
SBZ 15

After initialization of the 9901, all I/0 lines are in the input mode, and all I/0
lines are pulled high. Writing to a specific CRU bit programs that bit as an output,
and that bit will remain an output until the TMS 9901 is initialized again.

6.15.2 SYSTEM TIMER

The TMS 9901 has an internal real time clock which may be used as an interval timer by
the user, It is a decrementer which generates an interrupt when it decrements to 0. To
load a value into the 9901 clock register on the 101 board, the user must:

(1) put the 9901 in the clock mode by writing a 1 to the control bit (CRU bit Q)
(2) 1load a 14-bit count value into the counter register (CRU bits 1 through 14)

The counter will start decrementing the counter register value immediately after it is
loaded at a rate of 0/64., For a 101 running at 3 MHz, this computes to a decrement
every 21.33 microseconds (rounded off). Writing all ones to the counter register gives
the maximum time interval of 349.525 milliseconds (rounded off value). An example of
loading and starting the timer is:

LI R12,>100
LDCR R1,15

R1 contains the 14-bit timer value, plus a one in the least significant bit position.
This least significant one gets loaded first and puts the TMS 9901 in the clock mode.
If the least significant bit is a 0, the user will be loading the TMS 9901 interrupt
mask register instead of the counter register. Refer to the TMS 9901 manual for more
details.

When the TMS 9901 timer decrements to 0, a level 3 (INT3) interrupt is generated. For
this interrupt to cause a context switeh, the 9901 must be in the interrupt mode (CRU
bit 0 = 0), the INT3 mask bit must be 1 (CRU bit 3 = 1), and the TMS 9900 interrupt
mask must be set to accept a level 3 or higher priority interrupt (LIMI 3). Code to do
this would look like the following:

6-34

L

LI R12,>100 SET CRU BASE ADDRESS OF 9901 ON 101

SBZ 0 PUT 9901 INTO INTERRUPT MODE
SBO 3 ENABLE INT3
LIMI 3 SET 9900 INTERRUPT MASK FOR LEVEL 3

OR HIGHER PRIORITY INTERRUPT.

After the interrupt has occurred and a context switech has taken place, the user should
disable the timer interrupt at the 9901 by writing a 0 to CRU bit 3. This will prevent
INT3 from occurring during the Interrupt Service Routine and possibly cause an
infinite loop to the Interrupt Service Routine. Several items of interest regarding
the 9901 timer are

(1) after decrementing to 0, the timer reloads itself with the start value and
starts decrementing again

(2) when the 9901 timer is being utilized, it generates INT3. Any signals on the
INT3 pin (pin 9) of the 9901 are ignored.

(3) if the timer is used for measuring elapsed time or as an event counter, the
contents of the counter register must be read. To do this, the 9901 must be
put in the interrupt mode (CRU bit 0 = 0) for at least 21.33 microseconds,
then placed back in the clock mode (CRU bit 0 = 1) and CRU bits 1-14 are
read.

(4) to stop the timer, the 9901 must be put in the clock mode and the counter
register (CRU bits 1-14) must be loaded with zeroes.

6.16 MAIN COMMUNICATIONS PORT

The main communications serial I/0 port (P2) has two options, depending on the "dash
number" ordered by the customer. (Refer to paragraph 1.3, "Product Index," to
determine whether the Teletype (TTY) or multidrop (MD) interface circuitry is included
on this serial port.) The main I/0 port uses the TMS 9902 Asynchronous Communications
Controller and is intended for operation with either the "console device" or master
terminal for the TM 990/101M user, or with an automated control device using the
multidrop interface. For detailed operation instructions for the TMS 9902, refer to
the data manual for this device. When pin E2 is connected via jumper to pin E3, the
INT pin of U46 is connected to the INTY4 pin of the TMS 9901. The TMS 9902 will
generate an interrupt on 4 separate conditions, and so if the 9902 at P2 does generate
an interrupt, it will appear as INTL.

6.16.1 EIA INTERFACE

The EIA interface consists of 75188 line drivers and 75189A line receivers. The
receive-data line goes to P3-2 and the transmit-data line to P3-3, This configuration
forms a port suitable for connection to an RS-232-C compatible terminal. A data-
terminal-ready (DTR) signal is supplied as an input for handshaking use with a device
requiring it. Request-to-send RTS) and clear-to-send (CTS) signals are tied together
and brought out to P2-8, which functions as the data-carrier-detect (DCD) signal to
the terminal.

6-35

A14 10 i TO INT4 ON 9901
54 INT
A13 1 2 XxouT
— s3 XOUT TTY OUTPUT
12
52 Rty fo—Dis —
A1 13 6 |
s1 CTS VEIA (15V)
A0 14 7
50 DSR
CRUCLK
A 15| cructk RIN |2 LOGOED
— = P28
CRUOUT L i
CRUIN
> 2 { crUIN
03 16 |
> o LOCDTR
ISEL2 17 | Oq - F3dR
5V 18 E38 MULTIOROP RECEIVER INPUT
Vee O
9
GND Lo E39
i (c EIA & TTY INPUT
TMS 9902 E40

Figure 6-14. Serial I/0 Port EIA Interface

6.16.2 TTY INTERFACE

A transistor and 560-ochm resistor form the transmit loop for the 20-mA current loop,
TTY interface. The transistor conducts current while the line driver connected to its
base is at a mark state. As the line driver goes to the space state, the positive
voltage output is clamped to ground through the signal diode on the transistor base,
thereby turning off the transistor and the current loop (refer to Figure 6-15).

The receive circuit consists of a line receiver which monitors the receive loop formed
by the TTY transmit circuitry and the two supply resistors. The values of these
resistors is such that during a mark state, the input to the line receiver is held
very close to -12 volts. When the TTY transmit circuitry cuts the loop, the receiver
input is pulled up to +12 by the 2.7 kohm resistor.

Note that the TTY jumper must be in place so that the line receiver can monitor the
loop voltage. An EIA terminal should not be connected when the TTY jumper is in place.

6-36

12V

TTY RCV RTN

— P2-23
+12V
E38
RIN p———0
£39 . : . ;
LOCRCD E37 E36 TTY RC
o O To—— & y = P2 183
E40
12 v
XOUT | TTY XMT R
::::)}———vaw——4 IN o b2
‘ TTY XMT
l = P225
TMS 9902
[
ek 2N29054

IN9148B

Figure 6-15. Serial I/0 Port TTY Interface

6-16.3 MULTIDROP INTERFACE

The multidrop interface (Figure 6-16) may be used for board-to-board communications
over long distances, Generally, only a twisted pair line is required between the
boards. One pair is necessary for transmitting, and another pair for receiving when in
full duplex mode. Connecting the two half-duplex jumpers will loop the transmitter

back to the receiver for test or half-duplex applications and only one pair is then
required.

More than two boards may be linked together, each one is just "dropped" in place,
hence the term multidrog. If more than two boards are used, the boards not at the
extreme ends of the twisted pair line (i.e., those "dropped in the middle") are
considered nonterminating boards, and the termination resistor jumper plugs should be
removed to prevent standing wave patterns which might occur, mostly at the higher baud
rates. The two boards at the extremes of the line, regardless of whether additional
boards exist in between, should have these resistor jumper plugs installed. Refer to
Section 7, Options, for jumper configuration information.

6-37

MULTIDROP
RECEIVER 7510/

E38 0& R 1A INPUSH i 1
) INPUL L
E39 1H
EdﬂO—TTE— 1t
TTY s
INPUT

T ‘
——— &
oM
A
NG

e

HIN

P2 23

= = P21B

5112

|
af
4»—-0’_}—4&

Xour
=1 5 5 UUTPULL s A
HTS DUTPUSH
o =)24
(54 2. 20 2Y
TMS 9902 *b veo:
E45 O k4l
o} ((
78 Ed6 La
b VK
A [o! ¥4
GND Iy

Figure 6-16. Multidrop Interface

The multidrop system, also called the private wire interface, uses a dual set, twisted
pair wiring, with operation of these lines in an unbalanced, differential mode. As
such, it is a differential line driver/receiver pair which offers higher current drive
capability and the noise-free advantages of a balanced line.

6.17 AUXILIARY COMMUNICATIONS PORT

The auxiliary RS-232-C compatible port logic is shown in sheet 6 of the Schematics
(Appendix F). All signals for RS-232-C operation are provided. Both terminal and modem
communication can be used by proper programming and cable assemblies. Devices such as
terminals, modems, and serial line printers, such as the TI 810, all can be attached
to this port. Using a TMS 9902, communications are asynchronous. By substituting a TMS
9903 Synchronous Communications Controller, for example, 1200-baud synchronous modems
can be used.

This port uses a modified EIA-standard configuration for direct use with
RS-232-C-compatible terminals. Signals required by modems are brought out to spare pin
positions, which are then rearranged in the special modem cable, the TM 990/506 cable
assembly, to the positions required by the modem.

6-38

o

All TMS 9902/9903 signals are brought out to line drivers or receivers. Port. P3 may be
configured as either a modem or EIA type interface in the following manner:

(1) If E54 and E55 are jumpered together (terminal position), the RTS and CT3
signals from the TMS 9902/9903 are tied together to form DCD (Data Carrier
Detect). The DCD signal is brought out to P3-8. In this configuration, the
P3 port appears as a modem to the terminal device. If the user wishes to
send characters to a terminal device through the P3 port, he must first make
the RTS signal to the terminal go low. This is done by writing a 1 to CRU
bit 16 of the 9902. By making RTS go to 0, the user is also pulling CTS to
0, which is the same as asserting DCD. DCD will then be available for
terminals requiring that signal for communications.

(2) If ES55 and E56 are jumpered together (modem position), RTS and CTS are
distinet signals, both of which are brought out to P3. In this
configuration, the P3 port looks like a terminal to the modem connected to
P3.

Provisions are made also for Data-Terminal-Ready (P3-21) and Data-Set-Ready (P3-19)
and Ring Indicator (P3-22). These three signals are CRU-addressable, outside the range
of the TMS 9902/03. DTR is a latched output and the other two are inputs. Use of all
signals provided can result in a completely automated communications system. Section
8, Applications, describes several examples for the use of this port, and gives the
modem cable configuration as well.

The TMS 9902/9903 at Port P3 can be configured to generate an interrupt at the TMS
9901 by connecting E5 to E6 with the INT5 jumper. If the TMS 9902 is configured in
this manner and does generate an interrupt, the interrupt will appear at the TMS 9901
as INTS5. Refer to the TMS 9902 or 9903 data manuals for proper interrupt-causing
conditions.

6.18 UNIT ID SWITCH

The ID switch is a set of five SPST switches mounted in a DIP packing and connected to
a T4LS251 CRU device. Each switch position corresponds to one CRU bit and, in the open
or OFF position, represents a logic ONE state. Closing a switch to ground produces a
logic ZERO state. Five switches can be set to provide 32 unique codes.

The DIP switch has many applications. Used to pass information to a program, it can
function as a "programmer's front panel". Automatic communications systems may have
the same software in EPROM for every board in the system: the polling ID for each
board is set uniquely in the DIP switch. Alternately, it can be used to pass baud rate
and device type information about the auxiliary port to the service programs. The uses
for fixing system configuration in the switch, and having one set of standard
software, is limited only by the imagination.

6.19 STATUS INDICATOR

The status indicator is a CRU-addressable light emitting diode (LED). Writing a ZERO
to CRU address 0000qf causes the LED to light; writing a ONE, turns off the LED.

Uses for this feature are again limited only by the imagination. Initialization
software can turn it off once initialization is complete. A system error can cause the

LED to come on. Test software can blink the LED during execution.

The CLRCRU signal turns the LED ON upon power-up.

6-39

e

SECTION 7

OPTIONS

7.1 GENERAL
This section explains the various options available to the user of the TM 990/101M.
These options include:

® Use of TMS 2716 EPROM's (2K x 8 bits each) instead of TMS 2708 EPROM's (1K
x 8 bits each)

® On-board expansion of EPROM and RAM

® Asynchronous serial interrupt from one or both of the TMS 9902's
e RS-232-C/TTY/Multidrop interfaces with the Local Serial Port

® Use of slow access time EPROM's by insertion of one WAIT state.
® Use of TM 990/301 Microterminal

° External switch actuation of a RESET or RESTART signal

e Power-up RESET or LOAD

-3 Memory Map change by reprogramming of the PROM

] Line-by-Line Assembler in EPROM.

Figures 7-1 and 7-2 show board locations applicable to this section. Table 7-1 is a
summary of jumpers and capacitors used with these options.

7.2 ON-BOARD MEMORY EXPANSION

7.2.17 EPROM EXPANSION
EPROM memory can be expanded on-board in two ways.

° Add two more TMS 2708 EPROM chips (1K x 8 bits each), for a total of four,
to provide an additional 1K words of memory.

® Use two or four TMS 2716 EPROM chips (2K x 8 bits each) to provide 2K or 4K
words of memory.

Figure 7-3 shows placement of EPROM chips and corresponding memory addresses (in
bytes). The board silkscreen designators identify the necessary jumper placement at
E9/E10/E11, E26-E30, and E31-E35.

NOTE
Check the jumper placements on your board against Table
T7=2 for proper configuration of your board.

In general, for TMS 2708 use, jumpers are placed as shown in line 1 of Table 7-2} for
TMS 2716, they are placed as shown in line 2. These jumpers switch the chip enable and
A4 signals as required for the memory device used. Location of RAM and EPROM in
opposite ends of memory can be reversed by jumpering E16 to E15 (instead of E16-E17);
this starts RAM at M.A. 000016 and EPROM starts in upper memory. In addition, EPROM

7=-1

=l

*|=) 8Jn3Tg

jusmeoeTd Jedunp

E8/E53 E54/E
i E20/E21; E22/E23; E24/E25

NG WALT SELECT PORT P3 ;
STATE FOR FOR USEWITH TOWER TO TM 990,301
E7/ES ON-BOARD L o0 ATERMINAL® MIEROTEAMINAL _
ONE WAlT EPHOM? CONNEETE E55/E56 E41/E42, E45/E48,
"E16/E17 STATE FOR SR SELECT PIN P3 FOR ;‘gﬁ?g:;;!%z
E15/E16 RAM IN HIGH ON-BOARD S EABLING USE WITH A MODEM e
RAM IN LOW MEMORY, EPROM EPROM MITEREREE
MEMOR'Y IN LOW MEMORY TERmATOR

EPROM IN HIGH

E13/E14
SELECTS
ON-BOARD
EPROM®
*+*E43/E44
MULTIDROP
E12/E13 INTERFACE
EE?JCEE:TDS HALF DUPLEX
EPROM SELECTORS
E47/E48
"""" CONNECTS
MULTIDROP
AAAAA INTERFACE
E9/E10 - s mrnelALL i : A B 2828 oy rum 1 ‘ _ ; TO TMS 9902
SELECTS G eSS R e e ey) || 2 K v g L E38/E39
PN B (oo ARl 8 —— . e UG e TG . CHATLER
ADDRESS MAP ot
FACE
SELECTS E36/E37
2708 MODE
ADDRESS MAP*
E10E1T W AU
________ E32/E33
: E34/E35
.......... Ua3, U4s
ARE
””” TMS 2708

U4z Ud4 ARE U422, ua4a u43, U4b ARE
A7 TMS 2716 RE TMS 2708+ TMS 2716
Eﬂofl\éEECTs SRR :?JI:“_ES\TRSYI I:;\rfs-;goz E?GfE;? :27;’E28$ 08 E31/E32
] i
E5/E6 E28 E29 E29/E30 E33/E34

CONNECTS

INT4 TO P1-18" CONNECTS INT4TO

E1/E2 MAIN TMS 9902

E2/E3

NOTES: *THIS POSITION IS THE NORMAL POSITION ON ALL BOARDS,
“*NORMAL POSITION FOR -1 AND -3 BOARDS ALSO.
*=*NORMAL POSITION FOR -2 BOARDS ALSO.

E39/E40"
CONNECTS
EIAANDTTY
INTERFACE
TO TMS 9902

9l4440 oL Sloooo

gLiz

9l44.0 01 Foooo
8042

9L4441 oL 9logol
9Lz

4440 OL 0080
80¢Le

94444 oL 2loosd

9l4474 0l 9lgoo4

HOLIDVYdVD avOol

HOLl10vdvD 1353d

Memory and Capacitor Placement

Figure 7-2.

7-3

Table 7-1.

Master Jumper Table

No. Pins Connected
Pins Staked Together Function When Connected

3 E1-E2 Connects INT 4 to pin 18 of P1 edge connector
E2-E3 Connects INTH4 to TMS 9902 of LOCAL I/O port

3 E4-E5 Connects INT5 to pin 17 of P1 edge connector
E5-E6 Connects INT5 to TMS 9902 of REMOTE I/0 port

3 ET-E8 Causes 1 WAIT state when on-board EPROM is

accessed
E8-E53 Causes no WAIT state: memory cycles are full
speed

3 E9-E10 Selects memory map for TMS 2716 EPROM's
E10-E11 Selects memory map for TMS 2708 EPROM's

3 E12-E13 On-board EPROM is disabled from memory map
E13-E14 On-board EPROM is enabled into memory map

3 E15-E16 EPROM at high addresses, RAM in low
E16=-E17 EPROM at low addresses, RAM in high

2 E18-E19 Pin 1 of P3 is connected to GROUND

2 E20-E21 Microterminal: +5 volts to P2-14

2 E22-E23 Microterminal power: +12 volts to P2-12

2 E24-E25 Microterminal power: -12 volts to P2-13

5 E27-E28; E29-E30 Main EPROM is TMS 2708
E26-E27; E28-E29 Main EPROM is TMS 2716

5 E32-E33; E34-E35 Expansion EPROM is TMS 2708
E31-E32; E33-E34 Expansion EPROM is TMS 2716

2 E36-E37 Teletype terminal connected to P2

3 E38-E39 Multidrop Interface in use with LOCAL I/O port
E39-E40 EIA or TTY interface in use with LOCAL I/0

port

7-4

i

Table 7-1. Master

Jumper Table (Concluded)

No.
Pins Staked

Pins Connected
Together

Function When Connected

2 each¥*#®

2 each¥##

2

E41-E42,E45-EL6
E49-E50,E51-E52

E43-E44, EUT-EUS

E54-E55

ES5-E56

Multidrop termination resistors connected

Multidrop Half Duplex operation enabled

Connects TMS 9902 RTS to CTS for port P3 to
communicate with an EIA compatible terminal.

Connects TMS 9902 CTS to port P3 directly for
communication with an EIA modem.

*¥On TM 990/101M-1 and -3 only
®¥¥On TM 990/101M-2 only

Table 7-2. Jumper Pins by Board Dash Number (Factory Installation)
Board Jumper Installation at

Dash No. Positions Staked Factory (Positions)
=15 =3 E1-E40, E53-E56 E1-E2 E4-E5 E10-E11 E13-E14
E16-E17 E18-E19 E20-E21 E22-E23
E24-E25 E27-E28 E29-E30 E32-E33
E34-E35 E39-E40 EB-E53 ES4-ES5
-2 E1-E35, E38-E56 E1-E2 E4-E5 E10-E11 E13-E14

E16-E17 E18-E19 E27-E28 E29-E30
E32-E33 E34-E35 E39-E40 E41-EY2
E43-E4Y4 EL5-EL6 EUT-E48 EU9-E50
E51-E52 EB-E53 E54-E55

can be disabled from the memory map (in effect, it no longer exists) using jumper
E12-E13 (jumper placement E13-E14 enables it onto the memory map).

T.2.2 RAM EXPANSION
Four additional TMS 4045-2 RAM chips can be added as shown in Figure 7-3. This will
provide an additional 1K words of RAM. Location of RAM and EPROM at opposite ends of

memory can be reversed by jumpering E16 to E15 (instead of E16-E17); this will place
RAM starting at M.A. 00004 and EPROM starting in upper memory.

M.A. M.A.
(HEX) JUMPERS (HEX) JUMPERS
0000 0000
RN A E10/E11
E13/E14
vezuae | A | e BANK 1
E29/E30 2 TMS 2716'S E9/E10
(2K X 8 EACH) E26/E27
0800 E10/E11 U42,U44
BANK 2 £13/E14 E28/E29
2 TMS 2708°S E32/E33
U43, U4s {1K X B EACH) E34/E35
(EXPANSION)
OFFE
1000
E9/E10
msznes | EVER
2 2 E33/E34
{2K X 8 EACH)
U43, u4s (EXPANSION)
1FFE
(A) EPROM EXPANSION
M.A.
(HEX)
FOOO BANK 2 TMS 4045
U28, U30, U34, U36 (EXPANSION) (EACH 1K X 4 WITH
F800 .4 IN EACH BANK. TOTAL
g0, 81, LSS Usy BANK 1 EXPANSION TO 2K X 16
e FFEE BITS)

(B) RAM EXPANSION

Figure 7-3. Memory Expansion Maps

7-6

7.3 SLOW EPROM
Slow EPROM's can be used with the TM 990/101M by using a jumper between pins E7 and
E8. This conneects WAIT to READY when on-board EPROM is addressed. Refer to Table 7-3.

Table 7-3. Slow EPROM Table

System Speed EPROM Type Access Time Jumper ET-E8 EB-E53
3 MHz TMS 2708 450 ns Installed
3 MHz TMS 2708 650 ns Installed
3 MHz ™S 2716 450 ns Installed
3 MHz TMS 2716 650 ns Installed

Z.H SERIAL COMMUNICATION INTEEBUPT

Either or both serial ports (TMS 9902's) can be interrupt driven.

™ Main Communications Port (EIA/TTY/MD) at P2: interrupt 4.
® Auxiliary Communications Port (EIA) at P3: interrupt 5.

As shown in Figure 7-4, any of four conditions at either TMS 9902 can cause an
interrupt condition (change in data set mode, character received, character
transmitted, or TMS 9902 timer counted down to zero). An interrupt service routine can
check the TMS 9902 bits through the CRU to establish cause of the interrupt, then take
appropriate action. Further information is available in the TMS 9902 Asynchronous
Controller Data Manual.

7.5 RS-232-C/TTY/MULTIDROP INTERFACES (MAIN PORT, P2)

7.5.1 TTY INTERFACE
Appendix A covers cabling for a Teletype Model 3320/5JE. To use this terminal (20 mA
current loop), connect pins E36 and E37 with a jumper plug.

CAUTION
Verify correct voltage levels at connector P2 before
attaching a teletypewriter type terminal.

Connect the cable to the terminal and to the microcomputer board. The EIA/MD jumper
plug must be connected between pins E39 and ENO.

7.5.2 RS-232-C INTERFACE

Appendix B covers cabling for an RS-232-C compatible terminal. To use this type of
terminal, disconnect the TTY jumper and make sure the EIA/MD jumper is in the EIA
position. Connect the cable to the terminal and to the microcomputer board.

=T

INTERRUPT 9902
CAUSING CRU

CONDITION BIT

DSCH
—_—— DSCINT
DATA SET CHANGE DSCENB %

RBINT

r "

RBRAL
RECEIVE BUFFER
LOADED, ENABLED RIENB

XBRE -
TRANSMIT BUFFER = INT o
EMPTY NIENB
TIMELP
TIMINT

19

HJ J U U

TIMER ELAPSED { TIMENS

TO INT4 OR INTS AT

% Wy E2/E3

A0001459 PIN INSTALLATIONS TO ENABLE INTERRUPTS:
— INTERRUPT 4: E2/E3
— INTERRUPT 5: ES5/E6

Figure 7-4. Four Interrupt-Causing Conditions At TMS 9902

7.5.3 MULTIDROP INTERFACE

Figure 7-5 shows the multidrop interface in use with a system of TM 990/100-series
microcomputer boards. The two boards at the extreme ends of the lines are considered
"terminating" boards; whereas, the boards in the middle are non-terminating.
Half-duplex operation requires one twisted-pair line (i.e., two wires), and
full-duplex operation requires two twisted pairs (i.e., four wires). Refer to Figure
7-6 for cabling.

Table 7-4 shows the jumper configuration for the various configurations. As an
example, a common system requirement is for a full duplex board-to-board communication
between only two boards. This requirement is fulfilled by the jumper configuration
shown on line 4 of the table.

7.5.3.1 Full Duplex Master-Slave

This communications setup is used when there is only one master station and several
slave stations. The system setup is shown in Figure 7-7. The advantage of this
approach is that one station is in command and control of communication is thus
centralized, and also each master-slave communication is full duplex. The half duplex

Jjumpers are removed.

7-8

TWISTED
PAIR

_ NON-TERMINATING
BOARDS

TERMINATING

CABLING
(SEE FIGURE 7-6)

OUTPUSH
OUTPULL

INPUSH
INPULL

BOARDS

Figure 7-5. Multidrop System

P2 P2
24 24
25 25
23 23
18 18

OUTPUSH
OUTPULL

INPUSH
INPULL

NOTE: ALWAYS CONNECT A “PUSH" LINE TO A “PUSH"
LINE AND A “PULL" LINETO A “PULL" LINE

Figure 7-6. Multidrop Cabling

Table 7-U4.

Multidrop Jumper Table

Mode

Install

Remove

Half Duplex, non-terminating

Full Duplex, non-terminating

Half Duplex, terminating

Full Duplex, terminating

All

E43-EU4L, E4T-EU8

None
All E41-E52

E41-E42, EU5-EL6,
E49-E50, E51-E52

E38-E39

E41-E42, E45-EL6,
E49-E50, E51-E52

All E41-E52
None

E43-EU4L, E4T-EL8

ouT

IN

~

24
25

23
18

_/

MASTER

Figure 7-7.

) X -
24 24 /;:\ 24
25 25 25 25
0 Q0
23 23 23 23
18 18 18 18
SLAVE1 SLAVE2 SLAVE3 SLAVE"N"

o™
o™
& i
(o] (0] Q (0] e} o]
(@] (@] (o] [®) O o]
— ™ (Te] m~ (@)]) g
< <r <t < <t Te]
Ll w L L (4N

MASTER AND SLAVE "N"
JUMPER ARRANGEMENT.

(OTHERS HAVE NO JUMPERS)

Master-Slave Full Duplex Multidrop System

7-10

The output of the master station is routed to the input of each slave station. The
output of each slave is routed together to the one input of the master. The control
codes provided by the master should insure that only one slave transmits at one time.
Note four wires total are needed: one pair receive and one pair transmit.

7.5.3.2 Half-Duplex Operation

This configuration is used when only two wires - one pair - is desired. The half
duplex jumpers are installed and the one twisted pair is connected at either pins 18
and 23 or pins 24 and 25 of the P2 connector, on all stations. See Figure T7-8.

Protocol must be determined carefully for this configuration to prevent many stations
becoming "live" on the lines at once. One station may be appointed master and send
control codes, or a round robin technique may be used where control passed from one to
another. Conversations are always half-duplex, so when a master station requests a
message, it must wait for the addressed station to finish its transmission. This means
that control is given up periodically, and a malfunctioning slave station can "hang
up" the whole system. This approach does enjoy the advantage of two wires instead of
four, though.

24 —{ 24 — 24 —] 24
—+2 25 — 25 T 25
(HALF [| I § . 2
J[?Jl;::F"_EEF:(S) k. : IL. WL ‘ L4423
| L4023 b A1 B b 23
L-— 18 L--418 L--| 18 L--| 18
o N _/ L/
UNIT 1 UNIT 2 UNIT 3 UNIT “N”
> P
& w

O (o} (o] o o O
- 5] [Te] r~ . -
-3 < < g T 0

w w w w w

UNIT 2 THROUGH UNIT “N-1"
JUMPER ARRANGEMENT.
(UNIT 1 AND UNIT “N" HAVE
ALL JUMPERS CONNECTED)

Figure 7-8. Half-Duplex Multidrop System

7.6 EXTERNAL SYSTEM RESET/LOAD

The RESET function is activated from off-board by the assertion of a low state on the
PRES.B line, pin 94 on connector P1. An SPST pushbutton to ground can be connected to
this line, and should be debounced by a 39 uf tantalum capacitor at C18.

The LOAD function can be activated by asserting a low state on the RESTART.B line, pin
93 of connector P1. An SPST pushbutton to ground, with attendant C23 for debouncing,
can be used for external actuation.

7.7 REMOTE COMMUNICATIONS

Jumpering pin E18 to E19 connects pins 1 and 7 of connector P2 to ground. Removing
this jumper leaves only pin 7 at ground. In some applications, it is not desirable to
have signal ground connected to chassis ground, to prevent ground loops or keep an
isolated chassis isolated. In these cases, remove the jumper. In most cases, though,
there is no special consideration needed, and the jumper may be left in place.

Serial Port P3 can be used to directly communicate with an EIA compatible terminal.
This type of operation requires that a jumper plug be installed between E54 and E55,
which connects RTS to CTS of the TMS 9902, enabling operation of this device. The
terminal with its proper cable (see Appendix B) may be plugged directly into connector
P3.

If communications with an EIA compatible modem (see Section 8, Applications, under EIA
Serial Port Applications) is desired, insert the jumper plug between pins E55 and E56.
This connects CTS of the TMS 9902 to the line receiver on the P3 connector. The TM
990/506 modem cable, or equivalent, must be used.

7.8 MEMORY MAP CHANGE

The entire system memory map is divided into two categories - on-board and off-board.
This division as well as the enable lines to on-board blocks of memory, are controlled
by a PROM, a 7u45287.

Blank PROM's may be programmed by the user to reconfigure the memory map. For a
discussion of the pattern generating process, refer to Section 6, Theory of
Operations, under Addressing Decoding.

7.9 TM 990/402 LINE-BY-LINE ASSEMBLER

A line-by-line assembler is available, programmed on two TMS 2708 EPROM's. It will
assemble each instruction as it is input by the user. The resulting machine code will
be printed on the terminal and placed in continuous memory locations. The TIBUG
monitor must be present to use the assembler.

No relocatable labels can be used. Jump instructions use dollar-sign plus or minus
byte displacements, and symbolic addresses are input as absolute locations. Error
codes identify syntax errors (illegal op code), displacement errors (jump
instructions), and range errors (e.g., R33). Figure 7-9 is an example of assembly
output using the line-by-line assembler.

7.10 TM 990/301 MICROTERMINAL

An alternate to a hard-copy terminal is a TM 990/301 microterminal for user
communication to and from the TM 990/101M. The size of a hand-held calculator, the TM
990/301 uses its light-emitting diode (LED) display to show hexadecimal or decimal
values. Features of the TM 990/301 include:

] Hexadecimal to signed decimal and signed decimal to hexadecimal conversion
of displayed value,

© Display and change contents of Workspace Pointer, Program Counter, Status
Register, or CRU ports.

o Inecrement through memory displaying contents.

° Display and change contents of memory addresses.
° Halt or single step user program execution.

® Begin program execution.

° Keyboard values 0 through F,c.

This microterminal comes with its own cable which attaches to the 25-pin connector P2.
To supply power to the microterminal, place jumpers at E20/E21 E22/E23 and E24/E25.
When the microterminal is not connected, make sure that these jumpers are
disconnected. Jumper E39/E40 must be in (EIA position) for microterminal operation.
See Figure 7-2.

Figure 7-9 shows the microterminal and cabling to the TM 990/101M.

7.11 OEM CHASSIS

An original equipment manufacturer (OEM) chassis is available. It features slots for
four boards, a motherboard backplace interfacing to P1 on the board, and a terminal
strip for power, PRES.B, INT1.B, and RESTART.B. A dimensional drawing of the OEM
chassis is shown in Figure 7-10. A schematic of the backplace is shown in Figure 7-11.
P1 pin assignments are listed in Hable H-1 of Appendix H.

NOTE
Dimension between card slots is one inch.

FLOOu
FEOD
FEDZ
FE U4
FE 4
FE &
FE =
FEOC
FEDE
FELD
FE1Z
FE14
FE1&
FE1Z
FE1R

EFAD
FEDC

el
0=

434
4E4T
S&a1
S455
441
S449
4F4E

S32E

FE1C 210

FELE
FEZ0

FEZE !

FE24

FECH D

FEZ=
FEZH
FE2C
FEZE
FEZD
FEZ2

ST4F
S24B

L]
P e T

e

s il o
Ly 1L

MEMORY ADDRESS

ASSEMBLER MACHINE CODE

/— USER INPUT SOURCE CODE

SFEND ===

HOF 3 :FEDCs 14

Ve

o —

E ax00=n0

SFENL -

FCOMGREATULATIONE.

++ UF 7
+> 070

Figure T7-9.

CHANGE MEMORY ADDRESS

SYNTAX ERROR

CHANGE MEMORY ADDRESS
TOUR FREOEAM WOREZ? -

Line-By-Line Assembler Output

TEXT STATEMENT

g‘iiur'e T7-10. TM 990/301 Microterminal

BACKPLANE

0827
2PLACES
o
AN P
R
N
P

NOTES:
1. DIMENSIONS IN INCHES
2. DISTANCE BETWEEN SLOTS

1S 1 INCH .
3. ALL DIMENSIONS *0.010.

Figure 7-11. TM 990/510 OEM Chassis

(=]

7-1

ONE

s @ 12 -] - 0 £ s e LE “"u.
Fie] L R T R = R a&::ﬂla R 1 = R T - - r-»
9 i N & fo o | o o G e & o %
”E | | W o
| | | | i
| L L |
®

o

-) |
7]
| —o
i)
n
ok
—
Py
A
)]
PR
I3 E?&
L P 1] e

o s Uf_._..f
AC

k
[
ll}
2, <[] Er’* dlabel PQJ: ’ F—Eﬂ falsiiliibd r"‘;lﬁ f“
ihy 1 | T 4 HICEE
HE WL ik HILE
snsl o | Juls ! bl i
| Ii |
LU, *
: L:-l ‘o el el o e
v [T 19990999393 193199299 T:
[s _* N
D
o |
w2y +_<.
Feezs F f NOTE: BACKPLANE PIN ASSIGNMENTS LISTED
et IN TABLE H-1 (APPENDIX H).
N - SUF Y «‘t_.:_rﬁ‘
TERMINAL STRIP

IN BACK OF CHASSIS

Figure 7-12. OEM Chassis Backplane Schematic

SECTION 8

APPLICATIONS

8.1 GENERAL
This section covers various methods of communicating to applications hardware external
to the TM 990/101M. Figure 8-1 shows board locations applicable to this section.

8.2 OFF-BOARD RAM

Figure 8-2 shows a logic diagram for adding additional RAM off-board. The buffers are
controlled by the same logic that is used on board the TM 990/101M. The dual
flip-flops are used to generate one wait state whenever the memory is enabled. The
TULS155 decodes the five most significant address lines. The A0 and A1 lines select
this memory board, and A2, A3 and A4 select one of six banks of expansion RAM. The
outputs of the TULS155 select 1K word banks, starting with the 1Y1 output, which
corresponds to an address range of E80016 to EFFF16. Lines 1Y2 and 1Y3 are not used
since they respond to the address range of F0004¢ to FFFF16, which are on-board the TM
990/101M. Additional 1K word banks connect to 1Y0, and so on up to 2Y0, which responds
to the lowest address in this application, C00044-.

Alternatively, if the user wishes to address eight banks of RAM on this memory board,
using 1Y2 and 1Y3, then the on-board memory can be moved to B0O0O to BFFFg, or some
other address, by reprogramming the Memory Address Decoder PROM on board the TM
9ua/101M.

The TULS08 bringing #1B onto the memory board is used to buffer the system bus, in
keeping with the practice that only one LS load per board should appear for a system
bus signal. It may easily be omitted. The two 7438's with pull-up resistors attached
are used instead of a TULSOY4 and TY4LSO0 to keep down the parts count.

8.3 OFF-BOARD TMS 9901

Figure 8-3 shows the wiring of an off-board TMS 9901 at the CRU bit address 0FE016.
Only the programmable I/0 section is used; the clock and interrupt section is ignored.
The R12 bit address is 1FCO4¢-

Connection is made through the system bus, P1. The CRUIN, CRUOUT, and CRUCLKB signals
are gated by the 1G signal. Chip enable is performed by one 7T4L3S30. Other addresses
are not so easy to decode; the use of the various decode chips would enable a bank of
TMS 9901's.

8.4 OFF-BOARD EIGHT-BIT I1/0 PORT

Figure 8-4 shows the wiring of an I/0 port with separate 8-bit inputs and outputs. The
input is a TULS251 selector, also known as a TIM 9905. The output is an addressable
latch array, a T4LS259 (or a TIM 9906). Address decoding is done by random logic, and
the R12 CRU address is 02004¢. Note that MEMEN is not used in adress decoding, so this
circuit is active even during memory cycles. Again this does no harm since CRUCLKB is
inactive and CRUIN is ignored by the processor.

c-8

*L=g 2Jn3T4

0/I ut pasp sijusuoduwo) JoleBR

)

PAiAini

L£TMs 9901

TMS 9902 FOR MAIN PORT P2 syl

L .".T'MS_QQOO—_-' TMS 9902 FOR AUX!L!“U‘ Y PORT P3

"l Ty
[“\ e

ek

£ CONNECTS INT4 TO MAIN TMS 9902 (E2/E3) OR TO P1-18 (E1/E2)
£ CONNECTS INT5 TO AUXILIARY TMS 9902 (ES/E6) OR TO P1-17 (E4/E5)

READY 90
#1822
WEB 78
DBIN B 82

MEMEN B 80
HOLDA B
DISB 48
D14B 47
D13B 46
D12B 45
DV1B 44
D10B 43
pgg 42
DBB 41
D78 40
D68 39
D58 38
D4B 37
D38 36
DZB 35
D1e 34
DOB 33
A140 71
A13B 70
A128 69
AllB 68
AI0R @7
A9 B 66
ABB B85
A7 B B4
A6B 63
A58 62
A48 81
A3B 60
A28 59
A1B 58
AOB 57

74L874 741574

D a D Q

5
a7k
*5 3 1438 W
c 1 Lsoz
740508 __
%18
. LS00
POINT %) 1 MEMEN B
TO ALL PIN
10°S OF TMS 4045's ‘5 5 gvu-—--;o TO ADD'L
5V 47K t G 2v1 cHIP
7415153 74L508 PAa
1 ‘ . - = i 1; gf\lLlE::\?ORD
: = 2vaf = BLOCKS
a] ['_52(. L AN &
a 10 - 1 A2 1 6
‘ &—J 1 Y1
5| 745243 [5 7! M
| Ig Ad i3], o6 |
1 13 7415155
- ~ =
2 5
3
: = 1
B 18 9 18| 9
6| 74Ls245 T L) P LY AS 19 oiio— |08
7 " A6 16 12} (nﬁ 16}) 12 09
8 " a7 17 13 02 (a1 17 13 010
=& 1l 14 D3 r~ 14 D11
3 - DIR H ™S J A8 ! . (Rl bt
G Ag 2| 40es I ag 2 T™E e
e L awm 3 w12 e raw 3 L S0 We
= I anl a 8 Fragn 4
== T2
2 L] 7 5 8 a1z) =18
3 [a3 6 a3 4
PSP
4 A4 3 a4 s
(]
5
6] 74Ls245
7
8 B =y
9
— DIR ‘5 y
T} 5
19 | J'l
- | o T w 9| T
2 18 I |
— AS L n_paf | a5 [oD
I A6 16 12 D5) [aB 1§ 12 D13
| A7 7 i3 06, (AT U7 3014
) r 14 1
5 7415245 AB 1 14 D7 A8 1 Dg
A9 L TMS &8 2 T™ME
7 3 A
1 a0 3] avss] 10 TV;F rawo 3| ao0as Wl 10 WE
v = ¢
‘ Al 4 ALy . 4 *
s]
= A2 7 =2 (a12 7 o 8
PRl LAY HE L S 3
19 A13 6 A13 [
.._I__ s a4 3| [Cate
= R e AR
2
3 A
4
5
= 745245 2
7
8
9
15 DIR
I T

Figure 8-2. O0ff-Board Memory

8-3

TMS 990/100 M, CONNECTOR P1

74L5367

5 Hﬁuwﬂ_i 2
30 }_CRUOUT B ! a 5
g7 1 CRUCLK.8 | 6 7 D° LS04
o iorsT8 | 10 9 ¥
4 38 L a2 11 TMSS901
go | MEMENB | 14 13 ij CRUOUT CE }-°
I I :G 161 3] crucLk crun |2
= G
| : Yasr po |28
: +5Y 10 a Pl 3z
.} +5V | f ELl P p2 |28
|
1 GND o i 361 6 pa 22
|
2 —GND 351 s pa |21
| 7 7 25 20
| 74LS36 53 [i- T S
1 aza | |z 3 24] oy o i
]
61 AR | 4 5 G111 RVESS p7 |23
as8 | | s 7 5 Li
62 | L P pa 127
63 | aA6B | |10 9 po 128
o b are | 12 1 741530 pig }2
1
65 | ABB | |14 3 pr1 |30
| | 626 pfz Bl
| | | P13 {82
| ’ P14 _33__—
| I 74L5367 P15 |34
asB | 2 3
66 |
et a8 | 5
= { Ane | 6 7
|-
69 | A28 | 10 3
70} A13e | |12 11 o
o a148 | |14 13
I s .
: ! 6. 35
! =
| 1o +5 volts
| |
|

LIST OF MATERIALS
aTy PART

14 - PIN DIP SOCKET"
16 - PIN DIP SOCKET*
40 - PIN DIP SOCKET
74L8367

74L504

741530

TMS 9901

-t o L) e B o

* AND WIRE - WRAP PINS AS REQUIRED

Figure 8-3. Circuitry To Add TMS 9901 Off-Board

8-4

v

SALER 7415259
G ma e e | 7
CRUCLKE D 0 A12 3] ¢ sale
_}— A13 o o
Al4] [L
A3 cruours 13| asl?
741504
i 14| o
A5 IORST B L asl10
AT 74LS30 74L504
74LS00 Q6 Lkl
A
A9
A10 w |0 |8
All
AG =)
74L5251
A12 9 4
c Do
Al13 10 B D1 3
Al4 1 . bal 2
CRUINB 5 |, oalt
7 s D4 15
Ds 14
febis
D7 12
R
+5 z
Figure 8-4. 8-Bit 9905/06 Port

8.5 EXTRA RS-232-C TERMINAL PORT

Figure 8-5 shows a diagram of a serial I/0 port suitable for most RS-232-C terminals.
The handshaking signals used are DATA CARRIER DETECT, which is generated from the
REQUEST-TO-SEND tied back to CLEAR-TO-SEND on the TMS 9902, and DATA TERMINAL READY,
which is brought into the TMS 9902 for program interrogation. The two 3.3K resistors
supply a "fake" CLEAR-TO-SEND and DATA-SET-READY to those terminals requiring them.

Since only half of the packages are used on the 75188 and 75189 devices, another TMS
9902 may be added for an additional serial port. The R12 CRU address is 1FC04g.

12
3.3K
5
6
3K
+5 TMS 9902 #3
741500
[__ LS CRUIN.B 4 1 INT —
Saspd=p ot CRUOUTB 8 2 XouT 2 3 .
CRUCLK.B RS5232
CRUCLK.B 15 5 RTS
e XMT
}3.B 16 6 | CTS 4 75188
* 6
8
A3 Al10 14 | S A DCD
A4 A1 13
o IR 75189
AB A12 12 7 DsR 3 ! 20
A7 i A13 11 DTR
s S| 75189
AB ‘ Al4 10 3 RIN 6 4 2
At 171 oc::l RS232
csS RCV
AB
18 9
&
8 7
g

]

75188 pin1--12, pin7=GND, pin 14 = +12
75189: pin 7 = GND, pin 14 = 45

Figure 8-5. RS-232-C Port

8-6

8.6 DIRECT MEMORY ACCESS (DMA) APPLICATIONS (FIGURES 8-6 AND 8-7)

The microcomputer controls CRU-based I/0 transfers between the memory and peripheral
" devices. Data must pass through the CPU during these program-driven I/0 transfers, and
the CPU may need to be synchronized with the I/0 device by interrupts or status-bit
polling.

Some I/0 devices, such as disk units, transfer large amounts of data to or from
memory. Program driven I/0 can result in relatively large response times, high program
overhead, or complex programming techniques. Consequently, direct memory access (DMA)
is used to permit the I/0 device to transfer data to or from memory without CPU
intervention. DMA can provide faster 1/0 response time and higher system throughput,
especially for block data transfers. The DMA control circuitry is somewhat more
expensive and complex than the economical CRU I/0 circuitry and should therefore be
used only when required.

Microcomputer direct memory access occurs in block and cycle stealing modes, using the
CPU hold capability. The I/0 device drives HOLD active (low) when a DMA transfer needs
to occur. At the beginning of the next available non-memory cycle, the CPU enters the
hold state and raises HOLDA to acknowledge the hold request. The maximum latency time
between the hold request and the hold acknowledge is equal to three clock cycles plus
three memory cycles. The minimum latency time is equal to one clock cyecle. A 3-MHz
system with no wait cycles has a maximum hold latency of nine clock cyecles or 3
microseconds and a minimum hold latency of one clock cycle or 333 nanoseconds.

When HOLDA goes high, the CPU address bus, data bus, DBIN, MEMEN, and WE are held in
the high-impedance state to allow the I/0 device to use the memory bus. The I/0 device
must then generate the proper address, data, and control signals and the proper timing
to transfer data to or from the memory as shown in Figure 8-6. Thus the DMA device has
control of the memory bus when the CPU enters the hold state (HOLDA = 1), and may
perform memory accesses without intervention by the microprocessor. Because the lines
shown in Figure 8-6 go into high impedance when HOLDA = 1, the DMA controller must
drive these signals to the proper levels. The I/0 device can use the memory bus for
one transfer (cycle-stealing mode) or for multiple transfers (block mode). At the end
of the DMA transfer, the I/0 device releases HOLD and normal CPU operation proceeds.
TMS 9900 HOLD and HOLDA timing are shown in Figure 8-7.

8.6.1 DMA SYSTEM TIMING (FIGURE 8-8)
The Direct Memory Access (DMA) process can be divided into three distinct phases
(shown in Figure 8-8):

® Acquisition of memory control from the system.
® Memory control by the DMA device, and
° Release of memory control to the system.

In systems with multiple DMA devices, the memory control phase can be shared by the
devices on a priority basis; however, the acquisition and release phases must remain
distinet in that the release phase must end before another acquisition phase beings.
This is necessary to avoid any memory access conflict resulting from the hold
acknowledge signal (HOLDA) delay which occurs when the hold signal (HOLD) is released.

8-7

*g-g 2JndTy

8-8

ToJ3uo) sng YWd

CRU

AQ-A14

[

DO0-D15

MEMEN

DBIN

WE

WAIT

READY

MICROCOMPUTER

REQUEST

MEMORY

HOLD

GRANT

ADDRESS

[t

DATA MEMEN DBIN

HOLDA

<

DMA 3-STATE CONTROL

DMA CONTROLLER

~

! 370AD

".olzood T T 31043 %9090 1 ,z_s_ll...__
| _ : S3LV.S LIVM HLIM '
_ _ 1o STTOAD 00126 XVN__,
| | |
_ |\ 7737 | LA s
III/_ | _| _ va10H
“ ” : y ! / LIvMm
_
IR R S DT T EEERNEET R EEFETERTIETETH I TS EXFET BTG, V/.//// Aavas
I
| _ N_:\I/. _ = NI8Q
_ | | _
llllllJﬁll | | ZH\ : am
— (X X siaoa
S _ | Z'H !
S _ | N._:ﬁ) _ X PLY-OV
|
/ _ N;:rl\ | X NIWIW
| |
e e ked g | | S || L €
J |- | 1 gn = A= A= = B
|

Q

e

CPU HOLD and HOLDA Timing

Figure 8-7.

8-9

*g-g 2Jun3dTg

0L-8

JuTwt] We3SAS VWQ

ACQUISITION MEMORY CONTROL RELEASE

I
' MIN 1 CLOCK ' MEMORY MEMORY WRITE DRSHAISI\?EBFUE‘,GP;;)IIE)DD
MAX 9+3W CLOCKS READ (1 WAIT STATE) NOT RECOMMENDED
| | | | |
el
Eromcry) 1 M IR 1 W T 1 1 Fl—11 41 [i
| [[[
i ' | 1 N oy A o
(FROM CPU) Il = i L | & Y [e) 7 | g :
AR M - [| I :
(FROM 1/0 DEVICE) VA ! W/ /7700 A [[
FOLD ! ! | ' ' :
(TO CPU) . | ! I |]
HOLDA [[. ' | |
(FROM CPU) ' Vi | [7
AG {n) 3 | | d
{TO I/O DEVICE)) | | [
WEVEN | HI-Z i Y | HI-Z |
(TO SYSTEM) , 1 | | |
] 1
e HI.Z] | HI-Z
BMACT ' ! [| [1
(TO SYSTEM) : . ; [
WE . HI-Z : : it
(TO SYSTEM) ' | | e} I 5
DBIN : HI-Z r | | HI-Z
(FROM 1/0 DEVICE] | | . y
AD-AT4 ' HI-Z r T 1 Wz
(FROM 1/O DEVICE] | ’ d
DO.D15 ! Hi-2 [' 1 HIZ
(TO/FROM 1/0 DEVICE) ' L I JI

(FROM SYSTEM)

i |
RERDY" 2o Aoyt o gt e ol e g I e o o o o e A S e R g e U e

.
STARTQ —._JI ‘L ' :
MEMENQ : Jl) Il

RELEASEQ : : : ! N
MFIRSTQ : JI_—l_{——_l :
MWAITQ : : :] | :
MLASTQ ; . I L f |

>

The acquisition of memory control from the system begins when the HOLD signal is
asserted by the DMA device. This signal is driven by an open-collector circuit and
‘must be synchronized to the trailing edge of clock phase one (#1). The acquisition
phase ends at the first trailing edge of o1 following the receipt of HOLDA. Round-trip
timing delays between the DMA device and the CPU must be considered during device
controller design.

The control of memory by the DMA device begins at the completion of the acquisition
and continues for as many memory cycles as required. The device controller must
provide the memory cycle timing signals MEMEN, DBIN, WE, and DMACC (TM 990 bus signal)
as well as the memory address and data signals. The memory cycle timing must duplicate
the microcomputer memory cycle timing with respect to minimum setup and hold times and
also to synchronization to o1 and o3 clocks. The device controller must monitor the
READY signal and wait as required by the memory. The device controller must not
require unnecessary wait states (wait states not required by the microcomputer)
because of device controller setup timing; however, the device controller can delay
the start of a memory cycle to allow setup time for the DBIN, DATA, and address
signals.

The release of memory control to the system begins when HOLD is released by the DMA
device and is complete when the CPU releases HOLDA. Since the CPU requires two g1
clock cycles for the release of HOLDA, resumption of memory access during the release
phase can cause a memory access conflict when the DMA device responds to HOLDA just
prior to HOLDA being released. This conflict will cause loss of data and possibly
modification of random memory locations.

8.6.2 MEMORY CYCLE TIMING (FIGURE 8-9)

As shown in Figure 8-9, a memory cycle consists of two states, MFIRSTQ and MLASTQ,
plus wait states MWAITQ as required by memory. Each state is one 01 clock cycle long.
If additional DBIN, data or address setup time is required, a setup state can be
inserted before the MFIRSTQ state. The MLASTQ states marks the end of a memory cycle.
Read data will be stable at the end of MLASTQ. The control signals MEMEN and HOLD
which are statie during a memory cycle are allowed to change at the end of MLASTQ. In
a multichannel-DMA controller, the device access granted signals are allowed to change
at the end of MLASTQ.

8.6.3 DMA SYSTEM GUIDELINES
DMA and CPU memory cycle timing should be identical.

2. DMA memory cycles can include memory-dependent wait states.
=i DMA devices must not require memory to insert wait states.

y, DMA devices must allow HOLDA to drop after releasing HOLD prior to reassert-
ing HOLD.

5 Three-state bus conflicts must be avoided.
6. Multiple DMA devices must not attempt simultaneous memory access.
T Sufficient data and address setup times prior to WE must be maintained.

8. Most DMA device timing problems will occur at the first and last memory ac-
cesses and at device to device changeover in systems with multiple devices.

MEMORY CYCLE
WITH SETUP STATE

MEMORY CYCLE
WITH 1 WAIT STATE

| | I
[| |
I I |
o i [1 Il I [[l
|

| |
| |
| |
| 1 M o 5 (GRS
| []
g i L g O T, TN 5 TN DN, . A A B, i RN g 1980 .1 1
| | i | | !
N — 1 T =
I I ! I
MSETUPQ 4 | ' ! | | :
R (R S ey e
MWAITO : : { | | ¥ I : !
MLASTQ : []: : [—-—I: E =
DMACC]I | : l| | : 1 | i
e =] E 1 o . (IS, i e

Figure 8-9. Memory Cycle Timing

8.6.4 MULTIPLE-DEVICE DIRECT MEMORY ACCESS CONTROLLER

This section outlines the design of an eight-device, priority-access controller for
the direct memory access system shown in Figure 8-10. The controller accepts access
requests from the device controllers, acquires memory from the CPU, grants memory
access to the highest-priority device switching from device to device as required, and
generates all necessary memory cycle timing signals.

The DMA controller interfaces with the device controllers (shown in Figure 8-11)
through a DMA control bus consisting of access request (ARO through Kﬁ?), access
granted (AGO through AG7), and memory cycle complete (MCOMP) signals. To access memory
a controller asserts access request and waits for access granted. The controller then
drives the address bus (A0 through A15), and the data bus (DO through D15) as
required, and the DBIN signal. The MCOMP signal indicates that the memory cycle will
be complete and read data will be stable on the data bus at the trailing edge of the
01 clock. A device can request multiple memory cycles by continuously asserting access
request. Access request is released during the first clock cycle of the last required
memory cycle.

DMA CONTROL BUS

DMA DMA DMA DMA
CONTROLLER DEVICE DEVICE DEVICE
SYSTEM BUS
cPU MEMORY
Figure 8-10. DMA System Block Diagram
DO thru D15
ARO thru AR7 AQ thru A15 W
e]
s EONTRaL: AGO thru AG7 DBIN -
BUS TO — —— =
DMA CONTROLLER MCOMP ol e INTH =
CONTROLLER | CRYIN - L stjlfm
ARO thru AR7 CRUOUT
DMA CONTROL —
7
BUETE AGO thru AG CRUCLK
NEXT DEVICE MCOMP o1
e B
iORST

Figure 8-11.

DMA Device Controller

8-13

The DMA controller (shown in Figure 8-12) provides memory access control, memory cycle
timing, and priority-based access of memory by the device controllers. Access requests
are synchronized to system clock, then prioritized using a priority encoder followed
by a decoder. The priority encoder also provides the signal DMAR which indicates if
any device is requesting access. Memory access is granted to the highest-priority
device when HOLDA is received from the CPU and at the end of each memory cycle. This
is done by loading a register with the decoder outputs. If no device is requesting
access, the decoder is disabled and the register is loaded thus disabling all access
granted signals. Loading of the register is inhibited from the time HOLD is released
by the DMA controller until HOLDA is released by the CPU in order to avoid an access
conflict between the DMA and the CPU due to the HOLDA response time.

' ARO thru AR7

A’a
\
REG M
(741.5374) -
= —— 8 R
AROQ thru AR7TQ A HOLD -~
—_
y MEMEN
———
PRIORITY WE
DMAR —
ENCODER SATE
(74148)
DMOUT
DMA CONTROL 3 CONTROL DMIN ST
BUS TO ¥ LOGIC ""HOL""_‘DA \ i
DEVICE { g e
CONTROLLERS \ DBIN
READY
DECODER
{741.5138) - 1
3
a 1GRST
X J
REG ACCLK
(74L5374)
A RN i
L AGO thru AG7
z MCOMP
0%

Figure 8-12. DMA Controller

The DMA controller timing with priority contention is shown in Figure 8-13. The logic
equations for the DMA controller are:

DMAR = AROQ + AR1Q + + ARTQ
STARTQ = DMARQ e MEMENQ e RELEASEQ
STARTQg = HOLDA e STARTQ

MEMENQ ; = HOLDA e STARTQ = STARTQ
MEMENQy = DMARQ e MLASTQ

RELEASEQ = DMARQ e MLASTQ = MEMENQ
RELEASEQy = HOLDA e RELEASEQ

HOLD = DMAR e RELEASEQ + STARTQ + MEMENQ
MFIRSTQp = HOLDA e STARTQ + DMAR e MLASTQ
MWAITQ;, = MFIRSTQ e READY + MWAITQ e READY
MLASTQp = MFIRSTQ READY + MWAITQ e READY
WEQp = DBIN e MFIRSTQ + WEQ MWAITQ
DMACC = MFIRSTQ + MWAITQ

ACGATE = HOLDA e STARTQ + MLASTQ

ACCLK = ACGATE e g1

MCOMP = MLASTQ

where signals ending with the letter Q are flip-flop outputs and signals with
subscripts are the corresponding flip-flop inputs. All flip-flops are
code-triggered on the trailing edge of @1 except WEQ (41 leading edge).

8-15

1 30IA30 0 301A30

1 321A3d

3190V

03Sv313d

O1lHV1S

0SS300v

dWOIW

am

ojo)-1\ el

NIW3IW

0oy
Loy

Ya10H

aioH

v/ /

LA

[/ /[

LIN: TR 5 S |

L

L

o R

v 1 e)l

L=l

1 R 5 TR ' [=

L]

||

93 SIS G Y T = S i

DMA Controller Timing

Figure 8-13.

8-16

8.7 EIA SERIAL PORT APPLICATIONS

This section describes the cable configurations and connector pin assignments used
with the microcomputer EIA serial port (connector P3). Interconnection information is
included for 103-, 202-, and 201- series modems and EIA data terminals. A typical
system configuration is shown in Figure 8-14. TI offers a ready-made cable for use
with all of the above modems, the TM 990/506.

EIA
DEVICH

Figure 8-14. Cable Connections

8.7.1 CABLE PIN ASSIGNMENTS
Tables 8-1, 8-2, 8-3, and 8-4 provide pin assignment information for interface cables.

Table 8-1. 103/113 Data Set Cable

101 Pin Modem Pin

On P3 103/113 RS-232-C
(Male) (Male) Circuit Function

1 1 AA Protective Ground

3 2 BA Transmitter Data

2 3 BB Receiver Data

8 b CA Request to Send

16 5 CB Clear to Send

19 6 cC Data Set Ready

7 7 AB Signal Ground

20 8 CF Received Line Signal Detector (DCD)
21 20 CD Data Terminal Ready
22 22 CE Ring Indicator

Table 8-2.

202/212 Data Set Cable

701 Pin Modem Pin
On P3 202/212 RS-232-C Function
(Male) (Male) Circuit

1 1 AA Protective Ground

z 2 BA Transmitter Data

2 3 BB Receiver Data

8 b CA Request to Send

16 5 CB Clear to Send

19 6 Ce Data Set Ready

i T AB [Signal Ground
20 8 CF | Received Ling Signal Detector (DCD)
21 20 CD | Data Terminal Ready
22 22 CE i Ring Indicator

|
|

Note: Pins 11 and 12 (reverse channel on 202) are not connected

Table 8-3. 201 Data Set Cable
701 Pin Data Set
On P3 Pin 201 Circuit Function
(Male) (Male) 201
1 1 AL Protective Ground
3 2 BA Transmit Data
2 3 BB Receive Data
8 y CA Request to Send
16 5 CB Clear to Send
19 6 ce Data Set Ready
T 7 AB Signal Ground
20 8 CB Data Carrier Detect
15 15 DB Transmitter Signal Element Timing
17 17 DD Receiver Signal Element Timing
21 20 CD Data Terminal Ready
22 22 CE Ring Indicator

Note: Pin 14 (new synchronization) is not connected

Table 8-4. Data Terminal Cable

Data
Terminal

181 Pin Pin RS-232-C ' Function
On P3 (Female) i Cirecuit

1 1 ‘ AA Protective Ground

2 2 ‘ BA Transmitter Data

3 3 BB Receiver Data

y y CA Request to Send

5 5 CB Clear to Send

6 6 cc Data Set Ready

7 7 AB Signal Ground

8 8 CF Data Carrier Detect

20 20 CD Data Terminal Ready

8.7.2 MODEM (DATA SET) INTERFACE SIGNAL DEFINITIONS

8.7.2.1 Pin 1 (AA) Protective Ground
This interface lead is connected to signal ground of the microcomputer by connecting
pin E18 to E19 with a jumper.

8.7.2.2 Pin 2 (BA) Transmitter Data

The interface lead provides the electrical connection from the microcomputer to the
associated data set for the purpose of transferring a bit-by-bit serialization of the
data which is to be transmitted across the communication channel. In the time domain,
character information presented on this lead will appear least significant bit first
through most significant data bit. In asynchronous systems, each character
serialization will be preceded by a start bit and followed by one or more stop bits.

8.7.2.3 Pin 2 (BB) Receiver Data

This interface lead provides the electrical connection from the associated data set to
the microcomputer for the purpose of transferring a bit-by-bit serialization of the
data which has been received from the remote end of the associated communications
channel. The received character format is the same as the format transmitted.

8.7.2.4 Pin 4 (CA) Request tc Send

This circuit originates in the microcomputer and is utilized to condition the
asociated data set into the transmit mode. In half-duplex facilities this interface
signal is also utilized by the associated data set to control the direction of
transmission and to aid in the performance of the call turnaround function. Some full-
duplex facilities such as the Bell System 103- and 212-type data sets do not actually
require this circuit for normal operation but it will continue to function as if it
were required. Once the microcomputer has asserted the REQUEST TO SEND interface
signal its transmit logic must remain in an idle state until the associated data set
has responded with the CLEAR TO SEND interface signal described in the next paragraph.

8.7.2.5 Pin 5 (CB) Clear to Send

The CLEAR TO SEND interface signal originates on the associated data set and indicates
to the microcomputer that serial data transmission may proceed across circuit BA on
pin #2. Some full-duplex facilities such as the Bell System 103-type data sets
actually hold this circuit asserted once the communications channel has been
established but the microcomputer must ignore this constant status indication if
circuit CA on pin #4 is not asserted.

8.7.2.6 Pin 6 (CC) Data Set Ready

This interface lead originates in the associated data set and indicates to the
microcomputer that all prerequisite conditions are satisfied and therefore data
communications may now proceed. It is to be noted that the DATA SET READY lead is
indicative of the status of the local data set only and in no way can be used to infer
anything about the status of the remote data set.

8.7.2.7 Pin 7 (AB) Signal Ground

This interface lead provides the common ground reference potential for all interchange
circuits except circuit AA on pin #1. In addition, this circuit is electrically in
common with the logic signal ground of the microcomputer. A Jjumper provides electrical
commonality with circuit AA to minimize the introduction of noise into the electronic
circuitry. The jumper may be removed at installation time if necessary.

8.7.2.8 Pin 8 (CF) Received Line Signal Detector

More commonly known as DATA CARRIER DETECT, this interface lead originates in the
associlated data set and is utilized to indicate to the microcomputer that a signal
suitable for demodulation is being received on the communications channel.
Communications interfaces utilize this signal to prepare for data reception and
therefore all internal receiver logic must be held in an idle state until circuit CF
is asserted.

8.7.2.9 Pins 9 to 14 Not Used

8.7.2.10 Pin 15 (DB) Transmission Signal Element Timing

The DB circuit originates on an associated synchronous data set and is utilized to
provide the driving clock for all of the internal transmit logic on the microcomputer.
The microcomputer will present serial data to eirecuit BA on pin #2 synchronously with
the negative-to-positive transition of the clocking signal on circuit DB. An
associated synchronous data set samples the data bit presented on circuit BA
synchronously with the positive-to-negative transition of the clocking signal on
circuit DB.

It is worthwhile to note at this point that most synchronous data set provide an
external transmitter clock option by which the user can provide its own clock to the
modem across circuit DA on pin #24 of the EIA standard RS-232-C. Under thes

conditions the modem will synchronize circuit DB on pin #15 with the previously
mentioned external transmitter clock. This method of supplemental clocking is not
supported by the microcomputer. Accordingly, the microcomputer 1is capable of
interfacing only to synchronous data sets which have the standard factory-wirec
internal transmitter clock circuit installed.

8-20

8.7.2.11 Pin 16 Not Used

8.7.2.12 Pin 17 (DD) Receiver Signal Element Timing

The DD eircuit originates on an associated synchronous data set and is utilized to
provide the driving clock for all of the internal receiver logic on the microcomputer.
An associated synchronous data set will present serial data to circuit BB on pin #3
synchronously with the NEGATIVE-TO-POSITIVE transition of the clocking signal on the
circuit DD. The microcomputer samples the data bit presented on circuit BB
synchronously with the POSITIVE-TO-NEGATIVE transition of the clocking signal on
circuit DD.

8.7.2.13 Pin 18 And 19 Not Used

8.7.2.14 Pin 20 (CD) Data Terminal Ready

This circuit originates in the microcomputer and is utilitzed to prepare the
associated data set for connection once a call has been established. The actual
connection can be initiated by either a manual or automatic answering procedure in
addition to either a manual or automatic call origination procedure. Circuit CD is
dropped to terminate a completed call and should not be raised again until the
associated data set has responded by dropping ecircuit CC on pin #6.

8.7.2.15 Pin 21 Not Used

8.7.2.16 Pin 22 (CE) Ring Indicator

This interface signal originates on the associated data set and indicates to the
microcomputer that an incoming call is pending on the communications channel. Note
that the microcomputer incorporates an integrator circuit on the RING INDICATOR signal
to protect against the spikes and false-rings normally associated with circuit CE due
to the inductive coupling effects inherent in the cables used to connect the
microcomputer with external data sets.

8.7.2.17 Pins 23 to 25 Not Used

8-21

APPENDIX A

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/101M

GENERAL

A-2

Figure A-1 shows the wiring configuration required to connect a 3320/5JE
Teletype in a 20 mA current loop with a TM 990/101M. Other teletypewriter
models may require different connections; therefore, consult the
manufacturer for correct wiring of other models. Teletypewriters can be
used with Assembly No. 999211-0001 only.

CAUTION
Note the 117 Vac connection at pins 1 and 2. Be sure
that this voltage is not accidently wired to the TM
990/101M board.

CONNECTIONS

A-3

The following assumes that the teletypewriter is wired as it came from the
factory.

(1) Locate the 151411 terminal block at the left rear (viewed from the
rear) of the machine (Figure A-1).

(2) Move the white/blue wire from terminal 4 to terminal 5 on the terminal
block.

(3) Move the brown/yellow wire from terminal 3 to terminal 5 on the
terminal block.

(4) Move the purple wire from terminal 8 to terminal 9 on the terminal
block (for 20 mA neutral signaling).

(5) Locate the power resistor behind the teletype power supply. Remove the
blue wire from the 750 ohm tap and connect it to the 1450 ohm tap, as
shown in Figure A-2.

(6) Check pins 3, 4, 6, and 7 at terminal strip 151411, Voltage to ground
must be zero with power applied. If not, do not connect to the TM
990/101M.

NOTE
For teletypewriter operation jumper E36/E37 must be
installed and E39/E40 must be in the EIA position,

TROUBLESHOOTING

If the printer continues to chatter after the RESET switch on the TM
990/101M has been activated, reverse connections 6 and 7 at the terminal
strip.

PRINTER

KEYBOARD

A00D1412

TM 990/101M
P2
OUTPULL
25
OUTPUSH
24
INPULL
18
H
INPUS &

y 2 3 & 5§ _\

B 7«8 .8
[gge@caee@_ejj

LEFT REAR VIEW OF TELETYPEWRITER

DETAIL A

TERMINAL
STRIP
151411

P

TELETYPE MODEL 3320/5JE

B

VIOLET(PURPLE)

9 ==

BLACK/GREEN

®<H_‘_YELL0W
&

FIGURE A-1. TELETYPEWRITER TERMINAL STRIP CONNECTIONS

A-2

7 WHITE/BROWN
I p=
1 | RED/GREEN
G WHITE/YELLOW
| —
@:R WHITE/BLACK
WHITE/BLUE
‘o<
- BROWN/YELLOW
L GREEN/ORANGE
I /_
Y | RED
3 GRAYI(SILVER)
I | i
‘@H WHITE/RED
% @ 117 VAC
1 @ 117 VAC
*NO.6 SPACE LUGS

ADDO1413

DETAIL A

FIGURE A-2. TELETYPEWRITER RESISTOR CONNECTION

A-3

APPENDIX B

EIA RS-232-C CABLING

Figure B-1 shows the wiring for the 743 KSR cable attached between connector P2
on the TM 990/101M and a 743 KSR data terminal. Also shown is the relationship
between cable wires and signals to the serial interface, the TMS 9902. Figure B-2
shows the cable configuration for the 733 data terminal.

NOTE
When using an RS-232-C device, disconnect jumper E36/E37
and insert jumper E39/E40 (EIA position). See Figure

T=2.
TM 990/101M FA ENRE
S
r Y
P2 P2 P1
TME9902
PROTECTIVE GND
1
i | 12 AECEIVED DATA ; TRANSMIT DATA 5
* 3 743 DATA
2 TRANSMITTED DATA RECEIVE DATA e
o = § % TERMINAL
I pco REQUEST TO SEND o
RTS T 8 8 1
e | DTR -
SR 7 SIGNAL GND 4 ; SIGNAL GND ;

NOTE Suggested EIA cable connectors |ITT Cannon or TRAW Cinch)
P2: DB 25P
P1: DE 155
A0001414

FIGURE B-1. EIA RS-232-C CABLING FOR 743 DATA TERMINAL

TV S8/ 101M

EIA CABLE

P1

P
TwS 9902 2
PROTECTIVE GROUND 3 PROTECTIVE GROUND
RIN RECEIVED DATA 7 TRANSMIT DATA
XxouT |2 TRANSMATTED DATA 3 RECEIVE DATA
+1zv 33K, %W s CTS
I ix "W & DSR
SIGNAL GND 2 SIGNAL GND
ATE DCP o REQUEST TO SEND
DSA DTR 20 DATA TERMINAL READY

FIGURE B-2. EIA RS-232-C CABLING FOR 733 DATA TERMINAL

E NN WN -

733
DATA
TERMINAL

APPENDIX C

ASCIl CODE

TABLE C-1 "ASClHl CONTROL CODES

BINARY HEXADECIMAL
COMHOL CODE CODE
NUL — Null 000 0000 00
SOH — Start of heading 000 0001 o1
STX — Start of text 000 0010 02
ETX — End of text 000 0011 03
EOT - End of transmission 000 0100 04
ENQ — Enquiry 000 0101 05
ACK — Acknowledge 000 0110 06
BEL — Bell 000 0111 07
BS — Backspace 000 1000 o8
HT — Horizontal tabulation 000 1001 09
LF — Line feed 000 1010 0A
VT — Vertical tab 000 1011 0B
FF — Form feed 000 1100 oC
CR — Carriage return 000 1101 oD
SO - Shift out 000 1110 OE
Sl — Shiftin 000 1111 OF
DLE - Data link escape 001 0000 10
DC1 - Device control 1 001 00O "
DC2 - Device control 2 001 0010 12
DC3 — Device control 3 001 0011 13
DC4 — Device control 4 (stop) 001 0100 14
NAK — Negative acknowledge 001 0101 i5
SYN — Synchronous idle 001 0110 16
ETB — End of transmission block 001 0111 17
CAN — Cancel 001 1000 18
EM — End of medium 001 1001 19
SUB - Substitute 001 1010 1A
ESC — Escape 001 1011 1B
FS — File separator 001 1100 1C
GS — Group separator 001 1101 1D
RS - Record separator 001 1110 1E
US - Unit separator 001 1111 1F
DEL - Delete, rubout T ITIA 7F

*American Standards Institute Publication X3 4-1968

C-1

TABLE C-2. "ASCH CHARACTER CODE

BINARY HEXADECIMAL BINARY HEXADECIMAL
RHARACYER CODE CODE CIARACTEN CODE CODE
Space 010 0000 20 P 101 0000 50
i 010 0001 21 Q 101 0001 51
* (dbl. quote) 010 0010 22 I 101 0010 52
010 0011 23 s 101 ooNn 53
s 010 0100 24 T 101 0100 54
% 010 0101 25 u 101 0101 55
& 010 0110 26 v 101 0110 56
* (sgl. quote) 010 0111 27 w 101 o111 57
(010 1000 28 X 101 1000 58
) 010 1001 29 Y 101 1001 59
* (asterish) 010 1010 2A z 101 1010 5A
+ 010 101 28 [101 1011 58
, {comma) 010 1100 2c \ 101 1100 5C
— (minus) 010 1101 2D 1 101 1101 50
- (period) 010 1110 2€ A 101 1110 SE
/ 010 1111 2F _ (underline) 101 1111 5F
0 011 0000 30 110 0000 60
1 011 0001 31 a 110 0001 61
2 011 0010 az b 110 0010 62
3 011 0011 33 c 110 0011 63
4 011 0100 34 d 110 0100 64
5 011 0101 s e 110 0101 65
6 011 0110 36 f 110 0110 66
7 011 0111 37 a 110 0111 67
8 011 1000 38 h 110 1000 68
3 011 1001 39 i 110 1001 69

011 1010 3A | 110 1010 6A
: 011 1011 38 k 110 1011 68
< 011 1100 ac | 110 1100 6C

011 1101 k1] m 110 1101 60
> 011 1110 3E n 110 1110 6E
7 011 1111 3F o 110 111 6F
@ 100 0000 40 p 111 0000 70
A 100 0001 41 qQ 111 0001 a
B 100 0010 42 r 111 0010 72
c 100 0011 43 s 111 0011 73
D 100 0100 44 t 111 0100 74
E 100 0101 a5 u 111 0101 75
F 100 0110 46 v 111 0110 76
G 100 0111 a7 w 111 011 77
] 100 1000 48 1 111 1000 78
] 100 1001 49 y 111 1001 79
1 100 1010 4A z 111 1010 7A
K 100 1011 48 { 111 101 78
L 100 1100 ac ' 111 1100 7C
M 100 1101 4D } 111 1101 70
N 100 1110 4E ~ 111 1110 7E
o 100 1111 aF

*American Standards Institute Publicaton X3 4-1968

Cc2

APPENDIX D

BINARY. DECIMAL AND HEXADECIMAL NUMBERING

D-1 GENERAL
This appendix covers numbering systems to three bases (2, 10, and 16) which are used
throughout this manual.

D-2 POSITIVE NUMBERS

D-2.1 DECIMAL (BASE 10). When a numerical quantity is viewed from right to left, the right-
most digit represents the base number to the exponent 0. The next digit represents the base
number to the exponent 1, the next tothe exponent 2, then exponent 3, etc. For example, using
the base 10 (decimal):

108 105 104 102 102 10! 100
Ko a9 R R

or

1,000,000
100,000
10,000
¥y 1000 100 10 1
. VNN o N
For example, 75,264 can be broken down as follows:
75, 264
L ——4x10" 4x1 4
6x10' 6x10 60
L —————2x10°-2x100 200
L ———5x10". 5 x 1000 5000

7x10'.7x10000 - +70000
75264,

D-1

D-2.2 BINARY (BASE 2). As base 10 numbers use ten digits, base 2 numbers use only 0 and
1. When viewed from right to left, they each represent the number 2 tothe powers0, 1, 2, etc.,
respectively as shown below:

215 A8 5 A4 8 2 2 20
(32,768) = e o (64) (32) (16) (B) (4) (2) (1)
X eoe X X X X X X X

For example, 11011, can be translated into base 10 as follows:

Y 'R I
1x20=1x1

i
!—I

= 9
1x2'=1x2= 2
0x22=0x4= 0
1x23=1x8= 8

‘x24=1116=+£i

2710

or 11011; equals 27..

Binary is the language of the digital computer. For example, to place the decimal quantity 23
(23,) into a 16-bit memory cell, set the bits to the following:

0 15
O "] By o] el oo | ekl e] de 1] G 1 r O |

whichis 1+2+4+ 16 - 23..

D-2.3 HEXADECIMAL (BASE 16). Whereas binary uses two digits and decimal uses ten
digits, hexadecimal uses 16 (0t0 8, A, B, C, D, E, and F).

The letters A through F are used to represent the decimal numbers 10 through 15 as shown on
the following page.

D-2

N1 NIA NTII NIO
0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 E
4 4 12 C
B “ 13 D
6 6 14 E
7 7 15 F

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16 to the
powers 0, 1, 2, 3, etc., as shown below:

163 162 16! 160
(4096) (256) (16) n
X X X X

For example, 7 B A 5, can be translated into base 10 as follows:

il & 3
‘ L sx160- sx1 = 5
iox116'=10%x16 = 160
11X162=11X286 = 2816
7X163= 7X4096 = 28672
3165310

or 7B A 5, equals 31,653,

Because it would be awkward to write out 16-digit binary numbers to show the contents of a
16-bit memory word, hexadecimal is used instead. Thus

003E,, or > 003E (> indicates hexadecimal)
is used instead of
0000 C000 0011 1110:

to represent 62, as computed below:

D-3

- -1.- :.. 1 1 B]0
‘ szo = 0 l szmﬂ S
vy w0 2 6 x10" - g0
YR = 4 6_
2
1x28 = 8 10
1x22 = 16
R - m BASE 16
5210
3 Eg
T__.uxui“ = 14
3x 16! = 48
6210

Note that separating the 16 binary bits into four-bit parts facilitates recognition and translation
into hexadecimal.

0000 0000 0011 1110, B Fi6

B S e g, 8

0 g 8 Eg 1100 0111 1011 1111,

Table D-1 is a conversion chart for converting decimal to hexadecimal and vice versa. Table D-2
shows binary, decimal and hexadecimal equivalents fornumbers Oto 15. Notethat Table D-1is
divided into four parts, each part representing four of the 16-bits of a memory cell or word (bits
O to 15 with bit O being the most significant bit (MSB) and bit 15 being the least significant bit
(LSB). Note that the MSB is on the left and represents the highest power of 2 and the LSB on the
right represents the O power of 2 (2°- 1). As explained later, the MSB can also be used to signify
number polarity (+ or —).

NOTE
To convert a binary number to decimal or hexadecimal, convert
the positive binary value as described in Section D-4.

TABLE D-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB
16 16’ 16' 16° _
BMTS (0.1 2 3|4 5 6 7|8 7 8 11| 12 13 14 15

HEX DEC HEX DEC HEX DEC HEX DEC

0 o|o 0|0 o| o 0

1 4096 | 1 256 | 1 16| 1 1

2 8192 | 2 512 | 2 32| 2 2

3 12288 | 3 768 | 3 48 | 3 3

4 16384 | 4 1024 | 4 64 | 4 4

5 20480 | 5 1280 | & 80| 5 5

6 24576 | 6 1536 | 6 96 | 6 6

7 28672 | 7 1792 | 7 12| 2 7

8 32768 | 8 2048 | 8 128| 8 8

9 36864 | 9 2304 | 9 144 9 9

A 40960 | A 2560 | A 160| A 10

B 45056 | B 2816 | B 176 | B 1

C 49152 | C 3072 | C 192 C 12

D 53248 | D 3328 | D 208 D 13

E 57344 | E 3584 | E 224 | E 14

£ 61440 | F 3840 | F 240 | F 15

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal
digit. For example, 7A82,, would equal in decimal 28,672 + 2,560 + 128 + 2. To convert
hexadecimal to decimal, find the nearest decimal number in the above table less than or equal
to the number being converted. Set down the hexadecimal equivalent then subtract this
number from the nearest decimal number. Using the remainder(s), repeat this process. For

example:

31,362, -
2,690y -

1304
2”\ -

7000, + 2690
A0Oi, + 13010
B0, + 2
26

7000

]Msé

D-5

TABLE D-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS

BINARY DECIMAL HEXADECIMAL
(N:) (No) (N6)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
o110 6 6
o111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F
10000 16 10
10001 17 1
10010 18 12
10011 19 13
10100 20 14
10101 21 15
10110 22 16
10111 23 17
11000 24 18
11001 25 19
11010 26 1A
11011 27 1B
11100 28 ic
11101 29 1D
11110 30 1E
11in 3 1F

100000 32 20

D-6

D-3 ADDING AND SUBTRACTING BINARY
Adding and subtracting in binary uses the same conventions for decimal: carrying over in
addition and borrowing in subtraction.

Basically,
0 1 10
+1 + 1 -1
1 10 (the carry, 1, i1s carried to the left) 01 {1 is borrowed from
top left)
R SO ”
= car
: " i

= 0 (from above) + 1 =1 + 1

¥4
JTL': 101
arry carry 1+ 1 =10

1
1 1000 0110
} =0+ 1 carry
1 -1 Borrow the 1 -1
1 0111‘ 0111
} =0+ 1 carry
+ 1
1 \
0+0=20

carry 1 + carry 1

D-7

D-4 POSITIVE/NEGATIVE CONVERSION (BINARY). To compute the negative equivalent
of a positive binary or hexadecimal number, or interpret a binary or hexadecimal negative
number (determine its positive equivalent) use the two's complement of the binary number.

NOTE
To converta binary number to decimal, convert the positive binary
value (not the negative binary value) and add the sign.

Two's complementing a binary number includes two simple steps:

a. Obtain one’s complement of the number (1's become 0’s, O's becomes 1°s) (invert
bits).

b. Add 1 to the one's complement,

For example, with the MSB (left-most bit) being a sign bit:

010 (+29) 111 (=19 110 (-29) 101 (-32)
101 Invert 000 Invert 001 Invert 010 Invert
+1 Add 1 +1 Add 1 +1 Add 1 i}

110 (—29) 001 (+19) 010 (+29) 011 (+37)

This can be expanded to 16-bit positive numbers:

(=39F64g) 0011 1001 1111 0110 (39F64 = +14,8384)
1100 0110 0000 1001 Invert
+1 Add 1
(=C60Ag) 1100 0110 0000 1010 (C60DAg = —14,838y9) Two's Complement
SIGN BIT(—)

And to 16-bit negative numbers:

(=C60A4g) 1100 0110 0000 1010 (C60A4g = ~14,838;¢)
oo 1001 1111 0101 Invert
+1 Add 1
(=39F64g) 0011 1001 1111 0110 (39F6.5 = +14,838g) Two's Complement
SIGN BIT(+)

D-8

Symbol

C1-c8, G111,
C19-Cc22, c24
C26-C39, CH41-CU4
c9, C12, €25, C4O
c10

Ch5-CcuB

CR1, CR2

CR3

DS1

E1-E40, E53-ES6
E1-E35, E38-E56

All Jumpers

L1
P2, P3

Q1

R1, R2, R4, RS, RT7,
R8, R11, R23, R26,
RUY, RUS

R3, R12

R6

R9, R10, R14, RIS
R13, R16, R17

R18, R24, R25

APPENDIX E

PARTS LIST

Table E-~1. Parts For all Dash Numbers

Description -0001 -0002 -0003
Capacitor, 0.047 wF X X X
Capacitor, 22 mFd X X X
Capacitor, 18 pFd X X x
Capacitor 0.047 mFd, 10% x x X
Diode, IN5333B X
Diode, IN914B x x
Diode (L.E.D., CM 4-43) X X X
Pin, Jumper (BEI 75481-002) «x x
Pin, Jumper (BEI 75481-002) X
Plug, Jumper (BEI 65474-004,

R 530153-002) x X X
Coil, RF, 033 uH X X X
Connector, 25 pin (AMP 206584-2) X X X
Transistor, PNP x X
Resistor, 4.7K ohm x X X
Resistor, 2.2K ohm X X X
Resistor, 1.0K ohm X b'e X
Resistor, 10.0 ohm X X X
Resistor, 2.2 ohm X X x
Resistor, 68.0 ohm X X X

E-1

Table E-=1.

Parts For All Dash Numbers (Continued)

Symbol

R19, R21, R39

R34, R4O, RU1, RY3
R20, R22

R27

R28

R29

R30

R31-R33, Rb42

R35, R36, RU6, RAT
R37

R38

S1

s2

U1

U2, U8

u3, U26, U32

U4, U18

us, U6, U10, U1T, U20
u7, U27

U9, U39

U

u12

U13, U4, v22, U23

Description

Resistor, 330 ohm, 1/4 W

Resistor, 330 ohm, 1/4 W

Resistor, 220 ohm
Resistor, 3.9K ohm

Resistor, 2.7K ohm

Resistor, 330 chm, 1/2 W

Resistor 33K ohm
Resistor, 27K ohm
Resistor, 3.3K ohm
Resistor, 3.3K ohm
Resistor, 560 ohm
Switch, toggle

Switch, 5 position DIP

IC, TMS 9901

Resistor, 10.0K ohms pkg.

~0001

IC, SN74LS241N, Line Drivers x

Network, SNTA4LSO08N
Network, SNTUYLSTHN
Network, SNT4LSO4N
Network, SN74LS251
Network, SN74LS132N
Network, SNT4LSI4N

IC, SNTLULS245N,
Octal Buffer

E-2

~0002

-0003

Table E-1.

Symbol

15

U16

U19

U2

U24

U25, US2

U28, U30, U34, U36
29, U31, U35, U37
U33, U4dg

U3s

U4, U41

U4z

ulY

U4z, Uyy
U42-045

U46, 047

uus
Us50

Us1

053
Usy

Parts For All Dash Numbers (Continued)

Description

TMS 9900

TIM 9904, clock driver
PROM, 745287, memory decode
Network, SNTYLSO2N
Network, SNT4LS153N
Network, SNT7HLS138N

TMS 4045 1024 x 4 RAM

TMS LO45 1024 x 4 RAM

IC, SN75188N, Line Drivers
Network, SNT4LS10N
Network, SN75189AN

TMS 2708, EPROM, TIBUG
byte 1

TMS 2708, EPROM, TIBUG
byte 0

TMS 2716, 2048 x 8 EPROM
TMS 2716, 2048 x 8 EPROM

TMS 9902 Asynchronous
Communication Controller

IC, SN75112N
Network, SN7UYLSOON

IC, SNTULS259N, low power
Schottky

Network, SN75154N

Network, SN751074N,
Interface

=0001 -0002 -0003
X x X
X X X
X X X
X X X
X x X
X X X

X
X X
X X X
X X X
X X X
x
X
X
X
X x X
x
x X X
X X x
X X x

Table E-1.

Symbol

VR1

XU1

XU15

XU16, XUAT
XU19

XU28-XU31, XU34-XU37
XU46

XU42-XUul5

X1

Parts For All Dash Numbers (Concluded)

Description
IC, UA T7905C/MC T7905CP,
Voltage Regulator
Socket, 40 pin
Socket, 64 pin
Socket, 20 pin
Socket, 16 pin

Socket, 18 pin
Socket, 24 pin

Crystal, 48 MHz,
3rd overtone,5%, HC-180

E-Y

-0001

-0002

-0003

APPENDIX F
SCHEMATICS

=

S — - - —_— — — = - —
v 3 » -
° l 7 | 5 s + 4 | 3 | Megazer 1] | '
I!!n.‘ﬂu 6
NOTES (MLESS OTHERWSE SHECHAD [.- LNMIND TR S BT =T R
| CAPACI TANCE VALUES ARE A e eyl sy] e v | -0y A REVISEE 70 saaiE wgaTsy | 108 =
MICROFaASADS 1 n 7 n Al cudI008d MARY CLARK F/ 7%
2ZRESISTANCE VALUES 4RE In GHMS kv vle IC] CHLIGE0P Momers = =
i i T
3 ALL RESISTORSE ARE 'ww, 8% ™ F02/31 asents ’ »
D 2 | e T] 7]
[alcim arc c23 are user's oceTion g r o
[E] P mumBe® assiaumMenTS For :;:??:?N % o A 4
V4T APPLY TO THE 2C PiN SOCKET . Ly o
TO_ENABLE USER TO INTERCHANGE i oH 4 .
THE TMS 95902 (1B PINS) WITH | D 2 s
TABS9C3 (2 Pin rultﬂ s OF""'GN‘ il ™ 3 1
JMPER FLUGS ARE INSTALLED ON EZO-E2) igr 1" ' I
p— EZZ-£23, E24-E25 AS SHOWN OGN -0001 ONLY e 1]] I
TeSIm, I8, B,) MeGR M o
[£] rese comeonenTs aRE INSTALLEC o e M o
=000 ONLY Nersay 1 ™
Eln-caz COMEONENTS 4ARE INSTALLED Ok TaLS » "
-o0oE oMLY Thizm ! i
9. NC DENOTES NO CONMNECTION Thesio I "
Aukshi i Bt}
LT ’ [
[~
A ’ "
12y] FEI- 78 e
CH EIAC S8
£y & -y
-
oy 1 o ————, S 54 b7 eE
1:--:31-5_ PG
e, £ CAT 3
cas.car | cd-c22, A 1|2 2
o4y Tees ot C26- T vy e |+
P C34 Le-Caa €40 — 22 — =o5ca7
_ et 22 + (=2 24
ST .) & il 2y2328 237,
5 I 78 EEN) éow 99 oo
*
- <12 == C3nca9
1 72 oe7
Py P> F1=73
SPARES
Ao (2T
e == 3 7 |
— i w7 v 9 2
: WT—r-sv 1312 2y (=] {;r‘;-ﬂ A a2
2%
' 3 | Ry eReRe ra894 751894 [ClGIATAlETZ]
& : 7Y TS1ars 617
' 1._. .].‘J iz wIE 2 use
P2l |
4 {Ll’“ 12 2E’b~‘* i fantd 1E}'3_ e YR —— | e]......
: 7588 7588 Ty
= rai8e
% L= ava - \I_é Tenan Instmimewis
L] i
——=—| DIAGRAM, LOGIC, DETAILED
94726 J TMS90/ 10IM
’ZB s A bl T
D96214 994727 A
APOLIE (o =
[2 | 1

03

8 7 L & s) 4 | 3 | g94727 121 | |

(A |

¥
I=N{e) D
T8
PET-
HOLD-
= AEADY ::;
resGe WCHUCL‘(== sida
i [5.7 crucik s L
z M4 v
3
4/ Do
=
P2 —— F __:i‘ REaDY of :: gé G
= 1oL~ =
— 2N iorca (=¥} :; 83
s g; is =
> TMS 9500 7 [=17
(=
T4LS04 £
WE =
Sw3 (i) aiq:suu
L LoaD- L (PR
) :3 W T
EXTCLKE- 297K . a»g—-— o MEMEN-
pl-28 € i] Q = ?i:—,:y—
L TANK | 12 CrL
Pi-27 &——t¢ T cio, gla i Bia S il
& E 1 z; Ry, D 28
Tamkz @3 g e WA P @3
= 7 el @e
) thisse FT e 22 inTREG-
48MHE = £ 1c0
L Blxrarz @2 P2 wc EL] My
Lk~ & ki) fE ELd)
SHa oscouT F3 EE] s
P L 2 cruind
Uie CRUaUT
TIM 9904 U £ crucs i
1
|
= g B 5
A Ol r 2 2l |
- R 2 aulied
8 ¥ fe 3 g FHuNge H
COSEi A 2
; r ~m g ~ o % A
T z &3 i ’g i ﬁ_"’f g
0 ia o

o, | z | € | 3 4 s | 9 | L | 8

F-3

e IRER] T
2] Z2ibe6, [vizselal nrortey
v
¥ Ty
v
“M rzes
v
v
ov
voion S
ra
)
P |
& m S TEvT EME YD Oyp e
2z T - €2 vl S
RS un_na_ @ =@
8 ¥z Mrl...] ST I ME =T bt e
22 -4d ¢ “—gwEl' M =75 EHE
CreEd]
Trofms <P eens.
—
R i] 3]
s | Egmgw|SY e [
«7a 9 v Zio
2
vl g 5| Wi 7] (i
3 sv | Cgog 5 Siw 5
o T] Al %
.11{% __iﬂ: Ll T —T.] J _ ~RAandi o
__
4l = 3 N.n
S0l ; o)
01..9Allm.|__.|a1|0 LA | o s 1 CIE]
— 6% | g tElly 8 =8 v o
® |\ Com T BE = % =)
B Cgrm 9™ SEw | s f)
% Tnlmﬂ] I RAR L] (]] (k)
e .\M.liﬂ.l.n Bl T E] ¥ %’la)xcl"l_.._.wbv
ool o - I T @ HL'y
o € i 9 14"
& o0 |2 -] ire
a [lla-:ﬂm HE
iHs o TME
2+g 0190 T e
hs — o e
S iavae L o —aion LT
s Ve EmE
1 | LE1licibbe] £ | T T)
-
= s L

| kd s s ¢ 4 | 3 | ~oga7er 14 | i

4

2:: — —) . —
$EV —AAA— Ele| EZ?| E26| E29| £30| E3 | E3z| €33 E£34) E35 R4S B
470
A + 8V
_— AGMI— = =
ROME—
sui.a Ak = i Sed
A ile 4 j:gl_L —ienl' A =
™ ac —
Al Ak =i A 23 s
AT AT} :: %sa I7_Dpo i AT 1T_Do AT | ﬁ as iT__ D& oA
B 9 - g
AR :r A8 2l.. qgrie DI A8 2 _-!_nr A 2. qfe_ D9 23
Surs L] - :" 2 feu“obp_—L"5 z A2 3] 45 S A3 3lae pa pio ¥ o
AID 104, |4 D3 AT 4 14 02 A 4l.s osld DI ou
Al Al % 2 i3_D4 All 3 D4 Al 5 [T 4 oIz pHLE
3 A% ga : = AL 4 ; ~
AL Al AP T T 1l DS AL _Elay oalll D2 ¥ DX
= oy \D Do | A3 10D 1 0 me o
A L Al B2 FILTR ATy o[l D4 f OW
Ald j‘: As _8lLs g)l2-D7 Ay 8 9 _Db7 Al Al,s 4|2 __DIS msl c
Tue2708/2716 TMSZI08 /2 TMERTOB2Te
4] Ly 4 TME2TOR/2T i
% 5 N
N v
' ———
. B PP - AS 46 [T L. s 8 I Do ™ - . —
FYSEETY P ,;o, P Ae i 2 D9 Aa i 12 DI & elig gosfi 05
Ar_i1lay pjoz |2 B2 NY- [N a7 7 [N AT Tlg gezlt 0o
AR i lag 7o) [e_o3 ::)] DIl s &: " a D3 2 A 0 L] on
L A% _3. A3 2] - "
Ju? : UG L :lﬂ : e :‘I‘-:‘ usy L :ll';‘ A4 Uss
Al 1l 8 b a1 4| i an
Az 7 :: a7 a7 A
A @4y & - a8 -] A &l £y |8 FAMI-
Al sl g_l_o Y o it | Aa sl e Bt | m
TMSA04S -l TMEAG 4%] tme.mnil TG ADAS
sip ¥ —HE= ! -
sy PAMEZ-
oD | = s Wz AS 1% i o4 PO P [o £
jAE 6] iz_o3 Ak 6] iz 05 J NN pregr e
AT 5] 13 D A 1]] D AT AT loz iy D
= Y] [T L. A8 1 [o7 aAg 0., o 4 Dis Y
29 ¢] a3 2l
Sra - Ao a| Yee AD 8] usi AD 5
TR i —a] T iy el
o
5 AL AT A A1
Db A5 @ £ EYE L YIS P Y
o7 YT] _Al4 S in A Bles TlC A
TAE 045 THs 5545 TG A0S
)
v e
: o' Iplg6214] 894727 |A
Toer

e B TR T T e e . B T i e

Sd

. 3 g .
8 | 7 | s - S ‘ | 3 | Moearz7 e | '
Y — 1
£ 13 L= 5
wn
| k $4 |
[a oo™ — waT T " :? L
b e o : s
l:‘b LI.I“E [[[| - 52 i raLs 28
|X3 3 g2k 2 5 5 = | R}
0 120N & 5 | x| €2 el cs 3 e 0=
Ll | B 1
e el » ,k Th 8 7 h T El £2 '2‘ - 3 _1: o shl ISEL -
i
,.*.L—i. ¥ Dz
0 = s lipe 2 -~ i o3 L e
1T > JRLE] ¢rsly L o =y o4
- 8 L——J [L] R
SH2 De & OIS
o | cr B o A8 f—
AT 3 Py LYY
- is L4
%94* SV
Ty 27 Sei-il
L—‘fp‘-ﬂ
2 . D e Sei-12
svz,3 19857 Heeri— . L Seean 'd
CIF S -] . P I = Mei-%
:"g.? CRUIN - BN] o4 -850 R
su7, 3 CBUOUT ervour TR >Pi-0 !
it caucLi L——)aq-;g
Y ISE. a4 - 5 cE- I-ET—__‘.-!,;F.‘JI T_) o
A 3%ls0 C——D a4 v O "
A0 e FTe/palRE —yei-8 . iz
BHi-e L 3—;152 [—)Da.g. TALS .
AT - EE: P S = P I-5
aih - rL] [———QPAAM ?,IZ;‘K
D% -rn-i‘ SEi-a e AN~ 5
[—)94-«:
ool = ra-1z uiz ut
P ':—? %Dq—ia Pa-8 {"‘ 1 4
N
bl 7EA=I8 aLsia dised
B3 3P 4-1a
ez |ik A3
= |22 .__m_r'z".sv
ro |22
- § T
| 3 :: 138
! il iie
| ¥ T T 5w RiT
I e Ve) A2
. 2 —————AN— P42
B
3
+5v A P4y
u—_——)' Pa-4
SHZ,6 CLACAU=— rr.u._mi mamin
= A

8 | 7] 5 1 5 t 4 3

94

i o 1
8 | 7 5 s v 2 3 | ™egazz7 6] |
TRANBRARTED 23-3 igv
Ena =
547 Yl ,p:':' TER e AAL
TESMINAL AR TO S 255
[e R DATA CARSIES o
s
(DETECT AALE "7 AL
EI9 I:sa “ DATA SET GEADY o
£y »si88 »noqeu
LS [CLEAR TO
) ESE n_%d sEnND 5 B3e
e E&S o927 .
. - TBiBeA TERMINAL guza SOUY 3l g
) DaTA TEGMMNAL arcau- lis)., o ool -
S Ere > F3.20_ - cRUCwG -] 14 o \ 39 b—
Ul . ERrE] asl—= \ EPr=t
51894 (S TP £ WA s Sy
I - 3 z caa
= e . FReECcEVED “Lo o3 H—ne Crid-438
INT 8= PATA p3-z |suadSEER- 2, Sale
Als Zlse - AT3 s s — e ; =
A 2 el & g} = e
! =t KOUT- 25169 >
Ard s et 5 [+ L4 s Lop—
Sh2,3,4, sz ATe-
87 Al Bl E‘ cTs-p =) “l? MODEM SCR S maa7 TéL=zES - c
a1 &len] £ el
sz CRUELKG 7584 LSOO
sniayp SEUSUT
s-;uqr‘:‘-:”
LT L e
By === sy
le—
12 4 MODEM SCT o8-k
R, [¥L]
TG 9902 3% s 7Siea 75154
v IS
Pa-2i ¢ MOOEM oTR ; |
wo 4lra shil 1SEL 7— Sei 3 e
pa-1a ¢ MODEM-DSE Ll OSH - 3ln whe
oz c2
U=l l
B
var |, 1]
P3-z2 £LMO —
L o3 v I-’—N&
‘2re s
14l
2Upe
2l
= T4LSZB!
A
594727
[
-
e 2 1 11
8 | 7 | & i) s t 4 | |

L4

" - . . =
.
a8 7
Ras
o Py LOCETS QAT @
38
Pze & LOCOSR ;3
Sk — =
Sus
&ea k " T 1}
A9 es Rire
i
[
suose SHMELMD 3 lenicie e
€442, 3 0 2000UT B auouTt
PP Y Ll — IR =
sHzase2i- _wlp. crsie.
SHA SEL &~ I?C!‘
&
= ueE
TH% 902
Sw2 3 —HOLDA-
T — al
P79 & -
B 3 Lie
Pi-27 & 1 JaL5241
oi-rad MEE- L
L 3
o az ¢ CRIGE~
=
Sz _MEMEYC—
ez s DEIN
J&u MEMEN—
suzq—ES
74LE0O
e
§i—85 Ramz- =3
A TP 10 (T — 3 &z~ A
1 & L TeLSICT .
=7 uz7 8 . +— - 3 Pz-7
jlar 74L604 s iy
o2 B raizie
sz 3a A4 -_ ATE
b b - A - ~ g —— -
suy Bau — o [oifen. [amseadicol0621a] 994727 [c
i el =1

8 | 7 I 3 — I B F a T 3 T z [\ -

APPENDIX G

990 OBJECT CODE FORMAT

G.1 GENERAL

In order to correctly load a program into memory using a loader, the program in hexadecimal
machine code must be in a particular format called object format. Such a format is required by
the T/IBUG loader (paragraph 3.2.7 explains loader execution). This object format has a tag
character for each 16-bit word of coding which flags the loader to perform one of several
operations. These operations include:

= Load the code at a user-specified absolute address and resolve relative addresses.
(Most assemblers assemble a program as if it was loaded at memory address 0000 ;
thus, relative addresses have to be resolved.)

= Load entire program at a specific address.
= Set the program counter to the entry address after loading.

= Check for checksum errors that would indicate a data error in an object record.

G.2 STANDARD 990 OBJECT CODE
Standard 990 object code consists of a string of hexadecimal digits, each representing four
bits, as shown in Figure G-1,

TAG CHARACTER

,_H/////////////

OO04CBLINK AQODOBFF70C0O004B0O4CCEBCOLOBOOOERCT AOCOOASROZ0OZCONOZICTFIFCE 0001
AOO12BCCAZBCCADCO04AR0Z00BZ00YBO420BONCOR0200BO0OZRBOZO1BOOOITFI0ODF OO0z
A0028B1DO0B1OFFBFF70C0030B0Z0OCEO100B1 DO3E04CCBOAO1IB1404BRIEOD7F2ZAFF 0003
AOD3EBO201B00O03BO320B1DOOBO3BOBO4ZOBOIBOT7F760F Q004
3001ETIMEO1SO0O00BL INK. 7FAABF 0005
: BLINK TXMIRA 000&

\—END OF OBJECT CHECKSUM FIELD

FIGURE G-1. OBJECT CODE EXAMPLE

G-1

The object record consists of a number of tag characters, each followed by one or two fields as
defined in Table G-1. The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character,

Tag character O is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program
by an IDT assembler directive. When no IDT directive is entered, the field contains blanks. The
loader uses the program identifier to identify the program, and the number of bytes of
relocatable code to determine the load bias for the next module or program. The PX9ASM
assembler is unable to determine the value for the first field until the entire module has been
assembled, so PX9ASM places a tag character O followed by a zero field and the program
identifier at the beginning of the object code file. At the end of the file, PXSASM places another
tag character zero followed by the number of bytes of relocatable code and eight blanks.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatable. The
hexadecimal field contains the entry address. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used
when the last appearance of the symbol is absolute code. The hexadecimal field contains the
location of the last appearance. The symbol in the second field is the external reference. Both
fields are used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero, no location in the program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise, the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. When
it contains absolute zero, no further linking is required. When it contains a location, the addre ;s
corresponding to the reference will be placed in that address by the linking loader. The locat. in
of each appearance of a reference in a program contains either an absolute zero or anott er
location into which the linking loader will place the referenced address.

G2

TABLE G-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG HEXADECIMAL FIELD
CHARACTER (FOUR CHARACTERS) SECOND PELD MEANING
0 Length of all relo- B-character program Program start
catable code identifier
1 Entry address None Absolute entry
address
2 Entry address None Relocatable entry
address
3 Location of last 6-character symbol External reference
appearance of last used in relo-
symbal catable code
4 Location of last B-character symbol External reference
appearance of last used in absolute
symbol code
5 Location 6-character symbol Relocatable external
definition
6 Location 6-character symbol Absolute external
definition
7 Checksum for None Checksum
current record
8 Ignore checksum None Do not checksum for
error
9 Load address None Absolute load
address
S Load address None Relocatable load
address
B Data None Absolute data
C Data None Relocatable data
D Load tias value® None Load point specifier
P None None End-of-record
G Location 6-character symbol Relocatable symbol
definition
H Location 6-character symbal Absalute symbaol

definition

"Not supplied by assembler

Tag characters 5 and 6 are used for external definitions, Tag character 5 is used when the
location is relocatable. Tag character 6 is used when the location is absolute. Both fields are
used by the linking loader to provide the desired linking to the external definition. The sec nd
field contains the symbol of the external definition.

G-3

Tag character 7 precedes the checksum, which is an error detection word. The checksur Is
formed as the record is being written. It is the 2's complement of the sum of the 8-bit ASCI|
values of the characters of the record from the first tag of the record through the checksum tag
7. If the tag character 7 is replaced by an 8, the checksum will be ignored. The 8 tag can be used
when object code is changed in editing and it is desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to
be loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the data is
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The
hexadecimal field contains the data word. The loader places the word in the memory location
specified in the preceding load address field, or in the memory location that follows the
preceding data word.

To have object code loaded at a specific memory address, precede the object program with the
D tag followed by the desired memory address (e.g., DFDQOJ.

Tag character F indicates the end of record. it may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable,
and tag character H is used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol, and the second field contains the symbol towhich
the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the record,
followed by blanks. This record is referred to as an end-of-module separator record.

Figure G-2 is an example of an assembler source listing and corresponding object code. A

comparison of the object tag characters and fields with the machine code in the source listing
will show how object code is constructed for use by the loader.

G-4

SOURCE STATEMENT NO.

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SAMFLE SDSMAC 945273 #*
PRAGE G001
PO }/// IDT “SAMPLE” '
102 0B AVOe DATA WSPACE
A3 0002 OaSH- DATA START
G084 2004 H0O6 DATA 8
000S 0eas WSPACE BSS 32
DOBE PA2E TRBLE BsSS 198
DOR7 8\nA START
0288 OPBA BArC CLR 12
0883 PBAC B4ChH CLR @
0910 GPRE 0202 LI 2, TRBLE
0@ HR26
2911 OA52 C800 MOV 9, @TABLE+2
BO34 BBz~
0012 8896 1001 IMP $+4
5013 9998 LooP
B814 BOSE OZM Lt 4,>1234
809A 1234
D15 903C D244 ANCT 4, >FEED
| POS9E FEED
0016 98R8 DCR4 MOYB 4. 42+
2017 90AZ 92065 LT, US5,55555
DORA4 S555
8018 Q9RE C8BS MOV 5, @TABLE
Q0A8 P26 "
' 2013 END
NO ERRORS
I
DNOARSAMFLE HOODOCA0eC WOEREODNGANNEHEOSCCENGT OB 0 | luenBl 2007FEN0F YRTIY
CO02BEL O ENZN4EL 234E N4 EFEEDED. 3 BOCOSESSSSRCS0SL Mice F 30 1F (i
: SAMPLE 0o 00, D0 03314:22 CDIMAL A4SETR ee

I FIGURE G-2. SOURCE CODE AND CORRESPONDING OBJECT CODE

G5

APPENDIX H

P1, P2, AND P4 PIN ASSIGNMENTS

TABLE H-1. CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS

P1 P1 P1
PIN SIGNAL PIN SIGNAL PIN SIGNAL
33 DO.B 71 A14.B 12 INT13.B
34 D1.B 72 A158B 1 INT14.B
35 D2.B 22 1.8 14 INT15.B
36 D3.B 24 238 28 EXTCLK.B
37 D4B 92 HOLD B 3 +5V

38 D5.8B 86 HOLDAB 4 +5V

39 D6.B 82 DBIN.B 97 +5V

40 D78 26 CIKB 98 +5V

41 D8.B 80 MEMEN.B 75 +12V
42 D9.B 84 MEMCYC B 76 +12V
43 D10.B 78 WE B 73 -12v
44 D11.B 90 READY.B 74 -12v
45 D12B 87 CRUCLK.B 1 GND

46 D13B 30 CRUOUT.B 2 GND

47 D14B 29 CRUIN.B 21 GND

48 D15.B 19 IAQ.B 23 GND
57 AO.B 94 PRES B 25 GND

58 A1 B 88 iORST B 27 GND

59 A2B 16 iNT1.B 31 GND

60 A3B 13 iNT2.B 77 GND

61 A4.B 15 INT3.B 79 GND

62 A58 18 iNT4 B 81 GND

63 A6.B 17 iNT5.8 83 GND

64 A7.B 20 INT6.B 85 GND

65 AB.B 6 INT7.B 89 GND

66 A9.B 5 INT8.B 91 GND

67 A10.8B 8 INT9.B 99 GND

68 A118 7 iINT10.B 100 GND

69 A128 10 iINT11.B 93 RESTART.B
70 A138 9 iNT12B

H-1

TABLE H-2. SERIAL I/0 INTERFACE (P2) PIN ASSIGNMENTS

PIN SIGNAL DESCRIPTION
1 GND
7 GND
3 RS232 XMT RS232 Serial Data Out
2 RS232 RCV RS232 Serial Data In
5 CTS Clear to Send
(3.3K12 pull-up to +12 V)
6 DSR Data Set Ready
(3.3K1) pull-up to +12 V)
8 DCD Carrier Detect
20 DTR Data Terminal Ready
18,23 TTY XMT TTY Receive Loop/Private
Wire Receive Pair
24,25 TTY RCV TTY Transmit Loop/Private
Wire Transmit Pair
17 RCV CLK Receive Clock
15 XMT CLK Transmit Clock
12* +12V Jumper Option for Microterminal
13* -12V Jumper Option for Microterminal
14* +5V Jumper Option for Microterminal
16 RESTART Invokes the Load

Interrupt to the TMS 9900 CPU

*When using the Microterminal, these vollages are jumpered to the corresponding pin in connector P2 Else. the voltages are not connacted

H-2

P3PIN SIGNAL
1 OPTIONAL GND
7 GND
2 RS232 RCV
3 ‘ RS232 XMT
5 - CTS-Terminal
6 DSR-Terminal
8 ‘ DCD-Terminal
16 ‘ CTS-Modem
19 | DSR-Modem
20 ? DTR-Terminal

DCD-Madem
21 DTR-Modem
15 SCT
17 SCR
22 RI

“Used with TM 990/506 Modem Cable Only,

TABLE H.3 SERIAL I/O INTERFACE (P3) PIN ASSIGNMENTS

DESCRIPTION

GROUND IF JUMPER AT E18,E19
GROUND

RS232 Serial Data In

RS232 Serial Data Out

Terminal Clear to Send (3.3 k&1 pull-up to +12 V)
Terminal Data Set Ready (3.3 k{2 pull-up to +12 V)

Terminal Data Carrier Detect

(activated by TMS 9902 Request ta Send)
Madem Clear to Send*

Modem Data Set Ready "

Terminal Data Terminal Ready

Modem Data Carrier Detect”

Modem Data Terminal Ready*
Synchronous Transmit Clock
Synchronous Receive Clock

Ring Indicatar

H-3

TABLE H-4. PARALLEL I/O INTERFACE (P4) SIGNAL ASSIGNMENT

P4 PIN SIGNAL P4 PIN SIGNAL
20 PO 17 GND
22 P1 15 GND
14 P2 13 GND
16 P3 1 GND
18 P4 9 GND
10 P5 39 GND
12 P6 37 GND
24 INTT5 or P7 35 GND
26 INT14 or P8 33 GND
28 INT13 or P9 31 GND
30 INT12 or P10 29 GND
32 TNT1Tor P11 27 GND
34 INT10 or P12 25 GND
36 TNT9 or P13 23 GND
38 iNT8 or P14 21 GND
40 (NT7 or P15 19 GND
7 GND 1 +12V
8 POSITIVE EDGE TRIGGER INT6 2 -2V
3 +5V
4 SPARE
5 GND
6 NEGATIVE EDGE TRIGGER INT6

H-4

APPENDIX |
TM 990/301 MICROTERMINAL

1.1 GENERAL

The Texas Instruments Microterminal offers all of the features of a minicomputer front panel at reduced cost
The Microterminal, intanded primarily to support the Texas Instruments TM 930/1 XXM microcomputers, al
lows the user to do the following:

Read from ROM or read/write to RAM

Enter/display Program Counter

Execute user program in free running mode or in single instruction mode
Halt user program execution

Enter/display Status Register

Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900
microprocessar)

Enter/display CRU data (this term is unique to the Texas Instruments 9900 microprocessar)
Convert hexadecimal quantity to signed decimal quantity

Convert signed decimal quantity to hexadecimal quantity

1.2 SPECIFICATIONS

Power Requirements
+12V (£3%), 50 mA
—12V (£3%), 50 mA
+5V (£3%), 150 mA

Operating Temperature: 0°C to 50°C (+32° to +122°F)
Operating Humidity: O to 95 percent, non-candensing

Shock : Withstand 2 foot vertical drop

1.3 INSTALLATION AND STARTUP

Ta install the Microterminal onto @ TM 990/ 1XX microcomputer, to the following:

Attach jumpers ta:

On TM 990/100M: J13, J14, and J15, and set J7 to EIA position
- On TM 890/101M: E20-E21, E22-E23, and E24-E25

On TM 990/180M: J4, J5, and J6, and set J13 to EIA position.

Attach the EIA cable from the Microterminal to connectar P2. Signals between the Microterminal
and the microcomputer are listed as in Table 1.

To initialize the system, actuate the microcomputer RESET switch, then press the microterminal
[CLA key.

NOTE
If the user has installed the optional filter capacitor on the RESTART input, this
capacitor must be removed for proper operation (e.g., if C5 is installed on the
TM 990/100M or TM 990/18B0M microcompulter, this capacitor must be
removed).

FIGURE I-1. TM 990/301 MICROTERMINAL

TABLE I-1. EIA CABLE SIGNALS

EIA Connector Interface AT T™ 990/100M/180M/101M

Pin Signal P2 Pin Signal
2 TERMINAL DATA OUT =2 RS232 RCV
3 TERMINAL DATA IN -3 RS232 XMT
7 GND =<7 GND

12 12V -12 +12V

13 —12v -13 —12v

14 + BV -14 + 5V

16 HALT ~16 RESTART

CAUTION
Before attaching the Microterminal to a power source, verify voltage
levels between ground and EIA connector pins 12, 13, and 14
at connector P2 on the board. Voltage should not exceed values in
Table I-1.

1.4 KEY DEFINITIONS

1.4.1 DATA KEYS

CLR

o | —

Clear Key — Depressing this key blanks display, initializes and sends initialization message {ASCI| code
for A and ASCII code for Z) to host microcomputer.

Hexadecimal Data Keys — Depressing any one of these keys shifts that value into the right-hand display
digit, All digits already in the data display are left shifted. For all operations other than decimal to
hexadecimal conversion, the fourth digit from the right is shifted off the end of the right-hand display
field when a data key is depressed. For a decimal ta hexadecimal conversion, the fifth display digit from
the right, rather than the fourth, is shifted off the end of the data field.

1.42 INSTRUCTION EXECUTION

Pressing this key while a program is running (run displayed) will halt program execution. The address of

the next instruction will be displayed in the four left-hand display digits, and the contents of that
address will be displayed in the four right-hand digits. Pressing this key while the program is halted, will
execute a single instruction using the values in the Workspace Pointer (WP), Program Counter (PC), and
Status Hegister (ST), and the displays will be updated to the next memory address and contents at that
address.

Pressing this key initiates program execution at the current values in the WP, PC; run is displayed in the
three right-hand display digits.

14.3 ARITHMETIC

The signed hexadecimal data contained in the four right-hand display digits is converted to signed

decimal data Note that the fourth display digit from the right is the sign bit (1 = negative). The
conversion limits are minus 32,7681 (B0001g) to plus 32,767 (7FFF1g). Two H—=D key depressions are
required. The sequence is:

1 Depress]H-D]

2 Enter data via hex data key depressions.
3 Depress . The results of the conversion are displayed in the five right-hand display
cigits
The decimal data contamed o the five fght hand display digits is converted to hexadecimal. The
conversion Himds are the same as lor hiexadecimal to decimal conversion. The sequence (s

Dipiess |D -Hl
Enter data via hex data kity depressions
Dirpiriss IT_J H] The results of the conversion are displayed in the four right hand digiday

W A

vty

1.4.4 REGISTER ENTER/DISPLAY

1.4.5

1.4.6

1.5

1L.5.1

EPC

DPC

EST

DST

Pressing this key causes the value displayed in the four right-hand digits to be entered into the WP
Pressing this key causes the WP contents to be displayed in the four right-hand display digits.
Pressing this key causes the value displayed in the four right hand digits to be entered into the PC.
Pressing this key causes the PC contents to be displayed in the four right-hand display digits,
Pressing this key causes the value displayed in the four right-hand digits to be entered into the ST.

Pressing this key causes the ST contents to be displayed in the four right-hand display digits

CRU DISPLAY/ENTER

DCRU | Pressing this key causes the data at the designated Communications Register Unit (CRU) addresses to

be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal
digits. The first digit is the count of bits to be displayed. The next three digits are the CRU address
(equal to bits 3 to 14 in register 12 for CRU addressing). When is depressed, the bit count and
address are shifted to the left-hand display, and the right-hand display will contain the values at the
selected CRU output addresses. The output value will be zero-filled on the left, depending upon bit
count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. I
nine or more, the value will be right justified in all four hexadecimal digits.

ECRU | Pressing this key enters a new value at the CRU addresses and bit count shown in the left display after

depressing |DCRU]. The new value is entered from the keyboard and displayed in the right-hand
display. Pressing |[ECRU| enters this value onto the CRU at the address shown in the left display.

CAUTION
Avoid setting new values at the TMS 9902 on the TM 990/100M/
180M/101M through the CRU (TMS 9902 is at CRU address 00401g),
as this device controls |/0 functions.

MEMORY ENTER, DISPLAY, INCREMENT

Pressing this key will cause (1) the memory address (MA) in the right-hand display to be shifted to the
left-hand display and (2) the contents of that memaory address to be displayed in the right-hand display.

Pressing this key causes the value in the right-hand display to be entered into the memory address
contained in the left-hand display. The contents of that location will then be displayed in the four
right-hand display digits (entered then read back).

Pressing this key causes the same action as described for the key; it also increments the memory
address by two and displays the contents at that new address. The memaory address is displayed on the
left and the contents at that address is displayed on the right.

EXAMPLES

EXAMPLE 1, ENTER PROGRAM INTO MEMORY

Enter the following program starting at RAM location FEOO1g. Set the workspace pointer to FF001g and the
status register to 20001. Single step through the program and verify execution. Then execute the program in
free run mode and verify execution. Then halt program execution.

NOTE
In the following examples, XXXX indicates memory contents at
current value in Memory Address Register.

OPCODE INSTRUCTIONS
04co CLR RO CLEAR WORKSPACE REGISTER O
0580 INC RO INCREMENT WORKSPACE REGISTERO
0280 Cl RO, >00FF CHECK FOR COUNT 255
00FF
16FC JNE $-6 JUMP TG INC RO IF NOT DONE
10FF JMP $-0 STAY HERE WHEN FINISHED
KEY ENTRIES DISPLAY

Clear Display Depress CLR

Enter PC Value Depress [E] @ [g

Enter into PC Depress EPC

Display PC Depress pDPC

Enter ST Value Depress @ @ @

Enter into ST Depress EST

Display ST Depress DST

Enter WP Value Depress @ @

Enter Into WP Depress - FFOO0

Display WP Depress - FFOO

Enter MA Value Depress E@ @ FEOO

Enter Into MA Depress

Enter CLR 0 Opeode Depress [0 A€ [0

Enter data,

increment MA Depress m

Enter INC 0 Opcode Depress @ E} @ FEO02|0580

Enter Data,

Increment MA Depiress |FED

Enter Cl Opcode Deprese [0] 0] FE04]0280

Enter Data,

Increment MA Depress FEUG

KEY ENTRIES DISPLAY

Enter ClI
Immediate Operand Depress @@] FEOG|0OOFF
Enter Data,

Increment MA Depress m
16FC

Enter JNE $-6

Opcode Depress E] E] E

Enter Data,

Increment MA Depress EMDI
Enter

JMP $-0 Opcode Depress [1]jo] 10FF
Enter Data,

Increment MA Depress FEOC|xxxx |

The program has now been entered into RAM. Since the PC, ST and WP values have been previously set, the
program can be executed in single step mode by depressing the H/S key.

DISPLAY EXECUTES

(AFTER) INSTRUCTION
Dapress H/S FE02{0580 CLR RO
Depress H/S | FE04[0280 INC RO
Depress H/S (FEOB[16FC Cl RO, >00FF
Depress H/S FEQ02|0580 JNE $-6

This cycle will continue until RO reaches the count of 255 at which point the program will continuously
execute at location FEOA g because itis a jump to itself.

To verify this, depress: DISPLAY
RUN [Jrun

The program should now be “looping ta self” at location FEOA1g. To verify this, depress:

s

Now examine the memory location corresponding to Register 0.

o @
Depress

This illustrates that FF1g did become the final contents of WPO. Note that, when the program was being
entered into RAM, was used rather than @ because of the rather desirable feature of automatic
address incrementing. The advantage of using is that the actual contents of the addressed memory
location are displayed atter key depression (echoed back after being entered).

1.5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS
Convert 800016 to a decimal number

Depress CLR

Depress H-=D

Depress @ EI @
Depress

Convert 002016 to a decimal number

10 4

Depress CLR

Depress

Depress [2][0] [[20]
Depress H-D L IE B2

1.5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS
Convert 45‘ o'o hex

Depress
Depress D—H
Depress E EI
Depress D—+H

Convert — 102410 to hex

h St

Depress

Depress D-H

b (7] (1] (@] (2] [

Depress | |Fcoo

.54 EXAMPLE 4, ENTER VALUE ON CRU

Send a bit pattern to the CRU at CRU address (bits 3 to 14 of R12) DEO15 with a bit count of 9 containing a
value of 5 (0000001012). '

17

Depress E:[:
pepess (3] [0) [E] [0
Depress DCRU 90E0[YYYY]
oepress [@] [0] (0]

Depress ECRU

YYYY indicates value at the current CRU address. Note that a|[DCRUJoperation is always required to
spacify bit count/CRU address.

1.5.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS

Enter 004016 into location FE20 and verity that it got there.

Depress CLR

i 8} 1]
Depress EMA
pepress [0] [0] [4 [o]
Depress FE20[0040 |

_The contents of address FE20 are verified by an echo of data from memory to display following the
pressing of @ If it is desired to view and enter data at address FE22, depress

APPENDIX J

CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 9901

The following figures, J-1 to J-b, are examples of addressing the TMS 9901 through
the CRU, pointing out in graphie form:

® External I/0 in parallel (multibit) and serial (single bit) forms,

e The relationship between the CRU bits addressed and the bits in the source
operand of the STCR instructions,

e The relationship between the CRU bit addressed and the displacement in
single-bit instructions.

The TMS 9901 occupies 32 bit positions of CRU space with the low 16 bits at CRU
software base address 01001 and the high 16 bits at CRU software base address 01204¢-
To access the low 16 bits of the TMS 4901 through the CRU, load 0100 into register 12,

The high 16 bits at CRU software base address 0120, are the parallel I/0 bits, shown
in the accompanying figures. These may be set, reset, or read in any order or in any
combination of 1 to 16 bits. Since CRU operations are serial, data from the
microprocessor (either serial or parallel) is transmitted serially to the TMS 9501,
which outputs it in parallel. Likewise, during input, data present at the TMS 4501 I/0
pins (in parallel) is shifted serially to the microprocessor using the CRU. It is
necessary only to load register 12 with 012075 and use either the LDCR or STCR
instructions. Bear in mind that the CRU operations of 1 to 8 bits affect the left byte
(more significant half) of a word (registers take up a full memory word).

The lower 16 bits of the TMS 9901 at CRU software base address 01004¢ are used for
control of interrupts and the timer function, and to restore the I/0 lines to the
input mode with output buffers disabled and floating. Interrupt requests are presented
to the TMS 990171, each on its own line, and are compared against an internal mask. If
the internal interrupt mask allows, the particular interrupt request is encoded into
TMS 9901 output lines ICO to IC3 (going to interrupt input lines ICO to IC3 at the
TMS 9900) as explained on page 6 of the TMS 9900 data manual and page 8 of the TMS
9901 data manual. The TMS 9901 also pulls the INTREQ- line low on interrupt reguests
(not during RESET), which goes to INTREQ- at the TMS 9900.

(1) ASSEMBLY LANGUAGE:

LI R12,> 0120
LDCR RO, 15

(2) SOURCE ADDRESS IN MEMORY:

0 34 718 1 A2 15 RO LSB —7
T | T
<o e (T T, S F TR (U A o [T S S . 0 ¢ O . I ¢ 1< - G0 o0 5 L ROk
| | P11
P2 _ 0O
P3l— 1
Ignored PaL— 1
P5L— 0
Pe— 1
¢ pPb—o0
(3) ADDRESSING: Pa—1
T —— Pal_ 0
Address lines at operation start P10}— O
PIf— 1
R12:{0 0 0 0 0 0 0 1 00 1000 0 0] Bit1s &
| P1a—o0
l P15
Igﬂol"Ed =|ADDRESS
[—.-SELECT
1/0
A Ay
| 0 Yl P15 STATE REMAINS UNCHANGED

l

ADDRESS LINES

Figure J-1. LDCR Word Execution To TMS 9901

(1) ASSEMBLY LANGUAGE:

LI
LDCR

R12,> 0128
R2,2

(2) SOURCE ADDRESS IN MEMORY:

0 % 4 7 8 5 ST 15
| | I
OB b M TR AN IR OB (O | . S 0« (s LG O O 1R
| I = TWQ BITS TRANSFERRED
LEFT BYTE USED
(3) ADDRESSING:
Rzl 3 4@ 48 0o 8Bt o8 8 8eg 8Bt 15
Ignored
e ‘ -
1/0
Lo T TR YRS » W O R « G I o WO o G S OO« T+l
DECODE
o B e e Aqy

ADDRESS LINES

Figure J-2.

ADDRESS
SELECT

PO
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
Pi4
P15

LDCR Byte Execution To TMS 9901

J-3

(1) ASSEMBLY LANGUAGE:

LI R12, =120
STCR R3, 11

(2) SOURCE ADDRESS IN MEMORY:

0 34 78 11 12 15

E3a- 113 ek (0 SR R CEy B g ST B O] Befora

I
0 0090 R Y BT B AT H B G BT ALEer

l I | J
ZEROED

(3) ADDRESSING:

Address lines at operation start

R12:/1 o 1 o'o 0 0 1'0 0 1 0'0 0 0 O |eBit 15
Ignored

et

ADDRESS
SELECT

P1
P2
P3
P4
P5
P6
P7
P8
P9

P10

P11

P12

P13

P14

P15

TMS 9801

+5 V

Ignored
JJ 1/0
ZEROES - DECODE
—)
0

o S T P s S ¢ [, 5 IR o+ /M [+ S v Sl U < [s S

Ay - v = Aqy
' ~ =1

ADDRESS LINES

Figure J=3. STCR Word Execution To TMS 9901

J-4

(1) ASSEMBLY LANGUAGE:

LI R12,> 120
STCR R1,6

(2) GSOURCE ADDRESS IN MEMORY:

PO
0 3 4 7 8 [& A1 15 P1
T T T P2
R1 [LY ¢ i A I ¢ I (e W o TR e T ¢ I P o R IR DT ¢ -7 e - p3
Q0 0T 85 @ Bl 3 il Y 8T 10 | AfEer P4
L | | | P5
[| P6
ZEROCED UNCHANGED P7
P8
P9
P10
(3) ADDRESSING: P11
P12
T T I £ P13
Ri2:{0- @D Q.00 0 178 0 vV 9 0 B 0 0|BitIE
; m ;) Ignored P14
Ignored — P15
= ADDRESS
l——.— SELECT
10
o Bl Ee 00 FO 0 1T 3 0 00 | DECODE TMS 9901

=2 '”"

T
ADDRESS LINES

Figure J-4. STCR Byte Execution To TMS 9901

J=5

ey

(1) ASSEMBLY LANGUAGE:

LI R12,>140
B =3

(2) ADDRESSING:

o : ; Bit 15
R12[0 0 0 00 00 101000 0 0 Of«is

f ignored
ignored

T 3 ¥1T 1 1 1N 8 7 «—=3 Displacetient
sign extend [| Added to Address

ZEROES

0 7B, el O R el 4 S R e——

fo Ay 7
ADDRESS LINES Ii..
1/0
(3) STATUS REGISTER: DECODE

TMS
9901

ADDRESS
SELECT

P1
P2
P3
P4
P5
P6
Fa
P8
P9
P10
1
P12
P13
P14
P15

GEETASEANESRE G NE

BIT NO. O 3 15

1

EQUAL______jﬂT

BIT

NOTE
If a JEQ (jump on equal) instruction follows a TB
instruction, a 1 found will cause a jump, and a 0 found
will not cause a jump (1 = EQUAL state).

Figure J-5. Test CRU Bit At TMS 9901

J=-6

(1) ASSEMBLY LANGUAGE:

LI R12,> 0120
SBZ 7

(2) ADDRESSING:

Ri12 o « T ¢ ST o PR+ L « ML « IR A MR « e QR » [« S « T+ R ¢
L I)
Ignored ———1 l
+ o B d O 2 A2 LT v g WO O T N Tl (R (L

L |

Sign extend

o R ¢ R - N (N TN = o I R L R o A Ay (Y |

ZEROES —'—l

Bit 15
Ignored

+=—-+7 Displacement
Added to Address

|

1o
DECODER

ADDRESS
SELECT

PO
P1
P2
P3
P4
P
PG
P7

P8

P10
P11
P12
P13
P14
P15

SEES T

— ZERO

L (O N G O I

Figure J-6. Set CRU Bit At TMS 9901

J=7

APPENDIX K

EXAMPLE PROGRAMS

K.1 MASTERMIND GAME

K.2 HI-LO GAME

APPENDIX K

EXAMPLE PROGRAMS

This appendix contains listings of programs that can be loaded into memory or
reassembled into memory for demonstration or entertainment purposes. These
listings are commented to provide ancillary data and explain the individual
programming techniques. Assembly listing format is as follows:

SOURCE STATEMENT NUMBER (DECIMAL)
RELATIVE MEMORY ADDRESS
ASSEMBLED OBJECT CODE
—— LABEL FIELD
#fOPEMND

(HEXADECIMAL)

OP CODE MNEMONIC

COMMENT FIELD

a2
0030
ONz

OOz

Q033

00324
0035

FEQO
FEOZ
FEO4
FEO&
FEDE
FEOA
FEOL
FEOE

FE10Q
FELR

OZED
FFS4&
OZ00
000/
o409
O4CH
Ozor
O0=0

2FAD
FELIN

START LWPI WsP
L.1 RO, 10
CLR. R%
CLR R10O

L1 R1Z, 220

OUTPUT OFPENING MESZAGE
XOF @MESS1.14

SET WORKSFACE FOINTER
RO = TENS MULTIFLIER
R¥ = NO. OF TRIES

Ri0 = NO. OF TRIES
™M= 9902 CRU ADDR.

DFENING MEZZAGE

FULL-LINE COMMENT BEGINS WITH ASTERISK

ADDRESS OF LABEL MESS1 IS M.A. FEDA¢

The code can be reassembled and loaded with the L TIBUG command, or the change
memory command (M) can be used to insert assembled object code at the memory
addresses shown in the listing (beginning at FE0O g+ Program start). The
assembled object code is listed in column 3 of the listing, opposite the
corresponding memory address in column 2. It is important that the programs be
entered at the addresses noted, or that proper consideration be given to the
labelled addresses which have been assembled into absolute addresses relative to
the beginning of the program (address FE0016). This consideration is important
when entering the code using the enter memory (M) command with program start not
at address FEOO16.

If the code is to be loaded beginning at an address other than FE0016 as a
program start address,it must berefigured to the new program bias. For example, if
the program was to be loaded beginning at FC00,g, labelled addresses must be
decreased by 2004¢ (FE0O4g - FC004¢ = 2004g). Note that jump instructions create
a displacement value and not a memory address; thus, jump instructions using
labels are not affected by a new program start address.

At the back of each listing is a cross-reference of labels and number of the
source statement in which they are used (column one of the listing contains
source statement numbers).

If the Line-By-Line Assembler (LBLA) is used, an absolute address must be
substituted for labelled addresses. These hexadecimal values are in the first
column of the cross-reference table of labels.

K.1 MASTERMIND GAME

The printout of this game in execution (below) illustrates game rules and
objective. The program generates a five-digit number. To win, you must deduct which
five digits make up the number, and their correct order. Only digits 1 to 8 are
used. After each guess, the program prints the letters X and 0 for each correct
digit entered. In addition, each X indicates a digit is in the correct column. You

are given only 12 tries to win.

MAZTERMIND. , GUE

YaOu GET X FOR A

l1aallll

23e 128

q‘ l41
4..94144

l1..11111
Z.s 222228
3. .23333
4..32249324
5..29353

I

MAZTERMIND.
vOU GET ® FOF A MATCHS

y IS I LA 1 1 |
Ewece2ee
3..,23323
4..32444
S..34255
B

A |

MHMHM H=1-2 12 TRIES

O FOF A HIT

CONTROL-H CAUSES ENTRY TO BE IGNORED, ALLOWS ENTRY REPEAT

eian|

WIHMEF! H=£4721

CR RESTARTS PROGRAM

«BUEZZ HHMHHM M=1-2 12 TRIEZ=

oo

bl A
3 ey

=00

4

0O FOF A HIT

——ESC KEY RETURNS CONTROL TO MONITOR

fMIMD

TASTERPIHD

alES |
[RIRTated
000
(RLAT]
QA
O007
000
DO02
0010
0011
(RIS 5 B
001
001
(RIAB AR
(BIR e
0017
vy
a0
MO
o0
(B Ia bt
Nz
(R
(T8 DA
D02
noz7
0Oz2E
AL ety
W=
(Il |
DOLE
O3
0024
OH25
OG=4a
Q07
2
O Zse
OO0
0041
a0az
(818 22 be]

Q04

QDA%
O0NAL

0047
0N 45

FEOD

FEOD
FEOZ
FEO4
FEO&

FEOZ
FEOR
FEO
FEVE

OO0
BIRTRN
OO0
G009
Q005
O0OA
OO0 7
OO0
D00
OO
[RIATA) =
O
OOOL

OZED
FERS
Z2FEH0
FFOT

ZF A0
FF72
QAC0
woas

L
(R

:’.?;'a;_ ‘}_I

elalaly

RO
K1

Lo

R
R
R
Ré&
R7
R
R~
R1¢
Fi11

F1=

MO0

DY e e ST AT SRt FEE Do

<8 LEX MICROCOHPITER

WOT CHAETE
4 1= s & i 1L 4 ~ S 34 3. i =
THIS PROGRAM PLOYS MASTERMIND 8 THE (90 =201 MECT -
COMPUTERS, THE ORJECT NF THE GOME 15 Tu SHESS, BY
LAGIeal DEDUCTION, & 5-DIGIT MUMBER GEMERATED BY [Hb
COMPUTER. THE COMPUTER USES OHLY THE DIGITS 1 T @, o
HAVE 12 GUESZES T ACCCHFL I5H THTS. THE COMPUTER MIiL
INDICATE ¢ CORKECT DIGIT GUESSET BY 5 LETTER O AN
INDICATE THE DIGET 08 CORRECTLY PLACED WITHIN THE
Tl GIT MUMEER WITH THE LETTER X, OTHER RULES THAT GFPLYS
8 CARRIALGE BETURN RESTARTS THE GAME
AN ESCAPE EEY THFIT RETURME ¥OU TO THE MONT TOR
~ CONTRIL H FEY ALLOWS YOU TO SCROF FRESEMT LINE OF
EMTRIES GND REENTER MEW L INE
THIS GAME (3 ASZEMBLED T0 BE LOADED AT M.A. SFEOD 1Y
HSE OF THE ACRG ASSEMBLER TORFCTIVE. 1HIS PROGEGH CAN PE
AESEMBLEN BY THE LRLA AT THE ADDRESSES SHOWH TN COCURH
TWO OF THE L IST ING, CORFESPOMDTMG OB 0T COUE Fols THise
ADDRESSES U5 CSHOWMM LN COLIEN THREEE. G000 | !

4= 4= < - 4= - 2. 4- 4= 4+ a- - A -

EGU G N, OFE BUESSES

Eol i EAMDOR po, DREGY GDNDIRE =05
S FRODOE M. COEPLTAT Ton LR

E it FeONLInmMy Mo COMPUTOT 10N LISE
ksl LO CORN=TANT Frir DECIMAL Z0MF
ECILI LONTHRIMS %S0Tl 2 i

[l CONTAINZS A=CII aF

o GODREZS OF X™8 & O% BUFFER
SRR
Eid
(SO

FAMOCIM R, AREAY GOURESS
RANINIM NOL AREAY ADDRESS
EiLl FOARTICM MO, SEET

FEil ASCIT 717 (3210673

o 132 CAST T CHARGCTER MOF
NORG. -FEOQO LonlD AT M.A. =FEOD

4= s 4 3+ # # 3 = + # ¥ + EE #

i kT R [Ry (-
A w gt T

-
L T |

P
s

FREOCEDUEE ARES NF EXECLITHELE CODE
® = i * = ¥ i s = 1 <= = ds 3=
LWFI W= SET WORFEFAUE FOINTER

XOF ERULES. 14 FRIMT RULE"

XOF @CRILLF.14 FEIMNT CR-LF

LR RO LULIMNTS 122 LESSES
MoV R L F1 FIOINT = 100 BARTM ARRGY

K-4

MM I NI

MOASTERMINID FOF T8

Q050
00l

OOTZ

ML b
DA% 4

OO
LTRNET
DOn7
CGONg
D059
O
ON&1
RTaT)
LAY
QA
D0E5
O0&EA
Q087
DDA
QO&ET
(YT
D07
Ou7e
O07
Q74
D075

7

77
Q073
DO7Y
i .I\IFI} ﬁ.‘ f:f

IS |

FE1D
FE1Z
FE14
FE1&
FELE
FELA

FEL1C
EELTE
EE20
FEZZ
FEZ4

FEZ:&

FE2:3
FEZM
FEZ
FEZE

FE SO
FEZZ
caa
FEZ&
FE=2S
FEZQ
FE=C
FEZE

T FEAD

FEAZ
FEAA
FEA%
FEAS
FEAN

QZOZ
D1FD
SR

Epes

el 23
2=
OS2
BOUT
Di:: a '.3'
S |

10FD

O5E0

=Os7

Al s
OAFEZ
O4FZ
QAT

COED
0401
2044
OE]
Fosd
1203
Oosz

FOZRO

o=
LI

DO
202
FEFA
2FAD
FEFZ

% ' "

FINaDF = P 2N 4 118/7% FaE ool
T s MICROUOMPUTER
=OCCMFLUITE FORDOM FUOMEER, FMOVE 700 Lo (T 10R] 4
|5 (%
5 RZ,H0Ow M B RGEITIGE B e e R

MPY Ri1i,R2
al S T |

MY RERYY

CALEEE BRANDOM TIGITE 113 BE IN RANGE 1-3
“FEL RZ«5
K F1Z.-RE= MAEE S0 Xl, RobioE 1 -
MOVR RZ, #R1-+ FUT TN RANTDICH ARFOY
i F1.RLD FEST FOR END OF LiWwFE
il M1 o OLRTIL FLs)1a

e

= DETERMIME RNUMBER TH O LPCOMIMeG L=

PRINT UPCOMING GLUEESS MUMBEER 7O FROMET LEER

Mol
IMC Fiy GLIESS DlIIE<%=+1

* LLEAR ARREAY THAT HOLDE H2CII X 'S AMD O 3

= JF CONTROL H PREZSED. STAHRT HERE

FESTRET MY R7.RZ YGR O GDDE T B2
CLRE #REE =
ClLR #R2E+ =S
LR =R *

= LORMVERT GLESS HUMEBER FOR OUTRUT
My ROy, R BFLUETE WO FE RER
B 1 S 4 §
NIV E4:F1 OIVIIE Riks BY 19
SWFE R1 BAGTIZENT 1M LEFT BYIE
SOCE Rl JBE MERGE BT IENT & FENGIHEFR
JEEY MO0 PUT IM SPOLE IF FIRSY DIGIT=9
ME1 22, FROGE HAkE £ASETT BIRITS

MOz
DRT B 0P MiakE AZICTI SPACE & DOGL]

MOy RZ.€GET FUT T™ FRINT BUFFER

AQF 2GUESHG, 14 FRINT Sk NUMEER

K-5

IRIRRAEIE

(R

T or

RS

(9151

A,
010
ERRE

(I A

[TS
G17
0] 0
D109
L0
o111
R 15 P
G113
i1 14
L D B
ARG ES
0117
nlLis

0 6

€11 20
0171

THEMIEG
MASTERMIHD FUOR THE TH

FE DS i85
o =
FED
FESE
FE&D
FEc.Z
o e
FELS
FE &G
FE34
FEar
FE&~E
FET
FE7Z
FEZ 1

FE7&
FETG
FEZS
FEFL
FecE

FESO
FES:2
FESA
FES&
FEZS
FE2A
FESC
FERE
FEZO

e ZEA0
FERS FEFMH

10EA
D
0E

L7 S B Pt o)
o 28

3+ TMELET
Mt
ML
Lo

I 5
MOE
AOF
L o
"1

EE P P

AED
i |

JE2
il

B
CE
WL
54

JH
A0OF
» DIRLT
CE
AME

ZWFE
MOV E

I
MOAG

MOVEH

SR
5
2l
8)

L
XoF

3

XOF

MNaT
XIF

AMF
MIOMNITR R

CHARGTTER

=

e LiSre At e e

01X MICRICIMELTER

R FE
R7.F1
FeZ. IMFUT

Fri

g 13
i iﬁF‘E] |:| F:
| SACEEE) 16

START
[1RO

.....

FESTRT
K3, R1S
MO 30

RS IR0

POZE

RE. 13

M MGETOH AMD

Rz #RE+
MOA0

Rz

RS, #R1+
R1Z

F&, #RE+
F13.1
Fs, R1ID
MO =G

Rl XOEB+S

M0
BAOEF, 14

BLITMMER, 14

MUMEER . 14

MO

K~6

TEZT FOR

CAOL N MaTCH

FIENDoM MUMBER
£ % i BUFF ADTR
IRFUT EBLIFFER

In k1

CLEAR BIT MGF OF CAZT

FEALD DIGIT

COMTROL-H KEY FRESSED®

CHR. RET. EMTEREL:
YES. RBESTAET GARE
ESDAFE EEY ENTEREDT

YEZ, RETLRN
COMTROL-H FREZEEDT

YES. BESTART
£S5 Mz, LEZS
YEZ. REMD
1= M.

THI
THAM 10
AMOTHER:

YEZ.
[N D

HEAL AROTHER
T RAMGE, ECH

IM RIGHT COLLRRe

DIGIT IH RIGHT
MO, FUT CHAR TR
YEZ., PUT BINARY O

T Ok T T

GREATER THAM £°

C L T
e T
I =B

GUDR 3n B

ADDE 30 R

L o 2 -

ErlTes

R ER

aF "

FUT AN ¥ IN THE X0 EFUFFEE

MaF CHET OUT CHAR
ZERD) DR CHOE T
FUT BIT INM MAF
FIFTH NLIMEER IMFLITY
MO, READ
YES, 12

TMELTY

i

MY,
YE=Z,

R WINMER YET
FRINT

FRINT WiNMER

FRIMT WNLMRER

FLAY ANOTHER CRME
FRETURN TO MONITOR

AMOTHER GLIES:
EUFFER Fiukll @

<0 BUFF «0b

BLUFFER

L ¥ T

AT L TAMIRG ‘930287 =+ RS R o Liem/ 78 FaGE O0ibd
MASTERMIND FOF THE TH 99/ 158 MICRN OMPUTER

a1 31
(WS _:.'_‘_ <%
0123 # TES] FOF C¢Gi&,, .
1344 i
JS125 [BT
a1 50e FEAG 020 I
FEN? FFoh
GEE | DA
D138 FEC Lk PilH SRZ4, R TEST BYTE FROM 1MPUT FLUFFER
0129 FEAL 1=00 JEO FOaAG BYTE ZAST QAT IF B0y 39 TRl
nE4S FEAR C20% DR i S Fe FOINTS TO WORE AFFd
141 FREol R =RL . Flax il FOSITION CAST QLT CH MAF
A IR
Olds FEAL ORI SR felEst TEST FOR CHZT OUT CHOR
G1ad FENE ZEO (= R =RES LDOES BYTE MATIOH WORE A6
w1 0SS FERG LS0Orf JMED pME IF CAST DUt MOS7
mlas FERE tdad ME MRS TF NOT Z00nL, MOoo7
AT FEBA DO A8 MU Ffe =R+ ON HIT, FUT O It X BUFERF
O1A8 FEES Q21 MEL (21, 2= MaR CAST DT CHAR
FEERZ #0000
514 FEBN BOLE FB F=.R3 SPOIL COMPARLSON. FIMID=R | ri
1550 MOST
1157, FEBC gasm ' FE Rl TEST Fofs LA=T DIGIT
315T FEBE 10F: ol MOSS IF 7). DO ANOTHER TR0GET
53 RSP
SANA FEEQ O22f 1 B, IMPLIT+S LOST GIGIT IM INPLUT RENTEE
FECE FFROF
1% FECA iiFF I | TR MO, [0 REXT DIGIT
W10 FECE ZFNT P = - =) S O YES, FPRINT ¥ BUFF
FECE FFO
oL%7 FECE 0280 | B 12 THELVE GLEZZES MGIET
FELCT QO
Um FECE iAMR Al [T M, MORE CUESSES REMAGLIN
= FEDGD EFFT0 WO @S0REY 1 VES;: FPRINT BOERY
FEDZ Frem
Oian FEDA 10ED A 1045 FRIMT BUMEBER FOFR FLOVER

et

R IMELY INFUT FUFFER STRFT 1H £

il
1

R-7

MM

M ETERMIT L

2167e
0163
G144
0165
Ol
D167
018

147
0170

0171

037
017z
0174
017
017
0177
017z
017%
0180
R E=h
Lok B2
133
e
(o b k=

FEI&
FED:=
FETIf
FELC
FEDE
FEED
FEE1
FEEZ
FEED

2 FEE%

FEEZ
FEE

3 FEER

FEEC
FEEE
rEFO

FEF:
FEF

5 FEF&

FEF7
FEF&
FEF=

52 FEFS

01 ==

il 520

o191

AR B

a1

014
[0) B

OL9é

FEFE
FEFT:
FEFT
FEFE
FF Qo
FFoe

FFO4
FFO%

SF i
FFOS
FFON

FFo
FFOE
FFF
FF10
FF11
FF13

[RIRINTY
[BIRTNTN]
000
OG0
[RIaluTy

52

20

4F

20
FFO&
D)
FEFE
FFNZ
b b a7 b
21000
[alslnte

LG5
IaTaral
ZE
ZE
(.".'
00

e
20
AE
=10
[RIeTRIN]
D000
D000

20

=0
QOO0
TR TNT]
[ATRISTS]

DG
10
%1
33
|
4%

+ TIATA

3 5
#* WRE:
AR

¢ TEXT
- (LT E
(SIS N
T

¥ ROMINM NUMBER (F
TEXT © N

MUMBER

(R

FURE T A i_:‘ i_

N

LOBF

SN of

A A

RIJLES

] i *

SECTION

4 = -

o el

OETHR O, 0, 0,0

DATH 19
Bl K T

TEXF /0
DaTo HOE
OaTA O
DETA NN
OATA NN+
OATA >G0S5
OATa 23100
L n T '-':-‘
STHTEMEMT S
MUMEBER Gk
AT 000
LATH 4%
TEAY "os”

BYTE 7.0

TiGT Qe B, 0

TEXET

oaTi 00,0

DR o M

AT oLInn
TEXT ~Miv=

1

NEY G BUFFEFR

SHOWTREG HITS

&L ¥ e R<a 11E87E FAGE 00O
VR Milhn:nnfnipk

at = = & It =
= %= 3 % Lo 3¢ ¥
e~

R4 CLOWERSION COME (N
R

F.é

R7

[Eet

R

(=5 BN

F L3 -RGHOOM HUMEBER SCED
R12

F1a-EasT T CHRR MO

THIG GUESS

GRY- A IME FEED
CONVERTED GUEZE HUMBER

BELL /5TOF

COMFUTER 1IN ASCTD

ﬂ“?

SFACES R FEINTIhb

BEGUMNING OF ik

TERMIML

K-8

MMINL TIMIRN Y2EZRT % QU R 48 118,76
MASTERMIND FOR THE TM 220/1XX MICROCOMPUTER
FF1z= o2
FF14 a0
FF15 49
FF1é& 4E
FF17 44
0197 FFie 2E TENT “. . GUES:Z NNRNMM M=1=-2 12
FF1® 2E
FFin a7
FFIB 55
FF1C 4%
FFiD: 53
FFIE 5=
FFIF 20
FF20 4E
FF21 4E
FF22 aE
FF23 4E
FF24 AE
FF2S 20
FF26 4AE
FF27 3D
FFze 31
FF29 2D
FFZzA =8
FFZB 20
FF2C 21
FF20 32
FFZE 20
FF2F 54
FFao 52
FF21 49
FFa2 45
FF33 S3
Q122 FF24 0DOA onTa 0noA
0199 FF36 5% TEXT YOI GET X FOR & MATCH.
FFz7 4F
FFza G b
FFZ® 20
FF2A 17
FF3B 45
FF3C =54
FFZD 20
FF3E 58
FF3F 20
FF40 44
FF41 4F
FF4z 52
FF43 20
FF44 41
FFA: 20
FFas4 4D
FF47 41
FF43 54
FF49 43

FAGE 0004

TRIES”

o FOR A HIT”

MM IND TXMIRN 2ZLRET 3 O 253 112/7% FOGE QD07
MASTERMIND FOR THE TM 920/1XX MICROCOMFUTER

FF4n0 As
FF4R 2C
FFAC 20
FF4DL 4F
FFA4E Z20
FFAF 4
FFD0 4F
FF31 b7
FFS2 20
FF5z 41
FF34 20
FFS5S Az
FFS& 4
FFZ7 54
Q200 FFSa 00 BYTE. 0

K~10

MMI M

MASTERMIND

Q20z

O=0s

204

D205

OZ048

0z07

0210

H=11

FFSA
FFaC
FFSE

FF&D
FF&1
FFaz
FF&S
FF A
FF&D
FF &
FF&7
FFAZ
FF&9
FF&A
FFaR
FFA&C
FF&D
FF&E
FF&F

g2 FkIQ

FF71
FF72
FF73
FF74
FF73

TYXMIRN

VILZIT w4 O U A 118/75

FOR THE TM 2%0/14AX MICROCOMFUTER

OO0 0
00
OOO0
&0
20
i
4=

9000 ERRORSE

+ BUFFER OF MUMBERS THFUT

INMFLIT

2=

SORRY

CRLF

DATA 0,0,0

WINNER TEXT ° WINMERS

BYTE 21,0

TEXT * SORRY”

EYTE 0,0

EYTE [205 0,0

END START

K-11

PAGE

[RIRIALS

TRXREF %

CRLF
G

S =N
INFLIT
MOOS
MO1o
MO1%
MOZO0
M0
MOAO
MO4%5
MO0
MOS52
[MOS%
MOS7
MoOAD
MOMITR
NN
MUIMEBER
R

F1

R1O
Rii
R1Z2
F1z
RZ2

Rz

R4

R

Ré&

R7

RZ
REZTRT
RULE=
SORRY
START
WIMNNER
Ws

AR
XIOEF

THERE ARE 0041

2754z
0202
O1E
nisz
OzZ0x
onas
0051
QO
OnE
00w g
0114
0125
8 ol
013
0142
D150
0153
01e%
iz
Olaz
(A1 e
00Z3

OOEE
o0zz
0DO=q

Q0En
D024

QO=E

O0EA
00327
o0z
02
OO0
003
QOT0
014
207
L T
D200
D1&e
o192
D1z

1y

Oy 28119

(VA -
QnEg
s
Qg
012
ODEL
0152
D00
0104
0116
140
(i e
0155
Q102
0145
[(e
1 00
D174
D1Ea
O0a7
0043
011%
0040
RT8 e
OnmE
(RLR LR
O0S2
nln k=i
GG
0103
01 4%
Q077
)12
0147
OO 70
[RIni=dn]
RIS R
(B e
004
o107
DO E
Olzs
D0aE
0119
0121

SYMBOLE

D1E6

0106

71 44

175

OOAT
QOS5
147
3117
O
D103
o1l
QO
Q=g
DO

0105

[RINL=]
010%

CH Y

30 A 1 |

0172

015

Lig/7a

0154

n11=

0075
[RISTew]

0151

O 1A
G070
o2
Q057
0107

o117
21 410

0157
OO0 7 &

o141
RN
niin
DOnE

i 1

0] 30

K=12

S ELRI

QO77

14z
RN
Cl=6
D05

11l

RIS TN

OO7E

4=

7=

11

DO7E

D070
8 Bt
oy
alze

0ol

Oa7w

i R

0144

G112

sl

101
4w

K.2 HI-LO GAME

The printout of this game in execution (below) illustrates game rules and
objectives. The program generates a number between 0 and 999, You have unlimited
guesses to find the number, but you can be an expert, above average, average, or a
turkey depending upon how many guesses used.

L FEOND

GIIEZE

R LOAD AND EXECUTE PROGRAM
W=FFED

F=0132 FEOD

E

CAHM Y0OU GUEZZ Yy HUMEER 0 TO 999y 7
IMFUT A HUMEEFR & PFEZZ THE ZFPACE EAF.
S0 TOO LOWs TEY AGHIMLE

Ton TOO LOWs TEY ASHIME?

ann TO00O HIGHs TREY AGAIME

50 TOO LOWs TEY AGAIML

875 TOO HIGHs TEY AGARIM!

a3 <«———— —— CONTROL H PRESSED TO IGNORE ENTRY
260 o0 HIGHs TEY AGAIMN?

37 TOO HIGHs TEY AGAHIMY

=54 CORFECT! ¥OU“FE AEOVE AYERAGE EECALUSE IT TOOkK YOu 05 TRIES!

CAM YOU GUEST MY MUMBER 0 TO 2997
INFUT A HUMEEFR % FREZS THE ZFACE EAR.
SO0 TOO LOWs TRY AGALNS
TOO TOO HIGHs TRY AGAIN?
S0 TOO HIGHs TRY AGHIM?
S7S CORFECT! YOURE AM EXPERT BECAUZE IT TOOM ¥OU 04 TRIED!

CHM 500 GUESZ MY MUMEER 0 TO 99937

IMPLUT A HUMEEFR & FREZZ THE =FACE EBAF.

EIY TOO HIGHs TEY AGAHIH?

=00 TOO HIGHs TEY AGAHIMN! < — CR PRESSED TO START NEW GAME

CAH YOU GUESS MY MUMBER <0 TO 29997

INFUT A HUMBRER & PREZZ THE ZFACE EAR.

SO0 Ta0o HIGHs TRY AGAIN!

400 TOO HIGHs TREY AGAING

300 TOO HIGHs TEY AGAIM!

cun TOO HIGH: TEY AGAIN! =« — ESC PRESSED TO RETURN TO MONITOR

K-13

[IS TERALR: SR&ETY % YR e Y i (1 Frfss O

HI-LO GAME FOR TH 2909/714X MICEOCOMPUTERS

I'_'u'_“;i‘. 1 2 =% i 3z =33 it it = 1= 4 it = 3 e

(R TATH S # THIS GUESSZIMNG GAFE CAN EE RUN PN A THM ©90-15Y Mloid
TR = UOMPUTER WITH 432 (-1BD) HORDZ OF USER GYATLAK F

o ed) # 0 RAM MEMIRY. IT 12 WRITTEM T3 BE LONDED AT Mod,. TFEC

5 = M OAN BE ASSEMBLED AT THAT GRDRESE VEING THE LRLFG
ONIRTRT # 0 DR OBY LUGADLING THE NBIECT (DOLIMN 3) 6T THE MEMGRY

TS Ti # NLGRESEEE COHL RN E Y, THE TRJECT OF THL% FREGREDRMT 29 P
TR # 0 GLUESS WHINH HUMEBER THE COMFUTER HAZ GENERNTEL, AMD T
iy = [THIS WITHOWUT BECOMING A TUREEY. FOLLOWIMS BULES 5071 ¥e
DNTR R * — DRRRETSEE KETUREN BRINGS YOl TO FROEGRWM BE Vias

Tl ~ — BESUAFE FEY BREINGE YOL T MONITOR

BT R i = DONTROI.-H KEY IGNORES THIZ ENTRY

DO #* = SFOWE LEY CONTIMUES GARE

R To i OO LUCES. o WNLSH

IR b = -

L o mr “GUESS”

DR r REGISTER EQLATES

g (5 To LTS T (LR TEME MUILTIFLTER
R anol R Ee) GUESS MO G2CUMUL s Toe
Qe d DONgE R E] MULTIFLY ANSWER
oazD a0z R3S BBk = ENTERED DIIGTT

(IR TN

5 <= 4 4 4= <% 4= - £ - J-

L

1) s

OGEE DOTE RE EQ = CONTAINS CUMPUTER S [UHELS
D0 HO0Y RD E@u = NG, TRIES/10

aoof R1O. E@L 10 MU, TRIES
DOOr R BB A% CRU ADDRESE (The w000

“ DRIECT CODE AT ARSOLUTE AUDRESS BEGINNIMG WITH DFEGC
PO FEOD RORG TFRO0

load

DT BT e 5 ab ¢ = <= 4= 2= = L 4= 3= 4 3= 3 T
VIFIR # FROCEDLRE AREAS EXECUTABLE COTE
SR ' £ s e 3= = 4 4 1= 3= & 4= 1= £ 2@ 35 r

L « IMITINLIZE REGLSTERS
O3 FEOO nZED TTART LKWF1 WP SET WORESPOGOF POIRTER

FEGZ FFOD
DORA FEOS DTG0 i § RO, 10 RO = TENS MILTIRPLIEF

FESE OO00
AT FEOR 04002 CLE R2 R7 - ND. OF TRIEZ
O 3 FEGN: D400 Gl R10 R1O == N, OF TRIES
OOVET7 FROC O L1 R12, -0 TME @03 CRLW GIDDR.

FEGE G020
DOSE = OUTHEOT OFEMING MESSAGE
OCE2 FELD ZFA0 LOF 2MESS1, 14 OFENIMG ME=SOI5E

FELiZ FEERO
A0A0 # THIS ROUTINE I= & NUMEER GEMERATUOR THAT GERERATES
041 # N MUMBER FROM O T0 299 BASED ON THE TIME T3 RESFOMID Tid THE
TR s # DFENING MESSAGE. 1T CHECES & BRIT AT THE THs 2907 SERIGL
Qi # INTERFAZE THAT ZIGNIFIES THAT A DISIT HAS RBEEN RECEI(VED FR
O0aA # THE TERMIMAL, IN EESPONSE T TRE OPENING MESZAGE. RECEIFT O
I = THIS DOFLT MEAME A NUMBER IS BEIMGE GUESZED. WHILE WATITING
00 & # FOR THIZ FIRST NMUMBER, R2 IS CONTIMNICHI=LY INCREMENTED FROM
woaz # QT 299,
0048 FE14 0428 NEWND CLE R R2 TO CONTOIN COMRUTER S RO,
0049 FE14 1FLTS I[MCNO TB 2 DIGIT RECEIVEDN?
0050 FE1& 1307 JER ECHIGZ YES. ECHD CHABNCTER
0051 FE1Y 02338 i Rg, 979 N, INCREMENTED ToO =227

-

K-14

1SS

HI=LiJ 50)E

0T

VIOT %
DN

a5
G
VT
i rf.'_l':_.,':__-:
P
G

e |

0052
(RTINS
No&A
Y

L

[RIAT

(BTN

(1] i‘:':—_‘:_r

Caa i

(IS

O LE

QL rD

20749

R
00T A
A 7
OO 7S

OHOTa

(i
T
LR =
O ES
oa7

FEL
FELE
FE20s
FE2

7

T iMIRA

FriF TH

NEET
) T o

T

SFZED
FF 24

v
L L
2 e

DZEE
a0

1327 %

e

l_‘_.ll:;l.-l ll'll

D

Sé ODEN

EE0q
1103
1504
1204

SFENO
FFOG
10E1
2FA0
Frii
100E

mqm:1ygh
e
{rn-
e

M

A
"

FEAL
IR

b gk

ECH

ErHs
FITHO]

WAS

FIOMI TR

11

[RESRIRI
=
RN

AFTER FIRST DDELT

COMPORE T 20N T
L= RE&D
JIODED

G VAL TIE

[}

a2 LYE 7 Fritk Qoo

s

MICROC MNP TERS

YES: CLEAR TO 0, FES TR
MO INCREMERT Bd. (0] ==
LOGE, RECHECE FOR Trae 7 o0

IS ENTERED; CUOMPUTER S NO. i3 1 RES
FIESzES AMD COMVERT THESE TGO HEXGDECIMAOL . =M
COMPUTER S NOL IN RE&E. A% MEW MUMBER

&

MULTIFLIED BY 10v AND MEW YGLLIE

Ty FROIMWT T FEEF CUMUILLATIVE TSl OF Dfs 11
== EBTERETL.

NI
il K

HIAF
SF

ST

E
LT

AEC
AN

MF 7
A
M
JHE
£

i

¥ COMFARE
COMPRE THC

-
M) i
AT
LED

MESNGES

|17

HIGH

X

JHE
AI0F

IR

BEFOR 12

F L
F3o11
BORE

Oy LINE--FEEDR, R

CLEAR SOCUMMULATOR
ECHI CHAR. . PLACZE T I R
FLACE VALWE TR RIGHT BITE

Ey CRy ESCAPE OR COMTROL-H FPRESSED”
o, O

L CIMERE.

[aatn

STERT

R FG01ER

PO L TR

2, 0008

BT HOD

I R2:000F

s R
R, RZ
B3R
EITHD1

00

SPACE BAR FRES-ELY

YE=, DOMPGRE VWAl UFe
CARRINGE FET. FRE==E1

YE&Z: REZTART FELEAHM
ESCAPE PRESSELT

YES, RETURRN 700 PG LT
WAE CONTRULL-H FRES:=EDNT

D LEFCR. RESTART GUESE
M, SAVE 0= DIGIT OMLY

FREVIOLS: NT, X130

MEW NO. 4+ ABOVE FRODULCT
AMEWE To SCCLMMLL T0R
GET NEXT DIGEIT

GO T MOMITOR

FMUMEEREZ INFUT TO COMPUTERTS MUMEBER

E10
F1,R=
(Y
HINH
ECiLInL

IMIREMENT B, GHF=ZET
COMEARE TO COMELTEERER S Kk
M. [% LESZE THANM CIRPUTER™S
N, T5 MORE THAR CHFetnER ©
MO, I5 CORRECT VollUE

FOR T HIGH. To0 LOw

ABI_TWM, 1]

ECROZ
RHIGHM, 1

ECHOZ

4

K-15

TiIO— ME==AGE

GET MEXT MIMBER
TOO-HIGH MESZAGE

GET MNEXT NJIMEER

(NN

GLE=S

HAL=LUEE GRME

oos
O0% 3
g

OOY0

Q04
DO¥7

O0es
(052

100
0101
O10E

0103

104
0105

D104
0Lo7

0108
0109
0110

0111
£ 1%

0113
0114

FE&D
FE&E
FE7O
FE7Z2
FE71
FE74&
FE7S
FE7¢
FE7C
FETE
FEZ0D
FEZZ
FE=/
FE&L
FE==
FE&M
FE&(
FEZE
FEZO
FE2Z
FE®)
FE®6

FEZ&
FE=;
FEZIC
FEYE
FEMAO
FEAZ
FEAA
FEG&A
FEMAZ
FEN
FEA
FEAE

TaMIMN =Re227
FoRe T8 “a@d s vy mic

ZFEA0
FE=&
D28
D007
1503
ZFA0
FFAF
100K
G2EN
OO0
1502
2F N0
FF5
100E
R
AT N]
150
ZFAD
FF&2
1062
EFAD
FEZZ

ZEAq0
0269
DCZ0
D3N
SIRAET
AT
HEE9
C2060
FFoz
ZF 0
FF7I
100z

= CORRECT

¥ OFIMND QLT

ECILIAL XOF
il

AGT
XOF

JME

Frd

IR
¥R

HF
3]

GT
AOF

JMF
XTIF
| F CORREC
COUNT DIy
R Y
iR
SWHE
i
FCY

RN o

IMF

- P

it

ROCOMFLITERS

']

HOW MONY TRIES
AOORECT, 14

F"l“’) .-.

O
F+-3

2SEVEM, 11

ORI
Rl 2

P+

ShIME, 11

COLIT
Bl 13

FoA
@THIRTN, 11

COIpT
@TURKEY , 11

T NUMEER
RO R

R, O

Fes

R, R0
R1G, CMIUIMBER
CNT, 14

TR

K-16

F o i,

ALUMBER WNAS GUESSEDN

Ly

CITHFLT B,

LImA7A

FRIGE Qo0

LPEETT SR (BT FLT MESZ6GE
CORRECT GUESS MESSAGE
PEY COUMT GREGTER THOMN 77

YES
NS

CHECE. (o500t
hil 07 TRIES MESSOGE

GUCGET COLNT

TRY-COLNT GREATER THOAM 9

\3' E ‘-:- +
T,

CHECE S5NAL1N
N =59 TRIES MESS0GE
GO GET COINT
TRY-CUOLINTER GREATER THAR

YE=,

M,

TFUT TUHREEY MEZ=MIGE
L 10-173 TRIES HMESIAGE

GO GET COUNT
CITPUT 13 (TUREEY) HMESZAGE
NFE TRIES
DIVIGE TRY-NO., BY 10
O IN 30 FOR AS0CLT NO.

OFR IM 530 FOR ASCTL MO,
FREMATHLER IM LEFT EYTE
2=DT51IT DECIMAL IN R10
MOVE £7TY TO MESSAGE

FHITEFUT M. 0OF TRIES

B0 BEGIMMING OF FROGRGM

B

GLESS TXMIRA FI6E2F #% 0722207 115,78 FAGE 0001
HI-LO GAME FOR TM 220/1XY MICROCOMFUTERS

011z EoGE A W e 8 3R M 4 o H #E HF s 46 A R S (¢
3119 = DATE AREA: DATA STATEMENTS, TEXT STATEMENTZ ETI.
120 & # FH F w ¥ ¢ & £ # * H 4 o ¥ W o %
o121 + MESSAGES
0122 FEBO OonODl MEZS] DIATH SONOD, 20000

FEEZ ON0N
012% FEER4 13 TEXT “CON YOL GUESS &Y NUMBER (O TOQ #2277

FERS 41

FER% 1E

FEB7 20

FEEZ 5%

FEBSY 4F

FEEN S5

FEER 20

FEEC N7

FERD LT

FEEE]

FEEBF o

FECO Tz

FEC] 20

FECZ Gl

FEC= eh)

FEC# 20

FEES 1E

FECZ S

FEC? 4n

FECZ 2

FEEY A%

FECA T 1

FECE 20

FEED 28

FECD =0

FECE 20

FECF o4

FEDO AF

FED1 20

FELZ ne

FEDZ= 239

FEDA =

FEIVG 2%

FEL& 3F

FED7 20
01241 FEDRZ OA0D OaTa -0a00 LIME FEED. 'R
0125 FEDN 42 TEXT "INFUT A NUMBER & FREZS THE SFACE BAR.

FEDE AE

FEDC 50

FEDD oo

FEDE 54

FELF 20

FEEO 41

FEE1 20

FEEZ 1E

FEEZ Bl

FEEA 4D

K-17

HBUESS

Gl Ee
0127

DR

0129
0130

FEED
FEE&
FEE?
FEEEZ
FEEY
FEE®H
FEEE
FEEL
FEELD
FEEE
FEEF
FEFO
FEF1

FeEFz
FEFZ
FEF4
FEFD
FEF&
FEF7
FEF:=
FEF%
FEFA
FEFE
FEFC
FEFD
FEFE
FEFF
FFQO
FFO2
FFOX
FFO1
FFO5
FFn&
FFQ7?
FFOZ
FFOvz
FEORN
FFGOE
FFOIZ
FFoOD
FFOE
FFOF
FF10
FFii

FE12
FFia
FF14
FF15
FFié&
FF1&
FF1in
FF1cC
FFiD
F1E

TYMIRG F2LEZT7 ## DL ERYOR 11=/783

42
A5
a2

L in

-
L’

I O VI A I
O A D

()

i B S

u

2E
lu)
L2020
TR
AF
qF
20
4C
1F
b
.
20
4

£y
bl

59
20
11
a7
a1
49
4E
21
21

oaoOD

0O00

2020
54
aF
4F

L. 2kM DATA 22020 LICLIBLE

TEXT “TOOQ LOW, TRY NGAIN! !

OoaTA Z0A00, O

HIGHM DATA 2020 THO
TEXT “TOO HIGH, TRY AGAIN!”

K-18

L.INE FEED,

SFPACES

FAGE

SPACE

CR

0T

ENI M=ia

‘_q'!l_IE E S

0131
0132
0133
0134

-
i)

1
0

l i r.‘}

|_._| wl

il =7
o123

b R S
01140

FFLF
FF2o
FF1

FFz2
Fraz

FF24

FF2D
FFZ2&
FF27
FFz&
FFZ%2
FFz8
FFZRB
FF2i2
FFZD
FFZE
FF2F
FF3D
FFE32
FFz4
FF26
FFE3S
FF3N
FF=C
FESE
FFZF
FFAO0
FF41
FF42
FFA4%
FF41
FF"! .',_l
FFds
FFA7
FF 4%
FFA=
FF 46y
FFAER
FFaC
FFAD
FFAE
FFaF
=
FES1
FFEDZ
FF53
FF5A4
FF5D
FF%&
FFa?
FFoSE
FEav
FFoH
FFSR

TEMIRA SREZZT7T #+# QPRI OE 118/7& FOGE (00s
HI-LT2 GAME FOR TM 220/1XYX MICROCOMFUTERS

ol ',._"|
rlm R R B) e,

B3 R

o9
e

—
Fal g

pein)

11
A7
41
A%
1E
21
O/0n
Inlnls)
OfonD
O
0707
0707
2020
43
AF
=3

==
\..'.l‘_

45
a3
54
21
20

02

Dy Z20N0L, O LINE FEEID, CR: EMI MSG
LFCR OaTh =0A0D LINE FEED:, TR

BYTE O END OF MESSAGE
CORECT LATA 0707, 20707 RELLE

LATA 22020 SPACES

TEXT “CORRECT L YOI IRE

EBYTE O ENLD 1IF MEZZAGE
SEVEN TEXT “AN EXPERT

EXTE ©
NINE TEXT "ABOVE AVERAGE

K-19

GLESS

TEMERA CREEET. OReaBefg 1i8/78

HI-LO GAME FOR ™M 270/1XX MICROCOMPFDTERS

0141
Q142

01432
0144

014%
0144

FFS
FFSI
FESE
FFSF
FF &0
FF&1
FFR&z
FF&2
FF&A
FF&D
FF&&
FF&7
FF L&z
FF&%
FF&D
FF&E
FFALD
FFa&l
FF&E
FF&F
FF70
FF71
FE72
FF7:3
FF74
FF7%
FF7&
FEZ7
FF7=
FF7%
FFE7#
FF71
FEZL:
FF7D
FF7E
FEZE
FF&0
FFz1
FF&z
FFRE3
FF&4
FFa5D
FFE4
FF37
FFaz
FESY
FFEn
FFzH
FF=C
FE=D
FFzE
FFSF
FE0
FF21

aAF
HRTLY
15
pelh)
41
T
A5
5 B
11
N7
A%
20
(NI}
11
T
45

L

41

20
5
AF
]
=)

EYTE ©
THIRTM TEXT “OMERAGE

BYTE ©
TURKEY TEXT "% TURKEY

EYTE ©
CNT TEXT * BECAUSE IT TOOK Y

K-20

FGE

GLESS

HI-LO GAME FOR TR 920718
147
014:
01 4%

FFoz
FF24
FFo5
FFo4

0000
20
54

e

MUMER

FFo7 4%
FF73 4%
FFo9 n3
FFon 21
050 FFPR 07

07
7
O

FF=C
FF¥D
FF2E
0191
o138

k=P

Qnoo ERRORS

TXXREF 937542 A

CNT 0144 QL3

COMFRE 0021 W7
CORECT 0134 Qeya 4
COLUNT o1 D=

ECHOO
ECHO1
ECHOZ
ECIAL
HIGH
HIGHM
INCRNG
LFCR
(B

L Ok
ME=S1
MONITH
NERIMNO
NIME
NIUMER
RO

R1
R1G
R1z
RZ

R

R

R%

(MY |
D06
D&
D0
Qo= }
L O
o4 [RIRAR
O3
Oz7
D1zh
0122
OO7%
n0ag:
1140
0147
o01%
D20
DOXS
0024
002
L] e
(B0 par]
00z

Qo732

OO7E

D071
DO52
0 A
0114
Ciyaa
O0&E
O
o7
07 A
0EE
004
O0zs

SEVEN n1E3 Qo977
STHRT D033 O

THIRTN
TUREEY
LI=F

0142
0144
D151

Di0s
0107

033

THERE ARE 0022 SYMBEOLES

TAMEY: RREZTIT

O e 24

o e

FMICROCEEI FERS

ORTA
BYTE
TEXT

£
F20

*TRIED!

EYTE

EVER
ENI

118/ 75

(i W 1005

=

bad Ofyan

i1
77

O0Ph

D75
T el

[N

COEL

Qe

O0&EA OlsA QO
00Z1 Q033 00EZ

D1O% 0110

0114

K-21

ik

0103

D 70

i [0 e+

EELL =

Iri

FAGE O00=

HECT T

HORE2PATE

OR0l

2111

OOz

o31a

Y7 A

M,

T Oy

START

o114

OV &

HERE

4 LB N A

Q077

INDEX

INDEX

Addition of Displacement and R12 Contents to Drive CRU Bit Address. (F) 5-18
Address and Data Buffers...cccccees. o' BN R e TN R saaeinis B=30
AdOresE BliSs e imaasas vasasaansasibtraseesrivssciissvesassanssmss B
Address Decoldin@sesssssninassvessors ssves s veseinsspssenesisses B=15
AGOPOSE SPa0B. si vrnet Ve et sabverarsisses s sh v e sl vivense (9=D

R A N 0)) R e R e O S e s SNy I, SR O NS RO 11 L Tl
ASCIEL CODEw aycuss s amesdiresasseanaassessesssnsenedsesssessanssnssas Appendix €
ASRELAG ValO0S8 st asnaeasnbssanessnaenesdinsvaposansysinssssssesssedss LY 5=60
Assembler Directives Used in EXampleS..eccevsvesscasssssessssssssses (T) 5=1
Auxiliary Communications Port........ e ita A sk e st R e sin e T e s s BB
BINARY, DECIMAL, AND HEXADECIMAL NUMBERING.....cesssssesasssssssss. Appendix D
Block Compare SUbroutingc.sssssnsvsssbsiesssedissineesessnsasissases D=1

BLWP Exampleé........ AR T STy B iar e P g e iy S B e B SOl L T e
12705 s B BAT T Loz o ciE fok o DA RCER =l g S W) S g Tl M M gt . KRN S

Board Jumper Positions as Shippedicececsscsocsssasssacessessanssasses (TJ 2=3
Praugh' aid LInK (Bhihiesinesnivingaes saspessesineaseiioomisesseasesnn D]

Branch and Load Workspace Pointer (BLWP).is:eeeesscsssassecssnaansss D=8

Branch Instructions (B)..eveevssss R T e N T e i i o P QU N 1
Buffer Controlisansassasidsasanispyanssssssasasissadsasessseasedsasss 6
BUS SABBEES oilos /50 0000 e a5 04 WA @ a i SRR e s s sl s issdsane L
Cable; 103/113 ' Data ‘Seticesssvmrnmsvavensits AN e ke e e ibne Aesnate 1) 81T
Cabla; 20T DatE Solaand ¥ o0sm o cxtbacs Sbb 5.8 H10- b, /500 winw R S U, SN (v 2 S
Cable, 22 212 Rata SEEc Ji v smnesevie aie s elkeeadiors veinanhanenense s s L L) O=T8
Cable Pin AssignmentS....... siateie bie D T e PSPy s COVIEIE PP o o SRR . P i

Cable ConRPationdrrisiiicnsnwsrsse R B o I i T 157, Mrrep S R T 1 % s
Central Processing Uniticeseeesnns ST ee e e pnrelk by BB Bale B B e naln s Bl
CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS....4ssess4+.4+0. Appendix H
Circuitry to Add TMS 9901 Off-Board..esecscscsescscsnss ses e rnes LB vl
6110 1o 1 LIRS TG L e S G O R R i - R e el S e L T
Coding Example to Ascertain System Configuration Tnrough DIP Switch 5-54
Coding Example to Blink L.E.D. On and Off.cececscsosscascssasssasss (F) 5-55
Command, Syntax Conventions s ssrensvnosssbapaincrsstrsotssvssainetns K1) 3=3
Communications Register Unit (CRU).secenveenecens sersvansssevessnne =10
Compare Blocks of Bytes Example Subroutin€....vessevecsessscnssesse (F) 551
Connector P2 Connected to RS-232-C Device (Model 733 ASR).veevsssa. (F) 2-6
Connector P2 Connected to TTY DevicBisesssssacsisivesnssssnsanesssns LE) 2=T

L) gt oW L4 & 0341 W N R a R - Py £ SRR § SR N i ol W |2)
Control Bus) FimoLionStis avwsams admvac e neme.e s we vesivas Spbdniseabei &Ly B0
ConEnol, 'Bullic iekie e aea iebid deualeasav s ses s s Luwees e bt ans ot eseny Onb

CPU HOLD: and HOLDA Timifig..eeesssssecsssssanssacosaodsasnns cnesssenes CEJB=9

CRU AGdressabl e LED it eesisivaasisesoesesssoesssiseseesssysnsessssssa ImDe

CRU' RAAresSing e coenes s snanipe sy ssnis osibesssscrs sissesesssasssses 9=13

CRU Bus.caaooo..oan---..---.-.-.-:--.oc-no-c-..o--a-o-oc--co--co.o. 6—’4

CRU Inspect/Changk (C)uavasansnssionssssassnsaesibevaai e et ess 3=

CRU Base:and Bib AddreBEesi.viisssasesspsssisnsssvinsssrsvanassesass () 5213
CRU Bits Inspected by C Command.eesscessossscisnsscosnsssssecssssas (F) 3=4
CRU INSTRUCTION AND ADDRESSING EXAMPLES USING TMS 99071...+evssss++. Appendix J
GRU! EsbrRa bl onS i e aefiee soen o ot dn S DS e PR < S STPPS SRR > (. |

3 (UGS o 3o S T gl SRSDI Sy LA L St A = S R - e WL S

L0 DA 15 Y i debmdsibba o et teds ba b NN SRS TSN
Crystal=Controlled Operatliciice ieses s ssesatasasessnesvsesseertsse (EY B8
DAEA . BUT Pl S s raviia tr s nonatssie s ileasessnnersssans v e ssesessw LY 630
DRLR BOS s assspvas bl asasoniebe s i sssaamanmeenessneesseene D=t

Data Terminal Cableiscssvssasssronasssns issessssninssessprassanssnsss (T) 8=19
Debuk-Oheok dal, iy s s s i e nir s i P e ST E RS ne s sy o s ease ol beay =10

INDEX-1

INDEX (CONTINUED)

Decoding Circuitry for CRU 1/0 AddresseS...ssescesssncsasassssscnns (F) 6-2
Dedicated Tntariuipt DoSepiptioN va smsmassnnnrevdseeiiseeysnesrneses LI =3
Device Supply Voltage Pin AzsignmentS.i.cssersvessnssesvessvnscsnsses (1) O=3
Direct Memory Access (DMA) ApplicationS.ssssescsevessscvsssssessses 8=7
Direct Register Addressing (T = 003):«.... SRR R e e s Ve d e
Direct Register Addressing EXample...eccesesscesccssssacsssncsssssns (F) 49
Direct Memory Addressing EXample...scssecsssscesssssansssssssasssss (F) U=12
Direct Memory Addressing, Indexed EXample....cssssssasesssasssssess (F) 4=13
MR BUE CoHIIleitmdivetnissssstissdsie ety seevrysisibebedrpeee (81 B=8
DMA Controller.......-............-.-...........--.........-....... (F) 8-1“
DME Conbralley” TIMing. s vesiosaststisvitairesniisssssanssassanassase L) B=18
DMA Device Conbrallateiecanissaasibiosesneesvadiasssssatssveitesvnes \B) 8213
DMA System Biock Diagram. sscysessacassssssesssssssnsvancssnssssass (B} 8-13
PMA. Systen Guidelines. e s de it st C el s rumis shasds et by s s n i e 8-11

DA Braliam Tt smanes v re 506w s weoisheln o ooy et ainntne o s e e 8 aking DT

DMA Systen TIMEAZ ¢y eaeaains shaninssuseazneesnssnsoneansssiasesdpsoees LF) B=10
Dump Memory to Cassette/Paper Tape (D)ivevscesnvescecssnssncesssnns 3=5
Dynamically Relocatable Code,isssssinssssssassssnnasansavsesssseses =19
Echa Character (K0P Tl1)ecstinenenssrsrsstassechoiaacabssasaanossses 32101

BT IHEpPaclcessrivedsseavinbnens.se stonesdsvnbbeivetess e lewsssee B=35

ETA RE<232-0 CABLINGs 4 sss s sdsss snanennansassessasnsessivesivensnds APPENdix
EIA Serial Port ApplicationS.eesssssérsomwssssinnsaasssnnsassanscass =17
Enabling and Triggering TMS 9901 Interval Timer....cssssevasssnsees (F) 5-31
EPROM EXpansioNisessscssssoassssssasssansnnnns T L T T T T o |
Example of Code to Run TMS 9901 Interval Timerssseeecsssesssssanases (F) 5-33
Example of Programming Timer Interrupts for TMS 9901 and TMS 9902.. 5-32
Example of Program With Coding Added to Make it Relocatable........ (F) 5-19
Example of Separate Programs Joined by Branches to Abs. Addrresses. (F) 5-7
Example Program to Converse Through Main/Aux., TMS 9902'S..eveesesss (F) 5=57
Example Program Using Timer Interrupts 3 and 4...c.ereavseesneseess (F) 5-38
EXAMPLE: PROGRAMSa s tsvinnnasonssaannsasiasassssnasevnssessnesseeddsss AppenNdix
Examples of Non Self-Relocating Code/Self-Relocating Cod€....eeees. (F) 5-20
Exécite Comiang (B) everonssvrmsud et ssessessitaoissscnssnssensoinesy 3=0
Execute in Single Step Mode (S)esevrccenntsassassevsssnsssisesssiss 3
Execute Under Breakpolnt (B)issesessanvasssnenrassespeistosnesssios 3
Executing TM 990/100M Programs on the TM 990/10 M. ieeccincnnnnesss D
Extended Operation (XOP)....ves. N o Y TP L N ALV TN Bt e M i Sl
External InstructionsS..eesa.. R B e ey ik e R SR e i ok araat B
External InstructionS........ G d e ae AN SR R e e e A Biaes,
External System Reset/Load....... $ PR R e e A AR B RES]
Extrd RS«-232<0 . TermiNal Porbicsevsss st csilbeeeaaisesieesaseaas sie B
Fiad Commant () oo baneehe b aias dan e aaeas iaerssens tereee isaealetiny 3
Five~Switah DIP and Status LEDisasississsavseniisbassadasasnssss ine 2
Farmat: -l Tttt Gusi v e e r mew i o bieikie s susn s Ao bh o a0 e 9o 4ok e 0 i o
Format 2 InstructionS..e..... R S e e s e 8@ e sl e e i e W2l
Format 3/9 InstructionSisec.sesssssssisssssnnsnnssvassessssssesssins H=2g
Format % (CRU Multibit) InstructionS..s.ecscisssssssssscasssanasssas A=2l
Forgat 5 (Shift) INnStrictionS..scesusssedsesssenssssyyessseeidssses d-2h
Pormat 6 InstructionBassashisassvvisissssnsave ssnine sgadisensssneny 2l
Format 7 (RIWE, Control) Instructlions. . s syt e st serssespesssssssa Hnad
Format 8 (Immediate, Internal Register Load/Store) Instructions.... 4-31
Format D (XOP)rInstrucbIons, i cusewe o sasmasesns subhschsessososensny H=37
Four Interrupt-Causing Conditions at TMS 9902....0cceeessccassssecss (F) 7-8
General SpecificationS.csecsssessssnierinnssssissssseasssnssesnssass 1-9
General, IntroductioNissscscseenssansssenssansssessssessssavesassena 1=1

INDEX-2

INDEX (CONTINUED)

General, Installation and Operation of the TM 990/10TM.ccvcirenccns
General, TIBUG Interactive Debug Monitor..scisecessensecsssssscanse
General, TM 990/101M Instruction EXecutioN.scieeeessssesssssssnones
General, Programming.cssescsccescessssssssaassssdssspsasasssansnsanss
General . Thedry - Of ODera b ione s »5 s 5.0 7w b eu U5 6oy e ms e wmi's we & b bonnns s
GEREral, - DPETONSH b w vt b en b ocs o omate o a by e e s s ne aiaes b eunesd iy ene
Genaral, APDYICALIONS demwvan e ins o s fabe s essspe s sifssaesenoass an s
GLOSSArYaivsssanvars e nessssssaseesyssee tessessressnsasanerenentere
Half=Dupiekx MUltidrop SySCeMicisvasse sewsessssdnasossessseessssese
Halif-Duplex Multidrop SYystems:.iiesicessssesssssasssssssissnsisesvs
Bardslalre: ReR LSt ar S b it an oe st e st s R s e M e shew mesln enis b e e o da
Hardvare RegisterSccecssssscincsancencssnsssssnssnassasnsssasesarnsses
Hexadecimal Arithmetic (H)....i.... o e A AT Al R e e K et
HOLD, HOLDA., and DMA.csissessiésssasssnnnaaesposadonsnsesdnsassiesss
T/0 Usinig Monitor. XOPYS, . iseene e ssssaedssabessisineesvessnsossis =22
Imnediate Addressinge.ssssessessacsconss sesversugissaumniessvresess H=13
Implicit. Decoded CRU Bit AddresSeS..cssesscsssssassssnsmnavesssnsas (L) 6=25
Indirect Register Addressing (T = 01o)sseescssccccanscsccsnsnsccsss 4-8
Indirect Register Addressing EXample......eeceescassrsssscesssasssss (F) 4=10
Indirect Register Autoincrement Addressing Example.....scesssss0s0a (F) 4=10
Indirect Register Autoincrement Addressing (T = 112)eessscsssecscss 4=10
Inspect/Change User Workspace (W)...ceoesesesssssesassssssssssscsnes 3=13
Inspect/Change User WP, PC, and ST Registers (R)eceeescasesesesnaes 3=-11
INSTALLATION AND OPERATION OF THE TM 990/101M=1 sececascssssssessss Section 2
Instruotion Description Terms:.iveerissaaanssnesasvsnseaswassseeass (T) A=Y
Instruction Formats and Addressing ModeS.. eiseesscnsenssscnsannanas U4=7
Instruction Set, ‘Alphabetical IndeXcssssersvssnssmsornvsssoeeonsees (I3 4=15
Instruction Set, Numerical IndeX..sesesssssssessscssssssssssssssass (T) 4=17
IRSAP RGOS disa sers 40 500 ppTateq var ns winia o e oin me siadie 070 o ara'd aTuracdinia’s a'e aswus-sinar 14
INSErUCTIONBiasrsessanesssnsenasssabinssnseesposaaetsrssasgrossnasas H=3]
Interfacing With TIBUG. ciasassasnniniassmenssseenons e eaeysomenadss I=20
Interrupt: and ‘User XOP Linking AreBisssscsssiiseadsesasnsavasasavsens (1) H=25
Interrupt and XOP Linking AreaS.ssesasssssssssisasssnsassnssssesees =24
Interrupts and XOP S i scrssavs s ranss b tesopardneiireneidsrvssane S=2H
Interrint Chapaoter it T iisninbis Crhie e smeyan sy reeessssiredss . {T) 6=31
Interrupt Example Program DescriptionN.cccssessccsccsssssnassssssssse (T) 5=35
THBEHTP L. SEGUBRGE e v oloie dian walnsis o sinane sy e msimeneesny ins s e B 526
INCerPupt SEPUaTURE Y 3 veiny o0 T aels s ereie Mo s s e 4 bia 0 b dw st neass D=3
INTRODUCTION 50 s wavasancatsndasaseenesassesanseanssnossssssessssnes Section 1
Jumper Pins by Board Dash Number (Factory Installation)..cssesssses (T) 7=5
Jumper Placement..ccoesssvssassosas 3BT L e demadinsmnguse savwess KIE)LT=2Z
LDCR InstructioN..eseecesscass iasvseaviseRa b s teebssine i srevens, (E) 5416
Line-by-Line Assembler Output..... VS IP SIS e s s tn e sushaserdbrees LEY T4
Linked List Exampleé..seaseassss e R P I N SOy SRR, (&) 2
Linked=ListSeirennescnnsssensororennsshassivssasisssasassssiaascasns =10

LA I IS PG E I ONE fc s rentmannseess oo v st s ssssdineysaessedineeasd Hu

LOaG PANETLONw 4t af s/t ev ab aidiit dpta s olaaan s tn a di/sme venavslsannereiness D=13

Load Memory From Cassette or Paper Tape (L)isseeseeesssssseessesses 3-9

Main and Expansion EPROM and RAM...seevecssnsecscscassscansscsssnns (F) 1=5
Main ConMunications Portisicivsssvaavsssustsnssesodssnsssesesnsesse Ba3D
Major 'Conponents Used In L/0:3ssssvesisissssrrnseissrevssessssense (F) §=2
Manual Organizationcesnsssssvesms avd e s asbades e s bbvesndbvsrssss =4
Master Jumper Tabl@iicdssisiraavnasansiasonsesasnosesssovesveansves LY Tt
Master-Slave Full Duplex Multidrop SystemM.i...sesesessscsssssssnssss (F) 7=10

I‘!EMCYC-...o--l--vl-c'vono.n.oool.l.oot-ta...p-.q......-.;.......... 6"’27

I

7-11
7-11

I 1=

c\wmzﬁﬁ_.?o—-lmmtwl\l

([Ve R QR RO SRR SN . R e S gt e T

INDEX-3

INDEX (CONTINUED)

Memory Address Decode PROM . vsessrsinshidansanansssssasaasnsasensuns (E) B=18
Memory Address Deooding.ceissssscessopssearibasesosnsassessasaessas D=1
Memory and Capacitor Placement...sesssesesassccsacsnsesssasassansns (F) 7-3
MEMOEY CHETE: TEMENIEL idh s sisea 6reioina s oo e e i R e s A B) h o 4 BB B R B s 8-11
Meaiiiory . Cyele: TIMARE oo nyeuie b v e s aime bsdy wmae s e sos s ohesmses L1 Be12
Ménory ExpAnBlon MEAD B e v aeme s wns e peie s smyesevas wscawsesn CBy T=6
Memory Inspect/Change, Memory Dump (M).ieevrsecesassnannsssenvenssss 3=10
Membry- MAD: wo e s e esih we B en e d s s ke asiesa s eivessvieses s LY Y=
Meamory MaD CHAGOESL & v soi v b ns din sies bt s sesi Ginsve sdiv st csssmes (@
Memory Requirements for TIBUG....ssesececesnsancnsascsssesncsnesssss (F) 3=2
Memory Timing SIENALS . ceseiasosssnneasosonsdnssneesns i m kR B e S
Miscellaneous Equipment.:scecssssssnrsncesssisscsssasnssssssincsasss 2=2
Modem (Data Set) Interface Signal DefinitionSesecsveeseessasssssses 8=19
Move Block Following Passing of Parameters...c.cssveesssscasssssress 2-50
Move Block of Bytes Example Subroutine..iciceescescssssssscsssssssas (F) 5-50
Mialhiarop Cablingy .« vesiessa e cives e iasii bRk s ek s e e LY T=Y
MUl tddrop TNt e r oo svvnnss o s soes ot or i eess et Fansassaresaaas BN Ba3T
DN AR Lot R o (o] - YRRl LR o — I e B S S LR (RO~
Multidrop: JOumpEr Tablé: resvieovensssaesssesessissnsaescnemrs et KLY T=10
Multidrop Systélessssessass sha TR R A & e A aie aTece Wre A 68 aae e s ks G (TG
Multiple-Device Direct Memory Access Controller...ceeesscscscsssnes 8-12
Multidrop Interface.cssssssssasnnscssnesnsenne SRR e s s e DT

OEM ChassSiS.eesss SSRGS TN SH SR dA TR R R Ve s sanbensenes sonnsen 1203

OEM Chassis Backplane Schematic........ SEinelae slein s e s e dacares, R T
DEf=Board BLgRE=BAE, TA0 BoBlas 1o as sadam t/me sy bee e insss e s s e o]

Of TwBoard Moo We e see @isna boease 5b osamidin s snewdesasssesssieeesnyenree LR O3
Off<Béard’ RAM; vensceesssivassss e as v P A B ST R BT e Al O
Off-Board ™S 99071 .vsessnnns SR RN ANV a R e e a e e e .]
On-Board Device CRU AddresS..scecscecssnsass s e R s oo (T B=gh
On-Board Memory EXpansioNisscssssessaissenssinssnssssseasssaésnsasss (=1

DD EE At Ol vicvesesd éossasses S vaviesih it b Ruet s ibs i Her e ens s inedass Sl

DR TIONS ¢ deaus s 558 a5 500 m s nns om sy s p e e vavnes taloa s saseEe s seesss Section T
Parallel T/Q and Sysban T IS . v it mis avmeve o i viiv snomes s sy An3 D
Pargllel T/0 Connector.icascanssonrsasacsresaessoransnis ok N SR 2-2
PAFEITIBL T/ Quwsosinolada balein:aidis pb o adlae §-opbmiang s aacaera sy sna PR ISP RN DN AR (1= 1.
PARTS LIST sy snmansnivessnvotrenss s wiiieasvissasysy v ioreaiie s -AppENdin B
Preprogrammed Interrupt and User XOP Trap VectorS...svsesesrsassses (T) 5=24
Port;: BoBIE D000 s sawawiavsesessdu s vasaasissinniies sesmveans TEY Bub
Power and Terminal Hookup......... PEARE ST FS ARG E s S IR A ER et s s O=E
Power Cable/Chass8ifSi iscsssasrssassssernssesssame P P T R T Y O]

Power SpecificationS..eccscssnse . SR R B RS e e e e D
Power Supply ConnettionSiecsssessssavsssasassinessssss sssisssnsnsses 2=
POHGI" SupplYI.l.l'.l.lt..l-ltt.lltl ------ LA R R R R R NN T

m

Power Supply HooKup..seseeessanas ressEsesessesenansens e PRI NS e 2=4
Power-Up/Reset.ceciervacnnnnas L 1y TP P RS P e I g I PR
Product TRABT e einiues e eussioeen smsdoolhs aiee s s same ses weneriees sy
Prodoar Cannbens TPEY e alt vt et o5 6 e el b b i ol il ot it e e ok o b
Program Counter Relative Addressingiccesssinssinssissnsnnsniansasas
Program Entry and ERAT.cicesaniisass sssnmaiasnseensaiesssassssssiissss
Prograit Oppanizabionlcic s ebasvyedsses soraesieieesseseesieediivise
Programming ConsiderationSascasvias eessiavessasitisessenessssssises
Programming Environment........... B R e T R R B A A
Programming BinEBsiesssssscn et bt sés s s sbes PEPTETIN SR MEeA Yol sl e e s
PROCRAMMING . o5 s s a'a 0ASa 0,50 0 0ame oo mnmpss e ey - R e
RAM EXDADSI 0N siamadademmains s ssnnniaesens e s s sinsssassssssssnsnm

I

cr =

ection 5

-qmmmmmm.::::—»mﬁmmmm
DO N FWWMN = = 200~ =W =N
— W

INDEX-4

INDEX (CONTINUED)

Random ACCESS MeMOry.cesereviscssisisessssessrsssassssspssnssesssess
Random AcceSsS MemiOrYisaasssssssnsssssessensasnsenssasseaseesesssnss
Read Hexadecimal Word from Terminal (XOP 9).vieesscacsssssosonnsans
Read One Character from Terminal (XOP 13)secescecsssssasacannansnns
Read-0nly Memory.csseesiiansasrassrasnsssossesssasionns

N I R R A R

Head“only Memory-o--nant-tv.ntdtovl.loooo..'o.onoa-l-ooocrun'lvllll

Reading the DIP SWILOH: sass s sesceean nsisnnesassdiassssnsnsseess s

Ready..avss
Reference DocumentsS....

L R I R I I R B

LRCRE N

DRI I B

R)

------ L I I I B R I B R I B)

Register Reserved Applications.....
Remote CommunicationS.cieeceacecases
17 Ta bk arra BTGV)) o S S S i Sy S AR Sl
Required Use of RAM in ProgramsS......

LR A R R

LR N I B

LR I I R I I

Reset and Load Filteping..l'.l.l...ﬂ‘.l....l..‘..l.l..l.lll.....lll

RESET and LOAD LOgiCissssnnnsss

Bt P Lo« o o0 su s ah s s 540 auiie e n s a6 5o naie e s i lug os bt na

Reset/Load Logic.-.I'..III."l.C..l.....C...I.‘...‘I.'l..l.l.ll.lll
Return with Workspace Pointer (RTWP).ceesesscoosssassonsaasosnsinsse

RS-232-C Interface..

RS—232-C Portl-I.!.l.llll.l.ll.l.lt.-l---

LR R I R I R R B)

L I

RS-232-C/TTY/Multidrop Interfaces (Main Port, P2)..ecieecsescsenas
Sample Program 1-..--'..'-...'..'l.I.ll...Il.l"'..ll.......l."-..

Sample Program 2.sccessessccsscsccsssessssssses

Sample ProgramsS......:...

LRI R I O O O I A O B

CRCE I R R S R

SCHEMATlcsaloool..o.oool.lo.ll.oo.l.ao..nl.oot.llalllo.-ltlntt.n--o
SEPial 00mmunicati0n Inter?upt...-...-.....-............---aa.--...

Serial I/0 Port EIA Interface...

LR I I

Serdal I1/0' Porl T1Y Thter ot e s st e seaesse s snesmsssmsssesesesyses
seven=Word Interrupt: LinkitE Arefceesaa s s da assaivads iaeskesssaasssa
Six=-Word Interrupt Linking APe.icccescones dise e sy sosessiesisaaas
S1oW EPROM TaABLlBceuwed vniasiaauneonssnsesnneyivessewseyeseesdssesseis

Slow EPROM..D'!II..ll..l.l..ill.l.l.l.ll.l.it-

SoftWward ReflstersS.diitissvices st seses sddsssdiadsasdssssedesssvesese

Sour‘ce Listinglllll..ll.‘.llltl

------ LR T I O I

Status Bits Affected by InstructioN.sssessesesesacssessvsnsnsennans

Status

Indicator-.-.na-...........-.....-.

Status RESiStEP (ST}oltcol-'utoaoiolo..oooooooioa.a.---..l..o..o--u

Status

Symbolic Memory Addressing, Indexed (T
SymbO].lC Manory aqddr'eSSing, Not Indexed (T = 102)-----o--a-----co--

system Buses..‘......l.l......l
SySston CIook.ideetess s snisnim
oystem SEIMICEUNE. o shesarsisenss

Tape Tabs.llnu..l.u.lt.at.nltlt--

LR

Register..--|QolIlolouolo.oloootoolnoi..ntoooto..oca.oololo.

STCR InstructioNcsesans saaseaiin s

R I I I R

102)-.--‘.--!.!..ll.!‘l.l.

L R R I R

System Timer-.--Il..oocoio!.-o.cl.ll.aooo.atl---o.n-iao.-..ll-lcoln

LRI A R I A]

LR R R B R R R]

Terninal. Hoalup. i eesviavaisrursasased e st dssesviesbivasudes e et

Terminals and Cables...

THEORY OF OPERATION...cesseesn

Terminal Hookup,; TU3 ESRiiuvassnssassonssssoaiosy

L I I A

TI 733 ASR Baud Rate (T)-.--l.tl...l.'ll--.'-..l...l..d..l.ll.t..l-
TIBUG COmmandS..-.....--..-»..-o-......c...4o......................

TIBUG Commands.

L R I I I A I R

TIBUG Erieor MeSBAEOB ua i stee aldinien:e s s sn s e em e s e e solnne e eee.nee s
TIBUG Er‘ror’ Messagesil...l...l..‘.0.-.Ut.‘llll..-d.l--l.l‘....'ll..

INDEX-5

(F) 6-29
6-28

3-15

3-17

(F) 6-28
6-27

(F) 5-53
6-26

1-6

(T) 5-6
7-12

2=1

5-3

6-14

(F) 6-13
6-10

6-10

5=9

T=1

(F) 8-6
=7

2-8

2-10

2-8
Appendix F
=7
(F)
(F)
(F)
(F)
(T)
=7
44
(F) 5-2
(T) -
6-39

y-2

(F) 4-3
(F) 5-17
4-11

6-35
6-36
5-29
5=-27
-7

Section 6.
3-13

(T) 3-1
3-1

(T) 3-18
3-18

TIBUG INTERACTIVE DEBUG MONITOR...ussss
990 OBJECT CODE FORMAT
YOO/ QY CRIT MAT s - womstanm hovmne e w0 e wn o vaie s eeie e s
Bloek DigRralls e e e e i ese e ene e
Board in TM 990/510 Chassis
ConfigurationSyee e vse sy e biaie vasnias reeep
Dimensions and Component Placement..

™
™
™
™
™
™
™
™
™
™
™
™
™
™
™
™
TMS
TMS
TMS
™S
™S
TMS
T™MS
TTY
TTY

990/101M
990/101M
990/101M
990/101M
990/101M
990/101M
990/101M
990/101M
990/101M

990/301 Microterminal.eeeess s
990/301 Miecroterminal.
990/307 MICROTEBRMINAL.::sesssesisssnna

INDEX (CONCLUDED)

R R I R R I I R

TNSTRUGTION | EXECUTRLION s v isid nn a s s s 6w ssisan eaanaans
IASEruohion FormMatSes ss e e veinas éamaiams ehep s piandgds s res
Major ComponentS.cssessesssnas

Memory AddresSingessssssssvmennasennnsrnsssvoe

IR R

Predefined CRU AddressSeS.iccececssscsssssnsnssssansanes

B ead e

990/402 Line-By-Line Assembler....esesesssnsssssnsannncass R T

990/510 OEM ChassiS.ssetaeais sy
9900 CPU Flowchart...ccesevassnsens
9900 CRU Interface Timing......
9900 Data and Address Flow.....

9900 MEIIOI"Y BUS Timingt--ntvuu-tctlo.ooool.l.t-.o.tl--tvnl‘l‘-l

9900 Pin Functions......
990 Tavensannaas
9901 Internal Timer Interrupt Program....
G S S B gm0 s e o o
Inferfac.censssssun N T

R O I I I B R B N A R I Y

LR A R R

Unit ID DIP-Switch-'-'-IC..."..l...l..C.'.......-.--

Unit 1D SWitelysve vwme iieiv ey 6 es e e someds w5
acking...
User Accessible UtilitieSciccesssancassssesasscsannssnsanss
User Accessible Utilities
User Memory.cescessesesnsneanennsnna
Using Main and Auxiliary TMS 9902's for I/O.......

Unp

L I R I R R I A B

Vectors (Interrupt and XOP).....

Verification.
Waitsesenina

LR R]

CRCRC R

LR R R R

R R R R R]

B E E R e A AR R NS A SRS A SRR AR RN

L R O I I R O R R O R R R IR A

WIRING TELETYPE MODEL 3320/5JE FOR ™ 990/10TM..cvvuses

Workspace Example.......

Workspace Pointer (WP).svvevaaes

Workspace Registers.....
Write Four Hexadecimal Characters to Terminal (XOP 10)..

PR S S EE RS SRS S NS EE SRS E AN SRR e A A

Write Message to Tértiingl (XOP TH) cesunn sienssavessaesises s ay e
Write One Character to Terminal (XOP 12)sciisiscasnsnsnssasasnassess
Write One Hexadecimal Character to Terminal (XOP 8).

XOP Example,....

INDEX-6

LR R R I)

Section 3
Appendix G
(T) 6-21
(F) 6-2
(F) 2-5
(T) 1-4
(F) 1-3
Section 4
(F) H4-7
(F) 1-2
(F) 6-16
(T) 5-12
(F) 7-15
T-12
Appendix I
7-12
(F)
(F)
(F)
(F)
(F)

7-16
6-12
5-15
6-11
6-26
6~9

6-33

6-27
Appendix
(F) 4-6
-2

5-6

3-16
3-17
3-17
3-15

(F) 4-35

TM 990/101M MICROCOMPUTER
USER RESPONSE SHEET

It is our desire to provide our customers with the best documentation possible. After using this manual, please
complete this sheet and mail it, postpaid, to us. Your comments will be given every consideration.

1. Is the manual well organized? Yes _ No Comments:
2. Is text clearly presented and adequately illustrated? Yes .~ _ No _
Comments:

2 8 What subject matter could be expanded or clarified? —

4. Is the instruction set adequately covered? Yes Na

Comments: "y

5. Do you wish more data that would clarify an instruction? Yes No

Comments: - —a E — —_—

6. Do you wish maore data to clarify an application? Yes No

Comments:

7. Please explain the application intended for your board:
School Course Home Evaluation _ OEM Application Other

If OEM Application, please describe:

8. Other comments concerning the TM 990/101M and this manual !

Name: e
Address State ZIP
School (if applicable) Major Year

REV. D

FOLD

FIRST CLASS
Permit No. 6189

Houston, Texas

BUSINESS REPLY MAIL
No postage necessary if mailed in the United States

Postage witi be paid by

TEXAS INSTRUMENTS INCORPORATED
SEMICONDUCTOR GROUP
P.O. BOX 1443 HOUSTON, TEXAS 77001

ATTENTION: MICROCOMPUTER PRODUCTS DEPARTMENT
mM/S 6750, COMMERCE PARK

FOLD

~TEXAS INSTRUMENTS

INCORPORATED

MP337 REV. D Semiconductor Group

1602001-9701 Post Office Box 1443 Houston, Texas 77001 Brieted in GISA.

